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Abstract. The paper submits a proposition of a new data analysis tool (named
PDCM – Probability Distribution generating and Clustering Maps) constructed
in the form of an extended neural map and dedicated to a variety of tasks, such
as specific clustering, visualization, prediction (together with its possible visual
analysis and justification) and generation of approximated Bayesian a posteriori
probability density distribution for dependent variable. Basic theoretical aspects
concerning the structure and training process of the proposed model have been
presented.Also, research involving application of the PDCMmethod for real estate
market data (Boston dataset) has been shown together with promising research
results and conclusions.
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1 Introduction

In data analysis and datamining processes, variousmodels can be constructed depending
on the goal of data processing. Frequently considered tasks concern:

a) data clustering – aimed to explain group structure of data patterns,
b) data visualization – in order to better understanding of (multidimensional) data sets,
c) prediction of values or classes of certain (dependent) variable for new patterns,
d) justification/explanation of such predictions.

These tasks (when performed on the same dataset for a given problem) are usually
executed by different and unrelated tools (dedicated to specific, separate kinds of issues),
what can make interpretation difficulties for a researcher or practitioner during data
analyses. For example, such diverse techniques as:

• k-means classifiers, hierarchical clustering methods, or Kohonen neural networks
(Self Organizing Maps - SOM) [8] are intended exclusively to clustering problems
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[28]; some of them are also equipped with visualisation capabilities (i.e. dendrograms
in hierarchical methods, or 2-dimensional groups presentation on a plane (map) in
case of Kohonen SOMs).

• all linear and nonlinear regression tools, and all machine learning regression tech-
niques (e.g. perceptrons, GRNN networks and others) are aimed to solve prediction
problems concerning forecasting/evaluation of real values of a dependent variable,

• all pattern classifiers (like decision trees, k-nearest neighbour method, naive Bayes
classifier, specific types of neural networks, etc.) are dedicated to assigning proper
class (from a previously approved finite set of classes) to a new (multidimensional)
pattern (vector of features).

In paper [16] Morajda and Paliwoda-Pękosz presented a concept of Self-Organizing
Prediction Map (SOPM) that is a kind of a neural map based on standard Kohonen SOM
network (see Sect. 2), and links (within one tool) all tasks a) b) c) d) listed above. The
SOPM model is described here in Sect. 3.

The main goal of present article is introducing a concept of another neural map –
an extension of SOPM, which apart from tasks a) b) c) d) generates the probability
distributions for predictions of dependent variables for new patterns. This new model
is named PDCM (from Probability Distribution generating and ClusteringMaps). The
idea of PDCM (as certain enhancement of SOPM) is presented in Sect. 4. Section 5
submits a research concerning application of proposed PDCM model in real estate data
analysis.

2 Neural Maps – Literature Background

Kohonen neural network, particularly Self-Organizing Map (SOM) was proposed by
T. Kohonen (see e.g. [8]) and has been accepted as a basic type of a neural map. In
general SOMs are devoted to solve clustering problems (i.e. identification of groups of
similar objects treated as multivariate vectors of features) with additional possibility of
visualization of recognized groups in the plane (2-dimensional map). They perform the
process of cluster analysis (patterns grouping) with the mapping of groups existing in
a multidimensional feature space onto a two-dimensional map (rectangular structure of
neurons in a plane), with maintaining topology of group distribution. Signals delivered
by neurons placed in the rectangular map can then be analysed numerically and can be
used for construction of graphs that visualize clusters arrangement.

Many publications report usefulness of these tools in various domains, e.g. in genet-
ics (gene data clustering [20]); chemistry (antioxidants classification in biodiesel [7]);
computer systems security (network intrusion detection [12]) and others.

