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Abstract. Popularity prediction of information cascades is a fundamen-
tal and challenging task in social network data analysis. Social roles
impact users’ behaviors and change the structure and popularity of
information cascades. Existing deep learning-based methods utilize sev-
eral independent sub-cascade graphs or paths to learn cascade repre-
sentations, which lose vital information about social roles and dynamics
between sub-cascades at different moments. We propose a social role-
aware cascade (SRACas) model that exploits the social influences of
nodes on previous and subsequent sub-cascade graphs within an obser-
vation window to facilitate the social role learning of nodes. A temporal-
aware differential loss is also proposed to discriminate the structures of
neighboring sub-cascades and captures the dynamics of sub-cascades.
Under the techniques of local graph attention, social role-aware atten-
tion, and temporal-aware loss, SRACas learns a better latent represen-
tation of cascades at both the node level, sub-cascade level, and cas-
cade level. Moreover, there lacks a platform with standard prepossess-
ing procedures that allow convenient configuration and fair competition
between information cascade prediction models. An open platform Open-
Cas is built with uniform preprocesses to verify the faithful performance
of the compared methods. Extensive experiments show that SRACas
achieved significant improvements over existing methods on classic real-
world datasets.
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1 Introduction

Popularity prediction of information cascades (also called cascade prediction in
[3,12]) benefits many practical applications, e.g., fake news and rumor control,
viral marketing, advertising, scientific impact quantification [11]. Understanding
the nature of cascades and predicting their future popularity has drawn the
interest of many scholars. However, cascade prediction remains challenging due
to complex social influences, and its accuracy is still unsatisfactory.

The deep learning-based approaches have recently achieved state-of-the-art
performances in information cascade prediction [2,3,6,8,9,12]. DeepCas [6],
DeepHawkes [2], and TopoLSTM [8] are mainly based on recurrent neural net-
works. Spatial features are also found helpful in improving the performance of
popularity prediction and are learned by the graph neural networks (GNNs) in
current works [3,9,12]. Social roles impact retweet behaviors and significantly
influence information diffusion [10]. However, current methods, e.g., CasCN [3],
VaCas [12] and CasFlow [9] learn node features in isolated sub-cascade graphs,
ignoring the social roles of nodes and influences between nodes in different sub-
cascades. As described in Fig. 1, the sub-cascade graphs at ti in two cases are
topologically the same. But the node A and B hold different social roles and influ-
ences in the cases. A is an opinion leader that leads several following retweets,
while B is a common node. Node representations learned independently in a
sub-cascade graph can hardly distinguish the situations and reflect the nodes’
social roles. However, by reviewing previous and subsequent sub-cascades, we
can easily discriminate the social roles of node A and B and know their impacts
on information diffusion. As represented in ti and ti+1 in Fig. 1(b), the structure
and size of cascades do not always change drastically over time. The adjacent
sub-cascades may be slightly different from the previous sub-cascades. The exist-
ing models rarely consider the subtle differences between adjacent sub-cascade
graphs and lose subtle dynamic information of cascades. Moreover, current mod-
els based on dense adjacency matrices are memory-intensive and inefficient or
perform much worse in larger cascades.

Fig. 1. Cases describing how social roles impact information diffusion. The purple node
A is an opinion leader, and green node B is a common node. (Color figure online)

To address the abovementioned problems of cascade prediction, we propose
a novel social role-aware cascade prediction model named SRACas. It utilizes
local graph attention and a social role-aware attention mechanism which enables
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each node to consider both its neighboring nodes’ representation and features of
sub-cascade graphs from previous and subsequent moments. The social roles and
influences are embedded in nodes’ representations in this way. A temporal-aware
differential loss is also employed to learn the subtle differences between sub-
cascade graphs, which benefits the training and convergence of models. To sup-
port larger cascades, sparse matrices and efficient computations are also applied.

In addition, although there is a survey on cascade prediction [11], a framework
aggregating current cascade models is lacking. It is necessary to unify experimen-
tal steps before training models and reorganize the implementations of current
models. Therefore, a framework, OpenCas, is built to address the issue.

Our main contributions are as follows:

• Novel Cascade Model. We propose a novel cascade model, SRACas, which
employs local graph attention and a social role-aware attention mechanism to
learn better social role representations of nodes that leverages bidirectional
sub-cascades. A temporal-aware differential loss is also applied in SRACas to
capture the subtle differences and dynamics of sub-cascade graphs, which is
another key to learning better temporal features of cascades.

• Support Larger Cascades. Some advanced cascade prediction models (e.g.,
CasCN [3], VaCas [12], and CasFlow [9]) are unable to work or perform much
worse in larger cascades. In contrast, the performance of our approach is most
stable in larger cascades leveraging graph sparse encoding.

