
A Modeling Concept for Formal Verification of
OS-Based Compositional Software

Leandro Batista Ribeiro1(�), Florian Lorber2, Ulrik Nyman2,
Kim Guldstrand Larsen2, and Marcel Baunach1

1 Graz University of Technology, Graz, Austria
{lbatistaribeiro,baunach}@tugraz.at
2 Aalborg University, Aalborg, Denmark

{florber,ulrik,kgl}@cs.aau.dk

Abstract. The use of formal methods to prove the correctness of com-
positional embedded systems is increasingly important. However, the re-
quired models and algorithms can induce an enormous complexity. Our
approach divides the formal system model into layers and these in turn
into modules with defined interfaces, so that reduced formal models can
be created for the verification of concrete functional and non-functional
requirements. In this work, we use Uppaal to (1) model an RTOS ker-
nel in a modular way and formally specify its internal requirements, (2)
model abstract tasks that trigger all kernel functionalities in all combina-
tions or scenarios, and (3) verify the resulting system with regard to task
synchronization, resource management, and timing. The result is a fully
verified model of the operating system layer that can henceforth serve as
a dependable foundation for verifying compositional applications w.r.t.
various aspects, such as timing or liveness.

Keywords: Embedded Systems · Real-Time Operating Systems · For-
mal Methods · Uppaal · Software Composition.

Availability of Artifacts

All Uppaal models and queries are available at https://doi.org/10.6084/
m9.figshare.21809403. Throughout the paper, model details are omitted for
the sake of readability or due to space constraints. In such cases, the symbol 6
indicates that details can be found in the provided artifacts.

1 Introduction

Embedded systems are everywhere, from simple consumer electronics (wearables,
home automation, etc.) to complex safety-critical devices. e.g., in the automotive,
aerospace, medical, and nuclear domains. While bugs on non-critical devices are
at most inconvenient, errors on safety-critical systems can lead to catastrophic

c© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 26–46, 2023.
https://doi.org/10.1007/978-3-031-30826-0_2

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.1007/978-3-031-30826-0_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_2&domain=pdf

consequences, with severe financial or even human losses [19,21]. Therefore, it
is of utmost importance to guarantee dependable operation for safety-critical
systems at all times. Common practice in industry to validate safety-critical
systems is still extensive testing [4]. However, this approach only proves the
absence of errors in known cases, but it cannot prove general system correctness.

While general correctness can be proven with formal methods, they still face
resistance from practitioners [24], as they are considered resource-intensive and
difficult to integrate into existing development processes [14]. However, poten-
tial cost reduction or strict regulations might contribute to their adoption. For
example, the use of formal methods can facilitate the acceptance of medical
devices by regulatory agencies [13], and is already prescribed as part of future
development processes in some domains [30,31].

The software running in embedded devices is commonly composed of appli-
cations running on top of an Operating System (OS). Throughout the device life
cycle, there are usually many more updates on the application than on the OS.
Moreover, the application software is tailored for specific needs, while the OS is
a foundation that diverse applications can use. Therefore, it is highly desirable
to have a formally verified OS, which does not need to be re-verified when appli-
cations are modified. The complete formal verification of software involves the
creation of models and their verification. Furthermore, all transition steps from
models to machine code must be verified.

In this paper, we focus on the modeling stage by using the model-checking
tool Uppaal [23] to model typical features and functionality of modern real-time
operating systems and to formally specify requirements to verify the model. Once
the OS model is proven correct, it can be used by OS-based software models and
reduce the verification effort, since OS requirements do not need to be re-verified.

Our contributions in this paper are (1) an approach that allows the mod-
ularization of formal models with defined interfaces, so that these can be as-
sembled as models of the overall system; (2) based on this, guidelines to create
a self-contained OS model that facilitates the creation of application models,
which can be combined to verify various aspects of the overall software; (3) a
concept for creating abstract task models to verify the OS model against the
specified requirements.

As a proof of concept and to evaluate our approach in terms of per-
formance and scalability, we formally model typical syscalls that represent the
kernel interface towards the higher software levels. We then verify the modeled
kernel features under all conceivable situations. For this, we create models that
abstract the full software stack, and then verify timing, task synchronization,
and resource management with feasible resource expense. The result is a for-
mally verified OS model that can henceforth be used as a foundation for the
modeling and verification of complex OS-based applications.

In this paper, we do not address the correctness of concrete OS implemen-
tations or the completeness of specified requirements, i.e., this paper does not
aim to prove the correctness of the code-to-model translation, or that all require-

Modeling of OS-Based Compositional Software 27

Table 1. Common task states on RTOSes.
State Description
Running Task is currently being executed.
Waiting Task is waiting for an event, a resource , or a timeout.
Ready Task could be executed, but higher priority tasks or the OS are running.
Suspended Task is terminated or not yet started.

ments are specified. Still, the provided models and requirements are sufficient to
demonstrate the proposed concept.

The remainder of this paper is organized as follows: in Section 2 we present
relevant concepts for our proposed approach. In Section 3 we describe our ap-
proach to model the software layers modularly. In Section 4 we introduce abstract
tasks and discuss the verification of OS requirements. In Section 5, we analyze
and evaluate the proposed concept. In Section 6 we present related work. Finally,
Section 7 summarizes this paper and shows potential future work.

