
26th International Conference, FoSSaCS 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2023
Paris, France, April 22–27, 2023
Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 1

39
92

AR
Co

SS
Orna Kupferman
Pawel Sobocinski (Eds.)

Lecture Notes in Computer Science 13992

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Orna Kupferman • Pawel Sobocinski
Editors

Foundations
of Software Science and
Computation Structures
26th International Conference, FoSSaCS 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2023
Paris, France, April 22–27, 2023
Proceedings

123

Editors
Orna Kupferman
The Hebrew University of Jerusalem
Jerusalem, Israel

Pawel Sobocinski
Tallinn University of Technology
Tallinn, Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30828-4 ISBN 978-3-031-30829-1 (eBook)
https://doi.org/10.1007/978-3-031-30829-1

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4699-6117
https://orcid.org/0000-0002-7992-9685
https://doi.org/10.1007/978-3-031-30829-1
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 26th ETAPS! ETAPS 2023 took place in Paris, the beautiful capital of
France. ETAPS 2023 was the 26th instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference established
in 1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronized conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attracted many researchers from all over the globe.

ETAPS 2023 received 361 submissions in total, 124 of which were accepted,
yielding an overall acceptance rate of 34.3%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2023 featured the unifying invited speakers Véronique Cortier (CNRS,
LORIA laboratory, France) and Thomas A. Henzinger (Institute of Science and
Technology, Austria) and the conference-specific invited speakers Mooly Sagiv (Tel
Aviv University, Israel) for ESOP and Sven Apel (Saarland University, Germany) for
FASE. Invited tutorials were provided by Ana-Lucia Varbanescu (University of
Twente and University of Amsterdam, The Netherlands) on heterogeneous computing
and Joost-Pieter Katoen (RWTH Aachen, Germany and University of Twente, The
Netherlands) on probabilistic programming.

As part of the programme we had the second edition of TOOLympics, an event to
celebrate the achievements of the various competitions or comparative evaluations in
the field of ETAPS.

ETAPS 2023 was organized jointly by Sorbonne Université and Université
Sorbonne Paris Nord. Sorbonne Université (SU) is a multidisciplinary,
research-intensive and worldclass academic institution. It was created in 2018 as the
merge of two first-class research-intensive universities, UPMC (Université Pierre and
Marie Curie) and Paris-Sorbonne. SU has three faculties: humanities, medicine, and
55,600 students (4,700 PhD students; 10,200 international students), 6,400 teachers,
professor-researchers and 3,600 administrative and technical staff members. Université
Sorbonne Paris Nord is one of the thirteen universities that succeeded the University of
Paris in 1968. It is a major teaching and research center located in the north of Paris. It
has five campuses, spread over the two departments of Seine-Saint-Denis and Val

d’Oise: Villetaneuse, Bobigny, Saint-Denis, the Plaine Saint-Denis and Argenteuil. The
university has more than 25,000 students in different fields, such as health, medicine,
languages, humanities, and science. The local organization team consisted of Fabrice
Kordon (general co-chair), Laure Petrucci (general co-chair), Benedikt Bollig (work-
shops), Stefan Haar (workshops), Étienne André (proceedings and tutorials), Céline
Ghibaudo (sponsoring), Denis Poitrenaud (web), Stefan Schwoon (web), Benoît Barbot
(publicity), Nathalie Sznajder (publicity), Anne-Marie Reytier (communication),
Hélène Pétridis (finance) and Véronique Criart (finance).

ETAPS 2023 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), EASST
(European Association of Software Science and Technology), Lip6 (Laboratoire
d'Informatique de Paris 6), LIPN (Laboratoire d'informatique de Paris Nord), Sorbonne
Université, Université Sorbonne Paris Nord, CNRS (Centre national de la recherche
scientifique), CEA (Commissariat à l'énergie atomique et aux énergies alternatives),
LMF (Laboratoire méthodes formelles), and Inria (Institut national de recherche en
informatique et en automatique).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Inria), Jan Křetínský (Munich),
and Lenore Zuck (Chicago).

Other members of the steering committee are: Dirk Beyer (Munich), Luís Caires
(Lisboa), Ana Cavalcanti (York), Bernd Finkbeiner (Saarland), Reiko Heckel
(Leicester), Joost-Pieter Katoen (Aachen and Twente), Naoki Kobayashi (Tokyo),
Fabrice Kordon (Paris), Laura Kovács (Vienna), Orna Kupferman (Jerusalem), Leen
Lambers (Cottbus), Tiziana Margaria (Limerick), Andrzej Murawski (Oxford), Laure
Petrucci (Paris), Elizabeth Polgreen (Edinburgh), Peter Ryan (Luxembourg), Sriram
Sankaranarayanan (Boulder), Don Sannella (Edinburgh), Natasha Sharygina (Lugano),
Pawel Sobocinski (Tallinn), Sebastián Uchitel (London and Buenos Aires), Andrzej
Wasowski (Copenhagen), Stephanie Weirich (Pennsylvania), Thomas Wies (New
York), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer-Verlag GmbH for their
support. I hope you all enjoyed ETAPS 2023.

Finally, a big thanks to Laure and Fabrice and their local organization team for all
their enormous efforts to make ETAPS a fantastic event.

April 2023 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 26th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2023), which
was held 24–27 April, 2023, in Paris, France. The conference is dedicated to foun-
dational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

The program consisted of 26 contributed papers, selected from among 85 submis-
sions. Each submission was assessed by three or more Program Committee members.
The conference management system EasyChair was used to handle the submissions, to
conduct the electronic Program Committee discussions, and to assist with the assembly
of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. Finally, we
would like to thank the ETAPS organization for providing an excellent environment for
FoSSaCS, other conferences, and workshops.

February 2023 Orna Kupferman
Pawel Sobocinski

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Giovanni Bacci Aalborg University, Denmark
Patrick Baillot CNRS and Université de Lille, France
Nathalie Bertrand Inria, France
Lars Birkedal Aarhus University, Denmark
Véronique Bruyère University of Mons, Belgium
Marco Carbone IT University of Copenhagen, Denmark
Thomas Colcombet CNRS, France
Ugo Dal Lago Università di Bologna, Italy and Inria Sophia Antipolis,

France
Emmanuel Filiot Université libre de Bruxelles, Belgium
Marco Gaboardi Boston University, USA
Bart Jacobs Radboud University, The Netherlands
Bartek Klin University of Oxford, UK
Orna Kupferman Hebrew University of Jerusalem, Israel
Barbara König University of Duisburg-Essen, Germany
Assia Mahboubi Inria, France
Shahar Maoz Tel Aviv University, Israel
Kuldeep S. Meel National University of Singapore, Singapore
Stefan Milius FAU Erlangen, Germany
Filip Murlak University of Warsaw, Poland
Koko Muroya RIMS, Kyoto University, Japan
Joel Ouaknine Max Planck Institute for Software Systems, Germany
Alexandra Silva University College London, UK
Pawel Sobocinski Tallinn University of Technology, Estonia
Sam Staton University of Oxford, UK
Alwen Tiu Australian National University, Australia
Frank Valencia LIX, Ecole Polytechnique, France
Daniele Varacca LACL - Université Paris Est Créteil, France

Additional Reviewers

Aguirre, Alejandro
Akshay, S.
Aranda, Jesus
Arsiwalla, Xerxes
Asada, Kazuyuki
Aubert, Clément
Bacci, Giorgio
Bahr, Patrick
Balachander, Mrudula
Balaji, Nikhil
Balasubramanian, A. R.
Baldan, Paolo
Bansal, Suguman
Barbarossa, Davide
Basold, Henning
Benerecetti, Massimo
Bengtson, Jesper
Bernardi, Giovanni
Boker, Udi
Bonchi, Filippo
Brice, Léonard
Béal, Marie-Pierre
Casares, Antonio
Castiglioni, Valentina
Chockler, Hana
Chroboczek, Juliusz
Clairambault, Pierre
Clemente, Lorenzo
Clouston, Ranald
Cohen, Liron
Corbyn, Nathan
Corradini, Andrea
Danielsson, Nils Anders
Dantchev, Stefan
de Groot, Jim
de Vilhena, Paulo
Dell’Erba, Daniele
Demangeon, Romain
Dima, Catalin
Dragoi, Cezara
Dubut, Jérémy
Fahrenberg, Uli
Feier, Cristina

Fijalkow, Nathanaël
Finster, Eric
Fiterau-Brostean, Paul
Freund, Anton
Ganty, Pierre
Gavazzo, Francesco
Geeraerts, Gilles
Ghyselen, Alexis
Goy, Alexandre
Gratzer, Daniel
Guilmant, Quentin
Gurke, Sebastian
Gutierrez, Julian
Hadzihasanovic, Amar
Hamel-de Le Court, Edwin
Hansen, Helle Hvid
Helouet, Loic
Henry, Léo
Hirschowitz, Tom
Hofman, Piotr
Hou, Zhe
Jaber, Guilhem
Jaquard, Arthur
Jindal, Gorav
Jonsson, Bengt
Kappé, Tobias
Karimov, Toghrul
Kavvos, Alex
Kelmendi, Edon
Kerjean, Marie
Kopczynski, Eryk
Kruckman, Alex
Lebeda, Christian Janos
Li, Yong
Lucyshyn-Wright, Rory
Luttik, Bas
Main, James C. A.
Marin, Sonia
Markey, Nicolas
Mascle, Corto
Mathur, Umang
Mazza, Damiano
McKenzie, Pierre

x Organization

Michaliszyn, Jakub
Michaux, Christian
Mimram, Samuel
Morales Elena, Marianela
Nieuwveld, Joris
Niewerth, Matthias
Niwinski, Damian
Norrish, Michael
Nuyts, Andreas
Olarte, Carlos
Oliva, Paulo
Pagani, Michele
Patterson, Evan
Perez, Guillermo
Piedeleu, Robin
Pinzón, Carlos
Pommellet, Adrien
Pous, Damien
Pradic, Pierre
Praveen, M.
Purser, David
Ramírez, Sergio
Raskin, Jean-Francois
Reynouard, Raphaël
Riba, Colin
Román, Mario
Rossberg, Andreas
Rot, Jurriaan
Saivasan, Prakash
Sakayori, Ken
Sanan, David
Sangnier, Arnaud
Sankur, Ocan
Schmid, Todd
Schmitz, Sylvain

Shevrin, Ilia
Shillito, Ian
Shirmohammadi, Mahsa
Skrzypczak, Michał
Sokolova, Ana
Spies, Simon
Stefanesco, Leo
Stefański, Rafał
Stein, Dario
Sterling, Jonathan
Totzke, Patrick
Traytel, Dmitriy
Tsampas, Stelios
Tsukada, Takeshi
Ulrik, Nikolaj Jensen
Urbat, Henning
Vahanwala, Mihir
van der Weide, Niels
van Dijk, Tom
van Glabbeek, Rob
van Gool, Sam
Vandenhove, Pierre
Vignudelli, Valeria
Vilmart, Renaud
Vákár, Matthijs
Wagemaker, Jana
Wang, Di
Weininger, Maximilian
Winskel, Glynn
Winter, Sarah
Wißmann, Thorsten
Worrell, James
Yamakami, Tomoyuki
Yatapanage, Nisansala

Organization xi

Contents

When Programs Have to Watch Paint Dry . 1
Danel Ahman

Deciding Contextual Equivalence of m-Calculus with Effectful Contexts 24
Daniel Hirschkoff, Guilhem Jaber, and Enguerrand Prebet

Kantorovich Functors and Characteristic Logics for Behavioural Distances 46
Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder,
and Paul Wild

A Logical Framework with Higher-Order Rational (Circular) Terms 68
Zhibo Chen and Frank Pfenning

A Higher-Order Language for Markov Kernels and Linear Operators. 89
Pedro H. Azevedo de Amorim

A Formal Logic for Formal Category Theory . 113
Max S. New and Daniel R. Licata

A Strict Constrained Superposition Calculus for Graphs 135
Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

A Programming Language Characterizing Quantum Polynomial Time 156
Emmanuel Hainry, Romain Péchoux, and Mário Silva

On the Existential Arithmetics with Addition and Bitwise Minimum 176
Mikhail R. Starchak

Coverability in 2-VASS with One Unary Counter is in NP. 196
Filip Mazowiecki, Henry Sinclair-Banks, and Karol Węgrzycki

On History-Deterministic One-Counter Nets . 218
Aditya Prakash and K. S. Thejaswini

Unboundedness Problems for Machines with Reversal-Bounded Counters 240
Pascal Baumann, Flavio D’Alessandro, Moses Ganardi, Oscar Ibarra,
Ian McQuillan, Lia Schütze, and Georg Zetzsche

Reverse Bisimilarity vs. Forward Bisimilarity . 265
Marco Bernardo and Sabina Rossi

Explainability of Probabilistic Bisimilarity Distances for Labelled Markov
Chains . 285

Amgad Rady and Franck van Breugel

Weighted and Branching Bisimilarities from Generalized Open Maps 308
Jérémy Dubut and Thorsten Wißmann

Preservation and Reflection of Bisimilarity via Invertible Steps 328
Ruben Turkenburg, Clemens Kupke, Jurriaan Rot, and Ezra Schoen

Quantitative Safety and Liveness. 349
Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

On the Comparison of Discounted-Sum Automata with Multiple Discount
Factors. 371

Udi Boker and Guy Hefetz

Fast Matching of Regular Patterns with Synchronizing Counting. 392
Lukáš Holík, Juraj Síč, Lenka Turoňová, and Tomáš Vojnar

Compositional Learning for Interleaving Parallel Automata 413
Faezeh Labbaf, Jan Friso Groote, Hossein Hojjat,
and Mohammad Reza Mousavi

Pebble minimization: the last theorems . 436
Gaëtan Douéneau-Tabot

Fixed Points and Noetherian Topologies . 456
Aliaume Lopez

An Efficient Cyclic Entailment Procedure in a Fragment
of Separation Logic . 477

Quang Loc Le and Xuan-Bach D. Le

Just Testing . 498
Rob van Glabbeek

Model and Program Repair via Group Actions . 520
Paul C. Attie and William L. Cocke

Subgame Optimal Strategies in Finite Concurrent Games with
Prefix-Independent Objectives. 541

Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux

Author Index . 561

xiv Contents

When Programs Have to Watch Paint Dry

Danel Ahmanp�q

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
danel.ahman@fmf.uni-lj.si

Abstract. We explore type systems and programming abstractions for
the safe usage of resources. In particular, we investigate how to use types
to modularly specify and check when programs are allowed to use their
resources, e.g., when programming a robot arm on a production line, it
is crucial that painted parts are given enough time to dry before assem-
bly. We capture such temporal resources using a time-graded variant of
Fitch-style modal type systems, develop a corresponding modally typed,
effectful core calculus, and equip it with a graded-monadic denotational
semantics illustrated by a concrete presheaf model. Our calculus also in-
cludes graded algebraic effects and effect handlers. They are given a novel
temporally aware treatment in which operations’ specifications include
their execution times and their continuations know that an operation’s
worth of additional time has passed before they start executing, making
it possible to safely access further temporal resources in them.

Keywords: Temporal resources · Modal types · Graded monads ·
Algebraic effects · Effect handlers.

1 Introduction

The correct usage of resources is at the heart of many programs, especially if
they control safety-critical machinery. Such resources can take many different
forms: ensuring that file handles are not arbitrarily duplicated or discarded (as
captured by linear and uniqueness types) [11,25,40], or guaranteeing that com-
munication happens according to protocols (as specified by session types) [30,70],
or controlling how data is laid out in memory (as in Hoare and separation log-
ics) [2,34,56,64], or assuring that resources are correctly finalised [1,43].

In contrast to the above approaches that predominantly focus on how re-
sources are used, we study how to modularly specify and verify when programs
can use their resources—we call such resources temporal. For instance, consider
the following code snippet controlling a robot arm on a (car) production line:

let pbody’, left-door’, right-door’q “ paint pbody, left-door, right-doorq in
assemble pbody’, left-door’, right-door’q

Here, the correct execution of the program (and thus operation of the robot
arm it is controlling) relies on the car parts given enough time to dry between
painting and assembly. Therefore, in its current form, the above code is correct

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 1–23, 2023.
https://doi.org/10.1007/978-3-031-30829-1_1

https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30829-1_1
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_1&domain=pdf

2 D. Ahman

only if a compiler (or a scheduler) inserts enough of a time delay at compile time
(resp. dynamically blocks program’s execution for enough time) between the calls
to paint and assemble. However, in either case, one still faces the question of how
to reason about the correctness of the compiled code (resp. dynamic checks).

In this paper, we focus on developing a type system based means for reasoning
about the temporal correctness of the code that the above-mentioned compiler
might produce, or that a programmer might write directly when full control of
the code is important. In particular, we had three desiderata we set out to fulfil:

1. We did not want the delay between paint and assemble to be limited to
just blocking execution, with the robot sitting idly while watching paint dry.
Instead, we wanted a flexible formalism that would allow the robot to spend
that time doing other useful work, while ensuring that enough time passes.

2. We wanted the passage of time of program execution to be modelled within the
type system, rather than being left to some unspecified meta-level run-time.

3. We wanted the resulting language to give programmers the freedom to re-
define the behaviour of operations such as paint and assemble, say, via effect
handling [61], while respecting the operations’ temporal specifications.

Paper Structure We achieve these goals by designing a mathematically natural
core programming language for safe and correct programming with temporal re-
sources: on the one hand, based on a time-graded, temporal variant of Fitch-style
modal type systems [19,27], and on the other hand, on graded monads [35,51,67].

We review modal types and discuss how we use them to capture temporal
resources in §2. In §3, we present λrτs—our modally typed, effectful, equationally
presented core calculus for safe programming with temporal resources. We justify
the design of λrτs by giving it a mathematically natural sound denotational se-
mantics in §4, based on graded monads and adjunctions between strong monoidal
functors, including a concrete presheaf example. In §5, we briefly discuss a spe-
cialisation of λrτs with equations for time delays. We review related work and
remark on future work in §6, and conclude in §7. This paper is also accompanied
by an online appendix (https://arxiv.org/abs/2210.07738) that presents further
details of renamings and denotational semantics that we omit in §3 and §4.

For supplementary rigour, we have formalised the main results of §3 and
§4 also in Agda [68], available at https://github.com/danelahman/temporal-
resources/releases/tag/fossacs2023. Regrettably, it currently lacks (i) proofs of
some auxiliary lemmas noted in Prop. 4 due to a bug in Agda where with-
abstractions produce ill-typed terms,1 and (ii) two laws of the presheaf model
because unfolding of definitions produces unmanageably large terms for Agda.

2 Modal Types for Temporal Resources

We begin with an overview of (Fitch-style) modal type systems and how a time-
graded variant of them naturally captures temporal aspects of resources.
1 Eta-contraction is not type-preserving: https://github.com/agda/agda/issues/2732

https://arxiv.org/abs/2210.07738
https://github.com/danelahman/temporal-resources/releases/tag/fossacs2023
https://github.com/danelahman/temporal-resources/releases/tag/fossacs2023
https://github.com/agda/agda/issues/2732

When Programs Have to Watch Paint Dry 3

2.1 (Fitch-Style) Modal Types

A modal type system extends the types of an underlying type system with new
modal type formers,2 e.g., ˝X, which states that the type is to be considered and
reasoned about in a different mode compared to X, which can take many forms.
For instance, in Kripke’s possible worlds semantics, ˝X means that values of
type X are available in all future worlds [41]; in run-time code generation, the
type ˝X captures generators of X-typed code [72]; and in asynchronous and
distributed programming, the type ˝X specifies mobile X-typed values [3,54,63].

Many different approaches to presenting modal type systems have been devel-
oped, with one of the main culprits being the difficulty of getting the introduction
rule for ˝X correct. Namely, bearing in mind Kripke’s possible worlds seman-
tics, the introduction rule for ˝X must allow one to use only those hypotheses
that also hold in all future worlds, while at the same time ensuring that the sys-
tem still enjoys expected structural properties. Solutions to this problem have
involved proving ˝X in a context containing only ˝-types [62] (with a failure
of structural properties in the naive approaches), or building a form of explicit
substitutions into the introduction rule for ˝X to give the rule premise access
to only ˝-types [12], or incorporating the Kripke semantics in the type system
by explicitly indexing types with worlds [66]—see [37] for an in-depth survey.

In this paper, we build on Fitch-style modal type systems [15,19,27,48], where
the typing rules for ˝X are given with respect to another modality, � , that
acts on contexts, resulting in a particularly pleasant type-theoretic presentation.

As an illustrative example, in a Fitch-style modal type system corresponding
to the modal logic S4 (whose Kripke models require the order on worlds to be
reflexive and transitive, thus also corresponding to natural properties of time),
the typing rules for variables and the ˝X type have the following form:3

Var
� R Γ 1

Γ, x :X,Γ 1 $ x : X

Shut
Γ, � $ t : X

Γ $ shut t : ˝X

Open
Γ $ t : ˝X

Γ,Γ 1 $ open t : X

Intuitively, the context modality � creates a barrier in the premise of Shut
so that only ˝-typed variables can be used from Γ in t, achieving the above-
mentioned correctness goal for the introduction rule of ˝X. Alternatively, in the
context of Kripke’s possible worlds semantics, one can also read the occurrences
of the � modality as advancing the underlying world—in Shut, t in the premise
is typed in some future world compared to where shut t is typed at. This intuition
will be useful to how we use a similar modality to capture the passage of time in
λrτs. The context weakening Γ, Γ 1 in Open ensures the admissibility of structural
rules, and in the possible worlds reading, it intuitively expresses that if ˝X is
available in some world, then X will be available in all possible future worlds.

2 For brevity, we use the term modal type system to interchangeably refer to both
modal type systems and natural deduction systems of (intuitionistic) modal logics.

3 Depending on which exact modal logic one is trying to capture, the form of contexts
used in the introduction/elimination rules can differ, see [19] for a detailed overview.

4 D. Ahman

2.2 Modal Types for Temporal Resources

Next, we give a high-level overview of how we use a time-graded variant of Fitch-
style modal type systems to capture temporal properties of resources in λrτs. For
this, we use the production line code snippet from §1 as a working example.

A Naive Approach Before turning to modal types, a naive solution to achieve
the desired time delay would be for paint to return the required drying time and
for the program to delay execution for that time duration, e.g., as expressed in

let pτdry, body’, left-door’, right-door’q “ paint pbody, left-door, right-doorq in
delay τdry;
assemble pbody’, left-door’, right-door’q

It is not difficult to see that we could generalise this solution to allow performing
other useful activities while waiting for τdry time to pass. So are we done and can
we conclude the paper here? Well, no, because this solution puts all the burden
for writing correct code on the shoulders of the programmer, with successful
typechecking giving no additional guarantees that τdry indeed will have passed.

A Temporal Resource Type Instead, inspired by Fitch-style modal type
systems and Kripke’s possible worlds semantics of the ˝-modality, we propose
a temporal resource type, written rτ sX, to specify that a value of type X will
become available for use in at most τ time units, or to put it differently, the
boxed value of type X can be explicitly unboxed only when at least τ time units
have passed. Concretely, rτ sX is presented by the following two typing rules:

Box
Γ, xτy $ V : X

Γ $ boxτ V : rτ sX

Unbox
τ ď time Γ Γ ´ τ $ V : rτ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

Above, τs are natural numbers that count discrete time moments, and Y ! τ 1 is a
type of computations returning Y -typed values and executing in τ 1 time units.

Analogously to the context modality � of Fitch-style modal type systems,
we introduce a similar modality on contexts, written xτy, to express that when
typechecking a term of the form Γ, xτy $ V : X, we can safely assume that at
least τ time will have passed before V is accessed or executed, as in the premise
of the Box rule. Accordingly, in Unbox, we require that at least τ time units
have passed since the resource V of type rτ sX was created or brought into scope,
by typing V in the “earlier” context Γ ´ τ (we define this operation in §3.3).

Encapsulating temporal resources as a type gives us flexible first-class access
to them, and allows to pack them in data structures and pass them to functions.

Modelling Passage of Time As we see in the Unbox rule, we can unbox a
temporal resource only when enough time has passed since its creation. This begs
the question: How can the passage of time be modelled within the type system?

When Programs Have to Watch Paint Dry 5

For this, we propose a new notion of temporally aware graded algebraic effects,
where each operation op is specified not only by its parameter and result types,
but also by its prescribed execution time, and with op’s continuation knowing
that op’s worth of additional time has passed before it begins executing. We refer
the reader to [8,31,35,60] for background on ordinary (graded) algebraic effects.

For instance, the paint operation, taking τpaint time, is typed in λrτs as4

Γ $ V : Body ˆ Door ˆ Door
Γ, xτpainty, x : rτdrysBody ˆ rτdrysDoor ˆ rτdrysDoor $ M : X ! τ

Γ $ paint V px .Mq : X ! τpaint ` τ

Here, xτpainty expresses that from the perspective of any unboxes in M , an addi-
tional τpaint time will have passed compared to the beginning of the execution
of paint V px .Mq, which is typed in the “earlier” context Γ . Also, observe that
paint’s result x is available after τpaint time has passed (i.e., after paint finishes),
and its type has the car part types wrapped as temporal resources, ensuring that
any further operations (e.g., assemble) can access them only after at least τdry
time has passed after paint finishes. The delay τ operation is typed analogously.

Finally, similarly to algebraic operations, we also use the context modality
xτy to model the passage of time in sequential composition, as specified in

Γ $ M : X ! τ Γ, xτy, x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

The type X ! τ (for specifying the execution time of computations) is standard
from graded monads style effect systems [35]. The novelty of our work is to use
this effect information to inform continuations that they can safely assume that
the given amount of additional time has passed before they start executing.

Putting It All Together We conclude this overview by revisiting the produc-
tion line code snippet and note that in the λrτs-calculus we can write it as

let pbody’, left-door’, right-door’q “ paint pbody, left-door, right-doorq in
delay τdry;
unbox body’ as body” in
unbox left-door’ as left-door” in
unbox right-door’ as right-door” in
assemble pbody” , left-door” , right-door”q

Observe that apart from the unbox operations, the code looks identical to
the naive, unsafe solution discussed earlier. However, crucially, now any code
that wants to use the outputs of paint will typecheck only if these resources are
accessed after at least τdry time units have passed after paint finishes. In the
code snippet, this is achieved by blocking execution with delay τdry for τdry time
units, but this could have been equally well achieved by executing other useful
operations op1; . . . ; opn, as long as they collectively take at least τdry time.
4 We present λrτs formally using algebraic operations with explicit continuations, while

in code snippets we use so-called generic effects [59] without explicit continuations.

6 D. Ahman

Time grade: τ P N

Ground type A, B, C ::“ b
ˇ̌
unit

ˇ̌
A ˆ B

ˇ̌ rτ sA
Value type X, Y , Z ::“ A

ˇ̌
X ˆ Y

ˇ̌
X Ñ Y ! τ

ˇ̌ rτ sX
Computation type: X ! τ

Fig. 1. Types of λrτs.

3 A Calculus for Programming with Temporal Resources

We now recast the ideas explained above as a formal, modally typed, effectful
core calculus, called λrτs. We base it on the fine-grain call-by-value λ-calculus [44].

3.1 Types

The types of λrτs are given in Fig. 1. Ground types include base types b, and are
closed under finite products and the modal temporal resource type rτ sA. The
latter denotes that an A-typed value will become available in at most τ time
units, where τ P N counts discrete time moments.5 The ground types can also
come with constants f with associated constant signatures f : pA1, . . . , Anq Ñ B.

To model operations such as paint and assemble discussed in §2.2, we assume
a set of operations symbols O, with each op P O assigned an operation signature
op : Aop � Bop ! τop, which specifies that op accepts inputs of type Aop, returns
values of type Bop, and its execution takes τop time units. Observe that by
typing operations with ground types, as opposed to simply with base types, we
can specify operations such as paint : Part � prτdrysPartq!τpaint, returning values
that can be accessed only after a certain amount of time, here, after τdry.

Value types extend ground types with function type X Ñ Y ! τ that specifies
functions taking X-typed arguments to computations that return Y -typed values
and take τ time to execute, as expressed by the computation type Y ! τ .

3.2 Terms

The syntax of terms is given in Fig. 2, separated into values and computations.
Values include variables, constants, finite tuples, functions, and the boxing

up of temporal resources, boxτ V , which allows us to consider an arbitrary value
V as a temporal resource as long as it is safe to access V after τ time units.

Computations include returning values, sequential composition, function ap-
plication, pattern-matching6, algebraic operation calls, effect handling, and the
unboxing of temporal resources, where given a temporal resource V of type rτ sX,
5 For concreteness, we work with pN, 0,`, 9́ ,ďq for time grades, but we do not foresee

problems generalising these to come from other analogous algebraic structures.
6 The form let px, y, zq “ M in N in §1,2 is the natural combination of let and match.

When Programs Have to Watch Paint Dry 7

Values
V,W ::“ x variableˇ̌

fpV1, . . . , Vnq constantˇ̌ pq ˇ̌ pV,W q unit and pairingˇ̌
fun px : Xq ÞÑ M functionˇ̌
boxτ V boxing up a temporal resource

Computations
M,N ::“ return V returning a valueˇ̌

let x “ M in N sequential compositionˇ̌
V W function applicationˇ̌
match V with tpx, yq ÞÑ Nu pattern-matchingˇ̌
op V px .Mq operation callˇ̌
delay τ M time delayˇ̌
handle M with H to x in N effect handlingˇ̌
unboxτ V as x in N unboxing a temporal resource

Effect handlers
H ::“ px . k .MopqopPO operation clauses

Fig. 2. Values, computations, and effect handlers of λrτs.

the computation unboxτ V as x in N is used to access the underlying value of
type X if at least τ time units have passed since the creation of the resource V .

In addition to user-specifiable operation calls (via operation signatures and
effect handling), we include a separate delay τ M operation that blocks the
execution of its continuation for the given amount of time. For simplicity, we
require effect handlers to have operation clauses Mop for all op P O, but we do
not allow delays to be handled in light of the equations we want of them in §5,
where all consecutive delays are collapsed and all zero-delays are removed.

3.3 Type System

We now equip λrτs with a modal type-and-effect system. On the one hand, for
modelling temporal resources, we build on Fitch-style modal type systems [19].
On the other hand, for modelling effectful computations and their specifications,
we build on type-and-effect systems for calculi based on graded monads [35].

The typing judgements are written as Γ $ V : X and Γ $ M : X ! τ , where
τ specifies M ’s execution time and Γ is a temporal typing context, given by

Γ ::“ ¨ ˇ̌
Γ, x :X

ˇ̌
Γ, xτy

Here, xτy is a temporal context modality, akin to � in Fitch-style systems. We
use it to express that when typechecking a term of the form Γ, xτy $ V : X, we

8 D. Ahman

Values

Var

Γ, x :X,Γ 1 $ x : X

Const
pΓ $ Vi : Aiq1ďiďn

Γ $ fpV1, . . . , Vnq : B

Pair
Γ $ V : X Γ $ W : Y

Γ $ pV,W q : X ˆ Y

Unit

Γ $ pq : unit

Fun
Γ, x :X $ M : Y ! τ

Γ $ fun px : Xq ÞÑ M : X Ñ Y ! τ

Box
Γ, xτy $ V : X

Γ $ boxτ V : rτ sX
Computations

Return
Γ $ V : X

Γ $ return V : X ! 0

Let
Γ $ M : X ! τ Γ, xτy, x :X $ N : Y ! τ 1

Γ $ let x “ M in N : Y ! τ ` τ 1

Apply
Γ $ V : X Ñ Y ! τ Γ $ W : X

Γ $ V W : Y ! τ

Match
Γ $ V : X ˆ Y Γ, x :X, y :Y $ N : Z ! τ

Γ $ match V with tpx, yq ÞÑ Nu : Z ! τ

Op
Γ $ V : Aop Γ, xτopy, x :Bop $ M : X ! τ

Γ $ op V px .Mq : X ! τop ` τ

Delay
Γ, xτy $ M : X ! τ 1

Γ $ delay τ M : X ! τ ` τ 1

Handle
Γ $ M : X ! τ Γ, xτy, x :X $ N : Y ! τ 1 H “ px . k .MopqopPO`@τ2 . Γ, x :Aop, k : rτops pBop Ñ Y ! τ2q $ Mop : Y ! τop ` τ2˘

opPO
Γ $ handle M with H to x in N : Y ! τ ` τ 1

Unbox
τ ď time Γ Γ ´ τ $ V : rτ sX Γ, x :X $ N : Y ! τ 1

Γ $ unboxτ V as x in N : Y ! τ 1

Fig. 3. Typing rules of λrτs.

can safely assume that at least τ time will have passed before the resource V is
accessed or executed. The rules defining these judgements are given in Fig. 3.

In contrast to Fitch-style modal type systems discussed in §2.1, Var does
not restrict the Γ 1 right of x to not include any context modalities. This is so
because in the possible worlds reading of λrτs (see §4) we treat all types as being
monotone for time—this is not usually the case for formulae in modal logics such
as S4, but in λrτs this models that once any value is available it will remain so.

As in systems based on graded monads, Return specifies that returning a
value takes zero time, and Let that the execution time of sequentially composed
computations is the sum of the individual ones. Novel to λrτs, Let, Op, Delay,
and Handle state that the continuations can safely assume that relevant amount
of additional time has passed before they start executing, as discussed in §2.2.

When typing the operation clauses Mop in Handle, we universally quantify
(at the meta-level) over the execution time τ2 of the continuation k of Mop. We
do so as the operation clauses Mop must be able to execute at any point when

When Programs Have to Watch Paint Dry 9

effect handling recursively traverses M . Further, observe that k is wrapped inside
a resource type. This ensures that k is invoked only after τop amount of time has
been spent in Mop, thus guaranteeing that the temporal discipline is respected.
Note that this enforces a linear discipline for our effect handlers: for τop ą 0, k
must be executed exactly once for Mop’s execution time to match τop ` τ2.

Finally, Box specifies that in order to box up a value V of type X as a
temporal resource of type rτ sX, we must be able to type V when assuming that
τ additional time units will have passed before V is accessed. At the same time,
Unbox specifies that we can unbox a temporal resource V of type rτ sX only if
at least τ time units have passed since its creation: the time captured by Γ must
be at least τ , and we must be able to type V in a τ time units “earlier” context
Γ ´ τ . The time captured by a context, time Γ , is calculated recursively as

time ¨ def“ 0 time pΓ, x :Xq def“ time Γ time pΓ, xτyq def“ time Γ ` τ

and the “time travelling” operation Γ ´ τ as (where τ` ” 1 ` τ2 for some τ2)

Γ ´ 0
def“ Γ ¨ ´ τ`

def“ ¨ pΓ, x :Xq ´ τ`
def“ Γ ´ τ`

pΓ, xτ 1yq ´ τ`
def“ if τ` ď τ 1 then Γ, xτ 1

9́ τ`y else Γ ´ pτ` 9́ τ 1q
taking Γ to an “earlier” state by removing τ worth of modalities and variables.

3.4 Admissibility of Renamings and Substitutions

We now show that expected structural and substitution rules [7] are admissible.

Theorem 1. The typing relations Γ $ V : X and Γ $ M : X ! τ are closed
under standard structural rules of weakening, exchange of consecutive variables,
and contraction (omitted here). Furthermore, both typing relations are also closed
under rules making x´y into a strong monoidal functor (with a co-strength) [45]:

Γ, x0y $ J

Γ $ J

Γ, xτ1 ` τ2y $ J

Γ, xτ1y, xτ2y $ J

Γ, xτy $ J τ ď τ 1

Γ, xτ 1y $ J

Γ, xτy, x :X $ J

Γ, x :X, xτy $ J

where Γ $ J ranges over both typing relations, where the first two rules hold in
both directions, and the last rule expresses that if we can type J using a variable
“now”, we can also type J if that variable was brought into scope “earlier”.

Proof. First, we define a renaming relation ρ : Γ � Γ 1, and then prove by
induction that if Γ $ J and ρ : Γ � Γ 1 then Γ 1 $ Jrρs, where Jrρs is J renamed
with ρ. The � relation is defined as the reflexive-transitive-congruent closure of
rules corresponding to the desired structural rules, e.g., varrx:XPΓ : Γ, y :X � Γ
and μr : Γ, xτ1 ` τ2y � Γ, xτ1y, xτ2y. The full list is given in the online appendix.

For the Var and Unbox cases of the proof, we show that if ρ : Γ � Γ 1 and
x Pτ Γ , then ρ x Pτ 1 Γ 1 for some τ 1 with τ ď τ 1, where x Pτ Γ means that x P Γ
and there is τ worth of modalities right of x in Γ , and ρ x is the variable that
ρ maps x to. For Unbox, we further prove that if ρ : Γ � Γ 1, then for any τ

10 D. Ahman

we can build ρ ´ τ : Γ ´ τ � Γ 1 ´ τ , using the result about Pτ to ensure that ρ
does not map any x P Γ ´ τ outside of Γ 1 ´ τ . We also establish that if Γ � Γ 1,
then time Γ ď time Γ 1, allowing us to deduce τ ď time Γ 1 from τ ď time Γ .

The admissibility of the rules corresponding to μr (and its inverse) relies on
us having defined context splitting in Unbox using Γ ´ τ , as opposed to more
rigidly as Γ, Γ 1, as in [19], as then it would be problematic if the split happens
between xτ1y, xτ2y. Inverses of the last two rules in Thm. 1 are not valid—they
would allow unboxing temporal resources without enough time having passed.

Theorem 2. The typing relations Γ $ V : X and Γ $ M : X ! τ are closed
under substitution, i.e., if Γ, x :X,Γ 1 $ J and Γ $ W : X, then Γ, Γ 1 $ JrW {xs,
where JrW {xs is standard recursively defined capture-avoiding substitution [7].

Proof. The proof proceeds by induction on the derivation of Γ, x :X,Γ 1 $ J .
The most involved case is Unbox, where we construct the derivation of Γ, Γ 1 $
unboxτ V rW {xs as y in N rW {xs : Y ! τ 1 by first analysing whether τ ď time Γ 1,
which tells us whether x is in the context pΓ, x :X,Γ 1q´τ of V , based on which we
learn whether W continues to be substituted for x in V or whether V rW {xs “ V .

3.5 Equational Theory

We conclude the definition of λrτs by equipping it with an equational theory to
reason about program equivalence, defined using judgements Γ $ V ” W : X
and Γ $ M ” N : X ! τ , where we presuppose that the terms are well-typed
for the given contexts and types. The rules defining these relations are given in
Fig. 4. We omit standard equivalence, congruence, and substitutivity rules [7].

The equational theory consists of standard β{η-equations for the unit, prod-
uct, and function types. We also include monadic equations for return and let [52].
For op and delay, we include algebraicity equations, allowing us to pull them out
of let [8]. For handle, we include equations expressing that effect handling recur-
sively traverses a term, replacing each op-occurrence with the operation clause
Mop, leaving delays untouched, and finally executes the continuation N when
reaching return values [61]. Finally, we include β/η-equations for box and unbox,
expressing that unbox behaves as a pattern-matching elimination form for box.

4 Denotational Semantics

We justify the design of λrτs by giving it a mathematically natural semantics
based on adjunctions between strong monoidal functors [45] (modelling modal-
ities) and a strong7 graded monad [35] (modelling computations). We assume
general knowledge of category theory, only spelling out details specific to λrτs.
To optimise for space, we discuss the abstract model structure simultaneously
with a concrete example using presheaves [46], but note that the interpretation
is defined, and its soundness proved, with respect to the abstract structure.
7 To be more specific, we use a modal notion of r´s-strength that we define below.

When Programs Have to Watch Paint Dry 11

pq ” V : unit pηq
fun px : Xq ÞÑ V x ” V : X Ñ Y ! τ pηq

pfun px :Xq ÞÑ MqV ” M rV {xs pβq
match pV,W q with tpx, yq ÞÑ Nu ” N rV {x,W {ys pβq

match V with tpx, yq ÞÑ N rpx, yq{zsu ” N rV {zs pηq
let x “ preturn V q in N ” N rV {xs pβq

let y “ plet x “ M in Nq in P ” let x “ M in plet y “ N in P q pβq
let x “ M in return x ” M pηq

let x “ pop V py .Mqq in N ” op V py . let x “ M in Nq pβq
let x “ pdelay τ Mq in N ” delay τ plet x “ M in Nq pβq

handle preturn V q with H to x in N ” N rV {xs pβq
handle pop V py .Mqq with H to x in N ”

MoprV {x, boxτop pfun py : Bopq ÞÑ handle M with H to x in Nq{ks pβq
handle pdelay τ Mq with H to x in N ” delay τ phandle M with H to x in Nq pβq

unboxτ pboxτ V q as x in N ” N rV {xs pβq
unboxτ V as x in N rboxτ x{ys ” N rV {ys pηq

Fig. 4. Equational theory of λrτs.

When referring to the abstract model structure, we denote the underlying
category with C. Meanwhile, the concrete presheaf example is given in SetpN,ďq,
consisting of functors from pN,ďq to the category Set of sets and functions.

The model in SetpN,ďq is similar to Kripke’s possible worlds semantics, except
that in SetpN,ďq all objects are monotone for ď, i.e., for any A P SetpN,ďq we
have functions Apt1 ď t2q : Apt1q Ñ Apt2q respecting reflexivity and transitivity,
whereas Kripke models are commonly given by discretely indexed presheaves
and only modalities change worlds. For λrτs, working in SetpN,ďq gives us that
when a resource becomes available, it will remain so without need for reboxing,
leading to a more natural system for temporal resources and a simpler Var rule.

4.1 Interpretation of Types

Value Types and Contexts To interpret value types, we require the category
C to have finite products p1, A ˆ Bq and exponentials A ñ B, so as to model
the unit, product, and function types. In SetpN,ďq, the former are given point-
wise using the finite products in Set, and the latter are given as pA ñ Bqptq def“
SetpN,ďqphom t ˆ A,Bq, where hom t : pN,ďq Ñ Set is the covariant hom-functor

12 D. Ahman

for pN,ďq, given by hom t
def“ t ď p´q [46]. When unfolding it further, the above

means that pA ñ Bqptq is the set of functions pft1 : Apt1q Ñ Bpt1qqt1Ptt1PN|tďt1u
that are natural in t1, capturing the intuition that in λrτs functions can be applied
in any future context. For base types, we require an object rrbss of C for each b.

To interpret the temporal resource type, we require a strong monoidal functor
r´s : pN,ďq Ñ rC,Cs, where rC,Cs is the category of endofunctors on C. This
means that we have functors rτ s : C Ñ C, for all τ P N, together with morphisms
rτ1 ď τ2sA : rτ1sA Ñ rτ2sA, natural in A and respecting ď. Strong monoidality
of r´s means that we have natural isomorphisms εA : r0sA –Ñ A and δA,τ1,τ2 :

rτ1 ` τ2sA –Ñ rτ1sprτ2sAq, satisfying time-graded variants of comonad laws [10]:

ε ˝ δA,0,τ ” id rτ spεq ˝ δA,τ,0 ” id δrτ3sA,τ1,τ2 ˝ δA,τ1`τ2,τ3 ” rτ1spδq ˝ δ

We also require pδA,τ1,τ2 , δ
´1
A,τ1,τ2

q to be monotone in τ1, τ2, i.e., if τ1 ď τ 1
1 and

τ2 ď τ 1
2, then rτ 1

1sprτ2 ď τ 1
2sq ˝ rτ1 ď τ 1

1s ˝ δ ” δ ˝ rτ1 ` τ2 ď τ 1
1 ` τ 1

2sA. We omit
the indices of the components of natural transformations when convenient.

In SetpN,ďq, we define prτ sAqptq def“ Apt` τq, with rτ sA-values given by future
A-values, and with pεA, ε´1

A , δA, δ
´1
A q given by identities on A-values, combined

with the laws of p0,`q, e.g., as pεAqt
`
a P pr0sAqptq ” Apt ` 0q˘ def“ a P Aptq.

Using the above, we interpret a value type X as an object rrXss of C, as

rrAss def“ rrAssg rrunitss def“ 1 rrX ˆ Y ss def“ rrXss ˆ rrY ss
rrX Ñ Y ! τ ss def“ rrXss ñ T τ rrY ss rrrτ sXss def“ rτ srrXss

where T is a graded monad for modelling computations—we return to it below.
The interpretation of ground types rrAssg is defined similarly, so we omit it here.

Next, we define the interpretation of contexts, for which we require another
strong monoidal functor, x´y : pN,ďqop Ñ rC,Cs. Note that x´y is contravari-
ant—this enables us to model the structural rules that allow terms typed in an
earlier context to be used in future ones (see Thm. 1). We denote the strong
monoidal structure of x´y with ηA : A

–Ñ x0yA and μA,τ1,τ2 : xτ1ypxτ2yAq –Ñ
xτ1 ` τ2yA, required to satisfy time-graded variants of monad laws [45], given by

μA,0,τ ˝ η ” id μA,τ,0 ˝ xτypηq ” id μA,τ1`τ2,τ3 ˝ μxτ3yA,τ1,τ2 ” μ ˝ xτ1ypμq
and pμA,τ1,τ2 , μ

´1
A,τ1,τ2

q have to be monotone in τ1, τ2, similarly to pδ, δ´1q above.
In SetpN,ďq, we define pxτyAqptq def“ pτ ď tq ˆ Apt 9́ τq, as past A-values, with

the side-condition τ ď t crucial for the existence of the adjunctions xτy % rτ s we
require below. We define pηA, η´1

A , μA, μ
´1
A q similarly to earlier, as identities on

A-values, combined with the laws of p0,`, 9́ q, so as to satisfy the side-conditions.
With this, we can interpret contexts Γ as functors rrΓ ss : C Ñ C, given by:

rr¨ssA def“ A rrΓ, x :XssA def“ rrΓ ssA ˆ rrXss rrΓ, xτyssA def“ xτyprrΓ ssAq
We interpret contexts as functors to easily manipulate denotations of composite
contexts, e.g., we then have ιΓ ;Γ 1;A : rrΓ, Γ 1ssA –Ñ rrΓ 1ssprrΓ ssAq, natural in A.

When Programs Have to Watch Paint Dry 13

Finally, to formulate the semantics of computation types and terms, we re-
quire there to be a family of adjunctions xτy % rτ s, i.e., natural transformations
η%
A,τ : A Ñ rτ spxτyAq (the unit) and ε%

A,τ : xτyprτ sAq Ñ A (the counit), for all
τ P N, satisfying time-graded variants of standard adjunction laws [45], given by

ε%
xτyA,τ ˝ xτypη%

A,τ q ” id rτ spε%
A,τ q ˝ η%

rτsA,τ ” id

We also require pη%, ε%q to interact well with the strong monoidal structures:

rτ spx0 ď τyq ˝ η%
A,τ ˝ η´1 ˝ ε ” r0 ď τ s rτ1sprτ2spμqq ˝ rτ1spη%

xτ1yA,τ2
q ˝ η%

A,τ1
” δ ˝ η%

x0ypr0 ď τ sq ˝ η ˝ ε´1 ˝ ε%
A,τ ” x0 ď τy ε%

A,τ1
˝ xτ1ypε%

rτ1sA,τ2
q ˝ xτ1ypxτ2ypδqq ” ε% ˝ μ

Proposition 1. It then follows that η%
A,0 ” ε´1

x0yA ˝ ηA and ε%
A,0 ” εA ˝ η´1

r0sA.

In SetpN,ďq, η%
A,τ and ε%

A,τ are given by identities on A-values, respectively
combined with τ ď t` τ and monotonicity for pt 9́ τq ` τ ” t. For the latter, we
crucially know τ ď t due to the side-condition included in the definition of x´y.

We note that modulo the time grades τ , the above structure is analogous to
the models of the Fitch-style presentation of S4 [19], where ˝ is modelled by
an idempotent comonad, � by an idempotent monad, and boxing/unboxing by
� % ˝. This is also why we present r´s and x´y as comonad- and monad-like.

Computation Types For computation types, we require a r´s-strong graded
monad pT, ηT , μT , strT q on C, with grades in N.8 In detail, this means a functor
T : N Ñ rC,Cs, together with natural transformations ηTA : A Ñ T 0A (the
unit), μT

A,τ1,τ2
: T τ1pT τ2 Aq Ñ T pτ1 ` τ2qA (the multiplication), and strTA,B,τ :

rτ sAˆT B τ Ñ T pAˆBq τ (the strength), with the first two satisfying standard
graded monad laws (see [35] or pη, μq of x´y). Below we only present the laws
for strT because it has a novel temporal aspect to it—its first argument appears
under rτ s. As such, strT expresses that if we know an A-value will be available
after τ time units, we can push it into computations taking τ -time to execute.

We say that T is a r´s-strong graded monad following the parlance of Bier-
man and de Paiva [12]—in their work they model the possibility modality ˛A as
a ˝-strong monad. While the laws governing strT are not overly different from
standard graded strength laws [35], we have to correctly account for r´s in them

strTA,B,0 ˝ pε´1
A ˆ ηTAq ” ηTAˆB μT

AˆB,τ1,τ2
˝ T pstrT q ˝ strT ” strT ˝ pδ´1 ˆ μT q

T psndq ˝ strTA,B,τ ” snd T pαq ˝ strT ˝ pm ˆ idq ˝ α´1 ” strTA,BˆC,τ ˝ pid ˆ strT q

where αA,B,C : pAˆBqˆC
–Ñ AˆpBˆCq, and mA,B,τ : rτ sAˆrτ sB Ñ rτ spAˆBq

witnesses that rτ s is monoidal for ˆ, which follows from rτ s being a right ad-
joint [45]. Observe that it is the r´s-strength that naturally gives T a temporal
flavour—the rest of it is standard [35]. Below we show that strT is also mathe-
matically natural, admitting an analogous characterisation to ordinary strength.
8 As λrτs does not include sub-effecting (see §6.2), a discretely graded monad T suffices.

14 D. Ahman

Proposition 2. Analogously to ordinary strong and enriched monads [39], T
having r´s-strength is equivalent to r´s-enrichment of T , given by morphisms
rτ spA ñ Bq Ñ pT τ A ñ T τ Bq respecting C’s self-enrichment [38] and pηT , μT q.

In order to model operations op and delay in §4.2, we require T to be equipped
with algebraic operations : we ask there to be families of natural transformations
opTA,τ : rrAopssg ˆ rτopsprrBopssg ñ T τ Aq Ñ T pτop ` τqA, for all op : Aop �
Bop ! τop P O, and delayTA,τ 1 τ : rτ spT τ 1 Aq Ñ T pτ ` τ 1qA, for all τ P N, satisfying
algebraicity laws [61], which state that both commute with μT and strT , e.g.,

strTA,B,τ`τ 1 ˝ pid ˆ delayT τq ” delayTAˆB,τ 1 τ ˝ rτ spstrT q ˝ m ˝ pδA,τ,τ 1 ˆ idq
In SetpN,ďq, we can define T as the initial algebra of a corresponding signa-

ture functor for operations op and delay, analogously to the usual treatment of
algebraic effects [8]. Concretely, such T is determined inductively by three cases

a P Aptq
ret a P pT 0Aqptq

a P rrAopssgptq
k P prτopsprrBopssg ñ T τ Aqqptq

op a k P pT pτop ` τqAqptq
k P rτ spT τ 1 Aqptq

delay τ k P pT pτ ` τ 1qAqptq
with pηT , μT , strT , opT , delayT q defined in the expected way, e.g., strT is given by
recursively traversing a computation of type T τ B and moving the argument of
type rτ sA under ret cases, modifying τ when going under the op and delay cases.

4.2 Interpretation of Value and Computation Terms

The interpretation of values and computations is defined simultaneously. We only
present the temporally interesting cases—full details are in the online appendix.

As λrτs does not have sub-effecting and includes enough type annotations for
typing derivations to be unique, this interpretation is coherent by construction.

Values We assume a morphism rrfss : rrA1ssg ˆ . . . ˆ rrAnssg Ñ rrBssg for every
f : pA1, . . . , Anq Ñ B. We interpret a well-typed value Γ $ V : X as a morphism
rrΓ $ V : Xss : rrΓ ss1 Ñ rrXss in C by induction on the given typing derivation.

Most of the value cases are standard, and analogous to other calculi based on
fine-grain call-by-value [44] and graded monads [35], using the Cartesian-closed
structure of C. The temporally interesting cases are Var and Box, given by

rrΓ, x :X,Γ 1 $ x : Xss def“ rrΓ, x :X,Γ 1ss1 ιÝ́Ñ rrΓ 1ss`rrΓ ss1 ˆ rrXss˘
eÝ́Ñ xtime Γ 1y`rrΓ ss1 ˆ rrXss˘ εxy

Ý́Ñ rrΓ ss1 ˆ rrXss sndÝ́Ñ rrXss

rrΓ $ boxτ V : rτ sXss def“ rrΓ ss1 η%
Ý́Ñ rτ s`xτyprrΓ ss1q˘ rτsprrV ssq´́ Ý́Ñ rτ srrXss

where eA,Γ : rrΓ ssA Ñ xtime Γ yA extracts and collapses all temporal modalities

in Γ , and the counit-like ε
xy
A,τ is given by the composite xτyA x0ďτyA´́ Ñ́ x0yA η´1

AÑ́ A.

When Programs Have to Watch Paint Dry 15

Computations We interpret a well-typed computation Γ $ M : X ! τ as a
morphism rrΓ $ M : X ! τ ss : rrΓ ss1 Ñ T τ rrXss in C by induction on the typing
derivation. The definition is largely unsurprising and follows a pattern similar
to [35,44]—the novelty lies in controlling the occurrences of x´y and r´s.

In Let, we use xτy % rτ s to push the environment “into the future”, and then
follow the standard monadic strength-followed-by-multiplication pattern [35,52]:

rrΓ $ let x “ M in N : Y ! τ ` τ 1ss def“ rrΓ ss1 xη%,rrMssy´́ ´́ÝÑ rτ s`xτyprrΓ ss1q˘ ˆ T τ rrXss
strTÝ́Ñ T τ

`xτyprrΓ ss1q ˆ rrXss˘ T prrNssq´́ ´́ÝÑ T τ pT τ 1 rrY ssq μT

Ý́Ñ T pτ ` τ 1q rrY ss
An analogous use of xτy % rτ s also appears in the cases for operations, e.g., in

rrΓ $ op V px .Mq : X ! τop ` τ ss def“ rrΓ ss1 xrrV ss,η%y´́ ´́ Ý́Ñ rrAopssg ˆ rτops`xτopyprrΓ ss1q˘

idˆrτopspcurryprrMssqq´́ ´́ ´́ ´́ ´́ ´́ÝÑ rrAopssg ˆ rτops`rrBopssg ñ T τ rrXss˘ opTÝ́Ñ T pτop ` τq rrXss
Next, the Unbox case of the interpretation is defined as

rrΓ $ unboxτ V as x in N : Y ! τ 1ss def“ rrΓ ss1 xid,ηPRAy´́ ´́ÝÑ rrΓ ss1 ˆ xτy`rrΓ ´ τ ss1˘

idˆxτyprrV ssq´́ ´́ ´́ÝÑ rrΓ ss1 ˆ xτy`rτ srrXss˘ idˆε%
´́ÝÑ rrΓ ss1 ˆ rrXss rrNssÝ́Ñ T τ 1 rrY ss

showing that temporal resources follow the common pattern in which elimination
forms are modelled by counits of adjunctions, whereas units model introduction
forms (akin to functions). The morphism ηPRA

Γ,A,τ : rrΓ ssA Ñ xτyprrΓ ´ τ ssAq ex-
tracts and collapses τ worth of context modalities in Γ , as long as τ ď time Γ . It
is a semantic counterpart to an observation that the context modality Γ, xτy is a
parametric right adjoint to the Γ ´ τ operation, as in recent dependently typed
presentations of Fitch-style modal types [27], see §6.1 for further discussion.

Finally, we discuss the interpretation of effect handling. For this, we addi-
tionally require C to have set-indexed products ΠiPIAi and handling morphisms

χA,τ,τ 1 : ΠopPOΠτ2PN

`prrAopssg ˆ rτopsprrBopssg ñ T τ2 Aqq ñ T pτop ` τ2qA˘

Ñ T τ pT τ 1 Aq ñ T pτ ` τ 1qA
satisfying laws which state that χA returns a graded T -algebra [22,50], e.g., we
require uncurrypχA,0,τ 1 q ˝ pid ˆ ηT q ” snd, where uncurry (and curry earlier) is
part of the universal property of A ñ B. We also require similar laws for χ’s
interaction with opT and delayT . In SetpN,ďq, χ is defined by recursively traversing
a given tree, replacing all occurrences of op a k with respective operation clauses.

Writing H for the domain of χrrY ss,τ,τ 1 , the Handle case is then defined as

rrΓ $ handle M with H to x in N : Y ! τ ` τ 1ss def“

rrΓ ss1 xid,xη%,rrMssyy´́ ´́ ´́ ´́ÝÑ rrΓ ss1 ˆ
´

rτ s`xτyprrΓ ss1q˘ ˆ T τ rrXss
¯

idˆstrT´́ÝÑ rrΓ ss1 ˆ T τ
`xτyprrΓ ss1q ˆ rrXss˘ idˆT τ prrNssq´́ ´́ ´́ Ý́Ñ rrΓ ss1 ˆ T τ

`
T τ 1 rrY ss˘

rrHssˆid´́ Ý́Ñ H ˆ T τ
`
T τ 1 rrY ss˘

uncurrypχrrY ss,τ,τ 1 q
´́ ´́ ´́ ´́ ´́ÝÑ T pτ ` τ 1q rrY ss

16 D. Ahman

where we write rrHss for the point-wise interpretation of operation clauses

rrΓ ss1 xxidyτ2PNyopPO´́ ´́ ´́ ´́ÝÑ ΠopPOΠτ2PN

´
rrΓ ss1

¯ ΠopPOΠτ2PN

`
curryprrMop τ

2ss ˝ α´1q
˘

´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ Ý́Ñ H

4.3 Renamings, Substitutions, and Soundness

We now show how syntactic renamings and substitutions relate to semantic mor-
phism composition, using which we then prove the interpretation to be sound.

Proposition 3. Given ρ : Γ �Γ 1 and Γ $ J , then rrJrρsss ” rrJss ˝ rrρss1, where
the interpretation of renamings rrρssA : rrΓ 1ssA Ñ rrΓ ssA is defined by induction
on the derivation of ρ : Γ � Γ 1, with the morphism rrρssA also natural in A.

Proposition 4. Given Γ, x :X,Γ 1 $ J and Γ $ W : X, we have rrJrW {xsss ”
rrJss ˝ ι´1

Γ,x:X;Γ 1;1 ˝ rrΓ 1ss`xid, rrW ssy˘ ˝ ιΓ ;Γ 1;1, where pι, ι´1q are discussed in §4.1.

Proof. We prove both results by induction on the derivation of Γ $ J . The proofs
are unsurprising but require us to prove auxiliary lemmas about recursively
defined renamings and semantic morphisms. For example, for Prop. 3, we show
ηPRA˝rrρss ” xτyprrρ´τ ssq˝ηPRA : rrΓ 1ssA Ñ xτyprrΓ ´τ ssAq, and for Prop. 4, that
ηPRA ˝ ι ” xτy`

ι
˘ ˝ ηPRA : rrΓ, Γ 1ssA Ñ xτy`rrΓ 1 ´ τ ssprrΓ ssAq˘

, when τ ď time Γ 1.
Theorem 3. Given Γ $ I ” J derived using the rules in §3.5, then rrIss ” rrJss.
Proof. The proof proceeds by induction on the derivation of Γ $ I ” J , using
Prop. 3 and Prop. 4 to unfold the renamings and substitutions in the equations
of §3.5, and using the properties of the abstract structure we required C to have.

5 Quotienting Delays

Observe that in λrτs the computations delay τ pdelay τ 1 Mq and delay pτ ` τ 1q M
cannot be proved equivalent, though in some situations this might be desired.

In order to deem the above two programs (and others alike) equivalent, we
extend λrτs’s equational theory with the following natural equations for delays:

delay 0 M ” M delay τ pdelay τ 1 Mq ” delay pτ ` τ 1q M
Theorem 4. If the algebraic operations delayT of T satisfy analogous two equa-
tions, the interpretation of §4 is sound for this extended equational theory.

For the concrete model in SetpN,ďq, we have to quotient T [36] by these two
equations—the resulting graded monad is determined inductively by the cases

k P pS τ Aqptq
comp k P pT τ Aqptq

τ ą 0 k P rτ spS τ 1 Aqptq
delay τ k P pT pτ ` τ 1qAqptq

a P Aptq
ret a P pS 0Aqptq

a P rrAopssgptq k P prτopsprrBopssg ñ T τ Aqqptq
op a k P pS pτop ` τqAqptq

where pT τ Aqptq and pS τ Aqptq are defined simultaneously in such a way that
only non-zero, non-consecutive delays can appear in the tree structure.

When Programs Have to Watch Paint Dry 17

6 Related and Future Work

6.1 Related Work

We contribute to two prominent areas: (i) modal types and (ii) graded monads.
As noted in §2.1, modal types provide a mathematically natural means for

capturing many aspects of programming. Adding to §2.1, types corresponding
to the eventually and always modalities of temporal logics capture functional
reactive programming (FRP) [18,32,42], including a combination with linearity
and time-annotations to model resources [33], where all values are annotated
with inhabitation times. Recently, FRP has also been studied in Fitch-style [6].
Starting with Nakano [55], modal types have also been used for guarded recursion,
even in the dependently typed setting [5,14,47], including in Fitch-style [13].

We also note that λrτs’s time grades τ and the Γ ´ τ operation are closely
related to recent dependently typed Fitch-style frameworks. Namely, [28] devel-
ops a multimodal type theory (MTT) where types rμsX are indexed by 1-cells μ
of a strict 2-category (a mode theory). The time grades τ of λrτs are an example
of such mode theories, given by the delooping of N, i.e., by a single 0-cell, τs as
1-cells, and τ ď τ 1s as 2-cells. While ensuring the admissibility of and naturality
under substitutions, MTT with its indirect elimination rule for rμsX is weaker
than earlier systems (such as [13]). The direct-style elimination rule is recovered
in [27] by observing that in addition to Γ, xμy being a left adjoint to rμsX, it
should further form a parametric right adjoint (PRA) [17,71] to contexts of the
form Γ {pr : μq, where r is a substitution ¨, xμy � Γ . The operation Γ ´ τ in λrτs
is an instance of this: μ is a τ , r corresponds to the condition τ ď time Γ in Un-
box, contexts Γ {pr : μq are given by Γ ´ τ , and the PRA situation is witnessed
by renamings ppΓ ´ τq, xτyq � Γ , when τ ď time Γ , and Γ � ppΓ, xτyq ´ τq.

Graded monads provide a uniform framework for different effect systems and
effect-based analyses [22,35,36,50,51]. A major contribution of ours is showing
that context modalities can inform continuations of preceding computations’ ef-
fects. While the theory of graded monads can be instantiated with any ordered
monoid, we focus on natural numbers to model time, but do not expect complica-
tions generalising λrτs to other structures with same properties as pN, 0,`, 9́ ,ďq,
and perhaps even to grading T and x´y, r´s with different structures, akin to [23].

Our use of rτ sX to restrict when resources are available is somewhat remi-
niscent of coeffects [16,24,57,58] and quantitative type systems [4,49,53]. In these
works, variables are graded by (semi)ring-valued rs, as x :r X, counting how many
times and in which ways x is used, enabling applications such as liveness and
dataflow analyses [57]. Semantically, these systems often interpret x :r X using a
graded comonad, as ˝rX, where one can access X only if r ” 1. Of such works,
the closest to ours is that of Gaboardi et al. [23], who combine coeffects with ef-
fectful programs via distributive laws between the grades of coeffects and effects,
allowing coeffectful analyses to be propagated through effectful computations.

We also note that the type rτ sX can be intuitively also viewed as a temporally-
graded variant of promise types [29,65], in that it expresses that a value of type
X will be available in the future, but with additional time guarantees.

18 D. Ahman

6.2 Future Work

Currently, λrτs does not support sub-effecting : we cannot deduce from τ ď τ 1 and
Γ $ M : X ! τ that Γ $ M : X ! τ 1. Of course, we can simulate this by inserting
τ 1

9́ τ worth of explicit delays into M , but this is extremely intensional, fixing
where delays happen. In particular, we cannot type equations such as let x “
preturn V q in N ” N rV {xs if return V was sub-effected to τ ą 0, with the xτy in
N ’s context the culprit. However, when considering sub-effecting as a coercion
coerceτďτ 1 M , we believe we can add it by considering equations stating that it
will produce all the possible ways how τ 1

9́ τ worth of delays could be inserted
into M . Of course, this will require a more complex non-deterministic semantics.

It would be neat if λrτs also included recursion in a way that programs
could make use of the temporal discipline. This is likely unattainable for general
recursion, but we hope that primitive recursion (say, on natural numbers) can
be added via type-dependency of time grades τ on the values being recursed on.

It would be interesting to combine λrτs with linear [25] and separation log-
ics [34,64] to model linear and spatial properties of temporal resources. Another
goal would be to add concurrency, e.g., using (multi)handlers [9,20,21]. We also
plan to look into capturing expiring and available-for-an-interval style resources.

Further, we plan to study λrτs’s operational semantics, namely, one that takes
time seriously and does not model delays simply as uninterpreted operations [9],
together with developing a prototype, and proving normalisation akin to [26,69].

We also plan to study the completeness of the denotational semantics of λrτs.
For such semantic investigations, it could be beneficial to also study the general
theory of the kinds of temporally aware graded algebraic effects used in this
paper, by investigating their algebras and equational presentations [36,50].

7 Conclusion

We have shown how a temporal, time-graded variant of Fitch-style modal type
systems, when combined with an effect system based on graded monads, provides
a natural framework for safe programming with temporal resources. To this end,
we developed a modally typed, effectful, equationally-presented core calculus,
and equipped it with a sound denotational semantics based on strong monoidal
functors (for modelling modalities) and graded monads (for modelling effects).
The calculus also includes temporally aware graded algebraic effects and effect
handlers, with the continuations of the former knowing that an operation’s worth
of additional time has passed before they start executing, and where the user-
defined effect handlers are guaranteed to respect this temporal discipline.

Acknowledgements We thank Andrej Bauer, Juhan-Peep Ernits, Niccolò Veltri,
and Niels Voorneveld for useful discussions. We also thank one of the reviewers
for drawing our attention to the recent work on presenting Fitch-style modal
types in terms of parametric right adjoints, and its relationship to the work
presented in this paper. This material is based upon work supported by the Air
Force Office of Scientific Research under award number FA9550-21-1-0024.

When Programs Have to Watch Paint Dry 19

References

1. Ahman, D., Bauer, A.: Runners in Action. In: Proc. of 29th European Symp.
on Programming, ESOP 2020. Lect. Notes Comput. Sci., vol. 12075, pp. 29–55.
Springer (2020)

2. Ahman, D., Fournet, C., Hritcu, C., Maillard, K., Rastogi, A., Swamy, N.: Recalling
a witness: foundations and applications of monotonic state. Proc. ACM Program.
Lang. 2(POPL), 65:1–65:30 (2018)

3. Ahman, D., Pretnar, M., Radešček, J.: Higher-Order Asynchronous Effects (2021),
extended abstract presented at the 9th ACM-SIGPLAN Wksh. on Higher-Order
Programming with Effects, HOPE 2021

4. Atkey, R.: Syntax and Semantics of Quantitative Type Theory. In: Proc. of 33rd
Annual ACM/IEEE Symp. on Logic in Computer Science, LICS 2018. pp. 56–65.
ACM (2018)

5. Bahr, P., Grathwohl, H.B., Møgelberg, R.E.: The clocks are ticking: No more de-
lays! In: Proc. of 32nd Annual ACM/IEEE Symp. on Logic in Computer Science,
LICS 2017. pp. 1–12. IEEE Computer Society (2017)

6. Bahr, P., Graulund, C., Møgelberg, R.E.: Simply RaTT: a fitch-style modal cal-
culus for reactive programming without space leaks. Proc. ACM Program. Lang.
3(ICFP), 109:1–109:27 (2019)

7. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cam-
bridge University Press (2013)

8. Bauer, A.: What is algebraic about algebraic effects and handlers? CoRR
abs/1807.05923 (2018)

9. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program. 84(1), 108–123 (2015)

10. Beck, J.M.: Triples, algebras and cohomology. Reprints in Theory and Applica-
tions of Categories (2), 1–59 (2003), Note: Originally published as: Ph.D. thesis,
Columbia University, 1967

11. Benton, N., Bierman, G.M., de Paiva, V., Hyland, M.: Linear lambda-calculus and
categorial models revisited. In: Selected Papers from Computer Science Logic, CSL
’92. Lect. Notes Comput. Sci., vol. 702, pp. 61–84. Springer (1992)

12. Bierman, G.M., de Paiva, V.: On an Intuitionistic Modal Logic. Studia Logica
65(3), 383–416 (2000)

13. Birkedal, L., Clouston, R., Mannaa, B., Møgelberg, R.E., Pitts, A.M., Spitters, B.:
Modal dependent type theory and dependent right adjoints. Math. Struct. Comput.
Sci. 30(2), 118–138 (2020)

14. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
Dependent Type Theory with Coinductive Types. In: Proc. of 19th Int. Conf. on
Foundations of Software Science and Computation Structures, FoSSaCS 2016. Lect.
Notes Comput. Sci., vol. 9634, pp. 20–35. Springer (2016)

15. Borghuis, V.: Coming to terms with modal logic: on the interpretation of modali-
ties in typed lambda-calculus. Ph.D. thesis, Mathematics and Computer Science,
Technische Universiteit Eindhoven (1994)

16. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A Core Quantitative Coeffect
Calculus. In: Proc. of 23rd European Symp. on Programming, ESOP 2014. Lect.
Notes Comput. Sci., vol. 8410, pp. 351–370. Springer (2014)

17. Carboni, A., Johnstone, P.: Connected limits, familial representability and artin
glueing. Math. Struct. Comput. Sci. 5(4), 441–459 (1995)

20 D. Ahman

18. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair reactive programming. In:
Proc. of 41st Annual ACM SIGPLAN-SIGACT Symp. on Principles of Program-
ming Languages, POPL 2014. pp. 361–372. ACM (2014)

19. Clouston, R.: Fitch-Style Modal Lambda Calculi. In: Proc. of 21st Int. Conf. on
Foundations of Software Science and Computation Structures, FoSSaCS 2018. Lect.
Notes Comput. Sci., vol. 10803, pp. 258–275. Springer (2018)

20. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo. J.
Funct. Program. 30, e9 (2020)

21. Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan,
K.C., White, L.: Concurrent System Programming with Effect Handlers. In: Trends
in Functional Programming. pp. 98–117. Springer (2018)

22. Fujii, S., Katsumata, S., Melliès, P.: Towards a Formal Theory of Graded Monads.
In: Proc. of 19th Int. Conf. on Foundations of Software Science and Computa-
tion Structures, FoSSaCS 2016. Lect. Notes Comput. Sci., vol. 9634, pp. 513–530.
Springer (2016)

23. Gaboardi, M., Katsumata, S., Orchard, D.A., Breuvart, F., Uustalu, T.: Combining
effects and coeffects via grading. In: Proc. of 21st ACM SIGPLAN Int. Conf. on
Functional Programming, ICFP 2016. pp. 476–489. ACM (2016)

24. Ghica, D.R., Smith, A.I.: Bounded Linear Types in a Resource Semiring. In: Proc.
of 23rd European Symp. on Programming, ESOP 2014. Lect. Notes Comput. Sci.,
vol. 8410, pp. 331–350. Springer (2014)

25. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
26. Gratzer, D.: Normalization for multimodal type theory. In: Proc. of 37th Annual

ACM/IEEE Symp. on Logic in Comp. Sci., LICS 2022. pp. 2:1–2:13. ACM (2022)
27. Gratzer, D., Cavallo, E., Kavvos, G.A., Guatto, A., Birkedal, L.: Modalities and

parametric adjoints. ACM Trans. Comput. Logic 23(3) (2022)
28. Gratzer, D., Kavvos, G.A., Nuyts, A., Birkedal, L.: Multimodal dependent type

theory. Log. Methods Comput. Sci. 17(3) (2021)
29. Haller, P., Prokopec, A., Miller, H., Klang, V., Kuhn, R., Jovanovic, V.: Scala

documentation: Futures and promises (October 2022), available online at https:
//docs.scala-lang.org/overviews/core/futures.html

30. Honda, K., Vasconcelos, V., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Proc. of 7th European
Symp. on Programming, ESOP 1998. Lect. Notes Comput. Sci., vol. 1381, pp.
122–138. Springer (1998)

31. Hyland, M., Plotkin, G., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006)

32. Jeltsch, W.: Towards a Common Categorical Semantics for Linear-Time Tempo-
ral Logic and Functional Reactive Programming. In: Proc. of the 28th Conf. on
the Mathematical Foundations of Programming Semantics, MFPS 2012. ENTCS,
vol. 286, pp. 229–242. Elsevier (2012)

33. Jeltsch, W.: Abstract categorical semantics for resourceful functional reactive pro-
gramming. J. Log. Algebraic Methods Program. 85(6), 1177–1200 (2016)

34. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

35. Katsumata, S.: Parametric effect monads and semantics of effect systems. In: Proc.
of 41st Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL 2014. pp. 633–646. ACM (2014)

36. Katsumata, S., McDermott, D., Uustalu, T., Wu, N.: Flexible presentations of
graded monads. Proc. ACM Program. Lang. 6(ICFP), 902–930 (2022)

https://docs.scala-lang.org/overviews/core/futures.html
https://docs.scala-lang.org/overviews/core/futures.html

When Programs Have to Watch Paint Dry 21

37. Kavvos, G.A.: The Many Worlds of Modal λ-calculi: I. Curry-Howard for Necessity,
Possibility and Time. CoRR abs/1605.08106 (2016)

38. Kelly, G.: Basic Concepts of Enriched Category Theory. No. 64 in Lecture Notes
in Mathematics, Cambridge University Press (1982)

39. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23(1),
113–120 (1972)

40. Koopman, P., Fokker, J., Smetsers, S., van Eekelen, M., Plasmeijer, R.: Functional
Programming in Clean. University of Nijmegen (1998), draft

41. Kripke, S.A.: Semantical Analysis of Modal Logic I. Normal Propositional Calculi.
Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9(5-6), 67–
96 (1963)

42. Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Proc. of 18th ACM SIGPLAN Int. Conf. on Functional Program-
ming, ICFP 2013. pp. 221–232. ACM (2013)

43. Leijen, D.: Algebraic Effect Handlers with Resources and Deep Finalization. Tech.
Rep. MSR-TR-2018-10, Microsoft Research (April 2018)

44. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003)

45. Mac Lane, S.: Categories for the Working Mathematician. No. 5 in Graduate Texts
in Mathematics, Springer-Verlag (1971)

46. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Universitext, Springer (1992)

47. Mannaa, B., Møgelberg, R.E.: The Clocks They Are Adjunctions Denotational Se-
mantics for Clocked Type Theory. In: Proc. of 3rd Int. Conf. on Formal Structures
for Computation and Deduction, FSCD 2018. LIPIcs, vol. 108, pp. 23:1–23:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

48. Martini, S., Masini, A.: A Computational Interpretation of Modal Proofs, pp. 213–
241. Springer Netherlands (1996)

49. McBride, C.: I Got Plenty o’ Nuttin’. In: A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday.
Lect. Notes Comput. Sci., vol. 9600, pp. 207–233. Springer (2016)

50. McDermott, D., Uustalu, T.: Flexibly Graded Monads and Graded Algebras. In:
Proc. of 14th Int. Conf. on Mathematics of Program Construction, MPC 2022.
Lect. Notes Comput. Sci., vol. 13544, pp. 102–128. Springer (2022)

51. Melliès, P.A.: Parametric Monads and Enriched Adjunctions (2012), manuscript.
https://www.irif.fr/„mellies/tensorial-logic/8-parametric-monads-and-enriched-
adjunctions.pdf

52. Moggi, E.: Computational Lambda-Calculus and Monads. In: Proc. of 4th Ann.
Symp. on Logic in Computer Science, LICS 1989. pp. 14–23. IEEE (1989)

53. Moon, B., Eades III, H., Orchard, D.: Graded Modal Dependent Type Theory. In:
Proc. of 30th European Symp. on Programming, ESOP 2021. Lect. Notes Comput.
Sci., vol. 12648, pp. 462–490. Springer (2021)

54. Murphy VII, T.: Modal Types for Mobile Code. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University (2008)

55. Nakano, H.: A Modality for Recursion. In: Proc. of 15th Annual IEEE Symp.
on Logic in Computer Science, LICS 2000. pp. 255–266. IEEE Computer Society
(2000)

56. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and
separation. J. Funct. Program. 18(5-6), 865–911 (2008)

https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf

22 D. Ahman

57. Petricek, T., Orchard, D.A., Mycroft, A.: Coeffects: Unified Static Analysis of
Context-Dependence. In: Proc. of 40th International Colloquium on Automata,
Languages, and Programming, ICALP 2013. Lect. Notes Comput. Sci., vol. 7966,
pp. 385–397. Springer (2013)

58. Petricek, T., Orchard, D.A., Mycroft, A.: Coeffects: a calculus of context-dependent
computation. In: Proc. of 19th ACM SIGPLAN Int. Conf. on Functional Program-
ming,ICFP 2014. pp. 123–135. ACM (2014)

59. Plotkin, G., Power, J.: Algebraic Operations and Generic Effects. Appl. Categor.
Struct. (1), 69–94 (2003)

60. Plotkin, G.D., Power, J.: Notions of Computation Determine Monads. In: Proc. of
5th Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS 2002. Lect. Notes Comput. Sci., vol. 2303, pp. 342–356. Springer (2002)

61. Plotkin, G.D., Pretnar, M.: Handling Algebraic Effects. Log. Methods Comput.
Sci. 9(4:23) (2013)

62. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Almquist and Wiksell
(1965)

63. Radešček, J.: Asinhroni algebrajski učinki. Master’s thesis, Faculty of Mathematics
and Physics, University of Ljubljana (2021)

64. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Proc. of 17th IEEE Symp. on Logic in Computer Science, LICS 2002. pp. 55–74.
IEEE Computer Society (2002)

65. Schwinghammer, J.: A Concurrent Lambda-Calculus with Promises and Futures.
Master’s thesis, Programming Systems Lab, Universität des Saarlandes (2002)

66. Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D.
thesis, University of Edinburgh (1994)

67. Smirnov, A.L.: Graded monads and rings of polynomials. J. Math. Sci. 151(3),
3032–3051 (2008)

68. The Agda Team: The Agda Wiki. Available at https://wiki.portal.chalmers.
se/agda/pmwiki.php (2022)

69. Valliappan, N., Ruch, F., Cortiñas, C.T.: Normalization for Fitch-style modal cal-
culi. Proc. ACM Program. Lang. 6(ICFP), 772–798 (2022)

70. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418 (2014)
71. Weber, M.: Familial 2-functors and parametric right adjoints. Theory Appl. Cate-

gories 18(22), 665–732 (2007)
72. Wickline, P., Lee, P., Pfenning, F., Davies, R.: Modal Types as Staging Specifica-

tions for Run-Time Code Generation. ACM Comput. Surv. 30(3es), 8 (1998)

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

When Programs Have to Watch Paint Dry 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deciding Contextual Equivalence of ν-Calculus
with Effectful Contexts

Daniel Hirschkoff1, Guilhem Jaber2(�), and Enguerrand Prebet1

1 Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRIA, LIP, France
2 Nantes Université, LS2N, Inria, France

guilhem.jaber@univ-nantes.fr

Abstract. We prove decidability for contextual equivalence of the λμν-
calculus, that is the simply-typed call-by-value λμ-calculus equipped with
booleans and fresh name creation, with contexts taken in λμref, that is
λμν-calculus extended with higher-order references.
The proof exploits a labelled transition system capturing the interactions
between λμν programs and λμref contexts. The induced bisimulation
equivalence is characterized as equality of certain trees, inspired by the
work of Lassen. Since these trees are computable and finite, decidability
follows. Bisimulation coincides also with trace equivalence, which in turn
coincides with contextual equivalence .

1 Introduction

Dynamic allocation is central to many programming constructions. Many lan-
guages provide built-in support for dynamically-allocated resources, for exam-
ple, objects in Java or references in ML. The creation of these resources is local,
meaning that resources can be accessed only within their scope. They can also be
passed around via function applications, in which case their scope is not static
but evolves dynamically. When building semantics for such languages, one rep-
resents dynamic allocation as the creation of fresh locations, that can be seen as
atoms or names.

In this paper, we study a paradigmatic language with dynamic allocation,
namely the ν-calculus, a simply-typed call-by-value λ-calculus with fresh atom
creation and equality test of atoms, as introduced by Pitts and Stark in [24]. For
instance, the ν-calculus program new n in λx.(x = n) allocates a new atom n,
receives an atom x and returns the result of the comparison between x and n.

A central question while studying this language is to determine when two
programs can be considered to be equivalent. The most studied approach to
express behavioral equivalence between programs is contextual equivalence. In-
tuitively, two programs are deemed equivalent if and only if whenever they are
run as part of an enclosing program called the context, it is not possible to dis-
tinguish one from the other. For instance, because the context has no way to
guess the atom n, we expect the program above to be equivalent to λx.false.

Reasoning on contextual equivalence for the ν-calculus has shown to be chal-
lenging, due to the interplay between the higher-order control flow and the scope

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 2

24–45, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_2&domain=pdf

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 25ν

extrusion of atoms. A variety of frameworks has been introduced to do so, based
on logical relations [24], environmental bisimulations [5], and game semantics [1].

However, the question of whether this equivalence is decidable remains open
since the introduction of this language 30 years ago.

In this paper, we address this question by working in an asymmetric setting,
giving contexts more discriminating power than just the mere creation of atoms.
Indeed, contextual equivalence depends on two languages: the language for pro-
grams, and the language for contexts interacting with these programs. We take
contexts in the λμref-calculus, an extension of the ν-calculus with both higher-
order references and continuations. In this setting, atoms are simply references
where only the unit value can be stored. Contextual equivalence is then coarser
than for the symmetric setting when the contexts are also taken in the ν-calculus.
For example, one of the standard examples of equivalence of the literature

new n in new n′ in λ f .(f n = f n′

) �ctx λ f .true

is not an equivalence anymore, since a λμref context can provide a function that
stores its argument in a reference and use it to discriminate these programs.

The main result we establish in this paper is the decidability of contextual
equivalence for terms of ν-calculus with contexts in the λμref-calculus. More gen-
erally, we establish this result for terms of the λμν-calculus, which corresponds
to terms of the λμref-calculus that only use references storing the unit value.

To establish this result, we provide a Böhm-like tree representation [6,3]
for the terms of the λμν-calculus. Being in call-by-value, equality of such trees
coincides with Lassen’s eager normal form bisimulations [16]. Moreover, since
programs in the λμν-calculus are terminating, these trees, which we call Lassen
trees, are finite. It is thus straightforward to check their equality. Then, we prove
that Lassen trees equality is fully-abstract, that is it coincides with contextual
equivalence with contexts in the λμref-calculus.

Proving this full-abstraction result is done through the introduction of an
operational game semantics (OGS) for λμref by defining a Labelled Transition
System (LTS) that distinguishes between internal operations, Proponent moves
(originating in the program) and Opponent moves (originating in the context).
Trace equivalence based on these labelled transitions is shown to coincide with
the contextual equivalence of λμref.

The OGS also gives rise to a notion of bipartite bisimulation, describing a
game between Proponent (the program in λμref) and Opponent (a context in
λμref). Proponent reduces the program until it reaches a normal form, that trig-
gers an interaction with the context. Along the game, knowledge is accumulated
in configurations. When it is Opponent’s turn to play, it chooses between an-
swering a previous function call from Proponent, or generating a new function
call, to which Proponent shall answer. Among this knowledge, we accumulate
the atoms that have been disclosed by the two players, so that Opponent cannot
use an atom private to Proponent.

26 D. Hirschkoff et al.

The OGS LTS generates infinite trees since Opponent can interrogate an
arbitrary number of times each value provided by Proponent. The Lassen trees
used to decide contextual equivalence are generated using a linearized variant of
the OGS LTS, called the Prime Operational Game Semantics (POGS) LTS. The
POGS LTS enforces that Opponent interrogates only once each value provided
by Proponent. For this linearization to be sound, one has to guess the disclosed
status of atoms as soon as they are created. This can be illustrated by considering
the following example of inequivalence

new n in λx.n �ctx λx.new n in n.

Opponent must be able to interrogate at least twice each of these two programs
to discriminate them. The first program would then return the same atom at each
call, while the second program would return two different atoms. The Lassen tree
of the first program would declare n to be disclosed when giving back the control
to Opponent by providing the λ-abstraction, but this could not be matched by
the second program, since n would not exist yet at that point of the interaction.

The main technical challenge at this point is to prove that this forecasting of
the disclosure process is sound and complete. This is done by proving that the
bipartite bisimilarities defined over the OGS LTS and the POGS LTS coincide.
One direction is proven by lifting POGS bisimulations into OGS bisimulations
via an up-to technique. The other direction is done by introducing a new limit
construction of the disclosed set of atoms appearing in the OGS bisimulations,
to transform it into a POGS bisimulation.

Paper outline. After introducing the λμref-calculus and the λμν-calculus in Sec-
tion 2, we define the LTS for the OGS in Section 3. The induced trace equivalence
coincides with contextual equivalence. We then move to Lassen trees in Section 4,
and show that they yield an equivalence that coincides with bipartite bisimilarity
in the OGS in Section 5. We discuss related work in Section 6, and present con-
cluding remarks in Section 7. For lack of space, several technical developments
are given in [9].

2 The λμref-calculus and the λμν-calculus

The syntax of the λμref-calculus is given by the following grammar:

Values V, W � x | () | λx.M | true | false | �
Terms M, N � V | let x = M in N | VW | if V then N1 else N2

| V = W | new x = V in M | V := W |!V | μc.M | [c]M
Contexts C, C′ � • | [c]C | let x = C in M | let x = M in C | λx.C | μc.C

| if V then C else M | if V then M else C | new x = V in C

Evaluation Contexts E, E′ � [c]• | E[let x = • in M]

Types σ, τ � Unit | Bool | σ → τ | refσ | ⊥

with x ∈ Vars (variables), c ∈ Covars (continution variables), � ∈ Locs (loca-
tions). We write supp(M) for the set of locations appearing in M, and FV(M) for

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 27ν

Γ(x) = σ

Σ; Γ � x : σ

Γ(c) = ¬σ

Σ; Γ � c : ¬σ

Σ(�) = refσ

Σ; Γ � � : refσ Σ; Γ � () : Unit

b ∈ {true, false}

Σ; Γ � b : Bool

Σ; Γ, x : σ � M : τ

Σ; Γ � λx.M : σ → τ

Σ; Γ � V : σ → τ Σ; Γ � W : σ

Σ; Γ � VW : τ

Σ; Γ � N : σ Σ; Γ, x : σ � M : τ

Σ; Γ � let x = N in M : τ

Σ; Γ � V : Bool Σ; Γ � M1 : σ Σ; Γ � M2 : σ

Σ; Γ � if V then M1 else M2 : σ

Σ; Γ � V : τ Σ; Γ, x : refτ � M : σ

Σ; Γ � new x = V in M : σ

Σ; Γ � V : refσ Σ; Γ � W : σ

Σ; Γ � V := W : Unit

Σ; Γ � V : refσ

Σ; Γ �!V : σ

Σ; Γ � V : refσ Σ; Γ � W : refσ

Σ; Γ � V = W : Bool

Σ; Γ, c : ¬σ � M : ⊥

Σ; Γ � μc.M : σ

Σ; Γ � M : σ Γ(c) = ¬σ

Σ; Γ � [c]M : ⊥

Γ(c) = ¬σ

Σ; Γ � [c]• : ¬σ

Σ; Γ, x : σ � M : τ Σ; Γ � E : ¬τ

Σ; Γ � E[let x = • in M] : ¬σ

Fig. 1. λμref: typing rules for terms and evaluation contexts

the free variables of M. This language has two binders, the standard λ-abstraction,
and the μ binder for continuation variables c, d [22].

A store, ranged over by S, T, is a finite mapping from locations to values. S(�)
stands for the value associated to � in S. We use notation S · [� �→ V] for the
extension of S with a mapping for �, which is only defined if � is not defined in
S. S[� �→ V] denotes the store S in which the value associated to � is updated.

The operational semantics �→op of the λμref-calculus is defined over configu-
rations, which are pairs (M, S) formed by a term and a store. It is given by the
following rules:

(E[(λx.M)V], S) �→op (E[M{x := V}], S)
(E[let x = V in M], S) �→op (E[M{x := V}], S)
(E[if true then N1 else N2], S) �→op (E[N1], S)
(E[if false then N1 else N2], S) �→op (E[N2], S)
(E[new x = V in M], S) �→op (E[M{x := �}], S · [� �→ V])

(E[� := V], S) �→op (E[()], S[� �→ V])

(E[!�], S) �→op (E[S(�)], S)
(E[� = �], S) �→op (E[true], S)
(E[� = �′], S) �→op (E[false], S)
(E[μc.M], S) �→op (M{c := E})

The typing system for terms is given by the rules in Figure 1. We chose
here a typing judgement with a single typing context Γ, so that continuation
variables are given types of the shape ¬σ. Such negated types are also used to

28 D. Hirschkoff et al.

type evaluation contexts, as specified by the two last rules in Figure 1. While
we cannot store a continuation variable c in a reference, we can always store
its associated function λx.[c]x. Typing rules force terms of type ⊥ to be of the
shape [d]M, following Parigot’s original presentation of the λμ-calculus [22].

We also consider a typing judgement of the shape Σ � C : (Γ;σ) � (Δ; τ),
for contexts C that take terms M of type Σ; Γ � M : σ and produce terms of type
Σ;Δ � C[M] : τ. The typing rules defining this judgement are standard and not
recalled here.

In the following, we consider the λμν-calculus, the fragment of the λμref-
calculus that only handles references of type ref Unit. That is, for any reference
type refσ appearing in the typing derivation, we have σ = Unit.

We use a, b, . . . to range over locations of type ref Unit, also called atoms, and
introduce the slightly shorter notation new n in M to stand for new n = () in M

in λμν. The syntax for values and terms of the λμν-calculus is thus:

Values V, W � x | () | λx.N | true | false | a

Terms M, N � V | let x = M in N | VW | if V then N1 else N2 | V = W | new n in M

| μc.M

In this setting, we see stores S directly as sets of atoms, all mapping to the
unit value (). For L a set of atoms. we write ̂L for the store that maps atoms in
L to the unit value ().

We consider the following extension of the typing judgement respectively to
stores S and value-mapping substitutions γ:

∀� ∈ dom(S), Σ;� � S(�) : Σ(�) dom(S) = dom(Σ)

� S : Σ

∀x ∈ dom(Γ), Σ;Δ � γ(x) : Γ(x) dom(γ) = dom(Γ)

Σ;Δ � γ : Γ

Definition 1. A normal form (M, S) is a configuration that is irreducible for the
reduction relation �→op. We write (M, S)⇓ N when there exists a store T such that
(M; S) �→∗

op (N; T) and that (N; T) is a normal form.

We call the types Bool, Unit and refσ positive types, while σ → τ and ¬σ
are called negative types. By only allowing free variables of negative types, we
can provide a sharp characterization of normal forms.

Theorem 2. Taking a term M such that Σ; Γ � M : ⊥ with Γ a typing context
mapping variables to negative types, if (M, S) is in normal form with respect to
�→op, then M is either a named value [c]V or a neutral term E[xV].

Moreover, for any configuration (M, S) such that M is in λμν, Σ; Γ � M : ⊥ and
� S : Σ, there exists N such that (M, S)⇓ N.

Definition 3. Taking two terms M, N such that Σ; Γ � M : σ and Σ; Γ � N : σ, we
say that they are contextually equivalent, written Σ; Γ � M
ctx N : σ, when for all

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 29ν

continuation variable c and context C such that Σ � C : (Γ;σ)� (c : ¬Unit;⊥),
and for all store S such that � S : Σ′, we have (C[M], S) ⇓ [c]() if and only if
(C[N], S)⇓ [c]().

In the definition above, we use λμref contexts to observe λμν terms. Such con-
texts can use higher-order references, and lead to divergent computations. For
this reason, testing for convergence to () is enough when defining �ctx .

3 Operational Game Semantics

We now introduce a fully-abstract trace semantics for λμref programs. We follow
a modular presentation, inspired by the one provided by Laird in [15], where the
semantics is built from a synchronization product of three LTS:

– the Interactive LTS LI, that represents the raw interactions of programs with
their environment.

– the Typing LTS LTy, that keeps track of the polarization and types of names
exchanged, to preserve well-typedness.

– the Disclosing LTS LDi, that prevents the environment from using private
resources that have not been disclosed by Proponent.

3.1 Abstract values

To represent the interaction between the program and its environment, we dis-
tinguish between values that we can observe and values that we can interact
with. The two players only exchange observable values, called abstract values in
this paper. They are defined by the following grammar:

A, B � f | a | true | false | ()

with f a function name, that is a variable used to represent functions exchanged
between the two players. These correspond to the positive part of values, and are
also called ultimate patterns in [17]. Like for terms, supp(A) stands for the set of
atoms occurring in A. We consider the typing judgement Δ � A : σ for abstract
values, with σ a positive type, that is defined similarly as done for terms.

Then we introduce the abstraction relation � that transforms a value V into
a pair (A, γ) formed by an abstract value and a substitution, such that A{γ} = V:

f, g function names

f�(g, [g �→ f]) ()�((), ε)

b ∈ {true, false}

b�(b, ε)

a an atom

a�(a, ε)

λx.M�(f, [f �→ λx.M])

30 D. Hirschkoff et al.

3.2 Labelled Transition Systems

The two players, Opponent and Proponent, exchange moves, which are in one
of six forms:

P-question P-answer O-question O-answer P-init question O-init question

f(A, c) c(A) f(A, c) c(A) ?(
−→
Ai) ?(

−→
Ai)

We use m to range over moves, and p (resp. o) to range over Proponent (resp.
Opponent) moves. Initial questions are the introductory moves. In contrast with
other moves, they can introduce multiple abstract values in a row, which is useful
to instantiate all the variables of a typing context Γ. They use a distinguished
function name ?.

Traces t are sequences of moves. We write m for the corresponding move
with reversed polarity (input switched to output, and vice-versa). We extend
this definition to switch traces, written t.

The three labelled transition systems we define are instances of the following
definition:

Definition 4. A labelled transition system (LTS) L is a triple of the form
(Confs,Actions,−→). Confs is a set of configurations C,D. Actions is a set of
actions a, formed by the moves m, together with a silent action op, correspond-
ing to internal computations. Relation −→⊆ Confs×Actions×Confs is the labelled

transition relation. We write C
a
−→ D for (C, a,D) ∈ −→.

Taking C a configuration of an LTS L, we write TrL(C) for the set of traces, as
sequences of moves generated by this LTS over C (so with op actions removed).
We write C �tr D for the trace equivalence relation, which equates configurations
C,D when both have the same set of traces.

3.3 Interactive LTS

We consider interactive configurations I; J ∈ IConfs which are either passive
of the shape 〈S; γ〉, or active of the shape 〈M; S; γ〉 with M a term, S a store,
and γ a substitution. The Interactive LTS LI is then defined as the triple
(IConfs,Actions,−→I) with relation −→I defined in Figure 2.

The two rules for Proponent moves describe transitions performed by normal
forms and make use of the abstraction relation. In the two rules for Opponent,

the notation S � [�supp(A)] stands for S extended with a binding a 	→ () in the
case when A = a and a is fresh for Proponent, and simply S otherwise: Proponent
extends its store when a new atom is received.

3.4 Typing LTS

We consider type-context configurations S,T ∈ ConfsTy which are either active
of the shape 〈ΔO | ⊥;ΔP〉 or passive of the shape 〈ΔO | ΔP〉, with ΔO,ΔP two
disjoint typing contexts that map variables to negative types.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 31ν

op
(M; S) �→op (N; T)

〈M; S; γ〉
op
−−→I 〈N; T; γ〉

PQ
V�(A; γ′)

〈E[fV]; S; γ〉
f(A,c)
−−−−→I 〈S; γ · γ

′ · [c �→ E]〉

V�(A; γ′)

〈[c]V; S; γ〉
c(A)
−−−→I 〈S; γ · γ

′〉

PA

OQ

〈S; γ〉
f(A,c)
−−−−→I 〈[c]γ(f)A; S � [�supp(A)]; γ〉 〈S; γ〉

c(A)
−−−→I 〈γ(c)[A]; S � [�supp(A)]; γ〉

OA

Fig. 2. Definition of LI, the Interactive LTS: transitions of interactive configurations

PQ
ΔO(f) = σ → τ Δ � A : σ

〈ΔO | ⊥;ΔP〉
f(A,c)
−−−−→Ty 〈ΔO | ΔP,Δ, c : ¬τ〉

ΔO(c) = ¬σ Δ � A : σ

〈ΔO | ⊥;ΔP〉
c(A)
−−−→Ty 〈ΔO | ΔP,Δ〉

PA

OQ
ΔP(f) = σ → τ Δ � A : σ

〈ΔO | ΔP〉
f (A,c)
−−−−−→Ty 〈ΔO,Δ, c : ¬τ | ⊥;ΔP〉

ΔP(c) = ¬σ Δ � A : σ

〈ΔO | ΔP〉
c(A)
−−−→Ty 〈ΔO,Δ | ⊥;ΔP〉

OA

Fig. 3. Definition of LTy, the typing LTS: transitions of type-context configurations

The Interactive LTS LI is then defined as the triple (ConfsTy,Actions,−→Ty)

with relation −→Ty defined in Figure 3. Notice that the type of the active term is
⊥ since the reduction relation �→op is well-defined only on terms of this type.

Typing configurations can be used to specify interactive configurations, via
the following validity judgement.

Definition 5. An interactive configuration I is said to be validated by a typing
configuration S, written I � S, when:

– either I = 〈S; γ〉, S = 〈ΔO | ΔP〉, and there exists a store typing context Σ
such that Σ;ΔO 	 γ : ΔP and 	 S : Σ,

– or I = 〈M; S; γ〉, S = 〈ΔO | ⊥;ΔP〉, and there exists a store typing context Σ
such that Σ;ΔO 	 M : ⊥, Σ;ΔO 	 γ : ΔP and 	 S : Σ.

3.5 Disclosing LTS

In order to enforce a non-omniscient condition on Opponent transitions, we
introduce a Disclosing LTS LDi � (DConfs,Actions,−→Di) whose configurations
DConfs are pairs of sets of locations 〈L;D〉 with D a set of atoms contained in L.
The transition relation −→Di is defined in Figure 4. The condition L∩ supp(o) ⊆ D
corresponds to the fact that Opponent cannot play Proponent atoms that have
not been disclosed yet, i.e. not in D.

32 D. Hirschkoff et al.

op
〈L;D〉

op
−−→Di 〈L ∪ L′;D〉

PQ/PA
〈L;D〉

p
−→Di 〈L;D ∪ supp(p)〉

L ∩ supp(o) ⊆ D

〈L;D〉
o
−→Di 〈L ∪ supp(o);D ∪ supp(o)〉

OQ/OA

Fig. 4. Definition of LDi, the Disclosing LTS

Definition 6. An interactive configuration I is said to be validated by a dis-
closing configuration D = 〈L;D〉, written I � D, if when writing S for the store
component of I, we have dom(S) = L.

3.6 Operational Game Semantics: LTS and Trace Equivalence

The Operational Game Semantics (OGS) LTS LOGS � (Confsogs,Actions,
a
−→ogs)

is defined over configurations G,H ∈ Confsogs of the shape (I, S,D), with I � S and
I � D, or over initial configurations 〈Σ; Γ
 M : σ〉 for Proponent and 〈c : ¬Unit

(S; δ) : (Σ; Γ)〉 for Opponent. Its transition relation is defined by the following
rules:

I
a
−→I J S

a
−→Ty T D

a
−→Di E J � T J � E

(I, S,D)
a
−→ogs (J,T,E)

Γ =
−−−−−−→
(xi : σi)

−−−−−−−−−−→
Δi � Ai : σi L = (∪isupp(Ai)) ∪ dom(Σ)

〈Σ; Γ
 M : ⊥〉
?(
−→
Ai)

−−−→ogs

(
〈M
−−−−−−−−→
{xi := Ai}; L̂; ε〉, 〈

−→
Δi |⊥;�〉, 〈L; L〉

)

Γ =
−−−−−−→
(xi : σi)

−−−−−−−−−−−−−→
δ(xi)�(Ai; γi)

−−−−−−−−−→
Δi � A : σi L = Σ−1(ref Unit)

〈c : ¬Unit
 (S; δ) : (Σ; Γ)〉
?(
−→
Ai)

−−−→ogs

(
〈S;−→γi〉, 〈c : ¬Unit|

−→
Δi〉, 〈L; L〉

)

The initial question generated by 〈Σ; Γ
 M : σ〉 provides a way for Opponent to
instantiate variables of Γ with abstract values. In this setting Σ only contains
atoms since M is a term of λμν. The transition for 〈c : ¬Unit
 (S; δ) : (Σ; Γ)〉
represents this behavior from the point of view of Opponent. Since contexts
belong to λμref, these initial configurations come equipped with an initial store
S of type Σ, but only the locations of type ref Unit are considered to be disclosed,
since the other ones cannot be used by Proponent. The continuation name c is
used for Opponent to provide its final answer, which is of type Unit, following
the notion of observation used to define contextual equivalence.

We use notation
p
=⇒ogs to denote a p transition preceded by a possibly empty

sequence of op transitions. Trace equivalence according to LOGS and contextual
equivalence coincide.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 33ν

op
(M;̂L) �→op (N; ̂L′)

〈M; L〉
op
−−→PI 〈N; L

′〉

PQ
V�(A; γ)

〈E[fV]; L〉
f(A,c)
−−−−→PI 〈L; γ · [c �→ E]〉

V�(A; γ)

〈[c]V; L〉
c(A)
−−−→PI 〈L; γ〉

PA

OQ

〈L; γ〉
f(A,c)
−−−−→PI 〈[c]γ(f)A; L ∪ supp(A)〉 〈L; γ〉

c(A)
−−−→PI 〈γ(c)[A]; L ∪ supp(A)〉

OA

Fig. 5. Definition of LPI: transitions of prime interactive configurations

Theorem 7. Consider two terms M, N such that Σ; Γ � M, N : σ.
We have 〈Σ; Γ � M : σ〉 	tr 〈Σ; Γ � N : σ〉 if and only if Σ; Γ � M 	ctx N : σ.

Such a full-abstraction theorem was proven in [13] for RefML, that is the
intuitionistic fragment of λμref-calculus, without control operators. It was also
proven in [10] for HOSC, a variant of the λμref-calculus, with the call/cc op-
erator, but without atom disclosure. Such a full-abstraction result being rather
standard, we have chosen to present its proof in [9].

In the remainder of the paper, we focus on the λμν-calculus. In particular,
we only consider OGS configurations corresponding to λμν from now on.

4 Lassen Trees for the λμν-calculus

4.1 POGS and POGS bipartite bisimulation

We introduce Lassen trees for terms of the λμν-calculus, as a form of linearized
version of LOGS, where Opponent can interrogate a name provided by Proponent
only once, immediately after it has been introduced. So we consider prime inter-
active configurations which are either passive of the shape 〈L; γ〉, or active of the
shape 〈M; L〉 with M a term, L a set of atoms, and γ a substitution. Compared to
interactive configurations, the active configurations do not carry an environment
γ. Furthermore, we have a set of atoms rather than a full store, since this LTS
is defined only for the λμν-calculus and not for the whole λμref-calculus.

The Prime Interactive LTS, LPI, is then defined as (ConfsPI,Actions,−→PI),
with −→PI defined in Figure 5.

The corresponding Typing LTS is defined using the transitions given in Fig-
ure 6, which are very close in spirit to the transitions in Figure 3.

The transitions for the Disclosing LTS for POGS are presented on Figure 7.
We compare these with the Disclosing LTS for OGS (Figure 4) below.

The Prime Operational Game Semantics LTS is introduced as a synchroniza-
tion product, together with initial transitions, like for OGS. More precisely, the
synchronization between the interactive and typing LTSs requires that active
configurations 〈M; L〉 correspond to type-contexts of the shape 〈ΔO | ⊥〉, with
Σ;ΔO � M : ⊥ and � ̂L : Σ, for some store typing context Σ. Accordingly, for
passive configurations 〈L; γ〉, we synchronize with 〈ΔO | ΔP〉, and check that
Σ;ΔO � γ : ΔP and � ̂L : Σ, for some store typing context Σ.

34 D. Hirschkoff et al.

PQ
ΔO(f) = σ → τ Δ � A : σ

〈ΔO | ⊥〉
f(A,c)
−−−−→PTy 〈ΔO | Δ, c : ¬τ〉

ΔO(c) = ¬σ Δ � A : σ

〈ΔO | ⊥〉
c(A)
−−−→PTy 〈ΔO | Δ〉

PA

OQ
ΔP(f) = σ → τ Δ � A : σ

〈ΔO | ΔP〉
f (A,c)
−−−−−→PTy 〈ΔO,Δ, c : ¬τ | ⊥〉

ΔP(c) = ¬σ Δ � A : σ

〈ΔO | ΔP〉
c(A)
−−−→PTy 〈ΔO,Δ | ⊥〉

OA

Fig. 6. Definition of LPTy: transitions of prime type-context configurations

op
D′ ⊆ L′

〈L;D〉
op
−−→pd 〈L � L′;D �D′〉

PQ/PA
supp(p) ⊆ D

〈L;D〉
p
−→pd 〈L;D〉

L ∩ supp(o) ⊆ D

〈L;D〉
o
−→pd 〈L ∪ supp(o);D ∪ supp(o)〉

OQ/OA

Fig. 7. Definition of LPDi: Disclosing LTS for POGS

To synchronize with the Disclosing LTS, whose states are of the form 〈L;D〉,
we simply impose that the L component is the same in the state of LPI, both for
active and passive configurations.

We call LPOGS the LTS obtained by synchronizing LPI, LPTy and LPDi. We
write P,Q ∈ ConfsPOGS the configurations of LPOGS. The Lassen tree of a term
is then defined as the unfolding of the LPOGS on the initial active configuration
associated with this term.

Example 8. The Lassen trees (omitting the typing configurations) for
[c]new n in λ .n and [c]λ .new n in n are given by:

〈[c]new n in λ .n; ∅〉, 〈∅; ∅〉

〈{a}; [f → λ .a]〉, 〈{a}, ∅〉 〈{a}; [f → λ .a]〉, 〈{a}, {a}〉

〈[c′](λ .a)(), {a}〉, 〈{a}, ∅〉 〈[c′](λ .a)(), {a}〉, 〈{a}, {a}〉

〈{a}; ε〉, 〈{a}, {a}〉

c(f) c(f)

f((), c′) f((), c′)

c′(a)

〈[c]λ .new n in n; ∅〉, 〈∅; ∅〉

〈∅; [f → λ .new n in n]〉, 〈∅, ∅〉

〈[c′](λ .new n in n)(), ∅〉, 〈∅, ∅〉

〈{a}; ε〉, 〈{a}, {a}〉

c(f)

f((), c′)

c′(a)

Due to the condition supp(p) ⊆ D in
p
−→pd, some configurations with terms in

normal form do not have a corresponding Proponent transition. The dashed
arrows correspond to op transitions that lead to such stuck configurations.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 35ν

4.2 Bipartite Bisimulations for OGS and POGS

We consider typed relations on passive and active configurations, that is, we
require related configurations to have the same type. This means in particular
that the environment components γ of the two configurations have the same
domain. In addition to the typing, we also enforce that both sets of disclosed
atoms are identical.

Definition 9. A bipartite bisimulation is a pair of relations (RAct,RPas) re-
spectively on active and passive configurations, such that:

– If (G1,G2) ∈ RPas then for all Opponent moves o and H1,H2 such that G1
o
−→

H1 and G2
o
−→ H2, we have (H1,H2) ∈ RAct .

– If (G1,G2) ∈ RAct then there exists a Proponent move p and (H1,H2) ∈ RPas

such that G1

p
=⇒ H1 and G2

p
=⇒ H2.

An OGS-bipartite bisimulation is a bipartite bisimulation defined over LOGS,
and a POGS-bipartite bisimulation is a bipartite bisimulation defined over LPOGS.
We write �ogs and �pogs respectively for the greatest bipartite bisimulation respec-
tively over LOGS and LPOGS.

The following property follows from the fact that the transition relation is
deterministic (up to the choice of fresh names).

Lemma 10. �ogs coincides with trace equivalence on OGS configurations.

For op transitions, the difference between OGS and POGS shows up in the

disclosing LTS: in
op
−−→pd, a D′ component can be chosen non-deterministically.

This observation is related to the existential quantification in the second clause
of Definition 13. Both in LOGS and LPOGS, there is only one possible next visible
(Proponent) move. However, in �pogs, the game involves choosing an appropriate

set of atoms to be disclosed along
op
−−→pd transitions. For instance, when construct-

ing a POGS bipartite bisimulation between terms new n in λ .n and λ .new n in n
from Example 8, we have two choices for the second step:

(
(〈{a}; [f �→ λ .a]〉, 〈{a}, ∅〉), (〈∅; [f �→ λ .new n in n]〉, 〈∅, ∅〉)

)
(
(〈{a}; [f �→ λ .a]〉, 〈{a}, {a}〉), (〈∅; [f �→ λ .new n in n]〉, 〈∅, ∅〉)

)

The latter does not satisfy the constraint on the disclosed set, since the sets are
not the same in the two configurations. The former leads to a stuck configuration:
(〈[c′](λ .a)(), {a}〉, 〈{a}, ∅〉) cannot perform any Proponent move. Thus the two
programs are not equivalent.

4.3 Deciding �pogs

We now study how to decide when two POGS configurations are bisimilar. First,
trees generated by LPOGS are of finite depth.

36 D. Hirschkoff et al.

Lemma 11. Taking a POGS configuration G, any trace in TrPOGS(G) is finite.

This lemma is proven using a biorthogonal logical predicate, following the use of
biorthogonality to prove strong normalization of λμ-calculus [23], the computa-
tional metalanguage [18], and cut elimination for linear logic [8]. The proof can
be found in [9].

Due to the non-determinism of atom generation in �→op, of function name
generation in �, and of name picking in Opponent transitions, the trees gen-
erated by LPOGS are infinitely branching. To tame this infinite branching, we
see the set of moves Moves and the set of configurations ConfsPOGS of LPOGS as
nominal sets [7] over atoms, function and continuation variables. So taking π a
finite permutation over these sets, we write π ∗X for the action of permutation π
over elements of nominal set X. The transition relation −→pogs of LPOGS preserves

this action of permutation, i.e., it is equivariant : if P
m
−→pogs Q then for all finite

permutation π, we have π ∗ P
π∗m
−−−→pogs π ∗ Q.

One can then consider a variant LDPOGS of the POGS LTS which uses the
same set of configurations as LPOGS, but whose transition relation −→dpogs chooses
fresh atoms and names deterministically. So −→dpogs is then deterministic on op
and Proponent actions, and finitely branching on Opponent actions.

We remark at this point that the notion of bipartite bisimulation �pogs intro-
duced in Definition 13 is not suited for LDPOGS. Indeed, it requires equality of
actions in the bisimulation game, and also that configurations related by bisim-
ulation have the same type. So we relax the definition of �pogs and work with
ternary relations, adding a finite permutation of names and atoms in order to
match the actions, rather than enforcing syntactic equality.

Definition 12. A relation R ⊆ ConfsPOGS × ConfsPOGS × Perm is said to
be valid when, for all ((I, S, 〈 ,D〉), (J,T, 〈 ,D′〉), π) ∈ R, we have T = π ∗ S and
D′ = π ∗ D.

Definition 13. A relaxed bipartite bisimulation is a pair of valid relations
(RAct,RPas) respectively on active and passive configurations such that:

– If (P1, P2, π) ∈ RPas then for all Opponent moves o1, o2, permutation π′ ex-
tending π, and active POGS configurations Q1,Q2 satisfying o2 = π

′ ∗ o1,

P1
o1
−−→ Q1 and P2

o2
−−→ Q2, we have (Q1,Q2, π

′) ∈ RAct .
– If (P1, P2, π) ∈ RAct then there exists a permutation π′ extending π, two

Proponent moves p1, p2 s.t. p2 = π
′∗p1, and two passive POGS configurations

Q1,Q2 such that (Q1,Q2, π
′) ∈ RPas, P1

p1
=⇒ Q1 and P2

p2
=⇒ Q2.

We write �r
pogs for the greatest relaxed bipartite bisimulation over LPOGS.

From the fact that −→pogs is equivariant, we deduce that �r
pogs and �ogs coincide.

Since LDPOGS generates finite Lassen trees, we deduce that the bisimulation game
can be decided.

Theorem 14. Taking two POGS configurations P,Q, we can decide if P �pogs Q.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 37ν

4.4 Relating the Transitions in OGS and POGS

To relate the transitions in the OGS and in the POGS, we need to introduce
some relations and operations on OGS configurations.

Definition 15. Let G = (I, S, 〈L;D〉) and H = (I, S, 〈L;D′〉) be two OGS configu-
rations. We write G ⊆Di H when D ⊆ D′.

When G ⊆Di H, the configurations only differ by their set of disclosed atoms.

Lemma 16. If G ⊆Di H and G
a
−→ogs G

′ then H
a
−→ogs H

′ and G′ ⊆Di H
′.

Lemma 17. Let P be an active prime configuration. We have the following:

– if P
op
−−→ogs P

′, then P
op
−−→pogs P

′,

– if P
op
−−→pogs P

′, then P
op
−−→ogs⊆Di P

′.

In POGS, the disclosed set increases in op transitions as seen above, but not
in p transitions. In a sense, disclosing in OGS is done only when needed, whereas
in POGS, disclosing must be declared as soon as the atom is created. This is

ensured by the additional condition supp(p) ⊆ D in the rule for
p
−→pd.

Lemma 18. When P
p
−→pogs P

′ with P active, we also have P
p
−→ogs P

′.

However, the converse does not always hold, specifically if an atom has been
declared non-disclosed but still appears in the action p. Indeed, the transition

(〈[c]a; L̂; ∅〉, S, 〈L; ∅〉)
c(a)
−−−→ogs (〈̂L; ∅〉, S, 〈L; {a}〉) is valid for OGS, but has no coun-

terpart in POGS, since 〈L; ∅〉 cannot make the transition
c(a)
−−−→pd.

Using the following notion of limit (on OGS configurations), we can intuitively
replace D by its minimal extension, preventing this phenomenon from happening.

Definition 19. Given a configuration G = (I, S, 〈L;D〉), we define its limit as:

lim(G) � (I, S, 〈L;
⋃

t∈Traces

(L ∩ D′)〉) with G
t
−→ogs (, , 〈 ,D

′〉).

We have that G ⊆Di lim(G) and lim is idempotent. We call limit configurations
those configurations that are a limit (or alternatively, that are their own limit).
Being a limit configuration is preserved by moves but not necessarily by op.

Lemma 20. Let P be a limit configuration. If P
p
−→ogs P

′, then P
p
−→pogs P

′.

For Opponent transitions, the situation is less simple since not all active
OGS configurations are active POGS configurations. To circumvent that issue,

38 D. Hirschkoff et al.

we reuse the tensor product from [12]. For two OGS configurations where at least
one is passive, we define the tensor product, written ⊗, as follows:

(I, S,D) ⊗ (J,T,E) = (I ⊗ J, S ⊗ T,D ⊗ E)

〈S; γ〉 ⊗ 〈S′; γ′〉 = 〈S ∪ S′; γ · γ′〉 〈M; S; γ〉 ⊗ 〈S′; γ′〉 = 〈M; S ∪ S′; γ · γ′〉

〈L;D〉 ⊗ 〈L′;D′
〉 = 〈L ∪ L′;D ∪ D′

〉 when
D′ ∩ L ⊆ D
D ∩ L′ ⊆ D′

The side conditions for the L and D components ensure that no shared atom is
disclosed on one configuration but not the other.

We can then describe an active OGS configuration as the tensor of two POGS
configurations (where S = ̂L):

(〈M; S; γ〉, 〈ΔO 	 ⊥;ΔP〉, 〈L,D〉) = (〈M; L〉, 〈ΔO 	 ⊥〉, 〈L,D〉) ⊗ (〈L; γ〉, 〈ΔO 	 ΔP〉, 〈L,D〉)

Finally, we have the following property for opponent transitions:

Lemma 21. When P
o
−→pogs Q, we have P

o
−→ogs Q ⊗ P.

When P
o
−→ogs G, we have P

o
−→pogs Q with G = Q ⊗ P.

5 Relating Bisimilarities in OGS and POGS

In this section, we show that �pogs can be used to characterize �ogs for the
limit configurations introduced above. We rely for that on up-to techniques for
bipartite bisimulation in OGS, which we introduce first.

5.1 Up-to techniques for �ogs

The proofs in this section use the theory of compatible functions [27,25]. More
details can be found in [9].

Definition 22 (Bipartite bisimulation up-to). Given a function f , a bipar-
tite bisimulation up to f is a pair (RAct,RPas) such that:

– If (G1,G2) ∈ RPas then for all Opponent moves o and H1,H2 such that

G1
o
−→ogs H1 and G2

o
−→ogs H2, we have (H1,H2) ∈ f (RAct).

– If (G1,G2) ∈ RAct then there exists a Proponent move p and (H1,H2) ∈

f (RPas) such that G1

p
=⇒ogs H1 and G2

p
=⇒ogs H2.

We then define hide(RAct,RPas) � (⊆DiRAct⊇Di, ⊆DiRPas⊇Di). Recall that
we still require that hide(RAct,RPas) only contains pairs of configurations with
the same disclosed set. The soundness of hide can be proved using Lemma 16.

Lemma 23. hide is a sound up-to technique, i.e. if (RAct,RPas) is a bisimula-
tion up to hide, then (RAct,RPas) ⊆�ogs.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 39ν

Given a pair of relations (RAct,RPas) on active and passive OGS configura-
tions respectively, we define the following functions:

tensor(RAct,RPas) �
(
{(G1 ⊗ G2,H1 ⊗ H2) s.t. (G1,H1) ∈ RAct, (G2,H2) ∈ RPas},
{(G1 ⊗ G2,H1 ⊗ H2) s.t. (G1,H1), (G2,H2) ∈ RPas}

)

split(RAct,RPas) �
(
{(G1,H1) s.t. (G1 ⊗ G2,H1 ⊗ H2) ∈ RAct },
{(G1,H1) s.t. (G1 ⊗ G2,H1 ⊗ H2) ∈ RPas}

)

Lemma 24. split(�ogs) ⊆�ogs.

tensor is not a sound up-to technique. It is nevertheless useful to reason
about POGS bipartite bisimilar configurations; see Theorem 30 below.

5.2 Properties of the Limit (in OGS)

Lemma 25 (Monotonicity). If G is passive and G
t
−→ogs H, then there exists

G′ such that G ⊗ G′ ⊆Di H.

Lemma 25 shows that transitions can only increase the substitution and the store
(corresponding to the G′ component), and the set of disclosed atoms (represented
by the use of ⊆Di). More precisely, ⊆Di is required if some atoms from G are
disclosed along the trace t, in which case new ones can appear in G′.

Lemma 25 is language specific. It does not hold when the language allows
the content of the store to be modified (like, e.g. in λμref). Additionally, LTSs
enforcing some local restriction on the usage of function or continuation names
usually have extra components that are modified along the transitions; we return
to this point in Section 7.

In a limit configuration (Definition 19), all atoms that may be disclosed at
some point are disclosed. By Lemma 25, these atoms can be disclosed using a
single trace.

Lemma 26. Given a passive configuration G, there exists a trace t and a con-

figuration H such that G
t
−→ogs lim(G) ⊗ H.

The limit is also useful to relate transitions in OGS and in POGS as follows.

Lemma 27. Take a POGS configuration P.

If P is active and P
a
−→ogs Q, then lim(P)

a
−→pogs lim(Q).

If P is passive and P
o
−→ogs Q ⊗ P, then lim(P)

o
−→pogs lim(Q).

All in all, we obtain that �ogs is a congruence for lim. For R a relation over
configurations, we write lim(R) for the set {(lim(G), lim(H)) | (G,H) ∈ R}.

Lemma 28. �ogs is closed by computing the limit: lim(�ogs)⊆ �ogs.

The case for passive configurations follows immediately from Lemmas 26 and 24.

40 D. Hirschkoff et al.

The property of the limit might make us think that the disclosure process
of an atom could be decided statically, by annotating new syntactically. The
following example shows that it is not the case:

λb.new n,m in λ .if b then n else m

Either n or m will be disclosed depending on the boolean b given by Opponent,
but never both. So this term is indeed contextually equivalent to λb.new n in λ .n.

5.3 Correspondence Between �ogs and �pogs

Theorem 29 (From �ogs to �pogs). Consider two POGS configurations P and
Q. If P �ogs Q are both limit configurations, then P �pogs Q.

To reason about bisimilar POGS configurations, we use the closure of tensor,
written �tensor. Intuitively, �tensor(RAct) contains the pairs (G1 ⊗ G2,H1 ⊗ H2)

with (G1,H1) ∈ RAct , (G2,H2) ∈ �tensor(RPas), and �tensor(RPas) contains the
pairs (G1 ⊗ G2,H1 ⊗ H2) with (G1,H1) ∈ RPas, (G2,H2) ∈ �tensor(RPas).

Theorem 30 (From �pogs to �ogs). Suppose R is a POGS bipartite bisimula-
tion. Then �tensor(R) is a OGS bipartite bisimulation up-to hiding.

By Lemma 23, Theorem 30 means that if P �pogs Q, then P �ogs Q.
The correspondence between �ogs and �pogs is restricted to prime configura-

tions as �pogs can only relate those. Having the additional conditions of config-
urations being limits is enough for our decidability result.

6 Related Work

The ν-calculus was introduced in [24], together with logical relations to rea-
son over contextual equivalence for this language. These logical relations use a
Kripke-style definition, worlds being defined as spans of atoms to keep track of
the disclosed atoms, similar to the permutation we use in our relaxed bipartite
bisimulations. They capture contextual equivalence for programs of first order
type, but are an incomplete technique for higher-order programs. This entails
a decidability result for the first-order fragment of the ν-calculus, since logical
relations only quantify over finite objects at first-order types.

Categorical models of the ν-calculus were provided in [29,30], using a repre-
sentation of name creation via a strong monad. Two examples of such models
were given: (i) the functor category Set I with I the category of finite sets and in-
jection; (ii) the category BG of continuous G-sets, with G the topological group
of automorphisms over N. None of these models are fully-abstract, since they
distinguish new n in λx.x = n from λx.false.

These models were later refined using nominal sets [7], so that types are
interpreted via Fraenkel-Mostowski sets [28] or domains [14]. Both of these works
are continuation models; they might be used to provide a semantics for the λμν-
calculus studied in this paper, a direction we wish to explore in future work. Such

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 41ν

use of continuations was justified in [28] to provide a model for an extension of
the ν-calculus with recursion. More recently, proof-relevant logical relations were
introduced to deal with recursion in the presence of name generation [4].

In [26], a model of the ν-calculus is given in quasi-Borel spaces, showing
a correspondence between random sampling and fresh name generation. This
model is shown to be fully-abstract for terms of first-order types.

In [5], environmental bisimulations for the ν-calculus are defined and shown
to be fully abstract. Nevertheless, it does not seem possible to extract a decision
procedure from that result, since environmental bisimulations are played over a
higher-order LTS, that is, an LTS whose actions contain λ-terms. So this LTS is
infinitely branching at higher-order types.

Eager normal-form bisimulations have been introduced by Lassen for the call-
by-value λ-calculus [16] and λμ-calculus. In [31], a notion of bisimulation similar
to �ogs is introduced and shown to be fully abstract for an untyped version of
λμref. Compared to the standard notion of eager normal form bisimulations, the
configurations in the bisimulations in [31] contain an environment similar to the
environment component γ of the OGS LTS in Section 3.

In [1], a fully-abstract game model is provided for the ν-calculus. However,
this model requires an extensional collapse, that is not directly computable at
higher-order type. So that model could only be used to prove the decidability of
contextual equivalence for terms of first-order types. Enforcing a well-bracketed
and visible behavior for Opponent in the OGS model, we believe that our trace
model would coincide with the intentional game model of [1]. Nominal game
semantics was developed for languages with nominal references and exceptions
in [32]. In that setting, algorithmic presentations of game semantics make it
possible to provide a classification of decidability of call-by-value languages with
(bounded) integer references [19], and ground references [21]. In this setting,
the undecidability of contextual equivalence originates from the use of integer
references by Proponent. A detailed survey on the literature on contextual equiv-
alence for the ν-calculus is available in [33].

7 Conclusion

To decide the contextual equivalence between two λμν typed terms M and N

with contexts in the λμref-calculus, we first construct the corresponding initial
configurations, and we can decide by Thm. 14 if they are POGS-bisimilar. This
decidability result comes from the fact that the POGS LTS generates finite trees.

Then, we prove in Thm. 29 and Thm. 30 that two initial active configura-
tions are POGS-bisimilar iff they are OGS-bisimilar. This is possible because
initial configurations are prime (they are active and γ is empty) and are also
limit configurations (their disclosed sets contain all the atoms of the store). In
Thm. 7 and Lemma 10, we prove that M and N are contextually equivalent iff the
corresponding initial configurations are OGS-bisimilar, which yields decidability.

We now examine the obstacles that remain to prove the decidability of con-
textual equivalence with contexts in the ν-calculus.

42 D. Hirschkoff et al.

First of all, in that setting, trace equivalence would not be fully-abstract
anymore (Thm. 7). Indeed, without integer references, one cannot observe the
sequentiality of calls and returns. So an extensional collapse would be necessary.

Another obstacle is that in the absence of higher-order references, Oppo-
nent must satisfy a condition of O-visibility [2], that corresponds to a local
well-scoping discipline, for the function names it is allowed to call. Working in
an intuitionistic type system, corresponding to the standard λ-calculus without
control operators, the call-and-return discipline of the interaction between Pro-
ponent and Opponent has to be well-bracketed. These two conditions, namely
O-visibility and well-bracketing, can be enforced operationally [13] in the LTS,
by keeping track of part of the history of the interaction. However the reduc-
tion of �ogs to �pogs is not possible anymore in that setting. Indeed, the limit
over-approximates the set of atoms that can be tested. This can be seen when
comparing the programs

new n in let = y(λz.z = a) in n and new n in let = y(λz.false) in n

Assuming n is immediately disclosed makes it possible to distinguish the two
programs. Because the local conditions of well-bracketing or visibility would pre-
vent Opponent from playing some actions, Opponent could perform irreversible
changes that would invalidate Lemma 25. This would make �pogs incomplete.

To handle this difficulty, we could try and use Kripke eager normal-form
bisimulation [11], using a structure for worlds richer than just a set of atoms.

Finally, in absence of full ground references, that can store locations, atoms
played by Opponent would also follow a local well-scoping discipline, but the
discriminatory power over Player atoms would also be restricted [20]. In such a
setting, the same difficulties as with well-bracketing and O-visibility would arise,
and a more complex extensional collapse would be needed.

References

1. Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, and Ian
David Bede Stark. Nominal games and full abstraction for the nu-calculus. In 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004,
Turku, Finland, Proceedings, pages 150–159. IEEE Computer Society, 2004.

2. Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game
semantics for general references. In Thirteenth Annual IEEE Symposium on Logic
in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages 334–
344. IEEE Computer Society, 1998.

3. Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume
103 of Studies in logic and the foundations of mathematics. North-Holland, 1985.

4. Nick Benton, Martin Hofmann, and Vivek Nigam. Proof-relevant logical relations
for name generation. Log. Methods Comput. Sci., 14(1), 2018.

5. Nick Benton and Vasileios Koutavas. A mechanized bisimulation for the nu-
calculus. Higher Order and Symbolic Computation - Special Issue in Honor of
Mitchell Wand, sep 2012. In Press.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 43ν

6. Corrado Böhm. Alcune proprieta delle forme β-η-normali nel λ-k-calcolo. Pubbli-
cazioni dell’Istituto per le Applicazioni del Calcolo, 696:19, 1968.

7. Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects Comput., 13(3-5):341–363, 2002.

8. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
9. Daniel Hirschkoff, Guilhem Jaber, and Enguerrand Prebet. Deciding

contextual equivalence of ν-calculus with effectful contexts (full version).
https://hal.science/hal-03955303.

10. Guilhem Jaber and Andrzej S. Murawski. Complete trace models of state and
control. In Nobuko Yoshida, editor, Programming Languages and Systems - 30th
European Symposium on Programming, ESOP 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture
Notes in Computer Science, pages 348–374. Springer, 2021.

11. Guilhem Jaber and Andrzej S. Murawski. Compositional relational reasoning via
operational game semantics. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13.
IEEE, 2021.

12. Guilhem Jaber and Davide Sangiorgi. Games, mobile processes, and functions.
In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on
Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany
(Virtual Conference), volume 216 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

13. James Laird. A fully abstract trace semantics for general references. In Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007, Wro-
claw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Com-
puter Science, pages 667–679. Springer, 2007.

14. James Laird. Sequentiality and the CPS semantics of fresh names. In Marcelo
Fiore, editor, Proceedings of the 23rd Conference on the Mathematical Foundations
of Programming Semantics, MFPS 2007, New Orleans, LA, USA, April 11-14,
2007, volume 173 of Electronic Notes in Theoretical Computer Science, pages 203–
219. Elsevier, 2007.

15. James Laird. A Curry-style semantics of interaction: From untyped to second-
order lazy λ μ-calculus. In Jean Goubault-Larrecq and Barbara König, editors,
Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings, volume 12077 of Lecture Notes in Computer Science, pages 422–441.
Springer, 2020.

16. Søren B. Lassen. Eager normal form bisimulation. In 20th IEEE Symposium on
Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA,
Proceedings, pages 345–354. IEEE Computer Society, 2005.

17. Søren B. Lassen and Paul Blain Levy. Typed normal form bisimulation. In Jacques
Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st Inter-
national Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne,
Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in
Computer Science, pages 283–297. Springer, 2007.

18. Sam Lindley and Ian Stark. Reducibility and tt-lifting for computation types. In
Pawel Urzyczyn, editor, Typed Lambda Calculi and Applications, 7th International

44 D. Hirschkoff et al.

Conference, TLCA 2005, Nara, Japan, April 21-23, 2005, Proceedings, volume
3461 of Lecture Notes in Computer Science, pages 262–277. Springer, 2005.

19. Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic nominal game seman-
tics. In Gilles Barthe, editor, Programming Languages and Systems - 20th Euro-
pean Symposium on Programming, ESOP 2011, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, volume 6602 of Lecture Notes in
Computer Science, pages 419–438. Springer, 2011.

20. Andrzej S. Murawski and Nikos Tzevelekos. Full abstraction for reduced ML. Ann.
Pure Appl. Log., 164(11):1118–1143, 2013.

21. Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic games for full ground
references. Formal Methods Syst. Des., 52(3):277–314, 2018.

22. Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In Andrei Voronkov, editor, Logic Programming and Automated
Reasoning,International Conference LPAR’92, St. Petersburg, Russia, July 15-20,
1992, Proceedings, volume 624 of Lecture Notes in Computer Science, pages 190–
201. Springer, 1992.

23. Michel Parigot. Strong normalization for second order classical natural deduction.
In Proceedings of the Eighth Annual Symposium on Logic in Computer Science
(LICS ’93), Montreal, Canada, June 19-23, 1993, pages 39–46. IEEE Computer
Society, 1993.

24. Andrew M. Pitts and Ian David Bede Stark. Observable properties of higher or-
der functions that dynamically create local names, or what’s new? In Andrzej M.
Borzyszkowski and Stefan Sokolowski, editors, Mathematical Foundations of Com-
puter Science 1993, 18th International Symposium, MFCS’93, Gdansk, Poland,
August 30 - September 3, 1993, Proceedings, volume 711 of Lecture Notes in Com-
puter Science, pages 122–141. Springer, 1993.

25. D. Pous and D. Sangiorgi. Advanced Topics in Bisimulation and Coinduction (D.
Sangiorgi and J. Rutten editors), chapter Enhancements of the coinductive proof
method. Cambridge University Press, 2011.

26. Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. Probabilistic pro-
gramming semantics for name generation. Proc. ACM Program. Lang., 5(POPL):1–
29, 2021.

27. Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science, 8(5):447–479, 1998.

28. Mark R. Shinwell and Andrew M. Pitts. On a monadic semantics for freshness.
Theor. Comput. Sci., 342(1):28–55, 2005.

29. Ian Stark. Names and Higher-Order Functions. PhD thesis, University of Cam-
bridge, December 1994. Also available as Technical Report 363, University of
Cambridge Computer Laboratory.

30. Ian Stark. Categorical models for local names. LISP Symb. Comput., 9(1):77–107,
1996.

31. Kristian Støvring and Søren B. Lassen. A complete, co-inductive syntactic theory
of sequential control and state. In Jens Palsberg, editor, Semantics and Alge-
braic Specification, Essays Dedicated to Peter D. Mosses on the Occasion of His
60th Birthday, volume 5700 of Lecture Notes in Computer Science, pages 329–375.
Springer, 2009.

32. Nikos Tzevelekos. Nominal Game Semantics. PhD thesis, University of Oxford,
2009.

Deciding Contextual Equivalence of -Calculus with Effectful Contexts 45ν

33. Nikos Tzevelekos. Program equivalence with names. In Amal Ahmed, Nick Benton,
Lars Birkedal, and Martin Hofmann, editors, Modelling, Controlling and Reasoning
About State, 29.08. - 03.09.2010, volume 10351 of Dagstuhl Seminar Proceedings.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Kantorovich Functors and Characteristic Logics
for Behavioural Distances

Sergey Goncharov1 �, Dirk Hofmann2 ��, Pedro Nora1(�) � � �,
Lutz Schröder1 † and Paul Wild1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
sergey.goncharov@fau.de, pedro.nora@fau.de, lutz.schroeder@fau.de,

paul.wild@fau.de
2 Center for Research and Development in Mathematics and Applications, University

of Aveiro, Aveiro, Portugal
dirk@ua.pt

Abstract. Behavioural distances measure the deviation between states
in quantitative systems, such as probabilistic or weighted systems. There
is growing interest in generic approaches to behavioural distances. In
particular, coalgebraic methods capture variations in the system type (non-
deterministic, probabilistic, game-based etc.), and the notion of quantale
abstracts over the actual values distances take, thus covering, e.g., two-
valued equivalences, (pseudo)metrics, and probabilistic (pseudo)metrics.
Coalgebraic behavioural distances have been based either on liftings
of Set-functors to categories of metric spaces, or on lax extensions of
Set-functors to categories of quantitative relations. Every lax extension
induces a functor lifting but not every lifting comes from a lax extension.
It was shown recently that every lax extension is Kantorovich, i.e. induced
by a suitable choice of monotone predicate liftings, implying via a quanti-
tative coalgebraic Hennessy-Milner theorem that behavioural distances
induced by lax extensions can be characterized by quantitative modal
logics. Here, we essentially show the same in the more general setting of
behavioural distances induced by functor liftings. In particular, we show
that every functor lifting, and indeed every functor on (quantale-valued)
metric spaces, that preserves isometries is Kantorovich, so that the in-
duced behavioural distance (on systems of suitably restricted branching
degree) can be characterized by a quantitative modal logic.

1 Introduction

Qualitative transition systems, such as standard labelled transition systems,
are typically compared under two-valued notions of behavioural equivalence,

� Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 501369690.

�� Funded by The Center for Research and Development in Mathematics and Appli-
cations (CIDMA) through the Portuguese Foundation for Science and Technology
(FCT) – project numbers UIDB/04106/2020 and UIDP/04106/2020.

� � � Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 259234802.

† Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 434050016.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 3

46–67, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_3&domain=pdf
http://orcid.org/0000-0001-6924-8766
http://orcid.org/0000-0002-1082-6135
http://orcid.org/0000-0001-8581-0675
http://orcid.org/0000-0002-3146-5906
http://orcid.org/0000-0001-9796-9675
mailto:sergey.goncharov@fau.de
mailto:pedro.nora@fau.de
mailto:lutz.schroeder@fau.de
mailto:paul.wild@fau.de
mailto:dirk@ua.pt
https://doi.org/10.1007/978-3-031-30829-1_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_3&domain=pdf

Kantorovich Functors and Characteristic Logics for Behavioural Distances 47

such as Park-Milner bisimilarity. For quantitative systems, such as probabilistic,
weighted, or metric transition systems, notions of behavioural distance allow
for a more fine-grained comparison, in particular give a numerical measure
of the deviation between inequivalent states, instead of just flagging them as
inequivalent [14,6,2,24].

The variation found in the mentioned system types calls for unifying methods,
and correspondingly has given rise to generic notions of behavioural distance
based on universal coalgebra [33], a framework for state-based systems in which
the transition type of systems is encapsulated as an (endo-)functor on a suitable
base category. Coalgebraic behavioural distances have been defined on the one
hand using liftings of given set functors to the category of metric spaces [5], and
on the other hand using lax extensions, i.e. extensions of set functors to categories
of quantitative relations [13,38]. Since every lax extension induces a functor lifting
in a straightforward way [38] but on the other hand not every functor lifting is
induced by a lax extension, the approach via liftings is more widely applicable.
On the other hand, it has been shown that every lax extension is Kantorovich, i.e.
induced by a suitable choice of modalities, modelled as predicate liftings in the
spirit of coalgebraic logic [28,34]. Using quantitative coalgebraic Hennessy-Milner
theorems, it follows that under expected conditions on the functor and the lax
extension, behavioural distance coincides with logical distance.

Roughly speaking, our main contribution in the present paper is to show that
the same holds for functor liftings and their induced behavioural distances. In
more detail, we have the following (cf. Figure 1 for a graphical summary):

– Every lifting of a set functor is topological, i.e. induced by a generalized form
of predicate liftings in which one may need to switch to non-standard spaces
of truth values for the predicates involved (Theorem 3.1).

– Functor liftings that preserve isometries are Kantorovich, i.e. induced by
(possibly polyadic) predicate liftings. (Here, we understand predicate liftings
as involving only the standard space of truth values – that is, the unit interval,
in the case of 1-bounded metric spaces). In fact, preservation of isometries is
also necessary (Theorem 3.9).

– Lastly, we detach the technical development from set functors, and show
that a functor on (pseudo)metric spaces is Kantorovich, in the sense that
the distance of its elements can be characterized by predicate liftings, iff it
preserves isometries (Theorem 5.3).

By a recent coalgebraic quantitative Hennessy-Milner theorem that fits this level
of generality [12], it follows that given a functor F on (pseudo<)metric spaces
that preserves isometries, acts non-expansively on morphisms, and admits a dense
finitary subfunctor, behavioural distance can be characterized by quantitative
modal logic (Corollary 5.10). In additional results, we further clarify the relation-
ship between functor liftings and lax extensions, and in particular characterize
the functor liftings that are induced by lax extensions (Theorem 3.18).

Indeed, we conduct the main technical development not only in coalgebraic
generality, but also parametric in a quantale, hence abstracting both over distances
and over truth values. One benefit of this generality is that our results cover the

48 S. Goncharov et al.

two-valued case, captured by the two-element quantale. In particular, one instance
of our results is the fact that every finitary set functor has a separating set of
finitary predicate liftings, and hence admits a modal logic having the Hennessy-
Milner property [34]. Moreover, we do not restrict to symmetric distances, and
hence cover also simulation preorders and simulation distances [24].

monotone
predicate liftings

predicate liftings

lax extensions functor liftings

[38], Corollary 3.17 [5], Theorem 3.8

Theorem 3.16

[38]

Theorem 3.18

Theorem 3.9,
Theorem 3.1

Fig. 1. Summary of connections (a rigorous categorical interpretation of these connec-
tions involves a square of adjunctions (3)).

Related Work Quantale-valued quantitative notions of bisimulation for functors
that already live on generalized metric spaces (rather than being lifted from
functors on sets) have been considered early on [40]. We have already mentioned
previous work on coalgebraic behavioural metrics, for functors originally living
on sets, via metric liftings [5] and via lax extensions [13,38]. Existing work that
combines coalgebraic and quantalic generality and accommodates asymmetric
distances, like the present work, has so far concentrated on establishing so-called
van Benthem theorems, concerned with characterizing (coalgebraic) quantita-
tive modal logics by bisimulation invariance [39]. There is a line of work on
Kantorovich-type coinductive predicates at the level of generality of topological
categories [21,22] (phrased in fibrational terminology), with results including a
game characterization and expressive logics for coinductive predicates already
assumed to be Kantorovich in a general sense, i.e. induced by variants of predi-
cate liftings. In this work, the condition of preserving isometries already shows
up as fiberedness, and indeed the condition already appears in work on metric
liftings [5]. As mentioned in the above discussion, we complement existing work
on quantitative coalgebraic Hennessy-Milner theorems [23,38,12] by establishing
the Kantorovich property they assume.

2 Preliminaries

We will need a fair amount of material on coalgebra, quantales and quantale-
enriched categories (generalizing metric spaces), predicate liftings, and lax exten-
sion, which we recall in the sequel. New material starts in Section 3.

2.1 Categories and Coalgebras

We assume basic familiarity with category theory [1,4]. More specifically, we
make extensive use of topological categories [1] and quantale-enriched categories

Kantorovich Functors and Characteristic Logics for Behavioural Distances 49

[26,20,36]. Recall that a coalgebra for a functor F : C → C consists of an object X
of C, thought of as an object of states, and a morphism α : X → FX, thought
of as assigning structured collections (sets, distributions, etc.) of successors to
states. A coalgebra morphism from (X,α) to (Y, β) is a morphism f ∈ C(X,Y)
such that β · f = Ff · α. We will focus on concrete categories over Set, that is
categories that come equipped with a faithful functor |−| : C → Set, which allows
speaking about individual states as elements of |X|. A lifting of an endofunctor
F : Set → Set to C is an endofunctor F : C → C such that |−| · F = F · |−|.
Example 2.1. Some functors of interest for coalgebraic modelling are as follows.

1. The finite powerset functor Pω : Set → Set maps each set to its finite
powerset, and for a map g, Pω(g) takes direct images under g. Given a set A (of
labels), coalgebras for the the functor Pω(A×−) are finitely branching A-labelled
transition systems.

2. The finite distribution functor Dω : Set → Set maps a set X to the set
DωX of finitely supported probability distributions on X. Given a finite set A,
coalgebras for the functor (1 + Dω)

A, are probabilistic transition systems [25,10].

Finitary functors are those which are determined by their action on finite sets.
More precisely, a functor is finitary if for every set X and every x ∈ FX, there is
a finite subset inclusion m : A → X such that x is in the image of Fm.

Standard examples of non-finitary functors are as follows.

3. The (unbounded) powerset functor P : Set → Set.
4. The neighbourhood functor N : Set → Set sends a set X to the set PPX,

and a function f : X → Y to the function Nf : NX → NY that assigns to every
element x ∈ NX the set {B ⊆ Y | f−1B ∈ x}.

2.2 Quantales and Quantale-Enriched Categories

A central notion of our development is that of a quantale, which will serve
as a parameter determining the range of truth values and distances. A quan-
tale (V,⊗, k), more precisely a commutative and unital quantale, is a complete
lattice V – with joins and meets denoted by

∨
and

∧
, respectively – that carries

the structure of a commutative monoid with tensor ⊗ and unit k, such that
for every u ∈ V, the map u ⊗ − : V → V preserves suprema. This entails that
every u⊗− has a right adjoint hom(u,−) : V → V , characterized by the property
u ⊗ v ≤ w ⇐⇒ v ≤ hom(u,w). We denote by 	 and ⊥ the greatest and the
least element of a quantale, respectively. A quantale is non-trivial if ⊥ �= 	,
and integral if 	 = k.

Example 2.2. 1. Every frame (i.e. a complete lattice in which binary meets
distribute over infinite joins) is a quantale with ⊗ = ∧ and k = 	. In particular,
every finite distributive lattice is a quantale, prominently 2, the two-element
lattice {⊥,	} and 1, the trivial quantale.

2. Every left continuous t-norm [3] defines a quantale on the unit interval
equipped with its natural order.

50 S. Goncharov et al.

3. The previous clause (up to isomorphism) further specializes as follows:

(a) The quantale [0,∞]+ = ([0,∞], inf,+, 0) of non-negative real numbers
with infinity, ordered by the greater or equal relation, and with tensor
given by addition.

(b) The quantale [0,∞]max = ([0,∞], inf,max, 0) of non-negative real numbers
with infinity, ordered by the greater or equal relation, and with tensor
given by maximum.

(c) The quantale [0, 1]⊕ = ([0, 1], inf,⊕, 0) of the unit interval, ordered by the
greater or equal order, and with tensor given by truncated addition.

(Note that the quantalic order here is dual to the standard numeric order).
4. Every commutative monoid (M, ·, e) generates a quantale on PM (the free

quantale over M) w.r.t. set inclusion and with the tensor A⊗ B = {a · b | a ∈
A and b ∈ B}, for all A,B ⊆ M . The unit of this multiplication is the set {e}.

A V-category is pair (X, a) consisting of a set X and a map a : X ×X → V
such that k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z) for all x, y, z ∈ X. We view
a as a (not necessarily symmetric) distance function, noting however that objects
with ‘greater’ distance should be seen as being closer together. A V-category
(X, a) is symmetric if a(x, y) = a(y, x) for all x, y ∈ X. Every V-category
(X, a) carries a natural order defined by x ≤ y whenever k ≤ a(x, y), which
induces a faithful functor V-Cat → Ord. A V-category is separated if its natural
order is antisymmetric. A V-functor f : (X, a) → (Y, b) is a map f : X → Y
such that, for all x, y ∈ X, a(x, y) ≤ b(f(x), f(y)). V-categories and V-functors
form the category V-Cat, and we denote by V-Catsym the full subcategory of
V-Cat determined by the symmetric V-categories and by V-Catsym,sep the full
subcategory of V-Catsym determined by the separated symmetric V-categories.

Example 2.3. 1. The Category 1-Cat is equivalent to the category Set of sets
and functions.

2. The category 2-Cat is equivalent to the category Ord of preordered sets
and monotone maps.

3. Metric, ultrametric and bounded metric spaces à la Lawvere [26] can be
seen as quantale-enriched categories:

(a) The category [0,∞]+-Cat is equivalent to the category GMet of generalized
metric spaces and non-expansive maps.

(b) The category [0,∞]max-Cat is equivalent to the category GUMet of gen-
eralized ultrametric spaces and non-expansive maps.

(c) The category [0, 1]⊕-Cat is equivalent to the category BHMet of bounded-
by-1 hemimetric spaces and non-expansive maps.

4. Categories enriched in a free quantale PM on a monoid M can be inter-
preted as sets equipped with a non-deterministic M -valued structure.

We focus on V = 2 and V = [0, 1]⊕, which we will use to capture classical (qualita-
tive) and metric (quantitative) aspects of system behaviour, respectively.. Table 1
provides some instances of generic quantale-based concepts (either introduced
above or to be introduced presently) in these two cases, for further reference.

Kantorovich Functors and Characteristic Logics for Behavioural Distances 51

General V Qualitative (V = 2) Quantitative (V = [0, 1]⊕)
V-category preorder bounded-by-1 hemimetric space
symmetric V-category equivalence bounded-by-1 pseudometric space
V-functor monotone map non-expansive map
initial V-functor order-reflecting

monotone map
isometry

Table 1. V-categorical notions in the qualitative and the quantitative setting. The
prefix ‘pseudo’ refers to absence of separatedness, and the prefix ‘hemi’ additionally
indicates absence of symmetry.

A V-category (X, a) is discrete if a = 1X , and indiscrete if a(x, y) = �
for all x, y ∈ X. The dual of (X, a) is the V-category (X, a)

op
= (X, a◦) given

by a◦(x, y) = a(y, x). Given a set X and a structured cone, i.e. a family
(fi : X → |(Xi, ai)|)i∈I of maps into V-categories (Xi, ai), the initial structure
a : X×X → V on X is defined by a(x, y) =

∧
i∈I ai(fi(x), fi(y)), for all x, y ∈ X.

A cone ((X, a) → (Xi, ai))i∈I is said to be initial (w.r.t. the forgetful functor
|−| : V-Cat → Set) if a is the initial structure w.r.t. the structured cone (X →
|(Xi, ai)|)i∈I ; a V-functor is initial if it forms a singleton initial cone. For every V-
category (X, a) and every set S, the S-power (X, a)S is the V-category consisting
of the set of all functions from S to X, equipped with the V-category structure
[−,−] given by [f, g] =

∧
x∈X a(f(x), g(x)), for all f, g : S → X. By equipping

its hom-sets with the substructure of the appropriate power, the category V-Cat
becames V-Cat-enriched and, hence, also Ord-enriched w.r.t to the corresponding
natural order of V-categories. We say that an endofunctor on V-Cat is locally
monotone if it preserves this preorder.

Remark 2.4. Let us briefly outline the connections between V-Cat and V-Catsym,
which for real-valued V correspond to hemimetric and pseudometric spaces,
respectively. By virtue of the above construction of initial structures, the categories
V-Cat and V-Catsym are topological over Set [1]; in particular, both categories are
complete and cocomplete. Moreover, V-Catsym is a (reflective and) coreflective
full subcategory of V-Cat. The coreflector (−)s : V-Cat → V-Catsym is identity on
morphisms and sends every (X, a) to its symmetrization, the V-category (X, as)
where as(x, y) = a(x, y) ∧ a(y, x) (keep in mind that in Example 2.2.3, the order
is the dual of the numeric order).

Finally, we note that for every quantale V, (V, hom) is a V-category, which for
simplicity we also denote by V. The following result records two fundamental
properties of the V-category V.
Proposition 2.5. The V-category V = (V, hom) is injective w.r.t. initial mor-
phisms, and for every V-category X, the cone (f : X → V)f is initial.

2.3 Predicate Liftings

Given a cardinal κ and a V-category X, a κ-ary X-valued predicate lifting
for a functor F : V-Cat → V-Cat is a natural transformation λ : V-Cat(−, Xκ) →

52 S. Goncharov et al.

V-Cat(F−, X). When V is the trivial quantale, we identify an X-valued predi-
cate lifting with a natural transformation λ : Set(−, Xκ) → Set(F−, X) via the
isomorphism Set ∼= 1-Cat. In this case, we are primarily interested in predicate
liftings valued in the underlying set of another quantale, and we say that such
predicate liftings are monotone if each of its components is a monotone map
w.r.t. the pointwise order induced by that quantale.

Remark 2.6. By the Yoneda lemma, every κ-ary X-valued predicate lifting for a
functor F : V-Cat → V-Cat is determined by a V-functor FXκ → X. In particular,
the collection of all X-valued κ-ary predicate liftings for a functor is a set.

Example 2.7. 1. The Kripke semantics of the standard diamond modality ♦
of the modal logic K is induced (in a way recalled in Section 5) by the unary
predicate lifting ♦X(A) = {B ⊆ X | A∩B �= ∅} for the (finite) powerset functor
(modulo the isomorphism PX ∼= Set(X, 2)).

2. Computing the expected value for a given [0, 1]-valued function with respect
to each probability distribution defines a unary [0, 1]-valued predicate lifting for
the functor Dω : Set → Set, which we denote by E.

2.4 Quantale-Enriched Relations and Lax Extensions

The structure of a quantale-enriched category is a particular kind of “enriched
relation”. For a quantale V and sets X and Y , a V-relation from X to Y is
a map r : X × Y → V; we then write r : X −�−→ Y . As for ordinary relations, a

pair of V-relations r : X −�−→ Y and s : Y −�−→ Z can be composed via “matrix

multiplication”: (s · r)(x, z) =
∨

y∈Y r(x, y) ⊗ s(y, z) for x ∈ X, z ∈ Z. With
this composition, the collection of all sets and V-relations between them form
a category, denoted V-Rel. The identity morphism on a set X is the V-relation
1X : X −�−→ X that sends every diagonal element to k and all the others to ⊥.

Example 2.8. The category of 2-relations is the usual category Rel of sets and
relations. Quantitative or “fuzzy” relations are usually defined as [0, 1]⊕-relations
(e.g. [38,5]).

The category V-Rel comes with an involution (−)
◦
: V-Relop → V-Rel that maps

objects identically and sends a V-relation r : X −�−→ Y to the V-relation r◦ : Y −�−→
X given by r◦(y, x) = r(x, y), the converse of r. Moreover, by equipping its
hom-sets with the pointwise order induced by V , V-Rel is made into a quantaloid
(e.g. [31]), i.e. enriched over complete join semilattices. This entails that there
is an optimal way of extending a V-relation r : X −�−→ Y along a V-relation
s : X −�−→ Z: the (Kan) extension of r along s is the V-relation r � s : Z −�−→ Y

defined by the property t · s ≤ r ⇐⇒ t ≤ r � s, for all t : Z −�−→ Y .

A lax extension 1 of a functor F : Set → Set to V-Rel is a lax functor
F̂ : V-Rel → V-Rel that agrees with F on sets and whose action on functions

1 Extensions of Set-functors to Rel are also commonly referred to as “relators”, “rela-
tional liftings” or “lax relational liftings”.

Kantorovich Functors and Characteristic Logics for Behavioural Distances 53

is compatible with F. To make the latter requirement precise, we note that a
function is interpreted as the V-relation that sends every element of its graph to
k and all the others to ⊥; then, a lax extension of F to V-Rel, or simply a lax
extension, is a map (r : X −�−→ Y) �−→ (F̂r : FX −�−→ FY) such that:

(L1) r ≤ r′ =⇒ F̂r ≤ F̂r′,
(L2) F̂s · F̂r ≤ F̂(s · r),
(L3) Ff ≤ F̂f and (Ff)◦ ≤ F̂(f◦),

for all r : X −�−→ Y , s : Y −�−→ Z and f : X → Y .

Example 2.9. The generalized “lower-half” Egli-Milner order between powersets,
which for a relation r : X −�−→ Y is defined as the relation P̂r : PX −�−→ PY given

by
A(P̂r)B ⇐⇒ ∀a ∈ A. ∃b ∈ B. a r b,

defines a lax extension of the powerset functor P : Set → Set to Rel. Similarly,
the generalized “upper-half” and the generalized Egli-Milner order define lax
extensions of the powerset functor to Rel.

Lax extensions are deeply connected with monotone predicate liftings. To realize
this, it is convenient to think of the X-component of a κ-ary predicate lifting as
a map of type V-Rel(κ,X) → V-Rel(1,FX) [16]. 2

Definition 2.10. A κ-ary predicate lifting λ for a functor F : Set → Set is
induced by a lax extension F̂ : V-Rel→V-Rel if there is a V-relation r : 1 −�−→ Fκ

such that λ(f) = F̂f · r, for every V-relation f : κ −�−→ X.

Example 2.11. By interpreting a subset of a set X as a relation from 1 to X, the
unary predicate lifting ♦ (see Example 2.7) for the powerset functor P : Set → Set
is induced by the lax extension of Example 2.9; indeed, it is determined by the
map 1 → P1 that selects the set 1.

Remark 2.12. Every predicate lifting induced by a lax extension is monotone.

Lax extensions have been instrumental in coalgebraic notions of behavioural
distance (e.g. [13,38,39]), and the notion of Kantorovich extension has been
crucial to connect such notions with coalgebraic modal logic [7].

Definition 2.13. Let F : Set → Set be a functor, and Λ a class of monotone
predicate liftings for F. The Kantorovich lax extension of F w.r.t. Λ is the lax
extension F̂Λ =

∧
λ∈Λ F̂λ, where for every V-relation r : X −�−→ Y , the V-relation

F̂λr : FX −�−→ FY given by F̂λr =
∧

g : κ −�−→ X λ(r · g)� λ(g).

2 Note that Goncharov et. al. consider as their main point of view the dual of the
one considered here [16, Proposition 4.2]. Our choice prevents a harmless mismatch
between the Kantorovich liftings and Kantorovich extensions in Theorem 3.9.

54 S. Goncharov et al.

Example 2.14. The Kantorovich extension of the powerset functor P : Set → Set
to Rel w.r.t the ♦ predicate lifting coincides with the extension given by the
“lower-half” of the Egli-Milner order (Example 2.9).

As suggested by the previous example, the Kantorovich extension leads to a
representation theorem that plays an important role in Section 3.2.

Theorem 2.15 ([16]). Let F̂ : V-Rel → V-Rel be a lax extension, and let Λ be

the class of all predicate liftings induced by F̂. Then, F̂ = F̂Λ.

3 Topological Liftings

It is well-known that every lax extension F̂ : V-Rel → V-Rel of a functor F : Set →
Set gives rise to a lifting (which we denote by the same symbol) of F to V-Cat
(for instance, see [37]). By definition, liftings are completely determined by their
action on objects. In particular, the lifting induced by a lax extension
F̂ : V-Cat → V-Cat sends a V-category (X, a) to the V-category (FX, F̂a). Of
course, it does not make sense to talk about functor liftings to the category V-Cat
when V is trivial, hence we assume from now on that V is non-trivial.

Predicate liftings also induce functor liftings, via a simple construction avail-
able on all topological categories that goes back, at least, to work in categorical
duality theory [11,29]: To lift a functor G : A → Y along a topological functor
|−| : B → Y, it is enough to give, for every object A in A, a structured cone

C(A) = (GA
h−→ |B|)h,B (1)

so that, for every h in C(A) and every f : A′ → A, the composite h · Gf belongs
to the cone C(A′). Then, for an object A in A, one defines GIA by equipping GA
with the initial structure w.r.t. the structured cone (1). It is easy to see that the
assignment X �→ GIX indeed defines a functor GI : A → B such that |−| ·GI = G.
This technique has been previously applied in the context of codensity liftings
[21,22,35,19] and Kantorovich liftings [5]. We apply this to our situation as follows.
Given a functor F : Set → Set, take G = F · |−|; then a lifting of F to V-Cat can
be specified by a class of natural transformations

λ : V-Cat(−, Aλ) −→ Set(F|−|, |Bλ|), (2)

(which may be thought of as generalized predicate liftings, in that they lift Aλ-
valued predicates to Bλ-valued ones). Namely, given a V-category X, we consider
the structured cone consisting of all maps

λ(f) : F|X| −→ |Bλ|
where λ ranges over the given natural transformations and f over all V-functors
X → Aλ. As described above, we obtain a V-category FIX by equipping F|X|
with the initial structure w.r.t. this cone. We call functor liftings constructed in
this way topological. Indeed, it turns out that every functor lifting is topological,
even when one restricts Bλ in (2) to be the V-category (V, hom):

Kantorovich Functors and Characteristic Logics for Behavioural Distances 55

Theorem 3.1. Every lifting of a Set-functor to V-Cat is topological w.r.t. a class
of natural transformations λ : V-Cat(−, Aλ) −→ Set(F|−|, |V|).
In examples, we usually construct a generalized predicate lifting (2) from a κ-ary
predicate lifting λ for the set functor F: Choose a pair (A,B) of V-categories over
the sets Vκ and V, respectively (the above theorem allows restricting to B = V,
and the examples we present are of this kind). We can then precompose λ with
the inclusion natural transformation V-Cat(−, A) −→ Set(|−|, |A|), obtaining a
natural transformation λ(A,B) : V-Cat(−, A) → Set(F|−|, |B|) that applies λ to
maps underlying V-functors with codomain A.

Example 3.2. 1. The discrete lifting of the identity functor Id : Set → Set,
which sends every V-category to the discrete V-category with the same underlying
set, can be obtained as a topological lifting constructed from the identity V-valued
predicate lifting for Id by choosing A to be the V-category consisting of the set V
equipped with the indiscrete structure.

2. The lifting of the identity functor Id : Set → Set to Ord that computes the
smallest equivalence relation that contains a given preorder can be obtained as a
topological lifting constructed from the 2-valued identity predicate lifting for Id
by choosing A to be the discrete preordered set with two elements.

3. It is well-known that the total variation distance between finite distributions
μ, υ on a set X coincides with the Kantorovich distance on the discrete bounded-
by-1 metric space X (e.g. [15]); that is, dTV (μ, υ) =

∨
f : X→[0,1] EX(f)(υ) �

EX(f)(μ) (see Example 2.7(2)). Therefore, the total variation distance defines a
lifting of the finite distribution functor to BHMet that can be obtained as the
topological lifting constructed from the predicate lifting E by choosing A to be
the indiscrete space [0, 1]. This example is closely related to the first one. Indeed,
this lifting is the composite of the Kantorovich lifting of the finite distribution
functor to BHMet (see Example 3.5) and the discrete lifting of the identity functor
to BHMet. By Theorem 3.9 below, precomposing functor liftings with the discrete
lifting of the identity functor can be used to derive non-Kantorovich liftings.

Remark 3.3. Theorem 3.1 can be fine-tuned to show that the discrete lifting
Fd : Ord → Ord of a finitary functor F : Set → Set is a topological lifting con-
structed from a set Λ of finitary 2-valued predicate liftings for F. Hence, for every
set X, considered as a discrete preordered set, we have that the cone of all maps
λ(f) : Fd(X, 1X) → 2, for κ-ary predicate liftings λ ∈ Λ and maps X → 2κ, is
initial. Thus, as Fd(X, 1X) is antisymmetric, this cone is mono. In this sense, our
results subsume the result that every finitary Set-functor admits a separating set
of finitary predicate liftings [34].

3.1 Kantorovich Liftings

For our present purposes, we are primarily interested in topological liftings induced
by predicate liftings in the standard sense, i.e. the natural transformations (2) are
of the shape λ : V-Cat(−,Vκ) −→ Set(F|−|, |V|), and thus employ V, equipped
with its standard V-category structure, as the object of truth values throughout.

56 S. Goncharov et al.

In particular, this format is needed to use predicate liftings as modalities in
existing frameworks for quantitative coalgebraic logic (Section 5). Many functor
liftings considered in work on coalgebraic behavioural distance can be understood
as topological liftings constructed in this way (e.g. [5,22,38,39,12]). To simplify
notation, in the sequel we often omit the forgetful functor to Set.

Definition 3.4. Let F : Set → Set be a functor and Λ a class of V-valued
predicate liftings for F. The Kantorovich lifting of F w.r.t. Λ is the topological
lifting FΛ : V-Cat → V-Cat that sends a V-categoryX to the V-category (FX, FΛa),
where FΛa denotes the initial structure on FX w.r.t. the structured cone of all
functions

λ(f) : F|X| −→ |V|
where λ ∈ Λ is κ-ary and f : (X, a) → Vκ is a V-functor. Generally, a lifting
F : V-Cat → V-Cat of F is Kantorovich if F = FΛ some class Λ of predicate
liftings for F.

Example 3.5. As the name suggests, the prototypical example of a Kantorovich
lifting is given by the (non-symmetric) Kantorovich distance between finite
distributions, which arises as the Kantorovich lifting of the finite distribution
functor on Set to the category BHMet w.r.t the predicate lifting E that computes
expected values, i.e. DE

ω(X, a)(μ, υ) =
∨

f : (X,a)→[0,1] EX(f)(υ)� EX(f)(μ).

We go on to exploit the universal property of initial lifts of cones to characterize
the liftings that are Kantorovich. In the following, fix a functor F : Set → Set and
a quantale V . Consider the partially ordered conglomerate Pred(F) of classes of V-
valued predicate liftings for F ordered by containment, i.e. Λ ≤ Λ′ ⇐⇒ Λ ⊇ Λ′;
and the partially ordered class Lift(F) of liftings of F to V-Cat ordered pointwise,

i.e. F ≤ F
′ ⇐⇒ Fa ≤ F

′
a, for every V-category (X, a).

Definition 3.6. Let F : V-Cat → V-Cat be a lifting of F. A κ-ary V-valued
predicate lifting λ for F is compatible with F if it restricts to a predicate
lifting for F:

V-Cat(−,Vκ) V-Cat(F−,V)

Set(−, |Vκ|) Set(F|−|, |V|)

λ

=

λ

where the vertical arrows denote set inclusions – that is, if λ lifts V-functorial
predicates on X to V-functorial predicates on FX. The class of all predicate
liftings compatible with F is denoted by P(F).

Proposition 3.7. A κ-ary V-valued predicate lifting λ for F is compatible with F
iff the map λ(1|Vκ|) : F(|Vκ|) → |V| is a V-functor of type FVκ → V.
The Kantorovich lifting defines a universal construction:

Theorem 3.8. Let F : Set → Set be a functor. Assigning to a class of predi-
cate liftings for F the corresponding Kantorovich lifting yields a right adjoint

Kantorovich Functors and Characteristic Logics for Behavioural Distances 57

F(−) : Pred(F) → Lift(F) whose left adjoint P : Lift(F) → Pred(F) maps a lifting
of F to the class P(F) of all V-valued predicate liftings for F that are compatible
with the lifting.

The following result shows that Kantorovich liftings are characterized by a
pleasant property that is required in multiple results in the context of coalgebraic
approaches to behavioural distance (e.g. [5,22,12,40]).

Theorem 3.9. A lifting of a Set-functor to V-Cat is Kantorovich iff it preserves
initial morphisms.

Corollary 3.10. Every topological lifting of a functor F : Set → Set w.r.t. a class
of natural transformations λ : V-Cat(−, Aλ) → Set(F−, |Bλ|) where each Aλ is
injective in V-Cat w.r.t. initial morphisms is Kantorovich.

Corollary 3.11. The composite of Kantorovich liftings is Kantorovich.

Example 3.12. The characterization of Theorem 3.9 makes it easy to distinguish
Kantorovich liftings.

1. It is an elementary fact that every lifting induced by a lax extension pre-
serves initial morphisms (e.g. [18, Proposition 2.16]). In particular, the Wasserstein
lifting [5] is Kantorovich.

2. The identity functor on Set has a lifting (−)◦ : V-Cat → V-Cat that sends
every V-category to its dual. Clearly, this lifting preserves initial morphisms, and
hence it is Kantorovich. Indeed, one can show that it is the Kantorovich lifting
of the identity functor w.r.t. the set of V-valued predicate liftings determined by
the representable V-functors Vop → V.

3. The functor (−)s : V-Cat → V-Catsym that symmetrizes V-categories gives
rise to a lifting (−)s : V-Cat → V-Cat of the identity functor on Set. Clearly, this
functor preserves initial morphisms, and hence it is Kantorovich. Indeed, one can
show that it is the Kantorovich lifting of the identity functor w.r.t. the set of all
V-valued predicate liftings determined by the representable V-functors Vs → V.

4. The discrete lifting of the identity functor on Set to V-Cat is not Kan-
torovich, as it fails to preserve initial morphisms.

5. The lifting of the identity functor on Set to V-Cat that sends a V-category
(X, a) to the V-category given by the final structure w.r.t. the structured cospan
of identity maps |(X, a)| → X ← |(X, a◦)| is not Kantorovich. This lifting
generalizes Example 3.2(2).

6. The lifting of the finite distribution functor on Set to BHMet given by the
Kantorovich distance is Kantorovich, while the lifting given by the total variation
distance is not Kantorovich.

3.2 Liftings Induced by Lax Extensions

We show next that lax extensions, functor liftings, and predicate liftings are
linked by adjunctions, and characterize the liftings induced by lax extensions.
We begin by showing that the Kantorovich extension and the Kantorovich lifting
are compatible.

58 S. Goncharov et al.

Theorem 3.13. Let F̂ : V-Cat → V-Cat be a lifting of a functor F : Set → Set
induced by a lax extension F̂ : V-Rel → V-Rel. If F̂ : V-Rel → V-Rel is the
Kantorovich extension w.r.t. a class Λ of predicate liftings, then the functor
F̂ : V-Cat → V-Cat is the Kantorovich lifting of F : Set → Set w.r.t. Λ.

Let Lax(F) denote the partially ordered class of lax extensions of a functor
F : Set → Set to V-Rel ordered pointwise:

F̂ ≤ F̂′ ⇐⇒ ∀r ∈ V-Rel. F̂r ≤ F̂′r;

let Lift(F)I denote the partially ordered subclass of Lift(F) consisting of the liftings
that preserve initial morphisms, and let Pred(F)M denote the partially ordered
subconglomerate of Pred(F) of monotone predicate liftings. Clearly, the operations

of taking Kantorovich extensions F̂(−) : Pred(F)M → Lax(F), and inducing liftings
from lax extensions I : Lax(F) → Lift(F)I define monotone maps. Moreover, as we
have seen in Theorem 3.9, the monotone map F(−) : Pred(F) → Lift(F) corestricts
to Lift(F)I. Therefore, our results so far tell us that lax extensions, liftings and
predicate liftings are connected through a diagram of monotone maps

Lax(F) Lift(F)I

Pred(F)M Pred(F)

I

P̂F(−) F(−) �

which commutes if the left adjoint is ignored. In the sequel, we will see that
every monotone map in this diagram is an adjoint. In particular, it might not
be immediately obvious that the monotone map F̂(−) : Pred(F)M → Lax(F) is a
right adjoint without first thinking in terms of functor liftings induced by lax
extensions, because the obvious guess – taking the predicate liftings induced by
a lax extension (Definition 2.10) – in general does not define a monotone map
Lax(F) → Pred(F)M. The next example illustrates this as well as the fact that
there are predicate liftings compatible with a functor lifting induced by a lax
extension that are not induced by the lax extension.

Example 3.14. The identity functor on Ord is the lifting induced by the identity
functor on Rel as a lax extension of the identity functor on Set. The constant map
into � is a monotone map 2 → 2 and, hence, determines a predicate lifting that is
compatible with the identity functor on Ord. It is easy to see that this predicate
lifting is induced by the largest extension of the identity functor, however, it is
not induced by the identity functor on Rel [16, Example 3.12].

It should also be noted that the predicate liftings compatible with a functor
lifting that preserves initial morphisms are not necessarily monotone. That is,
the map P : Lift(F)I → Pred(F) does not necessarily corestrict to Pred(F)M.

Example 3.15. Consider the lifting (−)
◦
: Ord → Ord of the identity functor on

Set that sends each preordered set to its dual. Then, the predicate lifting for (−)
◦

determined by the V-functor hom(−, 0) : (2, hom)
op → (2, hom) is not monotone

since it sends the constant map 0: 1 → 2 to the constant map 1: 1 → 2.

Kantorovich Functors and Characteristic Logics for Behavioural Distances 59

Accordingly, we need to “filter the monotone predicate liftings” first. This oper-
ation trivially defines the left adjoint M : Pred(F) → Pred(F)M of the inclusion
map Pred(F)M ↪→ Pred(F).

Theorem 3.16. Let F : Set → Set be a functor. The monotone map
I : Lax(F) → Lift(F)I is order-reflecting and right adjoint to the monotone map

F̂MP(−) : Lift(F)I → Lax(F).

Corollary 3.17. Let F : Set → Set be a functor. The monotone map
F̂(−) : Pred(F)M → Lax(F) is right adjoint to the order-reflecting monotone map
MPI : Lax(F) → Pred(F)M.

Therefore, the interplay between lax extensions, liftings and predicate liftings is
captured by the diagram

Lax(F) Lift(F)I

Pred(F)M Pred(F)

I

MPI � P

̂FMP(−)
�

̂F(−) F(−) �

M

�

(3)

which commutes when only the right adjoints or only the left adjoints are
considered. Finally, we characterize the liftings induced by lax extensions.

Theorem 3.18. A lifting F̂ of a Set-functor F to V-Cat is induced by a lax
extension of F to V-Rel iff F̂ preserves initial morphisms and is locally monotone.

V-enriched lax extensions have proved to be crucial to deduce quantitative van
Benthem and Hennessy-Milner theorems [38,39]. We recall that a lax extension
of a functor F : Set → Set to V-Rel is V-enriched [39,16] if, for all u ∈ V,
u⊗ 1FX ≤ F̂(u⊗ 1X); where u⊗ r denotes the V-relation “r scaled by u”, that
is, (u⊗ r)(x, y) = u⊗ r(x, y).

Theorem 3.19. A lifting F̂ of a Set-functor F to V-Cat is induced by a V-
enriched lax extension of F to V-Rel iff F̂ preserves initial morphisms and is
V-Cat-enriched.
Our characterization of lax extensions makes it clear that there is a large col-
lection of Kantorovich liftings that are not induced by lax extensions. For in-
stance, it follows from Theorem 3.18 that the liftings (−)◦ : V-Cat → V-Cat and
(−)s : V-Cat → V-Cat (see Example 3.12) of the identity functor on Set to V-Cat
are Kantorovich but are not induced by lax extensions. Furthermore, as the
composite of Kantorovich liftings is Kantorovich, in many situations it is possible
to compose these functors with other Kantorovich liftings to generate liftings
that are not induced by lax extensions.

60 S. Goncharov et al.

4 Behavioural Distance

One main motivation for lifting functors to metric spaces was to obtain coalgebraic
notions of behavioural distance [5,38]. Indeed, every functor F : V-Cat → V-Cat
gives rise to a notion of distance on a F-coalgebras:

Definition 4.1. [12] Let (X, a, α) be a coalgebra for a functor F : V-Cat → V-Cat.
The behavioural distance bdFα(x, y) of x, y ∈ X is

bdFα(x, y) =
∨

{b(f(x), f(y)) | f : (X, a, α) → (Y, b, β) ∈ CoAlg(F)}. (4)

Notice the analogy with the standard notion of behavioural equivalence: Two
states are behaviourally equivalent if they can be made equal under some coalgebra
morphism; and according to the above definition, two states in a metric coalgebra
have low behavioural distance if they can be made to have low distance under
some coalgebra morphism.

Kantorovich liftings and lax extensions are key ingredients in mentioned al-
ternative coalgebraic approaches to behavioural distance on Set-based coalgebras.
Let F : Set → Set be a functor. A Kantorovich lifting FΛ : V-Cat → V-Cat induces
a notion of behavioural distance on an F-coalgebra α : X → FX as the greatest
V-categorical structure (X, a) that makes α a V-functor of type (X, a) → FΛ(X, a)
[5,22]. From Theorem 3.9 and [12, Proposition 12] (generalized to V-Cat, with
the same proof), we obtain that this distance coincides with behavioural distance

as defined above. On the other hand, every lax extension F̂ : V-Rel → V-Rel of F
also induces a behavioural distance on an F-coalgebra α : X → FX as the greatest
simulation on α [32,40,13,38], i.e. the greatest V-relation s : X −�−→ X such that

α · s ≤ F̂s · α. It follows by routine calculation that this distance coincides with
the distance defined via the lifting induced by the lax extension and, hence,
Theorem 3.13 ensures that, if we start with a collection of monotone predicate
liftings, then the corresponding Kantorovich extension and Kantorovich lifting
yield the same notion of behavioural distance. This allows including the approach
to behavioural distance via lax extensions in the categorical framework for indis-
tinguishability introduced recently by Komorida et al. [22]. On the other hand,
there are notions of behavioural distance defined via Kantorovich liftings that do
not arise via lax extensions. Indeed, it has been shown that the neighbourhood
functor N : Set → Set does not admit a lax extension to Rel that preserves con-
verses (F̂(r◦) = (F̂r)◦) whose (2-valued) notion of behavioural distance coincides
with behavioural equivalence [27, Theorem 12]. However, from [12, Theorem 34,
Proposition A.6] (see also [17]), we can conclude that the (2-valued) notion of
behavioural distance defined by the canonical Kantorovich lifting of N to Equ
w.r.t. to the predicate lifting induced by the identity natural transformation
N → N coincides with behavioural equivalence. (It is easy to see that Marti and
Venema’s result holds even if one allows lax extensions of N that do not preserve
converses, and that the situation remains the same in the asymmetric case.)

Kantorovich Functors and Characteristic Logics for Behavioural Distances 61

5 Expressivity of Quantitative Coalgebraic Logics

We proceed to connect the characterization of Kantorovich functors with existing
expressivity results for quantitative coalgebraic logic, focusing from now on on
symmetric V-categories. Therefore, we interpret the V-categorical notions and
results also with V-Catsym instead of V-Cat and Vs instead of V.

We recall a variant [12] of (quantitative) coalgebraic logic [28,34,7,23,38] that
follows the paradigm of interpreting modalities via predicate liftings, in this
case of V-valued predicates for a V-Cat-functor (Section 2.3). Let Λ be a set of
finitary predicate liftings for a functor F : V-Catsym → V-Catsym. The syntax of
quantitative coalgebraic modal logic is then defined by the grammar

φ ::= � | φ1 ∨ φ2 | φ1 ∧ φ2 | u⊗ φ | homs(u, φ) | λ(φ1, . . . , φn) (u ∈ V, λ ∈ Λ)

where Λ is a set of modalities of finite arity, which we identify, by abuse of
notation, with the given set Λ of predicate liftings. We view all other connectives
as propositional operators. Let L(Λ) be the set of modal formulas thus defined.

The semantics is given by assigning to each formula φ ∈ L(Λ) and each coal-
gebra α : X → FX the interpretation of φ over α, i.e. the V-functor �φ�α : X → V
recursively defined as follows:

– for φ = �, we take ���α to be the V-functor given by the constant map
into �;

– for an n-ary propositional operator p, we put �p(φ1, . . . , φn)�α =
p(�φ1�α, . . . , �φn�α), with p interpreted using the lattice structure of V and
the V-categorical structure homs of Vs, respectively, on the right-hand side;

– for n-ary λ ∈ Λ, we put �λ(φ1, . . . , φn)�α = λ(〈�φ1�α, . . . , �φn�α〉) ·α, where
〈�φ1�α, . . . , �φn�α〉 denotes the V-functor (X, a) → Vn canonically determined by
�φ1�α, . . . , �φn�α.
We then obtain a notion of logical distance:

Definition 5.1. Let Λ be a set of predicate liftings for a functor F : V-Cat →
V-Cat. The logical distance ldΛα on an F-coalgebra (X, a, α) is the initial struc-
ture on X w.r.t. the structured cone of all maps �φ�α : X → |(V, homs)| with
φ ∈ L(Λ). More explicitly, for all x, y ∈ X,

ldΛα(x, y) =
∧{homs(�φ�α(x), �φ�α(y)) | φ ∈ L(Λ)}.

In the remainder of the paper, we establish criteria under which a V-Catsym-
functor admits a set of predicate liftings for which logical and behavioural
distances coincide. Recall that a (quantitative) coalgebraic logic is expressive
if ldΛα ≤ bdFα, for every F-coalgebra (X,α). (It is easy to show that the reverse
inequality holds universally [12, Theorem 16]).

Existing expressivity results for quantitative coalgebraic logics for Set-functors
depend crucially on Kantorovich liftings (e.g. [38,39,22,12]). However, it has been
shown [12] that the Kantorovich property can be usefully detached from the
notion of functor lifting.

62 S. Goncharov et al.

Definition 5.2. Let Λ be a class of predicate liftings for a functor F : V-Cat →
V-Cat. The functor F is Λ-Kantorovich if for every V-category X, the cone of
all V-functors λ(f) : FX → V , with λ ∈ Λ κ-ary and f ∈ V-Cat(X,Vκ), is initial.
A functor F : V-Cat → V-Cat is said to be Kantorovich if it is Λ-Kantorovich
for some class Λ of predicate liftings for F.

Clearly, every Kantorovich lifting of a Set-functor to V-Cat w.r.t. a class Λ of
predicate liftings is Λ-Kantorovich. Moreover, Theorem 3.9 is easily generalized
to Kantorovich functors.

Theorem 5.3. A V-Cat-functor is Kantorovich iff it preserves initial morphisms.

Theorem 5.4. A V-Catsym-functor is Kantorovich iff it preserves initial mor-
phisms.

Example 5.5. 1. The inclusion functor V-Catsym,sep ↪→ V-Catsym has a left
adjoint (−)q : V-Catsym → V-Catsym,sep that quotients every X by its natural
preorder, which for symmetric X is an equivalence, and gives rise to a Kantorovich
functor on V-Catsym.

2. Given a bounded-by-1 pseudometric space (X, d), i.e. an object of
[0, 1]⊕-Catsym � BPMet, the Prokhorov distance [30] for probability mea-
sures on the measurable space of Borel sets of (X, d) is defined by dP (μ, υ) =
inf{ε > 0 | μ(A) ≤ υ(Aε) + ε for all Borel sets A ⊆ X}, where Aε = {x ∈ X |
infy∈A d(x, y) ≤ ε}. It is straightforward to verify that this distance defines a
BPMet-functor (which acts on morphisms by measuring preimages) that preserves
isometries and, therefore, it is Kantorovich.

3. For every V-category (X, a), the functor (X, a) × − : V-Cat → V-Cat
is Kantorovich. If the underlying lattice of V is Heyting, then under certain
conditions this functor has a right adjoint [8,9] which is Kantorovich as well.
Here, for X = (X, a) exponentiable, the right adjoint (−)X of X × − sends
a V-category Y = (Y, b) to the V-category Y X = (Y X , c) with underlying set
{all V-functors (1, k)× (X, a) → (Y, b)} and, for h, k ∈ Y X ,

c(h, k) =
∧

x1,x2∈X b(h(x1), k(x2))
a(x1,x2),

where (−)u : V → V denotes the right adjoint of u ∧ − : V → V. For a V-functor
f : (Y1, b1) → (Y2, b2), the V-functor fX : (Y X

1 , c1) → (Y X
2 , c2) sends h ∈ Y X

1

to f · h.
To ensure that a Kantorovich functor is represented by finitary predicate liftings,
we need to impose a size constraint:

Definition 5.6. A functor F : V-Catsym → V-Catsym is ω-bounded if for every
symmetric V-category X and every t ∈ FX, there exists a finite subcategory
X0 ⊆ X and t′ ∈ FX0 such that t = Fi(t′) where i is the inclusion X0 → X.

Example 5.7. Every lifting of a finitary Set-functor to V-Catsym is ω-bounded.

Proposition 5.8. Let F : V-Catsym → V-Catsym be a Kantorovich functor. If F
is ω-bounded, then F is Kantorovich w.r.t. a set of finitary predicate liftings.

Kantorovich Functors and Characteristic Logics for Behavioural Distances 63

Finally, from [12, Theorem 31] we obtain:

Corollary 5.9. Let V be a finite quantale, and let F : V-Catsym → V-Catsym be
a lifting of a finitary functor that preserves initial morphisms. Then there is a
set Λ of predicate liftings for F of finite arity such that the coalgebraic logic L(Λ)
is expressive.

Corollary 5.10. Let F : BPMet → BPMet be a functor that preserves isometries,
is locally non-expansive, and admits a dense ω-bounded subfunctor. Then there
is a set Λ of predicate liftings for F of finite arity such that the coalgebraic logic
L(Λ) is expressive.

These instantiate to results on concrete system types, e.g. ones induced
by (sub)functors listed in Example 5.5, such as probabilistic transition systems
equipped with a behavioural distance induced by the functor that sends a bounded
metric space X to the subspace of the space of all probability measures on X
equipped with the Prokhorov distance (see Example 5.5(2)) determined by the
closure of the set of finitely supported probability measures.

6 Conclusions and Future Work

Quantitative coalgebraic Hennessy-Milner theorems [23,38,12] assume that the
functor (on metric spaces) describing the system type is Kantorovich, i.e. canon-
ically induced by a suitable choice of – not necessarily monotone – predicate
liftings, which then serve as the modalities of a logic that characterizes be-
havioural distance. We have shown as one of our main results that a functor on
(quantale-valued) metric spaces is Kantorovich iff it preserves initial morphisms
(i.e. isometries). As soon as such a functor additionally adheres to the expected
size and continuity constraints (which replace the condition of finite branching
found in the classical Hennessy-Milner theorem for labelled transition systems),
one thus has a logical characterization of behavioural distance in coalgebras for
the functor, in the sense that behavioural distance equals logical distance.

In fact we have shown that every functor on metric spaces can be captured
by a generalized form of predicate liftings where the object of truth values
may change along the lifting. A simple example is the discretization functor,
which is characterized by a predicate lifting in which the truth value object for
the input predicates is equipped with the indiscrete pseudometric, so that the
lifting accepts all predicates instead of only non-expansive ones. This hints at a
perspective to design heterogeneous modal logics that characterize behavioural
distance for such functors, with modalities connecting different types of formulas
(e.g. non-expansive vs. unrestricted), which we will pursue in future work. One
application scenario for such a logic are behavioural distances on probabilistic
systems involving total variation distance, which may be seen as a composite of
the usual probabilistic Kantorovich functor and the discretization functor.

