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Abstract. Multiple sclerosis (MS) is a disease that deteriorates the
central human nervous system, which can potentially cause significant
brain, spinal cord and visual problems. Based on recent studies, MS has
affected 3 million people with a prevalence rate of 3.9%. To this end, a
wealth of information about MS has been produced, which makes MS
the ideal candidate for applying artificial intelligence (AI) techniques for
early diagnosis through a machine learning (ML) exploration framework.
Accordingly, the current work studies to what extent the nervous sys-
tem has been degenerated by analyzing data from a recently published
dataset. Such data has been derived by motor evoked potential (MEP)
measurements conducted in each patient hospital visit. Therefore, five
machine learning models have been trained with cross-validation, in order
to obtain the best one with good generalization properties. We compare
the accuracy of all models utilizing various metrics (maximum obtained
accuracy is ~96% with XGBoost model). Furthermore, we use sensitivity
analysis in order to explain the dependence of the target variable on the
input parameters statistically.
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1 Introduction

Multiple sclerosis (MS) is a well-known autoimmune chronic disease which causes
visuals, sensor and motor problems having as a direct consequence the deterio-
ration of the functional status of the central nervous system (CNS). Besides, it
is difficult enough to timely detect MS disease as there are no certain symptoms
and physical findings that dictate its diagnosis. To this end, a multitude of med-
ical approaches have been adopted in order to accurately assess and diagnose
MS. To date, the most applicable medical treatment is magnetic resonance imag-
ing (MRI) which is a non-invasive imaging technology that creates anatomical
images.

1.1 Related Work

Most of the MRI research works for MS diagnosis are based on the implementa-
tion of machine learning (ML) or deep learning (DL) techniques in MRI scans in
order to extract critical conclusions from brain images, [25,26]. Although such
type of processes is accurate and robust, it has turned out to be time-consuming
and susceptible to manual errors, [21]. Instead, ML techniques have been rapidly
evolved as the most promising player in the arena of MS decision support systems
during the last decade. Such type of techniques does not require any prior knowl-
edge or experience related to MS from clinicians facilitating the most accurate
and objective diagnosis.

In particular, the most widely ML and DL-employed techniques have incor-
porated multiple data sources as input parameters such as clinical data, MRI
scans, optical coherence tomography (OCT) data and motor evoked potential
(MEP) measurements, [2,18]. Some representative works will be presented in
order to clarify the importance of ML models for MS decision support. To start
with, [9]. In this paper the authors proposed a machine learning pipeline for
clinical questionnaires analysis which aimed at detecting MS disease course. In
particular, patient-reported outcomes (PRO) questionnaires were used in order
to capture the self-perception of the MS disease. Besides, in a recent work [16],
serum and CSF levels of forty-five cytokines were analyzed to identify MS diag-
nostic markers. Thus, cytokines were analyzed using multiplex immunoassay.
Analysis of variance-based parameters and Pearson correlation coefficient scores
were employed in order to utilize the appropriate input parameters for classifica-
tion purposes. In the same context, [1], text mining methods were introduced in
transcriptomic data analysis of multiple sclerosis disease for the first time. A com-
plete predictive model was developed by taking into consideration consecutive
transcriptomic data preprocessing procedures. Besides, the KmerFIDF method
was utilized as a feature extraction method and linear discriminant analysis for
dimensionality reduction. Additionally, in [17], a support vector machine (SVM)
method with tenfold validation performed on specific properties of patients’
blood, such as zinc, adiponectin, total radical-trapping antioxidant parameter
and, sulthydryl, in order to predict MS with high sensitivity, specificity, and
accuracy.
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There are also published works which are not strongly dependent on medical
data, but their analysis has been built from raw data such as gait disturbances
[17] or exhaled breath analysis [8]. In both of the former works, four classification
algorithms were employed in total: i) Logistic Regression (LR), ii) XGBoost
(XGB) iii) SVM and iv) artificial neural network (ANN) model in order to
analyze the imported raw data for MS prediction and classification purposes.
Noteworthy, classifications and predictions have been enhanced by including the
parameter of expanded disability status scale (EDSS), [14], which is a method of
quantifying disability in multiple sclerosis and tacking down the evolution of the
disability. Namely, it holds values from 0 (healthy person) to 10 (death). In this
context, all of the following indicative published works, [12,13,27] have adopted
the EDSS parameter as the target of their classification ML techniques. To this
end, a multitude of ML techniques has been utilized, such as Bayesian, random
decision trees as well as simple logistic-linear regression.

