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Abstract. General anomaly detection based on weakly supervised or
partially observed anomalies has been an important research. However,
most such algorithms treat the unlabeled set as a substitute for nor-
mal samples and ignore the potential anomalies in it, which fails make
full use of the abnormal supervision information. To address this issue,
we propose a meta-pseudo-label based framework for anomaly detection
(MPAD). The framework strives to obtain effective pseudo anomalies
from the unlabeled samples to supplement the observed anomaly set.
Specifically, a teacher network is improved based on the feedback of a
student network on a validation set, thereby generating more conducive
pseudo anomalies to assist the student network while incurring less con-
firmation bias. Extensive experiments show that the proposed MPAD
algorithm outperforms current popular algorithms on five real datasets.

Keywords: Anomaly Detection · Semi-Supervised Learning · Meta
Pseudo-Label

1 Introduction

Anomalies are generally defined as behaviors or events that are different from
most normal situations which are rare but extremely harmful. Therefore accurate
detection of anomalies are essential within many environments. Such environ-
ments may include fraud detection in finance [1], disease detection in clinical
medicine [2], web intrusion detection [3] in network security, etc.

There have been many traditional anomaly detection algorithms based on
unsupervised learning [4–6] or only normal class observed [7–9]. They usually
assume that there are no observed anomalies during training and lose the chance
to take advantage of the abnormal information. Consequently, a series of anomaly
detection algorithms recently emerged that train models via a large number of
unlabeled samples along with a few observed anomalies [10–12]. This setting is
more in line with actual application scenarios, which can not only make up for the
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lack of supervision information in the unsupervised algorithms, but also reduce
the burden of abnormal label collection in supervised schemes. Nevertheless,
most of them directly regard unlabeled samples as a normal set, which may be
unreasonable for some datasets containing a non-negligible amount of anomalies
in unlabeled set. The core problem is finding out how to leverage the unlabeled
samples to enhance the anomaly detection models.

Semi-supervised learning [13,14] is an appropriate choice to apply to anomaly
detection due to its adequate mining of unlabeled samples. Some previous
anomaly detection works [15,16] which are in semi-supervised frame simply
applied unsupervised algorithms on unlabeled samples. In this paper, we employ
a pseudo-label algorithm on the unlabeled set to find a set of pseudo anomalies.

Meta pseudo label (MPL) [17] takes the idea of meta-learning, which the
teacher network continuously adjusts to reduce the confirmation bias using the
feedback of the student network on the labeled samples. Inspired by MPL, we
introduce a Meta-Pseudo-Label Anomaly Detection (MPAD) method in this
paper. MPAD exploits the feedback of the student network on pseudo anomalies
to influence the update of the teacher network. Meta pseudo anomalies (MPAs)
then generated by the teacher network not only have less confirmation bias but
also assist the student network to be more generalized on test set. In our imple-
mentation, we withhold a fixed validation set to judge the detection performance
of the student network, and in turn the difference in performance is treated as
a reward or punishment during the training of the teacher network.

The major contributions of this paper are summarized as follows:

– We propose an anomaly detection framework with partially observed anoma-
lies which employs the pseudo-label algorithm to increase the content and
quality of observed anomalies, thereby improving the accuracy of the anomaly
detection model;

– The feedback of student model is used to correct the update direction of the
teacher network, so that the teacher network can generate more beneficial
pseudo anomalies;

– Extensive experimental results on datasets in five different fields show that the
proposed MPAD framework exceeds five most currently popular algorithms
in effectiveness.

