)

Check for
updates

Unleashing Pre-trained Masked Language
Model Knowledge for Label Signal
Guided Event Detection

Mengnan Xiao, Ruifang He®™) | Junwei Zhang, Jinsong Ma, and Haodong Zhao

Tianjin Key Laboratory of Cognitive Computing and Application,
College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{mnxiao,rfhe, junwei, jsma,2021244138}0tju.edu.cn

Abstract. Event detection (ED) aims to recognize triggers and their
types in sentences. Previous work employs distantly supervised methods
or pre-trained language models to generate sentences containing events
to alleviate data scarcity. Further, determining the spans and types of
triggers is complex and may have deviations. In this paper, we propose
to unleash Pre-trained Masked Language Model (PMLM) knowledge for
label signal guided ED by a novel trigger augmentation. We directly
generate triggers by leveraging the rich knowledge of PMLM through
masking triggers. However, these newly replaced triggers may not corre-
spond to the label of the masked trigger. To control such trigger augmen-
tation noises, we design a label signal guided classification mechanism
with event type-subtype guidance. To ensure the quality of generated
triggers, a semantic consistency mechanism is introduced. Experimen-
tal results on the ACE2005 and FewEvent show the effectiveness of our
proposed approach.

Keywords: Trigger augmentation - Label signal guided event
classification - Sentence semantic consistency

1 Introduction

As a challenging subtask of event extraction, event detection (ED) aims to iden-
tify and classify triggers. As per the general ACE2005 annotation guideline:
an event type contains one or more event subtypes. A sentence example is as
follows: “He lost an election to a dead man.” Here, “election” triggers a “Per-
sonnel: Elect” event where “Personnel” is the event type and “FElect” is the event
subtype.

So far, many methods have been proposed, extending from feature-based
approaches to advanced deep learning methods [8,11]. Although previous meth-
ods achieve success in many aspects, data scarcity is a growing challenge that
can not be ignored as mainstream models become bigger and bigger. The lack
of training data seriously hinders the performance of existing methods, which
are under the supervised learning paradigm and eager for the large training
dataset. To alleviate the problem, Liu et al. [6] propose a multilingual approach
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by machine translation to bootstrap the source data. However, ensuring the map-
ping between tokens and labels across languages is complex and may have devi-
ations. There also have been some efforts to enlarge training data for ED models
by exploiting distantly supervised techniques [1,11,12]. Moreover, some work
[8,13] leverages pre-trained language models to automatically generate training
data for models. The common in these methods is to generate sentences contain-
ing events. However, there are two main weaknesses: 1) there are noises in the
generated sentences and need extra mechanisms (such as knowledge distillation)
to control; 2) ED is a token-level classification task, determining the spans and
subtypes of triggers is difficult, and may have deviations.

To address the aforementioned problems, we explore directly generating
proper triggers without changing the context, which can not only weaken noises
but also reuse the labels of triggers in the original sentence. Inspired by Dai
et al. [2], we propose a novel trigger augmentation approach by leveraging the
existing pre-trained masked language model (PMLM) to automatically generate
triggers. By replacing original triggers with generated ones, we can obtain candi-
date sentences with different triggers. Specially, we aim to fine-tune a PMLM on
the existing training dataset by masking triggers so it can generate alternative
triggers and corresponding scores. Yet trigger augmentation might still involve
noises due to the complexity of natural language and the large vocabulary of
PMLM. So we also design a label signal guided classification mechanism
with event type-subtype guidance, including event type classification (ETC)
and event subtype classification (ESC). The results of ETC serve as signals to
guide ESC. Through the medium of ETC, we can calculate multiple times and
finally select the maximum value of the product of ETC and ESC as the final
result. In this manner, though the result of ETC is not correct, the final result
may also be right. We also design a sentence semantic consistency mech-
anism that makes the semantics between the candidate and original sentence
as similar as possible to ensure the quality of the generated triggers. With the
right generated triggers, the semantics of sentences are naturally similar. Our
contributions in this paper can be summarized as follows:

— Propose a novel trigger augmentation approach (called PMLMLS) for ED to
directly generate alternative triggers by leveraging the knowledge of PMLM,;

— Build a label signal guided classification mechanism with event type-subtype
guidance for ED which helps control noises in trigger augmentation;

— Employ a sentence semantic consistency mechanism to ensure the quality of
generated triggers;

— Experimental results on the ACE2005 and FewEvent demonstrate the effec-
tiveness of our method and achieve state-of-the-art performance.