• Much Better Performance. Extensive experiments on two real-world sce-
narios demonstrate that SRACas significantly outperforms strong baselines,
with the MSLE reduced by from 12.0% to 14.6%, from 6.9% to 9.7% in the
dataset Sina Weibo and APS Citation, respectively.

• OpenCas. We built a cascade prediction framework OpenCas, which enables
convenient and fair comparative experiments between different models under
the same data preprocessing and partitions. OpenCas improves the perfor-
mance of classic models and simplifies environment configurations1

2 Preliminaries

Cascade Graph. A source of a cascade can be an academic publication, a
tweet, a microblog, etc. A cascade graph can be represented as a sub-cascade
graph sequence that evolves from an initial source node v0 at time t0. Node vi
participates in the cascade at time ti. A subcascade Gtj is a graph at moment
tj . We formalize the cascade sequence as Ci = {Gt0 ,Gt1 , ...,Gtn}, where Gtj =
(V tj , Etj , tj) is a snapshot graph of the cascade C at time tj . V tj and Etj are the
sets of nodes and edges of sub-cascade Gtj until time tj ≥ 0, respectively. V tj =
{v0(tj), v1(tj), v2(tj), ..., vi(tj)}. The set of edges Etj records how information
propagates between users in V tj .

Popularity Prediction. Following previous works [2,3,6,12], the popularity
prediction of information cascades is formalized as a regression problem. Given
1 The details of OpenCas are referred to https://github.com/zhenhuascut/OpenCas.

https://github.com/zhenhuascut/OpenCas
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a cascade Ci = {Gt0 ,Gt1 , ...,Gtn}, the incremental popularity is defined as
ΔS = |V tp | − |V to |, where to and tp are the observation time and the pre-
diction time, respectively. The main objective is to train a model f that learns
the representation of a cascade within the observation time to to predict ΔS.

Fig. 2. Overview of SRACas.

3 Proposed Method

The overall training process of SRACas is sketched in Fig. 2. It mainly contains
the following modules:

3.1 Local Structure Learning

Given a sub-cascade graph Gt, the first step is to capture the basic structural
information and obtain node-level representations. Different from CasCN [3] that
neighboring nodes have similar weights. We believe that different nodes play
different roles in information diffusion, e.g., opinion leaders, structural holes, and
peripheral nodes. Local graph attention similar to GAT [7] is used to calculate
the importance of a node and aggregate the features of nodes. The αuv and
alignment coefficients eluv are calculated by:

αuv = Softmaxu(eluv) =
exp(eluv)∑

k∈N(v)∪{v} exp(elkv)
(1)

eluv = attnl(xl
u, xl

v) = fprop(hl
u, hl

v) (2)

where hl
u is the node embedding in graph aggregation layer l. The function fprop

can be in different forms. One simple form is fprop = (W l
a)

T [W lhl
u,W lhl

v], where
W l

a ∈ R2F l+1
is a shared attention weights. xt

v is calculated by a residual network
xt
v = f0(h0

v) + f1(h1
v) + hL

v . xt
v ∈ RFL

, f0 and f1 are dense layers that change
dimension size of hl

v to FL. L is the number of layers set to two in this paper.
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3.2 Social Role-Aware Attention

The social role-aware attention considers the influences of nodes from nodes
of previous and following sub-cascades within W temporal intervals (attention
window), in which the roles a node plays in information diffusion are learned.

The social influence of a node v by node u ∈ V t−1 at the previous moment
is calculated by :

αb
uv =

exp(fback(xt−1
u , xt

v))∑
k∈V t−1 exp(fback(xt−1

k , xt
v))

(3)

xt−1
v = σ(

∑

u∈V t−1

xt−1
u αb

uv) (4)

where αb
uv is the impacts of node u to node v in V t−1. fback is the aggregation

method between xt−1
v and xt

v. Here, we choose the Euclidean distance of nodes
as the function fback.

xt+1
v is calculated in the same way as in xt−1

v . The updated representa-
tion xupdate

v of node v is then calculated by combing the representations of v
from sub-cascades within attention window size W. When W = 1, fcombine(xt−1

v

, xt
v, x

t+1
v ) = xt−1

v +xt
v+xt+1

v . fcombine can also be designed in a more complicated
form, which is left for future works. A larger attention window size (e.g., W = 2,
fcombine(xt−2

v , xt−1
v , xt

v, x
t+1
v , xt+2

v )) brings a broader view of sub-cascades but
increases the calculation complexity.

Graph Pool. After obtaining nodes’ representations, the features of nodes at
the moment are pooled to produce a presentation of the sub-cascade graph ht

G.