2 Related Work

2.1 Anomaly Detection Methods

Traditional anomaly detection algorithms mainly follow the unsupervised set-
ting. They cannot take advantage of existing anomaly information. Similar set-
tings to this paper are semi-supervised or weakly-supervised based anomaly
detection. One class of semi-supervised anomaly detection methods assumes that
only normal samples are available when building a model. The classic algorithms
are OCSVM [7] and deep support vector data description (SVDD) [8]. As they
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only learn patterns of the normal category, any pattern that differs from the nor-
mal ones is considered as an anomaly. The advantage of this approach is that it
can reduce the overfitting problem of abnormal learning. They generally assume
that the data are similar within a class and they are mostly applicable to situa-
tions with a large number of positive samples. Another class of semi-supervised
anomaly detection methods presumes that a small amount of labeled normal and
anomalies are available in addition to unlabeled ones, e.g., DeepSAD [15] and
the method in [16]. They are both based on SVDD. Generally speaking, these
models outperform unsupervised algorithms due to the presence of supervised
information. Some work [10–12,19,20] have the same detection settings as our
MPAD and focus on a small number of observable anomalies and unlabeled sam-
ples. Yet, most of these works assume that unlabeled samples are normal, and
our model extracts reliable pseudo anomalies from unlabeled samples to enhance
the utilization of supervised information.

2.2 Semi-supervised Methods

At present, semi-supervised algorithms [13,14] are mainly based on consistency,
pseudo-labels, and a class of hybrid algorithms. Consistency algorithms are
mainly based on the assumption that different representations of the same sam-
ple can yield the same results on downstream tasks. Many of them rely on rich
data augmentation. But pseudo-labels methods have no such problem. The meta
pseudo label [17] method used the results of a student network on the labeled
samples as the feedback to a teacher network, reducing the pseudo labels’ con-
firmation bias. To the best of our knowledge, there are currently no anomaly
detection algorithms based on partially observed anomalies that use pseudo-label
algorithms. We propose a general framework of MPAD based on MPL, which
can employ any network structure as the teacher and the student network, and
is compatible with various types of data.

3 Methods

3.1 Preliminaries

We follow the setting that partially anomalies are observed in anomaly detec-
tion. Notationally, the dataset is represented by D = {DL,DU}. DL notes
the partially known anomalies set and DU is the unlabeled set in which nor-
mal samples are much more than anomalies. DL = {(x1, y1), · · · , (xK , yK)},
DU = {xK+1, · · · , xK+N}, where xi ∈ X , X = Rd, yi = 1, yi ∈ Y, Y = {0, 1}.
Additionally, we follow the description of the models in pseudo-label algorithms.
We define the teacher models that provide pseudo labels T , and their param-
eters θT . Student models that take pseudo labels, which in this paper are the
anomaly detection models, are called S and the corresponding parameters are
θS . We expect to train an anomaly detection model leveraging the dataset D
and implement the model on the test set to examine its performance.
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3.2 Meta Pseudo Anomaly Detection Scheme

We first introduce the basic pseudo-label algorithm, which obtains the distribu-
tion probability of the sample from a neural network, and gets the hard pseudo-
label yPL by a threshold λ:

yPL = 1 [T (xu; θT ) � λ] , (1)

in which xu ∈ DU and T (xu; θT ) is the probability that xu belongs to a particular
class output by the teacher network. This formula is also used to generate pseudo
anomalies when applied in anomaly detection.

This simplest pseudo-label method works well in anomaly detection, but
the performance of student detection models are limited by the accuracy of
the pseudo-labels produced by the teacher network. To improve this accuracy,
we borrow the idea of Meta Pseudo Labels (MPL) to the pseudo anomalies
generation which we called Meta Pseudo Anomalies (MPA).

We first utilize the teacher network to generate pseudo anomalies following
Eq. (1). Here the teacher network refers to the self-training schedule, i.e., exe-
cuting two steps in a loop: (1) Train a classifier using an already labeled dataset.
Here we treat the unlabeled set as normal; (2) Use the trained classifier to label
the unlabeled data, and add those with high prediction confidence to the labeled
set. Based on these pseudo anomalies, the optimization objective θMPA

S of the
student network is:

θMPA
S = argmin

θS

LCN

(
S

(
[xu, xl,MPA] ; θS

)
, y

)
, (2)

where xl ∈ DL are labeled anomalies and MPA is added to this set when training.
LCN is the loss of student network presented in Eq. (10) and y is the true labels
with the pseudo labels. So far this is a standard pseudo-label algorithm using
self-training.

