
Chapter 12 
Spectroscopy Based In-Line Monitoring 
and Control of Food Quality and Safety 
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1 Introduction 

The food industry involves complex interrelated processes that must be monitored 
and controlled to ensure consistent high quality and undisputable safety of the 
product being manufactured. Traditionally, most of the quality and safety parameters 
are monitored off-line, which are time-consuming, require skilled labour, involve 
several intermediary steps and are subjected to misinterpretation. With the industry 
4.0 and smart manufacturing movement, the food industry today has huge opportu-
nities to upgrade its processes to align itself to the latest industrial revolution 
(Udugama et al. 2020; Yadav et al. 2022). This implies that with advancement in 
technology, the food industry could adopt “in-line” and “on-line” systems to monitor 
the performance of its processes, rapidly identify defects or faults if any, check for 
quality and ensure safety of the product, practically “real-time” (Gargalo et al. 2020). 
This also assumes importance in the background of increasing need and demand of 
consumers for safe, hygienic, properly labelled food as well as stricter laws and 
regulatory requirements for safe and high-quality product (Hassoun et al. 2020). 

The technical definitions of these monitoring and control systems adopted by the 
industry in food quality and safety is described below (Claβen et al. 2017): 
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– “In-line” refers to a measurement that is made using a device or sensor which 
measures from the process line without sample removal or diversion. Measure-
ments are made on a continuous basis “real-time”. 

– “On-line” refers to measurement where a sample from the process line is diverted 
by a bypass, immediately followed by its analysis. Measurements are made on a 
continuous basis “real-time”. 

– “At-line” refers to usage of a device near the process line which separates the 
material from the sampling point, followed by its conditioning such as filtration, 
separation, addition of reagents etc., and then analysis. Measurements are not 
made on a continuous basis and data generated depends on the frequency of 
analysis over pre-determined time intervals. 

– “Off-line” refers to analysis of sample that is withdrawn from the process line 
and is analysed in a laboratory or centralized facility. 

Figure 12.1 is a schematic diagram of monitoring systems used in process analysis. It 
may be noted; since the difference between “on-line” and “in-line” sensors is very 
narrow, the terms have often been used interchangeably in literature. In the chapter, 
we have included “in-line” as those technologies which have sensor probes, device

Fig. 12.1 Various modes of process analysis (Adapted from Gargalo et al. 2020)



or instrument that is integrated with the process operation as part of the process flow, 
with or without conditioning, in a continuous manner, without sample preparation 
(unlike atline or offline) and which give results of parameters without the require-
ment to stop or discontinue the process. Emphasis is therefore on non-invasive or 
non-destructive and rapid techniques that give the results “real time”.
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By convention, the most common sensors used in the industry for the purpose of 
process monitoring include those that measure physical parameters such as the 
temperature, pressure, level and flow sensors (flowmeters) (Patel and Doddamani 
2019). In this chapter, our focus would be on sensors and devices which are used to 
monitor physical, chemical and biological parameters of food products in terms of 
their quality and safety rather than on physical and mechanical process parameters 
such as pressure, temperature, etc. Table 12.1 illustrates the different parameters that 
can be measured in an industrial set up as inline operations. These parameters are 
some examples and in no way exhaustive and there are many others which are being 
applied/explored for measurement by the food industry. 

Table 12.1 Possible parameters that can be measured “inline” for food quality and safety 
determination 

Parameters that may be applied for inline operations 

Physical Chemical Biological 

Food 
quality 

Colour (Kamruzzaman et al. 
2016) 

Glucose (Craven et al. 
2014) 

Biomass (Abu-Absi 
et al. 2014) 

Size (Tibayrenc et al. 2010) Lactic acid (Mehdizadeh 
et al. 2015) 

Enzymes (Moretto et al. 
2011) 

Shape (Camisard et al. 
2002) 

Fatty acids (Iversen et al. 
2014) 

Texture (Bocker et al. 2007) Fat (Osborne 2006) 

Rheology (Ozbekova and 
Kulmyrzaev 2017) 

Protein (Osborne 2006) 

Firmness (Ozbekova and 
Kulmyrzaev 2017) 

Moisture (Osborne 2006) 

Elasticity Volatiles (Li et al. 2013) 

Freshness (Lohumi 
et al. 2015) 

Nutritional value 

Authentic labelling 
(Hassoun et al. 2019) 

Food 
safety 

Allergens (Poms et al. 
2004) 

Cell density/load 
(Argyri et al. 2013) 

Pesticides Pathogens 

Heavy metals Faecal contamination 
(Park et al. 2011) 

Toxins (Tripathi and 
Mishra 2009) 

Specific adulterants 
(Alamprese et al. 2013)
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1.1 Pre-requisites and Desirable Quality of In-Line Sensors 

1.1.1 Requisites

• Suitable design for easy process integration
• Rapid and accurate measurement in real-time with fast data processing and 

analysis
• No requirement of sample preparation
• Automatic data acquisition capability
• Robust with ability to collect proper representative, reliable and reproducible data 

amidst challenging industrial environments such as temperature fluctuations, 
sample movement, sample inhomogeneity, presentation etc.

• Compact, with minimum requirement of space
• Ability to withstand harsh process environment, such as high or low tempera-

tures, vibrations, dust, humidity, etc.
• Easy to maintain with features such as explosion-proof, waterproof, easy to 

clean etc.
• Should not cause any disruption to the production process.
• Sensors having any contact with food material must be food-safe, inert and not 

affected by any chemical or physical changes in the process 

1.1.2 Desirable

• Enabled by remote control via fibre-optic probes or ethernet
• User friendly with no requirement of trained or skilled personnel during operation
• Cost effective with requirement of minimum or low investment by the industry
• Easily adaptable to harsh industrial set up 

2 Role of In-Line Sensors for Monitoring Quality 
and Safety in Food Industry 

Food samples need to be measured for their physical, chemical and nutritive aspects 
to produce quality and safe product in order to meet consumer satisfaction and also 
regulatory requirements. Any food product may have limited shelf life or low quality 
due to a number of factors including poor quality of raw material, low or poor 
process control, incorrect method of packing, transportation, handling, time-limited 
supply chains, type and method of storage, etc., (Alander et al. 2013). An early, easy 
and rapid analysis of products at different stages of its production is extremely 
desirable (and in many cases necessary) to ensure freshness, higher yield, safety, 
consistency etc., which ultimately dictates economic profit for an industry. Elimina-
tion of low-quality material, defective items, un-conforming products, contaminated



products, possible hazardous operations, etc., at early stages, particularly with 
non-invasive techniques which do not require to disrupt the process, do not require 
sample preparation and yet have the ability to give fast and accurate results, have 
shown to add tremendous value to the food industry (Dietzsch et al. 2013). In this 
context, spectroscopic techniques are the most suitable for such “inline” monitoring 
and measurement. This chapter thus, focuses on spectroscopic techniques for inline 
monitoring and control of food operations in the industry. 
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3 Spectroscopy Based In-Line Sensors and Monitoring 
Systems 

The most common and promising in-line sensors or devices for monitoring food 
processes is based on spectroscopy. The biggest advantage of using spectroscopic 
techniques is that, several chemical, physical, and biological species of interest, 
relevant to quality and safety of a product/process can be measured over a wide 
range of electromagnetic spectrum of light which ranges from near infra-red, 
mid-infra-red, visible and UV range, to low frequency radio waves and high 
frequency γ-rays (Abu-Absi et al. 2014). For any process, the characteristic emission 
and/or absorption spectra are observed for the sample or selected molecule or 
compounds in the sample, providing valuable and required information on the 
quality or safety parameter being analysed. Spectroscopy based techniques can be 
non-invasive, extremely rapid, reliable and non-laborious. It is precisely due to this 
reason, that several food industries have adopted spectroscopic analysis of their 
processes and products to monitor as well as control food quality and safety. This 
technique will continue to be the method of choice for PAT initiative for Industry 4.0 
(Eifert et al. 2020). Advancement in instrumentation, computation and data analysis 
through machine learning has made spectroscopic techniques, the method of choice 
for inline monitoring of industrial processes. 

Spectroscopic techniques are based on the interaction between matter and elec-
tromagnetic radiation. Atoms contain electrons that exist at discrete energy levels 
which correspond to their resonant vibrational frequencies. Electrons can absorb 
radiation get excited to higher energy state and emit energy as they come back to 
their ground state. The major spectroscopic techniques used in inline sensors include 
those that are based on reflectance, transmittance and interactance (Fig. 12.2). These 
modes depend on the position of the illumination source and the detector. When the 
illumination source and the detector are above the sample, and light reflected from 
the sample is captured, it is referred to as reflectance or diffused reflectance, when 
light source and detector are placed opposite to each other, the light that is transmit-
ted through the sample is captured, the mode is called transmittance, when the 
illumination source and the detector are placed parallel to each other, it is referred 
as interactance (Hassoun et al. 2020).
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Fig. 12.2 The different modes of spectroscopic analysis based on position of illumination source 
and detector. (Adapted from Kang 2011) 

All spectroscopic techniques follow the basic steps described below: 

(a) Optimization of measurement conditions based on the complexity of the process, 
type of components being analysed, nature of sample matrix, suitability of type 
of technology and the instrument that needs to be used. 

