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Preface

It is our great pleasure to present the proceedings of the 28th International Conference
on Database Systems for Advanced Applications (DASFAA 2023), organized by Tianjin
University and held during April 17–20, 2023, in Tianjin, China. DASFAA is an annual
international database conference which showcases state-of-the-art R&D activities in
database systems and advanced applications. It provides a premier international forum
for technical presentations and discussions among database researchers, developers, and
users from both academia and industry.

This year we received a record high number of 652 research paper submissions. We
conducted a double-blind review following the tradition of DASFAA, and constructed a
large committee consisting of 31 Senior Program Committee (SPC) members and 254
ProgramCommittee (PC)members. Each valid submissionwas reviewed by at least three
PC members and meta-reviewed by one SPC member, who also led the discussion with
the PC members. We, the PC co-chairs, considered the recommendations from the SPC
members and investigated each submission as well as its reviews to make the final deci-
sions. As a result, 125 full papers (acceptance ratio of 19.2%) and 66 short papers (accep-
tance ratio of 29.3%) were accepted. The review process was supported by theMicrosoft
CMT system. During the three main conference days, these 191 papers were presented
in 17 research sessions. The dominant keywords for the accepted papers includedmodel,
graph, learning, performance, knowledge, time, recommendation, representation, atten-
tion, prediction, and network. In addition, we included 15 industry papers, 15 demo
papers, 5 PhD consortium papers, and 7 tutorials in the program. Finally, to shed light
on the direction in which the database field is headed, the conference program included
four invited keynote presentations by Sihem Amer-Yahia (CNRS, France), Kyuseok
Shim (Seoul National University, South Korea), Angela Bonifati (Lyon 1 University,
France), and Jianliang Xu (Hong Kong Baptist University, China).

Four workshops were selected by the workshop co-chairs to be held in conjunction
with DASFAA 2023, which were the 9th International Workshop on Big Data Manage-
ment and Service (BDMS 2023), the 8th International Workshop on Big Data Quality
Management (BDQM 2023), the 7th International Workshop on Graph Data Manage-
ment and Analysis (GDMA 2023), and the 1st International Workshop on Bundle-based
Recommendation Systems (BundleRS 2023). The workshop papers are included in a
separate volume of the proceedings also published by Springer in its Lecture Notes in
Computer Science series.

We are grateful to the general chairs, Amr El Abbadi, UCSB, USA, Gill Dobbie,
University of Auckland, New Zealand, and Zhiyong Feng, Tianjin University, China,
all SPC members, PC members, and external reviewers who contributed their time and
expertise to the DASFAA 2023 paper-reviewing process. We would like to thank all the
members of the Organizing Committee, and the many volunteers, for their great support
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in the conference organization. Lastly, many thanks to the authors who submitted their
papers to the conference.

March 2023 Xin Wang
Maria Luisa Sapino

Wook-Shin Han
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Abstract. Social relation reasoning in heterogeneous social networks
(HSNs) should not only infer whether people are connected, but also
why they know each other and what their relationship is. This task is
challenging because the heterogeneous social network is non-trivial to
leverage and the collected data is always noisy and incomplete, which
leads that the existing rule-based and representation methods cannot
efficiently and accurately reason social relations. To reason social rela-
tions in noisy and incomplete HSNs, we shift from simply inferring meta-
path based social relations by rule-based methods to reasoning by social
relation learning. Then, we present an inductive model named Heteroge-
neous Graph Variational AutoEncoders (HGVAE) towards robust social
relation learning on noisy and incomplete HSN data. In HGVAE, the
well-designed heterogeneous graph encoder, multi-signal decoder, and
variational inference mechanism bring prominent robustness and signifi-
cant performance improvement. Extensive experiments are conducted to
compare our methods against a set of the most representative baseline
methods. The efficiency analysis, robust analysis and ablation studies
confirm the value of our proposed approach for modelling meta-path
based social relations buried in various HSNs.

Keywords: Heterogeneous Social Network · Relation Learning

1 Introduction

Social relations are derived from human social behaviors and are defined as
the associations between individuals. Social relation reasoning is dedicated to
completing social relation information, which is a fundamental procedure for
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understanding the semantics within connections between people, and supports a
wide range of person-oriented applications, such as social influence analysis [12].
It not only infers the existence but also explores relations at the semantic level.

Fig. 1. An example of a HSN. Meta-paths among author nodes reflect various social
relations, and noisy/ incomplete data will cause difficulty recognizing social relations.

Most of the existing social relation reasoning methods [23] are designed for
homogeneous networks that only contain person-type nodes. However, real-world
social networks tend to be heterogeneous in which diverse types of nodes related
to people are widespread. In heterogeneous social networks (HSNs), social rela-
tions reflected by indirect connections (meta-path) through other types of nodes
are called meta-path based social relations. For example, as shown in Fig. 1, two
scholars are associated through a co-authored paper. The diverse meta-paths
between person pairs contain abundant semantic information of social relations
(e.g., APA (Co-Author), AIA (Colleague), APFPA (Attend the same confer-
ence)). Considering the semantic information on the social relation between
researchers, we can distinguish whether they are intimate partners or strangers
who just attend the same conference.

Leveraging this heterogeneous information for social relation reasoning is
challenging. Earlier approaches date back to rule-based methods [17], which
mainly leverage human-designed rules (e.g., meta-path) to reason social rela-
tions. These methods are unstable and inefficient due to graph data’s exponential
algorithm complexity and quality. Recently, as representation learning has gained
great success, many heterogeneous graph representation learning methods have
been proposed, which are also adapted to reason social relations. Among them,
random walk-based methods [1,3] utilize the meta-path to guide random walks;
Graph neural network methods adopt a message-passing mechanism combined
with homogenization process [22], attention mechanism [6] or auxiliary tasks [7]
for node representation learning. These methods avoid the complicated search
and matching procedures of rule-based methods. However, they mainly focus
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on representation learning of nodes but lack modelling relations. Hence, they
perform poorly in reasoning social relations in HSNs.

Another challenge is that the HSN data collected in the real world is noisy
and incomplete. The primary reason for this phenomenon is that part of the
data is deliberately erased or unsuccessfully gathered by collectors. The absence
or mistake of any link in multi-hop paths will lead to several difficulties, such
as reasoning meta-path based social relations, the sampling of meta-path based
random walk (e.g., metapath2vec [1]), the homogenization process of heteroge-
neous graph models (e.g., HAN [22]), or auxiliary tasks that leverage meta-path
information for node representation (e.g. SELAR [7]).

Given the challenges mentioned above, a proper social relation reasoning
method requires an efficient and robust solution that combines the advantages
of neural networks and meta-paths. Two key points remain to be considered: (1)
How to use heterogeneous information for social relation reasoning. (2) How to
improve the model robustness under the noisy/ incomplete data situation.

Therefore, instead of using rule-based methods, we first introduce a repre-
sentation learning paradigm that automatically learns rich semantic information
in a deep way for social relation reasoning. Then, to realize efficient and robust
social relation reasoning, we present a novel inductive method named Hetero-
geneous Graph Variational AutoEncoders (HGVAE). Specifically, we integrate
the heterogeneous graph neural network as the encoder to capture both het-
erogeneous graph structures and person attributes for learning social relation
representation. Considering that both the person attributes and semantic cor-
relations of social relations are essential for social relation reasoning, we model
the global representations of meta-paths, and propose the multi-signal decoder.
It disentangles the semantic features of person pair attributes and meta-paths
from the relationship embeddings learned by social relation learning so that the
relation embeddings can retain both types of information. HGVAE also adopts a
variational inference mechanism towards robustly reasoning social relations with
the consideration of incomplete/noisy characteristics.

We evaluate HGVAE on three HSN datasets against representative baselines.
Experimental results show that HGVAE achieves superior performance over the
baselines, demonstrating its social relation learning competency. Next, we con-
duct ablation studies and a series of in-depth analyses to verify the contributions
of each component of HGVAE. Then, we conduct an extensive experiment to
verify the robustness of HGVAE under noisy/ incomplete situations. Finally, we
introduce a case study to vividly illustrate the superior of HGVAE compared
with rule-based methods and other deep learning methods.

In general, our main contributions are as follows: (1) To reason social rela-
tions, we introduce a new representation learning paradigm that leverages rich
semantic information of meta-paths in a deeper way. (2) We present an inductive
model called HGVAE towards efficient and robust social relation reasoning. (3)
We conduct extensive experiments with robust analysis and ablation studies on
three real-world datasets to evaluate the performance of HGVAE.
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2 Task and Related Works

2.1 Social Relation Reasoning

Social relation reasoning dedicates to infer the relation existing between node
pairs, and mines the semantic knowledge of the relation. Real-world social net-
works consist of various nodes or links containing rich semantic information to
model real-world graph data. Efficient and effective leveraging of this informa-
tion is non-trivial. To study the complex interactions of person nodes and other
types of nodes, here we follow the basic definition of Heterogeneous Graph and
Meta-path proposed by [18], and introduce the above concepts to model social
networks called Heterogeneous Social Network (HSN). It is worth noting that
different meta-paths have different semantic information.

Rule-based method [17] mainly designs the meta-path rules, and utilizes
multi-hop graph searching and pattern matching for social relation reason-
ing. They are simple to deploy, while the shortcomings of these methods are
also evident. They consume high-computing resources on multi-hop searches
and strongly depend on data integrity. Social relation learning [23] methods
aim to infer the explicit relation in social networks through deep learning.
RELEARN [23] utilizes multi-modal information in social networks for explicit
relation learning on social networks. However, RELEARN ignores different node
and edge types which is helpful to understanding social relations. Thus, it is
essential to propose a method that can fully leverage meta-path semantic infor-
mation and evade the negative impacts of noisy and incomplete data in HSN.

In this paper, we model social relations by referring to heterogeneous infor-
mation in multi-hop paths between various types of nodes. Specifically, we extend
the link prediction task to a multi-hop and heterogeneous situation, and follow
SELAR [7] to formalize social relation reasoning, which aims to predict existing
meta-paths between two nodes under the condition that collected data exist the
absences or the mistakes of links in multi-hop paths.

Task Formulation. A heterogeneous social network can be formalized as G =
{V, E ,A,R, T } where V denotes the node set and E denotes the edge set. Each
node vi ∈ V is associated with a node type mapping φ : V −→ A, and each
edge eij ∈ E is associated with an edge type mapping ψ : E −→ R, where A
and R denote the set of node types and edge types. Besides, meta-path based
social relation is a predefined meta-path set T between persons. Given an HSN
G, the social relation reasoning aims to predict existing meta-paths denoted as
S = {t1, t2, · · · }, t ∈ T between a person node pair.

2.2 Related Works

Autoencoder Architectures (AE). AE [5] and VAE [8] are canonical repre-
sentation learning frameworks that consist of the encoder to compress and the
decoder to restore. Previous researches demonstrate the effectiveness of VAE
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that combines Bayesian inference mechanism for accurate imputations of miss-
ing data [14]. Recently, VGAE [9] transfers VAE to the field of graphs. HetHG-
VAE [2] transfers the VGAE to the hypergraph situation for direct link pre-
diction. These methods mainly focus on predicting the direct-linked edges via
graph generation, but are not suitable for social relation reasoning tasks.

Graph Neural Networks (GNN). GNN aims to learn the representation of
graph-structured data utilizing the deep learning method. GCN [10] focus on
the message passing of neighbours on the graph and directly define the con-
volutional operation for aggregation. GraphSAGE [4] improves the aggregation
operation for inductive graph representation learning. GAT [19] integrates an
attention mechanism to identify neighbour importance. However, these models
ignore heterogeneous information ubiquitous in real-world social networks.

Fig. 2. The overall architecture of HGVAE. Given an HSN as the input, HGVAE learns
the representation of meta-path based social relations through the heterogeneous graph
encoder and multi-signal decoder in the VAE framework.

Recent studies intend to extend GNN to model HSN. R-GCN [15] uses dif-
ferent convolutional layers to model the relation between heterogeneous nodes.
SELAR [7] introduces meta-path prediction as the auxiliary task, and designs a
portable component to enhance node representation for primary downstream
tasks. HAN [22] utilizes homogenization procedures and transfers GAT into
heterogeneous graphs by introducing a hierarchical attention mechanism con-
sidering the importance of both different node neighbours and different meta-
paths. HGATE [21] introduces a heterogeneous graph attention network into
AE architecture. HGT [6] proposes a multi-head attention mechanism consid-
ering different types of nodes and edges. However, these methods mainly focus
on representation learning of nodes, not social relation learning. Hence, these
methods perform poorly on social relation reasoning tasks. To the best of our
knowledge, our model is the first to learn the representation of meta-path based
social relations in HSN for robust social relation reasoning.
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3 Heterogeneous Graph Variational Autoencoders

To reason social relations in a deep and robust way, we propose a method named
Heterogeneous Graph Variational AutoEncoders(HGVAE), as shown in Fig. 2.

3.1 Heterogeneous Graph Encoder

How to effectively embed both structural information and person attribute infor-
mation of HSNs is our primary consideration in designing the encoder part of
HGVAE. Inspired by the recent progress of heterogeneous graph neural networks
in graph mining, we propose a Heterogeneous Graph Encoder based on the het-
erogeneous graph neural network. Taking an HSN G with the attributes of each
node x as input, the heterogeneous graph encoder aims to learn the represen-
tation of meta-path based relations denoted as Z. To model the influence of
different types of nodes, we follow the heterogeneous graph attention mecha-
nism [6]. The detailed procedure of each propagation layer l includes four core
components in turn: the node feature transformation, the heterogeneous message
function, the heterogeneous attention and the aggregation function.

First, considering the different feature spaces of multi-type nodes, we intro-
duce the node feature transformation for projection node feature x to the unified
feature space according to the node types φi, expressed as:

h
(0)
i = WP (φi) · xi, (1)

where WP is a linear projection chosen according to the node type φi. After
that, the initial representation h

(0)
i of node i is obtained.

Next, we adopt a multi-head mechanism to calculate the different view rep-
resentation of passed message m(l)(s, e, t) of layer l from a source node vs to a
target node vt, which is in consideration of the node types of source/ target node
φs, φt and the edge type ψe in heterogeneous graphs, expressed as:

m(l)(s, e, t) = ⊕
τ∈[1,θ]

((
W τ

M(φs)
h(l−1)

s

)
WMSG

ψe

)
, (2)

where ⊕ denotes the concatenate operation, θ is the head numbers, W τ
M and

WMSG are linear projections considering the type of nodes and edges.
Then we adopt multi-head attention to calculate attention weights α (l)(s, e, t)

between the source node vs and target node vt according to the types of nodes
φs, φt and edges ψe in the heterogeneous graph, expressed as:

head (l)
τ (s, e, t) =

((
W τ

Q(φs)
h(l−1)

s

)
WATT

ψe

(
W τ

K(φt)
h
(l−1)
t

)T
) 1√

ξ
, (3)

α (l)(s, e, t) = Softmax
∀s∈N(t)

(
⊕

τ∈[1,θ]
head (l)

τ (s, e, t)
)
, (4)
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where W τ
Q,W τ

K and WATT denote different linear projection of τ -th head that
is chosen according to the type of nodes and edges. ξ is an adaptive scaling to
the attention, k is the number of attention heads.

Finally, we aggregate the information from the neighbors of the target node
with attention weights to update the target node representation, expressed as:

h
(l)
t = WAGG

φt

( ∑
∀vs∈N(vt)

(
α (l)(s, e, t) · m(l)(s, e, t)

))
+ h

(l−1)
t , (5)

where WAGG denotes the linear projection considering the target node types.
Through a heterogeneous graph neural network, HGVAE calculates the rep-

resentation of each node of layer l denoted as h(l), which contains not only the
feature of nodes but also the structural information of the heterogeneous graph.

