
Yet Another Model! A Study on Model’s
Similarities for Defect and Code Smells

Geanderson Santos1(�) , Amanda Santana1 , Gustavo Vale2 ,
and Eduardo Figueiredo1

1 Federal University of Minas Gerais, Belo Horizonte, Brazil
{geanderson,amandads,figueiredo}@dcc.ufmg.br

2 Saarland University, Saarbrücken, Germany
vale@cs.uni-saarland.de

Abstract. Software defect and code smell prediction help developers
identify problems in the code and fix them before they degrade the qual-
ity or the user experience. The prediction of software defects and code
smells is challenging, since it involves many factors inherent to the de-
velopment process. Many studies propose machine learning models for
defects and code smells. However, we have not found studies that explore
and compare these machine learning models, nor that focus on the ex-
plainability of the models. This analysis allows us to verify which features
and quality attributes influence software defects and code smells. Hence,
developers can use this information to predict if a class may be faulty or
smelly through the evaluation of a few features and quality attributes.
In this study, we fill this gap by comparing machine learning models
for predicting defects and seven code smells. We trained in a dataset
composed of 19,024 classes and 70 software features that range from dif-
ferent quality attributes extracted from 14 Java open-source projects. We
then ensemble five machine learning models and employed explainabil-
ity concepts to explore the redundancies in the models using the top-10
software features and quality attributes that are known to contribute to
the defects and code smell predictions. Furthermore, we conclude that
although the quality attributes vary among the models, the complexity,
documentation, and size are the most relevant. More specifically, Nesting
Level Else-If is the only software feature relevant to all models.

Keywords: Defect Prediction · Code Smells Detection · Explainable
Machine Learning · Quality Attributes

1 Introduction

Software defects appear in different stages of the life-cycle of software systems
degrading the software quality and hurting the user experience [25]. Sometimes,
the damage caused by software defects is in-reversible [44]. As consequence, the
software cost increases as developers need time to fix defects [43]. As a result,
it is better to avoid them as much as possible. Several studies showed that the

c© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 282–30 , 2023.
https://doi.org/10.1007/978-3-031-30826-0 16

5

https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-7571-6578
http://orcid.org/0000-0003-1969-3460
http://orcid.org/0000-0002-8879-5797
http://orcid.org/0000-0002-6004-2718
mailto:vale@cs.uni-saarland.de
https://doi.org/10.1007/978-3-031-30826-0_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_16&domain=pdf


presence of code smells and anti-patterns are normally related to defecting code
[24,34,49,51]. Code smells are symptoms of decisions on the implementation that
may degrade the code quality [22]. Anti-patterns are the misuse of solutions to
recurring problems [9]. For instance, Khomh et al. (2012) found that classes
classified as God Classes are more defect-prone than classes that are not smelly.
In this paper, we refer to code smells and anti-patterns as code smells.

One technique to mitigate the impact of defects and code smells is the appli-
cation of strategies that anticipate problematic code [47], usually with the use of
machine learning models that predict a defect or code smell
[12,13,14,26,35,45,47,52,73]. Training and evaluating machine learning models
is a hard task, since (i) it needs a large dataset, to avoid overfitting; (ii) the pro-
cess of obtaining the labels and features to serve as input is costly, and it requires
the use of different tools to support it; (iii) setting up the environment for train-
ing and evaluating models is time-consuming and computationally expensive,
even though some tools help to automatize the process, and; (iv) understanding
the importance of the features and how they affect the model is complex [39].

With these difficulties in mind, our goal is to identify a set of features that can
be used by developers to simplify the process of defect and code smell prediction.
To simplify, we aim at reducing the number of features that need to be collected
to predict or identify possible candidates to present defects and code smells,
through an analysis of model redundancies. To the best of our knowledge, no
other studies have investigated similarities between the defect and code smell
models. Instead, most studies focus on proposing and assessing the performance
of models that predict defects or code smells [27,35,41,44]. In this work, we
fill this gap through an analysis of which features are redundant or different
in models built for defects and for seven code smells. Even more, we highlight
which quality attributes are relevant to their prediction. This analysis is possible
by the use of the SHAP technique, which determines the contribution of each
feature to the prediction. As a result, using SHAP allows the verification of the
features that contributed the most to the prediction and whether the features
had high or low values.

To achieve our goal, we use a subset of 14 open-source Java systems that
had its features and defects annotated [15,16]. We then employ the Organic tool
[48] to detect nine code smells. We merged three of these smells due to similar
definitions. After merging the data, we train and evaluate an ensemble machine
learning model composed of five algorithms for each of our targets, i.e., defects
and code smells. After evaluating the performance of our ensemble, we apply
the SHAP technique to identify which features are relevant for each model.
Finally, we analyze the results in terms of: (i) which features are relevant for
each model; (ii) which features contribute the most for two or more models to
identify redundancies in the models; (iii) which quality attributes are important
to the defect and code smell prediction.

Our main findings are: (i) from the seven code smells evaluated, we identified
that the most similar models to the Defect are the God Class, Refused Bequest,
and Spaghetti Code; (ii) Nesting Level Else-If (NLE) and Comment Density

A Study on Model’s Similarities for Defect and Code Smells 283



(CD) are the most important features; (iii) most features have high values, ex-
cept on Refused Bequest; (iv) we identified sets of features that are common
in trios of problems, such as API Documentation (AD), which is important for
Defects, God Class, and Refused Bequest; (v) documentation, complexity, and
size are the quality attributes that contribute the most for the prediction of de-
fects and code smells; (vi) the intersection of features between the defects and
code smells ranges from 40% for Refused Bequest to 60% of the God Class. We
also contributed to the community by providing an extension of the previous
dataset of defects [15,16] through the addition of nine smells, available in our
online appendix [64]. As a consequence of these analyses, we obtained a smaller
set of features that contributes to the prediction of defects and code smells. De-
velopers and researches may train machine learning models with less effort using
these findings, or they may use these features to identify possible candidates for
introducing defects and code smells.

We organize the remainder of this work as follows. Section 2 describes the
background of our work. Section 3 shows how we structured the methodology.
Then, Section 4 presents the results of our evaluation comparing the defect
model with the code smells. Section 5 discusses the main threats to validity of
our investigation. Section 6 presents the related work our investigation is based
on. Finally, Section 7 concludes this paper with remarks for further explorations
about the subject.

2 Background

2.1 Defects

A software defect represents an error, failure, or bug [1] in a software project,
that harm the appearance, operation, functionality, or performance of the target
software project [25]. Defects may appear on different development stages [71]
and may interrupt the development progress and increase the planned budget
of software projects [43]. Furthermore, a software team may discover software
defects after code release, generating a significant effort to tackle defects in pro-
duction [37]. To mitigate these defects in software development, defect prediction
may find the defective classes [42,43,73] before system testing and release. For
instance, if a software team has limited resources for software inspection, a defect
predictor may indicate which modules are most likely to be defective.