2 Background

2.1 Real-Time Operating System (RTOS)

Complex OSes quickly lead to state explosion when model-checking. Therefore,
we focus on a small common set of features of modern RTOSes that enables real-
time behavior, namely preemptive multitasking, priority-driven scheduling, task
synchronization, resource management, and time management. Priority inheri-
tance protocols are not addressed in this paper, because they are not necessary
to demonstrate our proposed concept. However, they can be integrated by mod-
ifying the related syscalls.
Tasks are the basic execution unit of RTOS-based software. They run in user
mode and have fewer privileges than the kernel, which runs in kernel mode. Tasks
have individual priorities and execute concurrently, and interact with the OS via
syscalls. Tasks can be in one of the four states shown in Table 1. Specific imple-
mentations might not contain all states. For example, in this paper we model
tasks as infinite loops, which never terminate. Thus, they have no suspended
state. RTOSes commonly contain an idle task, which runs when no other task
is in the ready state.
The Kernel is responsible for providing services to tasks and for interacting
with the hardware. It initializes the system on startup and switches between tasks
at runtime. Kernel execution can be triggered by tasks or interrupts through a
fixed interface only.
Syscalls and Interrupt Service Routines (ISRs) are special functions that
are exclusively provided by the kernel and define its interface. While user mode
software can only interact with the OS through syscalls, ISRs can only be trig-
gered by the hardware. The modeled syscalls and ISR are covered in Section 3.
Time Management is an important feature of RTOSes.The kernel (1) main-
tains an internal timeline to which all tasks can relate, and (2) allows tasks to
specify timing requirements.

L. Batista Ribeiro et al.28

Fig. 1. A general Uppaal timed automaton template.

Events can be used for inter-task communication and to react on interrupts.
They provide a unified synchronization mechanism across hardware and software,
in which tasks can signal each other, and interrupts can trigger tasks.
Resources coordinate the access of tasks to exclusively shared components, like
hardware (e.g., I/O peripherals) or virtual entities (e.g., data structures). They
can be requested from the OS and are assigned depending on availability and
the priority of waiting tasks.
The Scheduler is responsible for coordinating the interleaving of tasks accord-
ing to one or more predefined policies, such as fixed-priority, Rate-Monotonic
Scheduling (RMS), and Earliest Deadline First (EDF).

2.2 Uppaal

For modeling and verification, we choose the model-checking tool Uppaal [23],
in which systems are formalized as a network of timed automata with addi-
tional functions and data structures that are executed and changed on edges.
Since we model preemptive tasks, we use Uppaal 4.1, which supports stopwatch
automata[10] and enables the elegant modeling of preemption. While a formal
definition of timed automata is provided in [7], we still describe the features
relevant for this work. Examples in this section refer to Fig. 1.

Timed automata are composed of (labeled) locations and edges. In Uppaal,
timed automata are specified with the concept of templates, which are similar
to classes in object-oriented programming. For the verification, the templates
are instantiated into processes (analogous to objects). All instantiated processes
execute concurrently in a Uppaal model. However, they can still be modeled in
a fashion that executes them sequentially, which we adopted in our models.
Locations. Standard locations are represented by a circle (L2_NAME). The ini-
tial location (L1_NAME) is represented by a double circle. Committed locations
(L3_NAME) have a letter “C” within the circle, and they are used to connect
multi-step atomic operations. Different from standard locations, time does not
pass while any automata are in a committed location. Locations can have names
and invariants. Location names can be used in requirement specifications, and
ease the readability of automata. A location invariant (e.g., _clk<100) is an ex-
pression that must hold while the automaton is in that corresponding location.
Edges connect locations in a directional manner. Edge transitions are instan-
taneous, i.e., they introduce zero time overhead. Edges can have a select state-
ment(selectVar : Range), a guard (_guard()), a synchronization (_synch!),
and an update operation (_update()). A select statement non-deterministically
chooses a value from a range of options and assigns it to a variable. A guard
controls whether or not its edge is enabled. An update operation is a sequence of

Modeling of OS-Based Compositional Software 29

1 typedef int [5 , 10] from5to10_t;
2
3 const from5to10_t VALID = 10;
4 from5to10_t invalid = 4; // verification failure
5
6 typedef struct {from5to10_t var1;} newStruct_t;

Listing 1.1. Bounded types and data structures in Uppaal.

expressions to be executed. Finally, processes can synchronize and communicate
via channels.

Communication channels (_synch) allow processes to send output (_synch!)
or listen for input (_synch?). Uppaal supports handshake and broadcast com-
munication. When a synchronizing transition is triggered, both the sender and
the listener(s) move to the next location simultaneously, assuming their guards
allow for the transition to be taken. The update operation happens first at the
sender side, allowing the sender to communicate numeric values via shared vari-
ables. In our approach, this is used to pass function/syscall parameters and
return values between model modules.

Time is modeled with clock variables (_clk). The timing behavior is controlled
with clock constraint expressions in invariants and guards. For example, the
invariant _clk < 100 and the guard _clk >= 50 indicate that the transition
from L2_NAME to L3_NAME happens when _clk is in the interval [50, 100). In
general, all clock variables progress continuously and synchronously. However,
the stopwatch feature of Uppaal 4.1 provides a way to stop one or more clocks
in any location, namely by setting the clock derivative to zero (_clk’ == 0).
When the derivative is not written in the location invariant, its default value (1)
is used and the clock progresses normally. For our system models, stopwatches
are used to measure and verify the execution time of preemptive tasks. A task’s
clock progresses only if the task is in the running state, otherwise it is stopped.

Functions, data structures and bounded data types are defined in Up-
paal in a C-like language. Bounded types are very convenient for detecting
unwanted values during the verification, which is immediately aborted in case a
variable is assigned a value outside its type range. The syntax is exemplified in
Listing 1.1.

Formal verification. Uppaal performs symbolic model-checking to exhaus-
tively verify the specified system requirements. The Uppaal specification lan-
guage allows expressing liveness, safety, and reachability properties.
An important operator offered by Uppaal is "−− >" (leads to): p −− > q
means that whenever p holds, q shall also eventually hold. This notation is par-
ticularly useful to detect task starvation: if a task in the ready state does not
lead to its running state, it is starved. A deadlock in the Uppaal verification
query language is used to detect system states that are not able to progress,
i.e., states of the model in which no edges are enabled. Throughout this paper,
such situations are referred to as Uppaal deadlock. It must not be confused with
deadlock, which refers only to task deadlocks due to cyclic waiting on resources.

L. Batista Ribeiro et al.30

User Mode

Kernel Mode

Syscalls
Interrupts

Application

Operating System

Kernel Interface

Fig. 2. Model layers as abstraction
of the software stack.

