
Self-Training
with Label-Feature-Consistency

for Domain Adaptation

Yi Xin, Siqi Luo, Pengsheng Jin, Yuntao Du, and Chongjun Wang(B)

National Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing, China

{mf21330098,mf21330060,mf21330042,dz1833005}@smail.nju.edu.cn,
chjwang@nju.edu.cn

Abstract. Mainstream approaches for unsupervised domain adaptation
(UDA) learn domain-invariant representations to address the domain
shift. Recently, self-training has been used in UDA, which exploits
pseudo-labels for unlabeled target domains. However, the pseudo-labels
can be unreliable due to distribution shifts between domains, severely
impairing the model performance. To address this problem, we pro-
pose a novel self-training framework-Self-Training with Label-Feature-
Consistency (ST-LFC), which selects reliable target pseudo-labels via
label-level and feature-level voting consistency principle. The former
means target pseudo-labels generated by a source-trained classifier and
the latter means the nearest source-class to the target in feature space. In
addition, ST-LFC reduces the negative effects of unreliable predictions
through entropy minimization. Empirical results indicate that ST-LFC
significantly improves over the state-of-the-arts on a variety of bench-
mark datasets.

Keywords: Transfer learning · Domain Adaptation · Self-Training ·
Label-Feature-Consistency

1 Introduction

Supervised deep learning methods have achieved excellent performance for tasks
such as computer vision [14], natural language processing [15]. However, such
models usually generalize poorly due to the distribution shifts between the train-
ing samples and testing samples. For example, in object recognition tasks, the
model is generally trained on images collected in fine days, but the model’s
performance degrades when applying the model on rainy days and foggy days.

Unsupervised domain adaptation (UDA) is able to overcome this challenge
by transferring knowledge from a labeled source domain to the unlabeled tar-
get domain [13,35,36]. Existing UDA could be divided into moment matching,
adversarial domain adaptation, and self-training based methods. The first two
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types reduce domain discrepancy by reducing the statistical distribution dis-
crepancy across domains [25,30] or perform domain adversarial training [13,27].
Different from these methods, self-training based methods [8,9,20] are inspired
by semi-supervised learning (SSL) [10,19] and do not need to explicitly calculate
domain discrepancy or perform complex adversarial training.

Typical self-training method firstly trains a model with labeled source sam-
ples, and then it generates the pseudo-labels for the unlabeled target samples
using the source model. Considering that some pseudo-labels are incorrect, only
pseudo-labels with high confidence are selected and then they are added to the
training samples together with source samples to train the model, and repeat this
process until the model converges. Recently, a few methods follow self-training
framework and optimize this process by designing new selection strategy for tar-
get samples [21], introducing new regularization [10], and optimizing training
strategy [16,17].

Although achieving remarkable progress, there are still some issues to be
addressed. Firstly, self-training is a method used in semi-supervised learning,
which means domain shift will not be prominent or even absent in the original
application scenario. In domain adaptation, because of the existence of domain
shift such as covariate shift and label shift, the distribution of pseudo-labels
may be remarkably different from the target ground-truths, while purely tailor-
ing self-training with UDA. As a result, the accuracy of pseudo-labels cannot be
guaranteed without any regulars because of the accumulated error and even triv-
ial solution, which eventually leads to misalignment of the distribution and mis-
classification of several classes [20]. Secondly, previous works tailor self-training
for UDA by selecting pseudo-labels with confidence threshold or reweighting
through information entropy or other confidence measurement methods, but it
is challenging to determine a criterion for confidence judgment when it is closely
related to specific tasks, causing models based on previous works are not robust.
Additionally, existing self-training paradigms tend to ignore the rich information
in unreliable samples. Since the ignoration of global distribution including either
reliable or unreliable samples of the target domain, leading to a poor-fit between
self-training and UDA, there is still a great room for improvement.

