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1 Introduction 

Globalization of trade and post-harvest processing enables continuous supply and 
access to almost any food material across the globe most of the time. It has supported 
overcoming food insecurity and hunger at many locations, especially where 
resources for food production are lacking. On the other hand, it has led to the 
introduction of food hazards, entirely new to a particular location due to various 
activities involved in food production (Nardi et al. 2020). Advances in food 
processing methods are responsible for reduced loss of agricultural produce and in 
enhancing the shelf-life of food products without compromising their safety and 
quality attributes. To an extent, it is accountable for achieving food security in some 
parts of the world (Augustin et al. 2016). However, certain processing conditions, 
additives, quality of raw materials, and their combinations lead to the formation of 
processing contaminants, which pose a risk of health hazard to humans (Ragavan 
et al. 2016). Estimation of the contaminants in food matrices is essential to ascertain 
the safety of processed food. A wide range of agrochemicals has helped increase 
food production to feed the human population. However, it has also led to a serious 
food safety issue due to agrochemical residues in the food matrix beyond permitted 
levels (Carvalho 2017; Medina-Pastor and Triacchini 2020; Thakur and Ragavan 
2013). In the case of industrialized animal farming, extensive use of antibiotics and
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growth promoters results in their residues in animal products such as milk, meat, and 
meat products. It is held responsible for the rising concerns of antibiotic-resistant 
pathogens impacting human health (Boeckel et al. 2019; Moore 2019).
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One of the most neglected food safety issues is related to the food-borne parasites, 
especially protozoans and helminths transmitted through contaminated majorly 
through pork, vegetables, dairy products, freshwater fish, and crustaceans (FAO 
2021; Koutsoumanis et al. 2018). The global food supply chain increases the risk of 
introducing these food-borne parasites to new environments (Robertson et al. 2014). 
It causes around 90 million infections and is responsible for 52,000 deaths world-
wide every year. However, regulations or testing protocols for these food-borne 
parasites are not in place (Chalmers et al. 2020; Torgerson et al. 2015). Due to the 
quantum of impact, regulatory agencies such as FAO/WHO and EFSA have come 
up with committees and recommendations to bridge the gap (Codex Alimentarius 
2016; FAO 2021; Koutsoumanis et al. 2018). 

In recent years, food fraud in terms of adulteration and food authentication is 
increasingly reported. The consumer is at a loss for receiving a less valuable product 
and, in some cases, a low-quality and unsafe product. Gaps in food regulations, 
economic status, and lack of traceability are reasoned for food fraud (Danezis et al. 
2016; Manning 2016). Addressing food fraud requires the most advanced analytical 
techniques and continuous communication of raw material sourcing and processing 
(Danezis et al. 2016; van Ruth et al. 2017). Many groups are actively working to 
bring in practical solutions to prevent and identify food fraud. 

The current generation of consumers is more aware of their food in terms of 
nutrition, source, quality, and safety attributes. Even though the awareness in middle 
and low-income countries is lower than in high-income countries, it might gradually 
increase due to the access to information through the internet and smartphones 
(Hoffmann et al. 2019; Huang et al. 2018a). It is worth noting that a section of 
consumers is willing to pay a premium price to ensure food safety (Alimi and 
Workneh 2016). Advancements in camera optics, wireless data transfer, and 
processing capacity in the smartphone are equipping it into mobile-based testing 
platforms. It renders the consumers test the food they consume for safety and quality 
parameters (Purohit et al. 2020). 

Food safety issues discussed so far highlights the need for rapid and easy-to-use 
food safety and quality testing methods. Global food regulations are helping to an 
extent to overcome the food hazards in the supply chain and recommend a set of safe 
practices to produce safe food. However, it has mandated the necessity to have a 
robust food testing infrastructure across the globe to ensure the safety and quality of 
food obtained by agricultural practices, trade, and processing. It is a critical chal-
lenge to developing and poor economies to create and maintain the infrastructure. 
Advancement in electronics and material science has driven sensors and biosensors 
research to develop novel and straightforward food testing methods. Developed 
methods have the role of fulfilling the need of the consumer to test their food tested 
with accuracy. Overall, the development of food testing devices requires a highly 
multidisciplinary approach, with inputs from basic science and engineering topics. 
The link between advancement in food processing and food analysis is discussed 
concerning food quality and safety in the following sections.
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2 Advances in Food Processing 

Food processing is advancing with novel technologies to bring in required sensory 
attributes, food structures and ensure food safety. On the other hand, outbreaks of 
food-borne illness due to pathogens including Salmonella, Staphylococcal strains 
are reported every day, especially in ready-to-eat (RTE) foods, fresh and fresh-cut 
foods, and fish, meat, dairy products, and seafood. Flawed implementation of Hazard 
Analysis & Critical Control Points (HACCP) in processing plants coupled with Food 
fraud and Food adulteration for economic gain are commonly reported (Manning 
et al. 2019; Tibola et al. 2018). Intense collaborative efforts among the industry, 
regulatory, and research stakeholders to strengthen strategies and identify the best 
tools to ensure food safety is effectively implemented across the food supply chain 
(Castro-Ibáñez et al. 2017; WHO 2018; Zeaki et al. 2019). Food safety stakeholders 
are well aware that there is no “silver bullet” technology that can fully eliminate 
pathogens/contaminants from the food supply chain. 

Nevertheless, substantial progress has been made in recent years, both in terms of 
enhancing existing prevention tools and developing novel technologies for microbial 
inactivation and detection of food contaminants. Hybrid techniques such as “Hurdle 
technologies” incorporate multiple processing operations to inactivate pathogens in 
foods (Chen et al. 2012). Along with the processing operations, researchers persis-
tently report a range of food analytical techniques for food quality and safety. It 
includes chemical, biological, and nanomaterial-based sensors including bacterial 
adenosine triphosphate (ATP) based bioluminescence sensors and nucleic acid-
based methods like polymerase chain reaction (PCR), etc., (Böhme et al. 2019; 
Cesewski and Johnson 2020; Parate et al. 2020; Zhang et al. 2017). Biosensors and 
chemical sensors are potential techniques to ensure food quality and safety assurance 
in the global food supply chains, especially in detecting pathogens or determining 
quality attributes such as shelf-life (Cesewski and Johnson 2020). Similarly, bio-
sensors based on imaging and spectroscopic methods are onsite monitoring and 
screening of food products and raw materials for quality and safety attributes (Rady 
and Adedeji 2018). Free radicals and DNA are the most desirable targets for 
biosensor-based food analytical methods (Law et al. 2015; Poltronieri et al. 2014). 