(b) Appropriate and accurate calibrations between the analyte of interest and the 
spectra collected from the system followed by generation and selection of an 
appropriate dataset that will effectively capture the variations and complexity of 
the system. 

(c) Application of multivariate chemometric methods to develop models, 
transforming the measured spectra into useful information.
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Fig. 12.3 Flowsheet for analysis of quality and safety of food matrix using IR- based tools in 
supply chain 

(d) Validation of the developed models with conventional techniques to ensure 
reliable and repeatable measurement of the samples. 

In the following sections of the chapter, we discuss the principles of four spectro-
scopic techniques which have been more widely used in the food industry for the 
evaluation of processes or products for process monitoring and control. They are: 
(a) Infrared Spectroscopy: which include near infra-red (NIRS) and mid-infra-red 
spectroscopy (MIRS) (b) Fluorescence Spectroscopy (FS) (c) Raman spectroscopy 
(RS) and (d) Dielectric spectroscopy (DS). Spectroscopic methods can provide both 
qualitative and quantitative identification of a chemical or biological species, since 
the wavelengths of the absorbed and/or emitted radiation are chemical specific while 
the intensity of the radiation depends on the concentration of the species. Figure 12.3 
gives the flow diagram for the common vibrational techniques used for sample 
analysis. 

The following section discusses, in brief, the principles of spectroscopic tech-
niques used in inline sensors. 

3.1 Infrared Spectroscopy 

3.1.1 Near-Infrared Spectroscopy (NIRS) 

Near infra-red spectroscopy (NIRS) is the most applied technique and has been 
extensively used in the food industry at various stages of food processing. It has been 
used in pre-harvest steps (for example, to evaluate quality of raw produce) to post-



harvest assessment of final processed product. The greatest advantage of NIR 
spectroscopy in inline industrial applications is their ability to provide 
non-invasive, rapid, and accurate results with no sample preparation, ease of instru-
mentation as well as multiple parameter measurement in a single scan. 
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NIRS is based on the absorption of electromagnetic radiation at wavelengths in 
the range 780–2500 nm. During food analysis, the vibrational transitions character-
ized by low energy values are reflected in the NIR region of the light spectrum 
(Herold et al. 2009). In NIRS, the determination of molecules or any chemical 
species in food is based on the chemical bonds of the organic constituents present 
in it. The most common bonds include C-H, N-H, O-H, and S-H. When light falls on 
the sample, electromagnetic waves are transmitted, and wave behaviour changes due 
to stretching and bending vibrations of the bonds. These observed changes are 
captured by spectroscopy to provide characteristic and detailed fingerprints of the 
samples (Huang et al. 2014). 

The general procedure to develop a NIR based analysis of target of interest 
involves the following steps (Wang 2019) 

(a) NIR spectra of samples is acquired and their chemical profile along with 
variances is analysed 

(b) This is followed by chemical composition analysis using a standard detection 
method 

(c) A prediction model is constructed, and unknown samples are analysed using 
chemometrics. 

The NIR spectral data is represented as “reflection”, “transflection”, “transmission” 
or “interaction” (Huang et al. 2008). The most common measurement modes used in 
inline applications based on NIR are diffuse transmittance and diffuse reflectance. It 
is imperative that NIR spectra acquisition must be followed with data pre-processing 
or treatment because the spectral data is usually characterized by several overlaps 
and strong collinearity making interpretation difficult and resulting in high noise 
levels and baseline drifts when food samples are analyzed (Wang and Paliwal 2007). 
Spectral variations may also arise from light scattering in samples, temperature 
fluctuations, difference in particle size, density etc., which may be frequently 
encountered in industrial settings. Pre-treatment methods are applied in order to 
cause noise reduction, enhance resolution, introduce baseline correction, data 
centring, normalization etc. (Porep et al. 2015). Multiplicative scatter correction 
(MSC) and standard variate correction (SVC) are one of the most common NIR 
pre-processing treatments used to correct spectral data. The data acquired thus, is 
then subjected to statistical and mathematical analysis which is referred to as 
chemometrics. This may involve non-linear techniques or linear techniques which 
are applied to analytical information from the spectra (Herold et al. 2009). 
Chemometrics will be dealt in detail in the later part of the chapter. After 
chemometrics, calibration models are then developed using sample sets with 
known concentrations of target obtained with reference methods and then validating 
the model with sample sets other than the calibration set. It is noteworthy that NIR 
spectroscopy integrated as an “in line” system can provide not only a fingerprint of



the chemical composition but can also generate information on physical properties of 
the sample under investigation, which is generally not possible with several other 
techniques. 
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Fig. 12.4 Schematic of NIR Spectrometer (Adapted from Wang 2019) 

A typical NIR spectrometer consists of a radiation source, a monochromator, a 
photoelectric detector for the measurement of the intensity of detected light and 
conversion into electrical signals, and a computer integrated system for spectral data 
acquisition and processing (Herold et al. 2009). Figure 12.4 depicts the schematics 
of NIR spectrometer. 

The earliest demonstration of NIR for practical application in inline measurement 
of various parameters relevant to agriculture and food products was done by Karl 
Norris in several of his works (William and Norris 2001). Over the years, it has been 
used in the non-destructive determination of many quality and safety parameters in 
several food types that include dairy, fruits and vegetables, fish and fish products, 
meat and products, oils, honey, cereal and cereal products, grains, seeds etc. Readers 
may refer to reviews by Lu et al. (2017) and Wang X. (2019) which give a 
comprehensive account of applications of NIR in food applications. Table 12.2 
details some examples of use of NIR in food analysis for quality and safety 
assessment. Plate 12.1 below is an image of online NIR technology to measure 
addition of seasoning as the sample is moved across the conveyor belt. The process 
integrated device can also measure fat and moisture simultaneously.
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Table 12.2 NIR spectroscopy-based application for monitoring quality and safety of food products 

S. No Sample Determination Reference 

1. Dairy products Fat, moisture, bulk density in 
milk powder 

Khan et al. (2021) 

Milk rennet coagulation Strani et al. (2021) 

Cholesterol Chitra et al. (2017) 

Fatty acids Muncan et al. (2021a) 

Protein Wang et al. (2019) 

2. Wine, beer and 
beverages 

Volatile compounds Genisheva et al. (2018) 

Polyphenols Baca-Bocanegra et al. (2018) 

3. Meat and meat 
products 

Freshness Peyvasteh et al. (2020) 

Adulteration Zheng et al. (2019) 

Fresh and thawed meat Parastar et al. (2020) 

Fraud P’erez-Marín and Garrido-
Varo (2020) 

IMF,SFA, MUFA, PUFA Pullanagari et al. 2015 

4. Cereals Amylose Sampaio et al. (2018) 

Gluten Erkinbaev et al. (2017) 

Protein Ye et al. (2018) 

Cooking quality, texture, pasting 
properties 

Thanathornvarakul et al. 
(2016) 

Starch and protein Izso et al. (2018) 

5. Seeds Coffee bean quality Santos et al. (2012) 

Plate 12.1 In-line NIR instrument based on diode array technology for continuous measurement of 
seasoning addition, moisture and fat content in snack foods; Photograph courtesy; Perkin Elmer. 
(https://www.perkinelmer.com/uk/libraries/app_measuring_seasoning_addition_in_snackfoods_ 
da7440)

https://www.perkinelmer.com/uk/libraries/app_measuring_seasoning_addition_in_snackfoods_da7440
https://www.perkinelmer.com/uk/libraries/app_measuring_seasoning_addition_in_snackfoods_da7440
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3.1.2 Mid-Infra-Red Spectroscopy 

MIR spectroscopy is also an IR based vibrational spectroscopic technique that uses a 
beam of light through the sample and measures transmission and absorption of the 
light in the mid-infra-red region (2.5 to 25 μm). Transmission, transflection, and 
attenuated total reflectance (ATR) are the three main sampling methods of MIR 
spectroscopy. Like NIR, MIR spectroscopy recognizes organic and inorganic 
chemicals based on their unique absorption frequencies characteristic of their struc-
ture. Each chemical bond of a molecule has a unique vibrational energy, which 
indicates that each compound has a unique fingerprint which can be used to 
determine its structure. 

The MIR technique has been successfully applied to assess the quality and the 
safety of food products such as adulteration of meat (Alamprese et al. 2013), protein 
content and protein genetic variants in milk (Bonfatti et al. 2016), sugar analysis of 
fruits and vegetables (Clark et al., 2018), gelatinization in cereals, adulteration of oil 
(Upadhyay et al. 2018), etc. However, NIRS still continues to be the preferred 
technique in the industry in spite of high sensitivity and chemical specificity of 
MIRS. This is because of the high cost of spectrophotometers and in several cases 
requirement of additional factors like liquid nitrogen for detector cooling or require-
ment of nitrogen gas atmosphere during measurements. 