To address the above limitations, in this paper, we propose a simple yet
effective method called ST-LFC (Self-Training with Label-Feature-Consistency).
Instead of using confidence score to determine whether a sample is reliable
to avoid generating pseudo-labels with hard-to-tweak protocols, we use label-
level and feature-level consistency as a criterion. Intuitively, a successful feature
extractor should generate features with greater inter-class and smaller intra-
class distances. For example, during self-training process, one target sample is
assigned class k by pseudo-labels, then it should be closer to source samples
belong to class k and father from the source samples which belong to other
classes except for k in the feature space. Motivated by [24], we use source class
prototype feature to represent the class, which means the average feature embed-
ding of the source samples with the same ground-truth labels. Moreover, ST-LFC
also exploits unreliable target samples. The reason why model has a performance
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upper bound is the existence of these unreliable samples. The samples are unreli-
able because the classifier predictions are inconsistent with the nearest prototype
class in the feature space, and we can’t judge which is right. Our method weights
the class prediction probabilities of both, constrained by entropy minimization.
Finally, our method is able to incorporate any domain adaptation methods that
takes into account both domain alignment and sample label utilization during
training.

The effectiveness of ST-LFC is reflected by improved adaptation accuracy on
popular benchmarks like Digits and Office-31 datasets. We also achieve state-of-
the-art results on a challenging adaptation dataset Birds-31 [41], which indicates
the usefulness of our ST-LFC in handling wide variety of scenarios.

In summary, the key highlights of the paper are:

– We propose a novel self-training framework ST-LFC for unsupervised domain
adaptation. We propose a new sample strategy to effectively recognize reliable
samples and we adequately utilize unrelibale samples to improve the upper
bound on model performance.

– ST-LFC is designed to be general for existing domain adaptation approaches.
It is able to incorporate any domain adaptation methods. In order to verify, we
combine SF-LFC with two popular methods, DANN and CDAN, and observe
consistent improvement over both the baselines.

– We validate the effectiveness of the proposed approach numerically by apply-
ing it on multiple tasks from various challenging benchmark datasets used for
domain adaptation like Digits, Office-31 and Birds-31 and observe improved
accuracies in all the cases, sometimes outperforming the state-of-the-art by a
large margin.

2 Related Work

2.1 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation is proposed to address the domain shift
between source domains and target domains, so that networks trained on source
domain can be used directly on completely unlabeled target domains [34–36].
Motivated by theoretical bound proposed in [34], Discrepancy-based approaches
[30–33] measure and minimize the dissimilarity between the feature embed-
ding of the source and target domains. DAN [33] leverages the transferability
of deep neural networks [22] and introduces MMD-based regularizer to mini-
mize the cross-domain distribution discrepancy in multiple layer of neural net-
works. Adversary-based approaches [25–28] utilize adversarial learning [29] to
align domain distribution on feature level and pixel level [25] by obtaining
domain invariant features. Motivated by image translation techniques, pixel-level
alignment methods [5–7] utilize image-to-image translation network to translate
images from source domain to target domain. Feature-level alignment methods
[1,2,4] tend to adapt distributions of source and target images explicitly in fea-
ture space. In addition to global domain adaptation, several studies take advan-
tage of contrastive learning to align domain distribution on class-level [23,24].
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2.2 Self-Training

Self-Training [9,10,19] increases the amount of training data by iteratively select-
ing pseudo-labeled target data based on model which is trained with existing
labeled data. Then retrain the model with the enlarged training data. Specifi-
cally, the quality of pseudo-labels of the target data and training strategy both
have great impact on the performance of the model.

Existing methods can be generally catogorized into three groups. The first
group tend to design selection strategies for target samples [1,3,11,21]. CAN
[21] utilize domain discriminator to assign weights to target data and jointly
trains the model with source and target data. The second group is introducing
new regularization to assist domain adaptation. [3]uses asymmetric tritraining
method to improve the accuracy of pseudo labels, which means that it utilizes
three asymmetric classifiers, two networks are used to label unlabeled target
samples, and one network is trained by the pseudo-labeled samples to obtain
target-discriminative representations [12] first generates coarse pseudo labels by
a conventional UDA method, and iteratively exploits the intra-class similarity of
the target samples for improving the generated coarse pseudo labels. [10] employ
confidence regularization technique to help discriminative feature representations
of the source and target domains by introducing soft pseudo labels. The third
group is optimizing training strategy. [17] proposed a class-balanced self-training
framework to address the problem of imbalanced pseudo-labels. Motivated by
co-training, CODA [16] tries to slowly adapt training set from the source domain
to the target domain. [20] proposed Cycle Self-training which mainly focus on
pseudo-labeling and learns to generalize the pseudo-labels across domains.

