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Abstract. Fake news is information usually used to mislead, manipu-
late or disinform while reaching a certain audience and going viral in
rather a short period. Currently it started to be the bigger and bigger
problem in Internet, mass media and in everyday life. The pervasive and
wide-spreading effect of fake news content is becoming a serious con-
cern of our era. Considering the emergent need for research in this area,
our work aims to observe, analyse and propose a solution to the fake
news topic. This work presents an Internet browser extension, aiming to
notify the user regarding the credibility of the information and carrying
out fake news detection. The system as an extension is designed using
JavaScript environment, cloud function configured on Google Cloud plat-
form while using Neural Network Model based on TensorFlow library for
predictions process on the credibility of the content. The paper also dis-
cusses and presents approaches and models on fake news detection, and
subsequently security issues on the system’s functionality.

Keywords: fake news detection · cloud computing · browser plugin ·
prediction of text · neural networks

1 Introduction

Fake news is information usually used to mislead, manipulate or disinform while
reaching a certain audience and going viral in rather a short period. It is almost
certain that the spread of fake news has had a grave impact on social cohesion,
democratic processes and most of all has raised serious concerns among different
entities.

In the midst of the great challenge of identifying, analysing, and under-
standing this phenomenon and many underlying processes, there have been pro-
posed and developed many different approaches and techniques. Although these
approaches differ in the choice of algorithmic techniques and adaptation, still
there is a common share of techniques in the methodology and deployment [1].

With the recent developments in technology and the internet advances, false
information is easier to create, share and spread, making it more complicated
to correctly distinguish it from true information. Such news are published on
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specialized websites, social media platforms or even as podcasts. The multi-
modal nature of fake news is making the detection process even more challeng-
ing, though it has shown more evidence of the happening of news events and
presenting new opportunities to detect features in fake news [2].

Every day, approximately 1.93 billion of people are exposed to information
on the leading social media platform. The most recent example of this is the
COVID-19 pandemic – almost 80% of consumers in the United States reported
having seen fake news on the coronavirus outbreak, highlighting the extent of
this issue and the reach fake news can achieve [3].

False information is ubiquitous, and millions of people can be misled in a
matter of seconds. Under the commonness of the problem and the number of
people it affects, our work aimed to find an appropriate solution that will help
people assess information easily. As a result, we proposed a detection system as
a browser extension that gets the content of a currently viewed article, sends it
to the cloud function, to determine the veracity of the content, and returns the
answer in the form of the browser alert.

This solution was intended to be quick, simple, and reliable. The fake news
detector in the form of the browser extension provides simplicity, as it requires
only a click in the extension to launch the fake news detector. The process
of assessing the article content and receiving an outcome takes approximately
ten seconds, a feature that needs further enhancement. The reliability of the
accuracy of the model used to evaluate the content of the articles reached up to
99%. The fake news detector serves its purpose, providing the user with a short
and comprehensible response.

This paper presents the proposal of browser extension for fake news and
disinformation detection, analysing the aspects regarding the implementation,
design, deployment in the cloud, libraries, algorithms, classification and data
processing. The paper is structured as follows: Sect. 2 presents the related work in
the field, the existing solutions and the innovations available. Section 3 describes
the methodology, basic architecture and model’s design. Section 4 deals with the
cloud deployment while Sect. 5 showcases the plugin, evaluation and results.

2 Related Works

Research was carried out to learn about the current state of the art, existing
methods, and research productivity. In general, the literature and existing solu-
tions revolve around the use of Machine Learning and Neural Networks use in
fake news detection.

Machine learning as a method concerns ways of finding patterns in data
and using it to make estimations [4]. With the help of advanced algorithms
in the learning process, it is possible to create models used to classify data
provided by the user as fake or not. In the study [5] about the use of machine
learning approaches in fake news detection, several algorithms and techniques
were analysed and compared. According to the report, among algorithms such as
XGboost, Random Forests, Naive Bayes, K-Nearest Neighbours (KNN), Decision
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Tree, and SVM, the highest accuracy was obtained with XGboost algorithm,
which was higher than 75%.

Neural networks, on the other hand, inspired by the human brain structure
might be described as a web of interconnected entities, each of them responsible
for a simple computation [6]. Furthermore, there are many possible implemen-
tation methods for machine learning and neural networks, for which Python
language provides developers with one of the most popular environments. Some
of the most commonly known libraries in Python include Scikit-learn, Pandas
and TensorFlow.