2 Methodology

Figure 1 shows the proposed PMLMLS model, which leverages the knowledge of
the pre-trained masked language model (PMLM) to improve ED. The model con-
sists of two stages: (1) Trigger Augmentation: to employ PMLM to generate
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Fig. 1. The overview of our proposed PMLMLS.

alternative triggers and corresponding scores; (2) Label Signal Guided Event
Classification: to utilize label signal to guide event type-subtype classification
which helps control noises in (1).

2.1 Trigger Augmentation

As presented in Sec. 1, our motivation is to obtain proper candidate triggers with-
out changing the context. The overall strategy is to mask the trigger with a spe-
cial token and leverage PMLM to generate the candidates. Formally, assume that
T =[x1,...,%;,...,Z,] is a sentence of n tokens with only one trigger located at
x;, the masked sentence @’ would have the form: ' = [xy,...,[MASK], ..., x,]
where [M ASK] is the special token to symbolize the trigger. ’ is then employed
as the input of PMLM to obtain the representation Rmask of [MASK]:

Bmask = PMLM(z') € R? (1)

where d denotes the dimension of the hidden layer in PMLM. Then we utilize
PMLM head (i.e., LMhead) to obtain top k triggers T = [t1,...,t;,...,tx] and
corresponding scores 8 = [$1,...,8;,...,Sk]:

(T, 8) = LMhead(hpask) (2)

where LMhead is a pre-trained two-layer non-linear classifier with layer normal-
ization and the output dimension is the size of the vocabulary of PMLM. The
score s; is the probability of LMhead on the corresponding candidate trigger ¢;.
Note that the sum of s is not equal to 1 and then we normalize s:

Si

k
Zj:l Sj

S; =

€ER (3)
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Before we fill T into [M ASK] and obtain k candidate sentences, we preliminarily
judge the quality of T' through x; € T or not. If z; ¢ T, then the quality of T'
is unreliable and we will abandon it.

Considering that the trigger is usually the core word (verb or noun) of
the sentence, there would be many choices in the scope of the vocabulary of
PMLM. Sometimes it even generates candidates that are appropriate in the
context but completely irrelevant to the original word with high scores (e.g.
the example in the introduction). To help PMLM generate suitable candi-
dates that are related to the original trigger, we add the previous and next
sentences of x as a prompt to x’. The enriched x’ would have the form:

x’ = |Sentl,[SEP],z1,...,[MASK],...,z,,[SEP], Sent2] where [SEP] is
the special token to identify the span of sentences.

2.2 Label Signal Guided Event Classification

To control noises in trigger augmentation, we design a label signal guided
classification mechanism with event type-subtype guidance.

Label Signal Guided Classification Mechanism: Considering that an
event type consists of one or more event subtypes, we design a label signal
guided classification mechanism, first event type classification (ETC) then event
subtype classification (ESC). Formally, as per the pre-defined event schema, we
have an event type set C and an event subtype set ). The overall goal is to
predict all events in gold set &, of the sentence . We aim to maximize the joint
likelihood of training data D:

I I »teyi=) =H[H[p<tw)p(cw,wp(ym,t,c)}]

z€D | (t,c,y)€E zeD LteT,
(4)

where 7, denotes the triggers set occurring in @, ¢ denotes the trigger in 7, ¢
denotes the event type of ¢, and y denotes the event subtype of t. The result of
ETC is leveraged as a signal to guide ESC. It is a tree with a layer height of
3, the root node is the trigger, and the second and third layers are event types
and subtypes respectively. The children of the second layer node are the event
subtypes contained in the event type, and the weights of edges are probabilities
of ETC and ESC classifiers. When classification, the trigger selects a path to the
leaf node in a depth-first search (DFS) based on the edge weight.