A great many research works show usefulness of SOMs in management (e.g. in
decision-support processes) and in business/economic data analysis. Such applications
may particularly concern: business failure prediction [27], city infrastructure manage-
ment [10], waste management [21], company performance analysis and clustering of
companies [3], technological processes designing [25], analysis of social media with
utilization in tourism businesses [9], generating of transaction strategies in financial
markets [15], identification of bank risk profiles and failure prediction [24], detection of
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tax evasion [1], protected area management [5], water resources management [2, 22],
corporate behaviours analysis [6], and others.

Numerous modifications of original SOM networks have been proposed in litera-
ture, let us show here only a small sample of various published postulates: a structure
composed of many hierarchically (layered) SOMmaps, named HSOM, was proposed in
[19], the SOM model, in which the coordinates of neurons on the map are not constant,
but are subject to dynamic changes during the learning process, was proposed in [14];
multilayer, hierarchical neural architectures based on Kohonen networks implementing
clustering, used to recognize certain types of images were proposed in [11]. A good
review of various variants of SOM has been presented by Moshou in monography [18].

3 Self-Organizing Prediction Maps (SOPM)

Original SOMmodel and its derivative tools, dedicated to clustering and its visualization,
are usually not applicable in prediction problems. In turn, prediction neural networks
are not equipped with explanation and/or visualization capabilities. A certain solution
to these problems is the concept of Self-Organizing Prediction Map (SOPM) – as a
modificationofSOMs–proposedbyMorajda andPaliwoda-Pękosz in paper [16] (certain
modifications of SOPM, called FLOPM, has also been submitted by the same authors
in [17]). SOPMs enable:

• clustering of available (used formodel training) patterns (features vectors)with special
respect to a selected feature of special meaning (denoted here by χ)

• visualization of clustering results in the special map,
• making predictions of the special feature χ for new patterns, together with numerical
and visual analysis of these predictions.

The basic assumption for SOPM is that a selected variable χ (one of features xi
describing each pattern included into a dataset undergoing analysis) has a special (key)
meaning in a datamining process or is accepted as a dependent variable in prediction task.
In clustering of patterns froma given dataset, the research inquiry can involve recognition
and visualization of clusters’ arrangement with separate, particular consideration of
variableχ. Consequently in SOPMmodels, the idea ofmodification (in relation to SOM)
of the projection between the multidimensional feature space (the analysed patterns are
positioned in) and set of neurons placed in a rectangular XY map, relies on following
rules (see Fig. 1):

a) the key variable χ is projected only on the coordinate Y,
b) other variables (features) xj (j= 1, 2,…, n; xj �=χ) aremapped only on the coordinate

X.

The projection is realized by a special training algorithm using analysed dataset.
If the variable χ is qualitative and expressed on the ordinal scale with finite set of

ordered values, then the projectionχ ontoY according to the rule a) is simple: subsequent
rows in the SOPM map represent subsequent ordered values of χ (number of rows is
equal to number of χ values).
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Fig. 1. Scheme of mapping of a multidimensional feature space onto the rectangular layer of
neurons in SOPM model (small circles represent positions of neurons in the map). Source: [16]

Let us now assume that variable χ is continuous, i.e. takes real values from certain
range D ⊂ �. Let N denotes the number of rows of neurons in SOPM. The projection χ

onto Y is then executed as follows:

• all values of χ from training dataset are sorted into an ascending sequence, which
then is cut into N equally numerous subsequences,

• each subsequence determines certain range Ri (i = 1, 2,…, N) of χ values, so that for
any i each value from Ri is not greater than any value from Ri+1, and R1 ∪ R2 ∪… ∪
RN = D,

• ranges Ri (i = 1, 2,…, N) are assigned to subsequent rows of SOPM, in turn these
rows have numerical coordinates yi (i = 1, 2,…, N) on Y axis, where yi is the centre
of Ri,

• consequently each value of variable χ can be assigned to a certain row (range Ri) and
finally projected to respective value yi.