Fig. 3. Modeling of kernel execution
time.

Fig. 4. Kernel interface template. Syscalls
highlighted 6.

3 Model Design

In this section, we propose a general modular approach to model OSes and
(abstractions of) application tasks. Our overall goal is to formally prove that a
system meets all (non-)functional requirements, which we divide into OS-internal
and overall software composition requirements. The characteristics of each cat-
egory are described in Section 4.

We logically divide the Uppaal model into three layers, as shown in Fig. 2.
The application3 contains tasks that run in user mode and can use OS services
through syscalls. The kernel interface is responsible for switching between user
and kernel mode, and to invoke the appropriate OS services or functionality
upon syscalls or interrupts.

In this paper, we primarily focus on the operating system layer and how to
model it with the goal to simplify the later modeling of the application layer. The
result is a strict layering of the overall software model, where modules above the
OS layer can be added, removed or updated without re-verifying the OS itself.

To demonstrate the applicability of our approach, we create an OS model 6
(composed of sub-models) based on common features of modern RTOSes: pre-
emptive multitasking, priority-driven scheduling, and syscalls for task synchro-
nization, resource management, and time management. The modeling techniques
are generic, and any concrete OS can be similarly modeled.

3.1 Naming Convention

For readability, there is a naming convention for communication channels and
variables throughout the entire model: Channels starting with an underscore
3 For this paper, user libraries and middleware services are abstracted into the appli-
cation layer and are not discussed separately.

Modeling of OS-Based Compositional Software 31

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

(e.g., _proceed! in Fig. 4) represent internal kernel communication or are used
for interrupt handling. Similarly, variables starting with an underscore represent
internal kernel data structures. As for real code, the application layer must not
directly access such OS-internal functions or variables. Channels and variables
that can be accessed by the application layer as part of the OS interface start
with a letter (e.g., sleep? in Fig. 4). Unfortunately, Uppaal does not support
such scope separation and the naming convention is used only as visual aid.

3.2 The Kernel Interface

The kernel interface must offer all possibilities to switch from user to kernel
mode, modeled with communication channels. Triggering such channels from
automata in the application layer represents a syscall in the real code.

Fig. 4 depicts our modeled kernel interface. A context switch (_kernelEntry!)
occurs either upon syscalls, if the parameters are valid (valid6), or upon a timer
interrupt (_timerInt). Supporting more interrupts (or syscalls) can be achieved
by adding their corresponding automata, and respective edges into the kernel
interface.
Kernel Execution and Kernel Overhead. Our modeling approach can pre-
cisely reflect the runtime overhead introduced in a preemptive system by the OS
kernel itself. This allows a more accurate verification of the behavior of embed-
ded systems compared to approaches that abstract away the OS layer. While
different types of OS overhead can be modeled, we initially focus on timing.

Therefore, the kernel interface in Fig. 4 triggers a separate automaton for
the kernel timing (execute[KERNEL]!), as shown in Fig. 3. The execution time
interval [bcet, wcet] contains the time required to enter the kernel, process the
invoked syscall or ISR, execute further kernel functions (e.g., the scheduler), and
exit the kernel. This concentrated timing computation is possible because the
kernel executes atomically (in contrast to the preemptive tasks).

Next, after taking kernel timing into consideration (execDone[KERNEL]?),
we trigger the automata for the functional part of the actual syscall or ISR.
The variable sid in _syscall[sid]! is updated along the syscall edges 6 and
identifies the ID of the invoked syscall. The same approach can be used for
modeling multiple interrupts.

3.3 The Operating System

The OS model must contain the internal data structures as well as the Uppaal
templates for the scheduler and for all syscalls. For this paper, we created the
OS model based on the SmartOS [28] implementation.
Data Structures and Tight Bounds. We must declare all OS variables and
arrays with data types of the tightest possible boundaries, according to the
system parameters. Listing 1.2 shows a few examples from our OS model.

A beneficial consequence is a strict verification that does not tolerate any
value out of range. In such cases, the verification immediately fails and aborts.

L. Batista Ribeiro et al.32

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

1 // 1 - System Parameters
2 const int NTASKS , NEVENTS , NRESOURCES , MMGR;
3 // 2 - Type Definitions
4 typedef struct {
5 int[0,NTASKS] qCtr; // the number of tasks in ready queue
6 ExtTaskId_t readyQ[NTASKS]; // the ready queue containing all tasks
7 // in ready state sorted by priority
8 } SCB_t; // Scheduler Control Block
9 typedef int [0 , NTASKS - 1] TaskId_t;

10 // 3 - Declaration of Control Blocks
11 TCB_t _TCB[NTASKS]; // Task CBs
12 RCB_t _Res[NRESOURCES]; // Resource CBs
13 SCB_t _sched; // Scheduler CB

Listing 1.2. Tight bounds on type and array definitions 6

In other words, if the verification finishes, there is a guarantee that no boundary
violation has occurred.
The Scheduler must be the only part of the OS model allowed to manipulate
the ready queue (see Listing 1.2) and dispatch Ready tasks for execution.

Before the first task is dispatched, the system must be fully initialized. To
ensure this, we must use a single initial committed location, from which an ini-
tializing edge transition occurs. Fig. 5 shows this behavior on the scheduler. The
function startOS() initializes all the internal data structures of the OS. Next,
because the following location is also committed, the scheduler immediately dis-
patches the highest priority Ready task, and switches to user mode (uppermost
edge). The scheduler then must wait for instructions (_proceed?, _schedule?,
etc.), which are issued by syscalls or ISRs, and must adapt the ready queue
accordingly 6.
Syscalls. Each syscall must have a dedicated Uppaal template, which models
its semantics, i.e., the manipulation of related OS data structures, and interac-
tions with the scheduler. Syscalls can be triggered (1) from the kernel interface
(_syscall[sid]!) or (2) from other syscalls. Their general structure is an initial
non-committed location, followed by a sequence of transitions through commit-
ted locations, making the syscall execution atomic, as shown in Fig. 6.
Task slices. While syscall automata model the behavior of the OS, task slices
model different aspects of task execution, as shown in Fig. 7. They can directly
communicate with task models (e.g., in Fig. 7(c), start/end a real-time block), or
progress upon kernel operations (e.g., in Fig. 7(d), state change upon scheduler
actions). The latter is completely transparent to task models. The use of task
slices facilitates the modeling of tasks (Section 3.4) and the formal specification
and verification of requirements (Section 4).