To control noises in the trigger augmentation, we do not only utilize the label
corresponding to the maximum value of the ETC prediction result as a signal but
the top m results as signals. When starting from each node, instead of choosing
one path, we choose m paths as per the signals. Finally, the maximum value
of the product of all edge weights on the search path is employed as the final
result. In this manner, though the result of ETC is not correct, the final result
may also be right. We can obtain the global optimal solution to a certain extent
through multiple searches.
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Event Type-Subtype Guidance Classification Network: As per the
aforementioned mechanism, we build an event type-subtype guidance classifica-
tion network containing ETC and ESC. The thought of ETC and ESC are sim-
ilar while ETC is trained on candidate sentences and obtain event type results,
ESC is trained on original sentences and obtain event subtype results as per the
results of ETC. Assume that X is the candidate sentences obtained by the orig-
inal sentence x after Sec. 2.1. Then we utilize the PMLM to obtain the hidden
presentation of tokens in X and x:

H=PMLM(X) H =PMLM(x) (5)

where the PMLM is the one in Sec. 2.1, they share weights, H is the embedding
of tokens in candidate sentences, and H is the embedding of tokens in the original
sentence. Then H is used as the input of ETC to obtain the event type result
C:

C =ETC(H) (6)

where ETC is a two-layer non-linear classifier with dropout and layer normal-
ization. In addition, we obtain the score of candidate sentence s by Eq.2 and 3.
Therefore we obtain the weighted probability over event type p by the product
of C and s normalized by softmax(-):

p= softmax( zz: Széz) (7)
i=1

Then the top m probability v and the corresponding event type label id £ of p
consist of signals to guide ESC:

y = max {v; - softmax(ESCy, (H))|i = 1,...,m} (8)

where ESC contains L classifiers and each is a two-layer non-linear classifier with
dropout and layer normalization. L denotes the number of event types, ESCy,
denotes choosing the ¢;-th classifier as per ¢;, v; -softmax(ESCy, (H)) denotes the
product of probabilities, and y denotes the final event subtype result of tokens
in x.

2.3 Training

This section describes the training of our model. In addition, to further make sure
the quality of generated triggers, sentence semantic consistency is introduced.
Sentence Semantic Consistency: In Sec. 2.1, we preliminarily judge the
quality of the candidate triggers by z; € T or not. But for z € T'\ {x;}, the
quality can not be guaranteed. Considering the only difference between candi-
date and original sentences is triggers. Therefore, we try to make the semantics
between the candidate and the original sentence as similar as possible. In this
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work, we utilize the mean squared error between H,, and H as a supervised
target for the loss function:

[H o5
1 N
£s: § Hcsi_Hcsi2 (9)
|HclS| i=1 ( 1’ 1’)

where H o1s and H s denote the semantics of candidate and original sentences
respectively, |H qs| denotes the dimension of Hs, and H s ; denotes the i-th
element of H .
Joint training: Finally, to train PMLMLS, the following combined loss
function is employed:
L = Lgrc + algsc + BL (10)

where Lgrc employs cross-entropy loss between the real and predicted event
type labels, Lgsc employs the same loss on the real and predicted event subtype
labels, a and 3 are the trade-off parameters.

3 Experiments

In this section, we explore the following questions:

Q1: Can PMLMLS better utilize the knowledge of PMLM to boost the per-
formance of ED? Q2: Is every module essential? Q3: How do hyper-parameters
affect the performance of PMLMLS?

3.1 Settings

Datasets: We conduct experiments on the event detection benchmark ACE2005,
which has 599 English annotated documents and 8 event types total of 33 event
subtypes. The same split as the previous work [8,11] is used.

In addition, we also conduct experiments on another benchmark FewEvent
[3], which contains 70,852 instances for 19 event types graded into 100 event
subtypes in total. To validate the performance of PMLMLS in the data scarcity
scenario, we randomly select 30 instances for each event subtype in each trial.
In a trial, the proportion of instances for each event subtype in the training,
development, and test set are 70%, 10%, and 20% respectively.

For evaluation, we employ standard Precision (P), Recall (R), and the Fj
score following the previous work [8,11]. And we employ the average of 5 exper-
imental results as the final result.

Baselines: To verify PMLMLS, we compare our method with models based
on the aforementioned two strategies and other SOTA methods.

For ACE2005, we compare PMLMLS with several state-of-the-art models in
three categories: (1) Multi-label classification model: DMICNN [1], MLBiNet
[7], and ED3C [9]; (2) QA-based model: RCEE_ER [5]; (3) Data augmen-
tation model: GMLATT [6], DMBERT [12], DRMM [10], EKD [11], and
GPTEDOT [8]. For FewEvent, we compare PMLMLS with the following mod-
els: PLMEE [13], DMBERT [12], and EEQA [4].
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Table 1. Overall performance (a) and ablation study (b) on the ACE2005 test set.
In (a), * indicates models based on PLMs. In (b), all the models in this table utilize
RoBERTa-base. (The same as below)