The proposed training algorithm of SOPM is a simple modification of well-known
SOM training procedure (see e.g. [8]), adjusted to the abovementioned concept of SOPM
data mapping as follows:
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Step 1. Consider a set {(xp, χp), p = 1, 2, …, J} as a training dataset (representing
analysed phenomenon), where xp is a vector of features (variables) �= χp
Step 2. p ← 1
Step 3. Deliver xp to the SOPM input; find the row of neurons corresponding to χp
Step 4. In the selected row find a neuron generating the lowest signal (as a distance
between xi and neuron’s weight vector w) and approve it as a winning neuron np
Step 5. In the SOPM output map determine the neighbourhood for (around) np
Step 6. Adjust weights w (by adding �w to w) for all neurons from this neighbourhood
according to the rule:

�w = η · s(nm) · (xp − w) (1)

where η is a learning coefficient (0 < η < 1), and s(nm), where 0 < s(nm) ≤ 1 and s(np)
= 1, is the value of neighbourhood function for a being trained neuron nm belonging to
the determined neighbourhood of np
Step 7. p ← p + 1; if p ≤ J go to step 3, otherwise go to step 8
Step 8. If the end-of-training condition is not fulfilled go to step 2, otherwise stop.

It should be noted thatmain and crucial difference between SOPM training algorithm
and the classical training procedure for Kohonen’s SOM relies on constraint of selection
the winning neuron (and then its neighbourhood) from strictly selected row of map
neurons, i.e. the row corresponding to the current value of χp. It should also be noted
that a classic SOM training algorithm is fully unsupervised, but in SOPM this procedure
is mixed: supervised as regards the key variable χ, and unsupervised with respect to all
other features (see [16] for details).

Fig. 2. Interpretation of SOPM maps (small circles represent particular neurons distributed in
a rectangular map). a) Hypothetical effect of clustering process (indicated groups of neurons
represent multidimensional clusters of patterns). b) Utilisation of a trained model in prediction of
χ variable for a new pattern (explanation in text).

After completing the training algorithm, each pattern from the analysed dataset is
assigned to a certain neuron in the output map of SOPM – it is the finally winning
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neuron (see Step 4) for the given pattern. Consequently, particular neurons “collect”
assigned patterns, then groups of such neighbouring neurons in the map, having large
“collections” of patterns, represent corresponding clusters of objects placed in multi-
dimensional feature space (see hypothetical example in Fig. 2a). However, in case of
SOPMs, such a clustering is executed also with respect to special variable χ projected
onto a separate (vertical) axis in the map of neurons.

Apart from such special clustering and its visualization, a trained SOPM can also
be utilised for prediction of χ variable for new patterns (see example in Fig. 2b)).
After delivering input vector x of a new pattern to the model input, a winning neuron
(i.e. generating the lowest signal) out of the whole map is being found (black circle in
Fig. 2b)). The coordinate yp of the row it belongs to (dotted line in Fig. 2b)) is a predicted
value of χ for this pattern. Moreover, if a winning neuron belongs to a certain previously
identified group, the considered pattern can be assigned to the corresponding cluster of
objects. It delivers additional information that better explains the prediction result. Also,
further fine-tuned prediction process applied only to the identified cluster (with use of
other methods) is possible.

Additionally, numerical (or graphical) analysis of signals from a neighbourhood of
winning neuron can (informally) show uncertainty of the prediction: if the winning neu-
ron is distinctly identified then the uncertainty is lower, however if there are many neigh-
bouring neurons (belonging to many rows) generating similar signals – the uncertainty
of the prediction is higher.

4 Proposition of PDCM Neural Map as an Extended Version
of SOPM, Enabling Probabilistic Prediction

This section presents the concept of modification (expansion) of the SOPM method,
named PDCM, which (preserving all SOPM capabilities) allows additionally genera-
tion of a posteriori probability distribution (in the Bayesian sense) for the value of the
predicted variable χ.