2.2 Code Smells

Brown et al. [9] proposed a catalog of anti-patterns, that are solutions to recur-
ring problems based on design patterns, but instead of providing reusable code,
it impacts negatively on the source code. Later, Fowler [22] introduced the code
smells as symptoms of sub-optimal decisions in the software implementation that
leads to code quality degradation. Since our defect dataset is class-level, we only
consider the problems related to classes. In our work, we considered the following

G. Santos et al.284



smells: Refused Bequest (RB), Brain Class (BC), Class Data Should be Private
(CP), Complex Class (CC), Data Class (DC), God Class (GC), Lazy Class (LC),
Spaghetti Code (SC), and Speculative Generality (SG). The definitions of the
problems presented in this paper are: God Class is a large class that has too
many responsibilities and centralizes the module functionality [61]. Refused Be-
quest is a class that does not use its parent behavior [22]. Spaghetti Code is a
class that has methods with large and unique multistage process flow [9]. Due to
space constraints, the definitions of all evaluated problems can be found in our
replication package [64].

3 Study Design

3.1 Research Questions

In this paper, we investigate the similarities and redundancies between the soft-
ware features used to predict defects and code smells. We can use this information
to simplify the prediction model or identify possible candidates for introducing
defects or smells. We employed data preparation to find the software features
for the defect and code smell prediction models. Therefore, our main objective
is to examine the software features applied for both predictions. Our paper in-
vestigates the following research questions.

RQ1. Are the defect and class-level code smell models explainable?
RQ2. Which software features are present in both defect and code smell models?
RQ3. Which software quality attributes are more relevant for the prediction of

both defects and code smells?

3.2 Data

Predicting a defect or a code smell is a supervised learning problem that re-
quires a dataset with the values of the independent and dependent variables for
each sample. Many datasets were proposed in the literature [13,31,44]; however,
in this work, the selected dataset portrays a joined version of several resources
publicly available in the literature [15,16,17,74]. In total, five data sources com-
pose this dataset: PROMISE [65], Eclipse Bug Prediction [84], Bug Prediction
Dataset [13], Bugcatchers Bug Dataset [24], and GitHub Bug Dataset [74]3. The
dataset has classes from 34 open-source Java projects [77]. Furthermore, the data
comprises 70 software features related to different aspects of the code. We can
divide the features into seven quality attributes: documentation, coupling, cohe-
sion, clone, size, complexity, and inheritance. We also highlight that the dataset
is imbalanced. Only around 20% of the classes have a defect, and for the code
smells, the range of classes they affect is between 4 to 16.2%. For these reasons,
the dataset has a wide range of software features that may promote interesting

3 https://zenodo.org/record/3693686

A Study on Model’s Similarities for Defect and Code Smells 285



analysis of the defects and code smells. Finally, the open-source data facilitates
the collection of code smells.
Data Collection. The first step of our study is to collect the data about the
code smells to merge with the defect data [15]. We applied the Organic tool [48]
to detect the code smells. As all projects are available on GitHub, we manually
cloned the source code matching the project version included in the dataset.
Since most of the systems in the original dataset have less than 1000 classes
(20 systems), we collected data from the ones with more than 1000 classes (14
projects). We decided to focus on these projects because they represent 75%
of the entire defect data and are readily available on GitHub. Additionally, we
matched the name of the detected instances of code smells to the class name
present in our defect dataset. Hence, independently of whether a class had a
smell or not, we only consider it if the match was found in both datasets (i.e.,
the one with the defects and the one with the code smells). In the case that we
could not find a match, we do not consider the class for further investigation. We
use this approach to avoid bias as it would be unfair to determine that a class
that Organic could not find in the defect dataset is non-smelly. Furthermore,
this approach decreased the number of classes for most of the projects.

Table 1. Summary of the data for each project.

Project Version Classes CP DC GC LC RB SC SG defects

Ant 1.7 1592 12 161 403 211 57 102 36 330
Broadleaf 3.0 1303 3 231 168 97 66 36 36 277
Camel 1.6 2456 7 115 198 519 53 7 87 550
Elasticsearch 0.9 2605 52 42 380 374 187 88 88 362
Hazelcast 3.3 1443 19 71 74 123 115 26 46 232
JDT 3.4 960 308 44 358 1 54 150 31 197
Jedit 4.3 1108 101 56 331 133 9 144 58 264
Lucene 2.4 500 51 13 96 67 66 36 15 208
Neo4J 1.9 1654 64 20 101 187 67 22 92 18
OrientDB 1.6 880 54 30 181 141 40 58 53 171
PDE 3.4 1130 5 34 206 0 22 56 84 167
POI 3.0 822 6 103 58 130 219 18 17 434
Titan 0.5 765 28 11 75 96 18 29 54 66
Xalan 2.7 1794 102 113 456 298 211 159 60 947

Total 19012 812 1044 3085 2377 1184 931 757 4223

Percentage 100% 4.3% 5.5% 16.2% 12.5% 6.2% 4.9% 4% 22.2%

CP: Class Data Should be Private; DC: Data Class; GC: God Class; LC: Lazy Class;
RB: Refused Bequest; SC: Spaghetti Code; SG: Speculative Generality.

Organic collects a wide range of code smells, including method and class
ones. However, as the defect dataset is class-level, we only use the code smells
found in classes. For this reason, we obtained the ground truth of nine smells,
as described in Section 2.2. After collecting the data, we merged three code
smells: Brain Class (BC), God Class (GC), and Complex Class (CC) into one

G. Santos et al.286



code smell. Beyond the similar definitions, we merged the BC and CC to GC
due to their low occurrence on the dataset. Hence, we named the code smell as
God Class (GC), since it is more used in the literature [66]. Consequently, we
evaluate seven smells in total.

Table 1 shows a summary of the data for each project. The first column
presents the project’s name. The second column presents the project version
included in the dataset. The third column shows the number of classes for each
system. Columns 4 through 10 show the number of smells found. The last column
presents the number of defects in the system. The Total row presents the absolute
number of classes and smelly/defective classes. The Percentage row presents the
percentage of classes affected by smell/defect. We can observe from Table 1 that
the projects vary in size, Lucene has the least classes (500), while Elasticsearch
has the most (2605). We also observe that the number of smells and defects varies
greatly for each system. For instance, the Xalan system has 456 instances of God
Class and 947 defects. Meanwhile, even though the Neo4J is a large system, it
had only 18 defects, i.e., 1% of its classes are defective.

Code Smells Validation. To validate the code smells collected with Organic,
we conducted a manual validation with developers. First, we selected three of the
most frequent code smells (GC, RB, and SC), since manual validation is costly
and developers have to first understand the code. Then, we elaborate questions
about each code smell based on the current literature: God Class (GC) [66],
Refused Bequest (RB) [36] and Spaghetti Code (SC) [9]. We then produced
a pilot study with four developers to improve the questions using classes that
Organic classified as either one of the code smells. This allowed us to verify if
the questions are suitable for our goals and whether the surveyed developers
understood them. For each instance in our sample, we asked nine questions
(3 for each smell). The developer was blind to which code smells they were
evaluating and had four possible responses: “Yes”, “No”, “Don’t Know”, and
“NA” (Not Applicable). The questions and developers’ answers can be found in
our replication package [64].