Readers may refer to Su and Sun (2019) to get a comprehensive review of 
application of MIR in liquid foods. In recent times, Fourier Transform spectroscopy 
(FT-MIR) and attenuated transmission reflection spectroscopy (ATR-MIR) have 
emerged as a promising tool in “inline” monitoring systems for the industry. They 
are discussed in brief below: 

3.1.3 Fourier Transform Infra-Red Spectroscopy (FTIR) 

There are two types of IR instruments that find application in sensing, they are: 
dispersive and Fourier transform (FT). 

FT-IR uses an interferometer to measure all the frequencies simultaneously. The 
interferogram is then subjected to Fourier-transformation (a mathematical expres-
sion) where data is transformed into a spectrum. FT-IR spectroscopy is generally 
integrated with MIR than NIR because it works best at longer wavelengths and the 
chemical information derived is more specific (Abu-Absi et al. 2014). FT-IR instru-
ments have several distinct advantages over the dispersive type such as higher 
throughput and accuracy. FT instruments enhance sensitivity, permit higher energy 
throughput, and dramatically increase the speed of spectral acquisition (Su and Sun 
2019).
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3.1.4 Attenuated Transmission Reflection Spectroscopy 

Attenuated transmission reflectance or (ATR) works on the principle of measuring 
the changes that occur in a totally internally reflected infra-red beam when it comes 
in contact with the sample. The beam is directed to an optical crystal which has a 
high refractive index and is in contact with the sample. The internal reflectance 
creates an evanescent wave which is altered or attenuated in the regions of the IR 
spectrum where the sample absorbs energy. ATRS which is also generally in the 
MIR region, successfully overcomes the limitations of sample preparation and 
spectral reproducibility which are commonly encountered problems in spectroscopy. 

3.1.5 Limitations of IRS 

The main limitation attributed to the use of IR spectroscopy is its inability to analyse 
chemicals present in trace levels in samples because of the weak absorption by the 
target in comparison to other constituents. It is generally accepted, that it can be used 
to detect only those samples whose counts are more than 0.1% mass ratio. The other 
challenge of IRS is; the sample data is greatly influenced by other chemical constit-
uents in the sample. IRS is also heavily dependent on statistical and mathematical 
tools specially to analyse variance in the chemical profile. It is generally also 
considered to be less precise without a sample separation process (Wang 2019). 
The use of IRS is also limited because of variations that arise in data as a result of the 
complexity of the samples in question, for example, varietal differences of plant 
based raw material, variations arising due to movement of samples hindering precise 
capture of spectra, environmental variations affecting the sample etc. Moreover, not 
all constituents in food are IR active and so cannot be detected. Since most food 
commodities contain water, the influence of water on the IR spectra is of major 
concern. 

However, in spite of the disadvantages, IR spectroscopy continues to be the most 
popular technique for inline sensing. 

3.2 Dielectric Spectroscopy 

Dielectric spectroscopy (DS) also called impedance spectroscopy or electrochemical 
impedance spectroscopy, involves the study of a sample which has been subjected to 
an electric field of fixed or changing frequency. Microwave dielectric spectroscopy 
(MDS) has been widely popularized as a potential tool for inline monitoring systems. 
MDS is based on the rotation of molecules and their functional groups in the 
presence of an electromagnetic field in the frequency range of 0.3–300 GHz, 
which is then used to differentiate and fingerprint chemical composition in foods 
for safety and quality aspects. Literature however, seems to be limited to lab-scale 
alone, in application of DS for inline monitoring of desired parameter.
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3.3 Florescence Spectroscopy 

Florescence spectroscopy is based on the emission of radiation by molecules upon 
absorption of light. Molecules generally occupy the lowest vibrational level of the 
ground electronic state. On absorption of light, they are elevated to produce excited 
states. Energy, which is absorbed as discrete quanta, results in a series of distinct 
absorption bands. Having absorbed energy and reached one of the higher vibrational 
levels of an excited state, the molecule rapidly loses its excess of vibrational energy 
by collision and falls to the lowest vibrational level of the excited state. When the 
molecule returns to the vibrational levels of the ground state, it emits its energy in the 
form of fluorescence. Jablonski diagram depicts the fluorescence and phosphores-
cence emission of light as a result of electronic states of molecules and transitions 
between them (Fig. 12.5). 

Time-integrated laser induced fluorescence spectroscopy is a sensitive technique 
which can be effectively used for the inline monitoring and detection of particularly 
surface related quality defects. In principle, the surface analysis can be divided into 
two important application areas: (a) analysis of functional coatings, (b) analysis of 
food surface. The advancement in technology which has enabled effective capture of 
even a single photon, offers detection of contaminants or substance of interest 
present even at extremely low quantities in a sample with high sensitivity by 
FS. This is clearly an advantage over spectroscopic techniques like NIRS and 
MIRS discussed earlier. However, since capture of spectral intensity distribution 
of fluorescence does not necessarily result in good resolution, a time-integrated 
approach is included in the procedure to observe the decay times of fluorescence 
signals in the selected wavelength range. Additionally, after excitation, the time 
decay of the fluorescence radiation is registered at different and appropriately

Fig. 12.5 Jablonski diagram depicting the fluorescence and phosphorescence emission due to 
electronic states of molecules and transition between them (Reproduced from Nawrocka and 
Lamorska 2013)



positioned windows in the process operation to integrate the data. This separates the 
wanted signal from the background (Fig. 12.6). Fibre optic probes are used in the 
system which increase the depth of sample penetration and can also be cleaned easily 
using compressed air, gas flushing or by ultrasound techniques.
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Fig. 12.6 Flow diagram of a fluorescence spectrometer (Reprinted from Kunwar et al. 2014) 

The fluorescence sensitivity is increased manifold by use of photomultiplier tube 
which amplifies the single-fluorescence light events. Moreover, since each single-
fluorescence measurement takes place in the nanosecond timescale, the results of 
surface measurements on moving parts or sheets does not depend on the process 
speed, which is an essential requirement of inline monitoring especially in the food 
processing industry. 

3.3.1 Limitations of FS 

The major limitation of FS especially in the food industry, is the noise and interfer-
ence that occur due to the complex food matrix. Moreover, most compounds have 
broad absorption spectra which may make it difficult to identify individual species. 
Although a very sensitive technique which can be applied to get useful data, 
fluorescence measurements are sometimes not consistent over a period of time. 
They also require amplification devices like the photomultiplier tube and multiple 
measurements at different time and locations in a system to get reliable and accurate 
data on the sample.
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3.4 Raman Spectroscopy 

Raman spectroscopy (RS) is based on Raman scattering which is inelastic scattering 
of radiation that produces a vibrational spectrum of sample molecules. Unlike, IR 
spectroscopy, Raman spectra are not subjected to large interference from polar 
molecules such as water which makes them superior to other vibrational spectros-
copies in monitoring of liquid food samples. RS was not widely investigated as a tool 
for monitoring and detection of organic compounds until 1980s. With advancement 
in technology such as development of silicon-based detector arrays, stable and high-
power laser diodes, low noise, high-resolution spectrometers etc., RS promises to be 
an important tool in the detection of analytes/parameters in the food industry 
(Collette and Williams 2002; Li et al. 2014). In addition, improved hardware and 
advent of advanced Raman techniques such as surface enhanced Raman spectros-
copy (SERS), the limit of detection has dramatically improved, thus making RS a 
suitable technique for inline sensing and in monitoring of chemical and biological 
contaminants. 

Typically, a Raman spectrometer measures the “Raman shift”, which is a plot 
between the Raman signal intensity and shift in frequency of the Raman signal, 
relative to the excitation source (Fig. 12.7). In recent years, RS has been studied as a 
potential substitute of NIRS for application especially in high moisture foods. 

Fig. 12.7 Energy diagram for Raman scattering and fluorescence (Reproduced from Li et al. 2014)



354 P. Bhatt et al.

3.5 Hyperspectral Imaging in Spectroscopy: An Advance 
Technique for Inline Monitoring 

Hyperspectral imaging (HIS) is an advanced technique which is combined with 
optical spectroscopy to generate a two-dimensional image of an object or sample. 
Essentially, in HSI, each pixel of the image contains spectral information, which is 
added as a third dimension of values to the two-dimensional spatial image (Vo-dinh 
2004). Hyperspectral data could combine absorption, fluorescence, or reflectance 
spectrum data for each image pixel (Lu and Fei 2014). Generally, as a thumb rule, 
HSI data is spectrally sampled at more than 20 equally distributed wavelengths. 
Spectroscopic chemical imaging such as HIS, not only increase the mass of material 
sampled, but also provide spatial distribution of spectral information, and have 
several advantages over color imaging such as RGB (red-green-blue) or spectros-
copy alone. Figures 12.8 and 12.9 gives the flow diagram for HIS of sample on a 
conveyor belt. Many literature reports have recognized the role and application of 
hyperspectral imaging in food quality and safety which include detection of defects 
(Nagata et al. 2006), quality parameters of a sample (Qiao et al. 2007), microbial 
contamination (Yao et al. 2013), etc. Readers may refer to review papers by Feng 
and Sun (2012), Zhang et al. (2012), Zhang et al. 2017, ElMasry et al. (2012), 
Kamruzzaman et al. (2015), that cover the principles as well as application of 
hyperspectral imaging in several aspects of food quality and safety. HIS has been 
combined with NIR, MIR and Raman to derive valuable information about quality of 
a sample or aspects related to its contamination, adulteration and safety (Gowen 
et al., 2007). These include from determination of texture and firmness of fruits and 
vegetables to faecal contamination and defects on the surface. 