4.1 Approximation of the Probability Distribution by Machine Learning Models

Let us consider any machine learning model designed to solve the classification problem
and trained:

• by minimisation of SSE (sum of squared errors):

SSE = 1

2

∑

p

∑

i

(θ
(p)
i − y(p)

i )2 (2)

where: yi(p) – signal of i-th output neuron for p-th training pattern,
θ i

(p) – desired training value of i-th output neuron (related to i-th class) for p-th
learning pattern.
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• using training output (desirable) values as 1 an 0 as follows:

θ
(p)
i =

{
1 if i indicates correct class for pth pattern
0 otherwise

(3)

Ruck et al. in [26] showed that a multilayer perceptron (or other supervised machine
learning model - there are no formal limitations to its structure) designed to solve the
classification problem and trained according to postulates (2) and (3), approximates the
Bayesian optimal discriminant function. Moreover it was shown that the output signals
yi of such a model approximate (in the sense of minimisation of SSE) the Bayesian a
posteriori probabilities of belonging of the input vector x to particular classes, i.e.:

yi(x) ≈ P(ωi|x) for outputs (classes) i = 1, 2, . . . ,N (4)

where ωi denotes i-th class.
If a predicted output variableχ is continuous, i.e. takes real values, a given classωi is

related to a specific range Ri of the variable χ (see Sect. 3). Then the set of all outputs yi
(i = 1, 2,…, N) can be used to approximate the entire conditional Bayesian probability
density distribution (a posteriori) for the predicted variable χ (under the condition that
the vector x has appeared). However, in order to approximate the probability distribution
for χ, it is necessary to scale the yi signals linearly. The scaling factor depends on the
length of the range D (D is the set of all χ values, D = R1 ∪ R2 ∪… ∪ RN ) and on the
value N; this scaling should ensure that the area under the probability distribution graph
(i.e. total probability) is equal to 1. This condition can be written as:

lim
N→∞

N∑

i=1

(λ · yi)χmax − χmin

N
= 1, (5)

where: λ – scaling factor (multiplier of yi signals),
χmin, χmax – limits of range D.

As
N∑
i=1

P(ωi|x) = 1, and consequently
N∑
i=1

yi = 1 (with exact approximation (4)),

condition (5) becomes fulfilled (independently from value N) for scaling factor:

λ = N

χmax − χmin
. (6)

It should be noted that despite theoretical considerations, in machine learning prac-
tice many elements can influence accuracy of approximation (4). For example model
architecture, training parameters, selection of patterns in training set or (here) accepted
number N of ranges Ri may have significant impact on this accuracy.

4.2 Main Assumptions of the PDCM Model as a Modified SOPM Network

In order to adopt the SOPMmodel to additional task of creating probability distribution
for undergoing prediction variable χ, the structure of the model should be expanded
with a new layer of nodes that generate output signals yi (i = 1, 2,…, N) approximating
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probabilities according to (4), see Fig. 3. During the training stage, desirable signals for
these nodes are 0 or 1 according to (3). Each node aggregates signals from map neurons
belonging to a certain map row representing given range Ri of the variable χ. There
are no weights assigned to connections between middle layer and output layer (such
connections are shown – for clarity reasons – only for the first and last rows in Fig. 3).

Fig. 3. Postulated structure of PDCM network.

Firstly, let us consider signals generating by neurons of middle layer (map). So far,
in SOPM, this signals represented (for a given input vector x) values of d = x – w , i.e.
distance between x and neuron weight vector w. Now let us introduce an exponential
activation function for these neurons, so that they generate signals:

yik = e−d = e−‖x−w‖ (7)

where i, k are coordinates of the neuron in the map.
In PDCM model, signals (7) from all neurons belonging to a given i-th map row

(corresponding to a range Ri, i = 1, 2,…, N) are aggregated by an output node (see
Fig. 3) to an output signal yi according to the postulated formula:

yi = K
√
yi1 · yi2 · . . . · yiK = (yi1 · yi2 · . . . · yiK )

1
K (8)

where K is the number of neurons in the row (horizontal size of the map).