To make our validation robust, we calculated the sample size based on the
number of instances for each of the three smells in our dataset. We then set
a confidence level of 90% and a margin error of 10%. As a result, the sample
size should have at least eighteen classes of each target code smell. Furthermore,
to avoid biasing the analysis, we determine that two developers should evaluate
each instance in our sample. In this case, developers had to validate 108 software
classes (54 unique). To validate the 108 software classes, we invited fifteen devel-
opers from different backgrounds, including two co-authors. One of the authors
was the moderator of the analysis and did not participate in the validation. As
there were three questions for each smell, in order to consider the instance as
truly containing the smell, developers needed to reach an agreement with the
expected answer that supports the presence of the code smell on two out of three
questions. In addition, if the two developers that evaluated the same instance
disagreed on the presence of the smell, a third and more experienced developer
checked the instance to make the final decision. This tiebreaker evaluation was

A Study on Model’s Similarities for Defect and Code Smells 287



done by two software specialists that did not participate in the previous valida-
tion.

In the end, the developers agree that all GC classified by the tool was correct
(i.e., 18 out of 18 responses). For RB, the developers agree in 14 out of the
18 software classes (meaning that approximately 77% of developers agree with
the tool). Finally, SC is slightly worse, where the developers classified 13 out of
the 18 classes as SC. Thus, SC classes achieved an agreement of 72% between
the developers and the tool. The results demonstrate that Organic can identify
code smells with an appropriate level of accuracy (around 84% of agreement
between them). For this reason, we conclude that the Organic data is adequate
to represent code smells.

3.3 Quality Attributes

Although the literature proposes many quality attributes to group software fea-
tures [4,8,68], we focus on the quality attributes previously discussed in the
selected dataset [15,16]. These quality attributes cluster the entire collection of
software features. Therefore, we separate the aforementioned software features
into seven quality attributes: (i) Complexity, (ii) Coupling, (iii) Size, (iv) Doc-
umentation, (v) Clone, (vi) Inheritance, and (vii) Cohesion. Table 2 presents
the quality attributes with their definition and reference. The complete list of
software features (66 in total) and the quality attributes are available under the
replication package of this study [64].

Table 2. Quality Attributes.

Class Definition Reference

Clone Measure the code cloning. They may be a copy and paste
of an existing piece of source code, and may present
smaller modifications considering the original code.

[15,74]

Cohesion Measure to what extent the source code elements are
coherent in the system.

[16,74]

Complexity Measure the complexity of source code elements (typi-
cally algorithms).

[8,16,68]

Coupling Measure the amount of dependencies of source code ele-
ments.

[3,16,68]

Documentation Measure the amount of comments and documentation of
source code elements in the system.

[4,16,22]

Inheritance Measure the different aspects of the inheritance hierarchy
of the system.

[4,16,22]

Size Measure the basic properties of the analyzed system in
terms of different aspects (e.g., number of code lines,
number of classes, or methods).

[16,22,78]

G. Santos et al.288



3.4 Machine Learning

The predictive accuracy of machine learning classification models depends on the
association between the structural software properties and a binary outcome.
In this case, the properties are the software features widely evaluated in the
literature [15,16], and the binary outcome is the prediction if the class is defective
or non-defective or if the class presents each of the evaluated code smells. To
compare the defect and code smell prediction models, we rely on the same set
of software features, i.e., the models are trained with the same 66 measures,
except on the target representing the presence/absence of defect/code smell. We
train each machine learning model for each target (i.e., defect and code smell).
To build these models, we employ a tool known as PyCaret [6] to assist in the
different parts of the process, described later. Finally, to test the capacity of
the models, we apply five evaluation metrics: accuracy, recall, precision, F1, and
AUC [11].
Data Preparation. To build our models, we follow these fundamental steps
described in Figure 1. The three rounded rectangles indicate the steps and the
actions we performed to build the models. First, we clean the data (i). Then, we
explore the data identifying how better to represent them for our models (ii).
After, we prepare the features to avoid overfitting (iii).

Data Cleaning

- Non-numeric 
- Remove Duplicates 
- Missing Values

Data Exploration

- Normalization 
- Balancing 
- Encoding

Feature Engineering

- Feature Selection 
- Correlation-Threshold 
- Multicollinearity

(i) (ii)

(iii)

18,963 - 61

Data

19,012 - 70 18,963 - 62

18,963 - 56

Fig. 1. Data Preparation Process Overview.

Data Cleaning. We first applied data cleaning to eliminate duplicated classes,
non-numeric data, and missing values [56]. Hence, it was possible to vertically
reduce the data as we removed a small chunk of repeated entries (61 classes).
Further, we also reduced the horizontal dimension of the data from 70 to 65
features eliminating the non-numeric features. We also removed four over-
represented software features. These software features gathered information
about the exact line and column of the source code a class started and ended.

A Study on Model’s Similarities for Defect and Code Smells 289



In the end, we executed data imputation to track the missing values, but
the dataset had none.

Data Exploration. In the second step of the machine learning processing, we
executed the data exploration. Therefore, we used one-hot encoding [38] to
the type feature, which stores information about the class type. For instance,
we created two new features for class and interface types. Subsequently, we
applied data normalization using Standard Scaler [59]. Finally, we employed
Synthetic Minority Oversampling Technique (SMOTE) [70] to deal with the
imbalanced nature of the dataset. Table 1 summarizes the imbalanced nature
of the targets compared to the data collection. For instance, from 19K classes,
only 757 present Spaghetti Code (almost 4% of classes).

Feature Engineering. In the final step, we applied feature engineering to se-
lect the relevant software features. As a result, we executed feature selection,
correlation analysis, and multicollinearity thresholds. First, the feature selec-
tion technique chooses a subset of software features from the combination of
various permutation importance techniques, including Random Forest, Ad-
aboost, and Linear correlation. Second, we checked the correlation between
the subset of software features (99% of threshold). In doing so, we removed
five software features (LLDC, TNLPA, TNA, TNPA, and TCLOC) because
they were highly correlated with other software features (LDC, CLOC, NA,
NLPA, and NPA). Additionally, we set the multicollinearity threshold to
85%, meaning that we remove software features with a correlation higher
than the threshold. In the end, we ended up with 56 software features.

Training the Models. To build our classifier, we employ a technique known
as the ensemble machine learning model [6]. This technique learns how to best
combine the predictions from multiple machine learning models. Thus, we use
a stronger machine learning model in terms of prediction, since it combines the
prediction power of multiple models. To train the models, we divided the dataset
into two sets: 70% of the data is used for training the models, and 30% for testing
the models. To assess the performance of our models, we employed a method
called k-fold cross-validation. This technique splits the data into K partitions.
In our work, we used K=10 [11], and at each iteration, we use nine folds for
training and the remaining fold for validation. We then permute these partitions
on each iteration. As a result, we use each fold as training and as the validation
set at least once. This method allows us to compare distinct models, helping us
to avoid overfitting, as the training set varies on each iteration.