Existing solutions as a browser extension for fake news detection include
Check-it [1], FakerFact [7], BRENDA [8], TrustedNews [9], The Factual [10]. A
significant advantage of the last two solutions is that apart from simple news
verification they also display objectivity and credibility expressed as a percent-
age. Nevertheless, in the case of The Factual [10], it was noted that the browser
extension often crashes while opening, perceiving also not proper functionality.
Furthermore, browser extensions such as The Factual, TrustedTimes and Faker-
Fact, although claimed to support automated fact-checking and being listed in
the Google extension store, there is no available documentation of the models
used. Moreover, it was not found to have any system which can narrow down
the claim within the article using fact-checkworthiness detection and use that
claim to detect fake news.

However, BRENDA [8] solution as a browser extension for fake news detection
provides many feature evidence at the both-word level and the sentence level.
It follows a client-server architecture and has a frontend and backend module,
where the frontend is a browser extension and the backend is a python Flask
server. This way as a solution, it stands out compared to the above-mentioned
solutions.

Check-it [1], on the other hand, effectively combines a set of diverse signals
as a form of the pipeline, to accurately classify fake news articles and inform
the user, while ensuring user’s privacy and easy experience. The system con-
tains four main components, including matching, similarity checking and com-
paring, analysing user behaviour in social networks, and classifying linguistic
features using different feature engineering processes [1]. Furthermore, most of
the works above employ server-side APIs with constant communication, uti-
lize HTTP cookies, request permissions, and require account registration. These
actions are taken to have better results and higher accuracy in identifying fake
news but may also have a negative impact making users reluctant in using it
on browsing routine. Considering everything above, it was decided on browser
extension, using the Neural Networks approach. The verification module is imple-
mented with the use of Python language and libraries Pandas and TensorFlow.

3 Proposed Fake News and Disinformation Detection
Solution

Aiming to tackle the issue of fake news and disinformation detection, this paper
presents the proposal of the system on article veracity, that consists of three
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main components. The browser extension extracts the article content from the
HTML file, sends it as a request to the cloud computing system, after receiving
a result, it displays to the user the information on article authenticity.

Secondly, the classifying model based on Neural Networks – a trained model
that makes predictions on article authenticity based on the parameters put to
the model by cloud function. The parameters were obtained in the process of
pre-defined data set analysis, whereas Google cloud as a serverless environment
reacts to the request sent by the browser extension. In a request, it receives an
article content that is passed by the function to the loaded model, and finally,
the obtained result is returned from the cloud to the user through the extension.

The proposed solution aims to significantly improve the quality of articles and
information that are served to the reader, and this way hinders the fake news
spread and dissemination of information. Building the insights of the system,
different tools were engaged to reach the objective of veracity and credibility of
the content. For the data analysis stage, the pre-processing phase, using Google
Cloud Platform through all the available tools and libraries, engaged libraries
such as Pandas and Scikit-learn. For the machine learning model, optimized
we choose TensorFlow to create and train neural networks, hence carried out by
Tensorboard library for visualization of learning outcomes. Finally, JavaScript for
the plug-in and google cloud employs serverless code calling and parallelization.

To make it possible for the end-user to have a quick warning regarding the
content credibility of the article, a browser plug-in was seen as an apt solution.
Thus, it is proposed the plug-in acting as a client, whereas the entire classi-
fication procedure takes place on the server, namely cloud service supporting
parallelization. The classification itself contains artificial intelligence tools car-
rying out the process based on the obtained data. There are three main files,
consisting of manifest.json, background.js and content.js Manifest.

Manifest.json contains important information such as permissions that exten-
sion needs, description, or background files which consist of actions it performs.
In this case, permissions to access the active tab and scripting were granted.
Background.js contains a function that listens for click on the extension’s icon
and runs the content.js file. Content.js is the longest file that consists of an
HTML parser, function sending a POST request to the server, and function
retrieving content from the opened tab. The GET function is responsible for
retrieving the webpage in the form of the HTML code utilizing HTTP GET
requests. While HTML parser retrieved from the currently opened webpage
needs to be parsed, allowing only the relevant article text to be sent to the
model. Meanwhile, the POST function sends the data to the server as an HTTP
POST request and returns a response from the server, which indicates whether
the data sent was assessed as fake or not.