For each node pair vi and vj , we concatenate their representations hi and
hj learned by heterogeneous graph neural network as the initial features of
meta-path based social relations. Considering the real-world noisy and incom-
plete data, we adopt the Gaussian distribution to model the representation
Z ∼ N

(
μ, σ2

)
of meta-path based social relation for training a more robust

model. Specifically, we adopt two multi-layer perceptron (MLP) [13] denoted as
fMLP with a ReLU activation function to output the means μij and variances
σij of meta-path based relation zij , expressed as:

μij = ReLU
(
fMLPμ

[hi ⊕ hj ]
)
, (6)

σij = ReLU (fMLPσ
[hi ⊕ hj ]) . (7)

Through sampling from learned Gaussian distribution, we can sample the embed-
ding of meta-path based social relation zij .

3.2 Multi-Signal Decoder

We propose a multi-signal decoder to restore the HSN and disentangle the feature
according to the learned representations of meta-path based social relations. The
proposed multi-signal decoder ensures the relation embedding preserves both
attribute information and meta-path information about person pairs. Especially,
on the noisy and incomplete HSN data, two key points are considered when we
design the multi-signal decoder: (1) person attributes can reflect social relations,
such as the two people with the same research interests are more likely to estab-
lish a co-author relation; (2) there is a potential correlation between different
meta-path based social relations. For example, people related to the same insti-
tute (AIA) are more likely to be co-authors (APA).

Considering the above two key points, for a specific person pair, we design
two decoders (i.e., the node feature decoder and meta-path decoder) to describe
the node features and the representation of existing meta-paths, respectively. In
general, the evidence lower bond (ELBO) of HGVAE is expressed as:
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LHGVAE = EqΘe (Z|G)

[
(1 − γ) log pΘd

(A|Z) + γ log pΘd
(D|Z)

] − KL[qΘe (Z|G)‖p(Ẑ)]

= (1 − γ) · Lnode + γ · Lmeta − KL[qΘe (Z|G)‖p(Ẑ)],
(8)

where qΘe
and pΘd

are learned distributions of encoder and decoder, respectively.
Lnode and Lmeta respectively denote the loss function of the node feature decoder
and the meta-path decoder. A,D ∈ G denote the restored node and meta-path
features. γ is the hyper-parameter that controls the importance of each decoder
part during training.

We follow the VGAE [9] to adopt KL-divergence constraint in the loss func-
tion, qΘe

(Z|G) and p(Ẑ) ∼ N (0, I) respectively denote the learned and the real
distribution of latent representation Z and the Ẑ. The detailed KL[q(Z|G)‖p(Ẑ)]
calculation formula is shown as follows:

KL[qΘe
(Z|G)‖p(Ẑ)] = KL[qΘe

(Z|G)‖N (0, I)]

=
∑

(i,j),vi,vj∈V

1
2
{‖μij‖2 + ‖σij‖2 − dimz − 2 log σij}, (9)

where dimz denotes the dimension of vector z, ‖.‖ denotes L2 distance.

Node feature decoder aims to reconstruct the attributes x̂ of person pairs.
We adopt L2 distance as the node feature decoder loss function, expressed as:

Lnode = EqΘe (Z|A) log pΘd
(A|Z) =

∑
(i,j),vi,vj∈V

Ez∼qΘe
log pΘd

(aij |zij)

=
∑

(i,j),vi,vj∈V
‖(xi ⊕ xj) − ReLU (fMLPnode

(zij)) ‖,
(10)

where aij denotes the restored node feature of vi and vj .

Meta-path decoder aims to restore the correlation and semantic information
of existing meta-paths between person pairs. For capturing the global structure
feature of the HSN, and leveraging it to model the semantic correlation of meta-
paths, HGVAE adopts the Heterogeneous Random Walk [3] to obtain the
global representation of meta-paths denoted as r via training data. Then we
average the global representations of existing predefined meta-paths between
the person pair as the representation of existing meta-paths. Here we adopt L2
distance as the evaluation, expressed as:

Lmeta = EqΘe (Z|D) log pΘd
(D|Z) =

∑
(i,j),vi,vj∈V

Ez∼qΘe
log pΘd

(dij |zij)

=
∑

(i,j),vi,vj∈V
‖Average(Ŝk

ijrk) − ReLU (fMLPmeta
(zij)) ‖,

(11)
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where K denotes predefined meta-paths, dij denotes the restored meta-path fea-
ture of vi and vj , rk denotes the global representation of meta-path k, Average(.)
denotes the average operation. When the k-th type meta-path in K exists
between (vi, vj), Sk

ij = 1; otherwise Sk
ij = 0, the symbol .̂ denotes ground truth.

3.3 HGVAE Joint Training

HGVAE Sampling Algorithm. We develop a sampling algorithm to realize
inductive training of HGVAE. First, we sample a subgraph on the original HSN
data. Specifically, we randomly choose an initial person node and sample its
neighbours with a constraint on the number of each type of node. Then, we
choose each person node as the source and expand predefined meta-paths until
it reaches a target person node. Finally, we retrieve other existing meta-paths
between person pairs of meta-path based social relations represented as multi-
hot vectors. HGVAE sampling algorithm can automatically annotate existing
meta-paths Ŝk

ij of person pairs (vi, vj) without manually labeling.

HGVAE Training Procedure. In general, HGVAE follows the training pro-
cedure of the counterpart of VAE architecture, which utilizes the loss of recon-
struction for training. Especially, HGVAE can jointly utilize the loss of the down-
stream task for iterative optimization.

For social relation reasoning, we adopt fMLP(.) with the Sigmoid(.) function
to fit the task, and Binary Cross Entropy loss to measure the difference between
multi-label prediction and ground truth, expressed as:

Sk
ij = Sigmoid(fMLPpred

(zij)k), (12)

Lpred =
∑

(i,j),vi,vj∈V
− 1

K

K∑
k=1

(
Ŝk

ij log
(
Sk

ij

)
+ (1 − Ŝk

ij)log
(
1 − Sk

ij

))
, (13)

where Sk
ij denotes the prediction result of meta-path k.

To control the importance of Lpred and LHGVAE, we set a hyper-parameter
α. The general loss function L is expressed as:

L = (1 − α) · Lpred + α · LHGVAE. (14)

Here we denote the parameters of the Heterogeneous Graph Encoder, Multi-
Signal Decoder, and downstream task as Θe, Θd, and Θp, respectively. Through
the graph sampling strategy, HGVAE can be trained inductively. The pseudo-
code of the joint training algorithm is shown as Algorithm 1.
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Algorithm 1. HGVAE Joint Training
Require: HSN: G; Node features: X; Batch size: B; Number of batches: N
1: start training:
2: Calculate global meta-path representations r by Heterogeneous Random Walk.
3: for n = 1 : N do
4: Sample B pairs of nodes with node features X and existing meta-paths s.
5: Use Heterogeneous Graph Encoder to compute μn and σn, Z ∼ N (μn, σ2

n).
6: Draw B random variable vectors εn ∼ N (0, I).
7: Compute the embedding of meta-path based relation zn = μn + σnεn.
8: Use Multi-Signal Decoder to compute loss Lnode, Lmeta, and KL-divergence.
9: Update {Θe, Θd} with gradient backpropagation.

10: Calculate the Downstream Task loss Lpred.
11: Update {Θe, Θp} with gradient backpropagation.
12: end for
13: end training

4 Experiments

4.1 Dataset

We adopt three real-world HSN datasets for experiments. The detailed statistics
of the datasets are shown in Table 1.

OAGML is a machine learning domain researcher social network extracted
from Open Academic Graph [25], which describes research interactions between
authors through heterogeneous nodes. This dataset contains five types of nodes,
including Author (A), Paper (P), Field (F), Venue (V), Institute (I).

Douban-Movie dataset is a social network about movies extracted from the
Douban site. It describes the social interactions between users with rich hetero-
geneous information around movies. This dataset contains five types of nodes,
including User(U), Group(G), Movie(M), Actor(A), Director(D).

Douban-Book dataset is also a social network about books extracted from the
Douban site, which is widely used to describe the social interactions between
users with rich heterogeneous information. This dataset contains five types of
nodes, including User(U), Group(G), Book(B), Location(L), Author(A).

Table 1. The detailed descriptions of the three real-world experiment datasets.

Dataset #Nodes #Edges Node Types Predefined Meta-path

OAGML 227,144 4,167,680 A, P, F, V, I, APA, APVPA, APPA, APFPA, AIA

Douban-Movie 37,557 1,687,273 U, G, M, A, D UMU, UMAMU, UMDMU, UGU

Douban-Book 49,150 2,182,982 U, G, B, L, A UBU, UBABU, ULU, UGU
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4.2 Baseline Methods

We compare HGVAE with eight representative baselines. The first three baselines
(i.e., GCN [10], GraphSAGE [4], GAT [19]) are designed for homogeneous
social networks. The rest baselines (i.e., HIN2vec [3], R-GCN [15], HAN [22],
HGATE [21], HGT [6]) are capable of modelling heterogeneous social networks.
All baseline methods are implemented via Deep Graph Library1 [20]. We treat
social relation reasoning as a multi-label classification task for these methods.
Therefore, we follow the procedures of SELAR [7] that concatenate the embed-
dings of person pairs learned by these methods and adopt an MLP to output
existing meta-paths between person pairs. Since the definitions and problem set-
tings of social relation reasoning are pretty different from link prediction, GAE,
VGAE [9] and HetHG-VAE [2], which mainly follow graph generation processes
for directly link prediction, are not competent to transfer to our task. Besides,
we conduct ablation studies and give a detailed analysis in Sect. 5.5.

4.3 Implementation Details

Model Settings. For all baselines of our experiments, we kept the same com-
mon parameter settings. Specifically, we set the hidden dimension 100, the learn-
ing rate 1e-3, the dropout rate 0.3, the batch size 256, the depth of graph layers
2, and the training epochs 500. We followed the 6:2:2 splitting ratio in train-
ing/validation/testing data, and adopted the same optimizer AdamW [11] for
training. For fair comparisons, we modified the depth of MLP to guarantee that
the layers of each neural method are the same. For other unique parameters,
we tried different parameter settings of these baselines and chose the best of
each baseline. All experimental results are performed 10 times to eliminate the
influence of randomness, and we take the average as the results.

Feature Initialization. In OAGML, we refer to the implementation [6] for
feature Initialization. Specifically, Paper nodes feature is the average of title
word vectors calculated by pretrained XLNet [24], the Author nodes feature is
the average of their published paper representations. For other types of nodes,
we follow the HGT that uses metapath2vec [1] to train node embeddings. In
Douban-Movie and Douban-Book, we adopt node embeddings proposed by [16].

Evaluation Metrics. To measure the performance of the methods from differ-
ent perspectives on the social relation reasoning task, we adopt two evaluation
metrics: Macro F1-Score (Macro-F1) and Hamming Loss (Ham. Loss) which are
widely used in multi-label classification tasks and also fit our task.

1 https://github.com/dmlc/dgl/.

https://github.com/dmlc/dgl/
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4.4 Experiment Results

The main experiment results are shown in Table 2. HGVAE significantly
improved Macro F1-Score and Hamming loss on three real-world datasets
compared with other representative baseline methods. Overall, the experiment
results convincingly demonstrate the effectiveness of HGVAE.

Table 2. Experiment results of social relation reasoning.

Method OAGML Douban-Movie Douban-Book

Macro-F1 Ham. Loss Macro-F1 Ham. Loss Macro-F1 Ham. Loss

GCN 0.599 0.312 0.619 0.313 0.521 0.392

GraphSAGE 0.622 0.306 0.639 0.308 0.560 0.310

GAT 0.618 0.319 0.625 0.300 0.573 0.394

HIN2vec 0.629 0.322 0.512 0.399 0.462 0.356

R-GCN 0.617 0.315 0.659 0.308 0.608 0.374

HAN 0.649 0.310 0.698 0.263 0.645 0.275

HGT 0.655 0.294 0.714 0.247 0.664 0.271

HGATE 0.637 0.314 0.701 0.268 0.636 0.314

HGVAE 0.689 0.228 0.750 0.209 0.716 0.239

HGVAE (w/o decoder) 0.656 0.253 0.699 0.265 0.667 0.252

HGVAE (w/o heterogeneous) 0.637 0.311 0.693 0.257 0.655 0.260

HGVAE (w/o variational) 0.680 0.261 0.725 0.232 0.695 0.255

We can observe that HGVAE and other heterogeneous graph-based methods
consistently outperform all the homogeneous graph-based methods (i.e., GCN,
GraphSAGE, GAT). The homogeneous graph-based methods ignore the diverse
types of nodes in graphs, which suffer seriously from vocabulary gaps, and can
hardly be adopted for social relation prediction.

Compared with the heterogeneous graph-based method (i.e., HIN2Vec, R-
GCN, HAN and HGT), HGVAE achieves performance gains overall baselines by
3% ˜25%. Compared to HAN and HGATE, HGVAE achieves 4% ˜7% perfor-
mance improvement. HAN does not consider the absence of links in multi-hop
paths during homogenization. In contrast, HGVAE can be directly trained on
the heterogeneous graph, which is more flexible. Compared to HGT, which is
the best baseline for most cases, the Macro-F1 improvements of HGVAE on
OAGML, Douban-Movie and Douban-Book datasets are 3.5%, 3.6% and 5.2%,
respectively. The performance improvement than HGT demonstrates that the
proposed method’s multi-signal decoder and variational inference components
have the superior ability to learn the relation representation for prediction.

4.5 Ablation Studies

Effect of Heterogeneous Graph Encoder. In HGVAE (w/o heterogeneous),
to understand the impact of heterogeneous information for reasoning social rela-
tions, we replace our heterogeneous graph encoder with GAT [19]. For the com-
parison with HGVAE (w/o heterogeneous) and other baselines, original HGVAE
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generally achieves significant performance improvement (6% ˜12%). In contrast,
HGVAE(w/o heterogeneous) ignores heterogeneous information. Thus the per-
formance decreases sharply. The phenomena prove the significance of heteroge-
neous information and HGVAE can leverage it.

Effect of Variational Mechanism. In HGVAE (w/o variational), we alter the
VAE into an AE, which intends to verify the importance of the variational mech-
anism. For the comparison with HGVAE (w/o variational), the performance of
HGVAE with a variational inference mechanism is better (1% ˜2%).

Effect of Multi-Signal Decoder. In HGVAE (w/o decoder), to verify the
importance of the multi-signal decoder, we drop the loss of it, and only preserve
the loss of the downstream task for training. Without the Multi-Signal Decoder,
the performance of HGVAE decreases sharply (3% ˜5%). The significant per-
formance gap between full HGVAE and HGVAE (w/o decoder) indicates the
power of the multi-signal decoder in capturing complex signals on HSNs for
social relation reasoning.

4.6 In-depth Model Analysis

In this section, we conduct in-depth analyses from the following views: RQ1.
Is HGVAE efficient for social relation reasoning? RQ2. How is the robustness
of HGVAE on noisy and incomplete social network data? RQ3. How does the
learned social relation representation benefit from each component of HGVAE?
RQ4. How do the different training ratios impact the performance of HGVAE?

Efficiency Analysis (RQ1). We analyze the efficiency of HGVAE from two
aspects: The parameter quantity and the computational efficiency. The detailed
statistics of parameter quantity, training time (per batch) and predicting time
(per 100 samples) are shown in Table 3.

Table 3. The statistics of parameter quantity, training and predicting time.

Models GCN GraphSAGE GAT R-GCN HAN HGT HGVAE Rule-based

#Param 147,505 138,205 518,905 1,408,405 2,939,445 1,102,103 1,155,287 –

Training Time (ms) 158.6 190.2 396.1 433.6 4168.5 1247.4 1251.3 –

Predicting Time (ms) 1.1 1.2 1.8 2.9 7.6 13.6 13.7 533000.0

For parameter quantity, HGVAE (1155k) is similar to HGT (1102k) and
one-third of that of HAN (2939k), but the effect is 4%˜7% superior to the base-
lines, which demonstrates HGVAE does not rely on more parameters but a
well-designed architecture for better performance.