Mass spectroscopy techniques are powerful tools to detect adulterated compo-
nents and detect inferior meat (presence of substantial pathogenic microorganisms 
and poor quality), called ‘zombie meat’ in China, which poses significant health 
risks. Huang et al. (2016) developed two-dimensional gel electrophoresis coupled 
with mass spectrometry (2DE-MS)-based proteomics system for detecting meat type 
and its quality. They identified 450 protein spots in the meat exudates, along with 
22 proteins. Among them, myofibrillar protein and myoglobin, were chosen as 
markers to distinguish between freeze-thawed and fresh pork. 

Global milk production is expected to grow at a rate of 1.6% per year, reaching 
997 Mt. by 2029, outpacing major agricultural commodities (OCED/FAO 2020). 
Dairy products, second only to green leafy vegetables in terms of adulteration, 
account for 14% of all food-borne illnesses (Painter et al. 2013). Adulterants and



the rate of adulteration in milk and milk products are reported higher than earlier 
with the notorious Chinese milk scandal containing melamine to artificially inflate 
the protein content of dairy products. Chronic melamine exposure can lead to 
nephropathy and various other health problems, and the detection of this adulterant 
is crucial for food safety. Some of the recently reported methods for rapid detection 
of melamine include silver nanoparticles (Daniel et al. 2017), magnetite 
nanoparticle-based immunochromatographic strip (Huang et al. 2018), 
smartphone-based optical sensor containing fluorescent gold nanoparticles and 
carbon quantum dots nanocomposites (Hu et al. 2019). Raman chemical imaging 
(RCI), a novel technique that combines Raman spectroscopy (signals from vibra-
tional modes of a molecule) and digital imaging capabilities, has the advantage of 
accurate detection of adulterants/contaminants and their distribution in a food 
matrix. RCI with NIR chemical imaging is reported to increase the accuracy of 
melamine detection in skim milk powder (Betz et al. 2012). 
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2.1 Novel Interventions 

Cold plasma is an emerging non-thermal food processing technique applied to 
decontaminate vegetables, fruits, dairy, and animal products from pathogenic and 
spoilage microbes. Plasma is commonly generated through the application of high 
potential difference, high voltage alternating current (AC), direct current (DC), radio 
frequency (RF), or microwave (MW) across a non-conducting dielectric fluid/gas. 
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the two 
effective primary species responsible for antimicrobial action. (Tappi et al. 2014). 
UV light and reactive chemical species generated by the cold plasma ionization 
process are the primary mechanisms of action for decontamination. Cold plasma 
inactivates pathogens by three main pathways (Niemira 2012): 

(i) Interaction between free radicals, charged particles or reactive species with 
microbial cell membranes 

(ii) UV radiation damages cell membranes and internal cellular components 
(iii) UV radiation has the potential to break DNA strands. 

Cherry tomatoes subjected to dielectric barrier discharge (DBD) plasma at 80 kV for 
5 min effectively reduced the microbial load (E. coli, S. typhimurium, and 
L. monocytogenes) by 3.5, 3.8, and 4.2 log CFU, respectively (Ziuzina et al. 
2014), while in fresh strawberries a 2 log reduction in aerobic mesophilic bacteria, 
mold, and yeast population was reported (Misra et al. 2015). Degradation of 
carotenoids was found to be responsible for color loss in food products after plasma 
treatment (Bagheri and Abbaszadeh 2020; Misra et al. 2015). 

Pulsed electric field (PEF), a non-thermal technology that has been commercial-
ized since 2005, has proven to be an effective microbial inactivation tool for liquid 
foods as well as wastewater treatment. PEF uses intense electric pulses to break 
down the cell membranes of vegetative bacteria, molds, and yeasts. Besides the



inactivation of microbes, PEF treatment has shown to be successful in certain 
in-package microbial decontamination, allergen reduction, and shelf-life extension 
of certain foods while maintaining their nutritional and quality attributes (Alirezalu 
et al. 2020). Pasteurization of foods such as milk, soups, juices, yoghurt, meat, and 
liquid eggs has been successfully tested using PEF technology (Bhat et al. 2019). 
However, it is restricted to foods that don’t have any air bubbles and have a low 
electrical conductivity. A recent study on the application of PEF in pasteurization of 
liquid whole egg or liquid egg white to inactivate L. monocytogenes, S. typhimurium, 
and S. enteritidis. (Bricher and Keener 2007). From the above discussions, it is 
evident that PEF is a powerful processing technique to ensure the safety of high-risk 
food products prone to rapid pathogen/microbial contamination. 
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Other promising intervention technologies for food preservation and inactivation 
of spoilage and pathogens include, irradiation or ionization radiation treatment 
(Albert et al. 2021), UV for surface sterilization (Bintsis et al. 2000), and high-
pressure processing (HPP) (Rajashri et al. 2020; Rastogi 2013; Zhang et al. 2019). At 
present, irradiation as a pasteurization method for fresh produce is being debated by 
industries and regulatory organizations such as the USDA. Irradiation of ready-to-eat 
(RTE) meat products and juices has recently received regulatory approvals. How-
ever, low-level ionizing radiation to inactivate microorganisms, yeasts, spores, 
molds, naturally occurring chemical toxins, and parasites in spices are followed 
for several years. Ionizing radiation was used in a study conducted by Food Safety 
Intervention Technologies Research Unit, USA, to reduce potential carcinogens 
(furan and acrylamide) in foods. Furan and acrylamide in water were entirely 
destroyed by low-dose ionizing radiation (2–3.5 kGy), and the levels of furan in 
RTE meats were substantially decreased from 25% to 40%, whereas a minor effect 
on the inactivation of acrylamide in potato chips and oil were observed (Fan and 
Mastovska 2006). 