Seeing that the ultimate purpose of the student network is to improve the
generalization effect on the test data. We expect the teacher network to generate
pseudo anomalies that meet this goal. We manage to separate part of data called
DV from D to do this. Since MPA is generated according to θT as in Eq. (1), the
optimization result for student network can be seen as a function of θT which
we write it as θMPA

S (θT ). The overall goal is to minimize the loss of the student
network on DV:

min
θS ,θT

LCN

(
S

(DV; θMPA
S (θT )

)
, yv

)
. (3)

We expect that this objective will correct the update direction of the teacher
network and further improve the performance of the detection network.

There are two variables in the target at the same time, so the parameters
cannot be updated directly by calculating the derivative. Here we update the
two parameters step-by-step depending on meta-learning. In order to achieve
the approximate optimization, we let θT and θS update alternately. And only
one step is updated each time along the gradient direction rather than directly
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updating to the current optimal. This is because the current optimum is only a
local optimum of the objective function according to the meta-learning theory.
θS update one step to θ

′
S first:

θ
′
S = θS − ηS∇θS

LCN(θT , θS). (4)

The contrastive above is applied with MPA generated by θT . θT is updated
leveraging the updated student network θ

′
S :

θ
′
T = θT − ηT ∇θT

LT (θ
′
S). (5)

We denote the objective function as H and split the derivative into a product of
two derivatives:

∂H

∂θT
=

∂H

∂θ′
s

· ∂θ
′
s

∂θT
= h · ∂LCE

(
ŷu, T (xu; θT )

)
∂θT

, (6)

where ŷu is the pseudo-labels and h = LCN(θS)−LCN(θ
′
S) following the Taylor’s

Formula. Both two contrastive losses are computed on the validation set. The
second term in the last equation is the cross-entropy loss between the teacher
network output and the pseudo-labels. In addition, we also trained the teacher
network with the loss on the labeled samples. The total loss is as follows:

LT = LCE

(
T (xl; θT ), yl

)
+

(LCN(θS) − LCN(θ
′
S)

) × LCE

(
T (xu; θT ), ŷu

)
. (7)

Here we assume that the unlabeled set is normal, and calculate the standard
cross-entropy loss together with the labeled anomalies as the first term above.

3.3 Student Anomaly Learner

We chose DevNet [11] as the student model, which itself is a model based on
a small number of observed anomalies. DevNet makes efficient use of observed
anomalies. Its performance tends to increase on most datasets with the increase
of observed anomalies. The main principles are: First, L abnormal scores of
normal samples ri are sampled from a standard Gaussian distribution, and the
mean value is used as the reference score μr of the normal points:

μr =
1
L

L∑
i=1

ri, ri ∼ N (μ = 0, σ = 1). (8)

Then the z-score is applied to calculate the gap between the training data zi and
the reference score,

dev(zi) =
zi − μr

σr
. (9)

Finally, the distance is increased between the abnormal points and the reference
score while reducing the gap between the normal points and the reference score
through the contrastive loss LCN:

LCN = (1 − yi) · |dev(zi)| + yi · max
(
0, δ − dev(zi)

)
. (10)
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3.4 Total Flow of MPAD

We first initialize the teacher network and the student network with the observed
anomalies and unlabeled samples, respectively. During training, batches are
obtained from the initial dataset in a one-to-one ratio of normal and abnor-
mal. The supervised loss of the teacher network is calculated within a batch.
At the same time, a one-step update is made to the student network, and loss
(LCN(θS)) on the validation set are recorded. The teacher network generates
pseudo anomalies (MPA) according to the given probability threshold PMPA.
We add these MPAs to the observed anomalies set to secondly update the stu-
dent network, and also record the loss (LCN(θ

′
S)) on the validation set. Finally,

the teacher network is updated using the deviation of the loss on the student
network and its own loss on labeled set.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the proposed MPAD on five public datasets covering
different fields.