The computational efficiency of HGVAE is also competitive. For the training
procedure on OAGML dataset, the average training time per batch of HGVAE
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(1247 ms) is better than HAN (4168 ms), which needs time-consuming homoge-
nization processes. HGVAE also has a comparable training cost to other graph
neural network baselines. We record the average predicting time for 100 samples
to infer social relations. HGVAE directly reasons the social relations between
node pairs, which leads to the speed of HGVAE (13.7 ms) being far faster than
the rule-based method (533000 ms).

We also analyze the time complexity of HGVAE. Therefore, the time com-
plexity of the training procedure is O(NBθ + NB2), where N is the number
of batches, B is the batch size, θ is the number of attention heads and NB2

is the time complexity of sampling procedure. The complexity of HGVAE is
theoretically constant. Considering that the number of batches is related to the
network scale, the time complexity of HGVAE is O(|V |) where |V | is the num-
ber of nodes. It is also far superior to the rule-based method based on graph
searching O(|V |2). As a result, the high efficiency of HGVAE makes it possible
to apply to large-scale heterogeneous social network data.

Robust Analysis (RQ2). We conduct robust experiments to horizontally
observe the performance of listed models under unideal circumstances of dif-
ferent extents. Specifically, we randomly add/ delete a proportion of edges of
training data mimicking noisy/ incomplete conditions for comparing method
robustness. As shown in Fig. 3, when facing data with more proportion of distur-
bance, the F1-Score of HGVAE decreases slowly (-3%) than other methods (-4%
˜-8%). These phenomena illustrate that the variational mechanism, which can
flexibly model the distribution of social relations, significantly improves robust-
ness, especially on unreliable data. Besides, notably, HGVAE((w/o variational)
also performs better than baselines, which verifies that other components (e.g.,
multi-signal decoder) can benefit the model robustness.

Fig. 3. Comparison of method robustness through randomly adding/deleting edges.
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Hyper-parameter Analysis (RQ3, RQ4). To address RQ3 and RQ4, we
analyze the influence of γ, α and different training ratios.

Hyper-parameter (γ and α). The hyper-parameter γ controls the weight of
loss Lmeta and Lnode in loss function LHGVAE. The hyper-parameter α controls
the weight of LHGV AE and Lpred in loss function Lgeneral. By adjusting the
different combinations of γ and α, we analyze the importance of components in
HGVAE in the social relation reasoning task.

As shown in Fig. 4, when γ = 0 or γ = 1, the semantic features of person
attributes or meta-paths features are entirely erased. The results show that the
performance of HGVAE also drops significantly. These phenomena prove that
both two features contribute to social relation reasoning. The importance of
the two types of information and the corresponding decoders are different on
different data with the consideration of the characteristic (i.e., person attributes
and meta-paths) of datasets.

Fig. 4. Comparison of different hyper-parameter γ and α value on the three datasets.

Different values of α also significantly affect the performance of HGVAE. This
result demonstrates that the multi-signal decoder, which dedicates to restoring
the heterogeneous graph information, can benefit the model performance.

We also notice that HGVAE achieves comparable performance without con-
sidering downstream task loss function Lpred (α = 1). This phenomenon shows
the unsupervised learning ability of HGVAE, which can utilize various informa-
tion generatively through the VAE framework for reasoning.

Training Ratio. We set the ratios of training data to the total data to 60%,
40%, and 20% to analyze the impact of training ratios as shown in Fig. 5.
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Fig. 5. Comparison of method performance under different training ratios.

As the training ratio decreases, the performances of HGVAE do not decrease
(–2% ˜–6%) obviously than other baselines. This phenomenon indicates that
HGVAE has superior performance with less training data. Notably, the perfor-
mance of HGVAE when using 20% training data in an inductive way is better
than most baselines when using 60% training data, which answers RQ4.

4.7 Case Study

To better illustrate the motivation of our proposed task and the performance
of HGVAE, we choose a representative case study from the experiment result
as shown in Fig. 6. Given a person pair (ID 4023, ID 142) in OAGML. We ran-
domly deleted the links between them, which resulted in rule-based methods
being unable to reason the colleague relationship of the person pair, and cost
an expensive searching time (2.8 s). The most straightforward idea is that this
problem can be solved by link prediction and meta-path reaching. However, this
cumbersome enumeration process is inefficient when reasoning all types of pre-
defined meta-paths, and can not effectively handle the noisy links which are
also essential for reasoning social relations. Differently, HGVAE is an induc-
tive method that can directly infer the various meta-path based social relations
between person pairs. Utilizing HGVAE, the colleague type relation of the person
pair can be completed in an inductive way with only 10.2 ms time cost.

Fig. 6. A case study of social relation reasoning. Given a person pair (Author 4023,
Author 142), in the heterogeneous social network (OAGML), HGVAE can reason social
relations (Co-Author, Colleague) under the incomplete data situation.
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5 Conclusion

This paper presents a study of social relation reasoning on heterogeneous social
network data. To address the challenges such as multi-hop and heterogeneous
situations, we shift from simply inferring meta-path based social relations by
rule-based methods to reasoning by deep learning. Then, we propose an inductive
method named HGVAE, which directly predicts existing meta-paths by handling
the problem of the absence or the mistakes of multi-hop paths in heterogeneous
social networks. The extensive experiments with ablation studies and robust
analysis demonstrate that HGVAE performs superior to the baselines.
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Abstract. Popularity prediction of information cascades is a fundamen-
tal and challenging task in social network data analysis. Social roles
impact users’ behaviors and change the structure and popularity of
information cascades. Existing deep learning-based methods utilize sev-
eral independent sub-cascade graphs or paths to learn cascade repre-
sentations, which lose vital information about social roles and dynamics
between sub-cascades at different moments. We propose a social role-
aware cascade (SRACas) model that exploits the social influences of
nodes on previous and subsequent sub-cascade graphs within an obser-
vation window to facilitate the social role learning of nodes. A temporal-
aware differential loss is also proposed to discriminate the structures of
neighboring sub-cascades and captures the dynamics of sub-cascades.
Under the techniques of local graph attention, social role-aware atten-
tion, and temporal-aware loss, SRACas learns a better latent represen-
tation of cascades at both the node level, sub-cascade level, and cas-
cade level. Moreover, there lacks a platform with standard prepossess-
ing procedures that allow convenient configuration and fair competition
between information cascade prediction models. An open platform Open-
Cas is built with uniform preprocesses to verify the faithful performance
of the compared methods. Extensive experiments show that SRACas
achieved significant improvements over existing methods on classic real-
world datasets.
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1 Introduction

Popularity prediction of information cascades (also called cascade prediction in
[3,12]) benefits many practical applications, e.g., fake news and rumor control,
viral marketing, advertising, scientific impact quantification [11]. Understanding
the nature of cascades and predicting their future popularity has drawn the
interest of many scholars. However, cascade prediction remains challenging due
to complex social influences, and its accuracy is still unsatisfactory.

The deep learning-based approaches have recently achieved state-of-the-art
performances in information cascade prediction [2,3,6,8,9,12]. DeepCas [6],
DeepHawkes [2], and TopoLSTM [8] are mainly based on recurrent neural net-
works. Spatial features are also found helpful in improving the performance of
popularity prediction and are learned by the graph neural networks (GNNs) in
current works [3,9,12]. Social roles impact retweet behaviors and significantly
influence information diffusion [10]. However, current methods, e.g., CasCN [3],
VaCas [12] and CasFlow [9] learn node features in isolated sub-cascade graphs,
ignoring the social roles of nodes and influences between nodes in different sub-
cascades. As described in Fig. 1, the sub-cascade graphs at ti in two cases are
topologically the same. But the node A and B hold different social roles and influ-
ences in the cases. A is an opinion leader that leads several following retweets,
while B is a common node. Node representations learned independently in a
sub-cascade graph can hardly distinguish the situations and reflect the nodes’
social roles. However, by reviewing previous and subsequent sub-cascades, we
can easily discriminate the social roles of node A and B and know their impacts
on information diffusion. As represented in ti and ti+1 in Fig. 1(b), the structure
and size of cascades do not always change drastically over time. The adjacent
sub-cascades may be slightly different from the previous sub-cascades. The exist-
ing models rarely consider the subtle differences between adjacent sub-cascade
graphs and lose subtle dynamic information of cascades. Moreover, current mod-
els based on dense adjacency matrices are memory-intensive and inefficient or
perform much worse in larger cascades.

Fig. 1. Cases describing how social roles impact information diffusion. The purple node
A is an opinion leader, and green node B is a common node. (Color figure online)

To address the abovementioned problems of cascade prediction, we propose
a novel social role-aware cascade prediction model named SRACas. It utilizes
local graph attention and a social role-aware attention mechanism which enables



SRACas: A Social Role-Aware Graph Neural Network-Based Model 23

each node to consider both its neighboring nodes’ representation and features of
sub-cascade graphs from previous and subsequent moments. The social roles and
influences are embedded in nodes’ representations in this way. A temporal-aware
differential loss is also employed to learn the subtle differences between sub-
cascade graphs, which benefits the training and convergence of models. To sup-
port larger cascades, sparse matrices and efficient computations are also applied.

In addition, although there is a survey on cascade prediction [11], a framework
aggregating current cascade models is lacking. It is necessary to unify experimen-
tal steps before training models and reorganize the implementations of current
models. Therefore, a framework, OpenCas, is built to address the issue.

Our main contributions are as follows:

• Novel Cascade Model. We propose a novel cascade model, SRACas, which
employs local graph attention and a social role-aware attention mechanism to
learn better social role representations of nodes that leverages bidirectional
sub-cascades. A temporal-aware differential loss is also applied in SRACas to
capture the subtle differences and dynamics of sub-cascade graphs, which is
another key to learning better temporal features of cascades.

• Support Larger Cascades. Some advanced cascade prediction models (e.g.,
CasCN [3], VaCas [12], and CasFlow [9]) are unable to work or perform much
worse in larger cascades. In contrast, the performance of our approach is most
stable in larger cascades leveraging graph sparse encoding.

• Much Better Performance. Extensive experiments on two real-world sce-
narios demonstrate that SRACas significantly outperforms strong baselines,
with the MSLE reduced by from 12.0% to 14.6%, from 6.9% to 9.7% in the
dataset Sina Weibo and APS Citation, respectively.

• OpenCas. We built a cascade prediction framework OpenCas, which enables
convenient and fair comparative experiments between different models under
the same data preprocessing and partitions. OpenCas improves the perfor-
mance of classic models and simplifies environment configurations1

2 Preliminaries

Cascade Graph. A source of a cascade can be an academic publication, a
tweet, a microblog, etc. A cascade graph can be represented as a sub-cascade
graph sequence that evolves from an initial source node v0 at time t0. Node vi
participates in the cascade at time ti. A subcascade Gtj is a graph at moment
tj . We formalize the cascade sequence as Ci = {Gt0 ,Gt1 , ...,Gtn}, where Gtj =
(V tj , Etj , tj) is a snapshot graph of the cascade C at time tj . V tj and Etj are the
sets of nodes and edges of sub-cascade Gtj until time tj ≥ 0, respectively. V tj =
{v0(tj), v1(tj), v2(tj), ..., vi(tj)}. The set of edges Etj records how information
propagates between users in V tj .

Popularity Prediction. Following previous works [2,3,6,12], the popularity
prediction of information cascades is formalized as a regression problem. Given
1 The details of OpenCas are referred to https://github.com/zhenhuascut/OpenCas.

https://github.com/zhenhuascut/OpenCas
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a cascade Ci = {Gt0 ,Gt1 , ...,Gtn}, the incremental popularity is defined as
ΔS = |V tp | − |V to |, where to and tp are the observation time and the pre-
diction time, respectively. The main objective is to train a model f that learns
the representation of a cascade within the observation time to to predict ΔS.

Fig. 2. Overview of SRACas.

3 Proposed Method

The overall training process of SRACas is sketched in Fig. 2. It mainly contains
the following modules:

3.1 Local Structure Learning

Given a sub-cascade graph Gt, the first step is to capture the basic structural
information and obtain node-level representations. Different from CasCN [3] that
neighboring nodes have similar weights. We believe that different nodes play
different roles in information diffusion, e.g., opinion leaders, structural holes, and
peripheral nodes. Local graph attention similar to GAT [7] is used to calculate
the importance of a node and aggregate the features of nodes. The αuv and
alignment coefficients eluv are calculated by:

αuv = Softmaxu(eluv) =
exp(eluv)∑

k∈N(v)∪{v} exp(elkv)
(1)

eluv = attnl(xl
u, xl

v) = fprop(hl
u, hl

v) (2)

where hl
u is the node embedding in graph aggregation layer l. The function fprop

can be in different forms. One simple form is fprop = (W l
a)

T [W lhl
u,W lhl

v], where
W l

a ∈ R2F l+1
is a shared attention weights. xt

v is calculated by a residual network
xt
v = f0(h0

v) + f1(h1
v) + hL

v . xt
v ∈ RFL

, f0 and f1 are dense layers that change
dimension size of hl

v to FL. L is the number of layers set to two in this paper.
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3.2 Social Role-Aware Attention

The social role-aware attention considers the influences of nodes from nodes
of previous and following sub-cascades within W temporal intervals (attention
window), in which the roles a node plays in information diffusion are learned.

The social influence of a node v by node u ∈ V t−1 at the previous moment
is calculated by :

αb
uv =

exp(fback(xt−1
u , xt

v))∑
k∈V t−1 exp(fback(xt−1

k , xt
v))

(3)

xt−1
v = σ(

∑

u∈V t−1

xt−1
u αb

uv) (4)

where αb
uv is the impacts of node u to node v in V t−1. fback is the aggregation

method between xt−1
v and xt

v. Here, we choose the Euclidean distance of nodes
as the function fback.

xt+1
v is calculated in the same way as in xt−1

v . The updated representa-
tion xupdate

v of node v is then calculated by combing the representations of v
from sub-cascades within attention window size W. When W = 1, fcombine(xt−1

v

, xt
v, x

t+1
v ) = xt−1

v +xt
v+xt+1

v . fcombine can also be designed in a more complicated
form, which is left for future works. A larger attention window size (e.g., W = 2,
fcombine(xt−2

v , xt−1
v , xt

v, x
t+1
v , xt+2

v )) brings a broader view of sub-cascades but
increases the calculation complexity.

Graph Pool. After obtaining nodes’ representations, the features of nodes at
the moment are pooled to produce a presentation of the sub-cascade graph ht

G.

3.3 Temporal Feature Learning

Social role-aware attention has learned part of cascades’ temporal characteristics,
as well as the features of social roles. To learn the long-term temporal depen-
dency of cascades, we apply a temporal feature learning model. Given input rep-
resentations of sub-cascades HG = {h0

G, h1
G, h2

G, ..., hT
G}, the bidirectional gated

recurrent units (BiGRU) computes updated hidden states and produces new
representations by concatenating outputs of the forward GRU and backward
GRU: O1:T = {o0, o1, o2, ..., oT } =

−−−→
GRU(HG)||←−−−

GRU(HG), O1:T ∈ RT∗2M , M is
the output hidden size of BiGRU.

We can simply use the last output oT as the embedding features of a cascade.
Motivated by the idea [5], convolutional neural networks are used to capture the
long-term dependencies of HG and produce the final representation HCi

of a
cascade Ci.

3.4 Prediction and Loss Function

HCi
is fed into a two-layer multi-layer perception (MLP) to produce predicted

popularity increment ΔS̃i = MLP (HCi
). To capture subtle dynamics of cas-

cades, a temporal-aware differential loss function Ldif is applied to predict the
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differential size of the sub-cascades by:

Ldif =
1

TNc

Nc∑

i=1

T∑
(ΔSdi − ΔS̃di)2 (5)

ΔSdi = (|Gf | − |Gp|),ΔS̃di = MLP (hf
G − hp

G) (6)

where ΔSdi is the differential size between two neighboring sub-cascade graphs
(a following Gf and a previous Gp). Nc is the number of cascades. A differen-
tial representation of sub-cascades is calculated by subtracting hf

G and hp
G . The

differential representation is then fed into an MLP layer to predict ΔSdi.
The final loss is calculated by:

L(ΔSi,ΔS̃i) =
1

Nc

Nc∑

i=1

(logΔSi − logΔS̃i)2 + λLdif (7)

where λ is a hyperparameter and is set to 1.0 by default.