Fig. 5. The priority-driven scheduler 6.

Modeling of OS-Based Compositional Software 33

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

Fig. 6. The releaseResource syscall model 6.

(a) (b)

(c) (d)

Fig. 7. Modeled task slices 6: (a) Task Execution, (b) Task Timeout, (c) Task Real-
Time, (d) Task States.

Task Execution Time. This task slice represents the user-space execution
time of (code blocks within) a task. It abstracts away the code functionality,
but allows the modeling of a [bcet, wcet] range. While the specification of the
range itself is shown in Section 3.4, the helper template is shown in Fig. 7(a).
Its structure is similar to the kernel execution time template in Fig. 3. However,
we cannot assure that the execution of code in user mode is atomic, and must
therefore consider preemption: If a _kernelEntry! occurs while a task is in the
Executing location, it goes to Preempted, where the task execution is paused,
i.e., the execution time clock et is paused (et’==0).
Task Timeout. This task slice is responsible for handling timeouts of syscalls
(e.g., sleep), and thus it must trigger timer interrupts. Our version is depicted
in Fig. 7(b)4. The clock c is used to keep track of elapsed time. The loca-
tion Waiting can be left in two different ways: either the timeout expires (edge
with c==timeout), or the task receives the requested resource/event (edge with
_schedule?) before the timeout. If c==timeout, a timer interrupt is generated
(_timerInt!) if the system is not in kernel mode. Otherwise, we directly proceed
to the next location, where we wait for a signal from the scheduler (_wakeNext?)
indicating that the task can be scheduled again. Finally, we instruct the scheduler
to insert the current task into the ready queue with _schedule!.

4 In our model, all syscalls with a timeout internally use _sleep[id] 6. Other ap-
proaches might require multiple outgoing edges from the initial state.

L. Batista Ribeiro et al.34

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

Task Real-Time. This task slice is used to verify real-time behavior, as it
can detect deadline violations. This task slice acts as an observer of the response
times during verification, and has no influence on OS data structures or locations.

As shown in Fig. 7(c), there is a local clock rt, which is used to compute the
response time of a code sequence. It remains paused unless startRealTime[id]?
is triggered by the corresponding task. This happens in the task model (as shown
in Section 3.4) and indicates that the task is about to start the execution of a
code sequence with timing constraints. rt then progresses until the task triggers
endRealTime[id]?. If this happens before the deadline is reached, the process
returns to its initial state and is ready for another real-time block. Otherwise,
the system goes to the DLViolation error state. The self-loop in the error state
is used to avoid a Uppaal deadlock5.
Task States. This task slice allows the detection of task starvation. A task
starves if it never runs (again). A special case of starvation is task deadlock,
which can be detected by additionally analyzing the OS internal data structures
and identifying cyclic waiting on resources. Fig. 7(d) shows the modeled task
states (as locations) and the actions that trigger state transitions.

The use of task slices is an extensible modeling concept: Extra task slices can
be added to enable the verification of other (non-)functional requirements, e.g.,
energy/memory consumption.

3.4 Simple Application Modeling

The OS model, kernel interface, and task slices are designed with a common
goal: Simplify the modeling of application tasks and make the overall system
verification more efficient. With our concept, task models just need to use the
provided interfaces (channels) and pass the desired parameters.

In summary, a task can be modeled with three simple patterns, as exemplified
in Fig. 8:
Ê syscalls: invocation by triggering the corresponding channel, then waiting for
dispatch[id]? (from the scheduler),
Ë execution of regular user code between execute[id]! and execDone[id]?
(from Task Execution Time task slice),
Ì specification of real-time blocks between startRealTime! and endRealTime!.

As an example, Fig. 8 models the task source code from Listing 1.3 as a
Uppaal task. The variables p1 and p2 are used to pass data between different
processes, e.g., for syscall parameters.

For Ê and Ë, the use of the guard amIRunning(id) is crucial for the correct
behavior of the task. It allows a task to proceed only if it is Running. The
absence of this guard would allow any task to execute, regardless of priorities or
task states.

For Ì, this guard is not necessary when starting or ending real-time blocks,
though. If a task reaches the beginning of a real-time block, the response time

5 In our approach, an Uppaal deadlock indicates a modeling mistake.

Modeling of OS-Based Compositional Software 35

1
2

3

1 2

Fig. 8. Uppaal model of the code from Listing 1.3.

1 OS_TASKENTRY (taskSort){
2 while (1){
3 Ê waitEvent (evSort);
4 Ì // START: Real -Time Task block. Deadline =400
5 ÌË quickSort (buffer , BUFSIZE); // Execution Block: BCET=20, WCET =50
6 Ì // END: Real -Time Task block
7 Ë for (...) printf ("\n\%u", buffer[i]); // Execution Block: BCET=WCET =20
8 Ê setEvent (evSorted);
9 }

10 }

Listing 1.3. Source code of a task.

computation must be immediately started, even if the task is preempted. Sim-
ilarly, after the execution of a real-time block, the response time computation
must be stopped immediately.

4 Requirements and Verification

4.1 Composition Requirements

These requirements refer to task properties that are influenced by other tasks
running in the system, such as freedom from starvation and from deadline vio-
lations 6.

If a composition requirement is violated, the underlying cause is usually a
badly composed or implemented task set, which makes it impossible for all tasks
to coexist. However, it is also possible that an error in the OS leads to a violation
of the composition requirements. In order to exclude this second possibility when
verifying the complete system model, we must formally verify the OS model first.