Apart from the EDSS parameter, there is a specific additional type of data
that improved the accuracy and sensitivity of ML models. Such type of data
is derived from MEP measurements, namely conducted measurements which
quantify the conductivity of the CNS. In [5,23], MEP measurements were carried
out and were further analyzed by random forests and linear regression classifiers.
To this end, the current study is based on MEP measurements and utilizes the
EDSS as a target parameter for the employed ML algorithms. The required
dataset regarding the MEP measurements has been derived from a recently
published paper, [24].

It is worth noting that the evaluation of a patient’s disability is a multi-
parameter medical process which is prone to EDSS miscalculation due to manual
errors, and it is time-consuming as well. Thus, the estimation of EDSS through
an automated analysis of a nervous system signal pulse, as suggested by the
current work, could accelerate all the procedures in terms of MS prognosis and
medical treatment.

The rest of the current research work is organized as follows: In Sect. 2, the
structure of the used dataset and the metadata regarding patients is presented.
The key features of the five employed machine learning models are described in
the next Sect. 3 while the analysis of the derived results is developed in Sect. 4.
Finally, the main conclusions and the proposal for future work are given in the
last section.

2 Description of Dataset

The dataset derived from the work of Yperman et al., [24], contains data regard-
ing electrical signals which have propagated through the NS and detected from
either hand or foot. In particular, the brain of each patient has been stimulated
through a magnetic stimulator and an external trigger system leading to the
creation of a signal pulse which propagates along the nervous system. Samples
of the resulting signal are detected, are stored and exported into a file. To be
more specific, 2000 time points in a time window of 100 ms determine the signal
shape. In total, the dataset includes information about:
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— metadata of patients (963 records) such as age, gender, time of hospital visit,
type of machine that conducted the measurements, teams that carried out
the MEP measurements, etc. For more information, see [24].

— MEP measurements (96290 records).

— EDSS values (7414 records) for specific patients.

As it has already been mentioned, the target of the ML techniques is the
EDSS value for each patient at the specific time of MEP measurement. To achieve
this, critical properties of the resulting signals should be taken into consideration
in order to be used as input parameters to the machine learning models. The
following table describes all the input parameters used for the development and
analysis of the suggested prediction model.

Table 1. Description of the utilized input parameters.

Input parameters

Description

Age Age of the patient

AnatomyAH AnatomyAH = 1 corresponds to the MEP hand measurement, while
AnatomyAH=0 corresponds to the MEP feet measurement

R R=1 corresponds to right(hand or foot), while R=0 corresponds to

left (hand or foot)

maximum peak

Maximum peak voltage of signal (mV)

FilterTrue

FilterTrue=1 corresponds that the machine has applied frequency
filter to the raw MEP measurements, while FilterTrue=0 means
that there was not any filter applied to the MEP measurement

Time minimum

The timepoint when the minimum peak occurs

half power max(min)

The width of the pulse when the maximum(minimum) peak occurs

Time maximum

The timepoint when the maximum peak occcured

time of first
local-0.25(0.5,0.75) min

The timepoint when a local peak obtains voltage > 0.25(0.5,0.75) of
the minimum peak

mean

Voltage average of the pulse

minimum peak

Minimum peak voltage of signal (mV)

delta time of first
local-0.25(0.5,0.75) min

Time difference between time of first local-0.25(0.5,0.75) and the
time minimum

Male

Male=1 corresponds to male, while Male=0 corresponds to female

delta time max min

Time difference between the times that maximum and minimum
occur

time of first
local-0.25(0.5,0.75) max

The timepoint when a local peak obtains voltage < 0.25(0.5,0.75) of
the maximum peak

Energy

The energy of the signal pulse calculated by fomo ™S U ()2 dt

std deviation

Standard deviation

TeamA TeamA=1 means that the group A conducted the MEP
measurement, while TeamA=0 corresponds to team B
MachineA MachineA=1 corresponds to the machine A that used to carry out

the MEP measurement, while MachineA=0 corresponds to machine
B

N min(max) local
0.25(0.5,0.75)

Number of minimum(maximum) locals when the peak voltage
corresponds to voltages of >(<)0.25(0.5,0.75) of
minimum(maximum) peaks
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3 Machine Learning Models

The following models for approximating Features-Target relationship have been
employed.