64 S. Goncharov et al.

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: The
joy of cats. Pure and Applied Mathematics (New York), John Wiley & Sons
Inc., New York (1990), http://tac.mta.ca/tac/reprints/articles/17/tr17abs.
html, republished in: Reprints in Theory and Applications of Categories, No. 17
(2006) pp. 1–507

2. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and Branching System Met-
rics. IEEE Transactions on Software Engineering 35(2), 258–273 (mar 2009).
https://doi.org/10.1109/TSE.2008.106

3. Alsina, C., Frank, M.J., Schweizer, B.: Associative functions. Trian-
gular norms and copulas. Hackensack, NJ: World Scientific (2006).
https://doi.org/10.1142/9789812774200

4. Awodey, S.: Category Theory. Oxford University Press, 2nd edn. (2010)

5. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic Behavioral Metrics. Log.
Methods Comput. Sci. 14(3), 1860–5974 (2018). https://doi.org/10.23638/lmcs-
14(3:20)2018

6. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic
transition systems. Theoretical Computer Science 331(1), 115–142 (feb 2005).
https://doi.org/10.1016/j.tcs.2004.09.035

7. Ĉırstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.:
Modal Logics are Coalgebraic. Computer Journal 54(1), 31–41 (2011).
https://doi.org/10.1093/comjnl/bxp004

8. Clementino, M.M., Hofmann, D.: Exponentiation in V -categories.
Topology and its Applications 153(16), 3113–3128 (Oct 2006).
https://doi.org/10.1016/j.topol.2005.01.038

9. Clementino, M.M., Hofmann, D., Stubbe, I.: Exponentiable functors between
quantaloid-enriched categories. Applied Categorical Structures 17(1), 91–101 (Sep
2009). https://doi.org/10.1007/s10485-007-9104-5

10. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for la-
belled markov processes. Inf. Comput. 179(2), 163–193 (2002).
https://doi.org/10.1006/inco.2001.2962

11. Dimov, G.D., Tholen, W.: A characterization of representable dualities. In: Adámek,
J., MacLane, S. (eds.) Categorical topology and its relation to analysis, algebra
and combinatorics: Prague, Czechoslovakia, 22-27 August 1988, pp. 336–357. World
Scientific (1989)

12. Forster, J., Goncharov, S., Hofmann, D., Nora, P., Schröder, L., Wild, P.: Quanti-
tative Hennessy-Milner theorems via notions of density. In: Klin, B., Pimentel, E.
(eds.) Computer Science Logic, CSL 2023. LIPIcs, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2023), to appear. Preprint avaible on arXiv under
https://doi.org/10.48550/arXiv.2207.09187

13. Gavazzo, F.: Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In: Dawar, A., Grädel, E. (eds.) Logic in Computer Science,
LICS 2018. pp. 452–461. ACM (2018). https://doi.org/10.1145/3209108.3209149

14. Giacalone, A., Jou, C., Smolka, S.A.: Algebraic Reasoning for Probabilistic Concur-
rent Systems. In: Broy, M., Jones, C.B. (eds.) Programming concepts and methods:
Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference on Program-
ming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990. pp. 443–458.
North-Holland (1990)

http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html
http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1142/9789812774200
https://doi.org/10.23638/lmcs-14(3:20)2018
https://doi.org/10.23638/lmcs-14(3:20)2018
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1016/j.topol.2005.01.038
https://doi.org/10.1007/s10485-007-9104-5
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.48550/arXiv.2207.09187
https://doi.org/10.1145/3209108.3209149

Kantorovich Functors and Characteristic Logics for Behavioural Distances 65

15. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. International
statistical review 70(3), 419–435 (2002)

16. Goncharov, S., Hofmann, D., Nora, P., Schröder, L., Wild, P.: A point-free per-
spective on lax extensions and predicate liftings. CoRR abs/2112.12681 (2021),
https://arxiv.org/abs/2112.12681

17. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: Bisimilarity and
basic model theory. Log. Methods Comput. Sci. 5(2) (2009), http://arxiv.org/
abs/0901.4430

18. Hofmann, D., Nora, P.: Hausdorff Coalgebras. Applied Categorical Structures 28(5),
773–806 (Apr 2020). https://doi.org/10.1007/s10485-020-09597-8

19. Katsumata, S.: A semantic formulation of tt-lifting and logical predicates for
computational metalanguage. In: Ong, C.L. (ed.) Computer Science Logic, 19th
International Workshop, CSL 2005, 14th Annual Conference of the EACSL, Oxford,
UK, August 22-25, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3634,
pp. 87–102. Springer (2005). https://doi.org/10.1007/11538363 8, https://doi.
org/10.1007/11538363_8

20. Kelly, G.M.: Basic concepts of enriched category theory, London Mathematical
Society Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982),
Republished in: Reprints in Theory and Applications of Categories. No. 10 (2005),
1–136

21. Komorida, Y., Katsumata, S., Hu, N., Klin, B., Hasuo, I.: Codensity Games for
Bisimilarity. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp. 1–13. IEEE (2019).
https://doi.org/10.1109/LICS.2019.8785691

22. Komorida, Y., Katsumata, S., Kupke, C., Rot, J., Hasuo, I.: Expressivity of
Quantitative Modal Logics : Categorical Foundations via Codensity and Approx-
imation. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470656

23. König, B., Mika-Michalski, C.: (metric) bisimulation games and real-valued modal
logics for coalgebras. In: Schewe, S., Zhang, L. (eds.) 29th International Conference
on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China.
LIPIcs, vol. 118, pp. 37:1–37:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.37

24. Larsen, K.G., Fahrenberg, U., Thrane, C.R.: Metrics for weighted transition systems:
Axiomatization and complexity. Theor. Comput. Sci. 412(28), 3358–3369 (2011).
https://doi.org/10.1016/j.tcs.2011.04.003

25. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6

26. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendi-
conti del Seminario Matemàtico e Fisico di Milano 43(1), 135–166 (Dec 1973).
https://doi.org/10.1007/bf02924844, Republished in: Reprints in Theory and Ap-
plications of Categories, No. 1 (2002), 1–37

27. Marti, J., Venema, Y.: Lax extensions of coalgebra functors and their
logic. Journal of Computer and System Sciences 81(5), 880–900 (2015).
https://doi.org/10.1016/j.jcss.2014.12.006

28. Pattinson, D.: Expressive logics for coalgebras via terminal sequence
induction. Notre Dame J. Formal Log. 45(1), 19–33 (jan 2004).
https://doi.org/10.1305/ndjfl/1094155277

https://arxiv.org/abs/2112.12681
http://arxiv.org/abs/0901.4430
http://arxiv.org/abs/0901.4430
https://doi.org/10.1007/s10485-020-09597-8
https://doi.org/10.1007/11538363_8
https://doi.org/10.1007/11538363_8
https://doi.org/10.1007/11538363_8
https://doi.org/10.1109/LICS.2019.8785691
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.1016/j.tcs.2011.04.003
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/bf02924844
https://doi.org/10.1016/j.jcss.2014.12.006
https://doi.org/10.1305/ndjfl/1094155277

66 S. Goncharov et al.

29. Porst, H.E., Tholen, W.: Concrete dualities. In: Herrlich, H., Porst, H.E. (eds.)
Category theory at work, Research and Exposition in Mathematics, vol. 18, pp. 111–
136. Heldermann Verlag, Berlin (1991), http://www.heldermann.de/R&E/RAE18/
ctw07.pdf, with Cartoons by Marcel Erné

30. Prokhorov, Y.V.: Convergence of random processes and limit theorems in prob-
ability theory. Theory of Probability & Its Applications 1(2), 157–214 (1956).
https://doi.org/10.1137/1101016, https://doi.org/10.1137/1101016

31. Rosenthal, K.: Quantaloids, enriched categories and automata theory. Appl. Cat.
Struct. 3, 279-301 (1995). https://doi.org/10.1007/BF00878445

32. Rutten, J.: Relators and Metric Bisimulations. Electronic Notes in Theoretical Com-
puter Science 11, 252–258 (1998). https://doi.org/10.1016/S1571-0661(04)00063-5

33. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1), 3–80 (Oct 2000). https://doi.org/10.1016/s0304-3975(00)00056-6

34. Schröder, L.: Expressivity of coalgebraic modal logic: The limits
and beyond. Theor. Comput. Sci. 390(2-3), 230–247 (jan 2008).
https://doi.org/10.1016/j.tcs.2007.09.023

35. Sprunger, D., Katsumata, S., Dubut, J., Hasuo, I.: Fibrational bisimulations
and quantitative reasoning: Extended version. J. Log. Comput. 31(6), 1526–
1559 (2021). https://doi.org/10.1093/logcom/exab051, https://doi.org/10.1093/
logcom/exab051

36. Stubbe, I.: An introduction to quantaloid-enriched categories. Fuzzy Sets and
Systems 256, 95–116 (Dec 2014). https://doi.org/10.1016/j.fss.2013.08.009, special
Issue on Enriched Category Theory and Related Topics (Selected papers from the
33rd Linz Seminar on Fuzzy Set Theory, 2012)

37. Tholen, W.: Ordered topological structures. Topology and its Applications 156(12),
2148–2157 (Jul 2009). https://doi.org/10.1016/j.topol.2009.03.038

38. Wild, P., Schröder, L.: Characteristic logics for behavioural metrics via fuzzy lax
extensions. In: Konnov, I., Kovács, L. (eds.) Concurrency Theory, CONCUR 2020.
LIPIcs, vol. 171, pp. 27:1–27:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.27, extended version in Log.
Methods Comput. Sci. 18(2), 2022

39. Wild, P., Schröder, L.: A Quantified Coalgebraic van Benthem Theorem. In:
Kiefer, S., Tasson, C. (eds.) Foundations of Software Science and Computation
Structures, FOSSACS 2021. LNCS, vol. 12650, pp. 551–571. Springer (2021).
https://doi.org/10.1007/978-3-030-71995-1 28

40. Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and
Ω-categories. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science, CMCS
2000, Berlin, Germany, March 25-26, 2000. Electronic Notes in Theoretical Com-
puter Science, vol. 33, pp. 337–356. Elsevier (2000). https://doi.org/10.1016/S1571-
0661(05)80356-1

http://www.heldermann.de/R&E/RAE18/ctw07.pdf
http://www.heldermann.de/R&E/RAE18/ctw07.pdf
https://doi.org/10.1137/1101016
https://doi.org/10.1137/1101016
https://doi.org/10.1007/BF00878445
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/s0304-3975(00)00056-6
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1093/logcom/exab051
https://doi.org/10.1093/logcom/exab051
https://doi.org/10.1093/logcom/exab051
https://doi.org/10.1016/j.fss.2013.08.009
https://doi.org/10.1016/j.topol.2009.03.038
https://doi.org/10.4230/LIPIcs.CONCUR.2020.27
https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.1016/S1571-0661(05)80356-1
https://doi.org/10.1016/S1571-0661(05)80356-1

Kantorovich Functors and Characteristic Logics for Behavioural Distances 67

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Logical Framework with
Higher-Order Rational (Circular) Terms

Zhibo Chen(�) and Frank Pfenning

Carnegie Mellon University, Pittsburgh, PA, USA
zhiboc@andrew.cmu.edu, fp@cs.cmu.edu

Abstract. Logical frameworks provide natural and direct ways of speci-
fying and reasoning within deductive systems. The logical framework LF
and subsequent developments focus on finitary proof systems, making the
formalization of circular proof systems in such logical frameworks a cum-
bersome and awkward task. To address this issue, we propose CoLF, a
conservative extension of LF with higher-order rational terms and mixed
inductive and coinductive definitions. In this framework, two terms are
equal if they unfold to the same infinite regular Böhm tree. Both term
equality and type checking are decidable in CoLF. We illustrate the el-
egance and expressive power of the framework with several small case
studies.

Keywords: Logical Frameworks, Circular Proofs, Regular Böhm Trees

1 Introduction

A logical framework provides a uniform way of formalizing and mechanically
checking derivations for a variety of deductive systems common in the definitions
of logics and programming languages. In this paper we propose a conservative
extension of the logical framework LF [18] to support direct representations of
rational (circular) terms and deductions.

The main methodology of a logical framework is to establish a bijective cor-
respondence between derivations of a judgment in the object logic and canonical
terms of a type in the framework. In this way, proof checking in the object logic
is reduced to type checking in the framework. One notable feature of LF is the
use of abstract binding trees, where substitution in the object logic can be en-
coded as substitution in the framework, leading to elegant encodings. On the
other hand, encodings of rational terms, circular derivations, and their equality
relations are rather cumbersome. We therefore propose the logical framework
CoLF as a conservative extension of LF in which both circular syntactic objects
and derivations in an object logic can be elegantly represented as higher-order
rational dependently typed terms. This makes CoLF a uniform framework for
formalizing proof systems on cyclic structures. We prove the decidability of type
checking and soundness of equality checking of higher-order rational terms.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_4

68–88, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_4&domain=pdf
https://orcid.org/0000-0003-0045-5024
https://orcid.org/0000-0002-8279-5817
https://doi.org/10.1007/978-3-031-30829-1_4
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_4&domain=pdf

A Logical Framework with Higher-Order Rational (Circular) Terms 69

While CoLF allows formalization of circular derivations, proofs by coinduc-
tion about such circular encodings can only be represented as relations in CoLF,
mirroring a similar limitation of LF regarding induction. In future work, we plan
to extend CoLF to support checking of meta-theoretic properties of encodings
analogous to the way Twelf [27] can check properties of encodings in LF.

The main contributions of this paper are:

– The type theory of a logical framework with higher-order rational terms.
The theory allows natural and adequate representations of circular objects
and circular derivations (Section 3).

– A decidable trace condition for ensuring the validity of circular terms and
derivations arising from mixed inductive and coinductive definitions (Sec-
tion 3.3).

– A sound and complete algorithm to decide the equality of two higher-order
rational terms (Section 3.5).

– A proof of decidability of type-checking in the framework (Section 3.7).
– Case studies of encoding subtyping derivations of recursive types (Section 4).

An extended version of this paper, available at https://arxiv.org/abs/
2210.06663, has an appendix that contains additional materials. We have im-
plemented CoLF in OCaml and the implementation can be accessed at https:
//www.andrew.cmu.edu/user/zhiboc/colf.html. An additional case study of
the meta-encoding the term model of CoLF in CoLF is presented in Appendix J
of the extended version.

2 Mixed Inductive and Coinductive Definitions

We motivate our design through simple examples of natural numbers, conatural
numbers, and finitely padded streams. The examples serve to illustrate the idea of
coinductive interpretations, and they do not involve dependent types or higher-
order terms. More complex examples will be introduced later in the case studies
(Section 4).

Natural Numbers. The set of natural numbers is inductively generated by
zero and successor. In a logical framework such as LF, one would encode natural
numbers as the signature consisting of the first three lines in the top left part of
Fig. 1.

The type theory ensures that canonical terms of the type nat are in one-to-
one correspondence with the natural numbers. Specifically the infinite stack of
successors succ (succ (succ . . .)) is not a valid term of type nat. Therefore, the
circular term w1 is not a valid term.

Conatural Numbers. We may naturally specify that a type admits a coin-
ductive interpretation by introducing a new syntactic kind cotype. The kind
cotype behaves just like the kind type except that now the terms under cotype

https://arxiv.org/abs/2210.06663
https://arxiv.org/abs/2210.06663
https://www.andrew.cmu.edu/user/zhiboc/colf.html
https://www.andrew.cmu.edu/user/zhiboc/colf.html

70 Z. Chen and F. Pfenning

nat : type.
zero : nat.
succ : nat -> nat.

w1 : nat = succ w1. (not valid)
conat : cotype.
cozero : conat.
cosucc : conat -> conat.

w2 : conat = cosucc w2.
w3 : conat = cosucc (cosucc w3).

eq : conat -> conat -> type.
eq/refl : eq N N.
eqw2w3 : eq w2 w3 = eq/refl.

padding : type.
pstream : cotype.
cocons : nat -> padding -> pstream.
pad : padding -> padding.
next : pstream -> padding.

s1 : pstream = cocons (succ zero)
(pad (pad (next s1))).

p2 : padding = pad p2. (not valid)
s3 : pstream = cocons zero (next s3).
s4 : pstream = cocons zero p5.
p5 : padding = next s4.
p6 : padding = pad p7. (not valid)
p7 : padding = pad p6. (not valid)

Fig. 1. Signatures and Examples for Section 2

are allowed to be circular. A slightly adapted signature would encode the set
of conatural numbers, shown as the first three lines in the bottom left part of
Fig. 1.

Because conat is a coinductive type, the canonical forms of type conat in-
cludes cosuccn cozero for all n and the infinite stack of cosucc, which is in
one to one correspondence with the set of conatural numbers. Specifically, the
infinite stack of cosucc, may be represented by the valid circular term w2 as
in Fig. 1. The equality of terms in CoLF is the equality of the infinite trees
generated by unfolding the terms, which corresponds to a bisimulation between
circular terms. For example, an alternative representation of the infinite stack of
cosucc is the term w3, and CoLF will treat w2 and w3 as equal terms, as shown
by the last three lines in the bottom left part of Fig. 1. The terms w2 and w3 are
proved equal by reflexivity. On the other hand, a formulation of conats in LF
would involve an explicit constructor, e.g. mu : (conat -> conat) -> conat.
The encoding of equality is now complicated and one needs to work with an
explicit equality judgment whenever a conat is used. Functions defined by coin-
duction (e.g., bisimulation in Appendix K of the extended version) need to be
encoded as relations in CoLF.

2.1 Finitely Padded Rational Streams

As an example of mixed inductive and coinductive definition, we consider rational
streams of natural numbers with finite paddings in between. These streams are
special instances of left-fair streams [5]. We define streams coinductively and
define paddings inductively, such that there are infinitely many numbers in the
stream but only finitely many paddings between numbers, shown in the signature
consisting of first five lines in the right column of Fig. 1. For example, the term
s1 in Fig. 1 represents a stream of natural number 1’s with two paddings in
between. Because padding is a type, the term p2 is not valid, as it is essentially

A Logical Framework with Higher-Order Rational (Circular) Terms 71

an infinite stack of pad constructors. Definitions in a CoLF signature can refer
to each other. Thus, the terms s3 and s4 denote the same padded stream, and
the terms p6, p7 and p2 denote the same invalid stream consisting of purely
paddings.

Priorities. To ensure the adequacy of representation, types of kind cotype admit
circular terms while types of kind type admit only finitary terms. It is obvious
that the circular term w1 is not a valid term of type nat due to the presence of an
infinite stack of inductive constructors, and the circular term w2 is a valid term of
type conat because it is a stack of coinductive constructors. However, when we
have both inductive and coinductive types, it is unclear whether a circular term
(e.g. s1) is valid. Historically, priorities are used to resolve this ambiguity [11].
A priority is assigned to each inductive or coinductive type, and constructors
inherit priorities from their types. Constructors with the highest priority types
are then viewed as primary. In CoLF, priorities are determined by the order of
their declarations. Type families declared later have higher priorities than those
declared earlier. In this way, the type pstream has higher priority than the type
padding. Constructor cocons inherits the priority of pstream, and the term
s1 is viewed as an infinite stack of cocons and is thus valid. Similarly, terms
s3 and s4 are also valid. If we switch the order of declaration of padding and
pstream (thereby switching their priorities), then terms s1, s3, and s4 are no
longer valid.

3 The Type Theory

We formulate the type theory of CoLF, a dependent type theory with higher-
order rational terms and decidable type checking. The higher-order rational
terms correspond to ⊥-free regular Böhm trees [21] and have decidable equality.

3.1 Higher-Order Rational Terms

When we consider first order terms (terms without λ-binders), the rational terms
are terms with only finitely many distinct subterms, and thus their equality is
decidable. We translate this intuition to the higher-order setting. The higher-
order rational terms are those with finitely many subterms up to renaming of
free and bound variables. We give several examples of rational and non-rational
terms using the signatures in Section 2.

1. The term w2 in Fig. 1 is a first-order rational term.
2. A stream counting up from zero up0 = cocons zero (next (cocons (succ zero)

(next (. . .)))) is a first-order term that is not rational.
3. A stream that repeats its argument R2 = λx. cocons x (next (R2 x)) is a

higher-order rational term.
4. A stream that counts up from a given number up = λx. cocons x (next (up

(succ x))) is not a rational higher-order term.

72 Z. Chen and F. Pfenning

In the definitions above, bolded symbols on the left of the equality signs
are called recursion constants. It is crucial that in higher-order rational terms,
all arguments to recursion constants are bound variables and not other kinds
of terms. We call this restriction the prepattern restriction as it is similar to
Miller’s pattern restriction [24] except that we allow repetition of arguments. The
prepattern restriction marks the key difference between the higher-order rational
term R2 and the infinitary term up. The term up is not rational because the
argument to up is succ x, which is not a bound variable.

3.2 Syntax

We build subsequent developments on canonical LF [19], a formulation of the
LF type theory where terms are always in their canonical form. Canonical forms
do not contain β-redexes and are fully η-expanded with respect to their typ-
ing, supporting bijective correspondences between object logic derivations and
the terms of the framework. One drawback of this presentation is that canon-
ical terms are not closed under syntactic substitutions, and the technique of
hereditary substitution addresses this problem [29].

The syntax of the theory follows the grammar shown in Fig. 2. We use the
standard notion of spines. For example, a term xM1 M2 M3 will be written as
x · (M1;M2;M3) where x is the head and M1;M2;M3 is the spine. To express
rational terms, we add recursive definitions of the form r : A = M to the sig-
nature, where M must be contractive (judgment M contra) in that the head of
M must be a constant or a variable. Recursive definitions look like notational
definitions [26], but their semantics are very different. Recursive definitions are
interpreted recursively in that the definition M may mention the recursion con-
stant r, and other recursion constants including those defined later in the sig-
nature, while notational definitions in LF [26] cannot be recursive. Recursion
constants are treated specially as a syntactic entity that is different from vari-
ables or constructors (nonrecursive constants). To ensure the conservativity over
LF, we further require all definitions in Σ to be linearly ordered. That is, only
in the body of a recursive definition can we “forward reference”, and we can only
forward reference other recursion constants. All other declarations must strictly
refer to names that have been defined previously. We write λx and M to mean a
sequence of λ-abstractions and a sequence of terms respectively. We write x, y, z
for variables, c, d for term constants (also called constructors), a for type family
constants, and r, r′, r′′ for recursion constants.

To enforce the prepattern restriction, we use a technical device called prepat-
tern Π-abstractions, and associated notion of prepattern variables and prepattern
spines. Prepattern Π-abstractions are written as Πx :̂ A2. A1, and x will be a
prepattern variable (written x :̂ A2) in A1. Moreover, in A1, if y is a variable
of a prepattern type Πw :̂ A2.B, then the prepattern application of y to x will
be realized as the head y followed by a prepattern spine ([x]), written y · ([x]).
The semantics is that prepattern variables may only be substituted by other
prepattern variables, while ordinary variables can be substituted by arbitrary
terms (which include other prepattern variables). In a well-typed signature, if

A Logical Framework with Higher-Order Rational (Circular) Terms 73

Signatures Σ ::= · | Σ, a : K | Σ, c : A | Σ, r : A = M
Contexts Γ ::= · | Γ, x : A | Γ, x :̂ A
Kinds K ::= type | cotype | Πx : A. K | Πx :̂ A.K
Canonical types A,B ::= P | Πx : A2. A1 | Πx :̂ A2. A1

Atomic types P ::= a · S
Canonical terms M ::= R | λx.M
Neutral terms R ::= H · S
Heads H ::= x | c | r
Spines S ::= M ;S | [x];S | ()

Fig. 2. The Syntax for CoLF

r : A = M is a recursion declaration, then A consists of purely prepattern Π-
abstractions (judgment A prepat) and for all r · S in the signature, S consists
of purely prepattern applications and is thus called a prepattern spine (judg-
ment S prepat). The prepattern variables are similar to those introduced by the
∇-operator [25], which models the concept of fresh names, but here in a depen-
dently typed setting, types may depend on prepattern variables.

In an actual implementation, the usages of prepattern types may impose
additional burdens on the programmer. As a remedy, the implementation could
infer which variables are prepattern variables based on whether they appear as
arguments to recursion constants and propagate such information.

3.3 Trace Condition

In a signature Σ, we say that a type A is inductive if A = Πx1 . . . Πxn : An.a ·S
and a : Πy1 . . . Πym : Bm. type, and a type A coinductive if A = Πx1 . . . Πxn :
An.a ·S and a : Πy1 . . . Πym : Bm. cotype. A constructor c is inductive if c : A ∈
Σ and A is inductive, and c is coinductive if c : A ∈ Σ and A is coinductive.

The validity of the terms is enforced through a trace condition [17,8] on
cycles. A trace is a sequence of constructor constants or variables, where each
constructor or variable is a child of the previous one. A trace from a recursion
constant r to itself is a sequence starting with the head of the definition of r and
ending with the parent of an occurrence of r. In Fig. 1, a trace from p2 to itself is
[pad], and a trace from s1 to itself is [cocons, pad, pad, next]. Traces cross into
definitions of recursion constants. Thus, a trace from p6 to itself is [pad, pad],
which is also a trace from p7 to itself. A trace from s4 to itself is [cocons, next],
and a trace from p5 to itself is [next, cocons]. If r = λx.f (r x) (g (r x)) (more
precisely r = λx. f · (r · ([x]); g · (r · ([x])))), then there are two traces from r to
itself, i.e., [f] and [f, g].

A higher-order rational term M is trace-valid if for all recursion constants r
in M , each trace from r to itself contains a coinductive constructor, and that
coinductive constructor has the highest priority among all constructors on that
trace. To ensure trace validity, it is sufficient to check in a recursive definition, all
occurrences of recursion constants are guarded by some coinductive constructor

74 Z. Chen and F. Pfenning

of the highest priority. The guardedness condition (judgment �Σ r�M) means
that occurrences of r in M are guarded by some coinductive constructor of the
highest priority, and the condition is decidable. In a well-typed signature Σ, if
r : A = M ∈ Σ, then �Σ r�M . A detailed algorithm for checking trace-validity
is presented in Appendix B.2 of the extended version. The reader may check
guardedness for all valid terms in Fig. 1.

3.4 Hereditary Substitution

Hereditary substitution [29,19] provides a method of substituting one canonical
term into another and still get a canonical term as the output by performing type-
based normalization. This technique simplifies the definition of the term equality
in the original LF [18,20] by separating the term equality and normalization from
type checking. We extend the definition of hereditary substitution to account
for recursion constants. Hereditary substitution is a partial operation on terms.
When input term is not well-typed or prepattern restriction is not respected, the
output may be undefined.

Hereditary substitution takes as an extra argument the simple type of the
term being substituted by. The simple type τ is inductively generated by the
following grammar.

τ ::= ∗ | τ1 → τ2

We write Ao for the simple type that results from erasing dependencies in
A. We write [N/x]τM for hereditarily substituting N for free ordinary variable
x in M . The definition proceeds by induction on τ and the structure of M . For
prepattern variables, since they may only stand for other prepattern variables,
we use a notion of renaming substitution. The renaming substitution �y/x�M
renames a prepattern variable or an ordinary variable x to prepattern variable y
in M . Both substitutions naturally extend to other syntactic kinds. Hereditary
substitution relies on renaming substitution when reducing prepattern applica-
tions. Because of the prepattern restriction, recursion constants are only applied
to prepattern variables in a well-formed signature, and we never substitute into
a recursive definition. Let σ be a simultaneous renaming substitution, a notion
generalized from renaming substitutions, we write �σ�M for carrying out sub-
stitution σ on M .

The definition for hereditary substitution is shown in Fig. 3. Appendix A of
the extended version contains other straightforward cases of the definition. We
note that prepattern Π-types erase to a base type ∗ because we may only apply
terms of prepattern Π-types to prepattern variables, and thus the structure of
the argument term does not matter.

3.5 Term Equality

The equality checking of circular terms is carried out by iteratively unfolding
recursive definitions [1,6,14,23]. The algorithm here is a slight adaptation of the
equality algorithm for regular Böhm trees by Huet [21], tailored to the specific

A Logical Framework with Higher-Order Rational (Circular) Terms 75

Ao = τ
(Πx : A2. A1)

o = (Ao
2) → (Ao

1)
(Πx :̂ A2. A1)

o = ∗ → (Ao
1)

(P)o = ∗
[N/x]τM = M ′

[N/x]τR = [N/x]τR
[N/x]τ (λy.M) = λy.[N/x]τM , y �= x

[N/x]τR = R′

[N/x]τ (x · S) = ([N/x]τS)�τ N
[N/x]τ (y · S) = y · ([N/x]τS), y �= x

[N/x]τ (c · S) = c · ([N/x]τS)
[N/x]τ (r · S) = r · ([N/x]τS)

[N/x]τS = S′

[N/x]τ () = ()
[N/x]τ (M ;S) = ([N/x]τM); ([N/x]τS)
[N/x]τ ([x];S) = undefined
[N/x]τ ([z];S) = [z]; ([N/x]τS), x �= z

S �τ N = R′

()�∗R = R
(N ;S)�τ2→τ1 (λx.M) = S�τ1 ([N/x]τ2M)
([y];S)�∗→τ1 (λx.M) = S �τ1 (�y/x�M)

Fig. 3. Hereditary Substitutions

case of CoLF’s canonical term syntax. We emphasize that the equality algorithm
can treat terms that are not trace-valid or well-typed, and is thus decoupled
from validity checking and type checking. The algorithm itself checks for the
prepattern restriction on recursion constants and contractiveness condition on
recursive definitions. These checks are essential to ensure termination in the
presence of forward referencing inside recursive definitions.

We define the judgment Δ;Θ �Σ M = M ′ to mean M and M ′, with free
variables from Θ, are equal under the assumptions Δ, with consideration of
recursive definitions in Σ. The variable list Θ is similar to Γ except it doesn’t
have the types for the variables. It is merely a list of pairwise distinct variables.
Similarly, we define the judgment Δ;Θ �Σ S = S′ to mean spines S and S′ are
element-wise equal. Equalities in Δ will be of the form (Θ � M = M ′) where Θ
holds free variables of M and M ′. We write Θ � M to mean that FV (M) ⊆ Θ.
We define simultaneous variable renaming, that σ is a variable renaming from Θ′

to Θ, written Θ � σ : Θ′ to mean that if Θ′ � M , then Θ � �σ�M . For instance,
if we have x � �x/y, x/z� : y, z and y, z � y · [z], then x � �x/y, x/z�(y · [z]), i.e.,
x � x · [x]. The rules for the judgments are presented in Fig. 4. Recall that M is
contractive (M contra) if the head of M is not a recursion constant.

An Example. Assume the signature in Section 2.1, and consider a stream
generator that repeats its arguments. The stream may be represented by terms
r1 and r2 below. Note that in the concrete syntax, square brackets represent
λ-abstractions.

r1 : nat -> pstream = [x] cocons x (next (r1 x)).
r2 : nat -> pstream = [x] cocons x (next (cocons x (next (r2 x)))).

Because r1 is a recursion constant, its type is a prepattern-Π type, and this
restriction is respected in the body as x is a prepattern variable.

We want to show that r1 and r2 are equal in the framework. Let Σ be the
signature of Section 2.1 plus the definitions for r1 and r2. We illustrate the

76 Z. Chen and F. Pfenning

Δ;Θ �Σ M = M ′

Θ � σ : Θ′

Δ, (Θ′ � H · S1 = H ′ · S2);Θ �Σ �σ�(H · S1) = �σ�(H ′ · S2)
(1)

r : A = M ∈ Σ

S1 prepat M contra Δ, (Θ � r · S1 = H · S2);Θ �Σ S1 �Ao

M = H · S2

Δ;Θ �Σ r · S1 = H · S2

(2)

r : A = M ∈ Σ S2 prepat

M contra H �= r′ Δ, (Θ � H · S1 = r · S2);Θ �Σ H · S1 = S2 �Ao

M

Δ;Θ �Σ H · S1 = r · S2

(3)

Δ;Θ �Σ S = S′

Δ;Θ �Σ c · S = c · S′ (4)
Δ;Θ �Σ S = S′

Δ;Θ �Σ y · S = y · S′ (5)
Δ;Θ, x �Σ M = M ′

Δ;Θ �Σ λx.M = λx.M ′ (6)

Δ;Θ �Σ S = S′

Δ;Θ �Σ () = ()

Δ;Θ �Σ M = M ′ Δ;Θ �Σ S = S′

Δ;Θ �Σ M ;S = M ′;S′
Δ;Θ �Σ S = S′

Δ;Θ �Σ [x];S = [x];S′

Fig. 4. Equality Checking

process of checking that ;�Σ λx. r1 ·([x]) = λx. r2 ·([x]) as a search procedure
for a derivation of this judgment, where initially both Δ and Θ are empty.

Immediately after rule (6) we encounter ;x �Σ r1 ·([x]) = r2 ·([x]), we mem-
oize this equality by storing (x � r1 ·([x]) = r2 ·([x])) in Δ as in rule (2), and
unfold the left-hand side. Then we proceed with the judgment.

(x � r1 ·([x]) = r2 ·([x]));x �Σ cocons ·(x; next ·(r1 ·([x]))) = r2 ·([x])
We then use rule (3) to unfold the right-hand side and store then current equation
in the context. Then after several structural rules, we have

(x � r1 ·([x]) = r2 ·([x])), . . . ;x �Σ r1 ·([x]) = cocons ·(x; next ·(r2 ·([x])))
At this point, rule (2) applies. We add the current equation to the context
and unfold the left recursive definition. Then after several structural rules, we
encounter the following judgment.

(x � r1 ·([x]) = r2 ·([x])), . . . ;x �Σ r1 ·([x]) = r2 ·([x])
Now we can close the derivation with rule (1) using identity substitution.

Decidability. Huet [21] has proved the termination, soundness, and complete-
ness in the case of untyped regular Böhm trees. Our proof shares the essential

A Logical Framework with Higher-Order Rational (Circular) Terms 77

idea with their proof. The termination relies on the fact that terms only admit
finitely many subterms modulo renaming of both free and bound variables, and
only subterms will appear in Δ. The soundness and completeness are proved
with respect to the infinite Böhm tree [4] generated by unfolding the terms
indefinitely, which again corresponds to a bisimulation between terms.

Theorem 1 (Decidability of Term Equality). It is decidable whether Δ;Θ �Σ

M = M ′ for any rational term M and M ′.

Proof. We first show that there is a limit on the number of equations in Δ. Then
the termination follows the lexicographic order of the assumption capacity (dif-
ference between current number of assumptions in Δ and the maximum), and
the structure of the terms under comparison. It is obvious that rules (4)(5)(6) de-
compose the structure of the terms and rules (2)(3) reduce assumption capacity.
It remains to show that the size of Δ has a limit.

The prepattern conditions on rules (2)(3) ensure that the expansion of recur-
sive definitions will only involve renaming substitutions, and thus the resulting
term will be an α-renaming of the underlying definition. No structurally new
terms will be produced as a result of renaming substitution in rules (2)(3). We
construct a finite set of all possible terms that could be added to the context.
Each term is of finite depth and breadth limited by the existing constructs in
the signature, and consists of finitely many constants, variables, and recursion
constants. The constants and recursion constants are limited to those already
presented in the signature. Although there are infinitely many variables, there
are finitely many terms of bounded depth and width that are distinct modulo re-
naming of both bound and free variables. Thus, the set of terms that can appear
as an element of Δ is finite, modulo renaming of free variables. The estimate of
a rough upper bound can be found in Appendix D of the extended version.

We specify the infinite unfolding by specifying its unfolding to a Böhm tree of
depth k, which is a finite approximation to the infinite Böhm tree, for each k ∈ N.
Then the infinite Böhm tree is limit of all its finite approximations. We use the
judgment exp(k)(M) =(k) M

′ to denote the expansion of a higher-order rational
term M to a Böhm tree M ′ of depth k, and use the judgment exp(N) = N ′

to express that the higher-order rational term M expands to infinite Böhm tree
N ′. We also enrich the syntax of Böhm trees with prepattern variables. The full
set of expansion rules can be found in Appendix E of the extended version. All
cases are structural except for the following case when we expand a recursion
constant, where we look up the definition of the recursion constant and plug in
the arguments.

exp(k+1)(r · S) =(k+1) exp(k+1)(S �Ao

M) if r : A = M ∈ Σ and S prepat

Lemma 1 (Expansion Commutes with Hereditary Substitution). For
all k, τ , M and N , exp(k)([N/x]τM) =(k) [exp(k)(N)/x]τ (exp(k)(M)) if defined.

Proof. Directly by lexicographic induction on k and the structure of M .

78 Z. Chen and F. Pfenning

Theorem 2 (Soundness of Term Equality).
If ·;Θ � M = M ′, then exp(k)(M) =(k) exp(k)(M

′) for all k.

Proof. By lexicographic induction on the depth k and the derivation Δ;Θ � M =
M ′. The case for the rule (1) is immediate by applying renaming substitutions at
the closure rule. The cases for rules (2)(3) follow from the commutation lemma.
The cases for rules (4)(5)(6) follow from the definition of exp.

Theorem 3 (Completeness of Term Equality).
For rational terms M and M ′, with free variables from Θ, if exp(M) =

exp(M ′), then ·;Θ � M = M ′.

Proof. The equality algorithm is syntax-directed. We construct the derivation
of ·;Θ � M = M ′ by syntax-directed proof search following the structure of M .
Every trace of exp(M) and exp(M ′) corresponds to a trace in the derivation of
·;Θ � M = M ′. If exp(M) = exp(M ′), then two terms are equal on every trace,
and there will be exactly one rule that applies at every point in the construction
of the equality derivation. Termination is assured by Theorem 1.

3.6 Type Checking Rules

For type checking, we define the judgments in Fig. 5 by simultaneous induction.
Because recursion constants may be forward referenced, we need to have access
to later declarations that have not been checked during the checking of earlier
declarations. In order to ensure the otherwise linear order of the declarations, the
type checking judgments are parametrized by a pair of signatures Ξ;Σ, where Ξ
is the local signature that contains type-checked declarations before the current
declaration and Σ is the global signature that contains full signatures, including
declarations that have not been checked. In particular, recursion constants avail-
able for forward-referencing will be in Σ but not Ξ. The type equality judgments
Γ �Σ A1 = A2, Γ �Σ P1 = P2 only need to read recursive definitions from the
global signature, and do not need to access the local signature.

A selection of type checking rules that are essential are presented in Fig. 6.
The rest of the rules can be found in Appendix F of the extended version.
To ensure the correct type checking order, i.e., the body of a recursive defini-
tion is checked after the types of all recursion constants within are checked,
we defer checking the body of all recursive definitions to the end. This ap-
proach is viable because the term equality algorithm soundly terminates even
when the recursive definition is not well-typed. For instance, if the signature
Σ = c1 : A1, c2 : A2, r1 : A3 = M1, c3 : A4, r2 : A5 = M2, then the order
of checking is A1, A2, A3, A4, A5,M1,M2. This order is expressed in the type
checking rules by an annotation on specific premise of the rules. The annota-
tion [�Ξ;Σ M ⇐ A]1:deferred means that this judgment is to be checked after all
the typing judgments have been checked. That is, when we check this premise,
we have checked that �Σ Σ sig. Because of the deferred checking of recursive

A Logical Framework with Higher-Order Rational (Circular) Terms 79

Σ sig Signature Σ is type correct categorically
�Σ Ξ sig Local signature Ξ is type correct with global signature Σ
�Ξ;Σ Γ ctx Context Γ is well-formed
Γ �Ξ;Σ K ⇐ kind Kind K is a valid kind
Γ �Ξ;Σ A ⇐ (co)type Type A is a canonical type
Γ �Ξ;Σ P ⇒ K Atomic type P synthesizes kind K
Γ �Ξ;Σ S �K ⇒ K′ Spine S applied to kind K produces kind K′

Γ �Ξ;Σ M ⇐ A Term M checks against type A
Γ �Ξ;Σ R ⇒ P Neutral term R synthesizes type P
Γ �Ξ;Σ S �A ⇒ P Spine S applied to canonical type A produces atomic type P
Γ �Σ A1 = A2 Types A1 and A2 are equal canonical types
Γ �Σ P1 = P2 Types P1 and P2 are equal atomic types

Fig. 5. Type Checking Judgments

definitions, the judgment �Σ Ξ sig does not require the body of recursion decla-
rations in Ξ to be well-typed. However, the categorical judgment Σ sig requires
the body of every recursion declaration to be well-typed.

To enforce the restriction that forward references only happen in a recursive
definition, the annotation [or r : A = M ∈ Σ]2:definitions means that forward refer-
ence only occurs during the checking of recursive definitions (which are deferred)
and nowhere else.

3.7 Metatheorems

We state some properties about hereditary substitution and type checking.

Theorem 4 (Hereditary Substitution Respects Typing).
Given a checked signature Σ where Σ sig, if Γ �Ξ;Σ N ⇐ A and Γ, x :

A,Γ ′ � M ⇐ B, then Γ, [N/x]A
o

Γ ′ �Ξ;Σ [N/x]A
o

M ⇐ [N/x]A
o

B.

Proof. By induction on the second derivation, with similar theorems for other
judgment forms. This proof is similar to those in [29,19]. Because of the prepat-
tern restriction, hereditary substitutions do not occur inside recursive definitions
and is thus similar to hereditary substitutions in LF.

Theorem 5 (Decidability of Type Checking).
All typing judgments are algorithmically decidable.

Proof. The type checking judgment is syntax directed. Hereditary substitutions
are defined by induction on the erased simple types and always terminate. Equal-
ity of types ultimately reduces to equality of terms, and we have proved its
termination in Section 3.5.

80 Z. Chen and F. Pfenning

Σ sig

�Σ Σ sig

Σ sig

�Σ Ξ sig

�Σ · sig
�Σ Ξ sig �Ξ;Σ K ⇐ kind

�Σ Ξ, a : K sig

�Σ Ξ sig �Σ A ⇐ (co)type

�Σ Ξ, c : A sig

�Σ Ξ sig �Ξ;Σ A ⇐ (co)type

[�Ξ;Σ M ⇐ A]1:deferred

A prepat M contra �Σ r �M

�Σ Ξ, r : A = M sig

Γ �Ξ;Σ K ⇐ kind

Γ �Ξ;Σ type ⇐ kind

Γ �Ξ;Σ cotype ⇐ kind

Γ �Ξ;Σ A ⇐ (co)type

Γ, x
(∧)

: A �Ξ;Σ K ⇐ kind

Γ �Ξ;Σ Πx
(∧)

: A.K ⇐ kind

Γ �Ξ;Σ A ⇐ (co)type

Γ �Ξ;Σ A2 ⇐ (co)type

Γ, x
(∧)

: A2 �Ξ;Σ A1 ⇐ (co)type

Γ �Ξ;Σ Πx
(∧)

: A2. A1 ⇐ (co)type

Γ �Ξ;Σ P ⇒ K K = type / cotype

Γ �Ξ;Σ P ⇐ (co)type

Γ �Ξ;Σ P ⇒ K

a : K ∈ Ξ Γ �Ξ;Σ S �K ⇒ K′

Γ �Ξ;Σ a · S ⇒ K′

Γ �Ξ;Σ S �K ⇒ K′

Γ �Ξ;Σ ()�K ⇒ K

Γ �Ξ;Σ M ⇐ A2 [M/x]A2
o

K = K′

Γ �Ξ;Σ S �K′ ⇒ K′′

Γ �Ξ;Σ M ;S �Πx : A2.K ⇒ K′′

y :̂ A′
2 ∈ Γ Γ �Ξ;Σ A′

2 = A2

�y/x�K = K′ Γ �Ξ;Σ S �K′ ⇒ K′′

Γ �Ξ;Σ [y];S �Πx :̂ A2.K ⇒ K′′

Γ �Ξ;Σ M ⇐ A

Γ �Ξ;Σ R ⇒ P ′ Γ �Σ P ′ = P

Γ �Ξ;Σ R ⇐ P

Γ, x
(∧)

: A2 �Ξ;Σ M ⇐ A1

Γ �Ξ;Σ λx.M ⇐ Πx
(∧)

: A2. A1

Γ �Ξ;Σ R ⇒ P

(c/x : A ∈ Γ or x :̂ A ∈ Γ)
Γ �Ξ;Σ S �A ⇒ P

Γ �Ξ;Σ c/x · S ⇒ P

r : A = M ∈ Ξ

[or r : A = M ∈ Σ]2:definitions

Γ �Ξ;Σ S �A ⇒ P

Γ �Ξ;Σ r · S ⇒ P

Γ �Ξ;Σ S �A ⇒ P

Γ �Ξ;Σ ()�P ⇒ P

Γ �Ξ;Σ M ⇐ A2 [M/x]A2
o

A1 = A′
1

Γ �Ξ;Σ S �A′
1 ⇒ P

Γ �Ξ;Σ M ;S �Πx : A2. A1 ⇒ P

y :̂ A′
2 ∈ Γ Γ �Ξ;Σ A′

2 = A2

�y/x�A1 = A′
1 Γ �Ξ;Σ S �A′

1 ⇒ P

Γ �Ξ;Σ [y];S �Πx :̂ A2. A1 ⇒ P

Fig. 6. Type Checking Rules (Condensed Selection)

A Logical Framework with Higher-Order Rational (Circular) Terms 81

4 Encoding Subtyping Systems for Recursive Types

In the presentation of case studies, we use the concrete syntax of our implemen-
tation, following Twelf [27]. The prepattern annotations are omitted. The full
convention can be found in Appendix G of the extended version. Representations
of circular derivations involve dependent usages of cotype’s.

4.1 Encoding a Classical Subtyping System

We present a mixed inductive and coinductive definition of subtyping using
Danielsson and Altenkirch’s [14] subtyping system. The systems concern the
subtyping of types given by the following grammar.

τ ::= ⊥ | � | τ1 � τ2 | μX.τ1 � τ2 | X

The subtyping judgment is defined by five axioms and two rules, The axioms are

1. ⊥ ≤ τ (bot)
2. τ ≤ �(top)
3. μX.τ1 → τ2 ≤ [μX.τ1 → τ2/X](τ1 → τ2) (unfold)
4. [μX.τ1 → τ2/X](τ1 → τ2) ≤ μX.τ1 → τ2 (fold)
5. τ ≤ τ (refl)

And the rules are shown below, where arr is coinductive and is written using a
double horizontal line, and trans is inductive. The validity condition of mixed
induction and coinduction entails that a derivation consisting purely of trans
rules is not valid.

τ1 ≤ σ1 σ2 ≤ τ2

σ1 → σ2 ≤ τ1 → τ2
==================(arr)

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(trans)

Danielsson and Altenkirch defined the rules using Agda’s mixed inductive
and coinductive datatype (shown in Appendix H of the extended version) and
the encoding in CoLF is shown in Fig. 7. The curly brackets indicate explicit
Π-abstractions and the free capitalized variables are implicit Π-abstracted. We
note that the mixed inductive and coinductive nature of the subtyping rules
reflected in CoLF as two predicates, the inductive subtp and the coinductive
subtpinf, and the latter has a higher priority. Clauses defining one predicate
refer to the other predicate as a premise, e.g. subtp/arr and inf/arr. Let �−�
denote the encoding relation, and we have �μX.σ � τ� = mu �X.σ� �X.τ�.

Theorem 6 (Adequacy of Encoding).

1. There is a compositional bijection between recursive types and valid canonical
terms of type tp

2. For types σ and τ , there is a compositional bijection between valid cyclic sub-
typing derivations of σ ≤ τ , and valid canonical terms of type subtp �σ� �τ�.

82 Z. Chen and F. Pfenning
tp : type.
bot : tp.
top : tp.
arr : tp -> tp -> tp.
mu : (tp -> tp) -> (tp -> tp) -> tp.

subtp : tp -> tp -> type.
subtpinf : tp -> tp -> cotype.
subtp/top : subtp T top.
subtp/bot : subtp bot T.
refl : subtp T T.

trans : subtp T1 T2 -> subtp T2 T3 -> subtp T1 T3.
subtp/arr : subtpinf T1 T2 -> subtp T1 T2.
unfold : {T1}{T2} subtp (mu T1 T2) (arr (T1 (mu T1 T2)) (T2 (mu T1 T2))).
fold : {T1}{T2} subtp (arr (T1 (mu T1 T2)) (T2 (mu T1 T2))) (mu T1 T2).
inf/arr : subtp T1 S1 -> subtp S2 T2 -> subtpinf (arr S1 S2) (arr T1 T2).

Fig. 7. An Encoding of Subtyping in CoLF

Proof. 1. Directly by induction on the structure of recursive types in the for-
ward direction, and by induction on the structure of the typing derivation
in the reverse direction.

2. By induction on the syntax of the circular derivations in the forward direc-
tion, and by induction on the syntax of the higher-order rational terms in the
reverse direction. Note that cycles in the circular derivations correspond di-
rectly to occurrences of recursion constants. The validity condition of mixed
induction and coinduction coincides with CoLF validity.

We give an example of the subtyping derivation of μX.X � X ≤ μX.(X �
⊥) � �. Let S = μX.X � X and T = μX.(X � ⊥) � �.

S ≤ S � S
unfold

(s_sub_t)
S ≤ T ⊥ ≤ S

⊥
T � ⊥ ≤ S � S

�
S � S ≤ S

fold

T � ⊥ ≤ S
trans

S ≤ � �
S � S ≤ (T � ⊥) � � �

(T � ⊥) � � ≤ T
fold

S � S ≤ T
trans

(s_sub_t) S ≤ T
trans

Here is the encoding in CoLF:

s : tp = mu ([x] x) ([x] x).
t : tp = mu ([x] arr x bot) ([x] top).
s_sub_t : subtp s t =

trans (unfold ([x] x) ([x] x)) (trans (subtp/arr (inf/arr
(trans (subtp/arr (inf/arr s_sub_t subtp/bot))

(fold ([x] x) ([x] x))) subtp/top))
(fold ([x] arr x bot) ([x] top))).

We note that the circular definition is valid by the presence of the constructor
inf/arr along the trace from s_sub_t to itself. The presence of the coinductive
arr rule is the validity condition of mixed inductive and coinductive definitions.

There are two key differences between a CoLF encoding and an Agda en-
coding. First, in Agda one needs to use explicit names for μ-bound variables or

A Logical Framework with Higher-Order Rational (Circular) Terms 83

de Bruijn indices, while in CoLF one uses abstract binding trees. Second, Agda
does not have built-in coinductive equality but CoLF has built-in equality. In
Agda, the one step of unfolding s_sub_t is not equal to s_sub_t, but in CoLF,
they are equal.

4.2 Encoding a Polarized Circular Subtyping System for
Equirecursive Types

We present an encoding of a variant Lakhani et al.’s polarized subtyping system
[22] into CoLF. The system is circular. Due to space constraints, we only present
the encoding for the positive types fragment and their emptiness derivations.
This is an important part in the subtyping system because an empty type is a
subtype of any other type. The full encoding of the polarized subtyping system
can be found in Appendix I of the extended version.

Encoding of Positive Equirecursive Types. The equirecursive nature is
captured by a signature Σ providing recursive definitions for type names t+.

τ+, σ+ ::= t+1 ⊗ t+2 | 1 | t+1 ⊕ t+2 | 0
Σ ::= · | Σ, t+ = τ+

Equirecursive types are directly encoded as recursion constants in the system,
and the framework automatically provides equirecursive type equality checking.
Because equirecursive types are circular, positive types are encoded as cotype.

postp : cotype.

times : postp -> postp -> postp.

one : postp.
plus : postp -> postp -> postp.
zero : postp.

Theorem 7 (Adequacy of Type Encoding). There is a bijection between
circular types defined in an object signature for the positive types fragment and
canonical forms of the postp in CoLF.

Proof. By induction on the syntax in both directions.

Encoding of the Emptiness Judgment. The emptiness judgment t empty is
defined by the following rules. We stress that these rules are to be interpreted
coinductively.

0 empty
(0EMP)

t = t1 ⊕ t2 ∈ Σ t1 empty t2 empty

t empty
(⊕EMP)

t = t1 ⊗ t2 ∈ Σ t1 empty

t empty
(⊗EMP1)

t = t1 ⊗ t2 ∈ Σ t2 empty

t empty
(⊗EMP2)

84 Z. Chen and F. Pfenning

In CoLF, the rules are encoded as follows. The coinductive nature is reflected
by the typing of empty : postp -> cotype, which postulates that the predicate
empty is to be interpreted coinductively.

empty : postp -> cotype.
zero_emp : empty zero.
plus_emp : empty T1 -> empty T2 -> empty (plus T1 T2).
times_emp_1 : empty T1 -> empty (times T1 T2).
times_emp_2 : empty T2 -> empty (times T1 T2).

Theorem 8 (Adequacy of Encoding). There is a bijection between the cir-
cular derivations of t empty and the canonical forms of the type empty �t�.

Proof. By induction on the syntax of the circular derivation in both directions.

As an example, we may show that the type t, where t = 1 ⊗ t, is empty by
the following circular derivation.

(t_empty) t empty

(t_empty) 1⊗ t empty
⊗EMP2

This derivation can be encoded as follows.

t : postp = times one t.
t_empty : empty t = times_emp_2 t_empty.

The reader is advised to take a look at Appendix I.3 of the extended version
for two simple yet elegant examples of subtyping derivations.

5 Related Work

Cyclic λ-Calculus and Circular Terms. Ariola and Blom [2], and Ariola and Klop
[3] studied the confluence property of reduction of cyclic λ-calculus. Their cal-
culus differs from CoLF in several aspects. Their calculus is designed to capture
reasoning principles of recursive functions and thus has a general recursive let
structure that can be attached to terms at any levels. Terms are equated up
to infinite Lévy-Longo trees (with decidable equality), but equality as Böhm
trees is not decidable. CoLF is designed for circular terms and circular deriva-
tions, and all recursive definitions occur at the top level. Terms are equated up
to infinite Böhm trees and the equality is decidable. Our equality algorithm is
adapted from Huet’algorithm for the regular Böhm trees [21]. Equality on first-
order terms has been studied both in its own respect [16] and in the context of
subtyping for recursive types [1,6,14,23]. Our algorithm when applied to first-
order terms is “the same”. Courcelle [13] and Djelloul et al. [15] have studied
the properties of first-order circular terms. Simon [28] designed a coinductive
logic programming language based on the first-order circular terms. Contrary

A Logical Framework with Higher-Order Rational (Circular) Terms 85

to CoLF, there are no mutual dependencies between inductive and coinductive
predicates in Simon’s language.

Logical Frameworks. Harper et al. [18] designed the logical framework LF,
which this work extends upon. Pfenning et al. later adds notational definitions
[26]. The method of hereditary substitution was developed as part of the research
on linear and concurrent logical frameworks [9,29,10]. Harper and Licata demon-
strated the method in formalizing the metatheory of simply typed λ-calculus [19].
In his master’s thesis, Chen has investigated a mixed inductive and coinductive
logical framework with an infinite stack of priorities but only in the context of
a first-order type theory [12].

Mixed Induction and Coinduction and Circular Proof Systems. The equality
and subtyping systems of recursive types [1,6,14,23,22] have traditionally recog-
nized coinduction and more recently mixed induction and coinduction as an un-
derlying framework. Fortier and Santocanale [17] devised a circular proof system
for propositional linear sequent calculus with mixed inductive and coinductive
predicates. This system together with Charatonik et al.’s Horn μ-calculus [11]
motivated the validity condition of CoLF. Brotherston and Simpson devised an
infinitary and a circular proof system as methods of carrying out induction [7,8].
Due to the complexity of their validity condition, the encoding of Brotherston
and Simpson’s system in full generality and Fortier and Santocanale’s system is
currently not immediate and is considered in ongoing work.

6 Conclusion

We have presented the type theory of a novel logical framework with higher-order
rational terms, that admit coinductive and mixed inductive and coinductive
interpretations. We have proposed the prepattern variables and prepattern Π-
types to give a type-theoretic formulation of regular Böhm trees. Circular objects
and derivations are represented as higher-order rational terms, as demonstrated
in the case study of the subtyping deductive systems for recursive types.

We once again highlight the methodology of logical frameworks and what
CoLF accomplishes. Logical frameworks internalize equalities that are present
in the term model for an object logic. LF [18] internalizes αβη-equivalence of the
dependently typed λ-calculus. Within LF, one is not able to write a specifica-
tion that distinguishes two terms that are α or β-equivalent, because those two
corresponding derivations are identical in the object logic. Similarly, the concur-
rent logical framework CLF [29] internalizes equalities of concurrent processes
that only differ in the order of independent events. The logical framework CoLF
internalizes the equality of circular derivations. Using CoLF, one cannot write
a specification that distinguishes between two different finitary representations
of the same circular proof. It is this property that makes CoLF a more suitable
framework for encoding circular derivations than existing finitary frameworks.
Acknowledgments. We would like to thank Robert Harper and Brigitte Pien-
tka for insightful discussion on the research presented here and the anonymous
reviewers for their helpful comments and suggestions.

86 Z. Chen and F. Pfenning

References

1. Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4), 575–631 (1993)

2. Ariola, Z.M., Blom, S.: Cyclic lambda calculi. In: Abadi, M., Ito, T. (eds.) The-
oretical Aspects of Computer Software, Third International Symposium, TACS
’97, Sendai, Japan, September 23-26, 1997, Proceedings. Lecture Notes in Com-
puter Science, vol. 1281, pp. 77–106. Springer, Sendai, Japan (1997). https:
//doi.org/10.1007/BFb0014548

3. Ariola, Z.M., Klop, J.W.: Lambda calculus with explicit recursion. Information
and Computation 139(2), 154–233 (1997). https://doi.org/10.1006/inco.1997.
2651

4. Barendregt, H.P.: The lambda calculus - its syntax and semantics, Studies in logic
and the foundations of mathematics, vol. 103. North-Holland (1985)

5. Basold, H.: Mixed Inductive-Coinductive Reasoning Types, Programs and Logic.
Ph.D. thesis, Radboud University (Apr 2018), https://hdl.handle.net/2066/
190323

6. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informaticae 33(4), 309–338 (1998)

7. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 2005). pp. 78–92. Springer LNCS
3702, Koblenz, Germany (Sep 2005)

8. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent.
Journal of Logic and Computation 21(6), 1177–1216 (2011)

9. Cervesato, I., Pfenning, F.: A linear logical framework. In: Clarke, E. (ed.) Pro-
ceedings of the Eleventh Annual Symposium on Logic in Computer Science. pp.
264–275. IEEE Computer Society Press, New Brunswick, New Jersey (Jul 1996)

10. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical frame-
work II: Examples and applications. Tech. Rep. CMU-CS-02-102, Department of
Computer Science, Carnegie Mellon University (2002), revised May 2003

11. Charatonik, W., McAllester, D.A., Niwinski, D., Podelski, A., Walukiewicz, I.: The
Horn mu-calculus. In: Proceedings of the Thirteenth Annual IEEE Symposium on
Logic in Computer Science (LICS 1998). pp. 58–69. IEEE Computer Society Press
(June 1998)

12. Chen, Z.: Towards a mixed inductive and coinductive logical framework. Tech. Rep.
CMU-CS-21-144, Department of Computer Science, Carnegie Mellon University
(2021)

13. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169 (1983)

14. Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: 10th International
Conference on Mathematics of Program Construction (MPC 2010). pp. 100–118.
Springer LNCS 6120, Québec City, Canada (Jun 2010)

15. Djelloul, K., Dao, T., Frühwirth, T.W.: Theory of finite or infinite trees revisited.
Theory and Practice of Logic Programming 8(4), 431–489 (2008)

16. Endrullis, J., Grabmayer, C., Klop, J.W., van Oostrom, V.: On equal μ-terms.
Theoretical Computer Science 412(28), 3175–3202 (2011). https://doi.org/10.
1016/j.tcs.2011.04.011

17. Fortier, J., Santocanale, L.: Cuts for circular proofs: Semantics and cut-elimination.
In: Rocca, S.R.D. (ed.) 22nd Annual Conference on Computer Science Logic (CSL
2013). pp. 248–262. LIPIcs 23, Torino, Italy (Sep 2013)

https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/BFb0014548
https://doi.org/10.1007/BFb0014548
https://doi.org/10.1006/inco.1997.2651
https://doi.org/10.1006/inco.1997.2651
https://doi.org/10.1006/inco.1997.2651
https://doi.org/10.1006/inco.1997.2651
https://hdl.handle.net/2066/190323
https://hdl.handle.net/2066/190323
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1016/j.tcs.2011.04.011

A Logical Framework with Higher-Order Rational (Circular) Terms 87

18. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the Association for Computing Machinery 40(1), 143–184 (Jan 1993)

19. Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework. Journal
of Functional Programming 17(4-5), 613–673 (2007)

20. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type theory.
Transactions on Computational Logic 6, 61–101 (Jan 2005)

21. Huet, G.P.: Regular Böhm trees. Mathematical Structures in Computer
Science 8(6), 671–680 (1998), http://journals.cambridge.org/action/
displayAbstract?aid=44783

22. Lakhani, Z., Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Polarized subtyping.
In: Sergey, I. (ed.) Programming Languages and Systems - 31st European Sympo-
sium on Programming, ESOP 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13240, pp. 431–461. Springer (2022).
https://doi.org/10.1007/978-3-030-99336-8_16

23. Ligatti, J., Blackburn, J., Nachtigal, M.: On subtyping-relation completeness, with
an application to iso-recursive types. ACM Transactions on Programming Lan-
guages and Systems 39(4), 4:1–4:36 (Mar 2017)

24. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation 1(4), 497–536
(1991). https://doi.org/10.1093/logcom/1.4.497

25. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Transactions on
Computational Logic 6(4), 749–783 (2005). https://doi.org/10.1145/1094622.
1094628

26. Pfenning, F., Schürmann, C.: Algorithms for equality and unification in the pres-
ence of notational definitions. In: Galmiche, D. (ed.) Proceedings of the CADE
Workshop on Proof Search in Type-Theoretic Languages. Electronic Notes in The-
oretical Computer Science (Jul 1998)

27. Pfenning, F., Schürmann, C.: Twelf User’s Guide, 1.2 edn. (Sep 1998), available as
Technical Report CMU-CS-98-173, Carnegie Mellon University

28. Simon, L.E.: Extending logic programming with coinduction. Ph.D. thesis, Uni-
versity of Texas at Dallas (2006)

29. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University (2002), revised May 2003

http://journals.cambridge.org/action/displayAbstract?aid=44783
http://journals.cambridge.org/action/displayAbstract?aid=44783
https://doi.org/10.1007/978-3-030-99336-8_16
https://doi.org/10.1007/978-3-030-99336-8_16
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628

88 Z. Chen and F. Pfenning

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Higher-Order Language for Markov Kernels
and Linear Operators

Pedro H. Azevedo de Amorim(�)

Cornell University, Ithaca, NY, USA
pamorim@cs.cornell.edu

Abstract. Much work has been done to give semantics to probabilistic
programming languages. In recent years, most of the semantics used
to reason about probabilistic programs fall in two categories: semantics
based on Markov kernels and semantics based on linear operators.
Both styles of semantics have found numerous applications in reasoning
about probabilistic programs, but they each have their strengths and
weaknesses. Though it is believed that there is a connection between
them there are no languages that can handle both styles of programming.
In this work we address these questions by defining a two-level calculus
and its categorical semantics which makes it possible to program with
both kinds of semantics. From the logical side of things we see this lan-
guage as an alternative resource interpretation of linear logic, where the
resource being kept track of is sampling instead of variable use.

Keywords: Linear Logic, Probabilistic Programming, Categorical Semantics.

1 Introduction

Probabilistic primitives have been a standard feature of programming languages
since the 70s. At first, randomness was mostly used to program so called random
algorithms, i.e. algorithms that require access to a source of randomness. Re-
cently, however, with the rise of computational statistics and machine learning,
randomness is also used to program statistical models and inference algorithms.

Programming languages researchers have seen this rise in interest as an op-
portunity to further study the interaction of probability and programming lan-
guages, establishing it as an active subfield within the PL community.

One of the main goals of this subfield is giving semantics to programming lan-
guages that are both expressive in the regular PL sense as well as in its abilities
to program with randomness. One particular difficulty is that the mathematical
machinery used for probability theory, i.e. measure theory, does not interact well
with higher-order functions [2].

Currently, there are two classes of models of probabilistic programming —
in its broad sense — that have found numerous applications: models based on
linear logic and models based on Markov kernels. Since each kind of semantics
has peculiarities that make them more or less adequate to give semantics to
expressive programming languages, it is an important theoretical question to
understand how these classes of models are related.

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 89–112, 2023.
https://doi.org/10.1007/978-3-031-30829-1_5

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_5
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_5&domain=pdf

Linear Logic for Probabilistic Semantics The models of linear logic that
have been used to give semantics to probabilistic languages are usually based on
categories of vector spaces where programs are denoted by linear operators. We
highlight two of them:

– Ehrhard et. al [11,10,9] have defined models of linear logic with probabilistic
primitives and have used the translation of intuitionistic logic into linear logic
A → B =!A � B, where !A is the exponential modality, to give semantics
to a stochastic λ-calculus.

– Dahlqvist and Kozen [8] have defined an imperative, higher-order, linear
probabilistic language and added a type constructor ! to accommodate non-
linear programs.

The main advantage of models based on linear logic is that programs are
denoted by linear operators between spaces of distributions, a formalism that
has been extensively used to reason about stochastic processes, as illustrated
by Dahlqvist and Kozen who have used results from ergodic theory to reason
about a Gibbs sampling algorithm written in their language, and by Clerc et al.
who have shown how Bayesian inference can be given semantics using adjoint of
linear operators [7].

Unfortunately, these insights are hard to realize in practice, since languages
based on linear logic enforce that variables must be used exactly once, making it
hard to use it as a programming language. The usual way linear logic deals with
this limitation is through the ! modality which allows variables to be reused.

The problem with the exponential modality, when it comes to probabilistic
programming, is that they are usually difficult to construct, do not have any clear
interpretation in terms of probability, making the linear operator formalism not
applicable anymore and, more operationally, through its connections with call-
by-name (CBN) semantics [18], makes it mathematically hard to reuse sampled
values.

Ehrhard et al. have found a way around this problem by introducing a call-
by-value (CBV) let operator that allows samples to be reused [11,24]. In the
discrete case this operator is elegantly defined by a categorical argument which
is unknown to scale to the continuous case, which they deal with by making use
of an ad-hoc construction that is unclear if it can be generalized to other models
of linear logic. Therefore, our current understanding of models of linear logic
does not provide a uniform way of reusing samples.

The difference between CBV and CBN can be illustrated by the program
let x = coin in x + x, where coin is a primitive that outputs 0 or 1 with equal
probability. In the CBN semantics each use of x corresponds to a new sample
from coin, whereas in the CBV semantics the coin is only sampled once.

A subtler problem of probabilistic models based on linear logic is that they
are ill-equipped to program with joint distributions. For instance, the language
proposed by Ehrhard et. al can be easily extended with product types which,
under their semantics, would make the type R×R be interpreted as MR×MR,
where MR is the set of distributions over R – which is isomorphic to the set of
independent distributions over R2. Dahlqvist and Kozen deal with this issue by

90 P. H. A. de Amorim

A Higher-Order Language for Markov Kernels and Linear Operators 91

adding primitive types Rn to their language which are interpreted as the set of
joint distributions over Rn. However, since they are not defined using the type
constructors provided by the semantic domain, programs of type Rn can only be
manipulated by primitives defined outside the language.

Markov Kernel Semantics Markov kernels are a generalization of transition
matrices, i.e. functions that map states to probability distributions over them.
They are appealing from a programming languages perspective because their
programming model is usually captured by monads and Kleisli arrows, a common
abstraction in programming languages semantics, and have been extensively used
to reason about probabilistic programs [1,22,3]. By being related to monadic
programming they differ from their linear operator counterpart by being able
to naturally capture a call-by-value semantics which, as we argued above, is the
most natural one for probabilistic programming.

Unfortunately, even though these semantics can be generalized to contin-
uous distributions, they are notoriously brittle when it comes to higher-order
programming. Only recently, with the introduction of quasi Borel spaces [15]
and its probability monad, it is possible to give a kernel-centric semantics to
higher-order probabilistic programming with continuous distributions.

However, due to quasi Borel spaces being a different foundation to proba-
bility theory, it is unclear which theorems and theories can be generalized to
higher-order. For instance, martingale theory has been used in Computer Sci-
ence to reason about termination of probabilistic programs [6,20,16]. In order to
generalize these ideas to higher-order functions it would be necessary to define
a quasi Borel version of martingales and prove appropriate versions of the main
theorems from martingale theory, a non-trivial task.

Our Work: Combining both Kinds of Semantics Though both styles
of semantics provide insights into how to interpret probabilistic programming
languages (PPL), it is still too early to claim that we have a “correct” semantics
which subsumes all of the existing ones. Both approaches mentioned above have
their advantages and drawbacks.

In this work we shed some light into how both semantics relate to one another
by showing that it is possible to use both styles of semantics to interpret a linear
calculus that has higher-order functions, looser linearity restrictions, a uniform
way of dealing with sample reuse and better syntax for programming joint dis-
tributions while still being close to their kernel and linear operator counterparts.
Interestingly, we identify the joint distribution problem described above to be
a consequence of linear logic requiring the non-linear product to be cartesian.
In order to tackle this problem we build on categorical semantics of linear logic
and on recent work on Markov categories, a suitable categorical generalization
of Markov kernels defined using semicartesian products.

We bridge the gap between these semantics by noting that the regular re-
source interpretation of linear logic, i.e. A � B being equivalent to “by using one
copy of A I get one copy of B” is too restrictive an interpretation for probabilistic

92 P. H. A. de Amorim

programming. Instead, we should think of usage as being equivalent to sampling.
Therefore the linear arrow A � B should be thought of as “by sampling from A
once I get B”, which is the computational interpretation of Markov kernels.

We realize this interpretation through a multilanguage approach: we have one
language that programs Markov kernels, a second language that programs linear
operators and add syntax that transports programs from the former language
into the latter one. To justify the viability of our categorical framework we show
how existing probabilistic semantics are models to our language and show how,
under mild conditions, this semantics can be generalized to commutative effects.

Our contributions are:

• We define a multi-language syntax that can program both Markov kernels
as well as linear operators.(§3)

• We define its categorical semantics and prove certain interesting equations
satisfied by it. (§4)

• We show that our semantics is already present in existing models for discrete
and continuous probabilistic programming. (§5)

• We show how our semantics can be generalized to commutative effects. (§6)

2 Mathematical Preliminaries

We are assuming that the reader is familiar with basic notions from category
theory such as categories, functors and monads.

Probability Theory

Transition matrices are one of the simplest abstractions used to model stochastic
processes. Given two countable sets A and B, the entry (a, b) of a transition
matrix is the probability of ending up in state b ∈ B whenever you start from
the initial state a ∈ A and every row adds up to 1.

Definition 1. The category CountStoch has countable sets as objects and
transition matrices as morphisms. The identity morphism is the identity ma-
trix and composition is given by matrix multiplication.

Though transition matrices are conceptually simple, they can only model
discrete probabilistic processes and, in order to generalize them to continuous
probability we must use measurable sets and Markov kernels.

Definition 2. A measurable set is a pair (A,ΣA), where A is a set and ΣA ⊆
P(A) is a σ-algebra, i.e. it contains the empty set and it is closed under com-
plements and countable unions.

Definition 3. A function f : (A,ΣA) → (B,ΣB) is called measurable if for
every B ∈ ΣB, f−1(B) ∈ ΣA.

A Higher-Order Language for Markov Kernels and Linear Operators 93

Definition 4. Let (A,ΣA) be a measurable space. A probability distribution
(A,ΣA) is a function μ : ΣA → [0, 1] such that μ(∅) = 0, μ(A) = 1 and
μ(�i∈NAi) =

∑
i∈N μ(Ai).

Given two measurable sets (A,ΣA) and (B,ΣB) it is possible to define a
σ-algebra over A×B generated by the sets X×Y which we denote by ΣA⊗ΣB ,
where X ∈ ΣA and Y ∈ ΣB . Furthermore, every pair of distributions μA and
μB over A and B respectively, can be lifted to a distribution μA⊗μB over A×B
such that (μA ⊗ μB)(X × Y) = μA(X)μB(Y), for X ∈ ΣA and Y ∈ ΣB .

Definition 5. Let (A,ΣA) and (B,ΣB) be two measurable spaces. A Markov
kernel is a function f : A×ΣB → [0, 1] such that

– For every a ∈ A, f(a,−) is a probability distribution.
– For every B ∈ ΣB, f(−,B) is a measurable function.

Definition 6. The category Kern has measurable sets as objects and Markov
kernels as morphisms. The identity arrow is the function idA(a,A) = 1 if a ∈ A
and 0 otherwise and Composition is given by (f ◦ g)(a, C) = ∫

f(−, C)d(g(a,−)).

Markov Categories

The field of categorical probability was developed in order to get a more concep-
tual understanding of Markov kernels. One of its cornerstone definitions is that
of a Markov category which are categories where objects are abstract sample
spaces, morphisms are abstract Markov kernels and every object has “contrac-
tion” and “weakening” morphisms which correspond to duplicating and discard-
ing a sample, respectively, without adding any new randomness.

Definition 7 (Markov category [12]). A Markov category is a semicartesian
symmetric monoidal category (C,⊗, 1) in which every object A comes equipped
with a commutative comonoid structure, denoted by copyX : X → X ⊗ X and
deleteX : X → 1, where copy satisfies

copyX⊗Y = (idX ⊗ bY,X ⊗ idY) ◦ (copyX ⊗ copyY),

where bY,X is the natural isomorphism Y ⊗X ∼= X ⊗ Y . The category being
semicartesian means that the monoidal product comes equipped with projection
morphisms π1 : A⊗B → A and π2 : A⊗B → B, but it is not Cartesian because
the equation (π1 ◦ f, π2 ◦ f) = f does not hold in general which, intuitively,
corresponds to the fact that joint distributions might be correlated.

Theorem 1 ([12]). CountStoch is a Markov category.

The monoidal product is given by the Cartesian product and the monoidal
unit is the singleton set. The copyX morphism is the matrix X ×X ×X → [0, 1]
which is 1 in the positions (x, x, x) and 0 elsewhere, and the deleteX morphism
is the constant 1 matrix indexed by X.

94 P. H. A. de Amorim

Theorem 2 ([12]). Kern is a Markov category.

This category is the continuous generalization of CountStoch and the monoidal
product is the Cartesian product with the product σ-algebra and the monoidal
unit is the singleton set {∗}. The copyX morphism is the Markov kernel copyX :
X × ΣX ⊗ ΣX → [0, 1] such that copyX(x, S × T) = 1 if x ∈ S ∩ T and 0 oth-
erwise. Its delete morphism is simply the function that given any element in X,
returns the function which is 1 on the measurable set {∗} and 0 on the empty
measurable set.

Linear Logic and Monoidal Categories

We recall the categorical semantics of the multiplicative fragment of linear logic
(MLL):

Definition 8 ([21]). A category C is an MLL model if it is symmetric monoidal
closed (SMCC), i.e. the functors A⊗− have a right adjoint A � −.

We denote the monoidal product as ⊗ and the space of linear maps between
objects X and Y as X � Y , ev : ((X � Y) ⊗ X) → Y is the counit of the
monoidal closed adjunction and cur : C(X⊗Y,Z) → C(X,Y � Z) is the linear
curryfication map. We use the triple (C,⊗,�) to denote such models.

Definition 9. Let (C,⊗C, 1C) and (D,⊗D, 1D) be two monoidal categories. We
say that a functor F : C → D is lax monoidal if there is a morphism ε : 1D →
F (1C) and a natural transformation μX,Y : F (X) ⊗D F (Y) → F (X ⊗C Y)
making the diagrams in Figure 8 (in Appendix B) commute.

If ε and μX,Y are isomorphisms we say that F is strong monoidal.
One key observation of this paper is that there are many lax monoidal func-

tors between Markov categories and models of linear logic that can interpret
probabilistic processes.

3 Syntax

In this section we will design a syntax that reflects the fact that linearity cor-
responds to sampling, not variable usage. We achieve this by making use of a
multi-language semantics that enables the programmer to transport programs
defined in a Markov kernel-centric language (MK) to a linear, higher-order, lan-
guage (LL).

Our thesis is that in the context of probabilistic programming, linear logic,
through its connection with linear algebra, departs from its usual Computer
Science applications of enforcing syntactic invariants and, instead, provides a
natural mathematical formalism to express ideas from probability theory, as
shown by Dahlqvist and Kozen [8].

Therefore, since many probabilistic programming constructs, such as Bayesian
inference and Markov kernels, can be naturally interpreted in linear logic terms,

A Higher-Order Language for Markov Kernels and Linear Operators 95

τ := 1 | τ × τ

M,N := x | unit | let x = M in N | (M,N) | π1M | π2N | f(M)

Γ := · | x : τ , Γ

Fig. 1: Syntax MK

we believe that our calculus allows the user to benefit from the insights lin-
earity provides to PPL while unburdening them from worrying about syntactic
restrictions by making it possible to also program using kernels.

We use standard notation from the literature: Γ � t : τ means that the
program t has type τ under context Γ , t{x/u} means substitution of u for x in
t and t{−→x /−→u } is the simultaneous substitution of the term list −→u for a variable
list −→x in t.

Both languages will be defined in this section and, for presentation’s sake,
we are going to use orange to represent MK programs and purple to represent
LL programs.

3.1 A Markov Kernel Language

We need a language to program Markov kernels. Since we are aiming at gener-
ality, we are assuming the least amount of structure possible. As such we will be
working with the internal language of Markov categories, as presented in Fig-
ure 1 and Figure 41. Note that we are implicitly assuming a set of primitives for
the functions f .

By construction, every Markov category can interpret this language, as we
show in Figure 6, with types being interpreted as

�1� = 1

�τ1×τ2� = �τ1� × �τ2�

and the contexts are interpreted using × over the interpretation of the types.
However, as it stands, it is not very expressive, since it does not have any prob-
abilistic primitives nor does it have any interesting types since 1× 1 ∼= 1.

When working with concrete models (c.f. Section 5) we can extend the lan-
guage with more expressive types as well as with concrete probabilistic primi-
tives. For instance, in the context of continuous probabilities we could add a R
datatype and a · � uniform : R uniform distribution primitive.

Note that even though this language does not have any explicit sampling op-
erators, this is implicitly achieved by the let operator. For instance, the program
1 c.f. Appendix A.

96 P. H. A. de Amorim

τ := 1 | τ � τ | τ ⊗ τ

t, u := x | unit | λx. t | t u | t⊗ u | let x⊗ y = t in u

Γ := · | x : τ , Γ

Fig. 2: Syntax LL

let x = uniform in x+ x samples from a uniform distribution, binds the result to
the variable x and adds the sample to itself (Fig. 2).

3.2 A Linear Language

Our second language is a linear simply-typed λ-calculus, with the usual typing
rules shown in Figure 5 in Appendix A, which can be interpreted in every sym-
metric monoidal closed category as shown in Figure 7, also in Appendix A, with
types interpreted by

�1� = 1

�τ1⊗τ2� = �τ1� ⊗ �τ2�
�τ1�τ2� = �τ1� � �τ2�

and the contexts are interpreted using ⊗ over the interpretation of the types.
Once again, we are aiming at generality instead of expressivity. In a concrete
setting it would be fairly easy to extend the calculus with a datatype N for
natural numbers and probabilistic primitives such as · � coin : N that flips a fair
coin.

The idea behind the particular linear logic models that we are interested in is
that, by integration, Markov kernels can be seen as linear operators between vec-
tor spaces of probability distributions. As such, an LL program x : N �LL t : N
will be denoted by a linear function between distributions over the natural num-
bers. Therefore, from a programming point of view, variables are placeholders
for probability distributions, i.e. computations, not values, and sampling occurs
when variables are used.

3.3 Combining Languages

The main drawback of the linear calculus above is that the syntactic linearity
restriction makes it hard to program with it, while the main drawback of the
Markov language is that it does not have higher-order functions. In this section
we will show how we can combine both language so that we get a calculus with
looser linearity restrictions while still being higher-order.

A Higher-Order Language for Markov Kernels and Linear Operators 97

τ := 1 | τ × τ

τ := 1 | Mτ | τ � τ | τ ⊗ τ

M,N := x | unit | let x = M in N | f(M)

| (M,N) | π1M | π2M

t, u := x | unit | λx. t | t u | t⊗ u | let x⊗ y = t in u

| sample ti as xi in M

Fig. 3: Syntax LL+MK

As we will show in Section 5, when looking at concrete models for these
languages we can see that the semantic interpretations of variables in both lan-
guages are completely different: in the MK language variables should be thought
of as values, i.e. the values that were sampled from a distribution, whereas in the
LL language, variables of ground type are distributions. In order to bridge these
languages we must use the observation that Markov kernels — i.e. open MK
terms — have a natural resource-aware interpretation of being “sample-once”
stochastic processes and, by integration, can be seen as linear maps between
measure spaces — i.e. open LL terms. The combined syntax for the language is
depicted in Figure 3.

We now have a language design problem: we want to capture the fact that
every open MK program is, semantically, also an open LL term. The naive typing
rule is:

x1 : τ1, · · · , xn : τn �MK M : τ

x1 : Mτ1, · · · , xn : Mτn �LL MK(M) : Mτ

The problem with this rule is that it breaks substitution: the variables in the
premise are MK variables whereas the ones in the conclusion are LL variables.

We solve this problem by making the syntax reflect a common idiom of PPLs:
compute distributions (elements of Mτ), sample from it and then use the result
in a non-linear continuation. This is captured by the following syntax:

sample t1, · · · , tn as x1, · · · , xn in M

Note that we are sampling from LL programs ti (possibly an empty list), out-
putting the results to MK variables xi and binding them to an MK program M .
When clear from the context we simply use sample ti as xi in M . Its correspond-
ing typing rule is:

Sample
x1 : τ1 · · ·xn : τn �MK M : τ Γi �LL ti : Mτi 0 ≤ i < n

Γ1, · · · , Γn �LL sample ti as xi in M : Mτ

98 P. H. A. de Amorim

As the typing rule suggests, its semantics should be some sort of composi-
tion. However, since we are composing programs that are interpreted in different
categories, we must have a way of translating MK programs into LL programs
— as we will see in Section 4 this translation will be functorial. The operational
interpretation of this rule is that we have a set of distributions {ti} defined using
the linear language — possibly using higher-order programs — we sample from
them, bind the samples to the variables {xi} in the MK program M where there
are no linearity restrictions. Note that the rule above looks very similar to a
monadic composition, though they are semantically different (cf. Section 4).

With this new syntax we can finally program in accordance with our new
resource interpretation of linear logic, allowing us to write the program

sample coin as x in (x = x),

which flips a coin once and tests the result for equality with itself, making it
equivalent to true.

This combined calculus enjoys the expected syntactic properties2.

Theorem 3. Let Γ, x : τ1 �LL t : τ and Δ �LL u : τ1 be well-typed terms, then
Γ,Δ �LL t{x/u} : τ

Proof. The proof can be found in Appendix D.

The following example illustrates how we can use the MK language to dupli-
cate and discard linear variables.

Example 1. The program which samples from a distribution t and then returns
a perfectly correlated pair is given by:

· �LL sample t as x in (x, x) : M(τ × τ)

Similarly, the program that samples from a distribution t and does not use its
sampled value is represented by the term

· �LL sample t as x in unit : M1

Example 2. Suppose that we have a Markov kernel given by an open MK term
x : N � M : N. If we want to encapsulate it as a linear program of type MN �
MN we can write:

· �LL λmeas.(sample meas as x in M) : MN � MN

Example 3. As we explain in the introduction, Dahlqvist and Kozen must add
many primitives to their language to work around their linearity restrictions.
For instance, in order to write projection functions Rn → Rm, n > m they must
add projection primitives to the language.
2 To avoid visually polluting the proofs we will drop the color code in Theorem 3 and

Theorem 7

A Higher-Order Language for Markov Kernels and Linear Operators 99

By having compositional type constructors that can represent joint distribu-
tions , i.e. M(τ × τ), it is possible to write the program sample t as x in (π1 x, π3 x)
which samples from a distribution over triples and returns only the first and third
components by only using the syntax of products in MK.

Unfortunately there are some aspects of this language that still are restrictive.
For instance, imagine that we want to write an LL program that receives two
“Markov kernels” MN�MN and a distribution over N as inputs, samples from
the input distribution, feeds the result to the Markov kernels, samples from them
and adds the results. Its type would be

(MN�MN)�(MN�MN)�MN�MN

Even though the program only requires you to sample once from each distri-
bution, it is still not possible to write it in the linear language.

We will show in Section 4 how the type constructor M actually corresponds
to an applicative functor [19], and the limitation above is actually a particular
case of a fundamental difference between programming with applicative functors
compared to programming with monads.

Remark 1. We now have two languages that can interpret probabilistic prim-
itives such as coin. However, every primitive M in the MK language can be
easily transported to an LL program by using an empty list of LL programs:
sample _ as _ in M . Therefore it makes sense to only add these primitives to
the MK language.

4 Categorical Semantics

As it is the case with categorical interpretations of languages/logics, types and
contexts are interpreted as objects in a category and every well-typed pro-
gram/proof gives rise to a morphism.

In our case, MK types τ are interpreted as objects �τ� in a Markov category
(M,×) and well-typed programs Γ �MK M : τ are interpreted as an M mor-
phism �Γ � → �τ�, as shown in Figure 6. Similarly, LL types τ are interpreted
as objects �τ� in a model of linear logic (C,⊗,�) and well-typed programs
Γ �LL t : τ are interpreted as a C morphism �Γ � → �τ�, as shown in Figure 7.

To give semantics to the combined language is not as straightforward. The
sample rule allows the programmer to run LL programs, bind the results to MK
variables and use said variables in an MK continuation. The implication of this
rule in our formalism is that our semantics should provide a way of translating
MK programs into LL programs. In category theory this is usually achieved by
a functor M : M → C.

However, we can easily see that functors are not enough to interpret the
sample rule. Consider what happens when you apply M to an MK program
x : τ1, y : τ2 �MK N : τ :

M �N� : M(τ1 ⊗ τ2) → Mτ

100 P. H. A. de Amorim

To precompose it with two LL programs outputting Mτ1 and Mτ2 we need
a mediating morphism μτ1,τ2 : Mτ1⊗Mτ2 → M(τ1×τ2). Furthermore, if N has
three or more free variables, there would be several ways of applying μ. Since
from a programming standpoint it should not matter how the LL programs
are associated, we require that μτ1,τ2 makes the lax monoidality diagrams to
commute. Therefore, assuming lax monoidality of μ we can interpret the sample
rule:

Sample

τ1 × · · · × τn
N−→ τ Γi

ti−→ Mτi

Γ
t1⊗···⊗tn−−−−−−→ Mτ1 ⊗ · · · ⊗Mτn

μ−→ M(τ1 × · · · × τn)
MN−−−→ Mτ

In case it only has one MK variable, the semantics is given by �t� ;M �N�
and in case it does not have any free variables the semantics is ε;M �N�.

The equational theory of the LL languages is the well-known theory of the
simply-typed λ-calculus and the MK equational theory has been described, in
graphical notation, by Fritz [12]. Something which is not obvious is understand-
ing how they interact at their boundary. This is where M being a functor be-
comes relevant, since from functoriality it follows the two program equivalences:

Theorem 4. Let t, M and N be well-typed programs,

�(λy. sample y as z in N) (sample t as x in M)� =
�sample t as x in (let y = M in N)�

Proof.

�(λy. sample y as z in N) (sample t as x in M)� =
�t� ;M �M� ;M �N� = �t� ;M(�M� ; �N�) =
�sample t as x in (let y = M in N)�

Theorem 5. Let t be a well-typed program,

�sample t as x in x� = �t�

Proof. �sample t as x in x� = �t� ;M(�x�) = �t� ;M(id) = �t� ; id = �t�

Furthermore, we also have a modularity property that can be easily proven:

Theorem 6. Let t, M and N be well-typed programs. If �M� = �N� then

�sample t as x in M� = �sample t as x in N�

The expected compositionality of the semantics also holds:

Theorem 7. Let x1 : τ1, · · · , xn : τn � t : τ and Γi � ti : τi be well-typed terms.�
Γ1, · · · , Γn � t{−→xi/

−→
ti } : τ

�
= (

�
Γ1 � t1 : τ1

�⊗· · ·⊗�
Γn � tn : τn

�
); �Γ1, · · · , Γn� �

t : τ .

A Higher-Order Language for Markov Kernels and Linear Operators 101

Proof. The proof can be found in Appendix D.

Subst
Γ � u1 : τ ′ Γ � u2 : τ ′ Γ, x : τ ′ � t : τ Γ � u1 ≡ u2 : τ ′

Γ � t{x/u1} ≡ t{x/u2} : τ

From this theorem we can conclude:

Corollary 1. The Subst rule shown above is sound with respect to the categorical
semantics.

Lax monoidal functors, under the name applicative functors, are widely used
in programming languages research[19]. They are often used to define embedded
domain-specific languages (eDSL) within a host language. This suggests that
from a design perspective the Markov kernel language can be thought of as an
eDSL inside a linear language.

We have just shown that M being lax monoidal is sufficient to give semantics
to our combined language, but what would happen if it had even more structure?
If it were also full it would be possible to add a reification command3:

MΓ �LL t : Mτ

Γ �MK reify(t) : τ

where MΓ is notation for every variable in Γ being of the form Mτ ′, for some
τ ′. The semantics for the rule would be taking the inverse image of M. As we
will show in the next section, there are some concrete models where M is full
and some other models where it is not. Computationally, fullness of M can be
interpreted as every program of type Mτ � Mτ ′ being equal to a Markov
kernel.

A property which is easier to satisfy is faithfulness, which is verified by both
models in the next section. In this case the translation of the MK language into
the LL language would be fully-abstract in the following sense:

Theorem 8. Let x : τ1 � M : τ2 and x : τ1 � N : τ2 be two well-typed MK
programs. If M is faithful then �sample y as x in M� = �sample y as x in N�
implies �M� = �N�.

Proof. �sample y as x in M� = �sample y as x in N� =⇒ idMτ1 ;M �M� =
idMτ1 ;M �N� =⇒ �M� = �N�.

5 Concrete Models

In this section we show how existing models for both discrete as well as contin-
uous probabilities fit within our formalism.

3 The proposed rule breaks the substitution theorem, but it is possible to define a
variant for it where this is not the case.

102 P. H. A. de Amorim

5.1 Discrete Probability

For the sake of simplicity we will denote the monoidal product of CountStoch
as ×.

The probabilistic coherence space model of linear logic has been extensively
studied in the context of semantics of discrete probabilistic languages[9].

Definition 10 (Probabilistic Coherence Spaces [9]). A probabilistic co-
herence space (PCS) is a pair (|X|,P(X)) where |X| is a countable set and
P(X) ⊆ |X| → R+ is a set, called the web, such that:

– ∀a ∈ X ∃εa > 0 εa · δa ∈ P(X), where δa(a
′) = 1 iff a = a′ and 0 otherwise,

and we use the notation εa = ε(a);
– ∀a ∈ X ∃λa ∀x ∈ P(X) xa ≤ λa;
– P(X)⊥⊥ = P(X), where P(X)⊥ = {x ∈ X → R+ | ∀v ∈ P(X)

∑
a∈X xava ≤

1}.
We can define a category PCoh where objects are probabilistic coherence

spaces and morphisms X � Y are matrices f : |X| × |Y | → R+ such that for
every v ∈ P(X), (f v) ∈ P(Y), where (f v)b =

∑
a∈|A| f(a,b)va.

Definition 11. Let (|X|,P(X)) and (|Y |,P(Y)) be PCS, we define X ⊗ Y =
(|X| × |Y |, {x⊗ y |x ∈ P(X), y ∈ P(Y)}⊥⊥), where (x⊗ y)(a, b) = x(a)y(b)

Lemma 1. Let X be a countable set, the pair (X, {μ : X → R+ | ∑x∈X μ(x) ≤
1}) is a PCS.

Proof. The first two points are obvious, as the Dirac measure is a subprobability
measure and every subprobability measure is bounded above by the constant
function μ1(x) = 1.

To prove the last point we use the — easy to prove — fact that PX ⊆ PX⊥⊥.
Therefore we must only prove the other direction. First, observe that, if μ ∈ {μ :
X → R+ | ∑x∈X μ(x) ≤ 1}, then we have

∑
μ(x)μ1(x) =

∑
1μ(x) =

∑
μ(x) ≤

1, μ1 ∈ {μ : X → R+ | ∑x∈X μ(x) ≤ 1}⊥.
Let μ̃ ∈ {μ : X → R+ | ∑x∈X μ(x) ≤ 1}⊥⊥. By definition,

∑
μ̃(x) =∑

μ̃(x)μ1(x) ≤ 1 and, therefore, the third point holds.

This lemma can be used to give semantics to probabilistic primitives. For
instance, a fair coin is interpreted as a function coin : N → [0, 1] which is .5 at 0
and 1 and 0 elsewhere and is an element of P(N).

Lemma 2. Let X → Y be a CountStoch morphism. It is also a PCoh mor-
phism.

Theorem 9. There is a lax monoidal functor M : CountStoch → PCoh.

Proof. The functor is defined using the lemmas above. Functoriality holds due
to the functor being the identity on arrows. The lax monoidal structure is given
by ε = id1 and μX,Y = idX×Y

A Higher-Order Language for Markov Kernels and Linear Operators 103

Lemma 3. If μ ∈ {x ⊗ y |x ∈ M(X), y ∈ M(Y)}⊥ then for every x ∈ X and
y ∈ Y , μ(x, y) ≤ 1.

Proof. If there were such indices such that μ(x1, y1) > 1 then
∑∑

μ(x, y)(δx1 ⊗
δy1

)(x, y) > μ(x1, y1)(δx1
⊗δy1

)(x1, y1) = μ(x1, y1) > 1, which is a contradiction.

Lemma 4. Let X and Y be two countable sets, then

MX ⊗MY =

⎛⎝X × Y, {μ : X × Y → R+ |
∑
x∈X

∑
y∈Y

μ(x, y) ≤ 1}
⎞⎠ =

M(X × Y).

Proof. By the lemma above it follows that if we have a joint probability distri-
bution μ̃ over X × Y and an element μ ∈ {x⊗ y |x ∈ M(X), y ∈ M(Y)}⊥ then∑∑

μ(x, y)μ̃(x, y) ≤ ∑∑
μ̃(x, y) ≤ 1.

Theorem 10. Both ε and μX,Y are isomorphisms.

Proof. Since ε is the identity morphism, it is trivially an isomorphim. The mor-
phisms μX,Y being an isomorphism is a direct consequence of the lemmas above.

Theorem 11. The functor M is full.

Both results above can be directly used to enhance the syntax of the combined
language. From Theorem 10 we can conclude that elements of type M(τ1 × τ2),
by projecting their marginal distributions, can be manipulated as if they had
type Mτ1 ⊗ Mτ2. Something to note is that when we do this marginalization
process we lose potential correlations between the elements of the pair.

5.2 Continuous Probability

In order to accommodate continuous distributions we can use regularly ordered
Banach spaces, whose detailed definition goes beyond the scope of this paper.

Definition 12 ([8]). The category RoBan has regularly ordered Banach spaces
as objects and regular linear functions as morphisms.

Theorem 12. There is a lax monoidal functor M : Kern → RoBan.

Proof. The functor acts on objects by sending a measurable space to the set of
signed measures over it, which can be equipped with a RoBan structure. On
morphisms it sends a Markov kernel f to the linear function M(f)(μ) =

∫
fdμ.

The monoidal structure of RoBan satisfies the universal property of ten-
sor products and, therefore, we can define the natural transformation μX,Y :
M(X)⊗M(Y) → M(X×Y) as the function generated by the bilinear function
M(X);M(Y) � M(X × Y) which maps a pair of distributions to its product
measure. The map ε is, once again, equal to the identity function.

The commutativity of the lax monoidality diagrams follows from the universal
property of the tensor product: it suffices to verify it for elements μA⊗μB ⊗μC .

104 P. H. A. de Amorim

In RoBan the uniform distribution over the interval [0, 1] is an element of
MR, meaning that it can soundly interpret a · �LL uniform : MR primitive.

Even though M looks very similar to the discrete case, it follows from a well-
known theorem from functional analysis that the functor is not strong monoidal,
meaning that there are joint probability distributions (elements of M(A × B))
that cannot be represented as an element of the tensor product M(A)⊗M(B)
and, as such, programs of type M(A×B) must be manipulated in MK language,
as shown in Example 3.

6 Beyond Probability

We have seen that this new resource interpretation is present in different models
of linear logic models for probabilistic programming. In this section we show
that this model can be generalized to commutative effects, i.e. effects where the
program equation Commutativity below holds. Categorically, these effects are
captured by monoidal monads4. Due to length issues, we will not fully detail the
definition of monoidal monads, but we suggest the interested reader to read Seal
[23].

Commutativity
Γ � t1 : τ1 Γ � t2 : τ2 Γ, x : τ1, y : τ2 � u : τ

let x1 = t1 in (let x2 = t2 in u) ≡ let x2 = t2 in (let x1 = t1 in u) : τ

Definition 13 ([23]). Let (C,⊗, I) be a monoidal category and (T, η, μ) a monad
over it. The monad T is called monoidal if it comes equipped with a natural trans-
formation κX,Y : TX ⊗ TY → T (X ⊗ Y) making certain diagrams commute

For probability monads the transformation κ corresponds to forming the
product probability distribution and, more generally, this can be thought of a
program that runs both of its (effectful) inputs and pairs the outputs.

Every monad give rise to the interesting categories CT and CT which are,
respectively, the Kleisli category and Eilenberg-Moore category. The objects of
CT are the same as C and morphisms between A and B are C morphisms
A → TB, with the identity morphism being equal to the unit η of the monad
and composition is given by f ; g = f ;Tg;μ.

The objects of the category CT are pairs (X,x), where X is a C object and
x : TX → X is a C morphism such that μ;x = Tx;x and η;x = idX , and
morphisms between objects (X,x) and (Y, y) are C morphisms f : X → Y such
that x; f = Tf ; y.

For every monad T there is a canonical inclusion functor ι : CT → CT which
maps X to (TX, μ) and f : X → Y to Tf ;μY .

Theorem 13 ([5]). The functor ι is full and faithful.
4 Monoidal monads are equivalent to commutative monads, which is the nomenclature

usually used in the context of programming languages semantics.

A Higher-Order Language for Markov Kernels and Linear Operators 105

As we explain in Appendix C, assuming enough structure on the category C
we can show that the triple (CT ,C

T , ι) is a model to the MK+LL language and
we can bring our new resource interpretation of linear logic to other commmu-
tative effects.

An illustrative example is the powerset monad P : Set → Set which is
monoidal and since Set has the necessary structure, the triple (CP ,CP ,P) is a
model to our language and can be used to give semantics to non-deterministic
computation.

In the context of commutative effects other than randomness, the syntax
sample t as x in M does not make as much sense, in which case we can use the
syntax observe ti as xi in M instead. Once again, operationally, the programs ti
are fully executed, the values are bound to xi in M which is then executed.

Furthermore, other effects have other relevant effectful operations and, there-
fore, we can assume that there is a set of operations in the MK language that are
interpreted in the Kleisli category and can be transported to LL using observe,
similar to how it was done in the probabilistic case.

For the non-deterministic case we can assume the existence of typing rules
for non-deterministic choice and failure:

Choice
Γ �MK t1 : τ Γ �MK t2 : τ

Γ �MK t1 ⊕ t2 : τ

Null

Γ �MK 0τ : τ

satisfying the expected equations and interpreted using set-theoretic union and
the empty set, respectively.

A similar connection between linear logic and monoidal monads has been
made by Benton and Wadler[4], where they want to relate Moggi’s monadic
λ-calculus with linear logic by showing that if a monad is monoidal and the
category has equalizers and coequalizers, then the Eillenberg-Moore category is
a model of linear logic.

7 Related Work

Semantics of Probabilistic Programming Ehrhard et al. [11,10] have de-
fined a model of linear logic CLin which can be used to interpret a higher-order
probabilistic programming language. They have used the call-by-name transla-
tion of intuitionistic logic into linear logic A → B =!A � B to give semantics to
their language. The authors extend their language with a call-by-value let syntax
which makes it possible to reuse sampled values. In order to give semantics to
this new language they introduce a new category CLinm which can interpret
this new operator, at the cost of complicating their model.

Because there is an analogous proof of Theorem 12 with the category CLin
replacing RoBan, we can use their original, simpler, model to interpret our
language, while not needing to use the linear logic exponential to interpret non-
linear programs.

106 P. H. A. de Amorim

Dahlqvist and Kozen [8] have defined a category of partially ordered Banach
spaces and shown that it is a model of intuitionistic linear logic. An important
difference from their approach and the one mentioned above is that they embrace
variable linearity as part of their syntax. As we argued in this paper, we believe
that the syntactic restriction of linearity they have used is not adequate for the
purposes of probabilistic programming. They deal with this limitation by adding
primitives to their languages which, by using the results of Section 5, could be
programmed using the MK language.

Quasi Borel spaces [15] are a conservative extension of Meas that are Carte-
sian closed and have a commutative probability monad. The drawback of this
model is that it is still not as well understood as its measure-theoretic coun-
terpart, and there are theorems from probability theory used to reason about
programs that may not hold in the category of quasi Borel spaces QBS.

Recently, Geoffroy [13] has made progress in connecting linear logic and quasi
Borel Spaces by showing that a certain subcategory of the Eillenberg-Moore
category for the probability monad in QBS is a model of classical linear logic,
which we see as an instance of our model where the MK language can have
higher-order functions as well.

Call-by-Push-Value The idea of having two distinct type systems that are
connected by a functorial layer is reminiscent of Call-by-Push-Value (CBPV)
[17], which has a type system for values and a type system for computations that
are connected by an adjunction. In recent work, Ehrhard and Tasson [24] use the
Eilenberg-Moore adjunction of the linear logic exponential ! to give semantics to
a calculus that can interpret lazy and eager probabilistic computation, allowing
for the interpretation of an eager let operator which is operationally similar to
our sample construct. However, the existence of the let operator depends on
properties of the ! that are unknown to hold for continuous distributions, while
our semantics can naturally deal with continuous distributions as we have shown
in Section 5.

Furthermore, the exponential which lies at the center of their approach is,
semantically, hard to work with and does not have any clear connections to
probability theory, making it unlikely that their semantics can be seen as a
bridge between the Markov and linear semantics, which is the case for the models
presented in Section 5.

Goubault-Larrecq [14] has defined a CBPV domain semantics to a language
that mixes probability and non-determinism, a long-standing challenge in the
theory of programming languages. His focus is in understanding how to make
probability interact with non-determinism in a sound way. He studies the full-
abstraction of his semantics but does not deal with connections to linear logic.

Acknowledgements The support of the National Science Foundation under
grant CCF-2008083 is gratefully acknowledged. I would also like to thank Arthur
Azevedo de Amorim, Justin Hsu, Michael Roberts, Christopher Lam and Deepak
Garg for their useful comments on earlier versions of this paper.

A Higher-Order Language for Markov Kernels and Linear Operators 107

A Typing Rules and Denotational Semantics LL and MK

Var

Γ , x : τ � x : τ

Unit

Γ � unit : 1

Let
Γ � M : τ1 Γ , x : τ1 � N : τ

Γ � let x = M in N : τ

Primitive
Γ � M : τ1 f : τ1 → τ2

Γ � f(M) : τ2

Pair
Γ � M : τ1 Γ � N : τ2

Γ � (M,N) : τ1 × τ2

Proj1
Γ � M : τ1 × τ2

Γ � π1M : τ1

Proj2
Γ � M : τ1 × τ2

Γ � π2M : τ2

Fig. 4: Typing rules MK

Axiom

x : τ � x : τ

Unit

· � unit : 1

Abstraction
Γ , x : τ1 � t : τ2

Γ � λx. t : τ1 � τ2

Application
Γ1 � t : τ1 � τ2 Γ2 � u : τ1

Γ1, Γ2 � t u : τ2

Tensor
Γ1 � t : τ1 Γ2 � u : τ2

Γ1, Γ2 � t⊗ u : τ1 ⊗ τ2

LetTensor
Γ1 � t : τ1 ⊗ τ2 Γ2, x : τ1, y : τ2 � u : τ

Γ1, Γ2 � let x⊗ y = t in u : τ

Fig. 5: Typing rules LL

Var

Γ × τ
delete×idτ−−−−−−→ 1× τ ∼= τ

Pair
Γ

M−→ τ1 Γ
N−→ τ2

Γ
copy−−→ Γ × Γ

M×N−−−−→ τ1 × τ2

Proj
Γ

M−→ τ1 × τ2

Γ
M ;(idτ1×delete)−−−−−−−−−−→ τ1 × 1 ∼= τ1

Let
Γ

M−→ τ1 Γ × τ1
N−→ τ

Γ
copy−−→ Γ × Γ

(idΓ×M);N−−−−−−−−→ τ

Primitive
Γ

M−→ τ1 τ1
f−→ τ2

Γ
M−→ τ1

f−→ τ2

Fig. 6: Denotational semantics for MK

108 P. H. A. de Amorim

Axiom

τ
idτ−−→ τ

Tensor
Γ1

t1−→ τ1 Γ2
t2−→ τ2

Γ1, Γ2
t1⊗t2−−−−→ τ1 ⊗ τ2

LetTensor
Γ1

t−→ τ1 ⊗ τ2 Γ2 ⊗ τ1 ⊗ τ2
u−→ τ

Γ1 ⊗ Γ2
(id⊗t);u−−−−−→ τ

Abstraction
Γ ⊗ τ1

t−→ τ2

Γ
cur(�t�)−−−−→ τ1 � τ2

Application
Γ1

t−→ τ1 � τ2 Γ2
u−→ τ1

Γ1 ⊗ Γ2
(t⊗u);ev−−−−−→ τ2

Fig. 7: Denotational semantics for LL

B Commutative Diagrams

(F (X)⊗D F (Y))⊗D F (Z) F (X)⊗D (F (Y)⊗C F (Z))

F (X ⊗C Y)⊗D F (Z) F (X)⊗D F (Y ⊗C Z)

F ((X ⊗C Y)⊗C Z) F (X ⊗C (Y ⊗C Z))

μ⊗id

μ

α

id⊗μ

μ

Fα

1 ⊗D F (X) F (1) ⊗D F (X) F (X) ⊗D 1 F (X) ⊗D F (1)

F (X) F (1 ⊗C X) F (X) F (X ⊗C 1)

ε⊗id

lD

F (lC)

μ

id⊗ε

μ

F (rD)

rD

Fig. 8: Lax monoidal diagrams

C Monoidal Monads and Their Algebras

An important theorem from the categorical probability literature is that Markov
categories are an abstraction of programming in the Kleisli category of monoidal
affine monads, where affinity means that T1 ∼= 1.

Theorem 14 ([12]). Let (C,×, 1) be a cartesian category and T : C → C a
monoidal (affine) monad. The Kleisli category CT is a Markov category.

A Higher-Order Language for Markov Kernels and Linear Operators 109

The monoidal product of CT is × with unit 1, the copy operation is given
by ΔX ; ηX : X → T (X ×X) and the deletion operation is given by T1 ∼= 1 and
1 being terminal.

Furthermore, under certain conditions, the Eilenberg-Moore category CT for
monoidal monads is symmetric monoidal closed. The monoidal unit is given by
TI, the monoidal product is given by the coequalizer depicted in Figure 9 and
the closed struture is given by the equalizer depicted in Figure 10.

Theorem 15. Let C be a symmetric monoidal closed category with equalizers,
reflexive co-equalizers and T : C → C a monoidal monad. The category CT is
also symmetric monoidal closed.

T (TX ⊗ TY) TT (X ⊗ Y) T (X ⊗ Y) X ⊗T YTκ μ

T (x⊗y)

Fig. 9: Symmetric Monoidal Structure in CT

X �T Y X � Y TX � TY TX � Ys idTX�y

x�idY

Fig. 10: Closed Structure in CT

Even though, in general, in order to define the monoidal product one requires
a coequalizer, for our purposes we are only interested in products of the form
TA ⊗T TB which, luckily, are easier to characterize, since the equality TX ⊗T

TY = T (X ⊗ Y) holds [23].
In this case the lax monoidal transformations μX,Y : TX⊗T TY → T (X⊗Y)

and ε : FI → FI are simply the identity morphisms. Besides, by using the uni-
versal properties of coequalizers it is possible to show the equality α̃TX,TY,TZ =
αX,Y,Z , where α̃ is the associator for the monoidal product ⊗T .

Theorem 16. Let C be a symmetric monoidal category with reflexive co-equalizers
and T : C → C a monoidal monad. The triple (ι, μ, ε) is a lax monoidal functor.

Proof. The proof follows by unfolding the definitions.

110 P. H. A. de Amorim

D Proofs

Theorem 3. Let Γ, x : τ1 � t : τ and Δ � u : τ1 be well-typed terms, then
Γ,Δ � t{x/u} : τ

Proof. The proof follows by structural induction on the typing derivation Γ, x :
τ1 � t : τ :

– Axiom: Since t = x then t{x/u} = u and τ1 = τ .
– Abstraction: By hypothesis, Γ, x : τ1, y : τ2 � t : τ3. Since we can assume

wlog that x �= y and that y /∈ Δ, λy. t{x/u} = λy. t{x/u}. Therefore we
can show that Γ,Δ � λy. t{x/u} : τ2 � τ3 by applying the rule Abstraction
and by the induction hypothesis.

– Application: t1 t2{x/u} = t1{x/u} t2{x/u}. Since the language LL is linear,
only one of t1 or t2 will have x as a free variable. By symmetry we can assume
that t1 has x as a free variable and we can prove Γ,Δ � t1{x/u} t2 : τ by
applying the rule Application and by the induction hypothesis.

– Sample: It is easy to prove that (sample t as y in M){x/u} =
sample (t{x/u}) as y in M

Theorem 7. Let x1 : τ1, · · · , xn : τn � t : τ and Γi � ti : τi be well-typed terms.�
Γ1, · · · , Γn � t{−→xi/

−→
ti } : τ

�
= (

�
Γ1 � t1 : τ1

�⊗· · ·⊗�
Γn � tn : τn

�
); �Γ1, · · · , Γn� �

t : τ .

Proof. The proof follows by induction on the typing derivation of t.

– Axiom: Since t = x then t{x/t0} = t0 and �t{x/t0}� = �t0� = �t0� ; id =
�t0� ; �x�.

– Unit: Since t = x then t{x/t0} = t0 and �t{x/t0}� = �t0� = �t0� ; id =
�t0� ; �x�.

– Tensor: We know that t = t1 ⊗ t2. Furthermore, from linearity we know that
each free variable appears either in t1 or in t2. Without loss of generality we can
assume that (t1⊗t2){x1, · · · , xn/u1, · · · , un} = (t1{x1, · · · , xk/u1, · · · , uk})⊗
(t2{xk+1, · · · , xn/uk+1, , · · · , un}). We can conclude this case from the induc-
tion hypothesis and functoriality of ⊗.

– LetTensor: This case follows from the functoriality of ⊗ and the induction
hypothesis.

– Abstraction: This case follows from unfolding the definitions, using the in-
duction hypothesis and by naturality of cur.

– Application: Analogous to the Tensor case
– Sample: This case is analogous to the Tensor case.

References

1. de Amorim, A.A., Gaboardi, M., Hsu, J., Katsumata, S.y.: Probabilistic relational
reasoning via metrics. In: Symposium on Logic in Computer Science (LICS) (2019)

A Higher-Order Language for Markov Kernels and Linear Operators 111

2. Aumann, R.J.: Borel structures for function spaces. Illinois Journal of Mathematics
(1961)

3. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin,
S.: Probabilistic relational verification for cryptographic implementations. In: Prin-
ciples of Programming Languages (POPL) (2014)

4. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Sympo-
sium on Logic in Computer Science (LICS) (1996)

5. Borceux, F.: Handbook of Categorical Algebra: Volume 2, Categories and Struc-
tures, vol. 2. Cambridge University Press (1994)

6. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: International Conference on Computer Aided Verification (CAV) (2013)

7. Clerc, F., Danos, V., Dahlqvist, F., Garnier, I.: Pointless learning. In: International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS) (2017)

8. Dahlqvist, F., Kozen, D.: Semantics of higher-order probabilistic programs with
conditioning. In: Principles of Programming Languages (POPL) (2019)

9. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation 209(6), 966–991 (2011)

10. Ehrhard, T.: On the linear structure of cones. In: Logic in Computer Science (LICS)
(2020)

11. Ehrhard, T., Pagani, M., Tasson, C.: Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming. In: Principles of
Programming Languages (POPL) (2017)

12. Fritz, T.: A synthetic approach to markov kernels, conditional independence and
theorems on sufficient statistics. Advances in Mathematics 370, 107239 (2020)

13. Geoffroy, G.: Extensional denotational semantics of higher-order probabilistic pro-
grams, beyond the discrete case (unpublished) (2021)

14. Goubault-Larrecq, J.: A probabilistic and non-deterministic call-by-push-value lan-
guage. In: Logic in Computer Science (LICS) (2019)

15. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. In: Logic in Computer Science (LICS) (2017)

16. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proceedings of the ACM on
Programming Languages (OOPSLA) (2019)

17. Levy, P.B.: Call-by-push-value. Ph.D. thesis (2001)
18. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,

call-by-need and the linear lambda calculus. Theoretical Computer Science (1999)
19. McBride, C., Paterson, R.: Applicative programming with effects. Journal of func-

tional programming 18(1), 1–13 (2008)
20. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A new proof rule for almost-

sure termination. Proceedings of the ACM on Programming Languages (POPL)
(2017)

21. Mellies, P.A.: Categorical semantics of linear logic. Panoramas et syntheses 27,
15–215 (2009)

22. Scibior, A., Kammar, O., Vakar, M., Staton, S., Yang, H., Cai, Y., Ostermann,
K., Moss, S., Heunen, C., Ghahramani, Z.: Denotational validation of higher-order
bayesian inference. Proceedings of the ACM on Programming Languages (2018)

23. Seal, G.J.: Tensors, monads and actions. arXiv preprint arXiv:1205.0101 (2012)
24. Tasson, C., Ehrhard, T.: Probabilistic call by push value. Logical Methods in Com-

puter Science (2019)

112 P. H. A. de Amorim

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Formal Logic for Formal Category Theory

Max S. New1,2(�) and Daniel R. Licata2

1 University of Michigan, Ann Arbor, USA
maxsnew@umich.edu

2 Wesleyan University, Middletown, USA
dlicata@wesleyan.edu

Abstract. We present a domain-specific type theory for constructions
and proofs in category theory. The type theory axiomatizes notions of
category, functor, profunctor and a generalized form of natural trans-
formations. The type theory imposes an ordered linear restriction on
standard predicate logic, which guarantees that all functions between
categories are functorial, all relations are profunctorial, and all trans-
formations are natural by construction, with no separate proofs neces-
sary. Important category-theoretic proofs such as the Yoneda lemma and
Co-yoneda lemma become simple type-theoretic proofs about the rela-
tionship between unit, tensor and (ordered) function types, and can be
seen to be ordered refinements of theorems in predicate logic. The type
theory is sound and complete for a categorical model in virtual equip-
ments, which model both internal and enriched category theory. While
the proofs in our type theory look like standard set-based arguments, the
syntactic discipline ensure that all proofs and constructions carry over
to enriched and internal settings as well.

1 Introduction

Category theory is a branch of mathematics that studies higher-dimensional
typed algebraic structures. Originally developed for applications to homologi-
cal algebra, it was quickly discovered that categorical structures were common
in logic and computer science. Formal systems like logics, type theories and
programming languages typically have sound and complete models given by
notions of structured categories [31,30,34]. This Curry-Howard-Lambek corre-
spondence applies to simply typed lambda calculus [30], computational lambda
calculus [34], linear logic [24] dependent type theory [14,45], and many other
type theories designed based on category-theoretic semantics. The syntax of a
type theory should present an initial object in its category of models, a category-
theoretic reformulation of logical soundness and completeness.

While this research program has been quite successful, category-theoretic
notions can be overwhelming for beginners. In a traditional set-theoretic for-
mulation, notions such as adjoint functors and limits produce a proliferation of
“naturality” and “functoriality” side-conditions that must be discharged. For
example, when constructing an adjoint pair of functors between two categories,
a näıve approach would define all of the data of the action on objects, action on
arrows, prove the functoriality of such actions, as well as construct two families

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 6

113–134, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_6&domain=pdf
https://orcid.org/0000-0001-8141-195X
mailto:maxsnew@umich.edu
mailto:dlicata@wesleyan.edu
https://doi.org/10.1007/978-3-031-30829-1_6
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_6&domain=pdf

114 M. S. New and D. R. Licata

of transformations, prove they are natural and then finally proving a pair of
equalities relating compositions of natural transformations. Carrying out these
proofs explicitly is quite tedious and many newcomers are left with the impres-
sion that category theory is full of long, but ultimately trivial constructions.
This complexity is compounded when moving from ordinary category theory to
enriched and internal category theory, where constructions must be additionally
proven continuous, monotone, etc, in addition to natural or functorial. However,
these generalizations are often exactly what is needed for programming language
applications; for example, domain-, metric- and step-index-enriched categories
have been used to model recursive programming languages and internal cate-
gories have been used to model parametricity and gradual typing [53,9,44,36].

Fortunately, the tools of category theory itself can be employed to simplify
this complexity, specifically the tools of higher category theory. As an analogy in
differential calculus, when an adept analyst writes down a function, they do not
expand out the ε−δ definition of continuity for a function and proceed from first
principles, but rather use certain syntactic principles for defining functions that
are continuous by construction — e.g. that composition of continuous functions is
continuous. Similar principles apply to category theory itself: functors and natu-
ral transformations are closed under composition and whiskering operations, and
experienced category theorists rely on these syntactic principles to eliminate the
tedium of explicit proofs. In the case of category theory, these principles can be
formalized using algebraic structures such as 2-categories, bicategories, Yoneda
structures, (virtual) double categories, pro-arrow equipments [6,56,49,32,17], an
approach known as formal category theory. In these structures, rather than defin-
ing notions of category, functor and natural transformation from first principles,
they are axiomatized in a manner similar to how a category axiomatizes a notion
of space and homomorphism. Proofs in formal category theory apply to enriched
and internal settings, which are instances of the formal axioms. A downside
is that these algebraic structures are quite complicated, and practitioners typ-
ically employ either an algebraic combinator syntax (formalized in [18]) or a
2-dimensional diagrammatic language that can be quite beautiful and elegant,
but is also somewhat removed from the traditional formulation of category the-
ory in terms of sets and functions.

In this work, we apply the techniques of categorical logic to define a more
familiar logical syntax for carrying out constructions and proofs in formal cate-
gory theory. We call the resulting theory virtual equipment type theory (VETT)
as (hyperdoctrines of) virtual equipments [32,17], a particular semantic model
of formal category theory, provide a sound and complete notion of model for the
theory. VETT provides syntax for categories, functors, profunctors, and natural
transformations, which are defined using familiar term syntax and βη reasoning
principles for λ-functions, bound variables, tuples, etc. By adhering to a syn-
tactic discipline, the logic guarantees that all functor terms are automatically
functorial, and all natural transformation terms are natural. More specifically,
the syntax for transformations is a kind of indexed, ordered linear lambda calcu-
lus, where the indexing ensures that transformations are correctly natural and

A Formal Logic for Formal Category Theory 115

the ordering and linearity ensure that the proofs are valid in a large class of en-
riched and internal categories, such as enrichment in a non-symmetric monoidal
category. VETT provides an alternative to algebraic and string-diagram syn-
taxes for working with virtual equipments, similar to how the lambda calculus
provides an alternative to categorical combinators and string diagram calculi for
cartesian closed categories.

The syntax of VETT is an indexed, ordered linear, proof-relevant variant of
predicate logic over a unary type theory. Just as a predicate logic has a notion of
type, term, relation and implication, VETT is based on four analogous category-
theoretic concepts: categories, functors, profunctors and natural transformations
of profunctors. Categories are treated like types, and the unary functors we con-
sider in this paper are each represented by a term whose type is a category and
whose one free variable ranges over a category. The analog of a relation is a
profunctor (defined below), which is written like a set with free category vari-
ables. Like the restriction to unary functors, we restrict to profunctors with two
free variables. The logic is proof-relevant in that the implications of relations are
generalized to natural transformations of profunctors, and we use a λ-calculus
notation to describe these “proof terms”. This analogy to predicate logic can be
made formal: any construction in VETT can be erased to a corresponding con-
struction or proof in predicate logic, as sets, functions, relations, and implication
of relations define a (somewhat degenerate) virtual equipment.

While the restricted syntax developed in this paper does not express some
important concepts such as functor categories or opposite categories, the re-
striction is natural in that it corresponds exactly to virtual equipments, a well-
understood notion of model that can express a great deal of fundamental results
and constructions in category theory [43,47]. Moreover, we can work around
these unary/binary restrictions to some extent by viewing the type theory as a
domain-specific language embedded in a metalanguage. For example, while we
cannot talk about functor categories, we can state a theorem that quantifies
over functors using the meta-language’s “external” universal quantifier (which
does not have automatic functoriality/naturality properties). To support this,
VETT includes a third layer, an extensional dependent type theory in the style
of Martin-Löf type theory. All of our ordered predicate logic judgments are also
indexed by a context from this dependent type theory, and the type theory
includes universe types for categories, functors, profunctors and natural trans-
formations. This allow us to formalize theorems the object logic is too restrictive
to encode, analogous to 2-level [51,2,39] or indexed type theories [27,15,52,29].

While we emphasize the applications to enriched and internal category theory
in this work, there is potential for more direct application to programming lan-
guage semantics. Ordinary predicate logic is the foundation for proof-theoretic
presentations of logical relations, such as Abadi-Plotkin logic for parametricity
and LSLR and Iris for step-indexed logical relations proofs [40,20,28]. We con-
jecture that VETT might similarly serve as the foundation for a logic of ordered
structures, which abound in applications: rewriting and approximation relations
can both be modeled as orderings and logical relations involving these structures

116 M. S. New and D. R. Licata

are proven to respect orderings; operational logical relations must be downward-
closed and approximation relations should satisfy transitivity. Just as LSLR and
Iris release the user from the syntactic burden of explicit step-indexing, VETT
may be used to release the user from the syntactic burden of proving downward-
closure or transitivity side-conditions. Additionally, VETT may serve as the
basis of a future domain specific proof assistant for category-theoretic proofs.
To pilot-test this, we have formalized the syntax of VETT in Agda 2.6.2.2, us-
ing the rewrite mechanism to make VETT’s substitution and β-reduction rules
definitional equalities.1 We have used this lightweight implementation to check
a number of examples.

Basics of Profunctors. While we assume the reader has some background
knowledge of category theory, we briefly define profunctors, which are not in-
cluded in many introductory texts. Recall that a category � has a collection of
objects and morphisms with identity and composition, and a functor F : �→ �

is a function on objects and a function on morphisms that preserves identity and
composition. A category can be thought of as a generalization of a preordered
set, which has a set of elements and a binary relation on its objects satisfying
reflexivity and transitivity. A category is then a proof-relevant preorder, where
morphisms are the proofs of ordering, and the reflexivity and transitivity proofs
must satisfy identity and unit equations. A functor is then a proof-relevant mono-
tone function. Given categories C and D, a profunctor R from C to D, written
R : � � � is a functor R : �o × � → Set2. Because a profunctor outputs a
Set rather than a proposition, it is itself a proof-relevant relation. Thinking of
categories as proof-relevant preorders, functoriality says that the profunctor is
downward-closed in� and upward-closed in�. Given profunctors R,S : �� �,
a homomorphism from R to S is a natural transformation, which in the pre-
ordered setting is simply an implication of relations.

Profunctors are very useful for formalizing category theory, but an additional
reason we make them a basic concept of VETT is that they allow us to give a
universal property for the type of “morphisms in a category �”. This is analogous
to how the J elimination rule for the identity type in Martin-Löf type theory
gives a universal property for morphisms in a groupoid (the special case of a
category where all morphisms are invertible) [26,5,50]. The reason profunctors
are useful for this purpose is that, for any category �, Hom� : � � � is
a profunctor. On preorders this is just the preorder’s ordering relation itself.
Moreover, the hom profunctor is the unit for a composition of profunctors R�S
which is defined as a co-end. The composition of profunctors is a generalization
of the composition of relations, and just as the equality relation is the identity
for the composition of relations, the hom profunctor is the identity for this
composition. The unit law for the hom profunctor can be seen as a “morphism
induction” principle, analogous to the “path induction” used in homotopy type
theory (though in this paper we consider only ordinary 1-dimensional categories,
not higher generalizations).

1 https://github.com/maxsnew/virtual-equipments/blob/master/agda/STC.agda
2
�

o is the notation we use for the opposite category of �

https://github.com/maxsnew/virtual-equipments/blob/master/agda/STC.agda

A Formal Logic for Formal Category Theory 117

Outline. In Section 2 we introduce the syntax of VETT. In Section 3 we
demonstrate how to use our syntax for formal category theory. In Section 4, we
develop some model theory for VETT, including a sound and complete notion
of categorical model and sound interpretation in virtual equipments modeling
ordinary, enriched and internal category theory. In Section 5, we discuss related
type theories and potential extensions.

2 Syntax of VETT

In Figure 1 we give a table summarizing the relationship between the judgments
and connectives of higher-order predicate logic with our ordered variant. Due
to the incorporation of variance, some unordered concepts generalize to multi-
ple different ordered notions. For instance, covariant and contravariant presheaf
categories generalize the power set. Further, because we only have binary rela-
tions rather than relations of arbitrary arity, we have only restricted forms of
universal and existential quantification which come combined with implications
and conjunctions.

Higher-Order Logic Virtual Equipment Type Theory

Set X Category C
X × Y C× D

1 1
PX P+X and P−X

{(x, y) ∈ X × Y |R(x, y)} ∑
α:C;β:D R

Function f(x : X) : Y Functor/Object α : � � A : �
Relation R(x, y) Profunctor/Set α : �;β : � � R

R ∧Q R×Q
� 1

∀x.P ⇒ Q P �∀α:�Q and Q ∀α:��P

∃x.P ∧Q P
∃α:�	 Q

x =X y α→� β
Proof ∀−→α .R1 ∧ · · · ⇒ Q Nat. Trans./Element α1, x1 : R1(α1, α2), . . . � t : Q

Fig. 1. Analogy between Higher-Order Logic and VETT Judgments and Connectives

The syntactic forms of VETT are given in Figure 2. First, we have cate-
gories, which are analogous to sorts in a first-order theory. We have M a base
sort, product and unit sorts, as well as the graph of a profunctor and the nega-
tive and positive presheaf categories. Next, objects a, b, c are the syntax for the
functors between categories. We call them objects rather than functors, because
in type-theoretic style, a functor is viewed as a “generalized object” parameter-
ized by an input variable α : �. Next, sets P,Q,R are the syntax for sets. These
sets denote profunctors, i.e., a categorification of relations. Similar to functors,
rather than writing profunctors as functions �o ×� → Set, we write them as

118 M. S. New and D. R. Licata

sets with a contravariant variable α : � and a covariant variable β : �. The sets
we can define are the Hom-set, the tensor and internal hom, as well as products
of sets, profunctors applied to two objects and elements of positive and nega-
tive presheaves. Finally we have elements of sets, which correspond to natural
transformations of multiple inputs, where again we view natural transformations
valued in a profunctor as generalized elements of profunctors.

After these forms we have types and terms, which represent the meta-language
that we use to talk about categories/profunctors/natural transformations. In ad-
dition to standard dependent type theory with Π and Σ and identity types, we
have universes of categories, functors, profunctors and natural transformations.

Finally we have several forms of context which are used in the theory. The
contexts Γ of term variables with their types are as usual; we write “Γ type
context” to indicate that a context is well-formed. We name the remaining con-
texts after the judgements that they are used by. The set contexts Ξ, which will
be used to type-check sets, contain object variables with their categories. The
two forms of set context are α : �, containing one variable that can be used
both contravariantly and covariantly, and α : �;β : �, containing a contravari-
ant variable α and covariant variable β. Finally, the transformation contexts
Φ contain element variables with their sets, alternating with those sets’ object
variables with their categories. A typical Φ has the shape

α1 : �1, x1 : R1(α1, α2), α2 : �2, x2 : R2(α2, α3), . . . , Rn(αn, αn+1), αn+1 : �n+1

and represents the composition of the “relations” R1, R2, R3, . . . , Rn. We write
d−(Φ) for the first category variable in Φ (which we regard as the negative or
contravariant position), d+(Φ) for the last category variable in Φ (which we
regard as the positive or covariant position) and use the notation d±Ξ with the
same meaning. We write Φ1 � Φ2 for the append of two transformation contexts,
which is only well-formed when the last variable in Φ1 is equal to the first variable
in Φ2. Formal inductive definitions are in the appendix, but intuitively:

d−(α1 : �1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : �n+1) = α1 : �1

d+(α1 : �1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : �n+1) = αn+1 : �n+1

(Φ1, β : �) � (β : �, Φ2) = Φ1, β : �, Φ2

Next, we overview our basic judgement forms. We have

– Categories: Γ � � Cat, where Γ type context.
– Objects/functors: Γ | α : � � a : �, where Γ � � Cat and Γ � � Cat. Ob-

jects are typed with an input object variable α : � and an output category
�; in the semantics, objects are modeled as functors �→ �.

– Sets/profunctors: Γ | Ξ � S Set, where Γ � Ξ set context. A set S is typed
with respect to a set context Ξ to describe its covariant/contravariant depen-
dence on some input objects. Sets are semantically modeled as profunctors.

– Elements/natural transformations: Γ | Φ � s : R, where Γ � Φ trans. context
and Γ | Φ � R Set. A transformation s has a context Φ of transformation
variables and a single output set R. To be well-formed, the context and set

A Formal Logic for Formal Category Theory 119

Categories �,�,� ::= �M� | �×� | � | ∑α;β P | P−
� | P+

�

Objects a, b, c ::= α | Ma | (a, b) | () | πia | (a−, a+, s) | π−a | π+a | λα : �.R

Sets P,Q,R ::= a→� b | P ∃β� Q | P �∀β Q | S ∀α�R | 1 | P ×Q
| M(a; b) | b ∈ a | a � b

Elements s, t, u ::= x | ind→(α.t, b1, s, b2) | idb | ind�(x, β, y.r; s) | (s, b, t) | s �a t
| λ�(x, α).s | s a� t | λ�(α, x).s | πis | (s1, s2) | () | πea | Mb

Type A,B,C ::= . . . | SmallCat | Cat | Fun�� | Prof�� | ∀α : �.R
Term L,M,N ::= . . . | 	�
 | λα : �.a | λ(α : �;β : �).R | λα.t

Type Context Γ,Δ ::= · | Γ,X : A
Set Context Ξ,Z ::= α : � | α : �;β : �

Trans. Context Φ, Ψ ::= α : � | Φ, x : P, β : �

Fig. 2. VETT Syntactic Forms

must be parameterized by the same contravariant and covariant object vari-
ables. To ensure this, we use a coercion operation Φ from transformation
contexts to set contexts that erases everything in the context but the left-
most and right-most object variables (α : � = α : � and Φ = d−(Φ); d+(Φ)).

– Meta-language types and terms: Γ � A Type and Γ � M : A as in standard
dependent type theory.

The variable rules for objects and elements are

Γ | α : � � α : � Γ | α : �, x : R, β : � � x : R

As when using variables in linear logic, the latter rule applies only when the con-
text contains a single set R. All syntactic forms typed in context admit an action
of substitution. For types and terms, this is as usual. Objects α : � � a : � can
be substituted for object variables β : � in other objects. We can also substitute
objects into sets, that is, if we have a set P parameterized by a contravariant
variable α : � and a covariant variable β : �, then we can substitute objects
a : � and b : � for these variables P [a/α; b/β]. This generalizes the ordinary
precomposition of a relation by a function. Semantically this is the “restriction”
of a profunctor along two functors, which is just composition of functors if a pro-
functor is viewed as a functor to Set. Modeling this operation as a substitution
considerably simplifies reasoning using profunctors. Finally we have the action
of substitution on elements/natural transformations. First, we can substitute
elements/natural transformations for the set variables in elements, denoting the
composition of natural transformations. Second, an element is also parameter-
ized by a contravariant and a covariant category variable α;β. We can think
of natural transformations as polymorphic in the categories involved, and so
when we make a transformation substitution, we also instantiate the polymor-
phic category variables with objects. The full syntactic details of substitution
are included in the appendix.

120 M. S. New and D. R. Licata

2.1 Category Connectives

In this section we discuss some connectives for constructing categories, which are
specified by introduction and elimination rules in Figure 3 (the βη equality and
substitution rules are included in the appendix). The introduction and elimina-
tion rules make use of functors, profunctors, and natural transformations. First
we introduce the additive connectives: the unit category 1 and product cate-
gory �×� have the usual introduction and elimination rules defining functors
to/from them. Next, we introduce the graph of a profunctor

∑
α;β P . Just as a

relation R : A × B → Set can be viewed as a subset {(a, b) ∈ A × B|R(a, b)},
any profunctor P : �o

− ×�+ → Set can be viewed as a category with a functor
to �−×�+ (no op), specifically a two-sided discrete fibration. In set-based cat-
egory theory, the objects of

∑
α;β P are triples (a−, a+, s : P (a−, a+)) and mor-

phisms from (a−, a+, s) to (a′−, a
′
+, s

′) are pairs of morphisms f− : a− → a′− and
f+ : a+ → a′+ such that P (id, f+)(s) = P (f−, id)(s′). With various choices of P ,
this connective can be used to define the arrow category, slice category, comma
category and category of elements. In our syntax we define it as the universal
category � equipped with functors to �− and �+ and a natural transformation
to P .

Lastly, we define the negative and positive presheaf categories P−� and
P+�. These are given a syntax suggestive of the fact that they generalize the
notion of a powerset, and so can be thought of as “power categories”. Note that
we include a restriction that the input category is small, which is an inductively
defined by saying all base categories are small, the unit is small, product of small
categories is small and the graph of a profunctor over small categories is small.
Notably, the presheaf categories themselves are not small. The negative presheaf
category is defined by its universal property that a functor into it � → P−�
is equivalent to a profunctor �o × � → Set. The introduction rule constructs
an object of the negative presheaf category from such a profunctor and the
elimination rule inverts it. We use the notation p ∈ a for the elements of the
induced profunctor. Since a occurs in a negative position, it must depend only
on the contravariant variable d−Ξ and vice-versa for p. The positive presheaf
category is then the dual. In ordinary set-theoretic category theory the negative
presheaf category is the usual presheaf category Set�

o

, and the positive presheaf
category is the opposite of the dual presheaf category (Set�)o.

2.2 Set Connectives

Next, in Figure 4, we cover the connectives for the sets/profunctors, which clas-
sify elements/natural transformations (the β/η-rules are in the appendix). First,
the unit set a→� b is our syntax for the profunctor of morphisms in � instan-
tiated at generalized objects a and b. Its introduction and elimination rules are
analogous to the usual rules for equality in intensional Martin-Löf type theory.
The introduction rule is the identity morphism (reflexivity) and the elimination
rule is an induction principle: we can use a term of s : a→� b by specifying
the behavior when s is of the form idα in the form of a continuation α.t. Like

A Formal Logic for Formal Category Theory 121

Unit:
Γ � 1 Cat Γ | α : C � () : 1

Product:
Γ � �1 Cat �2 Cat

Γ � �1 ×�2 Cat

Γ | α : � � a1 : �1 Γ | α : � � a2 : �2

Γ | α : � � (a1, a2) : �1 ×�2

Γ | α : � � a : �1 ×�2

Γ | α : � � πia : �i

Graph of a profunctor:

Γ | α : �; β : � � P Set

Γ �
∑

α;β

P Cat

Γ | α : � � a− : �− Γ | α : � � a+ : �+ Γ | α : � � s : P [a−/α; a+/β]

Γ | α : � � (a−, a+, s) :
∑

α:�−;β:�+

P

Γ | α : � � a :
∑

α:�−;β

P

Γ | α : � � π−a : �−

Γ | α : � � a :
∑

α;β:C+

P

Γ | α : � � π+a : �+

Γ | α : � � a :
∑

α;β

P

Γ | α : � � πea : P [π−a/α;π+a/β]

Negative Presheaf:

Γ � � Cat � Small

Γ � P−
� Cat

Γ | d−Ξ � a : � Γ | d+Ξ � p : P−
�

Γ | Ξ � a ∈ p Set

Γ | α : �; β : � � R : Set

Γ | β : � � λα : �.R : P−
�

Positive Presehaf:

Γ � � Cat � Small

Γ � P+
� Cat

Γ | d−Ξ � p : P+
� Γ | d+Ξ � a : �

Γ | Ξ � p � a Set

Γ | α : �; β : � � R : Set

Γ | α : � � λβ : �.R : P+
�

Fig. 3. Category Conectives

the J elimination rule for equality in Martin-Löf type theory, P must be “fully
general”, i.e. well-typed for variables α and β. This is because for distinct vari-
ables α and β, α→� β denotes the unit in a virtual double category, which has a
universal property, but a→� b denotes a restriction of the unit, which in general
does not. Those familiar with linear logic as in e.g. [41] might expect a more
general rule, where the continuation t is allowed to use variables that are not
used in s, i.e., have a context Φl � Φr and the conclusion of the rule to have a
context Φl � Φ � Φr. Because of dependency, this is not necessarily well-formed
in cases where the endpoints a and b of a→� b are not distinct variables. How-
ever, the instances of this more general rule that do type check are derivable
from our more restricted rule using right/left-hom types.

The tensor product of sets is a kind of combined existential quantifier and

monoidal product, which we combine into a single notation P
∃β� Q, where β

is the covariant variable of P and the contravariant variable of Q. Then the
covariant variable of the tensor product is the covariant variable of Q and the
contravariant variable similarly comes from P . In ordinary category theory, this
is the composition of profunctors, and is defined by a coend of a product. We
require that the variable β quantifies over a small category �, as in general this
composite doesn’t exist for large categories. The introduction and elimination are
like those for a combined tensor product and existential type: the introduction
rule is a pair of terms, with an appropriate instantiation of β, and the elimination
rule says to use a term of a tensor product, it is sufficient to specify the behavior
on two elements typed with an arbitrary middle object β.

122 M. S. New and D. R. Licata

Next, we introduce the contravariant (P ∀α�R) and covariant (R�∀α P) homs
of sets, which are different from each other because we are in an ordered logic.
These are a kind of universally quantified function type, where the universally
quantified variable must occur with the same variance in domain and codomain.
In the contravariant case, it occurs as the contravariant variable in both, and
vice-versa for the covariant case. To highlight this, the notation for the con-
travariant dependence puts the quantified variable on the left of the triangle, as
contravariant variables occur to the left of the covariant variable, and similarly
the covariant hom has the quantified variable on the right. Similar to ordered
lambda calculus, the covariant hom is right-associative while the contravariant
hom is left-associative. Then the covariant variable of the contravariant hom set
is the covariant variable of the codomain and, and the contravariant variable of
the hom set is the covariant variable of the domain, as the two contravariances
cancel. The covariant hom is dual. Semantically, in ordinary category theory
these are known as the hom of profunctors and are adjoint to the composition of
profunctors [7]. The two connectives have similar introduction and elimination
rules in the form of λ terms abstracting over both the object of the category
and the element of the set, and appropriate application forms. To keep with our
invariant that the variable occurrences occur left to right in the term syntax in
a manner matching the context, we write the covariant application in the usual
order s �a t where the function is on the left and the argument is on the right,
and the contravariant application in the flipped order. We also write the instan-
tiating object as a superscript to de-emphasize it, as in practice it can often be
inferred.

Finally, we have the cartesian unit and product sets, which are analogous to
the normal unit and product of types. The most notable point to emphasize is
that in the formation rule for the product, the two subformulae should have the
same covariant and contravariant dependence (as with linear logic, some con-
structions can syntactically use a variable more than once and still be “linear”).

2.3 Type Connectives

Finally, we briefly describe the connectives for the “meta-logic”, which extends
Martin-Löf type theory with Π/Σ and extensional identity types (with their
standard rules) (Fig. 5). We use extensional identity types so that the descrip-
tion of models is simpler, but intensional identity types could be used instead.
The types we include are universes for the object categorical logic: types of
small categories and locally small categories, functors, profunctors and natural
transformations. The rule for the types of small categories and (large) categories
are very similar: any definable category defines an element of type Cat, and any
element of that type can be reflected back into a category. The only difference
for SmallCat is that the categories involved additionally satisfy � Small. Again
we elide the βη principles, which state that �−� and �−� are mutually inverse.
Since every small category � Small is a category � Cat, there is a definable
inclusion function from SmallCat to Cat and the βη properties ensure that this
is a monomorphism.

A Formal Logic for Formal Category Theory 123

Unit/morphism set:

Γ | d−Ξ � a1 : �

Γ | d+Ξ � a2 : �

Γ | Ξ � a1 →� a2 Set

Γ | β : � � a : �

Γ | β : � � ida : a→� a

Γ | α : �; β : � � P Set

Γ | α : � � t : P [α/α;α/β]

Γ | Φ � s : a→� b

Γ | Φ � ind→(α.t, A, s, B) : P [a/α; b/β]

Tensor product:

� Small

Γ | d−Ξ; β : � � P Set

Γ | β : �; d
+
Ξ � Q Set

Γ | Ξ � P
∃β:�
� Q Set

Γ | d+Ψs � b : �

Γ | Ψs � s : P [b/β]

Γ | Ψt � t : Q[b/β]

Γ | Ψs � Ψt � (s, b, t) : P
∃β:�
� Q

Γ | Φl � x : P, β : �, y : Q � Φr � t : R

Γ | Φm � s : P
∃β:�
� Q

Γ | Φl � Φm � Φr � ind�(x, β, y.t; s) : R

Right hom:

d
+
Ξ Small

Γ | d+Ξ;α : � � R Set

Γ | d−Ξ;α : � � P Set

Γ | Ξ � R�
∀α:�

P Set

Γ | Φ, x : R,α : � � t : P

Γ | Φ � λ
�
(x : R,α : �).t : R�

∀α:�
P

Γ | Φf � s : R�
∀α:�

P

d
+
Φa � a : �

Φa � t : R[a/α]

Γ | Φf � Φa � s �
a
t : P [a/α]

Left hom:

d
−
Ξ Small

Γ | α : �; d
−
Ξ � R Set

Γ | α : �; d
+
Ξ � P Set

Γ | Ξ � P
∀α:�

R Set

Γ | α : �, x : R,Φ � t : P

Γ | Φ � λ
�
(α : �, x : R).t : P

∀α:�

R

Γ | d−Φa � a : �

Γ | Φa � s : R[a/α]

Γ | Φf � t : P
∀α:�

R

Γ | Φa � Φf � s
a

 t : P [a/α]

Cartesian unit and products:
Γ | Ξ � 1 Set Γ | Φ � () : 1

Γ | Ξ � R Set

Γ | Ξ � S Set

Γ | Ξ � R × S Set

∀i ∈ {1, 2}. Γ | Φ � si : Ri

Γ | Φ � (s1, s2) : R1 × R2

Γ | Φ � s : R1 × R2

Γ | Φ � πis : Ri

Fig. 4. Set Connectives

Next, we have the types of all functors and profunctors between any two
fixed categories. The introduction and elimination forms are those for unary and
binary function types respectively, where metalanguage terms of type Fun��
can be used to construct an object/functor, while metalanguage terms of type
Prof�� can be used to construct a set/profunctor.

Finally we include a type ∀α : �.P which we call the set of “natural ele-
ments” of P . The name comes from the case that P is of the form F (α)→G(α)
in which case the type ∀α : �.F (α)→G(α) can be interpreted as the set of
all natural transformations from F to G. More generally this is modeled as an
end, and we notate it with a universal quantifier (just as we do for the quanti-
fiers in left/right hom types). Syntactically, ∀α.P is a meta-language type that
represents elements/natural transformations with exactly one free variable.

3 Formal Category Theory in VETT

To demonstrate what formal category theory in VETT looks like, we demon-
strate some basic definitions and theorems. While it is well known that much
category theory can be formalized in virtual equipments, we show these exam-
ples to demonstrate how the VETT syntax gives a more familiar syntax to these
constructions, while still avoiding the need for explicit naturality and functorial-

124 M. S. New and D. R. Licata

Γ � SmallCat

Γ � � Small

Γ � ��� : SmallCat

Γ � M : SmallCat

Γ � �M� Small Γ � Cat

Γ � � Cat

Γ � ��� : Cat

Γ � M : Cat

Γ � �M� Cat

Γ � � Cat Γ � � Cat

Γ � Fun�� Type

Γ | α : � � A : �

Γ � λα : �.A : Fun��

Γ | α : � � A : � Γ � M : Fun��

Γ | α : � � MA : �

Γ � � Cat Γ � � Cat

Γ � Prof�� Type

Γ | α : �; β : � � R Set

Γ � λα : �; β : �.R : Prof��

Γ � M : Prof��

Γ | d−Ξ � A : �

Γ | d+Ξ � B : �

Γ | Ξ � MAB Set

Γ | α : � � P Set

Γ � ∀α : �.P Type

Γ | α : � � t : P

Γ � λα.t : ∀α.P

Γ � M : ∀α.P Γ | β : � � a : �

Γ | β : � � M
a

: P [a/α]

Fig. 5. Type Connectives

ity side conditions. We have mechanized some of the results in this section (e.g.
Lemma 2 and Lemma 3 and the maps in Lemma 4) in Agda.3

First, we using the elimination for the unit set, we can see that all construc-
tions are (pro-)functorial:

Construction 1 For any small category �, we can construct natural elements

1. Identity: ∀α : �.α→� α
2. Composition: ∀α1 : �.(α1 →� α2) �

∀α2:�(α2 →� α3) �
∀α3:�(α1 →� α3)

3. Functoriality: for any F : Fun��, ∀α1 : �.(α1 →� α2) �
∀α2:�(F (α1)→�

F (α2)).
4. Profunctoriality: for any R : Prof�� if � is small then

∀α1 : �.(α1 →� α2) �
∀α2:�Rα2β2 �

∀β2:�(β2 →� β1) �
∀β1:�Rα1β1

Identity and Composition generalize the reflexivity and transitivity properties of
equality, respectively, with the lack of symmetry being a key feature of the gener-
alization. In addition, we can prove that the (pro)-functoriality axioms commute
with the composition proof by the η principle for the unit. (Pro-)Functoriality
generalizes the statement that all functions and relations respect equality. Nat-
urality is more complex to state, and it is a statement about the proofs so it has
no analog in ordinary higher-order logic. The following version is stated for any
profunctor, with the usual case of naturality arising when Rαβ = Fα→�Gβ.

Lemma 1 (Naturality). For any t : ∀α : �.R(α;α), by composing with pro-
functoriality, we can construct terms α1 : �, f : α1 →� α2, α2 : � � lcomp(f, tα2)
and rcomp(tα1 , f) : R(α1;α2) that are both equal to ind→(f, t).

Next, we turn to some of the central theorems of category theory, the Yoneda
and Co-Yoneda lemmas. Despite being ultimately quite elementary, these are no-
toriously abstract. In VETT, we view these as ordered generalizations of some
very simple tautologies about equality. For instance, the Yoneda lemma gener-
alizes the equivalence between the formulae ∀y.x = y ⇒ Py and Px for any x.

3 https://github.com/maxsnew/virtual-equipments/blob/master/agda/

Examples.agda

https://github.com/maxsnew/virtual-equipments/blob/master/agda/Examples.agda
https://github.com/maxsnew/virtual-equipments/blob/master/agda/Examples.agda

A Formal Logic for Formal Category Theory 125

Lemma 2. Let α : � and π : P+�. Then

1. (Yoneda) The profunctor (α→� α′) �∀α
′
(π � α′) is isomorphic to π � α

2. (Co-Yoneda) The profunctor (π � α′)
∃α′

� (α′ → α) is isomorphic to π � α

The proofs both follow from the unit elimination rule, which is essentially the
Yoneda lemma—the two cases of showing (1) is an isomorphism are precisely
the β and η rules for the unit.

Next, we have the “Fubini” theorems, which relate the tensor and hom types.
The statement and proofs for these theorems are analogous to proofs relating
tensor and hom in ordered logic. For instance, the second isomorphism below is
analogous to the equivalence (P �Q) � R ∼= P � Q � R in ordered logic.

Lemma 3 (Fubini). The following isomorphisms hold when the corresponding
profunctors are well typed.

1. P (α;β)
∃β�(Q(β; γ)

∃γ� R(γ; δ)) ∼= (P (α;β)
∃β� Q(β; γ))

∃γ� R(γ; δ)

2. (P (δ;β)
∃β� Q(β; γ)) �∀γ S(α; γ) ∼= P (δ;β) �∀β Q(β; γ) �∀γ S(α; γ)

3. S(γ; δ) ∀γ	(P (γ;β)
∃β� Q(β;α)) ∼= S(γ; δ) ∀γ	P (γ;β) ∀β	Q(β;α)

4. Q(δ; γ) �∀γ(S(β; γ) ∀β	P (β;α)) ∼= (Q(δ; γ) �∀γ S(β; γ)) ∀β	P (β;α)
5. ∀α.P (α;β) �∀β Q(α;β) ∼= ∀β.Q(α;β) ∀α	P (α;β)

Proof. We show one case as an example, the forward direction of (1) is given by
λα.λ�(x, δ).ind�(p, β, y.ind�(q, γ, r.((p, β, q), γ, r); y);x)

Next, we can prove that two definitions of an adjunction are equivalent:

Lemma 4. For R : Fun�� and L : Fun��, the following are in bijection:

1. An isomorphism of profunctors (Lα→� β) ∼= (α→�Rβ)
2. A unit η : ∀α.α→�R(Lα) and co-unit ε : ∀β.L(R(β))→� β satisfying tri-

angle identities.

Proof. Given the forward homomorphism lr, we can construct η = λα.lrα �Lα idα.
Given the unit we can reconstruct the forward homomorphism using comp (com-
position) and fctor (functoriality) from Construction 1 as
compα �R(Lα) ηα �Rβ(fctor(R)Lα �β f).

We can define weighted limits, which as special cases include ordinary limits
and Kan extensions.

Definition 1. For a functor D : Fun�� and a profunctor W : Prof��, the
limit of D weighted by W is (if it exists) a functor limWD : Fun�� with an
isomorphism α→�(lim

WD)k ∼= Wkj �∀j(α→�Dj)

This generalizes the usual definition that a morphism into a limit is a cone over
the diagram (α→�Dj) to be parameterized by a weight Wkj. Then we can
prove the well-known theorem that right adjoints preserve (weighted) limits:

126 M. S. New and D. R. Licata

Theorem 1. If limWD exists and is a limit and R : Fun��′ has a left adjoint
L, then λκ.R((limWD)κ) is the limit of λj.R(Dj) weighted by W .

Proof.

γ→R((limWD)κ) ∼= Lγ→(limWD)κ ∼= Wkj �∀j Lγ→Dj ∼= Wkj �∀j γ→R(Dj)

This is a high level proof in terms of isomorphisms that may be written in
VETT. The first two steps are the instantiation of assumptions (adjointness,
weighted limits). The last step uses the fact that a natural isomorphisms lift to
natural isomorphism of homs of profunctors. The construction of this isomor-
phism illustrates how naturality need not be proved explicitly in VETT. For
any φ : ∀α.R′αβ �∀β Rαβ and ψ : ∀γ.Sγβ �∀β S′γβ we can construct a natural
transformation φ � ψ : ∀γ.(Rαβ �∀β Sγβ) �∀α R′αβ �∀β S′γβ as
λγ.λ�(f, α).λ�(r, β).ψγ �β(f �β(φα �β r)). Furthermore if φ and ψ have inverses,
then φ−1 � ψ−1 is the inverse of φ � ψ.

4 Semantics

Next, we develop the basics of the model theory for VETT. First, we define
a sound and complete notion of categorical model based on hyperdoctrines of
virtual equipments. Then we instantiate this general notion of model to show that
the VETT can be interpreted in ordinary category theory as well as enriched,
internal and indexed notions.

First, we can model the judgmental structure of the unary type theory and
predicate logic in virtual double categories that are split fibrant and have a notion
of small object [32,17]. We briefly recount the structure present in a virtual
double category, but see [17] for a precise definition of the composition rules for
2-cells and functor of virtual double categories.

Definition 2. A virtual double category V consists of

1. A category Vo of “objects and vertical arrows”
2. A set Vh of “horizontal arrows” with source and target functions s, t : Vh →

Vo
2

3. Sets of 2-cells of the following form, with appropriate “multi-categorical”
notions of identity and composition:

C0 · · · Cn

φ

D0 D1

Rn�

f g

S
�

R0�

We say that the 2-cell φ has S as codomain, the sequence R0 . . . Rn as domain
and call f and g the left and right “frames”, or that φ is framed by f and g.

A Formal Logic for Formal Category Theory 127

We say a virtual double category is split fibrant when it has a choice of re-
strictions, that is, for any horizontal arrow R : C � D and vertical arrows
f : C ′ → C and g : D′ → D there is a chosen horizontal arrow R(f, g) : C ′ � D′

with a cartesian 2-cell to R framed by f, g and these chosen cartesian lifts are
functorial in f, g ([46]). A choice of small objects is a subset of the objects
Vs ⊆ Vo. A morphism of split fibrant virtual double categories with small ob-
jects is a functor of the virtual double categories that additionally preserves the
restrictions and smallness of objects. This defines a category fVDCs.

In the presence of restrictions, every 2-cell can be represented as a “globular”
2-cell where the left and right frame are identities [46]. For example the 2-cell
φ above can be represented as one with the same domain but whose codomain
is S(f, g). This property is crucial for the completeness of our semantics as we
only include a syntax for these globular terms (proof of Construction 2). Each
component of this definition has a direct correspondence to a syntactic structure
in VETT. The objects of Vo models the category judgment and the morphisms
model the functor judgment. The set Vh models the profunctor judgment. A
composable string R0 · · ·Rn models the profunctor contexts. The 2-cells corre-
spond to the natural transformation judgment where we have taken the restric-
tion S(F,G) of the codomain. Note that Cruttwell and Shulman define a virtual
equipment to be a virtual double category with all restrictions and all units. The
units are the model of the unit of profunctors connective and so all of our models
with the unit will be virtual equipments, hence the name VETT.

To model the dependent type theory and indexing of category-theoretic judg-
ments by a Γ with an action of substitution, we use a variation on Lawvere’s
notion of hyperdoctrine for modeling predicate logic[31]4:

Definition 3 (VETT Judgmental model). A VETT judgmental model (VMJ)
is a pair of a category with families C and a functor V (−) : Co → fVDCs.

Categories with families C model dependent type theory [22] and for each se-
mantic context Γ , V Γ models the VETT judgments in context Γ , with the
functoriality modeling the fact that all of these judgments admit a well-behaved
action of substitution. A VMJ is then precisely the structure corresponding to
the judgments and actions of substitution in VETT.

Construction 2 (Syntactic Model) The syntax of VETT with with any sub-
set of connectives are included presents a VMJ .

Proof. Define the category of families using the dependent type structure and
the virtual equipment structure having (α-equivalence classes of) syntactic cat-
egories as objects, functors/sets as vertical/horizontal arrows and interpreting
compositions/restrictions as substitutions. The biggest gap between syntax and
semantics is in the definition of the 2-cells. A 2-cell from
(α1 : �1;α2 : �2 � R1), (α2 : �2;α3 : �3 � R2), . . . to (β1 : �1;β2 : �2 � S)

4 note that unlike in hyperdoctrines, we do not require quantifiers adjoint to substi-
tution

128 M. S. New and D. R. Licata

with frames α1 : �1 � b1 : �1 and αn : �n � b2 : �2 is given by a term
x1 : R1, x2 : R2 . . . � s : S[b1/β1; b2/β2]. Composition is defined by substitution.

Then the connectives of VETT each precisely correspond to a universal con-
struction in a VMJ . The Π,Σ, Id types correspond to their standard semantics
in a CwF and the connectives for categories and profunctors correspond to uni-
versal constructions in the virtual double categories. Products of categories are
interpreted as products in the vertical category, and products of sets as products
in the category of pro-arrows and 2-cells. The units, tensor and covariant and
contravariant homs are modeled by the universal properties of the same names,
as described in [46]. The graph of a profunctor is modeled by tabulators [25].
Finally, the covariant and contravariant presheaf categories can be described as
a weakening of the definition of a Yoneda equipment from [19] to virtual double
categories. More detailed descriptions of these universal properties are included
in the extended version [37]. Then the soundness and completeness of this notion
of categorical model is formalized by the following initiality theorem.

Theorem 2 (Initiality). The syntax of VETT with any subset of connectives
that includes the hom types presents a VMJ that is initial in the category of VMJ

with the chosen instances of the universal properties and functors that preserve
such chosen instances.

Proof. The construction 2 can be extended for any connective modularly, with
the exception that the unit relies on the presence of hom sets in order to satisfy
the “distributivity” requirement that its elimination can occur in any context.
Then we can construct the unique morphism to any HVE induction on syntax.

Now that we have a category-theoretic notion of model, we give some model
construction theorems that can be used to justify our intuitive notion of seman-
tics in (enriched, internal, indexed) category theory. First, we can extend any
set-theoretic model of the category theoretic judgments to a hyperdoctrine of
models where the category of families is the category of sets:

Construction 3 Given a V ∈ fVDCs, we can construct a VMJ V− : Set →
vDblr by defining of (VΓ)o to be functions VΓ

o , and similarly for morphisms and
2-cells with all operations given pointwise.

Then to define a model of VETT with a collection of connectives it is sufficient
to construct a virtual equipment with the corresponding universal properties.
The “standard model” is the virtual double category of locally small categories
where the small objects are the small categories.

Construction 4 Fix a cardinal κ. The virtual double category Catκ is defined
to have as objects locally κ-small categories, small objects as κ-small categories,
vertical morphisms as functors, horizontal arrows as functors �o ×� → κSet
and 2-cells as morphisms of profunctors. Restriction of profunctors is given by
composition, which is strictly associative and unital. CatU has objects satisfying
the universal properties of all connectives in VETT.

A Formal Logic for Formal Category Theory 129

More generally, categories internal to, enriched in and/or indexed by suffi-
ciently nice categories define a virtual equipment that model the connectives
of VETT. We highlight one example from the literature that is highly general:
Shulman’s enriched indexed categories [47]. Shulman’s construction defines a
virtual double category of large and small V-categories for any pseudofunctor
V : So → MonCat where S is a category with finite products. He gives ex-
amples that show that this subsumes ordinary internal, enriched and indexed
categories for suitable choices of V, as well as more general categories that can
be thought of as both indexed and enriched. This is slightly weaker then what we
require: to have split restrictions, we need that V be a strict functor, not merely
a pseudo-functor. This is analogous to the situation for dependent type theory,
where syntactic substitution is strictly associative, but semantic substitution is
typically given by pullback, which is only associative up to unique isomorphism.
Shulman’s construction carries over when the functor is strict but some of their
example instances would require a strictification theorem.

Construction 5 (Shulman [47]) Given any functor V : So → SymMonCat
such that S and V have sufficiently well-behaved (indexed) κ-products, then there
is a virtual equipment V − Cat whose objects are locally κ-small V-categories,
small objects are κ-small V-categories etc. This virtual equipment has objects
satisfying all of the universal properties needed for a model of VETT.

A final model that uses a CwF that is not Set would be given by taking
extensional dependent type theory as the CwF and interpreting the category-
theoretic constructions by their definitions inside type theory.

5 Related and Future Work

We now compare VETT with other calculi for formal category theory.
Cáccamo and Winskel [12] develop a formal language for defining categories,

functors (of many variables) and proving existence of natural equivalences be-
tween them. Their system can encode profunctors as functors into Set. Their
natural equivalence judgment does not have proof terms or equality between
equivalences and they do not support natural transformations. Additionally,
they only consider ordinary categories as the intended model and do not de-
velop a more general semantics. Riehl and Verity [43] use a formal language
of virtual equipments to prove results valid for ∞-categories without concrete
manipulation of model categories. They formalize this language as a theory in
Makkai’s framework of first-order logic with dependent sorts (FOLDS). While
this previous work has the same models as VETT, we believe that the syntax
we propose in this paper formalizes informal arguments more directly, as shown
in Section 3. This is because FOLDS approach approach is entirely relational,
whereas we formalize concepts like restriction of a profunctor or composition of
natural transformations as functional operations (substitution). In particular,
this means that our calculus requires only vertically degenerate squares (ele-
ments/natural transformations) as a “user-facing” notion, with general squares
occurring only in the admissible substitution operations.

130 M. S. New and D. R. Licata

The coend calculus [33] is an informal syntax for manipulating profunctors
involving ends and coends; an extension of VETT to treat profunctors of many
variables of different variances may provide a formal treatment of it.

Myers [35] provides a string diagram calculus for double categories and pro-
arrow equipments, generalizing string diagrams for monoidal categories. These
are an alternative approach to type-theoretic calculi, with the string diagrams
typically making tensor products simpler to work with, while a type-theoretic
calculus like VETT makes the closed structure P �∀α Q simpler to work with by
using bound variables.

Cartesian bicategories are similar to equipments but they axiomatize the
bicategory of profunctors rather than the full double category of functors and
profunctors [13]. Frey [23] describes preliminary work on a proof system for
Cartesian bicateogires. Their profunctors are more general than in VETT in as
they may have 0, 1 or more covariant or contravariant variables. But they do
not have a term syntax for functors or natural transformations.

Our work in this paper fits broadly into a line of work on directed dependent
type theories, a type theory where the identity type is interpreted as morphisms
in a (possibly ∞-)category. In directed type theories based on a bisimplicial
model [42,11,55,54], morphism types are defined using an interval object, like
in cubical type theory [8,16,4,3], and universal properties like “morphism in-
duction” are an internally definable property of certain types. Other type the-
ories [38,1] define morphism types via an induction principle, corresponding to
the lifting properties of certain kinds of fibrations of categories. While these pre-
vious works can express some constructions on Cat that are not expressible in
VETT, because VETT is more restricted, VETT contrariwise has more mod-
els, for instance categories enriched in non-cartesian monoidal categories, so the
theorems that are provable in VETT apply in more settings.

Finally, some variations on double categories have been used to model the
structure of certain program logics. GTT [36] is a logic for vertically thin pro-
arrow equipments, where there is at most one vertical arrow or 2-cell of any tyepe,
so their calculus does not include functor or transformation judgments. Another
similar calculus is System P [21] which is an internal language of reflexive graph
categories, which are like double categories without horizontal composition.

In future work, VETT could incorporate functor categories by generalizing
the unary type theory of functors to functors of many variables, in which case
ordinary λ calculus can be used to define functor categories as function types,
and incorporate multi-variable profunctors as in [23]. This would require to the
models to have a monoidal structure. Ideas from coeffects and enriched category
theory may be useful for defining opposite categories [48,10].

Acknowledgments. This material is based on research sponsored by the
National Science Foundation under agreement number CCF-1909517 and the
United States Air Force Research Laboratory under agreement number FA9550-
21-0009 (Tristan Nguyen, program manager). The authors would like to thank
David Jaz Myers, Emily Riehl, Mike Shulman, Dominic Verity for helpful feed-
back on this work.

A Formal Logic for Formal Category Theory 131

References

1. Ahrens, B., North, P., van der Weide, N.: Semantics for two-dimensional type
theory. In: ACM/IEEE Symposium on Logic in Computer Science (LICS) (2022)

2. Altenkirch, T., Capriotti, P., Kraus, N.: Extending homotopy type theory with
strict equality. In: EACSL Annual Conference on Computer Science Logic (CSL)
(2016)

3. Angiuli, C., Brunerie, G., Coquand, T., Hou (Favonia), K.B., Harper, R., Licata,
D.R.: Syntax and models of cartesian cubical type theory. Mathematical Structures
in Computer Science (2021)

4. Angiuli, C., Hou (Favonia), K.B., Harper, R.: Cartesian cubical computational type
theory: Constructive reasoning with paths and equalities. In: Computer Science
Logic (CSL) (2018)

5. Awodey, S., Warren, M.: Homotopy theoretic models of identity types. Mathemat-
ical Proceedings of the Cambridge Philosophical Society (2009)

6. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category
Seminar. pp. 1–77. Springer Berlin Heidelberg, Berlin, Heidelberg (1967)

7. Bénabou, J.: Distributors at work. Lecture notes written by Thomas Streicher 11
(2000)

8. Bezem, M., Coquand, T., Huber, S.: The univalence axiom in cubical sets. Journal
of Automated Reasoning (June 2018). https://doi.org/10.1007/s10817-018-9472-6

9. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps
in synthetic guarded domain theory: step-indexing in the topos of trees.
Logical Methods in Computer Science Volume 8, Issue 4 (Oct 2012).
https://doi.org/10.2168/LMCS-8(4:1)2012

10. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantita-
tive coeffect calculus. In: Proceedings of the 23rd European Symposium on
Programming Languages and Systems - Volume 8410. p. 351–370 (2014).
https://doi.org/10.1007/978-3-642-54833-8 19

11. Buchholtz, U., Weinberger, J.: Synthetic fibered (∞,1)-category theory, higher
Structures, to appear. arXiv:2105.01724

12. Cáccamo, M., Winskel, G.: A higher-order calculus for categories. In: Boulton,
R.J., Jackson, P.B. (eds.) Theorem Proving in Higher Order Logics. pp. 136–153.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

13. Carboni, A., Walters, R.: Cartesian bicategories i. Journal of Pure and Ap-
plied Algebra 49(1), 11–32 (1987). https://doi.org/https://doi.org/10.1016/0022-
4049(87)90121-6

14. Cartmell, J.: Generalised algebraic theories and contextual cate-
gories. Annals of Pure and Applied Logic 32, 209–243 (1986).
https://doi.org/https://doi.org/10.1016/0168-0072(86)90053-9

15. Cervesato, I., Pfenning, F.: A linear logical framework. Information and Compu-
tation 179(1), 19–75 (2002)

16. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: A construc-
tive interpretation of the univalence axiom. In: Uustalu, T. (ed.) 21st International
Conference on Types for Proofs and Programs (TYPES 2015). pp. 5:1–5:34 (2018).
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

17. Crutwell, G., Shulman, M.A.: A unified framework for generalized multicategories.
Theory and Applications of Categories 24, 580–655 (2010)

18. Curien, P.L.: Categorical combinators. Information and Control 69(1), 188–254
(1986). https://doi.org/https://doi.org/10.1016/S0019-9958(86)80047-X

https://doi.org/10.1007/s10817-018-9472-6
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/https://doi.org/10.1016/0022-4049(87)90121-6
https://doi.org/https://doi.org/10.1016/0022-4049(87)90121-6
https://doi.org/https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80047-X

132 M. S. New and D. R. Licata

19. Di Liberti, I., Loregian, F.: On the unicity of formal category theories (2019).
https://doi.org/10.48550/ARXIV.1901.01594

20. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. In: 2009
24th Annual IEEE Symposium on Logic In Computer Science. pp. 71–80 (2009).
https://doi.org/10.1109/LICS.2009.34

21. Dunphy, B.P., Reddy, U.S.: Parametric limits. In: 19th IEEE Symposium on Logic
in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings.
pp. 242–251 (2004). https://doi.org/10.1109/LICS.2004.1319618

22. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) Types for Proofs
and Programs. pp. 120–134. Springer Berlin Heidelberg (1996)

23. Frey, J.: A language for closed cartesian bicategories (2019), category Theory 2019
24. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987).

https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
25. Grandis, M., Pare, R.: Limits in double categories. Cahiers de Topologie et

Géométrie Différentielle Catégoriques 40(3), 162–220 (1999)
26. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In:

Twenty-five years of constructive type theory. Oxford University Press (1998)
27. Isaev, V.: Indexed type theories. Mathematical Structures in Computer Science

31(1), 3–63 (2021). https://doi.org/10.1017/S0960129520000092
28. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,

D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. p. 637–650. POPL ’15, Association for Computing
Machinery (2015). https://doi.org/10.1145/2676726.2676980

29. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating dependent and linear
types. In: ACM Symposium on Principles of Programming Languages (2015)

30. Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cambridge
University Press (1988)

31. Lawvere, F.W.: Adjointness in foundations. Dialectica 23 (1969)
32. Leinster, T.: Generalized enrichment of categories. Journal of Pure and Applied

Algebra 168(2), 391–406 (2002). https://doi.org/https://doi.org/10.1016/S0022-
4049(01)00105-0, category Theory 1999: selected papers, conference held in Coim-
bra in honour of the 90th birthday of Saunders Mac Lane

33. Loregian, F.: (Co)end Calculus. London Mathematical Society Lecture Note Series,
Cambridge University Press (2021). https://doi.org/10.1017/9781108778657

34. Moggi, E.: Notions of computation and monads. Information and Com-
putation 93(1), 55–92 (1991). https://doi.org/https://doi.org/10.1016/0890-
5401(91)90052-4, selections from 1989 IEEE Symposium on Logic in Computer
Science

35. Myers, D.J.: String diagrams for double categories and equipments (2016).
https://doi.org/10.48550/ARXIV.1612.02762

36. New, M.S., Licata, D.R.: Call-by-Name Gradual Type Theory. In: Kirchner,
H. (ed.) 3rd International Conference on Formal Structures for Computation
and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 108, pp. 24:1–24:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.24

37. New, M.S., Licata, D.R.: A formal logic for formal category theory (extended ver-
sion) (2022). https://doi.org/10.48550/ARXIV.2210.08663, https://arxiv.org/

abs/2210.08663
38. North, P.R.: Towards a directed homotopy type theory. In: Mathematical Founda-

tions of Programming Semantics (MFPS) (2019)

https://doi.org/10.48550/ARXIV.1901.01594
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2004.1319618
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129520000092
https://doi.org/10.1145/2676726.2676980
https://doi.org/https://doi.org/10.1016/S0022-4049(01)00105-0
https://doi.org/https://doi.org/10.1016/S0022-4049(01)00105-0
https://doi.org/10.1017/9781108778657
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.48550/ARXIV.1612.02762
https://doi.org/10.4230/LIPIcs.FSCD.2018.24
https://doi.org/10.48550/ARXIV.2210.08663
https://arxiv.org/abs/2210.08663
https://arxiv.org/abs/2210.08663

A Formal Logic for Formal Category Theory 133

39. Palmgren, E.: Categories with families and first-order logic with de-
pendent sorts. Annals of Pure and Applied Logic 170(12), 102715
(2019). https://doi.org/https://doi.org/10.1016/j.apal.2019.102715, https:

//www.sciencedirect.com/science/article/pii/S0168007219300727

40. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) Typed Lambda Calculi and Applications. pp. 361–375. Springer
Berlin Heidelberg, Berlin, Heidelberg (1993)

41. Polakow, J., Pfenning, F.: Natural deduction for intuitionistic non-communicative
linear logic. In: Girard, J. (ed.) Typed Lambda Calculi and Applications, 4th
International Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1581, pp. 295–309. Springer (1999).
https://doi.org/10.1007/3-540-48959-2 21

42. Riehl, E., Shulman, M.: A type theory for synthetic ∞-categories. Higher Struc-
tures 1(1) (2018)

43. Riehl, E., Verity, D.: Elements of ∞-Category Theory. Cambridge Stud-
ies in Advanced Mathematics, Cambridge University Press (2022).
https://doi.org/10.1017/9781108936880

44. Robinson, E., Rosolini, G.: Reflexive graphs and parametric polymorphism. In:
Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science. pp.
364–371 (1994). https://doi.org/10.1109/LICS.1994.316053

45. Seely, R.A.G.: Locally cartesian closed categories and type theory. Mathemat-
ical Proceedings of the Cambridge Philosophical Society 95(1), 33–48 (1984).
https://doi.org/10.1017/S0305004100061284

46. Shulman, M.: Framed bicategories and monoidal fibrations. Theory and Appli-
cations of Categories 20, 650–738 (2008), http://www.tac.mta.ca/tac/volumes/
20/18/20-18abs.html

47. Shulman, M.: Enriched indexed categories. Theory and Applications of Categories
28, 616–695 (2013), http://www.tac.mta.ca/tac/volumes/28/21/28-21abs.

html

48. Shulman, M.: Contravariance through enrichment. Theory and Applications of
Categories 33, 95–130 (2018), http://tac.mta.ca/tac/volumes/33/5/33-05abs.
html

49. Street, R., Walters, R.: Yoneda structures on 2-categories. Journal of Al-
gebra 50(2), 350–379 (1978). https://doi.org/https://doi.org/10.1016/0021-
8693(78)90160-6, https://www.sciencedirect.com/science/article/pii/

0021869378901606

50. Voevodsky, V.: A very short note on homotopy λ-calculus (September 2006), un-
published.

51. Voevodsky, V.: A type system with two kinds of identity types (2013), talk at
Andre Joyal’s 70th birthday conference (IAS)

52. Vákár, M.: A categorical semantics for linear logical frameworks. In: Foundations
of Software Science and Computation Structures (FoSSaCS) (2015)

53. Wand, M.: Fixed-point constructions in order-enriched categories. Theoretical
Computer Science 8(1), 13–30 (1979). https://doi.org/https://doi.org/10.1016/
0304-3975(79)90053-7

54. Weaver, M.Z., Licata, D.R.: A constructive model of directed univalence in bicubi-
cal sets. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. pp. 915–928. LICS ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3373718.3394794

https://doi.org/https://doi.org/10.1016/j.apal.2019.102715
https://www.sciencedirect.com/science/article/pii/S0168007219300727
https://www.sciencedirect.com/science/article/pii/S0168007219300727
https://doi.org/10.1007/3-540-48959-2_21
https://doi.org/10.1017/9781108936880
https://doi.org/10.1109/LICS.1994.316053
https://doi.org/10.1017/S0305004100061284
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://www.tac.mta.ca/tac/volumes/28/21/28-21abs.html
http://www.tac.mta.ca/tac/volumes/28/21/28-21abs.html
http://tac.mta.ca/tac/volumes/33/5/33-05abs.html
http://tac.mta.ca/tac/volumes/33/5/33-05abs.html
https://doi.org/https://doi.org/10.1016/0021-8693(78)90160-6
https://doi.org/https://doi.org/10.1016/0021-8693(78)90160-6
https://www.sciencedirect.com/science/article/pii/0021869378901606
https://www.sciencedirect.com/science/article/pii/0021869378901606
https://doi.org/https://doi.org/10.1016/ 0304-3975(79)90053-7
https://doi.org/https://doi.org/10.1016/ 0304-3975(79)90053-7
https://doi.org/10.1145/3373718.3394794

134 M. S. New and D. R. Licata

55. Weinberger, J.: A Synthetic Perspective on (∞,1)-Category Theory: Fibrational
and Semantic Aspects. Ph.D. thesis, TU Darmstadt (2022), arXiv:2202.13132

56. Wood, R.J.: Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle
Catégoriques 23(3), 279–290 (1982)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Strict Constrained Superposition Calculus for
Graphs

Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier(�)

Université Grenoble Alpes, LIG, CNRS, Inria, Grenoble INP,
38000 Grenoble, France

nicolas.peltier@imag.fr

Abstract. We propose a superposition-based proof procedure to reason
on equational first order formulas defined over graphs. First, we introduce
the considered graphs that are directed labeled graphs with lists of roots
standing for pins or interfaces for replacements. Then the syntax and
semantics of the considered logic are defined. The formulas at hand are
clause sets built on equations and disequations on graphs. Afterwards, a
sound and complete proof procedure is provided, and redundancy criteria
are introduced to dismiss useless clauses and improve the efficiency of
the procedure. In a first step, a set of inferences rules is provided in the
case of uninterpreted labels. In a second step, the proposed rules are
lifted to take into account labels defined as terms interpreted in some
arbitrary theory. Particular formulas of interest are Horn clauses, for
which stronger redundancy criteria can be devised. Essential differences
with the usual term superposition calculus are emphasized.

1 Introduction

Graphs are ubiquitous structures in computer science. They are used to model
several notions such as data, program runs (transition systems), networks, soft-
ware and hardware architectures. They are also often used as foundational struc-
tures to model knowledge or data bases, cognitive or intelligent systems as well as
physical, chemical or biological phenomena. They constitute, in addition, the ba-
sis of operational research or combinatorics. Graphs are, definitely, fundamental
structures for modelling, computing and reasoning. Graph transformations have
been studied since the early 70’s [29]. Some of their applications can be found in
[16,18]. In the literature, one can distinguish two main streams of approaches for
graph transformation, namely the algebraic approaches [15,12] where category
theory is used to define structure transformations in a very abstract and elegant
way and the algorithmic approaches where graph transformations are defined by
means of the actual algorithms involved in the transformations [20,13].

During the last decade, a very interesting application of graph transforma-
tions has emerged in the area of quantum models of computation, see e.g., the
calculi ZX [11], ZH [3], ZW [24] or PBS [10]. In these calculi, one can spec-
ify quantum algorithms using particular graphs and can make some equational
reasoning on them to verify correctness of quantum algorithms, see e.g. the

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 7

135–155, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_7
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_7&domain=pdf

136 R. Echahed et al.

Quantomatic tool [25]. In such situations, making automated equational reason-
ing over graphs is very desirable even though equational theories over graphs are
not recursively enumerable in general (see e.g. [7]).

The superposition calculus [1] is one of the most successful automated proof
procedures which handles equational theories (on terms) which is being actually
implemented in various theorem provers such as Vampire [28], Spass [32], or
E [30]. The calculus operates on finite sets of equational clauses. It is defined
as a set of inference rules, which deduce new clauses from previous ones. To
prune the search space, strong restrictions (based on term orderings and literal
selection functions) are imposed on the inferences, and redundancy criteria are
provided to detect and dismiss useless clauses. The rules are applied until a con-
tradiction (i.e., the empty clause) is derived or until the set is saturated, i.e.,
no further non-redundant clause may be deduced. The calculus is refutationally
complete, in the sense that it is able to derive a contradiction from any unsatis-
fiable clause set. In a recent work [14], we proposed a superposition calculus for
testing the unsatisfiability of sets of equations and disequations between graphs
whose shapes are inspired by those used in the ZX calculus, where nodes are
labeled by first-order (uninterpreted) terms. In the present paper we extend this
work in several directions: (i) We tackle full clauses, i.e., disjunctions of equa-
tions and disequations. This extension turned out to be much more difficult
than we initially expected, due to the fact that no reduction order exists on the
considered graphs (see Examples 19 and 22), which complicates the complete-
ness proof. We introduce redundancy criteria that cover some usual deletion and
simplification rules. (ii) We lift the obtained calculus into a constrained calculus
operating on graphs labeled by terms interpreted in some base theory. The pro-
cedure is a semi-decision procedure for unsatisfiability if the underlying theory
is (semi) decidable and compact. (iii) We consider a slightly different class of
graphs, where multi-edges are allowed. The new framework has the advantage
of being both more general and simpler, and it also improves the efficiency of
the calculus (more precisely for the computation of “merges” between graphs,
see Remark 9).

Why defining a graph superposition calculus is difficult. We wish to
emphasize some important differences between term and graph superposition.
(i) It is well-known that term rewrite systems that are terminating and in which
all critical pairs are joinable are confluent. This property plays a key rôle in the
completeness proof of the superposition calculus. However, such a property does
not hold for graph rewrite systems, and, worse, confluence is undecidable for
terminating graph rewrite rules (if confluence is meant modulo isomorphism).
As it is done in [14] we overcome this issue by considering a special class of
graphs, for which the above property holds. This class is obtained by restricting
the way graphs can be composed and replaced, using a sequence of distinguished
nodes in the graphs, called roots. (ii) The usual superposition calculus is based
on the use of a reduction order, i.e., a well-founded order on terms that is total
on ground terms and closed under instantiation and embedding. Unfortunately

A Strict Constrained Superposition Calculus for Graphs 137

no such order exists for graphs in general (see Example 19). Thus the model
construction algorithm used to establish refutational completeness must cope
with non terminating systems (indeed, since a ground equation g ≈ h cannot
always be oriented, one must consider both rules: g → h and h → g, which entails
that the system does not terminate). Confluence is harder to establish for non
terminating systems and we need to devise a new confluence criterion. (iii) The
usual redundancy criterion of [1] (where a clause is considered redundant if it is
implied by smaller clauses) does not apply to graphs. For instance the conclusion
of an inference may be strictly bigger than all the premises (see Example 21).
This is due to the fact that two graphs may overlap without one of them being
included in the other. Such a behavior cannot be avoided, since, as proven in [14,
Theorem 45], satisfiability is undecidable for sets of ground equational clauses
defined on graphs (whereas it is well known to be decidable for standard ground
clauses based on terms), thus superposition cannot terminate on ground graphs.
Furthermore, we show (see Example 22) that the calculus is – rather surpris-
ingly – not compatible with tautology deletion in general (tautology deletion is
possible for Horn clauses).

Related work. The graphs we are considering are intended to capture (pos-
sibly cyclic) circuit shaped structures such as those used in the ZX or related
calculi. They are close to hypergraphs with interfaces as used in some papers
(see, e.g. [5]) where the roots or interfaces are used in the gluing process while
transforming a graph. We follow an algorithmic approach when transforming the
graphs. This approach eases the completeness proofs of the proposed superposi-
tion calculus. However, the performed graph transformations used in the present
paper can be encoded as simple double pushout (DPO) [19] steps of the form
L ←− Roots −→ R with some additional constraints on matched subgraphs. It is
also a particular case of DPOI steps (DPO with interfaces) where the roots play
the rôle of the interfaces [5]. Automated reasoning in presence of graph structures
is not an easy task in general. Several authors did tackle this problem and one
can distinguish different approaches in the literature. Variants of Hoare-like cal-
culi have been proposed for the verification of graph transformation systems see,
e.g., [23,26,6,8]. Likewise, model checking procedures have also been devised in
presence of graph structures see, e.g. [27,31]. In these works, a dynamic logic un-
derlying program execution is assumed. In addition, a dedicated logic is used to
express graph properties to be proven. Other techniques have been used to prove
graph equivalences such as bisimulation [17] or normalization using terminating
and confuent graph rewriting systems [9]. In the paper at hand, we are rather
concerned by a refutational proof technique based on superposition dedicated to
a class of graphs. Thus our proof procedure departs from all the aforementioned
works. To our knowledge, only the report [22] presents a refutational procedure
dedicated to ZX diagrams which is close to ours. However, the authors use the
classical superposition calculus [1] over first-order terms and provide a trans-
lation from the considered graphs to first-order terms. Such translation needs
the use of additional axioms encoding some graph properties such as associativ-

138 R. Echahed et al.

ity and commutativity of graph constructor operations. Such additional axioms
are useless in our framework. The class of graph rewriting systems handled in
our proof procedure are not necessarily terminating and thus we had to devise
new criteria to ensure their (ground) confluence instead of using joinability of
pre-critical pairs as done in [4].

The paper is organized as follows. Section 2 introduces some basic notations
and defines the considered graphs and the operations used over them. In Section 3
the syntax and semantics of the formulas are introduced. In Section 4, a first
set of inference rules is defined to test the satisfiability of sets of clauses where
graphs are endowed with uninterpreted labels and its completeness is established
modulo a redundancy criterion that captures usual deletion or simplification
rules (such as subsumption). In Section 5 the obtained calculus is lifted to graphs
labeled with terms that can be interpreted in some arbitrary theory and possibly
containing variables. Completeness is guaranteed if the theory is semi-decidable
and compact. This last calculus is proven complete and an enhanced redundancy
test is proposed. Concluding remarks are given in Section 6. Due to lack of space,
proofs are omitted.

2 Graphs and Graph Operations

We briefly review some usual definitions and notations. For any partial function
f , we denote by dom(f) the domain of f . If f and g are partial functions,
we write f(x) = g(x) to state that either x �∈ dom(f) ∪ dom(g) or that x ∈
dom(f)∩ dom(g) and the images of x by f and g are identical. Given a multiset
m and an element e, m(e) denotes the multiplicity of e in m. For all multisets m1

and m2, we denote by m1+m2 and m1−m2 the sum and difference of m1 and m2,
respectively. We write m1 � m2 to state that m1 is included in m2. A multiset
containing exactly the elements e1, . . . , en is written {e1, . . . , en}. We denote by
m1�m2 the union of m1 and m2 (i.e., the minimal multiset containing m1 and m2)
defined as follows: for all elements e, (m1 � m2)(e) = max(m1(e),m2(e)). Finite
sequences may sometimes be identified with sets if the order is not important,
e.g., if y = (y1, . . . , yn), we may write x ∈ y to state that x = yi, for some
i = 1, . . . , n. We recall that a preorder is a binary relation that is reflexive and
transitive. Any preorder ≤ may be associated with a strict order < defined as
follows: x < y ⇐⇒ (x ≤ y ∧ y �≤ x).

The graphs we consider are directed, labeled graphs enriched with a sequence
of distinguished nodes, called roots:

Definition 1. Let N be a countably infinite set of nodes and let L be a set of
labels, disjoint from N . An L-graph g is a tuple 〈N, E, R, L〉, where:
– N ⊆ N is a finite set of nodes in N , called vertices or nodes;
– E is a finite multiset of pairs in N ×N , called edges;
– R is a sequence of nodes in N , with no repetition, called the roots of g;
– L is a function mapping every node in N \R to a label in L.

A Strict Constrained Superposition Calculus for Graphs 139

The components N , E, R and L of a graph g are denoted by Ng, Eg, Rg and

Lg, respectively. We denote by N̂g the set of nodes α ∈ Ng that do not occur in
Rg. The profile of a graph g, written pr(g), is the length of Rg.

Example 2. The L-graph g with Ng = {ρ1, α, β}, Eg = {(ρ1, α), (ρ1, β), (α, β)},
Rg = (ρ1), dom(Lg) = {α, β}, Lg(α) = 0 and Lg(β) = 1 is depicted graphically
as follows:

ρ1

α : 0 β : 1

We write α : � to state that a node named α is labeled by
�. In many cases, the names of the non-root nodes will
be irrelevant, and will thus be omitted. When possible,
root nodes will be named ρ1, ρ2, ρ3,. . . in this order.

In the following, L-graphs will be considered up to a renaming of nodes. More
precisely, the isomorphism relation on L-graphs is defined as follows.

Definition 3. An N -renaming μ is an injective mapping from N to N . It is
extended to any L-graph g by replacing every occurrence of a node α by μ(α). In
particular, the function Lμ(g) is defined as follows: Lμ(g)(α) = � iff Lg(β) = �
for some β ∈ Ng such that μ(β) = α (Lμ(g) is well-defined since μ is injective).
We write g ≡ h if h = μ(g), for some N -renaming μ. It is easy to check that ≡
is an equivalence relation. Two L-graphs g, h such that g ≡ h are isomorphic.

2.1 Subgraphs and Replacement

We define the notion of a subgraph. The definition is slightly stronger than the
usual one in graph theory because it imposes that only nodes that are roots in
the subgraph can be connected to a node outside the subgraph. These roots can
be viewed as an “interface” which restricts the way graphs may be connected
and composed.