3 Method

In this section, we first give a brief overview of adversarial adaptation methods,
and then introduce how to find nearest source-class in feature space. Finally, we
explain our self-training with label-level and feature-level consistency method in
detail.

3.1 Overview of Adversarial Domain Adaptation

In unsupervised domain adaptation, we are given a labeled source domain

Ds = {xs
i , yi}|Ds|

i=1 , and an unlabeled target domain Dt = {xt
i}|Dt|

i=1 . The source
domain and target domain are characterized by probability distributions Ps

and Pt, respectively. The goal of UDA is to train a model using Ds and Dt to
make predictions on Dt. Figure 1 shows the overall architecture of our proposed
method. Feature extractor G is shared by the source and target domains, extract-
ing the low-dimensional feature representations corresponding to the inputs,
given by f = G(x). The classifier C then outputs the softmax prediction dis-
tribution over the classes, and is trained using the cross-entropy(CE) loss on the
labeled data given by

Lcls = E(x,y)∼Ds∪Dt
select

[− log[C(G(x))]y] (1)



88 Y. Xin et al.

Fig. 1. Illustration of proposed ST-LFC approach. Our architecture consists of a feature
extractor G which is shared by source and target domains. The classifier C is trained
to classify the source images and generate target pseudo-labels using cross entropy loss
Lcls. The domain discriminator D aims to achieve domain alignment using adversarial
loss Ladv. Additionally, we use source features to obtain the class feature prototype µ,
and compute the distance between target features and class feature prototype to get
its nearest source-class. Then, we judge whether the generated pseudo-labels are con-
sistent with the nearest source-class results. The consistent target samples are trained
together with the source domain(Self-Training Process), and the inconsistent use Lurl

to participate in training.

where y is the ground truth labels for the source data in Ds or pseudo-labels for
carefully selected target data in Dt. This is a self-training process, the model gen-
erates pseudo-labels of unlabeled data, and jointly trains the model with source
labels and selected target pseudo-labels. The target domain samples selection
method will be introduced in the next section. However, since Ps �= Pt and the
classifier are biased to the source domain, the classifier does not generalize well
to target samples. Thus, the adversarial learning strategy [28] is used to alleviate
this issue. The domain discriminator D is trained by LDC to distinguish source
samples from target samples, while the feature extractor G is trained to generate
domain-invariant features that can confuse the discriminator:

min
D

max
G

LDC (2)

LDC = −Ex∼Ds [logD(G(x))] − Ex∼Dt [log(1 − D(G(x)))] (3)

The min-max training between feature extractor and discriminator can learn
help domain-invariant features, but this is not enough for good adaptation. On
the basis of learning domain-invariant features, our method utilizes the pseudo-
labels of the target samples by self-training, which leads to a qualitative improve-
ment in the performance on the target domain.
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Fig. 2. Illustration of source-class prototypes. It means the average feature embedding
of the source samples with the same ground-truth labels. We can find the nearest
source-class for target sample in feature space.

3.2 Source-Class Prototype in Feature Space

Our source-class prototype definition is intentionally tailored to serve UDA task.
Recall that during each forward pass, we have obtained source features fs

i =
G(xs

i ), which is generated by the feature extractor G. We enqueue each (fs
i , ys

i )
pair sequentially into each of the specific source-class prototypes, which means
the average feature embedding of the source samples with the same ground-truth
labels. The prototype of source-class k is denoted as:

μk =
1
nk

∑

ys
i=k

fs
i (4)

where nk represents the number of corresponding samples. Assuming that
the source contains a total of K categories, K source-class prototypes can be
obtained. Figure 2 shows the source-class prototype part in the overall framework
in detail. Figure 2 takes target sample xt

j as an example, K-dimensional distance
vectors dtj can be obtained by measuring the distance between target sample
xt
j feature and K source-class prototypes, we adopt the calculation method of

squared euclidean distance, which is given by:

dtj,k =
∥∥G(xt

j) − μk

∥∥2
, k = {1, 2, 3, ....,K} (5)

where dtj,k is the kth element of dtj ∈ R
K. From this, we can obtain the feature

distance vector between target samples and source-class prototypes. The nearest
source-class has the smallest distance.
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Algorithm 1. Self-training with Label-Feature-Consistency
Require: Batches for source Bs ∈ Ds; Batches for target Bt ∈ Dt; Feature extractor