4.2 OS Requirements

The OS requirements refer to OS properties that must always hold (invariants),
regardless of the number of tasks in the system or of how these tasks interact
with the OS (or with each other through the OS). As described in Section 3.3,
the OS model is composed of data structures and multiple Uppaal templates,
which must be consistent at all time (general requirement). For example, if a
task is in the Waiting location in the task timeout task slice, it must also be in
the Waiting location in the task states task slice. In Uppaal, we can verify this
requirement with the query:

A[] forall (Tasks) TaskTimeout.Waiting imply TaskStates.Waiting 6

L. Batista Ribeiro et al.36

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

This example shows an important point when extending our concept: When-
ever new task slices are added to verify other (non-)functional requirements of
the application, additional OS requirements must be specified to verify the con-
sistency of the new task slice with pre-existing parts of the OS model.

4.3 Verifying the Requirements

For a given software (i.e., OS and application), we can prove correctness w.r.t. the
OS and composition requirements by verifying all associated queries. However,
we cannot yet claim that the OS model is correct in general (i.e., independent
from the task composition), because we do not know if all possible OS operations
were considered in all possible scenarios during the verification. Therefore, a
complete re-verification of both layers is required in case the application changes.

To avoid the repeated and resource-expensive re-verification of the OS re-
quirements for each task set, we must prove that the OS model is correct in
general. We can then limit the re-verification to the application layer. To achieve
this goal, we need to make sure that all possible OS operations are verified in
all possible scenarios and execution orders. One possible strategy is to create
different task sets to reach different scenarios, similar to test case generation.
However, this strategy requires the prior identification of relevant scenarios, and
the creation of the corresponding task sets. Additionally, it is hard to guarantee
that all scenarios were indeed identified. Therefore, we introduce a new concept
that inherently covers all scenarios: abstract tasks. They unite all possible be-
haviors of concrete tasks, i.e., they can trigger any action at any time. A task set
with N abstract tasks thus represents the behavior of all possible task sets with
N (concrete) tasks. Thus, by definition, all possible scenarios will be reached
(Uppaal exhaustive approach).
Abstract Tasks. Real tasks, as exemplified in Listing 1.3, are strictly sequential.
Thus, a (concrete) task model is a predefined sequence of steps, as discussed
in Section 3.4, and shown in Fig. 8. Their key characteristic is that only one
outgoing edge is enabled in any location at any point in time.

The abstract task is depicted in Fig. 9. Unlike a concrete task, it has multiple
outgoing edges enabled, which open all possible options to progress: Ê syscalls
with valid parameters and Ë user code execution (execute[id]!). Thus, the
behavior of any concrete task can also be achieved with the abstract task.

While different actions are performed by taking different edges, the param-
eters are non-deterministicaly chosen in the select statements for each syscall.
The Uppaal state space exploration mechanisms guarantee that all values of
the select statements are considered for each edge.

Select statements are not necessary for the timing parameters EX_TIME and
SL_TIME. Fixed values have less impact on the state space, and are enough to
fire all edges from the task execution and task timeout (Fig. 7(a) and Fig. 7(b),
respectively). We define the timing parameters 6 in a way that all edges are
eventually fired and the state space remains small enough for a feasible verifica-
tion.

Modeling of OS-Based Compositional Software 37

https://doi.org/10.6084/m9.figshare.21809403

Fig. 9. The abstract task model 6.

Non-Goals of Verification with Abstract Tasks. With abstract tasks, it is
meaningless to verify if composition requirements are satisfied at task level.
Abstract tasks – by definition – lead to states where composition requirements
are violated6. The goal of abstract tasks is to ensure that the OS itself works
correctly even if the task composition is flawed, e.g., if it leads to starvation or
livelocks. This is achieved by verifying the OS requirements in all conceivable
scenarios (in the end of Section 4.4, we show how to verify that flawed composi-
tion scenarios are also reached). Additionally, we do not explore invalid values
of variables./parameters. Out-of-bound values lead to verification failure, and
when invalid syscall parameters are detected in the kernel interface, no function-
ality is triggered in the OS. Thus, checking for invalid values would increase the
state space without adding new behaviors.

4.4 OS Model Verification

A single set of abstract tasks provides a reliable way of verifying scenarios that
could otherwise only be reached with numerous concrete task sets. To fully verify
the OS model, we must compose the abstract task set so that it triggers all OS
operations in all possible scenarios (covering all corner cases).

Within our model, we can control four system parameters that affect the OS
verification: NTASKS, NEVENTS, NRESOURCES, and MMGR7, cf. Listing 1.2. We use
a short notation to represent the system configuration. For example, 5-3-4-2
represents a configuration with NTASKS = 5 (idle task + 4 others), NEVENTS = 3,
NRESOURCES = 4, and MMGR = 2. The goal is to find the minimal configuration
that reaches all possible scenarios, and thus allows the complete verification of
the OS model with minimal verification effort.

6 Unless the OS offers guarantees by design, e.g., if it implements the Highest Locker
Protocol (HLP), task deadlock scenarios must not be reachable.

7 Maximum multiple getResource, i.e., the upper limit of the resource counter.

L. Batista Ribeiro et al.38

https://doi.org/10.6084/m9.figshare.21809403

Model Coverage. In order to cover the whole model, the verification must
traverse all edges, and entirely cover the C-like code of update operations.

Edge Coverage. If there is at least one edge in the model that is not traversed
during verification, the model is surely not fully verified; unreachable edges could
also indicate design flaws in the model. Therefore, the first step of the verification
addresses the edge coverage. We add boolean markers in strategic edges, which
are set to true when the corresponding edge is taken. We then verify if all markers
are ever true:

E<> forall (i : int [0, NEDGES-1]) edge[i]==true

Edge Scenarios. A single edge can be traversed in multiple scenarios, due to
composite guards (with the pattern (A or B or C ...)) or update operations
(parameter passing or functions). For the composite guards, we must verify that
each of its components is reachable with queries with the following pattern 6:

E<> Location and A

For the update operations, we ensure that an edge is traversed with all possible
parameter values via select statements, which cover all valid parameter values.
The functions demand a more careful analysis. It is necessary to identify all
corner cases, and verify their reachability. For example, to verify the corner
cases of a list insertion, we can use the following queries:

E<> InsertLocation and firstPosInsertion
E<> InsertLocation and lastPosInsertion

E<> InsertLocation and intermediatePosInsertion

After an iterative process of increasing the configuration and verifying the
aforementioned properties, we found the smallest configuration that entirely cov-
ers our OS model: 4-1-1-2.