Fig. 12.8 Schematic diagram for hyperspectral imaging inline system (Reprinted from Huang et al. 
2014)
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Fig. 12.9 Hyperspectral imaging hypercube showing the relationship between spectral and spatial 
dimensions (Reprinted from Wang 2019) 

3.6 Soft Sensors 

Soft sensors are advanced process monitoring systems, which use algorithms to 
assess measurements in an on-line manner to generate information. Spectroscopic 
sensors have sometimes also been described as ‘soft sensors’ due to the fact that 
spectroscopic data is modelled using software. There are two types of soft sensors– 
(a) data driven sensors and (b) model-driven sensors. Each one of them have their 
own advantages and drawbacks. Data driven sensors are based on conclusions that 
are derived from data which do not require previous process knowledge while model 
driven sensors are based on first principle approaches which can generally be 
extrapolated to new process conditions. 

4 Chemometrics in Spectroscopic Analysis 

As mentioned earlier, chemometrics is primarily applied to extract information from 
multivariate spectral data derived from NIR, FT-IR, Raman, and UV-VIS spectros-
copy. Chemometrics can be defined as the use of mathematical and statistical 
methods to analyse data generated from a sample. The goal of chemometric analysis 
or multivariate data analysis is to either classify, calibrate or sometimes carry both



these analyses using the multivariable data sets. Application of chemometrics pro-
vides qualitative and/or quantitative models to study the analyte, which otherwise 
cannot be understood using univariate methods. 
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In case of simple sensing reaction having an analyte and a receptor, a univariate 
regression for calibrating the transduction signal against the analyte concentration is 
used (e.g., the widely used glucose biosensing with glucose oxidase as bioreceptor). 
However, in real samples, the analyte is a component amongst different components 
(sometimes structurally similar), wherein mathematical multivariate regression 
might offer simpler solution rather than investing in the chemistry and physics for 
selective biosensing (Martynko and Kirsanov 2020). Traditional chemometrics and 
machine learning advancements are paving the way for newer detection, analysis 
and diagnosis in the field of sensors particularly inline monitoring and control to 
make the sensing more intelligent (Cui et al. 2020). 

In case of classification problem, the multivariate data is segregated into known 
groups using specific unsupervised learning algorithms such as PCA (principal 
component analysis), SIMCA (self-independent modelling of class analogy), LDA 
(linear discriminant analysis), HCA (hierarchical clustering analysis), and PLS-DA 
(partial least squares-discriminant analysis). Later an untrained sample is used to test 
the established classification model. Similarly, the calibration of data using 
chemometric approach requires additionally the response variable information (mea-
sured using other analytical procedures) for training the data set to generate a linear 
or non-linear calibration models, using the supervised learning procedure. Here, PLS 
(partial least squares) is widely used as a linear calibration algorithm. For detailed 
understanding of PLS, Brereton (2000) and Wold et al. (2001) provides compre-
hensive information. With the explosion of machine learning tools in the last couple 
of decades, chemometrics received leverage in terms of newer algorithms for both 
classification and segregation problems. Tools such as kNN clustering (k-nearest 
neighbour), SVM (support vector machine), NB (Naïve Bayes classifiers), ensemble 
classifiers etc. are being used for classification problems, whereas SVR (support 
vector regression), ANN (artificial neural networks), CART (classification and 
regression tree), RF (random forest), MCR-ALS (multivariate curve resolution-
alternating least squares) etc. are being used for regression analysis (Cui et al. 
2020). One of the advantages these regression algorithms hold is the handling of 
non-linearity in data (Rentería-Gutiérrez et al. 2014). Deep learning methods such as 
CNN (convolutional neural network) and RNN (recurrent neural network) are also 
been used for robust analysis having non-analyte signal, and ability to handle 
non-linear models (Thrift and Ragan 2019; Uddin et al. 2020). 

In general, chemometrics facilitates the data processing and thereby extracts the 
critical information for analysis as a tool. Merits and benefits of chemometrics and 
machine learning tools for biosensing applications are detailed comprehensively in 
the Cui et al. (2020). These include: (i) categorizing of signal data, (ii) anomaly 
detection and signal correction, (iii) improvement in signal to noise ratio, (iv) ability 
to conduct pattern recognition and object identification, and (v) rapid and sensitive 
detection by lowering the time of sensing. Traditional chemometrics can also be used 
as standalone soft sensor without requirement of any (bio) receptor. In such



procedure, multivariate data arising from spectral analysis such as UV-Vis, NIR, 
FT-IR, GC, HPLC, DSC, LC-MS, IR-MS etc. are used for carrying chemometric 
estimations. Examples of such applications are many in food authentication and 
adulterant detection. Oliveira et al. (2019), Callao and Ruisánchez (2018), and 
Granato et al. (2018) provides comprehensive details on chemometrics- based 
food authentication and detection of adulterants. 
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Application of chemometrics- based sensing in different fields such as environ-
mental monitoring, water quality assessment, food and beverages analysis, biolog-
ical and medical chemistry are covered in Martynko and Kirsanov (2020). Some of 
the selected applications of chemometrics/machine learning in sensing is provided in 
Table 12.3. 

Chemometrics- based data analysis, not only facilitates the sensory analysis, but 
also can make the process more robust, sensitive, and importantly cheaper. Batch to 
batch variability in the mass production of sensors can be lowered significantly if 
chemometrics is employed in the analytical method. Moreover, optimizing the 
analytical conditions for real samples is a tedious job, and chemometrics can provide 
a great advantage to overcome such variability in the samples. Also, with advance-
ments in the newer tools, the chemometrics has significantly improved the analysis 
of spectroscopic sensing devices. 

5 Selection of Spectroscopic Technique in Food Sensing 

There are several factors that govern the choice of the spectroscopic technique/s in 
the sensing of different parameters in food when applied as an inline system. For 
example, NIRS is the method of choice in the determination of several physical and 
chemical entities in solid or dry food matrix but is usually not applied for liquid or 
high moisture content samples. This is because, NIR measures the absorbance of the 
vibrational modes of a sample and therefore large water absorbance prohibits proper 
measurement of the target of choice in high water content foods. In drier samples, 
these large absorbance bands make NIRS suitable for moisture detection. Foods with 
high moisture can be measured using Raman or ATR. Similarly, samples containing 
complex structures such as botanicals and organic materials with impurities, are 
preferably measured using NIRS or MIRS since RS and FS suffer from fluorescence 
of molecules other than the target of interest. It is also a challenge to capture Raman 
peaks when fluorescence is observed in the same excitation range which tends to 
scatter in all directions. Time resolved fluorescence is a sensitive technique but the 
requirement of multiple measurements at different time points and locations, restricts 
its use in several food applications. FS however, continues to be the suitable choice 
in animal and plant cell cultivation and for fermentation-based processes. Since 
Raman emission peaks are sharp and distinct, molecules in a mixture can be easily 
identified without the need for a library database for all of the sample or mixture of 
the sample unlike NIRS. This makes RS highly appropriate for qualitative analysis 
while NIRS is best suited for quantitative analysis.



(continued)
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Table 12.3 Chemometric application in spectroscopy-based determination of quality and safety 
parameters 

Sl. 
No. Analyte 

Transduction 
principle 

Chemometric 
tool Details Reference 

1 BOD (biologi-
cal oxygen 
demand) of 
waste water 

Amperometry PLS Clark-type elec-
trode using 
immobilized 
microorganism 

Raud and 
Kikas (2013) 

2 BOD, COD, 
TOC 

Amperometric PCA Horseradish peroxi-
dase and pure plati-
num were observed 
to be critical among 
eight sensors 

Tønning et al. 
(2005) 

3 Acetic acid, 
malonic acid, 
lysine, and 
ammonia 

Colorimetry PCA, LDA, 
PLS-DA, 
RPART, 
SIMCA and 
SVM 

Colorometric sen-
sors using different 
colored dyes were 
used to classify 
organic acids 

Kangas et al. 
(2018) 

4 Chlorpyruphos-
oxon and 
malaoxon in 
milk 

Amperometry ANN Flow-injection sys-
tem (via AChE 
inhibition) 

Mishra et al. 
(2015) 

5 Captan in apple 
samples 

Voltammetric PCA AChE inhibition Nesakumar 
et al. (2015) 

6 Glucose and 
polyphenols 

Cyclic 
voltammetry 

PCA 
PLS 

Glucose oxidase or 
tyrosinase assisted 
biosensors 

Medina-Plaza 
et al. (2015) 

7 Rice syrup in 
honey samples 

Cyclic 
voltammetry 

PCA, LDA 
MLR 

Electrochemical 
sensor 

Cai et al. 
(2013) 

8 Escherichia 
coli and salmo-
nella 
typhimurium 

Pulse 
voltammetry 

PLS Electrochemical 
sensor 

Berrettoni 
et al. (2004) 

9 Alcohol %, 
glucose + fruc-
tose, acetic 
acid, and lactic 
acid 

UV-VIS spec-
tral data 

PLS For monitoring the 
cider fermentation 
quality 

Villar et al. 
(2017) 

10 Green tea 
recognition 

Fluorometry PLS-DA Fluorescent “turn-
off” sensors based 
on double quantum 
dots 

Hu et al. 
(2018) 

11 Discrimination 
of monofloral 
honey 

Colorimetric PLS-DA 
SVM 

Nanomaterial based 
colorimetric sensor 
array 

Chaharlangi 
et al. (2020) 

12 Discrimination 
of wine 

Voltammetry PCA, LDA 
HCA 

Sensor array based 
on modified screen-
printed carbon elec-
trodes (SPCE) 

Geană et al. 
(2020)



Analyte Details Reference
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Table 12.3 (continued)

Sl. 
No. 