The effect of food processing methods on the physiology and behaviour of 
microorganisms in foods, such as homeostasis, stress reactions, and metabolic 
fatigue, has recently been studied, leading to the development of the novel concept 
of multi-target food preservation techniques (Leistner 2000; Peleg 2020). Studies 
involving combined intervention technologies demonstrate the significance of using 
a multiple hurdle strategy (Singh and Shalini 2016). Hurdle technology comprising 
antimicrobial agents, thermal processing, advanced non-thermal processing methods 
and antimicrobial packaging is expected to play a major role in retaining nutrients 
and ensuring food safety. 

3 Advancement in Conventional Analytical Methods 

Food authenticity testing is a primary criterion for food and food products becoming 
more common due to global food legislation. From quality and authenticity stand-
points, product analysis in the food and beverage industry is critical to ensure that the 
products have the appropriate nutritional levels, contain all the required constituents,



are what they claim to be (to avoid food fraud), and adhere to international and 
domestic standards. Its goal is to classify foods based on their chemical composition, 
nutritional value, sensory perception, traceability, protection, and consistency. 
Among different food categories, milk and milk products, oils and fats, fish and 
seafood, meat and meat products, fruit juice, alcoholic drinks, coffee and tea, 
sweeteners (including honey), spices, cereals, and pulses, were reported to have 
the highest numbers of adulteration incidence (Hong et al. 2017). Conventional food 
quality analytical techniques have lower precision, efficiency, time-consuming at 
quantifying or predicting food fraud activities. In the last two decades, some of the 
most widely used techniques for detection of food fraud and adulteration are: 
(i) chromatographic techniques: gas chromatography (GC), high-performance liquid 
chromatography (HPLC), thin-layer chromatography (TLC), (ii) mass spectrometry 
(MS) methods: gas chromatography-mass spectrometry (GC-MS), liquid 
chromatography-mass spectrometry (LC-MS), (iii) spectroscopic methods: Fourier 
transform infrared (FTIR), nuclear magnetic resonance (NMR), Raman, 
mid-infrared (MIR), near-infrared (NIR), and (iv) electrophoretic techniques: poly-
merase chain reaction (PCR) and random amplified polymorphic DNA (RAPD) 
(Fig. 11.1). Among all techniques, mass spectrometry (MS) constituted the most
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Fig. 11.1 Different analytical techniques followed by several regulatory organizations for the 
authentication of food samples



extensively and frequently used technique for cereals, spices, grains, and pulses. 
PCR techniques are most commonly employed in samples where DNA/RNA has to 
be tested, and it includes animal products such as meat and meat products and fish 
and seafood. Liquid chromatography (LC) and HPLC are regularly used for analyz-
ing sweeteners, alcoholic beverages, fruits, and fruit juices. Owing to the chemical 
complexity of food products and high market demand for food quality and safety, 
high-resolution chromatographic techniques, including gas chromatography (GC) or 
liquid chromatography (LC) coupled with mass spectrometry (MS), have been 
identified as important food authentication methods.
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Apple juice is among the most widely consumed juices in the world. For detecting 
the addition of low-cost commercial sugar syrups (beet and cane syrup) to pure apple 
juices and similar products, an advanced technique for determining 2 H and 13 C 
isotope ratios using gas chromatography-isotope ratio mass spectrometry 
(GC-IRMS) has been developed (Kelly et al. 2003). This technique can precisely 
detect added sugars such as inverted cane sugar, glucose, and fructose in authentic 
apple juices by confirming the variation in sugar contents in the juices. On the other 
hand, DNA-based methods, such as real-time PCR, species-specific PCR, and 
multiplex PCR, are undoubtedly the most common techniques used to assess the 
authenticity of meats and meat products. The Food Safety Authority of Ireland 
released a press report on January 15, 2013, announcing the application of real-
time PCR to detect horse and donkey DNA in ground beef items such as sausage, 
burgers, and meatballs (Chisholm et al. 2005; Meira et al. 2017; O’Mahony 2013; 
Walker et al. 2013). Another example of meat fraud is murine meat as a replacement 
for mutton meat, frequently reported in China (Fang and Zhang 2016). The 
TaqMan@ real-time PCR method was used to detect the adulteration in which the 
study suggested a limit of detection of fewer than 1 picograms (pg) of DNA per 
reaction and 0.1% murine contamination in the adulterated meat. DNA and mass 
spectrometry methods are reported to be frequently employed methods for detecting 
food fraud. Along with these methods, it is very crucial to share the validated 
information among the concerned stakeholders for better traceability and monitoring 
(Huck et al. 2016; Ulberth 2020). 

Due to the production of olive oils with unique regional and varietal features 
(protected designation of origin-PDO) and customer demand for high quality, 
authentication and quality control of olive oil are of primary importance. NMR 
spectroscopy and stable isotope analysis can reveal a pool of information on 
chemical composition and the chemical structure of oil metabolites (Dais and 
Hatzakis 2013). Stable isotope ratios can determine isotopes whose relative abun-
dance is influenced by isotope fractionation in nature. Different elements in olive oil, 
including 13 C/12 C, 18 O/16 O, enabled Italian oils to be differentiated as per their 
geographical origin and between PDOs from the same area in some cases (Camin 
et al. 2010). 