OS and Composition Requirements. The goal of the verification of the OS
model is to guarantee that all OS requirements are met. In conjunction with the
full model coverage verification, we prove that they are met regardless of the
operations performed by individual tasks on top of the OS.

However, to ensure that the OS model is correct, we still must prove that
the OS requirements are also met in states where composition requirements
are violated. For that, we must identify all situations that violate composition
requirements, and verify their reachability. For example, the reachability of a
deadlock scenario can be verified with the query 6:

E<> Res1.owner == Task1 and Res2.owner == Task2 and
Task1.waits == Res2 and Task2.waits == Res1

The deadlock scenario reveals that 4-1-1-2 is not sufficient to reach all
composition scenarios, since at least two resources are required to cause it. For
the modeled OS features, all composition scenarios are reachable with 4-1-2-2.

Modeling of OS-Based Compositional Software 39

https://doi.org/10.6084/m9.figshare.21809403
https://doi.org/10.6084/m9.figshare.21809403

Algorithm 1 Finding the minimal configuration.
1: procedure FindMinimalConfig (Features)
2: minConf← 0-0-...-0
3: foreach (f: Features)
4: conf← getMinimalFeatureConfig(f)
5: minConf← getMaxParams(minConf, conf)
6: return minConf

5 Analysis and Evaluation

So far, we verified 4-1-2-28, and confirmed that it satisfies all specified OS
requirements and the necessary aspects discussed in Section 4: (1) traverse all
model edges at least once; (2) invoke syscalls with all possible parameters; (3)
reach all corner cases of edge update operations; (4) satisfy all of the components
of composite guards; (5) reach valid and invalid composition scenarios; In this
section, we analyze how the minimal configuration is obtained in the general case,
and the scalability of the approach. We then reason why bigger configurations
are not necessary for the verification.

5.1 Compositional Approach to Deriving the Minimal Configuration

The verification of the OS model is essentially the verification of its set of sup-
ported features. Thus, the composition of all minimal configurations needed to
verify individual features is used to verify properties of the entire OS.

We assume that feature developers/experts provide the minimal configura-
tion based on the corner cases and composition scenarios of their feature. We
then build the minimal configuration by using the highest value of each param-
eter of each analyzed feature, as described in Algorithm 1. For example, the
dominating features9 in our OS model are resource management (3-0-2-2) and
event passing (4-1-0-0), which lead to the resulting configuration 4-1-2-2.

5.2 Scalability: Resource Consumption for Verification

First, we show a concrete analysis of our approach, namely the number of ex-
plored states, CPU Time, and memory consumption during verification. Addi-
tionally, we show how each system parameter influences these values.

The verification was performed with UPPAAL 4.1.26 x64, running on a ma-
chine with Ubuntu 18.04.5 LTS, a 16 core Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz, 64GB DDR4 memory @ 1600MHz, and 8GB swap.

State Space. In order to explore all states with a low processing overhead, we
verify the query "A[] true". Fig. 10 and Table 2 show the number of explored
states with different system configurations. The leftmost point (Delta = 0) in
8 see Section 4.4 for configuration notation.
9 No other feature has higher parameter values.

L. Batista Ribeiro et al.40

Table 2. Verification time (minutes) and memory consumption (MB).

A[]true OS Requirements
Configuration State space Time Memory Time Memory
C-(51-50-2-2) 574,266 1.5 640 76.0 738

4-1-2-2 5,369,534 0.6 470 30.7 470
4-1-2-4 14,963,367 2.5 1,787 124.3 1,788
5-1-2-2 85,077,164 13.2 6,655 644.2 6,656
4-3-2-2 116,606,955 14.7 10,189 689.0 10,189
4-1-4-2 570,284,574 75.8 47,800 3,774.6 47,800

0 1 2
Delta

0

200

400

600

Ex
pl

or
ed

 S
ta

te
s (

M
illi

on
s) Varying Tasks

Varying Resources
Varying Events
Varying Res. Ctr.

0

20

40

60

75

Re
qu

ire
d

M
em

or
y

(G
iB

)

0 1 2
Delta

0

50

100

150

200

CP
U

Ti
m

e
(M

in
ut

es
)

Varying Tasks
Varying Resources
Varying Events
Varying Res. Ctr.

Fig. 10. Verification overhead for different configurations.

Fig. 10 represents our proposed minimal system configuration 4-1-2-2. We then
vary one of the parameters, while all others are constant. For example, the
"Varying Events" line on Delta = 1 shows the number of states for 4-2-2-2;
and the "Varying Res. Ctr." line on Delta = 2 the number of states for 4-1-2-4.

The curves from Fig. 10 show that NTASKS has the biggest impact in the state
space, and that MMGR has the lowest. While MMGR affects only the upper bound of
the resource counters, NTASKS affects all kernel data structures, since each task
can call any of the syscalls, which drive the modifications on the kernel data
structures. In fact, the verification of 6-1-2-2 did not finish. It required more
than 72GB of RAM, and the process was killed by Linux. Until short before, we
could already count 950 million explored states.