Definition 4 (Subgraph). A graph h is a subgraph of g (written h ≤g g) if

Nh ⊆ Ng, Eh � Eg, N̂h ⊆ N̂g, Lh(α) = Lg(α) for all α ∈ N̂h and if a node α

occurs in an edge in Eg − Eh then α �∈ N̂h.

Example 5. Consider the L-graphs h, i, j and k with respective roots (α, β), (β),
(α) and (ρ1), defined as follows:

h: α β i: α : 1 β j: α β : 1 k: ρ1

α : 0 β : 1

The L-graph h is a subgraph of the L-graph g from Example 2, but i, j and
k are not. Indeed, α has different labels in g and i; g contains an edge between
ρ1 and β that does not occur in j and β is not a root node in j; and Eg − Ek

contains the edge (α, β) between nodes that are not roots in k.

The replacement operation is defined in a natural way: all vertices and edges
occurring from the replaced subgraph are deleted and replaced by those in the
replacing graph (we assume that the considered graphs share the same roots).

140 R. Echahed et al.

Definition 6 (Subgraph replacement). Let g be an L-graph and let h be a

subgraph of g. An L-graph i is substitutable for h in g if Ri = Rh and Ng∩N̂i = ∅.
If i is substitutable for h in g, then we denote by g{h ← i} (the L-graph obtained
by replacing h by i in g) the tuple 〈N ′, E′, R′, L′〉, where:
– N ′ def

= (Ng \Nh)∪Ni. Note that since Ri = Rh we have N ′ = (Ng \ N̂h)∪ N̂i.

– E′ def
= (Eg − Eh) + Ei.

– R′ def
= Rg.

– L′(α) def
=

{
Lg(α) if α ∈ Ng \ N̂i

Li(α) if α ∈ N̂i

for all α ∈ N ′ \R′.

Example 7. Let i′ be the L-graph with root (α, β) defined below. Using the L-
graphs g and h from Examples 2 and 5, we get the following L-graph g{h ← i′}
(the edge (α, β) occurs twice because it occurs both in Ei′ and in Eg − Eh):

i′ = α β

γ : 0

g{h ← i′} = ρ1

α : 0 β : 1

γ : 0

The notation g{h ← i} is extended to the case where pr(i) = pr(h) as

follows: g{h ← i} def
= g{h ← i′}, where i′ is any L-graph substitutable for h in g

such that i ≡ i′. Thus the replacement operation possibly involves a renaming
step, to avoid conflicts on the names of the nodes. The next proposition states
a straightforward property of subgraph replacement:

Proposition 8. Let g, h, i, j be L-graphs, where i ≤g h ≤g g and pr(i) = pr(j).
Then g{h ← h{i ← j}} ≡ g{i ← j}.

Remark 9. Note that Proposition 8 would not hold if edges were defined as sets
and not as multisets. For instance, consider L-graphs g, h with two root nodes
ρ1, ρ2, where g contains an edge (ρ1, ρ2) and h contains no edges. If edges are
taken as sets then we get g{h ← g} = g and g{g ← h} = h, whereas g{h ←
h} = g. In our previous work [14], this problem was overcome by restricting
ourselves to induced subgraphs (which prevents the replacement of h by g in g),
but this causes a combinatorial explosion in the definition of the calculus: when
one “merges” two subgraphs, it is necessary to add every possible combination of
edges connecting a root of the first L-graph to a root of the second one, yielding
exponentially many solutions w.r.t. the number of roots (see [14, Definition 30]).
Such a behavior is avoided in the new framework.

We now introduce a notion of orthogonality between graphs. The intuition is
that two L-graphs will be considered orthogonal if they share no edges and no
nodes other than roots.

A Strict Constrained Superposition Calculus for Graphs 141

Definition 10 (Orthogonal graphs). Let g be an L-graph. Two subgraphs

h and i of g are orthogonal in g, or simply orthogonal, if N̂h ∩ N̂i = ∅ and
Eh + Ei � Eg.

Note that h and i may share root nodes. Proposition 11 states that the result of
the replacement of two orthogonal subgraphs does not depend on the order in
which the L-graphs are considered.

Proposition 11. Let g be an L-graph, and let h1, h2 be orthogonal subgraphs
of g. For all L-graphs i1, i2 of respective profiles pr(h1) and pr(h2), h2 and h1
are subgraphs of g{h1 ← i1} and g{h2 ← i2}, respectively, and g{h1 ← i1}{h2 ←
i2} ≡ g{h2 ← i2}{h1 ← i1}.

2.2 Graph Merging

Intuitively, a merge of two L-graphs g1 and g2 denotes any minimal L-graph
containing all vertices, labels and edges in g1 and g2. More formally:

Definition 12. A merge of two L-graphs g1 and g2 is an L-graph h such that:
(i) gi ≤g h, for all i = 1, 2; (ii) Nh = Ng1

∪ Ng2
, Eh = Eg1

	 Eg2
and N̂h =

N̂g1
∪ N̂g2

; (iii) for all i = 1, 2 and for all α ∈ N̂gi
, Lh(α) = Lgi

(α).

Note that in contrast to [14, Definition 30], the merge contains no node and
edge other than those occurring in g1 or g2. Moreover, the multiplicity of edges
is minimal (Eh is defined as Eg1

	Eg2
instead of Eg1

+Eg2
). It is easy to check

that a merge of g1, g2 exists iff Lg1
(α) = Lg2

(α) holds for all α ∈ N̂g1
∩ N̂g2

.
Moreover, all the merges are equal up to a permutation of their roots.

Example 13. Consider the following L-graphs g and h below of respective roots
(ρ1, ρ2) and (ρ2, ρ3), where the nodes α, β, γ are labeled by 0, 1 and 2, respec-
tively. These L-graphs admit the following merge i, of root (ρ1, ρ2, ρ3):

g : ρ1 ρ2

α : 0 β : 1

h : ρ2 ρ3

β : 1 γ : 2

i : ρ1 ρ2 ρ3

α : 0 β : 1 γ : 2

Example 14. Let g, h, i and j be the L-graphs, defined as follows:

g: γ : 1

α

β

h: α

β : 2

δ : 3

i: γ : 0

α

j: δ : 0

γ : 1

α

The L-graph g has roots (α, β) and h, i, j have roots (α). Then g and h admit

the following merge, of root (α): γ : 1 α β : 2 δ : 3

142 R. Echahed et al.

In contrast, g and i admit no merge (since γ has different labels in the two
graphs), and neither do g and j (due to the edge connecting the non-root node
γ to δ, that is outside of g).

Lemma 15. Let g be an L-graph and let h, i be subgraphs of g. Then h and i
admit a merge j, and for all merges j of h and i we have j ≤g g.

3 An Equational Logic on Graphs

We now define equational clauses built on L-graphs and their semantics.

Definition 16. An equation is an unordered pair written g ≈ h, where g, h are
L-graphs such that Rg = Rh. A literal is either an equation (positive literal)
or the negation of an equation, written g �≈ h (negative literal). A clause is a
disjunction of literals. The disjunction may be empty, in which case the clause
is written �. A clause is Horn if it contains at most one positive literal. A set
of clauses is Horn if it contains only Horn clauses.

Note that we assume for technical convenience that the two members of
an equation share the same roots. N -renamings μ are extended to equations,

literals and clauses in a straightforward way: μ(g ≈ h)
def
= μ(g) ≈ μ(h), μ(g �≈

h)
def
= μ(g) �≈ μ(h) and μ(C ∨ D)

def
= μ(C) ∨ μ(D). The relation ≡ is extended

accordingly.
Sets of clauses built on L-graphs will be interpreted w.r.t. a congruence on

L-graphs. Graph congruences are defined in same way as for terms, except that
we also assume that they are closed under isomorphism.

Definition 17 (Graph Congruence). A binary relation �� on L-graphs is
closed under isomorphisms if i �� h when g �� h and g ≡ i. It is closed under
embeddings if h �� i entails g{h ← i} �� g. A congruence is an equivalence
relation on L-graphs that is closed under isomorphisms and embeddings.

Definition 18. A congruence ∼ validates an expression E (written ∼|= E) iff
one of the following conditions holds: (i) E is an equation g ≈ h and g ∼ h;
(ii) E is a literal g �≈ h and g �∼ h; (iii) E is a clause C and ∼ validates at least
one literal in C; (iv) E is a set of clauses Γ and ∼ validates all the clauses in
Γ . A congruence ∼ is a model of E if ∼|= E. An expression is satisfiable if it
admits a model and unsatisfiable otherwise. A tautology is a clause that is true
in all congruences.

4 Superposition Calculus with Uninterpreted Labels

We define a superposition calculus for testing the satisfiability of sets of clauses.
This calculus is strict (see, e.g., [2]) in the sense that it does not use the equational
factorization rule (as defined in [1]), but uses instead the standard factorization
rule that unifies both members of two equations. This choice is motivated by the

A Strict Constrained Superposition Calculus for Graphs 143

fact that, as shown in Example 22, graph superposition is not compatible with
tautology deletion (except when the clauses are Horn). Since tautology deletion
is disabled for non-Horn clauses, equational factorization is not needed anyway.
Selection functions are not considered, since they are not compatible with the
redundancy criterion.

The usual superposition calculus [1] is parameterized by a reduction order,
i.e., an order on terms that is well-founded, total on ground terms, and closed
under substitutions and embeddings. In the case of L-graphs, no such order
possibly exists, if we also add the natural requirement that the order must be
closed under renamings, as evidenced by the following example:

Example 19. Assume that an order < exists, satisfying the following properties:
< is well-founded, closed under isomorphisms and embeddings, and total up to
isomorphism (i.e., if g �≡ h then either g < h or h < g). Consider the L-graphs g
and h with roots (ρ1, ρ2, ρ3, ρ4) and containing no labels, as well as the L-graphs
i, j with an empty sequence of roots, where all nodes are labeled by 0:

g : ρ1 ρ2

ρ3 ρ4

h : ρ1 ρ2

ρ3 ρ4

i : ρ1 : 0 ρ2 : 0

ρ3 : 0 ρ4 : 0

j : ρ1 : 0 ρ2 : 0

ρ3 : 0 ρ4 : 0

It is clear that g �≡ h. Indeed, if μ(g) = h holds for some N -renaming μ, then
μ(Rg) = Rh, i.e., μ((ρ1, ρ2, ρ3, ρ4)) = (ρ1, ρ2, ρ3, ρ4), which entails that μ is the
identity on these nodes. Thus we cannot have μ(Eg) = Eh, as the first root
(ρ1) is connected to the third root (ρ3) in g and to the fourth one (ρ4) in h.
Consequently, we have either g < h or h < g. Now we also have g ≤g i and
h ≤g j, and it is easy to check that i{g ← h} = j and j{h ← g} = i. Thus we have
either i < j or j < i. But since Ri = Rj = () we have i ≡ j: indeed, if μ(ρ1) = ρ1,
μ(ρ2) = ρ2, μ(ρ3) = ρ4 and μ(ρ4) = ρ3, then μ(i) = j.

We thus slightly relax the requirement of having a reduction order, and con-
sider instead a pre-order < on L-graphs, that is well-founded, closed under iso-
morphisms and embeddings, and contains ≤g. We write g < h if g ≤ h and h �≤ g,
and we write g � h if g ≤ h and h ≤ g. We also assume that the equivalence
classes of � are finite, up to isomorphism. It is clear that such pre-orders exist,
for instance, the pre-order: g ≤ h ⇐⇒ card(Ng) ≤ card(Nh) fulfills the above
properties.

Similarly to the usual superposition calculus, we associate every literal L

with a multiset defined as follows: mset(g �≈ h)
def
= {{g, h}} and mset(g ≈ h)

def
=

{{g},{h}}. For every clause C = L1∨· · ·∨Ln, we define: mset(C)
def
= {mset(Li) |

i = 1, . . . , n}. Any order or preorder � on L-graphs may then be extended into
an order on clauses as follows: C � D ⇐⇒ mset(C) �m mset(D), where �m
denotes the multiset extension of � (note that �m is also a (pre)order). A literal
L is <-maximal in a clause C if there is no literal L′ ∈ C such that L′ > L. An L-
graph g is <-maximal in a literal L if L contains no L-graph g′ such that g′ > g.

144 R. Echahed et al.

A literal L is eligible in a clause C if L is a <-maximal literal in C. Intuitively,
eligible literals are those that may be considered for performing inferences. For
instance, given a clause (g ≈ h)∨(i ≈ j), if (g ≈ h) > (i ≈ j), then g ≈ h is eligible
but not i ≈ j. Consequently the inference rules (as defined in Section 4.1) will
be allowed to replace g by h using the equation g ≈ h (provided g �< h) but not,
e.g., i by j (this restricts the number of inferences and prune the search space).
Non eligible literals are simply attached to the conclusion of the inference but
they play no active role until they (eventually) become eligible.

4.1 Inference Rules

The Superposition calculus SC is defined by the following rules: Sp+ (positive
superposition), Sp− (negative superposition), R (Reflection) and F (Factoring).
The rules and their side conditions are very similar to those of the usual (ground)
superposition calculus, except for the use of the merging operation for positive
superposition. To simplify notations, the rules are defined modulo isomorphims,
which means that one has to find a renaming of the premises such that the
considered rule applies (this can be done using standard algorithms for finding
graph homomorphisms). For instance, with this convention, the Reflection rule
R actually removes all equations of the form g �≈ h, with g ≡ h.

Sp+ :
g1 ≈ h1 ∨ C1 g2 ≈ h2 ∨ C2

i{g1 ← h1} ≈ i{g2 ← h2} ∨ C1 ∨ C2

where:

1. i is a merge of g1 and g2, and g1, g2 are not orthogonal;
2. gi ≈ hi is eligible in gi ≈ hi ∨ Ci for i = 1, 2.
3. gi �< hi for i = 1, 2.

The non-orthogonality condition is the analogous of the non-variable condition
of the usual calculus, it dismisses trivial replacements.

Sp− :
g ≈ h ∨ C i �≈ j ∨D
i{g ← h} �≈ j ∨ C ∨D

where:

1. g ≤g i;
2. g ≈ h and i �≈ j are eligible in g ≈ h ∨ C and i �≈ j ∨D, respectively.
3. g �< h and i �< j.

F :
g ≈ h ∨ g ≈ h ∨ C

g ≈ h ∨ C
if g ≈ h is eligible in g ≈ h ∨ g ≈ h ∨ C.

R :
g �≈ g ∨ C

C
if g �≈ g is eligible in g �≈ g ∨ C.

Lemma 20. The rules Sp+, Sp−, F and R are sound, i.e., for all congruences
∼ and for all clauses C deducible from a set of premises Γ , we have ∼|= Γ =⇒
∼|= C.

A Strict Constrained Superposition Calculus for Graphs 145

4.2 Redundancy

In the usual superposition calculus [1], a clause is redundant if all its ground in-
stances are entailed by smaller clauses (w.r.t. the considered order). Such clauses
can be deleted without threatening refutational completeness, which reduces the
search space. In our context, such a definition cannot be used, because one of
the inference rules –namely Sp+– may generate clauses that are strictly larger
than the premises (hence such clauses would be considered as redundant if the
usual criterion were to be used).

Example 21. Consider the clauses: g ≈ h and i ≈ j, where g, h, i, j are L-graphs
with root (ρ1) that are defined as follows:

g: ρ1 0 h: ρ1 1 i: 0 ρ1 j: 2 ρ1

The L-graphs g and i admit the following merge (of root (ρ1)): 0 ρ1 0

Therefore, rule Sp+ applies, yielding g′ ≈ g′′, where:

g′: 0 ρ1 1 g′′: 2 ρ1 0

If L-graphs are ordered according to their number of nodes, then we have (g′ ≈
g′′) > (g ≈ h) and (g′ ≈ g′′) > (i ≈ j).

Worse, the calculus is actually incomplete if tautologies are deleted, as shown
in the following example.

Example 22. Consider the L-graphs g1, g2 and g3 with roots (ρ1, ρ2, ρ3):

g1: ρ1

ρ2ρ3

g2: ρ1

ρ2ρ3

g3: ρ1

ρ2ρ3

Let ġi denote the graph obtained from gi by adding one additional non root
node α distinct from ρ1, ρ2, ρ3, with some arbitrary (but fixed) label, e.g., 0.
Assume that the graphs are ordered by the number of nodes, so that ġi > gj ,
ġi � ġj and gi � gj (for all i, j ∈ {1, 2, 3}). Let Γ = {ġ1 ≈ g2 ∨ ġ2 ≈ g3 ∨
ġ3 ≈ g1, ġ1 �≈ g2 ∨ ġ2 �≈ g3 ∨ ġ3 �≈ g1}. Intuitively, every equation ġi ≈ gj
where (i, j) ∈ {(1, 2), (2, 3), (3, 1)} states that the semantics of the graph is
preserved when the isolated node is deleted and the graph is rotated by 90
degrees clockwise, for each possible position of the loop. Since the graphs are
invariant by rotation, all these transformations are actually equivalent. It is
easy to check that every clause that can be generated from Γ by applying the

146 R. Echahed et al.

negative superposition rule from the first clause into the second clause contains
two complementary literals (i.e. two literals of the form ġi ≈ gj and ġi �≈ gj)
hence is a tautology. Moreover, the clauses obtained by superposition using the
first clause only either are subsumed by the first clause (if the superposition
rule is applied on two different literals) or contains a literal gi ≈ gi (hence is a
tautology). The equational factorization rule (as defined in [1]) does not apply
since ġi and ġj are not isomorphic if i �= j. However, consider the L-graphs g′i, ġ′i
which contain the same nodes and edges as gi and ġi respectively, but with roots
(ρ2, ρ3, ρ1). It is clear that g′2 ≡ g1 and g′3 ≡ g2, so that ġ1 ≈ g2 |= ġ′2 ≈ g′3.
However, ġ′2 ≤g ġ2 and ġ2{ġ′2 ← g′3} = g3, thus ġ1 ≈ g2 |= ġ2 ≈ g3. By a similar
reasoning, we may show that ġ2 ≈ g3 |= ġ3 ≈ g1 and ġ3 ≈ g1 |= ġ1 ≈ g2, so that
the equations ġ1 ≈ g2, ġ2 ≈ g3, and ġ3 ≈ g1, are actually pairwise equivalent,
which entails that Γ is unsatisfiable. However, � cannot be derived from Γ if
the clauses containing complementary literals are discarded.

Thus, the conditions that ensure that a clause is redundant must be stronger
than those of the usual superposition calculus. The definition proposed below
covers usual deletion rules such as subsumption. Actually, two different criteria
will be used, namely non-strict and strict redundancy, depending on whether the
considered clauses are Horn or not. Indeed, in the former case a slightly less re-
strictive definition can be used, which permits the deletion of (some) tautological
clauses.

Definition 23. Let C,D be two clauses and let Γ be a set of clauses. We say that
C is subsumed by D and write C ≥sub D if C = D ∨C ′, up to associativity and
commutativity of ∨ and isomorphism. We write C →Γ D (C demodulates to D
w.r.t. Γ) if C is of the form g �� h∨E (with ��∈ {≈, �≈}), D = g{i ← j} �� h∨E,
and there exists a clause F ∈ Γ such that F = (i ≈ j) ∨ F ′, with F ′ ≤sub E,
i > j, F ′ < (i ≈ j) and (i ≈ j) < (g �� h).

The set of clauses that are redundant w.r.t. a set of clauses Γ is defined
inductively as follows. A clause C is redundant w.r.t. Γ iff one of the following
conditions holds: (1) C contains two literals g1 ≈ g2 and g′1 �≈ g′2, with gi ≡ g′i for
i = 1, 2; (2) C contains a literal of the form g ≈ h with g ≡ h; (3) C ≥sub D, for
some D ∈ Γ ; (4) C →Γ D and D is redundant. The set of strictly redundant
ground clauses is defined in a similar way, except that Item 1 is removed.

Intuitively, the conditions ensuring that C demodulates to D in Definition 23
are meant to ensure that D may be deduced from C by applying the rule Sp+ or
Sp− using the clause F (with D < C and F < C) and that {D}∪Γ is equivalent
to {C} ∪ Γ . In particular, the condition F ′ ≤sub E ensures that all the literals
added by the inference already occur in C.

Definition 24. A set of clauses Γ is saturated (resp. strictly saturated) if every
clause that can be deduced from premises in Γ using one of the rules of SC (in
one step) is redundant (resp. strictly redundant) w.r.t. Γ .

We prove that SC is refutationally complete. We actually establish two com-
pleteness results, the first one for general clauses and the second one for Horn

A Strict Constrained Superposition Calculus for Graphs 147

clauses. The latter is stronger since it uses the weaker non-strict saturatedness
criterion instead of strict saturatedness.

Theorem 25. Let Γ be a set of clauses. If � �∈ Γ and Γ is strictly saturated or
both Horn and saturated then Γ is satisfiable.

5 A Constrained Graph Superposition Calculus

We now lift the calculus SC defined in Section 4 into a constrained calculus.
The goal is to handle graphs labeled by terms interpreted in some arbitrary the-
ory, and possibly containing variables. To this aim, we attach constraints to the
clauses, which are formulas interpreted in the considered theory, asserting condi-
tions on the labels. Such constraints will be updated when inference rules will be
applied, by asserting the conditions that are required by the rule applications.

5.1 Constrained Clauses

Let V be a countably infinite set of variables and let Σ be a set of function
symbols1. Each symbol f in Σ is associated with a unique arity #(f). We denote
by T the set of terms built inductively as usual on V and Σ, and by C the set
of first-order formulas, called constraints, built inductively as usual on atoms of
the form t

.
= s, where t, s ∈ T using the logical connectives ∨,∧,¬,⇒,⇔, the

quantifiers ∃, ∀ and two logical constants ⊥ and �.
A substitution σ is a function mapping all variables x to a term xσ. The

domain dom(σ) of σ is the set of variables x such that xσ �= x. For every term
or formula e, we denote by eσ the term or formula obtained from e by replacing
every (free) variable x by xσ. A term is ground if it contains no variables, and a
substitution σ is ground if xσ is ground for all x ∈ dom(σ).

T -graphs are L-graphs with labels in T . A T -clause is a clause defined on
T -graphs. Substitutions are extended to T -graphs and T -clauses as follows. For
every T -graph g, we denote by gσ the T -graph such that: Fgσ = Fg for all

F ∈ {N,E,R} and Lgσ(α) = Lg(α)σ, for all α ∈ N̂g. Then: (g ≈ h)σ
def
= gσ ≈ hσ,

(g �≈ h)σ
def
= gσ �≈ hσ and (C ∨D)σ

def
= Cσ ∨Dσ. A T -graph g is ground if for all

α ∈ N̂g, Lg(α) is ground. A T -clause is ground if all the T -graphs occurring in
it are ground. For every expression (term, T -graph, constraint or T -clause) E,
we denote by V(E) the set of variables (freely) occurring in E.

Definition 26. A constrained clause (or c-clause) is a pair [C | φ], where C is
a T -clause and φ ∈ C.

Let I be some fixed set of first-order interpretations on the signature Σ. For
all I ∈ I, we denote by dom(I) the domain of I and by f I the interpretation
of the function f (with f ∈ Σ). For every ground term t and for all I ∈ I,
we denote by [t]I the value of t in I, inductively defined as usual. To simplify

1 As usual, predicates may be encoded as functions.

148 R. Echahed et al.

notations, we assume that for every I ∈ I and for every e ∈ dom(I), there exists
a ground term t such that [t]I = e.

The satisfiability relation |= relating interpretations in I and constraints in
C is defined as usual, where

.
= is interpreted as the identity, and ⊥ and � are

interpreted as false and true, respectively. We write φ |=I ψ if the implication
I |= φσ =⇒ I |= ψσ holds for all I ∈ I and for all ground substitutions
of domain V(φ) ∪ V(ψ); and φ ≡I ψ iff φ |=I ψ and ψ |=I φ. For any set of
constraints, we write I |= S iff I |= φ for all φ ∈ S. For any constraint (or set of
constraints) φ, if there exists a ground substitution σ with domain V(φ) and an
interpretation I ∈ I such that I |= φσ, then φ is I-satisfiable (and I-unsatisfiable
otherwise). For instance, the fixed set of first-order interpretations may be the
set I1 of first-order interpretations on Σ that satisfy the above condition on
the domain (this is not restrictive provided there are infinitely many ground
terms), in which case I-satisfiability is simply the standard satisfiability in first-
order clausal logic, or the set IN of interpretations of domain N interpreting the
functions 0, 1,+ as usual. We say that I is compact if for every I-unsatisfiable
set of constraints S there exists a finite set S′ ⊆ S such that S′ is I-unsatisfiable.
It is well-known that I1 is compact [21] and that IN is not compact2.

Any ground T -graph may be transformed into a dom(I)-graph by replacing
the labels by their interpretations in I. More formally:

Definition 27. For all I ∈ I and for all ground T -graphs g we denote by [g]I

the graph such that F[g]I = Fg for all F ∈ {N,E,R} and L[g]I (α) = [Lg(α)]
I ,

for all α ∈ N̂g. For every ground T -clause C, we denote by [C]I the clause
obtained from C by replacing every T -graph g by [g]I . For all sets of c-clauses
Γ , we denote by [Γ]I the set of clauses of the form [Cσ]I , where C ∈ Γ and σ
is a substitution mapping every variable in C to a ground term.

Note that by definition, all the labels of [g]I are elements of the domain of I.
Proposition 28 follows immediately from Definition 27.

Proposition 28. Let g, h be T -graphs, let I ∈ I and let σ be a ground substi-
tution with domain V(g) ∪ V(h). If g ≡ h then [gσ]I ≡ [hσ]I .

Definition 29. An I-interpretation is a pair (I,∼), where I ∈ I and ∼ is
a congruence on dom(I)-graphs. An I-interpretation (I,∼) validates a set of
c-clauses Γ (written (I,∼) |= Γ) if ∼|= [Γ]I .

5.2 Lifting the Calculus

In the constrained calculus, the equality of labels will not be checked when an
inference rule is applied. Instead, the corresponding conditions will be extracted
from the considered graphs and added to the constraints of the conclusion. We
first introduce a relation stating that two T -graphs are identical up to their

2 For instance, the set {n .
= i | i ∈ N} is unsatisfiable if n is interpreted as a natural

number, but admits no finite unsatisfiable subset.

A Strict Constrained Superposition Calculus for Graphs 149

labels. This relation is parameterized by a constraint that asserts conditions on
the labels ensuring that the graphs are identical (modulo I).

Definition 30. Let g, h be two T -graphs and let φ ∈ C. We write g =φ h if Ng =
Nh, Eg = Eh, Rg = Rh, and φ =

∧
α∈ ̂Ng

(Lg(α)
.
= Lh(α)) (up to associativity

and commutativity of ∧).

Example 31. Consider the T -graphs g and h below, of root (ρ1). We have g =φ h,
with φ = (x

.
= 0 ∧ 0

.
= y).

g: ρ1

α :xβ :0

h: ρ1

α :0β :y

Every relation between T -graphs or T -clauses may be adapted in a similar
way, keeping the conditions on the nodes, edges and roots, and asserting con-
ditions ensuring that the label of every given node is unique (up to equality
modulo I). Definitions 32 and 33 lift the subgraph and subsumption relations,
respectively:

Definition 32. We write h ≤g
φ g if Nh ⊆ Ng; Eh � Eg; every node α ∈ Nh

occurring in Rg also occurs in Rh; if α ∈ Nh occurs in an edge in Eg \ Eh

then α ∈ Rh, and φ =
∧

α∈ ̂Nh
Lh(α)

.
= Lg(α). The notation g{h ← i} may

be extended to the case where h ≤g
φ g (following Definition 6). Orthogonality is

extended accordingly (as it does not depend on labels).

Definition 33. We write C ≤sub
φ D if C and D are respectively of the form

(up to associativity and commutativity of ∨ and isomorphism):
∨n

i=1 gi ��i hi,
and

∨n
i=1 g

′
i ��i h′i ∨ D′, with gi =φi

g′i, hi =ψi
h′i (for all i = 1, . . . , n) and

φ =
∧n

i=1(φi ∧ ψi).

The notion of a merge is extended analogously:

Definition 34. A φ-merge of two T -graphs g1 and g2 is a T -graph h such that:
– Nh = Ng1

∪Ng2
, Eh = Eg1

 Eg2
, and N̂h = N̂g1

∪ N̂g2
.

– For every node α ∈ N̂h, we have Lh(α) = Lgi(α), for some (arbitrarily
chosen) i = 1, 2 such that Lgi

(α) is defined.
– φ =

∧
α∈ ̂Ng1∩ ̂Ng2

Lg1
(α)

.
= Lg2

(α).

We now lift the order relation. Let ≤I (for I ∈ I) be a family of well-
founded preorders on dom(I)-T -graphs that are closed under isomorphisms and
embeddings and contain ≤g. Let ≤φ (for φ ∈ C) be a family of pre-orders on
T -graphs satisfying the following conditions: g >φ h =⇒ g >ψ h, for all
constraints φ, ψ such that ψ |=I φ, and (I |= φ ∧ g >φ h) =⇒ [g]I >I [h]I . The
simplest solution in practice is to order T -graphs according to their number of
nodes, in which case the order does not depend on I or φ: g ≤I h ⇐⇒ g ≤φ

150 R. Echahed et al.

h ⇐⇒ card(Ng) ≤ card(Nh). However, our framework is meant to be general
enough to cope with orders that take labels into account.

A literal L is maximal in a c-clause [C | φ] if there is no literal L′ ∈ C such
that L′ >φ L. It is eligible in a c-clause [C | φ] if L is a >φ-maximal literal in C.

We are now in the position to define the constrained inference rules. As for
the rules in Section 4.1, they apply modulo isomorphism. We assume as for
the standard resolution or superposition calculus that the premises share no
variables. In every rule, the conclusion inherits the constraints of the premises
together with additional conditions on the labels which makes the inference
valid. In all rules, the eligibility condition is tested after adding all the constraints
enabling the inference, as this yields the most restrictive condition, thus reducing
the branching factor.

Sp+ :
[g1 ≈ h1 ∨ C1 | φ1] [g2 ≈ h2 ∨ C2 | φ2]

[i{g1 ← h1} ≈ i{g2 ← h2} ∨ C1 ∨ C2 | φ1 ∧ φ2 ∧ ψ]

where:

1. i is a ψ-merge of g1 and g2 and g1 and g2 are not orthogonal;
2. gi ≈ hi is eligible in [gi ≈ hi ∨ Ci | φ1 ∧ φ2 ∧ ψ] (for all i = 1, 2);
3. gi
<φ1∧φ2∧ψ hi (for all i = 1, 2).

Sp− :
[g ≈ h ∨ C | φ] [i
≈ j ∨D | ψ]

[i{g ← h}
≈ j ∨ C ∨D | φ ∧ ψ ∧ ξ]

where:

1. g ≤g
ξ i (note that ξ is uniquely defined by Definition 32);

2. g ≈ h and i
≈ j are eligible in [g ≈ h∨C | φ∧ψ∧ξ] and [i
≈ j∨D | φ∧ψ∧ξ],
respectively;

3. g
<φ∧ψ∧ξ h and i
<φ∧ψ∧ξ j.

F :
[g ≈ h ∨ g′ ≈ h′ ∨ C | φ]
[g ≈ h ∨ C | φ ∧ ψ ∧ ψ′]

where g ≈ h is eligible in [g ≈ h∨ g′ ≈ h′ ∨C | φ∧ψ∧ψ′], g =ψ g′, and h =ψ′ h′.

R :
[g
≈ h ∨ C | φ]
[C | φ ∧ ψ]

where g
≈ h is eligible in [g
≈ h ∨ C | φ ∧ ψ] and g =ψ h.

5.3 Soundness and Refutational Completeness

We establish the soundness and completeness of the constrained calculus, by
lifting the corresponding properties for the base calculus. Note that semi decid-
ability holds only if the base theory is semi-decidable3 and compact (otherwise
it is easy to see that unsatisfiability is not semi-decidable in general).

3 in the sense that there exists a semi-decision procedure to check whether a formula
in C is unsatisfiable.

A Strict Constrained Superposition Calculus for Graphs 151

Lemma 35. The rules Sp+, Sp−, F and R (applied on c-clauses) are sound, i.e.,
for all I-interpretations (I,∼) and for all c-clauses [C | φ] deducible for a set of
premises Γ , we have (I,∼) |= Γ =⇒ (I,∼) |= [C | φ].

The redundancy criterion may be lifted as follows:

Definition 36. A c-clause [C | φ] is (strictly) I-redundant in a set of c-clauses
Γ if for all ground substitutions σ of domain V(C)∪V(φ) and for all I ∈ I such
that I |= φσ, the clause [Cσ]I is (strictly) redundant in [Γ]I .

A set of c-clauses Γ is (strictly) saturated if every c-clause that is deducible
from Γ by the rules above is (strictly) I-redundant in Γ .

Theorem 37. Let Γ be a set of c-clauses. If Γ is unsatisfiable and strictly
saturated or Horn and saturated, then Γ contains a set of c-clauses {[� | φI] |
I ∈ I} such that for every I ∈ I, I |= ∃xI .φi, with xI = V(φI). If, moreover,
I is compact, then Γ contains a finite set of c-clauses {[� | φi] | i = 1, . . . , n}
such that

∧n
i=1 ¬(∃x.φi) is I-unsatisfiable, with xi = V(φi).

5.4 Redundancy Testing

The redundancy criterion in Definition 36 is very general, but it may be difficult
to test in practice. We thus introduce a second notion of redundancy, defined
directly on constrained clauses, that is stronger and easier to decide.

Definition 38. Let [C | φ], [D | ψ] be two clauses and let Γ be a set of clauses.
Let x and y be the vectors of variables occurring in [C | φ] and [D | ψ], respec-
tively (we assume by renaming that x and y share no variable).

We say that [C | φ] is subsumed by [D | ψ] and we write [C | φ] ≥sub [D | ψ]
if there exists ξ ∈ C such that D ≤sub

ξ C and φ |=I ∃y.(ψ ∧ ξ).
We write [C | φ] →Γ [D | ψ] ([C | φ] demodulates to [D | ψ] w.r.t. Γ) if C

is of the form g �� h ∨ E, D = g{i ← j} �� h ∨ E, and there exists a c-clause
[F | ξ] ∈ Γ (with free variables z) such that F = (i ≈ j)∨F ′, i ≤g

ξ′ g, F
′ ≤sub

ξ′′ E,
φ |=I ∃y.∃z.(ψ ∧ ξ ∧ ξ′ ∧ ξ′′), i >ξ j, F ′ <ξ (i ≈ j) and (i ≈ j) <ξ (g �� h).

A c-clause [C | φ] is redundant w.r.t. Γ iff one of the following conditions
holds: (1) ∃x.φ is I-unsatisfiable, with x = V(φ). (2) C contains two literals
g1 ≈ g2 and g′1 �≈ g′2, with gi =φi

g′i, and φ |=I φi (for all i = 1, 2); (3) C
contains a literal of the form g ≈ h with g =ψ h and φ |=I ψ; (4) [C | φ] ≥sub

[D | ψ], for some [D | ψ] ∈ Γ ; (5) [C | φ] →Γ [D | ψ] and [D | ψ] is redundant.
The notion of strictly redundant c-clause is defined in a similar way, removing
Item 2.

Example 39. Consider the following T -graphs, of root ():

g: α : x β : y h: α : 0 β : z + 1 i: 0

We have g ≈ i ≤sub
φ h ≈ i, with φ = (x

.
= 0 ∧ y

.
= z + 1 ∧ 0

.
= 0). Thus, if I

only contains the standard model of Presburger arithmetic, then [g ≈ i | y �≈ 0]
subsumes [h ≈ i | �].

152 R. Echahed et al.

The following lemma states the relation between the new notion of redun-
dancy and I-redundancy (as defined in Definition 36).

Lemma 40. Let Γ be a set of c-clauses. If [C | φ] is (strictly) redundant w.r.t.
Γ then it is (strictly) I-redundant w.r.t. Γ .

Remark 41. By the previous definitions, checking whether a given c-clause is
(strictly) redundant involves testing the validity of entailments of the form
φ |=I ∃y.ψ, which may be infeasible in practice (for instance the problem is
undecidable if I contains all interpretations). Stronger conditions may be used
instead, e.g., one may check whether there exists a substitution σ such that φ is
of the form ψσ ∧ ψ, which is decidable.

6 Conclusion

We devised a constrained superposition calculus to test the satisfiability of sets
of clauses defined over graphs. Its soundness and refutational completeness was
established, modulo a redundancy criterion that captures the usual deletion and
simplification rules: subsumption, demodulation, deletion of clauses with trivial
equations and – in the case of Horn clauses only – deletion of clauses containing
complementary literals. The considered structures are rooted directed labeled
graphs, which are general enough to capture most existing equational graph
theories, such as those developed for quantum circuits. In contrast to [14], the
calculus is able to handle disjunctions as well as interpreted labels, and in con-
trast to [22], our solution avoids any encoding of graphs into terms, by defining
inference rules operating directly on graphs.

From a practical point of view, it would be interesting to get more general
redundancy criteria, to reduce the branching factor and improve the efficiency
of the procedure. In particular, is it possible to define a version of the calculus
in which tautology deletion is allowed, even for non Horn clauses? As evidenced
by Example 22, this would require to define a new equational factorization rule,
allowing for non trivial superposition inferences within a single clause.

Another interesting issue is to add variables denoting not only labels, but also
graphs. This would allow for instance to synthesize graphs satisfying some prop-
erties. As graphs can be viewed as functions with multiple inputs and outputs
(denoted by the roots) such an addition would yield a second order logic.

Finally, it would be interesting to identify fragments for which the calcu-
lus terminates, ensuring decidability of the satisfiability problem. In contrast to
terms, the calculus does not terminate (and the satisfiability problem is unde-
cidable) for ground unit clauses [14], hence strong restrictions on the shape of
the graphs are required to ensure termination.

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 3(4):217–247, 1994.

A Strict Constrained Superposition Calculus for Graphs 153

2. L. Bachmair and H. Ganzinger. Strict basic superposition. In C. Kirchner and
H. Kirchner, editors, Automated Deduction - CADE-15, 15th International Con-
ference on Automated Deduction, Lindau, Germany, July 5-10, 1998, Proceedings,
volume 1421 of Lecture Notes in Computer Science, pages 160–174. Springer, 1998.

3. M. Backens and A. Kissinger. ZH: A complete graphical calculus for quantum
computations involving classical non-linearity. arXiv preprint arXiv:1805.02175,
2018.

4. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. Confluence
of graph rewriting with interfaces. In 26th European Symposium on Programming
(21/04/17 - 28/04/17), February 2017.

5. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. String diagram
rewrite theory I: rewriting with frobenius structure. J. ACM, 69(2):14:1–14:58,
2022.

6. J. H. Brenas, R. Echahed, and M. Strecker. Verifying graph transformation systems
with description logics. In Graph Transformation - 11th International Conference,
ICGT 2018, Held as Part of STAF 2018, Toulouse, France, June 25-26, 2018,
Proceedings, volume 10887 of Lecture Notes in Computer Science, pages 155–170.
Springer, 2018.

7. R. Caferra, R. Echahed, and N. Peltier. A term-graph clausal logic: Completeness
and incompleteness results. Journal of Applied Non-classical Logics, 18(4):373–411,
2008.

8. C. Chareton, S. Bardin, F. Bobot, V. Perrelle, and B. Valiron. An auto-
mated deductive verification framework for circuit-building quantum programs.
In N. Yoshida, editor, Programming Languages and Systems - 30th European Sym-
posium on Programming, ESOP 2021, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Lux-
embourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in
Computer Science, pages 148–177. Springer, 2021.

9. A. Clément, N. Heurtel, S. Mansfield, S. Perdrix, and B. Valiron. Lo v-calculus: A
graphical language for linear optical quantum circuits. In S. Szeider, R. Ganian, and
A. Silva, editors, 47th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241
of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

10. A. Clément and S. Perdrix. PBS-calculus: A graphical language for quantum-
controlled computations. arXiv preprint arXiv:2002.09387, 2020.

11. B. Coecke and R. Duncan. Tutorial: Graphical calculus for quantum circuits. In
International Workshop on Reversible Computation, pages 1–13. Springer, 2012.

12. A. Corradini, D. Duval, R. Echahed, F. Prost, and L. Ribeiro. The PBPO graph
transformation approach. J. Log. Algebraic Methods Program., 103:213–231, 2019.

13. R. Echahed. Inductively sequential term-graph rewrite systems. In H. Ehrig,
R. Heckel, G. Rozenberg, and G. Taentzer, editors, Graph Transformations, 4th
International Conference, ICGT 2008, Leicester, United Kingdom, September 7-
13, 2008. Proceedings, volume 5214 of Lecture Notes in Computer Science, pages
84–98. Springer, 2008.

14. R. Echahed, M. Echenim, M. Mhalla, and N. Peltier. A superposition-based calcu-
lus for diagrammatic reasoning. In N. Veltri, N. Benton, and S. Ghilezan, editors,
PPDP 2021: 23rd International Symposium on Principles and Practice of Declara-
tive Programming, Tallinn, Estonia, September 6-8, 2021, pages 10:1–10:13. ACM,
2021.

154 R. Echahed et al.

15. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

16. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 2: Applications,
Languages and Tools. World Scientific, 1999.

17. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach
to graph rewriting. In I. Walukiewicz, editor, Foundations of Software Science
and Computation Structures, 7th International Conference, FOSSACS 2004, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume
2987 of Lecture Notes in Computer Science, pages 151–166. Springer, 2004.

18. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformations, Volume 3: Concur-
rency, Parallelism and Distribution. World Scientific, 1999.

19. H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic ap-
proach. In 14th Annual Symposium on Switching and Automata Theory, Iowa
City, Iowa, USA, October 15-17, 1973, pages 167–180, 1973.

20. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations, pages 1–94. World Scientific, 1997.

21. M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1990.

22. J. Gorard, M. Namuduri, and X. D. Arsiwalla. Zx-calculus and extended wolfram
model systems II: fast diagrammatic reasoning with an application to quantum
circuit simplification. CoRR, abs/2103.15820, 2021.

23. A. Habel and K. Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci., 19(2):245–296, 2009.

24. A. Hadzihasanovic. The algebra of entanglement and the geometry of composition.
arXiv preprint arXiv:1709.08086, 2017.

25. A. Kissinger and V. Zamdzhiev. Quantomatic: A proof assistant for diagrammatic
reasoning. In International Conference on Automated Deduction, pages 326–336.
Springer, 2015.

26. C. M. Poskitt and D. Plump. A hoare calculus for graph programs. In H. Ehrig,
A. Rensink, G. Rozenberg, and A. Schürr, editors, Graph Transformations - 5th
International Conference, ICGT 2010, Enschede, The Netherlands, September 27 -
- October 2, 2010. Proceedings, volume 6372 of Lecture Notes in Computer Science,
pages 139–154. Springer, 2010.

27. A. Rensink. The GROOVE simulator: A tool for state space generation. In Second
International Workshop on Applications of Graph Transformations with Industrial
Relevance, AGTIVE 2003, volume 3062 of LNCS, pages 479–485. Springer, 2003.

28. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In R. Goré,
A. Leitsch, and T. Nipkow, editors, Automated Reasoning, First International Joint
Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings, volume 2083
of Lecture Notes in Computer Science, pages 376–380. Springer, 2001.

29. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

30. S. Schulz, S. Cruanes, and P. Vukmirovic. Faster, higher, stronger: E 2.3. In
P. Fontaine, editor, Automated Deduction - CADE 27 - 27th International Con-
ference on Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings,

A Strict Constrained Superposition Calculus for Graphs 155

volume 11716 of Lecture Notes in Computer Science, pages 495–507. Springer,
2019.

31. D. Varró. Automated formal verification of visual modeling languages by model
checking. Journal of Software and Systems Modeling, 3(2):85–113, May 2004.

32. C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
SPASS version 3.5. In R. A. Schmidt, editor, Automated Deduction - CADE-
22, 22nd International Conference on Automated Deduction, Montreal, Canada,
August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science,
pages 140–145. Springer, 2009.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Programming Language Characterizing
Quantum Polynomial Time

Emmanuel Hainry , Romain Péchoux , and Mário Silva(�)

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{hainry,pechoux,mmachado}@loria.fr

Abstract. We introduce a first-order quantum programming language,
named foq, whose terminating programs are reversible. We restrict foq
to a strict and tractable subset, named pfoq, of terminating programs
with bounded width, that provides a first programming language-based
characterization of the quantum complexity class fbqp. We finally present
a tractable semantics-preserving algorithm compiling a pfoq program to
a quantum circuit of size polynomial in the number of input qubits.

1 Introduction

Motivations. Quantum computing is an emerging and promising computational
model that has been in the scientific limelight for several decades. This phe-
nomenon is mainly due to the advantage of quantum computers over their clas-
sical competitors, based on the use of purely quantum properties such as super-
position and entanglement. The most notable example being Shor’s algorithm
for finding the prime factors of an integer [15], which is exponentially faster than
the most efficient known classical factoring algorithm and which is expected to
have implications in cryptography (RSA encryption, etc.).

Whether due to the fragility of quantum systems, namely the engineering
problem of maintaining a large number of qubits in a coherent state, or by lack
of reliable technological alternatives, quantum computing is typically described
at a level close to hardware. Without any hope of being exhaustive, one can think
to quantum circuits [9,11], to measurement-based quantum computers [4,7] or to
circuit description languages [13]. This low-level machinery restricts drastically
the abstraction and programming ease offered by these models and quantum
programs currently suffer from the comparison with their classical competitors,
which have many high-level tools and formalisms based on more than 50 years
of scientific research, engineering development, and practical and industrial ap-
plications.

In order to solve these issues, a major effort is made to realize the promise
of a quantum computer, which requires the development of different layers of
hardware and software, together referred to as the quantum stack. Our paper is
part of this line of research. We focus on the highest layers of the quantum stack:
quantum programming languages and quantum algorithms. We seek to better
understand what can be done efficiently on a quantum computer and we are

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_8

156–175, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_8&domain=pdf
http://orcid.org/0000-0002-9750-0460
http://orcid.org/0000-0003-0601-5425
http://orcid.org/0000-0002-9886-8400
https://doi.org/10.1007/978-3-031-30829-1_8
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_8&domain=pdf

A Programming Language Characterizing Quantum Polynomial Time 157

particularly interested in the development of quantum programming languages
where program complexity can be certified automatically by some static analysis
technique.

Contribution. Towards this end, we take the notion of polynomial time compu-
tation as our main object of study. Our contributions are the following.

– We introduce a quantum programming language, named foq, that includes
first-order recursive procedures. The input of a foq program consist in a
sorted set of qubits, a list of pairwise distinct qubit indexes. A foq program
can apply to each of its qubits basic operators corresponding to unary unitary
operators. The considered set of operators has been chosen in accordance
with [16] to form a universal set of gates.

– After showing that terminating foq programs are reversible (Theorem 1), we
restrict programs to a strict subset, named pfoq, for polynomial time foq.
The restrictions put on a pfoq programs are tractable (i.e., can be decided
in polynomial time, see Theorem 2), ensure that programs terminate on any
input (Lemma 1), and prevent programs from having any exponential blow
up (Lemma 2).

– We show that the class of functions computed by pfoq programs is sound
and complete for the quantum complexity class fbqp. fbqp is the functional
extension of bounded-error quantum polynomial time, known as bqp [2], the
class of decision problems solvable by a quantum computer in polynomial
time with an error probability of at most 1

3 for all instances. Hence the lan-
guage pfoq is, to our knowledge, the first programming language character-
izing quantum polynomial time functions. Soundness (Theorem 3) is proved
by showing that any pfoq program can be simulated by a quantum Turing
machine running in polynomial time [2]. The completeness of our characteri-
zation (Theorem 6) is demonstrated by showing that pfoq programs strictly
encompass Yamakami’s function algebra, known to be fbqp-complete [16].

– We also describe a polynomial-time deterministic algorithm compile (based
on the subroutines described in Algorithms 1 and 2), that takes in a pfoq
program P and an integer n and outputs a quantum circuit of size polyno-
mial in n that simulates P on an input size of n qubits. The existence of
such circuits is not surprising, as a direct consequence of Yao’s characteriza-
tion of the class bqp in terms of uniform families of circuits of polynomial
size [17]. However, a constructive generation based on Yao’s algorithm is not
satisfactory because of the use of quantum Turing machines which makes
the circuits complex and not optimal (in size). We show that, in our set-
ting, circuits can be effectively computed and that the compile algorithm
is tractable (Theorem 9).

Our programming language foq and the restriction to pfoq are illustrated
throughout the paper, using the Quantum Fourier Transform QFT as a leading
algorithm (Example 1).

158 E. Hainry et al.

Related work. This paper belongs to a long standing line of works trying to
specify, understand, and analyze the semantics of quantum programming lan-
guages, starting with the cornerstone work of Selinger [14]. The motivations
in restricting the considered programs to pfoq were inspired by the works on
implicit computational complexity, that seek to characterize complexity classes
by putting restrictions (type systems or others) on standard programming lan-
guages and paradigms [1,5,12]. These restrictions have to be implicit (i.e., not
provided by the programmer) and tractable. Among all these works, we are aware
of two results [16] and [6] studying polynomial time computations on quantum
programming languages, works from which our paper was greatly inspired. [6]
provides a characterization of bqp based on a quantum lambda-calculus. Our
work is an extension to fbqp with a restriction to first-order procedures. Last
but not least, [6] is based on Yao’s simulation of quantum Turing machines [17]
while we provide an explicit algorithm for generating circuits of polynomial size.
Our work is also inspired by the function algebra of [16], that characterizes
fbqp: our completeness proof shows that any function in [16] can be simulated
by a pfoq program (Theorem 6). However, we claim that foq is a more gen-
eral language for fbqp in so far that it is much less constraining (in terms of
expressive power) than the function algebra of [16]: any function of [16] can
be, by design, transformed into a pfoq program, whereas the converse is not
true. We can take as example the quantum Fourier transform (QFT) which, as
noted in [16], cannot be exactly computed by the function algebra without an
additional initial quantum function. Furthermore, the multi-qubit recursion con-
struction described in [16] is more restrictive than what we allow in pfoq, since
we may only call the same recursive function in each branch.

2 First-order quantum programming language

Syntax and well-formedness. We consider a quantum programming language,
called foq for First-Order Quantum programming language, that includes basic
data types such as Integers, Booleans, Qubits, Operators, and Sorted Sets of
qubits, lists of finite length where all elements are different. A foq program has
the ability to call first-order (recursive) procedures taking a sorted set of qubits
as a parameter. Its syntax is provided in Figure 1.

Let x denote an integer variable and p̄, q̄ denote sorted sets variables. The
size of the sorted set stored in q̄ will be denoted by |q̄|. We can refer to the i-th
qubit in q̄ as q̄[i], with 1 ≤ i ≤ |q̄|. Hence, each non-empty sorted set variable
q̄ can be viewed as a list [q̄[1], . . . , q̄[|q̄|]]. The empty sorted set, of size 0, will
be denoted by nil and q̄ � [i] will denote the sorted set obtained by removing
the qubit of index i in q̄. For notational convenience, we extend this notation by
q̄ � [i1, . . . , ik], for the list obtained by removing the qubits of indexes i1, . . . , ik
in the sorted set q̄.

The language also includes some constructs Uf to represent (unary) unitary
operators, for some total function f ∈ Z → [0, 2π)∩R̃. The function f is required
to be polynomial-time approximable: its output is restricted to R̃, the set of real

A Programming Language Characterizing Quantum Polynomial Time 159

numbers that can be approximated by a Turing machine for any precision 2−k

in time polynomial in k.

(Integers) i � n | x | i + n | i− n | |s|, with n ∈ N
(Booleans) b � i > i | i ≥ i | i = i | b ∧ b | b ∨ b | ¬b
(Sorted Sets) s � nil | q̄ | s� [i]
(Qubits) q � s[i]
(Operators) Uf (i) � NOT | Rf

Y (i) | Phf (i), with f ∈ Z → [0, 2π) ∩ R̃
(Statements) S � skip; | q ∗= Uf (i); | S S | if b then S else S

| qcase q of {0 → S, 1 → S} | call proc[i](s);
(Procedure declarations) D � ε | decl proc[x](p̄){S}, D
(Programs) P(q̄) � D :: S

Fig. 1: Syntax of foq programs

A foq program P(q̄) consists of a sequence of procedure declarations D fol-
lowed by a program statement S, ε denoting the empty sequence. In what follows,
we will sometimes refer to program P(q̄) simply as P. Let var(S) be the set of
variables appearing in the statement S. Let |P| be the size of program P, that is
the total number of symbols in P.

A procedure declaration decl proc[x](p̄){S} takes a sorted set parameter p̄
and some optional integer parameter x as inputs. S is called the procedure state-
ment, proc is the procedure name and belongs to a countable set Procedures. We
will write Sproc to refer to S and proc ∈ P holds if proc is declared in D.

Statements include a no-op instruction, applications of a unitary operator
to a qubit (q ∗= Uf (i);), sequences, (classical) conditionals, quantum cases, and
procedure calls (call proc[i](s);). A quantum case qcase q of {0 → S0, 1 → S1}
provides a quantum control feature that will execute statements S0 and S1 in
superposition. For example, the CNOT gate on qubits q̄[i] and q̄[j], for i, j ∈ N,
i �= j, can be simulated by the following statement:

CNOT(q̄[i], q̄[j]) � qcase q̄[i] of {0 → skip; , 1 → q̄[j] ∗= NOT; }.
Throughout the paper, we restrict our study to well-formed programs, that is,

programs P = D :: S satisfying the following properties: var(S) ⊆ {q̄}; ∀proc ∈
P, var(Sproc) ⊆ {x, p̄}; procedure names declared in D are pairwise distinct; for
each procedure call, the procedure name is declared in D.

Semantics. Let H2n be the Hilbert space C2n of n qubits. We use Dirac notation
to denote a quantum state |ψ〉 ∈ H2n . Each |ψ〉 ∈ H2n can be written as a
superposition of bitstrings of size n: |ψ〉= ∑

w∈{0,1}n αw|w〉, with αw ∈ C and∑
w |αw|2 = 1. The length �(|ψ〉) of the state |ψ〉 is n. Given two matrices M,N ,

we denote by M† the transpose conjugate of M and by M⊗N the tensor product

160 E. Hainry et al.

of M by N . 〈ψ| is equal to |ψ〉† and |ψ〉〈φ| and 〈ψ|φ〉 are respectively the inner
product and outer product of |ψ〉and |φ〉. Let In be the identity matrix in Cn×n.
Given m ≤ n and i ∈ {0, 1}, define |i〉m � I2m−1 ⊗ |i〉⊗ I2n−m and 〈i|m � (|i〉m)†.

A function �Uf � ∈ Z → C̃2×2 is associated to each Uf as follows:

�NOT�(n) �
(
0 1

1 0

)
, �Rf

Y �(n) �
(
cos(f(n)) − sin(f(n))

sin(f(n)) cos(f(n))

)
, �Phf �(n) �

(
1 0

0 eif(n)

)
,

where C̃ is the set of complex numbers whose both real and imaginary parts
are in R̃. One can check easily that each matrix M � �Uf �(n) ∈ C̃2×2 is unitary,
i.e., it satisfies M† M = M M† = I2.

Let B to be the set of Boolean values b ∈ {false, true}. For a given set
X, let L(X) be the set of lists of elements in X. Let l = [x1, . . . , xm], with
x1, . . . , xm ∈ X, denote a list of m-elements in L(X) and [] be the empty list
(when m = 0). For l, l′ ∈ L(X), l@l′ denotes the concatenation of l and l′. hd(l)
and tl(l) represent the tail and the head of l, respectively. Lists of integers will
be used to represent Sorted Sets. They contain pointers to qubits (i.e., indexes)
in the global memory.

We interpret each basic data type τ as follows: �Integers� � Z, �Booleans� �
B, �SortedSets� � L(N), �Qubits� � N, and �Operators� � C̃2×2. Each basic
operation op ∈ {+,−, >,≥,=,∧,∨,¬} of arity n, with 1 ≤ n ≤ 2, has a type
signature τ1 × . . . × τn → τ fixed by the program syntax. For example, the
operation + has signature Integers×Integers → Integers. A total function �op� ∈
�τ1� × . . .× �τn� → �τ� is associated to each op.

For each basic type τ , the reduction ⇓�τ� is a map in τ × L(N) → �τ�.
Intuitively, it maps an expression of type τ to its value in �τ� for a given list l
of pointers in memory. These reductions are defined in Figure 2, where e and d
denote either an integer expression i or a boolean expression b.

Note that in rule (Rm/∈), if we try to delete an undefined index then we
return the empty list, and in rule (Qu/∈), if we try to access an undefined qubit
index then we return the value 0 (defined indexes will always be positive). The
standard gates RY (π/4), P (π/4), and CNOT , form a universal set of gates
[3], which justifies the choice of NOT, Rf

Y (i), and Phf (i) as basic operators.
For instance, we can simulate the application of an Hadamard gate H on q by
the following statement q ∗= Rf

Y (0); q ∗= NOT;, with the function f defined by
∀n, f(n) = π/4 ∈ [0, 2π)∩R̃. By abuse of notation, we will sometimes use q ∗= H;
to denote this statement. Using CNOT, we can also define the SWAP operation
swapping the state between two qubits q̄[i] and q̄[j], with i, j ∈ N, i �= j:

SWAP(q̄[i], q̄[j]) � CNOT(q̄[i], q̄[j]) CNOT(q̄[j], q̄[i]) CNOT(q̄[i], q̄[j]).

Let � and ⊥ be two special symbols for termination and error, respectively,
and let � stand for a symbol in {�,⊥}. The set of configurations of dimension
2n, denoted Confn, is defined by

Confn � (Statements ∪ {�,⊥})×H2n × P(N)× L(N),
with P(N) being the powerset over N. A configuration c = (S, |ψ〉, A, l) ∈ Confn
contains a statement S to be executed (provided that S /∈ {�,⊥}), a quantum

A Programming Language Characterizing Quantum Polynomial Time 161

(e, l) ⇓�τ1� m (d, l) ⇓�τ2� n
(Op)

(e op d, l) ⇓�op�(�τ1�,�τ2�) �op�(m,n)

(i, l) ⇓Z n
(Unit)

(Uf (i), l) ⇓C2×2 �Uf �(n)

(Cst)
(n, l) ⇓Z n

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∈ [1,m]
(Rm∈)

(s� [i], l) ⇓L(N) [x1, . . . , xk−1, xk+1, . . . , xm]

(s, l) ⇓L(N) [x1, . . . , xn]
(Size)

(|s|, l) ⇓Z n

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k /∈ [1,m]
(Rm/∈)

(s� [i], l) ⇓L(N) []

(Nil)
(nil, l) ⇓L(N) []

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∈ [1,m]
(Qu∈)

(s[i], l) ⇓N xk

(Var)
(q̄, l) ⇓L(N) l

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k /∈ [1,m]
(Qu/∈)

(s[i], l) ⇓N 0

Fig. 2: Semantics of expressions

state |ψ〉 of length n, a set A containing the indexes of qubits that are allowed
to be accessed by statement S, and a list l of qubit pointers.

The program big-step semantics −→, described in Figure 3, is defined as a
relation in

⋃
n∈N Confn×Confn. In the rules of Figure 3, −→ is annotated by an

integer, called level. For example, the level of the conclusion in the (Call[]) rule
is 1. The level is used to count the total number of procedure calls that are not
in superposition (i.e., in distinct branches of a quantum case).

We now give a brief intuition on the rules of Figure 3. Rules (Asg⊥) and
(Asg�) evaluate the application of a unitary operator, corresponding to Uf (j),
to a qubit s[i]. For that purpose, they evaluate the index n of s[i] in the global
memory. Rule (Asg⊥) deals with the error case, where the corresponding qubit
is not allowed to be accessed. Rule (Asg�) deals with the success case: the new
quantum state is obtained by applying the result of tensoring the evaluation
of Uf (j) to the right index. Rules (Seq�) and (Seq⊥) evaluate the sequence of
statements, depending on whether an error occurs or not. The (If) rule deals
with classical conditionals in a standard way. The three rules (Case�), (Case⊥),
and (Case/∈) evaluate the qubit index n of the control qubit s[i]. Then they check
whether this index belongs to the set of accessible qubits (is n in A?). If so,
the two statements S0 and S1 are intuitively evaluated in superposition, on the
projected state 〈0|n|ψ〉 and 〈1|n|ψ〉, respectively. During these evaluations, the
index n cannot be accessed anymore. The rule (Call[]) treats the base case of a
procedure call when the sorted set parameter is empty. In the non-empty case,
rule (Call�) evaluates the sorted set parameter s to l′ and the integer parameter

162 E. Hainry et al.

(Skip)
(skip, |ψ〉, A, l)

0−→ (�, |ψ〉, A, l)

(s[i], l) ⇓N n /∈ A
(Asg⊥)

(s[i] ∗= Uf (j); , |ψ〉, A, l)
0−→ (⊥, |ψ〉, A, l)

(s[i], l) ⇓N n ∈ A (Uf (j), l) ⇓C2×2 M
(Asg�)

(s[i] ∗= Uf (j); , |ψ〉, A, l)
0−→ (�, I2n−1 ⊗M ⊗ I2l(|ψ〉)−n |ψ〉, A, l)

(S1, |ψ〉, A, l)
m1−→ (�, |ψ′〉, A, l) (S2, |ψ′〉, A, l)

m2−→ (, |ψ′′〉, A, l)
(Seq�)

(S1 S2, |ψ〉, A, l)
m1+m2−→ (, |ψ′′〉, A, l)

(S1, |ψ〉, A, l)
m−→ (⊥, |ψ〉, A, l)

(Seq⊥)
(S1 S2, |ψ〉, A, l)

m−→ (⊥, |ψ〉, A, l)

(b, l) ⇓B b ∈ B (Sb, |ψ〉, A, l)
mb−→ (, |ψ′〉, A, l)

(If)
(if b then Strue else Sfalse, |ψ〉, A, l)

mb−→ (, |ψ′〉, A, l)

(s[i], l) ⇓N n ∈ A (Sk, |ψ〉, A\{n}, l) mk−→ (�, |ψk〉, A\{n}, l)
(Case�)

(qcase s[i] of {0 → S0, 1 → S1}, |ψ〉, A, l)
maxk mk−→ (�,

∑
k |k〉n〈k|n|ψk〉, A, l)

(s[i], l) ⇓N n ∈ A (Sk, |ψ〉, A\{n}, l) mk−→ (k, |ψk〉, A\{n}, l) ⊥ ∈ {	0, 	1}
(Case⊥)

(qcase s[i] of {0 → S0, 1 → S1}, |ψ〉, A, l)
maxk mk−→ (⊥, |ψ〉, A, l)

(s[i], l) ⇓N n /∈ A
(Case/∈)

(qcase s[i] of {0 → S0, 1 → S1}, |ψ〉, A, l)
0−→ (⊥, |ψ〉, A, l)

(s, l) ⇓L(N) l
′ �= [] (i, l) ⇓Z n (Sproc{n/x}, |ψ〉, A, l′) m−→ (, |ψ′〉, A, l′)

(Call�)
(call proc[i](s); , |ψ〉, A, l)

m+1−→ (, |ψ′〉, A, l)

(s, l) ⇓L(N) []
(Call[])

(call proc[i](s); , |ψ〉, A, l)
1−→ (�, |ψ〉, A, l)

Fig. 3: Semantics of statements

x to n. It returns the result of evaluating the procedure statement Sproc{n/x},
where n has been substituted to x, w.r.t. the updated qubit pointers list l′.

For a given program P = D :: S and a given quantum state |ψ〉 ∈ H2n , the
initial configuration for input |ψ〉 is cinit(|ψ〉) � (S, |ψ〉, {1, . . . , n}, [1, . . . , n]) ∈

A Programming Language Characterizing Quantum Polynomial Time 163

Confn. A program is error-free if there is no initial configuration cinit(|ψ〉) such
that cinit(|ψ〉) −→ (⊥, |ψ′〉, A, l). We write �P�(|ψ〉) = |ψ′〉, whenever cinit(|ψ〉) m−→
(�, |ψ′〉, A, l) holds for some m. (�, |ψ′〉, A, l) is called a terminal configuration.
Let H =

⋃
n H2n , a program terminates if �P� is a total function in H → H.

Note that if a program terminates then it is obviously error-free but the converse
property does not hold. Every program P can be efficiently transformed into an
error-free program P¬⊥ such that ∀|ψ〉, if �P�(|ψ〉) is defined then �P�(|ψ〉) =
�P¬⊥�(|ψ〉). For example, an assignment s[i] ∗= Uf (j); can be transformed into
the conditional statement if ((0 < i) ∧ (i ≤ |s|)) then s[i] ∗= Uf (j); else skip;.

Example 1. A notable example of quantum algorithm is the Quantum Fourier
Transform (QFT), used as a subroutine in Shor’s algorithm [15], and whose
quantum circuit is provided below, with Rn � �Phλx.π/2x−1

�(n), for n ≥ 2. After
applying Hadamard and controlled Rn gates, the circuit performs a permutation
of qubits using swap gates.

. . .

. . .

. . .

...
...

...
...

...
...

...
...

...

. . .

. . .

q̄[1] H R2 R3
. . . R|q̄|

q̄[2] H R2

q̄[3]

q̄[|q̄| − 1] H R2

q̄[|q̄|] H

Note that λx.π/2x−1 is a total function in Z → [0, 2π)∩ R̃. Hence, it is poly-
nomial time approximable. The above circuit can be simulated for any number
of qubits |q| by the following foq program QFT.

decl rec(p̄){
p̄[1] ∗= H;
call rot[2](p̄);
call rec(p̄� [1]); },

decl rot[x](p̄){
if |p̄| > 1 then
qcase p̄[2] of {
0 → skip;
1 → p̄[1] ∗= Phλx.π/2x−1

(x);
}
call rot[x + 1](p̄� [2]);

else skip; },

decl inv(p̄){
if |p̄| > 1 then

SWAP(p̄[1], p̄[|p̄|]);
call inv(p̄� [1, |p̄|]);

else skip; } ::

call rec(q̄); call inv(q̄);

Derivation tree and level. Given a configuration c wrt a fixed program P, πP � c
denotes the derivation tree of P, the tree of root c whose children are obtained
by applying the rules of Figures 2 and 3 on configuration c with respect to P.
We write π instead of πP � c when P and c are clear from the context. Note that

164 E. Hainry et al.

a derivation tree π can be infinite in the particular case of a non-terminating
computation. When π′ is finite, π � π′ denotes that π is a subtree of π′.

In the case of a terminating computation π � c, there exists a terminal con-
figuration c′ and a level m ∈ N such that c

m−→ c′ holds. In this case, the level
of π is defined as lvπ � m. Given a foq program P that terminates, levelP is a
total function in N → N defined as levelP(n) � max|ψ〉∈H2n

lvπP�cinit(|ψ〉).
Intuitively, levelP(n) corresponds to the maximal number of non-superposed

procedure calls in any program execution on an input of length n.

Example 2. Consider the program QFT of example 1. Assume temporarily that
QFT terminates (this will be shown in Example 3). For all n ∈ N, levelQFT(n) =
(n+1)(n+2)

2 + �n
2 � + 1. Indeed, on sorted sets of size n, procedure rec is called

recursively n+ 1 times and makes n+ 1 calls to procedure rot on sorted sets of
size n, n− 1, . . ., and 1. On sorted sets of size n, rot performs n recursive calls.
Hence the total number of calls to rot is equal to

∑n
i=1 i. Finally, on a sorted set

of size n, procedure inv does �n
2 �+ 1 recursive call.

A program P is reversible if it terminates and there exists a program P−1

such that �P−1� ◦ �P� = Id.

Theorem 1. All terminating foq programs are reversible.

3 Polynomial time soundness

In this section, we restrict the set of foq programs to a strict subset, named
pfoq, that is sound for the quantum complexity class fbqp. For this, we de-
fine two criteria: a criterion ensuring that a program terminates and a criterion
preventing a terminating program from having an exponential runtime.

Polynomial-time foq. Given two statements S, S′, we write S ∈ S′ to mean
that S is a substatement of S′ and proc ∈ S holds if there are i and s such
that call proc[i](s);∈ S. Given a program P = D :: S, we define the relation
>P⊆ Procedures × Procedures by proc1 >P proc2 if proc2 ∈ Sproc1 , for any
two procedures proc1, proc2 ∈ S. Let the partial order �P be the transitive and
reflexive closure of >P and define the equivalence relation ∼P by proc1 ∼P proc2
if proc1 �P proc2 and proc2 �P proc1 both hold. Define also the strict order
P

by proc1
P proc2 if proc1 �P proc2 and proc1 �∼P proc2 both hold.

Definition 1. Let wf be the set of foq programs P that are error-free and
satisfy the well-foundedness constraint: ∀proc ∈ P, ∀call proc′[i](s);∈ Sproc,

proc ∼P proc′ ⇒ ∃k > 0, ∃i1, . . . , ik, s = p̄� [i1, . . . , ik].

Lemma 1 If P ∈ wf, then P terminates.

A Programming Language Characterizing Quantum Polynomial Time 165

Example 3. Consider the program QFT of Example 1. The statements of the
procedure declarations define the following relation: rec >QFT rec, rec >QFT rot,
rot >QFT rot, and inv >QFT inv. Consequently, rec ∼QFT rec, rot ∼QFT rot,
inv ∼QFT inv, and rec �QFT rot hold. For each call to an equivalent procedure,
we check that the argument decreases: p̄�[1] in rec, p̄�[2] in rot, and p̄�[1, |p̄|] in
inv. Consequently, QFT ∈ wf. We deduce from Theorem 1 that QFT terminates.

We now add a further restriction on mutually recursive procedure calls for
guaranteeing polynomial time using a notion of width.

Definition 2. Given a program P and a procedure proc ∈ P, the width of proc
in P, noted widthP(proc), and the width of proc in P relatively to statement S,
noted wproc

P (S), are two positive integers in N. They are defined inductively by:

widthP(proc) � wproc
P (Sproc),

wproc
P (skip;) � 0,

wproc
P (q ∗= Uf (i);) � 0,

wproc
P (S1 S2) � wproc

P (S1) + wproc
P (S2),

wproc
P (if b then Strue else Sfalse) � max(wproc

P (Strue), w
proc
P (Sfalse)),

wproc
P (qcase q of {0 → S0, 1 → S1}) � max(wproc

P (S0), w
proc
P (S1)),

wproc
P (call proc′[i](s);) �

{
1 if proc ∼P proc′,
0 otherwise.

Definition 3 (PFOQ). Let pfoq be the set of programs P in wf that satisfy
the following constraint: ∀proc ∈ P,widthP(proc) ≤ 1.

Example 4. In the program of Example 1, widthQFT(rec) = widthQFT(rot) =
widthQFT(inv) = 1, since rec �QFT rot holds. Since QFT ∈ wf, by Example 3,
we conclude that QFT is a pfoq program.

We now show that the level of a pfoq program is bounded by a polynomial
in the length of its input.

Lemma 2 For each pfoq program P, there exists a polynomial Q ∈ N[X] such
that ∀n ∈ N, levelP(n) ≤ Q(n).

Moreover, checking whether a program is pfoq is tractable.

Theorem 2. For each foq program P, it can be decided in time O(|P|2) whether
P¬⊥ ∈ pfoq.

Quantum Turing machines and FBQP. Following Bernstein and Vazirani [2], a
k-tape Quantum Turing Machine (QTM), with k ≥ 1, is defined by a triplet
(Σ,Q, δ) where Σ is a finite alphabet including a blank symbol #, Q is a finite
set of states with an initial state s0 and a final state s�
= s0, and δ is the

166 E. Hainry et al.

quantum transition function in Q×Σk → C̃Q×Σk×{L,N,R}k

; {L,N,R} being the
set of possible movements of a head on a tape. Each tape of the QTM is two-
way infinite and contains cells indexed by Z. A QTM successfully terminates
if it reaches a superposition of only the final state s�. A QTM is said to be
well-formed if the transition function δ preserves the norm of the superposition
(or, equivalently, if the time evolution of the machine is unitary). The starting
position of the tape heads is the start cell, the cell indexed by 0. If the machine
terminates with all of its tape heads back on the start cells, it is called stationary.
We will use stationary in the case where the machine terminates with its input
tape head in the first cell, and all other tape heads in the last non-blank cell.
We will further refer to a QTM as being in normal form if the only transitions
from the final state s� are towards the initial state s0. These will be important
conditions for the composition and branching constructions of QTMs. If a QTM
is well-formed, stationary, and in normal form, we will call it conservative [16]
(N.B.: our notion of stationary QTM differs but can be shown to be equivalent
to the definition of stationary QTM in [16]).

A configuration γ of a k-tape QTM is a tuple (s, w, n), where s is a state
in Q, w is a k-tuple of words in Σ∗, and n is a k-tuple of indexes (head posi-
tions) in Z. An initial (final) configuration γinit (resp. γfin) is a configuration of
the shape (s0, w, 0) (resp. (s�, w, 0)). We use γ(w) to denote a configuration γ
where the word w is written on the input/output tape. Following [2], we write
S to represent the inner-product space of finite complex linear combinations of
configurations of the QTM M with the Euclidean norm. A QTM M defines a
linear time operator UM : S → S, that outputs a superposition of configurations∑

i αi|γi〉 obtained by applying a single-step transition of M to a configuration
|γ〉(i.e., UM |γ〉= ∑

i αi|γi〉). Let U t
M , for t ≥ 1, be the t-steps transition obtained

from UM as follows: U1
M � UM and U t+1

M � UM ◦ U t
M . Given a quantum state

|ψ〉 = ∑
w∈{0,1}n αw|w〉 and a configuration γ, let γ(|ψ〉) ∈ S be the quantum

configuration defined by γ(|ψ〉) � ∑
w∈{0,1}n αw|γ(w)〉.

A quantum function f : H → H is computed by the QTM M in time t if for
any |ψ〉 ∈ H, U t

M (γinit(|ψ〉)) = γfin(f(|ψ′〉)). Given T : N → N and a quantum
function f , we say that the QTM M computes f in time T if for inputs of length
n, M computes f in time T (n).

Definition 4. Given two functions f : {0, 1}� → {0, 1}�, F : H → H, and
a value p ∈ [0, 1], we say that f is computed by F with probability p if ∀x ∈
{0, 1}�, |〈f(x)|F (|x〉)|2 ≥ p.

The class fbqp is the functional extension of the complexity class bqp.

Definition 5 ([2]). A function f ∈ {0, 1}� → {0, 1}� is in fbqp iff there exist
a QTM M and a polynomial P ∈ N[X] s.t. M computes f in time P with
probability 2

3 .

A function f ∈ {0, 1}� → {0, 1}� has a polynomial bound P ∈ N[X] if
∀n ∈ N, ∀x ∈ {0, 1}n, ∃k ≤ P (n), f(x) ∈ {0, 1}k. Functions in fbqp have a
polynomial bound as the size of their output is smaller than the polynomial
time bound.

A Programming Language Characterizing Quantum Polynomial Time 167

Soundness. We show that QTMs can simulate the function computed by any
terminating foq program. The time complexity of this simulation depends on
the length of the input quantum state and on the level of the considered program.

Lemma 3 For any terminating foq program P, there exists a conservative
QTM M that computes �P� in time O(n+ n× levelP(n)).

Now we show that any pfoq program computes a fbqp function.

Theorem 3. Given a pfoq program P, a function f : {0, 1}� → {0, 1}�, and a
value p ∈ (12 , 1]. If f is computed by �P� with probability p then f ∈ fbqp.

Proof. Using Lemma 2 and Lemma 3. ��

4 FBQP completeness

In this section we show that any function in fbqp can be faithfully approximated
by a pfoq program. Toward this end, we show that Yamakami’s [16] fbqp-
complete function algebra can be exactly simulated in pfoq.

Yamakami’s function algebra. A characterization of fbqp was provided in [16]

using a function algebra, named �̂QP
1 . Given a quantum state |ψ〉 and a word

w ∈ {0, 1}n, with n ≤ l(|ψ〉). |ψ〉 can be written as |ψ〉 = ∑
i αi|wizi〉, with

wi ∈ {0, 1}n and zi ∈ {0, 1}l(|ψ〉)−n. We write 〈w|ψ〉 as an abuse of notation for
the quantum state defined by 〈w|ψ〉 � ∑

i αi 〈w|wi〉 |zi〉.

Definition 6. �̂QP
1 is the smallest class of functions including the basic initial

functions {I, Phθ, Rotθ, NOT, SWAP}, with θ ∈ [0, 2π) ∩ C̃,

– I(|ψ〉) � |ψ〉
– Phθ(|ψ〉) � |0〉〈0|ψ〉+ eiθ|1〉〈1|ψ〉
– Rotθ(|ψ〉) � cos θ|ψ〉+ sin θ(|1〉〈0|ψ〉 − |0〉〈1|ψ〉)
– NOT (|ψ〉) � |0〉〈1|ψ〉+ |1〉〈0|ψ〉
– SWAP (|ψ〉) �

{
|ψ〉 if l(|ψ〉) ≤ 1∑

a,b∈{0,1} |ba〉〈ab|ψ〉 otherwise

and closed under schemes Comp, Branch, and kQRect, for k, t ∈ N,

– Comp[F,G](|ψ〉) � F (G(|ψ〉))
– Branch[F,G](|ψ〉) �

{
|ψ〉 if l(|ψ〉) ≤ 1

|0〉⊗ F (〈0|ψ〉) + |1〉⊗G(〈1|ψ〉) otherwise

– kQRect[F,G,H](|ψ〉) �
{
F (|ψ〉) if l(|ψ〉) ≤ t

G
(∑

w∈{0,1}k |w〉⊗ Fw(〈w|H(|ψ〉))
)

otherwise
where each Fw ∈ {kQRect[F,G,H], I}.

168 E. Hainry et al.

To handle general fbqp functions, [16] defines the extended encoding of an
input x ∈ {0, 1}� as φP (|x〉) � |0l(|x〉)1〉|0P (l(|x〉))1011P (l(|x〉))+61〉|x〉, for some poly-
nomial P ∈ N[X] that is an upper bound on the output size of the desired fbqp
function. φP simply consists in the quantum state |x〉preceded by a polynomial
number of ancilla qubits. These ancilla provide space for internal computations
and account for the polynomial bound associated to polynomial time QTMs.

Theorem 4 ([16]). Given f : {0, 1}� → {0, 1}� with polynomial bound P ∈
N[X], the following statements are equivalent.

1. The function f is in fbqp.
2. There exists F ∈ �̂QP

1 such that F ◦ φP computes f with probability 2
3 .

We show the following result by structural induction on a function in �̂QP
1 .

Theorem 5. Let F be a function in �̂QP
1 . Then there exists a pfoq program P

such that �P� = F .

We are now ready to state the completeness result.

Theorem 6. For every function f in fbqp with polynomial bound Q ∈ N[X],
there is a pfoq program P such that �P� ◦ φQ computes f with probability 2

3 .

Proof. By Theorem 4 and Theorem 5. ��

5 Compilation to polynomial-size quantum circuits

In this section, we provide an algorithm that compiles a pfoq program on a
given input length n ∈ N into a quantum circuit of size polynomial in n.

Quantum circuits [8] are a well-known graphical computational model for
describing quantum computations. Qubits are represented by wires. Each unitary
transformation U acting on n qubits can be represented as a gate U with n inputs
and n outputs. A circuit C is an element of a PROP category ([10], a symmetric
strict monoidal category) whose morphisms are generated by gates G and wires.
Let 1 be the identity circuit (for any length) and ◦ and ⊗ be the composition
and product, respectively. By abuse of notation, given k circuits C1, . . . , Ck,
◦ki=1C

i will denote the circuit C̃1 ◦ · · · ◦ C̃k, where each circuit C̃i is obtained
by tensoring Ci appropriately with identities so that the output of Ci matches
the input of Ci+1. By construction, a circuit is acyclic. Each circuit Cn can
be indexed by its number n ∈ N of input wires (i.e., non ancilla qubits) and
computes a function �Cn� ∈ H2n → H2n . To deal with functions in H → H,
we consider families of circuits (Cn)n∈N, that are sequences of circuits such that
each Cn encodes computation on quantum states of length n. Hence each circuit
has n input qubits plus some extra ancilla qubits. These ancillas can be used to
perform intermediate computations but also to represent functions whose output
size is strictly greater than their input size. To avoid the consideration of families
encoding undecidable properties, we put a uniformity restriction.

A Programming Language Characterizing Quantum Polynomial Time 169

Definition 7. A family of circuits (Cn)n∈N is said to be uniform if there exists
a polynomial time Turing machine that takes n as input and outputs a represen-
tation of Cn, for all n ∈ N.

In quantifying the complexity of a circuit, it is necessary to specify the consid-
ered elementary gates, and define the complexity of an operation as the number
of elementary gates needed to perform it. In our setting, we consider the follow-
ing set of universal elementary gates {RY (π/4), P (π/4), CNOT}. The size #C
of a circuit C is equal to the number of its gates and wires.

Definition 8. A family of circuits (Cn)n∈N is said to be polynomial-size with
α ∈ N → N ancilla qubits if there exists a polynomial P ∈ N[X] such that, for
each n ∈ N, #Cn ≤ P (n) and the number of ancilla qubits in Cn is exactly α(n).

Let χm : H2n → H2n+m be defined by χm(|ψ〉) � |ψ〉⊗ |0m〉, for a state
|ψ〉 of size n. Let ξm : H2n → H2m , with m ≤ n, be defined by ξm(|ψ〉) �∑

w∈{0,1}m

∑
z∈{0,1}n−m 〈wz|ψ〉 |w〉. Finally, let |w|, for w ∈ {0, 1}�, be the size

of the word w.

Theorem 7. (Adapted from [17] and [11]) A function f : {0, 1}� → {0, 1}�
is in fbqp iff there exists a uniform polynomial-size family of circuits (Cn)n∈N

with α ancilla qubits s.t. ∀x ∈ {0, 1}�, ∣∣〈f(x)∣∣ξ|f(x)| ◦ �C|x|� ◦ χα(|x|)(|x〉)
〉∣∣2 ≥ 2

3 .

In Theorem 7, �C|x|� is a function in H2|x|+α(|x|) → H2|x|+α(|x|) The function
χα(|x|) pads the input with ancilla in state |0〉 to match the circuit dimension.
The function ξ|f(x)| projects the output of the circuit to match the length of
the function output |f(x)|. Hence, for |x〉∈ H2|x| , ξ|f(x)| ◦ �C|x|� ◦ χα(|x|)(|x〉) ∈
H2|f(x)| .

Compilation to circuits. For each pfoq program P, the existence of a polynomial-
size uniform family of circuits (Cn)n∈N that computes �P� is entailed by the
combination of Lemma 2 and Theorem 7. However, due to the complex ma-
chinery of QTM, the constructions of both proofs cannot be used in practice
to generate a circuit. In this section, we exhibit an algorithm that compiles
directly a pfoq program to a polynomial-size circuit. Note that this compi-
lation process requires some care since recursive procedure calls in quantum
cases may yield an exponential number of calls. The remainder of this sec-
tion will be devoted to presenting an algorithm, named compile, which, for
a given pfoq program P and a given integer n produces a circuit Cn such that
∀|ψ〉∈ H2n , �P�(|ψ〉) = ξn ◦ �Cn� ◦ χα(n)(|ψ〉).

The compile algorithm uses two subroutines, named compr and optimize,
and is defined by compile(P, n) � compr(P, [1, . . . , n], ·).

The subroutine compr (Algorithm 1) generates the circuit inductively on the
program statement. It takes as inputs: a program P, a list of qubit pointers l, and
a control structure cs. A control structure cs is a partial function in N → {0, 1},
mapping a qubit pointer to a control value (of a quantum case). Let · be the
control structure of empty domain. For n ∈ N and k ∈ {0, 1}, cs[n := k] is the

170 E. Hainry et al.

control structure obtained from cs by setting cs(n) � k. For a given x ∈ {0, 1}�,
we say that state |x〉 satisfies cs if, ∀n ∈ dom(cs), cs(n) = k ⇒ |〈k|n|x〉|2 = 1.
Two control structures cs and cs′ are orthogonal if there does not exist a state |x〉
that satisfies cs and cs′. Note that if ∃i ∈ dom(cs)∩ dom(cs′), cs(i)+ cs′(i) = 1
then cs and cs′ are orthogonal.

Algorithm 1 (compr)
Input: (P, l, cs) ∈ Programs × L(N)× (N → {0, 1})

Let D :: S = P in
if S = skip; then

C ← 1 � Identity circuit

else if S = s[i] ∗= Uf (j); and (s[i], l) ⇓N n and (Uf (j), l) ⇓C2×2 M then
C ← M(cs, [n]) � Controlled gate

else if S = S1 S2 then
C ← compr(D :: S1, l, cs) ◦ compr(D :: S2, l, cs) � Composition

else if S = if b then Strue else Sfalse and (b, l) ⇓B b then
C ← compr(D :: Sb, l, cs) � Conditional

else if S = qcase s[i] of {0 → S0, 1 → S1} and (s[i], l) ⇓N n then
C ← compr(D :: S0, l, cs[n := 0]) ◦ compr(D :: S1, l, cs[n := 1]) � Quantum case

else if S = call proc[i](s) and (s, l) ⇓L(N) [] then
C ← 1 � Nil call

else if S = call proc[i](s) and (s, l) ⇓L(N) l
′ �= [] and (i, l) ⇓Z n then

if widthP(proc) = 0 then
C ← compr(D :: Sproc{n/x}, l′, cs) � Non-recursive call

else if widthP(proc) = 1 then
C ← optimize(D, [(cs, Sproc{n/x})], proc, l′, {}) � Recursive call

end if
end if
return C

Given a control structure cs and a statement S, a controlled statement is
a pair (cs, S) ∈ Cst � (N → {0, 1}) × Statements. Intuitively, a controlled
statement (cs, S) denotes a statement controlled by the qubits whose indices are
in dom(cs). For a unitary gate U ∈ H2n → H2n , a control structure cs, and a
list of pointers l = [x1, . . . , xn] ∈ L(N) such that {x1, . . . , xn} ∩ dom(cs) = ∅,
U(cs, l) denotes the circuit applying gate U on qubits q̄[x1], . . . , q̄[xn], whenever
∀m ∈ dom(cs), q̄[m] is in state |cs(m)〉. As demonstrated in [11], this circuit
can be built with O(card(dom(cs))) elementary gates and ancillas, and a single
controlled-U gate.

A Programming Language Characterizing Quantum Polynomial Time 171

q̄[1]

U(cs, l)

q̄[2]

q̄[3]

q̄[4]

q̄[5]

=

q̄[1]

q̄[2]

q̄[3]

q̄[4]
U

q̄[5]

=

q̄[1]

q̄[2]

|0〉
q̄[3]

|0〉
q̄[4]

U
q̄[5]

Fig. 4: Example of circuit U(cs, l)

Example 5. As an illustrative example, consider a binary gate U and a control
structure cs such that dom(cs) = {1, 2, 3}, cs(1) = cs(2) = 1, and cs(3) = 0.
Also consider a list l = [4, 5] ∈ L(N). The circuit U(cs, l) is provided in Figure 4.

Similarly, we can define a generalized Toffoli gate as a circuit of the shape
NOT (cs, n). Since card(dom(cs)) will not scale with the size of the input, such
a circuit has a constant cost in gates and ancillas and can thus be considered
as an elementary gate. We will also be interested in rearranging wires under a
given control structure. For two lists of qubit pointers l1 = [x1, . . . , xn], l2 =
[x′

1, . . . , x
′
n] ∈ L(N), define SWAP (cs, l1, l2) as the circuit that swaps the wires

in l1 with wires in l2, controlled on cs. This circuit needs in the worst case one
ancilla and O(n) controlled SWAP gates (also known as Fredkin gates).

Let D � D(Procedures × Z × N → N × L(N)) be the set of dictionaries
mapping keys of the shape (proc, i, j) to pairs of the shape (a, l), where i is the
value of a classical parameter, j is the size of a sorted set, and a is a qubit index.
We will denote the empty dictionary by {}. Let also a ← new ancilla() be an
instruction that sets a to a fresh qubit index.

The subroutine optimize (Algorithm 2) treats the complex cases where cir-
cuit optimizations (merging) are needed, that is for recursive procedure calls. It
takes as input a sequence of procedure declarations D, a list of controlled state-
ments lCst, a procedure name proc, a list of qubit pointers l, and a dictionary
Anc. The subroutine iterates on list lCst of controlled statements, indicating the
statements left to be treated together with their control qubits. When recursive
procedure calls appear in distinct branches of a quantum case, the algorithm
merges these calls together. For that purpose, it uses new ancilla qubits as con-
trol qubits. Given procedure calls of shape call proc[i](s);, with respect to a
given list l ∈ L(N), such that (i, l) ⇓Z i, (s, l) ⇓L(N) l

′, and (|s|, l) ⇓N j. If the key
(proc, i, j) already exists in the dictionary Anc, the associated ancilla is re-used,
otherwise, Anc[proc, i, j] is set to (a, l′). We can assume w.l.o.g. that the state-
ment controlled on the ancilla can be treated only after all the re-uses of the
ancilla. This can be done without increasing the total complexity of optimize.

Some extra ancillas e are also created for swapping wires and are not explicitly
indexed since they are not revisited by the subroutine, and are just considered
unique. Ancillas a and e are indexed and treated as input qubits, therefore they
can be part of the domain of control structures.

172 E. Hainry et al.

Algorithm 2 (optimize) Build circuit for recursive procedure proc
Inputs: (D, lCst, proc, l,Anc) ∈ Decl × L(Cst)× Procedures × L(N)×D

CL ← 1; CR ← 1; P ← D :: skip;
while lCst �= [] do

(cs, S) ← hd(lCst); lCst ← tl(lCst)

if S = S1 S2 then
if wproc

P (S1) = 1 then
lCst ← lCst@[(cs, S1)]; CR ← compr(D :: S2, l, cs) ◦ CR

else
lCst ← lCst@[(cs, S2)]; CL ← CL ◦ compr(D :: S1, l, cs)

end if
end if

if S = if b then Strue else Sfalse and (b, l) ⇓B b then
if wproc

P (Sb) = 1 then
lCst ← lCst@[(cs, Sb)]

else
CL ← CL ◦ compr(D :: Sb, l, cs)

end if
end if

if S = qcase s[i] of {0 → S0, 1 → S1} and (s[i], l) ⇓N n then
if wproc

P (S0) = 1 and wproc
P (S1) = 1 then

lCst ← lCst@[(cs[n := 0], S0), (cs[n := 1], S1)]
else if wproc

P (S1) = 0 then
lCst ← lCst@[(cs[n := 0], S0)];
CR ← compr(D :: S1, l, cs[n := 1]) ◦ CR

else if wproc
P (S0) = 0 then

lCst ← lCst@[(cs[n := 1], S1)];
CR ← compr(D :: S0, l, cs[n := 0]) ◦ CR

end if
end if

if S = call proc′[i](s) and (s, l) ⇓L(N) l
′ �= [] and (i, l) ⇓Z n then

if (proc′, n, |l′|) ∈ Anc then
Let (a, l′′) = Anc[proc′, n, |l′|] in
e ← new ancilla();
CL ← CL ◦NOT (cs, e) ◦NOT (·[e = 1], a) ◦ SWAP (·[e = 1], l′, l′′);
CR ← SWAP (·[e = 1], l′′, l′) ◦NOT (·[e = 1], a) ◦NOT (cs, e) ◦ CR

else
a ← new ancilla()
Anc[proc′, n, |l′|] ← (a, l′);
CL ← CL ◦NOT (cs, a); CR ← NOT (cs, a) ◦ CR;

lCst ← lCst@[(·[a = 1], Sproc′{n/x})]
end if

end if
end while
return CL ◦ CR

A Programming Language Characterizing Quantum Polynomial Time 173

Theorem 8. For any P in pfoq, there is Q ∈ N[X], ∀n ∈ N, ∀|ψ〉 ∈ H2n ,
�P�(|ψ〉) = ξn ◦ �compile(P, n)� ◦ χα(n)(|ψ〉) and #compile(P, n) ≤ Q(n).

Example 6. compile(QFT, n) outputs the circuit provided in Example 1. Notice
that there is no extra ancilla as no procedure call appears in the branch of a
quantum case.

Polynomial-size circuits. We show Theorem 8 by exhibiting that any exponen-
tial growth of the circuit can be avoided by the compile algorithm using an
argument based on orthogonal control structures. With a linear number of gates
and a constant number of extra ancillas, we can merge calls referring to the same
procedure, on different branches of a quantum case, when they are applied to
sorted sets of equal size. An example of the construction is given in Figure 5
where two instances of a gate U are merged into one using SWAP gates and
gates controlled by orthogonal control structures.

�
��������������������

q̄[1]

q̄[2]

U
q̄[3]

U
q̄[4]

|0〉

|0〉

�
��������������������

=

�
�������������������

q̄[1]

q̄[2]

U
q̄[3]

q̄[4]

|0〉

|0〉

�
�������������������

Fig. 5: Example of circuit optimization.

The following proposition shows that multiple uses of a gate can be merged
in one provided they are applied to orthogonal control structures.

Lemma 4 For any circuit Cn � ◦ki=1U(csi, li), with a unitary gate U , pairwise
orthogonal cs1, . . . , csk ∈ Cst, and l1, . . . lk ∈ L(N), there exists a circuit C using
one controlled gate U , O(kn) gates, and O(k) ancillas, and such that �C� = �Cn�.

Now we show that orthogonality is an invariant property of compile.

Lemma 5 Orthogonality is an invariant property of the control structures in lCst

of the subroutine optimize. In other words, for any two distinct pairs (cs, S),
(cs′, S′) in lCst, cs and cs′ are orthogonal.

Theorem 9. For any P in pfoq, compile(P, n) runs in time O(n2|P|+1).

Proof. Using Lemma 4 and Lemma 5. ��
As there is no circuit duplication in the assignments of compile, we can

deduce from Theorem 9 that the compiled circuit is of polynomial size.

Corollary 1. For any P in pfoq, there exists a polynomial Q ∈ N[X] such that
#compile(P, n) ≤ Q(n).

174 E. Hainry et al.

References

1. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime
functions. computational complexity 2(2), 97–110 (Jun 1992). https://doi.org/
10.1007/BF01201998

2. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Com-
puting 26(5), 1411–1473 (1997). https://doi.org/10.1137/S0097539796300921

3. Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: On univer-
sal and fault-tolerant quantum computing (1999). https://doi.org/10.48550/
ARXIV.QUANT-PH/9906054

4. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.:
Measurement-based quantum computation. Nature Physics 5(1), 19–26 (2009).
https://doi.org/10.1038/nphys1157

5. Dal Lago, U.: A short introduction to implicit computational complexity. In: ESS-
LLI 2010. pp. 89–109 (2011). https://doi.org/10.1007/978-3-642-31485-8_3

6. Dal Lago, U., Masini, A., Zorzi, M.: Quantum implicit computational complex-
ity. Theoretical Computer Science 411(2), 377–409 (2010). https://doi.org/10.
1016/j.tcs.2009.07.045

7. Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A
74(5), 052310 (2006). https://doi.org/10.1103/PhysRevA.74.052310

8. Deutsch, D.E.: Quantum computational networks. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 425(1868), 73–90 (1989)

9. Feynman, R.P.: Simulating physics with computers. International Journal of Theo-
retical Physics 21(6), 467–488 (Jun 1982). https://doi.org/10.1007/BF02650179

10. MacLane, S.: Categorical algebra. Bulletin of the American Mathematical Society
71(1), 40–106 (1965). https://doi.org/10.1090/S0002-9904-1965-11234-4

11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2011)

12. Péchoux, R.: Implicit computational complexity: past and future. Mémoire
d’habilitation à diriger des recherches (2020), https://tel.archives-ouvertes.
fr/tel-02978986, université de Lorraine

13. Ross, N.J.: Algebraic and logical methods in quantum computation. PhD thesis
(2015). https://doi.org/10.48550/ARXIV.1510.02198

14. Selinger, P.: Towards a quantum programming language. Mathematical Struc-
tures in Computer Science 14(4), 527–586 (2004). https://doi.org/10.1017/
S0960129504004256

15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

16. Yamakami, T.: A schematic definition of quantum polynomial time computability.
J. Symb. Log. 85(4), 1546–1587 (2020). https://doi.org/10.1017/jsl.2020.45

17. Yao, A.C.C.: Quantum circuit complexity. In: Proceedings of 1993 IEEE 34th An-
nual Foundations of Computer Science. pp. 352–361 (1993). https://doi.org/10.
1109/SFCS.1993.366852

https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.48550/ARXIV.QUANT-PH/9906054
https://doi.org/10.48550/ARXIV.QUANT-PH/9906054
https://doi.org/10.48550/ARXIV.QUANT-PH/9906054
https://doi.org/10.48550/ARXIV.QUANT-PH/9906054
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://tel.archives-ouvertes.fr/tel-02978986
https://tel.archives-ouvertes.fr/tel-02978986
https://doi.org/10.48550/ARXIV.1510.02198
https://doi.org/10.48550/ARXIV.1510.02198
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1017/jsl.2020.45
https://doi.org/10.1017/jsl.2020.45
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852

A Programming Language Characterizing Quantum Polynomial Time 175

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On the Existential Arithmetics with Addition
and Bitwise Minimum

Mikhail R. Starchak(�)

St. Petersburg State University, St. Petersburg, Russia
m.starchak@spbu.ru

Abstract. This paper presents a similar approach for existential first-
order characterizations of the languages recognizable by finite automata,
by Parikh automata, and by multi-counter machines over the alphabet
{0, 1, ..., k − 1}n for some k ≥ 2. The set of k-FA-recognizable relations
coincides with the set of relations, which are existentially definable in
the structure 〈N; 0, 1,+,&k,=〉, where &k corresponds to the bitwise
minimum of base k. In order to obtain an existential first-order descrip-
tion of k-Parikh automata languages, we extend this structure with the
predicate EqNZBk(x, y) which is true if and only if x and y have the
same number of non-zero bits in k-ary encoding. Using essentially the
same ideas, we encode computations of k-multi-counter machines and
thus show that every recursively enumerable relation over the natural
numbers is existentially definable in the aforementioned structure sup-
plemented with concatenation z = x �k y � z = x + klk(x)y, where
lk(x) is the bit-length of x in base k. This result gives us another proof
of DPR-theorem.

Keywords: Bitwise minimum · Büchi arithmetic · Parikh automata ·
Existential definability · Recursively enumerable sets · DPR-theorem ·
Concatenation

1 Introduction

In a recent paper [11], Haase and Różycki considered definability problems in
k-Büchi arithmetic, an extension of Presburger arithmetic with a relation Vk such
that Vk(x, y) if and only if x is the largest power of k that divides y. They proved
that there are relations which are definable in k-Büchi arithmetic (k-definable)
and not definable by any existential formula of the corresponding language. By
a slight modification of a theorem of Villemaire [24, Corollary 2.4], they show
that every k-definable relation can actually be expressed via some ∃∀-formula,
whereas Villemaire constructs a ∃∀∃-formula.

Büchi arithmetic of base k ≥ 2 can be considered as a first-order characteri-
zation of the languages, recognizable by finite-state automata over the alphabet
{0, 1, ..., k − 1}n (called k-FA-recognizable). Interpreting the words of this lan-
guage as tuples (x1, ..., xn) of natural numbers in base k encoding, we obtain the
Büchi-Bruyère theorem [3,5], which states that every relation R ⊆ Nn is k-FA-
recognizable if and only if it is k-definable. A second-order version of this theorem

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_9

176–195, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_9&domain=pdf
https://orcid.org/0000-0002-2288-9483
https://doi.org/10.1007/978-3-031-30829-1_9
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_9&domain=pdf

On the Existential Arithmetics with Addition and Bitwise Minimum 177

(which was proved independently by Büchi [5], Elgot [9], and Trakhtenbrot [22])
says that every relation is 2-FA-recognizable iff it is weak monadic second-order
(WMSO-)definable in the structure 〈N;S〉, where S is a unary function sym-
bol for the successor function over the natural numbers. The WMSO-theory of
〈N;S〉 is usually denoted by WS1S.

Coming back to the Villemaire’s result, we see that his encoding of k-FA
via ∃∀∃-formulas of the language of k-Büchi arithmetic uses a unique bounded
universal quantifier. A similar construction often appears in logical descriptions
of abstract machines. For example, Klaedtke and Rueß considered in [16] various
definability and decidability properties for WMSO-formulas with successor S
and cardinality constraints of the form |X1| + ... + |Xr| < |Y1| + ... + |Ys|; the
corresponding WMSO-theory of N was denoted by WS1Scard. They introduced
Parikh automata, an extension of finite automata, and obtained an analogue of
Büchi’s Theorem, namely every relation recognizable by a Parikh automaton over
the alphabet {0, 1}n is existentially WMSO-definable in N with S and cardinality
constraints, and vice versa. Here, only second-order variables are existentially
quantified, while the formula, which describes a computation of a given Parikh
automaton, still contains a universally quantified first-order variable (see [16,
Theorem 10], where the universal quantifier ∀x can be bounded by the maximal
element of the existentially quantified second-order variable U).

Note that while WS1S is decidable, WS1Scard is already undecidable, and
its decidable fragments [16, Theorem 16] were obtained as a consequence of
decidability of the emptiness problem for Parikh automata. Translating these
undecidability results into first-order context, Bès showed [2, Proposition 3.8] in
particular that the graph of multiplication function is definable in the structure
〈N; 0, 1,+, V2,EqNonZeroBits ,=〉, where EqNonZeroBits(x, y) is true iff x and
y have the same number of non-zero bits in their binary representations. This
implies undecidability of the first-order theory of this structure, but it is not
known, for example, whether the existential first-order theory is decidable. In
the concluding section [2], Bès remarks that “it would be interesting to study
the expressive power of fragments of FO arithmetic which include predicates like
EqNonZeroBits”. We will further shorten the name of this predicate to EqNZB .

The Davis-Putnam-Robinson theorem (DPR-theorem) [8] was a milestone in
the undecidability proof of the Hilbert’s Tenth Problem. This theorem states
that every relation R ⊆ Nn is recursively enumerable (r.e.) if and only if it
is existentially first-order definable in the structure 〈N; 0, 1,+, ·, exp,=〉 (these
relations are also called exponential diophantine). As the starting point, the proof
uses the result of Davis [7], which states that every r.e. set is ∃∀∃-definable in the
structure 〈N; 0, 1,+, ·,=〉 with one bounded universal quantifier. It is important
for us that elimination of this quantifier in the proof of DPR-theorem involves
multiplication, factorial, binomial coefficients, and does not seem useful when we
try to eliminate bounded universal quantifier in weaker structures. However in
1976, Matiyasevich presented an alternative proof of DPR-theorem [19] by purely
existential encoding of computations of Turing machines, which thus gives us
another approach for eliminating bounded universal quantifier [20, Section 6.1].

178 M. Starchak

It is easy to modify the final steps of Matiyasevich’s proof in order to obtain
an existential formula of the language with 0, 1, addition, bitwise minimum &,
and concatenation �, where t = x � y � t = x+2l(x)y and l(x) is the bit-length
of x. Kummer’s lemma [18] then plays a crucial role, since it gives an exponential
diophantine representation of bitwise minimum (see also an exponential diophan-
tine representation of masking relation � in [14]). Note that it is not difficult
to define & in the structure 〈N; 0, 1,+, V2,=〉 by a formula with one bounded
universal quantifier, whereas there is an existential formula that defines V2 in
〈N; 0, 1,+,&,=〉. This suggests the question whether every 2-FA-recognizable
relation is existentially first-order definable in 〈N; 0, 1,+,&,=〉.

In Theorem 1, we show that every relation is actually k-FA-recognizable if
and only if it is existentially definable in the structure 〈N; 0, 1,+,&k,=〉, where
&k corresponds to the binary bitwise minimum operation of base k. The same
approach is applied in Theorem 2 to obtain an existential first-order charac-
terization of the languages, recognizable by Parikh automata over the alphabet
{0, 1, ..., k − 1}n. In this case, the structure must be extended by the binary
predicate EqNZBk, which is true for those pairs of natural numbers (x, y) such
that x and y have the same number of non-zero bits of base k.

Applying essentially the same ideas as in Theorem 1, we are able to show in
Theorem 3 that every relation R ⊆ Nn is recognizable by multi-counter machines
over the alphabet {0, 1, ..., k − 1}n if and only if it is existentially definable in the
structure 〈N; 0, 1,+,&k,�k,=〉, where z = x �k y � z = x + klk(x)y and lk(x)
is the bit-length of x in base k. Since such machines recognize exactly r.e. sets,
this provides yet another [14,19,20] proof of DPR-theorem by purely existential
arithmetization of abstract machines.

2 Definitions and the main example

This section recalls some basic definitions from logic and automata theory, which
will be used in the sequel. Then we illustrate the main idea of the existential
characterisations constructed in Sections 3 and 4.

2.1 Definability and automata

First-order definability. The domain of all the structures considered in this
paper will be the set of natural numbers N = {0, 1, 2, ...}, and we will consider
existential definability in some extensions of 〈N; 0, 1,+,=〉.

Denote by Lσ the first-order language of some signature σ. An Lσ-formula
ϕ is existential if it has the form ∃xψ(x, y), where ψ(x, y) is a quantifier-free
Lσ-formula. Here, x denotes a list of variables x1, ..., xn. We say that an n-ary
relation R over N is first-order (FO-)definable in the structure 〈N;σ〉 if there
exists an Lσ-formula ϕ(x) such that for every a ∈ Nn we have R(a) if and
only if ϕ(a). When the formula ϕ(x) is existential, the corresponding relation
is called existentially first-order (∃FO-)definable, and similarly for the case of
quantifier-free formulas, universal formulas and other quantifier prefixes. We will

On the Existential Arithmetics with Addition and Bitwise Minimum 179

subsequently write the prefix “FO” in the cases where we also discuss second-
order definability, and in general it will be omitted.

In this paragraph, we focus on definability in the structure 〈N; 0, 1,+, Vk,=〉,
where k ≥ 2 is an integer, and Vk is a binary relation such that Vk(x, y) if
and only if x is the largest power of k dividing y. Büchi arithmetic of base k
is the first-order theory of this structure. The relations definable in this struc-
ture are called k-definable. Recall that for every multiplicatively independent
integer l ≥ 2 (i.e., ka �= lb for every positive integers a, b), Vl is not definable
in 〈N; 0, 1,+, Vk,=〉 [23,24] (see also a generalization of this result by Bès [1]).
In the following, we consider some fixed base k. Let &k be the binary bitwise
minimum operation of base k, where we assume that the natural number of
smaller bit-length is supplemented with a sufficient number of leading zeros. For
example, we have 120202&3 21201201 = 100201. It is not difficult to prove the
following lemma.

Lemma 1. Every relation is k-definable if and only if it is definable in the
structure 〈N; 0, 1,+,&k,=〉.
Proof. In order to define bitwise minimum, for every j ∈ [0..k − 1] we use the
relation Xk,j(x, y), which is defined as “x is a power of k and the coefficient of
this power of k in the representation of y in base k equals j”. There is a simple
existential formula for this relation in [4,11,24]:

Xk,j(x, y) � Vk(x, x)∧∃z∃t∃u(y = z+jx+t∧z < x∧(t = 0∨(Vk(u, t)∧x < u))),

where x < y � ∃z(y = x+ z+1). Therefore, the graph of bitwise minimum can
be expressed by a formula with a universal quantifier

z = x&ky � ∀t
∧

(i,j)∈[0..k−1]2

(
Xk,i(t, x) ∧Xk,j(t, y) ⇔ Xk,min(i,j)(t, z)

)
.

For the converse, by using monus z = x− y � (z = 0∧ x < y)∨ (x = z+ y),
define the set of powers of k by the formula Pk(x) ⇔ (kx−1)&k x = x∧¬x = 0.
Finally, we have Vk(x, y) ⇔ Pk(x) ∧

∨
j∈[1..k−1]

(kx− 1)&k y = jx. �

We see that Xk,j(x, y) can be defined in 〈N; 0, 1,+,&k,=〉 by the quantifier-
free formula Pk(x) ∧ y&kx = jx. Let λk(x) be the greatest power of k less
or equal to x when x > 0, and λk(0) = 1. Formally, we have the definition
y = λk(x) ⇔ (x = 0∧y = 1)∨(Pk(y)∧y ≤ x∧x < y). Now an analogue of bitwise
negation can be defined as follows: ∼k (y, x) = (kλk(y)− 1)− x&k(kλk(y)− 1).
Here, ∼k (y, x) has the same bit-length as y, and we assume that &k has a
higher precedence than + or monus. For our purposes, it is useful to include in
the signature a binary function symbol for bitwise maximum

z = x|ky ⇔ (x < y ∧ z =∼k (y,∼k (y, x)&k ∼k (y, y))∨
(y ≤ x ∧ z =∼k (x,∼k (x, x)&k ∼k (x, y)).

180 M. Starchak

We will write x
kn with some fixed natural number n for the function whose graph

is quantifier-free definable by the formula y = x
kn ⇔ kny ≤ x ∧ x < kn(y + 1).

The function 1k(y) gives a natural number of the same bit-length with y, but
with all k-ary digits equal to one: x = 1k(y) ⇔ (k − 1)x = kλk(y) − 1. For
notational convenience, let us introduce a binary predicate symbol �k such that
x �k y � x&ky = x. The following lemma summarizes these definability results
and will be implicitly used in the next sections.

Lemma 2. The predicates Pk, Vk, Xk,j, <, ≤ and the graphs of functions −,
λk, ∼k, 1k, |k, and ·

kn for every fixed n ≥ 1 are ∃-definable in the structure
〈N; 0, 1,+,&k,=〉.

The existential encoding of k-automata in Subsection 2.2 uses a ∃-definable
function, which echoes a construction that was applied by Matiyasevich [19] in
his arithmetization of Turing machines. For every a ∈ [1..k − 1] the function
Θk,a(x) substitutes 1 for every digit of x equal to a, and 0 otherwise. Then, the
graph of this function is defined as follows:

y = Θk,a(x) ⇔ ∃x1...∃xk−1

(∧
1≤i<j≤k−1

xi&kxj = 0 ∧

(x1 + ...+ xk−1) �k 1k(x)∧
x1 + 2x2 + ...+ (k − 1)xk−1 = x ∧ y = xa

)
.

(1)

Note that each digit in the k-ary representation of every quantified variable in
(1) is either 0 or 1. Moreover, if we denote 1̄k(x) � x&k1k(x) then the sum
x1 + ... + xk−1 is exactly 1̄k(x). In the case of digit zero, the function Θk,0 has
an extra parameter that specifies the number of leading zeros, which must be
replaced by ones:

y = Θk,0(t, x) ⇔ y = 1k(t)− 1̄k(x). (2)

In particular, when λk(t) < λk(x), we always have Θk,0(t, x) = 0 and otherwise
we obtain, for example, Θ3,0(100000, 1020) = 110101.

Remark 1. In Subsection 2.2 and Section 3 it is convenient to write Θk,a(t, x)
instead of Θk,a(x) when a ∈ {1, ..., k − 1}. In Section 4 there is no need to
consider auxiliary zeros, and we use Θk,a with a single parameter assuming that
Θk,0(x) � Θk,0(x, x).

We conclude this paragraph by defining a set of natural numbers 1̄k(N) =
{1̄k(x) | x ∈ N}. This definition will be useful in the next paragraph.

Second-order definability. Similarly to Bès [2], let us denote by F the set
of finite subsets of N and also define a function codk : Fn → Nn which maps
every tuple (X1, ..., Xn) ∈ Fn to the tuple of non-negative integers codk(X) =
(
∑

i∈X1

ki, ...,
∑

i∈Xn

ki). We see that the image of codk is 1̄k(N). This function estab-

lishes a connection between first-order definability and weak monadic second-
order (WMSO-)definability in 〈N;S〉 in the following way.

On the Existential Arithmetics with Addition and Bitwise Minimum 181

Recall that WMSO-language LWMSO
σ allows to quantify over finite subsets of

the domain, and its signature σ has auxiliary binary predicate symbol ∈ for the
membership relation x ∈ X. Again, let the domain of our structures be the set of
natural numbers N. Then a relation R ⊆ Fn is WMSO-definable in the structure
〈N;σ〉 if there exists a LWMSO

σ -formula ϕ(X1, ..., Xn) such that R(A) ⇔ ϕ(A)
for every A ∈ Fn. As was explicitly shown by Villemaire [23, Theorem 3.3],
every relation R ⊆ Fn is WMSO-definable in the structure 〈N;S〉 if and only if
cod2(R) is FO-definable in 〈N; 0, 1,+, V2,=〉.

Note that codk is bijective only in the case k = 2 when we have 1̄2(N) = N.
In the case when k > 2, we can transfer FO-definability results for exten-
sions of k-Büchi arithmetic to their WMSO-definability analogues using the
function codk : N → Fk−1 which maps every x ∈ N to the tuple codk(x) =
(cod−1

k (Θk,1(x)), ..., cod
−1
k (Θk,k−1(x))). This function can obviously be extended

such that codk : Nn → (Fk−1
)n. We use codk to establish a relationship be-

tween ∃FO-definability in 〈N; 0, 1,+,&k,EqNZBk,=〉 and ∃WMSO-definability
in 〈N;S〉 extended with cardinality constraints of the form |X1| + ... + |Xr| <
|Y1|+ ...+ |Ys|. Section 3 focuses on the existential definability in these structures
and recognizability by Parikh automata [16]. We say that R ⊆ Fn is existentially
(∃)WMSO-definable in the structure 〈N;σ〉 if there exists an LWMSO

σ -formula
∃Y ϕ(X,Y), where ϕ(X,Y) may include arbitrary first-order quantifiers, such
that for every A ∈ Fn we have R(A) if and only if ∃Y ϕ(A, Y).

The following lemma shows that it is sufficient to extend 〈N;S〉 with the
relation EqCard(X,Y) � |X| = |Y | to reason about ∃WMSO-definability in N
with successor S and cardinality constraints.

Lemma 3. Every cardinality constraint |X1| + ... + |Xr| < |Y1| + ... + |Ys| is
existentially WMSO-definable in the structure 〈N;S,EqCard〉.
Proof. Let us first define the graph of ∩ using a formula with one universal
first-order quantifier ∀x(x ∈ Z ⇔ x ∈ X ∧ x ∈ Y) (and analogously, the graphs
of union Z = X ∪ Y and difference Z = X \ Y) and the empty set X = ∅ ⇔
∀x(¬x ∈ X).

Now it is not difficult to see that

|X1|+ ...+ |Xr| < |Y1|+ ...+ |Ys| ⇔ ∃U∃V ∃X ′
1...∃X ′

r∃Y ′
1 ...∃Y ′

s

(
∧

1≤i<j≤r

X ′
i ∩X ′

j = ∅ ∧
∧

1≤i≤r

EqCard(Xi, X
′
i)∧∧

1≤i<j≤s

Y ′
i ∩ Y ′

j = ∅ ∧
∧

1≤i≤s

EqCard(Yi, Y
′
i) ∧⋃

1≤i≤r

X ′
i = U ∧

⋃
1≤i≤s

Y ′
i = V ∧ U ∩ V = U ∧ ¬(V \ U = ∅)

)
.

(3)

��
The following fact is an analogue of Villemaire’s theorem [23]. Note that

when k = 2 the function cod2 is exactly cod−1
2 .

182 M. Starchak

Proposition 1. (i) If a relation R ⊆ Fn is existentially WMSO-definable in
the structure 〈N;S,EqCard〉 then codk(R) is existentially FO-definable in
〈N; 0, 1,+,&k,EqNZBk,=〉.

(ii) If a relation R ⊆ Nn is ∃FO-definable in 〈N; 0, 1,+,&k,EqNZBk,=〉 then
codk(R) is ∃WMSO-definable in 〈N;S,EqCard〉.

The proof of this proposition is rather straightforward and follows along similar
lines as the proof of Villemaire’s theorem. Only notice that in order to deal with
universal FO-quantifiers in (i), we apply Corollary 1 from Subsection 2.2.

Klaedtke and Rueß show in [16] that every relation R ⊆ Fn is existentially
WMSO-definable in the structure 〈N;S,EqCard〉 if and only if it is recogniz-
able by some Parikh automaton over the alphabet {0, 1}. By reduction to the
emptiness problem for Parikh automata, they show that satisfiability of exis-
tential WMSO-formulas in the structure 〈N;S,EqCard〉 is decidable. The next
paragraph gives the necessary definitions.

Automata languages. Büchi-Bruyère’s theorem [4,5] states that every rela-
tion is first-order definable in the structure 〈N; 0, 1,+, Vk,=〉 if and only if it is
recognizable by a finite k-automaton. Haase and Różycki [11] prove that this
statement is however not true if we consider existential first-order definability in
〈N; 0, 1,+, Vk,=〉. We first recall some automata-theoretic definitions and then
show that substituting &k for Vk yields the desired existential description of
k-recognizable sets.

Let Σ be some alphabet and Σ∗ denote the set of words of finite length over
Σ with a unique empty word ε of length 0. Then a (non-deterministic) finite Σ-
automaton (Σ-FA) is a 4-tuple A = (Q, q0, F, δ), where Q = {q0, ..., qs} is a finite
set of states with initial state q0 and the set F ⊆ Q of finial states; δ : Q×Σ → 2Q

is the transition function, where 2Q is the power set of Q. A configuration of A
is a pair (q, x), where q ∈ Q is a current state and x ∈ Σ∗ is an unused part of an
input word. A transition relation → over configurations of A is defined such that
(q, ax) → (q′, x) if and only if q′ ∈ δ(q, a). A sequence of transitions between
configurations is called a computation of A. We say that x = x0x1 · · ·xt ∈ Σt+1

is accepted by a given Σ-FA A if there is an accepting computation of A for
x, that is, a sequence (q0, x0x1...xt) → (q′, x1...xt) → · · · → (q′′, xt) → (qf , ε)
for some qf ∈ F . The set of all words x ∈ Σ∗ accepted by Σ-FA A defines the
language recognizable by this automaton. This language is denoted by L(A).

A finite k-automaton (k-FA) is defined as a Σn
k -FA, where every letter

from Σn
k is an n-tuple of digits from Σk = {0, 1, ..., k − 1}. To each language

L ⊆ (Σn
k)

∗ there corresponds a relation RL over Nn in the following way:
RL = {∑t

i=0 xik
i | x0 · · ·xt ∈ L}. An n-ary relation R over N is called k-FA-

recognizable if there exists a k-FA A such that for every a ∈ Nn we have
R(a) ⇔ RL(A)(a). For technical convenience, the notion of k-recognizability
is commonly defined [4,23,24] for deterministic k-FA (k-DFA), where for every
state q and letter a ∈ Σn

k it holds that |δ(q, a)| ≤ 1. Since Σ-FA and Σ-DFA
recognize the same class of languages [17], i.e. the class of regular languages
over the alphabet Σ, this restriction does not change the class of recognizable

On the Existential Arithmetics with Addition and Bitwise Minimum 183

relations. In our logical characterization of k-FA-recognizable relations we will
not benefit from such restrictions on the transition function.

The definition of Σ-FA can be extended by adjoining to every letter of Σ a
vector v ∈ D, where D is a finite subset of Nm, and imposing certain restrictions
on the accepting sequences of transitions to obtain Parikh finite automata (Σ-
PFA). That is, for some m > 0 and a finite set D ⊆ Nm, a Σ-PFA is a pair (A, ϕ),
denoted by Aϕ, where A is a (Σ × D)-FA and ϕ(x1, ..., xm) is an existential
L〈0,1,+,=〉-formula. It is convenient to think of a configuration of Σ-PFA as an
(m+2)-tuple (q, x, y1, ..., ym) where the pair (q, x) is the same as in the definition
of configurations of Σ-FA, and (y1, ..., ym) is a vector from Nm. A transition
relation between two configurations of Σ-PFA Aϕ is now defined as follows:
(q, ax, y1, ..., ym) → (q′, x, y1+d1, ..., ym+dm) if and only if q′ ∈ δ(q, a, d1, ..., dm).
A word x = x0x1 · · ·xt ∈ Σt+1 is accepted by Aϕ if there is a computation
(q0, x0x1 · · ·xt, 0, ..., 0) → (q′, x1 · · ·xt, y

′
1, ..., y

′
m) → · · · → (q′′, xt, y

′′
1 , ..., y

′′
m) →

(qf , ε, y1, ..., ym) for some qf ∈ F and the formula ϕ(y1, ..., ym) is true. We denote
by L(Aϕ) the language recognizable by Σ-PFA Aϕ.

In order to deal with definability over the natural numbers, we again con-
sider Σn

k -PFA, which we call a k-Parikh finite automata (k-PFA). The k-PFA-
recognizable relations R ∈ Nn are defined analogously. The prefixes Σ- and
k- will be sometimes omitted when the exact alphabet Σ or value of k is not
significant.

The original definition of Parikh automata [16] uses semi-linear sets C ⊆ Nt

instead of existential formulas of Presburger arithmetic, but it is well-known [10]
that these definitions of PFA are equivalent. The main result by Klaedtke and
Rueß [15, Theorems 12 and 15] states that every relation R ⊆ Fn is ∃WMSO-
definable in the structure 〈N;S,EqCard〉 if and only if the relation cod−1

2 (R) is
2-PFA-recognizable. The “only if” part of this WMSO-characterization follows
from the fact that the class of languages recognizable by PFA is closed under
union, intersection, left and right quotients [15, Property 4] and that EqCard
with its negation are recognizable by 2-PFA. Since it is easy to construct k-PFA
for the predicate EqNZBk and for its negation, the following proposition can be
proved in a similar way.

Proposition 2. If some relation R ⊆ Nn is existentially FO-definable in the
structure 〈N; 0, 1,+,&k,EqNZBk,=〉 then it is k-PFA-recognizable.

Based on Parikh’s theorem [21], Klaedtke and Rueß proved decidability of
the emptiness problem for PFA, and thus decidability of the existential WMSO-
theory of 〈N;S,EqCard〉. They also proved that the universality problem for
Parikh automata is undecidable. In contrast to finite automata, deterministic
Parikh automata, where for every (q, a) ∈ Q×Σn

k there exists at most one pair
(q′, d) ∈ Q × D such that q′ ∈ δ(q, (a, d)), are less powerful than PFA. The
paper by Cadilhac, Finkel and McKenzie [6] provides some explicit examples
of languages recognizable by PFA but not by any deterministic PFA. These
authors continued the study of other properties of PFA and, in particular, proved
undecidability of the regularity property for PFA. This result will be used in
Section 3.

184 M. Starchak

2.2 Existential characterization of k-FA-recognizable languages

In this section we illustrate the main idea of the existential characterisation from
Section 3. Our aim now is to prove the following theorem.

Theorem 1. For an integer k ≥ 2 every relation is k-FA-recognizable if and
only if it is existentially definable in the structure 〈N; 0, 1,+,&k,=〉.
Proof. Let A = (Q, q0, F, δ) be a k-FA. We are going to prove existential defin-
ability of the relation RL(A) in the structure 〈N; 0, 1,+,&k,=〉 by encoding the
existence of an accepting computation of A when the input word is the k-ary
representation of x = x1, ..., xn. To this end, let us first introduce new variables
q = q0, ..., qs for every state qi ∈ Q; for a state p ∈ Q, we denote by ν(p) its
number from [0..s]. The following restriction on q expresses the fact that at each
step of a computation the automaton A has a unique state from Q:

Kk(t, q) �
∧

0≤i<j≤s

qi&kqj = 0∧q0+...+qs = 1k(t)∧1 �k q0∧
∨
p∈F

t �k qν(p). (4)

Here t will be another existentially quantified variable that will be a power
of k. This variable corresponds to a configuration (p, ε) for some p ∈ F , and
formula (4) also requires that the computation starts in the state q0. It is obvious
that t must be greater than xi for every i ∈ [1..n]; this restriction will appear in
the resulting formula below.

In order to express the fact that each step of a computation is performed
in accordance with the transition function δ : Q × Σn

k → 2Q, we introduce a
predicate Δ(p,a). For every pair (p, a) ∈ Q×Σn

k , we have

Δ(p,a)(t, q, x) �

(
qν(p)&k &k

i∈[1..n]
Θk,ai(t, xi)

)
�k

(
|
k

p̃∈δ(p,a)

qν(p̃)

k

)
, (5)

where, by definition, |
k

y∈∅
y = 0. From this formula we see that at each step of an

accepting computation there are either no configurations with the state p and
a word starting with the letter a = (a1, ..., an), or in the next configuration the
state will be from δ(p, a). By combining formulas (4) and (5), we conclude that

RL(A)(x) ⇔ ∃t∃q
(
Pk(t)∧

∧
i∈[1..n]

xi < t∧Kk(t, q)∧
∧

(p,a)∈Q×Σn
k

Δ(p,a)(t, q, x)
)
. (6)

It remains to use formulas (1) and (2), Büchi-Bruyère’s theorem and Lemmas 1
and 2.
�
Corollary 1. If a relation is definable in the structure 〈N; 0, 1,+,&k,=〉 then
it is existentially definable in this structure.

This result for k = 2 can be transferred to the second-order case similarly
to Proposition 1. Thus, we obtain a corollary, which was essentially proved by
Elgot [9, Theorem 5.3 (b)].
Corollary 2. If a relation R ∈ Fn is WMSO-definable in the structure 〈N;S〉
then it is existentially WMSO-definable in this structure.

On the Existential Arithmetics with Addition and Bitwise Minimum 185

3 First-order characterization of Parikh automata

The aim of this section is to prove the converse statement to Proposition 2
and thus obtain an existential first-order characterization of Parikh automata
languages. Parikh map over the natural numbers can be defined as a function
Φk : N → Nk such that Φk(x) = (#k,0(x), ...,#k,k−1(x)), where every function
#k,i counts the number of occurrences of the digit i in k-ary representation of x.
For such counting functions we have the following lemma.

Lemma 4. Let R(x1, ..., xn) be a relation that is existentially definable in the
structure 〈N; 0, 1,+,=〉, and let a be some vector from {0, ..., k−1}n. Then the re-
lation R(#k,a1

(x1), ...,#k,an
(xn)) is ∃-definable in 〈N; 0, 1,+,&k,EqNZBk,=〉.

Proof. It is sufficient to define the relations #k,a(x) = d for integers d ≥ 0 and
#k,a(x) + #k,b(y) = #k,c(z) by some existential formulas. For the first relation
we have the formula EqNZBk(Θk,a(x), k

d − 1), and for the second one there is
the following first-order analogue to formula (3):

#k,a(x) + #k,b(y) = #k,c(z) ⇔ ∃x′∃y′(EqNZBk(x
′ + y′, Θk,c(z))∧

x′&ky
′ = 0 ∧ EqNZBk(Θk,a(x), x

′) ∧ EqNZBk(Θk,b(y), y
′)).

It remains to use existential definability of the graph of Θk,i in the structure
〈N; 0, 1,+,&k,=〉.

Note that every function #k,i can be represented in terms of Subsection 2.1
as #k,i(x) = |cod−1

k (Θk,i(x))|, and thus this lemma can also be proved using
Lemma 3 and the first part of Proposition 1. 	

Let D be some finite subset of Nm, and let M(D) be the maximum inte-
ger occurring in D. The same as Klaedtke and Rueß [16], we encode vectors
from D of a given k-Parikh automaton by introducing M(D) + 1 new variables
yi,0,...,yi,M(D) for each coordinate yi. For every i ∈ [1..m], these variables will
be pairwise disjoint (i.e. yi,j1&kyi,j2 = 0 for j1 �= j2) and their representation in
base k will contain only zeros and ones. For this reason, we use only #k,1 in our
encoding and denote #k � #k,1.

Theorem 2. For every integer k ≥ 2 a relation R ⊆ Nn is k-PFA-recognizable
if and only if it is ∃-definable in the structure 〈N; 0, 1,+,&k,EqNZBk,=〉.
Proof. The “if” direction of this theorem is Proposition 2. In the proof of the
“only if” direction, suppose we are given a k-Parikh automaton Aϕ for some
finite set D ∈ Nm, where A = (Q, q0, F, δ) is a FA over the language Σn

k ×D and
ϕ is an existential L〈0,1,+,=〉-formula. We are going to construct an existential
L〈0,1,+,&k,EqNZBk,=〉-formula ψ such that RL(Aϕ)(a) if and only if ψ(a) for every
a ∈ Nn. Again, ψ(x) will encode the existence of an accepting computation of
Aϕ when the input word is the k-ary representation of x.

The sequence of states from an accepting computation of A can be encoded
using the predicate Kk(t, q), defined by the existential L〈0,1,+,&k,=〉-formula (4).

186 M. Starchak

We modify formula (5) so that it works with the alphabet Σn
k×D. To this end,

let us introduce m(M(D) + 1) variables y = y1,0,...,y1,M(D),...,ym,0,...,ym,M(D)

such that for every i ∈ [1..m] it holds that θk(t, yi,0, ..., yi,M(D)), where

θk(t, y0, ..., yM) �
∧

0≤i<j≤M

yi&kyj = 0 ∧ y0 + ...+ yM = 1k(t).

Now for every (p, a, d) ∈ Q×Σn
k ×D we have:

Δ(p,a,d)(t, q, x, y) �
(
qν(p)&k &k

i∈[1..n]
Θk,ai

(t, xi)&k &k
j∈[1..m]

yj,dj

)
�k(

|
k

p̃∈δ(p,a,d)

qν(p̃)

k

)
.

Recall that the expression with bitwise maximums |
k

evaluates to zero when
δ(p, a, d) = ∅.

By combining all the parts of the existential definition of RL(Aϕ), we get the
following analogue to formula (6):

RL(Aϕ)(x) ⇔ ∃t∃q∃y
(
Pk(t) ∧

∧
i∈[1..n]

xi < t ∧Kk(t, q)∧
∧

i∈[1..m]

θk(t, yi,0, ..., yi,M(D)) ∧
∧

(p,a,d)∈Q×Σn
k×D

Δ(p,a,d)(t, q, x, y)∧

ϕ
(∑
c∈[1..M(D)]

c#k(y1,c), ...,
∑

c∈[1..M(D)]

c#k(ym,c)
))

.

It remains to apply Lemma 4 to obtain the desired existential formula. ��
This result gives us the following statement concerning decidability of frag-

ments of the first-order theory of the structure 〈N; 0, 1,+,&k,EqNZBk,=〉.
Corollary 3. The existential theory of 〈N; 0, 1,+,&k,EqNZBk,=〉 is decidable
and the ∀∃-theory of this structure is undecidable.

Proof. The first part of the corollary is just a variation on the automata-theoretic
techniques that were formalized by Hodgson [12]. It follows from the decidability
of the emptiness problem for PFA. Undecidability of the universality problem,
combined with Theorem 2, imply undecidability already for the problem of de-
ciding ∀∃-formulas with a single universal quantifier. ��

Haase and Różycki [11, Conclusion] ask whether the property of ∃-definability
is decidable for the relations definable in the structure 〈N; 0, 1,+, Vk,=〉. Using
Theorem 1, this problem can be reformulated so that we consider only existen-
tially definable sets, but now the signatures are different. Namely, the question is
whether we can decide if a set ∃-definable in the structure 〈N; 0, 1,+, Vk,&k,=〉
is ∃-definable in 〈N; 0, 1,+, Vk,=〉. A similar question can be answered in the
negative for the structure with &k and EqNZBk.

On the Existential Arithmetics with Addition and Bitwise Minimum 187

Proposition 3. The problem of deciding whether a set existentially definable
in the structure 〈N; 0, 1,+,&k,EqNZBk,=〉 is ∃-definable in 〈N; 0, 1,+,&k,=〉
is undecidable.

This follows from Theorems 1 and 2, and from undecidability of the regu-
larity property for Parikh automata, which was proved by Cadilhac, Finkel and
McKenzie [6, Proposition 7].

Parikh automata are closely related to multi-counter machines (MCM): they
recognize exactly the same languages as reversal-bounded MCM [15, Section A.3]
(see also [6, Subsection 3.3]). Recall that a MCM is reversal-bounded (the notion
was introduced by Ibarra [13]) if there exists a pair of integers (r, s) such that in
every accepting computation the value of each counter increases and decreases
at most r times and the input head reverses at most s times. Theorem 2 now
gives an existential first-order characterization of this restricted version of MCM.
It is clear that the model of PFA is more suitable for our logical descriptions.
However, as we will see in the next section, the behaviour of MCM can be
described in a similar way when the structure is extended with concatenation.

4 Multi-counter machines and DPR-theorem

4.1 Two-way multi-counter machines

Same as Ibarra [13], we define a two-way multi-counter machine M over an
alphabet Σ (Σ-MCM) with two special symbols �,� as a tuple (m,Q, q0, F, δ).
Here, m ≥ 0 is the number of the counters of M, the triple (Q, q0, F) has
its standard meaning, and δ is a function from Q × (Σ ∪ {�,�}) × {0, 1}m to
2Q×{−1,0,1}m+1

. Every computation of M starts with an input x ∈ Σ∗ written
on the tape between the delimiters: � x �, and the input head of M reading
the left delimiter �. A configuration of M on an input � x � is given by an
(m + 3)-tuple (q,� x �, i, y1, ..., ym) denoting the fact that M is in state q, the
read-only input head scans the i-th symbol of the input, and y1,...,ym are some
non-negative integer values of the counters. The relation → over configurations
is defined such that (q,� x �, i, y1, ..., ym) → (q′,� x �, i+Δ, y1+d1, ..., ym+dm)
if and only if (q′, Δ, d1, ..., dm) ∈ δ(q, a, [y1 > 0], ..., [ym > 0]), where a is the i-th
symbol of the input and [y > 0] returns 1 if y > 0, and 0 otherwise. A natural
restriction on δ prevents the cases when: (1) [yj > 0] = 0 and dj = −1; (2) i = 0
and Δ = −1; (3) the i-th symbol of the input is � and Δ = 1.

We say that x ∈ Σ∗ is accepted by a given Σ-MCM if for the input word
� x � there is a computation (q0,� x �, 0, 0, ..., 0) → ... → (qf ,� x �, 0, 0, ..., 0)
for some qf ∈ F . The set of all the words x ∈ Σ∗ accepted by a Σ-MCM M
defines the language recognized by this machine, which we denote by L(M). In
order to properly relate Σ-MCM with definability over N, we again assume that
Σ = Σn

k for k ≥ 2. Every x ∈ Σ∗ is now an element of Nn in the inverse base k
representation. An n-ary relation R over N is called k-MCM-recognizable if there
exists a Σn

k -MCM M such that for every a ∈ Nn we have R(a) ⇔ RL(M)(a).

188 M. Starchak

Two-way multi-counter machines can simulate Turing machines (see e.g. [17]),
and thus every relation R over Nn is r.e. iff it is k-MCM-recognizable. The aim
of this section is to use the same arguments as in the cases of k-FA and k-PFA in
order to obtain an existential characterization of r.e. relations, and Theorem 3
gives us the desired result. The proof will be in some sense intermediate between
the arithmetization of Turing machines by Matiyasevich [19] and the encoding of
register machines by Jones and Matiyasevich in [14], but here we emphasize the
role of concatenation in existential characterizations of multi-counter languages.

4.2 The role of concatenation in DPR-theorem

Matiyasevich’s proof [19] implicitly gives us a description of every r.e. set via
∃-formulas of the first-order language with 0, 1, addition, bitwise multiplication
&2, concatenation �2, and equality. Here, t = x �k y � t = x + klk(x)y =
x+kλk(x)y, where lk(x) is the length of x in k-ary notation. This section aims to
prove this theorem using the ideas from Subsection 2.2. Informally speaking, the
main difference between the case of k-MCM and k-FA is that we now consider
bytewise multiplication instead of bitwise from Theorem 1. Suppose a given
k-MCM accepts x ∈ Σn

k and let M be the maximum value of all the counters
of some accepting computation for x. If u is a power of k which is greater than
the maximum of kM and all the xi, then lk(u) will be the size of the byte in our
encoding. Every non-negative integer can be represented as a sequence of bytes
of size lk(u), which will be called u-bytes.

First, we introduce some auxiliary devices, which are required in our con-
struction. Define the predicate Δk(u, t, x), which is true when u is a power of
k greater than k2, the variable x has the same u-byte-length as t and has the
following form

x = 1000...0 ∗ ∗︸ ︷︷ ︸
lk(u)

...0..010..0︸ ︷︷ ︸
lk(u)

...000...001︸ ︷︷ ︸
lk(u)

,

where ∗ ∗ is either 10 or 01, and for every two consecutive u-bytes b1, b2 in x
the only 1 in b2 is either in the same place or one bit left/right of its position
in b1. Moreover, the two most significant bits in every u-byte are equal to zero.
We will use this predicate to describe a position of the input head and values
of the counters in configurations of a given k-MCM. Before we proceed with
the existential definition of this relation, we need to introduce some auxiliary
functions. The first one performs the right shift by lk(z) bits and can be defined
via the formula y = x

z ⇔ ∃v∃u(λk(z) = u∧λk(v) ≤ u∧x = u �k y−u+v). The
second function is Copyk(u, t, x) which maps to zero when λk(u) < λk(x), and
otherwise gives us the sequence of u-bytes of the same u-byte-length as t such
that each u-byte is equal to x. The following lemma gives the desired definition,
and then we immediately prove existential definability of Δk(u, t, x).

Lemma 5. The function Copyk is ∃-definable in 〈N; 0, 1,+,&k,�k,=〉.
Proof. We start with the predicate Cpyk(x, y) which is true whenever y has the
form x �k ... �k x. Its definition is rather standard:

Cpyk(x, y) ⇔ y = x ∨ ∃z(y = x �k z ∧ y = z �k x).

On the Existential Arithmetics with Addition and Bitwise Minimum 189

The predicate Ik(u, x) ⇔ x = 1∨∃y(Cpyk(λk(u), y)∧x = ky+1) is an another
special case of Copyk which is true when x is a sequence of u-bytes, each of which
is equal to 1. Then, the minimum power of k of the same u-byte-length as x can
be expressed as y = Λk(u, x) ⇔ ∃v (Ik(u, v) ∧ v ≤ x ∧ v �k u > x ∧ y = λk(v)).

It is now clear that

y = Copyk(u, t, x) ⇔ λk(u) < λk(x) ∧ y = 0 ∨ Λk(u, y) = Λk(u, t) ∧(
λk(u) = λk(x) ∧ Cpyk(x, y) ∨ λk(u) > λk(x) ∧ ∃y′∃y′′(

Cpyk(x+ λk(u), y
′) ∧ Cpyk(λk(u), y

′′) ∧ λk(y
′) = λk(y

′′) ∧ y = y′ − y′′
))

.

In this formula, the variables y′ and y′′ are introduced in order to supplement
every u-byte with a sufficient number of leading zeros. ��

Lemma 6. The relation Δk is ∃-definable in 〈N; 0, 1,+,&k,�k,=〉.

Proof. We are going to prove the correctness of the following definition:

Δk(u, t, x) ⇔ ∃z1∃z2∃x1∃x2∃x3

(
Pk(u) ∧ k3 ≤ u∧

z1 = Copyk(u, t, 1) ∧ λk(z1) = λk(x) ∧ x&k(ku− 1) = 1 ∧ x �k 1k(z1)∧ (7)

x1 =
(kx)

u
∧ x2 =

x

u
∧ x3 =

x

ku
∧ x = λk(x) + x&kx1 + x&kx2 + x&kx3∧ (8)

x1&kx2 = 0 ∧ x2&kx3 = 0 ∧ x2&kx3 = 0∧ (9)

z2 = Copyk(u, t, u) ∧ x&k(z2 +
z2
k
) = 0

)
. (10)

Conjunction (7) expresses that x is a sequence of the same number of u-bytes as t
that starts and ends with the u-byte 000...01, and in every u-byte there can only
be zeros and ones. Condition (10) specifies that the two most significant bits in
every u-byte of x are equal to zero. Next, the variables x1, x2, x3 correspond to
the right shifts of x one u-byte plus D ∈ {−1, 0,+1}. Let us prove that in every
u-byte there is a unique 1 and that it has the same position plus D ∈ {−1, 0,+1}
compared to the previous u-byte.

From (8), we see that in every u-byte of x there is at least one 1. Indeed, if
x �= u then the first u-byte of x1, or x2, or x3 must contain 1 (the least significant
bit); thus, the second u-byte of x is also non-zero, etc. This 1 in every u-byte
is in the desired position since the values x&kx1, x&kx2, x&kx3 describe the
three cases in which the position in the next u-byte is the same plus −1, 0, +1,
respectively.

Now we prove that there are no other non-zero bits in every u-byte of x.
Assume for a contradiction that there is a u-byte in x with more than one 1.
Then, there are two consecutive u-bytes (which are depicted on the next page)
such that the left u-byte has the only 1, and the right one has at least two 1.
This pair exists because the most significant u-byte of x equals 1. From the
representation of x in (8), we see that the bits a, b, f , g are all equal to zero.

190 M. Starchak

Next, since by (9) x1, x2 and x3 are pairwise disjoint, among c, d and e there is
only one 1. This contradicts our assumption.

x = ...0..000.. 010 ..000..0︸ ︷︷ ︸
lk(u)

0.. ∗ a ∗ .. ∗ b cde f ∗ .. ∗ g ∗ ..∗︸ ︷︷ ︸
lk(u)

...

x1 = ...0.. 0 0 0 .. 0 100 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..0c de0 00..0︸ ︷︷ ︸
lk(u)

...

x2 = ...0.. 0 0 0 .. 0 010 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..00 cde 00..0︸ ︷︷ ︸
lk(u)

...

x3 = ...0.. 0 0 0 .. 0 001 0 .. 0 0 0 ..0︸ ︷︷ ︸
lk(u)

0..00 0cd e0..0︸ ︷︷ ︸
lk(u)

...

It remains to prove that for every u and x such that Δk(u, t, x) there exist
non-negative integers from the definition above. This is obvious for z1 and z2;
the existence of x1, x2, x3 follows from the fact that there are at least two zeros
between every pair of 1 in x. ��

In our proof we check whether or not the u-bytewise minimum of two natural
numbers equals zero. In order to express this property, let us introduce a function
Uk which modifies x as follows. If x can be split into consecutive u-bytes where
the most significant bit is equal to zero, then Uk(u, x) replaces every non-zero
u-byte by 1. Otherwise, this function maps to zero. For example, when x =
10 000 011 000 010 we have U2(100, x) = 1 000 001 000 001 and U2(1000, x) = 0.

Lemma 7. The function Uk is ∃-definable in 〈N; 0, 1,+,&k,�k,=〉.
Proof. Let us first define a predicate Uk, which (in comparison with the function
Uk) is also true for the cases when y has u-bytes equal 1 while the corresponding
u-bytes of x are equal to zero. In Uk there are also no restrictions on the most
significant bits of u-bytes. We have the definition

Uk(u, x, y) ⇔ ∃t∃t′∃v
(
Cpyk(λk(u), t) ∧ t′ �k t ∧ v = kt′ − (kt′)

u
∧ x �k v∧

y = v&kCopyk(u, x, 1)
)
.

The k-ary representation of v is a sequence of u-bytes which are either zero or
equal to ku−1; moreover, for every unit in x there is (k−1) in v. Then we select
the desired 1 in y via a bitwise multiplication of v by a sequence of u-bytes of
the same u-byte-length as x, where all bytes are equal to 1.

In order to exclude extra non-zero u-bytes from y, we consider the difference
kx− y. Recall that the definition of Uk requires zeroness of the most significant
bit in every u-byte. Thus, we have

y = Uk(u, x) ⇔ x&kCopyk(u, x, u) > 0 ∧ y = 0 ∨
x&kCopyk(u, x, u) = 0 ∧ Uk(u, x, y)∧(k − 1)y �k (kx− y).

(11)

On the Existential Arithmetics with Addition and Bitwise Minimum 191

Consider the case when the most significant bits in u-bytes of x are all zero.
The least significant bit in every u-byte of kx now equals 0, and the fact that
there is a unique y that satisfies the definition can be illustrated as follows:

...∗... ∗ 1 0 ... 0 0︸ ︷︷ ︸
lk(u)

...∗... ∗ 0︸ ︷︷ ︸
lk(u)

0 0 ... 0 0︸ ︷︷ ︸
lk(u)

...

...0 ... 0 0 0 ... 0 1︸ ︷︷ ︸
lk(u)

...0 ... 0 1︸ ︷︷ ︸
lk(u)

0 0 ... 0 1︸ ︷︷ ︸
lk(u)

...

...∗... ∗ 0(k − 1)...(k − 1)(k − 1)︸ ︷︷ ︸
lk(u)

...∗... ∗ (k − 2)︸ ︷︷ ︸
lk(u)

(k − 1) (k − 1)...(k − 1)(k − 1)︸ ︷︷ ︸
lk(u)

...

These three lines represent the numbers kx, y, and (kx − y), respectively. The
left column demonstrates the general “correct” case. The middle and the right
columns show why the existence of an extra non-zero u-byte in y contradicts
definition (11). ��

We are now able to prove the main result of this section.

Theorem 3. For every integer k ≥ 2 a relation is k-MCM-recognizable if and
only if it is ∃-definable in the structure 〈N; 0, 1,+,&k,�k,=〉. Therefore, every
relation R ⊆ Nn is r.e. iff it is ∃-definable in this structure.

Proof. For a given k-MCM M = (m,Q, q0, F, δ) and an input vector x ∈ Nn in
k-ary notation, we are going to encode the existence of an accepting sequence
of transitions between configurations of M. First choose a variable u such that
Pk(u) ∧

∧
i∈[1..n]

k4xi ≤ u; this choice specifies the size of bytes in our encoding.

We multiply by k4 since in u-byte there must be two bits for delimiters ,� and
at least two auxiliary zeros from the definition of Δk.

A sequence of states is encoded similarly to formula (4), that is,

Kk(u, t, q) �
∧

0≤i<j≤s

qi&kqj = 0 ∧ q0 + ...+qs = Copyk(u, t, 1)∧

1 �kq0 ∧
∨
p∈F

Λk(u, t) �k qν(p),

where q = q0, ..., qs and t corresponds to the number of steps of an accepting
computation of M. Here we also require q0 to be the initial state and the most
significant u-byte of t corresponds to a final configuration.

We now define a predicate CM that encodes a sequence of configurations
of M. Similar to Matiyasevich [19], in this definition for every xi ∈ x a se-
quence of copies of xi is decomposed into disjoint variables θi,0,...,θi,k−1 such
that every u-byte of θi,a equals Θk,a(xi). Let θ denote the list of variables
θ1,0, ..., θ1,k−1, θ2,0, ..., θn,k−1, θ�, θ�, where the extra variables θ�, θ� encode the
positions of the delimiters. The variable h stores the positions of the input head
of M, and the list of variables y = y1, ..., ym corresponds to the values of the
counters at each step of computation.

192 M. Starchak

It is convenient to introduce a function bk, which gives the smallest power of
k greater than every xi ∈ x. The graph of this function can be defined as

y = bk(x) ⇔
∨

i∈[1..n]

y = kλk(xi) ∧
∧

i∈[1..n]

y ≥ kλk(xi).

This function will be applied to encode the positions of the right delimiter �.
The following formula describes a sequence of configurations of M.

CM(u, t, q, x, θ, h, y) � Pk(u) ∧
∧

i∈[1..n]

k4xi ≤ u ∧ u ≤ t ∧Kk(u, t, q)∧

θ� = Copyk(u, t,1) ∧
∧

i∈[1..n]

(
θi,0 = Copyk(u, t, kΘk,0(xi + bk(x))∧

∧
a∈[1..k−1]

θi,a = Copyk(u, t,kΘk,a(xi))
)
∧ θ� = Copyk(u, t, kbk(x))∧

Δk(u, t, h) ∧
∧

i∈[1..m]

Δk(u, t, yi).

It is easy to see that θ�, θ� are disjoint with the other variables from θ. For
notational convenience, we subsequently assume that θi,� � θ� and θi,� � θ�
for every i ∈ [1..n], and the letters for the delimiters be the vectors (�, ...,�) and
(�, ...,�) of length n.

We now proceed to the encoding of the fact that a given sequence of con-
figurations is actually a sequence of transitions in M. For a letter (a1, ..., an) ∈
Σn

k ∪ {�,�}, a state p ∈ Q, and a tuple c ∈ {0, 1}m such that the values of the
counters from Yc = {i ∈ [1..m] | ci = 0} are equal to zero and from [1..m] \ Yc

are non-zero, the following formula is an analogue to definition (5):

Δ(p,a,c)(u, t, q, θ, h, y) �
(
qν(p)&k &k

i∈[1..n]
Uk(u, (θi,ai

&kh))&k

&k
i∈Yc

yi&k &k
i∈[1..m]\Yc

Uk(u, yi − Copyk(u, t, 1)&kyi)
)
�k

|
k

(p̃,d,d)∈δ(p,a,c)

(qν(p̃)
u

&k Uk(u, h&k
(kdh)

u
)&k &k

i∈[1..m]
Uk(u, yi &k

(kdiyi)

u
)
)
.

The key difference with (5) is that now in order to compare two consecutive
configurations we shift by one u-byte instead of one bit. It is obvious that the
predicate Δ(p,a,c) makes sense when it is complemented with CM. In this case,

for example, Uk(u, h&k
(kdh)

u) highlights the configurations for which in the fol-
lowing configuration the position of the input head shifts by d. Indeed, we obtain
a sequence of u-bytes, each of which is equal to one if and only if the position
of the unique 1 in the next u-byte is the same plus d, otherwise this u-byte is
equal to zero.

On the Existential Arithmetics with Addition and Bitwise Minimum 193

It remains to define the relation RL(M) that corresponds to the language
recognizable by M. To this end, we have to consider every tuple (p, a, c) in Q×
(Σn

k ∪ {�,�})× {0, 1}m and apply already defined predicates CM and Δ(p,a,c).

RL(M)(x) ⇔ ∃u∃t∃q∃θ∃h∃y
(
CM(u, t, q, x, θ, h, y) ∧∧
(p,a,c)∈Q×(Σn

k∪{�,�})×{0,1}m

Δ(p,a,c)(u, t, q, θ, h, y)
)
.

This completes the proof. �	
Since by [14,19] the bitwise minimum operation &2 is existentially definable

in 〈N; 0, 1,+, ·, exp,=〉, we obtain DPR-theorem as a corollary.

Corollary 4 (DPR-theorem). Every relation R ⊆ Nn is r.e. if and only if it
is ∃-definable in the structure 〈N; 0, 1,+, ·, exp,=〉.

Let us fix k = 2 and omit mentioning k in �k and EqNZBk. Since we have
z = x&2y ⇔ z � y ∧ y � x+ y − z (see [14]), bitwise minimum is ∃-definable in
〈N; 0, 1,+,�,�,=〉. Next, exponential diophantiness of � follows from the fact
that x � y iff

(
y
x

) ≡ 1(mod 2), where
(
y
x

)
is a binomial coefficient. Factorial

representation of binomial coefficients and Legendre’s formula imply that

x � y ⇔ s2(y) = s2(x) + s2(y − x),

where s2(x) is the number of 1’s in base 2 expansion of x. Therefore, the masking
relation is definable by the formula x � y ⇔ EqNZB(y, x � (y−x)) and we have
the following result.

Corollary 5. Every relation R ⊆ Nn is r.e. if and only if it is ∃-definable in
the structure 〈N; 0, 1,+,EqNZB ,�,=〉.

5 Conclusion

The purpose of this paper is to emphasize similarities in existential first-order
characterizations of the languages recognizable by various abstract machines.
Such descriptions in Sections 3 and 4 allowed us (in some sense) to answer the
question of Bès [2, Open Problems] concerning the expressive power of fragments
of FO-arithmetic with the predicate EqNZB .

Let us mention one natural question which is related to Theorems 1 and 3.
Villemaire proves [23,24] that multiplication is definable in 〈N; 0, 1,+, Vk, Vl,=〉
when k and l are multiplicatively independent. Bès strengthens this result [1]
by showing that the same is true when Vl is replaced by any l-recognizable
relation Rl that is not definable in 〈N; 0, 1,+,=〉. It would be interesting to see
whether multiplication is existentially definable in 〈N; 0, 1,+,&k,&l,=〉, and
more generally, to study ∃-definability in the structures 〈N; 0, 1,+,&k, Rl,=〉.
Acknowledgements. The author is grateful to the anonymous reviewers for
their useful suggestions and comments.

194 M. Starchak

References

1. Bès, A.: Undecidable extensions of Büchi arithmetic and Cobham-Semënov the-
orem. Journal of Symbolic Logic 62(4), 1280–1296 (1997). https://doi.org/10.
2307/2275643

2. Bès, A.: Expansions of MSO by cardinality relations. Logical Methods in Computer
Science 9(4) (2013). https://doi.org/10.2168/lmcs-9(4:18)2013

3. Bruyère V.: Entiers et automates finis. Mémoire de fin d’études, University of
Mons, Belgium (1985)

4. Bruyère V., Hansel G., Michaux C., Villemaire R.: Logic and p-recognizable sets
of integers. Bulletin of the Belgian Mathematical Society - Simon Stevin 1(2),
191–238 (1994). https://doi.org/10.36045/bbms/1103408547

5. Büchi R.J.: Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly 6(1-6), 66–92 (1960). https://doi.org/10.1002/malq.19600060105

6. Cadilhac M., Finkel A., McKenzie P.: On the expressiveness of Parikh automata
and related models. In: Proceedings of the Third Workshop on Non-Classical Mod-
els for Automata and Applications - NCMA 2011, pp. 103-119. Milan, Italy (2011)

7. Davis M.: Arithmetical problems and recursively enumerable predicates. Journal
of Symbolic Logic 18(1), 33–41 (1953). https://doi.org/10.2307/2266325

8. Davis M., Putnam H., Robinson J.: The decision problem for exponential diophan-
tine equations. Annals of Mathematics 74(3), 425–436 (1961). https://doi.org/
10.2307/1970289

9. Elgot C.C.: Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society 98(1), 21–51 (1961). https:
//doi.org/10.1090/s0002-9947-1961-0139530-9

10. Ginsburg S., Spanier E.: Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematics 16(2), 285–296 (1966). https://doi.org/10.2140/pjm.
1966.16.285

11. Haase C., Różycki J.: On the expressiveness of Büchi arithmetic. In: Kiefer, S., Tas-
son, C. (eds) FOSSACS 2021, Lecture Notes in Computer Science, vol. 12650, pp.
310–323. Springer International Publishing (2021). https://doi.org/10.1007/
978-3-030-71995-1_16

12. Hodgson B.R.: Décidabilité par automate fini. Annales des sciences mathématiques
du Québec, 7(1), 39–57 (1983).

13. Ibarra O.H.: Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM 25(1), 116–133 (1978). https://doi.org/10.1145/322047.
322058

14. Jones J.P., Matijasevič Yu.V.: Register machine proof of the theorem on expo-
nential diophantine representation of enumerable sets. Journal of Symbolic Logic
49(3), 818–829 (1984). https://doi.org/10.2307/2274135

15. Klaedtke F., Rueß H.: Parikh automata and monadic second-order logics with
linear cardinality constraints. Tech. rep. 177, Universität Freiburg (2002)

16. Klaedtke F., Rueß H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) ICALP 2003, Lecture
Notes in Computer Science, vol. 2719, pp. 681–696. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0_54

17. Kozen D.C.: Automata and Computability. Springer, New York (1997). https:
//doi.org/10.1007/978-1-4612-1844-9

18. Kummer E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsge-
setzen. Journal für die reine und angewandte Mathematik, 44, 93–146 (1852).
https://doi.org/10.1515/crll.1852.44.93

https://doi.org/10.2307/2275643
https://doi.org/10.2307/2275643
https://doi.org/10.2307/2275643
https://doi.org/10.2307/2275643
https://doi.org/10.2168/lmcs-9(4:18)2013
https://doi.org/10.2168/lmcs-9(4:18)2013
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.2307/2266325
https://doi.org/10.2307/2266325
https://doi.org/10.2307/1970289
https://doi.org/10.2307/1970289
https://doi.org/10.2307/1970289
https://doi.org/10.2307/1970289
https://doi.org/10.1090/s0002-9947-1961-0139530-9
https://doi.org/10.1090/s0002-9947-1961-0139530-9
https://doi.org/10.1090/s0002-9947-1961-0139530-9
https://doi.org/10.1090/s0002-9947-1961-0139530-9
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1007/978-3-030-71995-1_16
https://doi.org/10.1007/978-3-030-71995-1_16
https://doi.org/10.1007/978-3-030-71995-1_16
https://doi.org/10.1007/978-3-030-71995-1_16
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.2307/2274135
https://doi.org/10.2307/2274135
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1515/crll.1852.44.93
https://doi.org/10.1515/crll.1852.44.93

On the Existential Arithmetics with Addition and Bitwise Minimum 195

19. Matiyasevich Yu.V.: A new proof of the theorem on exponential diophantine rep-
resentation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov LOMI
60, 75–92 (1976). (English translation: Journal of Soviet Mathematics 14(5), 1475–
1486 (1980) https://doi.org/doi:10.1007/BF01693980)

20. Matiyasevich Yu.V.: Hilbert’s tenth problem. MIT Press, Massachusetts (1993)
21. Parikh R.J.: On context-free languages. Journal of the ACM 13(4) 570–581 (1966).

https://doi.org/10.1145/321356.321364
22. Trakhtenbrot B.A.: Finite automata and the logic of one-place predicates (in Rus-

sian). Sibirskĭı Matematicheskĭı Zhurnal 3, 103–131 (1962).
23. Villemaire R.: Joining k- and l-recognizable sets of natural numbers. In: Finkel, A.,

Jantzen, M. (eds) STACS 1992, Lecture Notes in Computer Science, vol. 577, pp.
83–94. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-3_
175

24. Villemaire R.: The theory of 〈N; +, Vk, Vl〉 is undecidable. Theoretical Com-
puter Science 106(2), 337–349 (1992). https://doi.org/10.1016/0304-3975(92)
90256-f

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/doi:10.1007/BF01693980
https://doi.org/doi:10.1007/BF01693980
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/3-540-55210-3_175
https://doi.org/10.1007/3-540-55210-3_175
https://doi.org/10.1007/3-540-55210-3_175
https://doi.org/10.1007/3-540-55210-3_175
https://doi.org/10.1016/0304-3975(92)90256-f
https://doi.org/10.1016/0304-3975(92)90256-f
https://doi.org/10.1016/0304-3975(92)90256-f
https://doi.org/10.1016/0304-3975(92)90256-f
http://creativecommons.org/licenses/by/4.0/

Coverability in 2-VASS with One Unary Counter
is in NP �

Filip Mazowiecki1 , Henry Sinclair-Banks2(�) , and Karol Węgrzycki3

1 University of Warsaw, Warsaw, Poland
f.mazowiecki@mimuw.edu.pl

2 Centre for Discrete Mathematics and its Applications (DIMAP) & Department
of Computer Science, University of Warwick, Coventry, UK

h.sinclair-banks@warwick.ac.uk
3 Saarland University and Max Planck Institute for Informatics, Saarbrücken,

Germany
wegrzycki@cs.uni-saarland.de

Abstract. Coverability in Petri nets finds applications in verification
of safety properties of reactive systems. We study coverability in the
equivalent model: Vector Addition Systems with States (VASS).
A k-VASS can be seen as k counters and a finite automaton whose transi-
tions are labelled with k integers. Counter values are updated by adding
the respective transition labels. A configuration in this system consists
of a state and k counter values. Importantly, the counters are never al-
lowed to take negative values. The coverability problem asks whether one
can traverse the k-VASS from the initial configuration to a configuration
with at least the counter values of the target.
In a well-established line of work on k-VASS, coverability in 2-VASS is
already PSPACE-hard when the integer updates are encoded in binary.
This lower bound limits the practicality of applications, so it is natural
to focus on restrictions. In this paper we initiate the study of 2-VASS
with one unary counter. Here, one counter receives binary encoded up-
dates and the other receives unary encoded updates. Our main result
is that coverability in 2-VASS with one unary counter is in NP. This
improves upon the inherited state-of-the-art PSPACE upper bound. Our
main technical contribution is that one only needs to consider runs in a
certain compressed linear form.

Keywords: Vector Addition Systems · Coverability Problem · Linear
Path Schemes

1 Introduction

Vector Addition Systems with States (VASS) are a well-studied class of infinite-
state systems (see the survey [37]). These are finite automata with counters that

� Filip Mazowiecki is supported by the ERC grant INFSYS, agreement no. 950398.
Henry Sinclair-Banks is supported by EPSRC Standard Research Studentship
(DTP), grant EP/T5179X/1. Karol Węgrzycki is supported by the ERC grant TI-
PEA agreement no. 850979.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_10

196–217, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_10&domain=pdf
http://orcid.org/0000-0002-4535-6508
http://orcid.org/0000-0003-1653-4069
http://orcid.org/0000-0001-9746-5733
https://doi.org/10.1007/978-3-031-30829-1_10
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_10&domain=pdf

Coverability in 2-VASS with One Unary Counter is in NP 197

can be updated, but are never allowed to take negative values. Thus, a config-
uration consists of a state and a vector over the natural numbers. The central
decision problems are the reachability and coverability problems. The reacha-
bility problem asks whether from a given start configuration one can reach the
target configuration. The coverability problem is the same except that the tar-
get configuration need not be reached exactly, counter values are allowed to
be greater. Both problems are not only mathematically elegant, but they have
interesting theoretical applications [7] and implementations [6]. Coverability is
provably a simpler problem that is better suited for applications; reachability
tools are mostly applied to coverability benchmarks [14]. Yet coverability has
applications in the verification of safety conditions in reactive systems [17,21].
Such systems may require additional data structures to be accurately repre-
sented, like counters for example. Safety conditions often boil down to whether
a particular state can be reached as opposed to a particular configuration [8].

Coverability and reachability have been studied for decades. The equivalent
model of Petri nets was introduced already in the sixties [34]. For general VASS,
Lipton proved in 1976 an EXPSPACE lower bound that applies to both coverabil-
ity and reachability [31]. Two years later, Rackoff proved a matching EXPSPACE
upper bound for coverability [35]. Later in 1981, Mayr proved that reachability
is decidable [32] without providing an upper bound for the algorithm. The con-
struction was simplified by Kosaraju [24] and Lambert [25], and a recent series
of papers by Leroux and Schmitz ended in 2019 by proving an Ackermann upper
bound [27]. A matching Ackermann lower bound was published in 2021 by two
independent groups [12,26].

Plenty of attention has been given to VASS with fixed dimension, that is
when the number of counters k is invariable, denoted k-VASS. For fixed dimen-
sion VASS it matters much whether the counter updates are encoded in unary or
binary. Already, Rackoff gives NL and PSPACE upper bounds for coverability in
unary encoded and binary encoded k-VASS, respectively [35]. The coverability
problem where there are no counters is just directed graph reachability that is
NL-complete [3]. Thus, coverability in unary encoded k-VASS is NL-complete,
for every fixed k. Coverability in binary encoded 1-VASS is in NC2 [2], it can
therefore be decided in deterministic polynomial time. If there are two or more
binary counters, coverability is PSPACE-hard [5] via a reduction from reachabil-
ity in bounded one-counter automata that is PSPACE-complete [18]. Therefore,
coverability in binary encoded k-VASS is PSPACE-complete for every k ≥ 2. See
Figure 1 for the complexities of coverability in VASS with a fixed number of
unary and binary encoded counters. This is all in striking contrast to the reach-
ability problem in fixed dimension VASS, since reachability in 8-VASS is already
known to be nonelementary [13].

There is a prominent line of work on 2-VASS with various encodings. The
seminal paper in 1979 of Hopcroft and Pansiot [23] shows reachability in 2-VASS
is decidable, proving that the reachability set is effectively semi-linear. Moreover,
in the same paper the authors show, by an example, that the 3-VASS reachabil-
ity set need not be semi-linear. Later, this was improved as it was shown that for

198 F. Mazowiecki et al.

Number of unary counters
P = NP 0 1 ≥ 2

N
um

be
r

of
bi

na
ry

co
un

te
rs

0 NL-complete [3] NL-complete [38] NL-complete [35]

1 in NC2 ⊆P [2] in NP [this paper] Open

≥ 2 PSPACE-complete [5] PSPACE-complete PSPACE-complete [35]

Fig. 1. The complexities of coverability in VASS with a fixed number of unary and
binary encoded counters. All NL lower bounds arise from the zero counters case, here
coverability is directed graph reachability and that is well known to be NL-complete [3].
In the case of one binary counter, regardless of the number of unary counters, we are
aware only of this trivial NL lower bound. Furthermore, with one binary counter and
at least two unary counters, we are not aware of a non-trivial upper bound (denoted
“Open” in the table). When there are at least two binary counters and any number of
unary counters, coverability is PSPACE-complete. The lower bound holds for 2-VASS
with two binary counters [5] and the upper bound is given by Rackoff for any fixed
dimension [35]. Recall that coverability in general VASS, where the number of counters
is not fixed, is EXPSPACE-complete [35].

2-VASS the reachability relation is effectively semi-linear [28]. This proof shows
that every 2-VASS can be characterised by a flat model, i.e. where the underly-
ing finite automaton does not contain nested cycles. A more careful analysis of
that paper, resulted in a PSPACE upper bound result for reachability in binary
encoded 2-VASS [5]. Since coverability in binary encoded 2-VASS is PSPACE-
hard [5], the authors were able to conclude that both coverability and reachability
are PSPACE-complete. Just as coverability demonstrated the difference encoding
makes to complexity, so does reachability; later it was proved that reachability
in unary encoded 2-VASS is NL-complete [16].

Our Results and Techniques. We consider the coverability problem for 2-VASS
with one unary counter. Here, updates of one counter are encoded in binary
and the updates of the other are encoded in unary, see Figure 2 for an example.
Notice that the unary counter need not be limited to polynomially bounded
values. Otherwise, the value of the unary counter could be encoded into the
states for an instance of coverability in binary encoded 1-VASS. Furthermore,
we do not impose any restrictions on the initial and the target configurations,
i.e. both coordinates of these vectors are encoded in binary. Our main result is
that coverability in 2-VASS with one unary counter is in NP.

Coverability in binary encoded k-VASS is PSPACE-complete, for k ≥ 2. The
lower bound limits the practicality of applications. Therefore, it is sensible to
consider restricted variations and quantify their complexity. We remark that
coverability in fixed dimension VASS had widely-open complexity if there was
exactly one binary counter and at least one unary counter. See Figure 1 for a
summary of the known results.

Coverability in 2-VASS with One Unary Counter is in NP 199

qλ(100,−1) ρ (−99, 1)

Fig. 2. Example 2-VASS with one unary counter V . Consider the instance of cover-
ability consisting of V , the initial configuration q(0, 1), and the target configuration
q(0, 10). Consider the path π = λρ λρ · · ·λρ ρ · · · ρ which induces a run in V from the
initial configuration q(0, 1). There are 990 repetitions of the pair of cycles λρ to witness
the configuration q(990, 1). The cycles alternate so both counters remain non-negative
throughout the run. This is followed by 10 iterations of the cycle ρ so the configuration
q(0, 11) is witnessed, achieving coverability of the target configuration q(0, 10).

The natural starting point is the characterisation of runs via linear path
schemes [4]. Intuitively, the authors prove that if coverability or reachability
holds then there is a witnessing path of a specific shape. Namely, all paths can
be characterised by a bounded language defined by a regular expression of the
form τ0γ

∗
1τ1 . . . τk−1γ

∗
kτk. Here τ0, . . . , τk are paths that connect disjoint cycles

γ1, . . . , γk. Since the language is bounded, checking if there is a path for a given
expression essentially amounts to an instance of integer linear programming. In
particular, the authors argue that both k and |τ0| + |γ1| + |τ1| + . . . + |τk−1| +
|γk| + |τk| are pseudo-polynomially bounded [4]. However, a polynomial bound
would immediately yield an NP upper bound as such a regular expression can be
guessed. Given that coverability in 2-VASS with two binary counters is PSPACE-
hard [5], we cannot simply directly apply the known results when dealing with
2-VASS with one binary and one unary counter. In Section 3, we provide a
detailed discussion and a difficult yet motivating example in Figure 3.

To overcome this problem, we show that coverability can be witnessed by
paths in compressed linear form. We relax the condition of the bounded lan-
guage, by allowing to nest linear forms, provided that the exponents are fixed.
Intuitively, an expression of the form (τγ∗τ ′)∗ is still forbidden, but we allow
for (τγeτ ′)∗, where e is fixed but can be exponentially large (encoded using
polynomially many bits). Such a form easily provides an NP upper bound.

We rely on two crucial observations to prove that we can focus on paths
in compressed linear form. First, notice that the ∗ operation in a linear path
scheme corresponds to iterating some cycle in the VASS. Since γ1, . . . , γk need
to be short, one naturally focuses on short cycles. The issue is that there are
exponentially many cycles of polynomial size. In Section 4 we prove that for
coverability there are only polynomially many ‘optimal’ cycles. In Section 5 we
deal with the problem when some cycle γ occurs many times in a linear path
scheme witnessing coverability, resulting in a polynomial bound on k, the width
of the linear path scheme. Then we prove that, either we can merge some γi and
γj thus reducing the width, or that there is a cycle that has positive effect on one
counter and non-negative effect on the other counter. Intuitively, in the latter

200 F. Mazowiecki et al.

case, we can reduce the problem to coverability in 1-VASS by pumping such a
cycle that forces one counter to take an arbitrarily large value. Moreover, such
a cycle is witnessed by a linear path scheme. Since we need to pump this cycle,
we require compressed linear forms to describe the repetitions of the cycle.

We highlight that both our crucial observations rely on that we work with
coverability, not reachability. We further highlight that we address these crucial
observations through our technical contributions that often depend on the fact
there is one unary counter.

Further Related Work. Asymmetric treatment of the counters has been already
considered for VASS. Recall that Minsky machines can be seen as VASS with the
additional ability of zero-testing. For this model coverability is undecidable [33],
even with two counters. This raised natural questions of what happens where
only one of the counters is able to be reset or tested for zero. This, and more
generally, reachability in VASS with hierarchical zero-tests are known to be de-
cidable [36]. There is a further investigation into VASS with one zero-test [20].
Recently, work has appeared containing detailed analysis about 2-VASS where
counters have different powers [19,29]. Finally, one of the most famous open
problems in the community is whether reachability is decidable for 1-VASS
with a pushdown stack. For these systems, coverability is known to be decid-
able [30]. The best known lower bound is that coverability, thus reachability also,
is PSPACE-hard [15]. Our model, 2-VASS with one unary counter, can be seen
as 1-VASS with a singleton alphabet pushdown stack.

The complexity of reachability in binary encoded 3-VASS remains an intrigu-
ing open problem. It is PSPACE-hard, like in dimension two, and the only known
upper bound is primitive recursive, but not even elementary [27]. Recent works
on reachability in fixed dimension VASS [11,9,13] provide new examples and a
better understanding of the VASS model. Interestingly, many techniques applied
to fixed dimension VASS are very closely related to recent progress on the nonele-
mentary and Ackermann lower bounds for general VASS [10,12,26]. We finally
and additionally motivate coverability in VASS with one binary counter and (at
least) one unary counter as an avenue for finding new techniques to approach
VASS problems with.

2 Preliminaries

Given an integer z ∈ Z we denote bitsize(z) = log2(|z| + 1) + 1. For a vector
v := (v1, v2) we use (v)1 := v1 and (v)2 := v2 to be the projections to the
first and second coordinates, respectively. We use |v|max := max{|v1|, |v2|} + 1
to denote the size of vector v. We write v ≤ w if the inequalities hold on each
coordinate. We write v < w if at least one of the inequalities is strict.

A 2-VASS with one unary counter V = (Q,T) consists of a finite set of
control states Q and a set of transitions T ⊆ Q × Z × {−1, 0, 1} × Q. We
shall refer to the first counter as the binary counter and the second counter as
the unary counter. The size of V is |V | = |Q| + ∑

(p,b,u,q)∈T bitsize(b). With

Coverability in 2-VASS with One Unary Counter is in NP 201

|V |max := |Q| + |T | · |T |max we denote the total ‘pseudo-polynomial size’ of the
automaton, where |T |max denotes the maximum absolute value that occurs in
the transitions. Note that in a standard 2-VASS both counters are in binary, i.e.
the domain of updates for the second counter is also Z.

A path π in V is a, possibly empty, sequence of transitions π = (ti)
m
i=1 such

that ti = (qi−1, bi, ui, qi) ∈ T . A path is simple if q0, . . . , qm are distinct. A path
is a cycle if q0 = qm and m > 0 (thus empty cycles are forbidden). We call it
a q0-cycle to emphasise the first and last state of the cycle. A cycle is simple
if q1, . . . , qm are distinct. A cycle is short if m ≤ |Q|. The length of a path is
the number of transitions in the path, denoted len(π) = m. We write π[i..j] to
denote the path that is the subsequence of transitions (ti, . . . , tj) in π.

A configuration (p,u) ∈ Q × N2, denoted p(u), is a state paired with the
current binary and unary counter values. A run is a sequence of configurations
(qi(vi))

m
i=0 such that (qi−1, (vi)1 − (vi−1)1, (vi)2 − (vi−1)2, qi) ∈ T . A run can

equivalently be defined by the sequence of configurations induced by following a
path π starting from an initial configuration q0(v0). We denote this run q0(v0)

π−→
qm(vm). We also write q0(v0)

∗−→ qm(vm) to indicate the existence of a run
between two configurations.

In this paper we study the coverability problem for VASS.
VASS Coverability
INPUT: A VASS V = (Q,T) and two configurations p(u) and q(v).
QUESTION: Does p(u)

∗−→ q(v′) hold, for some v′ ≥ v?
Do note that the initial configuration p(u) and the target configuration q(v)

have both the binary and unary components encoded as binary integers. The
reachability problem for VASS—which we will not study in this paper—requires
v′ = v.

Consider a path π = (ti)
m
i=1, where ti = (qi−1, bi, ui, qi). The effect of π is

the sum of the counter updates, i.e. the vector eff(π) :=
∑m

i=1(bi, ui). We often
focus on the two projections: the binary effect effb(π) :=

∑m
i=1 bi, and the unary

effect effu(π) :=
∑m

i=1 ui.
We say that a cycle γ is monotone if eff(γ) ≥ 0 or eff(γ) ≤ 0. Otherwise, we

say that γ is non-monotone. Note the two variants of a non-monotone cycle: a
positive-negative cycle effb(γ) > 0 and effu(γ) < 0, and a negative-positive cycle
effb(γ) < 0 and effu(γ) > 0.

Let γ be a cycle. Given e ∈ N we write γe for the path obtained by e
repetitions of γ. We refer to e as the exponent. A linear path scheme is a regular
expression of the form τ0γ

∗
1τ1 · · · τk−1γ

∗
kτk, where the paths τ0, τ1, . . . , τk connect

disjoint cycles γ1, . . . , γk. Note that a collection of cycles is disjoint if no two
cycles have a common state. Given � = (τ0, γ1, τ1, . . . , τk−1, γk, τk), we say the a
path π is in linear form � if π = π� = τ0γ

e1
1 τ1 · · · τk−1γ

ek
k τk for some exponents

e1, . . . , ek. Note that in this definition every path has a linear form, e.g. τ0 = π
is valid. To leverage the definition, we will ask whether paths are in a linear
form of certain size. The size of a linear form � is

∑k
i=0 len(τi) +

∑k
i=1 len(γi).

The size of π� is
∑k

i=0 len(τi) +
∑k

i=1 len(γi) +
∑k

i=1 bitsize(ei), i.e. includes the
exponents. We refer to k as the width of the linear form.

202 F. Mazowiecki et al.

3 Coverability in 2-VASS with One Unary Counter

In this section we briefly discuss why the state-of-the-art techniques are not
enough to prove that coverability in 2-VASS with one unary counter is in NP.
Blondin et al. [4] show that for a given 2-VASS V there exists a set of linear
path schemes S such that if p(u)

∗−→ q(v) in V , then there exists a path π

in a linear path scheme ρ ∈ S such that p(u)
π−→ q(v). For every linear path

scheme ρ ∈ S the width of ρ, and therefore the width of every path, is bounded
above by poly(|Q|, |T |max) [4, Theorem 3.1]. Such a path π is not necessarily
a polynomial size witness, as the width depends on |T |max polynomially. We
provide an example of a 2-VASS with one unary counter where the width of
every linear form � for a path is exponential in the input size. This demonstrates
that the combinatorial structure of linear path schemes is not self-sufficient to
show that there always exists a polynomial size witness of coverability.

q

pa

b

c

d

λ ρ

(N4,−1)

(0, 0)

(−N6 +N, 0)

(−N, 0)
(N4, 0)

(0, 0)

(−N6 + 1, 1)

(−N2, 1)

α

(N4,−1)

β

(−N2, 1)

γ

(N4,−1)

δ

Fig. 3. Example 2-VASS with one unary counter V , where N = 2n, where n is an input
parameter (thus making N exponentially large). Consider the coverability instance
with the initial configuration q(0, 1), and the target configuration q(N, 1). Let λ =

tqaα
N2

tabβ
N2

tbq and ρ = tqptpcγ
N2

tcdδ
N2

tdq, where txy is the transition from state x
to state y. Observe that eff(λ) = (N,−1) and eff(ρ) = (−N+1, 1), thus eff(λρ) = (1, 0).

It is easy to then see that q(0, 1)
(λρ)N−−−−→ q(N, 1). Intuitively the cycles λ and ρ alternate

so both counters remain non-negative throughout the run. In the appendix, we prove
that there does not exist a linear form of polynomial size for a path that induces a
coverability run.

Coverability in 2-VASS with One Unary Counter is in NP 203

Paths in Compressed Linear Form. Nevertheless, there is a natural way to suc-
cinctly describe the path presented in Figure 3. Let σ = λρ, and note that

σN =
(
tqa αN2

tab β
N2

tbqtqptpc γ
N2

tcd δN
2

tdq

)N

.

All paths and cycles are ‘small’, and the bitsize of N and N2 are polynomial in
n, so σ itself is a path in linear form. We introduce the following generalisation
of linear form paths that encapsulates the idea behind paths of this kind of
arrangement.

Definition 1 (Compressed linear form path). A path π is in compressed
linear form if π = ρ0σ

f1
1 ρ1 · · · ρk−1σ

fk
k ρk for some connected paths in linear form

ρ0, ρ1, . . . , ρk; cycles in linear form σ1, . . . , σk; and exponents f1, . . . , fk. The size
of a compressed linear form path is the sum of the sizes of all ρi and σi (including
the bitsize of their exponents) plus the bitsize of the exponents fi.

σf1
1

· · ·

σ
fk
k

ρ0 ρ1 ρk−1 ρk

Fig. 4. A compressed linear form path.

The following theorem is our main contribution.

Theorem 1. Let V be a 2-VASS with one unary counter and fix two configu-
rations p(u) and q(v). If p(u)

∗−→ q(v), then there exists a path in compressed
linear form π such that p(u)

π−→ q(v′) and v′ ≥ v. The size of the compressed
linear form path is polynomial in |V |+ bitsize(u) + bitsize(v).

Corollary 1. Coverability in 2-VASS with one unary counter is in NP.

Proof. By Theorem 1 it suffices to consider paths in compressed linear form
of polynomial size, that can be guessed in NP. It suffices to observe that a
coverability instance on a given compressed linear form amounts to an instance
of integer linear programming. Intuitively, this is because the nested cycles are
fixed. Thus to check whether a run drops below zero it suffices to check before
applying a cycle and after applying it for the last time (see e.g. [5, Section V,
Lemma 14]).

We highlight that it is rather unexpected that only one extra ‘level’ of linear
form paths is enough to obtain polynomial size witnesses of coverability in a 2-
VASS with one unary counter, since the problem is PSPACE-complete for general

204 F. Mazowiecki et al.

2-VASS. Roughly speaking, the example given in Figure 3 observes the most
complex behaviour possible and this instance of coverability is witnessed by a
compressed linear form path. More specifically, compressed linear form paths
containing only one linear form cycle suffice as witnesses for coverability in 2-
VASS with one unary counter. Therefore, all witnesses can be represented by a
compressed linear form path ρσNτ where ρ and τ are linear form paths to and
from the single linear form cycle σ which is iterated N times.

The rest of the paper is dedicated to proving Theorem 1. We heavily exploit
both distinguishing features of the problem: the fact that one counter receives
unary encoded updates (as opposed to both counters in binary) and the fact
that we aim to assert coverability (as opposed to reachability). Our approach
is as presented in the introduction. In 4 we observe that we can polynomially
bound the total number of distinct short cycles. We formalise this and show that
there are only polynomially many ‘irreplaceable’ short cycles. In 5 we provide a
‘reshuffling procedure’. If some short cycle γ repeats exponentially many times
we aim to modify the path π by moving the cycles γ close to each other. Then
either every short cycle γ will appear only in polynomially many ‘bundles’ γe,
or we find a cycle σ such that eff(σ) > 0. In the latter case, by pumping σ we
are essentially left with one counter. Finally, in Section 6 we conclude the proof
of Theorem 1.

4 Replacing Short Cycles

In this section, we show that there are only polynomially many short cycles that
need occur in a run witnessing coverability. Fix a path π = (qi−1, bi, ui, qi)

k
i=1.

Let 0 ≤ ib, iu ≤ k be the first indices such that gb =
∑ib

i=1 bi and gu =
∑iu

i=1 ui

are at their lowest, respectively. Note that gb, gu ≤ 0 since by convention if we
consider ib, iu = 0 then the sum evaluates to 0. We call and denote these two
numbers the binary guard grdb(π) = gb and the unary guard grdu(π) = gu. The
following claim immediately follows from these definitions.

Claim 1. Both grdb(π[ib + 1..k]) = 0 and grdu(π[iu + 1..k]) = 0.

Much like the nadir of a cycle in a one-counter net, defined in [1], we define the
binary-nadir state as qib , i.e. the first state in which the binary counter first at-
tains the lowest value when executing π. We call the binary-nadir decomposition
π = πb

1π
b
2, for πb

1 = π[1..ib] and πb
2 = π[ib+1..k], as intimated in Claim 1. Notice

that this decomposition necessitates the binary guard of the path π is equal to
the binary effect of the prefix πb

1, grdb(π) = effb(π
b
1) = grdb(π

b
1). Furthermore,

the suffix of the binary-nadir decomposition has zero binary guard grdb(π
b
2) = 0.

We primarily utilise binary-nadir states and binary-nadir decompositions, hence
the omission of matching unary-nadir states and unary-nadir-decompositions.

Definition 2 (Replaceable cycles). Let γ be a q-cycle and let p be the binary-
nadir state of γ. We say that γ is replaceable if there exists a q-cycle γ′ with the
same binary-nadir state p, such that

Coverability in 2-VASS with One Unary Counter is in NP 205

(a) effb(γ
′) ≥ effb(γ) and effu(γ

′) ≥ effu(γ),
(b) grdb(γ

′) ≥ grdb(γ) and grdu(γ
′) ≥ grdu(γ), and

(c) len(γ′) ≤ len(γ).

Additionally, at least one inequality is strict and we write γ ≺ γ′.

We say a cycle is irreplaceable if it is not replaceable. We also say that an
irreplaceable q-cycle γ with the binary-nadir state p is characterised by the five
values: effb(γ), effu(γ), grdb(γ), grdu(γ), and len(γ).

Lemma 1 (Replacing cycles). Let π = π1γπ2, where γ is a q-cycle. Suppose
p(u)

π−→ q(v) then the following hold.

– If γ is replaceable, then there exists an irreplaceable q-cycle γ ≺ γ′ such that

p(u)
π1γ

′π2−−−−→ q(v′).
– If γ is irreplaceable, then for every irreplaceable q-cycle γ′ that has the same

characterisation as γ, p(u) π1γ
′π2−−−−→ q(v′).

In both cases v′ ≥ v and len(π) ≥ len(π1γ
′π2).

For convenience, we define the polynomial R(|Q|) := |Q|4(|Q|+1)(2|Q|+1)2.

Lemma 2. There exists at most R(|Q|) many irreplaceable short cycles with
different characterisations.

Proof. We fix two states q and p and consider only q-cycles γ with the binary-
nadir state p. Thus in the final argument one must multiply everything by |Q|2.
Since we consider short cycles, the unary effect and the unary guard are small,
i.e. −|Q| ≤ effu(γ) ≤ |Q| and −|Q| ≤ grdu(γ) ≤ 0.

Towards a contradiction, suppose there exists more than |Q|2(|Q|+1)(2|Q|+
1)2 many such irreplaceable q-cycles with different characterisations. By the pi-
geonhole principle there must exist two cycles, denoted in binary-nadir decom-
position γ = γ1γ2 and γ′ = γ′

1γ
′
2, that have the same values effu(γ1) = effu(γ

′
1),

effu(γ2) = effu(γ
′
2), grdu(γ) = grdu(γ

′), len(γ1) = len(γ′
1), and len(γ2) = len(γ′

2).
We know that the irreplaceable q-cycles γ and γ′ have different characteri-

sations, so it must be the case that their binary effects differ effb(γ) �= effb(γ
′).

Otherwise, the cycle with the lesser binary guard is replaceable, because the
unary effect, unary guard, and length do not differ. Without loss of general-
ity, suppose effb(γ) > effb(γ

′), then grdb(γ) < grdb(γ
′). Otherwise, γ′ would be

replaceable as γ ≺ γ′.
Now consider the q-cycle σ = γ′

1γ2, also with the binary-nadir state p. We
will show that γ ≺ σ contradicting the fact that γ is an irreplaceable q-cycle.
First, observe that σ has greater binary effect than γ as

effb(σ) = effb(γ
′
1) + effb(γ2) > effb(γ1) + effb(γ2) = effb(γ),

where the inequality holds because grdb(γ) < grdb(γ
′). Second, σ and γ have

equal unary effect because effu(γ
′
1) = effu(γ1). Third, we show that σ has a

206 F. Mazowiecki et al.

greater binary guard than γ. Since γ2 is the suffix of the binary-nadir decompo-
sition of γ, it must be true that grdb(γ2) = 0. By Claim 1 grdb(σ) = grdb(γ

′
1).