Consumers are increasingly looking for foods that are safe and nutritious and 
have a high organoleptic quality. Generally, acceptable sensory analysis findings 
needed a well-trained panel of human sensory analyzers. Even if the panellists are 
well trained, there is still a requirement to standardize the sensory interpretation,



which is highly subjective. Instrumental food quality testing using perception 
sensors rather than human panel testing has recently gained popularity. An innova-
tive cross-perception multi-sensors data fusion method has been proposed that 
mimics multiple human perceptions (Ouyang et al. 2014). Data were collected 
from rice wine samples using three sensors: an electronic tongue, eye, and nose. 
Principal components analysis (PCA) and multiple linear regression (MLR) were 
used to establish three cross-perception parameters: color, scent, and taste, used as 
inputs to models. Furthermore, a team of scientists from the UK has designed the 
first-ever 3D printed synthetic soft biomimetic surface that duplicates the wettability, 
elasticity, and topography of a real human tongue (Andablo-Reyes et al. 2020) 
(Fig. 11.2). The biomimetic tongues allow researchers to test newly developed 
products and speed up new development processes without expensive and time-
consuming preliminary human testing. Oral tribological research with this advanced 
tongue-like surface can set the standard for understanding fundamental oral lubrica-
tion pathways, allowing basic mechanobiological questions to be addressed. At the 
same time, experimental and computational insights from this study can be extended 
to the biomimicry of other biological surfaces in the future to match the desired 
biophysical performance requirement. 
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Different food safety and control authentication techniques generate a humon-
gous volume of data. Since a large volume of information needs to be analyzed, 
chemometrics and bioinformatics tools are essential for food authentication studies. 
Food science and technology have recently embraced novel and promising multi-
variate statistical methods such as chemometrics designed for analytical chemistry. 
Chemometric tools enable optimal applications of analytical techniques (chroma-
tography, mass spectrometry, spectroscopy, PCR, calorimetry, wet chemistry, etc.) 
by extracting and interpreting valuable data from large and complex data sets. It also 
helps identify patterns in the data and develop calibration models (Capuano et al. 
2014). However, the chemometric methods, such as principal component analysis 
(PCA), factorial discriminate analysis (FDA), quadratic discriminant analysis 
(QDA), and partial least squares discriminant analysis (PLS-DA), have certain 
shortcomings in delivering efficient and robust prediction models. Especially in 
cases involving large datasets presented in different formats (databases, images, 
texts, sounds, and video), which can be solved by incorporating statistical learning 
theories including artificial neural network (ANN), support vector machine (SVMs), 
probabilistic neural networks (PNN) (Kamal and Karoui 2015; Medina et al. 2019). 

The development of databases containing standardized and comprehensive infor-
mation regarding the origin of foods, such as geographical origin, species and 
subspecies, processing methods, and so on, will be critical to food authentication. 
Simultaneously, the availability of reference samples and well-identified databases is 
essential for predictive models that can relate an unknown sample to a known 
product. Although various regulatory organizations have compiled databases of 
food fraud and adulteration, there is a greater need for a pool of databases that can 
be used to classify these unknown samples. Some of the governmental/non-
governmental platforms and databases that provide food authentication-related 
information are DOOR (records origin and registration of traditional specialties
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Fig. 11.2 3D printed biomimetic tongue surface to quantify oral friction and function as 
tribometer. Tongue impression on (a) polyvinyl siloxane (b) alginate masking materials imaged 
through negative 3D optical scans. (c) Tongue impression on polydimethylsiloxane obtained 
through positive 3D optical scan. (d) Fungiform papillae and (e) Filiform papillae on the surface 
of masking material reconstructed using screened Poisson surface. (Andablo-Reyes et al. 2020) 
(CC-BY)



guaranteed, protected designation of origin (PDOs), and protected geographical 
indication (PGIs), and Food Fraud Database (Medina et al. 2019). These databases 
are made available to the public through online websites such as Rapid Alerts 
System for Food and Feed (RASFF), which the public can access for recent incidents 
and any problems documented previously, thereby helping to identify food frauds.
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The conventional analytical model involves sending samples to a laboratory and 
receiving results in several days or weeks. Today, food industries greatly benefit 
from several rapid testing techniques that can be performed at the point of use and 
provide a real-time result. The next expected paradigm shift will be towards testing 
kits/methods that customers can perform on supermarket shelves or at home. The use 
of small immunoassay test kits (similar to home pregnancy test kits) connected to 
smartphones to upload results into public databases is a specific area of interest for 
verifying “free-from” claims. One such example available in the market is AlerTox 
(https://glutentox.com) allergen test kits for detecting common allergens in soy, 
milk, and peanut. Although the R&D of advanced analytical techniques is going at 
a fast pace, most of the food authentication testing will continue to be performed in 
specialized laboratories due to the need for purchase and disposal of specific 
reagents, the intrinsic capital cost of equipment, stricter food regulations, the need 
for expert interpretation and so on. 

It is evident from the literature that there has been considerable improvement in 
sample preparation, process automation, operating cost, and efficiency of conven-
tional analytical techniques. Among them, supercritical fluid-based chromatography 
is gaining prominence because it requires less solvent (modifier and co-solvents, 
CO2 being the major component) for sample preparation. When it is combined with 
mass spectroscopy techniques, it has increased its application in analytical chemistry 
due to its rapid detection and greener approach (Pilařová et al. 2019). 

Magnetic extractants are increasingly used for sample preparative steps in food 
analysis for being economical in operation compared to other sample preparation 
steps. It is driven by the advancement in the synthesis of magnetic nanomaterials 
with fascinating properties such as superparamagnetism at room temperature. Mag-
netic nanomaterials are conjugated with selective adsorbents towards the molecule 
of interest and separated from the matrix with the combination of complementary 
shape, charge, and size. Novel chemical and physical functionalization methods 
boost magnetic extractants’ application in food analysis (Li and Shi 2020; Ragavan 
and Rastogi 2017). 

4 Advancement in Recognition Elements 
and Nanomaterials 

From the beginning of twenty-first century, there has been a significant advancement 
in the synthesis and characterization of nanomaterials and related materials. It is 
mainly due to the new chemical routes for the synthesis of nanomaterials and 
progress in the instrumentation techniques to study their structure and properties.

https://glutentox.com


As a result, numerous novel applications were reported in almost every possible 
field. Nanomaterials contributed significantly to food analysis and testing, which is 
evident from the quantum of research publications reported in the past two decades. 
Specific property and role of different nanomaterials in terms of their functionality 
for developing sensors and biosensors for food analysis are listed as a table else-
where (Ragavan and Neethirajan 2019). Nanomaterial combination with different 
types of novel recognition elements has resulted in new detection methods with 
better analytical attributes (Fig. 11.3) (Ragavan et al. 2013a; Sharma et al. 2015). 
Recognition elements commonly used to integrate with nanomaterials for food 
analysis are briefly discussed below. 
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Fig. 11.3 Major types of nanomaterials utilized for the development of novel food sensors and 
detection methods. Left wing lists different physical and chemical routes followed for 
functionalization of nanomaterials with other sensor components. Right wing lists the role of 
these nanomaterials in the developed sensors (1). Permission obtained 

Antibodies Antibodies are the most reliable bio-recognition elements used to pro-
duce immunobased assays and kits (Ayyar et al. 2019; Yakes et al. 2016). They offer 
the advantage of conjugation with a wide range of molecules, including proteins, 
dyes, and nanoparticles, to develop food detection methods (Abhijith et al. 2013; 
Selvakumar et al. 2013). 