Census is a dataset of US Census from 1994 and 1995 which includes 500
variables related to demographics and employment. Among them, very few peo-
ple with an income more than 50,000 are regarded as anomalies for detection.

Campaign comes from a telemarketing campaign of a Portuguese bank. It
contains 62 attributes such as customer information and economic activities.
A small number of users who chose to subscribe to the banking product are
identified as abnormal.

Thyroid is established to study whether patients had hypothyroidism. There
are three categories which are normal, hyperfunctioning and dysfunctional. Here
we merge the latter two categories as anomalies.

Arrhythmia is a dataset for studying arrhythmia and contains information
about the patients’ physical conditions and heart rates. Patients are classified
into one normal class ECGs and 15 different types of arrhythmias. Here we
combine the arrhythmia classes as anomalies.

Pima is a research dataset of diabetes in Pima Indian women, which comes
from the UCI repository. Here we label those with diabetes as anomalies.

Baselines

– DevNet [11]: focuses on learning the anomaly scores directly rather than
improving the representations. It designs a reference score of the normal sam-
ples according to the data distribution, and combines the contrastive loss to
isolate the anomaly scores of normal samples and abnormal samples. It is an
end-to-end anomaly detection algorithm based on partially observed anoma-
lies and is also the student model of our MPAD.
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– DeepSAD [15]: is a semi-supervised version of SVDD. It builds models with
both unlabeled and labeled data. It places the normal samples close to the
center of the hypersphere, while the abnormal samples are far from the surface
of the hypersphere according to the label information, which improves the
performance of SVDD.

– SS-DGM [21]: is a semi-supervised deep generative model. It combines a dis-
criminative model of latent features with a generative semi-supervised model.
This paper follows the setting of SS-DGM in [15] and applies it to anomaly
detection.

– OCSVM [7]: is a classic single-class anomaly detection model which only
use normal samples for training. It builds a hyperplane to segment samples,
which maximize the separation between positive and negative samples.

– iForest [18]: is an efficient unsupervised model in anomaly detection. It
achieves the isolation of anomalies by recursive segmentation of eigenvalues.

Implementation Details. We apply an MLP with a hidden layer as the teacher
network in the implementation of MPAD. The architecture of the student model
(DevNet) is the same as the teacher network, except that the teacher network
outputs a two-dimensional vector, and the DevNet outputs a single-dimensional
vector to calculate different losses. The number of neurons in the hidden layer is
64. In addition, the teacher network and the student network are optimized using
the SGD and Adam optimizers, with learning rate of 0.03 and 0.001, respectively.
The training and test sets of all algorithms are in a ratio of 8:2 with the random
state of 42. DeepSAD, SS-DGM and the proposed MPAD are implemented with
pytorch, while iForest and OCSVM are achieved with sklearn.

Metrics. AUC-ROC: is the area under the curve with the false positive rate
as the abscissa and the true positive rate as the ordinate. It is a comprehensive
evaluation criterion which represents the expected generalization performance of
the model in different situations. Generally, if one curve can completely surround
the other, it means that the former performs better than the latter, so the area
under the curve is a good representation of the pros and cons of a model. In
anomaly detection, it tends to show the ability to recognize normal classes due
to extreme class imbalance.

AUC-PR: is the area under the curve drawn with the recall of the positive
samples as the abscissa and the precision as the ordinate. It only pays attention
to positive samples (anomalies). Similar to AUC-ROC, one curve is wrapped by
another, indicating that the latter is more capable of achieving high recall and
precision at the same time. In anomaly detection, we focus more on the detection
ability of the anomaly category, so we care more about AUC-PR values than
AUC-ROC values.