Combining these facts, grdb(σ) = grdb(γ
′) > grdb(γ). Fourth, σ has at least the

unary guard of γ because, in particular, the unary guard of the prefix of a path
is at most the unary guard of the entire path.

grdu(σ) = min{grdu(γ′
1), effu(γ

′
1) + grdu(γ2)}

≥ min{grdu(γ′), effu(γ
′
1) + grdu(γ2)}

= min{grdu(γ), effu(γ1) + grdu(γ2)} = grdu(γ).

Fifth and finally, σ and γ have equal length because len(γ′
1) = len(γ1). We have at

least one strict inequality. Thus, we have reached the desired contradiction.

5 Reshuffling Linear Form Paths

5.1 Reshuffling Procedure

There can be many linear forms for a path π. We will try to find an ‘optimal’
one, so we introduce a cost function to quantify linear forms. Recall that a linear
form � is a sequence of paths τ0, τ1, . . . , τk and a sequence of cycles γ1, . . . , γk.
If π is in the linear form � = (τ0, γ1, τ1, . . . , τk−1, γk, τk) then we write π� =
τ0γ

e1
1 τ1 · · · τk−1γ

ek
k τk, where π = π� (the index is here to stress the exact linear

form). For this section, we will consider linear forms only containing short cycles
γ, they will play a key role in the following arguments.

We define a cost function that assigns, to a linear form �, the following pair of
naturals C(�) :=

(∑k
i=0 len(τi), k

)
. For convenience, we define the polynomial

P (|Q|) := 2(|Q|2 + 1)(|Q|2 + 2) · R(|Q|), where R is the polynomial defined
for Lemma 2. We say that a linear form � is narrow if C(�) ≤ (|Q|(P (|Q|) +
1), P (|Q|)), otherwise we say that � is wide. We say that the triple (π′, σ, π′′) is a
monotone cycle decomposition of a path π if σ is a monotone cycle, π = π′σπ′′,
and len(σ) < len(π).

Lemma 3 (Reshuffling). Let π be a path such that p(u) π−→ q(v). Then there
exists a path ρ such that p(u) ρ−→ q(w) where w ≥ v, len(ρ) ≤ len(π), and either

(i) there exists a narrow linear form for ρ, or
(ii) there exists a monotone cycle decomposition of ρ.

Proof. We start with a series of preparations. In the early part of this proof,
we provide simple observations to ascertain some auspicious properties of our
path. In the later part of this proof, we present the ‘reshuffling procedure’ and
conclude with one of the cases in the statement of this lemma. In this proof we
will compare linear forms using the lexicographic order ≺lex, that is known to
be a linear-order and a well-order. Formally,

C(�′) ≺lex C(�) ⇐⇒ (C(�′))1 < (C(�))1 or,
(C(�′))1 = (C(�))1 and (C(�′))2 < (C(�))2.

Coverability in 2-VASS with One Unary Counter is in NP 207

We start with a path π′ such that p(u)
π′
−→ q(v′) where v′ ≥ v, len(π′) ≤

len(π), and π′ has a linear form �′ that has the least cost among all linear forms
for all like-paths. That means there does not exist another path π′′ such that
p(u)

π′′
−−→ q(v′′) where v′′ ≥ v, len(π′′) ≤ len(π), and π′′ has a linear form �′′

such that C(�′′) ≺lex C(�′).
For the first observation, suppose there exists 0 ≤ i ≤ k such that len(τi) >

|Q|. Then the path τi can be written as τi = τ ′γτ ′′, where γ is a short cycle.
We can define the linear form �′′ by modifying �′ where τi is swapped for τ ′γτ ′′.
Although this increments the number of cycles k, we decrease the total length of
the paths as len(τ ′) + len(τ ′′) < len(τi) (recall that empty cycles are forbidden).
Thus C(�′′) ≺lex C(�′) contradicting the assumption that � has minimum cost.
Therefore, we assume that len(τi) ≤ |Q| for all 0 ≤ i ≤ k.

For the second observation, we define U := {0 ≤ i ≤ m : (vi)2 < |Q|} to be
the set of indices of configurations in the run that have unary counter value less
than |Q|. Observe that if |U | > |Q|2+1 then there are two indices 0 < i < j ≤ m
such that the two corresponding configurations in the run have matching states
qi = qj and equal unary counter values (vi)2 = (vj)2. Then, regardless of sign of
its binary effect, π′[i..j] is a monotone cycle. Here, case (ii) immediately holds
by decomposing π′ itself using the monotone cycle π′[i..j], given that i > 0
and j ≤ m implies len(π′[i..j]) = j − i < m = len(π′). Therefore, we assume
|U | ≤ |Q|2 +1. We continue with the aim of satisfying the conditions of case (ii)
by finding a monotone cycle decomposition.

Let d = |{γ1, . . . , γk}| be the number of distinct cycles in the linear form �′.
By Lemma 1 and Lemma 2, we can assume that d ≤ R(|Q|). Otherwise, we can
exchange replaceable q-cycles for irreplaceable q-cycles using the first point in
Lemma 1. It is possible that for a particular characterisation, we can observe
more than one irreplaceable q-cycle. Then using the second point in Lemma 1,
we can arbitrarily select one of these irreplaceable q-cycles with equal charac-
terisations to exchange all others with. By applying these cycle replacements
to π′, we obtain a different path ρ. Definition 2 ensures that we do so without
decreasing the effect (a), without allowing the counters to take a negative value
(b), and without increasing the length of the path (c). Therefore p(u)

ρ−→ q(w)
and w ≥ v′ ≥ v, and len(ρ) ≤ len(π′) ≤ len(π). We remark since cycles have
been exchanged one-for-one, then ρ takes a linear form � with the same path
segments as �′. Therefore, it is clear that neither the number of cycles k, nor the
sum of the lengths of the paths between cycles, have changed. We also know that
� is a linear form for ρ with minimum cost C(�) = C(�′), as per the initialisation
in this proof.

Suppose ρ = ρ� = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk. Let (qj(vj))

m
j=0 be the run obtained

by following the path ρ� from the initial configuration q0(v0) = p(u) to the final
configuration qm(vm) = q(w). We may assume that � is wide. Otherwise, case (i)
is immediately satisfied. We also know that len(ρ�) ≥ max{(C(�))1, (C(�))2} >
P (|Q|). We may also assume that each cycle γ1, . . . , γk is non-monotone, i.e. it is
positive-negative or negative-positive. Otherwise, case (ii) immediately holds by
decomposing ρ itself using some monotone cycle γi, given that len(γi) ≤ |Q| <

208 F. Mazowiecki et al.

P (|Q|) < len(ρ�). Notice this is valid since each ei > 0 by the minimality of C(�),
otherwise you can write · · · τi−1γ

0
i τi · · · with one less cycle, decreasing (C(�))2.

From the first observation, we get
∑k

i=0 len(τi) ≤ (k + 1)|Q|. Given that �

is wide, either |Q|(P (|Q|) + 1) < (C(�′))1 =
∑k

i=0 len(τi) ≤ (k + 1)|Q| that
implies P (|Q|) < k, or P (|Q|) < (C(�′))2 = k. Regardless, P (|Q|) < k holds.
Recall that |U | ≤ |Q|2+1 from the second observation. Since there are relatively
‘few’ configurations indexed by U , there must exist a relatively ‘distant’ pair
of consecutive configurations indexed by U . More formally, there are i and j
such that 0 ≤ i < j ≤ k and j − i ≥ 2(|Q|2 + 2)R(|Q|) and all configurations
that occur in the run over the path segment τiγ

ei+1

i+1 · · · γej
j τj have unary counter

value at least |Q|. Notice that j− i is the number of cycles in this path segment.
Since j − i ≥ 2(|Q|2 + 2)R(|Q|) and by pigeonhole principle on the number of
irreplaceable cycles, there is a common irreplaceable cycle γ repeated at least
x = 2(|Q|2+2) many times. We will focus on the first x such occurrences of this
cycle. Let s1, . . . , sx be the indices of this cycle γ, i.e. γ = γs1 = . . . = γsx . To
highlight these cycles, we decompose this path segment into

τiγ
ei+1

i+1 · · · γej
j τj = Λ0γ

f1Λ1 · · ·Λx−1γ
fxΛx,

where fj := esj and Λj are the concatenated paths (and cycles) in between
iterations of γ, see Figure 5. To reiterate, we know that all configurations that
occur in the run over this path segment have at least |Q| unary counter value
and γ is a short cycle.

Fig. 5. The decomposition of the path segment into Λ0γ
f1Λ1 · · ·Λx−1γ

fxΛx, as above.
Notice that the unary counter is always at least |Q| as no configurations indexed by U
are present.

Reshuffling Procedure. In the rest of the proof we will modify the path segment
(above) of the path ρ� with a procedure that we call reshuffling. At the end
of this procedure we will find a monotone cycle and satisfy case (ii) of this
lemma. We either find this cycle directly, or we obtain a linear form �′′ such that
C(�′′) ≺lex C(�) contradicting the assumption that � has minimal cost.

Note that x = 2(|Q|2 + 2) is even, and for every pair of consecutive cycles
γ2j−1 and γ2j (for 1 < 2j ≤ x), consider the subsegment γf2j−1Λ2j−1γ

f2j . There

Coverability in 2-VASS with One Unary Counter is in NP 209

are two scenarios depending on the variant of the non-monotone cycle γ. In the
scenario where γ is positive-negative, we move an iteration of γ from right to left
obtaining γf2j−1+1Λ2j−1γ

f2j−1. In the scenario where γ is negative-positive, we
move an iteration of γ in the opposite direction obtaining γf2j−1−1Λ2j−1γ

f2j+1.
We repeat this procedure until one of two conditions are met. The first is

when there are no iterations of γ on one side, so either f2j−1 or f2j becomes
0. The second is when there appears a configuration, in the run over the path
subsegment after reshuffling, with unary counter value less than |Q|. See Figure 6
for a pictorial presentation of reshuffling in the scenario where γ is positive-
negative.

Fig. 6. Reshuffling around a path Λ (blue) where γ (red) is positive-negative. Before
reshuffling, the path subsegment · · · γΛγ · · · all configurations have unary counter value
at least |Q| in the run (left). After reshuffling, the path subsegment · · · γγΛ · · · , there
is a configuration with unary counter value less than |Q| in the run (right).

We claim that after each reshuffling step, the corresponding run remains
executable, so we must check that both counters remain non-negative. Notice
that by only moving a cycle, the total effect of the path subsegment remains
the same. Therefore, if the run was executable before reshuffling, we can safely
assume that the prefix before the path subsegment and the suffix after the path
subsegment are still executable. For that reason, consider the counter values
of configurations occurring in the run over the reshuffled path subsegment. We
focus on a single step of the reshuffling procedure that concerns the subsegment
γf2j−1Λ2j−1γ

f2j .
Suppose γ is a positive-negative cycle. Then the reshuffling procedure moves

γ from right to left. We claim that since f2j−1 > 0 and Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1

is executable, the subsegment Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1+1 is executable from the
initial configuration. This is because one prerequisite of the reshuffling proce-
dure is that all configurations occurring in the run over the path subsegment
have at least |Q| unary counter value. Moreover, the cycle γ has length at most
|Q| so grdu(γ) ≥ −|Q| means the unary counter value remains non-negative.
As for the binary counter value, since a single execution of γ increases the
binary counter and an iteration of γ was already executed before reshuffling,
Λ0γ

f1Λ1 · · ·Λ2j−1γ
f2j−1+1 is executable. In the same way, from the initial con-

210 F. Mazowiecki et al.

figuration, Λ0γ
f1Λ1 · · ·Λ2j−1γ

f2j−1+1Λ2jγ
f2j−1
2j is executable. This is because

effu(γ) ≥ −|Q|, and again, all configurations occurring in the run over the path
subsegment have at least |Q| unary counter value, and also because of the mono-
tonicity on the binary counter.

The argument when γ is a negative-positive cycle is analogous. This concludes
the correctness analysis of the reshuffling procedure.

Finishing Reshuffling. We analyse what happens when reshuffling is finished.
Suppose that there exists a pair 2j − 1 and 2j such that the reshuffling finishes
under the first condition where all iterations of γ have been moved to one side of
Λ2j−1. In this case we obtain a new linear form �′′ for ρ, where one collection of
the cycle γ has been removed (decrementing k). So (C(�′′))2 = k − 1 < (C(�))2
and the two adjacent path segments can be combined without changing the
summed length of paths so (C(�′′))1 = (C(�))1. Therefore, C(�′′) ≺lex C(�)
contradicting the assumption � has the minimal cost.

Otherwise, for every 1 ≤ j ≤ x/2 the reshuffling of pair 2j−1 and 2j finishes
under condition the second condition. So there is a configuration with unary
counter value less than |Q| in the run induced from the path ρ for each pair 2j−1
and 2j (see Figure 7). Recall that x

2 = |Q|2+2, that is the number of pairs. Akin
to the first observation (in the beginning of this proof), we use the pigeonhole
principle on the number of such configurations to obtain two configurations with
matching states and equal unary counter values. The path segment inducing the
part of the run between these two configurations is a monotone cycle, regardless
of the binary effect. Again, it must be true that the length of this cycle is less
than the length of the whole path, so we obtain a monotone cycle decomposition
of ρ. Thus case (ii) of the lemma holds.

Fig. 7. After reshuffling is finished under condition the second condition, we can find a
zero unary effect cycle using the (sufficiently many) configurations with unary counter
less |Q|.

5.2 Applying Reshuffling

Lemma 3 does not necessarily return a narrow linear form for a path π witnessing
coverability. Instead it may return a monotone cycle decomposition (ρ, σ, τ) of π.

Coverability in 2-VASS with One Unary Counter is in NP 211

Our next goal is to show that there exists polynomial size certificates for ρ and σ
(Lemma 4), and then to show that there exists a polynomial size certificate for τ
(Lemma 5). Like linear forms, there can be many monotone cycle decompositions
for a path. Following, we will use the cost function assigning monotone cycle de-
compositions to pairs of natural numbers D((ρ, σ, τ)) := (len(ρσ), len(σ)). Note
that we can compare two decompositions using their cost, even if they are for
two different paths.

Lemma 4. Suppose p(u)
∗−→ q(v) yet there is no narrow linear form � for any

path π such that p(u) π−→ q(w) and w ≥ v, then there exists a path π′ such that

(a) p(u)
π′
−→ q(w′) where w′ ≥ v,

(b) there is a monotone cycle decomposition (ρ, σ, τ) of π′ where eff(σ) > 0, and
(c) there are narrow linear forms for both ρ and σ.

Proof. We will again use the lexicographical order ≺lex to compare the cost
of monotone cycle decompositions. Let π be a path of minimum length such
that p(u)

π−→ q(w) where w ≥ v. Let c = (ρ, σ, τ) be the monotone cycle de-
composition of π that minimizes the cost D(c) under the ≺lex order. Such a
decomposition must exist, otherwise applying Lemma 3 would return a narrow
linear form �′ for ρ such that p(u)

ρ−→ q(w′) and w′ ≥ w ≥ v, contradicting an
assumption of this lemma. Observe that eff(σ) > 0, otherwise one can remove σ
and consider the shorter path ρτ , contradicting the minimal length of π. Next,
we argue that ρ and σ do not have monotone cycle decompositions, we then
leverage Lemma 3 to obtain the narrow linear forms required.

Path ρ cannot be decomposed further. Towards a contradiction, assume that
there is a monotone cycle decomposition c′ = (ρ′, σ′, τ ′) of ρ. Observe that the
following monotone cycle decomposition c′ = (ρ′, σ′, τ ′στ) of π has lower cost
D(c′) ≺lex D(c) as (D(c′))1 = len(ρ′)+len(σ′) < len(ρ)+len(σ) = (D(c))1. This
contradicts the assumption that (ρ, σ, τ) has minimum cost.

Suppose p(u)
ρ−→ p′(x). Since there is no monotone cycle decomposition,

applying Lemma 3 to ρ returns a path ρ′ with a narrow linear form such that

p(u)
ρ′
−→ p′(x′) where x′ ≥ x and len(ρ′) ≤ len(ρ).

Cycle σ cannot be decomposed further. Towards a contradiction, assume that
there is a monotone cycle decomposition (ρ′, σ′, τ ′) of σ. Observe that the fol-
lowing monotone cycle decomposition c′ = (ρρ′, σ′, τ ′τ) of π has lower cost
D(c′) ≺lex D(c) as (D(c′))1 = len(ρ) + len(ρ′) + len(σ′) ≤ len(ρ) + len(σ) =
(D(c))1 and (D(c′))2 = len(σ′) < len(σ) = (D(c))2. This contradicts the as-
sumption that (ρ, σ, τ) has minimum cost.

Suppose p′(x) σ−→ p′(y). Since there is no monotone cycle decomposition,
applying Lemma 3 to σ returns a path σ′ with a narrow linear form such that
p′(x) σ′

−→ p′(y′) where y′ ≥ y and len(σ′) ≤ len(σ). In particular, it is also true
that eff(σ′) ≥ eff(σ) > 0.

212 F. Mazowiecki et al.

Replacing ρ′ for ρ and σ′ for σ in π yields a path π′. Clearly if p(u) π−→ q(w)

where w ≥ v, then p(u)
π′
−→ q(w′) where w′ ≥ w ≥ v. Finally, (ρ′, σ′, τ) is

monotone cycle decomposition of π′ such that eff(σ′) > 0 and ρ′ and σ′ have
narrow linear forms, as required.

We now aim to obtain a narrow linear form for τ . Note that Lemma 4 gives
us a monotone cycle σ with positive effect on at least one counter, i.e. eff(σ) > 0.
By pumping σ we can force one of the counters to take an arbitrarily large value
(following, the vector x reflects this large value for Lemma 5). Then, loosely
speaking, the problem reduces to coverability in 1-VASS. However, proving the
existence of a polynomial size compressed linear form path in Theorem 1 requires
more care. Note that Lemma 5 is stated for 2-VASS (not necessarily with one
unary counter). First we need to recall the following bound on counter values
observed throughout runs. Recall that |V |max := |Q|+ |T | · |T |max is the pseudo-
polynomial size of the input.

Theorem 2 (Corollary from Theorem 3.2 in [4]). Consider a 2-VASS
(with both counters in binary) V = (Q,T) and let p(u) ∗−→ q(v), then there exists
a run p(u) = q0(v0), q1(v1), . . . , qm(vm) = q(v) such that |v0|max, |v1|max, . . . ,
|vm|max ≤ (|V |max + |u|max + |v|max)

O(1).

In the following lemma, that is proved in the appendix, given a 2-VASS V , the
initial configuration p(u), and target configuration q(v), we write B in place of
(|V |max+|u|max+|v|max)

O(1) from Theorem 2 and we fix x = (4B|Q|2|V |2max, 0).

Lemma 5. Consider a 2-VASS (with both counters in binary) V = (Q,T)

and let p(u)
∗−→ q(v), then there exists a narrow linear form path π′ such that

p(u+ x)
π′
−→ q(v′) for some v′ ≥ v.

6 Proof of Theorem 1

Before proving Theorem 1, we employ the fact that for a general 2-VASS, not
necessarily with one unary counter, the exponents of cycles in linear forms can
be pseudo-polynomially bounded.

Lemma 6 (Corollary from Lemma 18 in [5]). Let π be path in a 2-VASS
with a linear form π = τ0γ

f1
1 τ1 . . . γ

fk
k τk such that p(u) π−→ q(v). Then there exist

a path π′ = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk such that p(u)

π′
−→ q(v′) where v′ ≥ v and

bitsize(e1), . . . , bitsize(ek) are all bounded by a polynomial in |V |+ bitsize(u) +
bitsize(v).

Proof of Theorem 1. Let p(u)
π−→ q(v) for some path π. If there is a narrow

linear form � for π then by Lemma 6 we obtain π′ = τ0γ
e1
1 τ1 · · · τk−1γ

ek
k τk such

that p(u) π′
−→ q(v′) where v′ ≥ v and bitsize(e1), . . . , bitsize(ek) are all bounded

Coverability in 2-VASS with One Unary Counter is in NP 213

above by a polynomial in |V |+bitsize(u)+ bitsize(v). Since � is a narrow linear
form, we know that k ≤ P (|Q|) so

∑k
i=1 len(γi) ≤ k|Q| ≤ |Q|P (|Q|) and we also

know that
∑k

i=0 len(τi) ≤ |Q|(P (|Q|)+1). Together, this implies the linear form
path π′ is of polynomial size.

It remains to consider the case when there is no narrow linear form � for π.
By Lemma 4 (via Lemma 3) there exists a path π′ such that p(u)

π′
−→ q(v′) and

v′ ≥ v. Moreover, there is a monotone cycle decomposition (ρ, σ, τ) of π′ such
that eff(σ) > 0 and there are narrow linear forms for both ρ and σ.

Assume that (eff(σ))1 > 0. This is without loss of generality because if
(eff(σ))1 = 0 then one can flip the coordinates in V , u and v (for the remainder
of the proof it will not matter that one counter is unary). Let p′(m) be the
configuration such that p(u)

ρ−→ p′(m)
στ−−→ q(v′). Observe that since eff(σ) > 0

for every i ∈ N the path ρσi induces the run p(u)
ρσi

−−→ p′(m + i · eff(σ)). Con-
sider x = (x)1 = 4B|Q|2|V |2max (for Lemma 5), clearly x is large enough so that

p(u)
ρσx

−−→ p′(m′) and m′ ≥ m + x. By Lemma 5 there exists a narrow linear

form for a path τ ′ such that p′(m′) τ ′
−→ q(v′′) and v′′ ≥ v′.

We conclude by considering the compressed linear form path ρσxτ ′ such that

p(u)
ρσxτ ′
−−−−→ q(v′′) and v′′ ≥ v′ ≥ v. Since ρ, σ, and τ ′ have narrow linear

forms, we can also bound the exponents using Lemma 6 as in the beginning of
this proof. Finally, bitsize(x) is polynomial in |V |+bitsize(u)+ bitsize(v) much
like the exponents of the cycles in the linear forms. Therefore, the size of the
compressed linear form ρσxτ ′ is polynomial in |V |+ bitsize(u) + bitsize(v).

7 Conclusion and Future Work

In this paper we proved that coverability in 2-VASS with one unary counter is in
NP, a drop in complexity from PSPACE for general 2-VASS. We achieve this by
using our new techniques. Most notably, we polynomially bounded the number
of short cycles that need to be used (Section 4). Then, we attempt to find a
polynomial linear form path by replacing short cycles and reshuffling the path
(Section 5).

A natural extension is to consider whether coverability in 3-VASS with one
binary counter and two unary counters is also in NP. More generally, there
is the problem of determining the complexity of coverability in k-VASS with
one binary counter and k − 1 unary counters. The technique for polynomially
bounding the number of short cycles that need be used can easily be generalised
to these higher dimension VASS with only one binary counter. However, it is not
clear how to modify and use our reshuffling technique. Another open problem is
whether reachability in 2-VASS with one unary counter is also in NP. Note that
completeness would immediately follow from the fact that reachability in binary
encoded 1-VASS is NP-hard [22].

214 F. Mazowiecki et al.

References

1. Shaull Almagor, Udi Boker, Piotr Hofman, and Patrick Totzke. Parametrized
Universality Problems for One-Counter Nets. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs,
pages 47:1–47:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CONCUR.2020.47.

2. Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and
James Worrell. Coverability in 1-VASS with Disequality Tests. In Igor Konnov
and Laura Kovács, editors, 31st International Conference on Concurrency The-
ory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference),
volume 171 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.38.

3. Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

4. Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase,
Ranko Lazić, Pierre McKenzie, and Patrick Totzke. The Reachability Problem for
Two-Dimensional Vector Addition Systems with States. J. ACM, 68(5):34:1–34:43,
2021. doi:10.1145/3464794.

5. Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKen-
zie. Reachability in Two-Dimensional Vector Addition Systems with States Is
PSPACE-Complete. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 32–43. IEEE Computer
Society, 2015. doi:10.1109/LICS.2015.14.

6. Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachabil-
ity for infinite-state systems. In Jan Friso Groote and Kim Guldstrand Larsen,
editors, Tools and Algorithms for the Construction and Analysis of Systems
- 27th International Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxem-
bourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, vol-
ume 12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.
doi:10.1007/978-3-030-72013-1_1.

7. Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–
27:26, 2011. doi:10.1145/1970398.1970403.

8. Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and
presburger arithmetic. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided
Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer
Science, pages 268–279. Springer, 1998. doi:10.1007/BFb0028751.

9. Wojciech Czerwiński, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Ma-
zowiecki. Reachability in Fixed Dimension Vector Addition Systems with States.
In Igor Konnov and Laura Kovács, editors, 31st International Conference on Con-
currency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference), volume 171 of LIPIcs, pages 48:1–48:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.48.

10. Wojciech Czerwiński, Sławomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip
Mazowiecki. The Reachability Problem for Petri Nets Is Not Elementary. J.
ACM, 68(1):7:1–7:28, 2021. doi:10.1145/3422822.

https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.47
https://doi.org/10.4230/LIPIcs.CONCUR.2020.38
https://doi.org/10.1145/3464794
https://doi.org/10.1109/LICS.2015.14
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/BFb0028751
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1145/3422822

Coverability in 2-VASS with One Unary Counter is in NP 215

11. Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radoslaw Piórkowski.
New Pumping Technique for 2-Dimensional VASS. In Peter Rossmanith, Pinar
Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019,
Aachen, Germany, volume 138 of LIPIcs, pages 62:1–62:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.62.

12. Wojciech Czerwiński and Łukasz Orlikowski. Reachability in Vector Addition Sys-
tems is Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
1229–1240. IEEE, 2021. doi:10.1109/FOCS52979.2021.00120.

13. Wojciech Czerwiński and Łukasz Orlikowski. Lower Bounds for the Reachabil-
ity Problem in Fixed Dimensional VASSes. In Christel Baier and Dana Fis-
man, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, Haifa, Israel, August 2 - 5, 2022, pages 40:1–40:12. ACM, 2022.
doi:10.1145/3531130.3533357.

14. Alex Dixon and Ranko Lazic. KReach: A Tool for Reachability in Petri Nets.
In Armin Biere and David Parker, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, vol-
ume 12078 of Lecture Notes in Computer Science, pages 405–412. Springer, 2020.
doi:10.1007/978-3-030-45190-5_22.

15. Matthias Englert, Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux,
and Juliusz Straszyński. A lower bound for the coverability problem in acyclic
pushdown VAS. Inf. Process. Lett., 167:106079, 2021. doi:10.1016/j.ipl.2020.
106079.

16. Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in Two-
Dimensional Unary Vector Addition Systems with States is NL-complete. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 477–484. ACM, 2016. doi:
10.1145/2933575.2933577.

17. Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and
Filip Niksic. An SMT-Based Approach to Coverability Analysis. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lec-
ture Notes in Computer Science, pages 603–619. Springer, 2014. doi:10.1007/
978-3-319-08867-9_40.

18. John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata
is pspace-complete. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, Automata, Languages, and Programming - 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, volume 7966 of Lecture Notes in Computer Science, pages 212–223. Springer,
2013. doi:10.1007/978-3-642-39212-2_21.

19. Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for Two-Counter
Machines with One Test and One Reset. In Sumit Ganguly and Paritosh K.
Pandya, editors, 38th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018,

https://doi.org/10.4230/LIPIcs.MFCS.2019.62
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/3531130.3533357
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-39212-2_21

216 F. Mazowiecki et al.

Ahmedabad, India, volume 122 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.31.

20. Alain Finkel and Arnaud Sangnier. Mixing coverability and reachability to an-
alyze VASS with one zero-test. In Jan van Leeuwen, Anca Muscholl, David Pe-
leg, Jaroslav Pokorný, and Bernhard Rumpe, editors, SOFSEM 2010: Theory and
Practice of Computer Science, 36th Conference on Current Trends in Theory and
Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29,
2010. Proceedings, volume 5901 of Lecture Notes in Computer Science, pages 394–
406. Springer, 2010. doi:10.1007/978-3-642-11266-9_33.

21. Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous
programs. ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012. doi:10.1145/
2160910.2160915.

22. Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reacha-
bility in Succinct and Parametric One-Counter Automata. In Mario Bravetti and
Gianluigi Zavattaro, editors, CONCUR 2009 - Concurrency Theory, 20th Interna-
tional Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceed-
ings, volume 5710 of Lecture Notes in Computer Science, pages 369–383. Springer,
2009. doi:10.1007/978-3-642-04081-8_25.

23. John E. Hopcroft and Jean-Jacques Pansiot. On the Reachability Problem for
5-Dimensional Vector Addition Systems. Theor. Comput. Sci., 8:135–159, 1979.
doi:10.1016/0304-3975(79)90041-0.

24. S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Prelim-
inary Version). In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium
on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages
267–281. ACM, 1982. doi:10.1145/800070.802201.

25. Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor.
Comput. Sci., 99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

26. Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Re-
cursive. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1241–1252. IEEE,
2021. doi:10.1109/FOCS52979.2021.00121.

27. Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is
Primitive-Recursive in Fixed Dimension. In 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785796.

28. Jérôme Leroux and Grégoire Sutre. On Flatness for 2-Dimensional Vector Addition
Systems with States. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August
31 - September 3, 2004, Proceedings, volume 3170 of Lecture Notes in Computer
Science, pages 402–416. Springer, 2004. doi:10.1007/978-3-540-28644-8_26.

29. Jérôme Leroux and Grégoire Sutre. Reachability in Two-Dimensional Vector Ad-
dition Systems with States: One Test Is for Free. In Igor Konnov and Laura
Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of
LIPIcs, pages 37:1–37:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CONCUR.2020.37.

30. Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the Coverability Prob-
lem for Pushdown Vector Addition Systems in One Dimension. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.31
https://doi.org/10.1007/978-3-642-11266-9_33
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.4230/LIPIcs.CONCUR.2020.37

Coverability in 2-VASS with One Unary Counter is in NP 217

Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lec-
ture Notes in Computer Science, pages 324–336. Springer, 2015. doi:10.1007/
978-3-662-47666-6_26.

31. Richard Lipton. The Reachability Problem Requires Exponential Space. Depart-
ment of Computer Science. Yale University, 62, 1976.

32. Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem.
SIAM J. Comput., 13(3):441–460, 1984. doi:10.1137/0213029.

33. Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
1967.

34. C. Petri. Kommunikation mit Automaten, Ph. D. dissertation. University of Bonn,
1962.

35. Charles Rackoff. The Covering and Boundedness Problems for Vector Addition
Systems. Theor. Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)
90036-1.

36. Klaus Reinhardt. Reachability in Petri Nets with Inhibitor Arcs. Electron. Notes
Theor. Comput. Sci., 223:239–264, 2008. doi:10.1016/j.entcs.2008.12.042.

37. Sylvain Schmitz. The Complexity of Reachability in Vector Addition Systems.
ACM SIGLOG News, 3(1):4–21, 2016. URL: https://dl.acm.org/citation.cfm?
id=2893585.

38. Leslie G. Valiant and Mike Paterson. Deterministic One-Counter Automata. J.
Comput. Syst. Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1137/0213029
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/j.entcs.2008.12.042
https://dl.acm.org/citation.cfm?id=2893585
https://dl.acm.org/citation.cfm?id=2893585
https://doi.org/10.1016/S0022-0000(75)80005-5
http://creativecommons.org/licenses/by/4.0/

On History-Deterministic One-Counter Nets

Aditya Prakash and K. S. Thejaswini(�)

Department of Computer Science, University of Warwick, Coventry, UK
{aditya.prakash,thejaswini.raghavan.1}@warwick.ac.uk

Abstract. We consider the model of history-deterministic one-counter
nets (OCNs). History-determinism is a property of transition systems
that allows for a limited kind of non-determinism which can be resolved
‘on-the-fly’. Token games, which have been used to characterise history-
determinism over various models, also characterise history-determinism
over OCNs. By reducing 1-token games to simulation games, we are able
to show that checking for history-determinism of OCNs is decidable.
Moreover, we prove that this problem is PSPACE-complete for a unary
encoding of transitions, and EXPSPACE-complete for a binary encod-
ing and undecidable for one-counter automata (OCA), which are OCNs
that can test for zeroes.
We then study the language properties of history-deterministic OCNs.
We show that the resolvers of non-determinism for history-deterministic
OCNs are eventually periodic. As a consequence, for a given history-
deterministic OCN, we construct a language equivalent deterministic
OCA. We also show the decidability of comparing languages of history-
deterministic OCNs, such as language inclusion and language universal-
ity.

Keywords: History-determinism · Token games · One-counter nets ·
One-counter automaton.

1 Introduction

While deterministic automata are algorithmically efficient for problems such as
synthesis or for solving games, they are often much less succinct, or less expressive
than their non-deterministic counterparts. As such, many intermediate models
between determinism and non-determinism have been studied [1,2,3,4,5], with
history-determinism being one such well-studied notion over the recent years.
History-deterministic automata over infinite words with parity acceptance con-
dition was introduced by Henzinger and Piterman as a tool to solve verification
games, although dubbed good-for-games in their work [6]. Such automata are
known to be exponentially more succinct than their deterministic counterpart [7],
and are known to form a robust class of automata that is both algorithmically
and conceptually interesting [6,8,9,7,10,11,12,13,14].

The notion of history-determinism emerged independently in the setting of
cost automata that can capture all regular cost functions as opposed to their

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 218–239, 2023.
https://doi.org/10.1007/978-3-031-30829-1_11

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_11&domain=pdf
https://orcid.org/0000-0002-2404-0707
https://orcid.org/0000-0001-6077-7514
https://doi.org/10.1007/978-3-031-30829-1_11
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_11&domain=pdf

On History-Deterministic One-Counter Nets 219

deterministic version [15]. Recently, history-determinism has been studied in
quantitative settings [16,17], as well as infinite-state systems such as pushdown
automata [18,19], Parikh automata [20], and timed automata [21,22], where they
are often more succinct and expressive than their deterministic counter part.

One-counter nets are finite-state systems along with a counter that stores a
non-negative integer value which can never be explicitly tested for zero. They
correspond to 1-dimensional VASS, Petri nets with exactly one unbounded place,
and are a subclass of one-counter automata which do not have zero tests, and
hence are also a subclass of pushdown automata. They are one of the simplest
infinite-state systems, and hence many problems pertaining to one-counter nets
are easier than models that subsume them.

The structure of the resolvers that resolve non-determinism on-the-fly are cru-
cial to understand history-determinism in various models. While for automata
over infinite words with parity conditions, these resolvers take the shape of deter-
ministic parity automata [6], the situation for resolvers in history-deterministic
infinite-state systems is not as well understood. Indeed, the computability of
such a resolver for a given history-deterministic pushdown automaton is left as
an open problem in the works of Guha, Jecker, Lehtinen and Zimmermann [18].
For history-deterministic Parikh automata, it is still an open problem if the re-
solver can be given by a deterministic Parikh transducer [20]. Moreover, many
other problems such as deciding history-determinism or even language inclu-
sion among history-deterministic automata are undecidable for pushdown au-
tomata and Parikh automata [18,19,20]. We consider history-determinism over
one-counter nets, where we are able to answer positively to all of the above
questions.

To answer several of these questions, we use results and techniques from the
simulation problem over one-counter nets [23,24]. This is not surprising, since
simulation of various models has close ties with history-determinism [6,21].

Our Contribution We study history-deterministic OCNs and establish them as
a class of infinite-state systems where many problems pertaining to history-
determinism are decidable. This is unlike many other classes of history-deter-
ministic infinite-state systems that have been studied so far.

Firstly, we show that checking for history-determinism of a given one-counter
net is PSPACE-complete when the transitions are encoded in unary, and is
EXPSPACE-complete for a more succinct encoding (Theorem 4, Theorem 26).
We achieve the upper bound by giving a novel reduction from the one-token
game [11] to the simulation problem over OCNs. One-token games characterise
history-determinism over OCNs, and thus our reduction further extends the link
between history-determinism and simulation. This decidability result is in con-
trast to one-counter automata (OCA), where checking for history-determinism
becomes undecidable by just adding zero-tests to OCNs (Theorem 27).

Secondly, we show that resolvers for non-determinism in history-deterministic
OCNs can be expressed as an eventually periodic set. Using this, we are able to
determinise history-deterministic OCNs to give a language equivalent determin-
istic OCA.

220 A. Prakash and K. S. Thejaswini

Finally, we show the problems of language inclusion and language univer-
sality for history-deterministic OCNs to be in PSPACE and P respectively.
This is in unlike non-deterministic OCNs, where these problems are known to
be undecidable and Ackermann-complete respectively. Even for the class of de-
terministic OCA—which we show history-deterministic OCNs can be converted
to—the inclusion problem is known to be undecidable.

Good-for-Gameness A notion closely related to history-determinism (HD) is
that of good-for-gameness. An automaton is said to be good-for-games (GFG)
if its composition with a game whose acceptance condition is given by the lan-
guage of the automaton yields an equivalent game. For parity automata over
infinite words, these two notions are known to be equivalent [6,25], but they
do not coincide on all models [16]. For the purposes of our paper, we deal with
history-deterministic OCNs, as in our setting the notion of history-determinism
is equivalent to good-for-gameness when composition with infinitely branching
games is considered [26]. We note however, that this is not true when composi-
tionality is restricted to only finitely branching games [26].

2 Preliminaries

We use N to denote the set of positive integers and N0 to denote non-negative
integers. An alphabet, denoted by Σ, is any finite non-empty set of letters, and
the set of all finite words over Σ is denoted by Σ∗. The empty word over Σ is
denoted by ε, and we use Σε to denote the set Σ ∪ {ε}. A language L over Σ is
a subset of Σ∗.

Labelled Transition System A labelled transition system (LTS) is a tuple S con-
sisting of S = (Q,Σ,�, q0, F). In this paper, we assume that Q is a (countable)
set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ is a
finite alphabet, �⊆ Q×Σε ×Q is the set of transitions.

If a transition (q1, a, q2) belongs to �, we instead represent it as q1
a
−� q2

as well. On a finite word w, a ρ is said to be a run of the labelled transition
system S if it is a finite alternating sequence of states and letters of Σ: ρ =
q0

a0−� q1
a1−� . . . qk−1

ak−� qk, where each i, qi
ai−� qi+1 ∈� and ai ∈ Σε such

that w = a0 · a1 . . . ak. A run ρ described above is accepting if the state qk ∈ F .
An LTS that has no ε-transitions is said to be a realtime LTS. For an LTS

S = (Q,Σ,�, q0, F) being realtime, we have �⊆ Q×Σ ×Q. Unless mentioned
otherwise, we mostly deal with realtime LTS for the sake of a simpler presenta-
tion. An LTS S = (Q,Σ,�, q0, F) is deterministic if � is a function from Q×Σ
to Q and not just a relation.

Two player games Throughout the paper, we will be using two player games on
countably sized arenas, between the players Adam and Eve, denoted by ∀∀∀ and
∃∃∃ respectively. The winning condition will be a reachability condition for one of
the players, often ∀∀∀. These can be interpreted as a Gale-Stewart games [27] and

On History-Deterministic One-Counter Nets 221

we know that such games are determined, that is they have a winner, which is
either ∀∀∀ or ∃∃∃. Moreover, each of the players have a positional strategy, where
their current strategy depends on their positions in the current arena. We say
that two games are equivalent, if they have the same winner.

One-Counter Automata A one-counter automaton (OCA) A is given by a tuple
A = (Q,Σ,Δ, q0, F), where Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, Σ is a finite alphabet, and Δ is the set of
transitions, given as a relation Δ ⊆ Q× {zero,¬zero} ×Σ × {−1, 0, 1} ×Q.

Here, the symbols zero and ¬zero are used to distinguish between transitions
that can happen when the counter value is 0, and when the counter value is
positive respectively. One can think of the counter as a stack, where the stack
has a distinguished bottom-of-the-stack symbol, which cannot be popped. The
configurations in the automaton are given by pairs (q,m), where q denotes the
current state, and m ∈ N0 denotes the counter value. We use C(A) to denote the
set of configurations of A.

A one-counter automaton generates an infinite-state LTS over the set of
configurations Q × N, such that the transitions are as defined below. For each
configuration (q,m), upon reading a ∈ Σε,

– if m > 0, takes a transition of the form (q,¬zero, a, d, q′), where d ∈ {−1, 0, 1}
to (q′,m+ d);

– if m = 0, takes a transition of the form (q, zero, a, d, q′), where d ∈ {0, 1} to
(q′,m+ d).

For two configurations c, c′ ∈ C(A) = Q × N0, we use the notation c
a,d
−−� c′ to

denote the fact that c′ can be reached from c upon taking some transition δ ∈ Δ

upon reading a, with a change of counter value d. We shall also say that c a,d
−−� c′

is a transition in A, as c
a,d
−−� c′ is a transition in the infinite LTS of A. We thus

view A as both an automaton and a LTS (generated by A), and switch between
these two notions interchangeably. A run of A over a word w is a finite sequence
of alternating configurations and transitions : ρ = c0

a0,d0−−−� c1 · · · cn an,dn−−−−� cn+1

such that a0a1 · · · an = w, and c0 = (q0, 0). The run ρ is an accepting run if
its last configuration cn+1 = (qn+1, kn+1) is accepting, i.e. qn+1 ∈ F . We say a
word w is an accepting word in A if it has an accepting run in A. Finally, we
define the language of A, denoted by L(A) to be the set of all accepting words
in A. We say that A is a deterministic one-counter automaton, if Δ is a (partial)
function from Q× {zero,¬zero} ×Σ to {−1, 0, 1} ×Q.

One-counter nets The model of one-counter nets (OCNs) can be interpreted as
a restriction added to one-counter automaton that do not have the ability to
test for zero. Alternatively, one can view this as a finite-state automaton that
has access to a stack which can store only one symbol and no bottom-of-the-
stack element. Any feasible run cannot pop an empty stack. More formally, a
one-counter net N is a tuple (Q,Σ,Δ, q0, F) where Q is the set of finite states,
Σ is a finite alphabet, q0 ∈ Q is the initial state and F ⊆ Q is the set of final or

222 A. Prakash and K. S. Thejaswini

accepting states. The set Δ ⊆ Q×Σ × {−1, 0, 1} ×Q are the transitions in the
net N .

The configurations of an OCN are similar to that of an OCA. It consists of
a pair (q, n) ∈ Q× N0. We shall use the notation C(N) = Q× N0 to denote the
set of configurations of N . From a configuration (q, n), we reach a configuration
(p, n+ d) in one step, if there is a transition δ = (q, a, d, p), for some a ∈ Σ and
d ∈ {−1, 0,+1} and n + d ≥ 0. We can define a run on an OCN, an accepting
run and an accepting word similar to an OCA. We say an OCN N is complete if
for every configuration c ∈ C(N) and every letter a ∈ Σ, there exists a transition
c

a,d
−−� c′.

Remark 1. For the most of the paper we talk about one-counter nets (automata)
with unary transitions, i.e. transitions that increment or decrement the counter
by at most 1. However, they are as expressive as succinct models where the one-
counter net has a binary encoding, i.e. when the transitions allow the counter
to be incremented or decremented by positive integers represented in binary.
This can be observed, for instance, by giving a construction similar to that of
Valiant’s for deterministic pushdown automata ([28], Section 1.7).

History-Deterministic One-Counter Nets We define history-determinism in the
setting of one-counter net. Informally, an OCN N is history-deterministic, if the
non-deterministic choices required to accept a word w which is in L(N) can be
made on-the-fly. These choices depend only on the word read so far, and do not
require the knowledge of the future of the word to construct an accepting run
for a word in L(N) (hence the term history-determinism). Formally, we say an
OCN N is history-deterministic, if ∃∃∃ wins the letter game on N defined below.

Definition 2 (Letter game for OCN). Given an OCN N = (Q,Σ,Δ, q0, F),
the letter game on N is defined between the players ∀∀∀ and ∃∃∃ as follows: the
positions of the game are C(N) × Σ∗, with the initial position ((q0, 0), ε). At
round i of the play, where the position is (ci, wi):

– ∀∀∀ selects ai ∈ Σ
– ∃∃∃ selects a transition δ which can be taken at the configuration ci on reading

ai, i.e. ci
ai,di−−−� ci+1

If ∃∃∃ is unable to choose a transition (i.e. there is no ai transition at the config-
uration ci in the LTS generated by the net N), and wi+1 = wiai is the prefix of
an accepting word, ∃∃∃ loses immediately. The player ∀∀∀ wins immediately when the
word wi+1 is accepting but the configuration ci+1 is not at an accepting state, and
the game terminates. The game continues from (ci+1, wi+1) otherwise. Player ∃∃∃
wins any infinite play.

We say a strategy for ∃∃∃ in the letter game of N is a resolver for N , if it is a
winning strategy for ∃∃∃ in the letter game.

Our characterization of history-deterministic one-counter nets by the above
letter game is slightly different from the one presented in the work of Guha,

On History-Deterministic One-Counter Nets 223

Jecker, Lehtinen, and Zimmermann [18] for pushdown automata. In their work,
they define history-determinism as having a consistent strategy based on the
transitions taken so far. It is easy to argue that these two definitions are equiv-
alent.

The letter game can be formulated as a reachability game over countably
many vertices, where the player ∀∀∀ is trying to reach a position of the form
(c, w) ∈ C(N)×Σ∗, where c is at a rejecting state, while w is accepting. As such
games are determined [27], the notion of history-determinism formulated as ∃∃∃
winning the letter game is well-defined.

Letter games have been used extensively to characterise history-determinism
for other models as well, such as parity automata [6] and for various kinds of
quantitative and timed automata on both finite and infinite words [12,16,21].

To aid our understanding of history-determinism as well as the above defi-
nition, we provide an example of a game where ∃∃∃ wins the letter game on this
automaton but the strategy is based on her counter configuration.

Example 3. Consider the language

L =

{
an$bn1$bn2$. . . bnk |

k∑
i=1

ni ≤ n or nk = 2,

k−1∑
i=1

ni = n− 1

}

which can be accepted by a history-deterministic OCN as shown in Figure 1. The
initial state is indicated with an arrow pointing to it, and the final states are
double-circled. Missing transitions are assumed to go to a rejecting sink state.
In the corresponding letter game, ∀∀∀ plays the letter a several times, say n-many
times followed by a $. The corresponding transitions so far are deterministic.
Later, ∀∀∀ reads some series of bs and $s, such that the word continues to be in
the language. Note that the non-determinism occurs in only one state, which
is marked with an X, upon reading the letter b. A winning strategy of ∃∃∃ which
proves that this net is history-deterministic is the following: she takes the ‘down’
transition if the counter value is strictly larger than 1, but the ‘right’ transition
on b otherwise. This non-determinism can’t be resolved by removing transitions,
because removing either of the ‘down’ b-transition or the ‘right’ b-transition
changes the language accepted. We note that an equivalent deterministic OCN
exists nevertheless, where on reading a b after any $ does not change the value
of the counter, but reduces the counter by two for the second b after a $ and
reduces the counter by 1 for any b after that, until a $ is seen again.

3 Deciding History-Determinism

The main result of this section is that deciding history-determinism for a given
OCN is decidable and is PSPACE-complete as stated in the theorem below.

Theorem 4. Given a one-counter net N , checking if N is history-deterministic
is PSPACE-complete.

224 A. Prakash and K. S. Thejaswini

Fig. 1. A history-deterministic OCN accepting L

The rest of this section is dedicated to the proof of the above statement.
The proof of showing the upper bound proceeds by a series of polynomial

time reductions as below.

Deciding history-determinism��
Deciding if ∃∃∃ wins letter game��

Deciding if ∃∃∃ wins 1-token game��
Deciding if ∃∃∃ wins simulation game

We shall define these games rigorously and prove these reductions in Subsec-
tion 3.1. Finally, since the winner of the simulation game over one-counter nets
is in PSPACE [24], this gives us the upper bound.

For the lower bound, we reduce from the problem of emptiness checking for
alternating finite-state automata over a unary alphabet to deciding if ∃∃∃ wins the
letter game.

3.1 Token Games

Deciding history-determinism efficiently for finite-state parity automata over in-
finite words has been a major area of study over the recent years. Bagnol and Ku-
pergerg [11], gave a polynomial time procedure for deciding history-determinism
when the finite automata accepts with a Büchi condition. Their underlying tech-
nique is a two-player game, called G2 or 2-token games, which they proved to
be equivalent to the letter game when the automaton is Büchi. Boker, Kuper-
berg, Lehtinen, and Skrzypczak [12] extended this to show that the game G2 is
equivalent to the letter game when the automaton is co-Büchi as well. Deciding
the winner in G2 for an automaton of a fixed parity index takes polynomial
time [12], and hence deciding history-determinism for the cases of when the par-
ity automata accepts words based on Büchi or co-Büchi condition is polynomial.

On History-Deterministic One-Counter Nets 225

It is conjectured that winning G2 is equivalent to the letter game for higher
parity indices as well, and this is known as the G2 conjecture [12]. Token games
have also been instrumental in deciding history-determinism for quantitative
automata, in the works of Boker and Lehtinen [17]. In their paper, they show
that for finite words on a finite-state boolean automaton, history-determinism is
characterised by G1. This was later adapted to labelled transition systems with
safety acceptance condition, in the works of Henzinger, Lehtinen, and Totzke [21].
Thus, the 1-token games also characterise history-determinism for OCNs over
finite words. We include a proof nonetheless, for the sake of completeness.

In a play of the letter game, ∀∀∀ picks the letters while ∃∃∃ picks the transitions,
and the winning condition for ∃∃∃ is to produce an accepting run for any word that
is in the language. Token games work similarly, but they impose more constraints
on ∀∀∀. This is done by asking him to also display a valid run during the game with
the help of some number of tokens. Here, we concentrate on the 1-token game
G1. The player ∀∀∀ wins the game G1 if and only if he produces an accepting run,
whilst ∃∃∃ produces a rejecting run. We make this more formal in the definition
below.

Definition 5 (One token game G1). Let N = (Q,Σ,Δ, q0, F) be a one-
counter net. The positions of the game G1 on N are a pair of configurations,
C(N) × C(N), where the first configuration in the pair denotes the position of
∃∃∃’s token, and the second ∀∀∀’s token. The game starts with the initial position
(c∃∃∃0 , c

∀∀∀
0) = ((q0, 0), (q0, 0)). At the ith iteration of the play, where the position is

(c∃∃∃i , c
∀∀∀
i):

1. ∀∀∀ selects a ∈ Σ

2. ∃∃∃ selects a transition for her token, c∃∃∃i
a,d
−−� c∃∃∃i+1

3. ∀∀∀ selects a transition for his token, c∀∀∀i
a,d′
−−� c∀∀∀i+1

If ∃∃∃ is unable to choose a transition for her token whereas ∀∀∀ can choose a tran-
sition and extend the run on his token to an accepting run, then the game ter-
minates and ∃∃∃ loses the game. However, irrespective of ∃∃∃’s ability to extend her
run, if ∀∀∀ is unable to choose a transition for his token, then the game again
terminates but ∀∀∀ loses the game.

If both the players can extend their runs by picking a transition then and if
∀∀∀’s state in c∀∀∀i+1 is accepting, but ∃∃∃’s state in c∃∃∃i+1 is rejecting then again the
game terminates and ∃∃∃ loses the game. Else, the game goes to (ci+1, c

′
i+1) for

another round of the play. We add that ∃∃∃ wins any infinite play.

Letter games can be seen as a version of token games where ∀∀∀ plays with infinitely
many tokens. We show in the following lemma that one-token games—even with
this limited power of ∀∀∀—can capture letter games.

Lemma 6. For an OCN N , if ∃∃∃ wins the game G1 on N , then ∃∃∃ has a winning
strategy in the letter game.

226 A. Prakash and K. S. Thejaswini

To prove the above lemma, we need to understand better the structure of the
resolvers for OCNs. Consider the definition given below of residual transitions.
Intuitively, these are transitions such that if there was an accepting word from a
configuration with the first letter as a, then upon taking a residual transition on
a, there is still an extension of the run on the word from the new configuration
that is accepting. More formally, we say that a transition (q, k)

a,d
−−� (q′, k′)

is residual if L(q′, k′) = a−1L(q, k), where L(q, k) (and L(q′, k′)) is the set of
words that are accepted in N when the initial configuration is (q, k) ((q′, k′)),
instead of (q0, 0). The proposition below shows any winning strategy of ∃∃∃ can be
characterised by these residual transitions.

Proposition 7. For an OCN N , an ∃∃∃ strategy σ in the letter game is winning
for ∃∃∃ if and only if σ takes only residual transitions.

Note that in the letter game, each player winning the game has a positional
winning strategy, as it is a reachability game. Suppose that ∃∃∃ wins the letter
game, then ∃∃∃ has a winning strategy which can be given by a (partial) function
σ : (Q×N)×Σ∗ ×Σ � Δ. Using Proposition 7, we can show that ∃∃∃’s strategy
only depends on the configuration, and is independent of the word read so far.

Proposition 8. If ∃∃∃ wins the letter game, then ∃∃∃ has a winning strategy σ that
only depends on the current configuration of the play, i.e σ is a partial function
σ : (Q× N)×Σ � Δ

Having shown that G1 is equivalent to the letter game, we show that decid-
ing the winner in the game G1 is in PSPACE. This implies deciding history-
determinism is also decidable, and in PSPACE. We do so by reducing G1 to
the simulation problem between two one-counter nets, which is known to be
PSPACE-complete ([24], Theorem 7).

Given two OCNs N and N ′ at configurations (q, n) and (q′, n′), we say N ′

simulates N (or N is simulated by N ′) from their corresponding configurations if
for any sequence of transitions from (q, n), there is also a sequence of transitions
from (q′, n′) which is built ‘on-the-fly’. This alternation between existential and
universal quantifiers in the above statement renders this definition perfect to be
captured by the following game between the players ∀∀∀ and ∃∃∃.

Definition 9 (Simulation Game). Given two OCNs N = (Q,Σ,Δ, qI , F)
and N ′ = (Q′, q′0, Σ,Δ′, q′I , F

′) and two configurations c = (p, k) and c′ = (p′, k′)
in C(N) and C(N ′) respectively where k, k′ ∈ N. The simulation game between
the OCNs N and N ′ at a position (c, c′), denoted by G((N , c) ↪−� (N ′, c′)), is
a two player game between ∀∀∀ and ∃∃∃, with positions in C(N) × C(N ′) where the
initial position is (c0, c

′
0) = (c, c′). At round i of the play, where the position is

(ci, c
′
i):

– ∀∀∀ selects a letter a ∈ Σ, and a transition ci
a,d
−−� ci+1 in N

– ∃∃∃ selects an a-transition c′i
a,d′
−−� c′i+1 in N ′

On History-Deterministic One-Counter Nets 227

If ∀∀∀ is unable to choose a transition, then ∀∀∀ loses the game immediately. If ∃∃∃ is
unable to choose a transition but ∀∀∀ can select a transition and extend the run in
N to an accepting run, then ∃∃∃ loses the game.

Otherwise, if ∀∀∀’s state in ci+1 is accepting but ∃∃∃’s state in c′i+1 is reject-
ing, then ∃∃∃ loses the game, and the game terminates. Else, the game goes to
(ci+1, c

′
i+1) for another round of the play. The player ∃∃∃ wins any infinite play.

If ∃∃∃ wins the above game, we say (N ′, (p′, k′)) simulates (N , (p, k)), and we
denote it by (N , (p, k)) ↪−� (N ′, (p′, k′)). Furthermore, we say N ′ simulates N
or N ↪−� N ′ if (N , (qI , 0)) ↪−� (N ′, (q′I , 0)).

As the simulation game is a reachability game over a countably sized arena,
it is determined, and the winning player has a positional strategy. Thus, if ∃∃∃
wins the above simulation game G((N , (p, k)) ↪−� (N ′, (p′, k′))), then ∃∃∃ has a
positional winning strategy σ∃∃∃ : C(N)× C(N ′)×Σ � Δ′.

Remark 10. In the literature over one-counter nets [29,24,30], the winning con-
dition for the players on the simulation game is expressed differently, via the
inability of the players to choose transitions, rather than accepting states. The
player ∀∀∀ (∃∃∃) loses the game if ∀∀∀ (∃∃∃) is unable to choose a transition. It can
however, be shown that the two versions of the simulation games are log-space
reducible to each other.

Note the similarities (and differences) in G1 and the simulation game. In
both, the winning condition for ∀∀∀ would like ∀∀∀’s run to be accepting, while ∃∃∃’s
to be rejecting. In G1 however, ∃∃∃ is picking the transition first, while in the
simulation game, ∀∀∀ is picking the transition first.

With some modifications to the structure of the underlying net in G1, we
can ensure that the simulation game between the modified net and the original
net captures G1. The intuition is that, in the simulation game, the net which is
simulated is modified so that ∀∀∀ is forced to delay choosing his transition. This
is formalized in the proof of the following lemma, and explained with a diagram
in Figure 2.

Lemma 11. Given a one-counter net N , there are one-counter nets M and
M′, which have size at most polynomial in size of N such that ∃∃∃ wins G1 on N
if and only if ∃∃∃ wins M ↪−� M′.

Proof. (Sketch) For each run in N , we have a run in M that lags behind one
transition. The one-counter net M′ on the other hand is relatively similar to N .
We impose this “one-transition lag” in M by construction where each transition
chosen by ∀∀∀ in M corresponds to a letter along with a transition of N . But this
transition of N is over the letter that ∀∀∀ had chosen last turn. The alternation
produced between ∀∀∀ and ∃∃∃ in a play of the simulation game between M and M′

of the nets constructed corresponds exactly the alternation produced between
∀∀∀ and ∃∃∃ in G1 over N . Figure 2 captures the intuition behind this construction
discussed.

The net M′ is linear in the size of N whereas M has size approximately
N × |Σ|, where |Σ| is the size of the alphabet. This factor of |Σ| arises due to

228 A. Prakash and K. S. Thejaswini

remembering the previous letter read in the state space to create this lag for ∀∀∀’s
decisions.

Fig. 2. An illustration of a play of G1, seen as a play of the simulation game

Finally, we see that the following theorem from the work of Hofman, Lasota,
Mayr, and Totzke [24] shows that the winner of a simulation game can be solved
in PSPACE. We recall their results to fit our notation below.

Theorem 12 ([24], Theorem 7). Given two one-counter nets N and N ′, with
configurations (p, k) and (p′, k′) in C(N) and C(N ′) respectively, with k and k′

represented in binary, deciding whether (N ′, (p′, k′)) simulates (N , (p, k)) is in
PSPACE. Moreover, the set of (k, k′) for which (N , (p, k)) ↪−� (N ′, (p′, k′)) is
semilinear, and can be computed in EXPSPACE.

We get the following lemma as a corollary of Lemmas 6 and 11 and Theorem 12.

Lemma 13. Given a one-counter net N , we can decide in PSPACE if N is
history-deterministic.

3.2 Lower Bounds

Although solving the simulation game turns out to be PSPACE-complete itself
from the work of Srba [29], this lower bound result does not work for our reduc-
tion to simulation games. The reduction we give from G1 to simulation games
produces only a restricted class of simulation games which solve G1.

Nevertheless, we show that deciding history-determinism is still PSPACE-
hard, showing that even this restriction of the simulation problem is enough to
induce PSPACE-hardness.

Lemma 14. Given a one-counter net N , it is PSPACE-hard to decide if N is
history-deterministic.

On History-Deterministic One-Counter Nets 229

Proof (Sketch). We reduce from the problem of checking non-emptiness of an al-
ternating finite-state automaton over a unary alphabet. This problem was proven
to be PSPACE complete by Holzer [31], with its proof simplified by Jančar and
Sawa [32]. The intuition behind the reduction is to recreate a run of the alter-
nating automaton in the letter game of a constructed OCN. In the letter game,
a “fair” play of ∀∀∀ corresponds to a branch of a run-tree in the automaton, with
∃∃∃ resolving universal transitions and ∀∀∀ resolving existential ones. The player ∀∀∀
can ensure that he wins the letter game if and only if the alternating automaton
has some word that he can demonstrate is in the language. If ∀∀∀ plays “unfairly”,
then there are gadgets to ensure that ∃∃∃ automatically wins.

4 Languages and History-Determinism in OCNs

We dedicate this section to tackling different questions about languages accepted
by history-deterministic one-counter nets and decision problems on such lan-
guages.

4.1 Languages Accepted by History-Deterministic OCNs

While in history-deterministic models we are able to resolve the non-determinism
on-the-fly, it is not well-understood how these resolvers might look like in gen-
eral. In fact, Guha, Jecker, Lehtinen, and Zimmermann showed that there are
history-deterministic pushdown automata whose resolvers cannot be given by a
pushdown automata [18], and whether such a resolver can be computed is an
open problem.

In this sub-section, our goal is to understand better the languages of history-
deterministic OCNs. As a first-step towards this goal, we already have some
intuition from the previous section on the eventually periodic nature of the
transitions that are residual (as a corollary of Lemma 11 and Theorem 12). Here,
we solidify this intuition by defining what it means to have semilinear-strategy
property for a resolver and to then show that all nets have this property. For the
case of history-deterministic nets, using this semi-linearity of the resolvers, we
show the existence of a language-equivalent deterministic OCA.

We first show a sufficient characterisation which we call the semilinear-
strategy property, for if a given history-deterministic one-counter net can be
determinised.

We say a transition δ = (p, a, d, p′) in an one-counter net N is a good transi-
tion at (p, k), if ((p, k), (p, k)) is in the winning region of G1, and the transition
δ = (p, k)

a,d
−−� (p′, k+d) is a winning move for ∃∃∃ in G1 when ∀∀∀ chooses the letter

a. We also write this sometimes as (p, k)
a,d
−−� (p′, k + d) is a good transition in

N . The following lemma can be seen as a weakening of Proposition 7.

Lemma 15. Let N = (Q,Σ,Δ, q0, F) be a history-deterministic one-counter
net. An ∃∃∃ strategy σ in the letter game is winning for ∃∃∃ if and only if the strategy
σ only takes good transitions δ = (p, k)

a,d
−−� (p′, k′).

230 A. Prakash and K. S. Thejaswini

Given a one-counter net N , we say N satisfies semilinear-strategy property if
for each transition δ = (q, a, d, q′), the set of k ∈ N such that δ is a good transition
at (q, k) is semilinear. That is, for each transition δ = (q, a, d, q′) ∈ Δ, we have
that the following set is eventually periodic

Sδ =
{
k : (q, k)

a,d
−−� (q′, k′) is a good transition at (q, k)

}
.

Lemma 16. If a history-deterministic OCN N = (Q,Σ, q0,Δ, F) satisfies the
semilinear-strategy property, then there is a language-equivalent deterministic
OCA D.

Proof (Sketch). We assume the history-deterministic OCN N is such that it sat-
isfies semilinear-strategy property. We shall first construct a non-deterministic
one-counter automata B, which can be determinised easily by removing a min-
imal set of transitions to get rid of non-determinism while still preserving the
language. The non-deterministic one-counter automata B would essentially be
designed so that the transitions in B correspond to the good transitions in N ,
from any configuration. The eventual periodicity of the sets Sδ allows us to
express this as a one-counter automaton, rather than as a labelled transition
system with countably many states.

Intuitively, the automaton B is constructed such that the state space of the
automaton stores in its memory the period and the initial block of the semi-
linear sets. The idea is that this automaton’s runs would be in bijection with
those runs that take only good transitions in the OCN N . We know that such
a run exists in N by Lemma 15, as N is history-deterministic. However, the
counter values in B are ‘scaled down’ to only remember how many periods have
passed, while counter value 0 indicates that the counter value in the original run
would have been at most I. The exact value of the counter in a run of N can be
inferred as a function of the state space and the counter value of B.

Having shown that every history-deterministic one-counter net that satisfies
semilinear-strategy property has a language equivalent DOCA, we proceed to
show that every one-counter net satisfies semilinear-strategy property. We first
display an example which solidifies an intuition of the above statement.

Example 17. Consider the net N7, as shown in Figure 3, where all states labelled
qF are accepting. This automaton is not history-deterministic. However, if the
counter value at q1 is not a multiple of 7, then ∃∃∃ can resolve the non-determinism
from q1. Observe that the automaton accepts words of the form anbk · (♥,♣)
such that k ≤ n. Consider the following play of ∀∀∀ in the letter game from q0:
For 7n steps he reads a, after which he reads a $. So far, all transitions are
deterministic. After that, assume he again reads, 7n many times, the letter b.
This ensures that the transition ends at the state q1 with counter value 0. If he
reads $ here, this is the only position where ∃∃∃ has a choice. Note that she has
to choose between transitions leading to q♥ and q♣. However, since both the
suffixes ♥ and ♣ are accepting and only one of ♥ or ♣ is accepting from either
states, ∀∀∀ can ensure ∃∃∃ loses no matter what she picks. However, if ∀∀∀ had read a

On History-Deterministic One-Counter Nets 231

Fig. 3. The one-counter net N7 from Example 17

number of ‘b’s that was not a multiple of 7, the play of an accepting word would
end at q$ which is accepting.

Lemma 18. Every one-counter net N satisfies semilinear-strategy property.

The proof of the above lemma follows from Theorem 12 on using a construction
similar to the proof of Lemma 11 along wit. As an easy corollary of the above
two lemmas, we get the following theorem.

Theorem 19. Every history-deterministic OCN can be determinised to produce
an equivalent deterministic OCA.

An easy analysis of our proof combined with the results on the representation
of simulation preorder ([24], Lemma 28) shows a doubly exponential upper bound
on the size of the equivalent deterministic OCA constructed from the proof of
the theorem above.

Remark 20. On the topic of expressivity of history-determinism, we conclude
this subsection with a remark that history-deterministic OCNs are strictly less
expressive than non-deterministic OCNs. This can be demonstrated with the
language L = {aibjbk | j ≤ i or k ≤ i}. It is routine to verify that such a
language is not accepted by any history-deterministic OCN, but this language
can be accepted by a non-deterministic OCN. Note that history-determinism
itself is not the limiting factor in accepting this language, as this language is
accepted by a history-deterministic pushdown automaton [18].

4.2 Complexity of comparing languages of history-deterministic
OCNs

Comparisons between languages of non-deterministic OCNs are undecidable [23],
and even the restricted question of universality, is Ackermann-complete [33]. In
this section, we show that for history-deterministic nets, these problems are no
longer undecidable and have a significantly lower complexity when compared to
non-deterministic nets.

232 A. Prakash and K. S. Thejaswini

Although we show that history-deterministic OCNs can be converted to a
deterministic automaton, this determinisation does not help us answer these
questions. This is because for deterministic OCAs, the problem of inclusion is
undecidable [28]. Even though equality and universality for a deterministic OCA
is NL-complete [34], the resulting deterministic OCA we get from determinisa-
tion of history-deterministic OCNs could be much larger than our input net,
leading to a larger complexity.

Nevertheless, we show that checking for language inclusion, and hence check-
ing language equivalence between two history-deterministic one-counter nets is in
PSPACE. This is done by giving a polynomial-time reduction to the problem of
deciding history-determinism, which we showed to be in PSPACE in Lemma 13.
Moreover, combining our techniques with results of Kucera [35] gives us decid-
ability in P for checking language universality of HD-OCNs.

Lemma 21. Deciding language inclusion and language equivalence between two
history-deterministic one-counter nets is in PSPACE.

We can show that the problem of checking language inclusion between two
history-deterministic OCNs reduces to checking if a larger OCN (linear in the
sum of the size of the two OCNs) is history-deterministic. Since language equiv-
alence is essentially checking language inclusion both ways, we have the above
results.

Lemma 22. Deciding language universality for a given history-deterministic
one-counter net is in P.

The problem of universality reduces to checking if the input net M simulates a fi-
nite state automata. This problem was shown to be P by Kucera ([35], Lemma 2),
showing that universality is in P.

We therefore have the following theorem.

Theorem 23. For nets H and H′ that are history-deterministic, the problem of
checking if L(H) ⊆ L(H′) as well as checking if L(H) = L(H′) can be done in
PSPACE. If H is instead a deterministic finite-state automaton, this problem
can be solved in P.

We summarise known results and complexity of relevant results for comparison
with other automata models in Table 1.

5 Extensions and Variations of OCN

We revisit the question of deciding history-determinism in this section for one-
counter nets and its variants. In the first subsection, we tackle the question of how
the complexity changes if the nets are encoded succinctly. We show that as ex-
pected, this increases the complexity of the problem from PSPACE-complete to
EXPSPACE-complete. We then answer affirmatively to the question of whether
adding zero-tests add too much power to one-counter nets by showing that the
problem of deciding history-determinism becomes undecidable.

On History-Deterministic One-Counter Nets 233

L ⊆ L′ L = L′ L = Σ∗

DOCN NL-complete [33] NL-complete [33] NL-complete [33]
HOCN In PSPACE In PSPACE In P

OCN Undecidable [28] Undecidable [23] Ackermann-complete [33]
DOCA Undecidable [28] NL-complete [36] NL-complete [36]

Table 1. Complexities for the problems of deciding language inclusion, equivalence
and universality over deterministic OCN, HD-OCN, non-deterministic OCN and de-
terministic OCA.

5.1 Succinct Encoding of Counters

We consider a succinct representation of the input nets or a succinct one-counter
net, where the transitions can allow for increments or decrements by integers
(potentially greater than 1) that are represented in binary. Unsurprisingly, we
show that checking for history-determinism becomes EXPSPACE-complete in
this case. The upper bound follows from the previous proof of the PSPACE
upper bound from Lemma 13 of deciding history-determinism for one-counter
nets, where counter values are in unary. Any succinct one-counter net can be
converted with only an exponential blow-up into another language equivalent
net with unary encoding, preserving history-determinism thereby giving us an
EXPSPACE upper bound.

Proposition 24. Given a succinct one-counter net N ,deciding if N is history-
deterministic is in EXPSPACE.

However, much more work is needed to show a matching lower bound, which
we do by giving a reduction from reachability games on succinct one-counter
nets (SOCN). Intuitively, these games are played on the configuration graphs
of a succinct OCN whose alphabet is a singleton. The states of this SOCN are
partitioned among two players, denoted by ∧ and ∨ who are responsible for
choosing the transition from that state. The goal of ∨ is to take the play to
a designated winning state with value 0. This problem of deciding the winner
in the SOCN-reachability game was shown to be EXPSPACE-complete by
Hunter [37] and later, several of its variants were also shown to have the same
complexity [30]. A polynomial reduction from checking for history-determinism
in a SOCN gives us EXPSPACE-hardness.

Lemma 25. Given a SOCN N , deciding if N is history-deterministic is
EXPSPACE-hard.

Proof (Sketch). Given an instance of a SOCN-reachability game on N , We
construct a SOCN M such that ∨ wins in the SOCN-reachability game on N if
and only if ∀∀∀ wins in the letter game on M.

The high-level idea of the construction is such that in a play of the letter
game on M, the players ∀∀∀ and ∃∃∃ create a transcript of a run of N . This is done
by ∀∀∀ ensuring that picking the letters in M corresponds to picking a transition

234 A. Prakash and K. S. Thejaswini

out of ∨ states in N . Since ∃∃∃ resolves the non-determinism in the letter game
on M, her choice of transitions correspond to transitions out of a ∧ state in the
SOCN-reachability game.

However, there are some subtleties in the construction as we need to ensure
a few important aspects while constructing M. Firstly, any sequence of letters
chosen by ∀∀∀ in M’s letter game so far must correspond to a run in N and
secondly, the interplay between ∃∃∃’s and ∀∀∀’s choices in the letter game of M
must correspond to the choices of the player ∧ and ∨ respectively in the SOCN-
reachability game of N . These are the main challenges while constructing such
an OCN N and they are resolved by the use of a few gadgets.

We conclude this subsection by combining Proposition 24 and Lemma 25 to
obtain the following theorem.

Theorem 26. Given a SOCN N , deciding if N is history-deterministic is
EXPSPACE-complete.

5.2 Deciding History-Determinsm for OCA

We show that, given a one-counter automaton A, deciding if A is history-
deterministic is undecidable. It was shown by Guha, Jecker, Lehtinen, and Zim-
mermann [18] that deciding if a given non-deterministic pushdown automaton is
history-deterministic is undecidable. This extends their result to OCAs, which
follows via a reduction from checking for language inclusion for deterministic
one-counter automata (DOCA), which is known to be undecidable [28].

Theorem 27. Given an OCA A, deciding if A is history-deterministic is un-
decidable.

Proof (Sketch). Consider the following problem :

DOCA Inclusion: Given two DOCAs A and B, is L(A) ⊆ L(B)?
The above problem was shown to be undecidable in Section 5.1 of Valiant’s
thesis [28]. We show that the problem of deciding if a given one-counter automa-
ton is history-deterministic is also undecidable, by giving a reduction from the
DOCA inclusion problem to checking for history-determinism of a given OCA.

6 Discussion

We showed several decision problems related to history-determinism to be de-
cidable over OCNs. This is unlike other classes of infinite-state systems that
subsume them, where either some or all of these problems are undecidable.

We note that we only deal with realtime nets with no ε-transitions, but our
results hold without too much modification when ε-transitions are present, as
weak simulation over OCNs can be decided in PSPACE (and EXPSPACE for
a succinct encoding), and the weak simulation pre-order is semilinear as well [24].

On History-Deterministic One-Counter Nets 235

We also showed that testing the counter for zero made checking for history-
determinism undecidable. Along these lines, one could ask about models like
reversal bounded one-counter automata [38], or automata with bounded number
of zero-tests, to gauge the frontier between decidability and undecidability on
these systems.

Although not obvious from the main part of the paper, we are confident that
our results could easily be extended to safety acceptance conditions. One could
also ask, for instance, to look at reachability or Büchi and co-Büchi acceptance
conditions and understand how history-determinism works in these models.

There are several questions about the expressivity of history-deterministic
OCNs which we believe need further study. Overloading the notation and as-
suming DOCN, DOCA, OCN, HD-OCN and HD-OCA to denote the class of
languages that are accepted by the corresponding models, we have shown that

DOCN ⊆ HD-OCN ⊆ OCN ∩ DOCA.

An interesting problem would be to prove or disprove if any of these inclusions
are strict. In fact, we don’t have an example of a language that is accepted by a
history-deterministic OCN which is not accepted by a deterministic OCN.

One could ask similar questions about expressivity of history-determinism
in OCAs, i.e. if HD-OCA = DOCA. Although deciding history-determinism is
undecidable, it might be possible for one to show that the language accepted by
a history-deterministic OCA is as expressive as deterministic OCA. We remark
that the 1-token game G1 characterises history-determinisation for OCAs as well.
Moreover, we can again show with similar techniques that if history-deterministic
OCAs satisfy the semilinear-strategy property, then these languages can also be
expressed by a deterministic OCA. The key part that we need to prove for
determinisation of history-deterministic OCA would be the semilinear-strategy
property. It would be interesting to see how such a proof would look like, given
that checking for history-determinism is undecidable for OCAs.

Acknowledgements We would like to thank Dmitry Chistikov for listening to
our conjectures and pointing us to important references. We are also grateful for
his comments on our introduction. We are thankful to Neha Rino for carefully
proofreading our paper, and suggesting improvements in our presentation. We
also thank Sougata Bose, Piotrek Hofman, Filip Mazowiecki, David Purser, and
Patrick Totzke for their insightful remarks on our draft, and for telling us about
weak simulation. We are grateful to Shaull Almagor and Asaf Yeshurun for a
fun talk about OCNs. Finally, we thank Marcin Jurdziński for his support, and
for bringing us homemade rhubarb crumble.

References

1. Thomas Colcombet. Unambiguity in automata theory. In Jeffrey O. Shallit and
Alexander Okhotin, editors, Descriptional Complexity of Formal Systems - 17th In-

236 A. Prakash and K. S. Thejaswini

ternational Workshop, DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Pro-
ceedings, volume 9118 of Lecture Notes in Computer Science, pages 3–18. Springer,
2015.

2. Denis Kuperberg and Anirban Majumdar. Width of non-deterministic automata.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, volume 96 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

3. Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,
and Dominik Wojtczak. Good-for-MDPs automata for probabilistic analysis and
reinforcement learning. In Armin Biere and David Parker, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems - 26th International Confer-
ence, TACAS 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 306–323.
Springer, 2020.

4. Bader Abu Radi, Orna Kupferman, and Ofer Leshkowitz. A hierarchy of nonde-
terminism. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, Au-
gust 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 85:1–85:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

5. Emile Hazard and Denis Kuperberg. Explorable automata, May 2022. working
paper or preprint.

6. Thomas A. Henzinger and Nir Piterman. Solving games without determinization.
In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop, CSL
2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29,
2006, Proceedings, volume 4207 of Lecture Notes in Computer Science, pages 395–
410. Springer, 2006.

7. Denis Kuperberg and Michal Skrzypczak. On determinisation of good-for-games
automata. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bet-
tina Speckmann, editors, Automata, Languages, and Programming - 42nd Interna-
tional Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part
II, volume 9135 of Lecture Notes in Computer Science, pages 299–310. Springer,
2015.

8. Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In
Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on
Theoretical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 1–23, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

9. Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeter-
minism in the presence of a diverse or unknown future. In Proceedings of the 40th
International Conference on Automata, Languages, and Programming - Volume
Part II, ICALP’13, page 89–100, Berlin, Heidelberg, 2013. Springer-Verlag.

10. Udi Boker, Orna Kupferman, and Michal Skrzypczak. How Deterministic are
Good-For-Games Automatal. In Satya Lokam and R. Ramanujam, editors, 37th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2017), volume 93 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 18:1–18:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

On History-Deterministic One-Counter Nets 237

11. Marc Bagnol and Denis Kuperberg. Büchi Good-for-Games Automata Are Ef-
ficiently Recognizable. In Sumit Ganguly and Paritosh Pandya, editors, 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2018), volume 122 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 16:1–16:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

12. Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On
the Succinctness of Alternating Parity Good-For-Games Automata. In Nitin Sax-
ena and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2020), volume
182 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–41:13,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

13. Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-
for-games rabin automata and its link with the memory in muller games. In Mikolaj
Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8,
2022, Paris, France, volume 229 of LIPIcs, pages 117:1–117:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022.

14. Bader Abu Radi and Orna Kupferman. Minimization and canonization of GFG
transition-based automata. Log. Methods Comput. Sci., 18(3), 2022.

15. Thomas Colcombet. The theory of stabilisation monoids and regular cost func-
tions. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E.
Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Program-
ming, 36th Internatilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12,
2009, Proceedings, Part II, volume 5556 of Lecture Notes in Computer Science,
pages 139–150. Springer, 2009.

16. Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in
quantitative automata. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st
IARCS Annual Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference,
volume 213 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

17. Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quan-
titative automata. In Patricia Bouyer and Lutz Schröder, editors, Foundations
of Software Science and Computation Structures - 25th International Conference,
FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings, volume 13242 of Lecture Notes in Computer Science, pages 120–139. Springer,
2022.

18. Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A
Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct. In
Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2021), volume 202 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 53:1–53:20, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

19. Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown au-
tomata. Log. Methods Comput. Sci., 18(1), 2022.

20. Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zim-
mermann. History-deterministic parikh automata. CoRR, abs/2209.07745, 2022.

238 A. Prakash and K. S. Thejaswini

21. Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. History-
deterministic timed automata. In Bartek Klin, Slawomir Lasota, and Anca
Muscholl, editors, 33rd International Conference on Concurrency Theory, CON-
CUR 2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages
14:1–14:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

22. Sougata Bose, Thomas A. Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick
Totzke. History-deterministic timed automata are not determinizable. In An-
thony W. Lin, Georg Zetzsche, and Igor Potapov, editors, Reachability Problems
- 16th International Conference, RP 2022, Kaiserslautern, Germany, October 17-
21, 2022, Proceedings, volume 13608 of Lecture Notes in Computer Science, pages
67–76. Springer, 2022.

23. Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation
on one-counter nets. In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 203–212.
IEEE Computer Society, 2013.

24. Piotr Hofman, Slawomir Lasota, Richard Mayr, and Patrick Totzke. Simulation
problems over one-counter nets. Log. Methods Comput. Sci., 12(1), 2016.

25. Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeter-
minism to alternation. In Wan J. Fokkink and Rob van Glabbeek, editors, 30th
International Conference on Concurrency Theory, CONCUR 2019, August 27-30,
2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 19:1–19:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

26. Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann.
Parikh automata over infinite words, 2022.

27. David Gale and Frank M Stewart. Infinite games with perfect information. Con-
tributions to the Theory of Games, 2(245-266):2–16, 1953.

28. Leslie G. Valiant. Decision procedures for families of deterministic pushdown au-
tomata. PhD thesis, University of Warwick, Coventry, UK, 1973.

29. Jirí Srba. Visibly pushdown automata: From language equivalence to simulation
and bisimulation. In Zoltán Ésik, editor, Computer Science Logic, 20th Inter-
national Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged,
Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in
Computer Science, pages 89–103. Springer, 2006.

30. Petr Jancar, Petr Osicka, and Zdenek Sawa. EXPSPACE-hardness of behavioural
equivalences of succinct one-counter nets. CoRR, abs/1801.01073, 2018.

31. Markus Holzer. On emptiness and counting for alternating finite automata. In
Jürgen Dassow, Grzegorz Rozenberg, and Arto Salomaa, editors, Developments
in Language Theory II, At the Crossroads of Mathematics, Computer Science and
Biology, Magdeburg, Germany, 17-21 July 1995, pages 88–97. World Scientific,
Singapore, 1995.

32. Petr Jancar and Zdenek Sawa. A note on emptiness for alternating finite automata
with a one-letter alphabet. Inf. Process. Lett., 104(5):164–167, 2007.

33. Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited.
In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Prob-
lems - 8th International Workshop, RP 2014, Oxford, UK, September 22-24, 2014.
Proceedings, volume 8762 of Lecture Notes in Computer Science, pages 151–162.
Springer, 2014.

34. Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-
counter automata is NL-complete. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 131–140. ACM, 2013.

On History-Deterministic One-Counter Nets 239

35. Antonín Kucera. On simulation-checking with sequential systems. In Jifeng He
and Masahiko Sato, editors, Advances in Computing Science - ASIAN 2000, 6th
Asian Computing Science Conference, Penang, Malaysia, November 25-27, 2000,
Proceedings, volume 1961 of Lecture Notes in Computer Science, pages 133–148.
Springer, 2000.

36. Stanislav Böhm and Stefan Göller. Language equivalence of deterministic real-
time one-counter automata is nl-complete. In Filip Murlak and Piotr Sankowski,
editors, Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, vol-
ume 6907 of Lecture Notes in Computer Science, pages 194–205. Springer, 2011.

37. Paul Hunter. Reachability in succinct one-counter games. In Mikolaj Bojanczyk,
Slawomir Lasota, and Igor Potapov, editors, Reachability Problems - 9th Interna-
tional Workshop, RP 2015, Warsaw, Poland, September 21-23, 2015, Proceedings,
volume 9328 of Lecture Notes in Computer Science, pages 37–49. Springer, 2015.

38. Oscar H. Ibarra. Automata with reversal-bounded counters: A survey. In Hel-
mut Jürgensen, Juhani Karhumäki, and Alexander Okhotin, editors, Descriptional
Complexity of Formal Systems - 16th International Workshop, DCFS 2014, Turku,
Finland, August 5-8, 2014. Proceedings, volume 8614 of Lecture Notes in Computer
Science, pages 5–22. Springer, 2014.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Unboundedness Problems for Machines with
Reversal-Bounded Counters

Pascal Baumann1(�) , Flavio D’Alessandro2, Moses Ganardi1 ,
Oscar Ibarra3, Ian McQuillan4, Lia Schütze1 , and Georg Zetzsche1

1 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and
Saarbrücken, Germany

2 Dept. of Mathematics G. Castelnuovo, Sapienza University of Rome, Rome, Italy
3 Dept. of Computer Science, University of California, Santa Barbara, CA, USA
4 Dept. of Computer Science, University of Saskatchewan, Saskatoon, Canada

Abstract. We consider a general class of decision problems concerning
formal languages, called “(one-dimensional) unboundedness predicates”,
for automata that feature reversal-bounded counters (RBCA). We show
that each problem in this class reduces—non-deterministically in polyno-
mial time—to the same problem for just finite automata. We also show
an analogous reduction for automata that have access to both a push-
down stack and reversal-bounded counters (PRBCA).
This allows us to answer several open questions: For example, we show
that it is coNP-complete to decide whether a given (P)RBCA language
L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆
w∗

1 · · ·w∗
n. For PRBCA, even decidability was open. Our methods also

show that there is no language of a (P)RBCA of intermediate growth.
This means, the number of words of each length grows either polynomi-
ally or exponentially. Part of our proof is likely of independent interest:
We show that one can translate an RBCA into a machine with Z-counters
in logarithmic space, while preserving the accepted language.

Keywords: Formal languages · Decidability · Complexity · Counter
automata · Reversal-bounded · Pushdown · Boundedness · Unbound-
edness

1 Introduction

A classic idea in the theory of formal languages is the concept of boundedness
of a language. A language L over an alphabet Σ is called bounded if there ex-
ists a number n ∈ N and words w1, . . . , wn ∈ Σ∗ such that L ⊆ w∗

1 · · ·w∗
n.

What makes boundedness important is that a rich variety of algorithmic prob-
lems become decidable for bounded languages. For example, when Ginsburg and
Spanier [25] introduced boundedness in 1964, they already showed that given
two context-free languages, one of them bounded, one can decide inclusion [25,
Theorem 6.3]. This is because if L ⊆ w∗

1 · · ·w∗
n for a context-free language, then

the set {(x1, . . . , xn) ∈ Nn | wx1
1 · · ·wxn

n ∈ L} is effectively semilinear, which

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_12

240–264, 2023.

(�)

https://orcid.org/0000-0002-9371-0807
https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0003-4002-5491
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.1007/978-3-031-30829-1_12
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_12&domain=pdf

permits expressing inclusion in Presburger arithmetic. Here, boundedness is a
crucial assumption: Hopcroft has shown that if L0 ⊆ Σ∗ is context-free, then
the problem of deciding L0 ⊆ L for a given context-free language L is decidable
if and only if L0 is bounded [35, Theorem 3.3].

The idea of translating questions about bounded languages into Presburger
arithmetic has been applied in several other contexts. For example, Esparza,
Ganty, and Majumdar [20] have shown that many classes of infinite-state systems
are perfect modulo bounded languages, meaning that the bounded languages form
a subclass that is amenable to many algorithmic problems. As another example,
the subword ordering has a decidable first-order theory on bounded context-
free languages [45], whereas on languages Σ∗, even the existential theory is
undecidable [33]. This, in turn, implies that initial limit Datalog is decidable for
the subword ordering on bounded context-free languages [7]. Finally, bounded
context-free languages can be closely approximated by regular ones [16].

This raises the question of how one can decide whether a given language
is bounded. For context-free languages this problem is decidable [25, Theo-
rem 5.2(a)] in polynomial time [24, Theorem 19].

Boundedness for RBCA. Despite the importance of boundedness, it had been
open for many years [9, 17]1 whether boundedness is decidable for one of the most
well-studied types of infinite-state systems: reversal-bounded (multi-)counter au-
tomata (RBCA). These are machines with counters that can be incremented,
decremented, and even tested for zero. However, in order to achieve decidability
of basic questions, there is a bound on the number of times each counter can re-
verse, that is, switch between incrementing and decrementing phases. They were
first studied in the 1970s [2, 36] and have received a lot of attention since [8–
13, 18, 23, 28, 32, 33, 39–41, 58]. The desirable properties mentioned above for
bounded context-free languages also apply to bounded RBCA. Furthermore, any
bounded language accepted by an RBCA (even one augmented with a stack) can
be effectively determinized [38] (see also [9, 11]), opening up even more avenues
to algorithmic analysis. This makes it surprising that decidability of boundedness
remained open for many years.

Decidability of boundedness for RBCA was settled in [15], which proves
boundedness decidable even for the larger class of vector addition systems with
states (VASS), with acceptance by configuration. However, the results from [15]
leave several aspects unclarified, which we investigate here:

Q1: What is the complexity of deciding boundedness for RBCA? The algorithm
in [15] employs the KLMST decomposition for VASS [43, 46, 48, 50, 54],
which is well-known to incur Ackermannian complexity [49].

Q2: Is boundedness decidable for pushdown RBCA (PRBCA) [36]? These are
automata which, in addition to reversal-bounded counters, feature a stack.
They can model recursive programs with numeric data types [32]. Whether
boundedness is decidable was stated as open in [17, 18].

1 Note that [9] is about Parikh automata, which are equivalent to RBCA.

Unboundedness Problems for Machines with Reversal-Bounded Counters 241

Q3: Are there languages of RBCA of intermediate growth? As far as we know,
this is a long-standing open question in itself [37]. The growth of a language
L ⊆ Σ∗ is the counting function gL : N → N, where gL(n) is the number
of words of length n in L. This concept is closely tied to boundedness:
For regular and context-free languages, it is known that a language has
polynomial growth if and only if it is bounded (and it has exponential
growth otherwise). A language is said to have intermediate growth if it has
neither polynomial nor exponential growth.

Contribution I: We prove versions of one of the main results in [15], one for
RBCA and one for PRBCA. Specifically, the paper [15] not only shows that
boundedness is decidable for VASS, but it introduces a general class of un-
boundedness predicates for formal languages. It is then shown in [15] that any
unboundedness predicate is decidable for VASS if and only if it is decidable for
regular languages. Our first two main results are:

MR1: Deciding any unboundedness predicate for RBCA reduces in NP to de-
ciding the same predicate for regular languages.

MR2: Deciding any unboundedness predicate for PRBCA reduces in NP to de-
ciding the same predicate for context-free languages.

However, it should be noted that our results only apply to those unboundedness
predicates from [15] that are one-dimensional. Fortunately, these are enough for
our applications. These results allow us to settle questions (Q1)–(Q3) above and
derive the exact complexity of several other problems. It follows that bounded-
ness for both RBCA and PRBCA is coNP-complete, thus answering (Q1) and
(Q2). Furthermore, the proof shows that if boundedness of a PRBCA does not
hold, then its language has exponential growth. This implies that there are no
RBCA languages of intermediate growth (thus settling (Q3)), and even that the
same holds for PRBCA. In particular, deciding polynomial growth of (P)RBCA
is coNP-complete and deciding exponential growth of (P)RBCA is NP-complete.
We can also derive from our result that deciding whether a (P)RBCA language
is infinite is NP-complete (but this also follows easily from [32], see Section 2).
Finally, our results imply that it is PSPACE-complete to decide if an RBCA
language L ⊆ Σ∗ is factor universal, meaning it contains every word of Σ∗ as a
factor (i.e. as an infix). Whether this problem is decidable for RBCA was also
left as an open problem in [17, 18] (under the name infix density).

We prove our results (MR1) and (MR2) by first translating (P)RBCA into
models that have Z-counters instead of reversal-bounded counters. A Z-counter
is one that can be incremented and decremented, but cannot be tested for zero.
Moreover, it can assume negative values. With these counters, acceptance is
defined by reaching a configuration where all counters are zero (in particular,
the acceptance condition permits a single zero-test on each counter). Here, finite
automata with Z-counters are called Z-VASS [29]. Z-counters are also known as
blind counters [26] and it is a standard fact that RBCA are equivalent (in terms
of accepted languages) to Z-VASS [26, Theorem 2].

P. Baumann et al.242

Problem Z-VASS/RBCA Z-grammars/PRBCA

Boundedness coNP-complete coNP-complete
Finiteness coNP-complete coNP-complete
Factor universality PSPACE-complete undecidable

Table 1. Complexity results. The completeness statements are meant with respect to
deterministic logspace reductions.

Despite the equivalence between RBCA and Z-VASS being so well-known,
there was apparently no known translation from RBCA to Z-VASS in polynomial
time. Here, the difficulty stems from simulating zero-tests (which can occur an
unbounded number of times in an RBCA): To simulate these, the Z-VASS needs
to keep track of which counter has completed which incrementing/decrementing
phase, using only polynomially many control states. It is also not obvious how
to employ the Z-counters for this, as they are only checked in the end.

Contribution II: As the first step of showing (MR1), we show that

MR3: RBCA can be translated (preserving the language) into Z-VASS in loga-
rithmic space.

This also implies that translations to and from another equivalent model, Parikh
automata [41], are possible in polynomial time: It was recently shown that Parikh
automata (which have received much attention in recent years [6, 8–10, 13, 22])
can be translated in polynomial time into Z-VASS [30]. Together with our new
result, this implies that one can translate among RBCA, Z-VASS, and Parikh
automata in polynomial time. Furthermore, our result yields a logspace trans-
lation of PRBCA into Z-grammars, an extension of context-free grammars with
Z-counters. The latter is the first step for (MR2).

2 Main Results: Unboundedness and (P)RBCA

Reversal-bounded counter automata and pushdowns. A pushdown au-
tomaton with k counters is a tuple A = (Q,Σ, Γ, q0, T, F) where Q is a finite
set of states, Σ is an input alphabet, Γ is a stack alphabet, q0 ∈ Q is an initial
state, T is a finite set of transitions (p, w, op, q) ∈ Q×Σ∗ ×Op×Q, and F ⊆ Q
is a set of final states. Here Op is defined as

Op = {inci, deci, zeroi, nzi | 1 ≤ i ≤ k} ∪ Γ ∪ Γ̄ ∪ {ε},
containing counter and stack operations. Here Γ̄ = {γ̄ | γ ∈ Γ} is a disjoint copy
of Γ . A configuration is a tuple (p, α,v) ∈ Q × Γ ∗ × Nk. We write (p, α,u)

w−→
(p′, α′,u′) if there is a (p, w, op, p′) ∈ T such that one of the following holds:

– op = inci, u′ = u+ ei, and α′ = α where ei ∈ Nk is the i-th unit vector,

Unboundedness Problems for Machines with Reversal-Bounded Counters 243

– op = deci, u′ = u− ei, and α′ = α,
– op = zeroi, u[i] = 0, u′ = u, and α′ = α
– op = nzi, u[i] �= 0, u′ = u, and α′ = α,
– op = γ ∈ Γ , u′ = u, and α′ = αγ,
– op = γ̄ ∈ Γ̄ , u′ = u, and α′γ = α,
– op = ε, u′ = u, and α′ = α.

We extend this notation to longer runs in the natural way.
A (k, r)-PRBCA (pushdown reversal-bounded counter automaton) (A, r)

consists of a pushdown automaton with k counters A and a number r ∈ N,
encoded in unary. A counter ci reverses if the last (non-test) operation affect-
ing it was inci and the next operation is deci, or vice versa. A run is r-reversal
bounded if every counter reverses at most r times. The language of (A, r) is

L(A, r) = {w ∈ Σ∗ | ∃q ∈ F, r-reversal bounded run (q0, ε,0)
w−→ (q, ε,0)}.

A (k, r)-RBCA (reversal-bounded counter automaton) is a (k, r)-PRBCA
where A only uses counter operations. We denote by RBCA and PRBCA the
class of (P)RBCA languages.

Notice that we impose the reversal bound externally (following [32]) whereas
in alternative definitions found in the literature the automaton has to ensure
internally that the number of reversals on every (accepting) run does not ex-
ceed r, e.g. [36]. Clearly, our definition subsumes the latter one; in particular,
Theorem 1 also holds for (P)RBCAs with an internally checked reversal bound.

A d-dimensional Z-VASS (Z-vector addition system with states) is a tuple
V = (Q,Σ, q0, T, F), where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q
is an initial state, T is a finite set of transitions (p, w,v, p′) ∈ Q×Σ∗ ×Zd ×Q,
and F ⊆ Q is a set of final states. A configuration of a Z-VASS is a tuple
(p,v) ∈ Q × Zd. We write (p,u)

w−→ (p′,u′) if there is a transition (p, w,v, p′)
such that u′ = u+v. We extend this notation to longer runs in the natural way.
The language of the Z-VASS is defined as

L(V) = {w ∈ Σ∗ | ∃q ∈ F : (q0,0)
w−→ (q,0)}.

A (d-dimensional) Z-grammar is a tuple G = (N,Σ, S, P) with disjoint finite
sets N and Σ of nonterminal and terminal symbols, a start nonterminal S ∈ N ,
and a finite set of productions P of the form (A, u,v) ∈ N × (N ∪Σ)∗ ×Zd. We
also write (A → u,v) instead of (A, u,v). We call v the (counter) effect of the
production (A → u,v). For words x, y ∈ (N ∪Σ)∗, we write x ⇒v y if there is
a production (A → u,v) such that x = rAs and y = rus. Moreover, we write
x ∗⇒v y if there are words x1, . . . , xn ∈ (N ∪ Σ)∗ and v1, . . . , vn ∈ Zd with
x ⇒v1 x1 ⇒v2 · · · ⇒vn xn = y and v = v1+ · · ·+vn. We use the notation ⇒
if the counter effects do not matter: We have x ⇒ y if there exists v such that
x ⇒v y; and similarly for ∗⇒ . If derivations are restricted to a subset Q ⊆ P of
productions, we write ⇒Q (resp. ∗⇒Q).

The language of the Z-grammar G is the set of all words w ∈ Σ∗ such that
S ∗⇒0 w. In other words, if there exists a derivation S ∗⇒ w where the effects

P. Baumann et al.244

of all occurring productions sum to the zero vector 0. Z-grammars of dimension
d are also known as valence grammars over Zd [21].

For our purposes it suffices to assume a unary encoding of the Zd-vectors
(effects) occurring in Z-VASS and Z-grammars. However, this is not a restriction:
Counter updates with n-bit binary encoded numbers can be easily simulated
with unary encodings at the expense of dn many fresh counters (see the full
version [5]).

Conversion results. The following is our first main theorem:

Theorem 1. RBCA can be converted into Z-VASS in logarithmic space.
PRBCA can be converted into Z-grammars in logarithmic space.

By convert, we mean a translation that preserves the accepted (resp. generated)
language. There are several machine models that are equivalent (in terms of
accepted languages) to RBCA. With Theorem 1, we provide the last missing
translation:

Corollary 1. The following models can be converted into each other in logarith-
mic space: (i) RBCA, (ii) Z-VASS, (iii) Parikh automata with ∃PA acceptance,
and (iv) Parikh automata with semilinear acceptance.

Roughly speaking, a Parikh automaton is a machine with counters that can
only be incremented. Then, a run is accepting if the final counter values be-
long to some semilinear set. Parikh automata were introduced by Klaedtke and
Rueß [41], where the acceptance condition is specified using a semilinear rep-
resentation (with base and period vectors), yielding (iv) above. As done, e.g.,
in [33], one could also specify it using an existential Presburger formula (briefly
∃PA), yielding the model in (iii) above. Theorem 1 proves (i)⇒(ii), whereas
(ii)⇒(i) is easy (a clever and very efficient translation is given in [40, Theorem
4.5]). Moreover, (ii)⇒(iii) and (ii)⇒(iv) are clear as well. For (iii)⇒(ii), one can
proceed as in [30, Prop. V.1], and (iv)⇒(ii) is also simple.

Unboundedness predicates. We shall use Theorem 1 to prove our second
main theorem, which involves unboundedness predicates as introduced in [15].
In [15], unboundedness predicates can be one-dimensional or multi-dimensional,
but in this work, we only consider one-dimensional unboundedness predicates.

Let Σ be an alphabet. A (language) predicate is a set of languages over Σ. If
p is a predicate and L ⊆ Σ∗ is a language, then we write p(L) to denote that p
holds for the language L (i.e. L ∈ p). A predicate p is called a (one-dimensional)
unboundedness predicate if the following conditions are met for all K,L ⊆ Σ∗:

(U1) If p(K) and K ⊆ L, then p(L).
(U2) If p(K ∪ L), then p(K) or p(L).

(U3) If p(K · L), then p(K) or p(L).
(U4) p(L) if and only if p(F (L)).

Here F (L) = {v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L} is the set of factors of L
(sometimes also called infixes). In particular, the last condition says that p only
depends on the set of factors occurring in a language.

Unboundedness Problems for Machines with Reversal-Bounded Counters 245

For an unboundedness predicate p and a class C of finitely represented lan-
guages (such as automata or grammars), let p(C) denote the problem of deciding
p for a given language L from C. Formally, p(C) is the following decision problem:

Given A language L from C.
Question Does p(L) hold?

For example, p(RBCA) is the problem of deciding p for reversal-bounded multi-
counter automata and p(NFA) is the problem of deciding p for NFAs. We mention
that the axioms (U1)–(U4) are slightly stronger than the axioms used in [15],
but the resulting set of decision problems is the same with either definition
(since in [15], one always decides whether p(F (L)) holds). Thus, the statement of
Theorem 2 is unaffected by which definition is used. See the full version [5] for
details.

The following examples of (one-dimensional) unboundedness predicates for
languages L ⊆ Σ∗ have already been established in [15]. We mention them here
to give an intuition for the range of applications of our results:

Not being bounded Let pnotb(L) if and only if L is not a bounded language.
Non-emptiness Let p�=∅(L) if and only if L �= ∅.
Infinity Let p∞(L) if and only if L is infinite.
Factor-universality Let pfuni(L) if and only if Σ∗ ⊆ F (L).

It is not difficult to prove that these are unboundedness predicates, but proofs
can be found in [15]. The following is our second main theorem:

Theorem 2. Let p be a one-dimensional unboundedness predicate. There is an
NP reduction from p(PRBCA) to p(PDA). Moreover, there is an NP reduction
from p(RBCA) to p(NFA).

Here, an NP reduction from problem A ⊆ Σ∗ to B ⊆ Σ∗ is a non-deterministic
polynomial-time Turing machine such that for every input word w ∈ Σ∗, we
have w ∈ A iff there exists a run of the Turing machine producing a word in B.

Let us now see some applications of Theorem 2, see also Table 1. The following
completeness results are all meant w.r.t. deterministic logspace reductions.

Corollary 2. Boundedness for PRBCA and for RBCA is coNP-complete.

For Corollary 2, we argue that deciding non-boundedness is NP-complete. To
this end, we apply Theorem 2 to the predicate pnotb and obtain an NP upper
bound, because boundedness for context-free languages is decidable in polyno-
mial time [24]. The NP lower bound follows easily from NP-hardness of the
non-emptiness problem for RBCA [28, Theorem 3] and thus PRBCA.

Corollary 3. Finiteness for PRBCA and for RBCA is coNP-complete.

We show Corollary 3 by proving that checking infinity is NP-complete. The upper
bound follows from Theorem 2 via the predicate p∞. As above, NP-hardness is
inherited from the non-emptiness problem for RBCA and PRBCA.

P. Baumann et al.246

The results in Corollary 3 are, however, not new. They follow directly from
the fact that for a given PRBCA (or RBCA), one can construct in polynomial
time a formula in existential Presburger arithmetic (∃PA) for its Parikh image,
as shown in [36] for RBCA and in [32] for PRBCA. It is a standard result about
∃PA that for each formula ϕ, there exists a bound B such that (i) B is at most
exponential in the size of ϕ and (ii) ϕ defines an infinite set if and only if ϕ
is satisfied for some vector with some entry above B. For example, this can be
deduced from [53]. Therefore, one can easily construct a second ∃PA formula ϕ′

such that ϕ defines an infinite set if and only if ϕ′ is satisfiable.

Corollary 4. Factor universality for RBCA is PSPACE-complete.

Whether factor universality is decidable for RBCA was left as an open problem
in [17, 18] (there under the term infix density). Corollary 4 follows from Theo-
rem 2 using pfuni, because factor universality for NFAs is PSPACE-complete: To
decide if Σ∗ ⊆ F (R), for a regular language R, we can just compute an automa-
ton for F (R) and check inclusion in PSPACE. For the lower bound, one can reduce
the PSPACE-complete universality problem for NFAs, since for R ⊆ Σ∗, the lan-
guage (R#)∗ ⊆ (Σ∪{#})∗ is factor universal if only if R = Σ∗. Note that factor
universality is known to be undecidable already for one-counter languages [18],
and thus in particular for PRBCA. However, it is decidable for pushdown au-
tomata with a bounded number of reversals of the stack [18].

Beyond pushdowns. Theorem 2 raises the question of whether for any class
M of machines, one can reduce any unboundedness predicates for M extended
with reversal-bounded counters to the same predicate for just M. This is not the
case: For example, consider second-order pushdown automata, short 2-PDA. If
we extend these by adding reversal-bounded counters, then we obtain 2-PRBCA.
Then, the infinity problem is decidable for 2-PDA [34] (see [3, 4, 14, 31, 52, 56]
for stronger results). However, the class of 2-PRBCA does not even have decid-
able emptiness, let alone decidable infinity. This is shown in [57, Proposition 7]
(see [42, Theorem 4] for an alternative proof). Thus, infinity for 2-PRBCA can-
not be reduced to infinity for 2-PDA.

Growth. Finally, we employ the methods of the proof of Theorem 2 to show
a dichotomy of the growth behavior of languages accepted by RBCA. For an
alphabet Σ, we denote by Σ≤m the set of all words over Σ of length at most m.
We say that a language L ⊆ Σ∗ has polynomial growth2 if there is a polynomial
p(x) such that |L∩Σ≤m| ≤ p(m) for all m ≥ 0. Languages of polynomial growth
are also called sparse or poly-slender. We say that L has exponential growth if
there is a real number r > 1 such hat |L∩Σ≤m| ≥ rm for infinitely many m. Since
a language of the form w∗

1 · · ·w∗
n clearly has polynomial growth, it is well-known

that bounded languages have polynomial growth. We show that (a) within the
PRBCA languages (and in particular within the RBCA languages), the converse
2 In [24], polynomial and exponential growth are defined with Σm in place of Σ≤m,

but this leads to equivalent notions, see the full version [5].

Unboundedness Problems for Machines with Reversal-Bounded Counters 247

is true as well and (b) all other languages have exponential growth (in contrast
to some models, such as 2-PDA [27], where this dichotomy does not hold):

Theorem 3. Let L be a language accepted by a PRBCA. Then L has polynomial
growth if and only if L is bounded. If L is not bounded, it has exponential growth.

3 Translating reversal-bounded counters into Z-counters

Reducing the number of reversals to one. In this section we prove Theo-
rem 1, the conversion from RBCA to Z-VASS. In [28, Lemma 1], it is claimed
that given a (k, r)-RBCA, one can construct in time polynomial in k and r a
(k(r + 1)/2�, 1)-RBCA that accepts the same language. The reference [2] that
they provide does include such a construction [2, proof of Theorem 5]. The con-
struction in [2] is only a rough sketch and makes no claims about complexity,
but by our reading of the construction, it keeps track of the reversals of each
counter in the state, which would result in an exponential blow-up.

Instead, we proceed as follows. Consider a (k, r)-RBCA with counters
c1, . . . , ck. Without loss of generality, assume r = 2m − 1. We will construct
an equivalent (2k(r + 1), 1)-RBCA. Looking at the behavior of a single counter
ci, we can decompose every r-reversal bounded run into subruns without rever-
sals. We call these subruns phases and number them from 1 to at most 2m. The
odd (even) numbered phases are positive (negative), where ci is only incremented
(decremented). We replace ci by m one-reversal counters ci,1, . . . , ci,m, where ci,j
records the increments on ci during the positive phase 2j − 1.

However, our machine needs to keep track of which counters are in which
phase, in order to know which of the counters ci,j it currently has to use. We
achieve this as follows: For each of the k counters ci, we also have an additional
set of 2m = r+1 “phase counters” pi,1, . . . , pi,2m to store which phase we are in.
This gives km+ k(r + 1) ≤ 2k(r + 1) counters in total. We encode that counter
ci is in phase j by setting pi,j to 1 and setting pi,j′ to 0 for each j′ �= j. Since
we only ever increase the phase, the phase counters are one-reversal as well.

Using non-zero-tests, at any point, the automaton can nondeterministically
guess and verify the current phase of each counter. This allows it to pick the
correct counter ci,j for each instruction. When counter ci is in a positive phase
2j − 1, then increments and decrements on ci are simulated as follows:

increment increment ci,j
decrement go into the next (negative) phase 2j; then non-deterministically

pick some � ∈ [1, j] and decrement ci,�. We cannot simply decrement ci,j as
we might have switched to phase j while ci had a non-zero value and hence
it is possible that ci could be decremented further than just ci,j allows.

When counter ci is in a negative phase 2j, then we simulate increments and
decrements as follows:

increment go into the next phase 2j + 1 (unless j = m; then the machine
blocks) and increment ci,j+1.

P. Baumann et al.248

decrement non-deterministically pick some � ∈ [1, j] and decrement ci,�.

Finally, to simulate a zero-test on ci, we test all counters ci,1, . . . , ci,m for zero,
while for the simulation of a non-zero-test on ci we non-deterministically pick
one of the counters ci,1, . . . , ci,m to test for non-zero.

Correctness can be easily verified by the following properties. If at some point
ci is in phase 2j − 1 or 2j then (i)

∑j
�=1 ci,� = ci, (ii) the counters ci,1, . . . , ci,j

have made at most one reversal, and (iii) the counters ci,j+1, . . . , ci,m have not
been touched (in particular, they are zero). Furthermore, if ci is in a positive
phase 2j − 1 then ci,j has made no reversal yet.

Note that this construction replaces every transition of the original system
with O(r) new transitions (and states). Our construction therefore yields only
a linear blowup in the size of the system (constant if r is fixed). See the full
version [5] for the details of the construction.

From 1-reversal to Z-counters. We now turn the (k, 1)-RBCA into a Z-
VASS. The difference between a 1-reversal-bounded counter and a Z-counter
is that (i) a non-negative counter should block if it is decremented on counter
value 0, and (ii) a 1-reversal-bounded counter allows (non-)zero-tests. Observe
that all zero-tests occur before the first increment or after the last decrement.
All non-zero-tests occur between the first increment and the last decrement.

If the number k of counters is bounded, then the following simple solution
works. The Z-VASS stores the information which of the counters has not been
incremented yet and which counters will not be incremented again in the future.
This information suffices to simulate the counters faithfully (in terms of the
properties (i) and (ii) above) and increases the state space by a factor of 2k · 2k.
The latter information needs to be guessed (by the automaton) and is verified
by means that all counters are zero in the end.

In the general case we introduce a variant of Z-VASS that can guess poly-
nomially many bits in the beginning and read them throughout the run. A
d-dimensional Z-VASS with guessing (Z-VASSG) has almost the same format
as a d-dimensional Z-VASS, except that each transition additionally carries a
propositional formula over some finite set of variables X. A word w ∈ Σ∗ is
accepted by the Z-VASSG if there exists an assignment ν : X → {0, 1} and an
accepting run (q0,0)

w−→ (q,0) for some q ∈ F such that all formulas appearing
throughout the run are satisfied by ν.

We have to eliminate zero- and non-zero-tests of the (k, 1)-RBCA. Whether
a (non-)zero-test is successful depends on which phase a counter is currently
in (and whether in the end, every counter is zero; but we assume that our
acceptance condition ensures this). Each counter goes through at most 4 phases:

1. before the first increment,
2. the “increment phase”,

3. the “decrement phase”, and
4. after the last decrement.

Hence, every run can be decomposed into 4k (possibly empty) segments, in which
no counter changes its phase. The idea is to guess the phase of each counter

Unboundedness Problems for Machines with Reversal-Bounded Counters 249

in each segment. Hence, we have propositional variables pi,j,� for i ∈ [1, 4k],
j ∈ [1, k], and � ∈ [1, 4]. Then pi,j,� is true iff in segment i, counter j is in phase �.
We will have to check that the assignment is admissible for each counter, meaning
that the sequence of phases for each counter adheres to the order described above.

We modify the machine as follows. In its state, it keeps a number i ∈ [1, 4k]
which holds the current segment. At the beginning of the run, the machine checks
that the assignment ν is admissible using a propositional formula: It checks that
(i) for each segment i and each counter j there exists exactly one phase � so
that pi,j,� is true, and (ii) the order of phases above is obeyed. Then, for every
operation on a counter, the machine checks that the operation is consistent with
the current segment. Moreover, if the current operation warrants a change of the
segment, then the segment counter i is incremented. For example, if a counter
in phase 1 is incremented, it switches to phase 2 and the segment counter is
incremented; or, if a counter in phase 3 is tested for zero, it switches to phase 4
and the segment counter is incremented.

With these modifications, we can zero-test by checking variables correspond-
ing to the current segment: A zero-test can only succeed in phase 1 and 4.
Similarly, for a non-zero-test, we can check if the counter is in phase 2 or 3.

Turning a Z-VASSG into a Z-VASS. To handle the general case mentioned
above, we need to show how to convert Z-VASSG into ordinary Z-VASS. In a
preparatory step, we ensure that each formula is a literal. A transition labeled by
a formula ϕ is replaced by a series-parallel graph: After bringing ϕ in negation
normal form by pushing negations inwards, we can replace conjunctions by a
series composition and disjunctions by a parallel composition (non-determinism).

The Z-VASS works as follows. In addition to the original counters of the Z-
VASSG, it has for each variable x ∈ X two additional counters: x+ and x−. Here,
x+ (x−) counts how many times x is read with a positive (negative) assignment.
By making sure that either x+ = 0 or x− = 0 in the end, we guarantee that we
always read the same value of x.

Thus, in order to check a literal, our Z-VASS increments the corresponding
counter. In the end, before reaching a final state, it goes through each variable
x ∈ X and either enters a loop decrementing x+ or a loop decrementing x−.
Then, it can reach the zero vector only if all variable checks had been consistent.

From PRBCA to Z-grammars. It remains to convert in logspace an (r, k)-
PRBCA into an equivalent Z-grammar. Just as for converting an RBCA into
a Z-VASS, one can convert a PRBCA into an equivalent Z-PVASS (pushdown
vector addition system with Z-counters). Afterwards, one applies the classical
transformation from pushdown automata to context-free grammars (a.k.a. triple
construction), cf. [1, Lemma 2.26]: We introduce for every state pair (p, q) a
nonterminal Xp,q, deriving all words which are read between p to q (starting
and ending with empty stacks). For example, we introduce productions Xp,q →
aXp′,q′b for all push transitions (p, a, γ, p′) and pop transitions (q′, b, γ̄, q). The
counter effects of transitions in the Z-PVASS (vectors in Zk) are translated into

P. Baumann et al.250

effects of the productions, e.g. the effect of the production Xp,q → aXp′,q′b above
is the sum of the effects of the corresponding push- and pop-transition.

4 Deciding unboundedness predicates

Proof overview. In this section, we prove Theorem 2. Let us begin with a
sketch. Our task is to take a PRBCA A and non-deterministically compute a
PDA A′ so that L(A) satisfies p if and only if some of the outcomes for A′ satisfy
p. It will be clear from the construction that if the input was an RBCA, then
the resulting PDA will be an NFA. Using Theorem 1 we will phrase the main
part of the reduction in terms of Z-grammars, meaning we take a Z-grammar G
as input and non-deterministically compute context-free grammars G′.

The idea of the reduction is to identify a set of productions in G that, in
some appropriate sense, can be canceled (regarding the integer counter values)
by a collection of other productions. Then, G′ is obtained by only using a set of
productions that can be canceled. Moreover, these productions are used regard-
less of what counter updates they perform. Then, to show the correctness, we
argue in two directions: First, we show that any word derivable by G′ occurs as
a factor of L(G). Essentially, this is because each production used in G′ can be
canceled by adding more productions in G, thus yielding a complete derivation of
G. Thus, we have that L(G′) ⊆ F (L(G)), which by the axioms of unboundedness
predicates means that p(L(G′)) implies p(L(G)). Second, we show that L(G) is
a finite union of products (i.e. concatenations) Pi = L1 ·L2 · · ·Lk such that each
Li is either finite or included in L(G′) for some G′ among all non-deterministic
outcomes. Again, by the axioms of unboundedness predicates, this means that
if p(L(G)), then p(L(G′)) must hold for some G′.

Unboundedness predicates and finite languages. Before we start with the
proof, let us observe that we may assume that our unboundedness predicate is
only satisfied for infinite sets. First, suppose p is satisfied for {ε}. This implies
that p = p�=∅ and hence we can just decide whether p(L) by deciding whether
L �= ∅, which can be done in NP [32]. From now on, suppose that p is not
satisfied for {ε}. Consider the alphabet Σ1 := {a ∈ Σ | p({a})}. Now observe
that if K ⊆ Σ∗ is finite, then by the axioms of unboundedness predicates, we
have p(K) if and only if some letter from Σ1 appears in K. Thus, if L ⊆ (Σ\Σ1)

∗,
then p(L) can only hold if L is infinite. This motivates the following definition.
Given a language L ⊆ Σ∗, we define

L0 = L ∩ (Σ \Σ1)
∗, L1 = L ∩Σ∗Σ1Σ

∗.

Then, p(L) if and only if p(L0) or p(L1). Moreover, p(L1) is equivalent to L1 �= ∅.
Therefore, our reduction proceeds as follows. We construct (P)RBCA for L0

and for L1. This can be done in logspace, because intersections with regular
languages can be done with a simple product construction. Then, we check in
NP whether L1 �= ∅. If yes, then we return “unbounded”. If no, we regard p as an

Unboundedness Problems for Machines with Reversal-Bounded Counters 251

unboundedness predicate on languages over Σ \Σ1 with the additional property
that p is only satisfied for infinite languages. Thus, it suffices to prove Theorem 2
in the case that p is only satisfied for infinite sets.

Pumps and cancelation. In order to define our notion of cancelable produc-
tions, we need some terminology. We will need to argue about derivation trees
for Z-grammars. For any alphabet Γ and d ∈ N, let TΓ,d be the set of all fi-
nite trees where every node is labeled by both (i) a letter from Γ and (ii) a
vector from Zd. Suppose G = (N,Σ,P, S) is a d-dimensional Z-grammar. For
a production p = (A → u,v), we write ϕ(p) := v for its associated counter
effect. To each derivation in G, we associate a derivation tree from TN∪Σ,d as for
context-free grammars. The only difference is that whenever we apply a produc-
tion (A → u,v), then the node corresponding to the rewritten A is also labeled
with v. As in context-free grammars, the leaf nodes carry terminal letters; their
vector label is just 0 ∈ Zd.

We extend the map ϕ to both vectors in NP and to derivation trees. If u ∈ NP ,
then ϕ(u) =

∑
p∈P ϕ(p)·u[p]. Similarly, if τ is a derivation tree, then ϕ(τ) ∈ Zd is

the sum of all labels from Zd. A derivation tree τ for a derivation A ∗⇒ u is called
complete if A = S, u ∈ Σ∗ and ϕ(τ) = 0. In other words, τ derives a terminal
word and the total counter effect of the derivation is zero. For such a complete
derivation, we also write yield(τ) for the word u. A derivation tree τ is called a
pump if it is the derivation tree of a derivation of the form A ∗⇒ uAv for some
u, v ∈ Σ∗ and A ∈ N . A subset M ⊆ N of the non-terminals is called realizable
if there exists a complete derivation of G that contains all non-terminals in M
and no non-terminals outside of M .

A production p in P is called M -cancelable if there exist pumps τ1, . . . , τk (for
some k ∈ N) such that (i) p occurs in some τi and (ii) ϕ(τ1)+ · · ·+ϕ(τk) = 0, i.e.
the total counter effect of τ1, . . . , τk is zero and (iii) all productions in τ1, . . . , τk
only use non-terminals from M . We say that a subset Q ⊆ P is M -cancelable if
all productions in Q are M -cancelable.

The reduction. Using the notions of M -cancelable productions, we are ready
to describe how the context-free grammars are constructed. Suppose that M is
realizable, that Q ⊆ P is M -cancelable, and that A ∈ M . Consider the language

LA,Q = {u, v ∈ Σ∗ | ∃ derivation A ∗⇒Q uAv}.
Thus LA,Q consists of all words u and v appearing in derivations (whose counter
values are not necessarily zero) of the form A ∗⇒ uAv, if we only use M -
cancelable productions. The LA,Q will be the languages L(G′) mentioned above.

It is an easy observation that we can, given G and a subset Q ⊆ P , construct
a context-free grammar for LA,Q:

Lemma 1. Given a Z-grammar G, a non-terminal A, and a subset Q ⊆ P , we
can construct in logspace a context-free grammar for LA,Q. Moreover, if G is
left-linear, then the construction yields an NFA for LA,Q.

P. Baumann et al.252

We provide details in the full version [5]. Now, our reduction works as follows:

1. Guess a subset M ⊆ N and an A ∈ M ; verify that M is realizable.
2. Guess a subset Q ⊆ P ; verify that Q is M -cancelable.
3. Compute a context-free grammar for LA,Q.

Here, we need to show that steps 1 and 2 can be done in NP:

Lemma 2. Given a subset M ⊆ N , we can check in NP whether M is realizable.
Moreover, given M ⊆ N and p ∈ P , we can check in NP if p is M -cancelable.

Both can be done using the fact that for a given context-free grammar, one
can construct a Parikh-equivalent existential Presburger formula [55] and the
fact that satisfiability of existential Presburger formulas is in NP. See the full
version [5] for details. This completes the description of our reduction. Therefore,
it remains to show correctness of the reduction. In other words, to prove:

Proposition 1. We have p(L(G)) if and only if p(LA,Q) for some subset Q ⊆ P
such that there is a realizable M ⊆ N with A ∈ M and Q being M -cancelable.

Proposition 1 will be shown in two lemmas:

Lemma 3. If M is realizable and Q is M -cancelable, then LA,Q ⊆ F (L(G)) for
every A ∈ M .

Lemma 4. L(G) is included in a finite union of sets of the form K1 ·K2 · · ·Km,
where each Ki is either finite or a set LA,Q, where Q is M -cancelable for some
realizable M ⊆ N , and A ∈ M .

Let us see why Proposition 1 follows from Lemmas 3 and 4.

Proof (Proposition 1). We begin with the “if” direction. Thus, suppose p(LA,Q)
for A and Q as described. Then by Lemma 3 and the first and fourth axioms of
unboundedness predicates, this implies p(L(G)).

For the “only if” direction, suppose p(L(G)). By the first axiom of unbound-
edness predicates, p must hold for the finite union provided by Lemma 4. By
the second axiom, this implies that p(K1 · · ·Km) for a finite product K1 · · ·Km

as in Lemma 4. Moreover, by the third axiom, this implies that p(Ki) for some
i ∈ {1, . . . ,m}. If Ki is finite, then by assumption, p(Ki) does not hold. There-
fore, we must have p(Ki) for some Ki = LA,Q, as required. ��

Flows. It remains to prove Lemmas 3 and 4. We begin with Lemma 3 and for
this we need some more terminology. Let Σ be an alphabet. By Ψ : Σ∗ → NΣ ,
we denote the Parikh map, which is defined as Ψ(w)(a) = |w|a for w ∈ Σ∗ and
a ∈ Σ. In other words, Ψ(w)(a) is the number of occurrences of a in w ∈ Σ∗. If
Γ ⊆ Σ is a subset, then πΓ : Σ∗ → Γ ∗ is the homomorphism with πΓ (a) = ε for
a ∈ Σ \ Γ and πΓ (a) = a for a ∈ Γ . We also call πΓ the projection to Γ .

Suppose we have a Z-grammar G = (N,Σ,P, S) with non-terminals N and
productions P . For a derivation tree τ , we write Ψ(τ) for the vector in NP that

Unboundedness Problems for Machines with Reversal-Bounded Counters 253

counts how many times each production appears in τ . We introduce a map ∂,
which counts how many non-terminals each production consumes and produces.
Formally, ∂ : NP → ZN is the monoid homomorphism that sends the production
p = A → w to the vector ∂(p) = −A + Ψ(πN (w)). Here, −A ∈ ZN denotes the
vector with −1 at the position of A and 0 everywhere else. A vector u ∈ NP is a
flow if ∂(u) = 0. Observe that a derivation tree τ is a pump if and only if Ψ(τ)
is a flow. In this case, we also call the vector u ∈ NP with u = Ψ(τ) a pump.

The following lemma will provide an easy way to construct derivations. It is
a well-known result by Esparza [19, Theorem 3.1], and has since been exploited
in several results on context-free grammars. Our formulation is slightly weaker
than Esparza’s. However, it is enough for our purposes and admits a simple
proof, which is inspired by a proof of Kufleitner [44].

Lemma 5. Let f ∈ NP . Then f is a flow if and only if it is a sum of pumps.

Proof. The “if” direction is trivial, because every pump is clearly a flow. Con-
versely, suppose f ∈ NP is a flow. We can clearly write f = Ψ(τ1)+ · · ·+Ψ(τn),
where τ1, . . . , τn are derivation trees: We can just view each production in f as
its own derivation tree. Now suppose that we have f = Ψ(τ1) + · · · + Ψ(τn) so
that n is minimal. We claim that then, each τi is a pump, proving the lemma.

Suppose not, then without loss of generality, τ1 is not a pump. Since τ1 is
a derivation, this means Ψ(τ1) cannot be a flow and thus there must be a non-
terminal A with ∂(τ1)(A) �= 0.

Let us first assume that ∂(τ1)(A) > 0. This means there is a non-terminal
A occurring at a leaf of τ1 such that A is not the start symbol of τ1. Since
f = Ψ(τ1)+· · ·+Ψ(τn) is a flow, we must have ∂(Ψ(τ2)+· · ·+Ψ(τn))(A) < 0. This,
in turn, is only possible if some τj has A as its start symbol. We can therefore
merge τ1 and τj by replacing τ1’s A-labelled leaf by the new subtree τj . We
obtain a new collection of n− 1 trees whose Parikh image is f , in contradiction
to the choice of n. If ∂(τ1)(A) < 0, then there must be a τj with ∂(τj)(A) > 0
and thus we can insert τ1 below τj , reaching a similar contradiction. ��

Constructing derivations. Using flows, we can now prove Lemma 3.

Proof. Suppose there is a derivation τ : A ∗⇒Q uAv with A ∈ M and u, v ∈ Σ∗.
We have to show that both u and v occur in some word w ∈ L(G). Furthermore,
if G is in Chomsky normal form, we can choose w such that |w| is linear in |u|
and |v|. Our goal is to construct a derivation of G in which we find u and v as
factors. We could obtain a derivation tree by inserting τ into some derivation tree
for G (at some occurrence of A), but this might yield non-zero counter values.
Therefore, we will use the fact that Q is M -cancelable to find other pumps that
can be inserted as well in order to bring the counter back to zero.

Since M ⊆ N is realizable, there exists a complete derivation τ0 that derives
some word w0 ∈ L(G) and uses precisely the non-terminals in M . Since Q ⊆ P
is M -cancelable, we know that for each production p ∈ Q, there exist pumps
τ1, . . . , τk such that (i) p occurs in some τi, (ii) ϕ(τ1) + · · · + ϕ(τk) = 0 and

P. Baumann et al.254

(iii) all productions in τ1, . . . , τk only use non-terminals in M . This allows us
to define fp := Ψ(τ1) + · · · + Ψ(τk). Observe that fp contains only productions
with non-terminals from M , we have fp[p] > 0, and ϕ(fp) = 0. We can use the
flows fp to find the desired canceling pumps. Since by Lemma 5, every flow can
be decomposed into a sum of pumps, it suffices to construct a particular flow.
Specifically, we look for a flow fτ ∈ NP such that:

1. any production p with fτ [p] > 0 uses only non-terminals from M , and
2. ϕ(fτ + Ψ(τ)) = 0.

The first condition ensures that all the resulting pumps can be inserted into τ0.
The second condition ensures that the resulting total counter values will be zero.
We claim that with

fτ =

⎛⎝∑
p∈Q

Ψ(τ)[p] · fp

⎞⎠− Ψ(τ), (1)

we achieve these conditions. First, observe that fτ ∈ NP : We have

fτ [q] ≥ Ψ(τ)[q] · fq[q]− Ψ(τ)[q] = Ψ(τ)[q] · (fq[q]− 1)

which is at least zero as fq[q] must be non-zero by definition. Second, note that
fτ is indeed a flow, because it is a Z-linear combination of flows. Moreover, all
productions appearing in fτ also appear in fp for some p ∈ Q or in τ , meaning
that all non-terminals must belong to M . Finally, the total counter effect of
fτ + Ψ(τ) is zero as fτ + Ψ(τ) =

∑
p∈Q Ψ(τ)[p] · fp is a sum of flows each with

total counter effect zero.
Now, since fτ is a flow, Lemma 5 tells us that there are pumps τ ′1, . . . , τ

′
m

such that fτ = Ψ(τ ′1) + · · · + Ψ(τ ′m). Therefore, inserting τ and τ ′1, . . . , τ
′
m into

τ0 must yield a derivation of a word that has both u and v as factors and also
has counter value

ϕ(τ0)︸ ︷︷ ︸
=0

+ϕ(τ) + ϕ(τ ′1) + · · ·ϕ(τ ′m)︸ ︷︷ ︸
=ϕ(τ)+ϕ(fτ)=0

= 0.

Thus, we have a complete derivation of G. Hence LA,Q ⊆ F (L(G)). ��

Decomposition into finite union. It remains to prove Lemma 4. For the
decomposition, we show that there exists a finite set D0 of complete derivations
such that all complete derivations of G can be obtained from some derivation in
D0 and then inserting pumps that produce words in LA,Q, for some appropriate
A and Q. Here, it is key that the set D0 of “base derivations” is finite. Showing this
for context-free grammars would just require a simple “unpumping” argument
based on the pigeonhole principle as in Parikh’s theorem [51]. However, in the
case of Z-grammars, where D0 should only contain derivations that have counter
value zero, this is not obvious. To achieve this, we employ a well-quasi ordering on

Unboundedness Problems for Machines with Reversal-Bounded Counters 255

(labeled) trees. Recall that a quasi ordering is a reflexive and transitive ordering.
For a quasi ordering (X,≤) and a subset Y ⊆ X, we write Y ↑ for the set
{x ∈ X | ∃y ∈ Y : y ≤ x}. We say that (X,≤) is a well-quasi ordering (WQO) if
every non-empty subset Y ⊆ X has a finite subset Y0 ⊆ Y such that Y ⊆ Y0 ↑.

We define an ordering on all trees in TN∪Σ,d. A tree s is a subtree of t if there
exists a node x in t such that s consists of all nodes of t that are descendants of x.
If τ1, . . . , τn are trees, then we denote by r[τ1, . . . , τn] the tree with a root node r
and the subtrees τ1, . . . , τn directly under the root. Now let τ = (A,u)[τ1, . . . , τn]
and τ ′ = (B,v)[σ1, . . . , σm] be trees in TN∪Σ,d. We define the ordering � as
follows. If n = 0 (i.e. τ consists of only one node), then we have τ � τ ′ if and
only if A = B and m = 0. If n ≥ 1, then we define inductively:

τ � τ ′ ⇐⇒ A = B and ∃ subtree τ ′′ = (A,u′)[τ ′1, . . . , τ
′
n] of τ ′

with τi � τ ′i for i = 1, . . . , n

Based on �, we define as slight refinement: We write τ � τ ′ if and only if τ � τ ′

and the set of non-terminals appearing in τ is the same as in τ ′.

Lemma 6. (TN∪Σ,d,�) is a WQO.

Proof. In [47, Lemma 3.3], it was shown that � is a WQO. Then � is the product
of equality on a finite set, which is a WQO, and the WQO �. ��

Lemma 6 allows us to decompose L(G) into a finite union: For each complete
derivation τ of G, we define

Lτ (G) = {w ∈ Σ∗ | ∃ complete derivation τ ′ with τ � τ ′ and yield(τ ′) = w}.
Lemma 7. There exists a finite set D0 ⊆ TN∪Σ,d of complete derivations of G
such that L(G) =

⋃
τ∈D0

Lτ (G).

Proof. Since (TN∪Σ,d,�) is a WQO, the set D ⊆ TN∪T,d of all complete deriva-
tions of G has a finite subset D0 with D ⊆ D0 ↑. This implies the lemma. ��

Decomposition into finite product. In light of Lemma 7, it remains to be
shown that for each tree τ , we can find a product K1 ·K2 · · ·Km of languages such
that Lτ (G) ⊆ K1 ·K2 · · ·Km and each Ki is either finite or is of the form LA,Q.
We construct the overapproximation of Lτ (G) inductively as follows. Let M ⊆ N
and Q ⊆ P be subsets of the non-terminals and the productions, respectively.
If τ has one node, labeled by a ∈ Σ, then we set AppQ(τ) := {a}. Moreover, if
τ = (A,u)[τ1, . . . , τn] for A ∈ N and trees τ1, . . . , τn, then we set

AppQ(τ) := LA,Q ·AppQ(τ1) ·AppQ(τ2) · · ·AppQ(τn) · LA,Q.

Finally, we set App(τ) := AppQ(τ), where Q ⊆ P is the set of all M -cancelable
productions, where M is the set of all non-terminals appearing in τ . Now clearly,
each App(τ) is a finite product K1 ·K2 · · ·Km as desired: This follows by induc-
tion on the size of τ . Thus, to prove Lemma 4, the following suffices:

P. Baumann et al.256

Lemma 8. For every complete derivation tree τ of G, we have Lτ (G) ⊆ App(τ).

Proof. Suppose w ∈ Lτ (G) is derived using a complete derivation tree τ ′ with
τ � τ ′. Then, the set of non-terminals appearing in τ must be the same as in
τ ′; we denote it by M . Let Q ⊆ P be the set of all M -cancelable productions.
Moreover, since τ � τ ′, we can observe that there exist pumps τ1, . . . , τn with
root non-terminals A1, . . . , An and nodes x1, . . . , xn in τ such that τ ′ can be
obtained from τ by replacing each node xi by the pump τi.

Since both τ and τ ′ are complete derivations of G, each must have counter
effect 0. Thus, ϕ(τ1)+· · ·+ϕ(τn) = ϕ(τ ′)−ϕ(τ) = 0. Hence, the pumps τ1, . . . , τn
witness that the productions appearing in τ1, . . . , τn are M -cancelable. Thus, the
derivation corresponding to τi uses only productions in Q and thus τi corresponds
to Ai

∗⇒Q uiAvi for some ui, vi and we have ui, vi ∈ LA,Q. ��

5 Growth

In this section, we prove Theorem 3. Since clearly, a bounded language has
polynomial growth, it remains to be shown that if L is accepted by a PRBCA and
L is not bounded, then it has exponential growth. For two languages L1, L2 ⊆
Σ∗, we write L1 ↪→lin L2 if there exists a constant c ∈ N such that for every
word w1 ∈ L1, there exists w2 ∈ L2 with |w2| ≤ c · |w1| and w1 is a factor of w2.
It is not difficult to observe that for two languages L1, L2 ⊆ Σ∗, if L1 ↪→lin L2

and L1 has exponential growth, then so does L2.
In order to show Theorem 3, we need an adapted version of Lemma 3. A

Z-grammar is in Chomsky normal form if all productions are of the form (A →
BC,v) or (A → a,v) with A,B,C ∈ N , a ∈ Σ, and u,v ∈ Zk. In other
words, the context-free grammar obtained by forgetting all counter vectors is
in Chomsky normal form. Fernau and Stiebe [21, Proposition 5.12] have shown
that every Z-grammar has an equivalent Z-grammar in Chomsky normal form.

Lemma 9. If G = (N,Σ,P, S) is a Z-grammar in Chomsky normal form, M ⊆
N is realizable, Q ⊆ P is M -cancelable, and A ∈ M , then LA,Q ↪→lin L(G).

This is shown essentially the same way as Lemma 3. Let us now show that if a
language L accepted by a PRBCA is not bounded, then it must have exponential
growth. We have seen above that as a PRBCA language, L is generated by some
Z-grammar. As shown by Fernau and Stiebe [21, Proposition 5.12], this implies
that L = L(G) for some Z-grammar G in Chomsky normal form. Since L is not
bounded, Lemma 4 yields A and Q such that LA,Q is not a bounded language. It
is well-known that any context-free language that is not bounded has exponential
growth (this fact has apparently been independently discovered at least six times,
see [24] for references). Thus, LA,Q has exponential growth. By Lemma 9, we
have LA,Q ↪→lin L and thus L has exponential growth.

Acknowledgments We are grateful to Manfred Kufleitner for sharing the
manuscript [44] before it was publicly available. It provides an alternative proof

Unboundedness Problems for Machines with Reversal-Bounded Counters 257

for constructing an existential Presburger formula for the Parikh image of a
context-free grammar. The latter was also shown in [55], based on [19]. We use
it in Lemma 5, which could also be derived from [19, Theorem 3.1]. However, we
provide a simple direct proof of Lemma 5 inspired by Kufleitner’s proof.

This work is funded by the European Union (ERC, FINABIS, 101077902).
Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Coun-
cil Executive Agency. Neither the European Union nor the granting authority
can be held responsible for them.

References

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. 1: Parsing. Prentice-Hall, 1972. isbn: 0139145567. url:
https://www.worldcat.org/oclc/310805937.

[2] Brenda S Baker and Ronald V Book. “Reversal-bounded multipushdown
machines”. In: Journal of Computer and System Sciences 8.3 (1974), pp. 315–
332. doi: 10.1016/S0022-0000(74)80027-9.

[3] David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys.
“Cost Automata, Safe Schemes, and Downward Closures”. In: 47th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). Ed.
by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 109:1–109:18.
doi: 10.4230/LIPIcs.ICALP.2020.109.

[4] David Barozzini, Pawel Parys, and Jan Wroblewski. “Unboundedness for
Recursion Schemes: A Simpler Type System”. In: 49th International Col-
loquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 112:1–112:19. doi: 10.4230/LIPIcs.ICALP.2022.112.

[5] Pascal Baumann, Flavio D’Alessandro, Moses Ganardi, Oscar Ibarra, Ian
McQuillan, Lia Schütze, and Georg Zetzsche. Unboundedness problems for
machines with reversal-bounded counters. 2023. doi: 10.48550/ARXIV.
2301.10198. url: https://arxiv.org/abs/2301.10198.

[6] Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. “Weakly-
Unambiguous Parikh Automata and Their Link to Holonomic Series”. In:
47th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Con-
ference). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020, 114:1–114:16. doi: 10.4230/LIPIcs.ICALP.2020.114.

[7] Toby Cathcart Burn, Luke Ong, Steven J. Ramsay, and Dominik Wagner.
“Initial Limit Datalog: a New Extensible Class of Decidable Constrained
Horn Clauses”. In: 36th Annual ACM/IEEE Symposium on Logic in Com-

P. Baumann et al.258

https://www.worldcat.org/oclc/310805937
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2022.112
https://doi.org/10.48550/ARXIV.2301.10198
https://doi.org/10.48550/ARXIV.2301.10198
https://arxiv.org/abs/2301.10198
https://doi.org/10.4230/LIPIcs.ICALP.2020.114

puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE,
2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470527.

[8] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. “Affine Parikh au-
tomata”. In: RAIRO Theor. Informatics Appl. 46.4 (2012), pp. 511–545.
doi: 10.1051/ita/2012013.

[9] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. “Bounded Parikh
Automata”. In: Int. J. Found. Comput. Sci. 23.8 (2012), pp. 1691–1710.
doi: 10.1142/S0129054112400709.

[10] Michaël Cadilhac, Andreas Krebs, and Pierre McKenzie. “The Algebraic
Theory of Parikh Automata”. In: Theory Comput. Syst. 62.5 (2018), pp. 1241–
1268. doi: 10.1007/s00224-017-9817-2.

[11] Arturo Carpi, Flavio D’Alessandro, Oscar H Ibarra, and Ian McQuillan.
“Relationships between bounded languages, counter machines, finite-index
grammars, ambiguity, and commutative regularity”. In: Theoretical Com-
puter Science 862 (2021), pp. 97–118. doi: 10.1016/j.tcs.2020.10.006.

[12] Tat-hung Chan. “Pushdown Automata with Reversal-Bounded Counters”.
In: J. Comput. Syst. Sci. 37.3 (1988), pp. 269–291. doi: 10.1016/0022-
0000(88)90008-6.

[13] Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Pa-
perman. “Regular Separability of Parikh Automata”. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland. Vol. 80. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 117:1–117:13. doi: 10.4230/LIPIcs.
ICALP.2017.117.

[14] Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz.
“The Diagonal Problem for Higher-Order Recursion Schemes is Decidable”.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. Ed. by
Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016, pp. 96–
105. doi: 10.1145/2933575.2934527.

[15] Wojciech Czerwinski, Piotr Hofman, and Georg Zetzsche. “Unbounded-
ness Problems for Languages of Vector Addition Systems”. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic. Ed. by Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella. Vol. 107.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 119:1–
119:15. doi: 10.4230/LIPIcs.ICALP.2018.119.

[16] Flavio D’Alessandro and Benedetto Intrigila. “On the commutative equiva-
lence of bounded context-free and regular languages: The semi-linear case”.
In: Theor. Comput. Sci. 572 (2015), pp. 1–24. doi: 10.1016/j.tcs.2015.01.
008. url: https://doi.org/10.1016/j.tcs.2015.01.008.

[17] Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan. “On the Density
of Context-Free and Counter Languages”. In: Developments in Language
Theory - 19th International Conference, DLT 2015, Liverpool, UK, July
27-30, 2015, Proceedings. Ed. by Igor Potapov. Vol. 9168. Lecture Notes

Unboundedness Problems for Machines with Reversal-Bounded Counters 259

https://doi.org/10.1109/LICS52264.2021.9470527
https://doi.org/10.1051/ita/2012013
https://doi.org/10.1142/S0129054112400709
https://doi.org/10.1007/s00224-017-9817-2
https://doi.org/10.1016/j.tcs.2020.10.006
https://doi.org/10.1016/0022-0000(88)90008-6
https://doi.org/10.1016/0022-0000(88)90008-6
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.4230/LIPIcs.ICALP.2018.119
https://doi.org/10.1016/j.tcs.2015.01.008
https://doi.org/10.1016/j.tcs.2015.01.008
https://doi.org/10.1016/j.tcs.2015.01.008

in Computer Science. Springer, 2015, pp. 228–239. doi: 10.1007/978-3-
319-21500-6_18.

[18] Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan. “On the Density of
Context-Free and Counter Languages”. In: Int. J. Found. Comput. Sci.
29.2 (2018), pp. 233–250. doi: 10.1142/S0129054118400051.

[19] Javier Esparza. “Petri nets, commutative context-free grammars, and basic
parallel processes”. In: Fundamenta Informaticae 31.1 (1997), pp. 13–25.

[20] Javier Esparza, Pierre Ganty, and Rupak Majumdar. “A Perfect Model for
Bounded Verification”. In: Proceedings of the 27th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012. IEEE Computer Society, 2012, pp. 285–294. doi: 10.1109/
LICS.2012.39.

[21] Henning Fernau and Ralf Stiebe. “Sequential grammars and automata with
valences”. In: Theor. Comput. Sci. 276.1-2 (2002), pp. 377–405. doi: 10.
1016/S0304-3975(01)00282-1.

[22] Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi. “Two-Way Parikh
Automata”. In: 39th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2019, De-
cember 11-13, 2019, Bombay, India. Vol. 150. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 40:1–40:14. doi: 10.4230/LIPIcs.
FSTTCS.2019.40.

[23] Alain Finkel and Arnaud Sangnier. “Reversal-Bounded Counter Machines
Revisited”. In: Mathematical Foundations of Computer Science 2008, 33rd
International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,
Proceedings. Ed. by Edward Ochmanski and Jerzy Tyszkiewicz. Vol. 5162.
Lecture Notes in Computer Science. Springer, 2008, pp. 323–334. doi:
10.1007/978-3-540-85238-4_26.

[24] Pawel Gawrychowski, Dalia Krieger, Narad Rampersad, and Jeffrey O.
Shallit. “Finding the Growth Rate of a Regular or Context-Free Language
in Polynomial Time”. In: Int. J. Found. Comput. Sci. 21.4 (2010), pp. 597–
618. doi: 10.1142/S0129054110007441.

[25] Seymour Ginsburg and Edwin H Spanier. “Bounded ALGOL-like lan-
guages”. In: Transactions of the American Mathematical Society 113.2
(1964), pp. 333–368.

[26] Sheila A. Greibach. “Remarks on Blind and Partially Blind One-Way Mul-
ticounter Machines”. In: Theor. Comput. Sci. 7 (1978), pp. 311–324. doi:
10.1016/0304-3975(78)90020-8.

[27] Rostislav Grigorchuk and A. Machì. “An example of an indexed language
of intermediate growth”. In: Theoretical computer science 215.1-2 (1999),
pp. 325–327.

[28] Eitan M. Gurari and Oscar H. Ibarra. “The complexity of decision prob-
lems for finite-turn multicounter machines”. In: Journal of Computer and
System Sciences 22.2 (1981), pp. 220–229. issn: 0022-0000. doi: https :
//doi.org/10.1016/0022-0000(81)90028-3.

P. Baumann et al.260

https://doi.org/10.1007/978-3-319-21500-6_18
https://doi.org/10.1007/978-3-319-21500-6_18
https://doi.org/10.1142/S0129054118400051
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.1007/978-3-540-85238-4_26
https://doi.org/10.1142/S0129054110007441
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/https://doi.org/10.1016/0022-0000(81)90028-3
https://doi.org/https://doi.org/10.1016/0022-0000(81)90028-3

[29] Christoph Haase and Simon Halfon. “Integer Vector Addition Systems with
States”. In: Reachability Problems - 8th International Workshop, RP 2014,
Oxford, UK, September 22-24, 2014. Proceedings. Ed. by Joël Ouaknine,
Igor Potapov, and James Worrell. Vol. 8762. Lecture Notes in Computer
Science. Springer, 2014, pp. 112–124. doi: 10.1007/978-3-319-11439-2_9.

[30] Christoph Haase and Georg Zetzsche. “Presburger arithmetic with stars,
rational subsets of graph groups, and nested zero tests”. In: 34th An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019. IEEE, 2019, pp. 1–14. doi:
10.1109/LICS.2019.8785850. url: https://doi.org/10.1109/LICS.2019.
8785850.

[31] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. “Unbound-
edness and downward closures of higher-order pushdown automata”. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016. ACM, 2016, pp. 151–163. doi: 10 .1145/
2837614.2837627.

[32] Matthew Hague and Anthony Widjaja Lin. “Model Checking Recursive
Programs with Numeric Data Types”. In: Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 743–
759. doi: 10.1007/978-3-642-22110-1_60.

[33] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. “Decidability,
complexity, and expressiveness of first-order logic over the subword order-
ing”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer
Society, 2017, pp. 1–12. doi: 10.1109/LICS.2017.8005141.

[34] Takeshi Hayashi. “On Derivation Trees of Indexed Grammars—An Ex-
tension of the uvwxy-Theorem”. In: Publications of the Research Institute
for Mathematical Sciences 9.1 (1973), pp. 61–92. doi: 10 .2977/prims/
1195192738.

[35] John E. Hopcroft. “On the equivalence and containment problems for
context-free languages”. In: Mathematical systems theory 3.2 (1969), pp. 119–
124.

[36] Oscar H. Ibarra. “Reversal-Bounded Multicounter Machines and Their De-
cision Problems”. In: J. ACM 25.1 (1978), pp. 116–133. doi: 10 .1145/
322047.322058.

[37] Oscar H. Ibarra and Bala Ravikumar. “On Sparseness, Ambiguity and
other Decision Problems for Acceptors and Transducers”. In: STACS 86,
3rd Annual Symposium on Theoretical Aspects of Computer Science, Or-
say, France, January 16-18, 1986, Proceedings. Ed. by Burkhard Monien
and Guy Vidal-Naquet. Vol. 210. Lecture Notes in Computer Science.
Springer, 1986, pp. 171–179. doi: 10.1007/3-540-16078-7_74.

Unboundedness Problems for Machines with Reversal-Bounded Counters 261

https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.2977/prims/1195192738
https://doi.org/10.2977/prims/1195192738
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1007/3-540-16078-7_74

[38] Oscar H. Ibarra and Shinnosuke Seki. “Characterizations of Bounded semi-
linear Languages by One-Way and Two-Way Deterministic Machines”. In:
Int. J. Found. Comput. Sci. 23.6 (2012), pp. 1291–1306. doi: 10.1142/
S0129054112400539.

[39] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, and Richard A.
Kemmerer. “Counter Machines and Verification Problems”. In: Theor. Com-
put. Sci. 289.1 (2002), pp. 165–189. doi: 10.1016/S0304-3975(01)00268-7.

[40] Matthias Jantzen and Alexy Kurganskyy. “Refining the hierarchy of blind
multicounter languages and twist-closed trios”. In: Inf. Comput. 185.2
(2003), pp. 159–181. doi: 10.1016/S0890-5401(03)00087-7.

[41] Felix Klaedtke and Harald Rueß. “Monadic Second-Order Logics with Car-
dinalities”. In: Proceedings of ICALP 2003. Ed. by Jos C. M. Baeten, Jan
Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger. Berlin, Hei-
delberg: Springer, 2003, pp. 681–696.

[42] Naoki Kobayashi. “Inclusion between the frontier language of a non-determ-

Theor. Comput. Sci. 777 (2019), pp. 409–416. doi: 10.1016/j.tcs.2018.
09.035.

[43] S. Rao Kosaraju. “Decidability of Reachability in Vector Addition Systems
(Preliminary Version)”. In: STOC 1982, May 5-7, 1982, San Francisco,
California, USA. 1982, pp. 267–281.

[44] Manfred Kufleitner. Yet another proof of Parikh’s Theorem. Oct. 6, 2022.
arXiv: 2210.02925.

[45] Dietrich Kuske and Georg Zetzsche. “Languages Ordered by the Subword
Order”. In: Foundations of Software Science and Computation Structures -
22nd International Conference, FOSSACS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings. Ed. by Mikolaj Bo-
janczyk and Alex Simpson. Vol. 11425. Lecture Notes in Computer Science.
Springer, 2019, pp. 348–364. doi: 10.1007/978-3-030-17127-8_20.

[46] Jean-Luc Lambert. “A Structure to Decide Reachability in Petri Nets”. In:
Theor. Comput. Sci. 99.1 (1992), pp. 79–104.

[47] Jérôme Leroux, M. Praveen, Philippe Schnoebelen, and Grégoire Sutre.
“On Functions Weakly Computable by Pushdown Petri Nets and Related
Systems”. In: CoRR abs/1904.04090 (2019). arXiv: 1904.04090.

[48] Jérôme Leroux and Sylvain Schmitz. “Demystifying Reachability in Vec-
tor Addition Systems”. In: 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. IEEE
Computer Society, 2015, pp. 56–67. doi: 10.1109/LICS.2015.16.

[49] Jérôme Leroux and Sylvain Schmitz. “Reachability in Vector Addition Sys-
tems is Primitive-Recursive in Fixed Dimension”. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 2019, pp. 1–13. doi: 10 .1109/LICS.
2019.8785796.

P. Baumann et al.262

inistic recursive program scheme and the Dyck language is undecidable”. In:

https://doi.org/10.1142/S0129054112400539
https://doi.org/10.1142/S0129054112400539
https://doi.org/10.1016/S0304-3975(01)00268-7
https://doi.org/10.1016/S0890-5401(03)00087-7
https://doi.org/10.1016/j.tcs.2018.09.035
https://doi.org/10.1016/j.tcs.2018.09.035
https://arxiv.org/abs/2210.02925
https://doi.org/10.1007/978-3-030-17127-8_20
https://arxiv.org/abs/1904.04090
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796

[50] Ernst W. Mayr. “An Algorithm for the General Petri Net Reachability
Problem”. In: STOC 1981, May 11-13, 1981, Milwaukee, Wisconsin, USA.
1981, pp. 238–246.

[51] Rohit J Parikh. “On context-free languages”. In: Journal of the ACM
(JACM) 13.4 (1966), pp. 570–581.

[52] Pawel Parys. “The Complexity of the Diagonal Problem for Recursion
Schemes”. In: 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2017, December
11-15, 2017, Kanpur, India. Ed. by Satya V. Lokam and R. Ramanujam.
Vol. 93. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
45:1–45:14. doi: 10.4230/LIPIcs.FSTTCS.2017.45.

[53] Loic Pottier. “Minimal Solutions of Linear Diophantine Systems: Bounds
and Algorithms”. In: Rewriting Techniques and Applications, 4th Interna-
tional Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings.
Ed. by Ronald V. Book. Vol. 488. Lecture Notes in Computer Science.
Springer, 1991, pp. 162–173. doi: 10.1007/3-540-53904-2_94.

[54] George S. Sacerdote and Richard L. Tenney. “The decidability of the
reachability problem for vector addition systems (preliminary version)”.
In: STOC 1977. ACM. 1977, pp. 61–76.

[55] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. “On the
Complexity of Equational Horn Clauses”. In: Automated Deduction - CADE-
20, 20th International Conference on Automated Deduction, Tallinn, Esto-
nia, July 22-27, 2005, Proceedings. Ed. by Robert Nieuwenhuis. Vol. 3632.
Lecture Notes in Computer Science. Springer, 2005, pp. 337–352. doi:
10.1007/11532231_25.

[56] Georg Zetzsche. “An Approach to Computing Downward Closures”. In:
Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. Ed.
by Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann. Vol. 9135. Lecture Notes in Computer Science. Springer, 2015,
pp. 440–451. doi: 10.1007/978-3-662-47666-6_35.

[57] Georg Zetzsche. “An approach to computing downward closures”. In: CoRR
abs/1503.01068 (2015). arXiv: 1503.01068.

[58] Georg Zetzsche. “The Complexity of Downward Closure Comparisons”.
In: 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy. Ed. by Ioannis Chatzi-
giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi.
Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
123:1–123:14. doi: 10.4230/LIPIcs.ICALP.2016.123.

Unboundedness Problems for Machines with Reversal-Bounded Counters 263

https://doi.org/10.4230/LIPIcs.FSTTCS.2017.45
https://doi.org/10.1007/3-540-53904-2_94
https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/978-3-662-47666-6_35
https://arxiv.org/abs/1503.01068
https://doi.org/10.4230/LIPIcs.ICALP.2016.123

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

P. Baumann et al.264

http://creativecommons.org/licenses/by/4.0/

Reverse Bisimilarity vs. Forward Bisimilarity

Marco Bernardo1(�) and Sabina Rossi2

1 Università di Urbino, Urbino, Italy
marco.bernardo@uniurb.it

2 Università Ca’ Foscari di Venezia, Venice, Italy

Abstract. Reversibility is the capability of a system of undoing its own
actions starting from the last performed one, in such a way that a past
consistent state is reached. This is not trivial for concurrent systems, as
the last performed action may not be uniquely identifiable. There are
several approaches to address causality-consistent reversibility, some in-
cluding a notion of forward-reverse bisimilarity. We introduce a minimal
process calculus for reversible systems to investigate compositionality
properties and equational characterizations of forward-reverse bisimilar-
ity as well as of its two components, i.e., forward bisimilarity and reverse
bisimilarity, so as to highlight their differences. The study is conducted
not only in a nondeterministic setting, but also in a stochastic one where
time reversibility and lumpability for Markov chains are exploited.

1 Introduction

Reversibility started to receive attention in computing several decades ago [15,3].
Landauer’s principle states that any irreversible manipulation of information,
such as bit erasure or computation path merging, must be accompanied by a
corresponding entropy increase. Therefore, any reversible computation, in which
no information is lost, may be potentially carried out without releasing any heat.
Nowadays, reversible computing has many applications ranging from biochemi-
cal reaction modeling and parallel discrete-event simulation to robotics, control
theory, fault tolerant systems, and concurrent program debugging.

In a reversible system, we can observe two directions of computation: a for-
ward one, coinciding with the normal way of computing, and a backward one,
along which the effects of the forward one are undone when needed in a causally
consistent way, i.e., by returning to a past consistent state. The latter task is
not easy to accomplish in a concurrent system, because the undo procedure
necessarily starts from the last performed action and this may not be unique.
The usually adopted strategy is that an action can be undone provided that all
of its consequences, if any, have been undone beforehand.

In the process algebra literature, two approaches have been developed to
reverse a computation based on keeping track of past actions: the dynamic one
of [7] and the static one of [24]. The former yields RCCS, a variant of CCS [20]
that uses stack-based memories attached to processes to record all the actions
executed by those processes. In contrast, the latter proposes a general method,
of which CCSK is a result, to reverse calculi, relying on the idea of retaining
within the process syntax all executed actions and dynamic operators.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 13

265–284, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_13
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_13&domain=pdf

266 M. Bernardo and S. Rossi

In [24] forward-reverse bisimilarity is introduced too. Unlike standard bisim-
ilarity [22,20], it is truly concurrent as it does not satisfy the expansion law of
parallel composition into a choice among all possible action sequencings. The
interleaving view can be restored by employing back-and-forth bisimilarity [8].
This is defined on computation paths instead of states, thus preserving not only
causality but also history as backward moves have to occur along the path fol-
lowed when going forward even in the presence of concurrency.

In this paper, we investigate compositionality properties and equational char-
acterizations of forward-reverse bisimilarity as well as of its two components, i.e.,
forward bisimilarity and reverse bisimilarity, so as to highlight their differences.
To this purpose, we introduce a minimal calculus including only the terminated
process 0, the unary action prefix operator a . where a stands for an action,
and the binary alternative composition operator + also called choice. These
operators are enough to compare the essential features of the three equivalences,
in a neutral way with respect to interleaving view vs. true concurrency.

The paper is divided into two parts. In Section 2, we conduct our study on
nondeterministic reversible processes, with the operational semantic rules de-
fined in the style of [24] generating only forward transitions that are viewed as
bidirectional, in lieu of a forward transition relation separated from a backward
transition relation. In Section 3, we repeat our study on stochastic reversible pro-
cesses, whose operational semantic rules in the style of [24] generate a single tran-
sition relation encompassing both forward transitions and backward transitions,
by exploiting time reversibility [13] and lumpability [14] for Markov chains. In
Section 4, we recap the differences between forward and reverse bisimilarities.

2 The Nondeterministic Case

In this section, we investigate forward bisimilarity, reverse bisimilarity, and
forward-reverse bisimilarity over nondeterministic reversible processes. We start
by introducing the syntax (Section 2.1) and the semantics (Section 2.2) for these
processes through a minimal calculus, then we provide the definitions of the three
equivalences (Section 2.3) and we study their congruence properties (Section 2.4)
and equational characterizations (Section 2.5).

2.1 Syntax of Nondeterministic Reversible Processes

In the formalization of a process, we usually describe only its future behavior,
hence the following syntax for sequential processes where a ∈ A:

P ::= 0 | a . P | P + P
However, in order to support the definition of the semantics in the style of [24], we
need to enrich the syntax above with information about the past, i.e., the actions
that have already been executed. Due to the absence of a parallel composition
operator, unlike [24] there is no need to add communication keys to executed
actions. It thus suffices to mark them with some symbol, which we choose to
be †. This yields the following syntax extended with information about the past:

P ::= 0 | a . P | a†. P | P + P

Reverse Bisimilarity vs. Forward Bisimilarity 267

We can syntactically characterize several classes of processes generated by the
grammar above through suitable predicates. Firstly, we have initial processes,
i.e., processes in which all the actions are unexecuted:

initial(0)
initial(a . P) ⇐= initial(P)

initial(P1 + P2) ⇐= initial(P1) ∧ initial(P2)
Secondly, we have final processes, i.e., processes in which all the actions along

a single path have been executed:
final(0)

final(a†. P) ⇐= final(P)
final(P1 + P2) ⇐= (final(P1) ∧ initial(P2))∨

(initial(P1) ∧ final(P2))
Multiple paths arise only in the presence of alternative compositions. At each
occurrence of +, only the subprocess chosen for execution advances, while the
other one, although not selected, is kept as an initial subprocess within the
overall process to support the definition of the semantics in the style of [24].

Thirdly, we have the processes that are reachable from an initial one, whose
set we denote by P:

reachable(0)
reachable(a . P) ⇐= initial(P)
reachable(a†. P) ⇐= reachable(P)

reachable(P1 + P2) ⇐= (reachable(P1) ∧ initial(P2))∨
(initial(P1) ∧ reachable(P2))

It is worth noting that:

– 0 is the only process that is both initial and final as well as reachable.
– Any initial or final process is reachable too.
– P also contains processes that are neither initial nor final, like e.g. a†. P with

initial(P) and P �= 0.
– The relative positions of already executed actions and actions to be executed

matter; in particular, an action of the former kind can never follow one of
the latter kind. For instance, a†. b . P ∈ P if initial(P) whereas b . a†. P /∈ P.

2.2 Semantics of Nondeterministic Reversible Processes

According to the approach of [24], dynamic operators such as action prefix and
alternative composition have to be made static by the semantics, so as to retain
within the syntax all the information needed to enable reversibility. For the sake
of minimality, unlike [24] we do not generate two distinct transition relations – a
forward one −→ and a backward one −� – but a single transition relation, which
we implicitly regard as being symmetric like in [8] to enforce the loop property :
any executed action can be undone and any undone action can be redone.

In our setting, a backward transition from P ′ to P (P ′ a−� P) is subsumed

by the corresponding forward transition t from P to P ′ (P
a−→ P ′). As will

become clear with the definition of behavioral equivalences in Section 2.3, like
in [8] when going forward we view t as an outgoing transition of P , while when

268 M. Bernardo and S. Rossi

Actf

initial(P)

a . P
a−→ a†. P

Actp

P
b−→ P ′

a†. P b−→ a†. P ′

Chol

P1
a−→ P ′

1 initial(P2)

P1 + P2
a−→ P ′

1 + P2

Chor

P2
a−→ P ′

2 initial(P1)

P1 + P2
a−→ P1 + P ′

2

Table 1. Operational semantic rules for nondeterministic reversible processes

going backward we view t as an incoming transition of P ′. The semantic rules in
Table 1 generate the labeled transition system (P, A,−→) where −→ ⊆ P×A×P.

The first rule for action prefix (Actf where f stands for forward) applies
only if P is initial and retains the executed action in the target process of the
generated forward transition by decorating the action itself with †. The second
rule for action prefix (Actp where p stands for propagation) propagates actions
executed by inner initial subprocesses.

In both rules for alternative composition (Chol and Chor where l stands
for left and r stands for right), the subprocess that has not been selected for
execution is retained as an initial subprocess in the target process of the gen-
erated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in
that case it is the non-initial subprocess that can move, because the other one
has been discarded at the moment of the selection.

Any state corresponding to a process different from 0 has at least one out-
going transition and exactly one incoming transition due to the decoration of
executed actions. The labeled transition system underlying an initial process
turns out to be a tree, whose branching points correspond to occurrences of +.

Example 1. The labeled transition systems generated by the rules in Table 1
for the two initial processes a . 0 + a . 0 and a . 0 are depicted below:

0_a .

0_a . 0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +

a a a

.

As far as the one on the left is concerned, we observe that, in the case of a
standard process calculus, a single a-transition from a . 0 + a . 0 to 0 would have
been generated due to the absence of action decorations within processes.

2.3 Bisimilarities for Nondeterministic Reversible Processes

The asymmetry between the relative positions of already executed actions and
actions to be executed within reachable processes, as well as the asymmetry
between the use of predicates initial and final in the operational semantic rules,
determine a number of asymmetries between forward and reverse bisimilarity
defined below that will become evident in Sections 2.4 and 2.5.

Reverse Bisimilarity vs. Forward Bisimilarity 269

The difference between the definitions of forward bisimilarity and reverse
bisimilarity is that the former considers only outgoing transitions [22,20] whereas
the latter considers only incoming transitions. We also address forward-reverse
bisimilarity [24], which considers both outgoing transitions and incoming ones.
All the equivalences are strong, i.e., they do not abstract from invisible actions.

Definition 1. We say that P1, P2 ∈ P are forward bisimilar, written P1 ∼FB P2,
iff (P1, P2) ∈ B for some forward bisimulation B. A symmetric relation B over P
is a forward bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Definition 2. We say that P1, P2 ∈ P are reverse bisimilar, written P1 ∼RB P2,
iff (P1, P2) ∈ B for some reverse bisimulation B. A symmetric relation B over P
is a reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

Definition 3. We say that P1, P2 ∈ P are forward-reverse bisimilar, written
P1 ∼FRB P2, iff (P1, P2) ∈ B for some forward-reverse bisimulation B. A sym-
metric relation B over P is a forward-reverse bisimulation iff for all (P1, P2) ∈ B
and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

It holds that ∼FRB � ∼FB ∩ ∼RB. The inclusion is strict because for example
the two final processes a†. 0 and a†. 0 + c . 0 are identified by ∼FB and by ∼RB,
but distinguished by ∼FRB as in the latter process action c is enabled again after
undoing a. Moreover, ∼FB and ∼RB are incomparable because for instance:

a†. 0 ∼FB 0 but a†. 0 �∼RB 0
a . 0 ∼RB 0 but a . 0 �∼FB 0

The first asymmetry is that ∼FRB = ∼FB over initial processes, with ∼RB strictly
coarser, whilst ∼FRB �= ∼RB over final processes because, after going backward,
previously discarded subprocesses come into play again in the forward direction.

Example 2. The two processes shown in Example 1 are identified by all the
three equivalences. This is witnessed by any bisimulation that contains the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), and (a . 0 + a†. 0, a†. 0).

2.4 Congruence Properties

In principle, it makes sense that ∼FB identifies processes with a different past
and that ∼RB identifies processes with a different future, in particular with 0 that
has neither past nor future. However, for ∼FB this results in a compositionality
violation with respect to alternative composition. As an example:

a†. b . 0 ∼FB b . 0
a†. b . 0 + c . 0 �∼FB b . 0 + c . 0

270 M. Bernardo and S. Rossi

because in a†. b . 0 + c . 0 action c is disabled due to the presence of the already
executed action a†, while in b . 0 + c . 0 action c is enabled as there are no past
actions preventing it from occurring. Note that a similar phenomenon does not
happen with ∼RB as a†. b . 0 �∼RB b . 0 due to the incoming a-transition of a†. b . 0,
thus yielding the second asymmetry between forward and reverse bisimilarity.

This problem, which does not show up for ∼RB and ∼FRB because these two
equivalences cannot identify an initial process with a non-initial one, leads to
the following variant of ∼FB that is sensitive to the presence of the past.

Definition 4. We say that P1, P2 ∈ P are past-sensitive forward bisimilar,
written P1 ∼FB,ps P2, iff (P1, P2) ∈ B for some past-sensitive forward bisimula-
tion B. A symmetric relation B over P is a past-sensitive forward bisimulation iff
for all (P1, P2) ∈ B:
– initial(P1) ⇐⇒ initial(P2).

– For all a ∈ A, whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Now ∼FB,ps is sensitive to the presence of the past:
a†. b . 0 �∼FB,ps b . 0

but can still identify non-initial processes having a different past:
a†1 . P ∼FB,ps a†2 . P

It holds that ∼FRB � ∼FB,ps ∩ ∼RB, with ∼FRB =∼FB,ps over initial processes
as well as ∼FB,ps and ∼RB being incomparable because e.g. for a1 �= a2:

a†1 . P ∼FB,ps a
†
2 . P but a†1 . P �∼RB a†2 . P

a1 . P ∼RB a2 . P but a1 . P �∼FB,ps a2 . P
We conclude by formalizing the congruence properties of all the considered

equivalences. When present in the results below, side conditions just ensure that
the overall processes are reachable.

Theorem 1. Let ∼ ∈ {∼FB,∼FB,ps,∼RB,∼FRB}, ∼′ ∈ {∼FB,ps,∼RB,∼FRB},
and P1, P2 ∈ P:

– If P1 ∼ P2 then for all a ∈ A:
• a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
• a†. P1 ∼ a†. P2.

– If P1 ∼′ P2 then for all P ∈ P:
• P1 + P ∼′ P2 + P and P + P1 ∼′ P + P2 provided that initial(P) ∨
(initial(P1) ∧ initial(P2)).

– ∼FB,ps is the coarsest congruence with respect to + contained in ∼FB.

2.5 Equational Characterizations

We now investigate the equational characterizations of ∼FB,ps, ∼RB, and ∼FRB

so as to highlight the fundamental laws of these behavioral equivalences. In the
following, by deduction system we mean a set comprising the following axioms
and inference rules on P – possibly enriched by a set of additional axioms A –
corresponding to the fact that ∼FB,ps, ∼RB, and ∼FRB are equivalence relations
as well as congruences with respect to action prefix and alternative composition:

Reverse Bisimilarity vs. Forward Bisimilarity 271

(A1) (P1 + P2) + P3 = P1 + (P2 + P3)
(A2) P1 + P2 = P2 + P1

(A3) P + 0 = P

(A4) [∼FB,ps] a†. P = P if ¬initial(P)

(A5) [∼FB,ps] a†
1 . P = a†

2 . P if initial(P)
(A6) [∼FB,ps] P +Q = P if ¬initial(P), where initial(Q)

(A7) [∼RB] a . P = P where initial(P)
(A8) [∼RB] P +Q = P if initial(Q)

(A9) [∼FB,ps] P + P = P where initial(P)
(A10) [∼FRB] P +Q = P if initial(Q) ∧ to initial(P) = Q

Table 2. Axioms characterizing bisimilarity over nondeterministic reversible processes

– Reflexivity, symmetry, transitivity: P = P ,
P1 = P2

P2 = P1

,
P1 = P2 P2 = P3

P1 = P3

.

– .-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

– +-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

It is well known that, in the case of bisimilarity over standard nondetermin-
istic processes, alternative composition turns out to be associative and commu-
tative and to admit 0 as neutral element [11]. The same holds true for ∼FB,ps,
∼RB, and ∼FRB because the two operational semantic rules for alternative com-
position are symmetric and 0 has no outgoing or incoming transitions. This is
formalized by axioms A1 to A3 in Table 2.

Then, we have axioms specific to ∼FB,ps. Axioms A4 and A5 together estab-
lish that the past can be neglected when moving only forward, but the presence
of the past cannot be ignored. Axiom A6 states that a previously non-selected
alternative can be discarded after starting moving only forward.

Likewise, we have axioms specific to ∼RB. Axiom A7 means that the fu-
ture can be completely canceled when moving only backward. Axiom A8 states
that a previously non-selected alternative can be discarded when moving only
backward. Since there are no constraints on P , axiom A8 subsumes axiom A3.

Finally, the idempotency of alternative composition in the case of bisimilarity
over standard nondeterministic processes, i.e., P+P = P [11], changes depending
on the considered equivalence:

– For ∼FB,ps, idempotency is explicitly formalized by axiom A9, which we note
to be disjoint from axiom A6 where P cannot be initial.

– For ∼RB, an additional axiom is not needed as idempotency follows from ax-
iom A8 by taking Q equal to P . Thus, the third asymmetry between forward
and reverse bisimilarity has to do with idempotency.

272 M. Bernardo and S. Rossi

– For ∼FRB, idempotency is formalized by axiom A10, where function to initial
brings a process back to its initial version by removing all action decorations:

to initial(0) = 0
to initial(a . P) = a . P
to initial(a†. P) = a . to initial(P)

to initial(P1 + P2) = to initial(P1) + to initial(P2)
This axiom appeared for the first time in [16] and subsumes axioms A9

and A6 for ∼FB,ps as well as axiom A8 for ∼RB.

To prove the ground completeness of the equational characterizations of the
three considered bisimilarities, as usual we introduce equivalence-specific normal
forms to which every process is shown to be reducible, then we work with normal
forms only. All the three normal forms rely on the fact that alternative compo-
sition is associative and commutative, hence the binary + can be generalized to
the n-ary

∑
i∈I for a finite nonempty index set I. In the following, we denote by

� the deduction relation and we examine the sets of additional axioms below:

– AFB,ps = {A1,A2,A3,A4,A5,A6,A9}.
– ARB = {A1,A2,A7,A8}.
– AFRB = {A1,A2,A3,A10}.

Definition 5. We say that P ∈ P is in ∼FB,ps-normal form, written ∼FB,ps-nf,
iff it is equal to one of the following:

– 0.
–

∑
i∈I ai . Pi, where each Pi is initial and in ∼FB,ps-nf.

– a†. P , where P is initial and in ∼FB,ps-nf.

All initial processes without 0 summands are in ∼FB,ps-nf. We observe that, in
the second case, a1 . P1 ∼FB,ps a2 . P2 trivially implies a1 = a2 and P1 ∼FB,ps P2.

Likewise, in the third case, a†1 . P1 ∼FB,ps a
†
2 . P2 trivially implies P1 ∼FB,ps P2.

These facts will be exploited in the proof of the forthcoming Theorem 2.

Lemma 1. For all P ∈ P there is Q ∈ P in ∼FB,ps-nf such that AFB,ps � P = Q.

Theorem 2. Let P1, P2 ∈ P. Then P1 ∼FB,ps P2 iff AFB,ps � P1 = P2.

Definition 6. We say that P ∈ P is in ∼RB-normal form, written ∼RB-nf,
iff it is equal to one of the following:

– 0.
– a†. P , where P is in ∼RB-nf.

The normal form above boils down to a final process consisting of a pos-
sibly empty, finite sequence of already executed actions terminated by 0. As a
consequence, a†1 . P1 ∼RB a†2 . P2 with P1 and P2 in ∼RB-nf implies a1 = a2 and

P1 ∼RB P2, because a
†
1 . P1 and a†2 . P2 must feature the same sequence of already

executed actions and the last executed action of P1 (resp. P2), when the process

is different from 0, is the same as the last executed action of a†1 . P1 (resp. a
†
2 . P2).

This fact will be exploited in the proof of the forthcoming Theorem 3.

Reverse Bisimilarity vs. Forward Bisimilarity 273

Lemma 2. For all P ∈ P there is Q ∈ P in ∼RB-nf such that ARB � P = Q.

Theorem 3. Let P1, P2 ∈ P. Then P1 ∼RB P2 iff ARB � P1 = P2.

Definition 7. We say that P ∈ P is in ∼FRB-normal form, written ∼FRB-nf,
iff it is equal to one of the following:

– 0.
–

∑
i∈I ai . Pi, where each Pi is initial and in ∼FRB-nf.

– a†. P , where P is in ∼FRB-nf.
– a†. P +

∑
i∈I ai . Pi, where P is in ∼FRB-nf and each Pi is initial and in

∼FRB-nf.

As for the second case above, which is concerned with initial processes, we
observe that a1 . P1 ∼FRB a2 . P2 trivially implies a1 = a2 and P1 ∼FRB P2. The
last two cases together, which are concerned with non-initial processes, yield a
process consisting of a finite sequence of already executed actions terminated by
an initial process, such that every action in the sequence may have an initial
process as an alternative. As a consequence, a†1 . P1 + P ′

1 ∼FRB a†2 . P2 + P ′
2

with P1, P2, P
′
1, P

′
2 in ∼FRB-nf, P

′
1 and P ′

2 initial, and P ′
1 and P ′

2 moving only

when going back to to initial(a†1 . P1) and to initial(a†2 . P2), implies a1 = a2,
P1 ∼FRB P2, and P ′

1 ∼FRB P ′
2. These facts will be exploited in the proof of the

forthcoming Theorem 4.

Lemma 3. For all P ∈ P there is Q ∈ P in ∼FRB-nf such that AFRB � P = Q.

Theorem 4. Let P1, P2 ∈ P. Then P1 ∼FRB P2 iff AFRB � P1 = P2.

3 The Markovian Case

In this section, we repeat the investigation over Markovian reversible processes.
We start by recalling the theory of continuous-time Markov chains (Section 3.1)
including time reversibility (Section 3.2) and lumpability (Section 3.3), then we
introduce syntax and semantics for these processes (Section 3.4), we provide the
definitions of the three equivalences (Section 3.5), and we study their congruence
properties and equational characterizations (Section 3.6).

3.1 Markov Chains: Definition, Representation, Terminology

A Markov chain is a discrete-state stochastic process characterized by the mem-
oryless property [14]. More precisely, a stochastic process X(t), t ∈ R≥0, over
a discrete state space S is a continuous-time Markov chain (CTMC) iff for
all n ∈ N, time instants t0 < t1 < · · · < tn < tn+1 ∈ R≥0, and states
s0, s1, . . . , sn, sn+1 ∈ S it holds that Pr{X(tn+1) = sn+1 | X(ti) = si, 0 ≤ i ≤ n}
= Pr{X(tn+1) = sn+1 | X(tn) = sn}, i.e., the probability of moving from one

274 M. Bernardo and S. Rossi

state to another does not depend on the particular path that has been followed
in the past to reach the current state, hence that path can be forgotten.

A CTMC is representable as a labeled transition system or as a state-indexed
matrix. In the first case, each transition is labeled with some probabilistic in-
formation describing the evolution from the source state to the target state of
the transition. In the second case, the same information is stored into an en-
try, indexed by those two states, of a matrix. The value of this probabilistic
information is a function of the time at which the state change takes place.

For the sake of simplicity, we restrict ourselves to time-homogeneous CTMCs,
in which conditional probabilities of the form Pr{X(t + t′) = s′ | X(t) = s}
do not depend on t, so that the considered information is simply a positive

real number given by limt′→0
Pr{X(t+t′)=s′|X(t)=s}

t′ . This is called the rate at
which the CTMC moves from state s to state s′ and uniquely characterizes the
exponentially distributed time taken by the considered move.

A CTMC is irreducible iff each of its states is reachable from every other state
with probability greater than 0. A state s ∈ S is recurrent iff the CTMC will
eventually return to s with probability 1, in which case s is positive recurrent iff
the expected number of steps until the CTMC returns to it is finite. A CTMC is
ergodic iff it is irreducible and all of its states are positive recurrent; ergodicity
coincides with irreducibility in the case that the CTMC has finitely many states.

Every time-homogeneous and ergodic CTMC X(t) is stationary, which means
that (X(ti + t′))1≤i≤n has the same joint distribution as (X(ti))1≤i≤n for all
n ∈ N≥1 and t1 < · · · < tn, t

′ ∈ R≥0. In this case, X(t) has a unique steady-state
probability distribution π that for all s ∈ S fulfills π(s) = limt→∞ Pr{X(t) = s |
X(0) = s′} for any s′ ∈ S. These probabilities can be computed by solving the
linear system of global balance equations π · Q = 0 subject to

∑
s∈S π(s) = 1

and π(s) ∈ R>0 for all s ∈ S. The infinitesimal generator matrix Q contains for
each pair of distinct states the rate of the corresponding move, which is 0 in the
absence of a direct move between them, while qs,s = −∑

s′ �=s qs,s′ for all s ∈ S,
i.e., every diagonal element contains the opposite of the total exit rate of the
corresponding state, so that each row of Q sums up to 0.

3.2 Time Reversibility of Continuous-Time Markov Chains

Due to state space explosion and numerical stability problems [27], the calcula-
tion of the solution of the global balance equation system is not always feasible.
However, it can be tackled in the case that the behavior of the considered CTMC
remains the same when the direction of time is reversed. A CTMC X(t) is time
reversible iff (X(ti))1≤i≤n has the same joint distribution as (X(t′ − ti))1≤i≤n

for all n ∈ N≥1 and t1 < · · · < tn, t
′ ∈ R≥0. In this case, X(t) and its time-

reversed version Xr(t) = X(t′ − t) are stochastically identical, in particular
they are stationary and share the same steady-state probability distribution π.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and
sufficient that the partial balance equations π(s) · qs,s′ = π(s′) · qs′,s are satisfied
for all s, s′ ∈ S such that s �= s′ or, equivalently, that qs1,s2 · . . . ·qsn−1,sn ·qsn,s1 =
qs1,sn · qsn,sn−1

· . . . · qs2,s1 for all n ∈ N≥2 and distinct s1, . . . , sn ∈ S [13].

Reverse Bisimilarity vs. Forward Bisimilarity 275

The time-reversed version Xr(t) of a stationary CTMC X(t) can be defined
even when X(t) is not reversible. As shown in [13,10], this is accomplished by
using the steady-state probability distribution π of X(t), with Xr(t) turning out
to be a CTMC too and having the same steady-state probability distribution π.
More precisely, qrsj ,si = qsi,sj · π(si)/π(sj) for all si �= sj , i.e., the rate from
state sj to state si in the time-reversed CTMC is proportional to the rate from
state si to state sj in the original CTMC, where the coefficient is given by the
ratio of π(si) to π(sj). Note that the time-reversed version of Xr(t) is X(t).

3.3 Lumpability of Continuous-Time Markov Chains

A different approach to the state space explosion problem consists of aggregating
states and transitions in a suitable way. In particular, the focus is on exact ag-
gregations, i.e., partitions of the state space such that the probability of being in
any of the aggregated states is equal to the sum of the probabilities of the origi-
nal states it contains. In the following, we consider a time-homogeneous CTMC
X(t) with state space S and infinitesimal generator matrix Q; the formulas for
the elements of the matrix of the resulting aggregations are taken from [2].

The first notion of exact aggregation that we address is strong lumpabil-
ity [14]. It was later renamed ordinary lumpability in [28,5], which we prefer
to adopt so as not to generate confusion with the use of strong and weak for
behavioral equivalences in concurrency theory.

Definition 8. The partition P induced by an equivalence relation L over S
is an ordinary lumping iff for all (s1, s2) ∈ L and C ∈ P such that s1, s2 /∈ C:∑

s′∈C qs1,s′ =
∑

s′∈C qs2,s′
The resulting CTMC with state space P has infinitesimal generator matrix Q′

defined as follows for all C1, C2 ∈ P such that C1 �= C2:
q′C1,C2

=
∑

s′∈C2
qs,s′

where s ∈ C1.

The second notion of exact aggregation is exact lumpability [25,28,5], which
further enjoys the property that all the original states contained in the same
aggregated state have the same probability. While ordinary lumpability considers
the rates of outgoing transitions and does not check for rate equality within any
class, exact lumpability considers the rates of incoming transitions and applies
the rate equality check inside each class too.

Definition 9. The partition P induced by an equivalence relation L over S
is an exact lumping iff for all (s1, s2) ∈ L and C ∈ P:∑

s′∈C qs′,s1 =
∑

s′∈C qs′,s2
The resulting CTMC with state space P has infinitesimal generator matrix Q′

defined as follows for all C1, C2 ∈ P such that C1 �= C2:
q′C1,C2

=
∑

s′∈C1
qs′,s · (|C2|/|C1|)

where s ∈ C2.

The third notion of exact aggregation is strict lumpability [5], which is a
combination of the previous two.

276 M. Bernardo and S. Rossi

Definition 10. The partition P induced by an equivalence relation L over S
is a strict lumping iff it is both an ordinary lumping and an exact lumping.

The relationships between lumpability and time reversibility for CTMCs
have been investigated in [18,19]:

– An exact lumping of a CTMC corresponds to an ordinary lumping on the
time-reversed CTMC.

– An aggregation of a CTMC is a strict lumping iff it is a strict lumping for
the time-reversed CTMC too.

– An exact lumping of a CTMC is also an ordinary lumping whenever the
CTMC is time reversible, while the vice versa does not hold in general.

Example 3. Consider the three time-reversible, ergodic CTMCs depicted below:

s1

0s

s2

μ1

λ1 λ2

0s’

λ1 λ2+

0s"

λ2 .

μ2

s’ s"

μ μ

When solving the global balance equations for the first CTMC from the left,
we obtain:

π(s0) = μ1·μ2

μ1·μ2+λ1·μ2+λ2·μ1

π(s1) = λ1·μ2

μ1·μ2+λ1·μ2+λ2·μ1

π(s2) = λ2·μ1

μ1·μ2+λ1·μ2+λ2·μ1

If λ1 = λ2 but μ1 �= μ2, then no exact aggregation exists for that CTMC.
If μ1 = μ2 � μ but λ1 �= λ2, then the second CTMC from the left is an ordinary
lumping of the first one, where the aggregated state s′ contains the two original
states s1 and s2 and the solution of the global balance equations is the following:

π(s′0) = μ
μ+λ1+λ2

= π(s0)

π(s′) = λ1+λ2

μ+λ1+λ2
= π(s1) + π(s2)

with π(s1) �= π(s2).
If λ1 = λ2 � λ and μ1 = μ2 � μ, then the third CTMC from the left is a strict –
i.e., ordinary and exact – lumping of the first one, where the aggregated state s′′

contains the two original states s1 and s2 and the solution of the global balance
equations is the following:

π(s′′0) = μ
μ+2·λ = π(s0)

π(s′′) = 2·λ
μ+2·λ = π(s1) + π(s2)

with π(s1) = π(s2).

Example 4. The considered notions of lumpability are distinct from each other.
On the one hand, in the previous example the second CTMC from the left is an
ordinary lumping of the first one, but not an exact lumping as π(s1) �= π(s2)
when μ1 = μ2 and λ1 �= λ2. On the other hand, the CTMC on the right depicted
below is an exact lumping of the CTMC on the left – where the aggregated
state s′ contains the two original states s1 and s2 – when μ′ + μ′′ = ν′ + ν′′ –
corresponding to qs1,s1 +qs2,s1 = qs1,s2 +qs2,s2 , i.e., −(μ′+μ′′)+0 = 0−(ν′+ν′′)

Reverse Bisimilarity vs. Forward Bisimilarity 277

– but it is not an ordinary lumping if μ′ �= ν′ and μ′′ �= ν′′:

0s

s1 s2

s3 s4

’γ

’μ

"μ

"γ ’γ "γ

s’

s’3 4s’

"ν

’ν

λ2 .

’μ ’ν+

2

____ "μ "ν+

2

λ λ

0s’

Note that the two CTMCs above are ergodic, but not time reversible.

3.4 Syntax and Semantics of Markovian Reversible Processes

We have seen in Section 2 that a single forward transition relation is enough for
nondeterministic processes in a reversible setting. This is due to the fact that

P
a−→ P ′ iff P ′ a−� P , where according to [24] the backward transition relation

−� should be used in the second clause of the definition of ∼FRB and hence in
the definition of ∼RB as well.