4.3 Proposed Training Procedure of PDCM

As in the SOPM model, the training of PDCM network is dual: supervised due to the
key variable χ (which is dependent variable in estimation and forecasting problems),
and unsupervised due to other variables. This approach enables (as in SOPMs) the
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implementation of the clustering process (cluster analysis) in the feature map along
with its visualization, and solving the problem of estimating (predicting) the variable
χ. However, while in the case of SOPM, the supervision relies only on indicating the
appropriate row of the map (corresponding to the value of χ for a considered pattern
x), in the PDCM model, similarly to classic supervised neural networks, desired output
signals θ (according to rule (3)) must be given for all nodes of output layer.

Let us note that due to specific character of connections between middle layer and
output layer of PDCM (Fig. 3), and assuming (at first) no relations between rows (no
neighbourhood at all) in themap, it is possible to consider separatelyN parts of thewhole
model (each containing one – i-th – row of the map and one corresponding output node);
let us name such i-th part of the model by PDCMi (i = 1, 2,…, N), (the neighbourhood
aspect during the training stage of whole PDCM model will be considered later in
Subsect. 4.4).

Below, a single step of PDCMi training for p-th training pattern xp is presented
(indexes i and p are then omitted due to better clarity). The minimized error function
(2), denoted here by E, is now given by formula:

E(W) = 1

2
(θ − y)2 = 1

2
δ2 (9)

where: δ = θ − y denotes output error value for a given (p-th) pattern
W denotes the vector of all weights of PDCMi.
The training procedure (based on classic backpropagation algorithm) aim to

minimize function (9) using desired output signals θ determined according to rule (3).
Let wk (k = 1, 2, …, K) denotes weight vector of k-th neuron of PDCMi – on the

whole PDCM map it is the neuron having coordinates (i, k). A formula describing one
step of adjusting weights wk (by a correction vector �wk), based on steepest gradient
method (used also in classic backpropagation algorithm), is given by equation:

�wk = η · (−∇E(wk)) (k = 1, 2, . . . ,K) (10)

where: ∇E(wk) is a part (relating to wk) of gradient of error function (2) in point wk ,
η is a value of training coefficient, 0 < η < 1.
Now the problem of specifying the training algorithm for the PDCM network (as

a modification of the error backpropagation algorithm in the version with independent
weight correction for each training pattern) relies on finding the vectors ∇E(wk). As:

∇E(wk) = ∂E(W)

∂wk
= ∂E(W)

∂y
· ∂y

∂yk
· ∂yk
∂wk

(11)

then, considering dependencies (7), (8) and (9) we obtain (note that for clarity reasons
the index i has been omitted everywhere, particularly for y, yk and wk):

∇E(wk) = −δ
1

K
(y1 · y2 · . . . · yK )

1
K −1 · y1 · y2 · . . . · yK

yk
· e−d ·

(
− ∂d

∂wk

)
(12)

and, after simplification, taking again into consideration (7) and (8):

∇E(wk) = 1

K
δ · y ·

(
∂d

∂wk

)
. (13)
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Assuming the Euclidean metric to determine the distance in the weights space, the
distance d = x – wk is expressed by:

d =
√∑

j

(xj − wjk)
2 (14)

where j is the index for all subsequent elements of vectors x and wk .
Now, assuming that d �= 0, we obtain

∂d

∂wjk
= 1

2d
2 · (xj − wjk) · (−1) (15)

and then, after applying it in (13), the gradient is determined as

∇E(wk) = − 1

K
δ · y · x − wk

‖x − wk‖ (16)

Finally, considering (10) and (16), the one-step weight correction vector �wk , is
determined as:

�wk = 1

K
η · δ · y · x − wk

‖x − wk‖ (k = 1, 2, . . . ,K). (17)

It should be noted that the last factor in Eq. (17) represents a unit-length vector
directed from the point wk towards the point x. The direction determined in this way
is the direction of the entire weight correction vector �wk (anyway its orientation and
length may vary and depend on other factors in (17)).