3.5 Sparse Encoding

Fig. 3. Sparse graph encoding and computation.

Different from CasCN, VaCas, and CasFlow, which use a full matrix, SRACas
applies a sparse matrix to save GPU memories and accelerate computations. The
sparse matrix representation records source nodes and target nodes that indicate
the edges and directions, as shown in Fig. 3. A matrix is sparsely encoded as:

Ms =
[

s1 s2 s3 s1 . . . si
t1 t2 t2 t3 . . . ti

]

(8)

where si and ti(i = 1, 2 . . . , N) are a source node and a target node. The gather
process aggregates the source nodes with the same target ti (denoted as the
set Pi). The process of the matrix computation is MsF d, where F d ∈ RNFin .
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The multiplication is improved by accessing the memory and computing in a
thread-per-matrix-row pattern [4].

Fu
ti = (Ms · F d)ti =

∑

k∈Pi

F d
k (9)

where Fu
ti ∈ RFin are the representation of node i after a simple sum scatter.

4 Experiments

Two classic tasks are introduced to evaluate the effectiveness of SRACas [2]. One
task is to predict the future retweet size of a microblog. The other task predicts
the future citation counts of a paper.

4.1 Experimental Setups

Following data preprocessing setups in DeepHawkes [2], the observation time
window to is set to 1 h, 2 h, and 3 h in the Sina Weibo dataset. The cascades
that have less than five retweets within the observation time to are removed in
experiments. In the dataset APS Citation, we remove papers with fewer than
ten citations within the observation time [2]. We set to = 5 years, 7 years, and
9 years to predict the size in the 20th year.

The MSLE (mean square log-transformed error) and mSLE (median square
log-transformed error) [2] are used as evaluation metrics. We consider the classic
and advanced models as strong baselines (Table 1).

4.2 Prediction Performance

Table 1. Performance on the entire cascade set.

Sina Weibo APS Citation

to 1hour 2hours 3hours 5years 7years 9years

Metric MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 3.383 0.810 3.255 0.813 3.186 0.845 1.772 0.730 1.594 0.693 1.579 0.732

TopoLSTM 3.535 1.247 3.386 1.108 3.244 1.101 1.728 0.721 1.615 0.736 1.560 0.644

DeepHawkes 2.307 0.648 2.125 0.597 2.105 0.644 1.347 0.604 1.337 0.598 1.244 0.519

CasCN* 2.862 0.699 2.796 0.774 2.707 0.681 1.397 0.618 1.355 0.563 1.178 0.545

CasFlow* 2.325 0.650 2.256 0.672 2.113 0.668 1.352 0.548 1.345 0.591 1.316 0.571

SRACas 1.970 0.560 1.870 0.499 1.826 0.477 1.253 0.527 1.207 0.510 1.076 0.472

Note that OpenCas optimizes implementations of current models, so perfor-
mances of some baselines are improved compared to the original papers. Some
recent models (e.g., CasCN and CasFlow) are only suitable for predicting cas-
cades with small popularity size [3,9]. Larger cascades form in real-world sce-
narios, and they are more common in the Sina Weibo dataset than in the APS
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Citation dataset. Larger cascades increase the difficulties of cascade prediction
and require higher GPU memories, making some models unsuitable. Therefore,
a smaller dataset from the Sina Weibo dataset is also used to validate the per-
formance of models by selecting the cascades with no more than over 100 nodes
within the observation window following setups [3,9]. The size distributions of
the small and large cascades are similar in the APS Citation and Twitter, which
is meaningless to be divided.

Prediction on the Entire Cascade Set: The entire cascade set preserves cas-
cades with fewer than 1000 nodes within the observation window as described in
DeepHawkes [2]. CasCN and CasFlow are infeasible to run experiments directly
on the entire set due to their high GPU demands. We apply CasFlow and CasCN
by limiting the first 100 participants in the observation window (denote as Cas-
Flow* and CasCN*). SRACas applies sparse encoding to reduce GPU memory
usage and enable experiments on the entire cascades. SRACas follows the same
training strategies in experiments on both entire and smaller cascade sets. The
baseline models outperform their original implementations by re-implementing
part of the codes and optimizing training strategies on OpenCas. For example,
the performance of DeepCas and DeepHawkes is better than their original papers
or previous reports, with the MSLE reduced from 3.63 to 3.38 and from 2.44 to
2.31 [2] at one hour, respectively. SRACas consistently outperforms the baselines
by significant margins.

Prediction on Smaller Cascades Set: All the baseline models work on the
smaller dataset, but SRACas performs much better, as shown in Table 2. MSLE
of DeepCas and DeepHawkes is reduced from 2.958 [3] to 2.494 and from 2.441 [3]
to 2.023, respectively. The performance of DeepCas and DeepHawkes is under-
estimated in previous works. The second lowest MSLE (2.023 by DeepHawkes)
is reduced to 1.810 (SRACas) by around 10.5 % at 1 h on Sina Weibo.

Compared with prediction performance on the smaller set, MSLE of Cas-
Flow and DeepHawkes on the entire set is highly decreased by 14% (substantial
performance decrease) as shown in Table 2. The performance of CasCN and
TopoLSTM even dropped by more than 30% and 40%, respectively. However,
SRACas is the most stable: the MSLE only increased from 1.810 to 1.970, and
the mSLE increased from 0.534 to 0.560.

Table 2. Performance on Sina Weibo (smaller set).

Sina Weibo (Smaller Set)

to 1hour 2hours 3hours

Metric MSLE mSLE MSLE mSLE MSLE mSLE

DeepCas 2.494 0.758 2.386 0.801 2.316 0.856

TopoLSTM 2.679 0.715 2.595 0.724 2.579 0.703

DeepHawkes 2.023 0.649 1.963 0.536 1.941 0.546

CasCN 2.042 0.553 1.906 0.532 1.867 0.530

CasFlow 2.038 0.547 1.988 0.527 1.920 0.519

SRACas 1.810 0.534 1.687 0.470 1.622 0.486
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Fig. 4. Subcascade representations in Sina Weibo.

Fig. 5. Differential temporal representations in Sina Weibo.

4.3 Visualization and Explanation

Discussions on Learned Features: To discover the differences in representa-
tions learned by different models. We apply t-SNE [1] to project the cascades’
or sub-cascade graphs’ representations into two-dimensional points. Meaningful
representations will gather according to the sizes. Figure 4 represents the sub-
cascade graphs’ representations with sizes. The aggregation degree of the learned
features by SRACas is higher than CasCN and DeepHawkes on relatively large-
size sub-cascade graphs.

Furthermore, we explore the differential representation of sub-cascades in
different moments by subtracting the representation of Gt and Gt−1 and coloring
the data points with incremental sizes between Gt and Gt−1. As shown in Fig. 5,
the aggregation effects of CasCN and DeepHawkes are not as obvious as those
of SRACas. The nodes in different moments share the same representations in
DeepHawkes, which makes it hard to distinguish the structure of sub-cascades.
CasCN also fails to distinguish the difference between neighboring sub-cascades,
demonstrating the effectiveness of role-aware social attention.

Fig. 6. Cascade representations in Sina Weibo.
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Finally, the representations of entire cascades are visualized in Fig. 6. The
learned features by all models are related to the increment size to a certain
extent. However, compared to CasCN and DeepHawkes, the points cluster more
densely and smoothly according to their incremental popularity in SRACas.

5 Conclusion

This paper proposes a novel model SRACas to solve the problem that current
models fail to model the social roles of nodes and discriminate the neighboring
sub-cascades, utilizing a social-aware attention mechanism and temporal-aware
differential loss. The SRACas achieved significant improvements over strong
baseline methods and brought cascade prediction performance to a new level
in classic real-world datasets. Furthermore, an open platform OpenCas that
aggregates cascade prediction models is built, which simplifies the environmen-
tal configuration, data preprocessing, and training of models.
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Abstract. With the thriving of social network analysis, large efforts
have been made on link prediction for event-based social networks
(EBSNs). Unfortunately, since society is evolving with constantly emerg-
ing social events, it is extremely difficult to accurately capture their
semantics and evolution rules at an early stage. Meanwhile, traditional
solutions require extensive training from scratch to accommodate new
events, leading to lagging predictions and high maintenance costs. To
tackle these challenges, we investigate this cross-network few-shot prob-
lem and propose a novel meta-learning model for link prediction on new
EBSNs. To accurately simulate the few-shot scenarios, we first utilize
existing EBSNs to define a task distribution that augments the new
event with other observed events. Specifically, we define a unified and
generalized target event to be transferred as the few-shot event. Then,
we empower a simple but effective event-aware graph attention network
to encode existing fine-grained events and the few-shot target events.
Furthermore, we follow gradient-based episode learning to obtain trans-
ferable knowledge and adapt to unseen EBSNs with sparse connections.
Finally, extensive experiments on both public and industrial datasets
have demonstrated the performance of fast adaption and even overall
performance.

Keywords: few-shot · event-based social networks · meta-learning

1 Introduction

The widespread popularity of social services has brought us a tremendous volume
of social interaction data and various spontaneously formed communities. Over
the last decade, service providers are motivated to create and promote a series
of interest-driven social events to improve information dissemination and further
increase the vitality of platforms. Along this line, the concept of Event-Based

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. An example of overlapping EBSNs generated by product share records on an
e-commerce platform, where B and G denote boys and girls, respectively.

Social Networks (EBSNs) has emerged which provides explicit fine-grained
information to show the diverse social preferences of users.

With the prosperity of social services, society is evolving with successive
social events. Taking Fig. 1 as an example, various social-oriented promotions are
launched to promote communication within and outside communities. Specifi-
cally, couples (e.g., B0&G0, B1&G1) kept in touch on Valentine’s Day. The girls
(e.g., G0, G1, and G2) would share beauty products, while boys (e.g., B0, B1,
and B2) would connect during Electronics Shopping Festival. Notably, the inter-
action (B0, G0) always holds, exhibiting an event-agnostic relationship, while
most users show various social patterns. However, with the advent of the Sports
Festival, there is an urgent need to identify and attract users to establish con-
nections in the corresponding EBSN, thus we have to quickly find potential links
on the sparsely-estimated network. This motivates us to consider a more chal-
lenging setting of graph few-shot learning, which expects to enable fast adaption
and high-quality prediction on newly-deployed EBSNs without abundant data.
We emphasize that an effective early prediction of the evolution of the novel
community will provide indispensable guidance to assist decision-making.

In this paper, we study few-shot link prediction for EBSNs. Intuitively, due to
the cold-start problem, new EBSNs would suffer from data deficiency and even
distorted topology [1]. A straightforward idea is to apply a multi-relation model
to encode all events [6,8] and retrain it to accommodate new events, which results
in lagging predictions and high maintenance costs. Recent years have witnessed
the rapid development of few-shot learning (FSL) [1,2,4,10]. As a prevailing
paradigm, MAML [2] obtains knowledge from similar tasks and transfers it to
unseen tasks with a few instances. We notice that the key is to perfectly simulate
the few-shot scenarios, which guarantees the transferability and robustness of the
meta-knowledge. Specifically, we have the following observations:

– The dependencies among EBSNs could be utilized to enhance the
semantics and structures of the few-shot event. Prior arts of FSL on
disjoint attributed networks [1,4] are not compatible with densely connected
EBSNs from the same domain. Since emerging EBSNs can be noisy, sparse,
and unbalanced in scale, previous interactions could be naturally utilized.
Correspondingly, we have the challenge to define a task distribution over
dense EBSNs, further contributing to knowledge transfer.
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– The shared characteristics of few-shot events could be learned and
transferred to guarantee generalizability. Indeed, the exact semantics of
constantly emerging events are difficult to capture [1]. However, the semantics
of existing events can be explicitly captured and naturally transferred. Thus,
we expect a unified well-initialized representation for the few-shot event as a
good starting point for fine-tuning. Correspondingly, we have the challenge
to design an effective model as the carrier of meta-knowledge.

We propose a meta-learning framework to address the aforementioned chal-
lenges. Briefly, new sparse target events leverage the knowledge from existing
dense events, as there are shared semantics and structures worth exploiting.
First, to simulate few-shot scenarios, we fully utilize existing EBSNs to define a
task distribution, where a cross-network sampling strategy is designed to han-
dle interconnected EBSNs. Afterward, a unified and generalizable target event is
proposed to simulate the few-shot event. For each task, fine-grained source events
and the special target event are jointly encoded by an event-aware graph atten-
tion network (EA-GAT), where both target and auxiliary loss are jointly opti-
mized. Overall, we follow the standard episode learning to learn well-initialized
parameters from tasks. In this case, when new events appear, we can individ-
ually fine-tune the tasks with a handful of associative instances, and adapt
quickly with few resources. Our contribution can be summarized as follows: (1)
To the best of our knowledge, we are the first to investigate FSL on intercon-
nected EBSNs, which is universal and significant for early decision-making. (2)
To achieve fast adaption, we propose a meta-learning framework for knowledge
transfer. To simulate the few-shot scenario, we define a task distribution with
network augmentation and learn a unified, generalizable few-shot event. (3) To
validate the effectiveness, experiments are conducted on public and industrial
datasets to show the superiority of fast adaption and convergence performance.

2 Related Works

Graph Neural Networks (GNNs). Recently, GNNs have been widely
adopted to preserve properties and structures on graphs, such as GCN, GAT, and
GraphSAGE. Moreover, R-GCN [6] and CompGCN [8] are proposed to model
graph heterogeneity. HGT [3] decomposes the interactions with a Transformer-
like architecture. However, these approaches learn global parameters with abun-
dant data while we focus on emerging events (relations) with insufficient data.

Graph Few-Shot Learning. Remarkable success has been made on FSL of
images and text while the exploration of graphs is still in its infancy, especially
in multi-graph settings. Some studies formulate the transferable knowledge as
meta-optimizer and metric space, e.g., Prototypical Network [7]. By contrast,
Meta-GNN [10] integrates MAML with GNNs and facilitates gradient descent
across tasks. However, little literature can be adapted to few-shot link prediction.
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Algorithm 1. Meta-Training Task Sampling
Input: R = {R1, ..., RN},G = {G1, ..., GN} where Gi = {Vi, Ei}
Output: The distribution of meta-training tasks p (T )

1: while not done do
2: Select Rk ∈ R;
3: Set Rk to Rtgt, Define Raux = R − {Rk};
4: Split Etgt = Esupport

tgt ∪ Equery
tgt ;

5: Construct G = (V,E), where E = Esupport
tgt ∪ Eaux and Eaux =

⋃
i�=k Ei;

6: Compose S = (Stgt,Saux) from Esupport
tgt and Eaux, respectively;

7: Compose Q = (Qtgt,Qaux) from Equery
tgt and Eaux, respectively;

8: T = (G,S,Q)
9: end while

To list a few, G-Meta [4] proposes to reduce parameters by encoding local sub-
graphs for large-scale graphs. Meta-Graph [1] recovers graphs with a variational
auto-encoder and learns knowledge from disjoint attributed graphs. Despite the
progress, these works fail to handle the cross-network dependency for EBSNs.

3 Problem Definition

Definition 1. Event-Based Social Networks (EBSNs). Suppose the user
set is denoted as V and there have been N events R = {R1, R2, ..., RN}. The
corresponding EBSNs are denoted as G = {G1, G2, ..., GN}, where the i-th EBSN
is represented as Gi = (Vi, Ei), where Vi ⊆ V and Ei = {(u,Ri, v)|u, v ∈ Vi}.

Definition 2. Few-shot Link Prediction for EBSNs. Assume we have
observed the social events R = {R1, R2, ..., RN}, and the corresponding EBSNs
are G = {G1, G2, ..., GN}. For an emerging few-shot event Rfew, and Gfew =
(Vfew, Efew), Vfew ⊆ V. We follow the few-shot setting and split Efew =
Esupport

few ∪ Equery
few , where Esupport

few ∩ Equery
few = ∅. As a small fraction of inter-

actions are available to support the network inference, i.e. |Esupport
few | � |Efew|,

our goal is to predict Equery
few with limited true edges from Esupport

few .