A transition relation in a single direction is no longer sufficient in the case of
Markovian reversible processes. The reason is that every transition of these pro-
cesses is also labeled with its rate, a positive real number that uniquely identifies
the exponentially distributed duration of the action associated with the transi-
tion. In general, the rate may be different depending on whether the transition
goes forward or backward, without necessarily affecting time reversibility.

When moving from nondeterministic reversible processes to Markovian ones,
in the syntax we thus need to replace a and a† with <a, λ, μ> and <a†, λ, μ>
respectively, where λ ∈ R>0 is the rate of the forward a-transition whilst μ ∈ R>0

is the rate of the backward a-transition. Predicates initial, final, and reachable
are extended accordingly and the set of reachable processes is denoted by PM.

In order for the semantics to be consistent with the CTMC theory recalled in
Sections 3.1 to 3.3, we cannot use a transition relation −→ with forward rates
separated from a transition relation −� with backward rates, as would be the
case if we applied the approach of [24]. For instance, the two Markovian processes
depicted below would be identified by a Markovian variant of ∼FRB relying on
−→ and −�, but the CTMC underlying the labeled transition system of the
process on the right is not an exact lumping of the CTMC underlying the labeled
transition system of the process on the left if λ1 �= λ2, i.e., this Markovian variant
of ∼FRB would not induce strict lumping:

λ1 0_μ<a, , >. 0_λ2 >.a, , μ<+

λ2a,

0_λ2 >.a, , μ<λ1 0_μ>.<a , , + λ1 0_μ<a, , >. 0_λ2< >.μa , , +

λ1a,

μa, μa,

λ1 λ2+ 0_< >.a, , μ

λ1 λ2+a, a,μ

λ1 λ2+ 0_>.μ<a , ,
.

278 M. Bernardo and S. Rossi

Actf

initial(P)

<a, λ, μ> . P
a,λ−→M <a†, λ, μ> . P

Actr

initial(P)

<a†, λ, μ> . P
a,μ−→M <a, λ, μ> . P

Actp

P
b,ξ−→M P ′

<a†, λ, μ> . P
b,ξ−→M <a†, λ, μ> . P ′

Chol

P1
a,ξ−→M P ′

1 initial(P2)

P1 + P2
a,ξ−→M P ′

1 + P2

Chor

P2
a,ξ−→M P ′

2 initial(P1)

P1 + P2
a,ξ−→M P1 + P ′

2

Table 3. Operational semantic rules for Markovian reversible processes

We thus keep using a single transition relation, which is −→M ⊆ PM × (A×
R>0) × PM defined in Table 3. Unlike the one in Section 2.2, it embodies both
transitions with forward rates and transitions with backward rates. This has
been accomplished not only by extending all the rules in Table 1 according to
the new richer syntax, but also by adding a rule for action prefix (Actr where
r stands for reverse) that generates transitions with backward rates.

Any state corresponding to a process different from 0 can now have several
incoming transitions too. The labeled transition system underlying an initial
process turns out to be a tree-like extension of a birth-death process [23,21], with
branching points corresponding to occurrences of +. The reason is that between
any pair of connected states there can only be a transition from the former state
to the latter and a transition from the latter state back to the former, with
the two transitions sharing the same name as they are generated by the same
action <a, λ, μ>. The underlying CTMC, obtained by removing actions from
transitions, turns out to be not only ergodic, but also time reversible due to
its tree-like birth-death structure [13]. The considered calculus thus combines
causality-consistent reversibility with time reversibility like in [4].

Example 5. The labeled transition systems generated by the rules in Table 3
for the two Markovian processes <a, λ, μ> . 0 + <a, λ, μ> . 0 and <a, λ, μ> . 0
are shown below:

μa, μa,

a,μ

0_ 0_< λa, , μ>. + <a, , λ μ>.

λa, a,λ

0_μ>.λ<a , , 0_< λa, , μ>.+ 0_μ>.λa, , < 0_< λa , , μ>.+

0_< λa, , μ>.

λa,

0_< λ μa , , >.
.

The generation of a single a-transition from <a, λ, μ> . 0 + <a, λ, μ> . 0 on the
left would have been wrong, as it would have not reflected the total exit rate
2 ·λ of the source state. Several solutions to this problem have been proposed for
Markovian process calculi without reversibility, while in our setting the problem
is naturally prevented by action decorations within processes.

Reverse Bisimilarity vs. Forward Bisimilarity 279

3.5 Bisimilarities for Markovian Reversible Processes

We now define the Markovian variants of forward bisimilarity, reverse bisimi-
larity, and forward-reverse bisimilarity based on the CTMC theory recalled in
Sections 3.1 to 3.3.

In the forward case, it is known that the (discrete-time) probabilistic bisim-
ilarity of [17] and the (continuous-time) Markovian bisimilarity of [12] induce
an ordinary lumping on the Markov chains underlying the considered processes,
hence so does ∼MFB below. Unlike Definition 8, in Definition 11 the rate equality
check is applied inside each class too and hence not all ordinary lumpings can be
induced by ∼MFB, in particular not the one identifying every pair of processes.

The reason is that while in Markov chain theory one is interested in state
probabilities, in concurrency theory one experiments with processes by observ-
ing the labels of the transitions that are executed [9,1,17]. In particular, two
processes with different total exit rates cannot be identified by ∼MFB below,
which is perfectly justifiable from an observational viewpoint. As an example,
consider a state with a self-looping λ-transition and a state with a self-looping
μ-transition. The two states would be deemed ordinarily lumpable according to
Definition 8, although the more λ and μ are different, the easier it is for an
observer to tell those two states apart.

In the following, {| and |} denote multiset parentheses, while PM/B is the set
of equivalence classes induced by the equivalence relation B over PM.

Definition 11. We say that P1, P2 ∈ PM are Markovian forward bisimilar, writ-
ten P1 ∼MFB P2, iff (P1, P2) ∈ B for some Markovian forward bisimulation B.
An equivalence relation B over PM is a Markovian forward bisimulation iff
for all (P1, P2) ∈ B, a ∈ A, and C ∈ PM/B:

rateout(P1, a, C) = rateout(P2, a, C)

where rateout(P, a, C) =
∑{| ξ ∈ R>0 | ∃P ′ ∈ C.P

a,ξ−→M P ′ |}.
In the reverse case, incoming transitions are considered instead of outgoing

ones. As in [6,26], in the definition of ∼MRB below an additional condition about
total exit rate equality is needed, which in Definition 9 is naturally handled
through the diagonal elements of the infinitesimal generator matrix. It is easily
seen that ∼MRB induces an exact lumping on the Markov chains underlying the
considered processes, but not all exact lumpings can be induced.

Definition 12. We say that P1, P2 ∈ PM are Markovian reverse bisimilar, writ-
ten P1 ∼MRB P2, iff (P1, P2) ∈ B for some Markovian reverse bisimulation B.
An equivalence relation B over PM is a Markovian reverse bisimulation iff
for all (P1, P2) ∈ B and a ∈ A:

rateout(P1, a,PM) = rateout(P2, a,PM)
and for all C ∈ PM/B:

ratein(P1, a, C) = ratein(P2, a, C)

where ratein(P, a, C) =
∑{| ξ ∈ R>0 | ∃P ′ ∈ C.P ′ a,ξ−→M P |}.

In the forward-reverse case, ∼MFRB below induces a strict lumping on the
Markov chains underlying the considered processes.

280 M. Bernardo and S. Rossi

Definition 13. We say that P1, P2 ∈ PM are Markovian forward-reverse bisim-
ilar, written P1 ∼MFRB P2, iff (P1, P2) ∈ B for some Markovian forward-reverse
bisimulation B. An equivalence relation B over PM is a Markovian forward-
reverse bisimulation iff for all (P1, P2) ∈ B, a ∈ A, and C ∈ PM/B:

rateout(P1, a, C) = rateout(P2, a, C)
ratein(P1, a, C) = ratein(P2, a, C)

It is worth noting that any aggregated state resulting from an ordinary lump-
ing is ∼MFB-equivalent to each of the original states it contains, while this is not
necessarily the case for exact lumping and ∼MRB, where ∼MRB-equivalence cer-
tainly holds only among the original states contained in an aggregated state.
This is the fourth asymmetry between forward and reverse bisimilarity.

Example 6. The three CTMCs of Example 3 can be viewed as underlying the
labeled transition systems of the following three initial processes:

<a, λ1, μ1> . 0 +<a, λ2, μ2> . 0 corresponding to s0
<a, λ1 + λ2, μ> . 0 corresponding to s′0
<a, 2 · λ, μ> . 0 corresponding to s′′0

with:
<a†, λ1, μ1> . 0 +<a, λ2, μ2> . 0 corresponding to s1
<a, λ1, μ1> . 0 +<a†, λ2, μ2> . 0 corresponding to s2
<a†, λ1 + λ2, μ> . 0 corresponding to s′

<a†, 2 · λ, μ> . 0 corresponding to s′′

If μ1 = μ2 � μ but λ1 �= λ2, then:
<a, λ1, μ> . 0 +<a, λ2, μ> . 0 ∼MFB <a, λ1 + λ2, μ> . 0
<a†, λ1, μ> . 0 +<a, λ2, μ> . 0 ∼MFB <a†, λ1 + λ2, μ> . 0
<a, λ1, μ> . 0 +<a†, λ2, μ> . 0 ∼MFB <a†, λ1 + λ2, μ> . 0

If λ1 = λ2 � λ and μ1 = μ2 � μ, then:
<a, λ, μ> . 0 +<a, λ, μ> . 0 ∼MFB <a, 2 · λ, μ> . 0
<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MFB <a†, 2 · λ, μ> . 0
<a, λ, μ> . 0 +<a†, λ, μ> . 0 ∼MFB <a†, 2 · λ, μ> . 0

but:
<a, λ, μ> . 0 +<a, λ, μ> . 0 �∼MRB <a, 2 · λ, μ> . 0
<a†, λ, μ> . 0 +<a, λ, μ> . 0 �∼MRB <a†, 2 · λ, μ> . 0
<a, λ, μ> . 0 +<a†, λ, μ> . 0 �∼MRB <a†, 2 · λ, μ> . 0

with the only exception of the following two contained in the same aggregate:
<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MRB <a, λ, μ> . 0 +<a†, λ, μ> . 0

Unlike ∼FB, it holds that ∼MFB is sensitive to the presence of the past,
so that in Definition 11 it is not necessary to require initial(P1) ⇐⇒ initial(P2)
to gain compositionality with respect to alternative composition. For example:

<a†, λ, μ> .<b, δ, γ> . 0 �∼MFB <b, δ, γ> . 0
because the process on the left has an outgoing a-transition with rate μ that
cannot be matched by the process on the right.

Furthermore, unlike ∼FB,ps, it holds that ∼MFB cannot identify processes
with a different past. For instance:

<a†, λ, μ> . 0 �∼MFB <b†, δ, γ> . 0

Reverse Bisimilarity vs. Forward Bisimilarity 281

whenever a �= b or μ �= γ, as in that case the outgoing a-transition on the left
cannot be matched by the outgoing b-transition on the right.

Similarly, unlike ∼RB, we have that ∼MRB is sensitive to the presence of the
future and cannot identify processes with a different future. As an example:

<a, λ, μ> . 0 �∼MRB 0
because the process on the left has an incoming a-transition with rate μ that
cannot be matched by the process on the right. As another example:

<a, λ, μ> . 0 �∼MRB <b, δ, γ> . 0
whenever a �= b or μ �= γ, as in that case the incoming a-transition on the left
cannot be matched by the incoming b-transition on the right.

We conclude by showing that ∼MFRB coincides with ∼MRB (whilst ∼MFB is
strictly coarser) thus extending the first asymmetry between forward and reverse
bisimilarities (see page 5). This result stems from the definition of the operational
semantics and the consequent time reversibility of the underlying CTMCs.

Theorem 5. Let P1, P2 ∈ PM. Then P1 ∼MFRB P2 iff P1 ∼MRB P2.

3.6 Congruence Properties and Equational Characterizations

We start by observing that ∼MFB is not totally sensitive to the past, in the same
way as ∼MRB is not totally sensitive to the future. For both equivalences this
results in a compositionality violation with respect to +. As an example:

<a, λ, λ> . 0 ∼MFRB <a†, λ, λ> . 0
<a, λ, λ> . 0 +<c, κ1, κ2> . 0 �∼MFRB <a†, λ, λ> . 0 +<c, κ1, κ2> . 0

because in <a†, λ, λ> . 0+<c, κ1, κ2> . 0 action c is disabled due to the presence
of the already executed action a†, while in <a, λ, λ> . 0+<c, κ1, κ2> . 0 action c
is enabled as there are no past actions preventing it from occurring.

Note that ∼MFRB would not equate the first two processes if their two rates
were λ1 and λ2 with λ1 �= λ2 or there were any other process in place of 0. There-
fore, when investigating congruence with respect to alternative composition,
we will consider the set of processes P′

M = PM \ {<a, λ, λ> . 0 | a ∈ A, λ ∈ R>0}.
Theorem 6. Let ∼M ∈ {∼MFB,∼MRB} and P1, P2 ∈ PM:

– If P1 ∼M P2 then for all a ∈ A and λ, μ ∈ R>0:

• <a, λ, μ> . P1 ∼M <a, λ, μ> . P2 provided that initial(P1) ∧ initial(P2).
• <a†, λ, μ> . P1 ∼M <a†, λ, μ> . P2.

– If P1 ∼M P2 with P1, P2 ∈ P′
M then for all P ∈ P′

M:

• P1 + P ∼M P2 + P and P + P1 ∼M P + P2 provided that initial(P) ∨
(initial(P1) ∧ initial(P2)).

With regard to equational characterizations, as expected ∼MFB and ∼MRB

are such that alternative composition is associative and commutative and admits
0 as neutral element. This is formalized by axioms AM,1 to AM,3 in Table 4.

Markovian variants of axioms A4 to A6 in Table 2 are not valid for ∼MFB

because this behavioral equivalence is sensitive to the presence of the past, cannot
identify processes with a different past, and views all the transitions as outgoing.

282 M. Bernardo and S. Rossi

(AM,1) (P1 + P2) + P3 = P1 + (P2 + P3)
(AM,2) P1 + P2 = P2 + P1

(AM,3) P + 0 = P

(AM,4) [∼MFB] <a, λ1, μ> . P +<a, λ2, μ> . P = <a, λ1 + λ2, μ> . P
where initial(P)

(AM,5) [∼MFB] <a†, λ1, μ> . P +<a, λ2, μ> .Q = <a†, λ1 + λ2, μ> . P
if to initial(P) = Q,
where initial(Q)

Table 4. Axioms characterizing bisimilarity over Markovian reversible processes

Likewise, Markovian variants of axioms A7 and A8 in Table 2 are not valid
for ∼MRB because this behavioral equivalence is sensitive to the presence of
the future, cannot identify processes with a different future, and views all the
transitions as incoming.

As for idempotency, Markovian variants of axioms A9 and A10 in Table 2,
which are formalized by axioms AM,4 and AM,5 in Table 4, are valid only for
∼MFB as shown in Example 6. We further observe that in the considered example:

<a†, λ, μ> . 0 +<a, λ, μ> . 0 ∼MRB <a, λ, μ> . 0 +<a†, λ, μ> . 0
can be proved via axiom AM,2.

Theorem 7. Let AMFB = {AM,1,AM,2,AM,3,AM,4,AM,5} and P1, P2 ∈ P′
M.

Then P1 ∼MFB P2 iff AMFB � P1 = P2.

Theorem 8. Let AMRB = {AM,1,AM,2,AM,3} and P1, P2 ∈ P′
M. Then

P1 ∼MRB P2 iff AMRB � P1 = P2.

4 Conclusions

In this paper, we have discovered the following asymmetries that shed light on
forward bisimilarity, reverse bisimilarity, and forward-reverse bisimilarity:

1. In the nondeterministic case ∼FRB = ∼FB over initial processes only, while
in the Markovian case ∼MFRB = ∼MRB over all reachable processes.

2. The insensitivity to the presence of the past breaks the compositionality of
∼FB, while the insensitivity to the presence of the future does not violate
the compositionality of ∼RB. This does not happen in the Markovian case.

3. Forward bisimilarity needs explicit idempotency axioms, while reverse bisim-
ilarity does not, especially in the nondeterministic case.

4. Any aggregated state resulting from an ordinary lumping is ∼MFB-equivalent
to each of the original states it contains, while this is not necessarily the case
for exact lumping and ∼MRB, where ∼MRB-equivalence certainly holds only
among the original states contained in an aggregated state.

As future work, we plan to investigate logical characterizations of the same
equivalences, along with what changes when admitting irreversible actions.

Reverse Bisimilarity vs. Forward Bisimilarity 283

Acknowledgments. This research has been supported by the PRIN project
NiRvAna – Noninterference and Reversibility Analysis in Private Blockchains
as well as the INdAM-GNCS project Proprietà Qualitative e Quantitative di
Sistemi Reversibili.

References

1. Abramsky, S.: Observational equivalence as a testing equivalence. Theoretical Com-
puter Science 53, 225–241 (1987)

2. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping
partially symmetrical stochastic models. Performance Evaluation 68, 21–44 (2011)

3. Bennett, C.H.: Logical reversibility of computations. IBM Journal of Research and
Development 17, 525–532 (1973)

4. Bernardo, M., Mezzina, C.A.: Towards bridging time and causal reversibility. In:
Proc. of the 40th Int. Conf. on Formal Techniques for Distributed Objects, Compo-
nents, and Systems (FORTE 2020). LNCS, vol. 12136, pp. 22–38. Springer (2020)

5. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31, 59–75 (1994)

6. Buchholz, P.: Exact performance equivalence: An equivalence relation for stochastic
automata. Theoretical Computer Science 215, 263–287 (1999)

7. Danos, V., Krivine, J.: Reversible communicating systems. In: Proc. of the 15th
Int. Conf. on Concurrency Theory (CONCUR 2004). LNCS, vol. 3170, pp. 292–307.
Springer (2004)

8. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In:
Proc. of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990). LNCS,
vol. 458, pp. 152–165. Springer (1990)

9. van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Handbook
of Process Algebra. pp. 3–99. Elsevier (2001)

10. Harrison, P.: Turning back time in Markovian process algebra. Theoretical Com-
puter Science 290, 1947–1986 (2003)

11. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32, 137–162 (1985)

12. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

13. Kelly, F.: Reversibility and Stochastic Networks. John Wiley & Sons (1979)
14. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand (1960)
15. Landauer, R.: Irreversibility and heat generated in the computing process. IBM

Journal of Research and Development 5, 183–191 (1961)
16. Lanese, I., Phillips, I.: Forward-reverse observational equivalences in CCSK. In:

Proc. of the 13th Int. Conf. on Reversible Computation (RC 2021). LNCS, vol.
12805, pp. 126–143. Springer (2021)

17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94, 1–28 (1991)

18. Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In:
Proc. of the 22nd IEEE Int. Symp. on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS 2014). pp. 427–432. IEEE-CS
Press (2014)

19. Marin, A., Rossi, S.: On the relations between Markov chain lumpability and re-
versibility. Acta Informatica 54, 447–485 (2017)

284 M. Bernardo and S. Rossi

20. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
21. Palacios, J.L., Quiroz, D.: Birth and death chains on finite trees: Computing their

stationary distribution and hitting times. Methodology and Computing in Applied
Probability 18, 487–498 (2016)

22. Park, D.: Concurrency and automata on infinite sequences. In: Proc. of the 5th
GI Conf. on Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer
(1981)

23. Pearce, L.H.: Random walks on trees. Discrete Mathematics 30, 269–276 (1980)
24. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and

Algebraic Programming 73, 70–96 (2007)
25. Schweitzer, P.J.: Aggregation methods for large Markov chains. In: Proc. of the Int.

Workshop on Computer Performance and Reliability. pp. 275–286. North Holland
(1984)

26. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE Trans. on Software Engineering 32, 531–546 (2006)

27. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press (1994)

28. Sumita, U., Rieders, M.: Lumpability and time reversibility in the aggregation-
disaggregation method for large Markov chains. Communications in Statistics -
Stochastic Models 5, 63–81 (1989)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Explainability of Probabilistic Bisimilarity
Distances for Labelled Markov Chains�

Amgad Rady and Franck van Breugel(�)

DisCoVeri Group, Department of Electrical Engineering and Computer Science
York University, Toronto, Canada

franck@yorku.ca

Abstract. Probabilistic bisimilarity distances measure the similarity of
behaviour of states of a labelled Markov chain. The smaller the distance
between two states, the more alike they behave. Their distance is zero
if and only if they are probabilistic bisimilar. Recently, algorithms have
been developed that can compute probabilistic bisimilarity distances for
labelled Markov chains with thousands of states within seconds. However,
say we compute that the distance of two states is 0.125. How does one
explain that 0.125 captures the similarity of their behaviour?
In this paper, we address this question by returning to the definition
of probabilistic bisimilarity distances proposed by Desharnais, Gupta,
Jagadeesan, and Panangaden more than two decades ago. We use a slight
variation of their logic to construct for each pair of states a sequence of
formulas that explains the probabilistic bisimilarity distance of the states.
Furthermore, we present an algorithm that computes those formulas and
we show that each formula can be computed in polynomial time.
We also prove that our logic is minimal. That is, if we leave out any
operator from the logic, then the resulting logic no longer provides a
logical characterization of the probabilistic bisimilarity distances.

1 Introduction

The behavioural equivalence bisimilarity, due to Milner [41] and Park [44], is one
of the cornerstones of concurrency theory. It captures which states of a labelled
transition system, a simple yet widely used model of concurrent systems, behave
the same. Hennessy and Milner [29] provided a logical characterization of bisim-
ilarity by introducing a logic, known as Hennessy-Milner logic, and proving that
states are bisimilar if and only if they satisfy the same formulas of the logic. If the
labelled transition system has finitely many states then for two states that are
not bisimilar there exists a formula, often referred to as a distinguishing formula,
such that one state satisfies the formula whereas the other state does not. This
formula explains why the two states are not bisimilar. Cleaveland [12] presented
a polynomial time algorithm that computes a distinguishing formula for states
that are not bisimilar. Consider the following labelled transition system.

� Supported by the Natural Sciences and Engineering Research Council of Canada.

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_14

285–307, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_14&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30829-1_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_14&domain=pdf

286 A. Rady and F. van Breugel

s t

The states s and t are not bisimilar. This can be explained by a formula that
expresses that a state can transition to a state that can subsequently transition
to a purple (square) state as well as a green (hexagon) state. State s satisfies
this formula but state t does not.

To model randomness in systems, labelled Markov chains are often used.
Larsen and Skou [39] introduced probabilistic bisimilarity to capture which states
of a labelled Markov chain behave the same. They also introduced a logic that
characterizes probabilistic bisimilarity. Desharnais, Edalat, and Panangaden [19]
simplified that logic and presented a polynomial time algorithm that produces
a formula that distinguishes two states which are not probabilistic bisimilar.
Consider the following labelled Markov chain.

s1
2

1
2

1 1

1 1

t5
8

3
8

1 1

1 1

The states s and t are not probabilistic bisimilar. State t can transition with
more than probability 1

2 to a green state that can transition to a purple state,
whereas state s cannot. This property can be expressed in the logic, giving rise
to a formula that distinguishes the states s and t.

Giacalone, Jou, and Smolka [27] observed that probabilistic bisimilarity is not
robust. Miniscule changes to the probabilities may alter which states are proba-
bilistic bisimilar. Instead of an equivalence relation, they suggested exploiting a
pseudometric to capture the behavioural similarity of states. That is, each pair of
states is assigned a distance, a real number in the interval [0, 1], which measures
how similar the states behave. The smaller the distance, the more alike the states
behave. Distance zero captures that the states are behaviourally equivalent.

Desharnais, Gupta, Jagadeesan, and Panangaden [20] presented such a pseu-
dometric. They showed that distance zero captures probabilistic bisimilarity.
Therefore, those distances are known as probabilistic bisimilarity distances. These
distances can be computed in polynomial time, as has been shown by Chen et
al. [11]. Tang [48] developed and implemented algorithms that can compute the
probabilistic bisimilarity distances for labelled Markov chains with thousands of
states within seconds. The states s and t in the above labelled Markov chain
have distance 0.125. How does one explain that 0.125 captures the similarity of
their behaviour? That is the main question that we address in this paper.

Explainability of Probabilistic Bisimilarity Distances 287

To define their probabilistic bisimilarity distances, Desharnais et al. intro-
duce a logic. The labelled Markov chains that they consider differ slightly from
the ones we study in this paper: they label transitions whereas we label states
(by colours/shapes), and where we require that the probabilities of the outgoing
transitions of a state add up to one, they allow them to sum to less than one as
well. State-labelled Markov chains have become the norm in probabilistic model
checking. Probabilistic model checkers such as PRISM [38] and Storm [14] con-
sider state-labelled Markov chains. Since each transition-labelled Markov chain
can be encoded as a state-labelled one [46], this difference does not substantially
impact any of the results. If the probabilities do not sum to one, one can add an
additional state and transition to that state with the remaining probability. Also
this difference does not significantly change the results. Adjusted to our setting,
slightly simplified, and using a different syntax, the logic can be captured by the
following grammar:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕ� q

where a is a label of a state and q is a rational in the interval [0, 1]. This logic
characterizes the probabilistic bisimilarity distances (see, for example, [20,6]).
Roughly speaking, the distance of two states is determined by a formula of the
logic that distinguishes them the most. Such a formula explains their proba-
bilistic bisimilarity distance. Consider, for example, the states s and t in the
above labelled Markov chain. As we already mentioned, their distance is 0.125.
This distance can be explained by the formula ©(∧©). This formula cap-
tures the probability of reaching a green state in one transition and subsequently
reaching a purple state after the second transition. For state s that probability
is 0.5 and it is 0.625 for state t. Note that the © operator is similar to the next
operator of linear temporal logic. Roughly, the interpretation of the formula ©ϕ
in state s is the probability that ϕ holds in the successors of s.

As is common, we provide the above logic with a real-valued interpretation.
For a formula of the logic, its interpretation maps each state of the labelled
Markov chain to a real value in the interval [0, 1]. For example, for the for-
mula ©(∧©), its interpretation in state s is denoted by �©(∧©)�(s)
and has the value 0.5. The value of �©(∧©)�(t) is 0.625. Their difference,
which is 0.125, is the distance of the states s and t. The distinguishing formula
for the states s and t is fairly simple. As we will discuss next, we need all the
operators of the logic to explain the probabilistic bisimilarity distances and a
single formula may not suffice.

1.1 Main Results

As we will show, the above logic is a minimal logic that characterizes the prob-
abilistic bisimilarity distances. That is, if we remove any operator from the logic
then the resulting logic does not characterize the probabilistic bisimilarity dis-
tances anymore. Furthermore, we will demonstrate that there exist finite labelled
Markov chains for which the distances of some states cannot be explained by

288 A. Rady and F. van Breugel

a single formula. However, as we will prove, we can explain the probabilistic
bisimilarity distances by means of a sequence of formulas. Given two states, say
u and v, we will construct a sequence of formulas ϕ0

uv, ϕ1
uv, ϕ2

uv, . . . such that
the sequence

�
ϕ0
uv

�
(u)− �

ϕ0
uv

�
(v),

�
ϕ1
uv

�
(u)− �

ϕ1
uv

�
(v),

�
ϕ2
uv

�
(u)− �

ϕ2
uv

�
(v),

. . . converges to the probabilistic bisimilarity distance of u and v. We will also
present an algorithm that computes those formulas and we will show that each
formula can be computed in polynomial time.

1.2 Related Work

In addition to the references to the literature mentioned above, next we will dis-
cuss some other related work. Many of the behavioural equivalences have been
characterized logically. For example, Feng and Zhang [25] provide a logical char-
acterization of probabilistic bisimilarity for probabilistic automata. Bernardo
and Miculan [4] present an algorithm that builds a distinguishing formula for
states of a probabilistic automaton that are not probabilistic bisimilar. König,
Mika-Michalski, and Schröder [37] propose a general method to construct a dis-
tinguishing formula for a variety of systems, including probabilistic automata.

Behavioural pseudometrics have been introduced for a large variety of sys-
tems that model randomness. For example, Ferns, Panangaden, and Precup [26]
study probabilistic bisimilarity distances for Markov decision processes, Deng,
Chothia, Palamidessi, and Pang [15] introduce them for probabilistic automata,
and De Alfaro, Majumdar, Raman, and Stoelinga [1] present them for games.

Also many behavioural pseudometrics have been characterized logically. For
example, Desharnais, Laviolette, and Tracol [23] present a logical characteri-
zation of ε-bisimilarity, a notion closely related to distances, for probabilistic
automata. Du, Deng, and Gebler [24] logically characterize probabilistic bisimi-
larity distances for probabilistic automata. Pantelic and Lawford [43] provide a
logical characterization of a behavioural pseudometric for probabilistic discrete
event structures. Komorida et al. [35], König and Mika-Michalski [36], Wild and
Schröder [51], as well as Wißmann, Milius, and Schröder [52], present general
frameworks to obtain logical characterizations of behavioural pseudometrics.

Whereas many logics for systems with randomness have a real-valued inter-
pretation, Castiglione, Gebler, and Tini [9,10] introduce a logic for probabilistic
automata with a boolean-valued interpretation. Their logic contains an operator
with which we can express properties such as “a state can transition with prob-
ability a half to a purple state and with probability a half to a green state.” It
is this operator that allows them to define a mimicking formula of a state. As
the name suggests, this formula mimics the behaviour of the state. Furthermore,
they endow the formulas with a pseudometric and show that the probabilistic
bisimilarity distance of two states is the distance of their mimicking formulas.
Hence, the distance of two states can be explained by means of the mimicking
formulas of those states.

Explainability of Probabilistic Bisimilarity Distances 289

2 Labelled Markov Chains and Probabilistic Bisimilarity
Distances

In this section, we introduce several key notions that play a central role in the re-
mainder of the paper. We define the model of interest, namely a labelled Markov
chain. Furthermore, we introduce probabilistic bisimilarity, an equivalence rela-
tion that captures which states of a labelled Markov chain behave the same, and
probabilistic bisimilarity distances, which measure the similarity of behaviour of
those states.

First, we recall some notions from probability theory. Given a finite set X,
a function μ : X → [0, 1] is a probability distribution on X if

∑
x∈X μ(x) = 1.

We denote the set of probability distributions on X by DR(X). For μ ∈ DR(X)
and A ⊆ X, we often write μ(A) for

∑
x∈A μ(x). Similarly, for ω ∈ DR(X ×X),

a ∈ X, and A ⊆ X, we usually write ω(a,A) for
∑

x∈A ω(a, x). For μ ∈ DR(X),
we define the support of μ by support(μ) = {x ∈ X | μ(x) > 0 }. A probability
distribution μ ∈ DR(X) is rational if μ(x) ∈ Q for all x ∈ X. We denote the set
of rational probability distributions on X by DQ(X). Obviously, DQ ⊆ DR.

Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, �〉 consisting of

– a finite set S of states,
– a finite set L of labels,
– a transition probability function τ : S → DQ(S), and
– a labelling function � : S → L.

We restrict the transition probabilities to rationals as we will compute with
them in Section 6 and 7. For the remainder, we fix a labelled Markov chain
〈S,L, τ, �〉. We define probabilistic bisimlarity by means of the set ΩR(μ, ν) which
is known as the transportation polytope [33] of the probability distributions μ
and ν.

Definition 2. For all μ, ν ∈ DR(S), the set ΩR(μ, ν) is defined by

ΩR(μ, ν) = {ω ∈ DR(S × S) | ∀s ∈ S : ω(s, S) = μ(s) ∧ ω(S, s) = ν(s) }.
Definition 3. A relation R ⊆ S × S is a probabilistic bisimulation if for all
(s, t) ∈ R, �(s) = �(t) and there exists ω ∈ ΩR(τ(s), τ(t)) with support(ω) ⊆ R.
States s and t are probabilistic bisimilar, denoted s ∼ t, if (s, t) ∈ R for some
probabilistic bisimulation R.

To define the probabilistic bisimilarity distances, it is convenient to partition
the set of state pairs into the following three sets.

Definition 4. The sets S2
0 , S2

1 and S2
? are defined by

S2
0 = { (s, t) ∈ S × S | s ∼ t }

S2
1 = { (s, t) ∈ S × S | �(s)
= �(t) }

S2
? = (S × S) \ (S2

0 ∪ S2
1)

290 A. Rady and F. van Breugel

The set S2
0 contains those state pairs that have distance zero (cf. Theorem 6).

The set S2
1 contains those state pairs that have a different label and, therefore,

have distance one (cf. Definition 5). The set S2
? contains the remaining state

pairs. Note that some of these state pairs may have distance one, but cannot
have distance zero. The probabilistic bisimilarity distances are defined in terms
of the following function.

Definition 5. The function Δ : (S × S → [0, 1]) → (S × S → [0, 1]) is defined
by

Δ(d)(s, t) =

⎧⎪⎪⎨⎪⎪⎩
0 if (s, t) ∈ S2

0

1 if (s, t) ∈ S2
1

inf
ω∈ΩR(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v) if (s, t) ∈ S2
?

Let d ∈ S × S → [0, 1] and ω ∈ DR(S × S). Instead of
∑

u,v∈S ω(u, v) d(u, v)
we write ω · d in the remainder to avoid clutter. Similarly, for f ∈ S → [0, 1] and
μ ∈ DR(S) we write f · μ instead of

∑
s∈S f(s)μ(s).

For d, e ∈ S × S → [0, 1], we define d � e if for all s, t ∈ S, d(s, t) ≤ e(s, t).
According to, for example, [22, Lemma 3.2], 〈S × S → [0, 1],�〉 is a complete
lattice. Since the function Δ is a monotone function from a complete lattice to
itself, we can conclude from the Knaster-Tarski fixed point theorem (see, for
example, [13, Theorem 2.35]) that Δ has a least fixed point. We denote this
least fixed point by δ. This least fixed point maps each pair of states to a real
number in the interval [0, 1]: the probabilistic bisimilarity distance of the states.
Distance zero captures probabilistic bisimilarity.

Theorem 6 ([21, Theorem 4.10]). For all s, t ∈ S, δ(s, t) = 0 if and only if
s ∼ t.

The probabilistic bisimilarity distance function δ is the limit of the distance
functions δn which only consider the first n transitions when comparing the
similarity of the behaviour of states. This result can be seen as an instance of
the Kleene fixed point theorem [34].

Definition 7. For each n ≥ 0, the function δn : S × S → [0, 1] is defined by

δn(s, t) =

{
0 if n = 0
Δ(δn−1)(s, t) otherwise.

Proposition 8. lim
n→∞ δn = δ.

3 A Logical Characterization

Below, we present a logical characterization of the probabilistic bisimilarity dis-
tances. We start with a logic very similar to the one introduced by Desharnais
et al. [20].

Explainability of Probabilistic Bisimilarity Distances 291

Definition 9. The logic L¬ is defined by

ϕ ::= a | ©ϕ | ¬ϕ | ϕ� q | ϕ ∨ ϕ

where a ∈ L and q ∈ Q ∩ [0, 1].

The above logic is slightly different from the one presented in [20] as we
consider Markov chains with labelled states, whereas Desharnais et al. studied
Markov chains with labelled transitions. In particular, a and ©ϕ were combined
as 〈a〉ϕ. Since we restrict our attention to finite state systems, we can restrict
ourselves to finite disjunctions. In our setting, the constants true and false can
be expressed as

∨
a∈L a (recall that we assume that the set L is finite as well)

and ¬true, respectively. The logic of Desharnais et al. also contains the opera-
tor 	ϕ
q which is redundant, as observed in [21, page 336]. The logic considered
by Desharnais [18] lacks negation, but does include 	ϕ
q and conjunction. The
real-valued interpretation of the logic of Desharnais et al., which considers la-
belled transitions, is adjusted to our setting of labelled states as follows.

Definition 10. The function �·� : L¬ → S → [0, 1] is defined by

�a�(s) =
{
1 if �(s) = a
0 otherwise

�©ϕ�(s) = �ϕ�· τ(s)
�¬ϕ�(s) = 1− �ϕ�(s)

�ϕ� q�(s) = max(�ϕ�(s)− q, 0)
�ϕ ∨ ψ�(s) = max(�ϕ�(s), �ψ�(s))

Note that �false� and �true� are the constant zero and constant one func-
tions, respectively. The probabilistic bisimilarity distances can be characterized
in terms of the logic.

Theorem 11 ([5, Theorem 40 and 44]). For all s, t ∈ S,

δ(s, t) = sup
ϕ∈L¬

�ϕ�(s)− �ϕ�(t).

In the remainder of this paper, we consider the following logic. This logic
also characterizes probabilistic bisimilarity distances. As we will show later, this
logic can explain the probabilistic bisimilarity distances more concisely than the
logic presented above.

Definition 12. The logic L is defined by

ϕ ::= a | ©ϕ | ϕ� q | ϕ⊕ q | ϕ ∨ ϕ | ϕ ∧ ϕ

where a ∈ L and q ∈ Q ∩ [0, 1].

Note that negation has been removed and conjunction has been added. Also
the operator ⊕q, which is dual to �q, has been added. This logic is very similar
to the one considered by Desharnais [18].

292 A. Rady and F. van Breugel

Definition 13. The function �·� : L → S → [0, 1] of Definition 10 is modified
by

�ϕ⊕ q�(s) = min{�ϕ�(s) + q, 1}
�ϕ ∧ ψ�(s) = min{�ϕ�(s), �ψ�(s)}

As already mentioned above, also this logic characterizes the probabilistic
bisimilarity distances.

Theorem 14. For all s, t ∈ S, δ(s, t) = supϕ∈L �ϕ�(s)− �ϕ�(t).

Proof sketch. Each formula of L can be rewritten to an equivalent formula of L¬.
For example, if ϕ is rewritten to ψ then ϕ ⊕ q is rewritten to ¬(¬ψ � q). Each
formula of L has a dual: if �ϕ�= 1− �ψ� then ϕ is a dual of ψ. For example, if ϕ
is a dual of ψ then ϕ � q is a dual of ψ ⊕ q. Each formula L¬ can be rewritten
to an equivalent formula of L. For example, if ϕ is rewritten to ψ then ¬ϕ is
rewritten to a dual of ψ. The result now follows from Theorem 11. ��

4 All Operators are Necessary

The logic L is a minimal logic that characterizes the probabilistic bisimilarity
distances. That is, if we remove any operator from the logic then the resulting
logic does not characterizes the probabilistic bisimilarity distances anymore. Due
to lack of space, we only consider the logic L\�, which does not have the �q
operator.

Definition 15. The logic L\� is defined by

ϕ ::= a | ©ϕ | ϕ⊕ q | ϕ ∨ ϕ | ϕ ∧ ϕ

where a ∈ L and q ∈ Q ∩ [0, 1].

Theorem 16. There exists a labelled Markov chain 〈S,L, τ, �〉 and s, t ∈ S such
that

δ(s, t)> sup
ϕ∈L\�

�ϕ�(s)− �ϕ�(t).

Proof sketch. Consider the following labelled Markov chain.
s t

u

v

1
1
2

1
2 1

4
3
4

1
2

1 1
2

1

It can be shown that δ(s, t) = 7
8 . Furthermore, we can prove that for all ϕ ∈ L\�

and q ∈ Q ∩ [0, 1], if �ϕ�(u)< 1
8 − q

2 then �ϕ�(v)< 3
4 − q by structural induction

on ϕ. Using this result and Theorem 14, we can also show that for all ϕ ∈ L\�,
�ϕ�(s)− �ϕ�(t) ≤ 27

32 by structural induction on ϕ. ��

Explainability of Probabilistic Bisimilarity Distances 293

5 Explainability

In general, the probabilistic bisimilarity distance of two states cannot be ex-
plained by a single formula, as we will show next. That is, generally there does
not exist a distinguishing formula for every pair of states of a labelled Markov
chain. But, as we will prove below, for every pair of states there exists a sequence
of formulas that explains their distance.

Theorem 17. There exists a labelled Markov chain 〈S,L, τ, �〉 and s, t ∈ S such
that for all ϕ ∈ L, δ(s, t)> �ϕ�(s)− �ϕ�(t).

Proof sketch. Consider the following labelled Markov chain.

s t
1
2

1 1
2

1

It can be shown that δ(s, t) = 1. We can also prove that for all ϕ ∈ L,
�ϕ�(s)− �ϕ�(t)< 1 by structural induction on ϕ. ��

As we will show next, for every pair of states (s, t) there exists a sequence of
formulas (ξn)n such that δ(s, t) = limn→∞ �ξn�(s)− �ξn�(t). This sequence (ξn)n
explains the distance δ(s, t).

Proposition 18. For all s, t ∈ S there exists (ξn)n such that

δ(s, t) = lim
n→∞ �ξn�(s)− �ξn�(t).

Proof sketch. This can be concluded from Theorem 14 and the following. Let
X be a nonempty subset of R that is bounded above. Then there exists a se-
quence (xn)n in X that converges to supX [8, page 4]. ��

The proof of the above proposition is not constructive. Below, we will con-
struct a sequence of formulas (ϕn

st)n that explains the distance of the states s
and t. In particular, ϕn

st is constructed so that

�ϕn
st�(s) = δn(s, t) and �ϕn

st�(t) = 0

and, hence, �ϕn
st�(s) − �ϕn

st�(t) = δn(s, t). That is, the formula ϕn
st explains the

distance δn(s, t).
If n = 0 then δn(s, t) = 0. We choose the formula false since

�false�(s) = 0 = δ0(s, t) and �false�(t) = 0.

Let n> 0. For (s, t) ∈ S2
0 , also δn(s, t) = 0. Again we choose the formula false to

explain the distance. For (s, t) ∈ S2
1 , we have that δn(s, t) = 1. In this case the

formula �(s) explains δn(s, t) since �(s) �= �(t) and, therefore,

��(s)�(s) = 1 = δn(s, t) and ��(s)�(t) = 0.

294 A. Rady and F. van Breugel

To construct a formula that explains distance δn(s, t) for (s, t) ∈ S2
? , we rely

on the following result about distances and nonexpansive functions. A function
f ∈ S → [0, 1] is nonexpansive if for all s, t ∈ S, |f(s) − f(t)| ≤ δn(s, t). The
set of nonexpansive functions is denoted by (S, δn) ------� [0, 1]. This set forms a
convex polytope and is known as the Lipschitz polytope. We denote its vertices
by V ((S, δn) ------� [0, 1]).

Proposition 19. For all (s, t) ∈ S2
? and n ≥ 0, there exists fn

st ∈ (S, δn) ------�
(Q ∩ [0, 1]) such that δn+1(s, t) = fn

st · (τ(s)− τ(t)).

Proof sketch. Let (s, t) ∈ S2
? and n ≥ 0. Then

δn+1(s, t) = inf
ω∈ΩR(τ(s),τ(t))

ω · δn.

We can view δn+1(s, t) as the minimal cost of a transportation problem, where
τ(s)(u) represents the amount transported from the origin u, τ(t)(v) captures
the amount received at the destination v, δn(u, v) represents the transportation
cost from u to v, and each ω captures a transportation plan, that is, ω(u, v) is
the amount transported from u to v (see, for example, [40, page 15]).

From the Kantorovich-Rubinstein duality theorem [31] we can conclude that

inf
ω∈ΩR(τ(s),τ(t))

ω · δn = sup
f∈(S,δn)-----�[0,1]

f · (τ(s)− τ(t)).

In this dual to the above transportation problem, each f represents a price
function (see, for example, [40, page 81]). Since a linear function on a convex
polytope attains its maximum at a vertex (see, for example, [49, Theorem 2 of
Chapter 1]), we can conclude that

sup
f∈(S,δn)-----�[0,1]

f · (τ(s)− τ(t)) = max
f∈V ((S,δn)-----�[0,1])

f · (τ(s)− τ(t)).

Since we can prove that V ((S, δn) ------� [0, 1]) ⊆ (S, δn) ------� (Q∩ [0, 1]), there exists
fn
st ∈ (S, δn) ------� (Q ∩ [0, 1]) such that δn+1(s, t) = fn

st · (τ(s)− τ(t)). �	
The function fn

st plays a key role in the formula explaining δn(s, t). However,
fn
st is not necessarily unique. Consider the following labelled Markov chain.

s t

u v

1 1

1
2

1
2

1
2

1
2

1 1 1

For this example, the sequence (δn)n converges in three steps, that is, δ = δ3.
We have that δ2(u, v) = 1

2 and δ3(s, t) = 1
2 . So we need the function f2

st to

Explainability of Probabilistic Bisimilarity Distances 295

satisfy δ3(s, t) = f2
st(u) − f2

st(v) and |f2
st(u) − f2

st(v)| ≤ 1
2 . For each 0 ≤ q ≤ 1

2 ,
f2
st(u) =

1
2 + q and f2

st(v) = q satisfies these properties. As we will see, any fn
st

that satisfies these properties can be used to construct ϕn
st. How to compute

these functions fn
st is the topic of the next section.

As we will show in Theorem 22, we can construct a formula ψn
st that captures

the function fn
st, that is, �ψn

st�= fn
st. More about this soon. By means of ψn−1

st

we can explain the distance δn(s, t) by the formula (©ψn−1
st)� (fn−1

st ·τ(t)) since
we have that

�
(©ψn−1

st)� (fn−1
st · τ(t))�(s) = max{(�ψn−1

st

�· τ(s))− (fn−1
st · τ(t)), 0}

= max{(fn−1
st · τ(s))− (fn−1

st · τ(t)), 0}
= max{fn−1

st · (τ(s)− τ(t)), 0}
= max{δn(s, t), 0}
= δn(s, t)

and, similarly, we can deduce that
�
(©ψn−1

st)� (fn−1
st · τ(t))�(t) = max{fn−1

st · (τ(t)− τ(t)), 0} = 0.

Let us return to the formula ψn
st that captures the function fn

st. To construct
ψn
st we use the following result.

Lemma 20 ([2, Lemma A7.2]). Let f ∈ S → [0, 1]. If for all u, v ∈ S, there
exists guv ∈ S → [0, 1] such that guv(u) = f(u) and guv(v) = f(v), then

f = min
u∈S

max
v∈S

guv = max
u∈S

min
v∈S

guv.

To apply the above lemma, we need to construct for all u, v ∈ S a formula
ψn
stuv such that

�ψn
stuv�(u) = fn

st(u) and �ψn
stuv�(v) = fn

st(v).

The details are provided in Definition 21 and Theorem 22. From Lemma 20 we
can then conclude that

� ∧
u∈S

∨
v∈S

ψn
stuv

�

=

� ∨
u∈S

∧
v∈S

ψn
stuv

�

= fn
st.

The above can be summarized as follows.

Definition 21. For all s, t ∈ S,

ϕ0
st = false

and
ϕ1
st =

{
false if (s, t) ∈ S2

0 ∪ S2
?

�(s) if (s, t) ∈ S2
1

296 A. Rady and F. van Breugel

For all s, t ∈ S and n ≥ 2,

ϕn
st =

⎧⎨
⎩

false if (s, t) ∈ S2
0

�(s) if (s, t) ∈ S2
1(©ψn−1

st

)� (fn−1
st · τ(t)) if (s, t) ∈ S2

?

For all (s, t) ∈ S2
? and n ≥ 1,

ψn
st =

∧
u∈S

∨
v∈S

ψn
stuv

For all (s, t) ∈ S2
? , u, v ∈ S, and n ≥ 1,

ψn
stuv =

⎧⎨
⎩

false⊕ fn
st(u) if fn

st(u) = fn
st(v)

(ϕn
uv � (δn(u, v)− (fn

st(u)− fn
st(v)))⊕ fn

st(v) if fn
st(u)> fn

st(v)
(ϕn

vu � (δn(u, v)− (fn
st(v)− fn

st(u)))⊕ fn
st(u) otherwise.

Note that, for (s, t) ∈ S2
? and n ≥ 2, the formula ϕn

st contains |S|2 subformulas
of the form ϕn−1

uv . As a consequence, the size of ϕn
st grows exponentially in n.

As we will see in Section 7, we can compute ϕn
st in polynomial time by sharing

subformulas.
The above definition shows some similarities with the sequence of formulas

introduced in [43, Definition 8]. Their setting is different: the transitions are la-
belled (as in [20]), the transition function is deterministic, and the labelling of
the transitions is probabilistic. Their logic is simpler than the one introduced in
[20] since the systems they consider are simpler. The sequence of formulas that
they introduce is syntactically simpler than the one we define above. Their for-
mulas are only used to prove a logical characterization, although those formulas
can also be used for explainability.

Consider the states s and t of the following labelled Markov chain.

s1
2

1
2

1 1

1 1

t5
8

3
8

1 1

1 1

By definition, ϕ0
st = false and ϕ1

st = false. For ϕ2
st we get

(©((

ten times︷ ︸︸ ︷
(false⊕ 0) ∨ (false⊕ 0) ∨ · · · ∨ (false⊕ 0))∧
((false⊕ 0) ∨ (false⊕ 0) ∨ · · · ∨ (false⊕ 0))∧
...
((false⊕ 0) ∨ (false⊕ 0) ∨ · · · ∨ (false⊕ 0))))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ten times

�0

Explainability of Probabilistic Bisimilarity Distances 297

This formula can be simplified to false. In the logic of Desharnais et al., which
lacks ∧ and ⊕, one would need 111 additional ¬, making it less concise.

The formula ϕ3
st fills more than a page, but can be simplified to the formula

(©(∧©))� 0.375. Although generally there does not exist a distinguish-
ing formula for each pair of states (Theorem 17), in this case the formula ϕ3

st

explains the distance of states s and t, since δ(s, t) = 0.125,
�
ϕ3
st

�
(s) = 0.125

and
�
ϕ3
st

�
(t) = 0. The formula captures the probability of reaching a green state

in one transition and subsequently reaching another green state.
The formula ϕ3

ts can be simplified to (©(∧ ©)) � 0.5. Since we have
that

�
ϕ3
ts

�
(t) = 0.125 and

�
ϕ3
ts

�
(s) = 0, the formula ϕ3

ts explains the distance
δ(t, s) = 0.125. The formula represents the probability of reaching a green state
in one transition and subsequently reaching a purple state.

The outermost test can be removed from the explanation. Hence, the formulas
©(∧©) and ©(∧©) explain the distance of states s and t as well.

Theorem 22.

(a) For all s, t ∈ S and n ≥ 0, �ϕn
st�(s) = δn(s, t) and �ϕn

st�(t) = 0.
(b) For all (s, t) ∈ S2

? and n ≥ 1, �ψn
st�= fn

st.
(c) For all (s, t) ∈ S2

? , u, v ∈ S, and n ≥ 1, �ψn
stuv�(u) = fn

st(u) and
�ψn

stuv�(v) = fn
st(v).

Proof sketch. This theorem can be proved by induction on n. Most steps of the
proof have already been discussed above. To prove (c), let (s, t) ∈ S2

? , u, v ∈ S
and n ≥ 1. We need to distinguish three cases. Here we only consider the case
that fn

st(u)> fn
st(v). Then

�ψn
stuv�(u) = �(ϕn

uv � (δn(u, v)− (fn
st(u)− fn

st(v))))⊕ fn
st(v)�(u)

= min{max{�ϕn
uv�(u)− (δn(u, v)− (fn

st(u)− fn
st(v))), 0}+ fn

st(v), 1}
= min{max{δn(u, v)− (δn(u, v)− (fn

st(u)− fn
st(v))), 0}+ fn

st(v), 1}
[induction hypothesis of (a)]

= min{max{fn
st(u)− fn

st(v)), 0}+ fn
st(v), 1}

= min{(fn
st(u)− fn

st(v)) + fn
st(v), 1} [fn

st(u)> fn
st(v)]

= min{fn
st(u), 1}

= fn
st(u)

�ψn
stuv�(v) = �(ϕn

uv � (δn(u, v)− (fn
st(u)− fn

st(v))))⊕ fn
st(v)�(v)

= min{max{�ϕn
uv�(v)− (δn(u, v)− (fn

st(u)− fn
st(v))), 0}+ fn

st(v), 1}
= min{max{0− (δn(u, v)− (fn

st(u)− fn
st(v))), 0}+ fn

st(v), 1}
[induction hypothesis of (a)]

= min{0 + fn
st(v), 1}

[fn
st(u)− fn

st(v) ≤ δn(u, v) since fn
st is nonexpansive]

= fn
st(v)

	

298 A. Rady and F. van Breugel

Combining Proposition 8 and Theorem 22, we obtain the following explain-
ability result.

Corollary 23. For all s, t ∈ S, limn→∞ �ϕn
st�(s)− �ϕn

st�(t) = δ(s, t).

6 Computing fn
st

Proposition 19 states that the functions fn
st exist. Below, we will show that these

functions can be computed in polynomial time.
Let (s, t) ∈ S2

? . The function f0
st ∈ S ------� (Q ∩ [0, 1]) is defined as the con-

stant zero function satisfies δ1(s, t) = f0
st · (τ(s)− τ(t)) and can be computed in

polynomial time. To prove that the remaining functions fn
st, with n ≥ 1, can be

computed in polynomial time as well, we use the primal network simplex algo-
rithm to solve minimum-cost flow problems due to Orlin [42] and the ellipsoid
method to solve linear programming problems due to Khachiyan [32]. As we will
show below, fn

st can be computed as FindVertex(δn, τ(s), τ(t)).

1 FindVertex(d, μ, ν)
2 input : d ∈ S × S → (Q ∩ [0, 1]) with d(s, s) = 0 for all s ∈ S , μ, ν ∈ DQ(S)
3 output : argmax

f∈(S,d)-----�(Q∩[0,1])

f · (μ− ν)

4 dμν = inf
ω∈ΩR(μ,ν)

ω · d
5 fμν = vertex o f { f ∈ (S, d) ------� [0, 1] | f · (μ− ν) = dμν }
6 re turn fμν

In line 4 we use Orlin’s primal network simplex algorithm to compute the
minimum cost for the following network (N,E). The nodes of the network consist
of two copies of each u ∈ S, denoted u0 and u1. The supply of node u0 is μ(u)
and the demand of node u1 is ν(u). Each edge (u0, v1) has cost d(u, v).

μ(u)

μ(v)

...

v0

u0

v1

u1 ν(u)

ν(v)

...
...

...

0

d(u,v)

d(v,u)

0

Each ω ∈ ΩR(μ, ν) corresponds to a feasible flow, where ω(u, v) captures the
flow from u0 to v1. The constraints ω(u, S) = μ(u) and ω(S, u) = ν(u), defining
ΩR(μ, ν), capture that the supply of u0 flows from u0 and the demand of u1 flows
to u1. For a feasible flow ω, its cost is ω · d. Hence, dμν captures the minimum
cost.

Note that, by definition, the supplies and demands are rational. We can prove
that dμν = ω·d for some ω ∈ ΩQ(μ, ν). Since d is rational as well, we can conclude
that dμν is also rational. Orlin’s primal network simplex algorithm can compute
the minimum cost and, hence, can be used to compute dμν . Orlin’s algorithm

Explainability of Probabilistic Bisimilarity Distances 299

is strongly polynomial: O(|N |2|E|2 log |N |). Since there are 2|S| nodes and |S|2
edges, dμν can be computed in O(|S|6 log |S|).

In line 5 we use Khachiyan’s ellipsoid method to find a feasible solution of a
linear programming problem with the variables xs, for s ∈ S, and the constraints

∀s, t ∈ S :xs − xt ≤ d(s, t)

∀s ∈ S :xs ≥ 0

∀s ∈ S :xs ≤ 1∑
s∈S

xs (μ(s)− ν(s)) = dμν

By means of the ellipsoid method we can find a vertex of the convex polytope
defined by the above constraints. This method is polynomial in the size of the
constraints, in this case, the size of d, μ, ν, and dμν .

Let n ≥ 1 and (s, t) ∈ S2
? . Since we can show that δn is rational and

δn(s, s) = 0 for all s ∈ S, we can apply FindVertex to δn, τ(s) and τ(t). In
this case, line 4 computes infω∈ΩR(τ(s),τ(t)) ω · δn, which equals δn+1(s, t). As a
consequence, FindVertex(δn, τ(s), τ(t)) returns fn

st : (S, δn) ------� (Q∩ [0, 1]) such
that fn

st · (τ(s)− τ(t)) = δn+1(s, t).
As we already observed above, line 4 can be computed in polynomial time in

the size of the labelled Markov chain and line 5 can be computed in polynomial
time in the size of δn, τ(s), τ(t), and δn+1(s, t), which we can show to be polyno-
mial time in the size of the labelled Markov chain and n. Hence, the running time
of FindVertex(δn, τ(s), τ(t)) is polynomial in the size of the labelled Markov
chain and n.

7 The Algorithm

Given a labelled Markov chain 〈S,L, τ, �〉 and N ∈ N, we can explain the dis-
tances δ(s, t) for s, t ∈ S by computing the formulas ϕn

st for 0 ≤ n ≤ N . To obtain
this sequence of formulas, we implement Definition 21 as follows. Below, for s, t,
u ∈ S, we use the array cells distance[s][t], function[s][t][u], and formula[s][t][n]
to represent the distance δn−1(s, t), the function value fn−1

st (u), and the for-
mula ϕn

st, respectively. In line 5-17, we compute δ0, f0
st, ϕ0

st, and ϕ1
st. The loop

of line 20–50, first computes the distances δn (line 21–27), then determines the
function fn

st (line 30), and finally computes formulas ϕn+1
st (line 31–49).

1 ExplainDistances(τ, �,N):
2 input : τ ∈ S → DQ(S), � ∈ S → L,N ≥ 1

3 output : (ϕn
st)

N
n=0 for all s, t ∈ S

300 A. Rady and F. van Breugel

4 ∼ = DecideProbabilisticBisimilarity(τ, �) for s ∈ S and t ∈ S
5 formula[s][t][0] = false
6 distance[s][t] = 0
7 if s ∼ t
8 for 1 ≤ n ≤ N
9 formula[s][t][N] = false

10 else if �(s) �= �(t)
11 for 1 ≤ n ≤ N
12 formula[s][t][N] = �(s)
13 else
14 formula[s][t][1] = false
15 for u ∈ S
16 function[s][t][u] = 0
17

18 n = 1
19 while n <N
20 for s ∈ S and t ∈ S
21 if �(s) �= �(t)
22 distance[s][t] = 1
23 if s �∼ t ∧ �(s) = �(t)
24 distance[s][t] = 0
25 for u ∈ S
26 distance[s][t] += function[s][t][u] ∗ (τ(s)(u)− τ(t)(u))
27 for s ∈ S and t ∈ S
28 if s �∼ t ∧ �(s) = �(t)
29 function[s][t] = FindVertex(distance, τ(s), τ(t))
30 disjunction = false
31 for u ∈ S
32 conjunction = true
33 for v ∈ S
34 if function[s][t][u] = function[s][t][v]
35 subformula = false ⊕ function[s][t][u]
36 else
37 minusShift = distance[u][v] − |function[s][t][u] − function[s][t][v]|
38 plusShift = min {function[s][t][u], function[s][t][v]}
39 if function[s][t][u] > function[s][t][v]
40 subformula = (formula[u][v][n] 	 minusShift) ⊕ plusShift
41 else
42 subformula = (formula[v][u][n] 	 minusShift) ⊕ plusShift
43 disjunction ∨= subformula
44 conjunction ∧= disjunction
45 shift = 0;
46 for u ∈ S
47 shift += function[s][t][u] ∗ τ(t)(u)
48 formula[s][t][n+ 1] = (© disjunction) 	 shift
49 n = n+ 1

Let us first discuss the correctness of the above algorithm. In line 4, ∼ is
computed by deciding probabilistic bisimilarity. The loop spanning line 20–50

Explainability of Probabilistic Bisimilarity Distances 301

has the following invariant.

∀s, t ∈ S : distance[s][t] = δn−1(s, t) (1)

∀(s, t) ∈ S2
? : ∀u ∈ S : function[s][t][u] = fn−1

st (u) (2)

∀s, t ∈ S : ∀0 ≤ i ≤ n : formula[s][t][i] = ϕi
st (3)

Let us check that the above loop invariant holds when we reach line 21 for
the first time. In line 7 we set distance to zero. Hence, (1) is satisfied when we
reach line 21. In line 17 we set function to zero. Hence, (2) is also satisfied when
we reach line 21. In line 6, 10, 13, and 15 we set formula such that (3) is satisfied
when we reach line 21.

Next, we check that the loop maintains the above invariant, that is, if the
invariant holds at line 21 then it also holds at line 50. Assume that the invariant
holds at line 21. From (2) and line 22–27 we can conclude that

distance[s][t] =

⎧⎨⎩
0 if (s, t) ∈ S2

0

1 if (s, t) ∈ S2
1

fn−1
st · (τ(s)− τ(t)) otherwise

once we arrive at line 28. Hence, from Proposition 19 we can conclude that
distance[s][t] = δn(s, t) for all s, t ∈ S. Therefore, (1) holds at line 50.

Since distance = δn at line 30 and, as we have seen in Section 6,
FindVertex(δn, τ(s), τ(t)) returns fn

st, we assign fn
st to function[s][t] in line 30.

Hence, (2) holds at line 50. We can also verify that line 31–49 ensure that (3) is
maintained by the loop.

Finally, we will argue that the running time of the above algorithm is poly-
nomial in the size of the labelled Markov chain and N . Probabilistic bisimilarity
can be decided in polynomial time as was first shown by Baier [3]. More effi-
cient algorithms have been proposed by Buchholz [7], Derisavi, Hermanns, and
Sanders [17] and Valmari and Franceschinis [50]. Hence, line 4 is polynomial
time.

Each line of 6–17 can be implemented in constant time. Since each line of this
part is executed at most N |S|3 times, the running time of line 5–17 is polynomial
in the size of the labelled Markov chain and N .

The loop consisting of line 20–50 is executed N − 1 times. As we already
discussed in Section 6, the running time of FindVertex(δn, τ(s), τ(t)) is poly-
nomial in the size of the labelled Markov chain and n. When we arrive at line 30,
distance equals δn and, hence, this line is polynomial in the size of the labelled
Markov chain and n. All other lines of the loop can be implemented in constant
time. Each line is executed at most |S|4 times. Therefore, the running time of
line 20–50 is polynomial in the size of the labelled Markov chain and N .

8 Conclusion

In this paper, we study a minor variation of the logic introduced by Desharnais
et al. in [20]. In particular, we show that

302 A. Rady and F. van Breugel

1. the logic is a minimal one that characterizes the probabilistic bisimilarity
distances,

2. in general, there does not exist a distinguishing formula ϕst for states s and
t such that �ϕst�(s)− �ϕst�(t) = δ(s, t),

3. there exists a sequence (ϕn
st)n of formulas that explains distance δ(s, t) as

limn→∞ �ϕn
st�(s)− �ϕn

st�(t) = δ(s, t), and
4. each formula ϕn

st can be computed in polynomial time.

As pointed out by Hillerström in [30], an early paper on computing distin-
guishing formulas, to explain why states are not bisimilar “arguments must be
concise in the sense that an argument must not contain redundant or irrelevant
information.” This applies to our setting as well. The distinguishing formulas
introduced in Definition 21 are in many cases far from concise. We leave the
simplification of these formulas for future research.

One may wonder whether adding fixed points to the logic, in the form vari-
ables X and either operators μX and νX or equations of the form X = ϕ, would
allow us to explain the probabilistic bisimilarity distance of two states by means
of a single formula. A logic similar to the one studied in this paper that contains
fixed points has been studied by De Alfaro et al. [1]. Whether simply adding
fixed points to the logic suffices is not immediately clear as the �pn and ⊕qn in
the formula ψn

uvst vary as n varies. Extending the logic so that the probabilistic
bisimilarity distance of two states can be explained by means of a single formula
is another potential topic for future research.

Graf and Sifakis [28] introduce the notion of a characteristic formula for a
state s: a state satisfies this formula if and only if it is behaviourally equivalent
to s. Characteristic formulas have been developed for probabilistic bisimilarity.
For example, Deng and van Glabbeek [16] present characteristic formulas for
probabilistic automata. Sack and Zhang [47] introduce a general framework to
construct characteristic formulas for probabilistic automata. In the setting of
probabilistic bisimilarity distances, a characteristic formula for a state s of a
labelled Markov chain can be formalized in the following ways. The formula ϕs

is a characteristic formula for the state s if

for all states t, �ϕs�(s)− �ϕs�(t) = δ(s, t) (4)

or
for all states t, �ϕs�(t) = δ(s, t). (5)

It can be shown that (4) and (5) are equivalent: if there exists a formula that
satisfies (4) then there also exists a (different) formula that satisfies (5). Whether
such a formula or a sequence of such formulas exists for the logic studied in this
paper is an open question that may be tackled in future research.

A preliminary implementation of the algorithm in Java is available [45]. Im-
proving the code is another avenue for further research.

Acknowledgements The authors thank the referees for their very detailed and
constructive feedback. The second author thanks the Department of Computer
Science of the University of Oxford for hosting him for his sabbatical during
which part of this research was carried out.

Explainability of Probabilistic Bisimilarity Distances 303

References

1. Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle Stoelinga.
Game relations and metrics. In Proceedings of the 22nd Annual IEEE Symposium
on Logic in Computer Science, pages 99–108, Wroclaw, Poland, July 2007. IEEE.

2. Robert Ash. Real Analysis and Probability. Academic Press, New York, NY, USA,
1972.

3. Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation
and simulation. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of
the 8th International Conference on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 50–61, New Brunswick, NJ, USA,
July/August 1996. Springer-Verlag.

4. Marco Bernardo and Marino Miculan. Constructive logical characterizations of
bisimilarity for reactive probabilistic systems. Theoretical Computer Science,
764(11):80–99, April 2019.

5. Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell. Recur-
sively defined metric spaces without contraction. Theoretical Computer Science,
380(1/2):143–163, June 2007.

6. Franck van Breugel and James Worrell. Towards quantitative verification of proba-
bilistic systems. In Fernando Orejas, Paul Spirakis, and Jan van Leeuwen, editors,
Proceedings of the 28th International Colloquium on Automata, Languages and
Programming, volume 2076 of Lecture Notes in Computer Science, pages 421–432,
Crete, Greece, July 2001. Springer-Verlag.

7. Peter Buchholz. Efficient computation of equivalent and reduced representations
for stochastic automata. Computer Systems Science and Engineering, 15(2):93–
103, 2000.

8. Neil Carothers. Real analysis. Cambridge University Press, Cambridge, United
Kingdom, 2000.

9. Valentina Castiglioni, Daniel Gebler, and Simone Tini. Logical characterization of
bisimulation metrics. In Mirco Tribastone and Herbert Wiklicky, editors, Proceed-
ings 14th International Workshop Quantitative Aspects of Programming Languages
and Systems, volume 227 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 44–62, Eindhoven, The Netherlands, April 2016.

10. Valentina Castiglioni and Simone Tini. Logical characterization of branching met-
rics for nondeterministic probabilistic transition systems. Information and Com-
putation, 268, October 2019.

11. Di Chen, Franck van Breugel, and James Worrell. On the complexity of com-
puting probabilistic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th
International Conference on Foundations of Software Science and Computational
Structures, volume 7213 of Lecture Notes in Computer Science, pages 437–451,
Tallinn, Estonia, March/April 2012. Springer-Verlag.

12. Rance Cleaveland. On automatically distinguishing inequivalent processes. In Ed-
mund Clarke and Robert Kurshan, editors, Proceedings of a DIMACS Workshop
on Computer Aided Verification, volume 3 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 463–476, New Brunswick, NJ,
USA, June 1990. DIMACS/AMS.

13. Brian Davey and Hilary Priestley. Introduction to lattices and order. Cambridge
University Press, Cambridge, United Kingdom, 2002.

14. Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
Storm is coming: A modern probabilistic model checker. In Rupak Majumdar

304 A. Rady and F. van Breugel

and Viktor Kuncak, editors, Proceedings of the 29th International Conference on
Computer Aided Verification, volume 10427 of Lecture Notes in Computer Science,
pages 592–600, Heidelberg, Germany, July 2017. Springer-Verlag.

15. Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-
labelled quantitative transition systems. In Antonio Cerone and Herbert Wiklicky,
editors, Proceedings of 3rd Workshop on Quantitative Aspects of Programming Lan-
guages, volume 153(2) of Electronic Notes in Theoretical Computer Science, pages
79–96, Edinburgh, UK, April 2005. Elsevier.

16. Yuxin Deng and Rob van Glabbeek. Characterising probabilistic processes logi-
cally. In Christian G. Fermüller and Andrei Voronkov, editors, Proceedings of the
17th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, volume 6397 of Lecture Notes in Computer Science, pages 278–
293, Yogyakarta, Indonesia, October 2010. Springer-Verlag.

17. Salem Derisavi, Holger Hermanns, and William Sanders. Optimal state-space
lumping in Markov chains. Information Processing Letters, 87(6):309–315, Septem-
ber 2003.

18. Josée Desharnais. Labelled Markov Processes. PhD thesis, McGill University, Mon-
treal, November 1999.

19. Josée Desharnais, Abbas Edalat, and Prakash Panangaden. A logical characteriza-
tion of bisimulation for labeled Markov processes. In Proceedings of the 13th Annual
IEEE Symposium on Logic in Computer Science, pages 478–487, Indianapolis, IN,
USA, June 1998. IEEE.

20. Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors,
Proceedings of the 10th International Conference on Concurrency Theory, volume
1664 of Lecture Notes in Computer Science, pages 258–273, Eindhoven, The Nether-
lands, August 1999. Springer-Verlag.

21. Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled Markov processes. Theoretical Computer Science, 318(3):323–
354, June 2004.

22. Josée Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden.
The metric analogue of weak bisimulation for probabilistic processes. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 413–422,
Copenhagen, Denmark, July 2002. IEEE.

23. Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate analysis
of probabilistic processes: logic, simulation and games. In Proceedings of the 5th
International Conference on the Quantitative Evaluation of Systems, pages 264–
273, Saint-Malo, France, September 2008. IEEE.

24. Wenjie Du, Yuxin Deng, and Daniel Gebler. Behavioural pseudometrics for non-
deterministic probabilistic systems. In Martin Fränzle, Deepak Kapur, and Nai-
jun Zhan, editors, Proceedings of the 2nd International Symposium on Dependable
Software Engineering: Theories, Tools, and Applications, volume 9984 of Lecture
Notes in Computer Science, pages 67–84, Beijing, China, November 2016. Springer-
Verlag.

25. Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in
probabilistic automata. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, edi-
tors, Proceedings of the 19th International Symposium on Formal Methods, volume
8442 of Lecture Notes in Computer Science, pages 247–262, Singapore, May 2014.
Springer-Verlag.

Explainability of Probabilistic Bisimilarity Distances 305

26. Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov
decision processes. In Proceedings of the 20th Annual Conference on Uncertainty
in Artificial Intelligence, pages 162–169, Banff, Canada, July 2004. AUAI Press.

27. Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for
probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working
Conference on Programming Concepts and Methods, pages 443–458, Sea of Gallilee,
Israel, April 1990. North-Holland.

28. Susanne Graf and Joseph Sifakis. A modal characterization of observational con-
gruence on finite terms of CCS. In Jan Paredaens, editor, Proceedings of the
11th Colloquium on Automata, Languages and Programming, volume 172 of Lec-
ture Notes in Computer Science, pages 222–234, Antwerp, Belgium, July 1984.
Springer-Verlag.

29. Matthew Hennessy and Robin Milner. On observing nondeterminism and con-
currency. In Jaco de Bakker and Jan van Leeuwen, editors, Proceedings of the
7th Colloquium on Automata, Languages and Programming, volume 85 of Lecture
Notes in Computer Science, pages 299–309, Noordwijkerhout, The Netherlands,
July 1980. Springer-Verlag.

30. Michael Hillerström. Verification of CSS-processes. Master’s thesis, Aalborg Uni-
versity, Aalborg, Denmark, January 1987.

31. Leonid Kantorovich and Gennadi Rubinstein. On the space of completely additive
functions (in Russian). Vestnik Leningradskogo Universiteta, 3(2):52–59, 1958.

32. Leonid Khachiyan. A polynomial algorithm in linear programming (in Russian).
Doklady Akademii Nauk SSSR, 244(5):1093–1096, 1979. English translation in
Soviet Mathematics Doklady, 20:191–194, 1979.

33. Viktor Klee and Christoph Witzgall. Facets and vertices of transportation poly-
topes. In George Dantzig and Arthur Veinott, editors, Proceedings of 5th Summer
Seminar on the Mathematics of the Decision Sciences, volume 11 of Lectures in
Applied Mathematics, pages 257–282, Stanford, CA, USA, June/July 1967. AMS.

34. Stephen Kleene. Introduction to Metamathematics. Van Nostrand, New York, NY,
USA, 1952.

35. Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and Ichiro
Hasuo. Expressivity of quantitative modal logics : Categorical foundations via co-
density and approximation. In Proceedings of the 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, pages 1–14, Rome, Italy, June/July 2021.

36. Barbara König and Christina Mika-Michalski. (Metric) bisimulation games and
real-valued modal logics for coalgebras. In Sven Schewe and Lijun Zhang, editors,
Proceedings of the 29th International Conference on Concurrency Theory, volume
118 of Leibniz International Proceedings in Informatics, pages 37:1–37:17, Beijing,
China, September 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

37. Barbara König, Christina Mika-Michalski, and Lutz Schröder. Explaining non-
bisimilarity in a coalgebraic approach: Games and distinguishing formulas. In
Daniela Petrisan and Jurriaan Rot, editors, Proceedings of 15th IFIP WG 1.3 In-
ternational Workshop on Coalgebraic Methods in Computer Science, volume 12094
of Lecture Notes in Computer Science, pages 133–154, Dublin, Ireland, April 2020.
Springer-Verlag.

38. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Proceedings of the 23rd International Conference on Computer Aided Veri-
fication, volume 6806 of Lecture Notes in Computer Science, pages 585–591, Snow-
bird, UT, USA, July 2011. Springer-Verlag.

306 A. Rady and F. van Breugel

39. Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of Programming Languages,
pages 344–352, Austin, TX, USA, January 1989. ACM.

40. David Luenberger and Yinyu Ye. Linear and nonlinear programming. Springer-
Verlag, New York, NY, USA, 2008.

41. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany, 1980.

42. James Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming, 78(2):109–129, August 1997.

43. Vera Pantelic and Mark Lawford. A pseudometric in supervisory control of prob-
abilistic discrete event systems. Discrete Event Dynamic Systems, 22(4):479–510,
December 2012.

44. David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Proceedings of 5th GI-Conference on Theoretical Computer Science, volume
104 of Lecture Notes in Computer Science, pages 167–183, Karlsruhe, Germany,
March 1981. Springer-Verlag.

45. Amgad Rady and Franck van Breugel. Java code to explain proba-
bilistic bisimilarity distances for labelled Markov chains, February 2023.
https://doi.org/10.5281/zenodo.7626542.

46. Michel Reniers, Rob Schoren, and Tim Willemse. Results on embeddings between
state-based and event-based systems. The Computer Journal, 57(1):73–92, 2014.

47. Joshua Sack and Lijun Zhang. A general framework for probabilistic characterizing
formulae. In Viktor Kuncak and Andrey Rybalchenko, editors, Proceedings of
the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation, volume 7148 of Lecture Notes in Computeer Science, pages 396–411,
Philadelphia, PA, USA, January 2012. Springer-Verlag.

48. Qiyi Tang. Computing probabilistic bisimilarity distances. PhD thesis, York Uni-
versity, Toronto, Canada, August 2018.

49. Kathleen Trustrum. Linear programming. Routledge & Kegan Paul, London, UK,
1971.

50. Antti Valmari and Giuliana Franceschinis. Simple O(m log n) time Markov chain
lumping. In Javier Esparza and Rupak Majumdar, editors, Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of Lecture Notes in Computer Science, pages
38–52, Paphos, Cyprus, March 2010. Springer-Verlag.

51. Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via
fuzzy lax extensions. In Igor Konnov and Laura Kovács, editors, Proceedings of
the 31st International Conference on Concurrency Theory, volume 171 of Leib-
niz International Proceedings in Informatics, pages 27:1–27:23, Vienna, Austria,
September 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

52. Thorsten Wißmann, Stefan Milius, and Lutz Schröder. Explaining behavioural
inequivalence generically in quasilinear time. In Serge Haddad and Daniele Varacca,
editors, Proceedings of the 32nd International Conference on Concurrency Theory,
volume 203 of Leibniz International Proceedings in Informatics, pages 32:1–32:18,
Paris, France, April 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

https://doi.org/10.5281/zenodo.7626542

Explainability of Probabilistic Bisimilarity Distances 307

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Weighted and Branching Bisimilarities from
Generalized Open Maps

Jérémy Dubut1(�) and Thorsten Wißmann2,3 ‹

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
jeremy.dubut@aist.go.jp

2 Radboud University, Nijmegen, the Netherlands
t.wissmann@cs.ru.nl

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract. In the open map approach to bisimilarity, the paths and their
runs in a given state-based system are the first-class citizens, and bisimi-
larity becomes a derived notion. While open maps were successfully used
to model bisimilarity in non-deterministic systems, the approach fails to
describe quantitative system equivalences such as probabilistic bisimi-
larity. In the present work, we see that this is indeed impossible and we
thus generalize the notion of open maps to also accommodate weighted
and probabilistic bisimilarity. Also, extending the notions of strong path
and path bisimulations into this new framework, we show that branching
bisimilarity can be captured by this extended theory and that it can be
viewed as the history preserving restriction of weak bisimilarity.

Keywords: Open maps · Weighted Bisimilarity · Probabilistic Bisimi-
larity · Branching Bisimilarity · Weak Bisimilarity

1 Introduction

The theory of open maps is a categorical framework to reason about systems
and their bisimilarities [16]. Given a category of systems and a description of
the shape of the executions and how to extend them, open maps are morphisms
with lifting properties with respect to those extensions. Intuitively, open maps
are morphisms which preserve and reflect transitions of systems, that is, they are
morphisms whose graphs are bisimulations. The theory covers various classical
notions of bisimilarity. For example, two LTSs are strongly bisimilar if and only
if there is a span of open maps between them. Varying the category of models
and the execution shapes allows describing weak bisimilarity, timed bisimilarity,
probabilistic Larsen and Skou bisimilarity, and history-preserving bisimilarity of
event structures (see [16,3,12] for examples).

Another categorical framework for bisimilarity is coalgebra [22]. This time,
given a category and an endofunctor describing respectively the type of state
spaces and the type of transitions, a ‘system’ is understood as a coalgebra for this

‹ Supported by the NWO TOP project 612.001.852.

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 308–327, 2023.
https://doi.org/10.1007/978-3-031-30829-1 15

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_15&domain=pdf
https://orcid.org/0000-0002-2640-3065
https://orcid.org/0000-0001-8993-6486
mailto:jeremy.dubut@aist.go.jp
mailto:t.wissmann@cs.ru.nl
https://doi.org/10.1007/978-3-031-30829-1_15
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_15&domain=pdf

Weighted Bisimilarity from Generalized Open Maps 309

functor. Coalgebra homomorphisms are then very similar to open maps in spirit:
they also are morphisms that preserve and reflect transitions. This intuition has
been made formal by transformations between the categorical frameworks in
both ways; from open maps to coalgebra [19], and conversely [25]. However, the
latter suggests that open maps are only adapted to modeling non-deterministic
systems and would struggle with other types of branchings, such as probabilistic.

In coalgebra, there are no particular difficulties in modeling weighted systems,
and by extension, discrete probabilistic systems [17]. There is also some work for
continuous probabilities, although the theory is much more complicated [5,4].
As we will explain more precisely later, there have been some attempts to do so
with open maps in [3,5], but the result is somewhat disappointing.

Conversely, coalgebra is not adapted to bisimilarities for systems where tran-
sitions are not history-preserving, that is, for which the behavioral equivalence
does not just depend on the transitions at a given state, but on the whole history
of the execution that led to this state. That is the case for example for branching
bisimilarity [23]. Branching bisimilarity arose precisely to make weak bisimilarity
history-preserving. In [3], weak bisimilarity has been described using open maps
by carefully choosing the underlying category, with a general theory developed
in [9] using presheaf models. Branching bisimilarity has also been studied using
open maps in [1,2], but indirectly, through a translation into presheaves.

To resume, the goal of this paper is to capture weighted and branching bisim-
ilarities using a generalization of open maps. Concretely, the contributions are:

1. a proof that it is impossible to appropriately model probabilistic system
using standard open maps (Section 3.2),

2. a faithful extension of the theory of open maps and (strong) path bisimula-
tions (Section 4),

3. a generalized open map situation capturing weighted and probabilistic bisim-
ilarities (Section 5),

4. a generalized open map situation where strong path bisimulations correspond
to stuttering branching bisimulations, open map bisimilarity to branching
bisimilarity, and path bisimulations to weak bisimulations (Section 6).

Full proofs can be found in the appendix: http://arxiv.org/abs/2301.07004

2 From Path Categories to Bisimilarity

Before discussing weighted bisimilarity, let us first recall the main ideas of mod-
eling bisimilarity via open maps, as introduced by Joyal et al. [16]. The definition
is parametric in a functor J : P Ñ M, from a category P of paths to a category
M of models or systems of interest. In the prime example, M is the category of
labelled transition systems LTS as defined next:

Definition 2.1. For a fixed set A of labels, the category LTS contains:

1. Objects: a labelled transition system pX, , x0q is a set X of states, a tran-
sition relation Ď X ˆAˆX and a distinguished initial state x0 P X. We

http://arxiv.org/abs/2301.07004

310 J. Dubut and T. Wi�mann

write x a x1 to denote that px, a, x1q P and simply refer to the LTS as X
if and x0 are clear from the context. For disambiguation, we use Ñ for
morphisms and for transitions.

2. Morphisms: a functional simulation f : pX, , x0q Ñ pY, , y0q is a func-
tion f : X Ñ Y with fpx0q “ y0 and for all x a x1 in X, we have
fpxq a fpx1q.
A functional simulation f : X Ñ Y intuitively means that the system Y has

at least the transitions of X, but possibly more. A special case of a functional
simulation is the run of a word in a system:

Definition 2.2. For the label set A, let pA˚,ďq be the partially ordered set of
words, ordered by the prefix ordering. The functor J : pA˚,ďq Ñ LTS sends a
word w P A˚ to the LTS Jw “ ptv | v ď wu, , εq of all prefixes of w with
v a va for all a P A, va ď w.

This functor J (or more precisely, its image) is often called path category of LTS:
the possible runs of a word w P A˚ in pX, , x0q correspond precisely to the
functional simulations Jw Ñ pX, , x0q in LTS.

On the abstract level, for a general functor J : P Ñ M, we understand the
set of morphisms r : Jw Ñ X for w P P and X P M as the runs of the path w in
the model X. We can already make the trivial observation that all morphisms
f : X Ñ Y in M preserve runs: given a run r : Jw Ñ X of some path w P P in
X, there is a run f ¨ r : Jw Ñ Y of w in Y .

The converse does not hold for a general f : X Ñ Y in M: given a run of w
in Y , there is not necessarily a run of w in X. If f reflects runs, it is called open:

Definition 2.3. For a functor J : P Ñ M, a morphism f : X Ñ Y in M is
called open if f satisfies the following lifting property for all e : v Ñ w in P:

for all

Jv X

Jw Y

r

Je œ f

s

there is d : Jw Ñ X with

Jv X

Jw Y

r

Je
œ

œ
f

s

d

That is, for all commutative squares (s ¨ Je “ f ¨ r), there is d : Jw Ñ X in M
that makes both triangles on the right commute (f ¨ d “ s and d ¨ Je “ r).

By construction, we can only make statements about states that are reachable
via some run. Thus, one often restricts M beforehand to contain only models in
which all states are reachable from the initial state.

For LTSs in which all states are reachable from the initial state, open maps
are related to strong bisimulations [20]: open maps are precisely functions whose
graph relation tpx, fxq | x P Xu is a strong bisimulation. Reformulated in the
context of allegories [10], open maps are precisely the maps in the allegory of
relations that are strong bisimulations. It is then natural to recover bisimulations
as tabulations of open maps, that is:

Definition 2.4. For a functor J : P Ñ M, we say that two models X and Y are
J-bisimilar, if there exist another model Z and two J-open maps f : Z Ñ X and
g : Z Ñ Y , that is, if there is a span of J-open maps between them.

Weighted Bisimilarity from Generalized Open Maps 311

Of course, J-bisimilarity is a reflexive (identities are open maps) and sym-
metric (by permuting f and g in the definition) relation on models, but it is not
transitive in general. It is when the category M has pullbacks [16].

Given a functor J : P Ñ M, there are more classical ways of defining bisim-
ilarities given in [16]. The first one is (strong) path bisimulations, which are re-
lations on runs (similar to history-preserving bisimulations) satisfying the usual
bisimilarity conditions. The second one is by using a modal logic similar to the
Hennessy-Milner theorem. In the case of LTSs with strong bisimilarity, all those
notions describe the same notion of bisimilarity, but that is not true for general
J : P Ñ M: it can only be proved that J-bisimilarity implies the existence of
a (strong) path bisimulation, which itself implies that the two models satisfy
the same formulas of the modal logic. In [6], some mild sufficient conditions in
terms of trees (i.e., colimits of paths in M) are given for those three notions to
coincide. In particular, all the examples of bisimilarities covered by open maps
cited earlier satisfy these conditions.

We use coalgebra for uniform statements about state-based systems of dif-
ferent branching type (including non-deterministic and probabilistic branching):

Definition 2.5. For an object 1 of a category C and an endofunctor F : C Ñ C,
a pointed coalgebra is a pair of morphisms of C of the form 1

iÝÝÑ X
ξÝÝÑ FX.

For example, LTSs can be modeled as pointed coalgebras with C “ Set, 1
any singleton, and F “ PpA ˆ q, where P is the power set functor. The usual
notion of morphisms of coalgebras can be spelt out as follows:

Definition 2.6. A (proper) homomorphism of
pointed coalgebras from pX, ξ, iq to pY, ζ, jq is a
morphism f : X Ñ Y of C such that the diagram
on the right commutes.

1 X FX

Y FY

i

j

œ

ξ

f œ Ff

ζ

Pointed coalgebras and proper homomorphisms always form a category, but
in the case of LTSs as described above, this category is not equivalent to the
category LTS. Indeed, proper homomorphisms are not just morphisms that pre-
serve transitions, but similarly to open maps, they also reflect them. In [25], the
authors proved that for a large class of endofunctors, whose coalgebras basically
are non-deterministic, proper homomorphisms precisely correspond to J-open
maps for a certain functor J . To model morphisms that are only required to
preserve transitions, homomorphisms have to be made lax as follows (see [25]):

Definition 2.7. Assume a relation Ď on ev-
ery Hom-set CpX,FY q. A lax homomorphism of
pointed coalgebras from pX, ξ, iq to pY, ζ, jq is a
morphism f : X Ñ Y of C such that the diagram
on the right laxly commutes, that is, f ¨i “ j and
Ff ¨ ξ Ď ζ ¨ f in CpX,FY q.

1 X FX

Y FY

i

j

œ

ξ

f

Ď

Ff

ζ

In the case of the functor PpA ˆ q, we can consider the pointwise inclu-
sion on every Hom-set SetpX,PpA ˆ Y qq. With this, pointed coalgebras and lax

312 J. Dubut and T. Wi�mann

homomorphisms form a category which is isomorphic to the category LTS. How-
ever, it is not true in general that they form a category, as a compatibility of Ď
with the composition is needed as follows:

Definition 2.8. A partial order on F is a collection of partial orders Ď, one
for each Hom-set of the form CpX,FY q such that

@X f1,f2ÝÝÝÑ FY, X 1 gÝÑ X, Y
hÝÑ Y 1 : f1 Ď f2 ñ Fh ¨ f1 ¨ g Ď Fh ¨ f2 ¨ g.

This is equivalent to the requirement that the Hom-functor Cp , F q factors
through partially ordered sets: Cp , F q : Cop ˆ C Ñ Pos.

Remark 2.9. The present definition subsumes the definition of order on a Set-
functor established by Hughes and Jacobs [11, Def 2.1] (details in the appendix).

Lemma 2.10 [25]. When Ď is a partial order on F , pointed coalgebras and lax
homomorphisms form a category, which we denote by LCoalgp1, F q.

Much as with open maps, many flavors of bisimilarity can be recovered using
spans of proper homomorphisms:

Definition 2.11. We say that two pointed coalgebras are coalgebraically bisim-
ilar if there is a span of proper homomorphisms between them.

There are many ways of defining bisimilarities in coalgebra (see [13] for an
overview), but they coincide for the purpose of the present paper.

3 Weighted Bisimilarity and Open Maps

In this section, we describe known attempts to model weighted systems, and
particularly probabilistic ones, using open maps. They all work with some vari-
ations of the (discrete) distribution functor on Set. We will denote this functor,
which maps a set X to the set

DX “ �
f : X Ñ r0, 1s | f´1

`p0, 1s˘ is finite and
ÿ
xPX

fpxq “ 1
(
,

by D and the variation where the condition “ 1 is replaced by ď 1 by Dď1

(i.e. Dď1X :“ DpX ` 1q). We will prove that, even though Larsen-Skou bisimu-
lations for reactive systems can be modeled with open maps, that is impossible
for bisimulations for generative systems.

3.1 Larsen-Skou Bisimilarity Using Open Maps

In [3], Cheng et al. describe an open map situation for Probabilistic Transition
Systems (PTSs), which corresponds to coalgebras for the functor pDp q ` 1qA.
In this setting, they consider Partial PTSs (PPTS) which are coalgebras for
pDεď1p q ` 1qA where the sub-probability distributions can have values in hyper-
reals, allowing infinitesimals ε. The category of PTSs embeds in that of PPTSs,

Weighted Bisimilarity from Generalized Open Maps 313

and the path category is the full subcategory of PPTSs consisting of finite linear
systems whose probabilities of transitions are infinitesimals. It is then proved
that J-bisimilarity, restricted to PTSs, for this path category corresponds to
Larsen-Skou’s probabilistic bisimilarity [18].

This open map situation has been reformulated in [7] in terms of coreflections:
the obvious functor from PPTSs to TSs is a coreflection whose left-adjoint maps
a LTS T to the PPTS whose underlying LTS is T and where all transitions have
infinitesimal probabilities. In general, given a coreflection F : C Ñ D with left-
adjoint G and a path category J on D, one automatically has the path category
G ˝ J on C, and this construction preserves good properties of J . In particular,
one has that two systems A and B are pG ˝ Jq-bisimilar if and only if FA and
FB are J-bisimilar. Cheng et al.’s path category is obtained in this manner with
the coreflection above and the standard path category on LTSs. In particular,
it means that two PPTSs are bisimilar if and only if their underlying TSs are
strongly bisimilar.

3.2 Impossibility Result for Generative Systems

In [5], Desharnais et al. describe several bisimilarities for generative probabilistic
systems, that is, coalgebras for the functor Dď1pA ˆ q, in a coalgebraic way.
They pointed out that their efforts to model those bisimilarities using open maps
failed [5, p. 188]. In the following, we see that it is in fact not possible. We will
show that for generative probabilistic systems modeled by the category M :“
LCoalgp1,Dď1pAˆ qq, there is no open map characterization of the coalgebraic
bisimilarity. Actually, the argument here is valid for many other types of weights
and is not limited to reals.

Here, for two functions f, g : X Ñ Dď1pY q, f Ď g means that for all x P X,
for all y P Y , fpxqpyq ď gpxqpyq, where ď is the usual ordering on r0, 1s.

In this situation:

Theorem 3.1. For M :“ LCoalgp1,Dď1pA ˆ qq there is no category P and no
functor J : P Ñ M such that for every h : X Ñ Y with reachable X the following
equivalence holds:

h is J-open ðñ h is a proper homomorphism

and there is no P and no functor J such that for every X and Y :

X and Y are J-bisimilar ðñ X and Y are coalgebraically bisimilar.

Proof (Sketch). By contradiction, assume that there is such a J . We prove that
there is a proper homomorphism of the form:

X “ r
x11{n, a ...
xn1{n, a

hÝÝÑ Y “ r y
1, a

314 J. Dubut and T. Wi�mann

which cannot be J-open. Consider first the unique lax homomorphism 0M Ñ Y
where 0M consists in one state and no transition. This is not a proper homomor-
phism, so it is not open by assumption. That is there is a square:

JP 0M

JQ Y

p

Jφ !Y

q

with no lifting. It is mechanical to check that JP » 0M and JQ has at least one
transition from its initial state to another state r

w, a
z with w ‰ 0. With

n “ 2 ¨ r 1
w s, the proper homomorphism h above is not open: there cannot be a

morphism from JQ to X because w ą 1
n . [\

4 Generalized Open Maps

The main argument of the proof of impossibility is the fact that sometimes, a
transition with some probability w in the codomain comes from probabilities
w1, . . . , wn with

ř
i wi “ w in the domain, which makes a lifting morphism

impossible with the current framework of open maps.
In this section, we will extend the open map framework with the main in-

tuition that the lifting morphism splits the probability w into smaller parts
w1, . . . , wn. After defining these generalized open maps, we show some basic
properties of the bisimilarity generated by them.

4.1 Generalized Open Maps Situation

Here, we describe our extension of the open maps framework. The data is similar:
we start with a category of models M, but we need more than just a functor
J : P Ñ M. Assume:

– a set V together with a function J : V Ñ obpMq,
– two small categories E and S whose sets of objects are V ,
– two functors JE : E Ñ M and JS : S Ñ M coinciding with J on objects.

The classical open maps situation J : P Ñ M fits in this extension as follows.
The category E is given by P with the intention that they model path shapes
and their extensions. The functor JE is given by J . The category S is given by
the discrete category |P|, that is, the category whose objects are those of P and
whose morphisms are only identities. The functor JS is the only possible one
respecting the conditions of the definition above.

In the general context of this extension, the interpretation is a bit different.
Now V is meant to be a set of trees labelled by alphabets and weights. E still
consists in extensions, extending trees into trees with longer branches. S then
consists in merging morphisms, similar to the description above: for the example
of weighted systems, those morphisms are allowed to merge states into one,

Weighted Bisimilarity from Generalized Open Maps 315

as long as they sum up the weights of the in-going branches. Generally, those
morphisms are allowed to perform some merges that are harmless for bisimilarity.

With this data, we can define generalized open maps:

Definition 4.1. A morphism f : X Ñ Y in M is called (E,S)-open if it satisfies
the following lifting property for all e : v Ñ w in E:

for all

Jv X

Jw Y

x

JEe œ f

y

there is

Jv X

Ju

Jw Y

x

JEe
1

JEe

œ

œ
fœ

x1

JSs

y

The interpretation starts the same as in usual open maps. Assume that we have
a tree y in Y extending the image by f of the tree x in X. If f is open, there
should be a tree x1 extending x and whose image by f is y. However, x1 may have
a different shape than y, since it might be necessary to split transitions. That is
what u and s are modeling: w is obtained from u by merging some states.

The connection with the classical open maps can be formulated as follows

Proposition 4.2. Given a functor J : P Ñ M and a morphism f : X Ñ Y ,

f is J-open if and only if f is pP, |P|q-open.
Again, bisimilarity can be defined as the existence of a span of open maps

Definition 4.3. We say that X and Y are pE, Sq-bisimilar if there is a span of
pE, Sq-open maps between them.

4.2 Basic Properties

In this section, we will prove general properties of pE, Sq-bisimilarity similar to
the classical case. First, we show that if M has pullbacks, then pE, Sq-bisimilarity
is an equivalence relation. Secondly, we describe two notions of path bisimula-
tions, both implied by pE, Sq-bisimilarity. Finally, we prove that it is enough to
check openness on some generators of E.
In order to see when pE, Sq-bisimilarity is an equiva-
lence relation, we need to check symmetry, reflexiv-
ity, and transitivity. Symmetry always holds because
we can always swap the legs of the span. For reflex-
ivity, it is enough to prove that identities are open
which is valid because S is a category and JS is a
functor, as shown in the diagram on the right. The
proof of transitivity relies on composition and pull-
backs:

Jv X

Jw

Jw Y

x

JEe

JEe

œ

œ
idœ

y

JS id“id

y

Lemma 4.4. pE, Sq-open maps are closed under composition and pullbacks.

Theorem 4.5. If M has pullbacks, then pE, Sq-bisimilarity is a transitive rela-
tion, and thus is an equivalence relation.

316 J. Dubut and T. Wi�mann

Generalized Path Bisimulations. In the classical open map setup [16], an-
other notion of bisimilarity can be defined by using path extensions directly:
so-called strong path and path bisimulations, which can be generalized as fol-
lows. Like originally [16], we assume that there is an element 0 P V , such that J0
is an initial object of M (note that 0 is not required to be initial in E or S). The
intuition is that the unique morphism !X : J0 Ñ X points to the initial state of
X. For example, J0 can be given by p1, id1,Kq in a category of pointed coalge-
bras if 1 is the final object of C and if Cp1, F1q has the least element K : 1 Ñ F1
(those conditions hold in the cases of interest).

Definition 4.6. A path simulation from A to B in M is a set R of spans of the

form A
aÐÝÝ Jv

bÝÝÑ B (for v P V) satisfying the following two properties

– initial condition: the span A
!AÐÝÝÝ J0

!BÝÝÝÑ B belongs to R.

– forward closure: for all spans A
aÐÝÝ Jv

bÝÝÑ B
in R, all e : v Ñ w P E and all a1 : Jw Ñ A P
M such that a “ a1 ¨ JEe, there are e1 : v Ñ u P
E, s : u Ñ w P S, and b1 : Ju Ñ B P M such
that JEe “ JSs ¨ JEe1, b “ b1 ¨ JEe1, and the span

A
a1¨JSsÐÝÝÝÝÝ Ju

b1ÝÝÑ B belongs to R.

Jw Ju

Jv

A B

a1

œ

JSs

b1œ

JEe JEe
1

a b

œ

P R

We say that R is a strong path simulation if it additionally satisfies the following:

– backward closure: for all spans A
aÐÝ Jv

bÝÑ B
in R and all e : w Ñ v P E, we have that the span

A
a¨JEeÐÝÝÝÝ Jw

b¨JEeÝÝÝÝÑ B belongs to R.

Jv Jw Jv

A P R B

a

JEe JEe

b

We say that R is a (strong) path bisimulation from A to B if R and R: “
tB bÐÝÝ Jv

aÝÝÑ A | A aÐÝÝ Jv
bÝÝÑ B P Ru are (strong) path simulations.

Remark that this version of (strong) path bisimulations has the same type as
the one by Joyal et al. [16], but satisfies more general conditions. In particular,
when S is a discrete category, the formulation above is exactly the one from [16].
Obviously, a strong path bisimulation is a path bisimulation.

The main result of this section is the following.

Theorem 4.7. Assume two models A and B in M. If there is a span A
fÐÝÝ

C
gÝÝÑ B where g is a morphism of M and f is an pE, Sq-open map, then the

following set is a strong path simulation:

Rf,g :“ tA aÐÝÝ Jv
bÝÝÑ B | Dc : Jv Ñ C with a “ f ¨ c and b “ g ¨ cu

Jv

A C B

a bc
œ œ

f g

Consequently, if A and B are pE, Sq-bisimilar, then there is strong path bisimu-
lation between them.

Weighted Bisimilarity from Generalized Open Maps 317

As in the classical case of [16], there is no reason for the converse to be
true in general: there might be a strong path bisimulation between two models,
but no span of generalized open maps. However, conditions from [6] could be
accommodated to describe a general framework in which the converse holds.
Since this is not the main focus of this paper, we will not do it here, but will
show a particular case in Section 6.

Generators of the Category of Extensions. In the first example of open
maps for LTSs introduced in Section 2, the path category was described as the
poset of words with the prefix order. Consequently, to prove that a functional
simulation is J-open, we have to prove the lifting property of Definition 4.1 with
respect to all pairs w ď w1. However, it is sufficient to check the lifting property
for extensions by one letter: w1 “ w.a for some a P A. The general reason is that,
as a category, pA˚,ďq is generated by the morphisms w ď w.a, and verifying the
lifting property with respect to generators of the category P is enough to obtain
J-openness. This can be extended to generalized open maps, with additional
care.

Proposition 4.8. Assume a subgraph E1 of E that generates E, that is, every
morphism of E is a finite composition of morphisms of E1. Assume additionally,
that for every e P E1 and s P S for which JEe ¨JSs is well-defined, there are s1 P S
and e1 P E1 such that JEe ¨ JSs “ JSs

1 ¨ JEe1.
In that case, if a morphism of M satisfies the lifting property of Definition 4.1

for all morphisms in E1, then it is pE, Sq-open. Also, if a set of spans satisfies
the conditions of Definition 4.6, where E is replaced by E1, then it is a (strong)
path bisimulation.

The first condition is satisfied when E is a free category and E1 is its class of
generators. The second condition is satisfied for e.g. E “ P and S “ |P|.

5 Open Maps for Weighted Systems

In this section, we will prove that weighted systems can be captured by this
generalized open map theory for a large variety of weights, including those needed
to capture probabilistic systems.

5.1 Category of Coalgebras for Weighted Systems

In this section, we will consider weighted functors as follows.

Definition 5.1. Given a commutative monoid pK,`, eq, the K-weighted functor

pK,`, eqp q
: Set Ñ Set is defined as follows on sets and maps:

sets: X Ñ pK,`, eqpXq “ �
μ : X Ñ K | μ´1pKzteuq is finite

(

maps: f : X Ñ Y Ñ pK,`, eqpfqpμq “ `
y P Y Ñ

ÿ
tμpxq | x P X, fpxq “ yu˘

318 J. Dubut and T. Wi�mann

An element μ of pK,`, eqpXq is a finite distributions sending each x P X to a
weight in K. Whenever a map f : X Ñ Y identifies elements fpx1q “ fpx2q “
¨ ¨ ¨ , then the functor action turns μ into a distribution on Y by adding up the
weights μpx1q `μpx2q ` ¨ ¨ ¨ as elements of X are sent to the same element in Y .
Since μ is finite and K is commutative, this addition is well-defined.

Given a commutative monoid pK,`, eq and an alphabet A, we want to con-

sider weighted systems as coalgebras for the functor pK,`, eqpAˆ q
. As described

in Section 2, we want to be able to talk about lax homomorphisms, so we need

an order on pK,`, eqpAˆ q
as in Definition 2.8. For that, we need to assume

an ordered commutative monoid pK,`, e,Ďq, that is, a monoid pK,`, eq with a
partial order Ď such that ` is monotone in both its arguments.

Lemma 5.2. Given an ordered commutative monoid pK,`, e,Ďq, then for all

sets X and Y , the relation on the hom-set Set
`
X, pK,`, eqpAˆY q˘

defined by

f1 Ď f2 ðñ @x P X, @y P Y, @a P A, f1pxqpa, yq Ď f2pxqpa, yq

is an order on pK,`, eqpAˆ q
.

So, we have a category LCoalg
´
1, pK,`, eqpAˆ q¯

of pointed coalgebras and

lax homomorphisms. The goal of this section is to design a generalized open maps
situation for which pE, Sq-bisimilarity characterizes coalgebraic bisimilarity and
more precisely for which pE, Sq-openness characterizes proper homomorphisms.

In the course of the constructions and proofs, we will need additional as-
sumptions that we list here.

Definition 5.3. We call an ordered commutative monoid pK,`, e,Ďq a rear-
rangement monoid if it satisfies the additional requirement that if n,m ě 1 and

nÿ
i“1

xi Ď
mÿ
j“1

yj ,

then there exists a family pui,jq1ďiďn,1ďjďm such that

for all j,
nÿ

i“1

ui,j Ď yj and for all i,
mÿ
j“1

ui,j “ xi.

In addition, we say that a rearrangement monoid is strict if the condition above
holds also when replacing Ď with “.

The intuition is as follows. We have some weights arranged as x1, . . . , xn. We
want to be able to decompose those weights into smaller weights, the ui,js, and
by rearranging those small weights obtaining weights smaller than the yj . This
condition states that this is possible when there is enough weight in total. The
special case of strictness is called the row-column property in [17].

Weighted Bisimilarity from Generalized Open Maps 319

Lemma 5.4. For any subgroup G of the real numbers pRn,`,´, 0q such that
for all x, y in G pminpx1, y1q, . . . ,minpxn, ynqq P G, the monoids pG,`, 0,ďq
and pGě0,`, 0,ďq, where ď is the usual order on Rn, are strict rearrangement
monoids.

For any lattice with bottom element pL,ď,\,[,Kq, pL,\,K,ďq is a rear-
rangement monoid if and only if pL,ď,\,[q is distributive. Furthermore, in
that case, it is always strict.

Another property is a form of positivity: we say that an ordered monoid is
positively ordered if e is the bottom element for Ď, that is, for all k P K, e Ď k.

Example 5.5. The positive real line pR`,`, 0,ďq is a positively ordered strict
rearrangement monoid and it is necessary to define probabilistic systems. An-
other example is the monoid of natural numbers pN,`, 0,ďq, which defines the
bag functor. Finally, any distributive lattice with bottom element pL,\,K,ďq,
typically powerset lattices pPpXq,Y,∅,Ďq, is too. On the contrary, pR,`, 0,ďq
and pZ,`, 0,ďq are strict rearrangement monoids but are not positively ordered.
Conversely pNě1,ˆ, 1,ďq is positively ordered but not a rearrangement monoid.
Indeed, it is impossible to rearrange the inequality 2 ˆ 5 ď 3 ˆ 4.

5.2 Generalized Open Maps Situation for Weighted Systems

Let pK,`, e,Ďq be a commutative ordered monoid. Elements of VK are

– either words on A ˆ pKzteuq, w “ pa1, k1q, . . . , pan, knq,
– or triples pw1, b, w2q of a word w1 on A ˆ pKzteuq, a letter b P A, and a

non-empty word w2 on pKzteuq.
The function JK maps

– a word w “ pa1, k1q, . . . , pan, knq to the system

Jw “ 0 1 ¨ ¨ ¨ n
pa1,k1q pa2,k2q pan,knq

that is, to the coalgebra Jw : t0, . . . , nu Ñ KpAˆt0,...,nuq such that if b “ ai`1

and j “ i ` 1 then Jwpiqpb, jq “ ki`1, else “ e.
– a triple pw1, b, w2q with w1 “ pa1, k1q, . . . , pan, knq and w2 “ l1, . . . , lm is

mapped to the system

Jpw1, b, w2q “ 0 1 ¨ ¨ ¨ n

pn ` 1, 1q

pn ` 1,mq
pa1,k1q pa2,k2q pan,knq pb,l1q

pb,lmq

¨¨¨

that is, Jpw1, b, w2qpnqpn ` 1, iq “ pb, liq.
The category EK is defined as follows. For every w1, b, and w2, there is a

unique edge e from w1 to pw1, b, w2q. The functor then maps this edge e to JEe,
the obvious injection.

The category SK has two types of morphisms:

320 J. Dubut and T. Wi�mann

0 10.4 i

r

s

t

0.55 0.3

0.4

0.9

0 1

p2, 1q

p2, 2q

0.4 0.2

0.3

0 1 p2, 1q0.4 0.5 i
s

t

0.55
0.7

0.9

x : 0 Ñi,1 Ñi

JEe

JEe

h : i Ñi

r Ñs

s Ñs

t Ñt

JSs

d

y : 0 Ñi,1 Ñi,p2,1q Ñs

Fig. 1. Example of a lifting of a path extension in R`-weighted systems and for a
singleton label alphabet |A| “ 1, thus omitting action labels.

– identities on words w1,
– morphisms from pw1, b, w

1
2q to pw1, b, w2q, with w1

2 “ l11, . . . , l1m1 and m ď
m1, which are given by surjective monotone functions s : t1, . . . ,m1u Ñ
t1, . . . ,mu such that for all i ď m, li “ ř

tj|spjq“iu l1j .

The functor JS then maps s of the second type to the proper homomorphism
JSs which maps i to i and pn ` 1, jq to pn ` 1, spjqq.

As a piece of notation, for a morphism x : Jw1 Ñ X, with w1 of length n we
denote xpnq P X by endpxq. We then say that a state p of X is reachable if there
is a morphism of type x : Jw1 Ñ X with endpxq “ p. By extension, we say that
X is reachable if all its states are reachable.

5.3 Equivalence between Open Maps and Proper Homomorphisms

An example of an pE, Sq-open map h is provided in Figure 1, together with a path
extension that is lifted. Like it is often the case in the non-deterministic systems,
the lifting map d is not unique. Hence, only existence (and no uniqueness) is
required in the lifting property. Since h is a proper homomorphism, it provides
a lifting for all extensions, as we show in general:

Theorem 5.6. Assume a lax homomorphism f : X Ñ Y . If f is pEK , SKq-open,
X is reachable, and K is positively ordered, then f is a proper homomorphism.
Conversely, if f is a proper homomorphism and K is a rearrangement monoid,
then f is pEK , SKq-open. In particular, if K is a positively ordered rearrangement
monoid, two weighted systems X and Y are pEK , SKq-bisimilar if and only if they
are coalgebraically bisimilar.

For an endofunctor on Set, to prove that coalgebraic bisimilarity is an equiv-
alence relation it is enough to show that the functor preserves weak-pullbacks.
In the case of the weighted functor, this is given by strictness (see also [17]):

Weighted Bisimilarity from Generalized Open Maps 321

Corollary 5.7. If K is a positively ordered strict rearrangement monoid, then
pEK , SKq-bisimilarity is an equivalence relation.

5.4 About Sub-distribution Functor

Until now, we have not dealt with probabilistic systems, that is, coalgebras
for the sub-distribution functor Dď1. Those coalgebras are particular cases of

coalgebras for the weighted functor X Ñ pR`,`qpXq
. We want to show in this

section that it is equivalent to consider coalgebras for X Ñ Dď1pA ˆ Xq as

coalgebras for X Ñ pR`,`qpAˆXq
, in the sense that, two coalgebras for the

former are bisimilar if and only if they are bisimilar when seen as coalgebras for
the latter. The main ingredient is the following remark.

Lemma 5.8. Assume a pointed coalgebra 1
iÝÝÑ X

cÝÝÑ Dď1pAˆXq and assume

given a lax (resp. proper) homomorphism f from 1
jÝÝÑ Y

dÝÝÑ pR`,`qpAˆY q

to 1
iÝÝÑ X

cÝÝÑ Dď1pA ˆ Xq Ď pR`,`qpAˆXq
. Then Y

dÝÝÑ Dď1pA ˆ Y q and

f is a lax (resp. proper) homomorphism from 1
jÝÝÑ Y

dÝÝÑ Dď1pA ˆ Y q to

1
iÝÝÑ X

cÝÝÑ Dď1pA ˆ Xq.
Remark that this property is not true for the proper distribution functor D.

This suggests that we can define a generalized open maps situation ED, SD for
coalgebras for the functor X Ñ Dď1pA ˆ Xq by considering EpR`,`q, SpR`,`q as
defined in Section 5.2, and restricting it to those v such that Jv is a coalgebra
for X Ñ Dď1pA ˆ Xq.

Corollary 5.9. A lax homomorphism from 1
jÝÝÑ Y

dÝÝÑ Dď1pA ˆ Y q to 1
iÝÝÑ

X
cÝÝÑ Dď1pAˆXq is pED, SDq-open if and only if it is pEpR`,`q, SpR`,`qq-open.

Furthermore, two Dď1pA ˆ q-coalgebras are pED, SDq-bisimilar if and only if
they are pEpR`,`q, SpR`,`qq-bisimilar.

Finally, the main result of this section:

Theorem 5.10. Let f : X Ñ Y be a lax homomorphism between Dď1pA ˆ q-
coalgebras pX, c, iq and pY, d, jq. If pX, c, iq is reachable and f is pED, SDq-open,
then f is a proper homomorphism. Conversely, if f is a proper homomorphism,
then it is pED, SDq-open. Moreover, two Dď1pA ˆ q-coalgebras pX, c, iq and
pY, d, jq are pED, SDq-bisimilar if and only if they are coalgebraically bisimilar.

6 Open Maps for Branching Bisimilarity

In this section, we present a new way of modeling branching and weak bisim-
ulations using our generalized framework of open maps. Using this additional
flexibility, we do not need to rely on weak morphisms anymore, but on a slight
modification of the morphism described in Definition 2.1. Concretely, we build a

322 J. Dubut and T. Wi�mann

generalized open map situation such that stuttering branching bisimulations co-
incide with strong path bisimulations, and that in this case, they precisely char-
acterize pE, Sq-bisimilarity. In addition, in this framework, path bisimulations
precisely correspond to weak bisimulations, witnessing branching bisimilarity as
the history-preserving analogue to weak bisimilarity.

6.1 LTSs with Internal Moves, Category and Bisimilarities

Definition 6.1. For a fixed set A of labels with a particular element τ (called
internal move), the category WLTS contains the same objects as LTS, and its
morphisms f : pX, , x0q Ñ pY, , y0q are functions f : X Ñ Y such that
fpx0q “ y0 and for all x a x1 in X, we have fpxq a fpx1q, or a “ τ and
fpxq “ fpx1q.

LTS is a (non-full) subcategory of WLTS, and in fact the LTS-morphisms
will be used later in the paper. For easier distinction, we use the terminology
strong morphisms for WLTS-morphisms that are also in LTS (alluding to strong
bisimulations which were the bisimulation notion in LTS). Another notion of
morphisms are so-called weak morphisms [3]:

– if x a x1 in X, then fpxq τ ‹ a τ ‹ fpx1q in Y ,
– if x τ x1 in X, then fpxq τ ‹ fpx1q in Y .

Though we do not use weak morphisms in the following development of the
paper, it is worth mentioning the WLTS-morphisms form a proper subclass of
the weak morphisms.

Definition 6.2. A branching bisimulation from pX, X , iXq to pY, Y , iY q is
a relation R Ď X ˆ Y such that piX , iY q P R, and for px, yq P R:

– if x a x1 then
‚ a “ τ and px1, yq P R, or
‚ y τ y1

τ . . . τ yn
a z1

τ . . . τ zm such that px, ynq,
px1, z1q, and px1, zmq P R.

– symmetrically when y a y1.

If furthermore in the second condition px, yiq, px1, ziq P R for all i (and symmet-
rically in the third condition), then R is said to be stuttering.

It is known from [23] that the largest branching bisimulation is stuttering,
so that both notions generate the same bisimilarity. In the following, we will
prove that strong path bisimulations are more naturally related to stuttering
branching bisimulations thanks to their backward closure.

Definition 6.3. A weak bisimulation from pX, X , iXq to pY, Y , iY q is a
relation R Ď X ˆ Y such that piX , iY q P R, and for px, yq P R:

– if x τ x1, then there is y1 such that px1, y1q P R and y τ ‹ y1,
– if x a x1 with a ‰ τ , then there is y1 such that px1, y1q P R and y τ ‹ a

τ ‹ y1.
– symmetrically when y τ y1 or y a y1.

It is clear that a (stuttering) branching bisimulation is a weak bisimulation.

Weighted Bisimilarity from Generalized Open Maps 323

6.2 Generalized Open Maps for Branching Bisimulations

In this section, we describe the generalized open maps situation that captures
branching bisimulation. Like for plain LTSs (Def. 2.2), elements of V will be
words on A, representing a finite linear LTS labelled by this word. However,
to emphasize the particularity of the internal move τ , we will provide another
presentation here.

Here, V is the set of sequences of the form: v “ n1, a1, n2, . . . , nk, ak, nk`1

such that ai P Aztτu and ni P N, e.g. ττaτbcτ p“ 2, a, 1, b, 0, c, 1. The natural
numbers ni P N – tτu˚

represent the number of internal moves between two
observable moves. Then, J maps this sequence to the usual linear LTS:

Jv “ p0, 1q

pn1, 1q

p0, 2q

pn2, 2q

(0,k+1)

pnk`1, k ` 1q
¨ ¨ ¨
τ

τ
a1 ¨ ¨ ¨

τ

τ

a2 ak ¨ ¨ ¨
τ

τ

Elements of E append at most one observable (i.e. non-τ) move:

– Only internal moves: for sequences v “ n1, a1, . . . , ak, nk`1 and w “
n1, a1, . . . , ak, n

1
k`1 with nk`1 ď n1

k`1 there is a unique edge eτ : v Ñ w in
E, e.g. eτ : 2, a, 1, b, 0, c, 1 Ñ 2, a, 1, b, 0, c, 3

– One observable move: for sequences v “ n1, a1, . . . , ak, nk`1 and w “
n1, a1, . . . , ak, n

1
k`1, a, nk`2 with nk`1 ď n1

k`1 there is a unique edge ea : v Ñ
w in E.

The graph morphism JE : E Ñ M maps those edges to the obvious inclusion,
mapping state pi, jq of Jv to the same state in Jw.

Strictly speaking, E is not a category, but just a graph, because we have
a

ebÝÑ ab and ab
ecÝÑ abc, but there is no morphism from a to abc. To fit in

the framework of Section 4, we take the free category FreepEq generated by
this graph and the unique functor extending the graph homomorphism JE. By
Proposition 4.8, it is equivalent to consider FreepEq and E for openness and path
bisimulations, so we will talk of pE, Sq-openness, when we mean pFreepEq, Sq-
openness, and all the statements and proofs will be done using E only.

Elements of S are trickier to describe. The intuition is that they are mor-
phisms that merge states. In the context of LTSs with internal moves, merging
happens when the source and the target of a τ -transition are mapped to the
same state. This is crucial for the open maps we want to describe: to lift one
τ -transition, it might be necessary to use several τ -transitions. With this knowl-
edge, elements of S are as follows.

– Merging internal moves: morphisms in S from v “ n1, a1, . . . , ak, nk`1 to
w “ n1

1, a1, . . . , ak, n
1
k`1 with ni ě n1

i are pk ` 1q-tuples s “ ps1, . . . , sk`1q of
monotone surjective functions si : t0 ă 1 ă . . . ă niu Ñ t0 ă 1 ă . . . ă n1

iu.
For example, there are two morphisms from aττb p“ 0, a, 2, b, 0 to aτb p“ 0, a, 1, b, 0,
one for each τ that can be dropped. The functor JS then maps s to the morphism
from Jv to Jw defined by JSpsqpi, jq “ psjpiq, jq.

324 J. Dubut and T. Wi�mann

As a piece of notation, for a morphism x : Jpn1, a1, . . . , ak, nk`1q Ñ X, we
denote xpnk`1, k ` 1q P X by endpxq.

6.3 Equivalence of Bisimilarities

In this section, we prove that pE, Sq-bisimilarity indeed coincides with branching
bisimilarity. To do so, we prove first that for the present instance of E and S
(Sec. 6.2), pE, Sq-bisimilarity coincides with strong path bisimilarity. In general,
pE, Sq-bisimilarity implies strong path bisimilarity (Theorem 4.7), so it remains
to show the converse direction for the present instance. To this end, we start by
internalizing strong path bisimulations into objects of LTS/WLTS, in order to
relate it them to open maps:

Definition 6.4. For a strong path bisimulation R from X to Y , define the LTS
rR “ pR, R, pX !ÐÝÝ J0

!ÝÝÑ Y qq to have transitions

pX xÐÝ Jv
yÝÑ Y q a

R pX x1ÐÝ Jw
y1ÝÑ Y q

– for a ‰ τ with v “ pn1, a1, . . . , ak, nk`1q, w “ pn0, a1, . . . , ak, nk`1, a, 0q,
x1 “ x ¨ JEea, and y1 “ y ¨ JEea (for the unique ea : v Ñ w);

– for a “ τ with v “ pn1, a1, . . . , ak, nk`1q, w “ pn1, a1, . . . , ak, nk`1 ` 1q,
x1 “ x ¨ JEeτ , and y1 “ y ¨ JEeτ (for the unique eτ : v Ñ w).

As a first observation, we describe runs in rR in terms of projection maps:

Lemma 6.5. In WLTS, we have projection maps X
πXÐÝÝ rR

πYÝÝÑ Y given by
πX : pX xÐÝ Jv

yÝÑ Y q Ñ endpxq and πY : pX xÐÝ Jv
yÝÑ Y q Ñ endpyq. For every

strong morphism r : Jv Ñ rR (i.e. r P LTS),

endprq is of the form pX πX ¨rÐÝÝÝÝ Jv
πY ¨rÝÝÝÝÑ Y q.

Remark that in this statement, we require r to be strong and not just a mor-
phism of WLTS. With a morphism of WLTS, the statement would become that
there is s : v1 Ñ v P S such that πX ¨ r “ x ¨JSs instead. For the characterization
of open maps in WLTS, it suffices for our needs to restrict to strong morphisms:

Lemma 6.6. For f : X Ñ Y in WLTS to be pE, Sq-open, it is sufficient to verify
the lifting in Definition 4.1 in the special case of x being a strong morphism.

We use this simplification to prove that the projection maps πX , πY are open:

Proposition 6.7. For a strong path bisimulation R from X to Y , the projec-
tions X

πXÐÝÝ rR
πYÝÝÑ Y are both pE, Sq-open.

The next step is to prove the equivalence between strong path and stuttering
branching bisimulations.

Weighted Bisimilarity from Generalized Open Maps 325
Table 1. Equivalences of bisimilarity notions in LTSs with τ -actions X,Y P WLTS

branching bisimilarity ðñ strong path bisimilarity (Theorem 6.8)
ðñ pE, Sq-bisimilarity (Proposition 6.7 & Theorem 4.7)

weak bisimilarity ðñ path bisimilarity (Theorem 6.9)

Theorem 6.8. If R is a stuttering branching bisimulation from X to Y , then

R “ tX xÐÝ Jv
yÝÑ Y | v “ pn1, a1, . . . , nk`1q ^ @i, j. pxpi, jq, ypi, jqq P Ru

is a strong path bisimulation. Conversely, if R is a strong path bisimulation, then

qR “ tpendpxq, endpyqq | pX xÐÝ Jv
yÝÑ Y q P Ru

is a stuttering branching bisimulation.

The same reasoning can be made for weak and path bisimulations:

Theorem 6.9. If R is a weak bisimulation from X to Y , then

pR “ tX xÐÝ Jv
yÝÑ Y | pendpxq, endpyqq P Ru

is a path bisimulation. If R is a path bisimulation, then qR is a weak bisimulation.

In total, we can describe branching and weak bisimilarity by categorical
bisimilarity notions, as summarized in Table 1.

7 Conclusions and Future Work

In this paper, we investigate bisimilarities of weighted and probabilistic systems
through the theory of open maps. After showing that the usual theory cannot
capture weights, we provide a faithful extension of the theory by the notion of
mergings. The new theory has similar properties (equivalence relation, charac-
terization as sets of spans, restriction to generators) as classical open maps but
also captures bisimilarity of weighted systems and even branching bisimilarity.

The new instances come at the cost of more parameters to the theory. It
remains for future work whether the parameters E, S can be combined in a
single path category with two morphism classes and morphism factorizations. It
would also be illuminating to know whether this new theory satisfies the axioms
of a class of open maps from [15], in particular for toposes of coalgebras [14].

For the framework as presented, we would like to formally relate it to coalge-
bra – as this has been done for non-deterministic systems [19,25]. Furthermore,
we would like to investigate how system semantics of true concurrency, such
as Higher Dimensional Automata [21] can be integrated. Designing open maps
for them turned out to be complicated (see [8]), but a hope would be that the
addition of mergings would allow modeling homotopy more naturally.

Finally, it would be interesting to see whether our theory capture quantitative
extensions of systems classically modeled by open maps, such as probabilistic and
quantum extensions of petri nets and event structures (see [24] for example).

326 J. Dubut and T. Wi�mann

References

1. Beohar, H., Cuijpers, P.J.L.: Open Maps in Concrete Categories and Branching
Bisimulation for Prefix Orders. Electronic Notes in Theoretical Computer Science
319, 51–66 (2015). https://doi.org/10.1016/j.entcs.2015.12.005

2. Beohar, H., Küpper, S.: Bisimulation Maps in Presheaf Categories. Electronic
Notes in Theoretical Computer Science 347, 5–24 (2019). https://doi.org/10.
1016/j.entcs.2019.09.002

3. Cheng, A., Nielsen, M.: Open Maps (at) Work. B R I C S Report Series (RS-95-23)
(1995)

4. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocon-
gruence for probabilistic systems. Information and Computation 204(4), 503–523
(2006). https://doi.org/10.1016/j.ic.2005.02.004

5. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for Labelled Markov Pro-
cesses. Information and Computation 179(2), 163–193 (2003). https://doi.org/
10.1006/inco.2001.2962

6. Dubut, J., Goubault, E., Goubault-Larrecq, J.: Bisimulations and unfolding in
P-accessible categorical models. In: Desharnais, J., Jagadeesan, R. (eds.) 27th In-
ternational Conference on Concurrency Theory, CONCUR 2016. LIPIcs, vol. 59,
pp. 25:1–25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.25

7. Dubut, J., Hasuo, I., Katsumata, S., Sprunger, D.: Quantitative bisimulations using
coreflections and open morphisms (2018), arXiv:1809.09278

8. Fahrenberg, U., Legay, A.: History-Preserving Bisimilarity for Higher-Dimensional
Automata via Open Maps. Electronic Notes in Theoretical Computer Science 298,
165–178 (2013). https://doi.org/10.1016/j.entcs.2013.09.012

9. Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In:
Proceedings. 14th Symposium on Logic in Computer Science. pp. 67–76 (1999).
https://doi.org/10.1109/LICS.1999.782590

10. Freyd, P., Scedrov, A.: Categories, Allegories, Mathematical Library, vol. 39.
North-Holland (1990)

11. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2),
71–108 (2004). https://doi.org/10.1016/j.tcs.2004.07.022

12. Hune, T., Nielsen, M.: Timed bisimulations and open maps. In: Brim, L., Gruska,
J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS
1998. Lecture Notes in Computer Science, vol. 1450. Springer, Berlin, Heidelberg
(1998). https://doi.org/10.1007/BFb0055787

13. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Ob-
servation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016)

14. Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure
of categories of coalgebras. Theoretical Computer Science 260, 87–117 (2001).
https://doi.org/10.1016/S0304-3975(00)00124-9

15. Joyal, A., Moerdijk, I.: A completeness theorem for open maps. Annals of Pure
and Applied Logic 70, 51–86 (1994). https://doi.org/10.1016/0168-0072(94)
90069-8

16. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from Open Maps. Information and
Computation 127, 164–185 (1996). https://doi.org/10.1006/inco.1996.0057

17. Klin, B.: Semantics and Algebraic Specification, Lecture Notes in Computer Sci-
ence, vol. 5700, chap. Structural Operational Semantics for Weighted Transition
Systems, pp. 121–139. Springer, Berlin, Heidelberg (2009)

https://doi.org/10.1016/j.entcs.2015.12.005
https://doi.org/10.1016/j.entcs.2015.12.005
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.ic.2005.02.004
https://doi.org/10.1016/j.ic.2005.02.004
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1109/LICS.1999.782590
https://doi.org/10.1109/LICS.1999.782590
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1007/BFb0055787
https://doi.org/10.1007/BFb0055787
https://doi.org/10.1016/S0304-3975(00)00124-9
https://doi.org/10.1016/S0304-3975(00)00124-9
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1006/inco.1996.0057
https://doi.org/10.1006/inco.1996.0057

Weighted Bisimilarity from Generalized Open Maps 327

18. Larsen, K.G., Skou, A.: Bisimulations through Probabilistic Testing. Information
and Computation 94, 1–28 (1991). https://doi.org/10.1016/0890-5401(91)

90030-6

19. Lasota, S.: Coalgebra morphisms subsume open maps. Theoretical Computer
Science 280(1), 123 – 135 (2002). https://doi.org/10.1016/S0304-3975(01)

00023-8

20. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of
the 5th GI-Conference on Theoretical Computer Science. Lecture Notes in Com-
puter Science, vol. 104, pp. 167–183. Springer (1981). https://doi.org/10.1007/
BFb0017309

21. Pratt, V.: Higher dimensional automata revisited. Mathenatical Structures
in Computer Science 10(4), 525–548 (2000). https://doi.org/10.1017/

S0960129500003169

22. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1), 3 – 80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

23. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996). https://doi.org/
10.1145/233551.233556

24. Winskel, G.: Distributed probabilistic and quantum strategies. Electronic Notes in
Theoretical Computer Science 298, 403–425 (2013). https://doi.org/10.1016/
j.entcs.2013.09.024

25. Wißmann, T., Dubut, J., Katsumata, S., Hasuo, I.: Path category for free. In:
Bojańczyk, M., Simpson, A. (eds.) Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2019). pp. 523–540. Springer International Publishing,
Cham (04 2019). https://doi.org/10.1007/978-3-030-17127-8_30

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1007/978-3-030-17127-8_30
https://doi.org/10.1007/978-3-030-17127-8_30
http://creativecommons.org/licenses/by/4.0/

Preservation and Reflection of Bisimilarity
via Invertible Steps

Ruben Turkenburg(�)1 , Clemens Kupke2 , Jurriaan Rot1 , and
Ezra Schoen2

1 Institute for Computing and Information Sciences (iCIS), Radboud University,
Nijmegen, The Netherlands
ruben.turkenburg@ru.nl

2 Department of Computer and Information Sciences, Strathclyde University,
Glasgow, UK

Abstract. In the theory of coalgebras, distributive laws give a general
perspective on determinisation and other automata constructions. This
perspective has recently been extended to include so-called weak distribu-
tive laws, covering several constructions on state-based systems that are
not captured by regular distributive laws, such as the construction of a
belief-state transformer from a probabilistic automaton, and ultrafilter
extensions of Kripke frames.
In this paper we first observe that weak distributive laws give rise to the
more general notion of what we call an invertible step: a pair of natural
transformations that allows to move coalgebras along an adjunction. Our
main result is that part of the construction induced by an invertible
step preserves and reflects bisimilarity. This covers results that have
previously been shown by hand for the instances of ultrafilter extensions
and belief-state transformers.

Keywords: Coalgebra · Bisimulations · Weak distributive laws

1 Introduction

Distributive laws between a monad T and a functor B are ubiquitous in the
theory of coalgebras. They capture various forms of interaction between algebras
and coalgebras, including structural operational semantics [45,33], efficient proof
techniques [9] and a general coalgebraic determinisation procedure which applies
to a wide range of automata and other state-based systems [43,15,29].

The central idea of this general determinisation procedure is to interpret
coalgebras in the Eilenberg-Moore category EM(T), as coalgebras for a lifting of
B that arises from the distributive law. Behavioural equivalence in EM(T) then
amounts to desired notions of equivalence. For instance: language equivalence of
non-deterministic automata; weighted automata [7]; Mealy and Moore machines
with side-effects [43]; or various types of trace equivalence of transition systems [8].

An illustrative non-example of this general determinisation procedure is in
a natural construction of belief-state transformers from probabilistic automata,
which feature both non-determinism and probabilities. From a categorical per-
spective, the problem is related to the classical result that there is no suitable
distributive law of the probability distribution monad D over the powerset monad

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_16

328–348, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_16&domain=pdf
http://orcid.org/0000-0001-7336-9405
http://orcid.org/0000-0002-0502-391X
http://orcid.org/0000-0002-1404-6232
https://doi.org/10.1007/978-3-031-30829-1_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_16&domain=pdf

Preservation and Reflection of Bisimilarity via Invertible Steps 329

P [46] (also see [47,34] for other non-existence results of distributive laws). Hence,
general determinisation via distributive laws seems not applicable here.

Nevertheless, in [12] a concrete coalgebraic account of the construction of
belief-state transformers is given, in terms of a two-stage process:

1. from probabilistic automata to coalgebras in EM(D), which are a type of
labelled transition systems over convex algebras;

2. from these coalgebras in EM(D) back to plain transition systems in Set,
yielding the belief-state transformer.

A key result in op. cit. is that the second stage preserves and reflects behavioural
equivalence. This shows that behavioural equivalence of coalgebras in EM(D)
coincides with distribution bisimilarity on the belief-state transformer.

In [12,21] it was shown that this construction, in fact, arises from a canonical
weak distributive law of D over P [22]. Weak distributive laws correspond to
so-called weak liftings [19], and—as shown in [22]—these yield a new gener-
alised determinisation procedure which covers the above example, and precisely
instantiates to the two stages above. Further examples are the treatment of
alternating automata via weak distributive laws in [23], and weak distributive
laws for combining non-determinism with semimodules in [10].

However, the result for probabilistic automata that the second stage above
preserves and reflects behavioural equivalence has not yet been accounted for in
the abstract theory of determinisation via weak distributive laws.

In this paper we provide such an account, starting from a more general setting
than weak distributive laws: what we call invertible steps. These basically replace
the Eilenberg-Moore adjunction inherent in the weak liftings approach by a
general adjunction. In this context, a step allows one to lift the left adjoint to
coalgebras—this is a widely occurring phenomenon, for instance in the semantics
of coalgebraic modal logic, testing semantics and trace semantics (see [41] for an
overview). The key idea here is to assume a right inverse, allowing the lifting of
the right adjoint, such that we generalise the two-stage construction above.

We show that, in this setting of an invertible step, the second stage of the
two-stage construction preserves and reflects bisimilarity, under mild conditions.
As a consequence, we recover the above-mentioned results on preservation and
reflection of behavioural equivalence for probabilistic automata [12] for free from
the abstract theory.3 Another motivating example is that of coalgebras for the
Vietoris functor on the category of Stone spaces: we obtain that bisimilarity is
preserved and reflected by the forgetful functor, recovering the main result in [5].

In fact, the latter example is related to a coalgebraic presentation [36] of
ultrafilter extensions, a standard construction in modal logic [6]. It fits within the
general setting of invertible steps, but not directly in weak liftings, as it involves
the category of Stone spaces (for the duality with Boolean algebras). However,
if we move from Stone spaces to compact Hausdorff spaces, then the relevant
weak lifting (or invertible step) arises precisely from the weak distributive law
3 We focus on bisimilarity, but our setting allows for an easy argument that this

coincides with behavioural equivalence in this and many related examples.

330 R. Turkenburg et al.

constructed by Garner [19]. The weak distributive law in loc. cit. thus gives rise
to ultrafilter extensions in modal logic.

Finally, we include an example of an invertible step involving Setop instead
of an Eilenberg-Moore category. Steps for adjunctions with opposite categories
are a standard way of presenting the semantics of coalgebraic modal logic [40,32].
The included example shows the generality of the approach.

Outline. Section 2 presents (invertible) steps, the relation to weak liftings and
distributive laws, and a range of examples. In Section 3 we recall the standard
notion of coalgebraic bisimilarity, defined via relation lifting. Section 4 contains
the main results on preservation and reflection of bisimilarity. In Section 5 we
discuss applications and instances of these results. We discuss other notions of
bisimulation, and future work, in Section 6.

2 Forward and Backward Steps

We briefly present the required theory of steps, first termed as such in [41]. This
structure occurs already in work on coalgebraic modal logic [35,14,40,32,17,38]
where a step gives the one-step semantics of a logic. In existing work, only what
we call a forward step is considered. Here, we also speak of backward steps, being
arrows in the opposite direction. In the sequel, such forward and backward steps
will usually be each other’s (one-sided) inverses, referred to as invertible steps.

Next, we recall how such steps give rise to liftings of functors between
categories of coalgebras and further, when the adjunction underlying the steps
can also be lifted to coalgebras [27]. Finally, we present examples of invertible
steps from the literature, which we return to in later sections.

For a functor B : C → C, a coalgebra is a pair (X, f) consisting of an object X
and an arrow f : X → BX. A homomorphism from (X, f) to (Y, g) is an arrow
h : X → Y such that g ◦ h = Bh ◦ f . Coalgebras and homomorphisms between
them form a category, denoted by Coalg(B), or CoalgC(B) if we wish to make
the underlying category explicit.

The category of sets and functions is denoted by Set. For a monad T , we
write EM(T) for the category of Eilenberg-Moore algebras. The powerset monad
is denoted by P : Set → Set, given on objects by P(X) = {S | S ⊆ X}, and
the finitely-supported distribution monad by D : Set → Set, given by D(X) =
{ϕ : X → [0, 1] | ∑x∈X ϕ(x) = 1, supp(ϕ) finite} (see also [12]).

2.1 Invertible Steps

The basic setting of interest in this work consists of the following:

Definition 2.1. Given an adjunction P � Q : D → C and endofunctors B : C →
C and L : D → D as in the diagram

C D
P

B

Q

L� , (1)

Preservation and Reflection of Bisimilarity via Invertible Steps 331

a (forward) step is a natural transformation δ : BQ → QL. A backward step is
simply a natural transformation ι : QL → BQ going the other way. If, moreover,
δ ◦ ι = id then we call δ an invertible step (with right inverse ι). Finally, if δ
witnesses an isomorphism then we call it an isomorphic step.

Notice the asymmetry in the definition of invertible step: ι is always assumed
to be a right inverse of δ. These invertible steps are the main focus of this paper.
Examples are given below in Section 2.2.

Step-induced liftings There is a bijective correspondence between a step

and its mate δ̂ : PB → LP given by PB PBQP PQLP LP
PBη PδP εLP

(see [37,31]). This mate and the backward step allow us to define liftings of P
and Q to the categories of coalgebras for B and L.

Definition 2.2. Given steps δ : BQ → QL and ι : QL → BQ, the step-induced
coalgebra liftings P : Coalg(B) → Coalg(L) and Q : Coalg(L) → Coalg(B) of P
and Q are defined by

f : X → BX �→ δ̂X ◦ Pf : PX → LPX (2)
g : Y → LY �→ ιY ◦Qg : QY → BQY (3)

on objects and act as P and Q on arrows. This is well-defined due to functoriality
of P and Q and naturality of δ̂ and ι.

It is shown in [27, Theorem 2.14] that, when δ and ι form an isomorphism,
the adjunction P � Q lifts to an adjunction P � Q between the step-induced
liftings. For our purposes it will be useful to split the isomorphism condition into
the cases where ι is the left or right inverse of δ.

Lemma 2.3. If δ ◦ ι = id, then the counit ε : PQ → Id of the adjunction P � Q
lifts to a natural transformation ε : P Q → Id. If ι ◦ δ = id, then the unit η : Id →
QP of the adjunction lifts to a natural transformation η : Id → QP .

The combination of these two liftings gives us the lifting of the adjunction.

Corollary 2.4. If δ and ι form an isomorphism, then P � Q.

In such a situation, Q (being a right adjoint) preserves the final coalgebra
for L (the limit of the empty diagram) when this exists. However, there are a
number of known examples where the step is not an isomorphism; instead we
only have a one-sided inverse. We consider, in particular, these invertible steps,
and in the next subsection give a number of examples of this setting.

2.2 Steps from weak liftings, and other examples

Example 2.5. Our first example arises from the work of Garner, who shows that
the Vietoris monad V on the category CHaus of compact Hausdorff spaces arises

332 R. Turkenburg et al.

as a so-called weak lifting of the powerset monad [19] (we discuss weak liftings in
general after this example). For the definition of the Vietoris monad the reader is
referred to [19, Sec. 2.3]. The category CHaus is equivalent to the Eilenberg-Moore
category EM(β) of the ultrafilter monad β [39]. The weak lifting provided by
Garner consists of natural transformations ι, δ, satisfying δ ◦ ι = id:

Set EM(β) UV PU UV
F

P
U

V� ι δ (4)

where F � U is the Eilenberg-Moore adjunction of β. Notice that δ is an invertible
step, with right inverse ι. As shown by Garner, a component δX : PUX → UVX,
sends each subset S ∈ PUX to its topological closure. The components of ι
simply include the closed subsets into the powerset.

It turns out that this invertible step gives rise to ultrafilter extensions of
Kripke frames. In modal logic, ultrafilter extensions [6,20,4] are a construction
taking a Kripke frame (which we can see as a coalgebra for the powerset functor P)
with state space W and forming a new Kripke frame with states being ultrafilters
over W . The central motivation for this is in “bisimilarity-somewhere-else” results:
two states are modally equivalent iff they are bisimilar in the ultrafilter extension.

Now, the composition of the step-induced coalgebra liftings F : Coalg(P) →
Coalg(V) and U : Coalg(V) → Coalg(P), precisely yields the ultrafilter extension
of a Kripke frame. The first stage β is the actual extension, which turns the
Kripke frame into a V-coalgebra. The second stage U turns this back into a
Kripke frame, i.e., a powerset coalgebra in Set.

In [36], ultrafilter extensions are developed more generally for coalgebras for a
functor B : Set → Set, via the duality between Boolean algebras and Stone spaces.
In fact, since both V and the left adjoint F restrict to the category Stone of Stone
spaces, the invertible step δ, ι restricts to an invertible step in the restriction of
the above adjunction to Stone.

In general, for monads S, T on a category C, Garner [19] defines S̃ : EM(T) →
EM(T) to be a weak lifting of S if there are natural transformations

US̃ SU US̃ι δ (5)

with δ ◦ ι = id and satisfying further axioms, where U denotes the forgetful
functor from EM(T) to C. They show that there is a bijective correspondence
between weak distributive laws of T over S, and weak liftings of S to EM(T),
in case idempotents in C split (which holds for Set). Here, we do not assume a
monad structure on S (which is why the additional axioms are not relevant).
In this case, a weak lifting is precisely an invertible step, where the underlying
adjunction is an Eilenberg-Moore adjunction.

Example 2.6. In [11,12], a procedure is given for “determinising” probabilistic
automata (PAs), which model systems with both non-determinism and probabili-
ties, into belief state transformers. It was shown in [22] that this is an instance

Preservation and Reflection of Bisimilarity via Invertible Steps 333

of a more general determinisation procedure induced by a weak lifting, which in
turn corresponds to a canonical weak distributive law.

Stated for a general monad T with the usual Eilenberg-Moore adjunction
F � U : EM(T) → C, this general determinisation procedure thus starts from an
invertible step (weak lifting) δ : BU → UB. This gives rise to a two-step process:

CoalgC(BT) CoalgEM(T)(B) CoalgC(B)F U (6)

where the second functor U is simply the step-induced lifting of U . The first
is a variation of a step-induced lifting (notice that it takes BT -coalgebras
rather than B-coalgebras as input), mapping a coalgebra f : X → BTX to

FX FBUFX BFUFX BFX
Ff δ̂UFX BεFX , where ε is the counit of the

Eilenberg-Moore adjunction. In fact, this can be viewed as a step-induced lifting
for BT which arises by composing δ and the counit, see [41].

We instantiate this to the Eilenberg-Moore adjunction of the distribution
monad D, where Pc is the convex powerset monad:

Set EM(D)

F
P

U

Pc� (7)

We take Pc(X) to have as underlying set {S ⊆ X | S convex} following [22].
This matches the usage of Pne + 1 and Pc + 1 in [12], where Pne and Pc are
defined to exclude the empty set. A subset is convex if it is closed under convex
combinations (see [12] for details). Further, the category EM(D) is equivalent to
the category of convex algebras and convex maps.

It is explained in [22, Sec. 5] that we have an invertible step in the setting
of Eq. (7), which sends a subset X to its convex hull (the smallest convex set
containing X) and that the lifting F of (6) then gives the transformation of a
probabilistic automaton into a belief state transformer in the category EM(D).
The second step is then to transfer the obtained belief state transformer back to
Set with the step-induced lifting of U . As shown in [12] and later recovered from
our abstract theory (Section 5), this yields a system with the same behaviour. In
fact, this is done for automata with labels, i.e., for the functors PL and PL

c with
L a set of labels. The weak lifting we will require in this context is given in [21].

Example 2.7. The following example from automata and languages considers a
dual adjunction P � Q : Dop → C. One motivation to discuss this kind of example
stems from coalgebraic modal logic where C commonly is some category of ‘spaces’
and D commonly is a category of ‘algebras’ [32]. The setup is as follows:

Set Setop 2L B(2−) 2L
2−

B

2−
L� ι δ (8)

Here, we have BX = 2× (PX)Σ and LX = 1 +Σ ×X for a fixed alphabet Σ.
The step δ is given by

δ(i, ξ) = {inl(∗) | i = 1} ∪ {inr(a, x) | a ∈ Σ, x ∈
⋃

ξ(a)} (9)

334 R. Turkenburg et al.

This step δ is invertible, e.g., by ι as in Eq. (10).

ι(u) = (1 iff inl(∗) ∈ u, a �→ {v | {(a, x) | x ∈ v} ⊆ u}) (10)

A B-coalgebra is a non-deterministic automaton. An L-coalgebra in Setop is an
algebra X ← 1 +Σ ×X in Set, which can be seen as specifying the initial state
and transition structure of a deterministic automaton. From this point of view,
the coalgebra lifting Q : Coalg(L) → Coalg(B) can be seen as first reversing, and
then performing a powerset construction. The specific powerset construction
might depend on the chosen right inverse ι, as it is not unique. For ι as in (10),
for example, u a→ v in Q(A) if and only if each state in v is reachable from a
state in u via an a-transition in the reverse of A.

In Section 5 we return to these examples and show how we can apply the
techniques from Section 4 to obtain preservation and reflection of bisimilarity.

3 Relations, Liftings and Coalgebraic Bisimulations

We recall the standard notion of coalgebraic bisimulation defined via relation
lifting, broadly following [30,28]. Note, we will use some terminology from the
theory of fibrations to allow us to be more concise and many of the coming results
can be generalised to a larger class of fibrations, but knowledge of fibrations is
not required as we give a self-contained presentation of the fibration of relations.

We make the following assumptions for the remainder of the paper:

Assumption 3.1. We assume categories C,D with all finite limits, and factori-
sation systems (E1,M1), (E2,M2) respectively for which M1 = MonoC ,M2 =
MonoD and for any left adjoint functor P : C → D we have P (E1) ⊆ E2.

We assume finite limits mainly for binary products and pullbacks to allow
the definitions of relations and inverse images. The assumptions that maps in M
are mono means that pullbacks of abstract monos and factorisation both yield
monos, which represent subobjects. The final condition specifies that left adjoints
preserve abstract epis. This is required in Section 4.2 and holds, e.g., when the
involved categories possess a (RegEpi,Mono)-factorisation system [16,2], as in all
our examples from Sections 2.2 and 5.

For a category C satisfying the above, the category Rel(C) consists of:

– Objects of Rel(C) are subobjects R � X ×X of the binary product of the
object X with itself;

– A map R � X ×X → S � Y × Y in Rel(C) consists of a map u : X → Y
in C such that there is the following commutative diagram

R S

X ×X Y × Y
u×u

(11)

Preservation and Reflection of Bisimilarity via Invertible Steps 335

In Set, these are subsets of the binary product of underlying sets as usual, and
maps between relations constitute maps between the products sending R to S,
i.e., xR y implies u(x)S u(y). Objects of Rel(Stone) are closed relations, as the
image of a mono representing a subobject is homeomorphic to its domain, and
images of continuous functions are compact and thus closed. In the case of an
Eilenberg-Moore category for a monad T , objects of Rel(EM(T)) are congruences,
as the map into the product is an algebra morphism.

Remark 3.2. A note on notation: we use for epis and for monos and the
subobjects they represent. We use for abstract epis and for abstract
monos, i.e., maps in E and M respectively.

Using the factorisation system on D, we lift a functor F : C → D to a functor
Rel(F) : Rel(C) → Rel(D). The action on objects is given by the factorisation

FR F (X ×X) FX × FX

Rel(F)(R)

Fr

e

〈Fπ1,Fπ2〉

m
(12)

The action on arrows is defined by orthogonality. The resulting functor Rel(F)
is a lifting in the sense that the following diagram commutes

Rel(C) Rel(D)

C D

Rel(F)

p q

F

(13)

where p : Rel(C) → C sends a relation R � X ×X to the object X, and similarly
for q. We say (following the terminology of fibrations) that the relation R is above
the object X and a map between relations is above the map u from Eq. (11).
Note that commutativity of diagram (13) expresses that Rel(F), applied to a
relation R � X ×X on X, yields a relation on FX.

Given a category of relations Rel(C), called the total category, the subcategory
(also called a fibre) RelX consists of objects R � X ×X and maps above the
identity on X. For relations in Set, such maps are inclusions of relations. In
general, these maps are unique, and writing R ≤ S iff there is an arrow from R
to S turns the fibre into a poset. A relation lifting Rel(F) can be restricted to
the fibres to give a functor Rel(F)X : RelX → RelFX . Since RelX and RelFX are
posetal categories, Rel(F)X can be viewed as a monotone map.

For a map f : X → Y in C, we have the direct image and inverse image
functors

∐
f : RelX → RelY and f∗ : RelY → RelX . For relations on sets, we have∐

f (R ⊆ X ×X) = {(f(x), f(y)) | (x, y) ∈ R} and f∗(S ⊆ Y × Y) = {(x, y) ∈
X ×X | (f(x), f(y)) ∈ S}. More generally, they are obtained as the factorisation
and pullback in the left and right diagram below respectively

R
∐

f (R) f∗(S) S

X ×X Y × Y X ×X Y × Y

r
∐

f (r) f∗(s)
�

s

f×f f×f

(14)

336 R. Turkenburg et al.

It can further be shown that
∐

f � f∗. We say that Rel(F) : Rel(C) → Rel(D)
preserves inverse images if Rel(F)X ◦ f∗ = (Ff)∗ ◦ Rel(F)Y .

In this context, a bisimulation for a B-coalgebra f : X → BX is a post-fixed
point of the endofunctor f∗ ◦Rel(B)X : RelX → RelX , i.e., a relation R � X×X
such that R ≤ f∗ ◦ Rel(B)X(R). Bisimilarity is then obtained as the greatest
fixed point ν(f∗ ◦Rel(B)X), if it exists. In Set a bisimulation is a relation R such
that R ⊆ (f × f)−1(Rel(B)(R)), i.e., if xR y then f(x) Rel(B)(R) f(y).

4 Preserving and Reflecting Bisimilarity

In this section we show that, in the presence of an invertible step, bisimilarity
is preserved and reflected by the step-induced lifting of the right adjoint, given
some further mild conditions. This allows us to recover a number of existing
results for concrete instances (Section 5).

Our approach is as follows:

– In Section 4.1, we make precise what it means for a monotone map to preserve
and reflect bisimulations;

– In Section 4.2, we obtain conditions which ensure that the step-induced
lifting of the right adjoint to bisimulations preserves and reflects bisimula-
tions/bisimilarity.

Throughout this section we assume categories C and D as in Assumption 3.1, and
an invertible step δ : BQ → QL with right inverse ι : QL → BQ (and P,Q,B,L
as in Definition 2.1).

4.1 Preservation and reflection

We now make precise what it means for a monotone map h to preserve and reflect
bisimulations. This will be instantiated to bisimulations, captured abstractly as
post-fixed points of a monotone map f : Γ → Γ on a poset Γ , which typically
consists of relations (Section 3). These are compared against a second type of
bisimulations, modelled as post-fixed points of another monotone map g : Δ → Δ.
This motivates the following definition.

Definition 4.1. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ monotone
maps. A monotone map h : Γ → Δ preserves post-fixed points if x ≤ f(x) implies
h(x) ≤ g(h(x)). It reflects post-fixed points if the converse implication holds.

In the step setting of Eq. (1), bisimulations for B- and L-coalgebras can be
represented as post-fixed points of monotone maps on posets of relations as in
Section 3. More concretely:

– Bisimulations for an L-coalgebra f : X → LX are post-fixed points of the
monotone map f∗ ◦ Rel(L)X : RelX → RelX ;

– Bisimulations for the B-coalgebra ιX ◦ Qf : QX → BQX resulting from
the application of the step-induced lifting of Q are post-fixed points of
(ιX ◦Qf)∗ ◦ Rel(B)QX : RelQX → RelQX .

Preservation and Reflection of Bisimilarity via Invertible Steps 337

The two can be compared via the restriction Rel(Q)X : RelX → RelQX of the
functor Rel(Q). Indeed, our main objective is to show that in the presence of
an invertible step, Rel(Q)X preserves and reflects post-fixed points representing
bisimulations, and that it maps the greatest fixed point in RelX (bisimilarity on
f) to the greatest fixed point in RelQX (bisimilarity on ιX ◦Qf). In this context
we speak about preservation and reflection of bisimulations/bisimilarity.

4.2 Proof of preservation and reflection

We are now ready to prove preservation and reflection of bisimilarity, in the sense
described in the previous subsection. First, the following basic lemma provides a
method of showing preservation and reflection of post-fixed points, which will be
useful for our purposes.

Lemma 4.2. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ and h : Γ → Δ
monotone maps. Suppose that h has a left (lower) adjoint k : Δ → Γ , and the
equality gh = hf holds. Then h maps the greatest fixed point of f to the greatest
fixed point of g, when these exist; h preserves post-fixed points; and if h is
order-reflecting, then h reflects post-fixed points.

Categorically speaking, the equality gh = hf is an isomorphic step. Instan-
tiated to our setting of interest, Lemma 4.2 gives us a method for proving
preservation and reflection of bisimilarity: it suffices to show each of the following.

1. A left adjoint for Rel(Q)X (Lemma 4.7).
2. The equality (ιX ◦ Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X

(Theorem 4.9).
3. Order-reflection of Rel(Q)X (assumption; discussed at the end of this section).

To obtain the required adjunction between the fibres RelX and RelQX , we first
establish the adjunction Rel(P) � Rel(Q) between the total relation categories.
Given Theorem 3.1, we can lift the unit and counit of the adjunction P � Q,
using the transformations constructed in the following lemma.

Lemma 4.3. Let F : C → D and G : D → E be functors, with Rel(F) : Rel(C) →
Rel(D) and Rel(G) : Rel(D) → Rel(E) the corresponding relation liftings. Then
we have a natural transformation Rel(GF) → Rel(G)Rel(F). Further, if G pre-
serves abstract epis, then there is also a natural transformation Rel(G)Rel(F) →
Rel(GF). Also, the constructed transformations are above the identity.

We note that the first part is in [28, Exercise 4.4.6] and the result is proved
for Set endofunctors in [9, Lemma 14.1]. This allows the lifting of the adjunction,
which we note may also be obtainable from results on fibred adjunctions in [30,26],
but a direct proof is quite straightforward; the main idea is to use Lemma 4.3
together with preservation of abstract epis by P .

338 R. Turkenburg et al.

Lemma 4.4. The adjunction P � Q : D → C lifts to relations, i.e., the following
diagram is commutative, and the unit and counit of the upper adjunction are
above the unit and counit of P � Q.

Rel(C) Rel(D)

C D

Rel(P)

p
Rel(Q)

q

�

P

Q

�

(15)

The relation lifting defined in Section 3 allows us to define endofunctors
Rel(B), Rel(L) in the context of the above adjunction:

Rel(C) Rel(D)

Rel(P)

Rel(B)

Rel(Q)

Rel(L)

�

(16)

In this setting, we may try to lift the step δ or its converse ι to this adjunction.
It turns out that δ always lifts. For ι, there is a sufficient condition which is
independent of ι itself: that Q preserves abstract epis. In both cases, this result
follows essentially from Lemma 4.3.

Proposition 4.5. For a forward step δ and backward step ι, we have:

1. δ lifts to relations, i.e., there exists a natural transformation δ : Rel(B) ◦
Rel(Q) → Rel(Q) ◦ Rel(L) above δ.

2. If Q preserves abstract epis, then ι lifts to relations, i.e., there exists a natural
transformation ι : Rel(Q) ◦ Rel(L) → Rel(B) ◦ Rel(Q) above ι.

The condition that Q preserves abstract epis holds, e.g., in case it is the
forgetful functor in an adjunction monadic over Set. This is because Eilenberg-
Moore categories of monads on Set have (RegEpi,Mono)-factorisation systems, and
the forgetful functor sends regular epis to epis in Set as discussed in [13, Example
2.3]. It also holds in the Stone-Set case, as Stone is a reflective subcategory of
CHaus (which is equivalent to the category of algebras for the ultrafilter monad).

The lifted steps δ and ι give step-induced liftings of Rel(P) and Rel(Q)
between Coalg(Rel(B)) and Coalg(Rel(L)). Since bisimulations can be equivalently
presented as coalgebras for Rel(B) and Rel(L), these liftings can be used to capture
preservation of bisimulations. But it is less obvious what reflection means in this
context and how to prove it. For reflection of bisimulations by Rel(Q), we turn
our attention to the fibres, as described in the beginning of this section.

As a consequence of Proposition 4.5 and of δ ◦ ι = id, we obtain the following
result, which will later be used in the construction of a step on the fibres.

Lemma 4.6. Let δ be an invertible step with right inverse ι, and suppose Q
preserves abstract epis. Then Rel(Q)LX ◦ Rel(L)X = ι∗X ◦ Rel(B)QX ◦ Rel(Q)X .

Preservation and Reflection of Bisimilarity via Invertible Steps 339

Adjoining the fibres Next, we construct an adjunction between the fibres
RelX and RelQX . The usual restriction Rel(Q)X of Rel(Q) to the fibre RelX
will be the right adjoint, similarly to the adjunction obtained earlier. To map
back into the fibre RelX , we post-compose Rel(P)QX with

∐
ε, the direct image

functor obtained from the counit of the adjunction Rel(P) � Rel(Q). We note the
similarity with results on fibred adjunctions in [30], where only adjunctions over
a single base category are considered.

Lemma 4.7. We have an adjunction
∐

ε ◦Rel(P)QX � Rel(Q)X : RelX → RelQX .

The above lemma fulfils the first proof obligation stated in the beginning of
Section 4.2. It now remains to show the second proof obligation, i.e., that we
have an isomorphic step in the following setting:

RelQX RelX

∐

ε ◦Rel(P)QX

(ιX◦Qf)∗◦Rel(B)QX

Rel(Q)X

f∗◦Rel(L)X

�
(17)

To this end, we first show that Rel(Q) preserves inverse images, using the fact
that we can obtain inverse images as pullbacks inside the category of relations.
Since Rel(Q) is a right adjoint, it preserves these pullbacks.

Lemma 4.8. Rel(Q) preserves inverse images.

We are now ready to show the existence of the required isomorphic step.

Theorem 4.9. If Q preserves abstract epis, then for any L-coalgebra (X, f):

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X (18)

Proof. We have

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = (Qf)∗ ◦ ι∗X ◦ Rel(B)QX ◦ Rel(Q)X (19)
= (Qf)∗ ◦ Rel(Q)LX ◦ Rel(L)X (20)
= Rel(Q)X ◦ f∗ ◦ Rel(L)X (21)

where Eq. (19) is an application of a basic fact on inverse images (technically,
that the poset fibration of relations is split), Eq. (20) holds by Lemma 4.6, and
Eq. (21) holds by Lemma 4.8.

We now reach our main result on preservation and reflection of bisimulations
and bisimilarity by Rel(Q)X .

Theorem 4.10. Let (X, f) be an L-coalgebra. Suppose that Q preserves abstract
epis. Then Rel(Q)X maps bisimilarity on (X, f) (when it exists) to bisimilarity on
Q(X, f). Further, Rel(Q)X preserves bisimulations and, if it is order-reflecting,
also reflects bisimulations.

340 R. Turkenburg et al.

Proof. We have seen in Lemma 4.7, that Rel(Q)X has a left adjoint, and in
Theorem 4.9, that in this setting we have an isomorphic step. The result now
follows from Lemma 4.2.

While this result is formulated in terms of Rel(Q)X , we will also speak of
simply Q preserving and reflecting both bisimulations and bisimilarity.

As a special case of Theorem 4.10, we recover (a version of) the following
existing result found in [42,3,11,12].

Lemma 4.11. Assume functors B,L : C → C, and a natural transformation
ι : L → B. Then the functor Id : Coalg(L) → Coalg(B) defined by (X, f) �→
(X,σX ◦ f) on objects and identity on morphisms, preserves bisimulations. If
additionally ι has a left inverse, Id reflects bisimulations.

We briefly turn to the condition of order-reflectingness. As we are often
interested in cases where the right adjoint is a forgetful functor in the context of
an Eilenberg-Moore adjunction, it is useful to state the following.

Lemma 4.12. For a monad T with forgetful functor U : EM(T) → C, the (re-
stricted) lifting Rel(U)X is an order-reflecting map.

If C = Set in the above lemma, then Rel(U)X is just the inclusion of the poset
of congruences RelX on an algebra X into the poset of all relations on its carrier.

In that case, we can also use the above to show preservation and reflection
of behavioural equivalence. Two states of a coalgebra (in Set) are behaviourally
equivalent if they can be identified by some coalgebra homomorphism. This can
be captured more abstractly using kernel bisimulations (see, e.g., [44]). Since U
is assumed to be a forgetful functor to Set, we simply define preservation and
reflection of behavioural equivalence by U to mean that for any two states x, y
of an L-coalgebra (X, f), x and y are behaviourally equivalent (for (X, f)) if and
only if they are behaviourally equivalent for U(X, f).

It turns out that, in our setting, coincidence of bisimilarity and behavioural
equivalence for L-coalgebras reduces to coincidence for B-coalgebras. This is
stated in the following lemma; the essence is that U is easily shown to preserve
behavioural equivalence.

Lemma 4.13. For a monad T , consider the Eilenberg-Moore adjunction F �
U : EM(T) → Set with functors L : EM(T) → EM(T) and B : Set → Set, and
an invertible step δ : BU → UL. Further suppose that U preserves and reflects
bisimilarity, and that B preserves weak pullbacks. Then bisimilarity and be-
havioural equivalence for L-coalgebras coincide (and hence, U preserves and
reflects behavioural equivalence).

Remark 4.14. We conclude with a brief exploration of preservation and reflection
by the restriction of the left adjoint Rel(P)X , in the setting of

RelX RelPX
Rel(P)X

f∗◦Rel(B)X (δ̂X◦Pf)∗◦Rel(L)PX (22)

Preservation and Reflection of Bisimilarity via Invertible Steps 341

with f : X → BX a B-coalgebra in this case. Here, we can obtain a backward
step Rel(P)X ◦ f∗ ◦ Rel(B)X ≤ (δ̂X ◦ Pf)∗ ◦ Rel(L)PX ◦ Rel(P)X which means
that we can lift Rel(P)X to bisimulations, so that these are preserved. However,
we cannot obtain a forward step in this context, thus reflection will not hold. This
is illustrated, e.g., by the example of ultrafilter extensions, where the ultrafilter
monad β certainly does not reflect bisimulations: in general, in the ultrafilter
extension more states will be bisimilar.

5 Applications

Now that we have obtained conditions for the preservation and reflection of
bisimilarity, we return to the examples of Section 2.2. We will show how a number
of existing non-trivial results can be recovered in a concise way. Further, the
Set-Stone adjunction used in the first example is known to not be monadic, and
so outside the scope of weak liftings, which indicates the generality of our results.

Ultrafilter Extensions and Vietoris bisimulations In Example 2.5, we
have seen how the construction of ultrafilter extensions can be obtained from
an invertible step, which arises from a weak lifting described by Garner. In the
current treatment of reflection and preservation of bisimilarity, we focus on the
restriction of this invertible step to the category Stone.

This brings us in line with [5], where a comparison is made between bisimilarity
for the Vietoris functor V : Stone → Stone and bisimilarity for the powerset functor
P : Set → Set, called Vietoris-bisimilarity and Kripke-bisimilarity respectively in
op. cit. More precisely, for a V-coalgebra (X, f), Kripke bisimilarity is bisimilarity
on U(X, f), where U is the step-induced lifting of the forgetful functor U : Stone →
Set. Vietoris bisimilarity is simply bisimilarity on the coalgebra (X, f) itself.

We consider the following results from [5]:

1. The relation liftings of P and V coincide for closed subsets [5, Prop 3.4]
2. Vietoris bisimulations are equivalently closed Kripke bisimulations [5, Thm 3.6]
3. The closure of a Kripke bisimulation is a Vietoris bisimulation [5, Thm 5.2]
4. Vietoris- and Kripke-bisimilarity are equivalent [5, Cor 3.10]

From the above discussion, we see that these results fit into the setting of
Section 4, so that they can be recovered using our results on the preservation
and reflection of bisimilarity as follows:

1. This follows from the equality of Lemma 4.6, as the action of ι∗ is exactly
the restriction to closed subsets. We can apply this lemma as U preserves
abstract epis, due to the same argument as for adjunctions monadic over Set
(see the discussion after Proposition 4.5), as Stone is also a regular category.

2. For this, we use preservation and reflection of bisimulations by the (restricted)
relation lifting Rel(U)X : RelX → RelUX of the forgetful functor, which is
simply the inclusion of the poset of closed relations on a Stone space X to
that of all relations on the underlying set.

342 R. Turkenburg et al.

Indeed, preservation and reflection by Rel(U)X follows from Theorem 4.10.
We have seen that U : Stone → Set preserves abstract epis, so it only remains
to check that Rel(U)X is order-reflecting. This holds because Stone is a
reflective (i.e. full) subcategory of CHaus, which is monadic over Set.

3. The left adjoint
∐

ε ◦Rel(β)UX of Lemma 4.7 gives the closure of a relation.
Its lifting to bisimulations (cf. Remark 4.14) yields the desired result.

4. This holds since Rel(U)X maps the greatest fixed point of (ιX ◦ Uf)∗ ◦
Rel(P)UX to that of f∗ ◦ Rel(V)X , i.e., it preserves and reflects bisimilarity.

PAs and Belief State Transformers As discussed in Example 2.6, we can
determinise a PA to a coalgebra for the convex powerset functor Pc : EM(D) →
EM(D) using a lifting of F : Set → EM(D). The step-induced lifting of the
corresponding forgetful functor U : EM(D) → Set maps the Pc-coalgebra back
into Set, but we must take care that this does not change its behaviour. What
we can do now, is show that bisimilarity is preserved and reflected.

Once we know this, we can apply Lemma 4.13 to show the coincidence of
bisimilarity and behavioural equivalence in the case of the convex powerset functor
on EM(D) and the powerset functor on Set as this preserves weak pullbacks.
This coincidence is relevant for the generalisation of the corresponding results
of [12] (restricted to the convex powerset functor), which are formulated in terms
of behavioural equivalence. As mentioned in Example 2.6, the weak lifting we
require to cover automata with labels can be found in [21]. Consider the following:

1. The lifting of the forgetful functor U : EM(D) → Set preserves and reflects
behavioural equivalence on PL

c -coalgebras [12, Proposition 6.6].
2. A relation R is a kernel bisimulation for a PL

c -coalgebra (S, c) in EM(D) iff
it is a kernel bisimulation for U(S, c) and also a congruence.

Again, we can apply the results of Section 4 to recover these results. In fact,
in [12, Proposition 6.5], the second result is proved more generally, namely for
settings where a so-called lax lifting exists rather than the weak lifting we require.

1. We have seen that U preserves abstract epis as the adjunction in question is
monadic over Set. This allows us to apply Theorem 4.10 so that U indeed
preserves and reflects bisimulations, and the relevant lifting preserves and
reflects bisimilarity. From Lemma 4.13, it follows that U also preserves and
reflects behavioural equivalence.

2. Assuming (S, c) is a PL
c -coalgebra, this follows from Lemma 4.13 together

with the previous item, and the fact that bisimulations in Eilenberg-Moore
categories are congruences.

Automata For a different instance, we revisit Example 2.7 and consider the
basic adjunction P � Q : Dop → C. As a general remark, we note that if D admits
a factorization system (E ,M) with E a class of epis, and M a class of monos,
then (M, E) forms a factorization system for Dop, with M a class of epis in Dop,
and E a class of monos in Dop. We can explicitly describe Rel(Dop) as follows:

Preservation and Reflection of Bisimilarity via Invertible Steps 343

– Objects of Rel(Dop) are quotients X +X � E of X +X;
– A map X +X � E → Y + Y � F consists of a map u : Y → X in D such

that there is the following commutative diagram

E F

X +X Y + Y
u+u

(23)

In the case D = Set, E = Epi and M = Mono. Further, every epi e : X +X � E
is isomorphic to an epi of the form X +X � (X +X)/∼ with ∼ an equivalence
relation on X +X. This gives us an equivalent description of Rel(Setop):

– Objects of Rel(Setop) are equivalence relations ∼ on X +X for a set X;
– A map ∼ ⊆ (X +X)2 → ≈ ⊆ (Y + Y)2 consists of a map u : Y → X such

that if j(y) ≈ j′(y′), then j(u(y)) ∼ j′(u(y′)), with j, j′ arbitrary coproduct
inclusions.

In particular, we see that the fibre over a set X consists of all equivalence relations
on X + X, ordered by reverse inclusion. Reindexing along a map u : X ← Y
maps an equivalence relation ≈ on Y + Y to the least equivalence relation ∼ on
X +X, such that j(u(y)) ∼ j′(u(y′)) for all j(y) ≈ j′(y′).

Focusing on the setting of (8) in Example 2.7, the lifting Rel(L) is given by

inl(∗) Rel(L)(∼) inr(∗) (24)
j((a, x)) Rel(L)(∼) j′((b, x)) ⇐⇒ a = b and j(x) ∼ j′(y) (25)

If f : X ← 1 + Σ × X is an L-coalgebra, we see that f∗ ◦ Rel(L)X maps an
equivalence relation ∼ on X +X to the least equivalence relation ≈ satisfying

inl(f(∗)) ≈ inr(f(∗)) (26)
j(f(a, x)) ≈ j′(f(a, y)) whenever j(x) ∼ j′(y) (27)

A post-fixed point of this map is an equivalence relation ∼ which relates inl(f(∗))
and inr(f(∗)) and is closed under the action of Σ on X +X. The greatest post-
fixed point is the least such relation, as relations in RelX are ordered by reverse
inclusion. It is easy to see that this is exactly the relation which identifies inl(x)
and inr(x) for those x reachable from f(∗).

Rel(Q), meanwhile, maps an equivalence relation ∼ on X +X to the relation
R on 2X given by

uRv ⇐⇒ inl[u] ∪ inr[v] is ∼-closed (28)

If X ′ is the set of reachable states, we conclude that Rel(Q) maps the greatest
bisimulation ∼ to the relation

uRv ⇐⇒ u ∩X ′ = v ∩X ′ (29)

The functor Q preserves (abstract) epis, as all epis in Setop are regular. Now,
Theorem 4.10 tells us that the relation (29) coincides with bisimilarity on the
automaton Q(X, f) from Example 2.7. It follows that the subautomaton on 2X

′

is minimal, and is the minimal automaton equivalent to Q(X, f).

344 R. Turkenburg et al.

6 Discussion and Future Work

We studied the notion of an invertible step, which provides several constructions
on coalgebras via functor liftings. We showed that the lifting of the right adjoint,
induced by such an invertible step, preserves and reflects bisimilarity. This
abstract result instantiates to several concrete results from the literature, in
examples related to ultrafilter extensions and weak distributive laws.

We have focused on preservation and reflection of bisimilarity, defined in terms
of relation lifting. There are several other coalgebraic notions of behavioural
equivalence and bisimilarity [44]—we discuss these in the next subsection. Finally,
in Section 6.2 we list directions for future work.

6.1 Remarks on other notions of bisimulation

Aczel-Mendler bisimulations For a coalgebra f : X → LX, an Aczel-Mendler
bisimulation R � X ×X is defined by the existence of an L-coalgebra structure
R → LR on R such that the projection maps are coalgebra homomorphisms [1].

In the invertible step setting, applying a lifting Q to such a bisimulation,
yields a structure QR → BQR. However, this is not immediately a bisimulation,
as QR may not be a relation. We can obtain a relation by taking the image of
〈Qπ1, Qπ2〉 as we do to define relation lifting, but in general this is a Hermida-
Jacobs bisimulation [28, Exercise 4.5.2], rather than an Aczel-Mendler one.

On the other hand, if we wish to speak of reflection of Aczel-Mendler bisimu-
lations, we start with a span QX ← R → QX and try to construct a relation on
X. Using the adjunction of the step setting, we can transpose the projections to
obtain a span X ← PR → X. Again PR is not immediately a relation in general,
and taking the image yields a Rel(L)-coalgebra (not an L-coalgebra) as the
projections and the counit ε are coalgebra homomorphisms (see also [28, Exercise
4.5.4]). This in fact comes down to the same as the left adjoint

∐
ε ◦Rel(P)QX

constructed earlier. There we factorise to obtain the relation lifting and factorise
again for the direct image of ε, instead of factorising the paired transposes defined
using ε. We also do not explicitly use that ε is a coalgebra homomorphism (al-
though this follows from the step with right inverse and Lemma 2.3); instead we
lift the adjunction at the level of relations to give a map between bisimulations.
This is part of the motivation for the use of relation liftings and the corresponding
notion of bisimulations.

Going further, it is shown in [5] that there exists a Vietoris bisimulation which
is not an Aczel-Mendler bisimulation and, stronger, that there exist Vietoris
coalgebras with states which can be related by a Vietoris but not an Aczel-
Mendler bisimulation. Thus, the correspondences between bisimulations on Set
and Stone we have discussed in the previous sections are not obtainable when we
consider Aczel-Mendler bisimulations.

Kernel bisimulations/behavioural equivalence In applying our results to
the preservation and reflection of behavioural equivalence, we currently work
concretely; considering sets of states and identification of elements.

Preservation and Reflection of Bisimilarity via Invertible Steps 345

We prefer to work more abstractly, as we have done for bisimilarity. To this
end, we may consider kernel bisimulations. A relation R � X ×X is a kernel
bisimulation on a coalgebra (X, f : X → LX) in a category D, if it is the pullback
of morphisms X → Z ← X in D forming a cospan of coalgebra homomorphisms
(X, f) → (Z, z) ← (X, f) in CoalgD(L). In a concrete setting this coincides with
behavioural equivalence, as such a pullback contains exactly the pairs of elements
of X which are identified in Z by the morphisms forming the cospan. We can
thus view this as a generalisation of behavioural equivalence as defined earlier.

Assuming an invertible step δ : BQ → QL, we would like to relate R to a
kernel bisimulation on the coalgebra Q(X, f) obtained by applying the step-
induced lifting of Q. Applying Q to the pullback square for R yields a pullback
square as Q is a right adjoint. However, as in our discussion of Aczel-Mendler
bisimulations, this may not be a relation. We may try to also use relation liftings
here, and take Rel(Q)(R) instead of Q(R), however this may no longer be a
pullback. It is not currently clear to us how to resolve these problems in general.

6.2 Future work

There are several further directions for future work. First, in this paper we focused
primarily on fibrations of relations, which suffice for our purposes of studying
bisimilarity. However, we expect that some of our results can be generalised to
arbitrary (posetal) fibrations. Such a generalisation could be the basis to study
preservation and reflection of other coinductive predicates and relations than
bisimilarity, which can be formulated in terms of fibrations and liftings (e.g., [25]).

Secondly, while we have shown in Section 5 how our results can be used
to recover the central results from [5], the latter have been generalised in two
directions: the recent [24] considers bisimulations for Vietoris coalgebras on
the category of arbitrary topological spaces, while [18] develops a notion of
neighbourhood bisimulation for coalgebras that allows to generalise the results
from [5] to a large variety of functors on the category of Stone spaces and their
corresponding functors on Set. We would like to understand whether or not our
framework is able to recover these generalisations.

Finally, the examples that we have studied in this paper do not yet exploit the
full generality of invertible steps: our main motivating examples are based on an
Eilenberg-Moore adjunction (or close, as in the example based on Stone spaces).
In [41] it is shown that steps are relevant in a much wider setting, for instance
when based on a Kleisli adjunction or on contravariant adjunctions and dualities.
The latter type of steps are relevant for coalgebraic modal logics—we have studied
a first instance in our example of deterministic and non-deterministic automata.
Investigating the meaning of invertible steps in these other types of adjunctions
is left for future work.

Acknowledgements This research has been partially funded by the NWO
grant OCENW.M20.053 and by Leverhulme Trust Research Project Grant RPG-
2020-232.

346 R. Turkenburg et al.

References

1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Category Theory and
Computer Science. Lecture Notes in Computer Science, vol. 389, pp. 357–365.
Springer (1989)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The
Joy of Cats. Dover Publications (2009)

3. Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theor. Comput. Sci. 327(1-2), 3–22 (2004)

4. van Benthem, J.: Canonical modal logics and ultrafilter extensions. The Journal of
Symbolic Logic 44(1), 1–8 (1979), publisher: Cambridge University Press

5. Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Log. Comput.
20(5), 1017–1040 (2010)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press (2001)

7. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalge-
braic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

8. Bonchi, F., Bonsangue, M.M., Caltais, G., Rutten, J., Silva, A.: A coalgebraic view
on decorated traces. Math. Struct. Comput. Sci. 26(7), 1234–1268 (2016)

9. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: A general account of coinduction up-to.
Acta Informatica 54(2), 127–190 (2017)

10. Bonchi, F., Santamaria, A.: Combining semilattices and semimodules. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 12650, pp. 102–123. Springer (2021)

11. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: CONCUR.
LIPIcs, vol. 85, pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

12. Bonchi, F., Silva, A., Sokolova, A.: Distribution bisimilarity via the power of convex
algebras. Log. Methods Comput. Sci. 17(3) (2021)

13. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws.
Log. Methods Comput. Sci. 11(3) (2015)

14. Bonsangue, M.M., Kurz, A.: Duality for logics of transition systems. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 3441, pp. 455–469. Springer (2005)

15. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of
coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1), 7:1–7:52 (2013)

16. Borceux, F.: Handbook of categorical algebra: volume 1, Basic category theory,
vol. 1. Cambridge University Press (1994)

17. Chen, L., Jung, A.: On a categorical framework for coalgebraic modal logic. In:
MFPS. Electronic Notes in Theoretical Computer Science, vol. 308, pp. 109–128.
Elsevier (2014)

18. Enqvist, S., Sourabh, S.: Bisimulations for coalgebras on Stone spaces. J. Log.
Comput. 28(6), 991–1010 (2018)

19. Garner, R.: The Vietoris monad and weak distributive laws. Appl. Categorical
Struct. 28(2), 339–354 (2020)

20. Goldblatt, R.I.: Metamathematics of modal logic. Bulletin of the Australian Math-
ematical Society 10(3), 479–480 (1974), publisher: Cambridge University Press

21. Goy, A.: On the compositionality of monads via weak distributive laws. (Composi-
tionnalité des monades par lois de distributivité faibles). Ph.D. thesis, University
of Paris-Saclay, France (2021)

22. Goy, A., Petrisan, D.: Combining probabilistic and non-deterministic choice via
weak distributive laws. In: LICS. pp. 454–464. ACM (2020)

Preservation and Reflection of Bisimilarity via Invertible Steps 347

23. Goy, A., Petrisan, D., Aiguier, M.: Powerset-like monads weakly distribute over
themselves in toposes and compact Hausdorff spaces. In: ICALP. LIPIcs, vol. 198,
pp. 132:1–132:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

24. Gumm, H.P., Taheri, M.: Saturated Kripke structures as Vietoris coalgebras. In:
CMCS. Lecture Notes in Computer Science, vol. 13225, pp. 88–109. Springer (2022)

25. Hasuo, I., Kataoka, T., Cho, K.: Coinductive predicates and final sequences in a
fibration. Math. Struct. Comput. Sci. 28(4), 562–611 (2018)

26. Hermida, C.: On fibred adjunctions and completeness for fibred categories. In:
COMPASS/ADT. Lecture Notes in Computer Science, vol. 785, pp. 235–251.
Springer (1992)

27. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Inf. Comput. 145(2), 107–152 (1998)

28. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Ob-
servation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016)

29. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
Syst. Sci. 81(5), 859–879 (2015)

30. Jacobs, B.P.F.: Categorical Logic and Type Theory, Studies in logic and the
foundations of mathematics, vol. 141. North-Holland (2001)

31. Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Kelly, G.M. (ed.)
Category Seminar: Proceedings Sydney Category Seminar 1972/1973. No. 420 in
Lecture Notes in Mathematics, Springer-Verlag (1974)

32. Klin, B.: Coalgebraic modal logic beyond sets. In: MFPS. Electronic Notes in
Theoretical Computer Science, vol. 173, pp. 177–201. Elsevier (2007)

33. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor.
Comput. Sci. 412(38), 5043–5069 (2011)

34. Klin, B., Salamanca, J.: Iterated covariant powerset is not a monad. In: MFPS.
Electronic Notes in Theoretical Computer Science, vol. 341, pp. 261–276. Elsevier
(2018)

35. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In:
CMCS. Electronic Notes in Theoretical Computer Science, vol. 106, pp. 219–241.
Elsevier (2004)

36. Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter extensions for coalgebras. In: CALCO.
Lecture Notes in Computer Science, vol. 3629, pp. 263–277. Springer (2005)

37. Leinster, T.: Higher Operads, Higher Categories, London Mathematical Society
Lecture Notes, vol. 298. Cambridge University Press (2004)

38. Levy, P.B.: Final coalgebras from corecursive algebras. In: CALCO. LIPIcs, vol. 35,
pp. 221–237. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

39. Manes, E.: A triple theoretic construction of compact algebras. In: Seminar on
triples and categorical homology theory. pp. 91–118. Springer (1969)

40. Pavlovic, D., Mislove, M.W., Worrell, J.: Testing semantics: Connecting processes
and process logics. In: AMAST. Lecture Notes in Computer Science, vol. 4019, pp.
308–322. Springer (2006)

41. Rot, J., Jacobs, B., Levy, P.B.: Steps and traces. J. Log. Comput. 31(6), 1482–1525
(2021)

42. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000)

43. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing deter-
minization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)

44. Staton, S.: Relating coalgebraic notions of bisimulation. Log. Methods Comput. Sci.
7(1) (2011)

348 R. Turkenburg et al.

45. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS.
pp. 280–291. IEEE Computer Society (1997)

46. Varacca, D.: Probability, Nondeterminism and Concurrency: Two Denotational
Models for Probabilistic Computation. Ph.D. thesis, University of Aarhus (2003)

47. Zwart, M., Marsden, D.: No-go theorems for distributive laws. Log. Methods
Comput. Sci. 18(1) (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantitative Safety and Liveness

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç(�)

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{tah,nmazzocc,esarac}@ist.ac.at

Abstract. Safety and liveness are elementary concepts of computation,
and the foundation of many verification paradigms. The safety-liveness
classification of boolean properties characterizes whether a given prop-
erty can be falsified by observing a finite prefix of an infinite computation
trace (always for safety, never for liveness). In quantitative specification
and verification, properties assign not truth values, but quantitative val-
ues to infinite traces (e.g., a cost, or the distance to a boolean property).
We introduce quantitative safety and liveness, and we prove that our def-
initions induce conservative quantitative generalizations of both (1) the
safety-progress hierarchy of boolean properties and (2) the safety-liveness
decomposition of boolean properties. In particular, we show that every
quantitative property can be written as the pointwise minimum of a
quantitative safety property and a quantitative liveness property. Con-
sequently, like boolean properties, also quantitative properties can be
min-decomposed into safety and liveness parts, or alternatively, max-
decomposed into co-safety and co-liveness parts. Moreover, quantitative
properties can be approximated naturally. We prove that every quan-
titative property that has both safe and co-safe approximations can be
monitored arbitrarily precisely by a monitor that uses only a finite num-
ber of states.

1 Introduction

Safety and liveness are elementary concepts in the semantics of computation [39].
They can be explained through the thought experiment of a ghost monitor—an
imaginary device that watches an infinite computation trace at runtime, one
observation at a time, and always maintains the set of possible prediction values
to reflect the satisfaction of a given property. Let Φ be a boolean property,
meaning that Φ divides all infinite traces into those that satisfy Φ, and those that
violate Φ. After any finite number of observations, True is a possible prediction
value for Φ if the observations seen so far are consistent with an infinite trace
that satisfies Φ, and False is a possible prediction value for Φ if the observations
seen so far are consistent with an infinite trace that violates Φ. When True is no
possible prediction value, the ghost monitor can reject the hypothesis that Φ is
satisfied. The property Φ is safe if and only if the ghost monitor can always reject
the hypothesis Φ after a finite number of observations: if the infinite trace that is
being monitored violates Φ, then after some finite number of observations, True is
no possible prediction value for Φ. Orthogonally, the property Φ is live if and only
if the ghost monitor can never reject the hypothesis Φ after a finite number of

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_17

349–370, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_17&domain=pdf

350 T. A. Henzinger et al.

observations: for all infinite traces, after every finite number of observations, True
remains a possible prediction value for Φ.

The safety-liveness classification of properties is fundamental in verification.
In the natural topology on infinite traces—the “Cantor topology”—the safety
properties are the closed sets, and the liveness properties are the dense sets [4].
For every property Φ, the location of Φ within the Borel hierarchy that is in-
duced by the Cantor topology—the so-called “safety-progress hierarchy” [17]—
indicates the level of difficulty encountered when verifying Φ. On the first level,
we find the safety and co-safety properties, the latter being the complements of
safety properties, i.e., the properties whose falsehood (rather than truth) can
always be rejected after a finite number of observations by the ghost monitor.
More sophisticated verification techniques are needed for second-level properties,
which are the countable boolean combinations of first-level properties—the so-
called “response” and “persistence” properties [17]. Moreover, the orthogonality
of safety and liveness leads to the following celebrated fact: every property can be
written as the intersection of a safety property and a liveness property [4]. This
means that every property Φ can be decomposed into two parts: a safety part—
which is amenable to simple verification techniques, such as invariants—and a
liveness part—which requires heavier verification paradigms, such as ranking
functions. Dually, there is always a disjunctive decomposition of Φ into co-safety
and co-liveness.

So far, we have retold the well-known story of safety and liveness for boolean
properties. A boolean property Φ is formalized mathematically as the set of infi-
nite computation traces that satisfy Φ, or equivalently, the characteristic function
that maps each infinite trace to a truth value. Quantitative generalizations of
the boolean setting allow us to capture not only correctness properties, but also
performance properties [31]. In this paper we reveal the story of safety and live-
ness for such quantitative properties, which are functions from infinite traces to
an arbitrary set D of values. In order to compare values, we equip the value
domain D with a partial order <, and we require (D, <) to be a complete lattice.
The membership problem [18] for an infinite trace f and a quantitative property
Φ asks whether Φ(f) ≥ v for a given threshold value v ∈ D. Correspondingly,
in our thought experiment, the ghost monitor attempts to reject hypotheses of
the form Φ(f) ≥ v, which cannot be rejected as long as all observations seen
so far are consistent with an infinite trace f with Φ(f) ≥ v. We will define Φ
to be a quantitative safety property if and only if every hypothesis of the form
Φ(f) ≥ v can always be rejected by the ghost monitor after a finite number of
observations, and we will define Φ to be a quantitative liveness property if and
only if some hypothesis of the form Φ(f) ≥ v can never be rejected by the ghost
monitor after any finite number of observations. We note that in the quantita-
tive case, after every finite number of observations, the set of possible prediction
values for Φ maintained by the ghost monitor may be finite or infinite, and in
the latter case, it may not contain a minimal or maximal element.