Transduction 
principle 

Chemometric 
tool 

13 Cumin quality Electronic 
nose 
(olfactory) 

LDA, 
U-PLS-DA, 
PARAFAC-
LDA 

Gas sensors Ghasemi-
Varnamkhasti 
et al. (2018) 

It is extremely important that in-line spectroscopic instruments/sensors are able to 
measure required parameters of quality and safety in a dynamic environment, which 
is hallmark of any food industry. This may include variable environmental factors 
like pH and temperature, continuous movement of samples (e.g conveyor belts), 
continuous mixing (eg. fermentation processes), non-homogenous sample, in-flow 
of ingredients etc. This essentially means that any spectrometer should be designed 
and constructed keeping in mind the changing environment and the affect it may 
have on the overall result derived from the measurement. A lot of spectroscopic 
choices also depend on the extent of sensitivity required, type of sample, require-
ment and purpose of measurement, instrumentation required and ease of their 
integration into the process etc. As a result of cheaper instrumentation cost, robust-
ness, availability and upgradation of computational models, NIRS has been widely 
used in inline monitoring. 

6 In Line Monitoring of Food Quality and Safety Using 
Spectroscopy 

The section below describes the application of spectroscopic inline sensors/devices 
used in various industries based on the food types. The purpose of the measurement 
is to contribute and describe the quality and safety of the food product. It is also 
necessary to mention here that spectroscopic techniques in general, have been used 
predominantly for qualitative analysis of samples. Majority of the publications, 
report the results as coefficient of correlation between developed method and 
conventional method for the parameter analysed by the spectroscopic method. 

6.1 Dairy Products 

Milk and its products are one of the most consumed food products across the world 
for their nutritional value. They have been evaluated for their quality parameters 
such as fat, protein, lactose and moisture content “inline” using NIR spectroscopy 
for more than 30 years in some countries (Osborne 2006). The measurement of these 
parameters in milk which relate to its quality, also helps to decide the further



processing it requires to make products. One may refer to reviews by Kunes et al. 
(2021) and Pereira et al. (2020) which cover spectroscopic techniques for quality and 
safety assessment of milk and its products in good detail. 
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The protein content in milk powder-based products was analysed in a study using 
NIRS and values were compared to the conventional Dumas method. Results 
indicated that the maximum bias between the NIR method and Dumas was 3% 
and the developed spectroscopic method was capable of predicting the protein 
content (± 2%) which was present in samples in the range of 22–90% (Ingle et al. 
2016). Cholesterol content was predicted using FT-NIRS coupled with partial least 
square (PLS) regression model in diary powders, which was claimed by the authors 
to have applicability as an inline monitoring tool during downstream processing of 
milk. Their results indicated reliable data with good comparability with the conven-
tional HPLC method. The PLS model applied to the data was found to be satisfactory 
with the best performance indicators with r2 = 0.9998 and root mean square error of 
cross validation (RMSECV) of 1.05 mg cholesterol/100 g). 

Ozbekova and Kulmyrzaev (2017), in order to predict rheological characteristics 
namely yield stress and flow stress, as well as chemical composition of Tilsit cheeses 
at melting temperatures between 20 to 70 °C used fluorescence spectroscopy. 
Principal component analysis (PCA) and PLSR chemometric tools were applied to 
the fluorescence emission and excitation spectra obtained from tryptophan residues 
(305–480 nm; ex: 290 nm) and Vitamin A (340–620 nm, ex: 320 nm) present in the 
linear viscoelastic region. PLSR predicted the yield stress and flow stress with an 
R2 = 0.90 from the vitamin A emission and excitation spectra, while predicted 
values with tryptophan residues had a regression co-efficient of R2 = 0.8. Other 
parameters such as melting temperatures, moisture, protein, and fat contents could 
also be predicted from the vitamin A emission spectra with R2 = 0.98. 

In an attempt to conduct sensory evaluation of Cheddar cheese using fluorescence 
spectroscopy, Chiba et al. (2019) used the PLS chemometric analysis for cheese 
body measurements. A higher coefficient of determination was obtained for calibra-
tion (R2 = 0.80) and the predicted values were comparable to those obtained by 
conventional methods (Chiba et al. 2019). 

Parameters such as nutritional composition (Comin et al. 2008), fatty acid 
composition (Ferrand-Calmels et al. 2014), and milk coagulation properties 
(Toffanin et al. 2015) using spectroscopic techniques have been investigated. 
Apart from routine quality measurements like fat, moisture and protein, several 
studies have focused on minerals, volatile compounds, firmness, ripening time, as 
well as sensory attributes of milk products like cheese, yogurt, buttermilk, etc. 
(Bonfatti et al. 2016; Arango and Castillo 2018; Muncan et al. 2021a; Loudiyi 
et al. 2017). The latest trend in the field of inline sensors, apart from traditional 
measurements, is to link spectral data of milk and its composition to genomic and 
molecular data of cattle to improve dairy cattle breeding programs and relate animal 
health and wellness to this data (De Marchi et al. 2018; Tiplady et al. 2020). 

German dairy cooperative “Berchtesgaden”, has adopted Foss analytics based on 
NIR for measuring key quality parameters in their butter and cheese production 
process (Mills 2015). The industry claims to have improved its yield, saved on costly



raw material, and improved product quality using the inline NIR system which 
measures fat, protein, lactose, sucrose, total dry mass, fat-free dry mass, density 
and acids. They report that the inline system enabled maintaining the organization’s 
high standards and has resulted in high brand value with satisfied customers and end 
users. 
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A very recent study investigated the use of RS and chemometrics for the 
determination of eight mineral elements in infant formula (Zhao et al. 2020). The 
authors concluded from their study that RS equipped with a non-contact fiber-optic 
probe had the potential for inline quantification of mineral content of infant formulas 
during manufacturing. The PLSR model developed using all samples for calibration, 
achieved a predicted mineral content in samples with R2 CV values of 0.51–0.95 and 
RMSECVs of 0.13–2.96 ppm. Validation of the method was also carried out with 
R2 CV values between 0.93–0.97 for minerals tested (prediction of Ca, Mg, K, Na, 
Fe, and Zn). ICP-AES was used as a reference method for the determination of the 
mineral content. This study assumes importance in the background of quick and easy 
detection of proper labelling in the commercial formulas for mineral content which 
can truly reflect their nutritional value. 

Further, milk being a highly valued and consumed natural product, is often 
adulterated with cheap and unsafe chemicals like melamine, starch, citrate, sucrose, 
urea, cheaper sources of proteins etc., which also require early detection. Adultera-
tion of melamine in milk and milk products has been investigated using spectro-
scopic techniques (Liang et al. 2021). It may be noted that many of these studies and 
reports are publications and still need to be demonstrated in industrial settings. The 
purpose of including publications is to appraise the readers of the latest research 
work in the area. 

6.2 Meat and Their Products 

Meat and their products are important source of dietary components such as proteins, 
polyunsaturated fatty acids, vitamins, and minerals. However, they are highly 
perishable food commodities and their quality declines rapidly during storage due 
to enzymatic autolysis, microbial growth and oxidation (Kondjoyan et al. 2018). 
Several intrinsic and extrinsic factors in meat make them easily susceptible to both 
chemical and microbial spoilage. Since, they are considered reasonably expensive 
products, monitoring their quality and composition during industrial operations has a 
direct bearing on the final product and ultimately affects consumer satisfaction, 
safety and also profit margins. 