4 Methodology

In this section, we present the technical details of our model in Fig. 2, including
task sampling, event-aware link prediction task, and meta-learning framework.

4.1 Cross-Network Task Sampling

The meta-learning approaches assume there are exploitable, shareable structures
across similar tasks. Thus, its success relies heavily on making full use of exist-
ing data to create tasks that delicately simulate real-world few-shot scenarios.
Specifically, when new events emerge, we enhance the new, sparse, and noisy
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EBSN with previous, dense, and complete EBSNs, denoted as auxiliary and tar-
get events, respectively. To this end, we leverage existing EBSNs to define a task
distribution. Taking Fig. 1 as an example, we possibly choose Women’s Beauty
Festival as the target event (few-shot event), so the Valentine’s Day and
Electronics Shopping Festival become auxiliary events. Note any of them can
be selected as the target event to generate sufficient tasks.

Unfortunately, the support samples are insufficient to express the semantic
meaning of the target event. Therefore, we propose a unified, generalizable target
event and attempt to make it transferable to unseen few-shot events, i.e. transfer
Rtgt to Rfew. In other words, the learnable target event shared across tasks will
be adopted to represent the real emerging few-shot event in meta-testing.

Fig. 2. The proposed meta-learning framework including (1) Few-shot task sampling
with network augmentation, (2) EA-GATs, and (3) Joint learning for link prediction.
Without loss of generality, we sample B meta-training tasks as a batch.

Meta-Training Tasks. As illustrated in Algorithm 1, we first randomly select
Rk from R = {R1, ..., RN} as the target event, and set the others are auxiliary
events, i.e. Rtgt = Rk, Raux = R − {Rk}. Then, following the few-shot setting,
we allow Gtgt = {Vtgt, Etgt} to be divided into Etgt = Esupport

tgt ∪ Equery
tgt , where

Etgt = Esupport
tgt ∩ Equery

tgt = ∅. Next, we utilize Eaux to augment the sparse
Esupport

tgt and build G = (V,E), where E = Esupport
tgt ∪ Eaux, Eaux =

⋃
i�=k Ei.

Afterwards, we dynamically sample edges from Esupport
tgt and Eaux and compose

the support set as S = (Stgt,Saux). Similarly, we compose the query set Q =
(Qtgt,Qaux) from Equery

tgt and Eaux. So far, we have defined a task as T =
(G,S,Q). e can repeat the above steps to sample batches of training tasks.
Finally, we target at making prediction on Qtgt (Qaux only assists the training)
with limited Stgt to support the inference.
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Meta-Testing Tasks. Once event Rfew comes, we follow the above steps to
create a meta-testing task Tfew in a similar way. Differently, all existing events
R = {R1, ..., RN} could be auxiliary events as their semantics have been accu-
rately captured. Since Rtgt exactly simulates the few-shot event, the prior knowl-
edge of Rtgt will be naturally transferred to Rfew for fine-tuning.

4.2 Event-Aware Link Prediction Task

Event-Aware Graph Attention Networks (EA-GATs). We first denote
a generic encoder HG = fE (G;X, θE) parameterized by θE . X ∈ R

|V|×d is
learnable user embeddings. To incorporate the unified target event, R̃ = R ∪
{Rtgt} is involved in the augmented network G = (V,E). Generally, we set
X = h(1) and iteratively update the embedding of user u as follows:

h(l)
u = σ

(
∑

v∈Nu

α(l)
uvW

(l)
a h(l−1)

v

)

(1)

where α
(l)
uv is the attention weight between u and v, W (l)

a is the weight matrix.
Following [5], to handle event semantics, we allocate a dr-dimensional embedding
zr for each event r ∈ R̃. As multiple events (relations) may exist between any
pair of users, suppose the co-occurred events are ϕ(u, v), we accumulate all
contributions and compute the raw attention with event-specific representation:

α̂uv =

∑
r∈ϕ(u,v) exp(aT g(Whu ||Whv ||Wrzr ))

∑
k∈Nu

∑
r∈ϕ(u,k) exp(aT g(Whu ||Whk ||Wrzr ))

(2)

where W ∈ R
d×d and W r ∈ R

d×dr are node- and relation-type transforma-
tion matrices, and we omit superscript l for simplicity. aT ∈ R

3d is a weight
vector. Nu denotes the neighbors of u and g(·) denotes LeakyRELU. Follow-
ing HGB [5], with residual connections on attention scores, the final atten-
tion score is α

(l)
uv = βα

(l−1)
uv + (1 − γ) ˆαuv

(l), where γ is a scaling factor, i.e.,
0.05. Besides, we adopt multi-head attention mechanism to learn from differ-
ent subspaces. To capture long-range dependency, we stack L layers and use
layer normalization to stabilize the training process. The final embeddings are
hg

u = Pooling
(
h(1)

u ,h(2)
u , ...,h(L)

u

)
∈ R

dg with concatenation or mean pooling.

Decoder. We define a generic decoder as Y = fD (A; θD) to decode the triples
in support or query set, i.e. A ∈ {S,Q}. Inspired by [9], we instantiate the
decoder with bilinear score function with W ′ ∈ R

(N+1)×dg×dg . Thus for a triple
(u, r, v) ∈ A, the probability yr

uv that u and v holds in the event r ∈ R̃ is:

yr
uv = σ

(
hg

uW
′
rh

g
v

)
(3)

where W ′
r ∈ R

dg×dg is the event-aware matrix of r indexed from W ′.
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Joint Learning with Auxiliary Triples. Given candidate triple set A =
{(u, r, v)}, the binary cross-entropy loss can be written as:

L (A) =
1

|A|
∑

(u,r,v)∈A
yr

uv log (ŷr
uv) + (1 − yr

uv) log (1 − ŷr
uv) ,A ∈ {S,Q} (4)

where yr
uv is the ground-truth. Due to the overlapping between observed and few-

shot EBSNs, the reconstruction of auxiliary links will be helpful for prediction
on new EBSNs. Hence, for S = {Stgt,Saux}, the task-oriented loss is:

Ltgt = L (Stgt) ,Laux = L (Saux) ,L = Ltgt + λ0Laux + λ1‖θ‖ (5)

where λ0 is the trade-off parameter and θ denotes all task-level parameters.

4.3 Meta-learning Framework for EBSNs

Inspired by model-agnostic MAML [2], for emerging events, we learn general-
purpose parameters from meta-training tasks as the prior knowledge, so that the
model could produce good fine-tuning results through a few gradient steps.

Table 1. Statistics of the datasets for the proposed model

Dataset # events # nodes # connections # pairs Event Type

DBLP 11 37947 210260 183040 conference

Tmall 8 16961 48782 41186 promotion

Formally, we consider the link prediction model as a function fθ with θ =
{θE , θD,X}. When adapting to Ti = {Gi,Si,Qi} from p(T ), we first update the
task-level parameters with feeding Si, which can be expressed as:

θ′
i ← θi − α∇θLTi

(fθ) (6)

We only perform a one-step update here while extending to multiple steps (e.g.,
K = 5, 10, 20) is straightforward. For each meta-training task, we perform gradi-
ent descents individually. For the best performance of fθ with respect to θ across
tasks from p (T ), we validate each task Ti with Qi, so that the meta-objective is
to minimize the accumulated loss on queries across sampled tasks:

min
θ

∑

Ti∼p(T )

LTi

(
fθ′

i

)
=

∑

Ti∼p(T )

LTi

(
fθ−α∇θLTi

(fθ)

)

(7)

Formally, we optimize meta-parameters θ as follows:

θ ← θ − β∇θ

∑

Ti∼p(T )

LTi

(
fθ′

i

)

(8)

where α, β is the meta-level and task-level learning rate, respectively.
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5 Experiments

5.1 Experiment Setup

Data Description. We validate the proposed model on both public and indus-
trial datasets. As summarized in Table 1, (1) DBLP1 is a synthetic dataset,
where we select 11 top AI conferences as events, and build EBSNs by connecting
the first and other authors of each paper in a pairwise manner as social links.
(2) Tmall2 is a real-world dataset collected from 8 category-aware e-commerce
promotions. Each social link corresponds to a product-sharing record during the
promotion. Users with only one neighbor are eliminated.

Reproducibility Settings. We use PyTorch to implement our model3. To
avoid accidental deviation caused by different event splitting, we use 5-fold cross-
validation and report the mean value of each metric. Following [1,4], we hold a
small percentage of true edges as the support set, i.e. {10%, 20%, 30%}, 10% for
validation and the rest for testing. 10 gradient update steps in meta-training and
20 steps in meta-testing are adopted. AdamW and SGD are applied for meta-
optimization and task-level optimization, respectively, while their learning rates
are turned in {1e−3, 1e−2, 1e−1}. As for the EA-GAT module, the dimension
is fixed to 32. The number of layers is selected in {1, 2, 3}, and the number of
attention heads is tuned in {1, 2, 4}. As for the task-level loss, λ0 is tuned in
{0.2, 0.4, 0.6, 0.8, 1.0}, and λ1 is set to 1e−4. The batch sizes of auxiliary and
target triples are set to 512 and 2048. We tune hyperparameters by grid search
and use AUC, Average Precision (AP), and Accuracy as the evaluation metrics.

Table 2. The convergence performance on both DBLP and Tmall datasets. ‘-’ means
the metrics are not reported in the original implementation. Best results in bold.

Models DBLP Tmall

30% 20% 10% 30% 20% 10%

AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc

GCN 71.9 71.9 67.7 71.2 72.9 67.2 69.5 70.9 66.0 72.9 77.5 70.8 71.5 76.6 69.4 70.4 74.9 68.7

GAT 75.0 75.3 68.8 74.6 76.4 68.5 72.5 75.1 67.0 76.6 80.8 70.8 75.6 79.7 70.1 74.8 78.9 69.3

GraphSAGE 76.2 78.8 70.4 74.1 77.0 68.8 72.1 75.6 67.6 76.3 81.1 71.3 75.5 80.4 70.6 74.6 79.5 69.4

R-GCN 70.2 72.4 66.7 69.4 70.4 65.8 67.5 69.2 64.2 60.0 64.8 60.4 57.6 62.5 58.6 56.8 61.3 57.7

CompGCN 77.5 79.8 67.4 76.9 79.4 66.1 74.6 76.9 64.5 76.4 80.9 68.9 74.7 79.2 68.0 74.5 79.0 67.0

HGB 76.7 77.7 69.5 74.9 76.3 67.9 73.6 74.4 66.9 74.8 80.1 69.6 72.4 78.4 66.2 72.0 76.4 65.9

MAML 71.8 73.8 64.2 68.7 71.8 61.6 65.7 69.1 59.6 71.9 75.8 67.0 67.5 70.1 62.5 63.5 66.8 58.6

Meta-Graph 77.2 79.1 - 76.2 78.6 - 73.9 75.7 - 75.8 80.1 - 73.4 78.9 - 73.0 77.0 -

Ours 81.3 84.7 72.6 78.6 82.1 70.9 75.3 79.3 69.1 80.6 84.8 74.7 79.2 83.7 73.9 78.2 82.6 72.1

1 https://dblp.org/.
2 https://www.tmall.com/.
3 https://github.com/xizhu1022/FSLP-EBSNs.

https://dblp.org/
https://www.tmall.com/
https://github.com/xizhu1022/FSLP-EBSNs
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Baselines. We compare our method against three categories of baselines: (1)
Single-relation models operated on homogeneous networks, such as GCN,
GAT, and GraphSAGE. (2) Multi-relation models that incorporate relation
learning, including R-GCN [6], CompGCN [8] and HGB [5]. (3) Meta-learning
models. Since little literature is applicable to link prediction, we adopt MAML
[2] and the closest multi-network FSL work Meta-Graph [1] as baselines. For
Meta-Graph, we use GraphSAGE pre-training embeddings as node attributes.

5.2 Experiments Results

Overall Convergence Performance. As shown in Table 2, we evaluate the
proposed model against various baselines for final convergence. Here are three
findings. First, our model outperforms other models on both datasets with steady
improvement in all few-shot settings. For example, as for DBLP in the 30%
setting, the absolute gains reach 3.81%/4.97%/2.16% for AUC/AP/Acc, which
illustrates the effectiveness of our work. Second, Meta-Graph is slightly inferior to
our model probably due to its individual nature and constant attributes. Third,
homogeneous models show competitive results, in some cases, even outperform
multi-relation models. We argue relations with many samples mistakenly domi-
nate the training process and impair the relation learning with insufficient data.

Table 3. The AUCs of different variants with 20-step finetuning. RD-B indicates the
relative decrease w.r.t. the convergence result of its backbone model (denoted in the
bracket). RD-O is the relative decrease w.r.t. the best convergence result of our model.

Variants 10% 20% 30%

Full RD-B RD-O Full RD-B RD-O Full RD-B RD-O

Direct Training (CompGCN) 50.34 -32.52% -33.12% 50.96 -33.68% -35.13% 51.11 -34.03% -37.12%

Train&Finetune (CompGCN) 73.07 -2.05% -2.92% 73.03 -4.98% -7.06% 74.73 -3.54% -8.06%

MAML (GAT) 65.46 -0.39% -13.3% 67.93 -1.09% -13.54% 69.17 -3.62% -14.90%

Ours (EA-GAT) 74.65 -0.83% -0.83% 76.89 -2.14% -2.14% 78.87 -2.97% -2.97%

Fig. 3. The AUC curves for convergence of DBLP dataset (200-step finetuning).
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Fast Adaption and Convergence Curves. We design the following vari-
ants to show the efficiency of rapid learning: (1) Direct Training directly
trains CompGCN [8], which is among the best traditional multi-relational mod-
els (see Table 2). (2) Training&Finetuning first extensively trains CompGCN
[8] based on existing events, then finetunes with additional few-shot instances.
(3) MAML is a pure meta-learning method with pure GAT as the meta-model.

Fast Adaption Performance. As shown in Table 3, MAML and our model
perform very closely to their convergence results with limited training (see RD-
B), which illustrates the remarkable rapid adaptability of meta-learning meth-
ods. Notably, we outperform Training&Finetuning which follows the traditional
solutions to handle new events. It indicates some common characteristics of few-
shot events have been captured to enhance newly-deployed events.

Convergence Curves. As shown in Fig. 3, our model not only outperforms
other variants but also achieves fast and stable convergence. Besides, in com-
parison, our model has a better starting point with more expressive embeddings
based on meta-training tasks. However, meta-learning models tend to overfit,
especially when the support set is small, which makes early stopping important.

Ablation Study. We conduct experiments on three ablations: (1) w/o net-
work augmentation that directly inputs the sparse EBSN to EA-GAT while
auxiliary triples are only for optimizing. (2) w/o auxiliary learning that
removes auxiliary learning in the task-level loss. (3) MAML removes both com-
ponents. According to Fig. 4, all ablations show relatively poor results compared
to the full model. Surprisingly, a significant drop is observed without auxiliary
learning, which identifies that the reconstruction of source EBSNs boosts user
preference learning. Besides, another decrease is found without network augmen-
tation. MAML shows the worst results without them, showing their synergistic
effects. Actually, both components are inspired by the interconnection nature of
EBSNs. Finally, as support edges decrease, a larger gap is found between the
full model and ablations, showing its superiority in few-shot scera.