Let us give a few examples. Suppose we have four observations: observation
rq for “request a resource,” observation gr for “grant the resource,” observa-
tion tk for “clock tick,” and observation oo for “other.” The boolean property

Quantitative Safety and Liveness 351

Resp requires that every occurrence of rq in an infinite trace is followed even-
tually by an occurrence of gr. The boolean property NoDoubleReq requires that
no occurrence of rq is followed by another rq without some gr in between. The
quantitative property MinRespTime maps every infinite trace to the largest num-
ber k such that there are at least k occurrences of tk between each rq and the
closest subsequent gr. The quantitative property MaxRespTime maps every in-
finite trace to the smallest number k such that there are at most k occurrences
of tk between each rq and the closest subsequent gr. The quantitative property
AvgRespTime maps every infinite trace to the lower limit value lim inf of the in-
finite sequence (vi)i≥1, where vi is, for the first i occurrences of tk, the average
number of occurrences of tk between rq and the closest subsequent gr. Note that
the values of AvgRespTime can be ∞ for some computations, including those for
which the value of Resp is True. This highlights that boolean properties are not
embedded in the limit behavior of quantitative properties.

The boolean property Resp is live because every finite observation sequence
can be extended with an occurrence of gr. In fact, Resp is a second-level liveness
property (namely, a response property), because it can be written as a countable
intersection of co-safety properties. The boolean property NoDoubleReq is safe
because if it is violated, it will be rejected by the ghost monitor after a finite
number of observations, namely, as soon as the ghost monitor sees a rq followed
by another occurrence of rq without an intervening gr. According to our quan-
titative generalization of safety, MinRespTime is a safety property. The ghost
monitor always maintains the minimal number k of occurrences of tk between
any past rq and the closest subsequent gr seen so far; the set of possible predic-
tion values for MinRespTime is always {0, 1, . . . , k}. Every hypothesis of the form
“the MinRespTime-value is at least v” is rejected by the ghost monitor as soon
as k < v; if such a hypothesis is violated, this will happen after some finite num-
ber of observations. Symmetrically, the quantitative property MaxRespTime is
co-safe, because every wrong hypothesis of the form “the MaxRespTime-value is
at most v” will be rejected by the ghost monitor as soon as the smallest possible
prediction value for MaxRespTime, which is the maximal number of occurrences
of tk between any past rq and the closest subsequent gr seen so far, goes above v.
By contrast, the quantitative property AvgRespTime is both live and co-live be-
cause no hypothesis of the form “the AvgRespTime-value is at least v,” nor of the
form “the AvgRespTime-value is at most v,” can ever be rejected by the ghost
monitor after a finite number of observations. All nonnegative real numbers and
∞ always remain possible prediction values for AvgRespTime. Note that a ghost
monitor that attempts to reject hypotheses of the form Φ(f) ≥ v does not need
to maintain the entire set of possible prediction values, but only the sup of the set
of possible prediction values, and whether or not the sup is contained in the set.
Dually, updating inf (and whether it is contained) suffices to reject hypotheses
of the form Φ(f) ≤ v.

By defining quantitative safety and liveness via ghost monitors, we not only
obtain a conservative and quantitative generalization of the boolean story, but
also open up attractive frontiers for quantitative semantics, monitoring, and ver-
ification. For example, while the approximation of boolean properties reduces to

352 T. A. Henzinger et al.

adding and removing traces to and from a set, the approximation of quantitative
properties offers a rich landscape of possibilities. In fact, we can approximate
the notion of safety itself. Given an error bound α, the quantitative property Φ
is α-safe if and only if for every value v and every infinite trace f whose value
Φ(f) is less than v, all possible prediction values for Φ are less than v + α after
some finite prefix of f . This means that, for an α-safe property Φ, the ghost
monitor may not reject wrong hypotheses of the form Φ(f) ≥ v after a finite
number of observations, once the violation is below the error bound. We show
that every quantitative property that is both α-safe and β-co-safe, for any fi-
nite α and β, can be monitored arbitrarily precisely by a monitor that uses only
a finite number of states.

We are not the first to define quantitative (or multi-valued) definitions of
safety and liveness [41,27]. While the previously proposed quantitative gener-
alizations of safety share strong similarities with our definition (without coin-
ciding completely), our quantitative generalization of liveness is entirely new.
The definitions of [27] do not support any safety-liveness decomposition, be-
cause their notion of safety is too permissive, and their liveness too restrictive.
While the definitions of [41] admit a safety-liveness decomposition, our definition
of liveness captures strictly fewer properties. Consequently, our definitions offer
a stronger safety-liveness decomposition theorem. Our definitions also fit natu-
rally with the definitions of emptiness, equivalence, and inclusion for quantitative
languages [18].

Overview. In Section 2, we introduce quantitative properties. In Section 3, we
define quantitative safety as well as safety closure, namely, the property that
increases the value of each trace as little as possible to achieve safety. Then, we
prove that our definitions preserve classical boolean facts. In particular, we show
that a quantitative property Φ is safe if and only if Φ equals its safety closure
if and only if Φ is upper semicontinuous. In Section 4, we generalize the safety-
progress hierarchy to quantitative properties. We first define limit properties. For
� ∈ {inf, sup, lim inf, lim sup}, the class of �-properties captures those for which
the value of each infinite trace can be derived by applying the limit function � to
the infinite sequence of values of finite prefixes. We prove that inf-properties co-
incide with safety, sup-properties with co-safety, lim inf-properties are suprema
of countably many safety properties, and lim sup-properties infima of countably
many co-safety properties. The lim inf-properties generalize the boolean persis-
tence properties of [17]; the lim sup-properties generalize their response prop-
erties. For example, AvgRespTime is a lim inf-property. In Section 5, we intro-
duce quantitative liveness and co-liveness. We prove that our definitions preserve
the classical boolean facts, and show that there is a unique property which is
both safe and live. As main result, we provide a safety-liveness decomposition
that holds for every quantitative property. In Section 6, we define approximate
safety and co-safety. We generalize the well-known unfolding approximation of
discounted properties for approximate safety and co-safety properties over the
extended reals. This allows us to provide a finite-state approximate monitor for
these properties. In Section 7, we conclude with future research directions. For
complete proofs of all results, we refer the reader to the full version of the paper.

Quantitative Safety and Liveness 353

Related Work. The notions of safety and liveness for boolean properties ap-
peared first in [39] and were later formalized in [4], where safety properties were
characterized as closed sets of the Cantor topology on infinite traces, and liveness
properties as dense sets. As a consequence, the seminal decomposition theorem
followed: every boolean property is an intersection of a safety property and a
liveness property. A benefit of such a decomposition lies in the difference between
the mathematical arguments used in their verification. While safety properties
enable simpler methods such as invariants, liveness properties require more com-
plex approaches such as well-foundedness [42,5]. These classes were characterized
in terms of Büchi automata in [5] and in terms of linear temporal logic in [46].

The safety-progress classification of boolean properties [17] proposes an or-
thogonal view: rather than partitioning the set of properties, it provides a hi-
erarchy of properties starting from safety. This yields a more fine-grained view
of nonsafety properties which distinguishes whether a “good thing” happens at
least once (co-safety or “guarantee”), infinitely many times (response), or even-
tually always (persistence). This classification follows the Borel hierarchy that
is induced by the Cantor topology on infinite traces, and has corresponding pro-
jections within properties that are definable by finite automata and by formulas
of linear temporal logic.

Runtime verification, or monitoring, is a lightweight, dynamic verification
technique [6], where a monitor watches a system during its execution and tries
to decide, after each finite sequence of observations, whether the observed finite
computation trace or its unknown infinite extension satisfies a desired property.
The safety-liveness dichotomy has profound implications for runtime verification
as well: safety is easy to monitor [28], while liveness is not. An early definition of
boolean monitorability was equivalent to safety with recursively enumerable sets
of bad prefixes [35]. The monitoring of infinite-state boolean safety properties
was later studied in [26]. A more popular definition of boolean monitorabil-
ity [44,8] accounts for both truth and falsehood, establishing the set of moni-
torable properties as a strict superset of finite boolean combinations of safety and
co-safety [23]. Boolean monitors that use the set possible prediction values can
be found in [7]. The notion of boolean monitorability was investigated through
the safety-liveness lens in [43] and through the safety-progress lens in [23].

Quantitative properties (a.k.a. “quantitative languages”) [18] extend their
boolean counterparts by moving from the two-valued truth domain to richer
domains such as real numbers. Such properties have been extensively studied
from a static verification perspective in the past decade, e.g., in the context
of model-checking probabilistic properties [38,37], games with quantitative ob-
jectives [10,15], specifying quantitative properties [11,1], measuring distances
between systems [2,16,22,29], best-effort synthesis and repair [9,20], and quan-
titative analysis of transition systems [47,14,21,19]. More recently, quantitative
properties have been also studied from a runtime verification perspective, e.g., for
limit monitoring of statistical indicators of infinite traces [25] and for analyzing
resource-precision trade-offs in the design of quantitative monitors [33,30].

To the best of our knowledge, previous definitions of (approximate) safety
and liveness in nonboolean domains make implicit assumptions about the spec-

354 T. A. Henzinger et al.

ification language [48,34,24,45]. We identify two notable exceptions. In [27], the
authors generalize the framework of [43] to nonboolean value domains. They
provide neither a safety-liveness decomposition of quantitative properties, nor a
fine-grained classification of nonsafety properties. In [41], the authors present a
safety-liveness decomposition and some levels of the safety-progress hierarchy on
multi-valued truth domains, which are bounded distributive lattices. Their mo-
tivation is to provide algorithms for model-checking properties on multi-valued
truth domains. We present the relationships between their definitions and ours
in the relevant sections below.

2 Quantitative Properties

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is an infinite
sequence of observations, denoted by f, g, h ∈ Σω, and a finite trace is a finite
sequence of observations, denoted by s, r, t ∈ Σ∗. Given s ∈ Σ∗ and w ∈ Σ∗∪Σω,
we denote by s ≺ w (resp. s � w) that s is a strict (resp. nonstrict) prefix of w.
Furthermore, we denote by |w| the length of w and, given a ∈ Σ, by |w|a the
number of occurrences of a in w.

A value domain D is a poset. Unless otherwise stated, we assume that D is
a nontrivial (i.e., ⊥ �= �) complete lattice and, whenever appropriate, we write
0, 1, −∞, ∞ instead of ⊥ and � for the least and the greatest elements. We
respectively use the terms minimum and maximum for the greatest lower bound
and the least upper bound of finitely many elements.

Definition 1 (Property). A quantitative property (or simply property) is a
function Φ : Σω → D from the set of all traces to a value domain.

A boolean property P ⊆ Σω is defined as a set of traces. We use the boolean
domain B = {0, 1} with 0 < 1 and, in place of P , its characteristic property
ΦP : Σω → B, which is defined by ΦP (f) = 1 if f ∈ P , and ΦP (f) = 0 if f /∈ P .

For all properties Φ1, Φ2 on a domain D and all traces f ∈ Σω, we let
min(Φ1, Φ2)(f) = min(Φ1(f), Φ2(f)) and max(Φ1, Φ2)(f) = max(Φ1(f), Φ2(f)).
For a domain D, the inverse of D is the domain D that contains the same el-
ements as D but with the ordering reversed. For a property Φ, we define its
complement Φ : Σω → D by Φ(f) = Φ(f) for all f ∈ Σω.

Some properties can be defined as limits of value sequences. A finitary prop-
erty π : Σ∗ → D associates a value with each finite trace. A value function
� : Dω → D condenses an infinite sequence of values to a single value. Given a
finitary property π, a value function �, and a trace f ∈ Σω, we write �s≺f π(s)
instead of �(π(s0)π(s1) . . .), where each si fulfills si ≺ f and |si| = i.

3 Quantitative Safety

Given a property Φ : Σω → D, a trace f ∈ Σω, and a value v ∈ D, the quanti-
tative membership problem [18] asks whether Φ(f) ≥ v. We define quantitative
safety as follows: the property Φ is safe iff every wrong hypothesis of the form
Φ(f) ≥ v has a finite witness s ≺ f .

Quantitative Safety and Liveness 355

Definition 2 (Safety). A property Φ : Σω → D is safe iff for every f ∈ Σω and
value v ∈ D with Φ(f) �≥ v, there is a prefix s ≺ f such that supg∈Σω Φ(sg) �≥ v.

Let us illustrate this definition with the minimal response-time property.

Example 3. Let Σ = {rq, gr, tk, oo} and D = N ∪ {∞}. We define the minimal
response-time property Φmin through an auxiliary finitary property πmin that
computes the minimum response time so far. In a finite or infinite trace, an
occurrence of rq is granted if it is followed, later, by a gr, and otherwise it is
pending. Let πlast(s) = ∞ if the finite trace s contains a pending rq, or no
rq, and πlast(s) = |r|tk − |t|tk otherwise, where r ≺ s is the longest prefix of
s with a pending rq, and t ≺ r is the longest prefix of r without pending rq.
Intuitively, πlast provides the response time for the last request when all requests
are granted, and ∞ when there is a pending request or no request. Given s ∈ Σ∗,
taking the minimum of the values of πlast over the prefixes r 	 s gives us the
minimum response time so far. Let πmin(s) = minr�s πlast(r) for all s ∈ Σ∗, and
Φmin(f) = lims≺f πmin(s) for all f ∈ Σω. The limit always exists because the
minimum is monotonically decreasing.

The minimal response-time property is safe. Let f ∈ Σω and v ∈ D such
that Φmin(f) < v. Then, some prefix s ≺ f contains a rq that is granted after
u < v ticks, in which case, no matter what happens in the future, the minimal
response time is guaranteed to be at most u; that is, supg∈Σω Φmin(sg) ≤ u < v.
If you recall from the introduction the ghost monitor that maintains the sup
of possible prediction values for the minimal response-time property, that value
is always πmin; that is, supg∈Σω Φmin(sg) = πmin(s) for all s ∈ Σ∗. Note that
in the case of minimal response time, the sup of possible prediction values is
always realizable; that is, for all s ∈ Σ∗, there exists an f ∈ Σω such that
supg∈Σω Φmin(sg) = Φmin(sf). ��
Remark 4. Quantitative safety generalizes boolean safety. For every boolean
property P ⊆ Σω, the following statements are equivalent: (i) P is safe ac-
cording to the classical definition [4], (ii) its characteristic property ΦP is safe,
and (iii) for every f ∈ Σω and v ∈ B with ΦP (f) < v, there exists a prefix s ≺ f
such that for all g ∈ Σω, we have ΦP (sg) < v.

We now generalize the notion of safety closure and present an operation that
makes a property safe by increasing the value of each trace as little as possible.

Definition 5 (Safety closure). The safety closure of a property Φ is the prop-
erty Φ∗ defined by Φ∗(f) = infs≺f supg∈Σω Φ(sg) for all f ∈ Σω.

We can say the following about the safety closure operation.

Proposition 6. For every property Φ : Σω → D, the following statements hold.

1. Φ∗ is safe.
2. Φ∗(f) ≥ Φ(f) for all f ∈ Σω.
3. Φ∗(f) = Φ∗∗(f) for all f ∈ Σω.
4. For every safety property Ψ : Σω → D, if Φ(f) ≤ Ψ(f) for all f ∈ Σω, then

Ψ(g) �< Φ∗(g) for all g ∈ Σω.

356 T. A. Henzinger et al.

3.1 Alternative Characterizations of Quantitative Safety
Consider a trace and its prefixes of increasing length. For a given property,
the ghost monitor from the introduction maintains, for each prefix, the sup of
possible prediction values, i.e., the least upper bound of the property values
for all possible infinite continuations. The resulting sequence of monotonically
decreasing suprema provides an upper bound on the eventual property value.
Moreover, for some properties, this sequence always converges to the property
value. If this is the case, then the ghost monitor can always dismiss wrong
lower-bound hypotheses after finite prefixes, and vice versa. This gives us an
alternative definition for the safety of quantitative properties which, inspired by
the notion of Scott continuity, was called continuity [33]. We now believe that
upper semicontinuity is a more appropriate term, as becomes clear when we
consider the Cantor topology on Σω and the value domain R ∪ {−∞, +∞}.
Definition 7 (Upper semicontinuity [33]). A property Φ is upper semicon-
tinuous iff Φ(f) = lims≺f supg∈Σω Φ(sg) for all f ∈ Σω.

We note that the minimal response-time property is upper semicontinuous.
Example 8. Recall the minimal response-time property Φmin from Example 3.
For every trace f ∈ Σω, the Φmin value is the limit of the πmin values for the
prefixes of f . Therefore, Φmin is upper semicontinuous. ��

In general, a property is safe iff it maps every trace to the limit of the suprema
of possible prediction values. Moreover, we can also characterize safety properties
as the properties that are equal to their safety closure.
Theorem 9. For every property Φ, the following statements are equivalent:
1. Φ is safe. 2. Φ is upper semicontinuous. 3. Φ(f) = Φ∗(f) for all f ∈ Σω.

3.2 Related Definitions of Quantitative Safety
In [41], the authors consider the model-checking problem for properties on multi-
valued truth domains. They introduce the notion of multi-safety through a clo-
sure operation that coincides with our safety closure. Formally, a property Φ is
multi-safe iff Φ(f) = Φ∗(f) for every f ∈ Σω. It is easy to see the following.
Proposition 10. For every property Φ, we have Φ is multi-safe iff Φ is safe.

Although the two definitions of safety are equivalent, our definition is con-
sistent with the membership problem for quantitative automata and motivated
by the monitoring of quantitative properties.

In [27], the authors extend a refinement of the safety-liveness classification for
monitoring [43] to richer domains. They introduce the notion of verdict-safety
through dismissibility of values not less than or equal to the property value.
Formally, a property Φ is verdict-safe iff for every f ∈ Σω and v �≤ Φ(f), there
exists a prefix s ≺ f such that for all g ∈ Σω, we have Φ(sg) �= v.

We demonstrate that verdict-safety is weaker than safety. Moreover, we pro-
vide a condition under which the two definitions coincide. To achieve this, we
reason about sets of possible prediction values: for a property Φ and s ∈ Σ∗, let
PΦ,s = {Φ(sf) | f ∈ Σω}.

Quantitative Safety and Liveness 357

Lemma 11. A property Φ is verdict-safe iff Φ(f) = sup(lims≺f PΦ,s) for all
f ∈ Σω.

Notice that Φ is safe iff Φ(f) = lims≺f (sup PΦ,s) for all f ∈ Σω. Below we
describe a property that is verdict-safe but not safe.

Example 12. Let Σ = {a, b}. Define Φ by Φ(f) = 0 if f = aω, and Φ(f) = |s|
otherwise, where s ≺ f is the shortest prefix in which b occurs. The property Φ
is verdict-safe. First, observe that D = N ∪ {∞}. Let f ∈ Σω and v ∈ D with
v > Φ(f). If Φ(f) > 0, then f contains b, and Φ(f) = |s| for some s ≺ f in which
b occurs for the first time. After the prefix s, all g ∈ Σω yield Φ(sg) = |s|, thus
all values above |s| are rejected. If Φ(f) = 0, then f = aω. Let v ∈ D with v > 0,
and consider the prefix av ≺ f . Observe that the set of possible prediction values
after reading av is {0, v + 1, v + 2, . . .}, therefore av allows the ghost monitor to
reject the value v. However, Φ is not safe because, although Φ(aω) = 0, for every
s ≺ aω, we have supg∈Σω Φ(sg) = ∞. ��

The separation is due to the fact that, for some finite traces, the sup of
possible prediction values cannot be realized by any future. Below, we present a
condition that prevents such cases.

Definition 13 (Supremum closedness). A property Φ is sup-closed iff for
every s ∈ Σ∗ we have sup PΦ,s ∈ PΦ,s.

We remark that the minimal response-time property is sup-closed.

Example 14. The safety property minimal response-time Φmin from Example 3
is sup-closed. This is because, for every s ∈ Σ∗, the continuation grω realizes
the value supg∈Σω Φ(sg). ��

Recall from the introduction the ghost monitor that maintains the sup of
possible prediction values. For monitoring sup-closed properties this suffices;
otherwise the ghost monitor also needs to maintain whether or not the supremum
of the possible prediction values is realizable by some future continuation. In
general, we have the following for every sup-closed property.

Lemma 15. For every sup-closed property Φ and for all f ∈ Σω, we have
lims≺f (sup PΦ,s) = sup(lims≺f PΦ,s).

As a consequence of the lemmas above, we get the following.

Theorem 16. A sup-closed property Φ is safe iff Φ is verdict-safe.

4 The Quantitative Safety-Progress Hierarchy

Our quantitative extension of safety closure allows us to build a Borel hierarchy,
which is a quantitative extension of the boolean safety-progress hierarchy [17].
First, we show that safety properties are closed under pairwise min and max.

Proposition 17. For every value domain D, the set of safety properties over D
is closed under min and max.

358 T. A. Henzinger et al.

The boolean safety-progress classification of properties is a Borel hierarchy
built from the Cantor topology of traces. Safety and co-safety properties lie on
the first level, respectively corresponding to the closed sets and open sets of
the topology. The second level is obtained through countable unions and inter-
sections of properties from the first level: persistence properties are countable
unions of closed sets, while response properties are countable intersections of
open sets. We generalize this construction to the quantitative setting.

In the boolean case, each property class is defined through an operation that
takes a set S ⊆ Σ∗ of finite traces and produces a set P ⊆ Σω of infinite traces.
For example, to obtain a co-safety property from S ⊆ Σ∗, the corresponding
operation yields SΣω. Similarly, we formalize each property class by a value
function. For this, we define the notion of limit property.

Definition 18 (Limit property). A property Φ : Σω → D is a limit prop-
erty iff there exists a finitary property π : Σ∗ → D and a value function
� : Dω → D such that Φ(f) = �s≺f π(s) for all f ∈ Σω. We denote this by
Φ = (π, �), and write Φ(s) instead of π(s). In particular, if Φ = (π, �), where
� ∈ {inf, sup, lim inf, lim sup}, then Φ is an �-property.

To account for the value functions that construct the first two levels of the
safety-progress hierarchy, we start our investigation with inf- and sup-properties
and later focus on lim inf- and lim sup- properties [18].

4.1 Infimum and Supremum Properties

Let us start with an example by demonstrating that the minimal response-time
property is an inf-property.

Example 19. Recall the safety property Φmin of minimal response time from
Example 3. We can equivalently define Φmin as a limit property by taking the
finitary property πlast and the value function inf. As discussed in Example 3,
the function πlast outputs the response time for the last request when all re-
quests are granted, and ∞ when there is a pending request or no request. Then
infs≺f πlast(s) = Φmin(f) for all f ∈ Σω, and therefore Φmin = (πlast, inf). ��

In fact, the safety properties coincide with inf-properties.

Theorem 20. A property Φ is safe iff Φ is an inf-property.
Defining the minimal response-time property as a limit property, we observe

the following relation between its behavior on finite traces and infinite traces.

Example 21. Consider the property Φmin = (πlast, inf) from Example 19. Let
f ∈ Σω and v ∈ D. Observe that if the minimal response time of f is at least v,
then the last response time for each prefix s ≺ f is also at least v. Conversely, if
the minimal response time of f is below v, then there is a prefix s ≺ f for which
the last response time is also below v. ��

In light of this observation, we provide another characterization of safety
properties, explicitly relating the specified behavior of the limit property on
finite and infinite traces.

Quantitative Safety and Liveness 359

Theorem 22. A property Φ : Σω → D is safe iff Φ is a limit property such that
for every f ∈ Σω and value v ∈ D, we have Φ(f) ≥ v iff Φ(s) ≥ v for all s ≺ f .

Recall that a safety property allows rejecting wrong lower-bound hypotheses
with a finite witness, by assigning a tight upper bound to each trace. We de-
fine co-safety properties symmetrically: a property Φ is co-safe iff every wrong
hypothesis of the form Φ(f) ≤ v has a finite witness s ≺ f .

Definition 23 (Co-safety). A property Φ : Σω → D is co-safe iff for every
f ∈ Σω and value v ∈ D with Φ(f) �≤ v, there exists a prefix s ≺ f such that
infg∈Σω Φ(sg) �≤ v.

We note that our definition generalizes boolean co-safety, and thus a dual of
Remark 4 holds also for co-safety. Moreover, we analogously define the notions
of co-safety closure and lower semicontinuity.

Definition 24 (Co-safety closure). The co-safety closure of a property Φ is
the property Φ∗(f) defined by Φ∗(f) = sups≺f infg∈Σω Φ(sg) for all f ∈ Σω.

Definition 25 (Lower semicontinuity [33]). A property Φ is lower semicon-
tinuous iff Φ(f) = lims≺f infg∈Σω Φ(sg) for all f ∈ Σω.

Now, we define and investigate the maximal response-time property. In partic-
ular, we show that it is a sup-property that is co-safe and lower semicontinuous.

Example 26. Let Σ = {rq, gr, tk, oo} and D = N∪{∞}. We define the maximal
response-time property Φmax through a finitary property that computes the cur-
rent response time for each finite trace and the value function sup. In particular,
for all s ∈ Σ∗, let πcurr(s) = |s|tk − |r|tk, where r
 s is the longest prefix of s
without pending rq; then Φmax = (πcurr, sup). Note the contrast between πcurr
and πlast from Example 3. While πcurr takes an optimistic view of the future
and assumes the gr will follow immediately, πlast takes a pessimistic view and
assumes the gr will never follow. Let f ∈ Σω and v ∈ D. If the maximal response
time of f is greater than v, then for some prefix s ≺ f the current response time
is greater than v also, which means that, no matter what happens in the future,
the maximal response time is greater than v after observing s. Therefore, Φmax
is co-safe. By a similar reasoning, the sequence of greatest lower bounds of pos-
sible prediction values over the prefixes converges to the property value. In other
words, we have lims≺f infg∈Σω Φmax(sg) = Φmax(f) for all f ∈ Σω. Thus Φmax
is also lower semicontinuous, and it equals its co-safety closure. Now, consider
the complementary property Φmax, which maps every trace to the same value
as Φmax on a domain where the order is reversed. It is easy to see that Φmax is
safe. Finally, recall the ghost monitor from the introduction, which maintains
the infimum of possible prediction values for the maximal response-time prop-
erty. Since the maximal response-time property is inf-closed, the output of the
ghost monitor after every prefix is realizable by some future continuation, and
that output is πmax(s) = maxr�s πcurr(r) for all s ∈ Σ∗. ��

Generalizing the observations in the example above, we obtain the following
characterizations due to the duality between safety and co-safety.

360 T. A. Henzinger et al.

Theorem 27. For every property Φ : Σω → D, the following are equivalent.

1. Φ is co-safe.
2. Φ is lower semicontinuous.
3. Φ(f) = Φ∗(f) for every f ∈ Σω.
4. Φ is a sup-property.
5. Φ is a limit property such that for every f ∈ Σω and value v ∈ D, we have

Φ(f) ≤ v iff Φ(s) ≤ v for all s ≺ f .
6. Φ is safe.

4.2 Limit Inferior and Limit Superior Properties

Let us start with an observation on the minimal response-time property.

Example 28. Recall once again the minimal response-time property Φmin from
Example 3. In the previous subsection, we presented an alternative definition of
Φmin to establish that it is an inf-property. Observe that there is yet another
equivalent definition of Φmin which takes the monotonically decreasing finitary
property πmin from Example 3 and pairs it with either the value function lim inf,
or with lim sup. Hence Φmin is both a lim inf- and a lim sup-property. ��

Before moving on to investigating lim inf- and lim sup-properties more closely,
we show that the above observation can be generalized.

Theorem 29. Every �-property Φ, for � ∈ {inf, sup}, is both a lim inf- and a
lim sup-property.

An interesting response-time property beyond safety and co-safety arises
when we remove extreme values: instead of minimal response time, consider
the property that maps every trace to a value that bounds from below, not all
response times, but all of them from a point onward (i.e., all but finitely many).
We call this property tail-minimal response time.

Example 30. Let Σ = {rq, gr, tk, oo} and πlast be the finitary property from
Example 3 that computes the last response time. We define the tail-minimal
response-time property as Φtmin = (πlast, lim inf). Intuitively, it maps each trace
to the least response time over all but finitely many requests. This property
is interesting as a performance measure, because it focuses on the long-term
performance by ignoring finitely many outliers. Consider f ∈ Σω and v ∈ D.
Observe that, if the tail-minimal response time of f is at least v, then there is
a prefix s ≺ f such that for all longer prefixes s � r ≺ f , the last response time
in r is at least v, and vice versa. ��

Similarly as for inf-properties, we characterize lim inf-properties through a
relation between property behaviors on finite and infinite traces.

Theorem 31. A property Φ : Σω → D is a lim inf-property iff Φ is a limit
property such that for every f ∈ Σω and value v ∈ D, we have Φ(f) ≥ v iff there
exists s ≺ f such that for all s � r ≺ f , we have Φ(r) ≥ v.

Now, we show that the tail-minimal response-time property can be expressed
as a countable supremum of inf-properties.

Quantitative Safety and Liveness 361

Example 32. Let i ∈ N and define πi,last as a finitary property that imitates
πlast from Example 3, but ignores the first i observations of every finite trace.
Formally, for s ∈ Σ∗, we define πi,last(s) = πlast(r) for s = sir where si � s
with |si| = i, and r ∈ Σ∗. Observe that an equivalent way to define Φtmin from
Example 30 is supi∈N(infs≺f (πi,last(s))) for all f ∈ Σω. Intuitively, for each
i ∈ N, we obtain an inf-property that computes the minimal response time of
the suffixes of a given trace. Taking the supremum over these, we obtain the
greatest lower bound on all but finitely many response times. ��

We generalize this observation and show that every lim inf-property is a
countable supremum of inf-properties.

Theorem 33. Every lim inf-property is a countable supremum of inf-properties.

We would also like to have the converse of Theorem 33, i.e., that every
countable supremum of inf-properties is a lim inf-property. Currently, we are
able to show only the following.

Theorem 34. For every infinite sequence (Φi)i∈N of inf-properties, there is a
lim inf-property Φ such that supi∈N Φi(f) ≤ Φ(f).

We conjecture that some lim inf-property that satisfies Theorem 34 is also
a lower bound on the countable supremum that occurs in the theorem. This,
together with Theorem 34, would imply the converse of Theorem 33. Proving
the converse of Theorem 33 would give us, thanks to the following duality, that
the lim inf- and lim sup-properties characterize the second level of the Borel
hierarchy of the topology induced by the safety closure operator.

Proposition 35. A property Φ is a lim inf-property iff its complement Φ is a
lim sup-property.

5 Quantitative Liveness

Similarly as for safety, we take the perspective of the quantitative membership
problem to define liveness: a property Φ is live iff, whenever a property value is
less than �, there exists a value v for which the wrong hypothesis Φ(f) ≥ v can
never be dismissed by any finite witness s ≺ f .

Definition 36 (Liveness). A property Φ : Σω → D is live iff for all f ∈ Σω,
if Φ(f) < �, then there exists a value v ∈ D such that Φ(f) �≥ v and for all
prefixes s ≺ f , we have supg∈Σω Φ(sg) ≥ v.

An equivalent definition can be given through the safety closure.

Theorem 37. A property Φ is live iff Φ∗(f) > Φ(f) for every f ∈ Σω with
Φ(f) < �.

Our definition generalizes boolean liveness. A boolean property P ⊆ Σω is
live according to the classical definition [4] iff its characteristic property ΦP is
live according to our definition. Moreover, the intersection of safety and liveness
contains only the single degenerate property that always outputs �.

362 T. A. Henzinger et al.

Proposition 38. A property Φ is safe and live iff Φ(f) = � for all f ∈ Σω.

We define co-liveness symmetrically, and note that the duals of the observa-
tions above also hold for co-liveness.

Definition 39 (Co-liveness). A property Φ : Σω → D is co-live iff for all
f ∈ Σω, if Φ(f) > ⊥, then there exists a value v ∈ D such that Φ(f) �≤ v and
for all prefixes s ≺ f , we have infg∈Σω Φ(sg) ≤ v.

Next, we present some examples of liveness and co-liveness properties. We
start by showing that lim inf- and lim sup-properties can be live and co-live.

Example 40. Let Σ = {a, b} be an alphabet, and let P = �♦a and Q = ♦�b be
boolean properties defined in linear temporal logic. Consider their characteristic
properties ΦP and ΦQ. As we pointed out earlier, our definitions generalize their
boolean counterparts, therefore ΦP and ΦQ are both live and co-live. Moreover,
ΦP is a lim sup-property: define πP (s) = 1 if s ∈ Σ∗a, and πP (s) = 0 otherwise,
and observe that ΦP (f) = lim sups≺f πP (s) for all f ∈ Σω. Similarly, ΦQ is a
lim inf-property. 	

Now, we show that the maximal response-time property is live, and the min-
imal response time is co-live.

Example 41. Recall the co-safety property Φmax of maximal response time from
Example 26. Let f ∈ Σω such that Φmax(f) < ∞. We can extend every prefix
s ≺ f with g = rq tkω, which gives us Φmax(sg) = ∞ > Φ(f). Equivalently,
for every f ∈ Σω, we have Φ∗

max(f) = ∞ > Φmax(f). Hence Φmax is live and,
analogously, the safety property Φmin from Example 3 is co-live. 	

Finally, we show that the average response-time property is live and co-live.

Example 42. Let Σ = {rq, gr, tk, oo}. For all s ∈ Σ∗, let p(s) = 1 if there is
no pending rq in s, and p(s) = 0 otherwise. Define πvalid(s) = |{r � s | ∃t ∈
Σ∗ : r = t rq ∧ p(t) = 1}| as the number of valid requests in s, and define
πtime(s) as the number of tk observations that occur after a valid rq and before
the matching gr. Then, Φavg = (πavg, lim inf), where πavg(s) = πtime(s)

πvalid(s) for all
s ∈ Σ∗ with πvalid(s) > 0, and πavg(s) = ∞ otherwise. For example, πavg(s) = 3

2
for s = rq tk gr tk rq tk rq tk. Note that Φavg is a lim inf-property.

The property Φavg is defined on the value domain [0, ∞] and is both live and
co-live. To see this, let f ∈ Σω such that 0 < Φavg(f) < ∞ and, for every prefix
s ≺ f , consider g = rq tkω and h = gr (rq gr)ω. Since sg has a pending request
followed by infinitely many clock ticks, we have Φavg(sg) = ∞. Similarly, since
sh eventually has all new requests immediately granted, we get Φavg(sh) = 0. 	

5.1 The Quantitative Safety-Liveness Decomposition

A celebrated theorem states that every boolean property can be expressed as an
intersection of a safety property and a liveness property [4]. In this section, we
prove the analogous result for the quantitative setting.

Quantitative Safety and Liveness 363

Example 43. Let Σ = {rq, gr, tk, oo}. Recall the maximal response-time prop-
erty Φmax from Example 26, and the average response-time property Φavg from
Example 42. Let n > 0 be an integer and define a new property Φ by Φ(f) =
Φavg(f) if Φmax(f) ≤ n, and Φ(f) = 0 otherwise. For the safety closure of Φ,
we have Φ∗(f) = n if Φmax(f) ≤ n, and Φ∗(f) = 0 otherwise. Now, we further
define Ψ(f) = Φavg(f) if Φmax(f) ≤ n, and Ψ(f) = n otherwise. Observe that Ψ
is live, because every prefix of a trace whose value is less than n can be extended
to a greater value. Finally, note that for all f ∈ Σω, we can express Φ(f) as
the pointwise minimum of Φ∗(f) and Ψ(f). Intuitively, the safety part Φ∗ of
this decomposition checks whether the maximal response time stays below the
permitted bound, and the liveness part Ψ keeps track of the average response
time as long as the bound is satisfied. ��

Following a similar construction, we show that a safety-liveness decomposi-
tion exists for every property.

Theorem 44. For every property Φ, there exists a liveness property Ψ such that
Φ(f) = min(Φ∗(f), Ψ(f)) for all f ∈ Σω.

In particular, if the given property is safe or live, the decomposition is trivial.

Remark 45. Let Φ be a property. If Φ is safe (resp. live), then the safety (resp.
liveness) part of the decomposition is Φ itself, and the liveness (resp. safety) part
is the constant property that maps every trace to �.

For co-safety and co-liveness, the duals of Theorem 44 and Remark 45 hold.
In particular, every property is the pointwise maximum of its co-safety closure
and a co-liveness property.

5.2 Related Definitions of Quantitative Liveness

In [41], the authors define a property Φ as multi-live iff Φ∗(f) > ⊥ for all
f ∈ Σω. We show that our definition is more restrictive, resulting in fewer
liveness properties while still allowing a safety-liveness decomposition.

Proposition 46. Every live property is multi-live, and the inclusion is strict.

We provide a separating example on a totally ordered domain below.

Example 47. Let Σ = {a, b, c}, and consider the following property: Φ(f) = 0 if
f |= �a, and Φ(f) = 1 if f |= ♦c, and Φ(f) = 2 otherwise (i.e., if f |= ♦b∧�¬c).
For all f ∈ Σω and prefixes s ≺ f , we have Φ(scω) = 1. Thus Φ∗(f)
= ⊥, which
implies that Φ is multi-live. However, Φ is not live. Indeed, for every f ∈ Σω

such that f |= ♦c, we have Φ(f) = 1 < �. Moreover, f admits some prefix s
that contains an occurrence of c, thus satisfying supg∈Σω Φ(sg) = 1. ��

In [27], the authors define a property Φ as verdict-live iff for every f ∈ Σω

and value v
≤ Φ(f), every prefix s ≺ f satisfies Φ(sg) = v for some g ∈ Σω. We
show that our definition is more liberal.

364 T. A. Henzinger et al.

Proposition 48. Every verdict-live property is live, and the inclusion is strict.

We provide a separating example below, concluding that our definition is
strictly more general even for totally ordered domains.

Example 49. Let Σ = {a, b}, and consider the following property: Φ(f) = 0 if
f �|= ♦b, and Φ(f) = 1 if f |= ♦(b ∧ ©♦b), and Φ(f) = 2−|s| otherwise, where
s ≺ f is the shortest prefix in which b occurs. Consider an arbitrary f ∈ Σω.
If Φ(f) = 1, then the liveness condition is vacuously satisfied. If Φ(f) = 0, then
f = aω, and every prefix s ≺ f can be extended with g = baω or h = bω to obtain
Φ(sg) = 2−(|s|+1) and Φ(sh) = 1. If 0 < Φ(f) < 1, then f satisfies ♦b but not
♦(b∧©♦b), and every prefix s ≺ f can be extended with bω to obtain Φ(sbω) = 1.
Hence Φ is live. However, Φ is not verdict-live. To see this, consider the trace
f = akbaω for some integer k ≥ 1 and note that Φ(f) = 2−(k+1). Although all
prefixes of f can be extended to reach the value 1, the value domain contains
elements between Φ(f) and 1, namely the values 2−m for 1 ≤ m ≤ k. Each of
these values can be rejected after reading a finite prefix of f , because for n ≥ m
it is not possible to extend an to reach the value 2−m. 	

6 Approximate Monitoring through Approximate Safety

In this section, we consider properties on extended reals R±∞ = R∪{−∞, +∞}.
We denote by R≥0 the set of nonnegative real numbers.

Definition 50 (Approximate safety and co-safety). Let α ∈ R≥0. A prop-
erty Φ is α-safe iff for every f ∈ Σω and value v ∈ R±∞ with Φ(f) < v, there
exists a prefix s ≺ f such that supg∈Σω Φ(sg) < v + α. Similarly, Φ is α-co-safe
iff for every f ∈ Σω and v ∈ R±∞ with Φ(f) > v, there exists s ≺ f such that
infg∈Σω Φ(sg) > v − α. When Φ is α-safe (resp. α-co-safe) for some α ∈ R≥0,
we say that Φ is approximately safe (resp. approximately co-safe).

Approximate safety can be characterized through the following relation with
the safety closure.

Proposition 51. For every error bound α ∈ R≥0, a property Φ is α-safe iff
Φ∗(f) − Φ(f) ≤ α for all f ∈ Σω.

An analogue of Proposition 51 holds for approximate co-safety and the co-
safety closure. Moreover, approximate safety and approximate co-safety are dual
notions that are connected by the complement operation, similarly to their pre-
cise counterparts (Theorem 27).

6.1 The Intersection of Approximate Safety and Co-safety

Recall the ghost monitor from the introduction. If, after a finite number of obser-
vations, all the possible prediction values are close enough, then we can simply
freeze the current value and achieve a sufficiently small error. This happens for
properties that are both approximately safe and approximately co-safe, general-
izing the unfolding approximation of discounted properties [13].

Quantitative Safety and Liveness 365

Proposition 52. For every limit property Φ and all error bounds α, β ∈ R≥0,
if Φ is α-safe and β-co-safe, then the set Sδ = {s ∈ Σ∗ | supr1∈Σ∗ Φ(sr1) −
infr2∈Σ∗ Φ(sr2) ≥ δ} is finite for all reals δ > α + β.

Based on this proposition, we show that, for limit properties that are both
approximately safe and approximately co-safe, the influence of the suffix on the
property value is eventually negligible.

Theorem 53. For every limit property Φ such that Φ(f) ∈ R for all f ∈ Σω,
and for all error bounds α, β ∈ R≥0, if Φ is α-safe and β-co-safe, then for every
real δ > α + β and trace f ∈ Σω, there is a prefix s ≺ f such that for all
continuations w ∈ Σ∗ ∪ Σω, we have |Φ(sw) − Φ(s)| < δ.

We illustrate this theorem with a discounted safety property.

Example 54. Let P ⊆ Σω be a boolean safety property. We define the finitary
property πP : Σ∗ → [0, 1] as follows: πP (s) = 1 if sf ∈ P for some f ∈ Σω,
and πP (s) = 1 − 2−|r| otherwise, where r � s is the shortest prefix with rf /∈ P
for all f ∈ Σω. The limit property Φ = (πP , inf) is called discounted safety [3].
Because Φ is an inf-property, it is safe by Theorem 20. Now consider the finitary
property π′

P defined by π′
P (s) = 1 − 2−|s| if sf ∈ P for some f ∈ Σω, and

π′
P (s) = 1 − 2−|r| otherwise, where r � s is the shortest prefix with rf /∈ P for

all f ∈ Σω. Let Φ′ = (π′
P , sup), and note that Φ(f) = Φ′(f) for all f ∈ Σω.

Hence Φ is also co-safe, because it is a sup-property.
Let f ∈ Σω and δ > 0. For every prefix s ≺ f , the set of possible prediction

values is either the range [1 − 2−|s|, 1] or the singleton {1 − 2−|r|}, where r � s
is chosen as above. In the latter case, we have |Φ(sw) − Φ(s)| = 0 < δ for all
w ∈ Σ∗ ∪ Σω. In the former case, since the range becomes smaller as the prefix
grows, there is a prefix s′ ≺ f with 2−|s′| < δ, which yields |Φ(s′w) − Φ(s′)| < δ
for all w ∈ Σ∗ ∪ Σω. 	

6.2 Finite-state Approximate Monitoring

Monitors with finite state spaces are particularly desirable, because finite au-
tomata enjoy a plethora of desirable closure and decidability properties. Here,
we prove that properties that are both approximately safe and approximately
co-safe can be monitored approximately by a finite-state monitor. First, we recall
the notion of abstract quantitative monitor from [30].

A binary relation ∼ over Σ∗ is an equivalence relation iff it is reflexive,
symmetric, and transitive. Such a relation is right-monotonic iff s1 ∼ s2 implies
s1r ∼ s2r for all s1, s2, r ∈ Σ∗. For an equivalence relation ∼ over Σ∗ and a finite
trace s ∈ Σ∗, we write [s]∼ for the equivalence class of ∼ to which s belongs.
When ∼ is clear from the context, we write [s] instead. We denote by Σ∗/∼ the
quotient of the relation ∼.

Definition 55 (Abstract monitor [30]). An abstract monitor M = (∼, γ)
is a pair consisting of a right-monotonic equivalence relation ∼ on Σ∗ and a
function γ : (Σ∗/ ∼) → R±∞. The monitor M is finite-state iff the relation

366 T. A. Henzinger et al.

∼ has finitely many equivalence classes. Let δfin, δlim ∈ R±∞ be error bounds.
We say that M is a (δfin, δlim)-monitor for a given limit property Φ = (π, �) iff
for all s ∈ Σ∗ and f ∈ Σω, we have |π(s) − γ([s])| ≤ δfin and |�s≺f (π(s)) −
�s≺f (γ([s]))| ≤ δlim.

Building on Theorem 53, we identify a sufficient condition to guarantee the
existence of an abstract monitor with finitely many equivalence classes.

Theorem 56. For every limit property Φ such that Φ(f) ∈ R for all f ∈ Σω,
and for all error bounds α, β ∈ R≥0, if Φ is α-safe and β-co-safe, then for every
real δ > α + β, there exists a finite-state (δ, δ)-monitor for Φ.

Due to Theorem 56, the discounted safety property of Example 54 has a
finite-state monitor for every positive error bound. We remark that Theorem 56
is proved by a construction that generalizes the unfolding approach for the ap-
proximate determinization of discounted automata [12], which unfolds an au-
tomaton until the distance constraint is satisfied.

7 Conclusion

We presented a generalization of safety and liveness that lifts the safety-progress
hierarchy to the quantitative setting of [18] while preserving major desirable
features of the boolean setting, such as the safety-liveness decomposition.

Monitorability identifies a boundary separating properties that can be ver-
ified or falsified from a finite number of observations, from those that cannot.
Safety-liveness and co-safety-co-liveness decompositions allow us separate, for an
individual property, monitorable parts from nonmonitorable parts. The larger
the monitorable parts of the given property, the stronger the decomposition.
We provided the strongest known safety-liveness decomposition, which consists
of a pointwise minimum between a safe part defined by a quantitative safety
closure, and a live part which corrects for the difference. We then defined ap-
proximate safety as the relaxation of safety by a parametric error bound. This
further increases the monitorability of properties and offers monitorability at a
parametric cost. In fact, we showed that every property that is both approx-
imately safe and approximately co-safe can be monitored arbitrarily precisely
by a finite-state monitor. A future direction is to extend our decomposition to
approximate safety together with a support for quantitative assumptions [32].

The literature contains efficient model-checking procedures that leverage the
boolean safety hypothesis [36,40]. We thus expect that also quantitative safety
and co-safety, and their approximations, enable efficient verification algorithms
for quantitative properties.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. This work was supported in part by the ERC-2020-AdG 101020093.

Quantitative Safety and Liveness 367

References
1. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model

checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170
(2005). https://doi.org/10.1016/j.tcs.2005.07.033

2. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quan-
titative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings. Lecture Notes in
Computer Science, vol. 3142, pp. 97–109. Springer (2004). https://doi.org/10.
1007/978-3-540-27836-8_11

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings.
Lecture Notes in Computer Science, vol. 2719, pp. 1022–1037. Springer (2003).
https://doi.org/10.1007/3-540-45061-0_79

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 1–33. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5_1

7. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/
logcom/exn075

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/
10.1145/2000799.2000800

9. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643,
pp. 140–156. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_14

10. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthe-
sis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 921–962. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_27

11. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifi-
cations with accumulative values. ACM Trans. Comput. Log. 15(4), 27:1–27:25
(2014). https://doi.org/10.1145/2629686

12. Boker, U., Henzinger, T.A.: Approximate determinization of quantitative au-
tomata. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. LIPIcs,
vol. 18, pp. 362–373. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012).
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362

13. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.
2168/LMCS-10(1:10)2014

https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/2629686
https://doi.org/10.1145/2629686
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014

368 T. A. Henzinger et al.

14. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-
time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011).
https://doi.org/10.1145/1995376.1995396

15. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-
energy games. Acta Informatica 55(2), 91–127 (2018). https://doi.org/10.1007/
s00236-016-0274-1

16. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21–35 (2012). https://doi.org/10.1016/j.tcs.2011.08.002

17. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Bauer,
F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification.
pp. 143–202. Springer Berlin Heidelberg, Berlin, Heidelberg (1993). https://doi.
org/10.1007/978-3-642-58041-3_5

18. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.
1805953

19. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. ACM Trans.
Comput. Log. 18(4), 31:1–31:44 (2017). https://doi.org/10.1145/3152769

20. D’Antoni, L., Samanta, R., Singh, R.: Qlose: Program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9780, pp. 383–401.
Springer (2016). https://doi.org/10.1007/978-3-319-41540-6_21

21. Fahrenberg, U., Legay, A.: Generalized quantitative analysis of metric transition
systems. In: Shan, C. (ed.) Programming Languages and Systems - 11th Asian
Symposium, APLAS 2013, Melbourne, VIC, Australia, December 9-11, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8301, pp. 192–208. Springer
(2013). https://doi.org/10.1007/978-3-319-03542-0_14

22. Fahrenberg, U., Legay, A.: The quantitative linear-time-branching-time spectrum.
Theor. Comput. Sci. 538, 54–69 (2014). https://doi.org/10.1016/j.tcs.2013.
07.030

23. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https:
//doi.org/10.1007/s10009-011-0196-8

24. Faran, R., Kupferman, O.: Spanning the spectrum from safety to liveness. Acta In-
formatica 55(8), 703–732 (2018). https://doi.org/10.1007/s00236-017-0307-4

25. Ferrère, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: Fer-
nández, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer
Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. LIPIcs, vol. 152,
pp. 20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https:
//doi.org/10.4230/LIPIcs.CSL.2020.20

26. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Dawar,
A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 394–403.
ACM (2018). https://doi.org/10.1145/3209108.3209194

27. Gorostiaga, F., Sánchez, C.: Monitorability of expressive verdicts. In: Deshmukh,
J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods - 14th International
Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13260, pp. 693–712. Springer (2022).
https://doi.org/10.1007/978-3-031-06773-0_37

28. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Ka-
toen, J., Stevens, P. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems, 8th International Conference, TACAS 2002, Held as Part of

https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/3152769
https://doi.org/10.1145/3152769
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-03542-0_14
https://doi.org/10.1007/978-3-319-03542-0_14
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s00236-017-0307-4
https://doi.org/10.1007/s00236-017-0307-4
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/978-3-031-06773-0_37

Quantitative Safety and Liveness 369

the Joint European Conference on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings. Lecture Notes in Com-
puter Science, vol. 2280, pp. 342–356. Springer (2002). https://doi.org/10.1007/
3-540-46002-0_24

29. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.
Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

30. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Abstract monitors for quantitative
specifications. In: Dang, T., Stolz, V. (eds.) Runtime Verification - 22nd Inter-
national Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13498, pp. 200–220. Springer (2022).
https://doi.org/10.1007/978-3-031-17196-3_11

31. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR 2013 - Concurrency Theory
- 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, Au-
gust 27-30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8052, pp.
273–287. Springer (2013). https://doi.org/10.1007/978-3-642-40184-8_20

32. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh,
J., Nickovic, D. (eds.) Runtime Verification - 20th International Conference, RV
2020, Los Angeles, CA, USA, October 6-9, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12399, pp. 3–18. Springer (2020). https://doi.org/10.
1007/978-3-030-60508-7_1

33. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470547

34. Katoen, J., Song, L., Zhang, L.: Probably safe or live. In: Henzinger, T.A., Miller,
D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Com-
puter Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014. pp. 55:1–55:10. ACM (2014). https://doi.org/10.1145/2603088.2603147

35. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Computational anal-
ysis of run-time monitoring - fundamentals of java-mac. In: Havelund, K., Rosu,
G. (eds.) Runtime Verification 2002, RV 2002, FLoC Satellite Event, Copenhagen,
Denmark, July 26, 2002. Electronic Notes in Theoretical Computer Science, vol. 70,
pp. 80–94. Elsevier (2002). https://doi.org/10.1016/S1571-0661(04)80578-4

36. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

37. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Model Checking: Ad-
vances and Applications, pp. 73–121. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-57685-5_3

38. Kwiatkowska, M.Z.: Quantitative verification: models techniques and tools. In:
Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croa-
tia, September 3-7, 2007. pp. 449–458. ACM (2007). https://doi.org/10.1145/
1287624.1287688

39. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

40. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani,
S.K. (eds.) Model Checking Software, 10th International SPIN Workshop. Port-
land, OR, USA, May 9-10, 2003, Proceedings. Lecture Notes in Computer Science,

https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1145/2603088.2603147
https://doi.org/10.1145/2603088.2603147
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904

370 T. A. Henzinger et al.

vol. 2648, pp. 74–88. Springer (2003). https://doi.org/10.1007/3-540-44829-2_
5

41. Li, Y., Droste, M., Lei, L.: Model checking of linear-time properties in multi-valued
systems. Inf. Sci. 377, 51–74 (2017). https://doi.org/10.1016/j.ins.2016.10.
030

42. Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness
properties of concurrent programs. Sci. Comput. Program. 4(3), 257–289 (1984).
https://doi.org/10.1016/0167-6423(84)90003-0

43. Peled, D., Havelund, K.: Refining the safety-liveness classification of tempo-
ral properties according to monitorability. In: Margaria, T., Graf, S., Larsen,
K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?
- Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 11200, pp. 218–234. Springer (2018).
https://doi.org/10.1007/978-3-030-22348-9_14

44. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal Methods, 14th
International Symposium on Formal Methods, Hamilton, Canada, August 21-27,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4085, pp. 573–586.
Springer (2006). https://doi.org/10.1007/11813040_38

45. Qian, J., Shi, F., Cai, Y., Pan, H.: Approximate safety properties in metric tran-
sition systems. IEEE Trans. Reliab. 71(1), 221–234 (2022). https://doi.org/10.
1109/TR.2021.3139616

46. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–512 (1994). https://doi.org/10.1007/BF01211865

47. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebraic Methods Program. 79(7), 689–703 (2010).
https://doi.org/10.1016/j.jlap.2010.07.010

48. Weiner, S., Hasson, M., Kupferman, O., Pery, E., Shevach, Z.: Weighted safety. In:
Hung, D.V., Ogawa, M. (eds.) Automated Technology for Verification and Analysis
- 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18,
2013. Proceedings. Lecture Notes in Computer Science, vol. 8172, pp. 133–147.
Springer (2013). https://doi.org/10.1007/978-3-319-02444-8_11

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/0167-6423(84)90003-0
https://doi.org/10.1016/0167-6423(84)90003-0
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/11813040_38
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1007/BF01211865
https://doi.org/10.1007/BF01211865
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1007/978-3-319-02444-8_11
https://doi.org/10.1007/978-3-319-02444-8_11
http://creativecommons.org/licenses/by/4.0/

On the Comparison of Discounted-Sum
Automata with Multiple Discount Factors

Udi Boker� and Guy Hefetz(�)

Reichman University, Herzliya, Israel
udiboker@runi.ac.il, ghefetz@gmail.com

Abstract. We look into the problems of comparing nondeterministic
discounted-sum automata on finite and infinite words. That is, the prob-
lems of checking for automata A and B whether or not it holds that for
all words w, A(w) = B(w),A(w) ≤ B(w), or A(w) < B(w).
These problems are known to be decidable when both automata have
the same single integral discount factor, while decidability is open in all
other settings: when the single discount factor is a non-integral rational;
when each automaton can have multiple discount factors; and even when
each has a single integral discount factor, but the two are different.
We show that it is undecidable to compare discounted-sum automata
with multiple discount factors, even if all are integrals, while it is de-
cidable to compare them if each has a single, possibly different, integral
discount factor. To this end, we also provide algorithms to check for
given nondeterministic automaton N and deterministic automaton D,
each with a single, possibly different, rational discount factor, whether
or not N (w) = D(w), N (w) ≥ D(w), or N (w) > D(w) for all words w.

Keywords: Discounted-sum Automata · Comparison · Containment

1 Introduction

Equivalence and containment checks of Boolean automata, namely the checks of
whether L(A) = L(B), L(A) ⊆ L(B), or L(A) ⊂ L(B), where L(A) and L(B) are
the languages that A and B recognize, are central in the usage of automata theory
in diverse areas, and in particular in formal verification (e.g, [34,26,17,33,35,28]).
Likewise, comparison of quantitative automata, which extends the equivalence
and containment checks by asking whether A(w) = B(w), whether A(w) ≤
B(w), or whether A(w) < B(w) for all words w, are essential for harnessing
quantitative-automata theory to the service of diverse fields and in particular to
the service of quantitative formal verification (e.g, [15,14,21,11,27,3,5,22]).

Discounted summation is a common valuation function in quantitative au-
tomata theory (e.g, [19,12,14,15]), as well as in various other computational mod-
els, such as games (e.g., [37,4,1]), Markov decision processes (e.g, [23,29,16]), and
reinforcement learning (e.g, [32,36]), as it formalizes the concept that an imme-
diate reward is better than a potential one in the far future, as well as that a
� Research supported by the Israel Science Foundation grant 2410/22.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 371–391, 2023.
https://doi.org/10.1007/978-3-031-30829-1_18

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf
http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0002-4451-6581
https://doi.org/10.1007/978-3-031-30829-1_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf
http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0002-4451-6581
https://doi.org/10.1007/978-3-031-30829-1_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf

372 U. Boker and G. Hefetz

potential problem (such as a bug in a reactive system) in the far future is less
troubling than a current one.

A nondeterministic discounted-sum automaton (NDA) has rational weights
on the transitions, and a fixed rational discount factor λ > 1. The value of
a (finite or infinite) run is the discounted summation of the weights on the
transitions, such that the weight in the ith transition of the run is divided by
λi. The value of a (finite or infinite) word is the infimum value of the automaton
runs on it. An NDA thus realizes a function from words to real numbers.

NDAs cannot always be determinized [15], they are not closed under basic
algebraic operations [8], and their comparison is not known to be decidable,
relating to various longstanding open problems [9]. However, restricting NDAs
to have an integral discount factor λ ∈ N \ {0, 1} provides a robust class of
automata that is closed under determinization and under algebraic operations,
and for which comparison is decidable [8].

Various variants of NDAs are studied in the literature, among which are
functional, k-valued, probabilistic, and more [21,20,13]. Yet, until recently, all of
these models were restricted to have a single discount factor. This is a signifi-
cant restriction of the general discounted-summation paradigm, in which multi-
ple discount factors are considered. For example, Markov decision processes and
discounted-sum games allow multiple discount factors within the same entity
[23,4]. In [6], NDAs were extended to NMDAs, allowing for multiple discount
factors, where each transition can have a different one. Special attention was
given to integral NMDAs, namely to those with only integral discount factors,
analyzing whether they preserve the good properties of integral NDAs. It was
shown that they are generally not closed under determinization and under alge-
braic operations, while a restricted class of them, named tidy-NMDAs, in which
the choice of discount factors depends on the prefix of the word read so far, does
preserve the good properties of integral NDAs.

While comparison of tidy-NMDAs with the same choice function is decidable
in PSPACE [6], it was left open whether comparison of general integral NMDAs
A and B is decidable. It is even open whether comparison of two integral NDAs
with different (single) discount factors is decidable.

We show that it is undecidable to resolve for given NMDA N and determinis-
tic NMDA (DMDA) D, even if both have only integral discount factors, on both
finite and infinite words, whether N ≡ D and whether N ≤ D, and on finite
words also whether N < D. We prove the undecidability result by reduction from
the halting problem of two-counter machines. The general scheme follows similar
reductions, such as in [18,2], yet the crux is in simulating a counter by integral
NMDAs. Upfront, discounted summation is not suitable for simulating counters,
since a current increment has, in the discounted setting, a much higher influence
than of a far-away decrement. However, we show that multiple discount factors
allow in a sense to eliminate the influence of time, having automata in which
no matter where a letter appears in the word, it will have the same influence
on the automaton value. (See Lemma 1 and Fig. 3). Another main part of the
proof is in showing how to nondeterministically adjust the automaton weights

Comparison of Discounted-Sum Automata with Multiple Discount Factors 373

and discount factors in order to “detect” whether a counter is at a current value
0. (See Figs. 5, 6, 8 and 9.)

On the positive side, we provide algorithms to decide for given NDA N and
deterministic NDA (DDA) D, with arbitrary, possibly different, rational discount
factors, whether N ≡ D, N ≥ D, or N > D (Theorem 4). Our algorithms
work on both finite and infinite words, and run in PSPACE when the automata
weights are represented in binary and their discount factors in unary. Since
integral NDAs can always be determinized [8], our method also provides an
algorithm to compare two integral NDAs, though not necessarily in PSPACE,
since determinization might exponentially increase the number of states. (Even
though determinization of NDAs is in PSPACE [8,6], the exponential number of
states might require an exponential space in our algorithms of comparing NDAs
with different discount factors.)

The challenge with comparing automata with different discount factors comes
from the combination of their different accumulations, which tends to be in-
tractable, resulting in the undecidability of comparing integral NMDAs, and in
the open problems of comparing rational NDAs and of analyzing the represen-
tation of numbers in a non-integral basis [30,24,25,9]. Yet, the main observation
underlying our algorithm is that when each automaton has a single discount fac-
tor, we may unfold the combination of their computation trees only up to some
level k, after which we can analyze their continuation separately, first handling
the automaton with the lower (slower decreasing) discount factor and then the
other one. The idea is that after level k, since the accumulated discounting of the
second automaton is already much more significant, even a single non-optimal
transition of the first automaton cannot be compensated by a continuation that
is better with respect to the second automaton. We thus compute the optimal
suffix words and runs of the first automaton from level k, on top which we
compute the optimal runs of the second automaton.

2 Preliminaries

Words. An alphabet Σ is an arbitrary finite set, and a word over Σ is a finite
or infinite sequence of letters in Σ, with ε for the empty word. We denote the
concatenation of a finite word u and a finite or infinite word w by u ·w, or simply
by uw. We define Σ+ to be the set of all finite words except the empty word, i.e.,
Σ+ = Σ∗\{ε}. For a word w = σ0σ1σ2 · · · and indexes i ≤ j, we denote the letter
at index i as w[i] = σi, and the sub-word from i to j as w[i..j] = σiσi+1 · · ·σj .

For a finite word w and letter σ ∈ Σ, we denote the number of occurrences
of σ in w by #(σ,w), and for a set S ⊆ Σ, we denote

∑
σ∈S #(σ,w) by #(S,w).

For a finite or infinite word w and a letter σ ∈ Σ, we define the prefix of
w up to σ, prefσ(w), as the minimal prefix of w that contains a σ letter if
there is a σ letter in w or w itself if it does not contain any σ letters. Formally,

prefσ(w) =

{
w
[
0..min{i | w[i] = σ}] ∃i | w[i] = σ

w otherwise

374 U. Boker and G. Hefetz

Automata. A nondeterministic discounted-sum automaton (NDA) [15] is an au-
tomaton with rational weights on the transitions, and a fixed rational discount
factor λ > 1. A nondeterministic discounted-sum automaton with multiple dis-
count factors (NMDA) [6] is similar to an NDA, but with possibly a different
discount factor on each of its transitions. They are formally defined as follows:

Definition 1 ([6]). A nondeterministic discounted-sum automaton with mul-
tiple discount factors (NMDA), on finite or infinite words, is a tuple A =
〈Σ,Q, ι, δ, γ, ρ〉 over an alphabet Σ, with a finite set of states Q, an initial set of
states ι ⊆ Q, a transition function δ ⊆ Q×Σ ×Q, a weight function γ : δ → Q,
and a discount-factor function ρ : δ → Q ∩ (1,∞), assigning to each transition
its discount factor, which is a rational greater than one. 1

– A run of A is a sequence of states and alphabet letters, p0, σ0, p1, σ1, p2, · · · ,
such that p0 ∈ ι is an initial state, and for every i, (pi, σi, pi+1) ∈ δ.

– The length of a run r, denoted by |r|, is n for a finite run r = p0, σ0, p1,
· · · , σn−1, pn, and ∞ for an infinite run.

– For an index i < |r|, we define the i-th transition of r as r[i] = (pi, σi, pi+1),
and the prefix run with i transitions as r[0..i] = p0, σ0, p1, · · · , σi, pi+1.

– The value of a finite/infinite run r is A(r) =
∑|r|−1

i=0

(
γ
(
r[i])

) ·∏i−1
j=0

1

ρ
(
r[j]

)).

For example, the value of the run r1 = q0, a, q0, a, q1, b, q2 of A from Fig. 1
is A(r1) = 1 + 1

2 · 1
3 + 2 · 1

2·3 = 3
2 .

– The value of A on a finite or infinite word w is
A(w) = inf{A(r) | r is a run of A on w}.

– For every finite run r = p0, σ0, p1, · · · , σn−1, pn, we define the target state
as δ(r) = pn and the accumulated discount factor as ρ(r) =

∏n−1
i=0 ρ

(
r[i])

)
.

– When all discount factors are integers, we say that A is an integral NMDA.
– In the case where |ι| = 1 and for every q ∈ Q and σ ∈ Σ, we have

|{q′ ∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic, denoted by DMDA,
and view δ as a function from words to states.

– When the discount factor function ρ is constant, ρ ≡ λ ∈ Q∩ (1,∞), we say
that A is a nondeterministic discounted-sum automaton (NDA) [15] with
discount factor λ (a λ-NDA). If A is deterministic, it is a λ-DDA.

– For a state q ∈ Q, we write Aq for the NMDA Aq = 〈Σ,Q, { q } , δ, γ, ρ〉.

Counter machines. A two-counter machine [31] M is a sequence (l1, . . . , ln)
of commands, for some n ∈ N, involving two counters x and y. We refer to
{ 1, . . . , n } as the locations of the machine. For every i ∈ { 1, . . . , n } we refer to
li as the command in location i. There are five possible forms of commands:

inc(c), dec(c), goto lk, if c=0 goto lk else goto lk′ , halt,

where c ∈ {x, y } is a counter and 1 ≤ k, k′ ≤ n are locations. For not decreasing
a zero-valued counter c ∈ {x, y }, every dec(c) command is preceded by the
1 Discount factors are sometimes defined as numbers between 0 and 1, under which

setting weights are multiplied by these factors rather than divided by them.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 375

A : q0 q1 q2

a, 1, 3 a, 1
2
, 2

a, 1
4
, 2

b, 1
4
, 2a, 1, 3

a, 1
2
, 2

b, 2, 5

b, 3
2
, 4

Fig. 1. An NMDA A. The labeling on the transitions indicate the alphabet letter, the
weight of the transition, and its discount factor.

command if c=0 goto <current_line> else goto <next_line>, and
there are no other direct goto-commands to it. The counters are initially set to
0. An example of a two-counter machine is given in Fig. 2.

l1. inc(x)
l2. inc(x)
l3. if x=0 goto l3 else goto l4
l4. dec(x)
l5. if x=0 goto l6 else goto l3
l6. halt

Fig. 2. An example of a two-counter machine.

Let L be the set of possible commands in M, then a run of M is a sequence
ψ = ψ1, . . . , ψm ∈ (L× N× N)∗ such that the following hold:

1. ψ1 = 〈l1, 0, 0〉.
2. For all 1 < i ≤ m, let ψi−1 = (lj , αx, αy) and ψi = (l′, α′

x, α
′
y). Then, the

following hold.
– If lj is an inc(x) command (resp. inc(y)), then α′

x = αx + 1, α′
y = αy

(resp. αy = αy + 1, α′
x = αx), and l′ = lj+1.

– If lj is dec(x) (resp. dec(y)) then α′
x = αx − 1, α′

y = αy (resp. αy =
αy − 1, α′

x = αx), and l′ = lj+1.
– If lj is goto lk then α′

x = αx, α′
y = αy, and l′ = lk.

– If lj is if x=0 goto lk else goto lk′ then α′
x = αx, α′

y = αy, and
l′ = lk if αx = 0, and l′ = lk′ otherwise.

– If lj is if y=0 goto lk else goto lk′ then α′
x = αx, α′

y = αy, and
l′ = lk if αy = 0, and l′ = lk′ otherwise.

– If l′ is halt then i = m, namely a run does not continue after halt.

If, in addition, we have that ψm = 〈lj , αx, αy〉 such that lj is a halt command,
we say that ψ is a halting run. We say that a machine M 0-halts if its run is
halting and ends in 〈l, 0, 0〉. We say that a sequence of commands τ ∈ L∗ fits a
run ψ, if τ is the projection of ψ on its first component.

The command trace π = σ1, . . . , σm of a halting run ψ = ψ1, . . . , ψm describes
the flow of the run, including a description of whether a counter c was equal
to 0 or larger than 0 in each occurrence of an if c=0 goto lk else goto lk′

command. It is formally defined as follows. σm = halt and for every 1 < i ≤ m,
we define σi−1 according to ψi−1 = (lj , αx, αy) in the following manner:

376 U. Boker and G. Hefetz

– σi−1 = lj if lj is not of the form if c=0 goto lk else goto lk′ .
– σi−1 = (goto lk, c = 0) for c ∈ {x, y}, if αc = 0 and the command lj is of

the form if c=0 goto lk else goto lk′ .
– σi−1 = (goto lk′ , c > 0) for c ∈ {x, y}, if αc > 0 and the command lj is of

the form if c=0 goto lk else goto lk′ .

For example, the command trace of the halting run of the machine in Fig. 2 is
inc(x), inc(x), (goto l4, x > 0), dec(x), (goto l3, x > 0), (goto l4, x > 0),
dec(x), (goto l6, x = 0), halt.

Deciding whether a given counter machine M halts is known to be undecid-
able [31]. Deciding whether M halts with both counters having value 0, termed
the 0-halting problem, is also undecidable. Indeed, the halting problem can be
reduced to the latter by adding some commands that clear the counters, before
every halt command.

3 Comparison of NMDAs

We show that comparison of (integral) NMDAs is undecidable by reduction from
the halting problem of two-counter machines. Notice that our NMDAs only use
integral discount factors, while they do have non-integral weights. Yet, weights
can be easily changed to integers as well, by multiplying them all by a common
denominator and making the corresponding adjustments in the calculations.

We start with a lemma on the accumulated value of certain series of discount
factors and weights. Observe that by the lemma, no matter where the pair of
discount-factor λ ∈ N \ {0, 1} and weight w = λ−1

λ appear along the run, they
will have the same effect on the accumulated value. This property will play a
key role in simulating counting by NMDAs.

Lemma 1. For every sequence λ1, · · · , λm of integers larger than 1 and weights
w1, · · · , wm such that wi =

λi−1
λi

, we have
∑m

i=1

(
wi ·

∏i−1
j=1

1
λj

)
= 1− 1

∏m
j=1 λj

.

The proof is by induction on m and appears in [7].

3.1 The Reduction

We turn to our reduction from the halting problem of two-counter machines
to the problem of NMDA containment. We provide the construction and the
correctness lemma with respect to automata on finite words, and then show in
Section 3.2 how to use the same construction also for automata on infinite words.

Given a two-counter machine M with the commands (l1, . . . , ln), we con-
struct an integral DMDA A and an integral NMDA B on finite words, such that
M 0-halts iff there exists a word w ∈ Σ+ such that B(w) ≥ A(w) iff there exists
a word w ∈ Σ+ such that B(w) > A(w).

Comparison of Discounted-Sum Automata with Multiple Discount Factors 377

The automata A and B operate over the following alphabet Σ, which consists
of 5n+ 5 letters, standing for the possible elements in a command trace of M:

Σincdec = { inc(x),dec(x), inc(y),dec(y) }
Σgoto =

{
goto lk : k ∈ {1, . . . , n}}∪{
(goto lk, c = 0) : k ∈ {1, . . . , n}, c ∈ {x, y}}∪{
(goto lk′ , c > 0) : k′ ∈ {1, . . . , n}, c ∈ {x, y}}

Σnohalt = Σincdec ∪Σgoto

Σ = Σnohalt ∪ {
halt

}
When A and B read a word w ∈ Σ+, they intuitively simulate a sequence of

commands τu that induces the command trace u = prefhalt(w). If τu fits the
actual run of M, and this run 0-halts, then the minimal run of B on w has a
value strictly larger than A(w). If, however, τu does not fit the actual run of M,
or it does fit the actual run but it does not 0-halt, then the violation is detected
by B, which has a run on w with value strictly smaller than A(w).

In the construction, we use the following partial discount-factor functions
ρp, ρd : Σnohalt → N and partial weight functions γp, γd : Σnohalt → Q.

ρp(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5 σ = inc(x)
4 σ = dec(x)
7 σ = inc(y)
6 σ = dec(y)
15 otherwise

ρd(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4 σ = inc(x)
5 σ = dec(x)
6 σ = inc(y)
7 σ = dec(y)
15 otherwise

γp(σ) =
ρp(σ)−1
ρp(σ)

, and γd(σ) = ρd(σ)−1
ρd(σ)

. We say that ρp and γp are the primal
discount-factor and weight functions, while ρd and γd are the dual functions.
Observe that for every c ∈ {x, y} we have that

ρp(inc(c)) = ρd(dec(c)) > ρp(dec(c)) = ρd(inc(c)) (1)

Intuitively, we will use the primal functions for A’s discount factors and
weights, and the dual functions for identifying violations. Notice that if changing
the primal functions to the dual ones in more occurrences of inc(c) letters than
of dec(c) letters along some run, then by Lemma 1 the run will get a value lower
than the original one.

We continue with their formal definitions. A = 〈Σ, {qA, qhA}, {qA}, δA, γA, ρA〉
is an integral DMDA consisting of two states, as depicted in Fig. 3. Observe that
the initial state qA has self loops for every alphabet letter in Σnohalt with
weights and discount factors according to the primal functions, and a transition
(qA,halt, qhA) with weight of 14

15 and a discount factor of 15.
The integral NMDA B = 〈Σ,QB, ιB, δB, γB, ρB〉 is the union of the following

eight gadgets (checkers), each responsible for checking a certain type of violation
in the description of a 0-halting run of M. It also has the states qfreeze, qhalt ∈ QB

378 U. Boker and G. Hefetz

qA qhA

inc(x), 4
5
, 5

dec(x), 3
4
, 4

inc(y), 6
7
, 7

Σgoto, 14
15
, 15

dec(y), 5
6
, 6

halt, 14
15
, 15

Σ, 0, 2

Fig. 3. The DMDA A constructed for the proof of Lemma 2.

such that for all σ ∈ Σ, there are 0-weighted transitions (qfreeze, σ, qfreeze) ∈ δB
and (qhalt, σ, qhalt) ∈ δB with an arbitrary discount factor. Observer that in all
of B’s gadgets, the transition over the letter halt to qhalt has a weight higher
than the weight of the corresponding transition in A, so that when no violation
is detected, the value of B on a word is higher than the value of A on it.

1. Halt Checker. This gadget, depicted in Fig. 4, checks for violations of non-
halting runs. Observe that its initial state qHC has self loops identical to those
of A’s initial state, a transition to qhalt over halt with a weight higher than the
corresponding weight in A, and a transition to the state qlast over every letter
that is not halt, “guessing” that the run ends without a halt command.

qHC qhalt

qlast qfreeze

inc(x), 4
5
, 5

dec(x), 3
4
, 4

inc(y), 6
7
, 7

Σgoto,
14
15
, 15

dec(y), 5
6
, 6

halt, 15
16
, 16

Σ, 0, 2

Σnohalt, 0, 2

Σ, 2, 2

Σ, 0, 2

Fig. 4. The Halt Checker in the NMDA B.

2. Negative-Counters Checker. The second gadget, depicted in Fig. 5, checks
that the input prefix u has no more dec(c) than inc(c) commands for each
counter c ∈ {x, y}. It is similar to A, however having self loops in its initial
states that favor dec(c) commands when compared to A.

qNx qhalt
inc(x), 9

10
, 10

dec(x), 1
2
, 2

inc(y), 6
7
, 7

Σgoto, 14
15
, 15

dec(y), 5
6
, 6 halt, 15

16
, 16

qNy

inc(x), 4
5
, 5
dec(x), 3

4
, 4

inc(y), 13
14
, 14

Σgoto, 14
15
, 15dec(y), 2

3
, 3

halt, 15
16
, 16

Fig. 5. The negative-counters checker, on the left for x and on the right for y, in the
NMDA B.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 379

3. Positive-Counters Checker. The third gadget, depicted in Fig. 6, checks
that for every c ∈ {x, y}, the input prefix u has no more inc(c) than dec(c)
commands. It is similar to A, while having self loops in its initial state according
to the dual functions rather than the primal ones.

qBC qhalt
inc(x), 3

4
, 4

dec(x), 4
5
, 5

inc(y), 5
6
, 6

Σgoto, 14
15
, 15

dec(y), 6
7
, 7 halt, 15

16
, 16

Fig. 6. The Positive-Counters Checker in the NMDA B.

4. Command Checker. The next gadget checks for local violations of succes-
sive commands. That is, it makes sure that the letter wi represents a command
that can follow the command represented by wi−1 in M, ignoring the counter
values. For example, if the command in location l2 is inc(x), then from state
q2, which is associated with l2, we move with the letter inc(x) to q3, which is
associated with l3. The test is local, as this gadget does not check for violations
involving illegal jumps due to the values of the counters. An example of the
command checker for the counter machine in Fig. 2 is given in Fig. 7.

q1 q2 q3 q4 q5 q6

qhaltqfreeze

inc(x), 4
5
, 5 inc(x), 4

5
, 5

(goto l3, x = 0), 14
15
, 15

goto l4
x > 0, 14

15
, 15 dec(x), 3

4
, 4

(goto l6, x = 0),
14
15
, 15

(goto l3, x > 0), 14
15
, 15

halt,
15
16
, 16Σ \ {inc(x)},

0, 2
Σ \ {halt},

0, 2

Fig. 7. The command checker that corresponds to the counter machine in Fig. 2.

The command checker, which is a DMDA, consists of states q1, . . . , qn that
correspond to the commands l1, . . . , ln, and the states qhalt and qfreeze. For two
locations j and k, there is a transition from qj to qk on the letter σ iff lk can locally
follow lj in a run of M that has σ in the corresponding location of the command
trace. That is, either lj is a goto lk command (meaning lj = σ = goto lk),
k is the next location after j and lj is an inc or a dec command (meaning
k = j + 1 and lj = σ ∈ Σincdec), lj is an if c=0 goto lk else goto lk′

command with σ = (goto lk, c = 0), or lj is an if c=0 goto ls else goto lk
command with σ = (goto lk, c > 0). The weights and discount factors of the
Σnohalt transitions mentioned above are according to the primal functions γp
and ρp respectively. For every location j such that lj = halt, there is a transition
from qj to qhalt labeled by the letter halt with a weight of 15

16 and a discount

380 U. Boker and G. Hefetz

factor of 16. Every other transition that was not specified above leads to qfreeze
with weight 0 and some discount factor.

5,6. Zero-Jump Checkers. The next gadgets, depicted in Fig. 8, check for vi-
olations in conditional jumps. In this case, we use a different checker instance for
each counter c ∈ {x, y}, ensuring that for every if c=0 goto lk else goto lk′

command, if the jump goto lk is taken, then the value of c is indeed 0.

qcZC

qc

qhalt

Σgoto, 14
15
, 15

Σincdec \ { inc(c),dec(c) } , γp(σ), ρp(σ)
{ inc(c),dec(c) } , γd(σ), ρd(σ)

(goto lk, c = 0), 14
15
, 15

Σincdec, γp(σ), ρp(σ)Σgoto, 14
15
, 15

halt, 15
16
, 16

halt, 15
16
, 16

Fig. 8. The Zero-Jump Checker (for a counter c ∈ {x, y }) in the NMDA B.

Intuitively, qcZC profits from words that have more inc(c) than dec(c) letters,
while qc continues like A. If the move to qc occurred after a balanced number
of inc(c) and dec(c), as it should be in a real command trace, neither the
prefix word before the move to qc, nor the suffix word after it result in a profit.
Otherwise, provided that the counter is 0 at the end of the run (as guaranteed
by the negative- and positive-counters checkers), both prefix and suffix words
get profits, resulting in a smaller value for the run.

7,8. Positive-Jump Checkers. These gadgets, depicted in Fig. 9, are dual to
the zero-jump checkers, checking for the dual violations in conditional jumps.
Similarly to the zero-jump checkers, we have a different instance for each counter
c ∈ {x, y}, ensuring that for every if c=0 goto lk else goto lk′ command, if
the jump goto lk′ is taken, then the value of c is indeed greater than 0.

Intuitively, if the counter is 0 on a (goto lk′ , c > 0) command when there
was no inc(c) command yet, the gadget benefits by moving from qcPC0 to qfreeze.
If there was an inc(c) command, it benefits by having the dual functions on the
move from qcPC0 to qcPC1 over inc(c) and the primal functions on one additional
self loop of qcPC1 over dec(c).

Lemma 2. Given a two-counter machine M, we can compute an integral DMDA
A and an integral NMDA B on finite words, such that M 0-halts iff there exists
a word w ∈ Σ+ such that B(w) ≥ A(w) iff there exists a word w ∈ Σ+ such that
B(w) > A(w).

The proof uses the construction presented above, and can be found in [7].

3.2 Undecidability of Comparison

For finite words, the undecidability result directly follows from Lemma 2 and
the undecidability of the 0-halting problem of counter machines [31].

Comparison of Discounted-Sum Automata with Multiple Discount Factors 381

qcPC0

qcPC1

qcPC2

qfreeze

qhalt

Σgoto, 14
15
, 15 Σincdec \ { inc(c) } , γp(σ), ρp(σ)

inc(c),
γd(inc(c)),
ρd(inc(c))

halt, 15
16
, 16(goto lk′ , c > 0), 0, 2

Σincdec,
γp(σ), ρp(σ)Σgoto, 14

15
, 15

(goto lk′ , c > 0), 14
15
, 15

Σincdec \ { inc(c),dec(c) } , γp(σ), ρp(σ)
Σgoto, 14

15
, 15

{ inc(c),dec(c) } , γd(σ), ρd(σ)
halt, 15

16
, 16

halt, 1, 2

Fig. 9. The Positive-Jump Checker (for a counter c) in the NMDA B.

Theorem 1. Strict and non-strict containment of (integral) NMDAs on finite
words are undecidable. More precisely, the problems of deciding for given integral
NMDA N and integral DMDA D whether N (w) ≤ D(w) for all finite words w
and whether N (w) < D(w) for all finite words w.

For infinite words, undecidability of non-strict containment also follows from
the reduction given in Section 3.1, as the reduction considers prefixes of the
word until the first halt command. We leave open the question of whether strict
containment is also undecidable for infinite words. The problem with the latter is
that a halt command might never appear in an infinite word w that incorrectly
describes a halting run of the two-counter machine, in which case both automata
A and B of the reduction will have the same value on w. On words w that have
a halt command but do not correctly describe a halting run of the two-counter
machine we have B(w) < A(w), and on a word w that does correctly describe a
halting run we have B(w) > A(w). Hence, the reduction only relates to whether
B(w) ≤ A(w) for all words w, but not to whether B(w) < A(w) for all words w.

Theorem 2. Non-strict containment of (integral) NMDAs on infinite words is
undecidable. More precisely, the problem of deciding for given integral NMDA N
and integral DMDA D whether N (w) ≤ D(w) for all infinite words w.

Proof. The automata A and B in the reduction given in Section 3.1 can operate
as is on infinite words, ignoring the Halt-Checker gadget of B which is only
relevant to finite words.

Since the values of both A and B on an input word w only relate to the
prefix u = prefhalt(w) of w until the first halt command, we still have that
B(w) > A(w) if u correctly describes a halting run of the two-counter machine
M and that B(w) < A(w) if u is finite and does not correctly describe a halting
run of M.

382 U. Boker and G. Hefetz

Yet, for infinite words there is also the possibility that the word w does not
contain the halt command. In this case, the value of both A and the command
checker of B will converge to 1, getting A(w) = B(w).

Hence, if M 0-halts, there is a word w, such that B(w) > A(w) and otherwise,
for all words w, we have B(w) ≤ A(w). ��

Observe that for NMDAs, equivalence and non-strict containment are in-
terreducible.

Theorem 3. Equivalence of (integral) NMDAs on finite as well as infinite words
is undecidable. That is, the problem of deciding for given integral NMDAs A and
B on finite or infinite words whether A(w) = B(w) for all words w.

Proof. Assume toward contradiction the existence of a procedure for equivalence
check of A and B. We can use the nondeterminism to obtain an automaton
C = A∪B, having C(w) ≤ A(w) for all words w. We can then check whether C is
equivalent to A, which holds if and only if A(w) ≤ B(w) for all words w. Indeed,
if A(w) ≤ B(w) then A(w) ≤ min(A(w),B(w)) = C(w), while if there exists a
word w, such that B(w) < A(w), we have C(w) = min(A(w),B(w)) < A(w),
implying that C and A are not equivalent. Thus, such a procedure contradicts
the undecidability of non-strict containment, shown in Theorems 1 and 2. ��

4 Comparison of NDAs with Different Discount Factors

We present below our algorithm for the comparison of NDAs with different
discount factors. We start with automata on infinite words, and then show how
to solve the case of finite words by reduction to the case of infinite words.

The algorithm is based on our main observation that, due to the difference
between the discount factors, we only need to consider the combination of the
automata computation trees up to some level k, after which we can consider first
the best/worst continuation of the automaton with the smaller discount factor,
and on top of it the worst/best continuation of the second automaton.

For an NDA A, we define its lowest (resp. highest) infinite run value by
lowrun(A) (resp. highrun(A)) = min (resp. max) {A(r)

∣∣ r is an infinite run
of A (on some word w ∈ Σω)}.

Observe that we can use min and max (rather than inf and sup) since the in-
fimum and supremum values are indeed attainable by specific infinite runs of the
NDA (cf. [10, Proof of Theorem 9]). Notice that lowrun(A) and highrun(A)
can be calculated in PTIME by a simple reduction to one-player discounted-
payoff games [4].

Considering word values, we also refer to the lowest (resp. highest) word
value of A, defined by lowword(A) (resp. highword(A))= min (resp. max)
{A(w)

∣∣ w ∈ Σω }. Observe that lowword(A) = lowrun(A), highword(A) ≤
highrun(A), and for deterministic automaton, highword(A) = highrun(A).

For an NMDA A with states Q, we define the maximal difference between suf-
fix runs of A as maxdiff(A) = max {highrun(Aq)− lowrun(Aq)

∣∣ q ∈ Q }.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 383

Notice that maxdiff(A) ≥ 0 and that Aq(w) is bounded as follows.

lowrun(Aq) ≤ Aq(w) ≤ lowrun(Aq) + maxdiff(A) (2)

Lemma 3. There is an algorithm that computes for every input discount factors
λA, λD ∈ Q∩ (1,∞), λA-NDA A and λD-DDA D on infinite words the value of
min{A(w)−D(w)

∣∣ w ∈ Σω}.

Proof. Consider an alphabet Σ, discount factors λA, λD ∈ Q ∩ (1,∞), a λA-
NDA A = 〈Σ,QA, ιA, δA, γA〉 and a λD-DDA D = 〈Σ,QD, ιD, δD, γD〉. When
λA = λD, we can generate a λA-NDA C ≡ A − D over the product of A and D
and compute lowword(C).

When λA
= λD, we consider first the case that λA < λD.
Our algorithm unfolds the computation trees of A and D, up to a level in

which only the minimal-valued suffix words of A remain relevant – Due to the
massive difference between the accumulated discount factor in A compared to
the one in D, any “penalty” of not continuing with a minimal-valued suffix word
in A, defined below as mA, cannot be compensated even by the maximal-valued
word of D, which “profit” is at most as high as maxdiff(D). Hence, at that
level, it is enough to look among the minimal-valued suffixes of A for the one
that implies the highest value in D.

For every transition t = (q, σ, q′) ∈ δA, let minval(q, σ, q′) = γA(q, σ, q′) +
1
λA

· lowword(Aq′) be the best (minimal) value that Aq can get by taking t as
the first transition. We say that t is preferred if it starts a minimal-valued infinite
run of Aq, namely δpr = { t = (q, σ, q′) ∈ δA

∣∣ minval(t) = lowword(Aq) } is
the set of preferred transitions of A. Observe that an infinite run of Aq that
takes only transitions from δpr, has a value equal to lowrun(Aq) (cf. [10, Proof
of Theorem 9]).

If all the transitions of A are preferred, A has the same value on all words, and
then min{A(w)−D(w)

∣∣w ∈ Σω} = lowrun(A)−highword(D). (Recall that
since D is deterministic, we can easily compute highword(D).) Otherwise, let
mA be the minimal penalty for not taking a preferred transition in A, meaning

mA = min
{
minval(t′)−minval(t′′)

∣∣∣ t′ = (q, σ′, q′) ∈ δA \ δpr,
t′′ = (q, σ′′, q′′) ∈ δpr

}
. Observe that

mA > 0.
Considering the connection between mA and maxdiff(D), notice first that

if maxdiff(D) = 0, D has the same value on all words, and then we have
min{A(w)−D(w)

∣∣w ∈ Σω} = lowrun(A)−lowrun(D). Otherwise, meaning
maxdiff(D) > 0, we unfold the computation trees of A and D for the first
k levels, until the maximal difference between suffix runs in D, divided by the
accumulated discount factor of D, is smaller than the minimal penalty for not
taking a preferred transition in A, divided by the accumulated discount factor
of A. Meaning, k is the minimal integer such that

maxdiff(D)

λD
k

<
mA
λA

k
(3)

384 U. Boker and G. Hefetz

Starting at level k, the penalty gained by taking a non-preferred transition of A
cannot be compensated by a higher-valued word of D.

At level k, we consider separately every run ψ of A on some prefix word u.
We should look for a suffix word w, that minimizes

A(uw)−D(uw) = A(ψ) +
1

λA
k
· AδA(ψ)(w)−D(u)− 1

λD
k
· DδD(u)(w) (4)

A central point of the algorithm is that every word that minimizes A − D
must take only preferred transitions of A starting at level k (full proof in [7]).
As all possible remaining continuations after level k yield the same value in A,
we can choose among them the continuation that yields the highest value in D.

Let B be the partial automaton with the states of A, but only its preferred
transitions δpr. (We ignore words on which B has no runs.) We shall use the
automata product BδA(ψ)×DδD(u) to force suffix words that only take preferred
transitions of A, while calculating among them the highest value in D.

Let C(δA(ψ),δD(u)) = 〈Σ,QA×QD, { (δA(ψ), δD(u)) } , δpr×δD, γC〉 be the par-
tial λD-NDA that is generated by the product of BδA(ψ) and DδD(u), while only
considering the weights (and discount factor) of D, meaning γC((q, p), σ, (q′, p′)) =
γD(p, σ, p′).

A word w has a run in AδA(ψ) that uses only preferred transitions iff w has a
run in C(δA(ψ),δD(u)). Also, observe that the nondeterminism in C is only related
to the nondeterminism in A, and the weight function of C only depends on the
weights of D, hence all the runs of C(δA(ψ),δD(u)) on the same word result in the
same value, which is the value of that word in D. Combining both observations,
we get that a word w has a run in AδA(ψ) that uses only preferred transitions iff
w has a run r in C(δA(ψ),δD(u)) such that C(δA(ψ),δD(u))(r) = DδD(u)(w). Hence,
after taking the k-sized run ψ of A, and under the notations defined in Eq. (4),
a suffix word w that can take only preferred transitions of A, and maximizes
DδD(u)(w), has a value of DδD(u)(w) = highrun(C(δA(ψ),δD(u))). This leads to

min {A(v)−D(v)
∣∣ v ∈ Σω } =

min
{
A(ψ) +

AδA(ψ)(w)

λA
k

−D(u)− DδD(u)(w)

λD
k

∣∣∣ u ∈ Σk, w ∈ Σω,
ψ is a run of A on u

}
=

min
ψ

{
A(ψ) +

lowrun(AδA(ψ))

λA
k

−D(u)− highrun(C(δA(ψ),δD(u)))

λD
k

∣∣∣ u ∈ Σk,
ψ is a run
of A on u

}

and it is only left to calculate this value for every k-sized run of A, meaning for
every leaf in the computation tree of A.
The case of λA > λD is analogous, with the following changes:

– For every transition of D, we compute maxval(p, σ, p′) = γD(p, σ, p′) + 1
λD

·
highword(Dp′

), instead of minval(q, σ, q′).
– The preferred transitions of D are the ones that start a maximal-valued in-

finite run, that is δpr = { t = (p, σ′, p′) ∈ δD
∣∣ maxval(t) = highrun(Dp) },

Comparison of Discounted-Sum Automata with Multiple Discount Factors 385

and the minimal penalty mD is

mD = min
{
maxval(t′′)− maxval(t′)

∣∣∣ t′′ = (p, σ′′, p′′) ∈ δpr,
t′ = (p, σ′, p′) ∈ δD \ δpr

}
– k should be the minimal integer such that maxdiff(A)

λA
k < mD

λD
k .

– We define B to be the restriction of D to its preferred transitions, and
C(δA(ψ),δD(u)) as a partial λA-NDA on the product of AδA(ψ) and BδD(u) while
considering the weights of A. We then calculate lowrun(C(δA(ψ),δD(u))) for
every k-sized run of A, ψ, and conclude that min {A −D } is equal to
minψ {A(ψ) + lowrun(C(δA(ψ),δD(u)))

λA
k −D(u)− highrun(DδD(u))

λD
k }.

Observe that in this case, it might not hold that all runs of C(δA(ψ),δD(u)) on
the same word have the same value, but such property is not required, since
we look for the minimal run value (which is the minimal word value).

��
Notice that the algorithm of Lemma 3 does not work if switching the direction

of containment, namely if considering a deterministic A and a nondeterministic
D. The determinism of D is required for finding the maximal value of a valid
word in BδA(ψ) × DδD(u). If D is not deterministic, the maximal-valued run of
BδA(ψ) × DδD(u) on some word w equals the value of some run of D on w, but
not necessarily the value of D on w. We also need D to be deterministic for
computing highword(Dp) in the case that λA > λD.

Moving to automata on finite words, we reduce the problem to the corre-
sponding problem handled in Lemma 3, by adding to the alphabet a new letter
that represents the end of the word, and making some required adjustments.

Lemma 4. There is an algorithm that computes for every input discount factors
λA, λD ∈ Q ∩ (1,∞), λA-NDA A and λD-DDA D on finite words the value of
inf {A(u)−D(u)

∣∣ u ∈ Σ+ }, and determines if there exists a finite word u for
which A(u)−D(u) equals that value.

Proof. Without loss of generality, we assume that initial states of automata have
no incoming transitions. (Every automaton can be changed in linear time to an
equivalent automaton with this property.)

We convert, as described below, an NDA N on finite words to an NDA
N̂ on infinite words, such that N̂ intuitively simulates the finite runs of N .
For an alphabet Σ, a discount factor λ ∈ Q ∩ (1,∞), and a λ-NDA (DDA)
N = 〈Σ,QN , ιN , δN , γN 〉 on finite words, we define the λ-NDA (DDA) N̂ =
〈Σ̂,QN ∪ { qτ } , ιN , δN̂ , γN̂ 〉 on infinite words. The new alphabet Σ̂ = Σ ∪ { τ }
contains a new letter τ /∈ Σ that indicates the end of a finite word. The new
state qτ has 0-valued self loops on every letter in the alphabet, and there are 0-
valued transitions from every non-initial state to qτ on the new letter τ . Formally,
δN̂ = δN ∪ { (qτ , σ, qτ

∣∣ σ ∈ Σ̂) } ∪ { (q, τ, qτ
∣∣ q ∈ QN \ ιN) }, and

γN̂ (t) =

{
γN (t) t ∈ δN
0 otherwise

Observe that for every state q ∈ QN , the following hold.

386 U. Boker and G. Hefetz

1. For every finite run rN of N q, there is an infinite run rN̂ of N̂ q, such that
N̂ q(rN̂) = N q(rN), and rN̂ takes some τ transitions. (rN̂ can start as rN
and then continue with only τ transitions.)

2. For every infinite run rN̂ of N̂ q that has a τ transition, there is a finite run
rN of N q, such that N̂ q(rN̂) = N q(rN). (rN can be the longest prefix of rN̂
up to the first τ transition).

3. For every infinite run rN̂ of N̂ q that has no τ transition, there is a series of
finite runs of N q, such that the values of the runs in N q converge to N̂ q(rN̂).
(For example, the series of all prefixes of rN̂).

Hence, for every q ∈ QN we have inf {N q(r)
∣∣ r is a run of N q } = lowrun(N̂ q)

and sup {N q(r)
∣∣ r is a run of N q } = highrun(N̂ q). (For a non-initial state q,

we also consider the “run” of N q on the empty word, and define its value to
be 0.) Notice that the infimum (supremum) run value of N q is attained by an
actual run of N q iff there is an infinite run of N̂ q that gets this value and takes
a τ transition.

For every state q ∈ QN̂ , we can determine, as follows, whether lowrun(N̂ q)

is attained by an infinite run taking a τ transition. We calculate lowrun(N̂ q)
for all states, and then start a process that iteratively marks the states of N̂ , such
that at the end, q ∈ QN̂ is marked iff lowrun(N̂ q) can be achieved by a run
with a τ transition. We start with qτ as the only marked state. In each iteration
we further mark every state q from which there exists a preferred transition
t = (q, σ, q′) ∈ δpr to some marked state q′. The process terminates when an
iteration has no new states to mark. Analogously, we can determine whether
highrun(N̂ q) is attained by a run that goes to qτ .

Consider discount factors λA, λD ∈ Q∩ (1,∞), a λA-NDA A and a λD-DDA
D on finite words. When λA = λD, similarly to Lemma 3, the algorithm finds
the infimum value of C ≡ A−D using Ĉ, and determines if an actual finite word
attains this value using the process described above.

Otherwise, the algorithm converts A and D to Â and D̂, and proceeds as
in Lemma 3 over Â and D̂. According to the above observations, we have
that inf {A(u)−D(u)

∣∣ u ∈ Σ+ } = min{Â(w) − D̂(w)
∣∣ w ∈ Σω}, and that

inf {A(u)−D(u) } is attainable iff min{Â(w)−D̂(w)} is attainable by some word
that has a τ transition. Hence, whenever computing lowrun or highrun, we
also perform the process described above, to determine whether this value is at-
tainable by a run that has a τ transition. We determine that inf {A(u)−D(u) }
is attainable iff exists a leaf of the computation tree that leads to it, for which
the relevant values lowrun and highrun are attainable. ��

Complexity analysis We show below that the algorithm of Lemmas 3 and 4
only needs a polynomial space, with respect to the size of the input automata,
implying a PSPACE algorithm for the corresponding decision problems. We
define the size of an NDA N , denoted by |N |, as the maximum between the
number of its transitions, the maximal binary representation of any weight in it,

Comparison of Discounted-Sum Automata with Multiple Discount Factors 387

and the maximal unary representation of the discount factor. (Binary represen-
tation of the discount factors might cause our algorithm to use an exponential
space, in case that the two factors are very close to each other.) The input NDAs
may have rational weights, yet it will be more convenient to consider equivalent
NDAs with integral weights that are obtained by multiplying all the weights by
their common denominator [6]. (Observe that it causes the values of all words
to be multiplied by this same ratio, and it keeps the same input size, up to a
polynomial change.)

Before proceeding to the complexity analysis, we provide an auxiliary lemma
(proof appears in [7]).

Lemma 5. For every integers p > q ∈ N\{0}, a p
q -NDA A with integral weights,

and a lasso run r = t0, t1, . . . , tx−1, (tx, tx+1, . . . , tx+y−1)
ω of A, there exists an

integer b, such that A(r) = b
px(py−qy) .

Proceeding to the complexity analysis, let the input size be S = |A| + |D|,
the reduced forms of λA and λD be p

q and pD
qD

respectively, the number of states
in A be n, and the maximal difference between transition weights in D be M .
Observe that n ≤ S, p ≤ S,M ≤ 2 · 2S , λD

λD−1 ≤ pD
pD−qD

≤ pD ≤ S, and for
λD > λA > 1, we also have λD

λA
= p·qD

q·pD
≥ 1 + 1

S2 .
Observe that A has a best infinite run (and D has a worst infinite run),

in a lasso form as in Lemma 5, with x, y ∈ [1..n]. Indeed, following preferred
transitions, a run must complete a lasso, and then may forever repeat its choices
of preferred transitions. Hence, mA, being the difference between two lasso runs,
is in the form of

mA =
b1

px1(py1 − qy1)
− b2

px2(py2 − qy2)
=

b3
pn(py1 − qy1)(py2 − qy2)

>
b3

pnpy1py2

≥ 1

p3n
≥ 1

S3S

for S≥1
>

1

(2S)3S
=

1

23S2

for some x1, x2, y1, y2 ≤ n and some integers b1, b2, b3. (Similarly, we can show
that mD > 1

23S2 .) We have maxdiff(D) ≤ M · λD
λD−1 , hence

maxdiff(D)

mA
≤ M · λD

λD−1

mA
≤ 21+S · S

mA

(for S≥1)
<

23S

mA
< 23S+3S2

Recall that we unfold the computation tree until level k, which is the min-
imal integer such that (λD

λA
)k > maxdiff(D)

mA
. Observe that for S ≥ 1 we have(

λD
λA

)S2

≥ (
1 + 1

S2

)S2

≥ 2, hence for k′ = S2 · (3S + 3S2), we have

(λD

λA

)k′
=

(
(
λD

λA
)S

2)3S+3S2

≥ 23S+3S2

>
maxdiff(D)

mA

meaning that k is polynomial in S. Similar analysis shows that k is polynomial
in S also for λD < λA.

388 U. Boker and G. Hefetz

Considering decision problems that use our algorithm, due to the equivalence
of NPSPACE and PSPACE, the algorithm can nondeterministically guess an
optimal prefix word u of size k, letter by letter, as well as a run ψ of A on u,
transition by transition, and then compute the value of A(ψ)+lowrun(AδA(ψ))

λA
k −

D(u)− highrun(C(δA(ψ),δD(u)))

λD
k .

Observe that along the run of the algorithm, we need to save the following
information, which can be done in polynomial space:

– The automaton C ≡ B ×D (or A× B), which requires polynomial space.
– λAk (for A(ψ)) and λDk (for D(u)). Since we save them in binary represen-

tation, we have log2(λ
k) ≤ k log2(S), requiring polynomial space.

We thus get the following complexity result.

Theorem 4. For input discount factors λA, λD ∈ Q ∩ (1,∞), λA-NDA A and
λD-DDA D on finite or infinite words, it is decidable in PSPACE whether
A(w) ≥ D(w) and whether A(w) > D(w) for all words w.

Proof. We use Lemma 3 in the case of infinite words and Lemma 4 in the
case of finite words, checking whether min {A(w)−D(w) } < 0 and whether
min {A(w)−D(w) } ≤ 0. In the case of finite words, we also use the informa-
tion of whether there is an actual word that gets the desired value. �	

Since integral NDAs can always be determinized [8], we get as a corollary that
there is an algorithm to decide equivalence and strict and non-strict containment
of integral NDAs with different (or the same) discount factors. Note, however,
that it might not be in PSPACE, since determinization exponentially increases
the number of states, resulting in k that is exponential in S, and storing in
binary representation values in the order of λk might require exponential space.

Corollary 1. There are algorithms to decide for input integral discount factors
λA, λB ∈ N, λA-NDA A and λB-NDA B on finite or infinite words whether or
not A(w) > B(w), A(w) ≥ B(w), or A(w) = B(w) for all words w.

5 Conclusions

The new decidability result, providing an algorithm for comparing discounted-
sum automata with different integral discount factors, may allow to extend the
usage of discounted-sum automata in formal verification, while the undecidabil-
ity result strengthen the justification of restricting discounted-sum automata
with multiple integral discount factors to tidy NMDAs. The new algorithm also
extends the possible, more limited, usage of discounted-sum automata with ra-
tional discount factors, while further research should be put into this direction.

Acknowledgements We thank Guillermo A. Perez for stimulating discussions
on the comparison of integral NDAs with different discount factors.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 389

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: proceedings of ICALP. vol. 2719, pp. 1022–1037 (2003). https://doi.
org/10.1007/3-540-45061-0_79

2. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted au-
tomata? Information and Computatio 282 (2022). https://doi.org/10.1016/j.
ic.2020.104651

3. Almagor, S., Kupferman, O., Ringert, J.O., Velner, Y.: Quantitative assume guar-
antee synthesis. In: proceedings of CAV. pp. 353–374. Springer (2017). https:
//doi.org/10.1007/978-3-319-63390-9_19

4. Andersson, D.: An improved algorithm for discounted payoff games. In: proceedings
of ESSLLI Student Session. pp. 91–98 (2006)

5. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative
verification. In: proceedings of FoSSaCS. LNCS, vol. 10803, pp. 420–437 (2018).
https://doi.org/10.1007/978-3-319-89366-2_23

6. Boker, U., Hefetz, G.: Discounted-sum automata with multiple discount factors. In:
proceedings of CSL. LIPIcs, vol. 183, pp. 12:1–12:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.12

7. Boker, U., Hefetz, G.: On the comparison of discounted-sum automata with mul-
tiple discount factors (2023). https://doi.org/10.48550/ARXIV.2301.04086

8. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.
2168/LMCS-10(1:10)2014

9. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In:
proceedings of LICS. pp. 750–761 (2015). https://doi.org/10.1109/LICS.2015.
74

10. Boker, U., Lehtinen, K.: History determinism vs. good for gameness in quantitative
automata. In: proceedings of FSTTCS. pp. 38:1–38:20 (2021). https://doi.org/
10.4230/LIPIcs.FSTTCS.2021.38

11. Brenguier, R., Clemente, L., Hunter, P., Pérez, G.A., Randour, M., Raskin, J.F.,
Sankur, O., Sassolas, M.: Non-zero sum games for reactive synthesis. In: Language
and Automata Theory and Applications. pp. 3–23. Springer (2016)

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In:
proceedings of FCT. LNCS, vol. 5699, pp. 3–13 (2009). https://doi.org/10.1007/
978-3-642-03409-1_2

13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In:
proceedings of CONCUR. LNCS, vol. 5710, pp. 244–258 (2009). https://doi.org/
10.1007/978-3-642-04081-8_17

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Log. Methods Comput. Sci. 6(3) (2010), http://arxiv.
org/abs/1007.4018

15. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.
1805953

16. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward ver-
ification in graphs and MDPs. In: proceedings of LPAR. LNCS, vol. 8312, pp.
228–242 (2013). https://doi.org/10.1007/978-3-642-45221-5_17

17. Clarke, E.M., Draghicescu, I.A., Kurshan, R.P.: A unified approach for showing
language containment and equivalence between various types of ω-automata. In-
formation Processing Letters 46, 301–308 (1993)

https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
http://arxiv.org/abs/1007.4018
http://arxiv.org/abs/1007.4018
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
http://arxiv.org/abs/1007.4018
http://arxiv.org/abs/1007.4018
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-45221-5_17

390 U. Boker and G. Hefetz

18. Degorre, A., Doyen, L., Gentilini, R., Raskin, J., Toruńczyk, S.: Energy and mean-
payoff games with imperfect information. In: proceedings of CSL. LNCS, vol. 6247,
pp. 260–274 (2010). https://doi.org/10.1007/978-3-642-15205-4_22

19. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theor. Comput.
Sci. 366(3), 199–227 (2006). https://doi.org/10.1016/j.tcs.2006.08.024

20. Filiot, E., Gentilini, R., Raskin, J.: Finite-valued weighted automata. In: proceed-
ings of FSTTCS. LIPIcs, vol. 29, pp. 133–145 (2014). https://doi.org/10.4230/
LIPIcs.FSTTCS.2014.133

21. Filiot, E., Gentilini, R., Raskin, J.: Quantitative languages defined by functional
automata. Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/
LMCS-11(3:14)2015

22. Filiot, E., Löding, C., Winter, S.: Synthesis from weighted specifications with par-
tial domains over finite words. In: proceedings of FSTTCS. pp. 46:1–46:16 (2020).
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46

23. Gimbert, H., Zielonka, W.: Limits of multi-discounted markov decision processes.
In: proceedings of LICS. pp. 89–98 (2007). https://doi.org/10.1109/LICS.2007.
28

24. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Mathematical Research Letters 8(4), 535–543 (2001)

25. Hare, K.: Beta-expansions of pisot and salem numbers. In: Waterloo Workshop in
Computer Algebra (2006)

26. Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regular language con-
tainment. In: proceedings of CAV. LNCS, vol. 663. springer (1992)

27. Hunter, P., Pérez, G.A., Raskin, J.: Reactive synthesis without regret. Acta Infor-
matica 54(1), 3–39 (2017). https://doi.org/10.1007/s00236-016-0268-z

28. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

29. Madani, O., Thorup, M., Zwick, U.: Discounted deterministic markov decision
processes and discounted all-pairs shortest paths. ACM Trans. Algorithms 6(2),
33:1–33:25 (2010). https://doi.org/10.1145/1721837.1721849

30. Mahler, K.: An unsolved problem on the powers of 3
2
. The journal of the Australian

mathematical society 8(2), 313–321 (1968)
31. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Series in

Automatic Computation, Prentice-Hall (1967)
32. Sutton, R.S., G.Barto, A.: Introduction to Reinforcement Learning. MIT Press

(1998), http://dl.acm.org/doi/book/10.5555/551283
33. Tasiran, S., Hojati, R., Brayton, R.: Language containment using non-deterministic

omega-automata. In: proceedings of CHARME. LNCS, vol. 987, pp. 261–277.
springer (1995)

34. Vardi, M.Y.: Verification of concurrent programs: The automata-theoretic frame-
work. In: proceedings of LICS. pp. 167–176 (1987)

35. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS,
vol. 1043, pp. 238–266 (1996)

36. Wang, Y., Ye, Q., Liu, T.: Beyond exponentially discounted sum: Automatic learn-
ing of return function. CoRR (2019), http://arxiv.org/abs/1905.11591

37. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158, 343–359 (1996). https://doi.org/10.1016/0304-3975(95)
00188-3

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1145/1721837.1721849
https://doi.org/10.1145/1721837.1721849
http://dl.acm.org/doi/book/10.5555/551283
http://arxiv.org/abs/1905.11591
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1145/1721837.1721849
https://doi.org/10.1145/1721837.1721849
http://dl.acm.org/doi/book/10.5555/551283
http://arxiv.org/abs/1905.11591
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3

Comparison of Discounted-Sum Automata with Multiple Discount Factors 391

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Fast Matching of Regular Patterns
with Synchronizing Counting

Lukáš Holı́k , Juraj Sı́č(�) , Lenka Turoňová , and Tomáš Vojnar

Brno University of Technology, Brno, Czech Republic
{holik,sicjuraj,ituronova,vojnar}@fit.vut.cz

Abstract. Fast matching of regular expressions with bounded repetition, aka
counting, such as (ab){50,100}, i.e., matching linear in the length of the text
and independent of the repetition bounds, has been an open problem for at least
two decades. We show that, for a wide class of regular expressions with counting,
which we call synchronizing, fast matching is possible. We empirically show that
the class covers nearly all counting used in usual applications of regex match-
ing. This complexity result is based on an improvement and analysis of a recent
matching algorithm that compiles regexes to deterministic counting-set automata
(automata with registers that hold sets of numbers).

1 Introduction

Fast matching of regular expressions with bounded repetition, aka counting, has been
an open problem for at least two decades (cf., e.g., [33]). The time complexity of the
standard matching algorithms run on a regex such as .*a.{100} is, at best, dominated
by the length of the text multiplied by the repetition bounds. This makes matching prone
to unacceptable slowdowns since the length of the text as well as the repetition bounds
are often large. In this paper, we provide a theoretical basis for matching of bounded
repetition with a much more reliable performance. We show that a large and practical
class of regexes with counting theoretically allows fast matching—in time indepen-
dent of the counter bounds and linear in the length of the text.

The problem also has a strong practical motivation. Regex matching is used for
searching, data validation, detection of information leakage, parsing, replacing, data
scraping, syntax highlighting, etc. It is natively supported in most programming lan-
guages [6], and ubiquitous (used in 30–40 % of Java, JavaScript, and Python software
[7,39,8,5]). Efficiency and predictability of regex matching is important. An extreme
run-time of matching can have serious consequences, such as a failed input validation
against injection attacks [41] and events like the outage of Cloudflare services [18].
Regexes vulnerabilities are also a doorway for the ReDoS (regular expression denial of
service) attack, in which the attacker crafts a text to overwhelm a matcher (as, e.g., in the
case of the outage of StackOverflow [13] or the websites exposed due to their use of the
popular Express.js framework [3]). ReDoS has been widely recognized as a common
and serious threat [7,9,11], with counting in regexes begin especially dangerous [37].

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 392–412, 2023.
https://doi.org/10.1007/978-3-031-30829-1 19

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0001-7454-3751
http://orcid.org/0000-0003-1450-6136
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-031-30829-1_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf

Fast Matching of Regular Patterns with Synchronizing Counting 393

Matching algorithms and complexity. The potential instability of the pattern matchers
is in line with the worst-case complexity of the matching algorithms. The most widely
used approach to matching is backtracking (used, e.g., in standard matchers of .NET,
Python, Perl, PHP, Java, JavaScript, Ruby) for its simplicity and ease of implementation
of advanced features such as back-references or look-arounds. It is, however, at worst
exponential to the length of the matched text and prone to ReDoS. Even though this
can be improved, for instance by memoization [11], the fastest matchers used in perfor-
mance critical applications all use automata-based algorithms instead of backtracking.
The basis of these approaches is Thompson’s algorithm [35] (also referred to as online
NFA-simulation). Together with many optimizations, it is implemented in Intel’s Hyper-
scan [40]. When combined with caching, it becomes the on-the-fly subset construction
of a DFA, also called online DFA-simulation (implemented in RE2 from Google, GNU
grep, SRM, or the standard matcher of Rust [17,19,30,12]). Without counting, the major
factor in the worst-case complexity is O(nm2), with n being the length of the text and
m the size of the number of character occurrences in the regex (m is smaller than size
of the regex, the length of string defining it). We say that the character cost, i.e., the
cost of extending the text with one character, is m2. This is the cost of iterating through
transitions of an NFA with O(m) states and O(m2) transitions compiled from the regex
by some classical construction [2,16,24].

Extending the syntax of regexes with bounded quantifiers (or counters), such as
(ab){50,100}, increases the character complexity dramatically. Given k counters with
the maximum bound �, the number of NFA states rises to O(m�k), the number of tran-
sitions as well as the character cost to O((m�k)2). For instance, the minimal DFA for
.*a.{k} (i.e., a appears k characters from the end) has more than 2k states. Moreover,
note that, since k is written as a decadic numeral, its value is exponential in the size
of the regex. This makes matching with already moderately high k prone to significant
slowdowns and ReDoS vulnerabilities with virtually every mainstream matcher (see
[36,37]). At the same time, repetition bounds easily reach thousands, in extreme tens
of millions (in real-life XML [4]). Writing a dangerous counting expression is easy and
it is hard to identify. Security-critical solutions may be vulnerable to counting-related
ReDoS [37] despite an extra effort spent in regex design and testing, hence developers
sometimes avoid counting, use workarounds and restrict functionality.

The problem of matching with bounded repetition has been addressed from
the theoretical as well as from the practical perspective by a number of authors
[15,4,22,26,31,20,25,36]. From these, the recent work [36] is the only one offering fast
matching for a practically significant class of regexes. The algorithm of [36] compiles
a regex with counting to a non-deterministic counting automaton (CA), an automaton
with counters that can be incremented, reset, and compared with a constant. The crux of
the problem is then to convert the CA to a succinct deterministic machine that could be
simulated fast in matching. The work [36] achieves this by determinizing the CA into a
counting-set automaton (CSA), an automaton with registers that hold sets of numbers.
Its size is independent of the counter bounds and it updates the sets by a handful of
operations that are all constant time, regardless the size of the sets. However, regexes
outside the supported class do appear, the class has no syntactic characterization, and
it is hard to recognize (as demonstrated also by an incorrect proposal of a syntactic

394 L. Holík et al.

class in [36] itself). For instance, .*a{5} or (ab){5} are handled, but .*(aa){5} or
.*(ab){5} are not (the requirement is technical, see Section 4).

Our contribution. In this paper, we

1. generalize the algorithm of [36] to extend the class of handled regexes and
2. derive a useful syntactic characterization of the extended class.

The derived class is characterized by flat counting (counting operators are not nested)
where repetitions of each counted expression R are synchronizing (a word from Rn can-
not have a prefix from Rn+1). It is the first clearly delimited practical class of regexes
with counting that allows fast matching. It includes the easily recognizable and frequent
case where every word in R has exactly one occurrence of a marker, a letter or a word
from a finite set of markers that unambiguously identifies each occurrence of R (note
that even this simple class was not handled by any previous fast algorithms, including
[36]). In a our experiment with a large set of regexes from various sources, 99.6 % of
non-trivial flat counting was synchronizing and 99.2 % was letter-marked.

To obtain the results (1) and (2) above, we first modify the determinization of [36]
to include the entire class of regexes with flat counting. In a nutshell, this is achieved
by two changes: (i) We allow copying and uniting of sets stored in registers, and (ii) in
the determinization, we index counters of the CA by its states to handle CA in which
nondeterministic runs that reach different states reach different counter values.

These modifications come with the main technical challenge that we solve in this
paper: copying and uniting sets is not constant-time but linear to the size of the sets.
This would make the character cost linear in the counter bound � again. To remove the
dependency on the counter bounds, we augment the determinization by optimizations
that avoid the copying and uniting. First, to alleviate the cost of uniting, we store inter-
sections of sets stored in registers in new shared registers, so that the intersection does
not contribute to the cost of uniting the registers. Then, to increase the impact of in-
tersection sharing, we synchronize register updates in order to make their intersections
larger. We then show that if the CSA does not replicate registers, i.e, each register can in
a transition appear on the right-hand side of only one register assignment, then it never
copies registers and the cost of unions can be amortised. Finally, we define the class of
regexes with synchronizing counting for which the optimized CsA do not replicate
counters so their simulation in matching is fast.

Related work. In the context of regex matching, counting automata were used in several
forms under several names (e.g. [20,36,4,15,31,32,33,14,23]). Besides [36] discussed
above, other solutions to matching of counting regexes [15,4,22,26,31,20,25] handle
small classes of regexes or do not allow matching linear in the text size and indepen-
dent of counter bounds. The work [20] proposes a CA-to-CA determinization producing
smaller automata than the explicit CA determinization for the limited class of monadic
regexes, covered by letter-marked counting, and the size of their deterministic automata
is still dependent on the counter bounds. The work [4] uses a notion of automata with
counters of [15]. It focuses mostly on deterministic regexes, a class much smaller than
regexes with synchronizing counting, and proposes a matching algorithm still depen-
dent on the counter bounds. The paper [25] proposes an algorithm that takes time at

Fast Matching of Regular Patterns with Synchronizing Counting 395

worst quadratic to the length of the text. Extended FA (XFA) of [31,32] augment NFA
with a scratch memory of bits that can represent counters, and their determinization
is exponential in counter bounds already for regexes such as .*a.{k}. The counter-1-
unambiguous regexes of [22,23] can be directly compiled into deterministic automata
called FACs, similar to our CA, independent of counter bounds, but the class is limited,
excluding e.g., .*a.{k}.

2 Preliminaries

We use N to denote the natural numbers including 0. For a set S, P (S) denotes its
powerset and Pfin(S) is the set of all finite subsets of S.

A first order language (f.o.l.) Γ = (F,P) consists of a set of function symbols F
and a set of predicate symbols P. An interpretation I of Γ with a domain DI assigns
a function f I : Dn

I → DI to each n-ary f ∈ F and a function pI : Dn
I → {0,1} to each

n-ary p ∈ P. An assignment of a set of variables X in I is a total function ν : X → DI.
The set of terms TermsΓ,X and the set QFFΓ,X of quantifier free formulae (boolean
combinations of atomic formulae) over Γ and X , as well as the interpretation of a term,
tI(ν), and a formula, ϕI(ν), are defined as usual. We denote by ν |=I ϕ that the formula
ϕ is satisfied (interpreted as true) by the assignment ν. It is then satisfiable. We drop
the sub/superscript I when it is clear from the context. We write ϕ[x] and t[x] to denote
a unary formula ϕ or term t, respectively, with the free variable x, and we may also
abuse this notation to denote the term/formula with its only free variable replaced by
x. We write tI(k) and ϕI(k) to denote the values tI({x �→ k}) and ϕI({x �→ k}). For a
set of formulae Ψ = {ψ1, . . . ,ψn}, the set Minterms(Ψ) consists of all minterms of Ψ,
satisfiable conjunctions ϕ1 ∧·· ·∧ϕn where for each i : 1 ≤ i ≤ n, ϕi is ψi or ¬ψi.

We fix a finite alphabet Σ of symbols/letters for the rest of the paper. Words are se-
quences of letters, with the empty word ε. The concatenation of words u and v is denoted
u · v, uv for short. A set of words over Σ is a language, the concatenation of languages
is L ·L′ = {u ·v | u ∈ L∧v ∈ L′}, LL′ for short. Bounded iteration xi, i ∈N, of a word or
a language x is defined by x0 = ε for a word, x0 = {ε} for a language, and xi+1 = xi · x.
Then x∗ =

⋃
i∈N xi. We consider a usual basic syntax of regular expressions (regexes),

generated by the grammar R ::= ε | a | (R) | RR | R|R | R* | R{m,n} where m∈N,
n ∈ N∪∞, 0 ≤ m, 0 < n, m ≤ n, and a ∈ Σ. We use R{m} for R{m,m}. Regexes con-
taining a sub-expression with the counter R{m,n} or R{m} are called counting regexes
and m,n are counter bounds. We denote by maxR the maximum integer occurring in
the counter bounds of regex R and we denote the number of counters by cntR. A regex
with flat counting does not have nested counting, that is, in a sub-regex S{m,n}, S
cannot contain counting. The language of a regex R is constructed inductively to the
structure: L(ε) = {ε}, L(a) = {a} for a ∈ Σ, L(RR′) = L(R) · L(R′), L(R*) = L(R)∗,
L(R|R′) = L(R)∪L(R′), and L(R{m,n}) =⋃

m≤i≤n L(R)i. We understand |R| simply as
the length of the defining string, e.g. |(ab){10}| = 8. We define �R as the number of
character occurrences in R, formally, �a = 1 for a ∈ Σ, �ε = 0, �(R) = �R{m,n} = �R,
and �R ·S = �R|S = �R+ �S.

A (nondeterministic) automaton (NA) is a tuple A = (Q,Δ, I,F) where Q is a set of
states, Δ is a set of transitions of the form q−{a}→r with q,r ∈ Q and a ∈ Σ, I ⊆ Q is the

396 L. Holík et al.

set of initial states, and F ⊆ Q is the set of final states. A run of A over a word w =
a1 . . .an from state p0 to pn, n ≥ 0 is a sequence of transitions p0−{a1}→p1, p1−{a2}→p2,
. . ., pn−1−{an}→pn from Δ. The empty sequence is a run with p0 = pn over ε. The run is
accepting if p0 ∈ I and pn ∈ F , and the language L(A) of A is the set of all words for
which A has an accepting run. A state q is reachable if there is a run from I to it. The size
of the NA, |A|, is defined as the number of its states plus the number of its transitions.
The automaton is deterministic (DA) iff |I|= 1 and for every state q and symbol a, Δ has
at most one transition q−{a}→r. The subset construction transforms the NA to the DA with
the same language DA(A) = (Q{},Δ{}, I{},F {}) where Q{} ⊆ P (Q) and Δ{} are the smallest
sets of states and transitions satisfying I{} = {I}, Δ{} has for each a ∈ Σ and each S ∈ Q{}

the transition S−{a}→{s′ | s ∈ S∧ s−{a}→s′ ∈ Δ}, and F {} = {S ∈ Q{} | S∩F 	= /0}. When the
set of states Q is finite, we talk about (deterministic) finite state automata (NFA, DFA).1

This paper is concerned with the problem of fast pattern matching, basically a mem-
bership test: given a regex R and a text w, decide whether w ∈ L(R). While w may be
very long, R is normally small, hence the dependence on |w| is the major factor in
the complexity. The offline DFA simulation takes time linear in |w|. It (1) compiles
R into an NFA NFA(R) (2) determinizes it, and (3) follows the DFA run over w (aka
simulates the DFA on w), all in time and space Θ(2|NFA(R)| + |w|). The cost of deter-
minization, exponential in |NFA(R)|, is however too impractical. Modern matchers such
as Grep or RE2 [19,17] therefore use the techniques of online DFA simulation, where
only the part of the DFA used for processing w is constructed. It reduces the complexity
to O(min(2|NFA(R)|+ |w|, |w| · |NFA(R)|)) (the first operand of min is the explicit deter-
minization in case the entire DFA is constructed, plus the cost of DFA-simulation; the
second operand is the cost of the online-DFA simulation, coming from that every step
may incur construction of a new DFA state and transition in time O(|NFA(R)|)). For
counting regexes, the factor |NFA(R)| depends linearly (or more if counting is nested)
on maxR and thus exponentially on |R|. This makes counting very problematic in prac-
tice [36,37,33]. We will present a matching algorithm which is fast for a specific class
of regexes, meaning that its run-time is still linear in |w| but is independent of maxR.

3 Counting Automata

We use a rephrased definition of counting automata and counting-set automata of [36].
We will present them as a special case of a generic notion of automata with registers.

Definition 1 (Automata with registers). An automaton with registers (RA) operated
through an f.o.l. Γ under an interpretation I is a tuple A = (X ,Q,Δ, I,F) where X is a
set of variables called registers; Q is a finite set of states; Δ is a finite set of transitions
of the form q−{a,ϕ,u}→p where p,q ∈ Q, a ∈ Σ, u : X → TermsΓ,X is an update, and ϕ ∈
QFFΓ,X is a guard; I is a set of initial configurations, where a configuration is a pair of
the form (q,m) where q ∈ Q and m : X → DI is a register assignment called a memory;
and F : Q → QFFΓ,X is a final condition assignment.

1 We do not require finiteness in the basic definition in order to avoid artificial restrictions of the
notions of automata with registers/counters/counting sets defined later.

Fast Matching of Regular Patterns with Synchronizing Counting 397

The language of A, L(A), is defined as the language of its configuration automaton
Conf(A). States of Conf(A) are configurations of A that are reachable. I is the set of
initial states of Conf(A). It has a transition (q,m)−{a}→(q′,m′) iff (q,m) is reachable and
A has a transition δ = q−{a,ϕ,u}→q′ ∈ Δ such that (q′,m′) is the image of (q,m) under δ,
denoted (q′,m′) = δ(q,m), meaning that (1) δ is enabled in (q,m), m |= ϕ, and (2)
m′ = u(m), i.e. m′(x) = u(x)I(m) for each x ∈ X. We let δ(C) = {δ(c) | c ∈C} for a set
of configurations C. A configuration (q,m) is a final if m |= F(q). By runs of A we mean
runs of Conf(A). The RA A is deterministic if Conf(A) is deterministic. The size of the
RA is |A|= |Q|+∑δ∈Δ |δ| where |δ| is the sum of the sizes of the update and the guard.

Definition 2 (Counting automata). A counting automaton (CA) is an automaton with
registers, called counters, operated through the counting language Γcnt that contains
the unary increment function, denoted x+1, constants 0 and 1, and predicates x> k and
x≤ k, k∈N, with the standard interpretation over natural numbers, that we denote Icnt.

q0x :=0

a1

b1

b2 [x ≥ 3]

a

x :=1
b

x :=1

b
x := x

b

x := x

a;x < 8
x := x+1

b;x < 8
x := x+1

Fig. 1: CA(R) for R = ((a|b)b){3,8}. The
accepting condition of all states is ⊥ except
for b2 whose accepting condition is written
in the square brackets.

Regexes with counting may be
translated to CA by several meth-
ods ([36,33,14,23]). We use a slightly
adapted version of [14]—an extension of
Glushkov’s algorithm [16] to counting.
For a regex R, it produces a CA CA(R) =
(X ,Q,Δ,{α0},F). Figure 1 shows an
example of such CA. The construction
is discussed in detail in [21], here we
only overview the important properties
needed in Sections 4-6:

1. Every occurrence S of a counted sub-expression T{minS,maxS } of R corresponds
to a unique counter xS and a substructure AS of CA(R). Outside AS, xS is inactive (a
dead variable) and its value is 0, it is assigned 1 on entering AS, and every iteration
through AS increments the value of xS while reading a word from L(T). Our minor
modification of [14] is related to the fact that the original assigns 1 to inactive
counters while we need 0.

2. CA(R) has at most �R+ 1 states, cntR.�R2 transitions, cntR counters. It has at most
�R2 transitions if R is flat.

3. CA(R) has a single initial configuration α0 = (q0,s0) s.t. s0(xS) = 0 for each xS ∈ X .
4. Guards and final conditions are conjunctions consisting of at most one conjunct

of the form minS ≤ xS or maxS > xS per counter xS ∈ X . A transition update may
assign to xS ∈ X only one of the terms 0, 1, xS, and xS +1. It has no guard on xS if it
is assigned xS, i.e. kept unchanged, it has the guard xS ≥ minS iff xS is reset to 0 or
1 (a counter cannot be reset before reaching its lower bound), and it has the guard
xS < maxS iff xS is assigned xS + 1 (counter can never exceed its maximum value
maxS). Hence, a counter can never exceed maxR.

5. Flatness of R translates to the fact that configurations of CA(R) assign a non-zero
value to at most one counter. This implies that Conf(CA(R)) has at most |Q|.maxR
states and also that CA(R) is Cartesian, a property that will be defined in Section 4
and is crucial for correctness of our CA determinization (Theorem 3 in Section 6.)

398 L. Holík et al.

A DFA can be obtained by the subset construction in the form DA(Conf(CA(R))), called
explicit determinization. Due to the factor maxR in the size of Conf(CA(R)), the explicit
determinization is exponential to maxR even if R is flat, meaning doubly exponential to
|R| (R has maxR written as a decadic numeral). If R is not flat, then the factor maxR is
replaced by (maxR)

cntR .

4 Counter-subset Construction

In this section, we formulate a modified version of determinization of CA from [36]
that constructs a machine of a size independent of maxR. Our version handles the entire
class of Cartesian CA (defined below) and in turn also all regexes with flat counting.

The main idea of the determinization remains the same as in [36]. The standard sub-
set construction is augmented with registers, we call them counting sets, that can store
sets of counter values that would be generated by non-deterministic runs of the CA.
The automata with counting-sets as registers are called counting-set automata. Our first
modification of [36] is indexing of counters by states. In intuitively, this allows to han-
dle cases such as a*(ba|ab){5}, where, after reading the first ab, the counter is either
incremented or not (b is the first letter of the counted sub-expression or not). This would
violate the uniformity property of CA necessary in [36]—the set of values generated by
the non-deterministic CA runs must be the same for every CA state. In our modified ver-
sion, values at distinct states are stored separately in registers indexed by those states
and may differ. Then, in order to handle the indexed counters, we have to introduce a
general assignment of counters, allowing to assign the union of other counters.2 Intu-
itively, when a run non-deterministically branches into several states, each branch needs
to continue with its own copy of the set, stored in a counter indexed by the state. The
union of sets is used when the branches join again. This brings a technical challenge
that we solve in this work: how to simulate the counting-set automata fast when the set
union and copy are used? The solution is presented in Sections 5 and 6.

Definition 3 (Counting-set automata). A counting-set automaton (CSA) is an au-
tomaton with registers operated through the counting-set language Γset under the num-
ber-set interpretation I{}cnt where the language Γset extends the counting language Γcnt

with the constant /0, binary union ∪, and set-filter functions ∇p where p is a predicate
symbol of Γcnt. For simplicity, we restrict terms assigned to counters by transition up-
dates to the form t = t1 ∪ ·· · ∪ tn where each ti is either (a) a term of Γcnt or /0, (b) of
the form ∇p(t ′) where t ′ is a term of Γcnt. Each ti is called an r-term of t.

The domain of Iset is sets of natural numbers, P (N). The interpretation of the
predicates and functions of Γcnt under Iset is derived from the base number inter-
pretation of the same predicates and functions: A function returns the image of the
set in the argument under the base semantics, f Iset(S) = { f Icnt(n) | n ∈ S}. A set sat-
isfies a predicate if some of its elements satisfy the base semantics of that predicate,
pIset(S) ⇐⇒ ∃e ∈ S : pIcnt(e). Filters then filter out values that do not satisfy the base
semantics of their predicate, ∇Iset

p (S) = {e ∈ S | pIcnt(e)}. Finally, /0 is interpreted as

2 [36] could assign to a counter x only a constant or function of the current value of x.

Fast Matching of Regular Patterns with Synchronizing Counting 399

the empty set and ∪ as the union of sets. We denote memories of the CSA by s to distin-
guish them from memories of CA. We write DCSA to abbreviate deterministic CSA.

Less formally, registers of CSA hold sets of numbers and are manipulated by the
increment x+ 1 of all values, assignment of constant sets {0}, {1}, and /0, denoted by
0, 1, and /0, filtering out values smaller or larger than a constant, denoted ∇x≤k(x) and
∇x<k(x), and testing on a presence of a value x satisfying x ≤ k or x < k, k ∈ N.

We will present an algorithm that determinizes a CA A = (X ,Q,Δ, I,F), fixed for
the rest of the section, into a DCSA DCSA(A) = (X {},Q{},Δ{}, I{},F {}). We assume that
guards of transitions in Δ and final conditions are of the form

∧
x∈Y px[x],Y ⊆ X , i.e.

conjunctions with a at most a single atomic predicate per counter. This is satisfied by
all CA(R), for any regex R (see the list of properties of CA(R) in Section 3).3

Runs of DCSA(A) will encode runs of DA(Conf(A)) obtained from the explicit deter-
minization of A. Recall that the states DA(Conf(A)) are sets of configurations of A, pairs
(q,m) of a state and a counter assignment. DCSA(A) will represent the sets of counter
values within a DA state as run-time values of its registers.

Particularly, for every state q and a counter x of the CA, DCSA(A) has a register xq in
which it remembers, after reading a word w, the set of all values that x reaches in runs
of the base CA on w ending in q. Hence, we have X {} = {xq | x ∈ X ∧q ∈ Q}
Definition 4 (Encoding of sets of CA configurations). A state S = {(qi,mi)}n

i=1 of
DA(Conf(A)) is encoded as the DCSA(A) configuration enc(S) = ({qi}n

i=1,s) where
s(xq) = {mi(x) | qi = q}n

i=1.

Since a set of assignments appearing with the state q is broken down to sets of values
of the individual counters, it disregards relations between values of different counters.
For instance, in the DA state S1 = {(q,{x �→ 0,y �→ 0}),(q,{x �→ 1,y �→ 1})}, the values
of x and y are either both 0 or both 1, but enc(S1) = (q,{xq �→ {0,1},yq �→ {0,1}})
does not retain this information. It is identical to the encoding of another DA state
S2 = {(q,{x �→ 1,y �→ 0}),(q,{x �→ 0,y �→ 1})}. This is the same loss of information as
in the so-called Cartesian abstraction. The encoding is hence precise and unambiguous
only when we assume that inside the states of DA(A), the relations between counters are
always unrestricted—there is no information to be lost. We then call the CA Cartesian,
as defined below. The encoding function is then unambiguous, and we call the inverse
function decoding, denoted dec.

Definition 5 (Cartesian CA). Assuming the set of counters of A is X = {xi}m
i=1, then

a set C of configurations of A is Cartesian iff, for every state q of A, there exist sets
N1, . . . ,Nm ⊆N such that (q,{xi �→ ni}m

i=1) ∈C iff (n1, . . . ,nm) ∈ N1 ×·· ·×Nm. The CA
A is Cartesian iff all states of DA(Conf(A)) are Cartesian.

For instance, the DA states S1 and S2 above are not Cartesian, while S1 ∪S2 is.
Similarly as the regex to CA construction of [36], our regex to CA construction

discussed in Section 3 returns a Cartesian CA when called on a flat regex.

3 Every CA can be transformed to this form by transforming the formulae to DNF and creating
clones of transitions/states for individual clauses.

400 L. Holík et al.

Subset construction for Cartesian CA. The algorithm below is a generalization of the
subset construction. Let us denote by indexq(t) the term that arises from t by replacing
every variable x ∈ X by xq, analogously indexq(ϕ) for formulas. We have Q{} ⊆ P (Q),
the initial configuration I{} = {enc(I)}, and the final conditions assign to R ∈ Q{} the
disjunction of the final conditions of its elements, F {}(R) =

∨
q∈R indexq(F(q)).

We will construct DCSA(A) which is deterministic and its runs encode the runs of
DA DA(Conf(A)). Conf(DCSA(A)) will be isomorphic to DA(Conf(A)). For that, we
need for each transition δ of DA(Conf(A)) one unique transition of DCSA(A) over the
same letter enabled in the encoding of the source of δ and generating the encoding of
the target of δ. In other words, we need for each transition dec(R,s)−{a}→dec(R′,s′) of
DA(Conf(A)) one unique transition δ′ = R−{a,ϕ,u}→R′ ∈ Δ{} with (R′,s′) = δ′(R,s). That
transition δ′ will be built by summarizing the effect of all base CA a-transitions enabled
in the CA configurations of dec(R,s).

To construct the transition δ′, we first translate each base transition δ= q−{a,ϕδ,uδ}→r ∈
Δ into its set-version δ{}, supposed to transform an encoding of a (Cartesian) set C of
configurations, enc(C), into the encoding of the set of their images under δ, enc(δ(C)),
and enabled if δ is enabled for at least one configuration in C. To that end, assum-
ing ϕδ =

∧
x∈X px[x], we (1) construct the update u∇

δ
from uδ by substituting in every

uδ(x),x ∈ X variables y ∈ X by their filtered versions ∇py(y), (2) add indices to reg-
isters that mark the current state, resulting in the transition δ{} = q−{a,ϕ{}

δ
,u{}

δ
}→r where

ϕ
{}

δ
= indexq(ϕδ) and u{}

δ
assigns to every xr,x ∈ X the term indexq(u∇

δ
(x)).

The states Q{} and the transitions Δ{} are then constructed as the smallest sets satisfy-
ing that enc(I) ∈ Q{} and every R ∈ Q{} has for every a ∈ Σ the outgoing transitions con-
structed as follows. Let {q j−{a,ϕ j ,u j}→r j} j∈J for some index set J be the set of constituent
a-transitions for R, all a-transitions δ{} where δ ∈ Δ originates in R. To achieve deter-
minism, Δ{} has the transition R−{a,ψ,u}→R′ for every minterm ψ ∈ Minterms({ϕ j} j∈J).
The update u and target R′ are constructed from the set {q j−{a,ϕ j ,u j}→r j} j∈K , K ⊆ J, of
constituent transitions with guards ϕ j compatible with the minterm ψ, i.e., with satis-
fiable ψ∧ϕ j. R′ is the set of their target states, R′ = {r j} j∈K , and u(x) unites all their
update terms u j(x), i.e. u(x) =

⋃
j∈K u j(x), for each x ∈ X {}.

Example 1. When showing examples of transition updates, we write x := t to denote
that u(x) = t and we omit the assignments x := /0 in CSA.

Let R = {p,q} and let the a-transitions originating at R be q−{a,�,x:=x}→s,
p−{a,x<n,x:=x+1}→r, and p−{a,x≥m,x:=1}→s. They induce three constituent transitions for
R and a, q−{a,�,xs:=xq}→s, p−{a,xp<n,xr :=∇x<n(xp)+1}→r, and p−{a,xp≥m,xs:=1}→s. A transition
R−{a,ψ,u′}→R′ is constructed for each of the following minterms ψ: xp<n∧xp≥m, ¬xp<n∧
xp≥m, xp<n∧¬xp≥m, ¬xp<n∧¬xp≥m. For the first one, all three constituent transi-
tions are compatible and so the update u′ is xr :=∇x<n(xp)+1;xs :=xq ∪1 (update of xr
is taken from the first constituent transitions leading to r, update of xs is the union of the
updates of the second two transitions leading to s) and the target state is R′ = {r,s}.
�

DCSA(A) is deterministic since it has a single initial configuration and the guards of
transitions originating in the same state are minterms. The size of DCSA(A) obviously
depends only on the size of A and not on the interpretation of the language. Especially,

Fast Matching of Regular Patterns with Synchronizing Counting 401

when A is CA(R) for some regex R, the size does not depend on maxR. The theorem
below is proved in [21].4

Theorem 1. DCSA(A) is deterministic, |DCSA(A)| ∈ O(2|A|), and if A is Cartesian, then
L(A) = L(DCSA(A)).

Since for regexes with flat counting, our regex to CA algorithm always returns a
Cartesian CA, we can transform them into DCSA.

5 Fast Simulation of Counting-set Automata

In this section, we discuss how a run of a DCSA on a given word can be simulated
efficiently to achieve fast matching. Let us fix a word w = a1 · · ·an together with the
DCSA A = (X ,Q,Δ,{α0},F). We wish to construct the run of the DCSA on w and test
whether the reached configuration is accepting. We aim at a running time linear to |w|
and independent of the sizes of the sets stored in A’s registers at run-time.

We will assume that the initial configuration α0 of A assigns to every register a
singleton or the empty set. The assumption is satisfied by CSA constructed from CA(R),
R being any regex, by the algorithms of Section 4 and also Section 6.5

Technically, the simulation maintains a configuration α = (q,s), initialized with
α0, and for every i from 1 to n, it constructs the transition α−{ai}→α′ of Conf(A) and
replaces α by the successor configuration α′ = (q′,s′). We use the key ingredient of
fast simulation from [36], the offset-list data structure for sets of numbers with constant
time addition of 0/1, comparison of the maximum to a constant, reset, and increment of
all values. The problem is that the newly added union and copy of sets are still linear
to the size of the sets, and hence linear to the maximum counter bounds. We show how,
under a condition introduced below, set copy can be avoided entirely and the cost of
union can be amortized by the cost of incrementing the sets. This will again allow a
CSA-simulation in time independent of maxA and falling into O(|A| · |w|).

First, we define a property of CSA sufficient for fast simulation—that the updates
on its transitions do not replicate counters.

Definition 6 (Counter replication). We say that a CSA replicates counters if for some
transition q−{a,ϕ,u}→r, some counter appears in the image of u twice, that is, it appears
in two r-terms of some u(x) or it appears in u(x) as well as in u(y) for x �= y. A non-
replicating CSA does not replicate counters.

For instance, {x �→ x;y �→ x+ 1} and {x �→ x∪ x+ 1,y �→ y} are updates where x is
replicated, {x �→ x+1,y �→ y} is not a replicating update.

4 It may be interesting to note that, as follows from our formulation of the determinization, the
construction is independent of the particular f.o.l. used to manipulate registers and of its inter-
pretation. The determinization could be applied to any kind of automata that fits the definition
of automata with registers. The numbers could be manipulated by other functions and tests,
natural numbers could be replaced by reals etc. The counting-set automata are themselves an
instance of automata with registers. One could also think about push-down automata or, with
small modifications, variants of data-word automata with registers.

5 This is a technical assumption important in order for unions of the initial sets not to influence
the overall complexity of the simulation.

402 L. Holík et al.

Offset-list data structure. The offset-list data structure of [36] allows constant time
implementation of the set operations of increment of all elements, reset to /0 or {0} or
{1}, addition of 0 or 1, and comparison of the maximum with a constant.

It assigns to every counter x ∈ X a pointer ol(x) to an offset-list pair (ox, lx) with the
offset ox ∈N and a sorted list lx = m1, . . . ,mk of integers. The data structure implement-
ing the list needs constant access to the first and the last element, forward and backward
iteration of a pointer, and insertion/deletion at/before a pointer to an element. This is
satisfied for instance by a doubly-linked list that maintains pointers to the first and the
last element. The offset-list pair represents the set s(x) = {m1+ox, . . . ,mk +ox}. Union
of two such sets is still linear in their size, but we will show that if the CSA does not
replicate counters, the cost of set unions can be amortized by the cost of increments.

Finding the CSA transition and evaluating the update. The first step of computing α′
from α is finding the transition q−{ai,ϕ,u}→q′ ∈ Δ, the only ai-transition from q that is
enabled, i.e. where s |= ϕ. The simplest algorithm iterates through the transitions of
Δ and, for each of them, tests whether s satisfies its guard. The cost of evaluating an
atomic counter predicate p, i.e., deciding whether s |= p, is constant: since the lists lx
are sorted, we only need to access the first or the last element and the offset to decide
x < n or x ≥ n, respectively. With that, the cost of evaluating ϕ is linear to the size of
ϕ. The cost of the iteration through the transitions of Δ is then linear in the sum of their
sizes, which is within O(|A|).

Having found q−{ai,ϕ,u}→q′, we evaluate its update to compute s′ and compute α′ as
(q′,s′). We will explain the algorithm and argue that the amortized cost of computing s′
is in O(|X |). The update is evaluated by, for each x ∈ X , evaluating all r-terms in u(x),
uniting the results, and assigning the union to ol(x).

First, we argue that evaluating an r-term t of u(x), i.e. computing t(s), is amortized
constant time. Since the counters are non-replicating, we can compute the value of each
r-term t[y] in situ. That is, we modify the offset-list pair (oy, ly) and return the pointer
ol(y). The original value of y can be discarded after evaluating t[y] since y does not
appear in any other r-term. There are 5 cases: (1) If t is 0 or 1, then we return a pointer
to a fresh offset-list pair with the offset 0 and the list containing only 0 or 1, respectively.
This is done in constant time.

(2) If t is y ∈ Y , then we return ol(y).
(3) If t is y+ 1, then oy is incremented by one. This constant time implementation

of the increment is the reason for pairing the lists with the offsets.
(4) If t is ∇p[y], then ly is filtered by the atomic predicate p. Filtering with the

predicate x ≥ n uses the invariant of sortedness of ly. It is done by iterating the following
steps: i) test whether the list head is smaller than n−oy and ii) if yes, remove the head,
if not, terminate the iteration. Every iteration is constant time: The cost of the iterations
which remove an element is amortized by the cost of additions of the element to the list.
What remains is only the constant cost of the last iteration which detects an element
greater or equal to n−oy, or that the list is empty. Filtering with x < n is analogous (the
iterations test and remove the last element instead of the head).

(5) If t is ∇p(y)+1, then the construction for the constant increment is applied after
the constant filter discussed above.

Fast Matching of Regular Patterns with Synchronizing Counting 403

Next, we argue that computing the union of values of the r-terms in u(x) may be
amortized by the cost of evaluating the increment terms. Let l1, . . . , ln be the offset-list
representations of the values of the terms in u(x) computed by the algorithm above.
The offset-list representation of their union is computed by a sequence of merging,
as merge(l1,merge(l2, . . .merge(ln−1, ln) . . .)). Particularly, given two pointers to offset-
lists l, l′, merge(l, l′) implements their union: it chooses the offset-list that represents a
set with the larger maximum, assume that it is l, and inserts the elements represented by
the other list, l′, to it. We say that l′ is merged into l. This is done by the standard sorted-
list merging in time O(|l′|) where |l′| is the length of l′. Since l′ is without duplicities
and with minimum 0, O(|l′|)⊆ O(max(l′)) where max(l′) is the maximal element.

The O(max(l′)) cost is amortized by the cost of evaluating increments. The offset-
list pair at l′ has seen at least max(l′)− 1 increments since the only elements inserted
into it are 0, 1, or, during merge, elements from other sets smaller than max(l′). These
increments of l′ are the budget used to pay for the mergeing of l′ into l. After the
merge, the offset-list pair of l′ is discarded (as the CSA is non-replicating, it is no longer
needed) hence the budget is used only once. Last, the assignment of the union to c is
done by a constant time assignment of a pointer to the offset-list returned by the merge.

Overall complexity of the simulation. Let us define the cost cost(x) of manipulations
with the counter x ∈ X during one step of the simulation as the sum of the costs of:
(1) evaluating all r-terms containing c, (2) merging their offset-list into other ones, (3)
creating offset-lists for terms 0 or 1 in u(x) and merging them into other offset-lists, (4)
the assignment of the result of u(x) to x. The cost of processing a single letter ai is then
the sum ∑x∈X cost(x) and |w| ·∑x∈X cost(x) is the cost of the entire simulation. Since the
CSA is non-replicating and evaluating a single r-term is amortized constant time, the
cost of (1) is in amortized constant time. The cost of (2) is amortized by increments from
step (1). The creation and insertion of singletons in (3), at most two in u(x), is constant
time. The pointer assignment in (4) is constant time. The cost(x) is therefore amortized
constant time, the amortized time of evaluating the update u is in O(|X |), and the cost of
the updates through the simulation is in O(|X | · |w|). The cost of choosing the transitions,
by evaluating their guards, is in O(|A| · |w|) by the above analysis. Analogously, the cost
of testing the accepting condition at the reached configuration is in O(|A|).

Theorem 2. If A is non-replicating, then its simulation on w takes O(|A| · |w|) time.

6 Augmented Determinization

In this section, we augment the subset construction from Section 4 with optimiza-
tions that prevent counter replication and hence extend the class of regexes that can
be matched fast by simulation of the CSA. It optimizations are tailored to CA with the
special properties of CA(R), for a regex R, listed in Section 3.

Intuition for the optimizations. The emergence of counter replication and means of
its elimination in the augmented construction, by techniques of counter sharing and
increment postponing, are illustrated on simplified fragments of CA in Figure 2.

404 L. Holík et al.

qr s
a) a;x := x+1 a;x := x+1

b;x := xb;x := x
q r

b) a;x :=1
a;
x := x

a;
x := x+1a;x := x+1

qr s
c) a;x := x+1 a;x := x

b;x := x+1b;x := x

Fig. 2: Sub-structures of CA that are sources of counter replication.

In a), DCSA(CA(R)) has transitions {q}−{a,xr :=xq+1,xs:=xq+1}→{r,s}−{b,xq:=xr∪xs}→{q}.
The first transition replicates the entire content of the xq, the second one unites the
two sets. Both transitions are expensive. The can be optimized by detecting that the
values of xs and xr are the same, being generated by syntactically identical updates,
and storing the values in a shared counter x{s,r}. This would result in transitions
{q}−{a,x{r,s}:=x{q}+1}→{s, t}−{b,x{q}:=x{r,s}}→{q}, with the replication and union eliminated.

Figure b) then illustrates why a counter xP, P ⊆ Q, represents the set of
values shared between the original counters xp, p ∈ P. That is, xP does not
always hold the entire sets stored in the counters xp, p ∈ P. If their val-
ues are not the same, it stores only their intersection. The value of each
xp is then partitioned among several shared counters xS with p ∈ S. In b),
DCSA(CA(R)) has transitions q−{a,xq:=xq;xr :=1}→{q,r}−{a,xq:=xq∪xr+1;xr :=1∪xr+1}→{q,r},
replicating the counter xr. Counter sharing would then generate transitions
q−{a,x{q}:=x{q};x{r}:=1}→{q,r}−{a,x{q}:=x{q};x{r}:=1;x{q,r}:=x{r}+1}→{q,r} with counters x{q},
x{r} for the subsets exclusive to xq and xr, respectively, and x{q,r} for the intersection.

Last, in c), we illustrate the technique of increment postponing. DCSA(CA(R)) would
have transitions {q}−{a,xr :=xq+1,xs:=xq}→{s, t}−{b,xq:=xr∪xs+1}→{q}. Since the increments
on the two branches happen in different moments, the values of xr and xs differ until
the last increment of xs synchronizes them. We avoid replication by storing the non-
incremented value, obtained from xq, in a counter shared by xr and xs and remembering
that an increment of xr has been postponed. This is marked with + in the name of
the shared counter x{r+,s}. When the values of xr and xs synchronize (the increment
is applied to xs too), the postponed increment is evaluated and the +-mark is removed.
We would create transitions {q}−{a,x{r+,s}:=x{q}}→{s, t}−{b,x{q}:=x{r+,s}+1}→{q}. If, before the
synchronization, the value of the marked counter is either tested or incremented for the
second time, we declare an irresolvable replication and abort the entire construction
(we allow postponing of only one increment). To prevent this situation from arising
needlessly, we let states remember the counters that must have the empty value and we
ignore these counters.

Augmented Determinization Algorithm. The augmented determinization produces from
CA(R) = (X ,Q,Δ,{α0},F) the CSA DCSAa(CA(R)) = (Xa,Qa,Δa,{αa

0},Fa). Its coun-
ters in Xa are of the form xS where x ∈ X and S ⊆ Q+ and Q+ = Q∪{q+ | q ∈ Q}. The
guiding principle of the algorithm is that an assignment sa of Xa represents an assign-
ment s of the counters in X {} of DCSA(CA(R)), namely, for each xq ∈ X {},

s(xq) =
⋃

q∈S,S⊆Q+ s
a(xS)∪

⋃
q+∈S,S⊆Q+ {n+1 | n ∈ sa(xS)} . (1)

We will use some simplifying notation. As discussed in Section 3, by the construc-
tion of CA(R), the increment of c and the guard x<maxx always appear on its transitions

Fast Matching of Regular Patterns with Synchronizing Counting 405

together, without any other guard on x. Hence, in DCSA(CA(R)), all terms with an incre-
ment or filtering are of the form ∇x<maxx(xq◦)+1. We will denote them by the shorthand
xq◦ ⊕1 (we are using q◦ to denote an element from the set Q+, either q or q+, for q ∈ Q).

The states of DCSAa(CA(R)) will additionally be distinguished according to which
of the counters of Xa are active, i.e., could have a non-empty value. Counters always
valued by /0 can be ignored, which simplifies transitions and decreases the chance of
an irresolvable counter replication. The states of DCSAa(CA(R)) are thus of the form
(R,Act) where R ⊆ Q and Act ⊆ Xa is a set of active counters.

The initial configuration is αa
0 = (({q0},{x{q0} | x ∈ X}),sa0) where sa0 assigns {0}

to every x{q0},x ∈ X and /0 to every other counter in Xa. The final condition assignment
Fa((R,Act)) is, for each (R,Act) ∈ Qa, constructed from F {}(R) by replacing every
predicate p[xq] by the disjunction p[xq]

Act =
∨

xS∈Act,q∈S p[xS] that encodes p[xq] using
the counters of Act in the sense of (1).

The transitions in Δa are constructed from transitions in Δ{}. For source state (R,Act)∈
Qa, an original transition R−{a,ϕ,u}→R′ ∈ Δ{}, and set of active counters Act ⊆ Xa, Δa has
the transition (R,Act)−{a,ϕa,ua}→(R′,Act′), constructed as follows:

The guard ϕa is made from ϕ by replacing every predicate p[xq] by the equivalent
version with shared counters p[xq]

Act (as when constructing Fa above).
The update ua is constructed in three steps. First, the update ush is made from u by

expressing the r-terms of u using the shared counters Xa. Each t[xq] is replaced by

ta =
⋃({

t[xS] | xS ∈ Act,q ∈ S
}∪{

t[xS]⊕1 | xS ∈ Act,q+ ∈ S
})

.

Notice that all postponed increments are evaluated in ush, transformed to normal incre-
ments. If ush has an r-term t⊕1⊕1, i.e., a double increment, then the whole construction
aborts and declares an irresolvable counter replication. We allow postponing only one
increment.6 Otherwise, we proceed to resolve counter replication. First, we make sure
that every counter appears in the image of the update only in one kind of r-term. We
collect the set Conflict of all r-terms xS ⊕1 of ush with conflicting increments, i.e. such
that also xS is an r-term of ush. In update u+, conflicting increments are postponed. For
x ∈ X , q ∈ Q, and ush(xq) =

⋃
T ,

u+(xq) =
⋃(

T \Conflict
)

and u+(xq+) =
⋃{

xS | xS ⊕1 ∈ T ∩Conflict
}
.

The final update ua then resolves counter replication, by grouping r-terms replicated
in u+ under a common l-value (we call z an l-value of r-terms of u+(z)). For an r-term
t of u+, let lval(t) be the set of its l-values. Note that lval(t) is always of the form
{xq◦}x∈S for some fixed x ∈ X (see property 4 of CA(R) in Section 3). We let Act′ be
the set of counters xS with lval(t) = {xq◦}x∈S for some r-term of u+. For all xS ∈ Xa, if
xS
∈ Act′ then ua(xS) = /0 else

ua(xS) =
⋃{

t | t is an r-term of u+ and lval(t) = {xq◦}q◦∈S
}
.

6 Also transition guards and final conditions of DCSAa(CA(R)) must not contain the +-mark
since evaluating them regardless the postponed increments would return incorrect results.
However, declaring counter replication on seeing a double increment here covers these cases
due to the structural properties of CA(R).

406 L. Holík et al.

Example 2. Let us have R−{a,ϕ,u}→R′ ∈ Δ{} created in Example 1 with R = {p,q}, R′ =
{r,s}, ϕ = xp<n∧xp≥m, and u = {xr :=xp⊕1,xs :=xq∪1}. Let Act = {x{p,q},x{p,q+}}.
Then ush = {xr := x{p,q+} ⊕ 1∪ x{p,q} ⊕ 1,xs := x{p,q+} ⊕ 1∪ x{p,q} ∪ 1}. Note that the
xq in u(xs) becomes x{p,q+} ⊕ 1, corresponding to the right part of the definition of ta

(the postponed increment xq+ is evaluated in ush). Note that the r-term x{p,q} ⊕ 1 is in
Conflict as x{p,q} is an r-term of ush too. Therefore it is postponed in u+, i.e. ush(xr) =
x{p,q} ⊕1∪·· · becomes u+(xr+) = x{p,q}. We get u+ = {xr := x{p,q+} ⊕1,xs := x{p,q+} ⊕
1∪x{p,q} ∪1,xr+ :=x{p,q}}. Finally, ua groups r-terms replicated in u+ under a common
l-value: ua = {x{r,s} := x{p,q+} ⊕ 1,x{s} := 1,x{s,r+} := x{p,q}}. The next active counters
are Act′ = {x{r,s},x{s},x{s,r+}}. Note that, for x{p,q+}, the postponed increment at p+ was
synchronized on this transition, while the conflict at x{p,q} was solved by postponing
increment and marking r with +. 	

The algorithm either returns the CSA DCSAa(CA(A)), or detects an irresolvable
counter replication, in which case DCSAa(CA(A)) does not exist.7 Let m = �R and re-
call that n denotes the length of the matched text, |w|. Since CA(R) has at most m states
and m2 transitions, a basic analysis of the algorithm’s data structures reveals that the
resulting CSA has at most 22m

states, each with at most 2m2
outgoing transitions, each

transition of the size in O(m2m). Because DCSAa(CA(A)) encodes DCSA(CA(A)), it has
the same language, and it also inherits its determinism. Since it does not replicate coun-
ters, it can be simulated in pattern matching fast, in time linear to the text and indepen-
dent of the counter bounds. The following theorem is proved in [21].

Theorem 3. For R with flat counting, if DCSAa(CA(R)) exists, then it does not replicate
counters, its size is in O(22m

m), L(CA(R)) = L(DCSAa(CA(R))), and it can be simulated
on a word w of the length n in time O(22mmn).

Matching can be done in time of constructing the CSA plus its simulation, which
in the sum is indeed fast, not dependent on k and linear in n. It can also be noted that
the m in the exponents above is not the size of the entire regex, but only the size of the
counted sub-regexes.

7 Regexes with Synchronizing Counting

Finally, in this section we define the class of regexes with synchronizing counting,
which precisely captures when the CSA created by our construction in Section 6 does
not replicate counters and hence allow fast matching (in the sense of Theorem 3).

Definition 7 (Regexes with synchronizing counting). A regex has synchronizing count-
ing iff it has no sub-expression S{n,m} where for some k ∈N, a word from L(S)k has a
prefix from L(S)k+1.

For instance, (ac*){1,4}(ab|ba){3,5}(a(ab)*){2,8} is a regex with synchro-
nizing counting as each word from L(ac*)k must contain the symbol a exactly k times,

7 Aborting the construction here simplifies the description, but it would also be possible to con-
tinue the construction and return a DCSA that does not guarantee fast simulation.

Fast Matching of Regular Patterns with Synchronizing Counting 407

words from L(ab|ba)k must have exactly 2k symbols, and words from L(a(ab)*)k can
be uniquely split at the first a in the a(ab)*. In comparison, (a|aa){2,5} does not
have synchronizing counting as a ·a ·a is a prefix of aa ·aa.

Intuitively, there is no pair of paths through CA(S{m,n}) starting at the same state,
over the same word, ending in the same state, where the number of increments differs
by two. In such case, DCSAa(CA(S{m,n})) would have to delay two increments, which
our construction does not allow. The theorem below is proved in [21].

Theorem 4. Given a regex R with flat counting, the algorithm of Section 6 returns
DCSAa(CA(R)) if and only if R has synchronizing counting.

Corollary 1. Regexes with flat synchronizing counting have a fast matching algorithm.

Proof. From Theorems 3 and 4.

Counting with Markers. Even though designing and recognizing synchronizing count-
ing is usually intuitive, it may also be tricky. For instance, (\\\\d+\\\\.){3}, from the
database of real-world regexes we use in our experiment, has synchronizing counting,
while ICE Dims.{92}((?(X|\d+)){13}) does not.8 A vast majority of real-world
regexes we examined fortunately belong to very easily recognizable subclasses of syn-
chronizing counting. The most wide-spread and easy to recognize are regexes with
letter-marked counting, where every sub-expression S{m,n} has a set of marker letters
such that every word from L(S) has exactly one occurrence of a marker letter. 9

Marker letters may be generalized to marker words, though, markers that can arise
by concatenation of several words from L(S) cannot be used. The condition that has to
be satisfied is that any word from L(S)k, k ∈ N, has exactly k non-overlapping occur-
rences of marker words as infixes. Another sufficient property of S is that it has words
of a uniform length. The idea of markers may be generalized further until the point
when the set of marker words is specified by general regexes, when we get precisely
the synchronizing counting. The regexes with letter-marked counting are easily human
as well as machine recognizable (see a simple O(|R|2)-time algorithm in [21]).

8 Practical Considerations

Although the main point of this work is the theoretical feasibility of fast matching with
synchronizing counting, we will also argue that the results are of practical relevance.
To this end, we show experimentally that synchronizing counting and marked counting
cover a majority of practical regexes. We also give arguments that matching with the
CSA constructed in Section 6 can be done efficiently.

8 An automated way of identifying synchronizing counting would be running the CSA-to-DCSA
determinization from Section 6, but this is exponential to |R|.

9 That letter-marked counting is a strict superset of the class that is in [36] conjectured as handled
by the algorithm of [36]. The conjecture of [36] is also not correct, as shown in [21].

408 L. Holík et al.

8.1 Occurrence of Synchronizing Counting in Practice

To substantiate the practical relevance of synchronizing counting regexes, we examined
a large sample of practical regexes using a simple checker of letter-marked counting.
The benchmark consists of over 540 000 regexes collected from (1) a large scale anal-
ysis of software projects [10]; (2) regexes used by network intrusion detection systems
Snort [27], Bro [29], Sagan [34], and the academic papers [42,38]; (4) the RegExLib
database of regexes [28].

From the regexes that we could parse10, 31 975 contained counting. We selected
those with flat counting and with the sum of upper bounds of counters larger than 20 (as
was done in [36] to filter out counting with small bounds that can be handled through
counter unfolding and traditional methods)11. This left us with 5 751 regexes. From
these, only 46 regexes (0.8%) have counting that is not letter-marked. Furthermore, we
manually checked these regexes and we identified that 22 of them have synchronizing
counting. We have therefore found only 24 regexes with non-synchronizing counting,
i.e., 0.4 % of the examined set of regexes with flat counting.

The 24 non-synchronizing regexes are listed in [21]. Some of them may clearly be
rewritten with synchronizing counting, such as (.+){25}(.*), which can be rewrit-
ten as .{25,}(.*). We speculate that some of them might in fact represent a mis-
take, such as (.*){1,32000}[bc] where the counter matches the empty word, or
(\n\s+)(criterion .*\n)(\s.+){1,99} where the \s.+ might have been intended
as \s\S+ (\s are white spaces, \S are all the other characters). Synchronizing count-
ing seems to capture the intuition with which counting is often written, hence reporting
non-synchronizing counting might help identifying bugs.

By the same methodology and from a nearly identical benchmark, [36] arrived to a
sample of 5 000 regexes with flat counting with the sum of bounds larger than 20. The
algorithm of [36] did not cover 571 regexes from the 5 000, which is 11 % of the exam-
ined set of regexes with flat counting (in contrast to the 0.4% with non-synchronizing
counting and the 0.8% with counting that is not letter-marked, measured on a slightly
larger set of regexes). The two sets of regexes with flat counting, the 5 751 of ours and
the 5 000 of [36], are not perfectly identical, however. Differences are to a small degree
caused by differences in the base database ([36] uses about 18 more regexes that are
proprietary and excludes 26 regexes with counter bounds larger than 1 000), and to a
larger degree by small differences in the parsers.

8.2 Practical Efficiency of Matching with Synchronizing Counting

The size and the worst-case time of simulation of DCSAa(CA(R)) are still exponential to
the number of states of CA(R) (namely, O(22m

m) and O(22mmn) where m = �R equals
the number of states of CA(R), cf. Theorem 3). The potential problem is that the algo-
rithm may generate at most 2m counters, and this potentially threatens practicality of
our matching algorithm.

10 We did not parse 38 558 regexes since their syntax was broken or contained some advanced
features we do not support.

11 926 regexes contain nested counting and 25297 regexes contain small upper bounds.

Fast Matching of Regular Patterns with Synchronizing Counting 409

First, it should be noted that the m in the exponent can be decreased from the size of
the entire regex to the size of the counted sub-expression, which is usually very small.
Then, although an efficient implementation is beyond the scope of this paper and we
are leaving it as a future work, we give some indirect arguments for practicality of the
CA-to-CSA algorithm.12

By the standard techniques of register allocation [1], it is possible to decrease the
number of counters and counter assignments other than identity dramatically. In fact,
simply eliminating needless renaming of counters and reusing the same name whenever
possible, our algorithm creates CSA isomorphic to those of [36] when run on regexes
handled by [36]. The work [36] already shows that simulating these CSA may be done
efficiently and that it brings dramatic improvements over best matchers on counting-
intensive examples.

In our experience with hand-simulating the algorithm on practical examples, cases
not handled by [36] do not behave much differently, and the numbers of CSA counters
do not have a strong tendency to explode.

9 Conclusions

We have extended the regex matching algorithm of [36] and shown that the extended
version allows fast pattern matching of so-called synchronising regexes, a class of
regexes that we have newly introduced. The class of synchronising regexes significantly
extends all previously known classes of regexes that allow fast matching and covers a
majority of regexes appearing in practice (wrt. our empirical study).

In the future, we plan to study extensions of the presented techniques to regexes with
nested counting (non-flat). This will probably require a more sophisticated alternative
of the offset-list data structure for sets, capable of storing relations of numbers. An
interesting question is also how and when regexes can be rewritten to a synchronizing
form and for what cost.

Acknowledgment

This work has been supported by the Czech Ministry of Education, Youth and Sports
project LL1908 of the ERC.CZ programme, the Czech Science Foundation project 23-
06506S, and the FIT BUT internal project FIT-S-23-8151.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison Wesley (August 2006), http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20&path=ASIN/0321486811

12 A competitive matcher that runs on real-world regexes requires an extensive infrastructure,
optimized data structures for the shared registers, and ideally an on-the-fly version of the CA-
to-CSA determinization (similar to the online DFA simulation).

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321486811
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321486811

410 L. Holík et al.

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions.
Theoretical Computer Science 155(2), 291 – 319 (1996). https://doi.org/10.1016/
0304-3975(95)00182-4, https://doi.org/10.1016/0304-3975(95)00182-4

3. Baldwin, A.: Regular expression denial of service affecting express.js. https://med
ium.com/node-security/regular- expression-denial-of-service-affecting-
express-js-9c397c164c43 (2016)

4. Björklund, H., Martens, W., Timm, T.: Efficient incremental evaluation of succinct regular
expressions. In: CIKM’15. ACM (2015). https://doi.org/10.1145/2806416.2806434

5. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in python. In:
Zeller, A., Roychoudhury, A. (eds.) Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. pp.
282–293. ACM (2016). https://doi.org/10.1145/2931037.2931073, https://doi.
org/10.1145/2931037.2931073

6. contributors, W.: Regular expression—wikipedia (2019), https://en.wikipedia.org/w/
index.php?title=Regular_expression&%20oldid=852858998

7. Davis, J.C.: Rethinking regex engines to address ReDoS. In: ESEC/FSE’19. pp. 1256–1258.
ACM (2019)

8. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression de-
nial of service (redos) in practice: an empirical study at the ecosystem scale. In: Leavens,
G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018. pp. 246–256. ACM (2018). https://doi.org/10.1145/3236024.3236027,
https://doi.org/10.1145/3236024.3236027

9. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression denial of
service (ReDoS) in practice: An empirical study at the ecosystem scale. In: ESEC/FSE’18.
pp. 246–256. ACM (2018)

10. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t regular expres-
sions a lingua franca? An empirical study on the re-use and portability of regular expressions.
In: ESEC/FSE’19. pp. 1256–1258. ACM (2019)

11. Davis, J.C., Servant, F., Lee, D.: Using selective memoization to defeat regular expression
denial of service (ReDoS). In: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021. pp. 1–17. IEEE (2021). https://doi.org/10.
1109/SP40001.2021.00032, https://doi.org/10.1109/SP40001.2021.00032

12. docs.rs: regex - rust. https://docs.rs/regex/1.5.4/regex/ (2021)
13. Exchange, S.: Outage postmortem. http://stackstatus.net/post/147710624694/

outage-postmortem-july-20-2016 (2016)
14. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak versus

strong determinism. In: Mathematical Foundations of Computer Science 2009. pp. 369–
381. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03816-7_32

15. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak ver-
sus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012). https://doi.org/10.
1137/100814196, extended version of paper in MFCS’09

16. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53 (1961).
https://doi.org/10.1070/RM1961v016n05ABEH004112

17. Google: RE2. https://github.com/google/re2
18. Graham-Cumming, J.: Details of the Cloudflare outage on july 2, 2019. https://blog.

cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/ (2019)
19. Haertel, M., et al.: GNU grep. https://www.gnu.org/software/grep/

https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://doi.org/10.1145/2806416.2806434
https://doi.org/10.1145/2806416.2806434
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://docs.rs/regex/1.5.4/regex/
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://github.com/google/re2
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://www.gnu.org/software/grep/

Fast Matching of Regular Patterns with Synchronizing Counting 411

20. Holı́k, L., Lengál, O., Saarikivi, O., Turoňová, L., Veanes, M., Vojnar, T.: Succinct determin-
isation of counting automata via sphere construction. In: Proc. of APLAS’19. LNCS, vol.
11893, pp. 468–489. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6_
24

21. Holı́k, L., Sı́č, J., Turoňová, L., Vojnar, T.: Fast matching of regular patterns with syn-
chronizing counting (technical report). Tech. rep., Brno University of Technology (2023),
https://doi.org/10.48550/arXiv.2301.12851

22. Hovland, D.: Regular expressions with numerical constraints and automata with counters.
In: ICTAC. LNCS, vol. 5684, pp. 231–245. Springer (2009). https://doi.org/10.1007/
978-3-642-03466-4_15

23. Hovland, D.: The membership problem for regular expressions with unordered concatenation
and numerical constraints. In: Language and Automata Theory and Applications. pp. 313–
324. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28332-1_27

24. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-free non-
deterministic finite automata. In: Reischuk, R., Morvan, M. (eds.) STACS 97. pp. 55–66.
Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

25. Kilpeläinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence indicators -
preliminary results. In: SPLST’03. pp. 163–173. University of Kuopio, Department of Com-
puter Science (2003)

26. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with numeric oc-
currence indicators. Information and Computation 205(6), 890–916 (2007). https://doi.
org/10.1016/j.ic.2006.12.003

27. M. Roesch et al.: Snort: A Network Intrusion Detection and Prevention System,. http://
www.snort.org

28. RegExLib.com: The Internet’s first Regular Expression Library. http://regexlib.com/
29. Robin Sommer et al.: The Bro Network Security Monitor, http://www.bro.org
30. Saarikivi, O., Veanes, M., Wan, T., Xu, E.: Symbolic regex matcher. In: Vojnar, T., Zhang, L.

(eds.) TACAS’2019. LNCS, vol. 11427, pp. 372–378. Springer (2019). https://doi.org/
10.1007/978-3-030-17462-0_24, https://doi.org/10.1007/978-3-030-17462-0_
24

31. Smith, R., Estan, C., Jha, S.: XFA: faster signature matching with extended automata. In:
IEEE Symposium on Security and Privacy. IEEE (2008). https://doi.org/10.1109/SP.
2008.14

32. Smith, R., Estan, C., Jha, S., Siahaan, I.: Fast signature matching using extended finite au-
tomaton (XFA). In: ICISS’08. LNCS, vol. 5352, pp. 158–172. Springer (2008). https:
//doi.org/10.1007/978-3-540-89862-7_15

33. Sperberg-McQueen, M.: Notes on finite state automata with counters. https://www.
w3.org/XML/2004/05/msm-cfa.html, https://www.w3.org/XML/2004/05/msm-cfa.
html, accessed: 2018-08-08

34. The Sagan team: The Sagan Log Analysis Engine, https://quadrantsec.com/sagan_
log_analysis_engine/

35. Thompson, K.: Programming techniques: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

36. Turoňová, L., Holı́k, L., Lengál, O., Saarikivi, O., Veanes, M., Vojnar, T.: Regex matching
with counting-set automata. Proc. ACM Program. Lang. 4(OOPSLA), 218:1–218:30 (2020)

37. Turoňová, L., Holı́k, L., Lengál, O., Veanes, M., Vojnar, T.: Counting in regexes considered
harmful (2022)

38. Češka, M., Havlena, V., Holı́k, L., Lengál, O., Vojnar, T.: Approximate reduction of finite
automata for high-speed network intrusion detection. In: Proc. of TACAS’18. LNCS, vol.
10806. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_9

https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.48550/arXiv.2301.12851
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
http://www.snort.org
http://www.snort.org
http://regexlib.com/
http://www.bro.org
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://quadrantsec.com/sagan_log_analysis_engine/
https://quadrantsec.com/sagan_log_analysis_engine/
https://doi.org/10.1007/978-3-319-89963-3_9
https://doi.org/10.1007/978-3-319-89963-3_9

412 L. Holík et al.

39. Wang, P., Stolee, K.T.: How well are regular expressions tested in the wild? In: Leavens,
G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018. pp. 668–678. ACM (2018). https://doi.org/10.1145/3236024.3236072, https:
//doi.org/10.1145/3236024.3236072

40. Wang, X., Hong, Y., Chang, H., Park, K., Langdale, G., Hu, J., Zhu, H.: Hyperscan:
A fast multi-pattern regex matcher for modern CPUs. In: 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). pp. 631–648. USENIX
Association, Boston, MA (Feb 2019), https://www.usenix.org/conference/nsdi19/
presentation/wang-xiang

41. Wübbeling, M.: Regular expression security. ADMIN 55 (2020)
42. Yang, L., Karim, R., Ganapathy, V., Smith, R.: Improving NFA-based signature matching

using ordered binary decision diagrams. In: Recent Advances in Intrusion Detection. pp.
58–78. Springer Berlin Heidelberg (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
http://creativecommons.org/licenses/by/4.0/

Compositional Learning for Interleaving Parallel
Automata

Faezeh Labbaf1(�) , Jan Friso Groote2 ,
Hossein Hojjat1,3 , and Mohammad Reza Mousavi4

1 Tehran Institute for Advanced Studies (TeIAS), Khatam University, Tehran, Iran
f.labaf@khatam.ac.ir

2 Eindhoven University of Technology, Eindhoven, The Netherlands
j.f.Groote@tue.nl

3 University of Tehran, Tehran, Iran
hojjat@ut.ac.ir

4 King’s College London, London, UK
mohammad.mousavi@kcl.ac.uk

Abstract. Active automata learning has been a successful technique
to learn the behaviour of state-based systems by interacting with them
through queries. In this paper, we develop a compositional algorithm
for active automata learning in which systems comprising interleaving
parallel components are learned compositionally. Our algorithm auto-
matically learns the structure of systems while learning the behaviour
of the components. We prove that our approach is sound and that it
learns a maximal set of interleaving parallel components. We empirically
evaluate the effectiveness of our approach and show that our approach
requires significantly fewer numbers of input symbols and resets while
learning systems. Our empirical evaluation is based on a large number of
subject systems obtained from a case study in the automotive domain.

1 Introduction

Active automata learning has been successfully used to learn models of complex
industrial systems such as communication- and security protocols [11], biometric
passports [2], smart cards [1], large-scale printing machines [33], and lithogra-
phy machines for integrated circuits [32,15]; we refer to the recent survey by
Howar and Steffen on the practical applications of active automata learning
[16]. Throughout these applications of automata learning, scalability issues have
been pointed out [32,15]. It has also been suggested that compositional learning,
i.e., learning a system through learning its components, is a promising approach
to tame the complexity of learning [10,12].

Some early attempts have been recently made in learning structured models
of systems [27,10] (we refer to the Related Work for an in-depth analysis). For
example, the approach proposed by al-Duhaiby and Groote [10] decomposes
the learning process into learning its parallel components; however, it relies on
a deep knowledge of the system under learning, and the intricate interaction

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 20

413–435, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_20&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-8812-6702
http://orcid.org/0000-0003-2196-6587
http://orcid.org/ 0000-0002-4743-8750
http://orcid.org/0000-0002-4869-6794
mailto:f.labaf@khatam.ac.ir
mailto:j.f.Groote@tue.nl
mailto:hojjat@ut.ac.ir
mailto:mohammad.mousavi@kcl.ac.uk
https://doi.org/10.1007/978-3-031-30829-1_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_20&domain=pdf

414 F. Labbaf et al.

q0 q1

p0 p1

a/1

b/1 a/0

b/0

c/1

d/0

c/0

d/1

(a)

a/1

a/0 b/1

d/0

d/1

c/1

(b)

a/1

a/0

b/0

d/0

d/1

c/1

(c)

Fig. 1: (a) Initial system with two concurrent FSMs (b) Partition the input al-
phabet to 4 elements and learn each component individually (c) Use the counter-
example ab to merge two components

of the various actions being learned. In this paper, we propose an approach
based on Dana Angluin’s celebrated L∗ algorithm [6], to learn the components
of a system featuring an interleaving parallel composition. Our approach, called
CL∗, does not assume any pre-knowledge of the structure and the alphabet
of these components; instead, we learn this information automatically and on-
the-fly, while providing a rigorous guarantee of the learned information. This
is particularly relevant in the context of legacy and black-box systems where
architectural discovery is challenging [8,22].

The gist of our approach is to learn the System Under Learning (SUL) in
separate components with disjoint alphabets. We start with a partition compris-
ing only singleton sets. The interleaving parallel composition of the components
gives us the total behavior of the system. We pass the result to the teacher, and
by exploiting the counter-examples returned, we iteratively merge the alphabet
of the individual components.

Example. Figure 1(a) shows an example of two parallel Finite State Machines
(FSMs) over the input alphabet {a, b, c, d} and output alphabet {0, 1}. We start
by partitioning the alphabet into disjoint singleton sets of elements. The parallel
composition of the 4 learned FSMs of Figure 1(b) does not comply with the
original system, and the teacher may return the counter-example ab. The string
ab generates the output sequence 10 in (a) but the output sequence in (b) is
11. The counter-example suggests to merge the sets {a} and {b} and restart the
learning process which leads to the FSMs in Figure 1(c). One further merging
step results in learning the original system. We provide a theoretical proof of
correctness of this compositional construction, meaning that it is guaranteed to
construct a correct system.

To study the effectiveness of our approach in practice, we designed an em-
pirical experiment to investigate the following two research questions:

Compositional Learning for Interleaving Parallel Automata 415

RQ1 Does CL∗ require fewer resets, compared to L∗?
RQ2 Does CL∗ require fewer input symbols, compared to L∗?

Our research questions are motivated by the following facts: 1) Resets are a
major contributing factor in learning practical systems as they are immensely
time- and resource consuming [31]. Hence, reducing the number of resets can have
a significant impact in the learning process. 2) The total number of symbols used
in interacting with the system under learning provides us with a total measure of
cost for the learning process and hence, reducing the total cost is a fair indicator
of improved efficiency [36,9].

To answer these questions, we use a benchmark based an industrial auto-
motive system. We design a number of experiments on learning various combi-
nations of components in this system, gather empirical data, and analyse them
through statistical hypothesis testing. Our results indicate that our composi-
tional approach significantly improves the efficiency of learning compared to
the monolithic L∗ learning algorithm. The implementation of the algorithm,
experiments, and their results can be found on-line in our lab package [23]
(https://github.com/faezeh-lbf/CL-Star).

The remainder of this paper is organised as follows. In Section 2, we review
the related work and position our research with respect to the state of the art.
In Section 3, we present the preliminary definitions that are used throughout
the rest of the paper. In Section 4, we present our algorithm and its proof of
correctness and termination. We evaluate our algorithm on a benchmark from
the automotive domain in Section 5. We conclude the paper and present the
directions of our ongoing and future research in Section 6.

2 Related Work

Active automata learning is a technique used to find the underlying model of
a black box system by posing queries and building a hypothesis in an iterative
manner. There is substantial early work in this domain, e.g., under the name
system identification or grammar inference; we refer to the accessible introduc-
tion by Vaandrager [36] for more information. A seminal work in this domain is
the L∗ algorithm by Dana Angluin [6], which comes with theoretical complexity
bounds for the learning process using a representation called the “Minimally
Adequate Teacher” (MAT).

MAT hypothesises a teacher that is capable of responding to membership
queries (MQs) and equivalence queries (EQs); the former checks the outcome of a
sequence of inputs (e.g., with their respective outputs, or with their membership
in the language of the automaton) and the latter checks whether a hypothesised
automaton is equivalent to the system under learning. Our work replaces a single
MAT with multiple MATs that can potentially run in parallel and learn different
components of the black-box system automatically.

Learning structured systems and in particular, compositional learning of par-
allel systems has been studied recently in the literature. Moerman [27] proposes

https://github.com/faezeh-lbf/CL-Star

416 F. Labbaf et al.

an algorithm to learn parallel interleaving Moore machines. Our algorithm dif-
fers from Moerman’s algorithm in that in the parallel composition of Moore
machines, the output of each individual component is explicitly specified, be-
cause the output of the system is specified as a tuple of the outputs of its com-
ponents. In other words, the underlying structure is immediately exposed by
considering the type of outputs produced by the system under learning. How-
ever, in our approach, we need to identify the components and assign outputs to
them on-the-fly since the decomposition is not explicit in parallel composition.
Al-Duhaiby and Groote [10] learn parallel labelled transitions systems with the
possibility of synchronisation among them. In order to develop their algorithm,
they assume a priori knowledge of mutual dependencies among actions in terms
of a confluence relation. This type of information is difficult to obtain and the
domain knowledge in this regard may be error prone. Particularly for legacy and
large black-box systems (e.g., binary code), architectural discovery has proven
challenging [8,22]. We address this challenge and go beyond the existing ap-
proaches by learning about confluence of actions on-the-fly through observing
the minimal counter-examples generated by the MAT(s).

Frohme and Steffen [12] introduce a compositional learning approach for
Systems of Procedural Automata [13]; these are collections of DFAs that may
“call” each, akin to the way non-terminals may be used in defining other non-
terminals in a grammar. Their approach is essentially different from ours in that
the calls across automata are assumed to be observable and hence the general
structure is assumed to be known; in our approach, we learn the structure by
observing implicit dependencies among the learned automata through analysing
counter-examples. Also their approach is aimed at a richer and more expressive
type of systems, namely pushdown systems, which justifies the requirement for
additional information.

L∗ has been improved significantly in the past few years; the major improve-
ments upon L∗ can be broadly categorised into three categories: 1) improving the
data structures used to store and retrieve the learned information [21,31,19,37];
2) improving the way counter-examples are processed in refining the hypothesis
[31,28,3,17]; 3) learning more expressive models, such as register- [18,14] and
timed automata [34,5]. This third category of improvements is orthogonal to our
contribution and extension of our approach can be considered in those contexts
as well.

Two notable recent improvements, in the first two categories, are L# [37] and
Lλ [17], respectively. L# uses the notion of apartness to organise and maintain
a tree-shaped data-structure about the learned automaton. Lλ uses a search-
based method to incorporate the information about the counter-example into
the learned hypothesis. The improvements brought about by Lλ can be readily
incorporated into our approach, particularly since our approach relies on finding
minimal counter-examples. Integrating our approach into L# requires a more
careful consideration of maintaining and composing tree-shaped data structures
when detecting dependencies. We expect that both of these combinations will
further improve the efficiency of our proposed method.

Compositional Learning for Interleaving Parallel Automata 417

3 Preliminaries

In this section, we review the basic notions used throughout the remainder of
the paper. We start by formalising the notion of a finite state machine, which
is the underlying model of the system under learning and move on to paral-
lel composition and decomposition (called projection) as well as the concept
of (in)dependent actions, which are essential in identifying the parallel compo-
nents. Finally, we conclude this section by recalling the basic concepts of active
automata learning and the L∗ algorithm.