To identify which models are suitable to our goal, we evaluated 15 machine
learning algorithms: CatBoost Classifier [6], Random Forest [23], Decision Tree
[16], Extra Trees [6], Logistic Regression [29], K-Neighbors Classifier (KNN) [80],
Gradient Boosting Machine [83], Extreme Gradient Boosting [63], Linear Dis-
criminant Analysis [6], Ada Boost Classifier [55], Light Gradient Boosting Ma-
chine (LightGBM) [32], Naive Bayes [75], Dummy Classifier [55], Quadratic Dis-
criminant Analysis [6], and Support Vector Machines (SVM) [23]. Furthermore,
to tune the hyper-parameters of each model, we apply a technique called Op-
tuna [5]. Optuna uses Bayesian optimization to find the best hyper-parameters

G. Santos et al.290



for each model. After experimenting with all the targets, we observed that five
models are able of achieving good performance independently of the target (i.e.,
defects or code smells): Random Forest [23], LightGBM [32], Extra Trees [10],
Gradient Boosting Machine [72], and KNN [80]. For this reason, these models
are carried out for the ensemble model. The data on the performance of the
evaluated models can be found in our replication package [64]. To evaluate our
models, we focus on the F1 and AUC metrics. F1 represents the harmonic mean
of precision and recall. Additionally, AUC is relevant because we are dealing
with binary classification and this metric shows the performance of a model at
all thresholds. For these reasons, both metrics are suitable for the imbalanced
nature of data [11].

Explaining the Models. The current literature offers many possibilities to ex-
plain machine learning models in multiple problems. One of the most prominent
techniques spread in the literature is the application of SHAP (SHapley Ad-
dictive exPlanation) values [39]. These values compute the importance of each
feature in the prediction model. Therefore, we can reason why a machine learn-
ing model made such decisions about the specific domain. For this reason, SHAP
is appropriate as machine learning models are hard to explain [69] and features
interact in complex patterns to create models that provide more accurate predic-
tions. Consequently, knowing the logic behind a software class is a determinant
factor that can help to tackle the reasons behind a defect or code smell in the
target class.

4 Results

4.1 Predictive Capacity

Before explaining the models, we evaluate if they can effectively predict the
code smells and defects. Even though we originally built models for the entire
set of code smells, we observed that only three code smells (God Class, Refused
Bequest, and Spaghetti Code) have comparable models to the defects. For this
reason, we only present the results of these three code smells. We believe some
code smells are not similar to the defect model because they indicate simple code
with less chance of having a defect, for instance, Lazy Class and Data Class. As
a result, these code smells seem to not have similarities with the defects. The
remaining code smells results are available in the replication package [64].

Table 3. Performance of the Machine Learning Models.

Target Accuracy AUC Recall Precision F1

God Class 0.944 0.973 0.801 0.844 0.823
Refused Bequest 0.976 0.951 0.645 0.939 0.765
Spaghetti Code 0.971 0.977 0.715 0.692 0.705
Defect 0.843 0.865 0.701 0.609 0.652

A Study on Model’s Similarities for Defect and Code Smells 291



Table 3 shows the performance of each ensemble machine learning model
with our four targets (i.e., defects and the three code smells). The values in the
columns represent the mean of the 10-fold cross-validation. We present in each
column the performance for the five evaluation metrics. We can observe from
Table 3 that the performance of the ensemble model for the four targets is fairly
acceptable, with models presenting an F1 score ranging from approximately 65%
(defect model) to 82% (God Class model). These numbers are similar to other
studies with similar purposes [15,16]. We conclude that the models can predict
the targets with acceptable accuracy, as shown by the high AUC values in Table
3. For this reason, we may exploit these machine learning models to explain
their prediction using the SHAP technique. In doing so, we can reason about
the similarities of the software features associated with defects and code smell.

RQ1. The results show that the predictive accuracy of the defect and code smell
models can be used to compare the models in terms of their features, with good
F1 measures and high AUC. We also found that the class-level code smell mod-
els are slightly superior to the defect model in all five evaluation metrics.

4.2 Explaining the Models

This section discusses the explanation of each target model. We rely on SHAP
to support the model explanation [39]. To simplify our analysis, we consider the
top-10 most influential software features on the target in each prediction model.
We then compare each code smell model with the defective one. Our goal is to
find similarities and redundancies between the software features that help the
machine learning model to predict the target code smells and defects. We extract
these ten software features from each of the four target models (i.e., the defect
model and the three code smell models presented in this paper).

To illustrate our results, we employ a Venn diagram to check the intersection
of features between the four models (Figures 2, 3, and 4). The Venn diagram
displays two dashed circles, one for the code smell model and another for the
defect model. Inside each dashed circle, we present the top-10 software features
that contributed the most to the prediction of the target within inner circles. The
color of these inner circles represents the feature’s quality attribute. Likewise,
the size of the inner circle represents the influence of the feature on the model,
meaning that the bigger the size, the more it contributes to the target prediction.
On each side of the inner circles, we have an arrow that indicates the direction
of the feature value. For instance, a software feature with an arrow pointing up
means that the software feature contributes to the prediction when its value is
high. On the other hand, a software feature with an arrow pointing down means
that the feature contributes to the prediction when its value is low. The software
features on the intersection have two inner circles because they have a different
impact on each target (i.e., defects and the three code smells). For a better
understanding of the acronyms, we show on the right side of each diagram, a
table with the acronym and the feature full name of all features that appears on
the diagram.

G. Santos et al.292



God Class. Figure 2 shows the top-10 features that contribute to the Defect
and God Class models, and their feature intersection. We can observe from
Figure 2 that the defect model has an intersection with God Class of 6 out of 10
features. This means that 60% of the top-10 features that contribute the most to
predictions are the same for both models. These features are: CD, CLOC, AD,
NL, NLE, and CLLC; and most of them are related to documentation (3 out of
6) and complexity (2 out of 6). The only difference is for the CD, which needs
to have low values to help in the God Class prediction. All remaining software
features require a high value to predict a defect or a God Class (see arrows
up). Moreover, in terms of importance, for both models, the largest inner circles
are for NLE, NL, and AD. For the AD, its importance is smaller for the GC
model compared to the defect model. Meanwhile, for the NLE, the importance
of God Class is a bit larger than for the defect model. For the NL feature, their
importance was equivalent.

PDA

TLOC

NLG

TNOS

DIT

CLC

CBO

NOIDocumentation

Size

Complexity

Clone

Coupling

Inheritance

NLE

CLLC

AD

NL

CD

CLOC

Defect vs. God Class  AD API Documentation

CBO Coupling Between Object Classes 

CD Comment Density

CLC Clone Line Coverage

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOI Number of Outgoing Invocations 

PDA Public Documented API

TLOC Total Lines of Code

TNOS Total Number of Statements

Fig. 2. Top-10 Software Features for the Defect and God Class Models.