It is important to highlight that the scalability is much better when sim-
ple concrete tasks are modeled. To demonstrate it, we modeled a concrete task
set with sequential execution (without preemption) and used the configuration
C-(51-50-2-2) 6, where C- indicates it is a configuration for a concrete task
set. Table 2 shows that verifying "A[]true" explored only 574,266 states. Ad-
ditionally, ongoing research on reducing the state-space, like for instance with
partial-order reduction [22], will enable the verification of ever larger systems.
Memory consumption and CPU time. For the tested configurations, mem-
ory and CPU time follow a pattern similar to the number of explored states
(Fig. 10). However, the number of states is not the only factor influencing re-
source consumption. The verification of C-(51-50-2-2) took longer and used
more memory than the verification of 4-1-4-2, even though the state space is
almost 10 times smaller (see Table 2). The size of individual states also plays

Modeling of OS-Based Compositional Software 41

https://doi.org/10.6084/m9.figshare.21809403

an important role, because they are stored/read into/from memory during the
verification. In our OS model, NTASKS, NEVENTS, and NRESOURCES contribute to
the state size, since bigger values increase the size/amount of data structures.

5.3 Sufficiency of 4-1-2-2 Configuration for our OS Model

We cannot run the verification of the OS model with arbitrarily big system
configurations, due to the state space explosion problem. Therefore, we reason
that, despite creating a larger state space, bigger configurations do not create
any new scenarios in the OS layer.

As discussed in Section 3.3, the bounds of all data types are as tight as
possible, and are defined according to the system parameters. Thus, when a
parameter is increased, the bounds of the variables are adapted accordingly,
avoiding out-of-bounds errors.

Since the bounds of data types and arrays are already covered by design, we
just need to assure that no extra corner cases arise on queue operations.
More abstract tasks. With more tasks, the capacity of OS internal queues
increases. Thus, there are more positions in which a new element can be inserted.
However, these new possibilities do not add any new corner cases.
More events or resources. More events or resources lead to more queues in
the system, but do not change the capacity of the queues. Thus, these parameters
do not affect queue operations w.r.t. verification.
Higher limit for counting resources. When a task T (that already owns a
resource R) requests R once again, R’s internal counter is incremented. Still, a
higher limit does not create new corner cases w.r.t. verification.
Composition Scenarios. Bigger system configurations do not create new sce-
narios, but only new settings for the existing ones, e.g., starvation of different
tasks, or deadlocks involving different sets of tasks and resources.

6 Related Work

Similar to our approach, with the goal to verify compositional requirements,
Ironclad [18] covers the full software stack. It uses Dafny [25] and Boogie [6] to
verify assembly code, but it addresses only security requirements. Borda et al.
[8] propose a language to model self-adaptive cyber-physical systems modularly
and a technique to support compositional verification. However, timing require-
ments are not addressed. Giese et al.[12] address compositional verification of
real-time systems modeled in UML. Components are verified in isolation, and
the correctness of the system is derived by ensuring that the composition is syn-
tactically correct. However, this is only possible if the components do not share
resources. Uppaal has been used for schedulability analysis of compositional
avionic software [17], and for conformance testing with requirements specified as
pre- and post-condition functions [29].

Regarding modeling and verification of OSes, on a more abstract level, Alkham-
mash et al.[5] propose guidelines for modeling FreeRTOS[1] using Event-B[3].
Cheng et al. formally specify the behavior of FreeRTOS tasks [11] and verify

L. Batista Ribeiro et al.42

it using the Z/Eves theorem prover[26], but, unlike our approach, they do not
address timing, resource sharing, or interrupts.

On a less abstract level, closer to the real implementation, seL4 [20] proves the
functional correctness of the C code of the kernel. Furthermore, it guarantees that
the binary code correctly reflects the semantics of the C code. Hyperkernel [27]
formally verifies the functional correctness of syscalls, exceptions and interrupts.
The verification is performed at the LLVM intermediate representation level [32]
using the Z3 SMT solver[9]. CertikOS[16] is the first work that formally verifies a
concurrent OS kernel. They use the Coq proof assistant[2], a C-like programming
language, and a verified compiler [15]. These approaches focus exclusively on the
functional correctness of the OS kernel.

We have not found a work that can verify timing, resource sharing, task
synchronization, and interrupts in a compositional context. That is what our
work enables, after proving the correctness of the OS model.

7 Conclusions and Future Work
In this paper, we presented a Uppaal modeling approach for verifying com-
positional software, exemplified with an OS model containing a common set of
features present in modern RTOSes. Since the proposed techniques and patterns
are general, they can be used to model any concrete OS. We showed how to
model the OS aiming to simplify the modeling of application tasks (Section 3).
We also introduced separate OS requirements and composition requirements, and
showed how they can be formally specified (Section 4) to decouple the verification
of the OS and the application layer. We then proposed the concept of abstract
tasks (Section 4.3) and reasoned that the OS model can be fully verified with
a minimal set of such tasks, which interact through OS primitives (e.g., events
and shared resources) and thus trigger all OS functions in all possible scenarios
(Section 4.4). Finally, we evaluated the resource consumption of the verification
process, reasoned about the sufficiency of the used minimal configuration, and
analyzed the benefits of the proposed concept (Section 5).

With the OS model proven correct, there is no need to re-verify it when the
upper layers are modified, which saves time and resources on the verification of
concrete task sets. We consider this as particularly beneficial for developing and
maintaining highly dependable systems, where, e.g., the task composition and
functionality may change during updates. Another benefit of our approach is the
potential use on test case generation for the application software.

This work opens a variety of directions for future work. We currently work
on task slices to verify further (non-)functional requirements. Besides, we con-
tinuously improve the model design for a better trade-off between abstraction
level and verification overhead, including the avoidance of potential state space
explosions. Tools to convert between source code and Uppaal templates shall
reduce the modeling gap, i.e., the discrepancy between the formal model and the
actual implementation. While our models allow the verification of applications
on top of an OS, a limitation is that model correctness does not yet mean im-
plementation correctness. For that, the full path from models to machine code
must be verified.

Modeling of OS-Based Compositional Software 43

References

1. FreeRTOS. https://freertos.org/. [Online; accessed 20-January-2023].
2. The Coq proof assistant. https://coq.inria.fr/. [Online; accessed 20-January-

2023].
3. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.

Cambridge University Press, 2010.
4. Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I

Davis. A comprehensive survey of industry practice in real-time systems. Real-
Time Systems, 2021.