G; Classifier C; Domain discriminator D.
Ensure: Trained feature extractor and trained classifier by ST-LFC.
1: for epoch=0 to MaxEpoch do
2: for t=0 to MaxIter do
3: Feature extractor G generates features fs for Bs and ft for Bt.
4: Classifier C outputs probability vectors ps for Bs and pt for Bt.
5: Source features fs generate source-class prototypes by Equ 4.
6: Calculate distance vectors from the source-class prototypes by Equ 5.
7: Find reliable samples by Equ 6.
8: if reliable sample then
9: Train source feature extractor G and source classifier C by classification loss

Lrl.
10: else
11: Train source feature extractor G and source classifier C by classification loss

Lurl by Equ 8.
12: end if
13: Train source feature extractor G and source classifier C by source classification

loss Lcls by Equ 1.
14: Train source feature extractor G by domain adversarial loss Ladv by Equ 2.
15: end for
16: end for
17: return G, C

3.3 Self-training with Label-Feature-Consistency

We first develop a voting consistency strategy to select certain pseudo-labeled
target samples for self-training to adapt the model to the target domain. The
certainty is decided by the consistency of two different predictions: the classi-
fier prediction and the nearest source-class prediction. The classifier C outputs
probability vectors ptj ∈ R

K for xt
j and distance vector dtj ∈ R

K can be obtained
which is introduced in last section. Then the consistency score for target sample
is defined as:

con
(
xt
j

)
=

{
1 argmax

(
ptj

)
== argmin

(
dtj

)

0 otherwise (6)

where argmax obtains the label with the largest predicted probability by the
classifier, argmin obtains the nearest source-class. For target samples with con-
sistency score of one, we consider them to be reliable samples. Reliable samples
with pseudo-labels train the model together with the source by cross-entropy loss
Lrl. This part plays an integral role in our ST-LFC. Directly training the model
with reliable target samples with pseudo-labels will make the model perform
better on the target.

Existing domain adaptation methods have an upper limit, in other words, the
upper limit is caused by these unreliable samples. ST-LFC also makes use of the
remaining unreliable samples. In our ST-LFC, the samples are unreliable because
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the classifier predictions are inconsistent with the nearest prototype class in the
feature space, and we can’t judge which is right. The solution of our ST-LFC
is to consider comprehensively, combining the probability vector ptj ∈ R

K and
distance vector dtj ∈ R

K. However, the distance vector needs to be processed and
converted into a class probability value, which is given by:

qtj,k =
e−dt

j,k

∑K
i=1 e−dt

j,i

, k = {1, 2, 3, ....,K} (7)

where qtj,k is the kth element of qtj , which means the probability of class
k considering feature distance. Then we use entropy minimization to update
model, which is defined as:

Lurl = −
K∑

k=1

(ptj,k + qtj,k)log(p
t
j,k + qtj,k) (8)

3.4 Optimization

To sum up, the optimization of ST-LFC is mainly divided into four parts: source
classification loss Lcls, target reliable samples classification loss Lrl; entropy
minimization two level probability of the target unreliable samples Lurl and
domain adaptation loss Ladv. Overall optimization of the model is give by:

Ltotal = Lcls + Lrl + Lurl + αLadv (9)

where α is the trade-off parameter. Algorithm 1 depicts the complete training
procedure of ST-LFC.

4 Experiments

In this section, we conduct extensive experiments on multiple domain adaptation
benchmarks to verify the effectiveness of ST-LFC. We present the datasets used
to evaluate our results, baselines methods we compared against, followed by
results and discussion. In the experiment, we choose well-known UDA methods
DANN [49] and CDAN [13] as our infrastructure respectively.

4.1 Datasets

To test the effectiveness of our method, we experiment on three different kinds
of benchmark datasets used for domain adaptation, which are Digits, Office-31
and Birds-31.