Aptamers Aptamers are single-stranded nucleic acids such as DNA, RNA, or 
peptide sequences having a strong affinity to bind with different molecules with 
better affinity than antibodies. As a result, they are increasingly being used as a 
recognition element in the development of sensors. It also offers excellent 
functionalization with nanomaterials that improved the sensor attributes (Ragavan 
et al. 2013b; Sharma et al. 2015). 

Enzymes Enzymes exhibit high specificity towards their target molecules through 
complementary structure and bond formation. The above property was the driving 
force in fabricating biosensors during the initial stages of biosensor development. It 
also offers good compatibility in functionalization with other sensor elements such 
as optical dyes, nanomaterials, and so on (Asal et al. 2018; Vaidya and Annapure 
2019).
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Nanomaterials Among the exciting properties displayed by nanomaterials, the 
catalytic property is utilized to design sensors without traditional enzymes, which 
are comparatively sensitive to environmental factors. The catalytic activity of 
nanomaterial depends upon the composition, morphology, and size. Detailed dis-
cussion on the topic is discussed elsewhere (Lin et al. 2014; Roduner 2006). Some 
nanomaterials exhibit multiple enzymatic activities, which is advantageous in devel-
oping a sensor for multi-analyte detection. Catalytically active nanomaterials are 
increasingly used as an alternative to enzymes in fabricating sensors for food 
analysis (Mustafa and Andreescu 2020; Ragavan et al. 2018b). 

Molecularly Imprinted Polymers (MIPs) MIPs are synthetic counterparts of 
enzymes and receptors which mimic their function through complementary structure 
and chemical interaction brought about by polymers. The inherent nature of MIPs 
exhibits better electrical properties than enzymes and finds application in the fabri-
cation of electrochemical sensors for food analysis with superlative analytical 
performance. Simultaneously, they are cost-effective and relatively stable compared 
to enzymes and other biological recognition elements, which require specific buffers 
for optimal activity. MIPs being selective towards a particular molecule find appli-
cation in sample preparation for various analytical methods (Ashley et al. 2017; 
BelBruno 2019; Rhouati et al. 2019). 

Receptors Receptors are highly selective and sensitive biomolecules that are part of 
signal transduction in living organisms. Purified receptors are used as 
bio-recognition elements in fabricating sensors for primarily volatile organic com-
pounds. Disadvantages include difficulties in integration with other sensor compo-
nents, limited receptors, high cost of purification, and less stability compared to its 
counterparts (Bohbot and Vernick 2020; Wu et al. 2014). 

Whole Cells Instead of cellular components such as nucleic acids, enzymes, recep-
tors, peptides, etc., whole bacterial or mammalian cells are used for sensing and 
screening different types of food components, including toxins and contaminants. 
Optical and electrochemical detection platforms based on whole cells are reported 
with the advantage of being stable and low cost. However, it requires specific 
conditions to culture them, and the present application is limited to very few analytes 
(Ye et al. 2019; Yu et al. 2017). 

In the following section, important nanomaterials and their role in food testing are 
discussed below (Table 11.1). 

4.1 Graphene and Related Materials 

Graphene is an atom-thick two-dimensional carbon material known for fascinating 
optical, mechanical, electrical, and magnetic properties. It offers to tune the proper-
ties of graphene through changes in its composition and structure, resulting in 
graphene-related materials such as graphene oxide, graphene quantum dots, reduced



Strengths Weakness
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Table 11.1 Functional role of nanomaterials in various biosensor platforms along with their 
strengths and weakness 

Nano-biosensor 
platform 

Function of 
nanomaterial 

Chemiluminescence 
(CL) 

Catalyst in oxidation 
reaction, overcomes 
the need of enzymes 

Highly sensitive 
(pM – fM), better 
signal to noise ratio 

Not selective, quan-
tum yields of the CL 
reaction is low 

Aptasensor Acts as an optical 
transducer (molar 
extinction coefficient is 
higher than chemical 
dyes) 

Sensitive (sub nM), 
doesn’t require 
instrument for 
interpretation, 

Stability of aptamers 
is a concern, coloured 
compounds in the 
sample may interfere 
with results 

Enzyme sensor Fairly sensitive (μM – 
nM) 

Most of the enzymes 
are not selective and 
presence of inhibitors 
reduces the efficiency 
of enzymes 

Immunosensor Sensitive (sub nM) Dissociation constants 
of polyclonal anti-
bodies are low 

Electrochemical Electrode modifier 
improves the surface 
area, electron conduc-
tivity of electrodes, 
sensitivity of the sensor 
and biocompatible 

Highly accurate and 
sensitive analysis 

Sample preparation is 
required 

Fluorescence Stable to photo 
bleaching and emission 
can be tuned 

Highly sensitive 
(nM – fM) 

Some of the dyes are 
highly toxic and prone 
to photo-bleaching 

Microfluidics Improves the analytical 
performance of 
microfluidic chip and 
device 

Miniaturization, mul-
tiplex detection, high 
throughput analysis 
and less sample and 
reagent requirement 

In nascent stage of 
growth, understanding 
the basic properties of 
fluids is required for 
better application 

Quartz crystal 
microbalance 
(QCM) 

Improves the sensitiv-
ity of the sensor 

Possibility of 
miniaturization 

Sensitivity of small 
molecules are low 

Surface plasmon 
resonance (SPR) 

Act as plasmonic 
substrate 

Highly accurate anal-
ysis and overcomes 
the sample prepara-
tion steps, label free 
analysis 

Advanced and sophis-
ticated instruments are 
required 

Surface enhanced 
Raman spectroscopy 
(SERS) 

Nanoparticles 
enhanced the Raman 
signals by 1010 –1011 

Highly accurate and 
sensitive technique. 