To do so an attempt is made to find a <article> tag, and its textual contents
then are read. The text is parsed so that all the tags like <div>, <p> or <a>
as well as their attributes are removed. The text afterward is formatted, so that
all whitespaces are deleted, and the text looks like an article genuinely written
and is ready to be sent to the model.
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Figure 1 presents the components of the overall system. The plugin acting
as a client, allows the whole classification to take place in the server. The client
component contains three elements: the browser extension, HTML sender an the
receiver allowing the feedback from the server. The architecture focuses largely
on the server side, including HTML receiver, data extractor, Fake News detector
and decision sender. The data extractor, responsible for the feature extraction
process, described above, produces the list of fake articles propagator. The clas-
sifier then, with the data extracted from the dataset using the feature process,
permits for the final step on the detection of the news through the processes on
the detector. Finally, the model was saved with .tf extension for later usage.

Fig. 1. System’s architecture for fake detection.

4 Dataset and the Pre-processing of the Data

The whole system was tested on the primary dataset using a collection of news
articles obtained from the open Machine Learning Repository Kaggle [11]. The
data obtained from the Kaggle platform was split into two files: True.csv and
Fake.csv. The dataset that is used is a public fake and real news dataset. The
dataset is split into two parts: real news or fake news, almost perfectly balanced
with around 20000 real and fake articles respectively. It includes features such
as title, content, type of the article and publication date (Table 1).

Table 1. Data extraction features

No. Attribute Type Description

1 Title Text Indicates the title of the Article

2 Content Text Indicates the content of the Article

3 Publication date Date Indicates the date the article was published

4 Label Text Indicates the Article labeled as Fake or True
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The title indicates the title of the article. The content is the body of the
article. The subject shows which type of news the article belongs to. Lastly,
the date shows the publication date of the article. Considering that the network
must analyse all the input text, the article should be split into smaller elements.
Such an approach generally increases the speed of data processing and first and
foremost, increases the accuracy of predictions [12]. The data is split into words
mainly because such a technique is highly effective, considering that it is needed
to trace and save the context for every word in the text (Table 2):

def fetch_data():
true_news=pd.read_csv(os.path.join(’True.

csv’))
fake_news=pd.read_csv(os.path.join(’Fake.

csv’))
return true_news, fake_news

true_news, fake_news=fetch_data()
%tensorflow_version 2.x
import tensorflow as tf

Table 2. Overview and comparison with the existing solutions

Solution Approach used Type output Accuracy

FakerFact Deep Learning Assessment/Credibility score 66%

BRENDA Deep neural network Claim and User Feedback False/True to 86%

TrustedNews [13] Machine Learning Objectivity score 73%

Check-it Deep Neural Network Classification Fake/True to 90%

In the proposed solution, we use a special blacklist of words from the natural
language toolkit (nltk) library, which makes it possible to exclude the preposi-
tions and words without a high semantic load [13]. Having defined fetch data
function with the use of Pandas library it was possible to store data with data-
frame objects. For the data pre-processing it was necessary to label positive
samples and negative samples, then merge the title with the article content and
drop irrelevant data:

def reorganize_data(true_news,fake_news):
fake_news[’label’]=0
true_news[’label’]=1
dataset=pd.concat([ true_news,fake_news])
dataset[’text’] = dataset[’title’] + " " +

dataset[’text’]
dataset = dataset.drop([’title’, ’subject’,

’date’], axis=1)
import sklearn
from sklearn.model_selection import
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train_test_split
x_train,x_test,y_train,y_test =

train_test_split(dataset[’text’],
dataset[’label’],test_size=0.2,
ran-dom_state = 1)

return x_train,x_test,y_train,y_test

Positive and negative samples were merged into one dataframe object, and
then split into training and validation sets. Functions provided by scikit-learn
library allowed to shuffle the data and split with a given size of the validation
set, namely 20%. To input, this data to the TensorFlow neural network, it is
needed to get data converted to python list objects. The main reason to use
Neural Network as a text classifier is the huge flexibility and possibility to link
with external architectures [15]:

import tensorflow_hub as hub
embedding = "https://tfhub.dev/google/

nnlm-en-dim50/2"
hub_layer = hub.KerasLayer(embedding,

input_shape=[],
dtype=tf.string, trainable=True)
model = tf.keras.Sequential()
model.add(hub_layer)
model.add(tf.keras.layers.Dense(16,

activation=’relu’))
model.add(tf.keras.layers.Dense(1))

The model uses nnlm-en-dim50, a pre-trained neural network managing the
embedding and tokenizing data. Except for the embedding layer, it contains
one more hidden layer and an output layer with a softmax activation function
(Fig. 2).