Refused Bequest. Figure 3 shows the top-10 features that contribute the most
to the Defect and Refused Bequest models. We can observe from the Venn dia-
gram in Figure 3 that the defect model has an intersection of 40% (4 out of 10
features) with the Refused Bequest model when considering their top-10 software
features. The features that intersect are CD, AD, NLE, and DIT. It is interesting
to notice that for 3 out of the 4 software features in the intersection, the values
that help to detect the Refused Bequest have to be low (see arrows pointing
down), while for the defect model, all of them require to have high values. Fur-
thermore, most of the Refused Bequest features have to be low (6 or 60%). In
terms of importance, the DIT and NLE features were similar for both models.
However, for both CD and AD, their contribution to the Refused Bequest model
was smaller. Additionally, two features that highly contributed to the Refused
Bequest are not in the intersection (NOP and NOA), while one (NL) is outside
the intersection for the defect model. We also note that three features are related
to the inheritance quality attribute, but only one intersects for both models, the

A Study on Model’s Similarities for Defect and Code Smells 293



DIT one. We also observe that the size is relevant for both models. However,
we do not have any size feature on the intersection of the models. The cohesion
aspect was important only for the Refused Bequest model. The documentation
attribute, which is relevant for the defect model (4 out of 10), has two of them
with small importance (CLOC and PDA). The complexity attribute, indicated
by NLE, is also very relevant for both models. CBO is the only coupling metric
in the Refused Bequest model.

PDA

CLOC

NL

CLLC

TLOC

NLG

NPA

CBO

Documentation

Size

Complexity

Clone

Coupling

Inheritance

LCOM5

NG

Cohesion NOP

NOA

CD

AD

NLE

DIT

Defect vs. Refused Bequest AD API Documentation

CBO Coupling Between Object Classes 

CD Comment Density

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

LCOM5 Lack of Cohesion in Methods 5

NG Number of Getters

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOA Number of Ancestors

NOP Number of Parents

NPA Number of Public Attributes

PDA Public Documented API

TLOC Total Lines of Code

Fig. 3. Top-10 Software Features for the Defect and Refused Bequest Models.

Spaghetti Code. Figure 4 presents the 10 features that are most important
to the Defect and Spaghetti Code models. We observe in Figure 4 that the
Spaghetti Code model has 50% of intersection with the defect model. They in-
tersect with the CD, CLOC, CLLC, NL, and NLE features. For both models,
most features need high values, except one for Spaghetti Code, the CD. The
features NL, NLE, and CLOC had similar importance. On the other hand, the
CD feature contributes less to the Spaghetti Code. Meanwhile, the CLLC fea-
ture contributes less to the defect model than to the Spaghetti Code model. It is
interesting to notice that most features that highly contribute to the Spaghetti
Code prediction are outside the intersection (NOI, TNOS, and CBO). Further-
more, the complexity quality attribute intersects both models (i.e., 2 out of 5). In
addition, two of the documentation features on the defect model are important
for the Spaghetti Code model. In terms of clone duplication, it also intersects
half of the features of the Spaghetti Code model (CLLC). The size is relevant for
both models, but none of the features intersects (2 out of 10 for both models).
The features TLOC and NLG appear on the defect model, while the TNOS and
TNLA on the Spaghetti Code model. The coupling is exclusive to the Spaghetti
Code model, while the inheritance is exclusive to the defect model.

After observing the three figures (Figures 2, 3, and 4), we notice some inter-
sections between the four models. For instance, CLOC is important for Defect,
God Class, and Spaghetti Code models, even though the importance for God

G. Santos et al.294



TNLA

CBO
Documentation

Size

Complexity

Clone

Coupling

Inheritance

TNOS

NOI

LDC

PDA

AD

DIT

TLOC

NLG

CD

CLOC

CLLC

NL

NLE

Defect vs. Spaghetti Code
AD API Documentation

CBO Coupling Between Object Classes

CD Comment Density

CLC Clone Line Coverage

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOI Number of Outgoing Invocations 

PDA Public Documented API

TLOC Total Lines of Code

TLNA Total Number of Local Attributes

TNOS Total Number of Statements

Fig. 4. Top-10 Software Features for the Defect and Spaghetti Code Models.

Class was smaller (see inner circle sizes). For this trio, we also have that NL and
CLLC are important for the three models, but the CLLC has a small contribu-
tion in comparison to other features. For the Defect, God Class, and Refused
Bequest, we highlight that the AD feature has high importance for all three
models. Meanwhile, we also have some intersections between smells models. For
the God Class and Spaghetti Code pair, we note that both NOI and TNOS are
highly relevant to the models. Finally, CBO is important for the God Class,
Refused Bequest, and Spaghetti Code, but with moderate importance.

RQ2. There is a group of software features that intersect between the defect
models and the three code smells. More importantly, Nesting Level Else-If
(NLE) and Comment density (CD) appear in the four models, although the
CD influence is considerably low for the evaluated code smells. Furthermore,
CBO is important for all the code smells, but not the defect model.

Figure 5 presents the number of features that correspond to the evaluated
quality attributes according to the top-10 features discovered by SHAP. We
stack each quality attribute horizontally to facilitate the comparison between
them. Hence, our results indicate that practitioners do not need to concentrate
on all software features to predict defects and the investigated code smells. A
subset of features is enough to predict the targets. For instance, software features
related to the documentation are the most relevant for the Defect and God Class
models, with 4 and 3 features on the top-10, respectively. The Refused Bequest
model needs software features related to the inheritance (3 features), but size
and documentation are also relevant with two features each. Meanwhile, the
Spaghetti Code model is the most comprehensive, requiring features linked to
documentation, size, complexity, coupling, and clone duplication, with all of
them having two features.

Based on the results discussed, we conclude that the four ensemble machine
learning models require at least one software feature related to documentation
(CD) and complexity (NLE) to predict the target. Hence, future studies about

A Study on Model’s Similarities for Defect and Code Smells 295



Fig. 5. Comparison between the Top-10 Features of each Target.

defect and code smell prediction, independently of the dataset and domain, could
focus on these two feature collections. Furthermore, as we can observe in Figure
5, considering all the machine learning models evaluated, the documentation,
complexity, and size are the most important quality attributes that contribute
to the detection of defects and the code smell.

RQ3. The most relevant quality attributes to predict defects and code smells
vary greatly between each model. For instance, documentation is more impor-
tant for the Defect and God Class models, while Spaghetti Code has all of its five
quality attributes with the same importance, and Refused Bequest prioritizes the
inheritance. In general, documentation, complexity, and size contribute more
to the prediction of defects and the investigated code smells.

5 Threats to Validity

− Internal Validity: In our investigation, the chosen dataset is a potential
threat to internal validity [79], as we employed the data documented in the
current literature [15,16]. For this reason, we cannot reason on data quality,
as any storing process could insert erroneous data into the dataset, which is
common in a complex context such as software development. Furthermore,
the use of Organic is also a threat; however, we validated the outcome by
asking developers for a statistical sample of the results. Finally, the limited
number of projects evaluated may interfere with the model’s generalization
to other contexts, although we covered 75% of the defect data with the
chosen projects.

− External Validity: In this study, the external threat to validity [79] connects
to the limited number of programming languages we examined to compare

G. Santos et al.296



the defects and code smell. In this case, we limit the scope to the Java
programming language to make our analysis feasible. However, we selected
relevant systems that vary in domains, maturity, and development practices.
For this reason, we cannot guarantee that our results generalize to other
programming languages.