5. Eman H Alkhammash et al. Modeling guidelines of FreeRTOS in Event-B. In
Shaping the Future of ICT. CRC Press, 2017.

6. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented Programs.
In Formal Methods for Components and Objects, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

7. Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on Uppaal.
Formal methods for the design of real-time systems, 2004.

8. Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh. Compo-
sitional Verification of Self-Adaptive Cyber-Physical Systems. In 2018 IEEE/ACM
13th Int’l Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2018.

9. Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays. In Tools and Algorithms for the Construction and Analysis of
Systems, Berlin, Heidelberg, 2009.

10. Franck Cassez and Kim Larsen. The impressive power of stopwatches. In Interna-
tional Conference on Concurrency Theory. Springer, 2000.

11. Shu Cheng, Jim Woodcock, and Deepak D’Souza. Using formal reasoning on a
model of tasks for FreeRTOS. Formal Aspects of Computing, 27(1), 2015.

12. Holger Giese et al. Towards the Compositional Verification of Real-Time UML
Designs. In 9th European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT Int’l Symposium on Foundations of Software Engineering, New
York, NY, USA, 2003.

13. Mario Gleirscher, Simon Foster, and Jim Woodcock. New Opportunities for Inte-
grated Formal Methods. ACM Comput. Surv., 52(6), oct 2019.

14. Tomás Grimm, Djones Lettnin, and Michael Hübner. A Survey on Formal Verifi-
cation Techniques for Safety-Critical Systems-on-Chip. Electronics, 7(6), 2018.

15. Ronghui Gu et al. Deep Specifications and Certified Abstraction Layers. ACM
SIGPLAN Notices, 50(1), jan 2015.

16. Ronghui Gu et al. CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), Savannah, GA, November 2016. USENIX
Association.

17. Pujie Han, Zhengjun Zhai, Brian Nielsen, and Ulrik Nyman. A Compositional
Approach for Schedulability Analysis of Distributed Avionics Systems. In 1st Int’l
Workshop on Methods and Tools for Rigorous System Design (MeTRiD@ETAPS),
Greece, EPTCS, 2018.

18. Chris Hawblitzel et al. Ironclad Apps: End-to-End Security via Automated Full-
System Verification. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), Broomfield, CO, October 2014. USENIX Associ-
ation.

L. Batista Ribeiro et al.44

https://freertos.org/
https://coq.inria.fr/

19. Joseph Herkert, Jason Borenstein, and Keith Miller. The Boeing 737 MAX: Lessons
for engineering ethics. Science and engineering ethics, 26(6), 2020.

20. Gerwin Klein et al. SeL4: Formal Verification of an OS Kernel. In ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, New York, NY, USA,
2009.

21. John C. Knight. Safety Critical Systems: Challenges and Directions. In 24th Int’l
Conference on Software Engineering, ICSE ’02, New York, NY, USA, 2002.

22. Kim G. Larsen, Marius Mikučionis, Marco Muñiz, and Jiří Srba. Urgent partial
order reduction for extended timed automata. In Dang Van Hung and Oleg Sokol-
sky, editors, Automated Technology for Verification and Analysis, pages 179–195,
Cham, 2020. Springer International Publishing.

23. Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Int’l
journal on software tools for technology transfer, 1997.

24. Thierry Lecomte et al. Applying a Formal Method in Industry: A 25-Year Tra-
jectory. In Formal Methods: Foundations and Applications, Cham, 2017. Springer
International Publishing.

25. K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Cor-
rectness. In Logic for Programming, Artificial Intelligence, and Reasoning, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

26. Irwin Meisels and Mark Saaltink. The Z/EVES reference manual (for version 1.5).
Reference manual, ORA Canada, 1997.

27. Luke Nelson et al. Hyperkernel: Push-Button Verification of an OS Kernel. In 26th
Symposium on Operating Systems Principles, SOSP ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

28. Tobias Scheipel, Leandro Batista Ribeiro, Tim Sagaster, and Marcel Baunach.
SmartOS: An OS Architecture for Sustainable Embedded Systems. In Tagungsband
des FG-BS Frühjahrstreffens 2022, Bonn, 2022. Gesellschaft für Informatik e.V.

29. Abhishek Singh, Meenakshi D’Souza, and Arshad Ebrahim. Conformance Testing
of ARINC 653 Compliance for a Safety Critical RTOS Using UPPAAL Model
Checker. New York, NY, USA, 2021.

30. UNECE. UN Regulation No. 156 – Uniform provisions concerning the approval
of vehicles with regards to software update and software updates management
system. [online] https://unece.org/sites/default/files/2021-03/R156e.pdf.

31. Virginie WIELS et al. Formal Verification of Critical Aerospace Software.
Aerospace Lab, May 2012.

32. Jianzhou Zhao et al. Formalizing the LLVM Intermediate Representation for Veri-
fied Program Transformations. In 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’12, New York, NY, USA,
2012. Association for Computing Machinery.

Modeling of OS-Based Compositional Software 45

https://unece.org/sites/default/files/2021-03/R156e.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

L. Batista Ribeiro et al.46

http://creativecommons.org/licenses/by/4.0/

	A Modeling Concept for Formal Verification of OS-Based Compositional Software
	Availability of Artifacts
	1 Introduction
	2 Background
	2.1 Real-Time Operating System (RTOS)
	2.2 Uppaal

	3 Model Design
	3.1 Naming Convention
	3.2 The Kernel Interface
	3.3 The Operating System
	3.4 Simple Application Modeling

	4 Requirements and Verification
	4.1 Composition Requirements
	4.2 OS Requirements
	4.3 Verifying the Requirements

	4.4 OS Model Verification
	5 Analysis and Evaluation
	5.1 Compositional Approach to Deriving the Minimal Configuration
	5.2 Scalability: Resource Consumption for Verification
	5.3 Sufficiency of 4-1-2-2 Configuration for our OS Model

	6 Related Work
	7 Conclusions and Future Work
	References