Fig. 4. The ablation results for DBLP dataset.
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6 Conclusion

In this work, we studied FSL on new EBSNs. First, we defined a task distribution
and considered a unified target event as the few-shot event. Then, for each task,
an event-aware link prediction model was proposed with a joint objective. Over-
all, we followed MAML to achieve knowledge transfer. Finally, the experiments
have illustrated the superiority of fast adaption and overall results.
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Abstract. How to use frequent and discriminative pattern for identifying
brain disease is a hot topic in the area of brain functional network topology
analysis. Most of the existing researches mine discriminative sub-network
from frequent patterns, thus ignoring the underlying comparison relation-
ship of the discriminative patterns within different groups. To solve this
problem, we propose a discriminative sub-network pair (DSP) to represent
both the intra-group commonality and inter-group specificity of networks.
The DSP consists of a paired frequent sub-network mined from the brain
networks of different groups within the same or similar node-set and dif-
ferent edge-set. Specifically, the signals are decomposed into multiple fre-
quency bands, then the multi-frequency network is constructed to model
the brain activities. We construct the DSP with the most significant distin-
guishing ability from the frequent patterns that frequently appear in each
group. A feature vector is constructed for each subject based on these pairs
by drawing on the network motif idea and the classifier is used to detect
Alzheimer’s disease (AD). Comprehensive experiments on ADNI public
datasets demonstrate the effectiveness of DSP in the tasks of AD classifi-
cation, with an accuracy of 83.33%.

Keywords: Discriminative sub-network pair · Multi-frequency brain
functional network · Subgraph mining · Auxiliary diagnosis

1 Introduction

As an irreversible neurodegenerative disease, Alzheimer’s disease (AD) is accom-
panied by clinical symptoms such as cognitive and memory impairment [18]. It
can be determined whether the subjects have AD by computer analysis of med-
ical data rather than actual cognitive phenomena. With the development of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 42–57, 2023.
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neuroimaging technology, functional Magnetic Resonance Imaging (fMRI) has
provided an ideal tool for studying the activity patterns of the whole brain. It
is the neuroimaging basis for the auxiliary detection of AD.

Brain activity is frequency-specific, different frequencies can not be consid-
ered simply as full-spectrum. In other words, physiological activities at different
frequency bands may produce frequency-specific signals and contribute differ-
ently to functional connectivity [19,26]. Researchers found that the correlation
of cortical network was concentrated at lower frequency range (0.01–0.06Hz),
while the connections of the edge network were distributed at a wider range
(0.01–0.14Hz) [25]. Ignoring the interaction between different bands may result
in the loss of some important information. An effective method to solve this
problem is to construct a multi-frequency network.

Once acquired, the network needs to be integrated into a suitable model,
researchers try to use graph model to extract clinically relevant information.
The traditional methods are analyzing the differences between AD and normal
subjects’ brain network attributes. They extracted a series of features from the
network, such as node degree, centrality [4] and so on. Then they classified the
feature vectors with machine learning methods [21]. However, these methods
lose some detailed information in the network, such as the network’s topology
structure and the common topology structure among the networks. They will
failed to detect changes in the brain regions and connections that lead to disease.
As a typical graph data, the brain network can be analyzed from the perspective
of data mining [20]. Subgraph structures (There is no distinction between sub-
network and subgraph in this paper) can represent the common connections,
that is, they can represent the “building block” used to convey information in
the networks [10].

In this paper, we propose and test the hypothesis that neurodegenerative
psychiatric disorders may result from the disruption of certain subgraph in the
network in some way. At the same time, we believe that the subgraphs have
population stability, that is, the subgraphs are shared within the group, but the
two subgraphs obtained from different groups are not completely independent.
There is a contrast between their relations. For a certain set of brain regions, the
brain networks of two groups will show completely different topological connec-
tions, and these different connection combinations can be used as biomarkers to
reveal diseases. Therefore, we consider a kind of special subgraph pairs as dictio-
nary elements and construct a feature vector for each network. We propose the
discriminative sub-network pair (DSP) to define the comparison relationships
within different groups. That is, DSPs are considered as dictionary elements
for the brain-related disease identification. The DSP consists of a paired fre-
quent subgraph mined from the networks of different groups. Therefore, the
multi-frequency brain functional network is constructed, which fully considers
the topological properties of the network at different bands. In addition, a learn-
ing framework is developed for the diagnosis of brain-related diseases with DSPs.
The contributions of this paper are summarized as below:
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– The multi-frequency brain functional network model is constructed by using
the frequency-specific functional connectivity, which can reflect deeper inter-
action information between brain regions.

– The DSP is elegantly defined to describe the comparison relationships
between different groups, which considers both the intra-group commonal-
ity and inter-group specificity of networks.

– Extensive experiments are conducted on ADNI public datasets. The results
demonstrate the effectiveness of DSP in the task of AD classification.

The rest of this paper is arranged as follows. In Sect. 2, we construct the
multi-frequency brain network and present our DSP. In Sect. 3, the proposed
method is experimentally verified and discussed. Then, we introduce the related
work in Sect. 4. Finally, the paper is summarized in Sect. 5.

2 Methodology

In this work, a new framework for the diagnosis of AD with DSP is developed
by multi-frequency functional network. As shown in Fig. 1, the framework can
be divided into four main states. First, the resting-state fMRI (rs-fMRI) data
is pre-processed, which mainly includes slice timing, head motion correction,
normalization, etc. Next, regional mean time series of the signals in each region-
of-interest (ROI) are decomposed into multiple frequency bands, and the multi-
frequency brain functional networks are constructed by the way of correlation
analysis and thresholding. Then, frequent subgraphs are mined from the multi-
frequency brain networks at each frequency, and the DSPs are selected within
two groups based on the similarity of the edge set, the node set, and the support
set. Finally, a feature vector for each subject based on these pairs is constructed
by drawing on the network motif idea and the classifier is used to detect AD.

2.1 Multi-frequency Brain Functional Network Construction

The complex system of the brain can be represent by a brain functional network.
Nodes usually represent certain regions of the brain, while edges usually represent
the functional connectivity among these regions. We decompose regional mean
time series of the signal in each ROI into multiple frequency bands and threshold
the correlation matrices to analyze the topological properties of the resulting
undirected networks.

Suppose that X ∈ R
R×P denotes the matrix of regional mean time series with

P time points extracted from a total of R ROIs. The connection strength of any
two regions can be measured by the correlation between their time series. For the
time series of the i-th ROI Xi and the j-th ROI Xj , the connection strength Ci,j

between them can be derived by computing the Pearson’s correlation coefficient,
as shown as follows:

Ci,j =

∑P
m,n=1

(
χm
i − X̄i

) (
χn
j − X̄j

)

√
∑P

m=1

(
χm
i − X̄i

)2
√∑P

n=1

(
χn
j − X̄j

)2
(1)
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Fig. 1. An overview of the framework

where, χm
i (m = 1, 2, . . . , P ) and χn

j (n = 1, 2, . . . , P ) represent the m-th and n-th
time point of the i-th and j-th ROI’s time series, respectively. X̄i and X̄j are
the mean value of all the time points in the corresponding ROI, respectively. P
is the number of time points included in the time series.

Assuming that Xi and Xj are de-meaned and variance-normalized before
calculating Ci,j , the matrix C = [Ci,j ] ∈ R

R×R can be further expressed as
C = XXT . The network constructed by the above method is a full-spectrum
network, which may be incapable to capture subtle differences in disease. Further,
multi-frequency brain networks are constructed. Suppose that gk,w and hk,w(w =
0, . . . ,Wk − 1) are the k-th level high-pass filter and low-pass filter, respectively,
here, W denotes the width of the initial filter [12]. The corresponding k-th level
high-pass filter and low-pass filter are defined by g̃k,w = 2−k/2gk,w and h̃k,w =
2−k/2hk,w, which have the same width Wk. Then, for Xi, its k-th sub-band Xk

i

can be derived as follows:

Xk
i = Xk,H

i [P ] =
Wk−1∑

w=0

g̃k,wXk−1,L
i [2P − w] (2)

where, P is length of Xi, and,

Xk,L
i [P ] =

Wk−1∑

w=0

h̃k,wXk−1,L
i [2P − w] (3)
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Within the k-th band, the time series Xk ∈ R
R×P can be obtained, and

the corresponding network can be constructed as Ck = Xk(Xk)T . Further, the
totally K frequency-specific functional network C̃ = {C1,C2, . . . ,CK} can be
obtained. Obviously, each matrix Ck in C̃ is symmetric, if there is a connection
between ROI i and ROI j, a connection between j and i must be there. Gen-
erally, the edges with lower connection strength are considered as noisy edges.
It is necessary to select a suitable threshold to retain the effective edges with
stronger connections and delete the noisy edges with weaker connections. For
each Ck, the range of connection strength between ROI i and j Ck

i,j is (-1, 1).
We suppose that T denotes the threshold, if |Ck

i,j | is greater than T , the con-
nection between ROI i and j is considered to be valid, and the value is set to 1.
Otherwise, the connection is invalid and the value is 0. The frequency-specific
adjacent matrices A = {A1,A2, . . . ,AK} ∈ R

R×R×K are derived by thresh-
olding respective functional connectivity matrices. Further, the multi-frequency
brain network N = {N 1,N 2, . . . ,NK} can be obtained. Pseudocode for con-
structing multi-frequency brain functional network is provided in Algorithm 1.

According to Eq. 2, each Xi can be decomposed into K bands layer by layer
(Lines 1-2). Within k-th sub-band (Line 3), we get the functional connectivity
matrix Ck by computing the functional connectivity for each possible pair of
ROIs (Lines 4-6). The corresponding frequency-specific adjacency matrix Ak is
derived by comparing the elements in the functional connectivity matrix with the
preset threshold (Lines 7-11). Further, we construct the brain function network
of the corresponding band N k (Line 12).

Algorithm 1: Multi-frequency brain functional network construction
Input: X: regional mean time series, T : threshold
Output: N : multi-frequency brain functional network

1 for each time series Xi in X do
2 [X1

i ,X2
i , . . . ,XK

i ] = frequency demultiplication(Xi);

3 for k = 1 to K do
4 Xk = [Xk

1 ,Xk
2 , . . . ,Xk

R];
5 Xk ← de-mean and variance-normalize (Xk);
6 Ck = Xk(Xk)T ;
7 Initialize the adjacency matrix Ak;
8 for i, j = 1 to R do
9 if |Ck

i,j | ≥ T then
10 Ak

i,j = 1;

11 Ak
i,j = 0;

12 N k = network construction (Ak);

13 return N = {N 1,N 2, . . . ,NK};
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2.2 Frequent Subgraph Mining

The goal of frequent subgraph mining is finding the subgraph that frequently
appear in brain networks. Supposed that N = (V,E,LV , LE) denotes a brain
network, where V (N ) (resp. E(N )) represents the set of nodes (resp.edges) in
N , LV (N )(resp. LE(N )) represents the label set of nodes(resp.edges). Given
N1 = (V1, E1, LV1 , LE1) and N2 = (V2, E2, LV2 , LE2), if N2 is the subgraph of
N1, it must satisfy that, V2 ⊆ V1, E2 ⊆ E1, LV2 ⊆ LV1 , LE2 ⊆ LE1 , denoted as
N2 ∈ N1. The frequent subgraph is defined by the following definitions.

Definition 1. frequent degree. Given a set of brain functional networks H =
{N1,N2, . . . ,Nm} (m is the number of networks in H), and a subgraph Hs ∈ H,
its frequent degree can be described as follows:

FD(Hs|H) =
1
m

m∑

i=1

δ(i) (4)

where, δ(i) is a indicative function, δ(i) =

{
1 Hs ⊆ Ni

0 otherwise
, subgraph Hs appears

at most once in each brain network, that is, FD(Hs|H) can also be expressed
as the ratio of the number of brain networks in H that contain Hs to the total
number m. Obviously, FD(Hs|H) ≤ 1.

Definition 2. frequent subgraph. Given a set of brain functional networks
H = {N1,N2, . . . ,Nm}, and a preset threshold ζ, the subgraph Hs is a frequent
subgraph of H, if and only if FD((Hs|H)) ≥ ζ.

Based on the above definition, the problem of mining frequent subgraphs
from brain network set can be expressed as finding all frequent subgraphs that
satisfy threshold. The idea is to generate candidate subgraph and then determine
whether it is frequent. Generating effective candidate subgraphs mainly requires
avoiding generating duplicate or redundant subgraphs [16]. To efficiently mine
frequent subgraph, we use the method based on depth-first search (DFS) to tra-
verse, code and encode the networks [28]. The method assign a unique minimum
DFS code to each brain network based on lexicographical order and establish a
DFS tree to enumerate all candidate frequent subgraphs. To determine whether
the candidate Hs is frequent, the method counts the frequent degree FD(Hs,H)
of the candidate in H and compare it with the preset threshold ζ. The one that
meets FD ≥ ζ is a frequent subgraph in the result set. We mine frequent sub-
graphs in each frequency to obtain the specific-frequency frequent subgraphs
with these mining strategies.

2.3 Discriminative Subgraph Pair (DSP) Mining

After mined frequent subgraphs using the aforementioned method, thousands of
frequent subgraphs may be obtained. If all these frequent subgraphs are used
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as markers to detect AD, it is not feasible and meaningless. We design the
DSP to describe both the intra-group commonality and inter-group specificity
of networks within different groups. We separate the brain network set into two
group according to their labels (i.e. AD group as positive group and normal
control (NC) as negative group).

Given a brain network set, H = {H+,H−} = {N1,N2, · · · ,Nn}, where H+

(resp. H−) denotes the positive (resp. negative) group. The subgraph set mined
from the positive (resp. negative) group is denoted as g+ (resp. g−). For a sub-
graph g, if its frequent degree in the positive (resp. negative) set is much greater
than that in the negative (resp. positive) set, it is a discriminative subgraph.
The discriminative ability of g+ is given as shown in Eq. (5). When d(g+) < 0,
g+ has no discriminative ability. The discriminative ability of g− is similar to
g+.

DA(g+|H) = log
FD(g+|H)
FD(g−|H)

(5)

To make the subgraph more discriminative, the DSP (gi, gj) = {(gi, gj) | gi ∈
g+, gj ∈ g−} is constructed. The DSP consists of a paired frequent subgraph
mined from different groups within the same or similar node-set and different
edge-set. Following, we introduce the structure similarity and support network
set similarity. Given a pair (gi, gj), its structure similarity simN(gi, gj) can be
expressed as follows:

simN (gi, gj) =
| E (gi) ∩ E (gj) |

| E (gi) | + | E (gj) | − | E (gi) ∩ E (gj) | (6)

where E(gi) and E(gj) respectively represent the edge set of gi and gj .

Definition 3. support network set. Given a subgraph g, its support network
set consists of networks that contain g, denoted as cov(g,H).

For a pair (gi, gj), its support set similarity simS(gi, gj) can be expressed as
follows:

simS (gi, gj) =
| cov (gi,H) ∩ cov (gj ,H) |
| cov (gi,H) ∪ cov (gj ,H) | (7)

Based on the above expression of the structural similarity and support set
similarity, we introduce the variable μ to define the correlation corr(gi, gj)
between the subgraph gi and gj in the pair, shown in Eq. (8).

corr (gi, gj) = μsimN (gi, gj) + (1 − μ)simS (gi, gj) (8)

where, μ is a weight factor, it can measure the impact of structural similarity
and support network set similarity on correlation. Further, we give the definition
of the difference between the subgraph gi and gj , shown in Eq. (9):

diff (gi, gj) = 1 − corr (gi, gj) (9)

Obviously, the larger the value of diff(gi, gj), the better the performance of
DSP (gi, gj), and the more beneficial for subsequent auxiliary diagnosis.



Mining DSPs in Multi-frequency Brain Functional Networks 49

Since the network constructed in this paper uses a fixed brain template, the
nodes in the network are unique, and the nature of the network also determines
that it must be a connected network. The node sets of subgraph gi and gj in
pair (gi, gj) should be the same or partially correlated, and what we need to
find is the edge set with a high difference. The similarity of the node set can be
expressed as follows:

simNode (gi, gj) =
| V (gi) ∩ V (gj) |

| V (gi) | + | V (gj) | − | V (gi) ∩ V (gj) | (10)

where V (gi) and V (gj) represent the node set of the subgraph gi and gj , respec-
tively. The larger the value of simNode(gi, gj) is, the higher the similarity of
node sets between gi and gj .

2.4 Feature Selection and Classification

After obtaining the DSP at different frequency bands, the feature vectors are
constructed to represent the comparison relationship of each brain network. But,
the feature dimensionality will be rather high, if we directly use the connectivity
detail as features from these pairs. An effective alternative method is considering
the DSPs as dictionary elements, it is easy to construct an indicative vector
based on their occurrence in the brain network to represent the whole network.
Based on such vector representation, we further use the extreme learning machine
(ELM) [9] for classification.