Such training steps are repeated for all training patterns from a considered dataset.

4.4 Generalized Training Procedure Taking into Account Neighbourhood
Aspects

Following the methodology of training SOM and SOPM networks, let us now consider –
for the PDCMnetwork – the possibility of introducing the idea of neighbourhood and the
related principle of similar method of training for topologically adjacent map neurons
in middle layer (mapping adjacent areas of the feature space).

For a single PDCMi network (i = 1, 2,…, N) the neighbourhood concept involves
the requirement to differentiate the lengths of weight correction vectors �wk for k = 1,
2, …, K (both when the considered PDCMi contains a winning neuron and when it does
not). Then the training rule (17) should be modified as follows:

�wk = ak
1

K
η · δ · y · x − wk

‖x − wk‖ (k = 1, 2, . . . ,K), (18)

where ak are neighbourhood coefficients (values of a neighbourhood function s)
responsible for differentiating lengths of vectors �wk .
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Certain theoretical analyses executed by author has led to the conclusion that for a
single PDCMi network the dependency:

K∑

k=1

ak = K (19)

should be ensured.
Considering now the neighbourhood aspect for the whole PDCM during the training

stage (i.e. the essential aspect for ensuring a proper organization of the map – PDCM
middle layer – in order to perform clustering process), there is a need for introducing a
certain neighbourhood function s, like in models SOM and SOPM. Here, the function s
should be responsible for determining the neighbourhood coefficients ak for all neurons
in the map, during a given training step. The „centre” of function s is always the winning
neuron, selected separately for each training pattern exactly according to rules accepted
in SOPM (see Sect. 3). However in PDCM, the neighbourhood function s should addi-
tionally take into account the rule (3) and Eq. (19). Optimal selection of function s is
the matter of on-going experiments, current results of such exploratory analyses were
implemented by author in researches shown in next section.

The definition of learning rule (formula (18)) for PDCM network, supplemented
by approving a method of determining the neighbourhood coefficients ensuring the
implementation of the pattern grouping process, allows creation the network training
algorithm. The algorithm has been implemented in form a computer program written by
the author in C++, which is the basis for the research discussed in the next section.

5 Application of the PDCM Model in Real Estate Market Analysis

Below, results of application of the PDCM model in the issue of real estate value esti-
mation are presented. A Boston housing dataset, available in the UCI ML Repository
(https://archive.ics.uci.edu/ml/machine-learning-databases/housing/), has been used in
presented research. This set has been often exploited in many researches concerning
clustering or regression problems (see e.g. [4, 13, 23]).

The Boston dataset contains 506 patterns described by 14 numeric variables. The
dependent feature χ represents the median of the estate prices in the given census area
(MEDV). The remaining 13 variables describe certain features influencing real estate
values and, after standardisation, constitute the input vector to PDCM. Six observations
out of 506 (their numbers in the original Boston dataset are: 48, 137, 197, 314, 435,
457) were selected randomly for ultimate testing (creating the test set); the remaining
500 patterns create the training set.

The following PDCM model parameters were adopted:

• number of training epochs (presentations of whole training set): 300,
• PDCM map dimensions: X axis – 10 (K = 10), Y axis – 20 (N = 20),
• each range R1, R2,…, RN contains 25 values of χ, taken from the training set,
• the rule (18) has been adopted for model training,
• training coefficient η has decreased linearly during the training from 0.7 to 0.07

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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• initial weights for map neurons were selected randomly from range [−1.5, 1.5].

The effect of clustering, expressed by the numbers of training patterns x assigned
to particular neurons of the map (middle layer) of the PDCM network, is presented in
tabular and graphical form in Fig. 4 (note also a relation to Fig. 2a)).