3.1 Finite State Machines (FSMs)

Finite state machines (also called Mealy machines), defined below, are straight-
forward generalisations of finite automata in which the transitions produce out-
puts (rather than only indicating acceptance or non-acceptance):

Definition 1. (Finite State Machine) A Finite State Machine (FSM) M is a
sixtuple (S, s0, I, O, δ, λ) where :

– S is a finite set of internal states,

– s0 ∈ S is the initial state,

– I is a set of actions, representing the input alphabet,

– O is the set of outputs,

– δ : S × I → S is a total state transition function,

– λ : S × I → O is a total output function.

An FSM starts in the initial state s0 and accepts a word (a sequence of
actions of its input alphabet) in order to produce an equally-sized sequence of
outputs. State transition- δ and output function λ determine the next state and
the output of an FSM upon receiving a single input. For each s, s′ ∈ S, i ∈ I,

and o ∈ O, we write s
i/o−−→ s′ when δ(s, i) = s′ and λ(s, i) = o.

State transitions are extended inductively from a single input i ∈ I, to a
sequence of inputs w ∈ I∗, i.e., we define δ(s, ε) = s and λ(s, ε) = ε where ε is
the empty sequence; and for s ∈ S,w ∈ I∗, and a ∈ I, we have δ(s, wa) =
δ(δ(s, wa), a) and λ(s, wa) = λ(s, w)λ(δ(s, w), a), where juxtaposition of se-
quences denotes concatenation. For the sake of conciseness, we write δ(w) and
λ(w) instead of δ(s0, w) and λ(s0, w).

In much of the literature in active learning, the system under learning is as-
sumed to be complete and deterministic and we follow this common assumption
in Definition 1 by requiring the state transition and output relations to be total
functions. While the determinism assumption is essential for our forthcoming re-
sults to hold, we expect that the existing recipes for learning non-deterministic
state machines can be made compositional using a similar approach as ours.

418 F. Labbaf et al.

3.2 (De)Composing FSMs

Our aim is to produce a compositional learning algorithm for systems composed
of interleaving parallel components, defined below. Due to the interleaving na-
ture of parallel composition and determinism of the system under learning, the
alphabets of these components are assumed to be disjoint.

Definition 2. (Interleaving Parallel Composition) For two FSMs Mi =
(Si, s0i , Ii, Oi, δi, λi), with i ∈ {0, 1}, where I0 ∩ I1 = ∅, the interleaving par-
allel composition of M0 and M1, denoted by M0 || M1, is an FSM defined as

(S0 × S1, (s00 , s01), I0 ∪ I1, O0 ∪O1, δ, λ)

where δ and λ are defined by

δ((s0, s1), a) =

{

(δ0(s0, a), s1) if a ∈ I0,

(s0, δ1(s1, a)) otherwise, and
λ((s0, s1), a) =

{

λ0(s0, a) if a ∈ I0,

λ1(s1, a) otherwise.

For s0 ∈ S0, s1 ∈ S1, and a ∈ I0 ∪ I1

Next, we define the notions of projections for FSMs and for words; these no-
tions are further used in the notion of (in)dependence and eventually in our proof
of correctness to establish that the composed system has the same behaviour as
the composition of the learned components.

Definition 3. (Projection of an FSM) The projection of an FSM M =
(S, s0, I, O, δ, λ) on a set of inputs I ′ ⊆ I denoted by P (M, I ′), is an FSM
(S, s0, I

′, O′, δ′, λ′), where

– δ′(s, a) = δ(s, a) for a ∈ I ′,
– λ′(s, a) = λ(s, a) for a ∈ I ′, and
– O′ = {o ∈ O | ∃a ∈ I ′. ∃s ∈ S. λ(s, a) = o}.

Definition 4. (Projection of a word) The projection of a word w ∈ I∗ on a set
of inputs I ′ ⊆ I, denoted by PI′(w), is inductively defined as follows:

PI′(ε) := ε,

PI′(au) :=

{
aPI′(u) if a ∈ I ′,
PI′(u) otherwise.

Definition 5. (Projection of an output sequence) The projection of the output
sequence w = o1 . . . on with respect to an equally-sized sequence of inputs v =
i1, . . . , in ∈ I∗ and a subset of inputs I ′ ⊆ I, denoted by PI′(w, v), is defined as
follows:

PI′(ε, ε) := ε,

PI′(ow, av) :=

{
oPI′(w, v) if a ∈ I ′,
PI′(w, v) otherwise.

Compositional Learning for Interleaving Parallel Automata 419

Definition 6. ((In)Dependent Actions) Consider an FSM M with a set of inputs
I. The subsets I0, . . . , In ⊆ I form an independent partition of I when for any
u ∈ I∗, λP (M,I0)||...||P (M,In)(u) = λM (u). Two inputs i0, i1 ∈ I are independent
when they belong to two distinct subsets of an independent partition. Two input
actions are dependent, when they are not independent.

Example. The partition
{{a}, {b}, {c, d}} in Figure 1(a) is not an independent

partition because λM (ab) = 10 but λP (M,{a})||P (M,{b})||P (M,{c,d})(ab) = 11.

It immediately follows from Definition 6 and associativity of parallel compo-
sition (with respect to trace equivalence) that any coarser partitioning based on
an independent partition is also an independent partitioning; this is formalised
in the following corollary.

Corollary 1. By combining two or more sets of an independent partition, the
resulting partition remains independent.

Moreover, it holds that any smaller subset of an independent partitioning is
also an independent partitioning of the original state machine projected on the
alphabet of the smaller subset, as specified and proven below.

Lemma 1. Consider an independent partition I0, . . . , In of inputs I for an
FSM M ; then for K ⊆ {0, . . . , n}, {Ii | i ∈ K} is an independent partition
for P (M,

⋃
i∈K(Ii)).

Proof. Consider any subset K ⊆ {0, . . . , n} and {Ii | i ∈ K} and consider any
input sequence u ∈ (

⋃
i∈K Ii)

∗. Since u does not contain a symbol that is in any
Ij for j /∈ K, we have that λ||i∈KP (M,Ii)(u) = λP (M,I0)||...||P (M,In)(u). Since
I0, . . . , In are independent, it follows likewise that λP (M,I0)||...||P (M,In)(u) =
λM (u). Using again that u has no symbol in any Ij for j /∈ K, we know that
λM (u) = λP (M,

⋃

i∈K(Ii))(u). Hence, λ||i∈KP (M,Ii)(u) = λP (M,
⋃

i∈K(Ii))(u), which
was to be shown.

�

Lemma 2. For any independent partition I0, . . . , In ⊆ I, w ∈ I∗ and 0 ≤ i ≤ n,
and state s it holds that PIi(λM (s, w), w) = λP (M,Ii)(s, PIi(w)).

Proof. The proof uses induction on the length of w. Instead of proving the thesis,
we prove the following stronger statement, which is possible because M can be
viewed as the parallel construction of independent components.

PIi(λM ((s0, . . . sn), w), w) = λP (M,Ii)((s
′
0, . . . , s

′
n), PIi(w)) with si = s′i.

Note that the lemma directly follows from this. Below we write s for s0, . . . , sn,
and likewise for s′ and s′′.

The base case (|w| = 0) holds trivially as w = ε. For the induction step we
assume that the induction hypothesis holds for |w| = k and we show that it
holds for w′ = aw for arbitrary a ∈ I.

420 F. Labbaf et al.

We first consider the case where a /∈ Ii. We derive

PIi(λM (s, aw), aw) = PIi(λM (s, a)λM (δ(s, a), w), aw) Definition 1

= PIi(λM (δ(s, a), w), w) Definition 5.

= λP (M,Ii)(s
′, PIi(w)) Induction hypothesis.

= λP (M,Ii)(s
′′, PIi(aw)) Definition 4.

By construction the i-th state in δ(s, a) is equal to si as a /∈ Ii. Hence, using the
induction hypothesis, s′i = si. By definition s′ = δ(s′′, a) and hence, s′′i = s′i = si
as we had to show.

The other case we must consider is a ∈ Ii. Again the derivation is straight-
forward.

PIi(λM (s, aw), aw) = PIi(λM (s, a)λM (δ(s, a), w), aw) Definition 1

= λM (s, a)PIi(λM (δ(s, a), w), w) Definition 5.

= λM (s′, a)λP (M,Ii)(δ(s
′, a), PIi(w)) Induction hypothesis.

= λP (M,Ii)(s, PIi(aw)) Definition 4.

Using the induction hypothesis it follows that si = s′i, which concludes the
proof. �

3.3 Model Learning

Active model learning, introduced by Dana Angluin, was originally designed to
formulate a hypothesis H about the behavior of a System Under Learning (SUL)
as an FSM. Model learning is often described in terms of the Minimally Adequate
Teacher (MAT). In the MAT framework, there are two phases: (i) hypothesis
construction, where a learning algorithm poses Membership Queries (MQ) to
gain knowledge about the SUL using reset operations and input sequences; and
(ii) hypothesis validation, where based on the model learned so far, the learner
proposes a hypothesis H about the “language” of the SUL and asks Equivalence
Queries (EQ) to test it. The results of the queries are organised in an observation
table. The table is iteratively refined and is used to formulate H .

Definition 7. (Observation Table) An observation table is a triple (S,E, T),
where S ⊆ I∗ is a prefix-closed set of input strings (i.e., prefixes); E ⊆ I+ is a
suffix-closed set of input strings (i.e., suffixes); and T is a table where rows are
labeled by elements from S∪ (S.I), columns are labeled by elements from E, such
that for all pre ∈ S ∪ (S.I) and suf ∈ E, T (pre, suf) is the SUL’s output suffix of
size |suf| for the input sequence pre.suf.

The L∗ algorithm initially starts with S only containing the empty word ε,
and E equals set of inputs alphabet I. Two crucial properties of the observation
table, closedness and consistency, defined below, allow for the construction of a
hypothesis.

Compositional Learning for Interleaving Parallel Automata 421

Definition 8. (Closedness Property) An observation table is closed iff for all
w ∈ S.I there is a w′ ∈ S that for all suf ∈ E, T (w, suf) = T (w′, suf) holds.

Definition 9. (Consistency Property) An observation table is consistent iff for
all pre1, pre2 ∈ S, if for all suf ∈ E, T (pre1, suf) = T (pre2, suf), it holds that
T (pre1.α, suf) = T (pre2.α, suf) for all α ∈ I, suf ∈ E.

MQs are posed until these two properties hold, and once they do, a hypothe-
sis H is formulated. After formulating H , L∗ works under the assumption that
an EQ can return either a counter-example (CE) exposing the non-conformance,
or yes, if H is indeed equivalent to the SUL. When a CE is found, a CE pro-
cessing method adds prefixes and/or suffixes to the observation table and hence
refines H . The aforementioned steps are repeated until EQ confirms that H
and SUL are the same. In between MQs, we often need to bring the FSM back
to a known state; this is done through reset operations, which are one of our
metrics for measuring the efficiency of the algorithm. EQs are posed by run-
ning a large number of test-cases and hence they are (two- to three) orders of
magnitude larger than MQs. These test cases are generated through a random-
walk of the graph or through a deterministic algorithm that tests all states
and transitions for a given fault model. Two examples of deterministic test-case
generation algorithms are the W- and WP-method [7]. It appears from recent
empirical evaluations that for realistic systems deterministic equivalence queries
are not efficient [4].

Since we are going to be learning the system in terms of components with
disjoint alphabets, we define the following projection operator that removes all
the transitions that are not in the projected alphabet. Our compositional learn-
ing algorithm basically learns a black-box with respect to its projection on the
actions available in each purported component.

Definition 10. (L∗ with projected alphabet) Given an SUL M = (S, s0, I, O, δ, λ)
and I ′ ⊂ I, L∗(M, I ′) returns P (M, I ′) by running algorithm L∗ with projected
alphabet I ′ on M .

4 Compositional Active Learning

In this section, we present an algorithm that learns the SUL in separate compo-
nents and uses the interleaving parallel composition of the learned components
to reach the total behavior of the system. Each component has an input alphabet
Ii, which is disjoint from the alphabet of all the other components. The set of
the input alphabets of components IF = {I1, . . . , In} is a partition of the total
system’s input alphabet. The main idea is to find an independent partitioning
IF . To reach such a partitioning, we start with a partition with singleton sets
and iteratively merge those sets that are found to be dependent on each other.
Then for Ii ∈ IF , we learn the SUL with the projected alphabet Ii, and compute
the product of the obtained components with interleaving parallel composition.
The result is equivalent to the SUL if IF is an independent partition.

422 F. Labbaf et al.

Algorithm 1: Compositional Learning Algorithm (CL∗)
Result: H

1 Input: IF = {I1, . . . , In}, M
2 H ← LearnInParts(M, IF)
3 eq ← Equivalence-Query(H ,M)
4 while eq �= yes do
5 CE ← eq

6 D ← InvolvedSets(CE, IF)

7 IF ← Composition(IF , D)

8 H ← LearnInParts(M, IF)
9 eq ← Equivalence-Query(H ,M)

10 end

11 return H , IF

Definition 11. (LearnInParts) The LearnInParts function gets M =
(S, s0, I, O, δ, λ) and the partition IF = {I1, . . . , In} of I and returns the in-
terleaving parallel composition of the learned components.

LearnInParts(M, IF) = L∗(M, I1) || . . . || L∗(M, In).

Definition 12. (Composition) Given a partition IF = {I1, . . . , In} and D ⊆
{1, . . . , n}, the Composition of IF over D merges all the Ii (i ∈ D) in IF .

Composition(IF ,D) = (IF \ {Ii|i ∈ D}) ∪ { ⋃
i∈D

Ii
}
.

Example. If IF = {{a}, {b}, {c}, {d}} andD = {1, 3, 4}, then Composition(IF ,D)
= {{a, c, d}, {b}}.
Definition 13. (InvolvedSets) The function InvolvedSets gets a counter-example
CE and a partition IF = {I1, . . . , In} and returns indices of the sets in IF that
contains at least one character of CE:

InvolvedSets(CE, IF) = {j | Ij ∈ IF , ∃i CE[i] ∈ Ij},

where the ith character of CE is denoted by by CE[i].

The function InvolvedSets allows us to detect some dependent sets by using a
minimal counter-example since all actions in the counter-example are dependent,
as we prove in Theorem 2.

Algorithm 1 shows the pseudo-code of the compositional learning algorithm.
Initially the algorithm is called with the singleton partitioning IF of the al-
phabet I and the SUL M , i.e., if the input alphabet is I = {a1, a2, . . . , an},
then the initial partition of the alphabet will be IF = {{a1}, {a2}, . . . , {an}}.
The LearnInParts method on line 2 learns each of the components given the
corresponding alphabet set using the algorithm L∗ and returns the interleaving

Compositional Learning for Interleaving Parallel Automata 423

parallel composition of the learned components. If the oracle (MAT) returns
yes for the equivalence query regarding hypothesis H , the algorithm terminates
and returns H . Otherwise an(other) iteration of the loop is performed. The
InvolvedSets method in line 6 extracts the dependent sets from the counter-
example returned by the oracle; subsequently, Composition merges those sets
into one. The LearnInParts method in line 8 is run again and the loop continues
until the correct hypothesis is learned. We assume that the oracle always returns
a minimal counter-example; this assumption is used in the proof of soundness
(Theorem 2).

4.1 Termination Analysis

To prove the termination of our algorithm, we start with the following lemma
which indicates how the counter-example is used to merge the partitions.

Lemma 3. Let IF = {I1, . . . , Im} be a partition of the system’s input alphabet.
If the teacher responds with a counter-example CE, then there are at least two
actions u ∈ Ii, v ∈ Ij in CE such that Ii �= Ij ∧ Ii, Ij ∈ IF .

Proof. We prove this by contradiction. Suppose CE consists of actions that all
belong to Ii. Let Ci = L∗(M, Ii) with output function λCi

. Since the output of
L∗ is always the correctly learned FSM of the SUL, λM (CE) = λCi(CE). Also,
since Ci is a component of H produced by LearnInParts, λH (CE) = λCi(CE)
based on Definition 2. This means CE can not be a counter-example. �

The next lemma uses Lemma 3 to show how counter-examples will ensure
progress in the algorithm, eventually guaranteeing termination.

Lemma 4. At each round of the algorithm CL∗, |IF | decreases by at least 1.

Proof. By Lemma 3, at each round of the algorithm, at least two dependent sets
are found by InvolvedSets, and the algorithm merges these dependent sets into
a single set. Thus the size of the partition decrements by at least one; hence, the
lemma follows. �

Now we have the necessary ingredients to prove termination below.

Theorem 1. The Compositional Learning Algorithm terminates.

Proof. Assume, towards contradiction, that the algorithm does not terminate.
Let I be the alphabet, an IFk be the partition of I after the kth round of
the algorithm. By Lemma 4, after at least k = |I| − 1 rounds, |IFk | = 1.
Also by the assumption, the algorithm has not terminated at round k. Since
IFk = I, the algorithm reduces to algorithm L∗ which terminates. Hence, the
contradiction. �

We prove next that every time we merge two partitions, there is a sound
reason (i.e., dependency of actions) for it.

Theorem 2. Let CE be the minimal counter-example returned by the oracle at
round k of the algorithm and IF = {I1, . . . , In} the partition of the alphabet at
the same round. Then, all actions in CE are dependent.

424 F. Labbaf et al.

Proof. Let CE = wa, w ∈ I∗ and a ∈ I, and d = {d1, . . . , dm} be an in-
dependent partition for the SUL M . Assume some actions in w are indepen-
dent from a (proof by contradiction). Let dk be the set in d that includes a.
The set I \ dk contains all the independent actions from a. For M , we define
OM = Pdk

(λM (wa)); according to Lemma 2, OM = λP (M,dk)(Pdk
(wa)). The

algorithm makes the hypothesis H = P (M, I1)|| . . . ||P (M, In) at the current
round k. Since dk is the union of a subset of IF (algorithm has not terminated
yet), OH = Pdk

(λH (wa)) = λP (H ,dk)(Pdk
(wa)). If OH �= OM , then Pdk

(wa) is
a smaller counter-example than wa, which is a contradiction. Otherwise if OH =
OM , given that wa is a counter-example, PI\dk

(λM (wa)) �= PI\dk
(λH (wa)); if

so, PI\dk
(wa) is a smaller counter-example, hence the contradiction. �

By Theorems 2 and 1, we have shown that the algorithm detects the indepen-
dent action sets and eventually terminates. The next theorem is formulated to
show that it terminates as soon as all dependent action sets have been detected.

Theorem 3. Let IF = {I1, . . . , In} be an independent partition of the alphabet
at round k. The algorithm terminates in this round.

Proof. We prove this by contradiction. Assume that the algorithm does not
terminate, and CE is the minimal counter-example returned by the oracle. By
theorem 2, InvolvedSets returns two or more dependent sets from IF . Since all
the elements in IF are pairwise independent, we confront the contradiction. �

4.2 Processing Counter-examples

As mentioned in Theorem 2, we require all the actions in a minimal counter-
example returned by the oracle to be dependent. However, most equivalence
checking methods do not find the minimal counter-example. For a non-minimal
counter-example, we define a process called “distillation”, which asks a number
of extra queries to find the dependent actions. It iteratively gets a subset of
InvolvedSets(CE, IF) in the order of their sizes and merges its members together,
producing a set M. The algorithm introduces PM (CE) as output if it is a counter-
example.

Suppose CE is the counter-example returned by the oracle at round k of the
algorithm, and IF is the alphabet partition at that round. To distill two or more
dependent sets from CE, we follow Algorithm 2. The function CutCE on line 2
takes a counter-example CE and returns the smallest prefix of CE, which is also
a counter-example (i.e., the SUL and the hypothesis model produce different
outputs for it). Then, iteratively, it gets a subset of InvolvedSets(CE, IF) in the
order of their sizes and merges its members together, producing set M. The
algorithm returns PM (CE) as output if it is a counter-example.

The cost of CE-distillation algorithms is exponential in terms of the size of
CE in the worst case. However, in the results section, we show that in practice,
the cost of this part is not very significant compared to the total cost of learning.

Theorem 4. All actions in the output of the CE distillation algorithm are de-
pendent.

The proof is omitted as it is similar to the proof of Theorem 2.

Compositional Learning for Interleaving Parallel Automata 425

Algorithm 2: CE distillation

Result: CEM
1 Input: IF = {I1, . . . , In}, CE, M, H
2 CE ← CutCE(CE)

3 D ← InvolvedSets(CE, IF)
4 for k ∈ {2, . . . , size(D)} do
5 C ← all k combinations(D)
6 while C is not empty do
7 I ← C.pop
8 A ← ⋃

i∈I Ii
9 CEA ← PA(CE)

10 if CEA is a counter-example then
11 Return CEA
12 end

13 end

14 end

5 Empirical Evaluation

In this section, we present the design and the results of the experiments carried
out to evaluate our approach, in order to answer the following research questions:

RQ1 Does CL∗ require fewer resets, compared to L∗?
RQ2 Does CL∗ require fewer input symbols, compared to L∗?

As stated in Section 1, these two research questions measure the efficiency
of a learning method in a machine-independent manner: the number of input
symbols summarises the total cost of a learning campaign, while the number of
resets summarises one of its most costly parts. Note that although active learning
processes are structured in terms of queries, the queries used in the processes
have vastly different lengths and it has been observed earlier that the total
number of input symbols is a more accurate metric for comparison of learning
algorithms than the number queries [36].

5.1 Subject Systems

A meaningful benchmark for our method should feature systems of various state
sizes and various numbers of parallel components and with a non-trivial structure
that may require multiple learning rounds. Also, we would like to have realistic
systems, so that our comparisons have meaningful practical implications.

To this end, we choose the Body Comfort System (BCS) [25], which is an
automotive software product line (SPL) of a Volkswagen Golf model. This SPL
has 27 components, each representing a feature that provides specific functional-
ity. The transition system of each component is provided in a detailed technical
report [24]. We use the finite state machines of the components constructed from

426 F. Labbaf et al.

the transition system representations in [35] and compose several random sam-
ples utilising the interleaving parallel composition (Definition 2) to build the
product FSMs. We automatically constructed 100 FSMs consisting of a mini-
mum of two and a maximum of nine components in this case study. The maxi-
mum number is chosen due the performance limits of L∗; beyond this limit, our
learning campaign for L∗ could take more than four hours. All experiments were
conducted on a computer with an IntelR© Core

TM

M-5Y10c CPU and and 8GB of
physical memory running Ubuntu version 20 and LearnLib version 0.16.0. Our
subject systems have a minimum of 300 states and a maximum of 3840 states,
and their average number of states is 1278.2 with a standard deviation of 847.
We started the calculation of the metrics for subject systems of at least 300
states, since for small subject systems, the advantage of compositional learning
is not significant.

5.2 Experiment Design

To answer the research questions, we implemented the compositional learning
algorithm on top of the LearnLib framework [30]. This implementation uses
the equivalence oracle in two places; to learn projections in the LearnInParts
function and to check the hypothesis/SUL equivalence. The performance of the
algorithm significantly relies on the type of equivalence queries used by the un-
derlying L∗ algorithm. We experimented with a number of equivalence methods
and settled upon using random walks; when using deterministic algorithms such
as the WP- and the WP-method, for large systems, the cost of equivalence
queries becomes prohibitively high and obscures any gain obtained from com-
positionality. To ensure that our results are sound, we have carried out similar
experiments by using an additional deterministic equivalence query at the end
of the learning campaign, when the last random equivalence query does not re-
turn any counter-example. This additional step verifies our comparisons when
an assurance about the accuracy of the learning process is required. More details
about these additional experiments can be found in our public lab package [23]
(https://github.com/faezeh-lbf/CL-Star).

We enabled caching, since caching significantly reduces repetitive queries. We
repeat each learning process three times, comparing the number of resets and
input symbols for L∗ and CL∗.

In addition to reporting the median metrics, their standard deviations, and
the relative percentage of improvements, we use the statistical T-test to answer
the research questions with statistical confidence and report the p-values. We
analyse the distribution of the results and establish their normality using K-
tests. We use the SciPy [20] library of Python to perform statistical analysis and
Seaborn [38] for visualising the results.

5.3 Results

In this section, we first present the results of our experiments and use them to
answer our research questions. Then we show how the number of components in

https://github.com/faezeh-lbf/CL-Star

Compositional Learning for Interleaving Parallel Automata 427

an FSM affects the efficiency of our algorithm. Finally, we discuss threats to the
validity of our empirical results.

Fig. 2: The total number of input symbols and resets in the CL∗ and L∗ methods

We cluster the benchmark into eight categories based on the FSM’s number of
states and illustrate the distribution of input symbols and resets for each cluster
in Figure 2. In this figure, the CL∗ and L∗ methods are compared based on the
metrics mentioned. The scale of the x-axis (the value of metrics) is logarithmic.

Tables 1 and 2 summarise the results of our experiments. For each category,
we calculate the median and standard deviation of our metrics (the number of
input symbols and resets) both for L∗ and CL∗. The metric “progress percentage”
is defined to measure the improvement brought about by compositional learning
(compared to L∗). For each metric, the progress percentage is calculated as (1−
p
q) ∗ 100, where p and q are the value of that metric in CL∗ and L∗, respectively.
A positive progress percentage in a metric shows that the CL∗ is more efficient
in terms of that metric. To measure the statistical significance, we used the one-
sided paired sample T-test to check if there was a significant difference (p < 0.05)
between the metrics in the two algorithms.

Table 1: Comparing the total number of input symbols in the CL∗ and L∗ meth-
ods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 1443710 2834380.581 1329818 2382620.467 14.47 7.43e-3

(600, 900] 4013396 6262292.443 1716878.5 4408369.926 36.44 1.54e-8

(900, 1200] 6387472 6663334.645 1714934.5 3757307.024 52.37 8.36e-7

(1200, 1500] 6259466 9311767.302 1576494 4798094.639 57.28 6.49e-4

(1500, 1800] 9700935 10726103.24 4498072 5576873.639 54.58 4.30e-4

(1800, 2100] 11070428 5310108.013 1649557 13958718.62 37.51 2.96e-2

(2100, 2400] 15348181 6287714.182 1888226 4215184.514 70.80 1.80e-10

(2400, 3840] 24700222.5 14837416.08 4385086 13817389.06 68.42 2.66e-12

428 F. Labbaf et al.

Table 2: Comparing the total number of resets in the CL∗ and L∗ methods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 157971 65257.85738 10433 28259.60196 90.46 1.05e-33

(600, 900] 425260.5 77944.01883 16808 56274.51558 86.33 1.07e-43

(900, 1200] 501347.5 147915.8363 13109 50224.87222 90.87 3.80e-16

(1200, 1500] 712999 136904.04 12811 60125.8884 91.77 4.18e-13

(1500, 1800] 823482 275862.8299 48344 80507.59837 91.73 4.97e-13

(1800, 2100] 1262025 188390.1181 12412 369932.964 84.07 2.18e-06

(2100, 2400] 1412237 220211.8459 15042 53006.08784 95.83 2.44e-14

(2400, 3840] 1900234 427883.9888 46624.5 201052.8807 94.67 2.20e-23

Both Tables 1 and 2 indicate major improvements, particularly for large
systems, in terms of the total number of input symbols and resets, respectively.
Compositional learning reduces the number of symbols up to 70.80 percent and
the number of resets up to 95.83 percent. The statistical tests also confirm this
observations and the p-values obtained from the tests are in all cases very low;
in case of the number of input symbols the p-values range from 10−2 to 10−12,
while for resets they range from 10−6 to 10−43, which are well-below the usual
statistical p-values (0.05) and represent a very high statistical significance.

Fig. 3: The diagrams of improvement brought about by compositional learning
vs. size of the SUL in terms of number states (left) and components (right).

The plots in Figure 3 visualise the improvements brought about by compo-
sitional learning. This plot demonstrates that the saving due to compositional
learning increases as the number of components in SULs increases. We further
analysed the trends of our measured metrics in terms of the number of states
and the number of parallel components. These trends are depicted for the total
number of input symbols in Figure 4 and for the number of resets in Figure 5,
respectively. These figures indicate that the increase of both metrics with the
number of states is more moderate for the compositional learning approach, i.e.,
compositional learning is more scalable. More importantly, the right-hand-side

Compositional Learning for Interleaving Parallel Automata 429

Fig. 4: The effect of FSM sizes in terms of the number of components and states
on the total number of input symbols.

of both figures signifies the effect of compositional learning when the number of
parallel components increases while the number of states remains fixed.

Figure 6 shows the effect of the number of components on the total number
of input symbols for a fixed state-space size for algorithms L∗ and CL∗. In this
plot, as the number of components increases, the corresponding dot will become
darker and larger. According to this figure, the learning cost is lower for SULs
with more components in both L∗ and CL∗. Still, for CL∗ (the right side), the
cost of learning SULs with more components is significantly lower because we
structurally learn these components essentially independently.

As mentioned in Section 4.2, the cost of the CE distillation process can
increase exponentially in the size of the counter-example. However, in practice,
it seems to be much more tractable. To evaluate this, we count the number
of input symbols required by the CE distillation process to learn each SUL.
The median value of this metric is 1961 input symbols, which is insignificant
compared the total cost of learning. In fact, the cost of CE distillation process
for each group in Table 1 is between 0.037 and 0.12 percent of the total learning
cost; the reported total learning cost (total number of input symbols) includes
the cost of CE distillation.

5.4 Threats to Validity

In this section, we summarise the major threats to the validity of our empirical
conclusions. First, we analyse the threats to conclusion validity, i.e., whether the
empirical conclusions necessarily follow from the experiments carried out. Then,
we discuss the threats to external validity concerning the generalisation of our
results to other systems.

We mitigated conclusion validity threats by using statistical tests to ensure
that our observations (both in terms of improvement percentages in Tables 1 and
2 and the visual observations in Figures 2) do represent a statistically significant
improvement. We opt for one-sided paired sample T-tests in order to minimise

430 F. Labbaf et al.

Fig. 5: The effect of the size of FSMs in terms of the number of components and
states on the total number of required input resets.

Fig. 6: The relation between the total number of symbols and the number of
states and components for the algorithms L∗ (left) and CL∗ (right).

the threats to conclusion validity. We only conclude that the CL∗ is more efficient
than the L∗ when there is a meaningful difference (p < 0.05) between the results
of L∗ and CL∗. To make sure that the chosen statistical test is applicable, we
analysed the distribution of the data first.

We mitigated the risk of conclusion validity by using subject systems that
are based on practical systems rather than using randomly generated FSMs.
However, further research is needed to analyse the performance of our approach
based on other benchmarks from other domains. We also mitigated the effect
of using random equivalence queries by repeating the experiments with a final
deterministic query.

Compositional Learning for Interleaving Parallel Automata 431

6 Conclusions

In this paper, we presented a compositional learning method based on Angluin’s
algorithm L∗ that detects and independently learns interleaving parallel compo-
nents of the system under learning. We proved that our algorithm, called CL∗, is
correct and we empirically showed that it causes significant gains in the number
of input symbols and the number of resets in a learning campaign. The gain is
significantly increased with the number of parallel components.

Our algorithm is naturally amenable to parallelisation and developing a
parallel implementation is a natural next step. A more thorough investigation
of counter-example processing in order to efficiently find a minimal counter-
example is an area of further research, particularly, in the light of the recent
results in this area [13]. Finding a trade-off between using deterministic and ran-
dom (or mutation-based) equivalence queries is another area of future research.
We would also like to investigate the possibility of developing equivalence queries
that take the structure of the systems into account: we have observed that much
of the effort in the final equivalence query (on the composed system) is redundant
and the final equivalence query can be made much more efficient by only consid-
ering the dependencies among purportedly independent partitions. Finally, ex-
tending our notion of parallel composition to allow for a possible synchronisation
of components is another direction of future work; we believe inspirations from
concurrency theory and in particular, Milner and Moller’s prime decomposition
theorem [26] may prove effective in this regard. Independently from our work,
Neele and Sammartino [29] proposed an approach to learn synchronous parallel
composition, under the assumption of knowing the alphabets of the components.
This is a promising approach to incorporate synchronous parallel composition
into our framework.

Acknowledgments

We would like to thank Rasta Tadayon and Amin Asadi Sarijalou for their
contributions to the early stages of this work. The work of Mohammad Reza
Mousavi was supported by the UKRI Trustworthy Autonomous Systems Node in
Verifiability, Grant Award Reference EP/V026801/2. We thank the reviewers of
FOSSACS for their insightful and constructive comments, which, in our view, led
to improvements in our final paper. We thank the Artifact Evaluation committee
at ESOP/FOSSACS for their careful review of our lab package.

References

1. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free.
In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxem-
bourg, March 18-22, 2013. pp. 461–468. IEEE Computer Society (2013).
https://doi.org/10.1109/ICSTW.2013.60

https://doi.org/10.1109/ICSTW.2013.60

432 F. Labbaf et al.

2. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and abstraction of the biomet-
ric passport. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification, and Validation - 4th International Symposium on Lever-
aging Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 6415, pp. 673–686.
Springer (2010). https://doi.org/10.1007/978-3-642-16558-0 54

3. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mu-
tation testing. Journal of Automated Reasoning 63(4), 1103–1134 (2019).
https://doi.org/10.1007/s10817-018-9486-0

4. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning
and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim,
H. (eds.) Tests and Proofs - 14th International Conference, TAP@STAF 2020,
Bergen, Norway, June 22-23, 2020, Proceedings [postponed]. Lecture Notes in Com-
puter Science, vol. 12165, pp. 3–22. Springer (2020). https://doi.org/10.1007/978-
3-030-50995-8 1

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed au-
tomata. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 444–462. Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 25

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

7. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based
Testing of Reactive Systems, Advanced Lectures [The volume is the outcome of a
research seminar that was held in Schloss Dagstuhl in January 2004], Lecture Notes
in Computer Science, vol. 3472. Springer (2005). https://doi.org/10.1007/b137241

8. Cifuentes, C., Simon, D.: Procedure abstraction recovery from binary code. In: Pro-
ceedings of the Fourth European Conference on Software Maintenance and Reengi-
neering. pp. 55–64. IEEE (2000). https://doi.org/10.1109/CSMR.2000.827306

9. Damasceno, C.D.N., Mousavi, M.R., da Silva Simão, A.: Learning by sampling:
learning behavioral family models from software product lines. Empir. Softw. Eng.
26(1), 4 (2021). https://doi.org/10.1007/s10664-020-09912-w

10. al Duhaiby, O., Groote, J.F.: Active learning of decomposable systems. In: Bae, K.,
Bianculli, D., Gnesi, S., Plat, N. (eds.) FormaliSE@ICSE 2020: 8th International
Conference on Formal Methods in Software Engineering, Seoul, Republic of Korea,
July 13, 2020. pp. 1–10. ACM (2020). https://doi.org/10.1145/3372020.3391560

11. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10-14, 2017. pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

12. Frohme, M., Steffen, B.: Compositional learning of mutually recursive proce-
dural systems. Int. J. Softw. Tools Technol. Transf. 23(4), 521–543 (2021).
https://doi.org/10.1007/s10009-021-00634-y

13. Frohme, M., Steffen, B.: From languages to behaviors and back. In: Jansen, N.,
Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed
Automata to Model Learning - Essays Dedicated to Frits Vaandrager on the Oc-
casion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp.
180–200. Springer (2022). https://doi.org/10.1007/978-3-031-15629-8 11

14. Garhewal, B., Vaandrager, F.W., Howar, F., Schrijvers, T., Lenaerts, T., Smits,
R.: Grey-box learning of register automata. In: Dongol, B., Troubitsyna, E. (eds.)

https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/b137241
https://doi.org/10.1109/CSMR.2000.827306
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1145/3372020.3391560
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/978-3-031-15629-8_11

Compositional Learning for Interleaving Parallel Automata 433

Integrated Formal Methods - 16th International Conference, IFM 2020, Lugano,
Switzerland, November 16-20, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12546, pp. 22–40. Springer (2020). https://doi.org/10.1007/978-3-030-
63461-2 2

15. Hooimeijer, B., Geilen, M., Groote, J.F., Hendriks, D., Schiffelers, R.R.H.: Con-
structive model inference: Model learning for component-based software ar-
chitectures. In: Fill, H., van Sinderen, M., Maciaszek, L.A. (eds.) Proceed-
ings of the 17th International Conference on Software Technologies, ICSOFT
2022, Lisbon, Portugal, July 11-13, 2022. pp. 146–158. SCITEPRESS (2022).
https://doi.org/10.5220/0011145700003266

16. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bib-
liography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K.
(eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits
- International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 123–148.
Springer (2018). https://doi.org/10.1007/978-3-319-96562-8 5

17. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy
partition refinement. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey
from Process Algebra via Timed Automata to Model Learning : Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday, pp. 321–338. Springer
Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 17

18. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from
languages to program structures. Machine Learning 96(1), 65–98 (2014).
https://doi.org/10.1007/s10994-013-5419-7

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) Run-
time Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8734,
pp. 307–322. Springer (2014). https://doi.org/10.1007/978-3-319-11164-3 26

20. Jones, E., Oliphant, T., Peterson, P.: Scipy: Open source scientific tools for python
(01 2001). https://doi.org/10.1038/s41592-019-0686-2

21. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press (1994). https://doi.org/10.7551/mitpress/3897.001.0001

22. Koschke, R.: Architecture Reconstruction, p. 140–173. Springer-Verlag, Berlin, Hei-
delberg (2009). https://doi.org/10.1007/978-3-540-95888-8 6

23. Labbaf, F., Groot, J.F., Hojjat, H., Mousavi, M.R.: Compositional
Learning for Interleaving Parallel Automata (CL-Star) (Apr 2023).
https://doi.org/10.5281/zenodo.7624699, https://doi.org/10.5281/zenodo.

7624699

24. Lachmann, R., Lity, S., Lischke, S., Beddig, S., Schulze, S., Schaefer, I.:
Delta-oriented test case prioritization for integration testing of software prod-
uct lines. In: Proceedings of the 19th International Conference on Software
Product Line. p. 81–90. SPLC ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2791060.2791073

25. Lity, S., Lachmann, R., Lochau, M., Schaefer, I.: Delta-oriented software product
line test models-the body comfort system case study. Tech. Rep. 2012-07, TU
Braunschweig (2012)

26. Milner, R., Moller, F.: Unique decomposition of processes. Theoretical Computer
Science 107(2), 357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T,
https://www.sciencedirect.com/science/article/pii/030439759390176T

https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.5220/0011145700003266
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1007/978-3-540-95888-8_6
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1016/0304-3975(93)90176-T
https://www.sciencedirect.com/science/article/pii/030439759390176T

434 F. Labbaf et al.

27. Moerman, J.: Learning product automata. In: Unold, O., Dyrka, W., Wieczorek,
W. (eds.) Proceedings of The 14th International Conference on Grammatical Infer-
ence 2018. Proceedings of Machine Learning Research, vol. 93, pp. 54–66. PMLR
(feb 2019), https://proceedings.mlr.press/v93/moerman19a.html

28. Naeem Irfan, M., Oriat, C., Groz, R.: Model inference and testing. Advances in
Computers, vol. 89, pp. 89–139. Elsevier (2013). https://doi.org/10.1016/B978-
0-12-408094-2.00003-5, https://www.sciencedirect.com/science/article/pii/
B9780124080942000035

29. Neele, T., Sammartino, M.: Compositional Automata Learning of Synchronous
Systems. In: Lambers, L., Uchitel, S. (eds.) FASE 2023. Lecture Notes in Computer
Science, Springer (2023)

30. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experi-
mentation. In: Baresi, L., Heckel, R. (eds.) Fundamental Approaches to Software
Engineering. pp. 377–380. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
https://doi.org/10.1145/1081180.1081189

31. Rivest, R., Schapire, R.: Inference of finite automata using hom-
ing sequences. Information and Computation 103(2), 299–347 (1993).
https://doi.org/10.1006/inco.1993.1021

32. Sanchez, L., Groote, J.F., Schiffelers, R.R.H.: Active learning of industrial software
with data. In: Hojjat, H., Massink, M. (eds.) Fundamentals of Software Engineer-
ing - 8th International Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 11761, pp. 95–110.
Springer (2019). https://doi.org/10.1007/978-3-030-31517-7 7

33. Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M.J., Conchon, S., Zäıdi, F.
(eds.) Formal Methods and Software Engineering - 17th International Conference
on Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-5, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9407, pp. 67–83. Springer
(2015). https://doi.org/10.1007/978-3-319-25423-4 5

34. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: Formal Modeling and Analysis of Timed Systems:
17th International Conference, FORMATS 2019, Amsterdam, The Netherlands,
August 27–29, 2019, Proceedings. p. 216–235. Springer-Verlag, Berlin, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-29662-9 13

35. Tavassoli, S., Damasceno, C.D.N., Khosravi, R., Mousavi, M.R.: Adaptive be-
havioral model learning for software product lines. In: Felfernig, A., Fuentes, L.,
Cleland-Huang, J., Assunção, W.K.G., Falkner, A.A., Azanza, M., Luaces, M.Á.R.,
Bhushan, M., Semini, L., Devroey, X., Werner, C.M.L., Seidl, C., Le, V., Horcas,
J.M. (eds.) SPLC ’22: 26th ACM International Systems and Software Product Line
Conference, Graz, Austria, September 12 - 16, 2022, Volume A. pp. 142–153. ACM
(2022). https://doi.org/10.1145/3546932.3546991

36. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (jan 2017).
https://doi.org/10.1145/2967606

37. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) Proceedings
of the 28th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems TACAS 2022. Lecture Notes in Computer Science,
vol. 13243, pp. 223–243. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9 12

38. Waskom, M.L.: seaborn: statistical data visualization. Journal of Open Source
Software 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

https://proceedings.mlr.press/v93/moerman19a.html
https://doi.org/10.1016/B978-0-12-408094-2.00003-5
https://doi.org/10.1016/B978-0-12-408094-2.00003-5
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-030-31517-7_7
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/3546932.3546991
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.21105/joss.03021

Compositional Learning for Interleaving Parallel Automata 435

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Pebble minimization: the last theorems

Gaëtan Douéneau-Tabot(�)

1 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
2 Direction générale de l’armement - Ingénierie des projets, Paris, France

doueneau@irif.fr

Abstract Pebble transducers are nested two-way transducers which can
drop marks (named “pebbles”) on their input word. Such machines can
compute functions whose output size is polynomial in the size of their
input. They can be seen as simple recursive programs whose recursion
height is bounded. A natural problem is, given a pebble transducer, to
compute an equivalent pebble transducer with minimal recursion height.
This problem has been open since the introduction of the model.
In this paper, we study two restrictions of pebble transducers, that can-
not see the marks (“blind pebble transducers” introduced by Nguyên et
al.), or that can only see the last mark dropped (“last pebble transducers”
introduced by Engelfriet et al.). For both models, we provide an effective
algorithm for minimizing the recursion height. The key property used in
both cases is that a function whose output size is linear (resp. quadratic,
cubic, etc.) can always be computed by a machine whose recursion height
is 1 (resp. 2, 3, etc.). We finally show that this key property fails as soon
as we consider machines that can see more than one mark.

Keywords: Pebble transducers · Polyregular functions · Blind pebble
transducers · Last pebble transducers · Factorization forests.

1 Introduction

Transducers are finite-state machines obtained by adding outputs to finite auto-
mata. They are very useful in a lot of areas like coding, computer arithmetic,
language processing or program analysis, and more generally in data stream
processing. In this paper, we consider deterministic transducers which compute
functions from finite words to finite words. In particular, a deterministic two-
way transducer is a two-way automaton with outputs. This model describes
the class of regular functions, which is often considered as one of the func-
tional counterparts of regular languages. It has been intensively studied for its
properties such as closure under composition [5], equivalence with logical trans-
ductions [12] or regular expressions [7], decidable equivalence problem [14], etc.

Pebble transducers and polyregular functions. Two-way transducers can
only describe functions whose output size is at most linear in the input size.
A possible solution to overcome this limitation is to consider nested two-way

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_21

436–455, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_21
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_21&domain=pdf

Pebble minimization: the last theorems 437

transducers. In particular, the model of k-pebble transducer has been studied
for a long time [13]. For k = 1, a 1-pebble transducer is just a two-way transducer.
For k � 2, a k-pebble transducer is a two-way transducer that, when on any
position i of its input word, can call a (k−1)-pebble transducer. The latter takes
as input the original input where position i is marked by a “pebble”. The main
two-way transducer then outputs the concatenation of all the outputs produced
along its calls. The intuitive behavior of a 3-pebble transducer is depicted in
fig. 1. It can be seen as a recursive program whose recursion stack has height 3.
The class of functions computed by pebble transducers is known as polyregular
functions. It has been intensively studied due to its properties such as closure
under composition [11], equivalence with logical interpretations [4], etc.

Input word� �

Main machine

Input word� �
Submachine called in •

pebble

Input word� �

Submachine called in •
pebblepebble

Figure 1: Behavior of a 3-pebble transducer.

Optimization of pebble transducers. Given a k-pebble transducer com-
puting a function f , a very natural problem is to compute the least possible
1 � � � k such that f can be computed by an �-pebble transducer. Further-
more, we can be interested in effectively building an �-pebble transducer for f .
Both questions are open, but they are meaningful since they ask whether we can
optimize the recursion height (i.e. the running time) of a program.

It is easy to observe that if f is computed by a k-pebble transducer, then
|f(u)| = O(|u|k). It was first claimed in a LICS 2020 paper that the minimal
recursion height � of f (i.e. the least possible � such that f can be computed by an
�-pebble transducer) was exactly the least possible � such that |f(u)| = O(|u|�).
However, Bojańczyk recently disproved this statement in [3, Theorem 6.3]: the
function inner-squaring : u1# · · ·#un �→ (u1#)n · · · (un#)n can be computed
by a 3-pebble transducer and is such that |inner-squaring(u)| = O(|u|2), but
it cannot be computed by a 2-pebble transducer. Other counterexamples were
given in [16] using different proof techniques. Therefore, computing the minimal
recursion height of f is believed to be hard, since this value not only depends
on the output size of f , but also on the word combinatorics of this output.

438 G. Dou�eneau-Tabot

Optimization of blind pebble transducers. A subclass of pebble trans-
ducers, named blind pebble transducers, was recently introduced in [17]. A
blind k-pebble transducer is somehow a k-pebble transducer, with the difference
that the positions are no longer marked when making recursive calls. The beha-
vior of a blind 3-pebble transducer is depicted in fig. 2. The class of functions
computed by blind pebble transducers is strictly included in polyregular func-
tions [10,17]. The main result of [17] shows that for blind pebble transducers, the
minimal recursion height for computing a function only depends on the growth
of its output. More precisely, if f is computed by a blind k-pebble transducer,
then the least possible 1 � � � k such that f can be computed by an blind
�-pebble transducer is the least possible � such that |f(u)| = O(|u|�).

Input word� �

Main machine

Input word� �
Submachine called in •

Input word� �

Submachine called in •

Figure 2: Behavior of a blind 3-pebble transducer.

Contributions. In this paper, we first give a new proof of the connection
between minimal recursion height and growth of the output for blind pebble
transducers. Furthermore, our proof provides an algorithm that, given a function
computed by a blind k-pebble transducer, builds a blind �-pebble transducer
which computes it, for the least possible 1 � � � k. This effective result is not
claimed in [17], and our proof techniques significantly differ from theirs. Indeed,
we make a heavy use of factorization forests, which have already been used
as a powerful tool in the study of pebble transducers [2,8,10].

Secondly, the main contribution of this paper is to show that the (effective)
connection between minimal recursion height and growth of the output also
holds for the class of last pebble transducers (introduced in [13]). Intuitively,
a last k-pebble transducer is a k-pebble transducer where a called submachine
can only see the position of its call, but not the full stack of the former positions.
The behavior of a last 3-pebble transducer is depicted in fig. 3. Observe that a
blind k-pebble transducer is a restricted version of a last k-pebble transducer.
Formally, we show that if f is computed by a last k-pebble transducer, then the
least possible � such that f can be computed by a last �-pebble transducer is
the least possible � such that |f(u)| = O(|u|�). Furthermore, our proof gives an
algorithm that effectively builds a last �-pebble transducer computing f .

Pebble minimization: the last theorems 439

Input word� �

Main machine

Input word� �
Submachine called in •

pebble

Input word� �

Submachine called in •
pebble

Figure 3: Behavior of a last 3-pebble transducer.

As a third theorem, we show that our result for last pebble transducers is
tight, in the sense that the connection between minimal recursion height and
growth of the output does not hold for more powerful models. More precisely,
we define the model of last-last k-pebble transducers, which extends last
k-pebble transducers by allowing them to see the two last positions of the calls
(and not only the last one). We show that for all k � 1, there exists a function
f such that |f(u)| = O(|u|2) and that is computed by a last-last (2k+1)-pebble
transducer, but cannot be computed by a last-last 2k-pebble transducer. The
proof of this result relies on a counterexample presented by Bojańczyk in [2].

Outline. We introduce two-way transducers in section 2. In section 3 we de-
scribe blind pebble transducers and last pebble transducers. We also state our
main results that connect the minimal recursion height of a function to the
growth of its output. Their proof goes over sections 4 to 6. In section 7, we
finally show that these results cannot be extended to two visible marks.

2 Preliminaries on two-way transducers

Capital letters A,B denote alphabets, i.e. finite sets of letters. The empty word
is denoted by ε. If u ∈ A∗, let |u| ∈ N be its length, and for 1 � i � |u| let u[i]
be its i-th letter. If i � j, we let u[i:j] be u[i]u[i+1] · · ·u[j] (empty if j < i).
If a ∈ A, let |u|a be the number of letters a occurring in u. We assume that
the reader is familiar with the basics of automata theory, in particular two-way
automata and monoid morphisms. The type of total (resp. partial, i.e. possibly
undefined on some inputs) functions is denoted S → T (resp. S ⇀ T).

The machines described in this paper are always deterministic.

Definition 2.1. A two-way transducer T = (A,B,Q, q0, F, δ, λ) consists of:
– an input alphabet A and an output alphabet B;
– a finite set of states Q with q0 ∈ Q initial and F ⊆ Q final;
– a transition function δ : Q× (A � {�,�}) ⇀ Q× {�, �};
– an output function λ : Q× (A � {�,�}) ⇀ B∗ with same domain as δ.

440 G. Dou�eneau-Tabot

The semantics of a two-way transducer T is defined as follows. When given
as input a word u ∈ A∗, T disposes of a read-only input tape containing �u�.
The marks � and � are used to detect the borders of the tape, by convention we
denote them by positions 0 and |u|+1 of u. Formally, a configuration over �u� is
a tuple (q, i) where q ∈ Q is the current state and 0 � i � |u|+1 is the position
of the reading head. The transition relation −→ is defined as follows. Given a
configuration (q, i), let (q′, �) := δ(q, u[i]). Then (q, i) −→ (q′, i′) whenever either
� = � and i′ = i−1 (move left), or � = � and i′ = i+1 (move right), with
0 � i′ � |u|+1. A run is a sequence of configurations (q1, i1) −→ · · · −→ (qn, in).
Accepting runs are those that begin in (q0, 0) and end in a configuration of the
form (q, |u|+1) with q ∈ F (and never visit such a configuration before).

The partial function f : A∗ ⇀ B∗ computed by the two-way transducer T
is defined as follows: for u ∈ A∗, if there exists an accepting run on �u�, then it
is unique, and f(u) is defined as λ(q1, (�u�)[i1]) · · ·λ(qn, (�u�)[in]) ∈ B∗. The
class of functions computed by two-way transducers is called regular functions.

Example 2.2. Let ũ be the mirror image of u ∈ A∗. Let # �∈ A be a fresh symbol.
The function map-reverse : u1# · · ·#un �→ ũ1# · · ·#ũn can be computed by a
two-way transducer, that reads each factor uj from right to left.

It is well-known that the domain of a regular function is always a regular
language (see e.g. [18]). From now on, we assume without losing generalities
that our two-way transducers only compute total functions (in other words,
they have exactly one accepting run on each �u�). Furthermore, we assume that
λ(q,�) = λ(q,�) = ε for all q ∈ Q (we only lose generality for the image of ε).

In the rest of this section, T denotes a two-way transducer with input alpha-
bet A, output alphabet B and output function λ. Now, we define the crossing
sequence in a position 1 � i � |u| of input �u�. Intuitively, it regroups the
states of the accepting run which are visited in this position.

Definition 2.3. Let u ∈ A∗ and 1 � i � |u| . Let (q1, i1) −→ · · · −→ (qn, in) be
the accepting run of T on �u�. The crossing sequence of T in i, denoted
crossuT (i), is defined as the sequence (qj)1�j�n and ij=i.

If μ : A∗ → M is a monoid morphism, we say that any m,m′ ∈ M and a ∈ A
define a μ-context that we denote by m�a�m′. It is well-known that the crossing
sequence in a position of the input only depends on the context of this position,
for a well-chosen monoid, as claimed in proposition 2.4 (see e.g. [7]).

Proposition 2.4. One can build a finite monoid T and a monoid morphism
μ : A∗ → T, called the transition morphism of T , such that for all u ∈ A∗

and 1 � i � |u|, crossuT (i) only depends on μ(u[1:i−1]), u[i] and μ(u[i+1:|u|]).
Thus we denote it crossT (μ(u[1:i−1])�u[i]�μ(u[i+1:|u|]).

Finally, let us define “the output produced below position i”.

Definition 2.5. Let u ∈ A∗ and 1 � i � |u| and q1 · · · qn := crossuT (i). We
define the production of T in i, denoted produT (i), as λ(q1, u[i]) · · ·λ(qn, u[i]).

Pebble minimization: the last theorems 441

By proposition 2.4, it also makes sense to define prodT (m�a�m′) ∈ B∗ to be
produT (i) whenever m = μ(u[1:i−1]), m′ = μ(u[i+1:|u|]) and a = u[i].

3 Blind and last pebble transducers

Now, we are ready to define formally the models of blind pebble transducers
and last pebble transducers. Intuitively, they correspond to two-way transducers
which make a tree of recursive calls to other two-way transducers.

Definition 3.1 (Blind pebble transducer [17]). For k � 1, a blind k-pebble
transducer with input alphabet A and output alphabet B is:
– if k = 1, a two-way transducer with input alphabet A and output B;
– if k � 2, a tree T 〈B1, · · · ,Bp〉 where the subtrees B1, . . . ,Bp are blind

(k−1)-pebble transducers with input A and output B; and the root label T
is a two-way transducer with input A and output alphabet {B1, . . . ,Bp}.

The (total) function f : A∗ → B∗ computed by the blind k-pebble transducer of
definition 3.1 is built in a recursive fashion, as follows:
– for k = 1, f is the function computed by the two-way transducer;
– for k � 2, let u ∈ A∗ and (q1, i1) −→ · · · −→ (qn, in) be the accepting run

of T = (A,B,Q, q0, F, δ, λ) on �u�. For all 1 � j � n, let fj : A∗ → B∗

be the concatenation of the functions recursively computed by the sequence
λ(qj , (�u�)[ij]) ∈ {B1, . . . ,Bp}∗. Then f(u) := f1(u) · · · fn(u).

The behavior of a blind 3-pebble transducer is depicted in fig. 2.

Example 3.2. The function unmarked-square : A∗ → A∗ � {#}, u 	→ (u#)|u| can
be computed by a blind 2-pebble transducer. This machine has shape T 〈T ′〉:
T calls T ′ on each position 1 � i � |u| of its input u, and T ′ outputs u#.

The class of functions computed by a blind k-pebble transducer for some k � 1
is called polyblind functions [10]. They form a strict subclass of polyregular
functions [8,10,17] which is closed under composition [17, Theorem 6.1].

Now, let us define last pebble transducers. They corresponds to blind pebble
transducers enhanced with the ability to mark the current position of the input
when doing a recursive call. Formally, this position is underlined and we define
u•i := u[1] · · ·u[i−1]u[i]u[i+1] · · ·u[|u|] for u ∈ A∗ and 1 � i � |u|.

Definition 3.3 (Last pebble transducer [13]). For k � 1, a last k-pebble
transducer with input alphabet A and output alphabet B is:
– if k = 1, a two-way transducer with input alphabet A �A and output B;
– if k � 2, a tree T 〈L1, · · · ,Lp〉 where the subtrees L1, . . . ,Lp are last

(k−1)-pebble transducers with input A and output B; and the root label T
is a two-way transducer with input A�A and output alphabet {L1, . . . ,Lp}.

The (total) function f : (A�A)∗ → B∗ computed by the last k-pebble transducer
of definition 3.3 is defined in a recursive fashion, as follows:
– for k = 1, f is the function computed by the two-way transducer;

442 G. Dou�eneau-Tabot

– for k � 2, let u ∈ A∗ and (q1, i1) −→ · · · −→ (qn, in) be the accepting run of
T = (A�A,B,Q, q0, F, δ, λ) on �u�. For all 1 � j � n, let fj : A∗ → B∗ be
the concatenation of the functions recursively computed by λ(qj , (�u�)[ij]) ∈
{L1, . . . ,Lp}∗. Let τ : (A � A)∗ → A∗ be the morphism which erases the
underlining (i.e. τ(a) = a), then f(u) := f1(τ(u)•i1) · · · fn(τ(u)•in).

The behavior of a last 3-pebble transducer is depicted in fig. 3. Observe that our
definition builds a function of type (A�A)∗ → B∗, but we shall in fact consider
its restriction to A∗ (the marks are only used within the induction step).

Example 3.4 ([1]). The function square : u �→ (u•1)# · · · (u•|u|)# can be com-
puted by a last 2-pebble transducer, which successively marks and makes recurs-
ive calls in positions 1, 2, etc. However this function is not polyblind [17].

We are ready to state our main result. Its proof goes over sections 4 to 6.

Theorem 3.5 (Minimization of the recursion height). Let 1 � � � k. Let
f : A∗ → B∗ be computed by a blind k-pebble transducer (resp. by a last k-pebble
transducer). Then f can be computed by a blind �-pebble transducer (resp. by a
last �-pebble transducer) if and only if |f(u)| = O(|u|�).
This property is decidable and the construction is effective.

As an easy consequence, the class of functions computed by last pebble trans-
ducers form a strict subclass of the polyregular functions (because theorem 3.5
does not hold for the full model of pebble transducers [3, Theorem 6.3]) and
therefore it is not closed under composition (because any polyregular function
can be obtained as a composition of regular functions and squares [1]).

Even if a (non-effective) theorem 3.5 was already known for blind pebble
transducers [17, Theorem 7.1], we shall first present our proof of this case. Indeed,
it is a new proof (relying on factorization forests) which is simpler than the
original one. Furthermore, understanding the techniques used is a key step for
understanding the proof for last pebble transducers presented afterwards.

4 Factorization forests

In this section, we introduce the key tool of factorization forests. Given a monoid
morphism μ : A∗ → M and u ∈ A∗, a μ-factorization forest of u is an unranked
tree structure defined as follows. We use the brackets 〈· · ·〉 to build a tree.

Definition 4.1 (Factorization forest [19]). Given a morphism μ : A∗ → M
and u ∈ A∗, we say that F is a μ-forest of u if:
– either u = ε and F = ε; or u = 〈a〉 ∈ A and F = a;
– or F = 〈F1, · · · ,Fn〉, u = u1 · · ·un, for all 1 � i � n, Fi is a μ-forest of

ui ∈ A+, and if n � 3 then μ(u) = μ(u1) = · · · = μ(un) is idempotent.

We use the standard tree vocabulary of height, child, sibling, descendant and
ancestor (a node being itself one of its ancestors/descendants), etc. We denote
by NodesF the set of nodes of F . In order to simplify the statements, we identify

Pebble minimization: the last theorems 443

a node t ∈ NodesF with the subtree rooted in this node. Thus NodesF can
also be seen as the set of subtrees of F , and F ∈ NodesF . We say that a node
is idempotent if it has at least 3 children. We denote by Forestsμ(u) (resp.
Forestsdμ(u)) the set of μ-forests of u ∈ A∗ (resp. μ-forests of u ∈ A∗ of height at
most d). We write Forestsμ and Forestsdμ of all forests (of any word).

A μ-forest of u ∈ A∗ can also be seen as “the word u with brackets” in
definition 4.1. Therefore Forestsμ can be seen as a language over Â := A� {〈, 〉}.
In this setting, it is well-known that μ-forests of bounded height can effectively
be computed by a rational function, i.e. a particular case of regular function
that can be computed by a non-deterministic one-way transducer (see e.g. [8]).

Theorem 4.2 (Simon [19,6]). Given a morphism μ : A∗ → M into a finite
monoid M, one can effectively build a rational function forestμ : A∗ → (Â)∗ such
that for all u ∈ A∗, forestμ(u) ∈ Forests3|M|

μ (u).

Building μ-forests of bounded height is especially useful for us, since it enables
to decompose any word in a somehow bounded way. This decomposition will be
guided by the following definitions, that have been introduced in [8,10]. First,
we define iterable nodes as the middle children of idempotent nodes.

Definition 4.3. Let F ∈ Forestsμ(u). Its iterable nodes, denoted IterF , are:
– if F = 〈a〉 ∈ A or F = ε, then IterF := ∅;
– otherwise if F = 〈F1, · · · ,Fn〉, then:

IterF := {Fi : 2 � i � n−1} ∪
⋃

1�i�n

IterFi .

Now, we define the notion of skeleton of a node t, which contains all the des-
cendants of t except those which are iterable.

Definition 4.4 (Skeleton, frontier). Let F ∈ Forestsμ(u), t ∈ NodesF , we
define the skeleton of t, denoted SkelF (t), by:
– if t = 〈a〉 ∈ A is a leaf, then SkelF (t) := {t};
– otherwise if t = 〈F1, · · · ,Fn〉, then SkelF (t) := {t} ∪ SkelF (F1)∪ SkelF (Fn).

The frontier of t is the set FrF (t) ⊆ [1:|u|] containing the positions of u which
belong to SkelF (t) (when seen as leaves of the μ-forest F over u).

Example 4.5. Let M := ({−1, 1, 0},×) and μ : M∗ → M the product. A μ-forest
F of the word (−1)(−1)0(−1)000000 is depicted in Figure 4. Double lines denote
idempotent nodes. The set of blue nodes is the skeleton of the topmost blue node.

It is easy to observe that for F ∈ Forestsdμ(u), the size of a skeleton, or of
a frontier, is bounded independently from F . Furthermore, the set of skeletons
{SkelF (t) : t ∈ IterF ∪ {F}} is a partition of NodesF [8, Lemma 33]. As a
consequence, the set of frontiers {FrF (t) : t ∈ IterF ∪ {F}} is a partition of
[1:|u|]. Given a position 1 � i � |u|, we can thus define the origin of i in F ,
denoted originF (i), as the unique t ∈ IterF ∪ {F} such that i ∈ FrF (t).

444 G. Dou�eneau-Tabot

−1 −1 0 −1 0 0 0 0 0 0

Figure 4: F ∈ Forestsμ((−1)(−1)0(−1)000000) and a skeleton.

Definition 4.6 (Observation). Let F ∈ Forestsμ and t, t′ ∈ NodesF . We say
that t ∈ NodesF observes t′ ∈ NodesF if either t′ is an ancestor of t, or t′ is
the immediate right or left sibling of an ancestor of t.

Nodes that observe •

• observes these nodes

Figure 5: Nodes that observe • and that • observes

The intuition behind the notion of observation (which is not symmetrical) is
depicted in fig. 5. Note that in a forest of bounded height, the number of nodes
that some t observes is bounded. This will be a key argument in the following.
We say that t and t′ are dependent if either t observes t′ or the converse. Given
F , we can translate these notions to the positions of u: we say that i observes
(resp. depends on) i′ if originF (i) observes (resp. depends on) originF (i′).

5 Height minimization of blind pebble transducers

In this section, we show theorem 3.5 for blind pebble transducers. We say that
a two-way transducer T is a submachine of a blind pebble transducer B if T
labels a node in the tree description of B. If B = T 〈B1, . . . ,Bn〉, we say that
the submachine T is the head of B. We let the transition morphism of B
be the cartesian product of all the transition morphisms of all the submachines
of B. Observe that it makes sense to consider the production of a submachine
T in a context defined using the transition morphism of B.

Pebble minimization: the last theorems 445

5.1 Pumpability

We first give a sufficient condition, named pumpability, for a blind k-pebble
transducer to compute a function f such that |f(u)| �= O(|u|k−1). The behavior
of a pumpable blind 2-pebble transducer is depicted in fig. 6 over a well-chosen
input: it has a factor in which the head T1 calls a submachine T2, and a factor
in which T2 produces a non-empty output. Furthermore both factors can be
iterated without destroying the runs of these machines (due to idempotents).

Definition 5.1. Let B be a blind k-pebble transducer whose transition morph-
ism is μ : A∗ → T. We say that the transducer B is pumpable if there exists:
– submachines T1, . . . ,Tk of B, such that T1 is the head of B;
– m0, . . . ,mk, �1, . . . , �k, r1, . . . , rk ∈ μ(A∗);
– a1, . . . , ak ∈ A such that for all 1 � j � k, ej := �jμ(aj)rj is an idempotent;
– a permutation σ : [1:k] → [1:k];

such that if Mj
i := miei+1mi+1 · · · ejmj for all 0 � i � j � k, and if we define

the following context for all 1 � j � k:

Cj := Mσ(j)−1
0 eσ(j)�σ(j)�aσ(j)�rσ(j)eσ(j)Mk

σ(j)

then for all 1 � j � k−1, |prodTj
(Cj)|Tj+1 �= 0, and prodTk

(Ck) �= ε.

a1 a2� �
m0 e1 �1 �a1� r1 e1 m1 e2 �2 μ(a2) r2 e2 m2

a1 a2� �
m0 e1 �1 μ(a1) r1 e1 m1 e2 �2 �a2� r2 e2 m2

T1 head

T2
λ �= ε

Call T2

Figure 6: Pumpability in a blind 2-pebble transducer.

Lemma 5.2 follows by choosing inverse images in A∗ for the mi, �i and ri.

Lemma 5.2. Let f be computed by a pumpable blind k-pebble transducer. There
exists words v0, . . . , vk, u1, . . . , uk such that |f(v0uX

1 · · ·uX
k vk)| = Θ(Xk).

Now, we use pumpability as a key ingredient for showing theorem 3.5, which
directly follows by induction from the more precise theorem 5.3.

Theorem 5.3 (Removing one layer). Let k � 2 and f : A∗ → B∗ be
computed by a blind k-pebble transducer B. The following are equivalent:
1. |f(u)| = O(|u|k−1);

446 G. Dou�eneau-Tabot

2. B is not pumpable;
3. f can be computed by a blind (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective.

Proof. Item 3 ⇒ item 1 is obvious. Item 1 ⇒ item 2 is lemma 5.2. Furthermore,
pumpability can be tested by an enumeration of μ(A∗) and A. It remains to
show item 2 ⇒ item 3 (in an effective fashion): this is the purpose of section 5.2.

5.2 Algorithm for removing a recursion layer

Let k � 2 and U be a blind k-pebble transducer that is not pumpable, and that
computes f : A∗ → B∗. We build a blind (k−1)-pebble transducer U for f .

Let μ : A∗ → T be the transition morphism of U . We shall consider that, on
input u ∈ A∗, the submachines of U can in fact use forestμ(u) ⊆ (Â)∗ as input.
Indeed forestμ is a rational function (by theorem 4.2), hence its information can
be recovered by using a lookaround. Informally, the lookaround feature enables
a two-way transducer to chose its transitions not only depending on its current
state and current letter u[i] in position 1 � i � |u|, but also on a regular property
of the prefix u[1:i−1] and the suffix u[i+1:|u|]. It is well-known that given a two-
way transducer T with lookarounds, one can build an equivalent T ′ that does
not have this feature (see e.g. [15,12]). Furthermore, even if the accepting runs
of T and T ′ may differ, they produce the same outputs from the same positions
(this observation will be critical for last pebble transducers, in order to ensure
that the marked positions of the recursive calls will be preserved).

Now, we describe the two-way transducers that are the submachines of U .
First, it has submachines old-T for T a submachine of U , which are described
in algorithm 1. Intuitively, old-T is just a copy of T . It is clear that if T is a
submachine of U , then old-T (u) is the concatenation of the outputs produced
by (the recursive calls of) T along its accepting run on �u�.

Algorithm 1: Submachines that behave as the original ones
1 Submachine old-T (u)
2 ρ := accepting run of T over �u�; λ := output function of T ;
3 for (q, i) ∈ ρ do
4 if T is a leaf of U then
5 Output λ(q, (�u�)[i]); /* T has output in B∗; */
6 else
7 for B′ ∈ λ(q, (�u�)[i]) do
8 T ′ := head of B′;
9 Call old-T ′(u); /* T makes recursive calls; */

10 end
11 end
12 end

Pebble minimization: the last theorems 447

U also has submachines accelerate-T for T a submachine of U , which are
described in algorithm 2. Intuitively, accelerate-T simulates T while trying to
inline recursive calls in its own run. More precisely, let u ∈ A∗ be the input and
F := forestμ(u). If T calls B′ in 1 � i � |u| that belongs to the frontier of
the root node F of F , then accelerate-T inlines the behavior of the head of B′.
Otherwise it makes a recursive call, except if B′ is a leaf of U . Hence if T is
a submachine of U which is not a leaf, accelerate-T (u) is the concatenation of
the outputs produced by the calls of T along its accepting run.

Algorithm 2: Submachines that try to simulate their recursive calls
1 Submachine accelerate-T (u)
2 /* T is not a leaf of U (i.e. it makes calls); */
3 ρ := accepting run of T over �u�; F := forestμ(u); λ := output fun. of T ;
4 for (q, i) ∈ ρ do
5 for B′ ∈ λ(q, (�u�)[i]) do
6 T ′ := head of B′;
7 if i ∈ FrF (F) then
8 /* We can inline the call since |FrF (F)| is bounded; */
9 Inline the code of old-T ′ (u) /* (see explanations); */

10 else if B′ is a leaf of U then
11 /* Then B′ = T ′ and we can inline the call because the

output of T ′ on input u is bounded; */
12 Inline the code of old-T ′ (u) /* (see explanations); */
13 else
14 /* It is not possible to inline the call to B′, so we

make a recursive call; */
15 Call accelerate-T ′ (u);
16 end
17 end
18 end

Finally, the transducer U is obtained by defining accelerate-T to be its
head, where T is the head of U . Furthermore, we remove the submachines
old-T or accelerate-T which are never called. Observe that U indeed computes
the function f . Furthermore, we observe that U has recursion height (i.e. the
number of nested Call instructions, plus 1 for the head) k−1, since each inlining
of lines 9, 10 and 12 in algorithm 2 removes exactly one recursion layer of U .

It remains to justify that each accelerate-T can be implemented by a two-
way transducer (i.e. with lookarounds but a bounded memory). We represent
variable i by the current position of the transducer. Since it has access to F , the
lookaround can be used to check whether i ∈ FrF (F) or not (since the size of
FrF (F) is bounded). It remains to explain how the inlinings are performed:
– if i ∈ FrF (F), the two-way transducer inlines old-T ′ by executing the same

moves and calls as T ′ does. Once its computation is ended, it has to go back

448 G. Dou�eneau-Tabot

to position i. This is indeed possible since belonging to FrF (F) is a property
that can be detected by using the lookaround, hence the machine only needs
to remember that i was the �-th position of FrF (F) (� being bounded);

– else if B′ = T ′ is a blind 1-pebble transducer, we produce the output of T ′

without moving. This is possible since for all i′ �∈ FrF (F), produT ′(i′) = ε
(hence the output of T ′ on u is bounded, and its value can be determined
without moving, just by using the lookaround). Indeed, if produT ′(i′) �= ε
for such an i′ �∈ FrF (F) when reaching line 12 of algorithm 2, then the
conditions of lemma 5.4 hold, which yields a contradiction. This lemma is
the key argument of this proof, relying on the non-pumpability of U .

Lemma 5.4 (Key lemma). Let u ∈ A∗ and F ∈ Forestsμ(u). Assume that
there exists a sequence T1, . . . ,Tk of submachines of U and a sequence of posi-
tions 1 � i1, . . . , ik � |u| such that:
– T1 is the head of U ;
– for all 1 � j � k−1, |produTj

(ij)|Tj+1
�= 0 and produTk

(ik) �= ε;
– for all 1 � j � k, ij �∈ FrF (F) (i.e. originF (ij) ∈ IterF).

Then B is pumpable.

Proof (idea). We first observe that pumpability follows as soon as the nodes
originF (ij) are pairwise independent. We then show that this independence con-
dition can always be obtained, up to duplicating some iterable subtrees of F
(and some factors of u), because the behavior of a submachine in a blind pebble
transducer does not depend on the positions of the above recursive calls.

6 Height minimization of last pebble transducers

In this section, we show theorem 3.5 for last pebble transducers. The notions of
submachine, head and transition morphism for a last pebble transducer are
defined as in section 5. The transition morphism is now defined over (A �A)∗.

6.1 Pumpability

The sketch of the proof is similar to section 5. We first give an equivalent of
pumpability for last pebble transducers. The intuition behind this notion is de-
picted in fig. 7. The formal definition is however more cumbersome, since we
need to keep track of the fact that the calling position is marked.

Definition 6.1. Let L be a last k-pebble transducer whose transition morphism
is μ : (A∪A)∗ → T. We say that the transducer L is pumpable if there exists:
– submachines T1, . . . ,Tk of L , such that T1 is the head of L ;
– m0, . . . ,mk, �1, . . . , �k, r1, . . . , rk ∈ μ(A∗);
– a1, . . . , ak ∈ A such that for all 1 � j � k, ej := �jμ(aj)rj is idempotent;
– a permutation σ : [1:k] → [1:k];

Pebble minimization: the last theorems 449

such that if we let Mj
i := miei+1mi+1 · · · ejmj for all 0 � i � j � k, and if we

define the following context:

C1 := Mσ(1)−1
0 eσ(1)�σ(1)�aσ(1)�rσ(1)eσ(1)Mk

σ(1)

and for all 1 � j � k−1 the context:

Cj+1 := Mσ(j)−1
0 eσ(j)�σ(j)μ(aσ(j))rσ(j)eσ(j)Mσ(j+1)−1

σ(j)

eσ(j+1)�σ(j+1)�aσ(j+1)�rσ(j+1)eσ(j+1)Mk
σ(j+1) if σ(j) < σ(j + 1);

Cj+1 := Mσ(j)−1
0 eσ(j+1)�σ(j+1)�aσ(j+1)�rσ(j+1)eσ(j+1)

Mσ(j)−1
σ(j+1)eσ(j)�σ(j)μ(aσ(j))rσ(j)eσ(j)Mk

σ(j) otherwise;

then for all 1 � j � k−1, |prodTj
(Cj)|Tj+1 �= 0, and prodTk

(Ck) �= ε.

a1 a2� �
m0 e1 �1 �a1� r1 e1 m1 e2 �2 μ(a2) r2 e2 m2

a1 a2� �
m0 e1 �1 μ(a1) r1 e1 m1 e2 �2 �a2� r2 e2 m2

T1 head

T2
λ �= ε

Call T2

Figure 7: Pumpability in a last 2-pebble transducer.

We obtain lemma 6.2 by a proof which is similar to that of lemma 5.2.

Lemma 6.2. Let f be computed by a pumpable last k-pebble transducer. There
exists words v0, . . . , vk, u1, . . . , uk such that |f(v0uX

1 · · ·uX
k vk)| = Θ(Xk).

Theorem 6.3 (Removing one layer). Let k � 2 and f : A∗ → B∗ be
computed by a last k-pebble transducer L . The following are equivalent:
1. |f(u)| = O(|u|k−1);
2. L is not pumpable;
3. f can be computed by a last (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective.

Proof. Item 3 ⇒ item 1 is obvious. Item 1 ⇒ item 2 is lemma 6.2. Furthermore,
pumpability can be tested by an enumeration of μ(A∗) and A. It remains to
show item 2 ⇒ item 3 (in an effective fashion): this is the purpose of section 6.2.

450 G. Dou�eneau-Tabot

6.2 Algorithm for removing a recursion layer

Let k � 2 and U be a last k-pebble transducer that is not pumpable, and
that computes f : A∗ → B∗. We build a last (k−1)-pebble transducer U for
f . Let μ : (A � A)∗ → T be the transition morphism of U . As before (using a
lookaround), the submachines of U have access to forestμ(u) on input u ∈ A∗.

Now, we describe the submachines of U . It has submachines old-T -along-ρ
for T a submachine of U and ρ a run of T , which are described in algorithm 1.
Intuitively, these machines mimics the behavior of T along the run ρ (which is
not necessarily accepting) of T over �v� with v ∈ (A �A)∗.

Since they are indexed by a run ρ, it may seem that we create an infinite
number of submachines, but it will not be the case. Indeed, a run ρ will be
represented by its first configuration (q1, i1) and last configuration (qn, in). This
information is sufficient to simulate exactly the two-way moves of ρ, but there is
still an unbounded information: the positions i1 and in. In fact, the input will be
of the form v = u•i and we shall guarantee that the i1 and in can be detected by
the lookaround if i is marked. Hence the run ρ will be represented in a bounded
way, independently from the input v, and so that its first and last configurations
can be detected by the lookaround of the submachine.

It follows from algorithm 3 that if T is a submachine of U , then for all
v ∈ (A ∪A)∗ and ρ run of T on �v�, old-T -along-ρ (v) is the concatenation of
the outputs produced by (the recursive calls of) T along ρ.

We also define a submachine normal-T -along-ρ-pebble-i that is similar to
old-T -along-ρ, except that it ignores the mark of its input and acts as if it was
in position i (as above for ρ, i will be encoded by a bounded information).

Algorithm 3: Submachines that behave like the original ones
1 Submachine old-T -along-ρ(v)
2 /* v ∈ (A �A)∗; ρ is a run of T over �v�; */
3 λ := output function of T ;
4 for (q, i) ∈ ρ do
5 if T is a leaf of U then
6 Output λ(q, (�v�)[i]); /* T has output in B∗; */
7 else
8 for L ′ ∈ λ(q, (�v�)[i]) do
9 T ′ := head of L ′; ρ′ := accepting run of T ′ on �τ(v)•i�;

10 Call old-T ′-along-ρ′(τ(v)•i); /* Recursive call; */
11 end
12 end
13 end
14 Submachine normal-T -along-ρ-pebble-i(v)
15 /* v ∈ (A �A)∗; ρ is a run of T over �τ(v)•i�; */
16 Simulate old-T -along-ρ (τ(v)•i);

Pebble minimization: the last theorems 451

U also has submachines accelerate-T -along-ρ for T a submachine of U ,
which are described in algorithm 4. Intuitively, accelerate-T -along-ρ simulates
T along ρ while trying to inline some recursive calls. Whenever it is in position i
and needs to call recursively L ′ whose head is T ′, it first slices the accepting run
ρ′ of T ′ on �u•i�, with respect to forestμ(u) and i, as explained in definition 6.4
and depicted in fig. 8. Intuitively, this operation splits ρ′ into a bounded number
of runs whose positions either all observe i, or i observes all of them, or none of
these cases occur (the positions are either 0, |u|+1 or independent of i).

Definition 6.4 (Slicing). Let u ∈ A∗, F ∈ Forestsμ(u) and 1 � i � |u|. We
let ↑ i (resp. ↓ i) be the set of positions that i observes (resp. that observe i).
Let ρ = (q1, i1) −→ · · · −→ (qn, in) be a run of a two-way transducer T on �u•i�.
We build by induction a sequence �1, . . . , �N+1 with �1 := 1 and:
– if �j = n+1 then j := N and the process ends;
– else if i�j ∈ ↑ i (resp. i�j ∈ ↓ i� ↑ i, resp. i�j ∈ [0:|u|+1]� (↑ i ∪ ↓ i)), then

�j+1 is the largest index such that for all �j � � � �j+1−1, i� ∈ ↑ i (resp.
i� ∈ ↓ i� ↑ i, resp. i� ∈ [0:|u|+1]� (↑ i ∪ ↓ i)).

Finally the slicing of ρ ,with respect to F and i, is the sequence of runs ρ1, . . . , ρN
where ρj := (q�j , i�j) −→ (q�j+1, i�j+1) −→ · · · −→ (q�j+1−1, i�j+1−1).

� �
i

positions that

belong to ↓i�↑i
positions that

belong to ↑i

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
ρ7ρ8ρ9ρ10

ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17

Figure 8: Slicing of a run ρ with respect to i and F .

Now, let ρ′1, . . . , ρ
′
N be slicing of the run ρ′ of T ′ on the input u•i. For all

1 � j � N , there are mainly two cases. Either the positions of ρ′j all are in ↑ i or
↓ i. In this case, accelerate-T -along-ρ directly inlines old-T ′-along-ρ′j within its
own run (i.e. without making a recursive call). Otherwise, it makes a recursive
call to accelerate-T ′-along-ρ′j , except if L ′ is a leaf of U (thus L ′ = T ′).

Finally, U is described as follows: on input u ∈ A∗, its head is the submachine
accelerate-T -along-ρ (u), where T is the head of U and ρ is the accepting run
of T on �u� (represented by the bounded information that it is both initial
and final). As before, we remove the submachines which are never called in U .
Observe that we have created a machine with recursion height k−1 (because
line 17 in algorithm 4 prevents from calling a k-th layer).

Let us justify that each accelerate-T -along-ρ can indeed be implemented by
a two-way transducer. First, let us observe that since F has bounded height, the
number N of slices given in line 7 of algorithm 4 is bounded. Furthermore, we
claim that the first and last positions of each ρ′j belong to a given set of bounded
size, which can be detected by a lookaround which has access to i. For the ρ′j

452 G. Dou�eneau-Tabot

Algorithm 4: Submachines that try to simulate their recursive calls
1 Submachine accelerate-T -along-ρ (v)
2 /* T is not a leaf of U (i.e. it makes calls); */
3 /* v ∈ (A �A)∗; ρ is a run of T over �v�; */
4 u := τ(v); F := forestμ(u); λ := output function of T ;
5 for (q, i) ∈ ρ do
6 for L ′ ∈ λ(q, (�v�)[i]) do
7 T ′ := head of L ′; ρ′ := accepting run of T ′ over �u•i�;
8 ρ′1, · · · , ρ′N := slicing of ρ′ with respect to F and i;
9 for j = 1 to N do

10 (q1, i1) −→ · · · (qn, in) := ρ′j
11 if i1, . . . , in ∈ ↑ i then
12 /* We inline the call because n is bounded; */
13 Inline the code of old-T ′-along-ρ′j (u•i);
14 else if i1, . . . , in ∈ ↓ i then
15 /* We can inline the call because the positions

i1, . . . , in are “below” i in F; */
16 Inline the code of old-T ′-along-ρ′j (u•i);
17 else if L ′ is a leaf of U then
18 /* The output of L ′ = T ′ along ρ′j is empty; */
19 else
20 /* It is not possible to inline the call to L ′, so

we make a recursive call; */
21 Call accelerate-T ′-along-ρ′j (u•i);
22 end
23 end
24 end
25 end

whose positions are in ↑ i, this is clear since |↑ i| is bounded (because the frontier
of any node is bounded). For ↓ i� ↑ i we use lemma 6.5, which implies that this
set is a bounded union of intervals. The last case is very similar.

Lemma 6.5. Let 1 � i � |u|, t := originF (i) and t1 (resp. t2) be its immediate
left (resp. right) sibling (they exist whenever t ∈ IterF , i.e. here t �= F). Then:

↓ i� ↑ i = [min(FrF (t1)) : max(FrF (t2))]� {FrF (t1),FrF (t),FrF (t2)}.

This analysis justifies why each ρ′j can be encoded in a bounded way. Now, we
show how to implement the inlinings while using i as the current position:
– if i1, . . . , in ∈ ↑ i, then n is bounded (because |↑ i| is bounded). We can

thus inline old-T ′-along-ρ′j (u•i) while staying in position i. However, when
T ′ calls some L ′′ (of head T ′′) on position i�, we would need to call
old-T ′′-along-ρ′′(u•i�) (where ρ′′ is the accepting run of T ′′ along �u•i��).
But we cannot do this operation, since we are in position i and not in i�.
The solution is that the inlined code calls normal-T ′′-along-ρ′′-pebble-i�(u•i)

Pebble minimization: the last theorems 453

instead, which simulates an accepting run ρ′′ of T on u•i�, even if its in-
put is u•i. Note that i� can be represented as a bounded information and
recovered by a lookaround given u•i as input, since i observes i�;

– if i1, . . . , in ∈ ↓ i � ↑ i, then the nodes originF (i1), . . . , originF (in) are
roughly below originF (i) in F (see fig. 5). We inline old-T ′-along-ρ′j (u•i),
by moving along i1, . . . , in as ρ′j does. We can keep track of the height of
originF (i) above the current originF (i�) (it is a bounded information). With
the lookaround, we can detect the end of ρ′j , and go back to position i.
It remains to justify that U is correct. For this, we only need to show that

when it reaches line 18 in algorithm 4, the output of T ′ along ρ′j is indeed empty.
Otherwise, the conditions of lemma 6.6 would hold (since we never execute two
successive recursive calls in dependent positions). It provides a contradiction.

Lemma 6.6 (Key lemma). Let u ∈ A∗ and F ∈ Forestsμ(u). Assume that
there exists a sequence T1, . . . ,Tk of submachines of U and a sequence of posi-
tions 1 � i1, . . . , ik � |u| such that:
– T1 is the head of U ;
– |produT1

(i1)|T2 �= 0 and produ•ik−1

Tk
(ik) �= ε;

– for all 2 � j � k−1, |produ•ij−1

Tj
(ij)|Tj+1

�= 0;
– for all 1 � j � k−1, originF (ij) and originF (ij+1) are independent;

Then U is pumpable.

Proof (idea). As for lemma 5.4, the key observation is that pumpability follows
as soon as the nodes originF (ij) are pairwise independent. Furthermore, this
condition can be obtained by duplicating some nodes in F .

7 Making the two last pebbles visible

We can define a similar model to that of last k-pebble transducer, which sees
the two last calling positions instead of only the previous one. Let us name this
model a last-last k-pebble transducer. A very natural question is to know
whether we can show an analog of theorem 3.5 for these machines.

Note that for k = 1, 2 and 3, a last-last k-pebble transducer is exactly the
same as a k-pebble transducer. Hence the function inner-squaring of page 2 is
such that |inner-squaring(u)| = O(|u|2) and can be computed by a last-last 3-
pebble transducer, but it cannot be computed by a last-last 2-pebble transducer.
It follows that the connection between minimal recursion height and growth of
the output fails. However, this result is somehow artificial. Indeed, a last-last
2-pebble transducer is a degenerate case, since it can only see one last pebble.
More interestingly, we show that the connection fails for arbitrary heights.

Theorem 7.1. For all k � 2, there exists a function f : A∗ → B∗ such that
|f(u)| = O(|u|2) and that can be computed by a last-last (2k+1)-pebble trans-
ducer, but not by a last-last 2k-pebble transducer.

Proof (idea). We re-use a counterexample introduced by Bojańczyk in [2] to
show a similar failure result for the model of k-pebble transducers.

454 G. Dou�eneau-Tabot

8 Outlook

This paper somehow settles the discussion concerning the variants of pebble
transducers for which the minimal recursion height only depends on the growth
of the output. As soon as two marks are visible, the combinatorics of the output
also has to be taken into account, hence minimizing the recursion height in this
case (e.g. for last-last pebble transducers) seems hard with the current tools.

As observed in [13], one can extend last pebble transducers by allowing the
recursion height to be unbounded (in the spirit of marble transducers [9]).
This model enables to produce outputs whose size grows exponentially in the
size of the input. A natural question is to know whether a function computed by
this model, but whose output size is polynomial, can in fact be computed with
a recursion stack of bounded height (i.e. by a last k-pebble transducer).

Acknowledgements. The author is grateful to Tito Nguyên for suggesting the
study of the recursion height for last pebble transducers.

References

1. Bojańczyk, M.: Polyregular functions. arXiv preprint arXiv:1810.08760 (2018)
2. Bojańczyk, M.: The growth rate of polyregular functions. arXiv preprint

arXiv:2212.11631 (2022)
3. Bojańczyk, M.: Transducers of polynomial growth. In: Proceedings of the 37th

Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 1–27 (2022)
4. Bojańczyk, M., Kiefer, S., Lhote, N.: String-to-string interpretations with

polynomial-size output. In: 46th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2019 (2019)

5. Chytil, M.P., Jákl, V.: Serial composition of 2-way finite-state transducers and
simple programs on strings. In: 4th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 1977. pp. 135–147. Springer (1977)

6. Colcombet, T.: Green’s relations and their use in automata theory. In: Interna-
tional Conference on Language and Automata Theory and Applications. pp. 1–21.
Springer (2011)

7. Dave, V., Gastin, P., Krishna, S.N.: Regular transducer expressions for regular
transformations. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 315–324. ACM (2018)

8. Douéneau-Tabot, G.: Pebble transducers with unary output. In: 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2021
(2021)

9. Douéneau-Tabot, G., Filiot, E., Gastin, P.: Register transducers are marble trans-
ducers. In: 45th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2020 (2020)

10. Douéneau-Tabot, G.: Hiding pebbles when the output alphabet is unary. In: 49th
International Colloquium on Automata, Languages, and Programming, ICALP
2022 (2022)

11. Engelfriet, J.: Two-way pebble transducers for partial functions and their compos-
ition. Acta Informatica 52(7-8), 559–571 (2015)

Pebble minimization: the last theorems 455

12. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Computational Logic (TOCL) 2(2),
216–254 (2001)

13. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: Xml transformation by tree-walking
transducers with invisible pebbles. In: Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp.
63–72. ACM (2007)

14. Gurari, E.M.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM Journal on Computing 11(3), 448–452 (1982)

15. Hopcroft, J.E., Ullman, J.D.: An approach to a unified theory of automata. The
Bell System Technical Journal 46(8), 1793–1829 (1967)

16. Kiefer, S., Nguyên, L.T.D., Pradic, C.: Revisiting the growth of polyregular func-
tions: output languages, weighted automata and unary inputs. arXiv preprint
arXiv:2301.09234 (2023)

17. Nguyên, L.T.D., Noûs, C., Pradic, C.: Comparison-free polyregular functions. In:
48th International Colloquium on Automata, Languages, and Programming, IC-
ALP 2021 (2021)

18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3(2), 198–200 (1959)

19. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94
(1990)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Fixed Points and Noetherian Topologies

Aliaume Lopez1,2(�)

1 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
alopez@irif.fr

2 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France.

Abstract. Noetherian spaces are a generalisation of well-quasi-orderings
to topologies, that can be used to prove termination of programs. They
find applications in the verification of transition systems, some of which
are better described using topology. The goal of this paper is to al-
low the systematic description of computations using inductively defined
datatypes via Noetherian spaces. This is achieved through a fixed point
theorem based on a topological minimal bad sequence argument.

Keywords: Noetherian spaces · topology · well-quasi-orderings · initial
algebras · Kruskal’s Theorem · Higman’s Lemma.

1 Introduction

Let (E ,≤) be a set endowed with a quasi-order. A sequence (xn)n ∈ EN is good
whenever there exists i < j such that xi ≤ xj . A quasi-ordered set (E ,≤) is a
well-quasi-ordered — abbreviated as wqo — if every sequence is good. By calling
a sequence bad whenever it is not good, well-quasi-orderings are equivalently
defined as having no infinite bad sequences. This generalisation of well-founded
total orderings can be used as a basis for proving program termination. For
instance, algorithms alike Example 1.1 can be studied via well-quasi-orderings
and the length of their bad sequences [5]. More generally, one can map the
states of a run to a wqo via a so-called quasi-ranking function to both prove the
termination of the program and gain information about its runtime [27, Chapter
2]. Let us provide a concrete example of this proof scheme.

Example 1.1. Let Alg be the algorithm with three integer variables a, b, c that
non-deterministically performs one of the following operations until a, b or c
becomes negative: (l) 〈a, b, c〉 ← 〈a− 1, b, 2c〉 or (r) 〈a, b, c〉 ← 〈2c, b− 1, 1〉.
Lemma 1.2. For every choice of a, b, c ∈ N3, the algorithm Alg terminates.

Proof. Let us prove that Alg builds a bad sequence of triples when ordering N3

with (a1, b1, c1) ≤ (a2, b2, c2) whenever a1 ≤ a2, b1 ≤ b2, and c1 ≤ c2. If (ai, bi, ci)
and (aj , bj , cj) represent two configurations in a run of Alg, either only rule (l)
was fired and aj < ai, or rule (r) was fired as least once, and bj < bi.

Because (N3,≤) is a well-quasi-ordering (see Dickson’s Lemma in [28]), Alg
terminates for every choice of initial triple (a, b, c) ∈ N3.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 22

456–476, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_22&domain=pdf
http://orcid.org/0000-0002-4205-327X
mailto:alopez@irif.fr
https://doi.org/10.1007/978-3-031-30829-1_22
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_22&domain=pdf

Fixed Points and Noetherian Topologies 457

As a combinatorial tool, well-quasi-orderings appear frequently in varying
fields of computer science, ranging from graph theory to number theory [18, 22,
21, 3]. Well-quasi-orderings have also been highly successful in proving the termi-
nation of verification algorithms. One critical application of well-quasi-orderings
is to the verification of infinite state transition systems, via the study of so-called
Well-Structured Transition Systems (WSTS) [1, 2, 16, 7].

Noetherian spaces. A major roadblock arises when using well-quasi-orders:
the powerset of a well-quasi-order may fail to be one itself [26]. This is particu-
larly problematic in the study of WSTS, where the powerset construction appears
frequently [19, 29, 1]. To tackle this issue, one can justify that the quasi-orders
of interest are not pathological, and are actually better quasi-orders [25, 23]. An-
other approach is offered by the topological notion of Noetherian space, which
as pointed out by Goubault-Larrecq, can act as a suitable generalisation of well-
quasi-orderings that is preserved under the powerset construction [10].

The topological analogues to WSTS enjoy similar decidability properties, and
there even exists an analogue to Karp and Miller’s forward analysis for Petri
nets [11]. Moreover, their topological nature allows to verify systems beyond
the reach of quasi-orderings, such as lossy concurrent polynomial programs [11].
This is possible because the polynomials are handled via results from algebraic
geometry, through the notion of the Zariski topology over Cn [12, Exercise 9.7.53].

One drawback of the topological approach is that many topologies correspond
to a single quasi-ordering. Hence, when the problem is better described via an
ordering, one has to choose a specific topology, and there usually does not exist
a finest one that is Noetherian.

Inductively defined datatypes. As for well-quasi-orders, Noetherian spaces
are stable under finite products and finite sums [28, 12]. While this can be
enough to describe the set of configurations of a Petri net using Nk, it does not
allow to talk about more complex data structures, that are typically defined
inductively, such as lists and trees. To make the above statement precise, let 1
be the singleton set, A + B be the disjoint union of A and B, and A × B their
cartesian product. Then, the set of finite words over an alphabet Σ is precisely
the least fixed point of F : X �→ 1+Σ×X. Similarly, the set of finite trees over
Σ equals lfpX .Σ ×X∗, where lfpX .F (X) denotes the least fixed point of F .

In the realm of well-quasi-orderings, the specific cases of finite words and
finite trees are handled respectively via Higman’s Lemma [18] and Kruskal’s Tree
Theorem [22]. Let us recall that a word u embeds into a word w (written u ≤∗ v)
whenever whenever there exists a strictly increasing map h : |w| → |w′| such
that wi ≤ wh(i) for 1 ≤ i ≤ |w|. Similarly, a tree t embeds into a tree t′ (written
t ≤tree t

′) whenever there exists a map from nodes of t to nodes of t′ respecting
the least common ancestor relation, and increasing the colours of the nodes.
Proofs that finite words and finite trees preserve well-quasi-orderings typically
rely on a so-called minimal bad sequence argument due to Nash-Williams [24].
However, the argument is quite subtle, and needs to be handled with care [9, 30].

458 A. Lopez

In addition, the argument is not compositional and has to be slightly modified
whenever a new inductive construction is desired [as in, e.g., 4, 3].

This picture has been adapted by Goubault-Larrecq to the topological setting
by proposing analogues of the word embedding and tree embedding, together
with a proof that they preserve Noetherian spaces [12, Section 9.7]. However,
both the definitions and the proofs have an increased complexity, as they rely
on an adapted “topological minimal bad sequence argument” that appears to be
even more subtle [14, errata n. 26]. Moreover, the newly introduced topologies
have involved definitions often relying on ad-hoc constructions.

In the case of well-quasi-orderings, two generic fixed point constructions have
been proposed to handle inductively defined datatypes [17, 8]. In these frame-
works, lfpX .F (X) is guaranteed to be a well-quasi-ordering provided that F is a
“well-behaved functor” of quasi-orders. Both proposals, while relying on different
categorical notions, successfully recover Higman’s word embedding and Kruskal’s
tree embedding through their respective definitions as least fixed points. As a side
effect, they reinforce the idea that these two quasi-orders are somehow canonical.

In the case of Noetherian spaces, no equivalent framework exists to build
inductive datatypes, and the notions of “well-behaved” constructors from [17, 8]
rule out the use of important Noetherian spaces, as they require that an element
a ∈ F (X) has been built using finitely many elements of X: while this is the
case for finite words and finite trees, it does not hold for the arbitrary powerset.
Moreover, there have been recent advances in placing Noetherian topologies over
spaces that are not straightforwardly obtained through “well-behaved” defini-
tions, such as infinite words [13], or even ordinal length words [15].

1.1 Contributions of this paper

In this paper, we propose a least fixed point theorem for Noetherian topolo-
gies. This is done in a way that greatly differs from the categorical frameworks
introduced in the study of well-quasi-orders, as the construction of the space
is entirely decoupled from the construction of the topology. In particular, the
carrier set X itself need not be inductively defined.

In this setting, we consider a fixed set X and a map R from topologies τ over
X to topologies R(τ) over X. Because the set of topologies over X is a complete
lattice, it suffices to ask for R to be monotone to guarantee that it has a least
fixed point, that we write lfpτ .R(τ). In general, this least fixed point will not
be Noetherian, but we show that a simple sufficient condition on R guarantees
that it is. This main theorem (Theorem 3.21), encapsulates all the complexity of
the topological adaptations of the minimal bad sequences arguments [12, Section
9.7], and we believe that it has its own interest.

The necessity to separate the construction of the set of points from the con-
struction of the topology might be perceived as a weakness of the theory, when
it is in fact a strength of our approach. We illustrate this by giving a shorter
proof that the words of ordinal length are Noetherian [15], without providing an

Fixed Points and Noetherian Topologies 459

inductive definition of the space. As an illustration of the versatility of our frame-
work, we introduce a reasonable topology over ordinal branching trees (with
finite depth), and prove that it is Noetherian using the same technique.

In the specific cases where the space of interest can be obtained as a least
fixed point of a “well-behaved” functor, we show how Theorem 3.21 can be
used to generalise the categorical framework of Hasegawa [17] to a topological
setting. As well as adding inductively defined topologies (hence, inductively de-
fined datatypes) to the theory of Noetherian spaces, this provide a reasonable
answer to the canonicity issue previously mentioned.

Outline. In Section 2 we recall some of the main results in the theory of Noethe-
rian spaces. In Section 3 we prove our main result (Theorem 3.21). In Section 4
we explore how this result covers existing topological results in the literature,
and provide a new non-trivial Noetherian space (Definition 4.7). In Section 5,
we leverage our main result to devise a Noetherian topology over inductively
defined datatypes (Theorem 5.13), and prove that this generalises the work of
Hasegawa over well-quasi-orders (Theorem 5.15).

2 A Quick Primer on Noetherian Topologies

A topological space is a pair (X , τ) where τ ⊆ P(X), τ is stable under finite
intersections, and τ is stable under arbitrary unions. A subset U ⊆ X is an
open subset when U ∈ τ , and a closed subset when X \ U ∈ τ . As an order-
theoretic counterpart to open and closed subsets, we say that a subest U of
a quasi-ordered set (E ,≤) is upwards-closed whenever for all x ∈ U , x ≤ y
implies y ∈ U . Similarly, a subset is downwards-closed whenever its complement
is upwards-closed. One can convert back and forth between the two as follows:

Notation 2.1. Let (E ,≤) be a quasi-order and (X , τ) be a topological space. The
Alexandroff topology alex(≤) over E is the collection of upwards-closed subsets
of E . The specialisation preorder ≤τ is defined via x ≤ τ y whenever for every
open subset U ∈ τ , if x ∈ U then y ∈ U .

It is an easy check that the specialisation pre-order of the Alexandroff topol-
ogy of a quasi-order ≤ is the quasi-order itself. Beware that several topologies
can share the same specialisation pre-order ≤, and among those, the Alexandroff
topology is the finest.

We can now build the topological analogue to wqos through the notion of
compactness: a subset K of X is defined as compact whenever from every family
(Ui)i∈I of open sets such that K ⊆ ⋃

i∈I Ui, one can extract a finite subset
J ⊆ I such that K ⊆ ⋃

i∈J Ui. A quasi-order (E ,≤) is wqo if and only if every
subset K of E is compact for alex(≤). Generalising this property to arbitrary
topological spaces (X , τ), a topological space (X , τ) is said to be a Noetherian
space whenever every subset of X is compact.

460 A. Lopez

Table 1. An algebra of Noetherian spaces [see 10, 12, 15].

Constructor Syntax Topology

Well-quasi-orders E Alexandroff topology

Complex vectors Ck Zariski topology

Disjoint sum X1 + X2 co-product topology
Product X1 ×X2 product topology

Finite words X ∗ subword topology
Finite trees T(X) tree topology
Finite multisets X� multiset topology

Transfinite words X<α transfinite subword topology
Powerset P(X) Lower-Vietoris

Remark 2.2. A space (X , τ) is Noetherian if and only if for every increasing
sequence of open subsets (Ui)i∈N, there exists j ∈ N such that

⋃
i∈N Ui =

⋃
i≤j Ui.

In order to inductively define Noetherian spaces, we will often rely on basic
constructors such as the disjoint sum and the finite product. For completeness,
we recall in Table 1 usual constructors that preserve Noetherian spaces. This
table also illustrate the versatility of the concept, that encompasses both the
algebraic properties of Ck and the order properties of well-quasi-orders.

3 Refinements of Noetherian topologies

Let us fix a set X . The collection of topologies over X is itself a set, and forms
a complete lattice for inclusion. In this lattice, the least element is the trivial
topology τtriv := {∅,X}, and the greatest element is the discrete topology P(X).
Thanks to Tarski’s fixed point theorem, every monotone function R mapping
topologies over X to topologies over X has a least fixed point, which can be
obtained by transfinitely iterating R from the trivial topology. Writing lfpτ .R(τ)
for the least fixed point of R, our goal is to provide sufficient conditions for
(X , lfpτ .R(τ)) to be Noetherian.

Definition 3.1. A refinement function over a set X is a function R mapping
topologies over X to topologies over X . Moreover, we assume that R(τ) is Noethe-
rian whenever τ is, and that R(τ) ⊆ R(τ ′) when τ ⊆ τ ′.

As (X , τtriv) is always Noetherian, (X ,Rn(τtriv)) is Noetherian for all n ∈ N
and refinement function R. However, it remains unclear whether the transfinite
iterations needed to reach a fixed point preserve Noetherian spaces.

We demonstrate in Example 3.2 how to obtain the topology alex(≤) over
N as a least fixed point of some simple refinement function. Before that, let us
define the notion of upwards-closure: given a quasi-order (E ,≤) and a set E ⊆ E ,
let us define the upwards-closure of E, written ↑≤ E, as the set of elements that
are greater or equal than some element of E in E .

Fixed Points and Noetherian Topologies 461

Example 3.2 (Natural Numbers). Over X := N, one can define Div(τ) as the
collection of the sets ↑≤ (U + 1) for U ∈ τ , plus N itself. Then Div(τtriv) =
{∅, ↑≤ 1,N}, Div2(τtriv) = {∅, ↑≤ 1, ↑≤ 2,N}. More generally, for every k ≥ 0,

Divk(τtriv) = {∅, ↑≤ 1, . . . , ↑≤ k,N}. It is an easy check that lfpτ .Div(τ) is pre-
cisely alex(≤), which is Noetherian because (N,≤) is a well-quasi-ordering.

3.1 An ill-behaved refinement function

Not all refinement functions behave as nicely as in Example 3.2, and one can
obtain non-Noetherian topologies via their least fixed points.

Let us consider for this section Σ := {a, b} with the discrete topology, i.e.,
{∅, {a}, {b}, Σ}. Let us now build the set Σ∗ of finite words over Σ. Whenever
U and V are subsets of Σ∗, let us write UV for their concatenation, defined
as {uv : u ∈ U, v ∈ V }. To construct an ill-behaved refinement function, we will
associate to a topology τ the set {UV : U ∈ {∅, {a}, {b}, Σ} , V ∈ τ}. However,
the latter fails to be a topology in general. This problem frequently appears in
this paper, and is solved by considering the so-called generated topology.

Let us briefly recall that for every set X and collection of subsets B ⊆
P(X), one can construct the topology generated from B as the least topology
on X containing B. This topology coincides with the one containing arbitrary
unions of finite intersections of subsets in B. We say that B is a subbasis of τ
when τ is the topology generated by B. Alexanders’s Subbase Lemma allows to
study Noetherian spaces in this setting [12, Thm. 4.4.29]: it states that checking
whether a subset K of X is compact in τ can be done by considering only open
subsets in B, i.e., that for every family (Ui)i∈I of a subbasis B of τ such that
K ⊆ ⋃

i∈I Ui, one can extract a finite subset J ⊆ I such that K ⊆ ⋃
j∈J Uj .

Definition 3.3. Let Rpref be the function mapping a topology τ over Σ∗ to the
topology generated by the sets UV where U ⊆ Σ and V ∈ τ ,

We refer to Figure 1 for a graphical presentation of the first two iterations
of the refinement function Rpref . For the sake of completeness, let us compute
lfpτ .Rpref(τ), which is the Alexandroff topology of the prefix ordering on words.

Definition 3.4. The prefix topology3 τpref∗ , over Σ
∗ is generated by the follow-

ing open sets: U1 . . . UnΣ
∗, where n ≥ 0 and Ui ⊆ Σ.

Lemma 3.5. The prefix topology over Σ∗ is the least fixed point of Rpref.

Lemma 3.6. The function Rpref is a refinement function.

Proof. It is an easy check that whenever τ ⊆ τ ′, Rpref(τ) ⊆ Rpref(τ
′). Now, as-

sume that τ is Noetherian, it remains to prove that Rpref(τ) remains Noetherian.
Consider a subset E ⊆ Σ∗ and let us prove that E is compact in Rpref(τ).

3 This definition differs from what is called the “prefix topology” in the literature
[see 6, 12, resp. Section 8 and Exercise 9.7.36].

462 A. Lopez
Σ∗

∅

Σ∗

∅

aΣ∗ bΣ∗

Σ∗

∅

aΣ∗ bΣ∗

aaΣ∗ abΣ∗ baΣ∗ bbΣ∗

Fig. 1. Iterating Rpref over Σ
∗. On the left the trivial topology τtriv, followed by Rpref ,

and on the right Rpref
2.

For that, we consider an open cover E ⊆ ⋃
i∈I Wi, where Wi ∈ Rpref(τ).

Thanks to Alexander’s subbase lemma, we can assume without loss of generality
that Wi is a subbasic open set of Rpref(τ), that is, Wi = UiVi with Ui ⊆ Σ and
Vi ∈ τ .

Since (Σ∗, τ) × (Σ∗, τ) is Noetherian (see Table 1), there exists a finite set
J ⊆ I such that

⋃
i∈J Ui × Vi =

⋃
i∈I Ui × Vi. This implies that E ⊆ ⋃

i∈J UiVi,
and provides a finite subcover of E. ��

The sequence
⋃

0≤i≤k a
ibΣ∗, for k ∈ N, is a strictly increasing sequence of

opens. Therefore, the prefix topology is not Noetherian. The terms aibΣ∗ can
be observed in Figure 1 as a diagonal of incomparable open sets.

Corollary 3.7. The topology lfpτ .Rpref(τ) is not Noetherian.

The prefix topology is not Noetherian, even when starting from a finite al-
phabet. However, we claimed in Section 1 that there is a natural generalisation
of the subword embedding to topological spaces which is Noetherian. Before in-
troducing this topology, let us write [U1, . . . , Un] as a shorthand notation for the
set Σ∗U1Σ

∗ . . . Σ∗UnΣ
∗.

Definition 3.8 (Subword topology [12, Definition 9.7.26]). Given a topo-
logical space (Σ, τ), the space Σ∗ of finite words over Σ can be endowed with the
subword topology, generated by the open sets [U1, . . . , Un] when Ui ∈ τ .

The topological Higman lemma [12, Theorem 9.7.33] states that the subword
topology over Σ∗ is Noetherian if and only if Σ is Noetherian. Although the
subword topology might seem ad-hoc, it can be validated as a generalisation
of the subword embedding because the subword topology of alex(≤) equals the
Alexandroff topology of the subword ordering of ≤, for every quasi-order ≤ over
Σ [12, Exercise 9.7.30]. Let us now reverse engineer a refinement function whose
least fixed point is the subword topology.

Definition 3.9. Let (Σ, θ) be a topological space. Let Eθ
words be defined as map-

ping a topology τ over Σ∗ to the topology generated by the following sets: ↑≤∗ UV
for U, V ∈ τ ; and ↑≤∗ W , for W ∈ θ.

Fixed Points and Noetherian Topologies 463

Σ∗

∅

Σ∗aΣ∗ Σ∗bΣ∗

Σ∗aΣ∗aΣ∗ Σ∗aΣ∗bΣ∗ Σ∗bΣ∗aΣ∗ Σ∗bΣ∗bΣ∗

Fig. 2. The topology Eθ
words

2(τtriv), with bold red arrows for the inclusions that were
not present between the “analogous sets” in Rpref

2(τtriv). We have taken θ to be the
discrete topology over Σ.

Lemma 3.10. Let (Σ, θ) be a topological space. The subword topology over Σ∗

is the least fixed point of Eθ
words.

In order to show that Eθ
words is a refinement function, we first claim that the

two parts of the topology can be dealt with separately.

Lemma 3.11 ([12, Proposition 9.7.18]). If (X , τ) and (X , τ ′) are Noethe-
rian, then X endowed with the topology generated by τ ∪ τ ′ is Noetherian.

Lemma 3.12. Let (Σ, θ) be a Noetherian topological space. The map Eθ
words is

a refinement function over Σ.

Proof. We leave the monotonicity of Eθ
words as an exercice and focus on the proof

that Eθ
words(τ) is Noetherian, whenever τ is. Thanks to Lemma 3.11, it suffices

to prove that the topology generated by the sets ↑≤∗ UV (U, V open in τ), and
the topology generated by the sets ↑≤∗ W (W open in θ) are Noetherian.

Let (↑≤∗ UiVi)i∈N be a sequence of open sets. Because Noetherian topologies
are closed under products (see Table 1), there exists k such that

⋃
i≤k Ui × Vi =⋃

i∈N Ui × Vi. Hence,
⋃

i≤k ↑≤∗ UiVi =
⋃

i∈N ↑≤∗ UiVi

Let ↑≤∗ Wi be a sequence of open sets. Because θ is Noetherian, there exists
k such that

⋃
i≤k Wi =

⋃
i∈N Wi, hence

⋃
i≤k ↑≤∗ Wi =

⋃
i∈N ↑≤∗ Wi. ��

We have designed two refinement functions Rpref and Eθ
words over Σ

∗. Fixing θ
to be the discrete topology over Σ, the least fixed point of Rpref is not Noetherian
while the least fixed point of Eθ

words is. We have depicted the result of iterating
Eθ
words twice over the trivial topology in Figure 2. As opposed to Rpref , the

“diagonal” elements are comparable for inclusion.

3.2 Well-behaved refinement functions

In this section, we will show how the behaviour of refinement function with
respect to subsets will act as a sufficient condition to separate the well-behaved

464 A. Lopez

ones from the others. In order to make the idea of computing the refinement
function directly over a subset precise, we will replace a subset with the induced
topology by a “restricted” topology over the whole space.

Definition 3.13. Let (X , τ) be a topological space and H be a closed subset of
X . Define the subset restriction τ |H to be the topology generated by the open
subsets U ∩H where U ranges over τ .

Let X be a topological space, and H be a proper closed subset of X . The
space X endowed with τ |H has a lattice of open sets that is isomorphic to the
one of the space H endowed with the topology induced by τ , except for the entire
space X itself. As witnessed by Example 3.14, the two spaces are in general not
homeomorphic.

Example 3.14. Let R be endowed with the usual metric topology. The set {a}
is a closed set when a ∈ R. The induced topology over {a} is {∅, {a}}. The
subset restriction of the topology to {a} is τa := {∅, {a},R}. Clearly, (R, τa) and
({a}, τtriv) are not homeomorphic.

In order to build intuition, let us consider the special case of an Alexandroff
topology over X and compute the specialisation preorder of τ |H, where H is a
downwards closed set.

Lemma 3.15. Let τ = alex(≤) over a set X , and x, y ∈ X. Then, x ≤ τ |H y if
and only if x ≤ τ y ∧ y ∈ H or x �∈ H. In other words, Hc is collapsed to an
equivalence class below H itself.

Definition 3.16. A topology expander is a refinement function E that satisfies
the following extra property: for every Noetherian topology τ satisfying τ ⊆ E(τ),
for all closed set H in τ , E(τ)|H ⊆ E(τ |H)|H.

Lemma 3.17. The refinement function Rpref is not a topology expander.

Proof. Let us consider τ := {∅, aΣ∗, bΣ∗, Σ∗}. Remark that H := aΣ∗ ∪ {ε}
is a closed subset because Σ = {a, b}. It is an easy check that Rpref(τ)|H =
{∅, aaΣ∗, abΣ∗, aΣ∗, Σ∗} �= {∅, aaΣ∗, aΣ∗, Σ∗} = Rpref(τ |H)|H.

Lemma 3.18. When θ is Noetherian, Eθ
words is a topology expander.

Proof. We have proven in Lemma 3.12 that Eθ
words is a refinement function. Let

us now prove that it is a topology expander.

Let τ be a Noetherian topology over Σ∗, such that τ ⊆ Eθ
words(τ). Let H

be a closed subset of (Σ∗, τ). Notice that as H is closed in τ , and since τ ⊆
Eθ
words(τ), H is downwards closed for ≤∗. As a consequence, (↑≤∗ UV) ∩H =

(↑≤∗ (U ∩H)(V ∩H)) ∩H. Hence, Eθ
words(τ)|H ⊆ Eθ

words(τ |H)|H. ��

Fixed Points and Noetherian Topologies 465

3.3 Iterating Expanders

Our goal is now to prove that topology expanders are refinement functions that
can be safely iterated. For that, let us first define precisely what “iterating
transfinitely” a refinement function means.

Definition 3.19. Let (X , τ) be a topological space, and E be a topology expander.

The limit topology Eα(τ) is defined as: τ when α = 0, E(Eβ(τ)) when α = β+1,
and as the join of the topologies Eβ(τ) for all β < α, when α is a limit ordinal.

We devote the rest of this section to proving our main theorem, which im-
mediately implies that least fixed points of topology expanders are Noetherian.
Notice that the theorem is trivial whenever α is a successor ordinal.

Proposition 3.20. Let α be an ordinal, τ be a topology, and E be a topology
expander. If Eβ(τ) is Noetherian for all β < α, and τ ⊆ E(τ), then Eα(τ) is
Noetherian.

Theorem 3.21 (Main Result). Let X be a set and E be a topology expander.
The least fixed point of E is a Noetherian topology over X .

The topological minimal bad sequence argument. In order to prove The-
orem 3.21, we will use a topological minimal bad sequence argument. To that
end, let us first introduce a well-founded partial ordering over the elements of
Eα(τ). With an open set U ∈ Eα(τ), we associate a depth depth(U), defined as
the smallest ordinal β ≤ α such that U ∈ Eβ(τ). We then define U � V to hold
whenever depth(U) ≤ depth(V), and U � V whenever depth(U) < depth(V). It
is an easy check that this is a well-founded total quasi-order over Eα(τ).

As a first step towards proving that Eα(τ) is Noetherian for a limit ordinal
α, we first reduce the problem to open subsets of depth strictly less than α itself.

Lemma 3.22. Let α be a limit ordinal, and E be a topology expander. The topol-
ogy Eα(τ) has a subbasis of elements of depth strictly below α.

Let us recall the notion of topological bad sequence designed by Goubault-
Larrecq [12, Lemma 9.7.31] in the proof of the Topological Kruskal Theorem,
adapted to our ordering of subbasic open sets.

Definition 3.23. Let (X , τ) be a topological space. A sequence U = (Ui)i∈N of
open subsets is good if there exists i ∈ N such that Ui ⊆

⋃
j<i Uj. A sequence

that is not good is called bad.

Lemma 3.24. Let α be a limit ordinal, and E be a topology expander such that
Eα(τ) is not Noetherian. Then, there exists a bad sequence U of open subsets
in Eα(τ) of depth less than α that is lexicographically minimal for �. Such a
sequence is called minimal bad.

466 A. Lopez

We deduce that in a limit topology, minimal bad sequences are not allowed to
use open subsets of arbitrary depth. This will then be leveraged via Lemma 3.27
to decrease the depth by one.

Lemma 3.25. Let α be a limit ordinal, τ be a topology and E be a topology
expander such that Eβ(τ) is Noetherian for all β < α. Assume that U = (Ui)i∈N
is a minimal bad sequence of Eα(τ). Then, for every i ∈ N, depth(Ui) is either
0 or a successor ordinal.

Definition 3.26. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U ∈ Eα(τ). The topology Down(U) is generated by
the open sets V such that V � U , where V ranges over Eα(τ).

Lemma 3.27. Let α be an ordinal, E be a topology expander and U ∈ Eα(τ). If
depth(U) is a successor ordinal, then U ∈ E(Down(U)).

If U is a minimal bad sequence in (X,Eα(τ)), then Ui �⊆
⋃

j<i Uj := Vi, i.e.,
Ui∩V c

i �= ∅. We can now use our subset restriction operator to devise a topology
associated to this minimal bad sequence. Noticing that Hi := V c

i is a closed set
in Eα(τ), hence we can build the subset restriction Down(Ui)|Hi.

Definition 3.28. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U = (Ui)i∈N be a minimal bad sequence in Eα(τ).
Then, the minimal topology U(Eα(τ)) is generated by

⋃
i∈N Down(Ui)|Hi, where

Hi := (
⋃

j<i Uj)
c.

Lemma 3.29. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U = (Ui)i∈N be a minimal bad sequence in Eα(τ).
Then, the minimal topology U(Eα(τ)) is Noetherian.

Proof. Assume by contradiction that U(Eα(τ)) is not Noetherian. Let us define
Vi as

⋃
j<i Uj , and Hi as V

c
i .

Thanks to [12, Lemma 9.7.15] there exists a bad sequence W := (Wi)i∈N of
subbasic elements of U(Eα(τ)). By definition, Wi is in some Down(Uj)|Hj . Let
us select a mapping ρ : N → N, such that Wi ∈ Down(Uρ(i))|Hρ(i). This amounts
to the existence of an open Tρ(i), such that Tρ(i) � Uρ(i), and Wi = Tρ(i) \ Vρ(i).
Without loss of generality we assume that ρ is monotonic.

Let us build the sequence Y defined by Yi := Ui if i < ρ(0) and Yi := Tρ(i)

otherwise. This is a sequence of open sets in Eα(τ) that is lexicographically
smaller than U , hence Y is a good sequence: there exists i ∈ N such that Yi ⊆⋃

j<i Yj .

– If i < ρ(0), then Ui ⊆
⋃

j<i Uj contradicting that U is bad.
– If i ≥ ρ(0), let us write Yi = Tρ(i) ⊆

⋃
j<ρ(0) Uj ∪

⋃
j<i Tρ(j). By taking the

intersection with Hρ(i), we obtain Wi ⊆
⋃

j<i Wj , contradicting the fact that
W is a bad sequence.
�
We are now ready to leverage our knowledge of minimal topologies associated

with minimal bad sequences to carry on the proof of our main theorem.

Fixed Points and Noetherian Topologies 467

Proposition 3.20. Let α be an ordinal, τ be a topology, and E be a topology
expander. If Eβ(τ) is Noetherian for all β < α, and τ ⊆ E(τ), then Eα(τ) is
Noetherian.

Proof. If α is a successor ordinal, then α = β + 1 and Eα(τ) = E(Eβ(τ)). Be-
cause E respects Noetherian topologies, we immediately conclude that Eα(τ)
is Noetherian. We are therefore only interested in the case where α is a limit
ordinal.

Assume by contradiction that Eα(τ) is not Noetherian, using Lemma 3.24
there exists a minimal bad sequence U := (Ui)i∈N. Let us write di := depth(Ui) <
α. Thanks to Lemma 3.25, di is either 0 or a successor ordinal.

Because Eβ(τ) is Noetherian for β < α, there are finitely many open subsets
Ui at depth β for every ordinal β < α. Indeed, if they were infinitely many, one
would extract an infinite bad sequence of opens in Eβ(τ), which is absurd.

Furthermore, the sequence (di)i∈N must be monotonic, otherwise U would
not be lexicographically minimal. We can therefore construct a strictly increas-
ing map ρ : N → N such that 0 < depth(Uρ(j)) and depth(Ui) < depth(Uρ(j))
whenever 0 ≤ i < ρ(j).

Let us consider some i = ρ(n) for some n ∈ N. Let us write Vi :=
⋃

j<i Uj ,
and Hi := X \ Vi. The set Vi is open in Down(Ui) by construction of ρ, hence
Hi is closed in Down(Ui). As E is a topology expander, we derive the following
inclusions:

E(Down(Ui))|Hi ⊆ E(Down(Ui)|Hi)|Hi

⊆ E(U(Eα(τ)))|Hi

Recall that Ui ∈ E(Down(Ui)) thanks to Lemma 3.27. As a consequence,
Ui \ Vi = Wi \ Vi for some open set Wi in E(U(Eα(τ))). Thanks to Lemma 3.29,
and preservation of Noetherian topologies through topology expanders, the latter
is a Noetherian topology. Therefore, (Wρ(i))i∈N is a good sequence. This provides
an i ∈ N such that Wρ(i) ⊆

⋃
ρ(j)<ρ(i) Wρ(j). In particular,

Uρ(i) \ Vρ(i) = Wρ(i) \ Vρ(i) ⊆
⋃

ρ(j)<ρ(i)

Wρ(j) \ Vρ(i) ⊆
⋃

ρ(j)<ρ(i)

Wρ(j) \ Vρ(j)

⊆
⋃

ρ(j)<ρ(i)

Uρ(j) \ Vρ(j) ⊆
⋃

j<ρ(i)

Uj = Vρ(i)

This proves that Uρ(i) ⊆ Vρ(i), i.e. that Uρ(i) ⊆
⋃

j<ρ(i) Uj . Finally, this contra-
dicts the fact that U is bad. ��

We have effectively proven that being well-behaved with respect to closed
subspaces is enough to consider least fixed points of refinement functions. This
behaviour should become clearer in the upcoming sections, where we illustrate
how this property can be ensured both in the case of Noetherian spaces and
well-quasi-orderings.

468 A. Lopez

4 Applications of Topology Expanders

We now briefly explore topologies that can be proven to be Noetherian using
Theorem 3.21. It should not be surprising that both the topological Higman
lemma and the topological Kruskal theorem fit in the framework of topology
expanders, as both were already proven using a minimal bad sequence argument.
However, we will proceed to extend the use of topology expander to spaces for
which the original proof did not use a minimal bad sequence argument, and
illustrate how they can easily be used to define new Noetherian topologies.

Finite words and finite trees. As a first example, we can easily recover the
topological Higman lemma [12, Theorem 9.7.33] because the subword topology
is the least fixed point of Eθ

words, which is a topology expander (see Lemmas 3.10
and 3.18).

It does not require much effort to generalise this proof scheme to the case of
the topological Kruskal theorem [12, Theorem 9.7.46]. As a shorthand notation,
let us write t ∈ �U〈V 〉 whenever there exists a subtree t′ of t whose root is
labelled by an element of U and whose list of children belongs to V . Recall that
we write u ≤∗ v when u is a scattered subword of v, and t ≤tree t

′ when t embeds
in t′ as a tree (see page 2). As for the subword topology, the definition is ad-hoc
but correctly generalises the tree embedding relation because the tree topology
of alex(≤) is the Alexandroff topology of ≤tree, for every ordering ≤ over Σ [12,
Exercise 9.7.48].

Definition 4.1 ([12, Definition 9.7.39]). Let (Σ, θ) be a topological space.
The space T(Σ) of finite trees over Σ can be endowed with the tree topology,
the coarsest topology such that �U〈V 〉 is open whenever U is an open set of Σ,
and V is an open set of T(Σ)

∗
in its subword topology.

Definition 4.2. Let (Σ, θ) be a topological space. Let Etree
θ be the function that

maps a topology τ to the topology generated by the sets ↑≤tree U〈V 〉, for U open
in θ, V open in T(Σ)

∗
with the subword topology of τ .

Lemma 4.3. The tree topology is the least fixed point of Etree
θ, which is a topol-

ogy expander. Hence, the tree topology is Noetherian when θ is.

Ordinal words. Let us now demonstrate how Theorem 3.21 can be applied
over spaces which are proved to be Noetherian without using a minimal bad
sequence argument. For that, let us consider Σ<α the set of words of ordinal
length less than α, where α is a fixed ordinal. Since ≤∗ is in general not a wqo
on Σ<α when ≤ is wqo on Σ, this also provides an example of a topological
minimal bad sequence argument that has no counterpart in the realm of wqos.

Definition 4.4 ([15]). Let (Σ, θ) be a topological space. The ordinal subword

topology over Σ<α is the topology generated by the closed sets F<β1

1 · · ·F<βn
n ,

for n ∈ N, Fi closed in θ, βi < α, and where F<β is the set of words of length
less than β with all of their letters in F .

Fixed Points and Noetherian Topologies 469

The ordinal subword topology is Noetherian [15], but the proof is quite tech-
nical and relies on the in-depth study of the possible inclusions between the
subbasic closed sets. Before defining a suitable topology expander, given an or-
dinal β and a set U ⊆ Σ<α, let us write w ∈ β �U if and only if w>γ ∈ U for all
0 ≤ γ < β.

Definition 4.5. Let (Σ, θ) be a topological space, and α be an ordinal. The

function Eθ
α-words maps a topology τ to the topology generated by the following

sets: ↑≤∗ UV for U, V opens in τ ; ↑≤∗ β � U , for U open in τ , β ≤ α; ↑≤∗ W ,
for W open in θ.

Lemma 4.6. Given a Noetherian space (Σ, θ), and an ordinal α. The map
Eθ
α-words is a topology expander, whose least fixed point contains the ordinal sub-

word topology. Therefore, the ordinal subword topology is Noetherian.

Remark that Definitions 4.2, 4.5 and 3.9 all follow the same blueprint: new
open sets are built as upwards closure for the corresponding quasi-order of the
natural constructors associated to the space. We argue that this blueprint miti-
gates the canonicity issue and the complexity of Definitions 4.1, 4.4 and 3.8.

Ordinal branching trees. As an example of a new Noetherian topology de-
rived using Theorem 3.21, we will consider α-branching trees T<α(Σ), i.e., the
least fixed point of the constructor X �→ 1+Σ×X<α where α is a given ordinal.
This example was not known to be Noetherian, and fails to be a well-quasi-order,
and illustrates how Theorem 3.21 easily applies on inductively defined spaces.

Definition 4.7. Let (Σ, θ) be a Noetherian space. The ordinal tree topology

over α-branching trees is the least fixed point of Eθ
α-trees, mapping a topology

τ to the topology generated by the sets ↑≤tree U〈V 〉, where U ∈ θ, V is open
in (T<α(Σ))<α with the ordinal subword topology, and U〈V 〉 is the set of trees
whose root is labelled by an element of U and list of children belongs to V .

Theorem 4.8. The α-branching trees endowed with the ordinal tree topology
forms a Noetherian space.

Proof. It suffices to prove that Eθ
α-trees is a topology expander. It is clear that

Eθ
α-trees is monotone, and a closed set of Eθ

α-trees(τ) is always downwards closed
for ≤tree. As a consequence, if τ ⊆ Eθ

α-trees(τ) and H is closed in τ , t ∈ V :=
(↑≤tree U〈V 〉) ∩ H if and only if t ∈ H and every children of t belongs to H.
Therefore, (↑≤tree U〈V 〉)∩H = (↑≤tree U〈V ∩H<α〉)∩H. Notice that H<α∩V is
an open of the ordinal subword topology over τ |H. As a consequence, V ∩H ∈
Eθ
α-trees(τ |H)|H.
Let us now check that Eθ

α-trees preserves Noetherian topologies. Let Wi :=
↑≤tree Ui〈Vi〉 be a N-indexed sequence of open sets in Eθ

α-trees(τ) where τ is Noethe-
rian. The product of the topology θ and the ordinal subword topology over τ is
Noetherian thanks to Table 1 and Lemma 4.6. Hence, there exists a i ∈ N such
that Ui × Vi ⊆

⋃
j<i Uj × Vj . As a consequence, Wi ⊆

⋃
j<i Wj . We have proven

that Eθ
α-trees(τ) is Noetherian. ��

470 A. Lopez

At this point, we have proven that the framework of topology expanders
allows to build non-trivial Noetherian spaces. We argue that this bears several
advantages over ad-hoc proofs: (i) the ad-hoc proofs are often tedious and error
prone [12, 13, 15] (ii) the verification that E is a topology expander on the other
hand is quite simple (iii) reduces the canonicity issue of topologies to the choice
of a suitable topology expander.

5 Consequences on inductive definitions

So far, the process of constructing Noetherian spaces has been the following:
first build a set of points, then compute a topology that is Noetherian as a
least fixed point. In the case where the set of points itself is inductively defined
(such as finite words or finite trees), the second step might seem redundant, and
getting rid of it provides a satisfactory answer to the canonicity concerns about
Noetherian topologies.

Before studying inductive definition of topological spaces, the notion of least
fixed-point in this setting has to be made precise. To that purpose, let us now in-
troduce ome basic notions of category theory. In this paper only three categories
will appear, the category Set of sets and functions, the category Top of topolog-
ical spaces and continuous maps, and the category Ord of quasi-ordered spaces
and monotone maps. Using this language, a unary constructor G in the algebra
of wqos defines an endofunctor from objects of the category Ord to objects of
the category Ord preserving well-quasi-orderings.

Notation 5.1. Recall that in a category C, Hom(A,B) is used to denote the
collection of morphisms from the object A to the object B in C. Moreover, Aut(A)
denotes the set of automorphisms of A, i.e., invertible elements of (Hom(A,A), ◦).

In our study of Noetherian spaces (resp. well-quasi-orderings), we will often
see constructorsG′ as first building a new set of structures, and then adapting the
topology (resp. ordering) to this new set. In categorical terms, we are interested
in endofunctorsG′ that are U-lifts of endofunctors on Set, where U is the forgetful
functor from Top (resp. Ord) to Set.

5.1 Divisibility Topologies of Analytic Functors

The goal of this section is to introduce the categorical framework needed to
formalise the automatic definition of a topology over an inductively defined
datatype, and to compare this definition with the work that exists on well-
quasi-orders by Hasegawa [17] and Freund [8]. We will avoid as much as possible
the use of complex machinery related to analytic functors, and use as a defini-
tion an equivalent characterisation given by Hasegawa [17, Theorem 1.6]. For
an introduction to analytic functors and combinatorial species, we redirect the
reader to Joyal [20].

Fixed Points and Noetherian Topologies 471

Notation 5.2. Given G an endofunctor of Set, the category of elements el(G) has
as objects pairs (E, a) with a ∈ G(E), and as morphisms between (E, a) and
(E′, a′) maps f : E → E′ such that Gf (a) = a′.

As an intuition to the unfamiliar reader, an element (E, a) in el(G) is a
witness that a can be produced through G by using elements of E. Morphisms
of elements are witnessing how relations between elements of G(E) and G(E′)
arise from relations between E and E′. As a way to define a “smallest” set of
elements E such that a can be found in G(E), we rely on transitive objects. We
recall that in a category C, if X,A are two objects, the action of Aut(X) on
Hom(X,A) is transitive when for every pair f, g ∈ Hom(X,A), there exists a
h ∈ Aut(X) such that f ◦ h = g.

Notation 5.3. A transitive object in a category C is an object X satisfying the
following two conditions for every object A of C: (a) the set Hom(X,A) in C
is non-empty; (b) the right action of Aut(X) on Hom(X,A) by composition is
transitive.

Notation 5.4. Given an object A in a category C, one can build the slice category
C/A whose objects are elements of Hom(B,A) when B ranges over objects of
C and morphisms between c1 ∈ Hom(B1, A) and c2 ∈ Hom(B2, A) are maps
f : B1 → B2 such that c2 ◦ f = c1.

This notion of slice category can be combined with the one of transitive
object to build so-called “weak normal forms”.

Notation 5.5. A weak normal form of an object A in a category C is a transitive
object in C/A.

A category C has the weak normal form property whenever every object A
has a weak normal form. We are now ready to formulate a definition of analytic
functors through the existence of weak normal forms for objects in their category
of elements.

Notation 5.6. An endofunctor G of Set is an analytic functor whenever its cat-
egory of elements el(G) has the weak normal form property. Moreover; X is a
finite set for every weak normal form f ∈ Hom((X,x), (Y, y)) in el(G)/(Y, y).

Example 5.7. The functor mapping X to X∗ is analytic, and the weak normal
form of a word (X∗, w) is (letters(w), w) together with the canonical injection
from letters(w) to X. In this specific case, the weak normal forms are in fact
initial objects.

Example 5.8. The functor mapping X to X<α is not analytic when α ≥ ω,
because of the restriction that weak normal forms are defined using finite sets.

Let us now explain how these weak normal forms can be used to define a
support associated to the analytic functor, which in turns allows us to build a
notion of substructure ordering over initial algebras of analytic functors.

472 A. Lopez

Definition 5.9. Let G be an analytic functor, (X,x) be an element in el(G) and
f ∈ Hom((Y, y), (X,x)) be a weak normal form in the slice category el(G)/(X,x).
We define f(Y) as the support of x in X, written suppX(x).

Definition 5.10. Let G be an analytic functor and (μG, δ) be an initial al-
gebra of G. We say that a ∈ μG is a child of b ∈ μG whenever a = b or
a ∈ supp μG(δ

−1(b)). The transitive closure of the children relation is called the
substructure ordering of μG and written �.

Example 5.11. The substructure ordering on μG for G(X) := 1+ Σ ×X is the
suffix ordering of words.

We leverage the notion of substructure ordering to define a suitable topol-
ogy expander over initial algebras of analytic functors. Note that this ordering
appears implicitely in the construction of Hasegawa [17, Definition 2.7].

Definition 5.12. Let G′ : Top → Top be a lifting of an analytic functor G, and

(μG, δ) an initial algebra of G. We define EG′
♦ that maps τ to the topology gener-

ated by ↑� δ(U) where U ∈ G′(μG, τ).
We say that lfpτ .E

G′
♦ is the divisibility topology over μG.

Theorem 5.13. Let G′ : Top → Top be a lifting of an analytic functor G, and
(μG, δ) an initial algebra of G. Moreover, we suppose that G′ preserves inclusions.
The map EG′

♦ is a topology expander, hence the divisibility topology is Noetherian.

As a sanity check, we can apply Theorem 5.13 to the sets of finite words
and finite trees, and recover the subword topology and the tree topology that
were obtained in an ad-hoc fashion in Section 4. In addition to validating the
usefulness of Theorem 5.13, we believe that these are strong indicators that
the topologies introduced prior to this work were the right generalisations of
Higman’s word embedding and Kruskal’s tree embedding in a topological setting,
and addresses the canonicity issue of the aforementioned topologies.

Lemma 5.14. The subword topology over Σ∗, (resp. the tree topology over T(Σ))
is the divisibility topology associated to the inductive construction of finite words
(resp. finite trees).

5.2 Divisibility Preorders

We are now going to prove that the divisibility topology correctly generalises
the corresponding notions on quasi-orderings. In the case of finite words, this
translates to the equation alex(≤)∗ = alex(≤∗) [12, Exercise 9.7.30]. We relate
the divisibility topology to the divisibility preorder introduced by Hasegawa [17,
Definition 2.7].

Theorem 5.15. Let G′ the be the lift of an analytic functor respecting Alexan-
droff topologies, Noetherian spaces, and embeddings. Then, the divisibility topol-
ogy of μG is the Alexandroff topology of the divisibility preorder of μG, which is
a well-quasi-ordering.

Fixed Points and Noetherian Topologies 473

6 Outlook

We have provided a systematic way to place a Noetherian topology over an in-
ductively defined datatype, which is correct with respect to its wqo counterpart
whenever it exists. As a byproduct, we obtained a uniform framework that sim-
plifies existing proofs, and serves as an indicator that the pre-existing topologies
were the “right generalisations” of their quasi-order counterparts. Let us now
briefly highlight some interesting properties of the underlying theory.

Differences with the existing categorical frameworks. The existing cate-
gorical frameworks are built around a specific kind of functors [17, 8], while the
notion of topology expander only requires talking about one specific set. This
allows proving that the ordinal subword topology and the α-branching trees are
Noetherian, while these escape both the realm of wqos, and of “well-behaved
functors” having finite support functions.

Quasi-analytic functors. In fact, the proof of Theorem 5.13, never relies on
the finiteness of the support of an element. This means that the definition of
analytic functors can be loosened to allow non finite weak normal forms. We do
not know whether this notion of “quasi-analytic functor” already exists in the
literature.

Transfinite iterations. As the reader might have noticed, all of the least fixed
points considered in this paper are obtained using at most ω steps. This is
because the topology expanders that are presented in the paper are all Scott-
continuous, i.e., they satisfy the equation E(supi τi) = supi E(τi). While The-
orem 3.21 does apply to non Scott-continuous topology expanders, we do not
know any reasonable example of such expander.

Lack of ordinal invariants. Even though our proof that the ordinal subword
topology is Noetherian is shorter than the original one, it actually provides
less information. In particular, it does not provide a bound for ordinal rank of
the lattice of closed sets (called the stature of Σ<α), whereas a clear bound is
provided by the previous approach Goubault-Larrecq et al. [15, Proposition 33].
This limitation already appears in the existing categorical frameworks [17, 8], and
we believe that this is inherent to the use of minimal bad sequence arguments.

Acknowledgements. I thank the anonymous reviewers for their helpful sug-
gestions. I thank Jean Goubault-Larrecq and Sylvain Schmitz for their help and
support in writing this paper, together with Simon Halfon for his insight on
transfinite words.

474 A. Lopez

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theo-
rems for infinite-state systems. Proceedings of LICS’96. pp. 313–321. IEEE (1996).
https://doi.org/10.1109/LICS.1996.561359

2. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. Proceedings of
TACAS’98. Lecture Notes in Computer Science, vol. 1384, pp. 298–312. Springer
(1998). https://doi.org/10.1007/BFb0054179

3. Daligault, J., Rao, M., Thomassé, S.: Well-Quasi-Order of Relabel Functions. Or-
der 27(3), 301–315 (2010). https://doi.org/10.1007/s11083-010-9174-0

4. Dershowitz, N., Tzameret, I.: Gap Embedding for Well-Quasi-Orderings. Proceed-
ings of WoLLIC’03. Electronic Notes in Theoretical Computer Science, vol. 84, pp.
80–90. Elsevier (2003). https://doi.org/10.1016/S1571-0661(04)80846-6

5. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. Proceedings of LICS’11. pp.
269–278. IEEE (2011). https://doi.org/10.1109/LICS.2011.39

6. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: completions.
Mathematical Structures in Computer Science 30(7), 752–832 (2020). https://
doi.org/10.1017/S0960129520000195

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1), 63–92 (2001). https://doi.org/10.1016/

S0304-3975(00)00102-X

8. Freund, A.: From Kruskal’s Theorem to Friedman’s gap condition. Mathemati-
cal Structures in Computer Science 30(8), 952–975 (2020). https://doi.org/10.
1017/S0960129520000298

9. Gallier, J.H.: Ann. Pure Appl. Logic: Erratum to “What’s so special about
Kruskal’s Theorem and the ordinal γ0? A survey of some results in proof the-
ory” [53 (1991) 199–260]. Annals of Pure and Applied Logic 89(2), 275 (1997).
https://doi.org/10.1016/S0168-0072(97)00043-2

10. Goubault-Larrecq, J.: On Noetherian spaces. Proceedings of LICS’07. pp. 453–462.
IEEE (2007). https://doi.org/10.1109/LICS.2007.34

11. Goubault-Larrecq, J.: Noetherian Spaces in Verification. Proceedings of ICALP’10.
Lecture Notes in Computer Science, vol. 6199, pp. 2–21. Springer (2010). https:
//doi.org/10.1007/978-3-642-14162-1_2

12. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory, New Math-
ematical Monographs, vol. 22. Cambridge University Press (2013). https://doi.
org/10.1017/CBO9781139524438

13. Goubault-Larrecq, J.: Infinitary Noetherian Constructions I. Infinite Words.
Colloquium Mathematicum (168), 257–286 (2022). https://doi.org/10.4064/

cm8077-4-2021

14. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory. Electronic
supplements to the book – errata. https://projects.lsv.ens-cachan.fr/

topology/?page_id=12 (2022)

15. Goubault-Larrecq, J., Halfon, S., Lopez, A.: Infinitary Noetherian Constructions
II. Transfinite Words and the Regular Subword Topology (2022), https://doi.
org/10.48550/arXiv.2202.05047

16. Goubault-Larrecq, J., Seisenberger, M., Selivanov, V.L., Weiermann, A.: Well
Quasi-Orders in Computer Science (Dagstuhl Seminar 16031). Dagstuhl Reports
6(1), 69–98 (2016). https://doi.org/10.4230/DagRep.6.1.69

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/BFb0054179
https://doi.org/10.1007/BFb0054179
https://doi.org/10.1007/s11083-010-9174-0
https://doi.org/10.1007/s11083-010-9174-0
https://doi.org/10.1016/S1571-0661(04)80846-6
https://doi.org/10.1016/S1571-0661(04)80846-6
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1016/S0168-0072(97)00043-2
https://doi.org/10.1016/S0168-0072(97)00043-2
https://doi.org/10.1109/LICS.2007.34
https://doi.org/10.1109/LICS.2007.34
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://projects.lsv.ens-cachan.fr/topology/?page_id=12
https://projects.lsv.ens-cachan.fr/topology/?page_id=12
https://doi.org/10.48550/arXiv.2202.05047
https://doi.org/10.48550/arXiv.2202.05047
https://doi.org/10.4230/DagRep.6.1.69
https://doi.org/10.4230/DagRep.6.1.69

Fixed Points and Noetherian Topologies 475

17. Hasegawa, R.: Two applications of analytic functors. Theoretical Computer Science
272(1), 113–175 (2002). https://doi.org/10.1016/S0304-3975(00)00349-2

18. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society 3(1), 326–336 (1952). https://doi.org/10.1112/plms/
s3-2.1.326

19. Jančar, P.: A note on well quasi-orderings for powersets. Information Processing
Letters 72(5), 155–160 (Dec 1999). https://doi.org/10.1016/S0020-0190(99)

00149-0

20. Joyal, A.: Foncteurs analytiques et espèces de structures. Combinatoire
énumérative. Lecture Notes in Mathematics, vol. 1234, pp. 126–159. Springer
(1986). https://doi.org/10.1007/BFb0072514

21. Kř́ıž, I., Thomas, R.: On well-quasi-ordering finite structures with labels. Graphs
and Combinatorics 6(1), 41–49 (1990). https://doi.org/10.1007/BF01787479

22. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory, Series A 13(3), 297–305 (1972). https://doi.
org/10.1016/0097-3165(72)90063-5

23. Milner, E.C.: Basic wqo-and bqo-theory. Graphs and order, pp. 487–502. Springer
(1985). https://doi.org/10.1007/978-94-009-5315-4_14

24. Nash-Williams, C.St.J.A.: On well-quasi-ordering transfinite sequences. Mathemat-
ical Proceedings of the Cambridge Philosophical Society 61(1), 33–39 (1965)

25. Pouzet, M.: Un bel ordre d’abritement et ses rapports avec les bornes d’une mul-
tirelation. CR Acad. Sci. Paris Sér. AB 274, A1677–A1680 (1972)

26. Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1(2), 89–95 (1954).
https://doi.org/10.1112/S0025579300000565

27. Schmitz, S.: Algorithmic Complexity of Well-Quasi-Orders. Habilitation à diriger
des recherches, École normale supérieure Paris-Saclay (2017), https://tel.

archives-ouvertes.fr/tel-01663266

28. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory (2012), https:
//cel.archives-ouvertes.fr/cel-00727025

29. Segoufin, L., Figueira, D.: Bottom-up automata on data trees and vertical XPath.
Logical Methods in Computer Science 13 (2017). https://doi.org/10.23638/

LMCS-13(4:5)2017

30. Singh, D., Shuaibu, A.M., Ndayawo: Simplified proof of Kruskal’s Tree Theo-
rem. Mathematical Theory and Modeling 3, 93–100 (2013). https://doi.org/

10.13140/RG.2.2.12298.39363

https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1007/BF01787479
https://doi.org/10.1007/BF01787479
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1007/978-94-009-5315-4_14
https://doi.org/10.1007/978-94-009-5315-4_14
https://doi.org/10.1112/S0025579300000565
https://doi.org/10.1112/S0025579300000565
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://cel.archives-ouvertes.fr/cel-00727025
https://cel.archives-ouvertes.fr/cel-00727025
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363

476 A. Lopez

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Efficient Cyclic Entailment Procedure in a Fragment
of Separation Logic

Quang Loc Le1(�) and Xuan-Bach D. Le2

1 Department of Computer Science, University College London, London, UK
loc.le@ucl.ac.uk

2 School of Computing and Information Systems, University of Melbourne, Melbourne,
Australia

bach.le@unimelb.edu.au

Abstract. An efficient entailment proof system is essential to compositional ver-
ification using separation logic. Unfortunately, existing decision procedures are
either inexpressive or inefficient. For example, Smallfoot is an efficient procedure
but only works with hardwired lists and trees. Other procedures that can support
general inductive predicates run exponentially in time as their proof search re-
quires back-tracking to deal with a disjunction in the consequent.
This paper presents a decision procedure to derive cyclic entailment proofs for
general inductive predicates in polynomial time. Our procedure is efficient and
does not require back-tracking; it uses normalisation rules that help avoid the in-
troduction of disjunction in the consequent. Moreover, our decidable fragment
is sufficiently expressive: It is based on compositional predicates and can cap-
ture a wide range of data structures, including sorted and nested list segments,
skip lists with fast-forward pointers, and binary search trees. We implemented
the proposal in a prototype tool, called S2SLin, and evaluated it over challenging
problems from a recent separation logic competition. The experimental results
confirm the efficiency of the proposed system.

Keywords: Cyclic Proofs, Entailment Procedure, Separation Logic.

1 Introduction

Separation logic [20,37] has successfully reasoned about programs manipulating pointer
structures. It empowers reusability and scalability through compositional reasoning
[6,7]. A compositional verification system relies on bi-abduction technology which is,
in turn, based on entailment proof systems. Entailment is defined: Given an antecedent
A and a consequent C where A and C are formulas in separation logic, the entailment
problem checks whether A |= C is valid. Thus, an efficient decision procedure for en-
tailments is the vital ingredient of an automatic verification system in separation logic.

To enhance the expressiveness of the assertion language, for example, to specify un-
bounded heaps and interesting pure properties (e.g., sortedness, parent pointers), sep-
aration logic is typically combined with user-defined inductive predicates [9,31,35].
In this setting, one key challenge of an entailment procedure is the ability to support
induction reasoning over the combination of heaps and data content. The problem of

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 23

477–497, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_23
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_23&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

478 Q. L. Le et al.

induction is challenging, especially for an automated inductive theorem prover, where
the induction rules are not explicitly stated. Indeed, this problem is undecidable [1].

Developing a sound and complete entailment procedure that could be used for
compositional reasoning is not trivial. It is unknown how model-based systems, e.g.
[14,15,17,18,22,23], could support compositional reasoning. In contrast, there was evi-
dence that proof-based decision procedures, e.g., Smallfoot [2] and the variant [12], and
Cycomp [42], can be extended to solve the bi-abduction problem, which enables com-
positional reasoning and scalability [7,25]. Smallfoot was the centre of the biabductive
procedure deployed in Infer [7], which which greatly impacted academia and industry
[13]. Furthermore, Smallfoot is very efficient due to its use of the “exclude-the-middle”
rule, which can avoid the proof search over the disjunction in the consequent. How-
ever, Smallfoot works for hardwired lists and binary trees only. In contrast, Cycomp, a
recent complete entailment procedure, is a cyclic proof system without “exclude-the-
middle“ and can support general inductive predicates but has double exponential time
complexity due to the proof search (and back-tracking) in the consequent.

This paper introduces a cyclic proof system with an “exclude-the-middle”-styled de-
cision procedure for decidable yet expressive inductive predicates. We especially show
that our procedure runs in polynomial time when the maximum number of fields of data
structures is bounded by a constant. The decidable fragment, SHLIDe, contains induc-
tive definitions of compositional predicates and pure properties. These predicates can
capture nested list segments, skip lists and trees. The pure properties of small models
can model a wide range of common data structures, e.g. a list with fast-forward point-
ers, sorted nested lists, and binary search trees [22,32]. This fragment is much more
expressive than Smallfoot’s and is incomparable to Cycomp’s [42]: there exist some
entailments our system can handle, but Cyccomp could not, and vice versa.

Our procedure is a variant of the cyclic proof system introduced by Brotherston
[3,5] and has become one of the leading solutions to induction reasoning in separation
logic. Intuitively, a cyclic proof is naturally represented as a tree of statements (entail-
ments in this paper). The leaves are either axioms or nodes linked back to inner nodes;
the tree’s root is the theorem to be proven, and nodes are connected to one or more
children by proof rules. Alternatively, a cyclic proof can be viewed as a tree possibly
containing some back-links (a.k.a. cycles, e.g., “C, if B, if C”) such that the proof sat-
isfies some global soundness condition. This condition ensures that the proof can be
viewed as a proof of infinite descent. For instance, for a cyclic entailment proof with
inductive definitions, if every cycle contains an unfolding of some inductive predicate,
then that predicate is infinitely often reduced into a strictly “smaller” predicate. This
infinity is impossible as the semantics of inductive definitions only allows finite steps
of unfolding. Hence, that proof path with the cycle can be disregarded.

The proposed system advances Brotherston’s system in three ways. First, the pro-
posed proof search algorithm is specialized to SHLIDe, which includes “exclude-the-
middle“ rules and excludes any back-tracking. The existing proof procedures typically
search for proof (and back-track) over disjunctive cases generated from unfolding in-
ductive predicates in the RHS of an entailment. To avoid such costly searches, we pro-
pose “exclude-the-middle“-styled normalised rules in which the unfolding of inductive
predicates in the RHS always produces one disjunct. Therefore, our system is much

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 479

more efficient than existing systems. Second, while a standard Brotherston system is
incomplete, our proof search is complete in SHLIDe: If it is stuck (i.e., it can not apply
any inference rules), then the root entailment is invalid.

Lastly, while the global soundness in [5] must be checked globally and explicitly,
every back-link generated in SHLIDe is sound by design. We note that Cycomp, intro-
duced in [42], was the first work to show the completeness of a cyclic proof system.
However, in contrast to ours, it did not discuss the global soundness condition, which is
the crucial idea attributing to the soundness of cyclic proofs.

Contributions Our primary contributions are summarized as follows.

– We present a novel decision procedure, S2SLin, for the entailment problem in sepa-
ration logic with inductive definitions of compositional predicates.

– We provide a complexity analysis of the procedure.
– We have implemented the proposal in a prototype tool and tested it with the SL-

COMP benchmarks [38,39]. The experimental results show that S2SLin is effective
and efficient compared to state-of-the-art solvers.

Organization The remainder of the paper is organised as follows. Sect. 2 describes
the syntax of formulas in fragment SHLIDe. Sect. 3 presents the basics of an “exclude-
the-middle” proof system and cyclic proofs. Sect. 4 elaborates on the result, the novel
cyclic proof system, including an illustrative example. Sect. 5 discusses soundness and
completeness. Sect. 6 presents the implementation and evaluation. Sect. 7 discusses
related work. Finally, Sect. 8 concludes the work.

2 Decidable Fragment SHLIDe

Subsection 2.1 presents syntax of separation logic formulae and recursive definitions of
linear predicates and local properties. Subsection 2.2 shows semantics.

2.1 Separation Logic Formulas

Concrete heap models assume a fixed finite collection of data structures Node, a fixed
finite collection of field names Fields, a set Loc of locations (heap addresses), a set
of non-addressable values Val, with the requirement that Val∩Loc=∅ (i.e., no pointer
arithmetic). null is a special element of Val. Z denotes the set of integers (Z⊆Val) and
k denotes integer numbers. Var an infinite set of variables, v̄ a sequence of variables.

Syntax Disjunctive formula Φ, symbolic heaps Δ, spatial formula κ, pure formula π,
pointer (dis)equality φ, and (in)equality formula α are as follows.

Φ ::= Δ | Φ ∨ Φ Δ ::= κ∧π | ∃v. κ∧π
κ ::= emp | x�→c(f :v, .., f :v) | P(v̄) | κ∗κ

π ::= true | α | ¬π | π∧π
α ::= a=a | a≤a a ::=k | v

where v∈Var, c∈Node and f∈Fields. Note that we often discard field names f of points-
to predicates x�→c(f :v, .., f :v) and use the short form as x�→c(v̄). v1 =v2 is the short
form of ¬(v1=v2). E denotes for either a variable or null. Δ[E/v] denotes the formula
obtained from Δ by substituting v by E. A symbolic heap is referred as a base, denoted
as Δb, if it does not contain any occurrence of inductive predicates.

480 Q. L. Le et al.

Inductive Definitions We write P to denote a set of n defined predicates P={P1, ..., Pn}
in our system. Each inductive predicate has following types of parameters: a pair of root
and segment defining segment-based linked points-to heaps, reference parameters (e.g.,
parent pointers, fast-forwarding pointers), transitivity parameters (e.g., singly-linked
lists where every heap cell contains the same value a) and pairs of ordering parameters
(e.g., trees being binary search trees). An inductive predicate is defined as

pred P(r,F ,B̄,u,sc,tg) ≡ emp∧r=F∧sc=tg
∨ ∃Xtl, Z̄, sc′.r �→c(Xtl,p̄,u,sc

′) ∗ κ′ ∗ P(Xtl,F ,B̄,u,sc′,tg) ∧ r 	=F ∧ sc
 sc′

where r is the root, F the segment, B̄ the borders, u the parameter for a transitivity
property, sc and tg source and target, respectively, parameters of an order property,
r �→c(Xtl,p̄,u,sc

′) ∗ κ′ the matrix of the heaps, and
 ∈ {=,≥,≤}. (The extension for
multiple local properties is straightforward.) Moreover, this definition is constrained by
the following three conditions on heap connectivity, establishment, and termination.
Condition C1. In the recursive rule, p̄ = {null}∪Z̄. This condition implies that If
two variables points to the same heap, their content must be the same. For instance, the
following definition of singly-linked lists of even length does not satisfy this condition.

pred ell(r,F) ≡ emp∧r=F ∨ ∃x1,X.r �→c1(x1)∗x1 �→c1(X)∗ell(X,F)∧r 	=F

as n3 and X are not field variables of the node pointed-to by r.
Condition C2. The matrix heap defines nested and connected list segments as:

κ′:=Q(Z,Ū) | κ′∗κ′ | emp
where Z∈p̄ and (Ū \ p̄)∩Z = ∅. This condition ensures connectivity (i.e. all allocated
heaps are connected to the root) and establishment (i.e. every existential quantifier either
is allocated or equals to a parameter).
Condition C3. There is no mutual recursion. We define an order ≺P on inductive pred-
icates as: P ≺P Q if at least one occurrence of predicate Q appears in the definition of P
and Q is called a direct sub-term of P. We use ≺∗

P to denote the transitive closure of ≺P .
Several definition examples are shown as follows.

pred ll(r,F) ≡ emp∧r=F ∨ ∃Xtl.r �→c1(Xtl)∗ll(Xtl, F)∧r 	=F
pred nll(r,F ,B) ≡ emp∧r=F

∨ ∃Xtl,Z.r �→c3(Xtl,Z)∗ll(Z,B)∗nll(Xtl,F ,B)∧r 	=F
pred skl1(r,F) ≡ emp∧r=F ∨ ∃Xtl.r �→c4(Xtl,null,null)∗skl1(Xtl, F)∧r 	=F
pred skl2(r,F) ≡ emp∧r=F

∨ ∃Xtl, Z1.r �→c4(Z1,Xtl,null)∗skl1(Z1,Xtl)∗skl2(Xtl, F)∧r 	=F
pred skl3(r,F) ≡ emp∧r=F

∨ ∃Xtl,Z1,Z2.r �→c4(Z1,Z2,Xtl)∗skl1(Z1,Z2)∗skl2(Z2,Xtl)∗skl3(Xtl,F)∧r 	=F
pred tree(r,B) ≡ emp∧r=B

∨ ∃rl, rr.r �→ct(rl,rr)∗tree(rl,B)∗tree(rr,B) ∧ r 	=B

ll defines singly-linked lists, nll defines lists of acyclic lists, slk1, slk2 and slk3

define skip-lists. Finally, tree defines binary trees. We extend predicate ll with transi-

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 481

tivity and order parameters to obtain predicate lla and lls, respectively, as follows.

pred lla(r,F ,a) ≡ emp∧r=F ∨ ∃Xtl.r �→c2(Xtl,a) ∗ lla(Xtl,F ,a)∧r 	=F
pred lls(r,F ,mi,ma) ≡ emp∧r=F∧ma=mi

∨ ∃Xtl,mi1.r �→c4(Xtl,mi1) ∗ lls(Xtl,F ,mi1,ma)∧r 	=F ∧mi≤mi1

Unfolding Given pred P(t̄) ≡ Φ and a formula P(v̄)∗Δ, then unfolding P(v̄) means
replacing P(v̄) by Φ[v̄/t̄]. We annotate a number, called unfolding number, for each oc-
currence of inductive predicates. Suppose ∃w̄.r �→c(p̄) ∗ Q1(v̄1)∗...∗Qm(v̄m) ∗ P(v̄0)∧π
be the recursive rule, then in the unfolded formula, if P(v̄0[v̄/t̄])k1 and Qi(...)

k2 are di-
rect sub-terms of P(v̄)k like above, then k1=k+1 and k2 = 0. When it is unambiguous,
we discard the annotation of the unfolding number for simplicity.

2.2 Semantics

The program state is interpreted by a pair (s,h) where s∈Stacks, h∈Heaps and stack
Stacks and heap Heaps are defined as:

Heaps def
= Loc⇀fin(Node → (Fields → Val ∪ Loc)m)

Stacks def
= Var → Val ∪ Loc

Note that we assume that every data structure contains at most m fields. Given a formula
Φ, its semantics is given by a relation: s,h |= Φ in which the stack s and the heap h
satisfy the constraint Φ. The semantics is shown below

s, h |= emp iff dom(h)=∅
s, h |= v �→c(fi : vi) iff dom(h)={s(v)}, h(s(v))=g, g(c, fi)=s(vi)
s, h |= P (v̄) iff (h, s(v̄1), .., s(v̄k)) ∈ �P �
s, h |= κ1 ∗ κ2 iff ∃h1, h2 s.t h1#h2, h=h1·h2, , s, h1 |= κ1 and s, h2 |= κ2

s, h |= true iff always
s, h |= κ∧π iff s, h |= κ and s |= π
s, h |= ∃v.Δ iff ∃α.s[v �→α], h |= Δ
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

dom(g) is the domain of g, h1#h2 denotes disjoint heaps h1 and h2 i.e., dom(h1)∩
dom(h2)=∅, and h1·h2 denotes the union of two disjoint heaps. If s is a stack, v∈Var,
and α∈Val∪Loc, we write s[v �→α] = s if v∈dom(s), otherwise s[v �→α] = s∪{(v, α)}.
Semantics of non-heap (pure) formulas is omitted for simplicity. The interpretation of
an inductive predicate P(t̄) is based on the least fixed point semantics �P�.

Entailment Δ |= Δ′ holds iff for all s and h, if s, h |= Δ then s, h |= Δ′.

3 Entailment Problem & Overview

Throughout this work, we consider the following problem.

PROBLEM: QF ENT−SLLIN.
INPUT: Δa ≡ κa∧πa and Δc ≡ κc∧πc where FV(Δc) ⊆ FV(Δa) ∪ {null}.
QUESTION: Does Δa |= Δc hold?

482 Q. L. Le et al.

An entailment, denoted as e, is syntactically formalized as: Δa �Δc where Δa and
Δc are quantifier-free formulas whose syntax are defined in the preceding section.

In Sect. 3.1, we present the basis of an exclude-the-middle proof system and our
approach to QF ENT−SLLIN. In Sect. 3.2, we describe the foundation of cyclic proofs.

3.1 Exclude-the-Middle Proof System

Given a goal Δa � Δc, an entailment proof system might derive entailments with a
disjunction in the right-hand side (RHS). Such an entailment can be obtained by a proof
rule that replaces an inductive predicate by its definition rules. Authors of Smallfoot
[2] introduced a normal form and proof rules to prevent such entailments when the
predicate are lists or trees. Smallfoot considers the following two scenarios.

– Case 1 (Exclude-the-middle and Frame): The inductive predicate matches with a
points-to predicate in the left-hand side (LHS). For instance, let us consider an
entailment which is of the form e1 : x�→c(z) ∗ Δ � ll(x, y) ∗ Δ′, where ll is
singly-linked lists and ll(x, y) matches with x�→c(z) as they have the same root
x. A typical proof system might search for proof through two definition rules of
predicate ll (i.e., by unfolding ll(x, y) into two disjuncts): One includes the base
case with x = y, and another contains the recursive case with x �= y. Smallfoot
prevents such unfolding by excluding the middle in the LHS: It reduces the entail-
ment into two premises: x�→c(z)∗Δ∧x = y � ll(x, y)∗Δ′ and x�→c(z)∗Δ∧x �=
y � ll(x, y) ∗Δ′. The first one considers the base case of the list (that is, ll(x, x))
and is equivalent to x�→c(z) ∗Δ ∧ x = y � Δ′. Furthermore, the second premise
checks the inductive case of the list and is equivalent to Δ∧x �= y � ll(x, z) ∗Δ′.

– Case 2 (Induction proving via hard-wired Lemma). The inductive predicate matches
other inductive predicates in the LHS. For example, consider the entailment e2 :
ll(x, z) ∗Δ � ll(x, null) ∗Δ′. Smallfoot handle e2 by using a proof rule as the
consequence of applying the following hard-wired lemma ll(x, z)∗ll(z, null) |=
ll(x, null) and reduces the entailment to Δ � ll(z, null) ∗Δ′.

In doing so, Smallfoot does not introduce a disjunction in the RHS. However, as it uses
specific lemmas in the induction reasoning, it only works for the hardwired lists.

This paper proposes S2SLin as an exclude-the-middle system for user-defined pred-
icates, those in SHLIDe. Instead of using hardwired lemmas, we apply cyclic proofs
for induction reasoning. For instance, to discharge the entailment e2 above, S2SLin first
unfolds ll(x, z) in the LHS and obtains two premises:

– e21 : (emp ∧ x = z) ∗Δ � ll(x, null) ∗Δ′; and
– e22 : (x�→c(y) ∗ ll(y, z) ∧ x �= z) ∗Δ � ll(x, null) ∗Δ′

While it reduces e21 to Δ[z/x] � ll(z, null) ∗Δ′[z/x], for e22, it further applies the
frame rule as in Case 1 above and obtains ll(y, z) ∗ Δ ∧ x �= z � ll(y, null) ∗ Δ′.
Then, it makes a backlink between the latter and e2 and closes this path. Doing so does
not introduce disjunctions in the RHS and can handle user-defined predicates.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 483

3.2 Cyclic Proofs

Central to our work is a procedure that constructs a cyclic proof for an entailment. Given
an entailment Δ �Δ′, if our system can derive a cyclic proof, then Δ |= Δ′. If instead,
it is stuck without proof, then Δ |= Δ′ is not valid.

The procedure includes proof rules, each of which is of the form:
e1 ... en

PR0 conde

where entailment e (called the conclusion) is reduced to entailments e1, ..,en (called
the premises) through inference rule PR0 given that the side condition cond holds.

A cyclic proof is a proof tree Ti which is a tuple (V,E, C) where

– V is a finite set of nodes representing entailments derived during the proof search;
– A directed edge (e, PR, e′) ∈ E (where e′ is a child of e) means that the premise
e′ is derived from the conclusion e via inference rule PR. For instance, suppose
that the rule PR0 above has been applied, then the following n edges are generated:
(e, PR0, e1), .., (e, PR0, en);

– and C is a partial relation which captures back-links in the proof tree. If C(ec→eb, σ)
holds, then eb is linked back to its ancestor ec through the substitution σ (where
eb is referred to as a bud and ec is referred to as a companion). In particular, ec
is of the form: Δ � Δ′ and eb is of the form: Δ1∧π � Δ′

1 where Δ ≡ Δ1σ and
Δ′ ≡ Δ′

1σ.

A leaf node is marked as closed if it is evaluated as valid (i.e. the node is applied with an
axiom), invalid (i.e. no rule can apply), or linked back. Otherwise, it is marked as open.
A proof tree is invalid if it contains at least one invalid leaf node. It is pre-proof if all its
leaf nodes are either valid or linked back. Furthermore, a pre-proof is a cyclic proof if a
global soundness condition is established in the tree. Intuitively, this condition requires
that for every C(ec→eb, σ), there exist inductive predicates P(t̄1) in ec and Q(t̄2) in eb
such that Q(t̄2) is a subterm of P(t̄1).

Definition 1 (Trace) Let Ti be a pre-proof of Δa � Δc and (Δai
� Δci)i≥0 be a path

of Ti. A trace following (Δai�Δci)i≥0 is a sequence (αi)i≥0 such that each αi (for all
i≥0) is a subformula of Δai containing predicate P(t̄)u, and either:

– αi+1 is the subformula occurrence in Δai+1 corresponding to αi in Δai .
– or Δai

� Δci is the conclusion of a left-unfolding rule, αi ≡ P(t̄)u is unfolded, and
αi+1 is a subformula in Δai+1

and is the definition rule of P(x̄)u[t̄/x̄]. In this case,
i is said to be a progressing point of the trace.

Definition 2 (Cyclic proof) A pre-proof Ti of Δa � Δc is a cyclic proof if, for every
infinite path (Δai

�Δci)i≥0 of Ti, there is a tail of the path p=(Δai
� Δci)i≥n such

that there is a trace following p which has infinitely progressing points.

Suppose that all proof rules are (locally) sound (i.e., if the premises are valid, then
the conclusion is valid). The following Theorem shows global soundness.

Theorem 1 (Soundness [5]). If there is a cyclic proof of Δa � Δc, then Δa |= Δc.

The proof is by contraction (c.f. [5]). Intuitively, if we can derive a cyclic proof for
Δa � Δc and Δa �|= Δc, then the inductive predicates at the progress points are un-
folded infinitely often. This infinity contradicts the least semantics of the predicates.

484 Q. L. Le et al.

4 Cyclic Entailment Procedure

This section presents our main proposal, the entailment procedure ω-ENT with the pro-
posed inference rules (subsection 4.1), and an illustrative example (subsection 4.2).

4.1 Proof Search

ω−ENT
input: e0 output: valid or invalid
1: i←0; Ti←e0;
2: while true do
3: (res, ei, PRi)←is closed(Ti);
4: if res=valid then return valid;
5: if res=invalid then return invalid;
6: if link backe(Ti, ei) = false then
7: Ti+1←apply(Ti, ei, PRi);
8: i←i+1;
9: end

Fig. 1: Proof tree construction procedure

The proof search algorithm ω-
ENT is presented in Fig. 1. ω-
ENT takes e0 as input, pro-
duces cyclic proofs, and based
on that, decides whether the in-
put is valid or invalid. The
idea of ω-ENT is to iteratively
reduce T0 into a sequence of
cyclic proof trees Ti, i ≥ 0. Ini-
tially, for every P(v̄)k ∈ e0, k
is reset to 0, and T0 only has
e0 as an open leaf, the root.
On line 3, through the procedure
is closed(Ti), ω-ENT chooses
an open leaf node ei, and a proof
rule PRi to apply. If is closed(Ti) returns valid (that is, every leaf is applied to an
axiom rule or involved in a back-link), ω-ENT returns valid on line 4. If it returns
invalid, then ω-ENT returns invalid (one line 5). Otherwise, it tries to link ei back to
an internal node (on line 6). If this attempt fails, it applies the rule (line 7).

Note that at each leaf, is closed attempts rules in the following order: normaliza-
tion rules, axiom rules, and reduction rules. A rule PRi is chosen if its conclusion can
be unified with the leaf through some substitution σ. Then, on line 7, for each premise
of PRi, procedure apply creates a new open node and connects the node to ei via a
new edge. If PRi is an axiom, procedure apply marks ei as closed and returns.

Procedure is closed(Ti) This procedure examines the following three cases.

1. First, if all leaf nodes are marked closed, and none is invalid, then is closed

returns valid.
2. Secondly, is closed returns invalid if there exists an open leaf node ei : Δ �Δ′

in NF such that one of the four following conditions hold:
(a) ei could not be applied by any inference rule.
(b) there exists a predicate op1(E) ∈ Δ such that op2(E) /∈ Δ′ and one of the

following conditions holds:
– either P(E′,E,...) or E′ �→c(E,..) are on both sides
– both P(E′,E,...) �∈ Δ and E′ �→c(E,..) �∈ Δ

(c) there exists a predicate op1(E)∈Δ′ such that G(op1(E))∈Δ and op2(E)/∈Δ.
(d) there exist x�→c1(v̄1) ∈ Δ, x�→c2(v̄2) ∈ Δ′ such that c1 �≡ c2 or v̄1 �≡v̄2.

3. Lastly, an open leaf node ei could be applied by an inference rule (e.g. PRi),
is closed returns the triple (unknown, ei, PRi).

In the rest, we discuss the proof rules and the auxiliary procedures in detail.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 485

Normalisation An entailment is in the normal form (NF) if its LHS is in NF. We write
op(E) to denote for either E �→c(v̄) or P(E,F ,B̄,v̄). Furthermore, the guard G(op(E))

is defined by: G(E �→c(v̄))
def
= true and G(P(E,F ,B̄,v̄))

def
= E �=F .

Definition 3 (Normal Form) A formula κ∧φ∧a is in normal form if:

1. op(E) ∈ κ implies G(op(E)) ∈ φ 4. E1=E2 �∈ φ
2. op(E) ∈ κ implies E �=null ∈ φ 5. E �=E �∈ φ
3. op1(E1) ∗ op2(E2) ∈ κ implies E1 �=E2 ∈ φ 6. a is satisfiable

If Δ is in NF and for any s, h |= Δ, then dom(h) is uniquely defined by s.
The normalisation rules are presented in Fig. 2. Basically, ω-ENT applies these rules

to a leaf exhaustively and transforms it into NF before others. Given an inductive pred-
icate P(E,F, ...), rule ExM excludes the middle by doing case analysis for the predicate
between base-case (i.e., E=F) and recursive-case (i.e., E �=F). The normalisation rule
�=null follows the following facts: E �→c() ⇒ E �=null and P(E,F ,)∧E �=F ⇒
E �=null. Similarly, rule �=∗ follows the following facts: x�→ ∗P(y,F ,)∧y �=F ⇒
x�=y, x�→ ∗y �→ ⇒ x�=y, and Pi(x,F1,)∗Pj(y,F2,)∧x�=F1∧y �=F2 ⇒ x�=y.

Axiom and Reduction Axiom rules include Emp, Inconsistency and Id, presented in
Fig. 3. If each of these rules is applied to a leaf node, the node is evaluated as valid
and marked as closed. The remaining ones in Fig. 3 are reduction rules.

For simplicity, the unfoldings in rules Frame, RInd, and LInd are applied with the
following definition of inductive predicates:

P(x,F ,B̄,u,sc,tg) ≡ emp∧x=F∧sc=tg
∨ ∃X,sc′,d1,d2.x�→c(X,d1,d2,u,sc)∗Q1(d1,B)∗Q2(d2,X)∗P(X,F ,B̄,u,sc′,tg)∧π0

where B∈B̄, the matrix κ′ contains two nested predicates Q1 and Q2, and the heap
cell c ∈ Node is defined as data c{c next; c1 down1; c2 down2; τs scdata; τu udata}
where c1, c2∈Node, down1 and down2 fields are for the nested predicates in the matrix

Δ[E/x] �Δ′[E/x]
Subst

Δ∧x=E �Δ′

Δ∧E1=E2 �Δ′

Δ∧E1 �=E2 �Δ′
ExM

E1=E2, E1 �=E2 �∈π &

FV(E1, E2) ⊆ (FV(Δ)∪FV(Δ′))SΔ �Δ′

Δ �Δ′
=L

Δ∧E=E �Δ′
(κ∧π)[tg/sc] � Δ′[tg/sc]

LBase
P(E,E,B̄,u,sc,tg)∗κ∧π � Δ′

op(E)∗κ∧π∧G(op(E))∧E �=null � Δ′
�=null E �=null/∈π

op(E)∗κ∧π∧G(op(E)) �Δ′

op1(E1)∗op2(E2)∗κ∧π∧E1 �=E2 �Δ′
�=∗ E1 �=E2 �∈π and G(op1(E1)), G(op2(E2)) ∈ π

op1(E1)∗op2(E2)∗κ∧π �Δ′

Fig. 2: Normalization rules

486 Q. L. Le et al.

Id
Δ ∧ π �Δ

Emp
emp∧π � emp∧true

Inconsistency π |= false
κ∧π � Δ

Δ �Δ′
=R

Δ �Δ′∧E=E

Δ∧π �Δ′
Hypothesis π |= π′

Δ∧π �Δ′∧π′
Δ � Δ′ ∧ tg=sc

RBase
Δ � P(E,E,B̄,u,sc,tg)∗Δ′

κ1∧π � κ2 κ∧π � κ′∧π′
∗ roots(κ1) ∩ roots(κ) = ∅ & FV(κ2)⊆FV(κ1∧π)∪{null}

& FV(κ′)⊆FV(κ∧π)∪{null}κ1∗κ∧π � κ2∗κ′ ∧ π′

Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k∗Δ1∧x	=F3∧π0

� Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2
Frame x�→c()�∈κ2

P(x,F ,B̄,u,sc,tg)k∗Δ1∧x	=F3 � x
→c(X,E1,E2,u,sc′)∗κ2∧π2

x
→c(X,E1,E2,u,sc′)∗κ1∧π1∧x	=F
� x
→c(X,E1,E2,u,sc′)∗Q1(E1,B)∗Q2(E2,X)∗P(X,F ,B̄,u,sc′,tg)∗κ2∧π2∧π0

RInd †
x
→c(X,E1,E2,u,sc′)∗κ1∧π1∧x	=F � P(x,F ,B̄,u,sc,tg)∗κ2∧π2

x
→c(X,E1,E2,u,sc′)∗Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k+1∗Δ1∧x	=F3∧π0

� Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2
LInd �

P(x,F ,B̄,u,sc,tg)k∗Δ1∧x	=F3 � Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2

Fig. 3: Reduction rules (where �: P(x,F ,B̄,u,sc,tg)�∈κ2, †: x�→c(X,E1,E2,u,sc
′)�∈κ2)

heaps, the udata field is for the transitivity data, and the scdata field is for ordering
data. The rules for the general form of the matrix heaps κ′ are presented in [28].

=R and Hypothesis eliminate pure constraints in the RHS. In rule ∗, roots(κ) is
defined inductively as: roots(emp)≡{}, roots(r �→)≡{r}, roots(P (r, F, ..))≡{r}
and roots(κ1∗κ2) ≡ roots(κ1)∪roots(κ2). This rule is applied in three ways. First,
it is applied into an entailment which is of the form κ∧π
 κ∧π′. It matches and dis-
cards the identified heap predicates between the two sides to generate a premise with
empty heaps. As a result, this premise may be applied with the axiom rule EMP. Sec-
ondly, it is applied to an entailment of the form xi �→ci(v̄i)∗...∗xn �→cn(v̄n)∧π
 κ′∧π′.
For each points-to predicate xi �→ci(v̄i)∈κ′, ω-ENT searches for one points-to predicate
xj �→cj(v̄j) in the LHS such that xj �→cj(v̄j) ≡ xi �→ci(v̄i). Lastly, it is applied into an
entailment that is of the form Δ1 ∗Δ
Δ2 ∗Δ′ where either Δ1
Δ2 or Δ
Δ′ could
be linked back into an internal node.

In RInd, for each occurrence of inductive predicates P(r,F ,B̄,u,sc,tg) in κ′, ω-ENT
searches for a points-to predicate r �→ . If any of these searches fail, ω-ENT decides the
conclusion as invalid. Rule LInd unfolds the inductive predicates in the LHS. Every
LHS of entailments in this rule also captures the unfolding numbers for the subterm
relationship and generates the progressing point in the cyclic proofs afterwards. These
numbers are essential for our system to construct cyclic proofs. This rule is applied in a
depth-first manner, i.e., if there are more than one occurrences of inductive predicates in
the LHS that could be applied by this rule, the one with the greatest unfolding number
is chosen. We emphasise that the last five rules still work well when the predicate in the
RHS contains only a subset of the local properties wrt. the predicate in the LHS.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 487

Back-Link Generation Procedure link backe generates a back-link as follows. In a pre-
proof, given a path containing a back-link, say e1, e2, .., em where e1 is a companion
and em a bud, then e1 is in NF and of the following form:

– e1≡P(x,F ,B̄,u,sc,tg)k∗κ∧π∧x�=F∧x�=null � Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′.
– e2 is obtained from applying LInd into e1. e2 is of the form:

x�→c(X, p̄, ,u,sc)∗κ′∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1

� Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

We remark that sc 	 sc′ ∈ π1, and if k ≥ 1, then sci 	 sc ∈ π

– e3, .., em−4 are obtained from applications of normalisation rules to normalise the
LHS of e2 due to the presence of κ′. As the roots of inductive predicates in κ′ are
fresh variables, the applications of the normalization rules above do not affect the
RHS of e2. That means the RHS of e3, .., and em−4 are the same as that of e2. As
a result, em−4 is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

� Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

where κ′′
1 may be emp and π2 is a conjunction of disequalities coming from ExM.

– em−3 is obtained from the application of ExM over x and F2 and of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

∧x �=F2 � Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

(For the case x=F2, the rule ExM is kept applying until either F ≡ F2, that is, two
sides are reaching the end of the same heap segment, or it is stuck.)

– em−2 is obtained from the application of RInd and is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x �=F∧x�=null∧π1∧π2

∧x�=F2 � x�→c(X,p̄,u,sc)∗κ′′
2∗Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′∧π′

2

– em−1 is obtained from the application of the Hypothesis to eliminate π′
2 (other-

wise, it is stuck) and is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

∧x�=F2 � x�→c(X,p̄,u,sc)∗κ′′
2∗Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′

– em is obtained from the application of ∗ and is of the form:

P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2∧x�=F2

� Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′

When k ≥ 1, it is always possible to link em back to e1 through the substitution is
σ≡[x/X, sc/sc′] after weakening some pure constraints in its LHS.

488 Q. L. Le et al.

e0

e1

e2 e3

e4

e5

e6

e7

e8

e9

e10

e11 e12

LInd

ExM ExM

Subst

LBase

RInd

Hypothesis+RBase

∗

�=∗+RInd

Hypothesis

∗ ∗

[x/X,mi/m′]

Fig. 4: Cyclic Proof of lls(x,null,mi,ma)0∧x�=null � llb(x,null,mi).

4.2 Illustrative Example

We illustrate our system through the following example:

e0: lls(x,null,mi,ma)0 ∧ x�=null � llb(x,null,mi)

where the sorted linked-list lls (mi is the minimum value and ma is the maximum
value) is defined in Sect. 2.1 and llb define singly-linked lists whose values are greater
than or equal to a constant number. Particularly, predicate llb is defined as follows.

pred llb(r,F ,b) ≡ emp∧r=F
∨ ∃Xtl,d.r �→c4(Xtl,d) ∗ llb(Xtl,F ,b)∧r �=F ∧ b≤d

Since the LHS is stronger than the RHS, this entailment is valid. Our system could
generate the cyclic proof (shown in Fig. 4) to prove the validity of e0. In the following,
we present step-by-step to show how the proof was created. Firstly, e0, which is in NF,
is applied with rule LInd to unfold predicate lls(x,null,mi,ma)0 and obtain e1 as:

e1: x�→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ � llb(x,null,mi)

We remark that the unfolding number of the recursive predicate lls in the LHS is
increased by 1. Next, our system normalizes e1 by applying rule ExM into X and null

to generate two children, e2 and e3, as follows.

e2: x�→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X=null
� llb(x,null,mi)

e3: x�→c4(X,m′) ∗ lla(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null
� llb(x,null,mi)

For the left child, it applies normalization rules to obtain e4 (substitute X by null)
and then e5, by LBase to unfold lls(null,null,m′,ma)1 to the base case, as:

e4: x�→c4(null,m
′) ∗ lls(null,null,m′,ma)1 ∧ x�=null ∧mi≤m′ � llb(x,null,mi)

e5: x�→c4(null,ma) ∧ x�=null ∧mi≤ma � llb(x,null,mi)

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 489

Now, e5 is in NF. S2SLin applies RInd and then RBase to llb in the RHS as:

e6: x�→c4(null,ma) ∧ x�=null ∧mi≤ma
� x�→c4(null,ma) ∗ llb(null,null,mi) ∧mi≤ma

e6′ : x�→c4(null,ma) ∧ x�=null ∧mi≤ma � x�→c4(null,ma)∧mi≤ma

After that, as mi≤ma ⇒ mi≤ma, e6′ is applied with Hypothesis to obtain e7.

e7: x�→c4(null,ma) ∧ x�=null ∧mi≤ma � x�→c4(null,ma)

As the LHS of e7 is in NF and a base formula, it is sound and complete to apply rule ∗
to have e8 as emp∧x�=null∧mi≤ma � emp. By Emp, e8 is decided as valid. For the
right branch of the proof, e3 is applied with rule �=∗ and then RInd to obtain e9:

e9: x�→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X
� x�→c4(X,m′)∗llb(X,null,mi)∧mi≤m′

Then, e9 is applied with Hypothesis to eliminate the pure constraint in the RHS:

e10: x�→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X
� x�→c4(X,m′)∗llb(X,null,mi)

e10 is then applied the rule ∗ to obtain e11 and e12 as follows.

e11: x�→c4(X,m′) � x�→c4(X,m′)
e12: lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X � llb(X,null,mi)

e11 is valid by Id. e12 is successfully linked back to e0 to form a pre-proof as

(lls(X,null,m′,ma)1∧X �=null)[x/X,mi/m′] � llb(X,null,mi)[x/X,mi/m′]

is identical to e0. Since lls(X,null,m′,ma)1 in e12 is the subterm of
lls(x,null,mi,ma)0 in e0, our system decided that e0 is valid with the cyclic proof
presented in Fig. 4.

5 Soundness, Completeness, and Complexity

We describe the soundness, termination, and completeness of ω-ENT. First, we need to
show the invariant about the quantifier-free entailments of our system.

Corollary 1. Every entailment derived from ω-ENT is quantifier-free.

The following lemma shows the soundness of the proof rules.

Lemma 1 (Soundness). For each proof rule, the conclusion is valid if all premises are
valid.

As every backlink generated contains at least one pair of inductive predicate occur-
rences in a subterm relationship, the global soundness condition holds in our system.

Lemma 2 (Global Soundness). A pre-proof derived is indeed a cyclic proof.

490 Q. L. Le et al.

The termination relies on the number of premises/entailments generated by ∗. As
the number of inductive symbols and their arities are finite, there is a finite number of
equivalence classes of these entailments in which any two entailments in the same class
are equivalent under some substitution and linked back together. Therefore, the number
of premises generated by the rule ∗ is finite, considering the back-links generation.

Lemma 3. ω-ENT terminates.

In the following, we show the complexity analysis. First, we show that every occur-
rence of inductive predicates in the LHS is unfolded at most two times.

Lemma 4. Given any entailment P(v̄)k ∗Δa � Δc, 0 ≤ k ≤ 2.

Let n be the maximum number of predicates (both inductive predicates and points-to
predicates) among the LHS of the input and the definitions in P , and m be the maximum
number of fields of data structures. Then, the complexity is defined as follows.

Proposition 1 (Complexity). QF ENT−SLLIN is O(n× 2m + n3).

If m is bounded by a constant, the complexity becomes polynomial in time.
Our completeness proofs are shown in two steps. First, we show the proofs for an

entailment whose LHS is a base formula. Second, we show the correctness when the
LHS contains inductive predicates. In the following, we first define the base formulas
of the LHS derived by ω-ENT from occurrences of inductive predicates. Based on that,
we define bad models to capture counter-models of invalid entailments.

Definition 4 (SHLIDe Base) Given κ, define κ as follows.

P(E,F ,B̄,u,sc,tg)
def
= E �→c(F ,E1,E2,u,tg) ∗ Q1(E1,B)∗Q2(E2,F)∧π0

E �→c(v̄)
def
= E �→c(v̄) emp

def
= emp κ1∗κ2

def
= κ1∗κ2

The definition for general predicates with arbitrary matrix heaps is presented in [28].
As P does not include mutual recursion (Condition C3), the definition above terminates
in a finite number of steps. In a pre-proof, these SHLIDe base formulas of the LHS are
obtained once every inductive predicate has been unfolded.

Lemma 5. If κ ∧ π is in NF, then κ ∧ π is in NF, and κ ∧ π � κ is valid.