Given a brain network N and m DSPs {(gki , gkj ) | k = 1, 2, · · · ,m}, its
feature vector can be describe as a m-dimension vector VF , with the elements
V k
F denoting the k-th feature based on (gki , gkj ). The following rule is given to

determine the value of V k
F .

– If gki ⊆ N and gkj �⊆ N , then V k
F = 1 ;

– If gki �⊆ N and gkj ⊆ N , then V k
F = 2 ;

– If gki ⊆ N and gkj ⊆ N , then V k
F = 0 ;

– If gki �⊆ N and gkj �⊆ N , then V k
F = 0 ;

Neuronal oscillations at different frequency bands have different biological
and physiological significance, and may contribute differently to functional con-
nectivity, thus affecting network construction. In other words, frequency-specific
may lead to different effects of DSPs constructed at different frequency bands
on disease classification. Moreover, not all DSPs can show good differences. It
is difficult to ensure the efficiency of learning by taking all DSPs as features
and as the input of the classifier, which may lead to over-fitting and affect the
accuracy of classification. Subsequent experiments also validate our analysis. In
this paper, recursive feature elimination (RFE) [14] strategy is used to find opti-
mal feature subset(i.e., DSPs) and reduce the risk of over-fitting. Specifically,
the REF is used to obtain the ranking of each feature. Then, based on ranking,
some features are selected in turn to form feature subsets for model training and
cross-validation, and the feature subset with the highest average score is selected
as the final set.
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3 Result and Discussion

3.1 Experimental Settings

Data Acquisition. The dataset is selected from the public dataset provided
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.
edu). A total of 256 rs-fMRI data are selected, including two groups of subjects,
of which 134 healthy subjects (NC group, 74 male, 60 female, age range: 62–85
years) and 122 AD subjects (AD group, 69 male, 53 female, age range: 58–89
years). To avoid the influence of multiple scanning data of the same subject,
only single scanning data of the same subject is selected. Other scanning param-
eters are as follows: flip angle FA =80◦, time repetition TR =3.0 s, echo time
TE =30ms, time points is 140, each time point contains 48 axial time slices,
covering the whole brain, and layer thickness is 3.3 mm.

Data Pre-processing. The data are preprocessed by DPABI toolkit (version
4.0) [27] according to the well-accepted pipeline. Specifically, the first 10 unstable
time points are discarded. All the time slice are corrected to the 24th time slice,
which are chosen as the reference slice, to eliminate the time phase difference. By
performing spatial head movement correction, we exclude 14 subjects in which
the maximum translational distance in three directions exceeded 0.8 mm and
the maximum angle of rotation exceeded 0.02◦. Then the image of subjects are
standardized to the MNI-152 standard space by stretching, compressing, and
winding. Finally, the filtering and smoothing process is performed, the selected
voxel is 3*3*3mm3, and the signal frequency range is 0–0.15Hz. According to
the AAL atlas [22], the rs-fMRI data are divided into 116 ROIs. It is worth
nothing that we only use 90 brain regions as ROIs.

Evaluation Metrics. The evaluation of the method is performed on a binary
classification problem (AD versus NC). In the experiments, by the limited num-
ber of samples, the 10-fold cross-validation strategy is repeated 10 times to evalu-
ate the performance of the methods. Specifically, we randomly divide all subjects
into 10 sub-sets with equal size, and select any one of them as testing data, and
the rest as training data. We measure the performance of the methods by averag-
ing the results in cross-validation. Also, we evaluate the effectiveness of the brain
regions selected by our methods. The classification performance of the methods
are evaluated on classification accuracy (ACC), area under ROC curve (AUC),
sensitivity (SEN), and specificity (SPE).

Parameter Setting. To verify the influence of the number of frequency bands,
the time series are decomposed into 3, 4, 5, 6, and 7 bands. The weight factor μ
for measuring the impact of structural similarity and support set similarity on
correlation is chosen from {0.4, 0.5, 0.6, 0.7, 0.8}. The threshold ζ for mining
frequent subgraph is chosen from {0.6, 0.7, 0.8, 0.9}. The dimension of the feature
vector k (i.e., the number of selected DSP) is chosen from {25, 50, 100, 250, 500}.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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The network has the best performance, when the connectivity density is [20%,
75%] [29]. Thus, we choose the threshold T for constructing brain network from
{0.4, 0.5, 0.6}. It is worth mentioning that these thresholds can ensure all the
constructed network connectivity.

3.2 Result Analysis

To verify the effectiveness of our method, we conduct extensive experiments
from both multi-frequency and full-frequency with 6 classification methods. (1)
network parameters based on full-frequency network (NP-F) [4]: 8 variables
including eigenvector centrality are used to exact the features and the ELM clas-
sifier is constructed for classification; (2) motifs based on full-frequency network
(MO-F): 20 motifs are selected [2], and a 20-dimensional vector for each net-
work is generalized by counting their occurrence on the full-frequency brain net-
work, which are fed into the ELM classifier for classification; (3) discriminative
subgraph pair based on full-frequency network (DSP-F): our method without
frequency decomposition; (4) network parameters based on multi-frequency net-
work (NP-M): it is similar to (1) except that the network is multi-frequency;
(5) motifs based on multi-frequency network (MO-M): it is similar to (2) except
that the network is multi-frequency; (6) frequent sub-network based on multi-
frequency network(FSN-M): our method without the construction of DSP.

Table 1 shows the classification results using above-mentioned methods, and
their respective ROC curves are shown in Fig. 2. It can be seen from Table 1 that
our method achieves the best performance among all methods. Specifically, our
method achieves 83.33% accuracy, 82.67% sensitivity and 89.53% specificity, all
of them are better than other methods. Compared with method NP-F, the three
indicators are improved by 17.91%, 21.16% and 20.43%, respectively. Besides,
the accuracy of both NP-F and MO-F are less than 70%, they are not good
results. The reason may be that these motifs are some existing relatively small
subgraphs, such as triangle structure with three nodes and square structure
with four nodes, and they may not well characterize the specific substructures
in different types of brain networks. The traditional analytical methods based
on feature fusion(i.e., network attributes or node attributes) are also not well-
capable of capturing relevant structural changes causing the brain-related dis-
eases, our method mining specific subgraphs from real dataset overcomes these
weaknesses, as demonstrated by the DSP-F. After adding the frequency-division
method, compared with the corresponding full frequency methods(NP-F and
MO-F), the performance of NP-M and MO-M has improved to a certain extent,
and the accuracy is improved by 5.75% and 4.44%, reaching 71.17% and 73.21%,
respectively, as demonstrated in [6,17]. Comparing the FSN-M with our method,
it can also be seen that constructing DSPs can capture differential regions and
their connections between different groups(AD and NC), which is also helpful to
identify brain diseases.

We also select the top 10 DSPs with the highest discriminative ability among
5 frequency bands, and show them in the connection map. As shown in Fig. 3,
brain regions are marked by blue dots, and the orange line represents the con-
nection between two brain regions. For each pair of subgraph in Fig. 3, the upper
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Fig. 2. ROC curves of different methods in the task of AD classification

Table 1. Classification performance in the task of AD classification

Method Accuracy (%) Sensitivity (%) Specificity (%)

NP-F 65.42 61.51 69.10
MO-F 68.77 63.98 73.91
DSP-F 80.27 77.91 82.57
NP-M 71.17 67.23 73.20
MO-M 73.21 69.82 76.92
FSN-M 79.39 76.26 84.83
Our Method 83.33 82.67 89.53

part represents the discriminative subgraph that is intensively mined from AD
group, and the lower part represents that mined from NC group. Comparing
these pairs, we can find some interesting results. For the subgraph mined from
NC subjects, brain regions such as the posterior cingulate gyrus (brain region
number are 35, 36), precuneus (brain region number are 67, 68), angular gyrus
(brain region number are 65, 66) and hippocampus (brain region number are
37, 38) are mined, and the connection strength between them is significantly
higher than that between other brain regions that have not been mined, and
these brain regions are also part of the default network [8]. For the subgraph
mined from AD group, the connection strength is significantly reduced, while
the connections in the medial superior frontal gyrus (brain region numbers are
23, 24) and insula (brain region numbers are 29, 30) are abnormally increased.
In the existing references [8], this phenomenon is described as a compensation
mechanism. It is worth noting that these conclusions are highly consistent with
the existing conclusions obtained from the biological perspective [11,15]. We also
count the brain regions that appear frequently in these DSP, such as hippocam-
pus, medial frontal gyrus, posterior cingulate gyrus, amygdala, precuneus and so
on. Researchers have demonstrated that these brain regions are associated with
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Fig. 3. The DSP discovered by the framework in the task of AD classification

AD [13]. Comparing the DSP mined with different thresholds ζ, when ζ is 0.8,
the number of brain regions included in the subgraph is generally more than the
other three values. The reason may be that a lower threshold is more consistent
with network discovery. In the analysis of DSP at different frequency bands, we
also find that the brain network constructed at different bands have large differ-
ences in the connection methods of brain regions. This is an important reason
to construct multi-frequency brain network.

3.3 Influence of Parameters

In this section, we present the influence of parameters. There are mainly four
variable parameters used in the paper. To evaluate the impact of four parameters
on classification performance, we calculate the classification accuracy of each
parameter value condition. Firstly, we set the dimension of the feature vector
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Fig. 4. The influence of parameters on classification accuracy

k = 100 and keep it unchanged, then test the impact of the remaining three
parameters. The results are shown in Fig. 4.

In Fig. 4(a-d), when the threshold ζ and T remain unchanged, and the weight
factor μ increases, the accuracy of AD classification shows a trend of firstly
increasing and then decreasing. And when μ = 0.6, with different values of ζ
and T , the accuracy rate reaches the maximum in most cases. But for the other
four values of μ, there is no obvious rule. When keeping ζ and μ unchanged, as T
increases, the accuracy of AD classification also shows a trend of firstly increasing
and then decreasing. The possible reason is that the high threshold T result in
the small connectivity density of the network. And the small-world attribute,
which is a natural attribute of the brain functional network, will become less
significant. At the same time, a low threshold T will introduce too many weak
connection edges (i.e., noisy edges), that is, some edges can’t correctly represent
the actual connections of the network. Regardless of the values of the parameters
ζ and μ, the classification effect achieved by constructing the network with the
threshold T = 0.5 is the best. In addition, for the parameter ζ, it controls the
size of candidate subgraph sets in frequent subgraph mining. The smaller ζ is,
the more frequent subgraphs are obtained, that is, more frequent subgraphs
will be discovered. However, this is not friendly, because too many frequent
subgraphs may interfere with the construction of DSPs, and some of them are
not discriminating. To make matters worse, it makes the system run slowly.

Holding T , ζ and μ unchanged and optimal (T = 0.5, ζ = 0.8, μ = 0.6),
we analyze the influence of the dimension of the feature vector k on the clas-
sification accuracy of AD diagnosis, and compare with the method of FSN-M,
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the results are shown in Fig. 4(e). When k takes 25, 50, 100, the accuracy of
AD classification increases rapidly, it increased from 58.33% to 83.33%. When
k = 100, the accuracy rate reaches the maximum. As k continuously increase,
the classification accuracy gradually decreases, but the range of change is rela-
tively gentle. Similar to the changing trend of the accuracy of our method, the
method FSN-M also rapidly increases at first and then slowly decreases. When k
= 250, the accuracy reaches the maximum, which requires more subgraphs than
our method. It is worth nothing that the dimension of the feature vector is not
as high as possible. The high-dimensional vector may bring some patterns with
weak discriminant ability, thereby reducing the performance of classification.

4 Related Work

Due to the complexity of the human brain, the frequency of signals often domi-
nates subtle functional patterns to certain diseases [19,26]. Multi-frequency brain
functional networks provide a unified description of the networks across multiple
frequency bands, which can help researchers better understand neurodegenera-
tive diseases [6]. And the network organization such as hubs may differ across
different frequency bands, multi-frequency networks are considered in neurophys-
iological studies. For example, Sasai et al. [17] elucidated that cognitive states
distinguished whole-brain functional connections in a frequency-dependent man-
ner and found that diversity of frequency specificity is associated with functional
network. Brookes et al. [3] used magnetoencephalography (MEG) recordings to
construct multi-frequency brain network. It is shown that there is statistically
significant difference between supra-adjacency matrices of the multi-frequency
control and AD subjects. Achard et al. [1] applied the discrete wavelet transform
method to fMRI signal decomposition and found that the “small world” proper-
ties of the networks in different frequency bands were significantly different.

Discriminative subgraphs of functional brain networks can be considered as
the “building block” of the entire network, making it easier to capture changes in
connection patterns and topological attributes within specific regions of the net-
work [10]. Frequent subgraph-based representation is an efficient way to transfer
both global and local information of the network into vector spaces. Analysis
of frequently occurring discriminative patterns can reveal some differences in
connectivity inter- and intra-groups [24]. Considered the frequent subgraph as a
dictionary element and used as an indication vector that can be easily applied to
classical machine learning models to analyze brain networks. For example, Guo et
al. [7] combined frequent subgraph for feature selection, and used multi-kernel
learning methods for depression classification. Van et al. [23] mined frequent
subgraph from different cognitive groups, respectively, to reveal differences in
connectivity among the groups. However, the discriminative patterns are con-
structed separately for each group that ignore the underlying comparison rela-
tionship of the patterns within different groups. Du et al. [5] used the frequent
subgraph and feature selection method to obtain the discriminative subgraph
and classification matrix, and used the support vector machine to realize the
classification of AD.
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5 Conclusions

In this paper, we propose the DSP to describe the comparison relationships
within different groups, it can represent both the intra-group commonality and
inter-group specificity of networks. We construct a feature matrix with the DSPs
and train a classifier for auxiliary diagnosis of AD. To this end, we also construct
a multi-frequency brain functional network, which fully considers the topological
properties of the network at different frequency bands. The experimental results
on ADNI public datasets demonstrate the effectiveness of DSP in the task of
AD classification. It can better retain the information of brain activity and be
used as specific biological markers to diagnose brain diseases.
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Abstract. Signed networks are graphs with edge annotations to indi-
cate whether each interaction is friendly (positive edge) or antagonistic
(negative edge). Community search on signed network expects to explore
the polarized communities (i.e., two antagonistic subgraphs) containing
the set of query nodes. Though previous studies have been proven effec-
tive, they generally ignore two insights. First, node attributes provide
side information to describe features of nodes. It contributes to opti-
mal results. Secondly, the problem of detecting polarized communities
from a global perspective is increasingly limiting and is computationally
expensive on large-scale networks. These aspects motivate us to develop
a new community search framework searching for Polarized Communi-
ties in Attributed Signed network (PCAS). Specifically, we propose a new
strategy to combine node attributes with signed topology, which helps to
make the most of the different dimensions of information. Furthermore,
to search for polarized communities containing the set of query nodes,
a sparse indicator-vector is developed based on Rayleigh quotient via
solving a linear programming problem. Extensive experimental results
on two real-world attributed signed graphs have demonstrated the dis-
covered polarized communities are more accurate and more polarized.

Keywords: Polarized communities search · Local spectral · Rayleigh
quotient · Attributed signed network

1 Introduction

Graph (network) is an essential data structure to represent relationships among
sets of entities, which is an increasingly common focus of scientific inquiry. As a
fundamental problem in network analysis, community search aims to find densely
connected subgraphs, i.e., communities containing the query nodes [5,8]. This
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opens up the prospects of user-centered and personalized search, with the poten-
tial of producing meaningful answers to users. However, many complex networks
in the real world have friendly or antagonistic relationship between nodes. Signed
networks act as a simple but powerful model to effectively capture such complex
relationships between nodes, whose annotated edge is able to indicate whether
each relationship is friendly (positive edges) or hostile (negative edges) [15].
What is more, signed networks can capture novel and interesting structures of
real-world phenomena, i.e., polarized communities whose nodes within each com-
munity form positive connections, while nodes across different communities are
connected by negative links [3,7]. Moreover, owing to the rising rich informa-
tion in real-world entities, there exist plentiful attributes associated with nodes
in signed graph. Attributes provide more descriptive characteristic information
about nodes and form the second dimension to represent the underlying messages
of networks besides structures [10,22]. Therefore, to provide more accurate and
polarized communities, it is compulsory to go beyond modeling topology-based
network and take attributes into account.