Model P R R Model | P R F
DMCNN [1]]79.7 69.6 74.3 ED | 74.3 73.0 73.6
GMLATT [6] | 78.9 66.9 72.4 LSED |74.8 75.2 75.0
DMBERT* [12] | 77.6 71.8 74.6 PMLMED™ | 734 79.0 76.1
RCEE_ER* [5] | 75.6 74.2 74.9 PMLMED ™" | 76.2 78.0 77.1
DRMM* [10] | 77.9 74.8 76.3 PMLMED™* 758 78.9 77.3
EKD* [11] | 79.1 78.0 78.5 PMLMED | 76.0 80.7 78.3
MLBiNeE [7] | 74.7 83.0 78.6 PMLMLS ! [ 740 802 77.0
EDSC™ 9]/ 75.1 835 79.1 PMLMLS™® | 76.8 80.5 78.6
GPTEDOT* [8] 82.3 76.3 79.2 PMLMLS™ | 76.6 805 78.5
PMLMLS (ours)* |76.6 82.8 79.6 PMLMLS | 76.6 82.8 79.6
(a) Overall performance (b) Ablation study

Implementations: We choose RoBERTa-base as the pre-trained masked
language model and experiment with MindSpore. The hidden state and dropout
of ETC and ESC are set to 768 and 0.1 respectively. The trade-off parameters «
and 3 are set to 0.6 and 0.2 respectively. The learning rate is set to le—5 for the
Adam optimizer and the batch size of 4 is employed during training. k is set to
4 denotes trigger augmentation will generate 4 alternative triggers. m is set to
2 denotes ESC will compute 2 times as per the top 2 probability of ETC. The
epoch is set to 50 and the early stop is set to 8.

3.2 Overall Performance

Table1l (a) presents the performance of all baselines and PMLMLS on the
ACE2005 test set. For @1, we can observe that:

1) By fully leveraging the rich knowledge of the pre-trained masked lan-
guage model and label signal guided classification, PMLMLS outperforms all
baselines with simpler architecture. Our method, only using a shared PMLM,
surpasses GPTEDOT [8] which utilizes two PLMs and achieves competitive per-
formance with the new SOTA. Furthermore, compared with other models that
need the extra complicated module to control noise (e.g. knowledge distillation),
PMLMLS only utilizes a two-stage classification based on label signal.

2) By directly generating alternative triggers from the pre-trained masked lan-
guage model, PMLMLS achieves better results compared to other data argumen-
tation models. Our method improves F} by 1.0% and 0.4% over the SOTA EKD
[11] based on distant supervision and GPTEDOT [8] based on GPT-2 respectively.
Compared with generating sentences containing events, directly generating alter-
native triggers can weaken noise and reuse the label of the original sentence.
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Table 2. Overall performance and ablation study on the FewEvent test set.

Model P R P Model | P R F

PLMEE* [13] | 60.1 58.2 59.1 ED| 60.2 53.3 56.5

DMBERT* [12] | 60.3 58.4 59.3 LSED | 60.7 54.1 57.2

EEQA* [4] 612 59.3 60.2 PMLMED | 57.4 59.6 58.5

PMLMLS (ours)* | 62.0 60.3 61.1 PMLMLS | 62.0 60.3 61.1
(a) Overall performance (b) Ablation study

Table 2 (a) presents the performance of PMLMLS on the FewEvent test set.
We can see that: our proposed model has an improvement compared with all
baselines, thus further confirming the advantages of PMLMLS for ED.

3.3 Ablation Study

To verify @2, for ACE2005, first, for the importance of label signal, we take
the following baselines: (1) ED: the base model based on the PMLM without
trigger augmentation and label signal guided classification; (2) LSED: based on
(1), LSED adds label signal guided classification. Second, based on the trigger
augmentation, three components need to be evaluated, the previous and next
sentences prompt (context prompt, cp), label signal guided classification (1s),
and sentence semantic consistency (ssc) respectively. There are a total of 8 com-
binations, one of which is PMLMLS. Therefore, we choose the remaining 7 com-
binations as degradation experiments. They are (3) PMLMED™!: the baseline
model based on trigger augmentation, without cp, 1s, and ssc; (4) PMLMED P:
based on (3), add ssc; (5) PMLMED™*: based on (3), add cp; (6) PMLMED:
based on (3), add cp and ssc; (7) PMLMLS™!: the baseline model based on
trigger augmentation and label signal guided classification, without cp and ssc;
(8) PMLMLS™P: based on (7), add ssc; (9) PMLMLS™*: based on (7), add cp.