Advanced and sophis-
ticated instruments are 
required



graphene oxide, graphene aerogels, and graphene-based composites. It is one of the 
best available materials to serve as an anchor for nanoparticles in the formation of 
composites while preserving nanomaterial properties (Ragavan and Rastogi 2016, 
2017). Graphene acts as a quencher in its two-dimensional morphology and as an 
emitter of fluorescence signals while in spherical format (graphene quantum dots and 
carbon quantum dots), which finds huge applications in sensors as an alternative to 
semiconductor quantum dots (Pan et al. 2020; Ragavan and Neethirajan 2019; 
Zheng and Wu 2017). Carbon allotropes such as carbon nanotubes (CNTs) and 
fullerene are known for their electrical properties especially electrical conductivity, 
which makes them the material of choice for the fabrication of electrochemical 
sensors (Merkoçi et al. 2005; Taouri et al. 2021). Similar to graphene, other 2D 
materials such as MoS2 and other transitional metal dichalcogenides, transitional 
metal carbides, nitrides hexagonal boron nitrides, carbonitrides, metal oxides, and 
metal-organic frameworks bring in interesting optical and electronic properties for 
designing sensors and detection methods meant for food analysis (Boroujerdi et al. 
2020; Shavanova et al. 2016).
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4.2 Metal and Metal Oxide-Based Nanomaterials 

Transition metal and metal oxide nanoparticles such as gold, silver, zinc, copper, 
Iron, Titanium, etc., are commonly used nanomaterials. Among them, gold, silver, 
and their alloy in the form of nanoclusters, nanoparticles, nanorods, and other 
morphologies exhibit the best optical properties compared to other nanomaterials 
and dyes in terms of extinction coefficient (Ragavan et al. 2013b). Unique catalytic, 
distance-, and size-dependent optical properties are widely employed in developing 
colorimetric, fluorescence, chemiluminescence, surface plasmon resonance, and 
surface-enhanced Raman spectroscopy-based sensors for food analysis (Chen et al. 
2018). Recently, gold and silver nanoclusters are being investigated for their optical 
properties and found applications in detecting food analytes (Hu et al. 2020; Li et al. 
2019). Iron oxide nanoparticles exhibit superparamagnetism at room temperature, 
along with catalytic properties. It is the material of choice for sample preparation in 
food analysis, and it is conjugated with other nanomaterials to bring in multiple roles 
(Cao et al. 2012; Li and Shi 2020; Ragavan and Rastogi 2017). In many cases, they 
help overcome the matrix effect by separating the molecule of interest in relatively 
simple steps due to its magnetic property. Titanium-based nanomaterials and their 
hybrids find specific applications in the development of electrochemical sensors for 
their semiconductor-like electrical properties (Romero-Arcos et al. 2016; Shetti et al. 
2019).
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4.3 Miscellaneous Nanomaterials 

Silica-Based Nanomaterials Silica and its nanomaterials for their biocompatibility 
and less toxicity offer an excellent platform for conjugation of biomolecules. It finds 
major applications for in-vivo applications. However, their role in sensors for food 
analysis can’t be ignored. 

Nanodiamonds Nanodiamonds are an allotrope of carbon, known for their mechan-
ical and electrical properties, to fabricate quartz crystal microbalance-based sensors 
(Yao and Xue 2015). Doping of nanodiamonds with boron overcomes electrode 
surface fouling and improves the sensor attributes (Jiang et al. 2021). 

Cerium-Based Nanomaterials These nanomaterials are known for their catalytic 
and electrochemical properties, find application in the development of electrochem-
ical sensors for food analysis (Esmaeili et al. 2019; Yang et al. 2017). The catalytic 
property of cerium nanoparticles towards different antioxidants in food products 
resulted in products with different hues, which was utilized to demonstrate cerium 
nanoparticle-based optical sensors (Sharpe et al. 2013). 

Palladium-Based Nanomaterials They are known for their attractive multi cata-
lytic properties used to fabricate paper-based color sensors (Fig. 11.4) (Ragavan 
et al. 2018b). Palladium nanoparticles are reported to be compatible for conjugation 
with aptamers for designing fluorescence sensors to detect tetracycline in milk 
(Ahmed et al. 2021). 

Semiconductor QDs They are highly fluorescent nanomaterials with very high 
quantum yield and also offer the advantage of tuning their emission through 
composition and size. They are the nanomaterial of choice as optical tags in optical 
sensors and fluorescence resonance energy transfer (FRET) based sensors (Chern 
et al. 2019; Freeman et al. 2013; Pedrero et al. 2017). 

Upconversion Nanoparticles A unique class of nanomaterials known for their 
optical property of absorbing low energy electrons and emitting them in high energy 
or shorter wavelength. These nanoparticles have a larger stokes shift than conven-
tional fluorescent dyes and semiconductor quantum dots. Sensors for detecting 
antibiotic residues are designed using these upconversion nanomaterials (Peltomaa 
et al. 2021; Wen et al. 2018). 

5 Mobile/Smart Phone-Based Sensors/Biosensors 

Consumer access to smartphones across the globe is increasing, and the day is not far 
when almost every human has a smartphone. It is perceived as a digital companion 
and an extension of the user (Carolus et al. 2019; Harkin and Kuss 2021). 
Smartphones are increasingly replacing conventional imaging infrastructure for 
measuring various parameters, including contact angle (Chen et al. 2018). Similarly,



interest in using smartphones for point of care and onsite analysis is mainly due to 
the following advantages. In terms of hardware design, they are compact and easy to 
operate; also, it provides access to location data and communicates necessary 
information to concerned stakeholders (Fig. 11.5). Smartphones are mainly inte-
grated with most of the assay types for detecting a wide range of food compounds in 
solid and liquid matrices (Fig. 11.6) (Lu et al. 2019; Nelis et al. 2020). Smartphone-
based sensors are reported to have applications in different types of food matrix with. 
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Fig. 11.4 (a) Working principle of graphene-palladium nanocomposite containing paper based 
colorimetric paper sensor. Graphene-palladium nanocomposite exhibits dual catalytic activity for 
the detection of glutamate in water samples. (b–c) Response of the developed colometric paper 
sensor towards glutamate (2). (Permission obtained) 