− Construct Validity: The use of SHAP is a possible threat to construct
validity [79]. There are other tools to explain a machine learning model in
the literature, such as Lime [60]. However, we tested only SHAP for our
experimentation. Further interactions of this data could compare to other
tools that focus on model explainability.

− Conclusion Validity: Our study could only match a chunk of the data col-
lected with Organic with the defect dataset. Even though we pulled the same
version from GitHub, we could not find some matching classes within the
dataset. One of the main reasons for unmatched software classes is proba-
bly the refactoring of the class name and dependencies. For this reason, we
cannot guarantee how different the results would be if we could match more
classes. Furthermore, our study focuses on a diverse set of domains, which
is a potential issue for generalization.

6 Related Work

Defect Prediction. Several studies [42,75] share the ability of applying code
metrics for defect prediction. They vary in terms of accuracy, complexity, target
programming language, input prediction density, and machine learning models.
Menzies et al. [42] presented defect classifiers using code attributes defined by
McCabe and Halstead metrics. They concluded that the choice of the learning
method is more important than which subset of the available data we use for
learning the software defects. In a similar approach, Turhan et al. [75] used
cross-company data for building localized defect predictors. They used principles
of analogy-based learning to cross-company data to fine-tune these models for
localization and used static code features extracted from the source code, such
as complex software features and Halstead metrics. They concluded that cross-
company data are useful in extreme cases and when within-company data is not
available [75].

In the same direction, the study of Turhan et al. [76] evaluate the effect of
mixing data from different projects stages. In this case, the authors use within
and cross-project data to improve the prediction performance. They show that
mixing project data based on the same project stage does not significantly im-
prove the model performance. Hence, they concluded that optimal data for de-
fect prediction is still an open challenge for researchers [76]. Similarly, He at al.
[27] investigate defect prediction based on data selection. The authors propose
a brute force approach to select the most relevant data for learning the soft-
ware defects. To do so, they experiment with three large-scale experiments on
34 datasets obtained from ten open-source projects. They conclude that training
data from the same project does not always help to improve the prediction per-

A Study on Model’s Similarities for Defect and Code Smells 297



formance [27]. On the other hand, we base our investigation on ensemble learning
to improve the prediction performance and a wide set of software features.

CodeSmellsPrediction. Several automated detection strategies for code smells,
and anti-patterns were proposed in the literature [18]. They also use diverse strate-
gies in their identification. For instance, some methods are based on combination
of metrics [48,57]; refactoring opportunities [19]; textual information [54]; histori-
cal data [52]; and machine learning techniques [7,12,14,20,21,35,40,41]. Khomh et
al. [35] used Bayesian Belief Networks to detect three anti-patterns. They trained
the models using two Java open-source systems. Maiga et al. [41] investigated the
performance of the Support Vector Machine trained in three systems to predict
four anti-patterns. Later, the authors introduced a feedback system to their model
[40]. Amorim et al. [7] investigated the performance of Decision Trees to detect four
code smells in one version of the Gantt project. Differently from these works, our
dataset is composed of 14 systems, and we evaluate 9 code smells at the class level.

Cruz et al. [12] evaluated seven models to detect four code smells in 20
systems. The authors found that algorithms based on trees had a better F1
score than other models. Fontana et al. [20] evaluated six models to predict four
smells. However, they have used the severity of the smells as the target. They
reported high-performance numbers of the evaluated models. Later, Di Nucci et
al. [14] replicated it [20] to address several limitations that potentially generated
bias on the models’ performance. Thus, the authors found out that the models’
performance, when compared to the reference study, was 90% lower, indicating
the need to further explore how to improve code smell prediction. Differently
from previous work on code smell prediction, we are interested in exploring the
similarities and differences between models for predicting code smells, in contrast
with the models for defect prediction.

Defects and Code Smells. Several works tried to understand how code smells
can affect software, evaluating different aspects of quality, such as maintainability
[21,67,82], modularity [62], program comprehension [2], change-proneness [33,34],
and how developers perceive code smells [53,81]. Other studies aim to evaluate
how code smells impact the defect proneness [24,28,34,49,50,51]. Olbrich et al.
[49] evaluated the fault-proneness evolution of the God Class and Brain Class of
three open-source systems. They discovered that classes with these two smells
can be more faulty, however, this did not hold for all analyzed systems. Similarly,
Khomh et al. [34] evaluated the impact on fault-proneness of 13 different smells
in several versions of three large open-source systems. They report the existence
of a relationship between some code smells with defects, but it is not consistent
for all system versions. Openja et al. [50] evaluated how code smells can make the
class more fault-prone in quantum projects. Differently from these studies, we
aim to understand whether models build for defects and code smells are similar
or not.

Hall et al. [24] investigated if files with smells present more defects than files
that do not have them. They found that for most of these smells, there is no
statistical difference between smelly and non-smelly classes. Palomba et al. [51]
evaluated how 13 code smells affect the presence of defects using a dataset of

G. Santos et al.298



30 open-source java systems. They reported that classes with smells have more
bug fixes than classes that do not have any smells. Jebnoun et al. [28] evaluated
how Code Clones are related to defects in three different programming languages.
They concluded that smelly classes are more defect prone, but it varies according
to the programming language. Differently from these three studies, we aim to
understand how the prediction of defects differs from the models used to detect
code smells, not on establishing a correlation between defect and code smell.

Explainable Machine Learning for Software Features. Software defect
explainability is a relatively recent topic in the literature [30,46,58]. Mori and
Uchihira [46] analyzed the trade-off between accuracy and interpretability of
various models. The experimentation displays a comparison between the bal-
anced output that satisfies both accuracy and interpretability criteria. Likewise,
Jiarpakdee et al. [30] empirically evaluated two model-agnostic procedures, Local
Interpretability Model-agnostic Explanations (LIME) [60] and BreakDown tech-
niques. They improved the results obtained with LIME using hyperparameter
optimization, which they called LIME-HPO. This work concludes that model-
agnostic methods are necessary to explain individual predictions of defect mod-
els. Finally, Pornprasit et al. [58] proposed a tool that predicts defects for systems
developed in Python. The input data consists of software commits, and the au-
thors compare its performance with the LIME-HPO [30]. They conclude that
the results are comparable to the state-of-the-art technology to explain models.

7 Conclusion

In this work, we investigated the relationship between defects and code smell
machine learning models. To do so, we identified and validated the code smells
collected with Organic. Then, we applied an extensive data processing step to
clean the data and select the most relevant features for the prediction model.
Subsequently, we trained and evaluated the models using an ensemble of models.
In the end, as the models performed well, we employed an explainability tech-
nique to understand the models’ decisions known as SHAP. We concluded that
among the seven code smells initially collected, only three of them were similar
to the defect model (Refused Bequest, God Class, and Spaghetti Code). In ad-
dition, we found that the features Nesting Level Else-If and Comment Density
were relevant for the four models. Furthermore, most features require high val-
ues to predict defects and code smells, except for the Refused Bequest. Finally,
we reported that the documentation, complexity, and size quality attributes are
the most relevant for these models. In the future steps of this investigation, we
can compare the SHAP results with other techniques (e.g., Lime) and employ
white-box models to simplify the explainability. Another potential application of
our study is the comparison between the reported code smells with other tools.
We encourage the community to further investigate and replicate our results.
For this reason, we made all data available under the replication package [64].