Digits. We investigate three digits datasets: USPS (U), MNIST (M), and SVHN
(S). We show results on three transfer tasks: M → U,U → M,S → M. USPS con-
tains 7,438 images. MNIST is composed of 55,000 images and SVHN is composed
of 73,257 images.
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Table 1. Accuracy (%) on Digits for unsupervised domain adaptation.

Method M→U U → M S → M Avg.

Source Only 76.7 63.4 67.1 69.1
DANN 90.8 94.0 83.1 89.3
ADDA 89.4 90.1 76.0 85.2
DSN 91.3 - 82.7 -
ATT - - 85.0 -
CDAN 93.9 96.9 88.5 93.1
ST-LFC(with DANN) 92.9 97.3 91.5 93.9
ST-LFC(with CDAN) 94.9 97.9 92.0 94.9

Office-31 is the most widely used dataset for visual domain adaptation, with
4,652 images and 31 categories collected from three distinct domains: Amazon
(A), DSLR (D) and Webcam (W). We show results for all the 6 task pairs
A → W,D → W,W → D,A → D,D → A and W → A. Following prior works,
we report results on the complete unlabeled examples of the target domain.

Birds-31 is recently proposed by [41] for fine grained adaptation consisting of
different types of birds. There are three domains in Birds-31: CUB-200-2011 (C),
NABirds (N) and iNaturalist2017 (I). The numbers of images selected are 1,848,
2,988 and 2,857 respectively. We show the adaptation results on six transfer tasks
formed from three domains: C → I, I → C, I → N,N → I,C → N and N → C.

4.2 Setup

Baselines. We compare our method ST-LFC with state-of-art domain adap-
tation methods: DAN [42], DAA [45], CDAN [13], CAT [37], ALDA [38] and
SRDA [39] as well as works which perform class aware alignment such as MCD
[46], SimNet [47], MADA [40]. For Birds-31, we additionally verify our result
with prior fine grained adaptation work, PAN [41]. Finally, we have ST-LFC
with DANN, which is using ST-LFC approach on top of DANN and ST-LFC
with CDAN which uses ST-LFC in combination with CDAN. We compare the
task-wise accuracy and report the average accurancy across all the transfer tasks.

Implementation. We implement our method on Pytorch, we use DTN [13]
architecture for digits and ResNet-50 [48] pretrained on ImageNet as the feature
extractor for Office-31 and Birds-31. The classifier is made up of fully connected
layers. For achieving training stability, we observe that it is essential to pretrain
the model on the labeled source dataset for a few iterations before self-training
process. We use mini-batch SGD with a learning rate of 0.03 for Office-31 and
Birds-31. For the classifier we multiply the learning rate by 10. We use a similar
annealing strategy as used in [49].

To illustrate the benefits of the proposed ST-LFC, we employ it on top of two
competing adaptation benchmarks in DANN [49] and CDAN [13], while noting
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Table 2. Accuracy (%) of different unsupervised domain adaptation methods on Office-
31 using ResNet-50 as the backbone for 6 transfer tasks among three domains: Amazon
(A), Webcam (W) and Dslr (D). Our method shows consistent improvements.

Method A→W D→W W→D A→D D→A W→A Avg.

ResNet50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DAN 80.5 97.1 99.6 78.6 63.6 62.8 80.4
DANN 82.0 96.9 99.1 79.7 68.2 67.4 82.2
ADDA 86.2 96.2 98.4 77.8 69.5 68.9 82.9
MCD 88.6 98.5 100.0 92.2 69.5 69.7 86.5
SimNet 88.6 98.2 99.7 85.3 73.4 71.8 86.2
CDAN 93.1 98.2 100.0 89.8 70.1 68.0 86.6
CDAN+E 94.1 98.6 100.0 92.9 71.0 69.3 87.7
DAA 86.8 99.3 100.0 88.8 74.3 73.9 87.2
SAFN 88.8 98.4 99.8 87.7 69.8 69.7 85.7
MADA 90.0 97.4 99.6 87.8 70.3 66.4 85.2
CAT 94.4 98.0 100.0 90.8 72.2 70.2 87.6
ALDA 95.6 97.7 100.0 94.0 72.2 72.5 88.7
SRDA 95.2 98.6 100.0 91.7 74.5 73.7 89.0
ST-LFC(with DANN) 91.3 98.6 100.0 88.6 72.1 69.9 86.8
ST-LFC(with CDAN) 95.2 99.3 100.0 93.4 73.6 75.7 89.5

that our ST-LFC is general and applicable in combination with any adversarial
adaptation approach. For experiments with DANN, we replace the adversarial
loss with a gradient reversal layer.