5.1 Electrochemical Sensors 

Portable electrochemical sensors are developed with the help of a miniaturized 
potentiostat for generating the required electrical signals. Output from the electrodes 
can be processed through smartphones which overcome the use of bulky computers. 
An exclusive app for the quantification of electrochemical signals into a qualitative 
or quantitative measurement is necessary for the setup. Various types of food



analytes are reported to be detected through smartphone-based electrochemical 
sensors (Nelis et al. 2020; Seo et al. 2019; Sivakumar and Lee 2021). 
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Fig. 11.5 Important features of smartphone based food safety detection devices compared to 
conventional analytical methods (3). (Permission obtained) 

5.2 Optical Sensors and Microscopy 

Compared to the smartphone-based electrochemical sensors, optical sensor integra-
tion requires the smartphone’s optical features and data processing facilities. For the 
data processing, unlike electrochemical sensors, certain commonly available apps 
can be used, however transducing the optical signals to an analyte concentration 
requires specific programs or apps for the smartphone (Fig. 11.7) (Nelis et al. 2020; 
Seo et al. 2019; Sivakumar and Lee 2021). Smartphone LEDs specifications vary 
widely from manufacturer to model, however, recent smartphones have advanced 
LED features such as provision for warm and cold colour temperature, better 
intensity and illumination. In colorimetric, fluorescence, luminescence, and spectro-
scopic methods, specific filters, excitation sources, and an external setup are neces-
sary. It includes UV based LEDs in the sensor kit (mobile accessory) to excite



fluorophores in the assays (Rateni et al. 2017). Information related to the spectrum, 
colour temperature, intensity and other relevant information are seldom collected 
and presented in the literature. Overall, smartphones might serve as an excellent 
platform to test the quality and safety of food meant for consumption (traceability) as 
well. 
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Fig. 11.6 (a) Summary of type of food matrix used for testing the developed smartphone based 
sensors. (b) Dry chemistry techniques are more often reported compared to liquid based sensing or 
testing methods. (c) Food analytes, toxins, contaminants against which the sensors are developed. 
(d) Analytical performance indicators analysed in the reported literature (4). (CC BY 4.0) 

6 Miscellaneous 

Numerous types of sensors/biosensors for testing food quality and safety have been 
reported in the literature, and some of the promising technology/types are discussed 
below. 

6.1 Microfluidics 

Microfluidic devices are miniature devices designed through lithography methods 
predominantly composed of silica-containing compounds that are increasingly used 
for food testing. In a typical microfluidic device, microcapillary paths/pores are 
designed to move fluid by inherent capillary forces overcoming the need for an



external force or pump. They are familiarly known as “lab on a chip” and “μpad” 
devices, which are further classified into microelectromechanical systems (MEMS) 
and micro total analysis systems (μTAS). As the name suggests, these devices 
require less volume of sample, can integrate multiple analysis into a single device, 
and importantly offers onsite analysis without the requirement of sample transpor-
tation. It also offers other advantages such as automation and high-throughput 
screening at an economical cost compared to conventional analytical methods to 
estimate food quality and safety parameters (Romao et al. 2017; Weng and 
Neethirajan 2017; Wu et al. 2017). Lab on a chip are the most promising devices 
with the potential for onsite detection/analysis. It combines multiple operations to be 
carried out in a small chip with approximately having an area of 20–30 cm2 . 
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Fig. 11.7 Summary of smartphone based sensor publications (a): comparison of developed method 
with different phones, channels, light boxes and flashes to evaluate the performance. (b): Different 
type of color modes/space followed in the publications. (c): Illumination and optics used in the 
developed sensors. (d): Apps used in the reported literature, in which custom made and commercial 
apps used predominantly (4). (CC BY 4.0)
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Paper-based microfluidic devices are known as ‘lab on paper’ in which cellulose-
based paper is used as a substrate rather than silica-based molecules. Micro 2D and 
3D patterns are fabricated to aid the movement of hydrophilic fluid through absorp-
tion and capillary action. Paper-based microfluidic devices are practical for one-time 
usage, low cost, biodegradable compared to silica-based microfluidic devices. Apart 
from cellulose, other cellulose-containing materials such as lignocellulose, bamboo, 
and cotton are explored for their suitability to develop sensors to detect food analytes 
(Malon et al. 2017; Wu et al. 2017). 

In an exciting invention, Manu Prakash and his group have fabricated a paper-
based centrifuge device named “paperfuge” to overcome sample preparation for 
onsite detection and diagnosis. It overcomes the need for using an expensive 
centrifuge for sample preparation at low resource environments for analysis. It is 
basically a microfluidic device containing a capillary tube utilizing human power to 
operate it akin to a “whirligig” capable of achieving 125,000 rpm or 30,000 g. Even 
though it has been demonstrated to separate plasma from the blood to detect malaria 
parasites (Bhamla et al. 2017). It can be generalized for handling food samples, 
which might overcome cumbersome sample preparation steps. 

6.2 Bio-electronic Nose or Artificial Nose 

Visual, hearing, and touch are classified into physical senses among the five human 
senses, whereas odour and taste are chemical senses. Among them, vision, hearing, 
and touch are standardized to a great extent through colour, sound, and texture 
estimation. In the case of taste, trained sensory panellist’s responses are universally 
accepted and followed. However, quantification of olfactory senses through 
panellists is contradictory, raising the need for a device-based evaluation. 
Bioelectronic nose or artificial nose or electronic nose (Fig. 11.8) is a complex 
device fabricated to sense and reconstitute odor as perceived by the human olfactory 
system (Fitzgerald et al. 2017; Gancarz et al. 2017). Conventionally, volatile organic 
compounds responsible for odour perception are primarily quantified through gas 
chromatography coupled with mass spectroscopy (GC-MS). However, in the case of 
electronic nose, detection/sensing mechanism is classified into three broad groups, 

(i) Electric – change in electrical response (mainly conductivity) in the presence of 
the analyte. The design includes field-effect transistors coupled with 
conducting polymers. 