A Study on Model’s Similarities for Defect and Code Smells 299



References

1. Ieee standard glossary of software engineering terminology. In: IEEE Std 610.12-
1990 (1990)

2. Abbes, M., Khomh, F., Guéhéneuc, Y., Antoniol, G.: An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension.
In: European Conference on Software Maintenance and Reengineering (CSMR)
(2011)

3. Abdullah AlOmar, E., Wiem Mkaouer, M., Ouni, A., Kessentini, M.: Do Design
Metrics Capture Developers Perception of Quality? An Empirical Study on Self-
Affirmed Refactoring Activities. In: International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM) (2019)

4. Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L., Bavota, G., Lanza, M.,
Shepherd, D.C.: Software documentation: The practitioners’ perspective. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE) (2020)

5. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: International Conference on Knowl-
edge Discovery & Data Mining (SIGKDD) (2019)

6. Ali, M.: PyCaret: An open source, low-code machine learning library in Python,
https://www.pycaret.org

7. Amorim, L., Costa, E., Antunes, N., Fonseca, B., Ribeiro, M.: Experience report:
Evaluating the effectiveness of decision trees for detecting code smells. In: Inter-
national Symposium on Software Reliability Engineering (ISSRE) (2015)

8. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Transactions on Software Engineering (TSE) (1996)

9. Brown, W.H., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J.: AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.
(1998)

10. Bui, X.N., Nguyen, H., Soukhanouvong, P.: Extra trees ensemble: A machine learn-
ing model for predicting blast-induced ground vibration based on the bagging and
sibling of random forest algorithm. In: Proceedings of Geotechnical Challenges in
Mining, Tunneling and Underground Infrastructures (ICGMTU) (2022)

11. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent
selection bias in performance evaluation. Journal of Machine Learning Research
(JMLR) (2010)

12. Cruz, D., Santana, A., Figueiredo, E.: Detecting bad smells with machine learning
algorithms: an empirical study. In: International Conference on Technical Debt
(TechDebt) (2020)

13. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction
approaches. In: 7th IEEE Working Conference on Mining Software Repositories
(MSR) (2010)

14. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detecting
code smells using machine learning techniques: Are we there yet? In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (2018)

15. Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: A public unified bug
dataset for java. In: Proceedings of the 14th International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE) (2018)

G. Santos et al.300

https://www.pycaret.org


16. Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: A public unified bug
dataset for java and its assessment regarding metrics and bug prediction. In: Soft-
ware Quality Journal (SQJ) (2020)

17. Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: Unified bug dataset,
https://doi.org/10.5281/zenodo.3693686

18. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based com-
parative study of bad smell detection tools. In: Proceedings of the 20th Interna-
tional Conference on Evaluation and Assessment in Software Engineering (EASE)
(2016)

19. Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A.: Jdeodorant: identifi-
cation and application of extract class refactorings. In: 2011 33rd International
Conference on Software Engineering (ICSE) (2011)

20. Fontana, F.A., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and experi-
menting machine learning techniques for code smell detection. In: Empirical Soft-
ware Engineering (EMSE) (2016)

21. Fontana, F.A., Zanoni, M., Marino, A., Mäntylä, M.V.: Code smell detection: To-
wards a machine learning-based approach (icsm). In: Int’l Conf. on Software Main-
tenance (2013)

22. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

23. Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., Ubayashi, N.: An empiri-
cal study of just-in-time defect prediction using cross-project models. In: Working
Conference on Mining Software Repositories (MSR) (2014)

24. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. In: Transactions on Software Engineering and Methodology
(TOSEM) (2014)

25. Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J.: Error cost
escalation through the project life cycle. In: INCOSE International Symposium
(2004)

26. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Interna-
tional Conference of Software Engineering (ICSE) (2009)

27. He, Z., Shu, F., Yang, Y., Li, M., Wang, Q.: An investigation on the feasibility of
cross-project defect prediction. In: Automated Software Engineering (ASE) (2012)

28. Jebnoun, H., Rahman, M.S., Khomh, F., Muse, B.: Clones in deep learning code:
What, where, and why? In: Empirical Software Engineering (EMSE) (2022)

29. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (2013)

30. Jiarpakdee, J., Tantithamthavorn, C., Dam, H.K., Grundy, J.: An empirical study
of model-agnostic techniques for defect prediction models. In: Transactions on Soft-
ware Engineering (TSE) (2020)

31. Jureczko, M., D., S.D.: Using object-oriented design metrics to predict software
defects. In: Models and Methods of System Dependability (MMSD) (2010)

32. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. In: 31st Conference
on Neural Information Processing System (NIPS) (2017)

33. Khomh, F., Di Penta, M., Gueheneuc, Y.: An exploratory study of the impact of
code smells on software change-proneness. In: Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE) (2009)

34. Khomh, F., Di Penta, M., Guéhéneuc, Y., Antoniol, G.: An exploratory study
of the impact of antipatterns on class change- and fault-proneness. In: Empirical
Software Engineering (EMSE) (2012)

A Study on Model’s Similarities for Defect and Code Smells 301

https://doi.org/10.5281/zenodo.3693686


35. Khomh, F., Vaucher, S., Guéhéneuc, Y., Sahraoui, H.: Bdtex: A gqm-based
bayesian approach for the detection of antipatterns. In: Journal of Systems and
Software (JSS) (2011)

36. Lanza, M., Marinescu, R., Ducasse, S.: Object-Oriented Metrics in Practice.
Springer-Verlag (2005)

37. Levin, S., Yehudai, A.: Boosting automatic commit classification into maintenance
activities by utilizing source code changes. In: Proceedings of the 13rd International
Conference on Predictor Models in Software Engineering (PROMISE) (2017)

38. Lin, Z., Ding, G., Hu, M., Wang, J.: Multi-label classification via feature-aware
implicit label space encoding. In: International Conference on International Con-
ference on Machine Learning (ICML) (2014)

39. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
Conference on Neural Information Processing Systems (NIPS) (2017)

40. Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y., Aimeur, E.:
Smurf: A svm-based incremental anti-pattern detection approach. In: Working
Conference on Reverse Engineering (WCRE) (2012)

41. Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y., Antoniol, G.,
Aı̈meur, E.: Support vector machines for anti-pattern detection. In: Proceedings
of International Conference on Automated Software Engineering (ASE) (2012)

42. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. In: Transactions on Software Engineering (TSE) (2007)

43. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect pre-
diction from static code features: current results, limitations, new approaches. In:
Automated Software Engineering (ASE) (2010)

44. Menzies, T., Zimmermann, T.: Software analytics: So what? In: IEEE Software
(2013)

45. Menzies, T., Distefano, J., Orrego, A., Chapman, R.: Assessing predictors of
software defects. In: In Proceedings, Workshop on Predictive Software Models
(PROMISE) (2004)