3.3 Temporal Feature Learning

Social role-aware attention has learned part of cascades’ temporal characteristics,
as well as the features of social roles. To learn the long-term temporal depen-
dency of cascades, we apply a temporal feature learning model. Given input rep-
resentations of sub-cascades HG = {h0

G, h1
G, h2

G, ..., hT
G}, the bidirectional gated

recurrent units (BiGRU) computes updated hidden states and produces new
representations by concatenating outputs of the forward GRU and backward
GRU: O1:T = {o0, o1, o2, ..., oT } =

−−−→
GRU(HG)||←−−−

GRU(HG), O1:T ∈ RT∗2M , M is
the output hidden size of BiGRU.

We can simply use the last output oT as the embedding features of a cascade.
Motivated by the idea [5], convolutional neural networks are used to capture the
long-term dependencies of HG and produce the final representation HCi

of a
cascade Ci.

3.4 Prediction and Loss Function

HCi
is fed into a two-layer multi-layer perception (MLP) to produce predicted

popularity increment ΔS̃i = MLP (HCi
). To capture subtle dynamics of cas-

cades, a temporal-aware differential loss function Ldif is applied to predict the
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differential size of the sub-cascades by:

Ldif =
1

TNc

Nc∑

i=1

T∑
(ΔSdi − ΔS̃di)2 (5)

ΔSdi = (|Gf | − |Gp|),ΔS̃di = MLP (hf
G − hp

G) (6)

where ΔSdi is the differential size between two neighboring sub-cascade graphs
(a following Gf and a previous Gp). Nc is the number of cascades. A differen-
tial representation of sub-cascades is calculated by subtracting hf

G and hp
G . The

differential representation is then fed into an MLP layer to predict ΔSdi.
The final loss is calculated by:

L(ΔSi,ΔS̃i) =
1

Nc

Nc∑

i=1

(logΔSi − logΔS̃i)2 + λLdif (7)

where λ is a hyperparameter and is set to 1.0 by default.

3.5 Sparse Encoding

Fig. 3. Sparse graph encoding and computation.

Different from CasCN, VaCas, and CasFlow, which use a full matrix, SRACas
applies a sparse matrix to save GPU memories and accelerate computations. The
sparse matrix representation records source nodes and target nodes that indicate
the edges and directions, as shown in Fig. 3. A matrix is sparsely encoded as:

Ms =
[

s1 s2 s3 s1 . . . si
t1 t2 t2 t3 . . . ti

]

(8)

where si and ti(i = 1, 2 . . . , N) are a source node and a target node. The gather
process aggregates the source nodes with the same target ti (denoted as the
set Pi). The process of the matrix computation is MsF d, where F d ∈ RNFin .
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The multiplication is improved by accessing the memory and computing in a
thread-per-matrix-row pattern [4].

Fu
ti = (Ms · F d)ti =

∑

k∈Pi

F d
k (9)

where Fu
ti ∈ RFin are the representation of node i after a simple sum scatter.

4 Experiments

Two classic tasks are introduced to evaluate the effectiveness of SRACas [2]. One
task is to predict the future retweet size of a microblog. The other task predicts
the future citation counts of a paper.

4.1 Experimental Setups

Following data preprocessing setups in DeepHawkes [2], the observation time
window to is set to 1 h, 2 h, and 3 h in the Sina Weibo dataset. The cascades
that have less than five retweets within the observation time to are removed in
experiments. In the dataset APS Citation, we remove papers with fewer than
ten citations within the observation time [2]. We set to = 5 years, 7 years, and
9 years to predict the size in the 20th year.

The MSLE (mean square log-transformed error) and mSLE (median square
log-transformed error) [2] are used as evaluation metrics. We consider the classic
and advanced models as strong baselines (Table 1).

4.2 Prediction Performance

Table 1. Performance on the entire cascade set.

Sina Weibo APS Citation

to 1hour 2hours 3hours 5years 7years 9years

Metric MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 3.383 0.810 3.255 0.813 3.186 0.845 1.772 0.730 1.594 0.693 1.579 0.732

TopoLSTM 3.535 1.247 3.386 1.108 3.244 1.101 1.728 0.721 1.615 0.736 1.560 0.644

DeepHawkes 2.307 0.648 2.125 0.597 2.105 0.644 1.347 0.604 1.337 0.598 1.244 0.519

CasCN* 2.862 0.699 2.796 0.774 2.707 0.681 1.397 0.618 1.355 0.563 1.178 0.545

CasFlow* 2.325 0.650 2.256 0.672 2.113 0.668 1.352 0.548 1.345 0.591 1.316 0.571

SRACas 1.970 0.560 1.870 0.499 1.826 0.477 1.253 0.527 1.207 0.510 1.076 0.472

Note that OpenCas optimizes implementations of current models, so perfor-
mances of some baselines are improved compared to the original papers. Some
recent models (e.g., CasCN and CasFlow) are only suitable for predicting cas-
cades with small popularity size [3,9]. Larger cascades form in real-world sce-
narios, and they are more common in the Sina Weibo dataset than in the APS



28 Z. Huang et al.

Citation dataset. Larger cascades increase the difficulties of cascade prediction
and require higher GPU memories, making some models unsuitable. Therefore,
a smaller dataset from the Sina Weibo dataset is also used to validate the per-
formance of models by selecting the cascades with no more than over 100 nodes
within the observation window following setups [3,9]. The size distributions of
the small and large cascades are similar in the APS Citation and Twitter, which
is meaningless to be divided.