4.3 Results

Digits Dataset. In Table 1, we show the results for adaptation using ST-LFC.
We observe that we outperform prior methods when we use CDAN or DANN in
combination with ST-LFC. ST-LFC with DANN improves average accuracy from
89.3% to 93.9% and ST-LFC with CDAN improves average accuracy from 93.1%
to 94.9%, indicating the usefulness of ST-LFC for improving existing methods
for domain adaptation. To better illustrate performance of ST-LFC, the results
for office-31 and birds-31 are describe below.

Office-31 Dataset. We present results on the 6 transfer tasks on Office-31,
including their average, in Table 2. We observe that we achieve an accuracy of
89.5% on the average (ST-LFC with CDAN), outperforming all the competing
baselines. However, the A → W and A → D are slightly less effective than
ALDA, and D → A is less effective than DAA. This is because we chose to
build on DANN and CDAN, they are widely known UDA methods. Finally, our
ST-LFC is generally applicable, it improves accuracy over both the approaches
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Table 3. Results for domain adaptation on fine-frained adaptation setting, shown for
3 challenging datasets: CUB-200-2011 (C), iNaturalist2017 (I) and NABirds (N). Our
ST-LFC performs consistently better than all other methods by explicitly modeling
the finegrained nature of the adaptation process. All the baseline numbers taken from
[41].

Method C→I I→C I→N N→I C→N N→C Avg.

ResNet50 64.25 87.19 82.46 71.08 79.92 89.96 79.14
DAN 63.90 85.86 82.91 70.67 80.64 89.40 78.90
DANN 64.59 85.64 80.53 71.00 79.37 89.53 78.44
JAN 63.69 86.29 83.34 71.09 81.06 89.55 79.17
ADDA 63.03 87.26 84.36 72.39 79.69 89.28 79.33
MADA 62.03 89.99 87.05 70.99 81.36 92.09 80.50
MCD 66.43 88.02 85.57 73.06 82.37 90.99 81.07
CDAN 68.67 89.74 86.17 73.80 83.18 91.56 82.18
SAFN 65.23 90.18 84.71 73.00 81.65 91.47 81.08
PAN 69.79 90.46 88.10 75.03 84.19 92.51 83.34
ST-LFC(with DANN) 68.67 92.32 87.55 74.94 83.00 92.53 83.17
ST-LFC(with CDAN) 71.47 92.80 90.36 76.82 85.37 94.53 85.23

DANN [49] and CDAN [13], consistently over all the tasks (by 4.6% and 2.9%
on average, respectively). It is worth noting that ST-LFC improves the accuracy
of the DANN method on A → W task by 9.3% and A → D task by 8.9%.

Birds-31 Dataset. The difficulty in this setting lies in the fact that birds from
same class but different domains look quite distinct, sometimes more different
than images from an other class. We verify the results on all 6 transfer tasks
on Birds-31 dataset in Table 3, and show that ST-LFC outperforms prior works
across all the tasks. From the result, prior works that rely on global alignment
objectives [36,42] do not perform any better than a source-only model (ResNet-
50 baseline), possibly because they suffer from negative alignment. However, our
ST-LFC directly considers pseudo-labels, which is a more fine-grained solution
for Birds-31. As a result, we improve the accuracy over DANN on all the tasks,
and average accuracy from 78.44% to 83.17%. In fact, with an average accuracy
of 85.23% we achieve the new state-of-the-art result using ST-SLC in combina-
tion with CDAN. More remarkably, ST-LFC even outperform PAN [41], that
is specifically designed for fine-grained adaptation. This result underlinesthat
ST-LFC is able to perform well on fine-grained vision categorization despite the
domain shift.