In other words, κ ∧ π is an under-approximation of κ ∧ π; invalidity of κ ∧ π � Δ′

implies invalidity of κ ∧ π � Δ′.

Definition 5 (Bad Model) The bad model for κ∧φ∧ a in NF is obtained by assigning

– a distinct non-null value to each variable in FV(κ ∧ φ); and
– a value to each variable in FV(a) such that a is satisfiable.

Lemma 6. 1. For every proof rule except the rule ∗, all premises are valid only if the
conclusion is valid.

2. For the rule ∗, where the conclusion is of the form Δb � κ′, all premises are valid
only if the conclusion is valid and Δb is in NF.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 491

The following lemma states that the correctness of the procedure is closed for cases
2(b-d).

Lemma 7 (Stuck Invalidity). Given κ∧π � Δ′ in NF, it is invalid if the procedure
is closed returns invalid for cases 2(b-d).

A bad model of the κ∧π is a counter-model. Cases 2b) and 2c) show that the heaps
of bad models are not connected, and thus accordingly to conditions C1 and C2, any
model of the LHS could not be a model of the RHS. Case 2d) shows that heaps of
the two sides could not be matched. We next show the correctness of Case 2(a) of the
procedure is closed, and invalidity is preserved during the proof search in ω-ENT.

Proposition 2 (Invalidity Preservation). If ω-ENT is stuck, the input is invalid.

In other words, if ω-ENT returns invalid, we can construct a bad model.

Theorem 2. QF ENT−SLLIN is decidable.

6 Implementation and Evaluation

We implement S2SLin using OCaml. This implementation is an instantiation of a general
framework for cyclic proofs. We utilize the cyclic proof systems to derive bases for in-
ductive predicates shown in [24] to discharge satisfiability of separation logic formulas.
We use the solver presented in [29,31] for those formulas beyond this fragment. We
also develop a built-in solver for discharging equalities.

We evaluated S2SLin to show that i) it can discharge problems in SHLIDe effectively;
and ii) its performance is compatible with state-of-the-art solvers. The evaluation of
S2SLin is provided as a companion artifact [27].

Experiment settings We have evaluated S2SLin on entailment problems taken from SL-
COMP benchmarks [38], a competition of separation logic solvers. We take 356 prob-
lems (out of 983) in two divisions of the competition, qf shls entl and qf shlid entl,
and one new division, qf shlid2 entl. All these problems semantically belong to our
decidable fragment, and their syntax is written in SMT 2.6 format [39].

– Division qf shls entl includes 296 entailment problems, 122 invalid problems and
174 valid problems, with only singly-linked lists. The authors in [33] randomly
generated them

– Division qf shlid entl contains 60 entailment problems which the authors in [15]
handcrafted. They include singly-linked lists, doubly-linked lists, lists of singly-
linked lists, or skip lists. Furthermore, the system of inductive predicates must sat-
isfy the following condition: For two different predicates P, Q in the system of
definitions, either P ≺∗

P Q or Q ≺∗
P P.

– In the third division, we introduce new benchmarks, with 27 problems, beyond the
above two divisions. In particular, every system of predicate definitions includes
two predicates, P and Q, that are semantically equivalent. We have submitted this
division to the Github repository of SL-COMP.

492 Q. L. Le et al.

Table 1: Experimental results
Tool qf shls entl qf shlid entl qf shlid2 entl

invalid valid Time invalid valid Time invalid valid Time
(122) (174) (296) (24) (36) (60) (14) (13) (27)

SLS 12 174 507m42s 2 35 133m28s 0 11 97m54s
Spen 122 174 10.78s 14 13 3.44s 8 2 1.69s

CyclistSL 0 58 1520m5s 0 24 360m38s 0 3 240m3s
Harrsh 39 116 425m19s 18 27 53m56s 8 7 156m45s

Songbird 12 174 237m25s 2 35 40m38s 0 12 47m11s
S2SLin 122 174 6.22s 24 36 0.96s 14 13 1.20s

To evaluate S2SLin’s performance, we compared it with the state-of-the-art tools such
as CyclistSL [5], Spen [15], Songbird [40], SLS [41] and Harrsh [23]. We omitted Cy-
comp [42], as these benchmarks are beyond its decidable fragment. Note that CyclistSL,
Songbird and SLS are not complete; for non-valid problems, while CyclistSL returns
unknown, Songbird and SLS use some heuristic to guess the outcome. For each division,
we report the number of correct outputs (invalid, valid) and the time (in minutes and
seconds) taken by each tool. Note that we use the status (invalid, valid) annotated
with each problem in the SL-COMP benchmark as the ground truth. If the output is the
same as the status, we classify it as correct; otherwise, it is marked as incorrect. We
also note that in these experiments, we used the competition pre-processing tool [39] to
transform the SMT 2.6 format into the corresponding formats of the tools before run-
ning them. All experiments were performed on an Intel Core i7-6700 CPU 3.4Gh and
8GB RAM. The CPU timeout is 600 seconds.

Experiment results The experimental results are reported in Table 1. In this table, the
first column presents the names of the tools. The following three columns show the
results of the first division, including the number of correct invalid outputs, the number
of correct valid outputs and the taken time (where m for minutes and s for seconds),
respectively. The number between each pair of brackets (...) in the third row shows the
number of problems in the corresponding column. Similarly, the following two groups
of six columns describe the results of the second and third divisions, respectively.

In general, the experimental results show that S2SLin is the one (and only one)
that could produce all the correct results. Other solvers either produced wrong re-
sults or could discharge a fraction of the experiments. Moreover, S2SLin took a short
time for the experiments (8.38 seconds compared to 15.91 seconds for Spen, 324 min-
utes for Songbird, 635 minutes for Harrsh, 739 minutes for SLS and 2120 minutes
for CyclistSL). While SLS returned 14 false negatives, Spen reported 20 false pos-
itives. CyclistSL, Songbird and Harrsh did not produce any wrong results. Of 569
tests, CyclistSL could handle 85 tests (15%), Harrsh could handle 215 tests (38%), and
Songbird could decide on 235 tests (41.3%). In the total of 223 valid tests, CyclistSL
could handle 85 problems (38%), and Songbird could decide 222 problems (99.5%).

Now we examine the results for each division in detail. For qf shls entl, Spen re-
turned all correct, Songbird 186, Harrsh 155, and CyclistSL 58. If we set the timeout
to 2400 seconds, both Songbird and Harrsh produced all the correct results. Division

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 493

qf shlid entl includes 24 invalid problems and 36 valid problems. While Songbird

produced 37 problems correctly, CyclistSL produced 24 correct results. Spen reported
27 correct results and 13 false positives (skl2−vc{01− 04} skl3−vc01, skl3−vc{03−
10}). The last division, qf shlid2 entl, includes 14 invalid and 13 valid test prob-
lems. While Songbird decided only 12 problems correctly, CyclistSL produced 3 cor-
rect outcomes. Spen reported 10 correct results. However, it produced 7 false positives
(ls−mul−vc{01 − 03}, ls−mul−vc05, nll−mul−vc{01 − 03}). We believe that engi-
neering design and effort play an essential role alongside theory development. Since our
experiments provide breakdown results of the two SL-COMP competition divisions, we
hope that they provide an initial understanding of the SL-COMP benchmarks and tools.
Consequently, this might reduce the effort to prepare experiments over these bench-
marks to evaluate new SL solvers. Finally, one might point out that S2SLin performed
well because the entailments in the experiments are within its scope. We do not en-
tirely disagree with this argument but would like to emphasize that tools do not always
work well on favourable benchmarks. For example, Spen introduced wrong results on
qf shlid entl, and Harrsh did not handle qf shlid entl and qf shlid2 entl well, although
these problems are in their decidable fragments.

7 Related Work

S2SLin is a variant of the cyclic proof systems [3,4,5,26] and [42]. Unlike existing
cyclic proof systems, the soundness of S2SLin is local, and the proof search is not back-
tracking. The work presented in [42] shows the completeness of the cyclic proof system.
Its main contribution is introducing the rule ∗ for those entailments with a disjunction in
the RHS obtained from predicate unfolding. In contrast to [42], our work includes nor-
malization to soundly and completely avoid disjunction in the RHS during unfolding.
Moreover, our decidable fragment SHLIDe is non-overlapping to the cone predicates
introduced in [42]. Furthermore, due to the empty heap in the base cases, the match-
ing rule in [42] cannot be applied to the predicates in SHLIDe. Finally, our work also
presents how to obtain the global soundness condition for cyclic proofs.

Our work relates to the inductive theorem provers introduced in [10], [40] and
Smallfoot [2]. While [10] is based on structural induction, [40] is based on mathematical
induction. Smallfoot [2] proposed a decision procedure for linked lists and trees. It used
a fixed compositional rule as a consequence of induction reasoning to handle inductive
entailments. Compared with Smallfoot, our proof system replaces the compositional
rule by combining rule LInd and the back-link construction. Our system could support
induction reasoning on a much more expressive fragment of inductive predicates.

Our proposal also relates to works that use lemmas as consequences of induction
reasoning [2,16,30,41]. These works in [16,25,30,41] automatically generate lemmas
for some classes of inductive predicates. S2 [25] generated lemmas to normalize (such
as split and equivalence) the shapes of the synthesized data structures. [16] proposed
to generate several sets of lemmas not only for compositional predicates but also for
different predicates (e.g., completion lemmas, stronger lemmas and static parameter
contraction lemmas). SLS [41] aims to infer general lemmas to prove an entailment.
Similarly, S2ENT [30] solves a more generic problem, frame inference, using cyclic

494 Q. L. Le et al.

proofs and lemma synthesis. It infers a shape-based residual frame in the LHS and then
synthesizes the pure constraints over the two sides.

S2SLin relates to model-based decision procedures that reduce the entailment prob-
lem in separation logic to a well-studied problem in other domains. For instance, in
[8,11,17], the entailment problem, including singly-linked lists and their invariants, is
reduced to the problem of inclusion checking in a graph theory. The authors in [18]
reduced the entailment problem to the satisfiability problem in second-order monadic
logic. This reduction could handle an expressive fragment of spatial-based predicates
called bounded-tree width. Moreover, the work presented in [23] shows a model-based
decision procedure for a subfragment of the bounded-tree width. Furthermore, while
the work in [15,19] reduced the entailment problem to the inclusion checking problem
in tree automata, [21] presented an idea to reduce the problem to the inclusion checking
problem in heap automata. Moreover, while the procedure in [15] supported compo-
sitional predicates (single and double links) well, the procedure in [19] could handle
predicates satisfying local properties (e.g., trees with parent pointers). Our decidable
fragment subsumes the one described in [2,11,15] but is incomparable to the ones pre-
sented in [8,17,18,19]. Works in [34] and [35,36] reduced the entailment problem in
separation logic into the satisfiability problem in SMT. While GRASShoper [35,36]
could handle transitive closure pure properties, S2SLin is capable of supporting local
ones. Unlike GRASShoper, which reduces entailment into SMT problems, S2SLin re-
duces an entailment to admissible entailments and detects repetitions via cyclic proofs.

Decidable fragments and complexity results of the entailment problem in separa-
tion logic with inductive predicates were well studied. The entailment is 2-EXPTIME
in cone predicates [42], the bounded tree-width predicates and beyond [18,14], and
EXPTIME in a sub-fragment of cone predicates [19]. In the other class, entailment is
in polynomial time for singly-linked lists [11] and semantically linear inductive predi-
cates [15]. Moreover, the extensions with arithmetic [17] are in polynomial but become
EXPTIME when the lists are extended with double links [8]. SHLIDe (with nested lists,
trees and arithmetic properties) is roughly in the “middle” of the two classes above. The
entailment is EXPTIME and becomes polynomial under the upper bound restriction.

8 Conclusion

We have presented a novel decision procedure for the quantifier-free entailment prob-
lem in separation logic combined with inductive definitions of compositional predicates
and pure properties. Our proposal is the first complete cyclic proof system for the prob-
lem in separation logic without back-tracking. We have implemented the proposal in
S2SLin and evaluated it over the set of nontrivial entailments taken from the SL-COMP
competition. The experimental results show that our proposal is effective and efficient
when compared to the state-of-the-art solvers. For future work, we plan to develop a bi-
abductive procedure based on an extension of this work with the cyclic frame inference
procedure presented in [30]. This extension is fundamental to obtaining a composi-
tional shape analysis beyond the lists and trees. Another work is to formally prove that
our system is as strong as Smallfoot in the decidable fragment with lists and trees [2]:
Given an entailment, if Smallfoot can produce proof, so is S2SLin.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 495

References

1. Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max Kanovich, and Joël Ouak-
nine. Foundations for decision problems in separation logic with general inductive predi-
cates. In Anca Muscholl, editor, Foundations of Software Science and Computation Struc-
tures, pages 411–425, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Separation Logic. In
APLAS, volume 3780, pages 52–68, November 2005.

3. J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Proceedings
of TABLEAUX-14, volume 3702 of LNAI, pages 78–92. Springer-Verlag, 2005.

4. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In
Proceedings of APLAS-10, LNCS, pages 350–367. Springer, 2012.

5. James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic
entailment proofs in separation logic. In Proceedings of the 23rd International Conference on
Automated Deduction, CADE’11, page 131–146, Berlin, Heidelberg, 2011. Springer-Verlag.

6. Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-
tino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In Klaus Havelund, Gerard Holzmann, and Ra-
jeev Joshi, editors, NASA Formal Methods, pages 3–11, Cham, 2015. Springer International
Publishing.

7. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. In POPL, pages 289–300, 2009.

8. Taolue Chen, Fu Song, and Zhilin Wu. Tractability of Separation Logic with Inductive
Definitions: Beyond Lists. In Roland Meyer and Uwe Nestmann, editors, 28th International
Conference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:17, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

9. W.-N. Chin, C. Gherghina, R. Voicu, Q.-L. Le, F. Craciun, and S. Qin. A specialization
calculus for pruning disjunctive predicates to support verification. In CAV. 2011.

10. Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction proofs of data-
structures in imperative programs. In Proceedings of PLDI, PLDI ’15, pages 457–466, New
York, NY, USA, 2015. ACM.

11. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In CONCUR, volume 6901, pages 235–249. 2011.

12. Christopher Curry, Quang Loc Le, and Shengchao Qin. Bi-abductive inference for shape
and ordering properties. In 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS), pages 220–225, 2019.

13. Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling
static analyses at facebook. Commun. ACM, 62(8):62–70, jul 2019.

14. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Unifying decidable entailments in separa-
tion logic with inductive definitions. In Automated Deduction-CADE 28-28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, pages
183–199, 2021.

15. Constantin Enea, Ondrej Lengál, Mihaela Sighireanu, and Tomás Vojnar. Compositional
entailment checking for a fragment of separation logic. Formal Methods in System Design,
51(3):575–607, 2017.

16. Constantin Enea, Mihaela Sighireanu, and Zhilin Wu. On automated lemma generation for
separation logic with inductive definitions. ATVA, 2015.

17. Xincai Gu, Taolue Chen, and Zhilin Wu. A Complete Decision Procedure for Linearly Com-
positional Separation Logic with Data Constraints, pages 532–549. Springer International
Publishing, Cham, 2016.

496 Q. L. Le et al.

18. R. Iosif, A. Rogalewicz, and J. Simácek. The tree width of separation logic with recursive
definitions. In CADE, pages 21–38, 2013.

19. Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive sepa-
ration logic with tree automata. ATVA, 2014.

20. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In
ACM POPL, pages 14–26, London, January 2001.

21. Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Uni-
fied Reasoning About Robustness Properties of Symbolic-Heap Separation Logic, pages 611–
638. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.

22. Katelaan Jens, Jovanovic Dejan, and Weissenbacher Georg. A separation logic with data:
Small models and automation. In IJCAI, 2018.

23. Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for
separation logic with inductive definitions. In Tomáš Vojnar and Lijun Zhang, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 319–336, Cham, 2019.
Springer International Publishing.

24. Quang Loc Le. Compositional satisfiability solving in separation logic. In Fritz Henglein,
Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 578–602, Cham, 2021. Springer International Publishing.

25. Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin. Shape analysis via
second-order bi-abduction. In CAV, volume 8559, pages 52–68. 2014.

26. Quang Loc Le and Mengda He. A decision procedure for string logic with quadratic equa-
tions, regular expressions and length constraints. In Sukyoung Ryu, editor, Programming
Languages and Systems, pages 350–372, Cham, 2018. Springer International Publishing.

27. Quang Loc Le and Xuan-Bach D. Le. Artifact for an efficient cyclic entailment procedure in a
fragment of separation logic, February 2023. https://doi.org/10.5281/zenodo.
7619870.

28. Quang Loc Le and Xuan-Bach D. Le. An efficient cyclic entailment procedure in a fragment
of separation logic, January 2023. Technical Report.

29. Quang Loc Le, Jun Sun, and Wei-Ngan Chin. Satisfiability modulo heap-based programs.
In CAV. 2016.

30. Quang Loc Le, Jun Sun, and Shengchao Qin. Frame inference for inductive entailment proofs
in separation logic. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 41–60, 2018.

31. Quang Loc Le, Makoto Tatsuta, Jun Sun, and Wei-Ngan Chin. A decidable fragment in
separation logic with inductive predicates and arithmetic. In CAV, pages 495–517, 2017.

32. Scott McPeak and George C. Necula. Data structure specifications via local equality axioms.
In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verification, pages
476–490, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

33. Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition
calculus = heap theorem prover. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, page 556–566, New York,
NY, USA, 2011. Association for Computing Machinery.

34. JuanAntonio Navarro Pérez and Andrey Rybalchenko. Separation logic modulo theories. In
APLAS, volume 8301, pages 90–106. 2013.

35. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using smt. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044, pages 773–789. 2013.

36. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees
and data. In CAV, volume 8559, pages 711–728. 2014.

37. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In IEEE LICS,
pages 55–74, 2002.

https://doi.org/10.5281/zenodo.7619870
https://doi.org/10.5281/zenodo.7619870

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 497

38. Mihaela Sighireanu and Quang Loc Le. SL-COMP 2022. https://sl-comp.github.io/, 2022.
[Online; accessed Jun-2022].

39. Mihaela Sighireanu, Juan Antonio Navarro Pérez, Andrey Rybalchenko, Nikos Gorogiannis,
Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan, Christoph Matheja, Thomas
Noll, Florian Zuleger, Wei-Ngan Chin, Quang Loc Le, Quang-Trung Ta, Ton-Chanh Le,
Thanh-Toan Nguyen, Siau-Cheng Khoo, Michal Cyprian, Adam Rogalewicz, Tomás Vojnar,
Constantin Enea, Ondrej Lengál, Chong Gao, and Zhilin Wu. SL-COMP: competition of
solvers for separation logic. In Tools and Algorithms for the Construction and Analysis of
Systems - 25 Years of TACAS: TOOLympics, pages 116–132, 2019.

40. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated mu-
tual explicit induction proof in separation logic. In John Fitzgerald, Constance Heitmeyer,
Stefania Gnesi, and Anna Philippou, editors, FM 2016: Proceedings, pages 659–676, 2016.

41. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated lemma
synthesis in symbolic-heap separation logic. POPL, 2018.

42. Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. Completeness of cyclic proofs for
symbolic heaps with inductive definitions. In Anthony Widjaja Lin, editor, Programming
Languages and Systems, pages 367–387, Cham, 2019. Springer International Publishing.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Just Testing

Rob van Glabbeek1,2(�) �

1 School of Informatics, University of Edinburgh, Edinburgh, UK
2 School of Computer Science and Engineering, University of New South Wales,

Sydney, Australia
rvg@cs.stanford.edu

Abstract. The concept of must testing is naturally parametrised with
a chosen completeness criterion, defining the complete runs of a sys-
tem. Here I employ justness as this completeness criterion, instead of
the traditional choice of progress. The resulting must-testing preorder is
incomparable with the default one, and can be characterised as the fair
failure preorder of Vogler. It also is the coarsest precongruence preserving
linear time properties when assuming justness.

As my system model I here employ Petri nets with read arcs. Through
their Petri net semantics, this work applies equally well to process alge-
bras. I provide a Petri net semantics for a standard process algebra ex-
tended with signals; the read arcs are necessary to capture those signals.

1 Introduction

May- and must-testing was proposed by De Nicola & Hennessy in [9]. It yields
semantic equivalences where two processes are distinguished if and only if they
react differently on certain tests. The tests are processes that additionally fea-
ture success states. A test T is applied to a process N by taking the CCS
parallel composition T |N , and implicitly applying a CCS restriction operator to
it that removes the remnants of unsuccessful communication. Applying T to N
is deemed successful if and only if this composition yields a process that may,
respectively must, reach a success state. It is trivial to recast this definition using
the CSP parallel composition ‖A [39] instead of the one from CCS.

It is not a priori clear how a given process must reach a success state. For all
we know it might stay in its initial state and never take any transition leading
to this success state. To this end one must employ an assumption saying that
under appropriate circumstances certain enabled transitions will indeed be taken.
Such an assumption is called a completeness criterion [18]. The theory of testing
from [9] implicitly employs a default completeness criterion that in [25] is called
progress. However, one can parameterise the notion of must testing by the choice
of any completeness criterion, such as the many notions of fairness classified in
[25]. Here I employ justness, a completeness criterion that is better justified than
either progress or fairness [25].

� Supported by Royal Society Wolfson Fellowship RSWF\R1\221008

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 24

498–519, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_24&domain=pdf
https://orcid.org/0000-0003-4712-7423
https://doi.org/10.1007/978-3-031-30829-1_24
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_24&domain=pdf

Just Testing 499

The resulting must-testing equivalence is incomparable to the progress-based
one from [9]. On the one hand, it no longer distinguishes deadlock and livelock,
i.e., the Petri nets N and N ′ of Ex. 3; on the other hand, it keeps recording
information past a divergence. I characterise the corresponding preorder as the
fair failure preorder of Vogler [43], which using my terminology ought to be
called the just failures preorder. I show that it also is the coarsest precongruence
preserving linear time properties when assuming justness. Finally I show that
the same preorder originates from the timed must-testing framework explored
in [43], but only if all quantitative information is removed from that approach.

I carry out this work within the model of Petri nets extended with read arcs
[35,7], so that it also applies to process algebras through their standard Petri
net semantics. The extension with read arcs is necessary to capture signalling, a
process algebra operator that cannot be adequately modelled by standard Petri
nets. Signalling, or read arcs, can be used to accurately model mutual exclusion
without making a fairness assumption [43,8,11]. This is not possible in standard
Petri nets [31,43,24], or in process algebras with a standard Petri net semantics
[24]. Here I give a Petri net semantics of signalling, and illustrate its use in
modelling a traffic light, interacting with passing cars.

Acknowledgement I am grateful to Weiyou Wang for valuable feedback.

2 Labelled Petri nets with read arcs

I will employ the following notations for multisets.

Definition 1 Let X be a set.

– A multiset over X is a function A : X → �, i.e. A ∈ �X.
– x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.
– For multisets A and B over X I write A ⊆ B iff A(x) ≤ B(x) for all x ∈X;

A ∪B denotes the multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) +B(x),
A−B is given by (A−B)(x) := max(A(x)−B(x), 0), and
for k ∈� the multiset k ·A is given by (k ·A)(x) := k ·A(x).

– The function ∅ : X → �, given by ∅(x) := 0 for all x ∈ X, is the empty
multiset over X.

– The cardinality |A| of a multiset A over X is given by |A| := ∑
x∈X A(x).

– A multiset A over X is finite iff |A| < ∞, i.e., iff the set {x | x∈A} is finite.

With {x, x, y} I denote the multiset over {x, y} with A(x)=2 and A(y)=1, rather
than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified with
the set {x | A(x) = 1}.

I employ general labelled place/transition systems extended with read arcs [35,7].

500 R. J. van Glabbeek

Definition 2 Let A be a set of visible actions and τ �∈ A be an invisible action.

Let Aτ :=A .∪ {τ}. A (labelled) Petri net (over Aτ) is a tuple (S, T, F,R,M0, �)
where
– S and T are disjoint sets (of places and transitions),
– F : ((S × T) ∪ (T × S)) → � (the flow relation including arc weights),
– R : S × T → � (the read relation),
– M0 : S → � (the initial marking), and
– � : T → Aτ (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as
boxes, containing their label. Identities of places and transitions are displayed
next to the net element. When F (x, y) > 0 for x, y ∈ S ∪ T there is an arrow
(arc) from x to y, labelled with the arc weight F (x, y). Weights 1 are elided. An
element (s, t) of the multiset R is called a read arc. Read arcs are drawn as lines
without arrowhead. When a Petri net represents a concurrent system, a global
state of this system is given as a marking, a multiset M of places, depicted by
placing M(s) dots (tokens) in each place s. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between mark-
ings M and M ′, which take place when a finite multiset G of transitions fires.
In that case, each occurrence of a transition t in G consumes F (s, t) tokens
from each place s. Naturally, this can happen only if M makes all these tokens
available in the first place. Moreover, for each t ∈ G there need to be at least
R(s, t) tokens in each place s that are not consumed when firing G. Next, each
t produces F (t, s) tokens in each place s. Definition 4 formalises this notion of
behaviour.

Definition 3 Let N = (S, T, F,R,M0, �) be a Petri net. The multisets t̂, •t, t• :
S → � are given by t̂(s) = R(s, t), •t(s) = F (s, t) and t•(s) = F (t, s) for all s∈S.
The elements of t̂, •t and t• are called read-, pre- and postplaces of t, respectively.
These functions extend to finite multisets G: T → � by Ĝ :=

⋃
t∈G t̂, •G :=∑

t∈T G(t) · •t and G• :=
∑

t∈T G(t) · t•.

Definition 4 ([7]) Let N=(S, T, F,R,M0, �) be a Petri net, G∈�T non-empty
and finite, and M,M ′ ∈ �S . G is a step from M to M ′, written M [G〉N M ′, iff
– •G+ Ĝ ⊆ M (G is enabled) and
– M ′ = (M − •G) +G•.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the
same transition can occur multiple times in a single step. One writes M [t〉N M ′

for M [{t}〉N M ′, whereas M [t〉N abbreviates ∃M ′. M [t〉N M ′. The subscript
N may be omitted if clear from context.

In my Petri nets transitions are labelled with actions drawn from a set
A .∪ {τ}. This makes it possible to see these nets as models of reactive sys-
tems that interact with their environment. A transition t can be thought of as
the occurrence of the action �(t). If �(t)∈A, this occurrence can be observed and
influenced by the environment, but if �(t) = τ , it cannot and t is an internal or
silent transition. Transitions whose occurrences cannot be distinguished by the

Just Testing 501

environment carry the same label. In particular, since the environment cannot
observe the occurrence of internal transitions at all, they are all labelled τ .

In [31,43,24] it was established that mutual exclusion protocols cannot be
correctly modelled in standard Petri nets (without read arcs, i.e., satisfying
R(s, t) = 0 for all s ∈ S and t ∈ T), unless their correctness becomes contin-
gent on making a fairness assumption. In [24] it was concluded from this that
mutual exclusion protocols can likewise not be correctly expressed in standard
process algebras such as CCS [34], CSP [6] or ACP [4], at least when sticking to
their standard Petri net semantics. Yet Vogler showed that mutual exclusion can
be correctly modelled in Petri nets with read arcs [43], and [8,11] demonstrate
how mutual exclusion can be correctly modelled in a process algebra extended
with signalling [3]. Thus signalling adds expressiveness to process algebra that
cannot be adequately modelled in terms of standard Petri nets. This is my main
reason to use Petri nets with read arcs as system model in this paper.

In many papers on Petri nets, the sets of places and transitions are required
to be finite, or at least countable. Here I need a milder restriction, and will limit
attention to nets that are finitary in the following sense.

Definition 5 A Petri net N = (S, T, F,R,M0, �) is finitary if M0 is countable,
t• is countable for all t ∈ T , and moreover the set of transitions t with •t = ∅ is
countable.

3 A Petri net semantics of CCSP with signalling

CCSP [37] is a natural mix of the process algebras CCS [34] and CSP [6], often
used in connection with Petri nets. Here I will present a Petri net semantics
of a version CCSPS of CCSP enriched with signalling [3]. This builds on work
from [29,44,27,10,37,38]; the only novelty is the treatment of signalling. Petri
net semantics of other process algebras, like CCS [34], CSP [6] or ACP [4], are
equally well known. This Petri net semantics lifts any semantic equivalence on
Petri nets to CCSPS, or to any other process algebra, so that the results of this
work apply equally well to process algebras.

CCSPS is parametrised by the choice of sets A of visible actions and K of
agent identifiers. Its syntax is given by

P,Q, Pi ::=
∑
i∈I

aiPi | a �
∑
i∈I

aiPi | P‖AQ | τA(P) | f(P) | K

with a, ai∈A, A⊆A, f : A → A and K ∈ K. Here the guarded choice
∑

i∈I aiPi

executes one of the actions ai, followed by the process Pi. The process a � P
behaves as P , except that in its initial state it it is sending the signal a.1 2

The process P‖AQ is the partially synchronous parallel composition of processes

1 The notation a � P follows [8]; in [3,11] this is denoted Pˆa.
2 Here I require P to be a guarded choice in order to avoid the need for a root condition
[13] to make the equivalences of this paper into congruences. This is also the reason
my language features a guarded choice, instead of action prefixing and general choice.

502 R. J. van Glabbeek

P and Q, where actions from A can take place only when both P and Q can
engage in such an action, while other actions of P and Q occur independently.
The abstraction operator τA hides action from A from the environment by re-
naming them into τ , whereas f is a straightforward relabelling operator (leaving
internal actions alone). Each agent identifier K comes with a defining equation

K
def
= P , with P a guarded CCSPS expression; it behaves exactly as the body of

its defining equation. Here P is guarded if each occurrence of an agent identifier
within P lays in the scope of a guarded choice

∑
i∈I aiPi or a �

∑
i∈I aiPi.

A formal Petri net semantics of CCSPS, and of each of the operators
∑

, �,
‖A, τA and f , appears in [22, Appendix A]. Here I give an informal summary.

Given nets Ni for i∈I, the net
∑

i∈I aiNi is obtained by taking their disjoint
union, but without their initial markings (M0)i, and adding a single marked
place r, and for each i ∈ I a fresh transition ti, labelled ai, with

•ti = {r}, t̂i = ∅
and (

•
ti) = (M0)i.

The parallel composition N‖AN ′ is obtained out of the disjoint union of N
and N ′ by dropping from N and N ′ all transitions t with �(t) ∈ A, and instead
adding synchronisation transitions (t, t′) for each pair of transitions t and t′ from
N and N ′ with �(t) = �(t′) ∈ A. One has

•
(t, t′) :=

•
t +

•
t′, and similarly for̂(t, t′) and (t, t′)•, i.e., all arcs are inherited.

τA and f are renaming operators that only affect the labels of transitions.
The net a � N adds to the net N a single transition u, labelled a, that may

fire arbitrary often, but is enabled in the initial state of N only. To this end, take
•u = u• = ∅ and û = M0, the initial marking of N . I apply this construction
only to nets for which its initially marked places have no incoming arcs.

Example 1 A traffic light can be modelled by the recursive equation

TL
def
= tr .tg .(drive � ty .TL).

Here the actions tr , tg and ty stand for “turn red”, “turn green” and “turn
yellow”, and drive indicates a state where it is OK to drive through. A sequence
of two passing cars is modelled as Traffic

def
= drive.drive.0. Here 0 stands for

the empty sum
∑

i∈∅ ai.Ei and models inaction. In the parallel composition
TL ‖{drive} Traffic the cars only drive through when the light is green. All three
processes are displayed in Fig. 1.

4 Justness and other completeness criteria

Definition 6 Let N = (S, T, F,R,M0, �) be a Petri net. An execution path π
is an alternating sequence M0t1M1t2M2 . . . of markings and transitions of N ,
starting with M0, and either being infinite or ending with a marking, such that
Mi [ti+1〉N Mi+1 for all i < length(π). Here length(π) ∈ �∪ {∞} is the number
of transitions in π.

Let �(π) ∈ A∞
τ be the string �(t1)�(t2) Here A∞

τ denotes the collection
of finite and infinite sequences of actions. Moreover, trace(π) ∈ A∞ is obtained
from �(π) by dropping all occurrences of τ .

Just Testing 503

•
yellow

tr

red

tg

greenty

drive

The traffic light

•

drive

drive

The passing cars

•

tr

tg

ty

•

drive

drive

The cars passing the traffic light

Fig. 1. Traffic passing traffic light

The execution path π is said to enable a transition t, notation π[t〉, if Mk[t〉
for some k ∈ �∧ k ≤ length(π) and for all k ≤ j < length(π) one has tj �= t and
(•t+ t̂) ∩ •tj+1 = ∅.

Path π is B-just, for some B ⊆ A, if �(t) ∈ B for all t ∈ T with π[t〉.

In the definition of π[t〉 above one also has Mj+1[t〉 for all k ≤ j < length(π).
Hence, a finite execution path enables a transition iff its final marking does so.

Informally, π[t〉 holds iff transition t is enabled in some marking on the path
π, and after that state no transition of π uses any of the resources needed to
fire t. Here the read- and preplaces of t count as such resources. The clause
tj �= t moreover counts the transition itself as one of its resources, in the sense
that a transition is no longer enabled when it occurs. This clause is redundant
for transitions t with •t �= ∅. One could interpret this clause as saying that a
transition t with •t = ∅ comes with implicit marked private preplace pt, and arcs
(pt, t) as well as (t, pt).

In [18] I posed that Petri nets or transition systems constitute a good model
of concurrency only in combination with a completeness criterion: a selection of
a subset of all execution paths as complete executions, modelling complete runs
of the represented system. The default completeness criterion, called progress
in [25], declares an execution path complete iff it either is infinite, or its final
marking enables no transition. An alternative, called justness in [25], declares an
execution path complete iff it enables no transition. Justness is a stronger com-
pleteness criterion than progress, in the sense that it deems fewer execution paths
complete. The difference is illustrated by the Petri net of Fig. 2(a). There, the
execution of an infinite sequence of b-transitions, not involving the a-transition,

•

a

•

b

•a b • τ b

Fig. 2. (a) Progress vs. justness; (b) Justness vs. fairness; (c) {b}-progress vs. ∅-progress

504 R. J. van Glabbeek

is complete when assuming progress, but not when assuming justness. In the
survey paper [25], 20 different completeness criteria are ordered by strength:
progress, justness, and 18 kinds of fairness. Most of the latter are stronger than
justness: in Fig. 2(b) the infinite sequence of b-transitions is just but unfair—i.e.
incomplete according to these notions of fairness. Whereas justness was a new
idea in the context of transition systems [25], it was used as an unnamed default
assumption in much work on Petri nets [40]. That justness is better warranted in
applications than other completeness criteria has been argued in [25,18,24,17].

The mentioned completeness criteria from [25] are all stronger than progress,
in the sense that not all infinite execution paths are deemed complete; on the fi-
nite execution paths they judge the same. An orthogonal classification is obtained
by varying the set B ⊆ A of actions that may be blocked by the environment.
This fits the reactive viewpoint, in which a visible action can be regarded as a
synchronisation between the modelled system and its environment. An environ-
ment that is not ready to synchronise with an action b ∈ A can be regarded
as blocking b. Now B-progress is the criterion that deems a path complete iff
it is either infinite, or its final marking M enables only transitions with labels
from B. When the environment may block such transitions, it is possible for
the system to not progress past M . In Fig. 2(c) the execution that performs
only the τ -transition is complete when assuming {b}-progress, but not when
assuming ∅-progress. Definition 6 defines B-justness accordingly, and [25] fur-
thermore defines 18 different notions of B-fairness, for any choice of B ⊆ A. The
internal action τ /∈ B can never be blocked by the environment. The default
forms of progress and justness described above correspond with ∅-progress and
∅-justness. In [40] blocking and non-blocking transitions are called cold and hot,
respectively.

Two subtly different computational interpretations of Petri nets appear in the
literature [14]: in the individual token interpretation multiple tokens appearing
in the same place are seen as different resources, whereas in the collective token
interpretation only the number of tokens in a place is semantically relevant. The
difference is illustrated in Fig. 3.

•• a

ta

b
tb

•
s

Fig. 3. Run a∞ is just under the individual token interpretation of Petri nets

The idea underlying justness is that once a transition t is enabled, eventually
either t will fire, or one of the resources necessary for firing t will be used by
some other transition. The execution path π in the net of Fig. 3 that fires the
action a infinitely often, but never the action b, is ∅-just by Def. 6. Namely,
tb is not enabled by π, as (•tb + t̂b) ∩ •ta �= ∅. This fits with the individual
token interpretation, as in this run it is possible to eventually consume each
token that is initially present, and each token that stems from firing transition
ta. This way any resource available for firing tb will eventually be used by some
other transition.

Just Testing 505

When adhering to the collective token interpretation of nets, execution path
π could be deemed ∅-unjust, since transition tb can fire when there is at least one
token in its preplace, and this state of affairs can be seen as a single resource that
is never taken away. This might be formalised by adapting the definition of π[t〉, a
path enabling a transition, namely by changing the condition (•t+ t̂)∩•tj+1 = ∅
from Def. 6 into •t+ t̂+•tj+1 ⊆ Mj . However, this formalisation doesn’t capture
that after dropping place s from the net of Fig. 3 there is still an infinite run
in which b does not occur, namely when regularly firing two as simultaneously.
This contradicts the conventional wisdom that firing multiple transitions at once
can always be reduced to firing them in some order. To avoid that type of
complication, I here stick to the individual token interpretation. Alternatively,
one could restrict attention to 1-safe nets [40], on which there is no difference
between the individual and collective token interpretations, or to the larger class
of structural conflict nets [23,21], on which the conditions (•t + t̂) ∩ •tj+1 = ∅
and •t+ t̂+ •tj+1 ⊆ Mj are equivalent [21, Section 23.1], so that Def. 6 applies
equally well to the collective token interpretation.

5 Feasibility

A standard requirement on fairness assumptions, or completeness criteria in
general, is feasibility [2], called machine closure in [33]. It says that any finite
execution path can be extended into a complete one. The following theorem
shows that B-justness is feasible indeed.

Theorem 1 For any B ⊆ A, each finite execution path of a finitary Petri net
can be extended into a B-just path.

Proof. Without loss of generality I restrict attention to nets without transitions
t with •t = ∅. Namely, an arbitrary net can be enriched with marked private
preplaces pt for each such t, and arcs (pt, t) and (t, pt). In essence, this enrichment
preserves the collection of execution path of the net, ordered by the relation “is
an extension of”, the validity of statements π[t〉, and the property of B-justness.

I present an algorithm extending any given path M0t1M1t2 . . . tk−1Mk into
a B-just path π = M0t1M1t2M2 The extension only uses transitions ti with
�(ti) /∈ B. As data structure my algorithm employs an � × �-matrix with
columns named i, for i ≥ k, where each column has a head and a body. The
head of column k contains Mk and its body lists the places s ∈ Mk, leaving
empty most slots if there are only finitely many such places. Since the given net
is finitary, Mk has only countable many elements, so that they can be listed in
the � slots of column k.

The head of each column i > k with i−1 < length(π) will contain the pair
(ti,Mi) and its body will list the places s ∈ Mi, again leaving empty most slots
if there are only finitely many such places. Once more, finitariness ensures that
there are enough slots in column i.

506 R. J. van Glabbeek

An entry in the body of the matrix is either (still) empty, filled in with a
place, or crossed out. Let f : � → � ×� be an enumeration of the entries in
the body of this matrix.

At the beginning only column k is filled in; all subsequent columns of the
matrix are empty. At each step i > k I first cross out all entries s in the body of
the matrix for which there is no transition t with �(t) /∈ B, Mi−1[t〉 and s ∈ •t.
In case all entries of the matrix are crossed out, the algorithm terminates, with
output M0t1M1t2 . . .Mi−1. Otherwise I fill in column i as follows and cross out
some more places occurring in body of the matrix.

I take n to be the smallest value such that entry f(n) ∈ � × � is already
filled in, say with place r, but not yet crossed out. By the previous step of the
algorithm, Mi−1[ti〉 for some transition ti with �(ti) /∈ B and r ∈ •ti. I now
fill in (ti,Mi) in the head of column i; here Mi is the unique marking such
that Mi−1[ti〉Mi. Subsequently I cross out all entries in the body of the matrix
containing a place r′ ∈ •ti. This includes the entry f(n). Finally, I fill in the
body of column i with the places s ∈ Mi.

In case the algorithm doesn’t terminate, the desired path π is the sequence
π = M0t1M1t2M2 . . . that is constructed in the limit. It remains to show that π
is B-just.

Towards a contradiction, suppose π[t〉 for a transition t with �(t) /∈ B. By
Def. 6 there is an m ∈ �∧m ≤ length(π) such that Mm[t〉 and (•t+t̂)∩•tj+1 = ∅
for all m ≤ j < length(π). Let h be the smallest such m with m ≥ k. Then there
is a place r ∈ •t appearing in column h. Here I use that •t
= ∅. This place was
not yet crossed out when column h was constructed. Since r /∈ •tj+1 and Mj+1[t〉
for all h ≤ j < length(π), place r will never be crossed out. It follows that π
must be infinite. The entry r in column h is enumerated as f(n) for some n ∈ �,
and is eventually reached by the algorithm and crossed out. In this regard the
matrix acts as a priority queue. This yields the required contradiction. ��

The above proof is a variant of [18, Thm. 1], which itself is a variant of [25,
Thm. 6.1]. The side condition of finitariness is essential, as the below counterex-
ample shows.

Example 2 Let N = (S, T, F,R,M0, �) be the net with T = {tr | r ∈ �},
S = {sr | r ∈ �}, M0(sr) = 1, �(tr) = τ , •tr = {sr} and t̂r = t•r = ∅
for each r ∈ �. It contains uncountably many action transitions, each with a
marked private preplace. As each execution path π contains only countably many
transitions, many transitions remain enabled by π.

6 The coarsest preorders preserving linear time properties

A linear time property is a predicate on system runs, and thus also on the
execution paths of Petri nets. One writes π |= ϕ if the execution path π satisfies
the linear-time property ϕ. As the observable behaviour of an execution path π
of a Petri net is deemed to be trace(π), in this context one studies only linear

Just Testing 507

time properties ϕ such that

trace(π) = trace(π′) ⇔ (π |= ϕ ⇔ π′ |= ϕ) . (1)

For this reason, a linear time property can be defined or characterised as a subset
of A∞.

Linear time properties can be used to formalise correctness requirements on
systems. They are deemed to hold for (or be satisfied by) a system iff they
hold for all its complete runs. Following [20] I write D |=CC ϕ iff property
ϕ holds for all runs of the distributed system D—and N |=CC ϕ iff it holds
for all execution paths of the Petri net N—that are complete according to the
completeness criterion CC. Prior to [20], |= was a binary predicate predicate
between systems—or system representations such as Petri nets—and properties;
in this setting the default completeness criterion of Section 4 was used. When
using a completeness criterion B-C, where C is one of the 20 completeness criteria
classified in [25] and B ⊆ A is a modifier of C based on the set B of actions
that may be blocked by the environment, N |=B-C ϕ is written N |=C

B ϕ [20].
In this paper I am mostly interested in the values Pr and J of C, standing
for progress and justness, respectively. To be consistent with previous work on
temporal logic, N |= ϕ is a shorthand for N |=Pr

∅ ϕ.

For each completeness criterion B-C, let �C
B be the coarsest preorder that

preserves linear time properties when assuming B-C. Moreover, �C is the coars-
est preorder that preserves linear time properties when assuming completeness
criterion C in each environment, meaning regardless which set of actions B can
be blocked.

Definition 7 Write N �C
B N ′ iff N |=C

B ϕ ⇒ N ′ |=C
B ϕ for all linear time

properties ϕ. Write N �C N ′ iff N �C
B N ′ for all B ⊆ A.

It is trivial to give a more explicit characterisation of these preorders. To preserve
the analogy with the failure pairs of CSP [6], instead of sets B ⊆ A I will record
their complements B := A\B. As B = B, such sets carry the same information.
Since B contains the actions that may be blocked by the environment, meaning
that we consider environments that in any state may decide which actions from
B to block, the set B ∪ {τ} contains actions that may not be blocked by the
environment. This means that we only consider environments that in any state
are willing to synchronise with any action in B.

Definition 8 For completeness criterion C, B ranging over P(A), and Petri
net N , let

FC(N) := {(σ,B) |N has a B-C-complete execution path π with σ=trace(π)}
FC

B (N) := { σ |N has a B-C-complete execution path π with σ=trace(π)}.

An element (σ,X) of FC(N) could be called a C-failure pair of N , because it
indicates that the system represented by N , when executing a path with visible
content σ, may fail to execute additional actions from X, even when all these

508 R. J. van Glabbeek

actions are offered by the environment, in the sense that the environment is
perpetually willing to partake in those actions. Note that if (σ,X) ∈ FC(N)
and Y ⊆ X then (σ, Y) ∈ FC(N).

Proposition 1 N �C
B N ′ iff FC

B (N)⊇ FC
B (N ′).

Likewise, N �C N ′ iff FC(N)⊇ FC(N ′).

Proof. Suppose N �C
B N ′ and σ /∈ FC

B (N). Let ϕ be the linear time property
satisfying π |= ϕ iff trace(π) �= σ. Then N |=C

B ϕ and thus N ′ |=C
B ϕ. Hence

σ /∈ FC
B (N ′).

Suppose N ��C
B N ′. There there exists a linear time property ϕ such that

N |=C
B ϕ, yet N ′ �|=C

B ϕ. Let π′ be a B-C-complete execution path of N ′ such
that π′ �|= ϕ, and let σ = trace(π′). By (1) π �|= ϕ for any execution path π (of
any net) such that trace(π) = σ. Hence σ ∈ FC

B (N ′), yet σ /∈ FC
B (N). It follows

that FC
B (N) �⊇ FC

B (N ′).
The second statement follows as a corollary of the first, using that FC(N) ⊇

FC(N ′) iff FC
B (N) ⊇ FC

B (N ′) for all B ⊆ A. ��

The preorders �C
B can be classified as linear time semantics [12], as they are

characterised through reverse trace inclusions. The preorders �C on the other
hand capture a minimal degree of branching time. This is because they should
be ready for different choices of a system’s environment at runtime.

Note that �C is contained in �C
B for each B ⊆ A, in the sense that N �C N ′

implies N �C
B N ′. There is a priori no reason to assume inclusions between

preorders �C and �D when D is a stronger completeness criterion than C.
To relate the preorders �C

B and �C with ones established in the literature, I
consider the case C = Pr , i.e., taking progress as the completeness criterion C.
The preorder �Pr

∅ is characterised as reverse inclusion of complete traces, where
completeness is w.r.t. the default completeness criterion of Section 4. These
complete traces include

– the infinite traces of a system,
– its divergence traces (stemming from execution paths that end in infinitely

many τ -transitions), and
– its deadlock traces (stemming from finite execution paths that end in a mark-

ing enabling no transitions).

Deadlock and divergence traces are not distinguished. This corresponds with
what is called divergence sensitive trace semantics (Tλ) in [12]. The above con-
cept of complete traces of a process p is the same as in [15], there denoted CT (p).

The preorder �Pr
A is characterised as reverse inclusion of infinite and partial

traces, i.e., the traces of all execution paths. This corresponds with what is
called infinitary trace semantics (T∞) in [12]. It is strictly coarser (making more
identifications) than Tλ.

To analyse the preorder �Pr , one has (σ,X) ∈ FPr (N) if either

– σ is an infinite trace of N—the set X plays no rôle in that case,
– σ is a divergence trace of N , or

Just Testing 509

– σ is the trace of a finite path of N whose end-marking enables no transition
t with �(t) ∈ X.

The resulting preorder does not occur in [12]—it can be placed strictly between
divergence sensitive failure semantics (FΔ) and divergence sensitive trace se-
mantics (Tλ).

The entire family of preorders �C
B and �C proposed in this section was

inspired by its most interesting family member, �J (i.e., taking justness as the
completeness criterion C), proposed earlier by Walter Vogler [43, Def. 5.6], also
on Petri nets with read arcs. Vogler [43] uses the word fair for what I call just.
I believe the choice of the word “just” is warranted to distinguish the concept
from the many other kinds of fairness that appear in the literature, which are
all of a very different nature. Accordingly, Vogler calls the semantics induced
by �J the fair failure semantics, whereas I call it the just failures semantics.
My set F J(N) is called FF (N) in [43], and Vogler addresses �J simply as
FF -inclusion, thereby defining it via the right-hand side of Prop. 1.

7 Congruence properties

A preorder � is called a precongruence for an n-ary operator Op, if Ni � N ′
i

for i = 1, . . . , n implies that Op(N1, . . . , Nn) � Op(N ′
1, . . . , N

′
n). In this case the

operator Op is said to be monotone w.r.t. the preorder �. Being a precongru-
ence for important operators is known to be a valuable tool in compositional
verification [41].

I write ≡ for the kernel of �, that is, N ≡ N ′ iff N � N ′ ∧ N ′ � N . Here
I also imply that ≡C

B is the kernel of �C
B . If � is a precongruence for Op, then

≡ is a congruence for Op, meaning that Ni ≡ N ′
i for i = 1, . . . , n implies that

Op(N1, . . . , Nn) ≡ Op(N ′
1, . . . , N

′
n).

The preorder �Pr
A , characterised as reverse inclusion of infinite and partial

traces, is well-known to be precongruence for the operators of CCSP. However,
none of the other preorders �Pr

B , nor �Pr , is a precongruence for parallel com-
position.

Example 3 Let N = • , N ′ = • τ and T = • w . The definition

of ‖∅ yields T ‖∅N = • • w and T ‖∅N ′ = • τ • w . One

has N ≡Pr N ′, and thus also N ≡Pr
B N ′, for each B ⊆ A. Namely FPr (N) =

FPr (N ′) = {(ε,X) | X ⊆ A}. Here ε denotes the empty string. When fixing B
such that B 	= A one may choose w /∈ B. Now ε ∈ FPr

B (T ‖∅N ′), for this process
has an infinite execution path that avoids the w-transition, which generates a
divergence trace ε. Yet ε /∈ FPr

B (T ‖∅N). Hence T ‖∅N 	�Pr
B T ‖∅N ′, and thus

also T ‖∅N 	�Pr T ‖∅N ′. So neither �Pr
B nor �Pr are precongruences for ‖∅.

A common solution to the problem of a preorder � not being a precongruence
for certain operators is to instead consider its congruence closure, defined as the
largest precongruence contained in �.

510 R. J. van Glabbeek

In [30,15] the congruence closure of �Pr is characterised as the so-called
NDFD preorder �NDFD . Here N �NDFD N ′ iff N �Pr N ′ (characterised in
the previous section) and moreover the divergence traces of N ′ are included in
those of N . As remarked in [15], here it does not matter whether one requires
congruence closure merely w.r.t. parallel composition and injective relabelling,
or w.r.t. all operators of CSP (or CCSP, or anything in between).

Unlike �Pr , the preorder �J is a precongruence for parallel composition.
Although this has been proven already by Vogler [43], [22, in Appendix B] I
provide a proof that bypasses the auxiliary notion of urgent transitions, and
provides more details.

Proposition 2 ([43]) �J is a precongruence for relabelling and abstraction.

Proof. This follows since F J(f(N)) = {(f(σ), X) | (σ, f−1(X)) ∈ F J(N)} and
moreover F J(τI(N)) = {(τI(σ), X) | (σ,X ∪ I) ∈ F J(N)}. Here τI(σ) is the
result of pruning all I-actions from σ ∈ A∞. ��

Trivially, �J also is a precongruence for
∑

aiPi and a �
∑

aiPi.
The preorder �J

A can be seen to coincide with �Pr
A , characterised as reverse

inclusion of infinite and partial traces, and thus is a precongruence for the op-
erators of CCSP. Leaving open the case |A\B| = 1, the preorders �J

B with
|A\B| ≥ 2 fail to be precongruences for parallel composition.

Example 4 Take b, c /∈ B. Let N , N ′ and T be as shown in Fig. 4. Then

•

a

b c

N

•

a

b

a

c

N ′

•

a

c

T

•

a

c

T ‖AN

•

a a

c

T ‖AN ′

Fig. 4. The preorders �J
B with |A\B| ≥ 2 fail to be precongruences for parallel comp.

N ≡J
B N ′, as F J

B(N)=F J
B(N

′)= {ε, ab, ac}. (Whether ε is included depends on
whether a∈B.) Yet T ‖AN
≡J

B T ‖AN ′, as a∈F J
B(T ‖AN ′), yet a /∈F J

B(T ‖AN).

Moreover, as illustrated below, the preorders �J
B with B
= ∅ and |A\B| ≥ 1 fail

to be precongruences for abstraction. In the next section I will show that, for
A infinite and B
= A, the congruence closure of �J

B for parallel composition,
abstraction and relabelling is �J .

Example 5 Take b ∈ B and c /∈ B. Let N and N ′ be as shown in Fig. 5. Then
N ≡J

B N ′, as F J
B(N) = F J

B(N
′) = {ε, bc}. Yet τ{b}(N)
≡J

B τ{b}(N ′), since
ε ∈ F J

B(τ{b}(N
′)), yet ε /∈ F J

B(τ{b}(N)).

Just Testing 511

•

τ

b

c

N

•

τ τ

b

c

N ′

•

τ

τ

c

τ{b}(N)

•

τ τ

τ

c

τ{b}(N
′)

Fig. 5. The preorders �J
B with ∅ �= B �= A fail to be precongruences for abstraction

8 Must Testing

A test is a Petri net, but featuring a special action w /∈ Aτ , not used elsewhere.
This action is used to mark success markings : those in which w is enabled. If
T is a test and N a net then τA(T ‖AN) is also a test. An execution path of
τA(T ‖AN) is successful iff it contains a success marking.

Definition 9 A Petri net N may pass a test T , notation N may T , if τA(T ‖AN)
has a successful execution path. It must pass T , notation N must T , if each
complete execution path of τA(T ‖AN) is successful. It should pass T , notation
N should T , if each finite execution path of τA(T ‖AN) can be extended into a
successful execution path.

Write N �must N ′ if N must T implies N ′ must T for each test T . The
preorders �may and �should are defined similarly.

The may- and must-testing preorders stem from De Nicola & Hennessy [9],
whereas should-testing was added independently in [5] and [36].

In the original work on testing [9] the CCS parallel composition T |N was
used instead of the concealed CCSP parallel composition τA(T ‖AN); moreover,
only those execution paths consisting solely of internal actions mattered for
the definitions of passing a test. The present approach is equivalent. First of
all, restricting attention to execution paths of T |N consisting solely of internal
actions is equivalent to putting T |N is the scope of a CCS restriction operator \A
[34], for that operator drops all transitions of its argument that are not labelled
τ or w. Secondly, CCS features a complementary action ā for each a ∈ A, and
one has ¯̄a = a. For T a test, let T denote the complementary test in which
each action a ∈ A is replaced by ā; again T = T . It follows directly from the
definitions of the operators involved that τA(T ‖AN) is identical3 to (T |N)\A.
This proves the equivalence of the two approaches.

3 The standard definition of | on Petri nets [28] is given only up to isomorphism. By
choosing the names of places and transitions similar to those in the defintion of ‖A
from [22, Appendix A] one can obtain τA(T ‖AN) = (T |N)\A.

512 R. J. van Glabbeek

Unlike may- and should-testing, the concept of must-testing is naturally
parametrised with a completeness criterion, deciding what counts as a complete
execution. To make this choice explicit I use the notation �C

must, where C could
be any of the completeness criteria surveyed in [25]. Since processes τA(T ‖AN)
(or (T |N)\A) do not feature any actions other than τ and w, where w is used
merely to point to the success states, the modifier B ⊆ A of a completeness
criteria B-C has no effect, i.e., any two choices of this modifier are equivalent.

In the original work of [9] the default completeness criterion progress from
Section 4 was employed. Interestingly, �Pr

must is a congruence for the operators
of CCSP that does not preserve all linear time properties. It is strictly coarser
than �NDFD . In fact, it is the coarsest precongruence for the CCSP parallel
composition and injective relabelling that preserves those linear time properties
that express that a system will eventually reach a state in which something
[good] has happened [15]. (In [15], following [32], but deviating from the standard
terminology of [1], such properties are called liveness properties.)

In this paper I investigate the must-testing preorder when taking justness as
the underlying completeness criterion, �J

must. Thm. 2 below shows that it can
be characterised as the just failures preorder �J of Section 6.

First note that Def. 9 can be simplified. When dealing with justness as com-
pleteness criterion, the word “complete” in Def. 9 is instantiated by “just” or
“B-just”, for some B ⊆ A (not including w). As the result is independent of B,
one may take B := ∅. Since the labelling of a net has no bearing on its execution
paths, or on whether such a path is ∅-just, or successful, one may now drop the
operator τA from Def. 9 without affecting the resulting notion of must testing.

Theorem 2 N �J
must N

′ iff N �J N ′.

Proof. The “if” direction is established in [22, Appendix C].
For “only if”, suppose N �J

must N ′. Using Prop. 1, it suffices to show that
F J(N) ⊇ F J(N ′). Let (σ,X) ∈ F J(N ′), where σ = a1a2 . . . ∈ A∞ is a finite or
infinite sequence of actions. Let T be the test displayed in Fig. 6. The drawing
is for the case that σ = a1a2 . . . an finite; in the infinite case, there is no need
to display an separately. Now K must T , for any net K, when using justness
as completeness criterion, iff each ∅-just execution path of T ‖AK is successful,
which is the case iff (σ,X) /∈ F J(K). (In other words, T ‖AK has an unsuccessful
∅-just execution path iff (σ,X) ∈ F J(K). For the meaning of (σ,X) ∈ F J(K) is
thatK has an execution path π with trace(π) = σ such that �K(t) ∈ X ⇒ ¬π[t〉.)
Hence N ′ must not T and thus N must not T , and thus (σ,X) ∈ F J(N).
�
Proposition 3 Let A be infinite and B �= A. Then �J is the congruence closure
of �J

B for parallel composition, abstraction and injective relabelling.

Proof. Pick an action w ∈ A\B. Assume N ��J N ′. By applying an injective re-
labelling, one can assure that w does not occur in N or N ′. Let (σ,X) ∈ F J(N ′),
yet (σ,X) /∈ F J(N), with w /∈ X. Let T be the net of Fig. 6. Then, writing A :=
A\{w}, (σ,A) ∈ F J(T ‖AN ′), yet (σ,A) /∈ F J(T ‖AN). Moreover, (ρ,A) /∈
F J(T ‖AN ′) and (ρ,A) /∈ F J(T ‖AN) for any ρ �= σ not containing the action

Just Testing 513

•

τ

a1

τ

a2

τ

. . . an

τ

w

•

b w

b′ w

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
for each b, b′, . . . ∈ X

. . .

Fig. 6. Universal test for just must testing

w. Hence, applying the proof of Prop. 2, using that A∪B = A, one has (ε,B) ∈
F J(τA(T ‖AN ′)), yet (ε,B) /∈ F J(τA(T ‖AN)). Thus ε ∈ F J

B(τA(T ‖AN ′)), yet
ε /∈ F J

B(τA(T ‖AN)). It follows that τA(T ‖AN) ��J
B τA(T ‖AN ′). ��

9 Timed must-testing

A timed form of must-testing was proposed by Vogler in [43]. Justness says that
each transition that gets enabled must fire eventually, unless one of its necessary
resources will be taken away. In Vogler’s framework, each transition t must fire
within 1 unit of time after it becomes enabled, even though it can fire faster.
The implicit timer is reset each time t becomes disabled and enabled again, by
another transition taken a token and returning it to one of the replaces of t.
Since there is no lower bound on the time that may elapse before a transition
fires, this view encompasses the same asynchronous behaviour of nets as under
the assumption of justness.

Vogler’s work only pertains to safe nets: those with the property that no
reachable marking allocates multiple tokens to the same place. Here a marking
is reachable if it occurs in some execution path. Transitions t with •t = ∅ are
excluded. Although he only considered finite nets, here I apply his work un-
changed to finitely branching nets: those in which only finitely many transitions
are enabled in each reachable marking.

Definition 10 ([43]) A continuous(ly timed) instantaneous description (CID)
of a net N is a pair (M, ξ) consisting of a marking M of N and a function
ξ mapping the transitions enabled under M to [0, 1]; ξ describes the residual
activation time of an enabled transition.

The initial CID is CID0 = (M0; ξ0) with ξ0(t) = 1 for all t with M0[t〉.
One writes (M, ξ)[η〉(M ′, ξ′) if one of the following cases applies:

514 R. J. van Glabbeek

(1) η = t ∈ T , M [t〉M ′, ξ′(t) := ξ(t) for those transitions t enabled under M−•t
and ξ′(t) := 1 for the other transitions enabled under M ′.

(2) η = r ∈ �+, r ≤ min(ξ), M ′ = M and ξ′ = ξ − r.

A timed execution path π is an alternating sequence of CIDs and elements t ∈ T
or r ∈ �+, defined just like an execution path in Def. 6. Let ζ(π) ∈ �∪ {∞} be
the sum of all time steps in a timed execution path π, the duration of π.

A timed test is a pair (T , D) of a test T and a duration D ∈ �+
0 . A net must

pass a timed test (T , D), notation N must (T , D), if each timed execution
path π with ζ(π) > D contains a transition labelled w. Write N �timed

must N ′ if
N must (T , D) implies N ′ must (T , D) for each timed test (T , D).

Vogler shows that the preorder �timed
must is strictly finer than �J . In fact, although

τ.a.0 ≡J a.0, one has τ.a.0 	≡timed
must a.0, since only the latter process must pass

the timed test (a.w, 2). Here I use that each of the actions τ , a and w may take
up to 1 unit of time to occur. A statement N �timed

must N ′ says that N ′ is faster
than N , in the sense that composed with a test it is guaranteed to reach success
states in less time than N .

Here I show that when abstracting from the quantitative dimension of timed
must-testing, it exactly characterises �J .

Definition 11 A net must eventually pass a test T if there exists a D ∈ �+
0

such that N must (T , D). Write N �ev.
must N

′ if when N must eventually pass a
test T , then so does N ′.

Theorem 3 Let N,N ′ be finitely branching safe nets. Then N �ev.
must N ′ iff

N �J N ′.

A proof can be found in [22, Appendix D].

10 Conclusion

The just failures preorder �J was introduced by Walter Vogler [43] in 2002. Since
then it has not received much attention in the literature, and has not been used
as the underlying semantic principle justifying actual verifications. In my view
this can be seen as a fault of the subsequent literature, as �J captures exactly
what is needed—no more and no less—for the verification of safety and liveness
properties of realistic systems.

I substantiate this claim by pointing out that �J is the coarsest preorder
preserving safety and liveness properties when assuming justness, that is a con-
gruence for basic process algebra operators, such as the partially synchronous
parallel composition, abstraction from internal actions, and renaming. As argued
in [25,18,24,17], justness is better motivated and more suitable for applications
than competing completeness criteria, such as progress or the many notions of
fairness surveyed in [24].

Moreover, I adapt the well-known must-testing preorder of De Nicola & Hen-
nessy [9], by using justness as the underlying completeness criterion, instead of

Just Testing 515

the traditional choice of progress. By showing that the resulting must-testing
preorder �J

must coincides with �J I strengthen the case that this is a natural
and fundamental preorder.

This conclusion is further strengthened by my result that it also coincides
with a qualitative version �ev.

must of the timed must-testing preorder �timed
must of

Vogler [43]. (Although �timed
must and �J stem from the same paper [43], this con-

nection was not made there.)
All this was shown in the setting of Petri nets extended with read arcs, and

therefore also applies to the settings of standard process algebras such as CCS,
CSP or ACP. Since I cover read arcs, it also applies to process algebras enriched
with signalling, an operator that extends the expressiveness of standard process
algebras and is needed to accurately model mutual exclusion. I leave it for future
work to explore these matters for probabilistic models of concurrency, or other
useful extensions.

�should �J
must = �J = �ev.

must

�may�Pr
must

�Pr
must ∩ �may

�Pr
reward

↔
↔ep

↔sp

Fig. 7. A spectrum of testing preorders and bisimilarities preserving liveness properties

Fig. 7 situates �J
must w.r.t. the some other semantic preorders from the literature.

The lines indicate inclusions. Here �Pr
must, �may and �should are the classical

must-, may- and should-testing preorders from [9] and [5,36]—see Def. 9—and
�Pr

reward is the reward-testing preorder introduced by me in [19]. The failures-
divergences preorder of CSP [6,42], defined in a similar way as �J

must, coincides
with �Pr

must [9,19]. ↔ denotes the classical notion of strong bisimilarity [34], and
↔ep , ↔sp are essentially the only other preorders (in fact equivalences) that
preserve linear time properties when assuming justness: the enabling preserving
bisimilarity of [26] and the structure preserving bisimilarity of [16].
The inclusions follow directly from the definitions—see refs.

—and counterexamples against further inclusions appear below.

• �≡Pr
must

≡may

•
τ

•
a

•
τ

�≡J

↔ •
a

τ

≡J

�≡shld.

≡Pr
rew.

•
a

τ

τ

τ

•
a

τ

≡Pr
must

�≡may

•
b

τ

c

•
c

g

τ

≡Pr
must

≡may

�≡Pr
rew.

�≡shld.

�≡J

•
c

g

τ

516 R. J. van Glabbeek

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Infromation Processing Letters
21(4), 181–185 (1985). https://doi.org/10.1016/0020-0190(85)90056-0

2. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed
programming. Distributed Computing 2(4), 226–241 (1988). https://doi.org/

10.1007/BF01872848

3. Bergstra, J.A.: ACP with signals. In: Grabowski, J., Lescanne, P., Wechler, W.
(eds.) Proc. International Workshop on Algebraic and Logic Programming. LNCS,
vol. 343, pp. 11–20. Springer (1988). https://doi.org/10.1007/3-540-50667-5_
53

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37(1), 77–121 (1985). https://doi.org/10.1016/

0304-3975(85)90088-X

5. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka,
S.A. (eds.) Proc. 6th International Conference on Concurrency Theory, CON-
CUR’95. LNCS, vol. 962, pp. 313–327. Springer (1995). https://doi.org/10.

1007/3-540-60218-6_23

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

7. Busi, N., Pinna, G.M.: Non sequential semantics for contextual P/T nets. In:
Billington, J., Reisig, W. (eds.) Proc. 17th Int. Conf. on Application and The-
ory of Petri Nets. LNCS, vol. 1091, pp. 113–132. Springer (1996). https://doi.
org/10.1007/3-540-61363-3_7

8. Corradini, F., Di Berardini, M.R., Vogler, W.: Time and fairness in a process
algebra with non-blocking reading. In: Nielsen, M., Kucera, A., Miltersen, P.B.,
Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) Theory and Practice of Computer
Science, SOFSEM’09. LNCS, vol. 5404, pp. 193–204. Springer (2009). https://
doi.org/10.1007/978-3-540-95891-8_20

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

10. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E
system. In: Venturini Zilli, M. (ed.) Advanced School on Mathematical Models for
the Semantics of Parallelism, 1986. LNCS, vol. 280, pp. 144–165. Springer (1987).
https://doi.org/10.1007/3-540-18419-8_13

11. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing mutual exclusion using
process algebra with signals. In: Peters, K., Tini, S. (eds.) Proceedings Combined
24th International Workshop on Expressiveness in Concurrency and 14th Work-
shop on Structural Operational Semantics. EPTCS, vol. 255, pp. 18–34 (2017).
https://doi.org/10.4204/EPTCS.255.2

12. van Glabbeek, R.J.: The linear time – branching time spectrum II; the semantics
of sequential systems with silent moves. In: Best, E. (ed.) Proc. CONCUR’93, 4th

Int. Conf. on Concurrency Theory. LNCS, vol. 715, pp. 66–81. Springer (1993).
https://doi.org/10.1007/3-540-57208-2_6

13. van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Mid-
deldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes,
Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem
Klop on the Occasion of His 60th Birthday. LNCS, vol. 3838, pp. 26–39. Springer
(2005). https://doi.org/10.1007/11601548_4

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1145/828.833
https://doi.org/10.1145/828.833
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/3-540-18419-8_13
https://doi.org/10.1007/3-540-18419-8_13
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/11601548_4
https://doi.org/10.1007/11601548_4

Just Testing 517

14. van Glabbeek, R.J.: The individual and collective token interpretations of Petri
nets. In: Abadi, M., de Alfaro, L. (eds.) Proc. CONCUR’05, 16th Int. Conf. on
Concurrency Theory. LNCS, vol. 3653, pp. 323–337. Springer (2005). https://

doi.org/10.1007/11539452_26

15. van Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness
properties. In: Calude, C., Sassone, V. (eds.) Proc. 6th IFIP TC 1/WG 2.2 Int.
Conf. on Theoretical Computer Science, TCS’10; held as part of the World Com-
puter Congress. IFIP, vol. 323, pp. 32–52. Springer (2010). https://doi.org/10.
1007/978-3-642-15240-5_3, http://arxiv.org/abs/1007.5491

16. van Glabbeek, R.J.: Structure preserving bisimilarity, supporting an operational
petri net semantics of CCSP. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.)
Proceedings Correct System Design - Symposium in Honor of Ernst-Rüdiger
Olderog on the Occasion of His 60th Birthday. LNCS, vol. 9360, pp. 99–
130. Springer (2015). https://doi.org/10.1007/978-3-319-23506-6_9, http:

//arxiv.org/abs/1509.05842

17. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems: Open
problems. Journal of Logical and Algebraic Methods in Programming 109, 100480
(2019). https://doi.org/10.1016/j.jlamp.2019.100480

18. van Glabbeek, R.J.: Justness: A completeness criterion for capturing liveness prop-
erties. In: Bojańczyk, M., Simpson, A. (eds.) Proc. 22st Int. Conf. on Foundations
of Software Science and Computation Structures, FoSSaCS’19; held as part of
ETAPS’19. LNCS, vol. 11425, pp. 505–522. Springer (2019). https://doi.org/
10.1007/978-3-030-17127-8_29, https://arxiv.org/abs/1909.00286

19. van Glabbeek, R.J.: Reward testing equivalences for processes. In: Boreale, M.,
Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for
Concurrent and Distributed Programming, Essays Dedicated to Rocco De Nicola
on the occasion of his 65th Birthday, LNCS, vol. 11665, pp. 45–70. Springer
(2019). https://doi.org/10.1007/978-3-030-21485-2_5, https://arxiv.org/

abs/1907.13348

20. van Glabbeek, R.J.: Reactive temporal logic. In: Dardha, O., Rot, J. (eds.) Proc.
Combined 27th Int. Workshop on Expressiveness in Concurrency and 17th Work-
shop on Structural Operational Semantics. EPTCS, vol. 322, pp. 51–68 (2020).
https://doi.org/10.4204/EPTCS.322.6

21. van Glabbeek, R.J.: Modelling mutual exclusion in a process algebra with time-outs
(2021), https://arxiv.org/abs/2106.12785

22. van Glabbeek, R.J.: Just Testing (2022), version of this paper extended with four
appendices, https://arxiv.org/abs/2212.08829

23. van Glabbeek, R.J., Goltz, U., Schicke, J.W.: Abstract processes of place/transition
systems. Information Processing Letters 111(13), 626–633 (2011). https://doi.
org/10.1016/j.ipl.2011.03.013, https://arxiv.org/abs/1103.5916

24. van Glabbeek, R.J., Höfner, P.: CCS: it’s not fair! – fair schedulers cannot be
implemented in CCS-like languages even under progress and certain fairness as-
sumptions. Acta Informatica 52(2-3), 175–205 (2015). https://doi.org/10.1007/
s00236-015-0221-6, https://arxiv.org/abs/1505.05964

25. van Glabbeek, R.J., Höfner, P.: Progress, justness and fairness. ACM Computing
Surveys 52(4), 69 (August 2019). https://doi.org/10.1145/3329125, https://
arxiv.org/abs/1810.07414

26. van Glabbeek, R.J., Höfner, P., Wang, W.: Enabling preserving bisimula-
tion equivalence. In: Haddad, S., Varacca, D. (eds.) Proc. 32nd Int. Confer-
ence on Concurrency Theory, CONCUR’21. Leibniz International Proceedings

https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
http://arxiv.org/abs/1007.5491
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/978-3-319-23506-6_9
http://arxiv.org/abs/1509.05842
http://arxiv.org/abs/1509.05842
https://doi.org/10.1016/j.jlamp.2019.100480
https://doi.org/10.1016/j.jlamp.2019.100480
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://arxiv.org/abs/1909.00286
https://doi.org/10.1007/978-3-030-21485-2_5
https://doi.org/10.1007/978-3-030-21485-2_5
https://arxiv.org/abs/1907.13348
https://arxiv.org/abs/1907.13348
https://doi.org/10.4204/EPTCS.322.6
https://doi.org/10.4204/EPTCS.322.6
https://arxiv.org/abs/2106.12785
https://arxiv.org/abs/2212.08829
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://arxiv.org/abs/1103.5916
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://arxiv.org/abs/1505.05964
https://doi.org/10.1145/3329125
https://doi.org/10.1145/3329125
https://arxiv.org/abs/1810.07414
https://arxiv.org/abs/1810.07414

518 R. J. van Glabbeek

in Informatics (LIPIcs), vol. 203. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.33, https://

arxiv.org/abs/2108.00142
27. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories

of concurrency. In: Bakker, J.W.d., Nijman, A.J., Treleaven, P.C. (eds.) Proc.
PARLE, Parallel Architectures and Languages Europe, Vol. II. LNCS, vol. 259,
pp. 224–242. Springer (1987). https://doi.org/10.1007/3-540-17945-3_13

28. Goltz, U.: CCS and Petri nets. In: Guessarian, I. (ed.) Proc. Semantics of Sys-
tems of Concurrent Processes, LITP Spring School on Theoretical Computer Sci-
ence. LNCS, vol. 469, pp. 334–357. Springer (1990). https://doi.org/10.1007/
3-540-53479-2_14

29. Goltz, U., Mycroft, A.: On the relationship of CCS and Petri nets. In: Paredaens,
J. (ed.) Proc. 11th Colloquium on Automata, Languages and Programming,
ICALP84. LNCS, vol. 172, pp. 196–208. Springer (1984). https://doi.org/10.
1007/3-540-13345-3_18

30. Kaivola, R., Valmari, A.: The weakest compositional semantic equivalence pre-
serving nexttime-less linear temporal logic. In: Cleaveland, R. (ed.) Proc. CON-
CUR’92. LNCS, vol. 630, pp. 207–221. Springer (1992). https://doi.org/10.

1007/BFb0084793
31. Kindler, E., Walter, R.: Mutex needs fairness. Inf. Process. Lett. 62(1), 31–39

(1997). https://doi.org/10.1016/S0020-0190(97)00033-1
32. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions

on Software Engineering 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.
1977.229904

33. Lamport, L.: Fairness and hyperfairness. Distributed Computing 13(4), 239–245
(2000). https://doi.org/10.1007/PL00008921

34. Milner, R.: Communication and Concurrency. Prentice-Hall (1989), alternatively
see A Calculus of Communicating Systems, LNCS 92, Springer, 1980, https://
doi.org/10.1007/3-540-10235-3

35. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995).
https://doi.org/10.1007/BF01178907

36. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg,
F. (eds.) Proc. 22nd Int. Colloquium on Automata, Languages and Programming,
ICALP’95. LNCS, vol. 944, pp. 648–659. Springer (1995). https://doi.org/10.
1007/3-540-60084-1_112

37. Olderog, E.R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.)
Advances in Petri Nets 1987. LNCS, vol. 266, pp. 196–223. Springer (1987). https:
//doi.org/10.1007/3-540-18086-9_27

38. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge Tracts in Theoretical Computer Science 23,
Cambridge University Press (1991)

39. Olderog, E.R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Inf. 23, 9–66 (1986). https://doi.org/10.1007/BF00268075

40. Reisig, W.: Understanding Petri Nets — Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013). https://doi.org/10.1007/978-3-642-33278-4

41. Roever, W.P.d., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods, Cambridge Tracts in TCS, vol. 54. Cambridge University
Press (2001)

42. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall (1997),
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://arxiv.org/abs/2108.00142
https://arxiv.org/abs/2108.00142
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1016/S0020-0190(97)00033-1
https://doi.org/10.1016/S0020-0190(97)00033-1
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF01178907
https://doi.org/10.1007/BF01178907
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

Just Testing 519

43. Vogler, W.: Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. Theor. Comput. Sci. 275(1-2), 589–631 (2002). https://doi.org/10.
1016/S0304-3975(01)00300-0

44. Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M.,
Mehlhorn, K. (eds.) Proc. Symposium on Theoretical Aspects of Computer Sci-
ence, STACS’84. LNCS, vol. 166, pp. 140–150. Springer (1984). https://doi.org/
10.1007/3-540-12920-0_13

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
http://creativecommons.org/licenses/by/4.0/

Model and Program Repair via Group Actions

Paul C. Attie1 and William L. Cocke1(�)

School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
pattie@augusta.edu, wcocke@augusta.edu

Abstract. Given a textual representation of a finite-state concurrent
program P , one can construct the corresponding Kripke structure M.
However, the size of M can be exponentially larger than the textual size
of P . This state explosion can make model checking properties of P via
M expensive or even infeasible. The action of a symmetry group G on M
can be used to produce a smaller Kripke structure M. Various authors
have exploited the direct correspondence between M and M to perform
model checking. When the structure M does not satisfy a formula, one
can look for a substructure that will satisfy the formula. We call this
substructure-repair : identifying a substructure N of M that satisfies a
given temporal logic formula.
In this paper we extend previous work by showing that repairs of M
lift to repairs of M. In other words, we can repair a computer program
P , which exhibits a high degree of symmetry, by repairing the smaller
Kripke structure M and then symmetrizing the corresponding program.
To do this we arrange the substructures of M and M into substructure
lattices that are ordered by substructure inclusion. We show that the
substructures of M preserved by G form a (sub)lattice that maps to the
substructure lattice of M. When restricted to the lattice of substructures
of M that are “maximal” with the action of G on M, the above map is
a lattice isomorphism.
These results enable us to repair M and then to lift the repair to M. In
cases where a program has a high degree of symmetry, such as in many
concurrent programs, we can repair the program by repairing the small
Kripke structure M.

Keywords: Model checking · symmetry reduction · model repair

1 Introduction

To model check a program P, one first constructs a Kripke structure M. In
general, the Kripke structure M is generated by all potential executions of P .
The model checking problem for a program P w.r.t. a temporal logic formula
ϕ is to verify that the Kripke structure M generated by the execution of P
satisfies ϕ [8]. A major obstacle to model checking a concurrent program via its
Kripke structure is state explosion: in general, the size of M is exponential in
the number of processes n. As studied by Emerson and Sistla [18] and extended
by others [10,14,21], the use of symmetry reduction to ameliorate state-explosion

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 25

520–540, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_25&domain=pdf
http://orcid.org/0000-0003-1989-0974
http://orcid.org/0000-0002-0732-6666
mailto:pattie@augusta.edu
mailto:wcocke@augusta.edu
https://doi.org/10.1007/978-3-031-30829-1_25
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_25&domain=pdf

Repair via Group Actions 521

can yield a significant reduction in the complexity of model checking M |= ϕ
when both M and ϕ have a high degree of symmetry in the process index set
{1, . . . , n}.

For a Kripke structure M, we capture the symmetry of M using the group
G of automorphisms of both M and ϕ. The quotient structure M = M/G of
M by G often has significantly fewer states than M. Since M can be computed
directly from the original P , we avoid the expensive computation of the large
structure M. Model checking M |= ϕ is linear in the size of M [8], so this
provides significant savings if M is small, i.e., if G is large.

If M �|= f , then we can search for a model N related to M such that N |= f .
In this paper we focus on substructure-repair : we require N to be a substructure
of M. The key idea behind substructure-repair is to remove execution paths
which violate required properties, e.g., paths that lead to a violation of mutual
exclusion. We give examples in Section 6 of different properties and substruc-
ture repairs with respect to these properties. Substructure-repairs can always
repair M w.r.t. all universal properties (those expressible using universal path
quantification [26]).1

1.1 Our Contributions

We present a theory of substructures of Kripke structures. Using this theory
we establish an evaluation preserving correspondence between certain substruc-
tures of the original Kripke structure M and the substructures of the quotient
structure M (this is Theorem 2). This correspondence is a functorial form of
bisimilarity between a certain lattice of substructures of M and the lattice of
substructures of M. Hence for a given formula ϕ, substructure-repairs of M
with respect to ϕ can be lifted to substructure-repairs of M with respect to ϕ
(this is Theorem 3). This correspondence of Kripke substructures lattices is of
independent mathematical interest as an example of a monotone Galois connec-
tion.

We build on our theory to extend group theoretic model checking to con-
current program repair : given a concurrent program P that may not satisfy ϕ,
modify P to produce a program that does satisfy ϕ. Given P , ϕ, and a group
G that acts on both P and ϕ, our method directly computes the quotient M/G
(following [18]), then repairs M/G, using the algorithm of [2], and finally, ex-
tracts a correct program from the repaired structure.

The rest of the paper proceeds as follows: Section 3 contains the formal defi-
nition of Kripke structures and substructures. In Section 4, after briefly recalling
group actions, we show how one can use a group to obtain a quotient M of M
and the repair correspondence between M and M. We extend our results to the
repair of concurrent programs in Section 5. Section 6 presents some examples.
In particular, we show that a structure M might have a nonempty repair even

1 Existential path properties could be dealt with by first adding sufficient transitions
to M so that the augmented structure now contains the desired paths. One can then
perform substructure-repair so that universal path properties are also satisfied.

522 P. C. Attie and W. L. Cocke

if the quotient M does not. In Section 7 we examine what classes of Kripke
structures and what types of formulae guarantee the existence of quotient based
repairs.

2 Related Work

Our work combines model/program repair [5,25,29,32] and symmetry reductions
via group actions [7, 10, 16, 18–22]. Le Goues et al. [25] provides a modern in-
troduction to program repair; although their results generally relate to program
repair based on the textual representation of the program. Our approach repairs
a Kripke structure w.r.t. a computation tree logic (CTL) formula and uses that
to repair the corresponding program.

2.1 Computation Tree Logic Repair

Buccafuri et. al. [5] posed the repair problem for CTL and solved it using abduc-
tive reasoning to generate repair suggestions that are verified by model checking.
Jobstmann et. al. [29] and Staber et. al. [32] used game-based repair methods
for programs and circuits, although their method is complete for invariants only.

Chatzieleftheriou et. al. [6] repair abstract structures, using Kripke modal
transition systems and 3-valued CTL semantics. Von Essen and Jobstmann [23]
present a game-based repair method which attempts to keep the repaired pro-
gram close to the original faulty program, by also specifying a set of traces that
the repair must leave intact.

The work of Attie et al. [2] establishes that repair by abstraction can avoid
state explosion. However, repairs of abstracted structures do not always lift to
repairs of the original structure. Within networks, Namjoshi and Trefler [30]
have shown that a combination of abstraction and group actions can be used to
produce smaller structures.

2.2 Group theoretic model checking

Group theoretic approaches to symmetry-reduction in model checking began in
1995 with work by Emerson and a collection of coauthors [7, 10, 14, 16, 18–22]
compute the quotientM/G and model checkM/G, instead of the original (much
larger) structure M. The group theoretic approach to model checking works
because M and M/G are bisimilar with respect to certain formulae.

A requirement for group theoretic model checking or repair is calculating the
group of symmetries in question. We will see that larger groups of symmetries
result in smaller quotient models. Clarke et al. [7] showed that calculating the
orbit of a group action, a part of model checking via symmetry, is at least as
difficult as graph isomorphism. However, in many practical cases concurrent
programs have a natural symmetry by swapping certain processes. Hence many
concurrent programs have a small known symmetry group in advance. Donaldson

Repair via Group Actions 523

and Miller [11] showed that there is a process to build a larger symmetry group
for a program from a smaller symmetry group.

A related approach is the use of structural methods to express symmetric de-
signs, e.g., parameterized systems, where processes are all instances of a common
template (possibly with a distinguished controller process) [1, 9, 24], and rings
of processes, where all communication is between a process and its neighbors in
the ring [9, 15, 17].

3 Temporal Logic and Kripke Structures

Computation tree logic (CTL) is a propositional branching-time temporal logic
used to model the possible computational branches taken by a system [12, 13].
The semantics of CTL are defined with respect to a Kripke structure.

Definition 1 (Kripke structure). A Kripke structure M is a tuple
(S, S0, T, L,AP) where S is a finite set of states, S0 ⊆ S is a set of initial
states, T ⊆ (S × S) is a transition relation, AP is a finite set of atomic propo-
sitions, and L : S → 2AP is a labeling function that associates each state s ∈ S
with a subset of atomic propositions, namely those that hold in state s.

We require that M be total: ∀s ∈ S, ∃t ∈ S : (s, t) ∈ T , and that S �= ∅ implies
S0 �= ∅. Also, different states have different labels: s �= t ⇒ L(s) �= L(t). We
admit the empty Kripke structure, i.e., S = ∅, due to mathematical necessity.

When referring to the constituents of M = (S, S0, T, L,AP), we write MS ,
MS0

, MT , ML, and MAP respectively. State t is a successor of state s in M
iff (s, t) ∈ T . We will write s → t in this case. A path π in M is a (finite or
infinite) sequence of states, π = s0, s1, . . ., such that ∀i ≥ 0 : (si, si+1) ∈ T .

To model the behavior of a concurrent program P = P1, . . . , Pn, we define
a special type of Kripke structure: a multiprocess Kripke structure is one in
which the set of atomic propositions AP is partitioned into disjoint subsets
AP1, . . . , APn, states have the form (s1, . . . , sn) and transitions T are partitioned
into disjoint subsets T1, . . . , Tn. The set of atomic propositions “owned” by Pi

is denoted by APi: they can only be changed by Pi, but can be read by other
processes. The local state of Pi is written as si, and is labelled by the subset of
APi whose propositions are true in si. Then, the truth value of p ∈ APi in global
state (s1, . . . , sn) is given by its value in local state si. Ti gives the transitions

of process Pi, which are denoted as s
i→ t. For state s = (s1, . . . , sn), define

s�i = si, and s↓i = (s1, . . . , si−1, si+1, . . . , sn). We then require s↓i = t↓i for

every transition s
i→ t, i.e., transitions by Pi do not change atomic propositions

of other processes.
A CTL formula ϕ is evaluated (i.e., is true or false) in a state s of a Kripke

structure M [13]. We write M, s |= ϕ when s is true in state s of structure M,
and write M |= ϕ to abbreviate ∀s0 ∈ S0 : M, s0 |= ϕ, i.e., ϕ holds in all initial
states of M. The formal definition of |=, proceeds by induction on the structure
of CTL formulae [12, 13] and is omitted for space reasons.

524 P. C. Attie and W. L. Cocke

Fig. 1. The Box Kripke
structure.

Example 1 (Example Box) The ”Box” Kripke struc-
ture in Figure 1 has 4 states and transitions as
shown. Its set of atomic propositions is empty, and
so all states have empty labels, as indicated by
”()”. There is a natural group acting on this Kripke
structure, i.e., the group generated by the action
which exchanges the state s1 with s2, and the state
t1 with t2.

The theory of substructures presented below is
motivated by the concept of a substructure-repair
of a structure M with respect to a formula f , i.e.,
a substructure N of M such that N |= f .

Definition 2 (Substructure, ≤). Given Kripke structures M and N , we say
that N is a substructure of M, denoted N ≤ M, iff the following all hold:

1. NS ⊆ MS.
2. NS0

= MS0
∩M′

S.
3. NT ⊆ MT .
4. NAP = MAP .
5. NL = ML�S′ (where � denotes domain restriction).
6. For all s ∈ NS there is a t ∈ NS such that (s, t) ∈ NT , i.e., N is total.

For mathematical necessity in what follows, we allow for the ‘empty’ sub-
structure. We do not, however, accept an empty substructure as a valid repair.
It is immediate that ≤ is a reflexive partial order. Lemmas 1 and 2 below imply
that the substructures of M can be regarded as a lattice, with join and meet
operations as follows.

Lemma 1. Let M be a Kripke structure and suppose that N and N ′ are sub-
structures of M. Then

N ∨N ′ = (NS ∪N ′
S , NS0 ∪N ′

S0
, NT ∪N ′

T , ML�(NS ∪N ′
S), MAP)

is the smallest substructure of M containing both N and N ′.

Given a nonempty finite set X = {X0, X1, . . . , Xn} of substructures of M,
we define the structure

∨
X = X0 ∨X1 ∨ · · · ∨Xn.

Lemma 2. Let M be a Kripke structure and suppose that N and N ′ are sub-
structures of M. Then there exists a largest substructure of M contained in both
N and N ′.

Definition 3 (Join, Meet of Substructures). Let N and N ′ be two substruc-
tures of M. The join of N and N ′, written N ∨N ′, is the smallest substructure
of M containing both N and N ′. The meet of N and N ′, written N ∧ N ′, is
the largest substructure of M contained in both N and N ′.

Repair via Group Actions 525

The join N ∨N ′ has a simple description as given in Lemma 1. However, the
meet N ∧ N ′, while well-defined, does not have such a simple description. It is
possible that for two substructures N and N ′ of a Kripke structure M, there
are no non-empty substructures contained in both N and N ′. Hence the largest
substructure contained in both N and N ′ could be empty.

We can now define a lattice of substructures ΛM for a given structure M.

Definition 4 (Lattice of Substructures). Given a Kripke structure M the
lattice of substructures of M is ΛM = ({N : N is a substructure of M} ,≤)
where the meet and join in ΛM are as given in Definition 3.

4 Quotient Structures

We capture the symmetry in a Kripke structure M with the notion of state-
mapping : a graph isomorphism on M which preserves initial states. State-
mappings also preserve paths since they are isomorphisms. We ignore for now
the labelling function ML, i.e., which atomic propositions hold in which states,
and concern ourselves only with the graph structure of M. Since the atomic
proposition labelling obviously affects the truth of CTL formulae in states of
M, it must be accounted for. We do this below using the notion of G-invariant
CTL formula. Thus, we decompose the symmetry characerization of M into two
separate concerns: the graph structure of M, handled using state-mapping, and
the atomic proposition labelling of states of M, handled using G-invariant CTL
formulae.

A type of symmetry of particular interest is the symmetry of a multiprocess
Kripke structure w.r.t. the process indices 1, . . . , n of the corresponding concur-
rent program P1 ‖ · · · ‖Pn, as we illustrate below. Our theory, however, applies
to Kripke structures in general.

4.1 Groups Acting on Kripke Structures

Definition 5. A state-mapping of M is a graph isomorphism of the state-space
of M such that its restriction to the initial states is also an isomorphism, i.e.,
takes initial states to initial states. Formally, for a Kripke structure M, a state-
mapping of M is a bijection f : MS → MS such that:

– f(MS0
) = MS0

;
– For states s, t ∈ MS we have that (s, t) ∈ MT ⇐⇒ (f(s), f(t)) ∈ MT .

The set of all state-mappings of M forms a group. This means that the com-
position of any two state-mappings is another state-mapping and for any state-
mapping f on M there is another state-mapping g on M such that f(g(s)) = s
and g(f(s)) = s. We refer to the manuscripts by Issacs [27, 28], and Serre [31]
for a more in-depth introduction to group theory.

Definition 6 (G-closed). For a group G of state-mappings of a Kripke struc-
ture M, a substructure N of M is called G-closed if G is a group of state-
mappings of N , i.e., for every g ∈ G and s ∈ NS we have g(s) ∈ NS.

526 P. C. Attie and W. L. Cocke

Lemma 3. Let M be a Kripke structure and let G be a group of state mappings
of M. Let N , N ′ be two G-closed substructures of M. Then N ∨N ′ and N ∧N ′

are both G-closed.

By Lemma 3, we see that the G-closed substructures of M form a sublattice
of ΛM. This is a proper sublattice in that the meet and join operations are the
same as those of ΛM.

Definition 7 (Lattice of G-closed substructures). Given a Kripke struc-
ture M and a group G of state mappings of M, the poset of G-closed substruc-
tures of M forms a lattice. We call this the lattice of G-closed substructures
of M and write it as ΛM,G.

Example 1 (Example Box). Let M be Example Box, i.e., the Kripke structure
presented in Figure 1. Let g be the map that simultaneously switches s1 and
s2, and switches t1 and t2, i.e., g(s1) = s2, g(s2) = s1, g(t1) = t2, g(t2) = t1.
Let G be the group consisting of g and the identity map on MS . We note that
G is not the entire group of state-mappings of M. The structure M has 10 G-
closed substructures, including the empty structure. We present some of these
structures in Figure 2.

(a) (b) (c) (d)

Fig. 2. Four G-closed substructures of Example Box. Where G is the group generated
by the simultaneous swapping of indexes of both the si and the ti. Note that each
of the structures is a substructure of the substructure to the right. Looking ahead to
Definition 10, only the entire structure (d) is G-maximal.

4.2 Constructing the Quotient structure

Given a group G of state-mappings of a structure M, we want to construct
a quotient structure M/G. However, as noted, state-mappings do not contain
any information about ML. To remedy this situation, we need a function that
assigns a representative to each orbit of G, where for s ∈ MS the orbit of s is
{g(s) : g ∈ G}.
Definition 8 (Representative map). Let M be a Kripke structure and sup-
pose that G is a group of state-mappings of M. A representative map of M
with respect to G is a function ϑG : MS → MS satisfying the following:

Repair via Group Actions 527

– For all s, s′ ∈ MS, if there is some g ∈ G such that g(s) = s′ then ϑG(s) =
ϑG(s

′). (respects orbits)
– For all s, s′ ∈ MS, if there is no g ∈ G such that g(s) = s′ then ϑG(s) �=

ϑG(s
′). (separates orbits)

– For all s ∈ MS, we have that ϑG(ϑG(s)) = ϑG(s), i.e., each orbit has a
stable representative. (idempotent)

We define ϑG(S) = {ϑG(s) | s ∈ S}.
Definition 9 (Quotient structure). Given a Kripke structure M, a group G
of state-mappings of M, and a representative map ϑG of M with respect to G,
we define the quotient structure M = M/(G,ϑG) of M with respect to G and
ϑG as follows, where we write s, t for ϑG(s), ϑG(t), respectively:

– MS = ϑG(MS), i.e., the states of M are the image under ϑG of the states
of M.

– MT consists of all (s, t) such that there exist s ∈ MS with ϑG(s) = s and
t ∈ MS with ϑG(t) = t such that (s, t) ∈ MT .

– MS0
= ϑG(MS0

), i.e., the initial states of M are the image under ϑG of
the initial states of M.

– ML(s) = ML(s), i.e., the label of a state in M is the same as its label in
M.

– MAP = MAP , i.e., M has the same atomic propositions as M.

Thus the states of a quotient structure correspond exactly to the orbits of states
of the original structure under the group of state mappings. For transitions, we
have a slightly more subtle correspondence. Consider the following examples:

Example 2. In Figure 3 we demonstrate the correspondence between Kripke
structures, G-closed substructures, and their quotients. In the figure, we present
a multiprocess Kripke structure M corresponding to two concurrent processes
P1 (atomic propositions and transitions in blue) and P2 (atomic propositions
and transitions in red). The group G of state mappings swaps the indexes of the
processes. This structure has a G-closed substructure N constructed by remov-
ing the ‘center’ state u0. Define ϑG to take the ‘left-most’ state in the orbit, i.e.,
ϑG(t1) = t0, ϑG(t5) = t2, ϑG(u0) = u0, ϑG(t6) = t3, ϑG(t4) = t4. The quo-
tient structure M/(G,ϑG) appears in the top right. While the quotient structure
is isomorphic to a substructure of M, this is not always the case. (See Figure 6
in Example 5 for an example where the quotient gains a new transition.) The
quotient structure N/(G,ϑG|NS) appears in the bottom right.

Example 3 (Example Box). Let M and G be as in Example 1. Let ϑG be defined
by ϑG(s1) = ϑG(s2) = s1 and ϑG(t1) = ϑG(t2) = t1. Then the quotient struc-
ture M/(G,ϑG) has exactly 2 states, s1 and t1 with transitions (s1, t1), (t1, s1).
Also, the G-closed substructure substructures of M given in Figure 2 (a), (b),
and (c) also map to this quotient structure via N → N/(G,ϑG). Note that the
transition (t1, s1) is present in the quotient, but is not present, for example, in
the structure of Figure 2 (b). However, the “corresponding” transition (t2, s1)
is present in Figure 2 (b).

528 P. C. Attie and W. L. Cocke

Fig. 3. As discussed in Example 2, we have a Kripke structure in the top left and a
G-closed substructure in the bottom left. On the right, we have the quotients of the
whole structure (top) and the G-closed substructure (bottom).

In the sequel, we fix a Kripke structure M, a group G of state mappings of
M, and a representative map ϑG of M with respect to G.

Example 3 shows that many G-closed substructures can have the same
quotient structure, and also that, in general, a transition in the quotient may
not itself be present in the original structure. We show, however, in Theorem 1
below that a “corresponding” transition is guaranteed to be present in the orig-
inal structure. These corresponding transitions can be joined into a path which
corresponds state-by-state to the path in the quotient. This “path correspon-
dence” is what allows for model checking of M via model checking of M and is
formalized in the following theorem from Emerson and Sistla [18, 3.1].

Theorem 1 (Path Correspondence Theorem). There is a bidirectional cor-
respondence between paths of M and paths of M. Formally we have the following:

1. If x = s0, s1, s2, . . . is a path in M, then x = s0, s1, s2, . . . is a path in M
where si = ϑG(si).

2. If x = s0, s1, s2, . . . is a path in M, then for every state s′0 ∈ MS such that
ϑG(s

′
0) = s0 there is a path s′0, s

′
1, s

′
2, . . . in M such that ϑG(s

′
i) = si.

We now extend the path correspondence between M and M to a correspon-
dence between G-closed substructures of M and substructures of M. Define
Ψ : ΛM,G → ΛM, by Ψ(N) = N/(G,ϑG), so that Ψ maps a G-closed substruc-
ture N of M to a corresponding substructure of M. We call Ψ the quotient map.

Repair via Group Actions 529

Ψ establishes a join-semilattice homomorphism between ΛM,G and ΛM as we
now show in the following series of lemmas.

Lemma 4. For every substructure N of M, there is a G-closed substructure N
of M such that N/(G,ϑG) = N .

Lemma 4 establishes that Ψ is surjective. We note that every substructure
N of M defines a set of states of M, i.e., the orbits of the states in N . However,
in general, the transitions of N do not uniquely define transitions in M.

The next lemma demonstrates that Ψ is a homomorphism of the join-
semilattices ΛM,G and ΛM. We note that it is not a homomorphism of the
lattices themselves because the meet of two G-closed structures mapping might
be empty.

Lemma 5 (Quotient map respects join). Let N ,N ′ ∈ ΛM,G. Then

Ψ(N ∨N ′) = Ψ(N) ∨Ψ(N ′).

As seen in Example 3, it is possible for multiple G-closed substructures of M
to map to the same substructure of the quotient structure M. To obtain a single
well-defined preimage for each substructure of the quotient structure, we intro-
duce the concept of G-maximal. Recall that the join of G-closed substructures
of M is G-closed.

Definition 10 (G-maximal). A G-closed substructure N of M is G-maximal
if

N =
∨

N ′∈ΛM,G

N ′/(G,ϑG)≤N/(G,ϑG)

N ′.

That is, N is the join of all G-closed substructures of M whose quotient is
a substructure of the quotient of N itself, namely of N/(G,ϑG). A G-closed
substructure N fails to be G-maximal exactly when there are states s, t ∈ N ,
such that (s, t) ∈ N/(G,ϑG), but (s, t) is not in N .

Among all of the G-closed substructures in Figure 2 only the entire structure
itself is G-maximal

Lemma 6. Let M′,M′′ be two G-maximal substructures of M. Then M′∨M′′

is G-maximal and M′ ∧M′′ is G-maximal.

Lemma 6 allows us to make the following definition.

Definition 11 (G-maximal lattice of substructures). The set of G-
maximal substructures of M forms a sublattice ΛM,G−max of ΛM.

While in general the quotient map from ΛM,G to ΛM is always surjective,
when restricted to ΛM,G−max, the map is injective and is a lattice isomorphism.

530 P. C. Attie and W. L. Cocke

Theorem 2 (G-Maximal Lattice Correspondence). The restriction of the
quotient map Ψ to ΛM,G−max is an isomorphism from ΛM,G−max to ΛM, i.e.,
between the lattice of G-maximal substructures of M and the lattice of structures
of M.

At this point, we would like to remind the reader of the various lattices that
we have defined and how they relate to each other:

G-maximal substructures︸ ︷︷ ︸
ΛM,G−max

⊆ G-closed substructures︸ ︷︷ ︸
ΛM,G

⊆ All substructures︸ ︷︷ ︸
ΛM

.

4.3 Semantic Relationships Between Structures and Quotient
Structures

Definition 12. Let G be a group of state mappings of M. A CTL formula ϕ
is G-invariant over M, if for every state s, every g ∈ G, for all maximal
propositional subformulae ϕ′ of ϕ, we have

M, s |= ϕ′ ⇐⇒ M, g(s) |= ϕ′.

Lemma 7. If ϕ is G-invariant, then the valuation of ϕ in M does not depend
on the choice of representative map ϑG.

This allows us to connect semantic statements about M with semantic state-
ments about M for formulae that are G-invariant. The path correspondence
theorem establishes a bisimulation between M and M, in which state s of M
and state s of M are bisimilar iff s is in the orbit of s, i.e., s = g(s) for some
g ∈ G. We call such a bisimulation a G-bisimulation. Hence, G-bisimilar states
satisfy the same propositional subformulae of any G-invariant CTL formula ϕ.
A straightforward induction over path length then shows that s and s satisfy
the same G-invariant CTL formulae:

Corollary 1. M |= ϕ iff M |= ϕ for all G invariant CTL formulae ϕ.

Lemma 8. Let s ∈ MS, t ∈ MS. Let ϕ be a G-invariant CTL formula. If
t = ϑG(s), then M, s |= ϕ ⇐⇒ M, t |= ϕ.

Section 3 developed the theory of substructures of a Kripke structure. This
development was motivated by the following definition and theorem.

Definition 13 (Substructure-Repair). Given a structure M and a CTL for-
mula ϕ, we call a nonempty substructure N of M a substructure-repair of
M with respect to ϕ if N |= ϕ.

If a CTL formula ϕ isG-invariant, then the lattice correspondence will respect
the valuation of ϕ.

Theorem 3 (Repair Correspondence). Let ϕ be a G-invariant CTL for-
mula. Let N be a non-empty G-closed substructure of M, s ∈ NS, and
N = N/(G,ϑG). Then N , s |= ϕ ⇐⇒ N , ϑG(s) |= ϕ.

Repair via Group Actions 531

5 Repair of Concurrent Programs

A concurrent program P = P1 ‖ . . . ‖ Pn consists of n sequential processes
executing in parallel. Each process Pi is a set of i-actions (si, B, ti), where si, ti
are local states of Pi and B is a guard (a predicate on the global state). We say
action when we ignore the process id. We assume a given set S0 of initial states.

The program P1 ‖ · · · ‖Pn generates a transition s
i→ t iff Pi contains an action

(si, B, ti) such that s�i = si, t�i = ti, and s(B) = true, where s(B) is the value
of guard B in global state s. The transition updates only atomic propositions
in APi, and so s↓i = t↓i. The state-transition graph of P is the closure of this
“transition generation” operation, starting in the initial state set S0.

Given a concurrent program P and a CTL formula ϕ, we wish to modify P
to produce a repaired program P r such that M′ |= ϕ, where M′ is the state-
transition graph of P r. The modification is ”subtractive”, that is, it only removes
behaviors and does not add them. We assume henceforth that when M is a
multiprocess Kripke structure over process indices 1, . . . , n, that the symmetry
group G is a subgroup of Sn, the group of permutations on {1, . . . , n}.

5.1 Repair of Symmetry-reduced Structures

We first generate the symmetry-reduced state transition graph M of P . We use
the algorithm of Emerson and Sistla [18, Figure 1]. We then apply the model
repair algorithm of Attie et. al. [2] to M, and the specification ϕ of P . This algo-
rithm is sound and complete, so that if M has some substructure that satisfies ϕ,
then the algorithm will return such a substructure N . If not, the algorithm will
report that no repair exists. As noted, applying this algorithm to the symmetry-
reduced state transition graph is only complete with respect to the symmetric
repairs, see Example 6.3.

5.2 Extraction of Concurrent Programs from Symmetry-reduced
Structures

We want to extract a repaired concurrent program from N using the projection

method of [4,13]: each transition s
i→ t is turned into an i-action action(s

i→ t) �
(s�i, B, t�i), with guard B = {|s|} where {|s|} � “(

∧
Q∈NL(s) Q)∧ (

∧
Q�∈NL(s) ¬Q)”

and Q ranges over AP . When process i is in local state si, guard B checks that
the current global state is actually s.

A key problem is that the definition of the quotient M allows transitions in
which the atomic propositions of more than one process are changed, since any
representative of an orbit can be chosen. Hence the repaired N ≤ M can also
contain such transitions, e.g., the transition from S6 to S1 in Figure 6 below,
which we write as [C1 T2] → [T1 N2]. Note that the propositions of both processes
1 and 2 are changed. To generate i-actions, such transitions must be converted
so that only the atomic propositions of a single process are modified.

Define a transition from s to t to be regular iff it modifies atomic propositions
in at most one APi, so that s↓i = t↓i for some process index i, and write the

532 P. C. Attie and W. L. Cocke

transition as s
i→ t. Also define a transition from s to t to be irregular iff it is not

regular, i.e., it modifies atomic propositions in more than one APi, and write
the transition as s → t, with no process index labelling the arrow.

For each irregular transition s → t ∈ N T , there is g
′ ∈ G such that s → g′(t)

is regular. Such an element g′ always exists. Let s → t ∈ MT for arbitrary
MT . By Definition 9, there exists s → t ∈ MT such that s = ϑG(s) and
t = ϑG(t). Hence there is some g ∈ G such that g(s) = s since s and s are in
the same orbit. Since g is a symmetry of M, we have g(s) → g(t) ∈ MT . Hence
s → g(t) ∈ MT . Now t = h(t) for some h ∈ G since t and t are in the same
orbit. Hence s → g(h(t)) ∈ MT , and so the needed g′ is the product of g and
h. For example, by applying the permutation of process indices 1, 2 to [T1 N2],
from the irregular transition [C1 T2] → [T1 N2] we extract the regular transition

[C1 T2]
1→ [N1 T2].

Define Reg i(N T) to be the set of regular transitions s
i→ g(t) such that

g ∈ G and s → t ∈ N T . Since g can be the identity element of G, it fol-
lows that this account for both regular and irregular transitions in N T . Define

Act i(N T) = {action(s i→ t) | s i→ t ∈ Reg i(N T)}, be the set of actions obtained
from Reg i(N T).

Define the action of g ∈ G on syntactic elements of Pi as follows. For local
state si: g(si) = sg(i). For atomic proposition Qi: g(Qi) = Qg(i). For guard B, by
induction: g(¬B) = ¬g(B) and g(B1∧B2) = g(B1)∧ g(B2), with the base case
given by g(Qi) above. For i-action (si, B, ti): g(si, B, ti) = (g(si), g(B), g(ti)).
That is, we apply g to all process indices in the syntactic element. Now define
ActGi (N T), the symmetrization of Act i(N T), by ActGi (N T) = {g(a) | g ∈ G, a ∈
Actj(N T), g(j) = i}. The repaired concurrent program arises from process-wise

repair P
G
= P

G

1 ‖· · ·‖PG

n , where P
G

i consists of the i-actions in ActGi (N T).

Theorem 4. Let P
G

be the concurrent program extracted from N as above,

let N p be the state transition graph generated by the execution of P
G
, and let

N p = N p/(G,ϑG). Then N p is G-closed and N p = N .

Corollary 2. Let P
G

be the repaired program and ϕ the CTL specification that

was used to repair M, resulting in N . Then P
G |= ϕ.

6 Examples

6.1 Two process Mutual Exclusion

We consider mutual exclusion for two processes P1, P2. Each Pi has three local
states: Ni (neutral, computing locally), Ti (trying, has requested critical section
entry), and Ci (in the critical region). We start with the ”trivial” program P
shown in Figure 4 in which all action guards are ”true” and apply the program
repair algorithm of Section 5 to repair this program w.r.t. the specification ϕ =
AG¬(C1∧C2)∧AG((T1∨T2) ⇒ AF(C1∨C2)). The first conjunct specifies mutual

Repair via Group Actions 533

exclusion of the critical sections (safety) and the second specifies progress: if some
process requests the critical section then some process will obtain it (liveness).
Figure 5 (left side) shows the Kripke structure M generated by execution of
P . Transitions of P1, P2 are shown in blue, red, respectively. Clearly, M �|= ϕ.
Actually both conjuncts are violated: AG¬(C1 ∧ C2) due to the reachability of
state S8 from the initial state, and AG((T1 ∨T2) ⇒ AF(C1 ∨C2)) due to the self
loop on state S4.

M has exactly two symmetries: the identity map, and the map that swaps
process indices 1 and 2. Our program repair algorithm does not generate M
since M may be large, and we show M only for exposition. We generate M =
M/(G,ϑG) directly from P , and we show M in Figure 5 (right side). M has
a transition (shown in black) from state S6 to S1, which is the quotient of the
transition from S6 to S2 in M, i.e., ϑG(S6) = S6 and ϑG(S2) = S1 so the edge
(ϑG(S6), ϑG(S2)) occurs in M.

Figure 6 shows the repair N of the reduced structure M, and the resultant
lifting of the repair to M. The deleted transitions and states are shown dashed.

Figure 7 shows the repaired concurrent program P
G

that is extracted from N .

Note that ⊕ means disjunction [3]. By Corollary 2, P
G |= ϕ.

Fig. 4. Initial incorrect mutual exclusion program from Section 6.1.

6.2 n-Process Mutual Exclusion

We now consider mutual exclusion for n-processes. To reduce clutter, we remove
the trying Ti state, and we give a concrete example for 3 processes — the
generalization to n processes is straightforward. Each process can move directly
from N to C with the appropriate indexes, i.e., the guards on all actions are
initially ”true”, just like in Figure 4.

We consider the mutual exclusion specification
∧

i�=j AG¬(Ci∧Cj). The group
of state mappings G for both structure and specification is the full permutation
group on the indices {1, . . . , N}. For N -processes, we have that the quotient
model by the full group of symmetries has N +1 states, while the original model
would have 2N states. Figure 8 shows the repair of the quotient M and then

534 P. C. Attie and W. L. Cocke

Fig. 5. The original model M and quotient M = M/(G,ϑG) for the Kripke structures
in Section 6.1.

Fig. 6. The repair of M and the lifting of the repair to M from Section 6.1.

Fig. 7. The mutual exclusion concurrent program extracted from M in Figure 6.

Repair via Group Actions 535

the lifting of the repair to the original structure M. Figure 9 shows the correct

(repaired) program P
G
that is extracted from the repaired quotient in Figure 8.

For N processes, the guard on actions of P
G

i is
∧

j �=i Nj .

6.3 No G-closed Repairs

Consider the structure in Figure 10 and the formula f = AXAXAXP . The struc-
ture M has a single initial state. Let G be the group consisting of the identity
and the map swapping S1 and S2. In Figure 10 we see that the quotient struc-
ture M/(G,ϑG) does not have any nonempty repairs with respect to f . But, M
does contain a substructure N that satisfies f .

7 Relative Completeness of Group Theoretic Repair

By the Repair Correspondence (Theorem 3), the existence of a repair N of M
implies the existence of a repair N of M. In Example 6.3, we gave an example
in which a repair N of M exists but no G-closed repair does, i.e., M has no
repairs. This leads us to ask: is there a fragment of CTL, and/or a class of Kripke
structures, for which group theoretic repair is complete? That is, the existence
of a repair (substructure N of M that satisfies ϕ) implies the existence of a
G-closed repair (substructure N of M that satisfies ϕ).

One attempt to answer this question is to examine formulae and structures
where substructures are equivalent to the smallest G-closed substructure con-
taining them. Assume there exists N ≤ M such that N |= ϕ. Write NG for the
smallest G-closed structure that contains N . We call NG the G-closure of N in
M. If NG is bisimilar to N , then NG |= ϕ and NG |= ϕ which is a substructure
of M.

In [14], Emerson et al., give a criteria for a structure M to be bisimilar to the
symmetrized structure MG, their criteria is: for any transition (s, t) ∈ (MG

)
T
,

there must be a g ∈ G such that (s, gt) ∈ MT . When asking about substructures,
it is not clear what criteria on M is needed to ensure that each substructure N
of M is bisimilar to NG.

Definition 14 (G-Repair Complete). Let M be a Kripke structure with a
group of state mappings G and ϕ a G-invariant CTL formula. Let N ≤ M
be any repair of M with respect to ϕ, and let s be any state in NS. Then the
pair (M, ϕ) is G-repair complete if: N , s |= ϕ implies for all g ∈ G, we have
NG, g(s) |= ϕ.

It is clear that propositional formulae are always G-repair complete. In ad-
dition we note the following:

Theorem 5. If ϕ and ψ are purely propositional formulae then for any Kripke
structure M, the pair (M,A[ϕRψ]) is G-repair complete.

There exists structures M and ϕ,ψ formulae such that (M, ϕ) G-repair
complete, and (M, ψ) G-repair complete, but (M, ϕ∧ψ) not G-repair complete.

536 P. C. Attie and W. L. Cocke

Fig. 8. The Kripke structure defined in Section 6.2. On the left is the repair of M and
the lifting of the repair to M appears on the right.

Fig. 9. The repaired program P
G

for the program in Section 6.2.

Fig. 10. The models from Section 6.3 from left to right: the model M, the quotient of
M, a repair of M with respect to f = AXAXAXP that is not G-closed.

Repair via Group Actions 537

Example 4. Let M be the Kripke structure described by Figure 11. Let G be the
group of state mappings generated by swapping s1 and s2. Let ϕ = A[pR q] and
ψ = AF �= q. The structure M has a nonempty G-closed repair for ϕ. Similarly
there is a single nonempty G-closed repair for ψ. But M has no G-closed repairs
of ϕ ∧ ψ.

Fig. 11. The Kripke Structure from Example 4 (note that (b, s0) is a transition, while
(b, r) is not) (left), G-closed repairs of M with respect to the formulae A[pR q] (center),
and AF¬q (right).

8 Conclusions

We present a theory of how group actions could be used to assist in the repair
of a Kripke structure.

We presented a theory for the substructures of a given Kripke structure
M, their organization into lattices, and how these substructures interact with
a group of state-mappings of M. We show a lattice isomorphism between
substructure-repairs of M and G-maximal repairs of M (Theorem 3: Repair
Correspondence). This monotone Galois correspondence guarantees that a re-
pair of M lifts to a repair of M: that is to say that model repairs of M with
respect to a G-invariant CTL formula ϕ lift to model repairs of M with respect
to ϕ. Using this theory we were able to devise a method for repairing concurrent
programs which exploits this correspondence, thus avoiding state explosion. We
construct the quotient structure M directly from P without the need to con-
struct the structure M. By our correspondence, repairing M will lift to a repair
of the structure M, which in turn corresponds to a repair of P . We show how to
construct a repair of P using the repair of M while circumventing the creation
of the larger Kripke structure.

A Kripke structure M that can be repaired with respect to a formulae ϕ
can be repaired via abstraction. However, not every repair of an abstracted
structure N corresponds to a repair of M. In contrast, the structure might
not be repairable using the quotient structure, but any repair of the quotient
structure will lift to a repair of the original structure.

538 P. C. Attie and W. L. Cocke

References

1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model check-
ing of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 15th International Confer-
ence, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings.
Lecture Notes in Computer Science, vol. 8318, pp. 262–281. Springer (2014).
https://doi.org/10.1007/978-3-642-54013-4_15, https://doi.org/10.1007/
978-3-642-54013-4_15

2. Attie, P.C., Dak-Al-Bab, K., Sakr, M.: Model and program repair via SAT solving.
ACM Trans. Embed. Comput. Syst. 17(2), 32:1–32:25 (2018). https://doi.org/
10.1145/3147426, https://doi.org/10.1145/3147426

3. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM Trans. Program. Lang. Syst. 20(1), 51–115 (jan 1998). https:
//doi.org/10.1145/271510.271519, https://doi.org/10.1145/271510.271519

4. Attie, P.C., Emerson, E.A.: Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Trans. Program. Lang. Syst. 23(2),
187–242 (mar 2001). https://doi.org/10.1145/383043.383044, https://doi.

org/10.1145/383043.383044

5. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112, 57–104 (1999)

6. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S., Katsaros, P.: Abstract model
repair. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods, Lecture Notes
in Computer Science, vol. 7226, pp. 341–355. Springer Berlin Heidelberg, Norfolk,
VA, USA (2012)

7. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: CAV. Lecture Notes in Computer Science, vol. 1427, pp. 147–158.
Springer (1998)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

9. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997). https://doi.org/10.1145/
265943.265960, https://doi.org/10.1145/265943.265960

10. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods Syst. Des. 9(1/2), 77–104 (1996). https:
//doi.org/10.1007/BF00625969, https://doi.org/10.1007/BF00625969

11. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking us-
ing computational group theory. In: International Symposium on Formal Methods.
pp. 481–496. Springer (2005)

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier and
MIT Press (1990)

13. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

14. Emerson, E.A., Havlicek, J., Trefler, R.J.: Virtual symmetry reduction. In: LICS.
pp. 121–131. IEEE Computer Society (2000)

15. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message
passing systems. In: CSL. Lecture Notes in Computer Science, vol. 3210, pp. 325–
339. Springer (2004)

https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969

Repair via Group Actions 539

16. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL. pp. 85–94. ACM
Press (1995)

17. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

18. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods Syst.
Des. 9(1/2), 105–131 (1996)

19. Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model-checking under fair-
ness assumptions: An automata-theoretic approach. ACM Trans. Program. Lang.
Syst. 19(4), 617–638 (1997)

20. Emerson, E.A., Trefler, R.J.: Model checking real-time properties of symmetric
systems. In: MFCS. Lecture Notes in Computer Science, vol. 1450, pp. 427–436.
Springer (1998)

21. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: New techniques
for symmetry reduction in model checking. In: CHARME. Lecture Notes in Com-
puter Science, vol. 1703, pp. 142–156. Springer (1999)

22. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: TACAS. Lecture Notes
in Computer Science, vol. 3440, pp. 382–396. Springer (2005)

23. von Essen, C., Jobstmann, B.: Program repair without regret. Formal Methods
Syst. Des. 47(1), 26–50 (2015). https://doi.org/10.1007/s10703-015-0223-6,
https://doi.org/10.1007/s10703-015-0223-6

24. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681, https:
//doi.org/10.1145/146637.146681

25. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (nov 2019). https://doi.org/10.1145/3318162, https://
doi.org/10.1145/3318162

26. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (may 1994). https://doi.org/10.1145/

177492.177725, https://doi.org/10.1145/177492.177725
27. Isaacs, I.M.: Finite group theory, vol. 92. American Mathematical Soc. (2008)
28. Isaacs, I.M.: Algebra: a graduate course, vol. 100. American Mathematical Soc.

(2009)
29. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: CAV.

pp. 226–238. Springer-Verlag, Berlin, Heidelberg (2005)
30. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.

In: International Workshop on Verification, Model Checking, and Abstract Inter-
pretation. pp. 496–514. Springer (2013)

31. Serre, J.P.: Finite groups: an introduction. International Press Somerville, MA
(2016)

32. Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. In: CHARME ’05.
pp. 35–49. Springer-Verlag, Berlin, Heidelberg (2005), springer LNCS no. 3725

https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725

540 P. C. Attie and W. L. Cocke

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Subgame Optimal Strategies in Finite
Concurrent Games with Prefix-Independent

Objectives

Benjamin Bordais(�), Patricia Bouyer and Stéphane Le Roux

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France
bordais@lsv.fr

Abstract. We investigate concurrent two-player win/lose stochastic
games on finite graphs with prefix-independent objectives. We charac-
terize subgame optimal strategies and use this characterization to show
various memory transfer results: 1) For a given (prefix-independent) ob-
jective, if every game that has a subgame almost-surely winning strat-
egy also has a positional one, then every game that has a subgame op-
timal strategy also has a positional one; 2) Assume that the (prefix-
independent) objective has a neutral color. If every turn-based game that
has a subgame almost-surely winning strategy also has a positional one,
then every game that has a finite-choice (notion to be defined) subgame
optimal strategy also has a positional one.
We collect or design examples to show that our results are tight in several
ways. We also apply our results to Büchi, co-Büchi, parity, mean-payoff
objectives, thus yielding simpler statements.

1 Introduction

Turn-based two-player win/lose (stochastic) games on finite graphs have been
intensively studied in the context of model checking in a broad sense [19,1]. These
games behave well regarding optimality in various settings. Most importantly for
this paper, [14] proved the following results for finite turn-based stochastic games
with prefix-independent objectives: (1) every game has deterministic optimal
strategies; (2) from every value-1 state, there is an optimal, i.e. almost-surely
winning, strategy; (3) if from every value-1 state of every game there is an
optimal strategy using some fixed amount of memory, every game has an optimal
strategy using this amount of memory. These results are of either of the following
generic forms:

– In all games, (from all nice states) there is a nice strategy.
– If from all nice states of all games there is a nice strategy, so it is from all

states.

The concurrent version of these turn-based (stochastic) games has a higher
modeling power than the turn-based version: this is really useful in practice since
real-world systems are intrinsically concurrent [15]. They are played on a finite
graph as follows: at each player state, the two players stochastically and inde-
pendently choose one among finitely many actions. This yields a Nature state,

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 26

541–560, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_26&domain=pdf
mailto:bordais@lsv.fr
https://doi.org/10.1007/978-3-031-30829-1_26
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_26&domain=pdf

542 B. Bordais et al.

which stochastically draws a next player state, from where each player chooses
one action again, and so on. Each player state is labelled by a color, and who wins
depends on the infinite sequence of colors underlying the (stochastically) gener-
ated infinite sequence of player states. Unfortunately, these concurrent games do
not behave well in general even for simple winning conditions and simple graph
structures, like finite graphs:

– Reachability objectives: there is a game without optimal strategies [13];
– Büchi objectives: there is a game with value 1 while all finite-memory strate-

gies have value 0 [12];
– Co-Büchi objectives: although there are always positional ε-optimal strate-

gies [8], there is a game with optimal strategies but without finite-memory
optimal strategies [4];

– Parity [12] and mean-payoff [10] objectives: there is a game with subgame
almost-surely-winning strategies, but where all finite-memory strategies have
value 0.

In this paper, we focus on concurrent stochastic finite games. Therefore, the
generic forms of our results will be more complex, in order to take into account
the above-mentioned discrepancies. They will somehow be given as generic state-
ments as follows:

– Every game that has a nice strategy also has a nicer one.
– If all special games that have a nice strategy have a nicer one, so it is for all

games.

Much of the difficulty consists in fine-tuning the strength of “nice”, “nicer” and
“special” above. We present below our main contributions on finite two-player
win/lose concurrent stochastic games with prefix-independent objectives:

1. We provide a characterization of subgame optimal strategies, which are
strategies that are optimal after every history (Theorem 1): a Player A strat-
egy is subgame optimal iff 1) it is locally optimal and 2) for every Player
B deterministic strategy, after every history, if the visited states have the
same positive value, Player A wins with probability 1. This characterization
is used to prove all the results below.

2. We prove memory transfer results from subgame almost-surely winning strate-
gies to subgame optimal strategies:
(a) Theorem 2: If every game that has a subgame almost-surely winning

strategy also has a positional one, then every game that has a subgame
optimal strategy also has a positional one.

(b) Corollary 1: every Büchi or co-Büchi game that has a subgame optimal
strategy has a positional one. (Whereas parity games may require infinite
memory [12].)

Note that the transfer result 2a can be generalized from positional to finite
memory.

3. We say that a strategy has finite-choice, if it uses only finitely many action
distributions. Note that finite-memory (resp. deterministic) strategies clearly
have finite choice.

Subgame Optimal Strategies in Concurrent Games 543

(a) Theorem 4: In a given game, if there is a finite-choice optimal strategy,
there is a finite-choice subgame optimal strategy.

(b) Theorem 5: Assume that the objective has a neutral color. If every turn-
based game that has a subgame almost-surely winning strategy also has a
positional one, then every game that has a finite-choice subgame optimal
strategy also has a positional one.

(c) Corollary 2: every parity or mean-payoff game that has a finite-memory
subgame optimal strategy also has a positional one.

Note that 3a and 3b are false if the word finite-choice is removed [4]. The
proof of 3b invokes 3a. Flavor (and proofs) of 3b and 2a are similar, but
both premises and conclusions are weakened in 3b, as emphasized.

Related works. A large part of this paper is dedicated to the extension to
concurrent games of the results from [14] regarding the transfer of memory from
almost-surely winning strategies to optimal strategies in turn-based games. Note
that the proof technique used in [14] is different and could not be adapted to
our more general setting. In their proof, both players agree on a preference over
Nature states and play according to this preference. In our proof, we slice the
graph into value areas (that is, sets of states with the same value), and show
that it is sufficient to play an almost-sure winning strategy in each slice; we then
glue these (partial) strategies together to get a subgame-optimal strategy over
the whole graph.

The slicing technique was already used in the context of concurrent games
in [8]. The authors focus on parity objectives and establishes a memory transfer
result from limit-sure winning strategies to almost-optimal strategies. As an
application, they show that, for co-Büchi objectives, since positional strategies
are sufficient to win limit-surely, they also are to win almost-optimally. Their
construction made heavy use of the specific nature of parity objectives.

We also mention [6], where the focus is also on concurrent games with prefix-
independent objectives. In particular, the authors establish a (very useful) result:
if all states have positive values, then they all have value 1. (Note that a strength-
ening of this result is presented in this paper (Theorem 3), which also appears
as an adaptation of a result proved in [14]). This result is then used in another
context with non-zero-sum games.

Finally, some recent works on concurrent games have been done in [2,3,4],
where the goal is the following: local interactions of the two players in the player
state are given by bi-dimensional tables; those tables can be abstracted as game
forms, where (output) variables are issues of the local interaction (possibly sev-
eral issues are labelled by the same variable). The goal of this series of works
is to give (intrinsic) properties of these game forms, so that, when used in a
graph game, the existence of optimal strategies is ensured. For instance, in [3],
a property of games forms, called RM, is given, which ensures that, if one only
uses RM game forms in a graph, then for every reachability objective, Player
A will always have an optimal strategy for that objective. This property is a
characterization of well-behaved game forms regarding reachability objectives

544 B. Bordais et al.

since every game form which is not RM can be embedded into a (small) graph
game in such a way that Player A does not have an optimal strategy. This line
of works really differs from the target of the current paper.

Structure of the paper. Section 2 presents notations, Section 3 recalls the
notion of game forms, Section 4 introduces our formalism, Section 5 exhibits
a necessary and sufficient pair of conditions for subgame optimality, Section 6
shows a memory transfer from subgame almost-surely winning to subgame opti-
mal in concurrent games, and Section 7 adapts the results of the previous section
to the case of the existence of a subgame finite-choice strategy.

Detailed proofs and additional formal definitions are available in [5].

2 Preliminaries

Consider a non-empty set Q. We denote by Q∗, Q+ and Qω the set of finite
sequences, non-empty finite sequences and infinite sequences of elements of Q
respectively. For n ∈ N, we denote by Qn (resp. Q≤n) the set of sequences of
(resp. at most) n elements of Q. For all ρ = q1 · · · qn ∈ Qn and i ≤ n, we denote
by ρi the element qi ∈ Q and by ρ≤i ∈ Qi the finite sequence q1 · · · qi. For a
subset S ⊆ Q, we denote by Q∗ ·Sω ⊆ Qω the set of infinite paths that eventually
settle in S and by (Q∗ ·S)ω ⊆ Qω the set of infinite paths visiting infinitely often
the set S.

A discrete probabilistic distribution over a non-empty finite set Q is a function
μ : Q → [0, 1] such that

∑
x∈Q μ(x) = 1. The support Supp(μ) of a probabilistic

distribution μ : Q → [0, 1] is the set of non-zeros of the distribution: Supp(μ) =
{q ∈ Q | μ(q) ∈ (0, 1]}. The set of all distributions over Q is denoted D(Q).

3 Game forms

We recall the definition of game forms – informally, bi-dimensional tables with
variables – and of games in normal forms – game forms whose outcomes are
values between 0 and 1.

Definition 1 (Game form and game in normal form). A game form (GF
for short) is a tuple F = 〈ActA,ActB,O, �〉 where ActA (resp. ActB) is the non-
empty finite set of actions available to Player A (resp. B), O is a non-empty set
of outcomes, and � : ActA × ActB → O is a function that associates an outcome
to each pair of actions. When the set of outcomes O is equal to [0, 1], we say
that F is a game in normal form. For a valuation v ∈ [0, 1]O of the outcomes,
the notation 〈F , v〉 refers to the game in normal form 〈ActA,ActB, [0, 1], v ◦ �〉.
We use game forms to represent interactions between two players. The strategies
available to Player A (resp. B) are convex combinations of actions given as the
rows (resp. columns) of the table. In a game in normal form, Player A tries to
maximize the outcome, whereas Player B tries to minimize it.

Subgame Optimal Strategies in Concurrent Games 545

Definition 2 (Outcome of a game in normal form). Consider a game in
normal form F = 〈ActA,ActB, [0, 1], �〉. The set D(ActA) (resp. D(ActB)) is the
set of strategies available to Player A (resp. B). For a pair of strategies (σA, σB) ∈
D(ActA)×D(ActB), the outcome outF (σA, σB) in F of the strategies (σA, σB) is
defined as: outF (σA, σB) :=

∑
a∈ActA

∑
b∈ActB

σA(a) · σB(b) · �(a, b) ∈ [0, 1].

Definition 3 (Value of a game in normal form and optimal strategies).
Consider a game in normal form F = 〈ActA,ActB, [0, 1], �〉 and a strategy σA ∈
D(ActA) for Player A. The value of the strategy σA, denoted valF (σA) is equal
to: valF (σA) := infσB∈D(ActB) outF (σA, σB), and analogously for Player B, with a
sup instead of an inf. When supσA∈D(ActA) valF (σA) = infσB∈D(ActB) valF (σB), it
defines the value of the game F , denoted valF .

A strategy σA ∈ D(ActA) ensuring valF = valF (σA) is called optimal. The set
of all optimal strategies for Player A is denoted OptA(F) ⊆ D(ActA), and analo-
gously for Player B. Von Neuman’s minimax theorem [20] ensures the existence
of optimal strategies (for both players).

In the following, strategies in games in normal forms will be called GF-strategies,
in order not to confuse them with strategies in concurrent (graph) games.

4 Concurrent games and optimal strategies

4.1 Concurrent arenas and strategies

We introduce the definition of concurrent arenas played on a finite graph.

Definition 4 (Finite stochastic concurrent arena). A colored concurrent
arena C is a tuple 〈Q, (Aq)q∈Q, (Bq)q∈Q,D, δ, dist,K, col〉 where Q is the non-
empty finite set of states, for all q ∈ Q, Aq (resp. Bq) is the non-empty finite set
of actions available to Player A (resp. B) at state q, D is the finite set of Nature
states, δ :

⋃
q∈Q({q}×Aq ×Bq) → D is the transition function, dist : D → D(Q)

is the distribution function. Furthermore, K is the non-empty finite set of colors
and col : Q → K is the coloring function.

In the following, the arena C will refer to the tuple 〈Q, (Aq)q∈Q, (Bq)q∈Q,D, δ,
dist,K, col〉, unless otherwise stated. A concurrent game is obtained from a con-
current arena by adding a winning condition: the set of infinite paths winning
for Player A (and losing for Player B).

Definition 5 (Finite stochastic concurrent game). A finite concurrent
game is a pair 〈C,W 〉 where C is a finite concurrent colored arena and W ⊆ Kω

is Borel. The set W is called the objective, as it corresponds to the set of colored
paths winning for Player A.

In this paper, we only consider a specific kind of objectives: prefix-independent
ones. Informally, they correspond to objectives W such that an infinite path ρ
is in W if and only if any of its suffixes is in W . More formally:

546 B. Bordais et al.

Definition 6 (Prefix-independent objectives). For a non-empty finite set
of colors K and W ⊆ Kω, W is said to be prefix-independent (PI for short) if,
for all ρ ∈ Kω and i ≥ 0, ρ ∈ W ⇔ ρ≥i ∈ W .

In the following, we refer to concurrent games with prefix-independent objectives
as PI concurrent games.

Definition 7 (Parity, Büchi, co-Büchi objectives). Let K ⊂ N be a finite
non-empty set of integers. Consider a concurrent arena C with K as set of col-
ors. For an infinite path ρ ∈ Qω, we denote by col(ρ)∞ ⊆ N the set of colors
seen infinitely often in ρ: col(ρ)∞ := {n ∈ N | ∀i ∈ N, ∃j ≥ i, col(ρj) =
n}. Then, the parity objective w.r.t. col is the set WParity(col) := {ρ ∈ Qω |
max col(ρ)∞ is even }. The Büchi (resp. co-Büchi) objective correspond to the
parity objective with K := {1, 2} (resp. K := {0, 1}).

Strategies are then defined as functions that, given the history of the game
(i.e. the sequence of states already seen) associate a distribution on the actions
available to the Player.

Definition 8 (Strategies). Consider a concurrent game C. A strategy for Player
A is a function sA : Q+ → D(A) with A :=

⋃
q∈Q Aq such that, for all ρ =

q0 · · · qn ∈ Q+, we have sA(ρ) ∈ D(Aqn). We denote by SAC the set of all strate-
gies in arena C for Player A. This is analogous for Player B.

Given two strategies sA, sB for both players in an arena C from a starting state
q0, we define in the usual manner the probability PC,q0

sA,sB of a finite path which
induces the probability of an arbitrary Borel subset of infinite paths. Values of
strategies and of the game are defined below.

Definition 9 (Value of strategies and of the game). Let G = 〈C,W 〉 be a
PI concurrent game and consider a strategy sA ∈ SAC for Player A. The function
χG [sA] : Q → [0, 1] giving the value of the strategy sA is such that, for all q0 ∈
Q, we have χG [sA](q0) := infsB∈SB

C
PC,q0
sA,sB [W]. The function χG [A] : Q → [0, 1]

giving the value for Player A: is such that, for all q0 ∈ Q, we have χG [A](q0) :=
supsA∈SA

C
χG [sA](q0). The function χG [B] : Q → [0, 1] giving the value of the game

for Player B is defined similarly by reversing the supremum and infimum.
By Martin’s result on the determinacy of Blackwell games [17], for all con-

current games G = 〈C,W 〉, the value functions for both Players are equal, this
defines the value function χG : Q → [0, 1] of the game: χG := χG [A] = χG [B].

We define value areas: subsets of states whose values are the same.

Definition 10 (Value area). In a PI concurrent game G, VG refers to the
set of values appearing in the game: VG := {χG [q] | q ∈ Q}. Furthermore, for
all u ∈ VG, Qu ⊆ Q refers to the set of states whose values are u w.r.t. χG:
Qu := {q ∈ Q | χG(q) = u}.

In concurrent games, game forms appear at each state and describe the in-
teractions of the players at that state. Furthermore, the valuation mapping each

Subgame Optimal Strategies in Concurrent Games 547

state to its value in the game can be lifted, via a convex combination, into a
valuation of the Nature states. This, in turn, induces a natural way to define the
game in normal form appearing at each state.

Definition 11 (Local interactions, Lifting valuations). In a PI concurrent
game G where the valuation χG : Q → [0, 1] gives the values of the game, the
lift νG : D → [0, 1] is such that, for all d ∈ D, we have νG(d) :=

∑
q∈Q χG(q) ·

dist(d)(q) (recall that dist : D → D(Q) is the distribution function).
Let q ∈ Q. The local interaction at state q is the game form

Fq = 〈Aq, Bq,D, δ(q, ·, ·)〉. The game in normal form at state q is then Fnf
q :=

〈Fq, νG〉.
The values of the game in normal form Fnf

q and of the state q are equal.

Proposition 1. In a PI concurrent game G, for all states q ∈ Q, we have
χG(q) = outFnf

q
.

4.2 More on strategies

In this subsection, we define several kinds of strategies. Let us fix a PI concurrent
game G for the rest of this section. First, we consider optimal strategies, i.e.
strategies realizing the value of the game. Strategies are positively-optimal if
their values are positive from all states whose value is positive.

Definition 12 ((Positively-) optimal strategies). A Player A strategy sA ∈
SAC is (resp. positively-) optimal from a state q ∈ Q if χG(q) = χG [sA](q) (resp.
if χG(q) > 0 ⇒ χG [sA](q) > 0). It is (resp. positively-) optimal if this holds from
all states q ∈ Q.

Note that the definition of optimal strategies we consider is sometimes referred
to as uniform optimality, as it holds from every state of the game. However, it
does not say anything about what happens once some sequence of states have
been seen. We would like now to define a notion of strategy that is optimal from
any point that can occur after any finite sequence of states has been seen. This
correspond to subgame optimal strategies. To define them, we need to introduce
the notion of residual strategy.

Definition 13 (Residual and Subgame Optimal Strategies). For all finite
sequences ρ ∈ Q+, the residual strategy sρA of a Player A strategy sA is the
strategy sρA : Q+ → D(A) such that, for all π ∈ Q+, we have sρA(π) := sA(ρ · π).

The Player A strategy sA is subgame optimal if, for all ρ = ρ′ · q ∈ Q+, the
residual strategy sρA is optimal from q, i.e. χG [s

ρ
A](q) = χG(q).

Note that, in particular, subgame optimal strategies are optimal strategies.
When such strategies do exist, we want them to be as simple as possible, for
instance we want them to be positional, that is that they only depend on the
current state of the game.

As for Player B, we will consider a specific kind of strategies, namely deter-
ministic strategies. That is because, once a Player A strategy is fixed we obtain
an (infinite) MDP. In such a context, ε-optimal strategies can be chosen among
deterministic strategies (see for instance the explanation in [9, Thm. 1]).

548 B. Bordais et al.

Definition 14 (Positional, Deterministic strategies). A Player A strategy
sA is positional if, for all states q ∈ Q and paths ρ ∈ Q+ we have sA(ρ·q) = sA(q).

A Player B strategy sB is deterministic if, for all finite sequences ρ · q ∈ Q+,
there exists b ∈ Bq such that sB(ρ · q)(b) = 1.

5 Necessary and sufficient condition for subgame
optimality

In this section, we present a necessary and sufficient pair of conditions for a
Player A strategy to be subgame optimal, formally stated in Theorem 1. The
arguments given here are somewhat similar to the ones given in Section 4 of [4],
which deals with the same question restricted to positional strategies.

The first condition is local: it specifies how a strategy behaves in the games in
normal form at each local interaction of the game. As mentioned in Proposition 1,
at each state q, the value of the game in normal form Fnf

q is equal to the value

of the state q (given by the valuation χG ∈ [0, 1]Q). This suggests that, for all
finite sequences of states ρ ∈ Q+ ending at that state q, the GF-strategy sA(ρ)
needs to be optimal in the game in normal form Fnf

q for the residual strategy sρA
to be optimal from q. Strategies with such a property are called locally optimal.
This is a necessary condition for subgame optimality. (However, it is neither a
necessary nor a sufficient condition for optimality, as argued in Section 6).

Definition 15 (Locally optimal strategies). Consider a PI concurrent game
G. A Player A strategy sA is locally optimal if, for all ρ = ρ′ · q ∈ Q+, the GF-
strategy sA(ρ) is optimal in the game in normal form Fnf

q . That is – recalling

that νG ∈ [0, 1]D lifts the valuation χG ∈ [0, 1]Q to the Nature states – for all
b ∈ Bq: χG(q) ≤

∑
a∈A sA(ρ)(a) · νG ◦ δ(q, a, b) = outFnf

q
(sA(ρ), b)

Lemma 1. In a PI concurrent game, subgame optimal strategies are locally op-
timal.

Note that this was already shown for positional strategies in [4].
Local optimality does not ensure subgame optimality in general. However, it

does ensure that, for all Player B deterministic strategies, the game almost-surely
eventually settles in a value area, i.e. in some Qu for some u ∈ VG .

Lemma 2. Consider a PI concurrent game G and a Player A locally optimal
strategy sA. For all Player B deterministic strategies, almost surely the states
seen infinitely often have the same value. That is: PsA,sB [

⋃
u∈VG Q∗ · (Qu)

ω] = 1.

Proof (Sketch). First, if a state of value 1 is reached (i.e. a state in Q1), then
all states that can be seen with positive probability have value 1 (i.e. are in
Q1), since the strategy sA is locally optimal. Let now u ∈ VG be the highest
value in VG that is not 1 and consider the set of infinite paths such that the
set Qu is seen infinitely often but the game does not settle in it, i.e. the set
(Q∗ · (Q \Qu))

ω ∩ (Q∗ ·Qu)
ω ⊆ Qω. Since the strategy sA is locally optimal (and

Subgame Optimal Strategies in Concurrent Games 549

since VG is finite), one can show that there is a positive probability p > 0 such
that, the conditional probability of reaching Q1 knowing that Qu is left is at least
p. Hence, if Qu is left infinitely often, almost-surely the set Q1 is seen (and never
left). It follows that the probability of the event (Q∗ · (Q \ Qu))

ω ∩ (Q∗ · Qu)
ω

is 0. This implies that, almost-surely, if the set Qu is seen infinitely often, then
at some point it is never left. The same arguments can then be used with the
highest value in VG that is less than u, etc. Overall, we obtain that, for all u ∈ VG ,
if a set Qu is seen infinitely often, it is eventually never left almost-surely.

Local optimality ensures that, at each step, the expected values of the states
reached does not worsen (and may even improve if Player B does not play op-
timally). By propagating this property, we obtain that, given a Player A locally
optimal strategy and a Player B deterministic strategy, the convex combination
of the values u in VG weighted by the probability of settling in the value area
Qu, from a state q is at least equal to its value χG(q). This is stated in Lemma 3
below.

Lemma 3. For a PI concurrent game G, a Player A locally optimal strategy
sA, a Player B deterministic strategy sB and a state q ∈ Q: χG(q) ≤

∑
u∈VG u ·

PsA,sB
q [Q∗ · (Qu)

ω].

Note that if Player B plays subgame optimally, then this inequality is an equality.

Proof (Sketch). First, let us denote PsA,sB
q by P. It can be shown by induction that,

for all i ∈ N∗, we have the property P(i) : χG(q) ≤
∑

π·q′∈q·Qi χG(q′) ·P(π · q′) =∑
u∈VG\{0} u ·P[q ·Qi−1 ·Qu]. Furthermore, since by Lemma 2, the game almost-

surely settles in a value area, it can be shown that for n large enough, the
probability of being in Qu after n steps (i.e. P[q ·Qn−1 ·Qu]) is arbitrarily close
to the probability of eventually settling in Qu (i.e. P[Q∗ · (Qu)

ω]). We can then
apply P(n) to obtain the desired inequality.

Recall that we are considering a pair of conditions to characterize that a
strategy is subgame optimal. The first condition is local optimality. To summa-
rize, we have seen that the fact that a strategy is locally optimal ensures that,
from any state q, the expected values of the value areas where the game settles
is at least χG(q). However, local optimality does not ensure anything as to the
probability of W given that the game settles in a specific value area. This is
where the second condition comes into play. For the explanations regarding this
condition, we will need Lemma 4 below: a consequence of Levy’s 0-1 Law.

Lemma 4. Let M be a countable Markov chain with a PI objective. If there is
a q ∈ Q such that χM(q) < 1, then infq′∈Q χM(q′) = 0.

Consider now a Player A subgame optimal strategy sA and a Player B determin-
istic strategy. Let us consider what happens if the game eventually settles in Qu

for some u ∈ VG \{0}. Assume towards a contradiction that there is a finite path
after which the probability of W given that the play eventually settles in Qu is
less than 1. Then, there is a continuation of this path ending in Qu for which this
probability of W is less than u. Indeed, it was shown that, for a PI objective,

550 B. Bordais et al.

in a countable Markov chain (which is what we obtain once strategies for both
players are fixed), if there is a state with a value less than 1, then the infimum of
the values in the Markov chain is 0 (this is what is stated in Lemma 4). Follow-
ing our above towards-a-contradiction-assumption, there would be a finite path
from which the Player A strategy sA is not optimal. This is in contradiction with
the fact that it is subgame optimal. Hence, a second necessary condition – in
addition to the local optimality assumption – for subgame optimality is: from
all finite paths, for all Player B deterministic strategies, for all positive values
u ∈ VG \ {0}, the probability of W and eventually settling in Qu is equal to the
probability of eventually settling in Qu. We obtain the theorem below.

Theorem 1. Consider a concurrent game G with a PI objective W and a Player
A strategy sA ∈ SAC . The strategy sA is subgame optimal if and only if:

– it is locally optimal;
– for all ρ ∈ Q+, for all Player B deterministic strategies sB, for all values

u ∈ VG \ {0}, we have PsρA,s
ρ
B

ρ [W ∩Q∗ · (Qu)
ω] = PsρA,s

ρ
B

ρ [Q∗ · (Qu)
ω].

Proof (Sketch). Lemma 1 states that local optimality is necessary and we have
informally argued above why the second condition is also necessary for subgame
optimality. As for the fact that they are sufficient conditions, this is a direct
consequence of Lemmas 2 and 3 and the fact that deterministic strategies can
achieve the same values as arbitrary strategies in MDPs (which we obtain once
a Player A strategy is fixed), as cited in Subsection 4.2.

One may ask what happens in the special case where the strategy sA con-
sidered is positional. As mentioned above, such a characterization was already
presented in [4]1. Overall, we obtain a similar result except that the second condi-
tion is replaced by what happens in the game restricted to the End Components
in the Markov Decision Process induced by the positional strategy sA.

6 From subgame almost-surely winning to subgame
optimality

In [14, Thm. 4.5], the authors have proved a transfer result in PI turn-based
games: the amount of memory sufficient to play optimally in every state of
value 1 of every game is also sufficient to play optimally in every game. This
result does not hold on concurrent games as is. First, although there are always
optimal strategies in PI turn-based games (as proved in the same paper [14, Thm.
4.3]), there are PI concurrent games without optimal strategies. Second, infinite
memory may be required to play optimally in co-Büchi concurrent games whereas
almost-surely winning strategies can be found among positional strategies in a
turn-based setting. This can be seen in the game of Figure 1 with col(q0) = 0 and
col(q1) = col(q′1) = 1. The green values in the local interaction at state q0 are the

1 The proof was only presented for a specific class of objectives.

Subgame Optimal Strategies in Concurrent Games 551

q0,

⎡⎣ q0 q′1 1/2
q1 1 1/2
1/2 1/2 0

⎤⎦
q1

q′1

Fig. 1. A co-Büchi game.

q0,

[
q0 q1
q1 q2

] q1

q2

Fig. 2. A parity game.

q0,

[
q0 q1
q0 q2

]1/2
q1

1/4

q2

3/4

Fig. 3. A concur-
rent game with
Aq0 = {a1, a2}.

values of the game if they are reached (the game ends immediately). If a green
value is not reached, the objective of Player A is to see only finitely often states
q1 and q′1. It has already been argued in [4] that the value of this game is 1/2 and
that there is an optimal strategy for Player A but it requires infinite memory.
To play optimally, Player A must play the top row with probability 1 − εk and
the middle row with probability εk for εk > 0 that goes (fast) to 0 when k goes
to ∞ (where k denotes the number of steps). The εk must be chosen so that,
if Player B always plays the left column with probability 1, then the state q1
is seen finitely often with probability 1. Furthermore, as soon as the state q′1 is
visited, Player A switches to a positional strategy playing the bottom row with
probability ε′k small enough (where k denotes the number of steps before the
state q′1 was seen) and the two top rows with probability (1 − ε′k)/2.

Hence, the transfer of memory from almost-surely winning to optimal does
not hold in concurrent games even if it is assumed that optimal strategies exist.
However, one can note that although the strategy described above is optimal,
it is not subgame optimal. Indeed, when the strategy switches, the value of the
residual strategy is 1/2−ε′k < 1/2. In fact, there is no subgame optimal strategy
in that game. Actually, if we assume that, not only optimal but subgame optimal
strategies exist, then the transfer of memory will hold.

The aim of this section is twofold: first, we identify a necessary and sufficient
condition for the existence of subgame optimal strategies2. Second, we establish
the above-mentioned memory transfer that relates the amount of memory to
play subgame optimally and to be almost-surely winning. Before stating the
main theorem of this section, let us first introduce the definition of positionally
subgame almost-surely winnable objective, i.e. objectives for which subgame
almost-surely winning strategies can be found among positional strategies.

Definition 16 (Positionally subgame almost-surely winnable objective).
Consider a PI objective W ⊆ Kω. It is said to be a positionally subgame almost-
surely winnable objective (PSAW for short) if the following holds: in all concur-

2 Note that this is different from what we did in the previous section: there, we es-
tablished a necessary and sufficient condition for a specific strategy to be subgame
optimal. Here, given a game, we consider necessary and sufficient conditions on the
game for the existence of a subgame optimal strategy.

552 B. Bordais et al.

rent games G = 〈C,W 〉 where there is a subgame almost-surely winning strategy,
there is a positional one.

Theorem 2. Consider a non-empty finite set of colors K and a PI objective
∅ � W ⊆ Kω. Consider a concurrent game G with objective W . Then, the three
following assertions are equivalent:

a. there exists a subgame optimal strategy;
b. there exists an optimal strategy that is locally optimal;
c. there exists a positively-optimal strategy that is locally optimal.

Furthermore, if this holds and if the objective W is PSAW, then there exists a
subgame optimal positional strategy.

First, note that the equivalence is stated in terms of existence of strategies, not
on the strategies themselves. In particular, any subgame optimal strategy is both
optimal and locally optimal, however, an optimal strategy that is locally optimal
is not necessarily a subgame optimal strategy. Second, it is straightforward that
point a implies point b (from Theorem 1) and that point b implies point c (by
definition of positively-optimal strategies). In the remainder of this section, we
explain informally the constructions leading to the proof of this theorem, i.e.
to the proof that point c implies point a. The transfer of memory is a direct
consequence of the way this theorem is proven. We fix a PI concurrent game
G = 〈C,W 〉 for the rest of the section.

The idea is as follows. As stated in Theorem 1, subgame optimal strategies
are locally optimal and win the game almost-surely if the game settles in a value
area Qu for some positive u ∈ VG \{0}. Our idea is therefore to consider subgame
almost-surely winning strategies in the derived game Gu: a “restriction” of the
game G to Qu (more details will be given later). We can then glue together these
subgame almost-surely winning strategies – defined for all u ∈ VG \ {0} – into a
subgame optimal strategy. However, there are some issues:

1. the state values in the game Gu should be all equal to 1;
2. furthermore, there must exist a subgame almost-surely winning strategy in

Gu;
3. this subgame almost-surely winning strategy in Gu should be locally optimal

when considered in the whole game G.
Note that the method we use here is different from what the authors of [14] did
to prove the transfer of memory in turn-based games.

Let us first deal with issue 3. One can ensure that the almost-surely winning
strategies in the game Gu are all locally optimal in G by properly defining the
game Gu. More specifically, this is done by enforcing that the only Player A
possible strategies in Gu are locally optimal in the game G. To do so, we construct
the game Gu whose state space is Qu (plus gadget states) but whose set of actions
AFnf

q
, at a state q ∈ Qu, is such that the set of strategies D(AFnf

q
) corresponds

exactly to the set of optimal strategies in the original game in normal form Fnf
q ,

while keeping the set of actions AFnf
q
for Player A finite. This is possible thanks

Subgame Optimal Strategies in Concurrent Games 553

a1
a2

[
q0 q1
q0 q2

]

Fig. 4. The local
interaction Fq0 at
state q0.

a1

a2

[
1
2

1
4

1
2

3
4

]

Fig. 5. The game in
normal form Fnf

q0at
the state q0.

a1+a2

2

a2

[
1
2

1
2

1
2

3
4

]

Fig. 6. The game
Fopt,nf

q0 with only op-
timal strategies.

a1+a2

2

a2

[
q0

q1+q2
2

q0 q2

]

Fig. 7. The game
form Fopt

q0 with only
optimal strategies.

to Proposition 2 below: in every game in normal form Fnf
q at state q ∈ Qu, there

exists a finite set AFnf
q

of optimal strategies such that the optimal strategies in

Fnf
q are exactly the convex combinations of strategies in AFnf

q
. This is a well

known result, argued for instance in [18].

Proposition 2. Consider a game in normal form Fnf = 〈A,B, [0, 1], δ〉 with
|A| = n and |B| = k. There exists a set AFnf ⊆ OptA(Fnf) of optimal strategies
such that |AFnf | ≤ n+ k and D(AFnf) = OptA(Fnf).

Proof (Sketch). One can write a system of n + k inequalities (with some addi-
tional equalities) whose set of solutions is exactly the set of optimal GF-strategies
OptA(Fnf). The result then follows from standard system of inequalities argu-
ments as the space of solutions is in fact a polytope with at most n+ k vertices.
.

We illustrate this construction: a part of a concurrent game is depicted in
Figure 3 and the change of the interaction of the players at state q0 is depicted
in Figures 4, 5, 6 and 7.

The game Gu has the same objective W as the game G. Since we want all the
states to have value 1 in Gu (recall issue 1), we will build the game Gu such that
any edge leading to a state not in Qu in G now leads to a PI concurrent game
GW (with the same objective W) where all states have value 1. The game GW is
(for instance) a clique with all colors in K where Player A plays alone.

An illustration of this construction can be found in Figures 8 and 9. The
blue dotted arrows are the ones that need to be redirected when the game is
changed. With such a definition, we have made some progress w.r.t. the issue 1
cited previously (regarding the values being equal to 1): the values of all states
of the game Gu are positive (for positive u).

Lemma 5. Consider the game Gu for some positive u ∈ VG \ {0} and assume
that, in G, there exists a positively-optimal strategy that is locally optimal. Then,
for all states q in Gu, the value of the state q in Gu is positive: χGu

(q) > 0.

Proof (Sketch). Consider a state q ∈ Qu and a Player A locally optimal strategy
sA in G that is positively-optimal from q. Then, the strategy sA (restricted to
Q+

u) can be seen as a strategy in Gu (it has to be defined in GW , but this can
done straightforwardly). Note that this is only possible because the strategy sA
is locally optimal (due to the definition of Gu). For a Player B strategy sB in Gu,
consider what happens with strategies sA and sB in both games Gu and G. Either

554 B. Bordais et al.

u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

q8 q0

q1

q2

q3

q4

q5

q6

q7

Fig. 8. The depiction of a PI concurrent
game with its value areas.

u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

GW

q8

GW

q0

q1

GW

q2

q3

q4

GW

q5

q6

q7

Fig. 9. The PI concurrent game after the
modifications described above.

the game stays indefinitely in Qu, and what happens in Gu and G is identical.
Or it eventually leaves Qu, leading to states of value 1 in Gu. Hence, the value of
the game Gu from q with strategies sA and sB is at least the value of the game G
from q with the same strategies. Thus, the value of the state q is positive in Gu.

As it turns out, Lemma 5 suffices to deal with both issues 1 and 2 at the
same time. Indeed, as stated in Theorem 3 below, it is a general result that in a
PI concurrent game, if all states have positive values, then all states have value
1 and there is a subgame almost-surely winning strategy.

Theorem 3. Consider a PI concurrent game G and assume that all state values
are greater than or equal to c > 0, i.e. for all q ∈ Q, χG(q) ≥ c. Then, there is
a subgame almost-surely winning strategy in G.

Remark 1. This theorem can be seen as a strengthening of Theorem 1 from [6].
Indeed, this Theorem 1 states that if all states have positive values, then they
all have value 1 (this is then generalized to games with countably-many states).
Theorem 3 is stronger since it ensures the existence of (subgame) almost-surely
winning strategies. Although a detailed proof is provided in the complete version
of this paper [5], note that this theorem was already stated and proven in [14]
in the context of PI turn-based games. Nevertheless their arguments could have
been used verbatim for concurrent games as well. In [5], we give a proof using
the same construction (namely, reset strategies) but we argue differently why
the construction proves the theorem.

We can now glue together pieces of strategies suA defined in all games Gu

into a single strategy sA[(s
u
A)u∈VG\{0}]. Informally, the glued strategy mimics the

strategy on Q+
u and switches strategy when a value area is left and another one

is reached.

Definition 17 (Gluing strategies). Consider a PI concurrent game G and
for all values u ∈ VG \ {0}, a strategy suA in the game Gu. Then, we glue these

Subgame Optimal Strategies in Concurrent Games 555

strategies into the strategy sA[(s
u
A)u∈VG\{0}] : Q+ → D(A) simply written sA such

that, for all ρ ending at state q ∈ Q:

sA(ρ) :=

{
suA(π) if u = χG(q) > 0 for π the longest suffix of ρ in Q+

u

is arbitrary if χG(q) = 0

As stated in Lemma 6 below, the construction described in Definition 17 transfers
almost-surely winning strategies in Gu into a subgame optimal strategy in G.
Lemma 6. For all u ∈ VG \{0}, let suA be a subgame almost-surely winning strat-
egy in Gu. The glued strategy sA[(s

u
A)u∈VG\{0}], denoted sA, is subgame optimal

in G.

Proof (Sketch). We apply Theorem 1. First, the strategy sA is locally optimal
in all Qu for u > 0 by the strategy restriction done to define the game Gu (only
optimal strategies are considered at each game in normal form Fnf

q at states
q ∈ Qu). Furthermore, any strategy is optimal in a game in normal form of
value 0 (which is the case of the game in normal forms of states in Q0). Second,
if the game eventually settles in a value area Qu for some u > 0, from then on
the strategy sA mimics the strategy suA, which is subgame almost-surely winning
in Gu. Hence, the probability of W given that the game eventually settles in Qu

is 1. This holds for all u ∈ VG \ {0}, so the second condition of Theorem 1 holds.

We now have all the ingredients to prove Theorem 2.

Proof (Of Theorem 2). We consider the PI concurrent game G and assume that
there is a positively-optimal strategy that is locally optimal. Then, by Lemma 5,
for all positive values u ∈ VG \{0}, all states in Gu have positive values. It follows,
by Theorem 3, that there exists a subgame almost-surely winning strategy in
every game Gu for u ∈ VG \ {0}. We then obtain a subgame optimal strategy by
gluing these strategies together, given by Lemma 6.

The second part of the theorem, dealing with transfer of positionality from
subgame almost-surely winning to subgame optimal follows from the fact that if
all strategies suA are positional for all u ∈ VG \ {0}, then so is the glued strategy
sA[(s

u
A)u∈VG\{0}].

We now apply the result of Theorem 2 to two specific classes of objectives:
Büchi and co-Büchi objectives. Note that this result is already known for Büchi
objectives, proven in [4].

Corollary 1. Consider a concurrent game with a Büchi (resp. co-Büchi) objec-
tive and assume that there is a positively-optimal strategy that is locally optimal.
Then there is a subgame optimal positional strategy.

Note that it is also possible to prove a memory transfer from subgame almost-
surely winning to subgame optimal for an arbitrary memory skeleton, instead of
only positional strategies. This adds only a few minor difficulties.

556 B. Bordais et al.

Application to the turn-based setting. The aim of Section 6 was to ex-
tend an already existing result on turn-based games in the context of concurrent
games. This required an adaptation of the assumptions. However, it is in fact
possible to retrieve the original result on turn-based games from Theorem 2 in a
fairly straightforward manner. It amounts to show that, in all finite turn-based
games G, for all values u ∈ VG \ {0}, there is a locally optimal strategy that is
positively-optimal from all states in Qu.

7 Finite-choice strategies

In this section, we introduce a new kind of strategies, namely finite-choice strate-
gies. Let us first motivate why we consider such strategies. Consider again the
co-Büchi game of Figure 1. Recall that the optimal strategy we described first
plays the top row with increasing probability and the middle row with decreas-
ing probability and then, once Player B plays the second column, switches to
a positional strategy playing the bottom row with positive, yet small enough
probability. Note that switching strategy is essential. Indeed, if Player A does
not switch, Player B could at some point opt for the middle column and see in-
definitely the state q′1 with very high probability. In fact, what happens in that
case is rather counter-intuitive: once Player B switches, there is infinitely often
a positive probability to reach the outcome of value 1. However, the probability
to ever reaching this outcome can be arbitrarily small, if Player B waits long
enough before playing the middle row. This happens because the probability εk
to visit that outcome goes (fast) to 0 when k goes to ∞. In fact, such an optimal
strategy has “infinite choice” in the sense that it may prescribe infinitely many
different probability distribution.

In this section, we consider finite-choice strategies, i.e. strategies that can use
only finitely many GF-strategies at each state.

Definition 18 (Finite-choice strategy). Let G be a concurrent game. A Player
A strategy sA in G has finite choice if, for all q ∈ Q, the set SsA

q := {sA(ρ · q) |
ρ ∈ Q+} ⊆ D(Aq) is finite.

Note that positional (even finite-memory) and deterministic strategies are ex-
amples of finite-choice strategies.

Interestingly, we can link finite-choice strategies with the existence of sub-
game optimal strategies. In general it does not hold that if there are optimal
strategies, then there exists subgame optimal strategies (as exemplified in the
game of Figure 1). However, in Theorem 4 below, we state that if we addition-
ally assume that the optimal strategy considered has finite choice, then there is
a subgame optimal strategy (that has also finite choice).

Theorem 4. Consider a PI concurrent game G. If there is a finite-choice opti-
mal strategy, then there is a finite-choice subgame optimal strategy.

Proof (Sketch). Consider such an optimal finite-choice strategy sA. In particular,
note that there is a constant c > 0 such that for all ρ · q ∈ Q+, for all a ∈ Aq we

Subgame Optimal Strategies in Concurrent Games 557

have: sA(ρ · q)(q) > 0 ⇒ sA(ρ · q)(q) ≥ c. We build a subgame optimal strategy
s′A in the following way: for all ρ = ρ′ · q ∈ Q+, if the residual strategy sρA is
optimal, then s′A(ρ) := sA(ρ), otherwise s

′
A(ρ) := sA(q) (i.e. we reset the strategy).

Straightforwardly, the strategy s′A has finite choice. We want to apply Theorem 1
to prove that it is subgame optimal. One can see that it is locally optimal (by the
criterion chosen for resetting the strategy). Consider now some ρ ∈ Q+ ending
at state q ∈ Q and another state q′ ∈ Q. Assume that the residual strategy

sρA is optimal but that the residual strategy sρ·q
′

A is not. Then, similarly to why
local optimality is necessary for subgame optimality (see Proposition 1), one can
show that any Player B action b leading to q′ from ρ with positive probability
is such that χG(q) < outFnf

q
(sA(ρ), b). Hence, there is positive probability from

ρ, if Player B opts for the action b, to reach a state of value different from
u = χG(q). And if this happens infinitely often, a state of value different from
u will be reached almost-surely3. In other words, if a value area is never left,
almost-surely, the strategy s′A only resets finitely often.

Consider now some ρ ∈ Q+, a Player B deterministic strategy sB and a value
u ∈ VG \{0}. From what we argued above, the probability of the event Q∗ ·(Qu)

ω

(resp. W ∩Q∗ ·(Qu)
ω) is the same if we intersect it with the fact that the strategy

s′A only resets finitely often. Furthermore, if the strategy does not reset anymore
from some point on, and all states have the same value u > 0, then it follows
that the probability of W is 1 (since W is PI). We can then conclude by applying
Theorem 1.

Finite-choice strategies are interesting for another reason. In the previous
section, we applied the memory transfer from Theorem 2 to the Büchi and co-
Büchi objectives. We did not apply it to other objectives – in particular to the
parity objective. Indeed, in general, contrary to the case of turn-based games,
infinite-memory is necessary to be almost-surely winning in parity games. This
happens in Figure 2 (already described in [12]) where the objective of Player A
is to see q1 infinitely often, while seeing q2 only finitely often. Let us describe a
Player A subgame almost-surely winning strategy. The top row is played with
probability 1 − εk and the bottom row is played with probability εk > 0 with
εk going to 0 when k goes to ∞ (the (εk) used in the game in Figure 1 works
here as well) where k denotes the number of times the state q0 is seen. Such a
strategy is subgame almost-surely winning and does not have finite choice. In
fact, it can be shown that all Player A finite-choice strategies have value 0 in
that game.

Interestingly, the transfer of memory of Theorem 2 is adapted in Theorem 5
with the memory that is sufficient in turn-based games – for those PI objectives
that have a “neutral color”– if we additionally assume that the subgame opti-
mal strategy considered has finite choice. First, let us define what is meant by
“neutral color”, then we define the turn-based version of PSAW.

3 This holds because the strategy sA has finite choice: the probability to see a state
of different value is bounded below by the product of c and the smallest positive
probability among all Nature states.

558 B. Bordais et al.

Definition 19 (Objective with a neutral color). Consider a set of colors K
and a PI objective W ⊆ Kω. It has a neutral color if there is some (neutral) color
k ∈ K such that, for all ρ = ρ0 ·ρ1 · · · ∈ Kω, we have ρ ∈ W ⇔ ρ0 ·k·ρ1 ·k · · · ∈ W .

Definition 20 (PASW objective in turn-based games). Consider a PI ob-
jective W ⊆ Kω. It is positionally subgame almost-surely winnable in turn-based
games (PSAWT for short) if in all turn-based games G = 〈C,W 〉 where there is
a subgame almost-surely winning strategy, there is a positional one.

Theorem 5. Consider a PSAWT PI objective W ⊆ Kω with a neutral color
and a concurrent game G with objective W . Assume there is a subgame optimal
strategy that has finite choice. Then, there is a positional one.

Proof (Sketch). A finite-choice strategy sA plays only among a finite number of
GF-strategies at each state. The idea is therefore to modify the game Gu of the
previous subsection into a game G′

u by transforming it into a (finite) turn-based
game. At each state, Player A chooses first her GF-strategy. She can choose
among only a finite number of them: she has at her disposal, at a state q, only
optimal GF-strategies in SsA

q (recall Definition 18). We consider the objective W
in that new arena where Player B states are colored with a neutral color. The
existence, in G, of a subgame optimal strategy that has finite choice ensures that
all states in G′

u have positive values. We can then conclude as for Theorem 2: a
subgame optimal strategy can be obtained by gluing together subgame almost-
surely winning strategies in the (turn-based) games G′

u (that can be chosen
positional by assumption).

As an application, one can realize that the parity, mean-payoff and general-
ized Büchi objectives have a neutral color and are PSAWT ([11,16,7]). Hence, for
these objectives, if there exists an optimal strategy that has finite choice, then
there is one that is positional.

Corollary 2. Consider a concurrent game G with a parity (resp. mean-payoff,
resp. generalized Büchi) objective. Assume that there is an optimal strategy that
has finite choice in G. Then, there is a positional one.

References

1. Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Handbook of
Model Checking, chapter Graph games and reactive synthesis, pages 921–962.
Springer, 2018.

2. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global
determinacy in concurrent graph games. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021,
Virtual Conference, volume 213 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

Subgame Optimal Strategies in Concurrent Games 559

3. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in
concurrent reachability games. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-
19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages
7:1–7:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

4. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Playing (almost-
)optimally in concurrent büchi and co-büchi games. CoRR, abs/2203.06966, 2022.

5. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Sub-game opti-
mal strategies in concurrent games with prefix-independent objectives. CoRR,
abs/2301.10697, 2023.

6. Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput.
Sci., 388(1-3):181–198, 2007.

7. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading mem-
ory for randomness. In 1st International Conference on Quantitative Evaluation of
Systems (QEST 2004), 27-30 September 2004, Enschede, The Netherlands, pages
206–217. IEEE Computer Society, 2004.

8. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity
of quantitative concurrent parity games. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida,
USA, January 22-26, 2006, pages 678–687. ACM Press, 2006.

9. Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger.
Randomness for free. Inf. Comput., 245:3–16, 2015.

10. Krishnendu Chatterjee and Rasmus Ibsen-Jensen. Qualitative analysis of concur-
rent mean-payoff games. Inf. Comput., 242:2–24, 2015.

11. Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantita-
tive stochastic parity games. In J. Ian Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Or-
leans, Louisiana, USA, January 11-14, 2004, pages 121–130. SIAM, 2004.

12. Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In
15th Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, Cal-
ifornia, USA, June 26-29, 2000, pages 141–154. IEEE Computer Society, 2000.

13. Hugh Everett. Recursive games. Annals of Mathematics Studies – Contributions
to the Theory of Games, 3:67–78, 1957.

14. Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 847–862. SIAM, 2010.

15. Marta Kwiatkowska, Gethin Norman, Dave Parker, and Gabriel Santos. Automatic
verification of concurrent stochastic systems. Formal Methods in System Design,
58:188–250, 2021.

16. Thomas M Liggett and Steven A Lippman. Stochastic games with perfect infor-
mation and time average payoff. Siam Review, 11(4):604–607, 1969.

17. Donald A. Martin. The determinacy of blackwell games. The Journal of Symbolic
Logic, 63(4):1565–1581, 1998.

18. Lloyd S Shapley and RN Snow. Basic solutions of discrete games. Contributions
to the Theory of Games, 1(24):27–27, 1950.

19. Wolfgang Thomas. Infinite games and verification. In Proc. 14th International
Conference on Computer Aided Verification (CAV’02), volume 2404 of Lecture
Notes in Computer Science, pages 58–64. Springer, 2002. Invited Tutorial.

20. John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton Univ. Press, Princeton, 1944.

560 B. Bordais et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Ahman, Danel 1
Attie, Paul C. 520

B
Baumann, Pascal 240
Bernardo, Marco 265
Boker, Udi 371
Bordais, Benjamin 541
Bouyer, Patricia 541

C
Chen, Zhibo 68
Cocke, William L. 520

D
D’Alessandro, Flavio 240
de Amorim, Pedro H. Azevedo 89
Douéneau-Tabot, Gaëtan 436
Dubut, Jérémy 308

E
Echahed, Rachid 135
Echenim, Mnacho 135

G
Ganardi, Moses 240
Goncharov, Sergey 46
Groote, Jan Friso 413

H
Hainry, Emmanuel 156
Hefetz, Guy 371
Henzinger, Thomas A. 349

Hirschkoff, Daniel 24
Hofmann, Dirk 46
Hojjat, Hossein 413
Holík, Lukáš 392

I
Ibarra, Oscar 240

J
Jaber, Guilhem 24

K
Kupke, Clemens 328

L
Labbaf, Faezeh 413
Le, Quang Loc 477
Le, Xuan-Bach D. 477
Licata, Daniel R. 113
Lopez, Aliaume 456

M
Mazowiecki, Filip 196
Mazzocchi, Nicolas 349
McQuillan, Ian 240
Mhalla, Mehdi 135
Mousavi, Mohammad Reza 413

N
New, Max S. 113
Nora, Pedro 46

P
Péchoux, Romain 156
Peltier, Nicolas 135
Pfenning, Frank 68
Prakash, Aditya 218
Prebet, Enguerrand 24

© The Editor(s) (if applicable) and The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 561–562, 2023.
https://doi.org/10.1007/978-3-031-30829-1

https://doi.org/10.1007/978-3-031-30829-1
https://doi.org/10.1007/978-3-031-30829-1

562 Author Index

R
Rady, Amgad 285
Rossi, Sabina 265
Rot, Jurriaan 328
Roux, Stéphane Le 541

S
Saraç, N. Ege 349
Schoen, Ezra 328
Schröder, Lutz 46
Schütze, Lia 240
Síč, Juraj 392
Silva, Mário 156
Sinclair-Banks, Henry 196
Starchak, Mikhail R. 176

T
Thejaswini, K. S. 218
Turkenburg, Ruben 328
Turoňová, Lenka 392

V
van Breugel, Franck 285
van Glabbeek, Rob 498
Vojnar, Tomáš 392

W
Węgrzycki, Karol 196
Wild, Paul 46
Wißmann, Thorsten 308

Z
Zetzsche, Georg 240

	ETAPS Foreword
	Preface
	Organization
	Contents
	When Programs Have to Watch Paint Dry
	1 Introduction
	2 Modal Types for Temporal Resources
	2.1 (Fitch-Style) Modal Types
	2.2 Modal Types for Temporal Resources

	3 A Calculus for Programming with Temporal Resources
	3.1 Types
	3.2 Terms
	3.3 Type System
	3.4 Admissibility of Renamings and Substitutions
	3.5 Equational Theory

	4 Denotational Semantics
	4.1 Interpretation of Types
	4.2 Interpretation of Value and Computation Terms
	4.3 Renamings, Substitutions, and Soundness

	5 Quotienting Delays
	6 Related and Future Work
	6.1 Related Work
	6.2 Future Work

	7 Conclusion
	References

	Deciding Contextual Equivalence of v-Calculuswith E ectful Contexts
	1 Introduction
	2 The mref-calculus and the mv-calculus
	3 Operational Game Semantics
	3.1 Abstract values
	3.3 Interactive LTS
	3.4 Typing LTS
	3.5 Disclosing LTS
	3.6 Operational Game Semantics: LTS and Trace Equivalence

	4 Lassen Trees for the mv-calculus
	4.1 POGS and POGS bipartite bisimulation
	4.2 Bipartite Bisimulations for OGS and POGS
	4.3 Deciding pogs
	4.4 Relating the Transitions in OGS and POGS

	5 Relating Bisimilarities in OGS and POGS
	5.1 Up-to techniques for 'ogs
	5.2 Properties of the Limit (in OGS)
	5.3 Correspondence Between 'ogs and 'pogs

	6 Related Work
	7 Conclusion
	References

	Kantorovich Functors and Characteristic Logicsfor Behavioural Distances
	1 Introduction
	2 Preliminaries
	2.1 Categories and Coalgebras
	2.2 Quantales and Quantale-Enriched Categories
	2.3 Predicate Liftings
	2.4 Quantale-Enriched Relations and Lax Extensions

	3 Topological Liftings
	3.1 Kantorovich Liftings
	3.2 Liftings Induced by Lax Extensions

	4 Behavioural Distance
	5 Expressivity of Quantitative Coalgebraic Logics
	6 Conclusions and Future Work
	References

	A Logical Framework withHigher-Order Rational (Circular) Terms
	1 Introduction
	2 Mixed Inductive and Coinductive Definitions
	2.1 Finitely Padded Rational Streams

	3 The Type Theory
	3.1 Higher-Order Rational Terms
	3.2 Syntax
	3.3 Trace Condition
	3.4 Hereditary Substitution
	3.5 Term Equality
	3.6 Type Checking Rules
	3.7 Metatheorems

	4 Encoding Subtyping Systems for Recursive Types
	4.1 Encoding a Classical Subtyping System
	4.2 Encoding a Polarized Circular Subtyping System forEquirecursive Types

	5 Related Work
	6 Conclusion
	References

	A Higher-Order Language for Markov Kernelsand Linear Operators
	1 Introduction
	2 Mathematical Preliminaries
	3 Syntax
	3.1 A Markov Kernel Language
	3.2 A Linear Language
	3.3 Combining Languages

	4 Categorical Semantics
	5 Concrete Models
	5.1 Discrete Probability
	5.2 Continuous Probability

	6 Beyond Probability
	7 Related Work
	A Typing Rules and Denotational Semantics LL and MK
	B Commutative Diagrams
	C Monoidal Monads and Their Algebras
	D Proofs

	References

	A Formal Logic for Formal Category Theory
	1 Introduction
	2 Syntax of VETT
	2.1 Category Connectives
	2.2 Set Connectives
	2.3 Type Connectives

	3 Formal Category Theory in VETT
	4 Semantics
	5 Related and Future Work
	References

	A Strict Constrained Superposition Calculus forGraphs
	1 Introduction
	2 Graphs and Graph Operations
	2.1 Subgraphs and Replacement
	2.2 Graph Merging

	3 An Equational Logic on Graphs
	4 Superposition Calculus with Uninterpreted Labels
	4.1 Inference Rules
	4.2 Redundancy

	5 A Constrained Graph Superposition Calculus
	5.1 Constrained Clauses
	5.2 Lifting the Calculus
	5.3 Soundness and Refutational Completeness
	5.4 Redundancy Testing

	6 Conclusion
	References

	A Programming Language CharacterizingQuantum Polynomial Time
	1 Introduction
	2 First-order quantum programming language
	3 Polynomial time soundness
	4 FBQP completeness
	5 Compilation to polynomial-size quantum circuits
	References

	On the Existential Arithmetics with Additionand Bitwise Minimum
	1 Introduction
	2 Definitions and the main example
	2.1 Definability and automata
	2.2 Existential characterization of k-FA-recognizable languages

	3 First-order characterization of Parikh automata
	4 Multi-counter machines and DPR-theorem
	4.1 Two-way multi-counter machines
	4.2 The role of concatenation in DPR-theorem

	5 Conclusion
	References

	Coverability in 2-VASS with One Unary Counteris in NP ⋆
	1 Introduction
	2 Preliminaries
	3 Coverability in 2-VASS with One Unary Counter
	4 Replacing Short Cycles
	5 Reshuffling Linear Form Paths
	5.1 Reshuffling Procedure
	5.2 Applying Reshuffling

	6 Proof of Theorem 1
	7 Conclusion and Future Work
	References

	On History-Deterministic One-Counter Nets
	1 Introduction
	2 Preliminaries
	3 Deciding History-Determinism
	3.1 Token Games
	3.2 Lower Bounds

	4 Languages and History-Determinism in OCNs
	4.1 Languages Accepted by History-Deterministic OCNs
	4.2 Complexity of comparing languages of history-deterministicOCNs

	5 Extensions and Variations of OCN
	5.1 Succinct Encoding of Counters
	5.2 Deciding History-Determinsm for OCA

	6 Discussion
	Acknowledgements
	References

	Unboundedness Problems for Machines with Reversal-Bounded Counters
	1 Introduction
	2 Main Results: Unboundedness and (P)RBCA
	3 Translating reversal-bounded counters into Z-counters
	4 Deciding unboundedness predicates
	5 Growth
	References

	Reverse Bisimilarity vs. Forward Bisimilarity
	1 Introduction
	2 The Nondeterministic Case
	2.1 Syntax of Nondeterministic Reversible Processes
	2.2 Semantics of Nondeterministic Reversible Processes
	2.3 Bisimilarities for Nondeterministic Reversible Processes
	2.4 Congruence Properties
	2.5 Equational Characterizations

	3 The Markovian Case
	3.1 Markov Chains: Definition, Representation, Terminology
	3.2 Time Reversibility of Continuous-Time Markov Chains
	3.3 Lumpability of Continuous-Time Markov Chains
	3.4 Syntax and Semantics of Markovian Reversible Processes
	3.5 Bisimilarities for Markovian Reversible Processes
	3.6 Congruence Properties and Equational Characterizations

	4 Conclusions
	Acknowledgments.
	References

	Explainability of Probabilistic BisimilarityDistances for Labelled Markov Chains
	1 Introduction
	1.1 Main Results
	1.2 Related Work

	2 Labelled Markov Chains and Probabilistic BisimilarityDistances
	3 A Logical Characterization
	4 All Operators are Necessary
	5 Explainability
	6 Computing fnst
	7 The Algorithm
	8 Conclusion
	References

	Weighted and Branching Bisimilarities fromGeneralized Open Maps
	1 Introduction
	2 From Path Categories to Bisimilarity
	3 Weighted Bisimilarity and Open Maps
	3.1 Larsen-Skou Bisimilarity Using Open Maps
	3.2 Impossibility Result for Generative Systems

	4 Generalized Open Maps
	4.1 Generalized Open Maps Situation
	4.2 Basic Properties

	5 Open Maps for Weighted Systems
	5.1 Category of Coalgebras for Weighted Systems
	5.2 Generalized Open Maps Situation for Weighted Systems
	5.3 Equivalence between Open Maps and Proper Homomorphisms

	5.4 About Sub-distribution Functor
	6 Open Maps for Branching Bisimilarity
	6.1 LTSs with Internal Moves, Category and Bisimilarities
	6.2 Generalized Open Maps for Branching Bisimulations
	6.3 Equivalence of Bisimilarities

	7 Conclusions and Future Work
	References

	Preservation and Reflection of Bisimilarityvia Invertible Steps
	1 Introduction
	2 Forward and Backward Steps
	2.1 Invertible Steps
	2.2 Steps from weak liftings, and other examples

	3 Relations, Liftings and Coalgebraic Bisimulations
	4 Preserving and Reflecting Bisimilarity
	4.1 Preservation and reflection
	4.2 Proof of preservation and reflection

	5 Applications
	6 Discussion and Future Work
	6.1 Remarks on other notions of bisimulation
	6.2 Future work

	Acknowledgements
	References

	Quantitative Safety and Liveness
	1 Introduction
	2 Quantitative Properties
	3 Quantitative Safety
	3.1 Alternative Characterizations of Quantitative Safety
	3.2 Related Definitions of Quantitative Safety

	4 The Quantitative Safety-Progress Hierarchy
	4.1 Infimum and Supremum Properties
	4.2 Limit Inferior and Limit Superior Properties

	5 Quantitative Liveness
	5.1 The Quantitative Safety-Liveness Decomposition
	5.2 Related Definitions of Quantitative Liveness

	6 Approximate Monitoring through Approximate Safety
	6.1 The Intersection of Approximate Safety and Co-safety
	6.2 Finite-state Approximate Monitoring

	7 Conclusion
	Acknowledgments.
	References

	On the Comparison of Discounted-SumAutomata with Multiple Discount Factors
	1 Introduction
	2 Preliminaries
	3 Comparison of NMDAs
	3.1 The Reduction
	3.2 Undecidability of Comparison

	4 Comparison of NDAs with Different Discount Factors
	5 Conclusions
	Acknowledgements
	References

	Fast Matching of Regular Patternswith Synchronizing Counting
	1 Introduction
	2 Preliminaries
	3 Counting Automata
	4 Counter-subset Construction
	5 Fast Simulation of Counting-set Automata
	6 Augmented Determinization
	7 Regexes with Synchronizing Counting
	8 Practical Considerations
	8.1 Occurrence of Synchronizing Counting in Practice
	8.2 Practical Efficiency of Matching with Synchronizing Counting

	9 Conclusions
	Acknowledgment
	References

	Compositional Learning for Interleaving ParallelAutomata
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Finite State Machines (FSMs)
	3.2 (De)Composing FSMs
	3.3 Model Learning
	4 Compositional Active Learning
	4.1 Termination Analysis
	4.2 Processing Counter-examples

	5 Empirical Evaluation
	5.1 Subject Systems
	5.2 Experiment Design
	5.3 Results
	5.4 Threats to Validity

	6 Conclusions
	Acknowledgments
	References

	Pebble minimization: the last theorems
	1 Introduction
	2 Preliminaries on two-way transducers
	3 Blind and last pebble transducers
	4 Factorization forests
	5 Height minimization of blind pebble transducers
	5.1 Pumpability
	5.2 Algorithm for removing a recursion layer

	6 Height minimization of last pebble transducers
	6.1 Pumpability
	6.2 Algorithm for removing a recursion layer

	7 Making the two last pebbles visible
	8 Outlook
	Acknowledgements
	References

	Fixed Points and Noetherian Topologies
	1 Introduction
	1.1 Contributions of this paper

	2 A Quick Primer on Noetherian Topologies
	3 Refinements of Noetherian topologies
	3.1 An ill-behaved refinement function
	3.2 Well-behaved refinement functions
	3.3 Iterating Expanders

	4 Applications of Topology Expanders
	5 Consequences on inductive definitions
	5.1 Divisibility Topologies of Analytic Functors
	5.2 Divisibility Preorders

	6 Outlook
	References

	An Efficient Cyclic Entailment Procedure in a Fragmentof Separation Logic
	1 Introduction
	2 Decidable Fragment SHLIDe
	2.1 Separation Logic Formulas
	2.2 Semantics

	3 Entailment Problem & Overview
	3.1 Exclude-the-Middle Proof System
	3.2 Cyclic Proofs

	4 Cyclic Entailment Procedure
	4.1 Proof Search
	4.2 Illustrative Example

	5 Soundness, Completeness, and Complexity
	6 Implementation and Evaluation
	7 RelatedWork
	8 Conclusion
	References

	Just Testing
	1 Introduction
	2 Labelled Petri nets with read arcs
	3 A Petri net semantics of CCSP with signalling
	4 Justness and other completeness criteria
	5 Feasibility
	6 The coarsest preorders preserving linear time properties
	7 Congruence properties
	8 Must Testing
	9 Timed must-testing
	10 Conclusion
	References

	Model and Program Repair via Group Actions
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	2.1 Computation Tree Logic Repair
	2.2 Group theoretic model checking

	3 Temporal Logic and Kripke Structures
	4 Quotient Structures
	4.1 Groups Acting on Kripke Structures
	4.2 Constructing the Quotient structure
	4.3 Semantic Relationships Between Structures and QuotientStructures

	5 Repair of Concurrent Programs
	5.1 Repair of Symmetry-reduced Structures
	5.2 Extraction of Concurrent Programs from Symmetry-reducedStructures

	6 Examples
	6.1 Two process Mutual Exclusion
	6.2 n-Process Mutual Exclusion
	6.3 No G-closed Repairs

	7 Relative Completeness of Group Theoretic Repair
	8 Conclusions
	References

	Subgame Optimal Strategies in FiniteConcurrent Games with Prefix-Independent Objectives
	1 Introduction
	2 Preliminaries
	3 Game forms
	4 Concurrent games and optimal strategies
	4.1 Concurrent arenas and strategies
	4.2 More on strategies

	5 Necessary and sufficient condition for subgame optimality
	6 From subgame almost-surely winning to subgameoptimality
	7 Finite-choice strategies
	References

	Author Index