(ii) Gravimetric – change in frequency due to the binding of analyte – Piezoelectric 
crystals conjugated to receptor binds with the analyte, which leads to change in 
mass on crystal, dampening the resonant frequency. 

(iii) Optical – Change in signal (fluorescence/chemiluminescence) intensity or shift 
in absorption or emission of the dyes – interaction between the dye and analyte 
results in the distinguishable optical signal, quantitatively or qualitatively 
correlated to the analyte concentration. In recent times, bar-coded resins with
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Fig. 11.8 (a) Comparison of human olfactory mechanism with working principle of bioelectronics 
nose. Receptor of human olfactory system are mimicked by fabricating a delicate composite of 
nanomaterial with biomolecules (bio-nano interface). Signals from the interface is transferred and 
processed with the aid of computers which is reconstituted by combining basic odours as perceived 
by the human interface in a standard format (5). (Permission obtained) 

unique Raman or infra-red spectra (fingerprint) are used for rapid detection of 
volatiles (Fitzgerald et al. 2017; Sanaeifar et al. 2017; Son et al. 2017). More 
studies concerning calibration and validation are required to further improve 
the real-time application of these attractive electronic nose based devices. 

DNA metabarcoding helps in the identification of species in a food matrix, which 
includes microbial, plant or animal origin proposed initially by researchers at the 
University of Guelph (Hebert et al. 2003). It involves extracting DNA from the food 
samples, its amplification, sequencing, bioinformatics analysis and species identifi-
cation to figure out the DNA of different species present in the sample. It is better 
than DNA barcoding because it identifies multi-species DNA rather than a single 
species in a single reaction by including multi-species DNA data. Hence, it finds 
application in food authenticity to validate the ingredients and their source as 
claimed in the products, to identify the pathogenic/spoilage microbes in contami-
nated foods and other food quality and safety aspects (Bruno et al. 2019; Grützke 
et al. 2019).
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Apart from the above discussed food testing methods and sensors, there are 
numerous novel methods and materials reported in the literature for food analysis; 
however, they need more exploration and studies to grow as a considerable method 
(Ragavan et al. 2018a; Ye et al. 2019). 

7 Perspectives and Conclusion 

Global food supply is a complex activity involving multiple parties, the onus to 
supply safe and quality goods rests with producers, suppliers, and concerned regu-
latory agencies. Any lapse in the quality or safety of food supplied impacts global 
trade adversely, which is evident from the past incidents (Hussain and Dawson 
2013). Food production is getting better every day due to advancements in food 
processing methods, equipment design, and understanding of processing parameters 
and conditions. Most of the processing aims to be less resource-intensive with the 
least waste generation to comply with environmental and food regulations. Simul-
taneously, monitoring the process through automation and frequent quality checks 
results in better quality and safe products sustainably compared to earlier. Compre-
hensive food testing is necessary to ensure the food meant for consumption is free 
from hazards and quality as per marketing claims. However, it is affected by one or 
more following means in some instances, including food fraud, ineffective food laws 
and regulations, fraudulent science, and miscommunication (Neethirajan et al. 
2018). In recent times, following food products and food analytes derived from 
new and alternative sources (GMOs, insect proteins, amnesic shellfish poisoning, 
and food processing contaminants) require more attention from the researchers and 
regulatory agencies to develop food testing methods and regulations, respectively. It 
is crucial to develop regulations and testing methods for most of the above products 
to gain consumer acceptability. 

Smartphone-based methods offer multiple advantages for onsite food testing. It is 
relatively new in the market and is constantly evolving, so the developed methods 
might have a shorter life span than conventional analytical methods. Another 
important aspect is the plethora of detection strategies has to be communicated in 
a globally standardized format (Global standards). An additional requirement of 
sensor accessories/attachments might be a hindrance to its adoption by consumers. 
Also, the integration of these sensor attachments with different smartphones for 
hardware and software is a challenge. However, lack of communication and infor-
mation can be solved with mobile/smartphone-based sensors for real-time monitor-
ing and data sharing. Similarly, microfluidic-based devices, bioelectronics nose, and 
nanomaterial-based food testing methods are gaining prominence owing to their 
features. It is expected that they might have an even greater role to play in the coming 
days. Food matrix being a complex one, interferes with the outcome of the testing 
method in multiple ways leading to less useful information from the tests. Consid-
erable improvement to overcome matrix effects in food samples is necessary to



render these techniques adopted everywhere. Research towards the development of 
innovative and straightforward steps for sample preparation without sophisticated 
instruments and solvents might help to an extent. 
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It is worth noting that, even though several thousand research articles are 
published every year with novel detection methods, they seldom move to industry 
for product development and marketing, evident from very few food testing devices 
in the market (Luong et al. 2008). Despite these advancements, reported sensors are 
in the nascent stage in real-life applications, which requires rigorous on-site testing 
and validation. Moreover, the food matrix is one of the most complexes and 
challenging due to multiphasic in nature with a plethora of compounds with a 
wide range of functional properties (Aguilera 2019). Hence, most detection methods 
are conveniently tested in simple matrices such as water (Nelis et al. 2020). Due to 
the above-said drawbacks, currently, there is no single method which can be used to 
detect most of the target compounds related to food quality, food fraud, food 
adulteration, or food safety. Analytical parameters of the developed method or the 
food testing device including data analysis need to be rigorously evaluated compre-
hensively to render them reliable and get approval from regulatory agencies 
(Wu et al. 2020). Emphasis on validation and calibration of the developed methods 
by the researchers is one of the solutions to come up with robust food testing 
methods/devices. Such recognition for food testing devices might increase the 
usage among consumers and expand the market share (Nelis et al. 2020). It is 
expected that developed sensors and biosensors to act as reliable food testing devices 
for the initial screening (a mode for early warning system) of samples for various 
parameters, which will certainly reduce the burden of overall cost spent for food 
analysis at the industry and marketplace. From a consumer, it is necessary to have a 
reliable qualitative food testing device to ensure the food /food product is safe and 
quality is the same as marketing. 
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