4.4 Insight Analysis

Ablation Study. A highlight of ST-LFC compared with other methods based
on Self-Training is that it utilizes both carefully selected reliable target and con-
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Fig. 3. (a) shows the number of selected samples and the accuracy of pseudo-labels
during training in A to D task; (b) shows the number of selected samples and the
accuracy of pseudo-labels during training in A to W task.

Table 4. Results for ablation study. To verify the effectiveness of the ST-LFC method,
we experiment with DANN, ST-LFC(without exploiting unreliable samples) and our
ST-LFC(with both) on Office-31 and Birds-31.

Reliable Unreliable Office-31 Birds-31

� � 82.2 78.4
� � 85.5 82.5
� � 86.8 83.2

straints on unreliable target. We design experiments on the Office31 and Birds-31
datasets to verify the importance of these two parts, and the results are shown
in Table 4. The experiment is divided into three parts: DANN method, ST-
LFC(with DANN) without using unreliable target, our ST-LFC(with DANN).
ST-LFC without using unreliable target is improved on the basis of DANN meth-
ods by 3.3% and 4.1% respectively, which shows that ST-LFC is effective for the
utilization of reliable target. In addition, the performance of ST-LFC is improved
after adding constraints on the unreliable target by 1.3% and 0.7% respectively,
which demonstrates the effectiveness of unreliable target exploitation.

Target Pseudo-Labels Analysis. For all methods based on self-training, the
accuracy of pseudo-labels and the number of selected samples are the key factors
affecting the performance of the method, and our method is no exception. Figure 3
shows the accuracy rate of pseudo-labels and the variation in the number of sam-
ples selected per batch during ST-LFC training. We can see that as the number
of ST-LFC training rounds continues to increase, the number of target samples
selected in each batch also increases. Each batch of this experiment contains 124
samples, from which a maximum of about 110 reliable samples can be selected in
both A → D and A → W task, and the pseudo-label accuracy of reliable samples
can reach about 90% with increasing training. In this way, our ST-LFC is very suc-
cessful in the selection of reliable target samples, and not only performs well in the
selection accuracy, but also selects a sufficient number of samples.
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Fig. 4. (a) shows the results of ST-LFC with DANN and DANN comparison; (b) shows
the results of ST-LFC with CDAN and CDAN comparison.

Generality Analysis. In order to analysis ST-LFC can be applied to enhance
any existing domain adaptation approach, we combine two well-known domain
adaptation methods DANN and CDAN as examples. We plot the improvement
of Office-31 by our ST-LFC, as shown in Fig. 4. The previous results section
mainly describes the experimental data, while this part mainly analyzes the
results. There are six tasks in Office-31, and it can be seen from the Fig. 4 that
our ST-LFC has a certain magnitude of performance improvement for each task.
The performance improvement for DANN is better, because the upper limit of
DANN is lower than CDAN, the improvement space of CDAN is smaller. In
addition, among the six tasks, A to W and A to D have the best improvement
effect, which also shows that ST-LFC is friendly to tasks with large improvement
space. In fact, ST-LFC can combine any state-of-the-art methods and can further
improve performance.

5 Conclusion

In this work, we propose Self-Training with Label-Feature-Consistency(ST-
LFC), which is designed to be general and can be applied to enhance any exist-
ing adaptation approach. Firstly, we design a new selection strategy for reliable
target samples, which uses label-level and feature-level voting consistency prin-
ciple. This selection strategy lays the foundation for ST-LFC to perform well in
UDA problems. Secondly, ST-LFC does not adopt the abandonment strategy for
unreliable samples, but using entropy minimization to constrain the class proba-
bility of two levels. Finally, the combination of ST-LFC and adaptation methods
can both enable domain alignment and exhibit the powerful advantages of self-
training. We show numerical results on various challenging benchmark datasets
and perform favorably against many existing adaptation methods.

Limitations and Future Work. Although our ST-LFC performs well on UDA
problems, it is not sufficiently applicable. Recently, Test Time Adaptation [50]
has been proposed, which uses source to train the model and uses unlabeled
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target to adjust model only when testing. The scenario solution of this problem
is similar to self-training, and we hope that ST-LFC can go a step further in this
problem.
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