4.2 Effectiveness Results

The number of available anomalies in this comparative experiment is 30, and the
noise of the training set is 0.02. Our MPAD and all baselines pick the best per-
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Table 1. The performance w.r.t. AUC-ROC and AUC-PR among the proposed MPAD
and the baselines on five tabular datasets with 30 labeled anomalies and 2% noise
injection for training. The best performance for each dataset is boldfaced.

Datasets AUC-ROC AUC-PR

MPAD DevNet DeepSAD SS-GDM OCSVM iForest MPAD DevNet DeepSAD SS-GDM OCSVM iForest

Census 0.8906 0.8284 0.7354 0.7683 0.5352 0.6165 0.4118 0.2895 0.0682 0.0420 0.0746 0.0744

Campaign 0.8399 0.8073 0.6337 0.7047 0.6942 0.7160 0.4458 0.3694 0.2334 0.2411 0.2530 0.2892

Thyroid 0.9136 0.8790 0.8957 0.7355 0.6153 0.7105 0.6720 0.3361 0.5921 0.4268 0.1225 0.2173

Arrhythmia 0.7557 0.7300 0.7751 0.8107 0.6844 0.7684 0.5655 0.4275 0.3912 0.4617 0.3774 0.5122

Pima 0.6845 0.7182 0.6698 0.7598 0.5487 0.6423 0.6787 0.6315 0.5788 0.5847 0.4378 0.4912

forming hyperparameters and demonstrate the optimal performance in Table 1.
It can be seen that the proposed MPAD has achieved the best AUC-PR on all
five datasets and the best AUC-ROC on three datasets. Among them, AUC-
PR of MPAD exceeds the optimal result on each dataset by 12.2%, 7.6%, 8%,
5.3%, and 4.7%, respectively. This illustrates the advancement achieved by our
algorithm. In general, the unsupervised algorithm iForest and the single-class
model OCSVM do not perform as well as the first three baselines. Since Deep-
SAD and SS-GDM algorithms are also semi-supervised methods, they show the
performance only second to MPAD on the Thyroid dataset. DevNet obtains the
second position on the rest of the datasets. Among them, SS-GDM shows higher
AUC-ROC on Arrhythmia and Pima, proving that it has better recognition of
normal samples.

Fig. 1. AUC-PR w.r.t. No.labeled anomalies on five datasets.

4.3 Data Efficiency Study

This experiment aims to test how the performance of algorithms change as the
observed anomalies increase. The noise ratio is fixed at 0.02 during this exper-
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iment, and the observed anomalies are changed from 5 to 15, 30, 60, and 120
for modeling. It can be seen from Fig. 1 that our MPAD always maintains a
high AUC-PR on Census, Campaign, and Arrhythmia datasets, and the results
on Pima have a significant upward trend with the increase of observed anoma-
lies. As for Thyroid, MPAD maintains a high level when there are fewer visible
anomalies, and the effect decreases when the number of anomalies increases. The
number of visible anomalies will act on the initialization effect of the teacher net-
work. This result indicates that there are visible anomalies overlapping with the
normal ones, making the teacher’s performance drop further affecting the result
of student. The two algorithms, OCSVM and iForest, are not influenced by the
number of visible anomalies. They have certain advantages when there are few
visible anomalies, yet they cannot make effective use of this information and lose
their odds as the number of anomalies increases.

5 Conclusion

We introduce pseudo-label algorithms to partially-observed-anomalies anomaly
detection. Thus, unlabeled data is used reasonably, and valuable pseudo anoma-
lies can be extracted to assist the establishment of anomaly detection models.
The most important part is that the proposed meta pseudo anomalies genera-
tion procedure makes the teacher network and the student network update alter-
nately, and the teacher network is subject to both supervised information and the
student network’s feedback. Comprehensive experiments show that the pseudo
anomalies generated in this way are better than the general pseudo labels, and
our framework outperforms the other state-of-the-art anomaly detection meth-
ods on five public datasets.
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