Meat quality indicators like pH, colour, water-holding capacity, tenderness, 
intramuscular fat, protein and moisture content, adulteration with other types of 
animal tissues, collagen, etc., have been the main focus of research and development 
of inline spectroscopic sensors. Categorising and grading meat, detecting frozen-
thawed from fresh meat, and discriminating feeding regimes, have been



implemented in several industries. Among them, NIR spectroscopy has been applied 
for inline monitoring of water, fat and protein in meat, since a very long time. The 
first report of NIRS application “in-line” in an industrial setting was reported by 
Isaksson et al. (1996). A diffuse NIR instrument was set at the outlet of the meat 
grinder to determine key quality parameters of ground beef on a conveyor belt. A 
multiple linear regression (MLR) used as the calibration model determined the fat, 
moisture, and protein contents in ground beef. Kamruzzaman et al. (2016) success-
fully used hyperspectral imaging as an online monitoring system to determine colour 
of red meat, an extremely important quality attribute that governs purchase decisions 
of consumers. For ease in industrial application, a set of feature wavelength for red 
meat color (L*, a*, b) was selected. Multiple linear regression models developed 
were able to predict L* (R2 = 0.97), a* (R2 = 0.84) and b* (R2 = 0.82) with a root 
mean square error (RMSE) of 1.72, 1.73, and 1.35, respectively, indicating potential 
to be used for rapid assessment of meat color. The work of Robert et al. (2021) 
demonstrated the ability of RS to rapidly discriminate intact beef, venison and lamb 
meat and highlights the applicability of the technique in meat sorting and authenti-
cation. The authors used three chemometric techniques in combination with RS to 
discriminate the meat samples. The linear and non-linear support vector machine 
(SVM) model used by the authors could achieve sensitivities between 87 and 90% 
respectively with specificity above 88% in the validation set. 
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A plethora of information is available on NIRS for quality determination in meat 
and meat products as published literature and several reviews on the same are also 
available (Porep et al. 2015; Dixit et al. 2017; Preito et al. 2017). The use of MIR for 
evaluation of meat and its products for quality and safety has been sufficiently 
covered by Su and Sun (2019). Wang et al. (2018) in their review have covered in 
detail spectroscopic techniques for determination of fresh red meat quality, safety 
and classification. 

In real-world scenario, several industries have already established dedicated 
instruments and have factory-set calibration systems (mostly NIR) that determine 
the protein, fat and moisture contents of meat and meat products like cooked meat, 
cooked ham, pepperoni, liver sausage, etc. (Osborne 2006). The other applications of 
spectral techniques are limited largely to publications and need to see the light of the 
day in “inline” settings of the industry. 

6.3 Cereals and Cereal Products 

Grading of grains is an important parameter not only to ensure quality of product 
which would be derived after processing but also for economic gains during export. 
Since the value and price of grains is fixed based on their quality, any minor variation 
has a direct consequence on revenue to the exporter. The quality of grains is 
determined by its protein and starch content as well as hardness. Canada, 
Australia, USA and Europe have implemented NIRS for protein estimation of grains 
like wheat and barley as early as 1960s (Osborne 2006). It has also been used to



predict the optimum fertilizer requirements of cereal crops by analysing the nitrogen 
content and total carbohydrates in plant tissue samples. It is indeed interesting to 
note that spectroscopic inline monitoring of wheat quality by means of analysing its 
protein content, has led to huge cost savings in countries like Canada, where the 
technique has become routine in its wheat segregation programmes. 
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In the context of developing nations like India, application of IoT and real time 
monitoring is paramount since loss of grains have huge economic implications. A 
review of real time monitoring and control of grain quality during transportation, 
purchase and storage is provided by Hema et al. 2020. Readers may refer to Tian 
et al. (2020) who have provided a review of sensor technologies including NIR, 
MIR, Raman and FS in monitoring of wheat quality. 

In an attempt to study the rheological and baking properties of wheat flour. 
Ahmad et al. (2016a), used FS and applied PLSR. The amount of protein, wet gluten 
and sedimentation coefficient was determined in the wheat flour samples and results 
indicated linear regression (R2) values of 0.90, 0.92 and 0.81 for the three determi-
nants, respectively. The same authors in another study (Ahmad et al. 2016b) 
observed that, nutritional values of different commercially available wheat flours 
could also be reasonably well predicted by FS using the local weighted regression 
(LWR) model. When the wheat flours were evaluated for the energy values 
(R2 = 0.96), protein R2 = 0.93), fat (R2 = 0.99), moisture (R2 = 0.99), carbohy-
drates (R2 = 0.98), sucrose (R2 = 0.99), salt (R2 = 0.89) and saturated fatty acids 
(R2 = 0.99), was obtained indicating its capability to make accurate “inline” 
measurements. 

Protein, gluten, moisture, and starch was estimated using NIRS, to grade the 
quality as well as rheological property of wheat samples. The spectral region 
between 1000 to 2500 nm was found to be the most suitable for determination of 
protein, gluten and starch while 680 to 2500 nm could determine the moisture 
content in samples, using the PLS model. Good coefficient of prediction (R2 p) 
values between 0.94–0.98 and acceptable standard error of prediction (SEP) between 
4.82–9.79 were obtained for the samples (Ibrahim 2018). 

Buhler, the world leader in cereal processing, has established online sensor 
systems integrated with various processing steps in several of its facilities. These 
include among others, protein and moisture determination in incoming wheat to 
select the right silo, adjust the mill to specific ash content, add gluten powder to 
increase protein levels, or blend different flours for a perfect product (https://www. 
buhlergroup.com). 

NIRS has been used to monitor batter mixing and physicochemical changes of 
dough with respect to consistency variation and gluten network (Kaddour et al. 
(2008). Dough mixing characteristics have also been monitored inline by Wesley 
et al. (1998) using NIRS. In comparison to other spectroscopic techniques, NIRS 
seems to be the method of choice for monitoring several chemical and physical 
parameters of cereal and cereal products.

https://www.buhlergroup.com
https://www.buhlergroup.com
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6.4 Fermentation Based Processes 

Spectroscopic techniques have been used to monitor analyte concentrations in 
microbial fermentations mostly as at-line measurements, where a sample is removed 
from the reactor and measured on a spectrometer situated close to the process (Guo 
et al. 2012; Liang et al. 2013). However, although this reduces the time as compared 
to off-line assessment, it still requires removal of sample for the determination. 
Several authors have attempted in-line spectroscopic techniques for various micro-
bial parameters in bioprocess monitoring and have relatively been successful (Lee 
et al. 2004, Petersen et al. 2010; Bogomolov et al. 2015). Alves-Rausch et al. (2014) 
were able to demonstrate the use of NIRS where Bacillus fermentation was moni-
tored at an industrial scale in bioreactors (50 L), under harsh industrial conditions. 
They used a BioPAT® Spectro NIR sensor, with clean in place (CIP) and steriliza-
tion in place (SIP) capabilities to detect variations and classify media. Additionally, 
spore counts, acetoin, dry mass, and sugar concentrations could be determined using 
multiparametric, multivariate analysis for fast, sensitive, non-destructive and robust 
measurements (Alves-Rausch et al. 2014). 

It is highly desirable that sensors employed for bioreactor monitoring must be 
capable of measuring even low concentrations of various nutrients or metabolites 
without interference from the complex, multiphasic matrix which is inherent in a 
fermentation process (Lourenço et al. 2012, Abu-Absi et al. 2014, Sivakesava et al. 
2001a, Sivakesava et al. 2001b). For this reason, Bonk et al. 2011, used two in-situ 
online-methods namely in situ microscopy (ISM) and 2D fluorescence spectroscopy 
to monitor the cell density as well as the glucose, lactate and glutamate concentration 
during cultivation of CHO-K1 cells. It was demonstrated that ISM could monitor cell 
density with the same accuracy as that of conventional technique (Neubauer 
counting chamber) and fluorescence spectroscopy was equally capable of monitor-
ing the selected metabolites with good accuracy and repeatability. Such on-line 
techniques in bioprocess monitoring could be extremely helpful in reducing the 
risk of contamination especially during cultivation of sensitive cells, by avoiding 
frequent sampling which is the drawback of offline measurements (Bonk et al. 
2011). 

The last two decades have seen a rise in number of commercial particle-
monitoring sensors which have been extensively applied in inline monitoring espe-
cially in bioprocesses like fermentation (Muncan et al. 2021b). Some examples 
include probe-based sensors like SOPAT, Mettler Toledo Particle View, flow-cell 
based sensors Sympatec, ParticleTech, etc. (Gargalo 2020). 

Raman spectroscopy was used along with chemometric procedures for in-line 
monitoring of glucose fermentation by Saccharomyces sp. The use of multivariate 
control charts enabled easy and rapid detection of any fault in the process line 
without requirement of sample preparation and was based only on the spectra of 
the system (Avila et al. 2012). 

NIR spectroscopy was used inline along with electronic nose (EN) in a fed btch 
cultivation process to monitor and control a cholera-toxin producing Vibrio



cholerae. Biomass, glucose and acetate production was monitored based on spectral 
identification and prediction models were built. The PLSR model could generate 
high correlation to reference data with appreciable R2 p for biomass (0.20 g l-1 ), 
glucose (0.26 g l-1 ) and acetate (0.28 g l-1 ). The authors built a trajectory repre-
sentation of the fed batch cultivation using the NIR and EN data using the PCA. Any 
bacterial contamination could be easily detected with a change or deviation in the 
normal trajectory. This in situ monitoring with NIRS was claimed to be robust with 
an SEP of 0.020 g l-1 for determination of the cholera toxin. The acetate formation 
by the bacteria could also be controlled efficiently using the data for biomass 
concentration (Navrátil et al. 2005). 
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6.5 Wine, Brewing and Distilleries 

The wine, brewing and distillery industry has been using inline sensors for moni-
toring the original gravity and alcohol content in the samples. In the brewing 
industry, the sensors are generally NIR based and data is collected online from 
flow-through cells. Transmittance or transflectance cells are used and it is established 
that the standard errors for the evaluation are less than 0.2%. NIR has also been used 
to monitor fruit quality and determine the alcohol content of wine and dedicated filter 
instruments for wine analysis are commercially available. 