Prediction on the Entire Cascade Set: The entire cascade set preserves cas-
cades with fewer than 1000 nodes within the observation window as described in
DeepHawkes [2]. CasCN and CasFlow are infeasible to run experiments directly
on the entire set due to their high GPU demands. We apply CasFlow and CasCN
by limiting the first 100 participants in the observation window (denote as Cas-
Flow* and CasCN*). SRACas applies sparse encoding to reduce GPU memory
usage and enable experiments on the entire cascades. SRACas follows the same
training strategies in experiments on both entire and smaller cascade sets. The
baseline models outperform their original implementations by re-implementing
part of the codes and optimizing training strategies on OpenCas. For example,
the performance of DeepCas and DeepHawkes is better than their original papers
or previous reports, with the MSLE reduced from 3.63 to 3.38 and from 2.44 to
2.31 [2] at one hour, respectively. SRACas consistently outperforms the baselines
by significant margins.

Prediction on Smaller Cascades Set: All the baseline models work on the
smaller dataset, but SRACas performs much better, as shown in Table 2. MSLE
of DeepCas and DeepHawkes is reduced from 2.958 [3] to 2.494 and from 2.441 [3]
to 2.023, respectively. The performance of DeepCas and DeepHawkes is under-
estimated in previous works. The second lowest MSLE (2.023 by DeepHawkes)
is reduced to 1.810 (SRACas) by around 10.5 % at 1 h on Sina Weibo.

Compared with prediction performance on the smaller set, MSLE of Cas-
Flow and DeepHawkes on the entire set is highly decreased by 14% (substantial
performance decrease) as shown in Table 2. The performance of CasCN and
TopoLSTM even dropped by more than 30% and 40%, respectively. However,
SRACas is the most stable: the MSLE only increased from 1.810 to 1.970, and
the mSLE increased from 0.534 to 0.560.

Table 2. Performance on Sina Weibo (smaller set).

Sina Weibo (Smaller Set)

to 1hour 2hours 3hours

Metric MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 2.494 0.758 2.386 0.801 2.316 0.856

TopoLSTM 2.679 0.715 2.595 0.724 2.579 0.703

DeepHawkes 2.023 0.649 1.963 0.536 1.941 0.546

CasCN 2.042 0.553 1.906 0.532 1.867 0.530

CasFlow 2.038 0.547 1.988 0.527 1.920 0.519

SRACas 1.810 0.534 1.687 0.470 1.622 0.486
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Fig. 4. Subcascade representations in Sina Weibo.

Fig. 5. Differential temporal representations in Sina Weibo.

4.3 Visualization and Explanation

Discussions on Learned Features: To discover the differences in representa-
tions learned by different models. We apply t-SNE [1] to project the cascades’
or sub-cascade graphs’ representations into two-dimensional points. Meaningful
representations will gather according to the sizes. Figure 4 represents the sub-
cascade graphs’ representations with sizes. The aggregation degree of the learned
features by SRACas is higher than CasCN and DeepHawkes on relatively large-
size sub-cascade graphs.

Furthermore, we explore the differential representation of sub-cascades in
different moments by subtracting the representation of Gt and Gt−1 and coloring
the data points with incremental sizes between Gt and Gt−1. As shown in Fig. 5,
the aggregation effects of CasCN and DeepHawkes are not as obvious as those
of SRACas. The nodes in different moments share the same representations in
DeepHawkes, which makes it hard to distinguish the structure of sub-cascades.
CasCN also fails to distinguish the difference between neighboring sub-cascades,
demonstrating the effectiveness of role-aware social attention.

Fig. 6. Cascade representations in Sina Weibo.
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Finally, the representations of entire cascades are visualized in Fig. 6. The
learned features by all models are related to the increment size to a certain
extent. However, compared to CasCN and DeepHawkes, the points cluster more
densely and smoothly according to their incremental popularity in SRACas.

5 Conclusion

This paper proposes a novel model SRACas to solve the problem that current
models fail to model the social roles of nodes and discriminate the neighboring
sub-cascades, utilizing a social-aware attention mechanism and temporal-aware
differential loss. The SRACas achieved significant improvements over strong
baseline methods and brought cascade prediction performance to a new level
in classic real-world datasets. Furthermore, an open platform OpenCas that
aggregates cascade prediction models is built, which simplifies the environmen-
tal configuration, data preprocessing, and training of models.
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