For FewEvent, there is no concept of the document, and the training data is
in the form of sentences, so there is no context prompt. Degradation experiments
include: (1) ED: the baseline only utilizes RoBERTa-base; (2) LSED: based on
(1), add label signal guided classification; (3) PMLMED, based on (1), add
trigger augmentation. From Table1 (b), we can observe that:

1) The trigger augmentation, cp, ssc, and ls are necessary for PMLMLS
to achieve the highest performance. Remove any component, performance will
decrease. In particular, the Fj score decreases by 1.0%, 1.1%, 1.3%, and 4.6%
when removing cp, ssc, ls, and trigger augmentation. Note that when removing
trigger augmentation, cp and ssc will also remove.

2) Label signal guided classification is helpful at any time. There are 10
degradation experiments, and we can divide them into 5 groups: a) ED and
LSED; b) PMLMED ™ and PMLMLS™!; ¢) PMLMED P and PMLMLS™P; d)
PMLMED™¢ and PMLMLS™*; ¢) PMLMED and PMLMLS. The difference
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Table 3. Performance of PMLMLS on the ACE2005 test set with different £ and m.

k m
1 2 3 4 5 6 1 2 3
P |74.6|75.5|76.9|76.6 74.9|75.6|75.876.6|76.8
R |75.0]78.4|79.582.7|80.9|74.5| 81.6  82.7|82.9
Fy | 74.8|76.9|78.2|79.6 | 77.8|75.1|78.6|79.6 | 79.7

between the two experiments in each group is whether to perform label signal
guided classification. We can see that the effect of using label signal guided
classification in each set of experiments is better than not using and the average
improvement is 1.3%.

3) Adding additional training data is an effective method for data scarcity.
Yet it will inevitably introduce noises. The key is to control noises while increas-
ing the training data. Compared with ED, PMLMED ™! adds additional training
data without extra mechanisms to control noises, we can see that the F; score
increases, but at the cost of a decrease in P. When additional mechanisms (cp,
ssc, or both) are added to control noise, the scores of P, R, and F} increase over
ED. In addition, from Table2 (b), we can see that: Compared with ACE2005,
the effect of each module is better in the scarcer FewEvent.

3.4 Parameter Analysis

To illustrate @3, in addition to the hyperparameters of the neural network, two
additional hyperparameters need to be set. They are the number of alternative
triggers generated for the masked trigger k and the top m results of ETC consist
of signals to guide ESC.

To study the importance of k, we experiment with different & on the ACE2005.
From the left of Table 3, the highest performance of the proposed model is achieved
when k is 4 which denotes trigger augmentation generates 4 alternative triggers
for the masked trigger. More specially, when £ < 3, as k increases, P, R, and
Fy increase. We can see the knowledge of the pre-trained masked language model
can predict proper and various triggers, alleviate data scarcity and improve perfor-
mance. When k equals 4, P drops slightly compared to k equals 3. Though achiev-
ing the highest, we can see it is a bit noisy but more profitable. When k£ > 5, noise
dominates and affects the performance of the ED model.

To provide more insights into the influence of label signal guided classifica-
tion, we conduct experiments with different m on the ACE2005. From the right of
Table 3, we can see that with the increment of m, the performance of PMLMLS
improves. That is because PMLMLS makes multiple judgments when making the
final result, weakening the interference of noise. Note that using label signal guided
classification will affect the parallelism and need more time since we need to select
the corresponding classifier in ESC as per the results of ETC. Even though the F}
score when m = 3 is higher than when m = 2, however, the improvement is slight.
So we select m = 2 as the final result to balance F; and time costing.
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4 Conclusions

In this paper, we propose a novel trigger augmentation method (called PMLMLS)
for ED leveraging the rich knowledge of the pre-trained masked language model.
Unlike other data augmentation methods that generate sentences containing
events, PMLMLS directly generates alternative triggers by masking triggers to
weaken noises from the source. We also design a label signal guided classification
mechanism with event type-subtype guidance to alleviate the noises in trigger aug-
mentation. Sentence semantic consistency is also introduced to ensure the quality
of generated triggers. Comprehensive experimental results on the ACE2005 and
FewEvent demonstrate the effectiveness of the proposed method.
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