Although performed ex-situ, Grassi et al. (2014), demonstrated that (FTIR-ATR) 
spectroscopy could be a good technique to assess sugars and ethanol concentration 
for the inline monitoring of beer fermentation. Multivariate curve resolution-
alternating least squares (MCR-ALS) models developed by them could successfully 
predict the fermentation progression with a 99.9% of explained variance, 3.5% lack 
of fit, and standard deviation of the residuals lower than 0.023. The FT-IR and 
MCR-ALS models could describe spectral changes of the main components of wort 
namely the sugars and ethanol concentration. 

Trivellin et al. 2018, developed a completely different strategy based on fluores-
cence behavior of metal/porphyrin complex to measure oxygen levels at different 
time points during fermentation. The system was based on use of an optical fiber 
probe to measure luminescent lifetime variation of the complex which decayed in the 
presence of oxygen. Dynamic modelling techniques were used to predict the nutrient 
evolution in space and time at defined measuring points for the purpose of process 
monitoring and control. The experimental validation was done at an actual Italian 
winery. 

6.6 Fruits and Vegetables 

Quality assessment of fruit and vegetables involves evaluation of its appropriate 
maturity, structure, texture, chemical composition, and the absence of defects like 
bruises, browning, microbial growth, insect damage etc. They have also been



evaluated for total soluble solids content as an indicator of sweetness, total acidity as 
an indicator of sourness, total dry matter as an indication of maturity, moisture 
content as an index of juiciness, lycopene content for nutraceutical value, overall 
texture including for firmness and toughness. The conventional method of measure-
ment of the internal quality in most food industries still happens to be offline, 
destructive analysis. However, spectroscopic techniques (MIR, NIR, RS, FS) and 
others like x-ray imaging, and nuclear magnetic resonance spectroscopy (NMR), 
have been explored and some have also been adopted in industries (Irudayaraj and 
Reh 2008). An overview of spectroscopic, multispectral imaging and hyperspectral 
imaging techniques for quality attributes, measurement and variety discrimination of 
fruit and vegetable species is presented by Wang et al. (2015) and Sirisomboon 
(2018) and may be referred for further reading. 
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6.7 Freshness of Food Products 

In many sectors of the food industry, sensory assessment (which include colour, 
texture, taste, odour, appearance etc.) of food product has been traditionally used to 
evaluate the freshness of a product such as fruits, vegetables, meat and fish etc. The 
sensory assessment is done by a panel of trained experts who score the quality of the 
product by established protocols. For example, “quality index method” is used to 
assess the quality of the fish (Hassoun et al. 2019). The fish processing units evaluate 
and monitor the quality and safety of fish by methods such as pH, ATP, total volatile 
basic nitrogen, trimethylamine, microbial plate count technique, etc. These methods 
are time consuming and labour intensive and moreover not “real-time”. The tradi-
tional methods of sensory assessment are slowly being replaced by instrumental 
sensory methods that mimic the human system. Referred to as the “biomimetic” 
sensors, instruments such as “e-nose” that mimic olfactory system, “e-tongue” that 
mimic the gustatory system and “e-eye” that mimic the visual system are now being 
used to evaluate several parameters reflecting the quality and safety of food products. 
However, these systems are not covered in the chapter. Readers may refer to reviews 
by Jiang et al. (2018) and Tan and Xu (2021) for further reading on applications of 
these techniques in quality and freshness monitoring. 

Vis-NIRS reflectance spectroscopy was used for authenticating fresh and frozen-
thawed swordfish by Fasolato et al. (2012). Authors integrated Visible and NIR to 
draw predictions and found that the results were better than (accuracy >96.7%) 
when the data was taken individually. VIS/NIRS was found be a useful tool to 
differentiate fresh and frozen-thawed fish in another study with an overall classifi-
cation rate in the range of 80% and 91% (Ottavian et al. 2013). 

A very recent review by Franceschelli et al. (2021), covers a wide range of sensor 
technologies for monitoring fish freshness and quality. Article by Sarkar et al. (2019) 
may also be referred which compares the advantages of polarization reflectance 
spectroscopy over other non-invasive, rapid and real time tools like NIR, 
hyperspectral imaging and machine vision for monitoring the freshness of fruits.



12 Spectroscopy Based In-Line Monitoring and Control of Food Quality and Safety 367

6.8 Authenticity and Adulteration 

It is a consumer right, that the food that is purchased should be in compliance with its 
label description, whether in respect to nutritional composition, allergen declaration, 
geographical origin, method of production, etc. Additionally, adulteration and food 
fraud also create health hazard, apart from economic losses in case of trade (Ropodi 
et al. 2016). Inline sensors can help manufacturers evaluate the raw material or 
ingredient which may have been sourced from different regions. For example, fruit 
distillates are affected by botanical origin as well as the region and climatic condi-
tions in which the fruits are grown (geographical origin). Especially with respect to 
the quality of the distillate, the chemical constituents dictate the uniqueness of the 
product which is highly dependent on the raw material specific to the region and 
have been traditionally conserved. In this direction, it is very important to not only 
ensure high-quality but also detect false claims of assigning a region for product 
origin. In a recent study, Raman spectroscopy was used to differentiate distillates 
with respect to their trademark, geographical and botanical origin by Berghian-
Grosan and MagDas (2020). Authors evaluated eight fruit distillates (apple, apricot, 
cherry, grape, pear, plum, quince, sour-cherry) containing between 40 to 80% 
alcohol by volume. The proposed approach had a model accuracy of 95.5% for 
trademark fingerprint while an accuracy of (90.9%) was achieved for the geograph-
ical discrimination of the fruit spirits (Berghian-Grosan and Magdas 2020). Inline 
application of this method was suggested by the authors to rule out adulteration and 
flavour masking of the product. 

Adulteration in food samples is rampant especially in underdeveloped and devel-
oping countries due to several socio-economic reasons. Adulteration in high value 
products like olive oil with cheaper alternates like sunflower oil using applied VIS 
and NIR transflectance spectra has been studied (Downey et al. 2002). In another 
example, a modified real coded-GA coupled to PLS (RCGA-PLS) was developed 
which was found to be better in terms of sensitivity and fingerprinting of tartarzine in 
comparison to other chemometric tools such as PLS, GA-PLS, BiPLS and CARS-
PLS for the detection of adulteration of tartrazine in tea (Amsaraj and Mutturi 2021). 
The detection range was found to be 0–30 mg/g using the FT-IR coupled system. 
Such studies can be extremely helpful especially for regulatory agencies to monitor 
adulteration particularly “on the field”. 

In a study by Downey and Kelly (2004), strawberry and raspberry purees were 
adulterated with cooked apples (10–75% w/w) and NIR transflectance measurement 
was used to predict the adulteration. The prediction of apple content was achieved in 
the 1100–1880 nm range for strawberry and 400–1880 nm range for raspberry after 
using PLS chemometric tool. The study concluded that the detection was possible 
when adulteration exceed 25% of raspberry and 20% of strawberry purees. 

Su and Sun (2017), explored the application of spectral imaging for detection of 
adulteration of organic flour (Irish organic wheat flour; OWF) with cassava flour 
(CaF), common wheat flour (WF), and corn flour (CoF). OWF samples were 
adulterated with different percentages of other flours. RC-FMCIA-PLSR model



was reported to be the best for the determination of adulteration with a coefficient of 
prediction (R2 P) of 0.97 and a root mean square error of prediction (RMSEP) of 
0.036 for CoF adulteration in OWF, R2 P of 0.986 and RMSEP of 0.026 for OWF 
adulterated with CaF, and R2 P of 0.971 and RMSEP of 0.038 for OWF adulterated 
with WF. The applicable range for authentication of the admixtures in specific wheat 
flour was found to be 3–75% (w/w). 
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6.9 Microbial Safety and Hygiene 

Microbial safety and hygiene are one of the most important parameters to be 
monitored in a food processing industry. Processing machines, equipments, con-
veyor belts, pipes, wash waters, packaging material, personnel, etc., are important 
sources of microbes. Visual detection, off-line plating and swabbing for ATP 
analysis are the commonly used techniques of microbial analysis. Generally, 
Cleaning-in-Place (CIP) and Sterilization-in-place (SIP) are available to clean and 
disinfect without disassembling or assembling any components in a process. Non-
invasive techniques can be very useful to monitor as well as control microbial 
growth in any process. Readers may refer article by Lobete et al. (2015) to get 
useful insights on non-invasive techniques for microbial load analysis. Much of the 
literature on spectroscopic analysis of microbial safety and hygiene are publications, 
and ATRS, RS etc. have been widely used for total biomass analysis in fermentation 
experiments. Fluorescence microscopy coupled gel-cassette has also been reported 
for fermentation-based process especially to study function of inoculum level in 
cheese as the model matrix (Jeanson et al. 2011). 