Fig. 2. The model of pre-trained neural network.
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The model was trained with four epochs considering that a longer weight
update was not necessary. For the visualization of the learning process, Ten-
sorboard was employed, and after one epoch, the model achieved almost its
maximum accuracy (Fig. 3).

Fig. 3. Accuracy and F1-score of trained neural network model.

After three epochs the model reached significant results for the training and
validation set (Table 3).

This signifies that clear separation can be observed between positive and neg-
ative samples and the architecture is adapted to the classification requirements.

Table 3. Accuracy and F1-score results of trained neural network model

Training Set Validation Set

Accuracy 100% 99.9%

F1-score 99.9% 99.9%

5 Cloud Deployment

The fake news detection system was deployed through the Google Cloud Func-
tion platform, mainly because of the advantages over other systems, namely func-
tions that get triggered when an event is fired, hence terminated after execution
of the function. Files such as variables.index and variables.data-00000-of-00001,
were uploaded to Google Storage Bucket before the function was created and
configured [15]. The first file stores the list of variable names. The second one
stores the actual values of all the variables saved, and the HTTP allows unau-
thenticated invocations. The memory allocated by the function is set by four
gigabytes due to the size of the second file on which the cloud function operates.
For the source code of the cloud, there are two files, specifically main.py storing
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Fig. 4. The proposed extension in Google Chrome [15].

Fig. 5. Proposed extension panel in Google Chrome [15].
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the function code and executing when the trigger event happens, and require-
ments.txt, where libraries required for function execution are declared (Figs. 4
and 5).

To retrieve the article content from the browser, the is fake entry point of the
cloud function is called, as a request to HTTP request for the model prediction.
The function loads variables from cloud storage and stores them in a form of
Blob objects [15]. Following, the variables are passed to the model, which is
ready on prediction of the article veracity.

If data sent by the browser extension is not empty, the model proceeds with
the prediction and returns a softmax result. Otherwise, the function returns
information that nothing was sent for prediction. The softmax [16] results enable
the final stage of cloud function action. Regarding the security, Google Cloud
Platform provides a variety of security aspects for the Cloud Functions [17],
in this case, the access control based on authentication. To allow all users the
possibility of invoking fake news detection function, allowing this way also the
full functionality, the access was set public. Furthermore, there is also a full
control on permissions request possibilities, meaning agents and entities owe the
control on cloud function resources access.

6 Discussion and Conclusions

Considering that the dataset contained articles revolving mainly US politics, in
the project tests, there was a tendency to have articles with political content
classified as fake. Nevertheless, this can be as a result of the fact that such
content inflicts, in general, more controversy than any other topic or content.

The main advantage of the offered solution as elaborated in the sections
above is the simplicity and the ease of use. It requires no more effort to verify
the truthfulness of an article than enabling the plugin, with no need to access
any other page, copy URL, or create an account.

There are, however, two main issues that require attention. First of which
is the time required to get the result. Although it is very quick and easy to
activate the extension itself, having a final output is not processed within the
most optimal time. Considering that the existing solutions already offer output
within 5 s, it is still not the best user-friendly option. The reason for that is the
fact that in the cloud function the model gets downloaded each time the function
is called.

The other issue to highlight is the fact that times the HTML cannot be pro-
cessed even though the site is an actual article. Various sites are built differently
when it comes to the HTML structure. In HTML5 an <article> tag has been
introduced, which in theory should be used to contain articles or longer text con-
tents. Although it is used on most sites, it is still possible to encounter ones with
a different structure. Hence, with the implementation of parsing the contents of
<article> tag, the article cannot be extracted and formatted. It certainly is not
common on well-established sites.

Regarding perspectives and future work, some aspects might need further
improvement, that is user interface, article recognition, and execution time. The
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first aspect concerns the way how the browser extension is presented to the user.
The interface might be developed further to be more appealing. Additionally,
the other aspect regards the fact that the software does not work for websites
that do not include an <article> tag in their HTML structure. Therefore, the
extraction of content shall be added despite the structure. Lastly, the aspect
of processing time, to improve that, the model loading needs improvement and
re-organization. Enhancing the features mentioned above would lead to better
performance and significantly improved version even in comparison to the state
of art solutions.
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