1. Linear Regression as a baseline model for the next ones.

2. Polynomial Regression. As it is necessary to select from a vast pool of poten-
tial nonlinear features along with their number, the ITSO [4] as well as PROS
[19] Optimization Algorithms for Feature Selection have been adopted, which
have also been found experimentally vastly efficient.

3. Gradient Boosting [7,10,22] with hyperparameter tuning. Particularly, the
grid search method with cross-validation has been utilized.

4. Random Forests [6], as implemented in [20]

5. Artificial Neural Networks [3].

For each model, the following computations are carried out:

— The accuracy among the Prediction and Target-variable for the Train and
Test Sets.

— FError analysis: Residual Errors vs Target diagrams, Probability Density Func-
tions, Cumulative Density Functions, for the Train and Test Sets as well.

The former approach is beneficial for detecting specific patterns occurring in
the prediction and, hence, enhancing the generalization capability and reliability
of the model.

4 Results

The application of the aforementioned ML techniques produced a vast amount of
constructive results which shed light on the MS disease. It should be highlighted,
that input parameter with high discrepancies or abrupt deviations of the signal
voltage magnitude in the time domain has been removed from the calculations.
In the same, context, all the spikes occurred at the beginning of the detected
pulse have been deleted. Figurel shows the pairwise correlations among the
input parameters. Particularly, we reform the correlation matrix, such that the
non-zero values are concentrated around the diagonal of the matrix. This is
performed with the CuthillMcKee Method [11,15]. This way, the clusters of
associated features are computationally identified.

4.1 Performance of ML Models

After an exhaustive search for the hyperparameters of the studied ML models,
we identified that RF and XGB exhibited the best performance (Figs. 2, 3). The
error metrics are depicted in Fig.4. Although the final models have adequate
accuracy, some errors occur, especially for lower values of EDSS. Hence we run
a data adequacy check (Fig.5), where it is demonstrated that the accuracy is
increased with the number of training samples.
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Fig. 1. CuthillMcKee representation of the input parameters, see Table 1. Note that
the x-axis label is exactly the same as that of y-axis. For the sake of readability, the x-
axis labels are described with numbers which correspond to specific input parameters,
as shown on the left side of the graph.

6 -
S
= o4r
L
K=}
()]
—
o
2 re
Ideal Correlation
——————— Ideal +10%
Ideal -10%
0 C 1 1 1 1 1
[0} 1 2 3 4 5 6
EDSS

Fig. 2. Target vs predicted EDSS derived from linear model.

4.2 Sensitivity Analysis

Finally, we run a sensitivity analysis of the input parameters with respect to the
target, by keeping all features constant to a particular value (median, 25% and
75% quantiles), and change the studied feature within its given values in the
initial dataset. Accordingly, we predict using each one of the models. Figures 6
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Fig. 3. Target vs predicted EDSS derived from XGBoost.
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Fig. 4. Error metrics for 5 machine learning methods implemented in the current anal-

ysis.

and 7 illustrate that the Anatomy AH, when it is equal to the unit, the EDSS
results in lower values. Furthermore, Figs. 8 and 10 depict an increasing pattern
of EDSS with respect to age.
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Fig. 8. Presentation of increasing pattern between the input parameter of age and
EDSS emerged from the RandomForests model.
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Fig. 10. Resentation of increasing pattern between the input parameter of age and
EDSS emerged from the XGBoost model.
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5 Conclusions

The present research analysis in concert with former descriptive Figs. 1-3 man-
ifest that the highest Pearson correlation was achieved through the implemen-
tation of XGBoost, reaching approximately 96% accuracy. On the contrary, the
lowest accuracy of 58% was obtained by the artificial neural network. Thus, the
most appropriate ML model to predict the value of EDSS from a propagating
signal on the nervous system is XGBoost.

One of the most critical conclusions drawn in the current MS analysis is
depicted in Fig.9 wherein the most effective input parameters of the prediction
model are presented. In particular, the age, gender, anatomyAH and maximum
peak are the prominent ones. Among the former significant input parameters
are also the energy, time difference of local peaks as well as the time points at
either local maximums or minimums occur.

Besides, the Pearson correlation follows an increasing linear trend along with
the increase of input training data, Fig. 5. Hence, the suggested prediction model
can be clarified as efficient and robust.

The early results of the current research work dictate its extension to the
prediction of the forthcoming evolution of EDSS for a certain MS patient. This is
of great importance as it will determine the most appropriate long-term medical
treatment to enhance the quality of patient’s life.
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