7 Limitations of Spectroscopy 

Although used widely because of the several advantages they offer for “inline” 
monitoring, spectroscopic techniques suffer from certain drawbacks. Since many 
spectroscopic applications are based on reflectance mode, the presence of the source 
and the detector on the same probe results in low penetration depth of the radiation in 
the sample. In addition, low sampling mass due to restricted area of the probe also 
results in non-representative measurements, increase in standard deviation as well as 
underestimates the degree of homogeneity. Several attempts and interventions have 
been made to overcome these limitations specially to increase the sampling size. 
Many industries therefore have adopted inclusion of multiple probes at different 
locations, combine spectroscopy with other supporting techniques such as imaging, 
and automate the probes by mounting them on motorized translational stages to get 
repeatable data at different time points. 

Apart from some technical drawbacks mentioned above, spectroscopic sensors 
also suffer from high cost of instrumentation and sometimes requirement of highly



qualified personnel. Innovation in the field of spectroscopic sensors and their actual 
implementation in the food industry has also been slow (although publications are in 
explosion) due to lack of clear understanding and documentation of analytical 
systems actually used by the industries. Moreover, many industries do not prefer 
to disclose or publish their monitoring procedures mainly to avoid competition and 
regulatory attention. 
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8 Emerging Technologies for Inline Monitoring 
and Control of Food Quality and Safety 

8.1 Biosensors 

Biosensors are devices that convert biological signal into an electrical one. They 
have been extensively used in the field of medical diagnostics and less explored as 
inline probes for process monitoring although some attempts have been made in the 
past especially in the field of fermentation. 

Tric et al. (2017), reported application of enzyme-based biosensor for continuous 
monitoring of glucose which was applied for animal cell culture optimization studies 
in bioreactors. The optical biosensor which enabled assessment of internal concen-
tration of hydrogen peroxide; the by-product of the glucose oxidation reaction, also 
reported the turnover rate of the enzyme glucose oxidase as an important factor to be 
considered for the monitoring purpose. The sensor performance was validated using 
experimental data with conventional techniques and numerical simulations were 
derived for the process. More importantly, the sensor was easily sterilizable using 
beta and UV irradiation, demonstrating its application in real-life industrial pro-
cesses. Automated online biosensors to detect microbes and their toxins have been 
developed for water monitoring (Shi et al. 2013; Ettenauer et al. 2015). A sulphur-
oxidising bacteria was used for real time monitoring of heavy metals and other toxic 
chemicals in water (Hassan et al. 2019). Several researchers have reported detection 
of E.coli “on line” for monitoring of water quality with sensitivity as high as two 
colony forming units (Kellner et al. 2016). 

Thakur and Ragavan (2013) have presented a comprehensive review on applica-
tion of biosensors in food processing, including their potential role in inline moni-
toring of food quality and safety. The group has worked extensively in the 
development of biosensors for detection of multiple food contaminants like pesti-
cides (Kumar et al. 2001; Gulla et al. 2002; Lisa et al. 2009), heavy metals (Ranjan 
et al. 2012), microbial toxins and pathogens (Vinayaka and Thakur 2011; Thakur 
et al. 2010), and adulterants like formaldehyde (Akshath et al. 2012; Akshath and 
Bhatt 2018). Apart from enzymes and antibodies, development of aptasensors for 
food relevant molecules such as antibiotics, myco- and algal toxins, etc. have also 
been investigated (Sharma et al. 2019; Mukherjee et al. 2017; Mukherjee et al. 
2021). Many of these sensing platforms can further be fine-tuned for on line sensing



with appropriate integration of other technologies to develop devices to monitor food 
contamination. 
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Despite a huge number of research studies on biosensors for the food industry, 
this technology has not been translated widely as successful commercial products for 
food diagnostics. There are multiple reasons which include factors like stability of 
the biosensing element, performance fluctuations with changing environment, sen-
sor fouling, problems with reusability and regeneration issues, cost involved, etc. 
However, with advancement in science and technology, biosensors continue to hold 
the promise to be exploited in the agrifood industry especially for onsite and online 
monitoring of quality and safety. 

8.2 Acoustic Sensors 

Acoustic sensors use scattering and reflecting of sound waves when they interact 
with matter. These waves which travel through matter, cause oscillations without 
causing any alteration to the structure of the material. Passive acoustics introduce no 
external sound waves while active acoustic analysis refers to introduction of sound 
waves to a system and then monitor the changes caused. This sensor technology has 
wide applications in the food industry especially as a noninvasive technique. Some 
examples of application of acoustic technology include assessing the crispiness of 
product (Arimi et al. 2012), texture of fruit (Costa et al. 2011), firmness of fruit or 
vegetables (Jancso et al. 2001), discriminating between material for further 
processing (Elbatawi 2008), etc. Although investigated since 2001, especially for 
assessing sensorial aspects of a product, this technology has not been explored in a 
big way in “inline” sensing and carries the potential to be applied in food quality 
monitoring and control. 

8.3 Magnetic Resonance Imaging 

Magnetic resonance is referred to as the interaction which occurs between atomic 
particles and an applied external magnetic field. Resonance occurs due to absorption 
and emission of energy at specific frequencies which is in turn a function of 
individual atomic particles as well as strength of the applied magnetic field. When 
magnetic resonance is applied to develop images of an object or its internal struc-
tures, it is referred to as magnetic resonance imaging (MRI). MRI is obtained as a 
signal of spatial co-ordinates within a sample. MRI is also a non-destructive, 
non-invasive technique which has been used to assess the quality of products 
particularly fruit and vegetables and meat and meat products. Review by Hamed 
et al. (2018) may be referred to for literature on MRI based sensing platforms.
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9 Future Perspectives 

FDA in its guidance framework of 2004, has emphasized the use of monitoring and 
control approaches such as PAT tools, to improve and guarantee product quality in 
the “manufacturing” sector. The intent is to replace established product release and 
validation protocols which are presently being carried out by costly and time 
consuming laboratory analysis, to a more process-oriented real-time monitoring 
and control which ensures “Quality by Design” (QbD). PAT will have to be 
implemented in the food industry and technologies that are rapid, non-destructive 
and robust can play a very important role to increase profits for the food business as 
well as satisfy consumer demands with consistency and uniformity in the quality and 
safety of the product. In this direction, spectroscopy-based sensors will continue to 
be extremely useful tools for “inline” monitoring and determination of food quality 
and safety. 

Spectroscopy based inline sensors offer several advantages over conventional 
methods of analysis. These include among others, minimal to negligible sample 
preparation, analysis of large composite varieties, non-destructive and non-invasive 
nature, less overall analysis time, less processing cost, environment friendly, easy to 
operate, capability to be coupled to cloud –based IoT devices, no specialized training 
for operation, etc. However, the main drawback in the use of spectroscopy-based 
sensors in the food industry for real-time monitoring has been to overcome chal-
lenges related to sensitivity of calibration, specificity, spectral changes accompany-
ing varietal differences, climate and season variations, environmental variations 
influencing the sample, internal and external constituents impacting the determinants 
and most importantly high initial cost of instrumentation and its maintenance 
(although analysis per sample becomes cheaper when used for routine analysis in 
the long run). Many of these challenges have been addressed partially with advance-
ment in computation, technological developments in optical sensors, companies 
venturing into mass production, use of AI and machine learning tools, exploration 
of other regions of the electromagnetic spectra, information-driven automation, 
metadata acquisition etc. The role of software, especially for sensor application in 
inline or online monitoring has also been extremely important in overcoming many 
of these challenges. 

There is no doubt, that monitoring and control of processes and products using 
cloud-based services for traceable performance and safety verification will have to 
be integrated to enable huge profits as well as impart credibility to a food industry. In 
future, optimization of process steps using inline sensor tools will result in maxi-
mizing economic dividends. Apart from early detection of events, predictive main-
tenance that indicate immediate action will have great implications to the industry in 
forthcoming years. Sensors that are able to generate data on process know-how and 
detect hazards real-time is the need of the hour today. 

Apart from advanced programming software, and data processing algorithms, it is 
also necessary that sensors developed in future should be field-deployable, compact 
and can be easily integrated into existing industrial processes. The future is therefore



for smart, small and sensible sensors. Both the sensor and the software should be 
able to predict and present repeatable, reliable and robust measurements of variables 
that dictate process and product safety and quality with less or no requirement of 
trained personnel. 
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In conclusion, empowering food industry to transition to Industry 4.0 operations, 
is a win-win for all stakeholders, both the industry and the customers. Improved 
productivity, product quality and safety by introducing more advanced inline mon-
itoring and control strategies is the way forward for the food manufacturing sector. 
At present, the progress on inline sensors are restricted mainly to publications or 
restricted only to certain parameters specific to a food product. The advantages 
offered by inline sensor systems are far greater than what appears on the surface 
and the food industry needs to implement and plan actionable strategies to reap its 
full benefits. 
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