46. Mori, T., Uchihira, N.: Balancing the trade-off between accuracy and interpretabil-
ity in software defect prediction. In: Empirical Software Engineering (EMSE)
(2018)

47. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: International Conference on Software Engineering (ICSE) (2006)

48. Oizumi, W., Sousa, L., Oliveira, A., Garcia, A., Agbachi, A.B., Oliveira, R., Lu-
cena, C.: On the identification of design problems in stinky code: experiences and
tool support. In: Journal of the Brazilian Computer Society (JBCS) (2018)

49. Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I.K.: Are all code smells harmful? a study
of god classes and brain classes in the evolution of three open source systems. In:
IEEE International Conference on Software Maintenance (ICSM) (2010)

50. Openja, M., Morovati, M.M., An, L., Khomh, F., Abidi, M.: Technical debts and
faults in open-source quantum software systems: An empirical study. Journal of
Systems and Software (JSS) (2022)

51. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.:
On the diffuseness and the impact on maintainability of code smells: A large scale
empirical investigation. In: IEEE/ACM 40th International Conference on Software
Engineering (ICSE) (2018)

52. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk,
D.: Detecting bad smells in source code using change history information. In: 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(2013)

G. Santos et al.302



53. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Lucia, A.D.: Do they really
smell bad? a study on developers’ perception of bad code smells. In: IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME) (2014)

54. Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.: A textual-
based technique for smell detection. In: 2016 IEEE 24th international conference
on program comprehension (ICPC) (2016)

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research (JMLR) (2011)

56. Petrić, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.: The jinx on the
nasa software defect data sets. In: International Conference on Evaluation and
Assessment in Software Engineering (EASE) (2016)

57. PMD: Pmd source code analyser, https://pmd.github.io/
58. Pornprasit, C., Tantithamthavorn, C., Jiarpakdee, J., Fu, M., Thongtanunam, P.:

Pyexplainer: Explaining the predictions of just-in-time defect models. In: Interna-
tional Conference on Automated Software Engineering (ASE) (2021)

59. Raju, V.N.G., Lakshmi, K.P., Jain, V.M., Kalidindi, A., Padma, V.: Study the
influence of normalization/transformation process on the accuracy of supervised
classification. In: 2020 Third International Conference on Smart Systems and In-
ventive Technology (ICSSIT) (2020)

60. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should i trust you?”: Explaining the
predictions of any classifier. In: International Conference on Knowledge Discovery
and Data Mining (KDD) (2016)

61. Riel, A.: Object Oriented Design Heuristics. Addison-Wesley Professional (1996)
62. Santana, A., Cruz, D., Figueiredo, E.: An exploratory study on the identification

and evaluation of bad smell agglomerations. In: Proceedings of the 36th Annual
ACM Symposium on Applied Computing (SAC) (2021)

63. Santos, G., Figueiredo, E., Veloso, A., Viggiato, M., Ziviani, N.: Understanding
machine learning software defect predictions. In: Automated Software Engineering
Journal (ASEJ) (2020)

64. Santos, G.: gesteves91/artifact-fase-santos-23: FASE Artifact Evaluation 2023 (Jan
2023), https://doi.org/10.5281/zenodo.7502546

65. Sayyad S., J., Menzies, T.: The PROMISE Repository of Software Engineering
Databases. (2005), http://promise.site.uottawa.ca/SERepository

66. Schumacher, J., Zazworka, N., Shull, F., Seaman, C.B., Shaw, M.A.: Building em-
pirical support for automated code smell detection. In: International Symposium
on Empirical Software Engineering and Measurement (ESEM) (2010)

67. Sjøberg, D.I.K., Yamashita, A., Anda, B.C.D., Mockus, A., Dyb̊a, T.: Quantifying
the effect of code smells on maintenance effort. In: IEEE Transactions on Software
Engineering (TSE) (2013)

68. Stroulia, E., Kapoor, R.: Metrics of refactoring-based development: An experi-
ence report. 7th International Conference on Object Oriented Information Systems
(OOIS) (2001)

69. Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling in
practice: Pitfalls and challenges. In: International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP) (2018)

70. Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class rebalanc-
ing techniques on the performance and interpretation of defect prediction models.
In: Transactions on Software Engineering (TSE) (2019)

A Study on Model’s Similarities for Defect and Code Smells 303

https://pmd.github.io/
https://doi.org/10.5281/zenodo.7502546
http://promise.site.uottawa.ca/SERepository


71. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Ihara, A., Matsumoto, K.: The
impact of mislabelling on the performance and interpretation of defect prediction
models. In: International Conference on Software Engineering (ICSE) (2015)

72. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical
comparison of model validation techniques for defect prediction models. In: IEEE
Transactions on Software Engineering (TSE) (2017)

73. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: The impact of
automated parameter optimization on defect prediction models. In: Transactions
on Software Engineering (TSE) (2019)

74. Tóth, Z., Gyimesi, P., Ferenc, R.: A public bug database of github projects and
its application in bug prediction. In: Computational Science and Its Applications
(ICCSA) (2016)

75. Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of
cross-company and within-company data for defect prediction. Empirical Software
Engineering (EMSE) (2009)

76. Turhan, B., Tosun, A., Bener, A.: Empirical evaluation of mixed-project defect
prediction models. In: Proceedings of the 37th Conference on Software Engineering
and Advanced Applications (SEAA) (2011)

77. Vale, G., Hunsen, C., Figueiredo, E., Apel, S.: Challenges of resolving merge con-
flicts: A mining and survey study. In: Transactions on Software Engineering (TSE)
(2021)

78. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: International Conference of Software Engineering (ICSE) (2016)

79. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer (2012)

80. Xuan, X., Lo, D., Xia, X., Tian, Y.: Evaluating defect prediction approaches using
a massive set of metrics: An empirical study. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing (SAC) (2015)

81. Yamashita, A., Moonen, L.: Do developers care about code smells? an exploratory
survey. In: 20th Working Conference on Reverse Engineering (WCRE) (2013)

82. Yamashita, A., Counsell, S.: Code smells as system-level indicators of maintain-
ability: An empirical study. In: Journal of Systems and Software (JSS) (2013)

83. Yatish, S., Jiarpakdee, J., Thongtanunam, P., Tantithamthavorn, C.: Mining soft-
ware defects: Should we consider affected releases? In: International Conference on
Software Engineering (ICSE) (2019)

84. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: In-
ternational Workshop on Predictor Models in Software Engineering (PROMISE)
(2007)

G. Santos et al.304



Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

A Study on Model’s Similarities for Defect and Code Smells 305

http://creativecommons.org/licenses/by/4.0/

	Yet Another Model! A Study on Model's Similarities for Defect and Code Smells
	1 Introduction
	2 Background
	2.1 Defects
	2.2 Code Smells

	3 Study Design
	3.1 Research Questions
	3.2 Data
	3.3 Quality Attributes
	3.4 Machine Learning

	4 Results
	4.1 Predictive Capacity
	4.2 Explaining the Models

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References