Fig. 4. Clustering results of the Boston real estate dataset

Analysis of clustering results (Fig. 4) shows the tendency to create clusters of training
patterns assigned to the topologically adjacent PDCM map neurons. This method also
allows (like SOPM) the identification of clusters with respect to values of a particular
feature (variable χ – here median of the estate prices MEDV).

The PDCMmethod also (like SOPM) allows, for a given new pattern, determining a
prediction value of variable χ (along with a visual or numerical informal assessment of
prediction uncertainty), based on identification of winning neuron (and signal analysis
of adjacent neurons). However in PDCM (contrary to SOPM) it is additionally possible
to generate (approximate) formal a posteriori probability density distribution for the
predicted (estimated) variable χ – this property is a key functional feature of this model.
The results of testing the PDCM network in the real estate valuation process for six test
cases are presented below.

Figure 5 shows graphically output signals generated according to formula (7) by neu-
rons of the PDCM map (middle layer) in response to selected (exemplary) test patterns
1 and 3. The darker area in the graph, the stronger neuron’s signal. The winning neuron
(generating the highest signal – see formula (7), and indicating the point prediction of χ

for a given pattern) is placed in the black area. For the test pattern 1 the prediction value
is 18.7, for the test pattern 3 the prediction is 32.9.
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Fig. 5. Output signals of map neurons for two selected test pattern 1 and 3

The testing effects (based on point predictions generated bywinning – i.e. generating
the strongest signal – neuron) for all six testing patterns are presented in Table 1. The
mean absolute error in estimating the MEDV value for the test set is 1.55, what (for this
specific dataset) should be appointed as a good result.

Table 1. Testing results (based on point predictions) for all six testing patterns

Test pattern Actual values Predicted values Absolute error

MEDV Range Ri MEDV Range Ri MEDV Range Ri

1 16.6 5 18.7 7 2.1 2

2 17.4 6 17.7 6 0.3 0

3 33.3 18 32.9 18 0.4 0

4 21.6 11 23.1 13 1.5 2

5 11.7 2 14.7 4 3.0 2

6 12.7 2 14.7 4 2.0 2

Figure 6 show the graphs of estimated probability density distributions for MEDV
for six test patterns. These distributions have been approximated on the basis of signals
generated by output nodes (output layer) of the PDCMmodel, according to formula (4).
Black triangular mark on the horizontal axis shows the actual value of the MEDV.
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Fig. 6. Approximated probability density distributions for MEDV for six test patterns

It should be noted that apart from above mentioned possibilities of data analyses
performed by proposed PDCM model, next data exploration options, based on further
investigation in signals of all map neurons, are delivered by this method. For example,
for the test pattern 3, a fairly large area of strong signals can be identified at the top
of PDCM map (see Fig. 5); this fact is also confirmed by the shape of the probability
density function (Fig. 6, pattern 3). The neuron generating the strongest signal in this
area (the winning neuron) with coordinates: X = 10, Y = 18 (column = 10, MEDV
= 32.9) collects 10 training patterns assigned to it (see table in Fig. 4, bold number
10). These 10 cases may constitute (for a real estate market analyst) a comparative base
helpful in additional justification of the estate price estimation.

6 Conclusions

The paper submits a concept of newneural tool PDCM, dedicated to relativelywide range
of data analysis and data exploration tasks, i.e. special clustering, clusters’ visualization,
dependent variable prediction (togetherwith its possible visual analysis and justification)
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and probabilistic prediction on the basis of approximations of a posteriori probability
density distribution. Basic theoretical considerations concerning the proposed model
have been shown. Also, the presented analyses of application of the PDCM model for
the real estate market data indicate the significant effectiveness of this tool and quite rich
possibilities of this method in data mining.

However, much future research should yet be done; especially desirable analyses
should concern selection of: PDCM parameters (e.g. map dimensions), coefficients used
in training algorithm and shape of neighbourhood function (neighbourhood coefficients).
Also, testing the model with use of other datasets will be beneficial.
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