Fig. 1. An example of the polarized communities in an attributed signed network. Solid
edges are positive, while dashed edges are negative. The polarized communities where
the green box is located utilize topology, while the polarized communities where the
red box is located consider both topology and attribute. (Color figure online)

Different from conventional community search, community search in signed
networks expects to find polarized communities given query nodes. Figure 1 illus-
trates an attributed signed network with query nodes v5 and v8 and two polarized
communities identified by PolarSeeds [18] and our approach. In particular, each
node represents a user, each edge represents a friend (solid lines) or foe (dashed
lines) relationship between users, and different coloured squares indicate the
user’s attributes. The green box shows the polarized communities located utiliz-
ing topology only while the red box indicates the polarized communities captured
with consideration of both topology and node attribute. Intuitively, the latter is
more polarized, since the former has two negative edges ((v1,v2),(v2,v4)) within
one community. This proves that attributes can be utilized as useful comple-
mentary information to help find more polarized communities.

Basically, the advantage of performing community search on attributed
signed graphs is two-fold. First, complex edge relations and rich node attributes
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as unique characteristic of attribute symbolic networks can encourage the discov-
ery of new patterns that cannot be found in simple graphs. One such important
pattern is polarized communities that is essential to a comprehensive under-
standing of the entire system. Second, in practice, topology-based network is
often noisy, incomplete and sparse due to measurement errors and data access
limitations. In contrast, attributes provide complementary information to alle-
viate this problem which is more robust.

Despite the aforementioned advantages, searching for polarized communities
remains a challenging task. First, previous studies mainly relying on the informa-
tion about direct interactions between nodes are problematic since the networks
are noisy due to missing data, repeated measurements, and contradictory obser-
vations. Attributes serve as an assistance to provide complementary information.
Recent attributed community search studies have also shown that attributes are
beneficial for improving the accuracy of community search [11,12]. Whereas, how
to integrate the complementary attribute information during searching polar-
ized communities is still an open problem till now. Second, much of the exist-
ing research focus on the global view of network to obtain polarized commu-
nities [14,16]. Concretely, a global criterion is usually established to determine
whether a subgraph is eligible for being polarized communities. This standard
is fixed throughout the process of polarized communities detection. Besides,
detecting polarized communities in the whole network costs a lot of computing
on large-scale networks. Further, in many application scenarios, users are only
interested in local polarized communities with specified nodes. Therefore, how
to identify personalized polarized communities of interest to users from a local
perspective is a challenging task.

To make up for the above challenges, in this paper, we explore a novel prob-
lem, called searching for Polarized Communities with local spectral subspace in
Attributed Signed network (PCAS). To the best of our knowledge, the presented
approach is the first method to search for polarized communities in attributed
signed network. Specifically, firstly, the attribute-based signed network is con-
structed and combined with the topology-based signed network based on signed
spectral graph theory. The combined graph takes full advantage of the informa-
tion in different dimensions of node attributes and topology. Then, the polarized
communities are searched by solving a linear programming problem related to
a sparse indicator vector based on the Rayleigh quotient. Finally, the polarized
communities is obtained by discrete rounding of this sparse indicator vector.

The main contributions are summarized as follows:

1. Providing a unified way to model a new augmented signed graph that takes
into account both topology and node attribute.

2. Using the generalized Rayleigh quotient, the sparse indicator vector is solved
by Laplacian matrix span eigenspace and discrete rounding is performed to
obtain the polarized communities.

3. Conducting experiments on real-world attributed signed social network
datasets to assess the effectiveness of our method.
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2 Related Work

Attributed Community Search. Community search methods over attributed
graph aim to find query-dependent communities such that the community mem-
bers are densely connected and have homogeneous attribute values. According
to the query input, existing studies of community search on attributed graphs
can be divided into two categories: taking both nodes and attributes as query
inputs and taking only attributes as query inputs. The first category returns
the attribute-cohesive community containing the query nodes [2,4]. The second
category returns the community related to the query attributes [19,20].

However, the aforementioned algorithms are designed for unsigned networks,
which have little utility for signed networks. In this paper, we take into account
both negative links and node attributes. It is worth mentioning that our approach
takes a different attitude towards attributes in contrast to attributed commu-
nity search approach. Specifically, existing attributed community search meth-
ods regard attributes as a measure of community quality since the homogeneous
effect or social influence between pairs of nodes in the attributed network [9,21].
Whereas, it has been shown that similar homogeneous effects are not observed
in the attributed signed network [17]. Therefore, attributes should be consid-
ered as complementary information to measure the degree of polarization of the
communities instead of as a criterion of community quality in attributed signed
networks.

Polarized Communities Mining. The signed network has been used to study
polarization and other related phenomena due to the presence of both positive
and negative links. An interesting and challenging task in this application domain
is to detect polarized communities in signed graphs. A number of different meth-
ods have been proposed for this task [1,13,18]. Bonchi et al. [1] introduce the 2-
Polarized-Communities (2PC) problem, which requires finding two communities.
And they prove 2PC problem is NP-hard and devise two efficient solutions with
provable approximation guarantees. Xiao et al. [18] propose a spectral method
to find polarized communities in signed graphs, and characterize the solutions
in close-form using techniques in duality theory.

It is worth noting that our approach is designed from a local perspective.
However, different from existing polarized communities search, on one hand, in
order to take attributes into account, PCAS propose a new fusion strategy to
effectively integrate the network topology and the attribute carried by the nodes.
On the other hand, PCAS formalizes polarized communities search problem as
a linear programming problem, which has a low complexity while maintaining
an accurate covering on the target communities.

3 Preliminaries

An attributed signed graph is represented as an undirected graph G1 =(
V,E+

1 , E−
1 ,F

)
, where V is a set of nodes, E+

1 and E−
1 are the sets of posi-

tive and negative edges,respectively. In addition, each node is also associated
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with a set of attributes. We use F ∈ R
n×k to denote the attribute matrix where

k is the number of attributes. E1 = E+
1 ∪ E−

1 is defined as the set of all edges.
The adjacency matrix A1 of G1 is denoted as follows: the entry Aij = 1 if
(vi, vj) ∈ E+

1 ,Aij = −1 if (vi, vj) ∈ E−
1 and Aij = 0 otherwise. Further, the

diagonal matrix D1 denotes the degree matrix of graph G1 (i.e., Dii = deg (vi)),
where deg (vi) is the degree of node vi, i.e., the number of all edges adjacent to
vi. The signed Laplacian matrix of G1 is defined as L1 = D1 − A1.

Definition 3.1 (Polarized communities). Given an attributed signed graph
G1 =

(
V,E+

1 , E−
1 ,F

)
, polarized communities are defined as two disjoint sets of

nodes C1, C2 ⊆ V , denoted as (C1, C2), such that (1) there are relatively few
(resp. many) negative (resp. positive) edges within C1 and within C2; (2) there
are relatively few (resp. many) positive (resp. negative) edges across C1 and C2.
(3) there are relatively few edges (of either sign) from C1 and C2 to the rest of
the graph.

Our Objective Function. Given an indicator vector y defined over C1 and C2

(i.e.,yi = 1 if vi ∈ C1, yi = −1 if vi ∈ C2, and yi = 0 otherwise), the generalized
Rayleigh quotient RL(y) is defined as:

RL(y) =
yT Ly
yT Dy

=
4 |E+ (C1, C2)| + 4 |E− (C1)| + 4 |E− (C2)|

vol (C1 ∪ C2)

+
|E (C1 ∪ C2, V \ (C1 ∪ C2))|

vol (C1 ∪ C2)

(1)

where E+ (C1, C2) = {(vi, vj) ∈ E+ | vi ∈ C1, vj ∈ C2},E− (C1) is the set of neg-
ative edges having both endpoints in C1, vol (C1 ∪ C2) =

∑
vi∈C1∪C2

deg (vi). In
particular, the more polarized the communities (C1, C2), the smaller the value
of RL(y).

Definition 3.2 (Polarized Communities Search). Given an attributed
signed graph G1 =

(
V,E+

1 , E−
1 ,F

)
, a pair of antagonistic node sets (S1, S2)

as query. We aim to find polarized communities (C1, C2) indicated by y with
S1 ⊆ C1, S2 ⊆ C2 such that our objective function is minimal.

4 Method

4.1 Construction of Augmented Signed Graph

In attributed signed networks, from the perspective of topology, the extended
structural balance theory implies that a node should sit closer to its friends
(with positive links) than non-linked nodes and sit far away from foe (with
negative links) [6]. From the perspective of attribute, intuitively, nodes should
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share more similar attributes with friends than non-linked nodes and few similar
attributes with foes. However, existing studies have reached the following two
conclusions [17]: (1) Nodes have more similarity to their positive links than nodes
with negative links; (2) Nodes have more similarity to their negative links than
to unconnected nodes. Naturally, a unified augmented signed network should be
constructed that satisfies both extended structural balance theory from topology
and manifold constraint from attribute.

Based on the above findings, we construct an attribute-based signed network
G2 via node attributes capturing the manifold structure in terms of attributes
in attributed signed network. Specifically, the pairwise similarity s(i, j) between
the attribute vectors of nodes vi and vj is computed by using the Gaussian
similarity kernel:

s(i, j) = exp
{

−d2 (fi, fj)
2σ2

}
(2)

where d (fi, fj) denotes the Euclidean distance between the node attribute vector
fi and fj and σ is empirically set to be half of the maximum pairwise distance
between any two points.

We sort the above pairwise similarities in descending order and then con-
struct the attribute-based signed network G2 based on the statistics of the edges
in the original attributed signed network G1. This allows the scale between the
constructed network G2 and the original network G1 to be consistent. Specif-
ically, the set {s1, s2, . . . , si, . . . , sp} can be obtained, where si denotes the i-th
pairwise similarity by Eq. (2). Let

{
s(1), . . . , s(l), s(l+1), . . . ., s(k), s(k+1), . . . .s(p)

}

be the set that has been sorted by similarity in descending order,where l =
∣
∣E+

1

∣
∣,

k = |E1|, p = |V |∗(|V |−1)
2 . We define the following reconstruction rules:

1. Adding positive edges between the nodes corresponding to
{
s(1), . . . , s(l)

}
;

2. Adding negative edges between the nodes corresponding to
{
s(l+1),...s(k)

}
;

3. No edges between the remaining nodes in the set of
{
s(k+1), s(k+2), . . . , s(p)

}
.

Relying on the above construction rules, an attribute-based signed network
can be denoted as G2 =

(
V,E+

2 , E−
2

)
. Like the definition in Sect. 3, the set

of all edges is E2 = E+
2 ∪ E−

2 , A2 and D2 denote the adjacency matrix and
degree matrix, respectively. The signed Laplacian matrix of G2 is defined as
L2 = D2 − A2.

Intuitively, we can independently find polarized communities from topology-
based and attribute-based signed networks, and fuse them. However, it is not
likely to capture the inherent connection between networks and attributes,
leading to obtain the non-optimal polarized communities. In addition, individ-
ual network may be noisy and incomplete. Therefore, to discover more polar-
ized communities, we need to fuse the topology-based signed network G1 with
the attribute-based signed network G2 in an adaptive manner. Specifically, we
term the hybrid structure of topology-based signed network and attribute-based
signed network as augmented signed network denoted as G = (V,E), which
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encodes topology-based and attribute-based information as a unified signed net-
work. The Laplacian matrix L of G can be obtained by linearly combining the
Laplacian matrices L1 and L2 of G1 and G2 mentioned above.

L = α1L1 + α2L2 (3)

where L1 and L2 denote the Laplacian matrices of the topology-based signed
network G1 and the attribute-based signed network G2. The combination factor
αi determines the weight of the influence of each Laplacian matrix. The choice
of combination factors will be described in detail in Sect. 4.2. The matrix L
captures the properties of both the original topology and the node attribute,
providing rich information for the follow-up search of polarized communities.

The degree matrix of the graph G is denoted as D, and Dii = Lii. The
normalized signed Laplacian matrix of G is defined as L = D−1/2LD−1/2, which
is symmetric and positive semi-definite.

4.2 Choice of Combination Factor

The combination factors αi determine the weights of both Laplacian matrices.
In order to assign weights adaptively, we propose a new weighting strategy by
utilizing the spectral graph theory of signed networks. In signed spectral graph
theory, given a signed network, the smallest eigenvalue γ1 of the Laplacian matrix
L of the signed network reflects whether the signed network is balanced. A dense
and balanced signed network indicates the existence of polarized communities.
The eigenvector q1 corresponding to the eigenvalue γ1 can be used to partition
the nodes of the graph to obtain polarized communities.

Let q1 = (q11, . . . , q1j , . . . , q1n), spectral partitioning aims to find a splitting
value x such that the nodes in signed network with q1j ≤ x belong to one set,
while nodes with q1j > x belong to the other set to form 2-partition. Once a 2-
partition is obtained, our generalized Rayleigh quotient RL(y) can evaluate the
degree of polarization of that partition. As mentioned before, a smaller RL(y)
of the partition indicates a better polarization of the signed network. A more
polarized signed network is expected to have smaller γ1 and RL(y) on the q1

vector. Thus, a measure of ‘relevance’ of Laplacian matrix Li is defined as:

ri = e−γ
(i)
1 ·R(q

(i)
1 ), (i = 1, 2) (4)

where γ
(i)
1 is the smallest eigenvalue of the Laplacian matrix Li of Gi and q(i)

1

is the corresponding eigenvector. R(q(i)
1 ) is the value of RL(y) of the partition

obtained by q(i)
1 . The value of relevance measure ri lies in [0,1]. Higher value

of ri implies better the degree of polarization. Hence, combination factor αi

corresponding to the weight of Laplacian matrix Li is given by:
{

α1 = r1θ
−1, α2 = r2θ

−2, ifr1 ≥ r2
α1 = r1θ

−2, α2 = r2θ
−1, ifr1 ≤ r2

(5)
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where θ is the decay factor. We then normalize the combination factors with a
softmax function. This assignment of αi upweights structure with higher degree
of polarization, while dampens the effect of irrelevant ones those having poor
structure.

4.3 Local Spectral Subspace

In this subsection, we provide the necessary theoretical base to find a sparse
indicator vector in the span of dominant eigenvectors of the Laplacian matrix
with larger eigenvalues.

Since the matrix L is a normalized Laplace matrix of matrix L and also
a real symmetric matrix, L can always be eigen-decomposed, i.e.,L = UΛUT,
where Λ = diag (λ1, λ2, . . . , λn) is arranged in ascending order of eigenvalues, i.e.,
λ1 ≤ . . . ≤ λi ≤ . . . ≤ λn, the matrix formed by the corresponding eigenvectors
are denoted as U = (u1,u2, . . . ,un). So, the generalized Rayleigh quotient of
Eq. (1) can be rewritten as follows.

RL(y) =

(
UTD

1
2 y

)T

Λ
(
UTD

1
2 y

)

(
UTD

1
2 y

)T (
UTD

1
2 y

) (6)

Let wi =

(
uT

i D
1
2 y

)2

∑n
i=1

(
uT

i D
1
2 y

)2 , then Eq. (6) can be rewritten again as

RL(y) =

∑n
i=1 λi

(
uT

i D
1
2 y

)2

∑n
i=1

(
uT

i D
1
2 y

)2 =
n∑

i=1

wiλi (7)

where wi =

(
uT

i D
1
2 y

)2

∑n
i=1

(
uT

i D
1
2 y

)2 can be treated as the weight coefficient of the eigen-

values. Equation(7) shows that if a minimum RL(y) is desired, then the smaller
eigenvalues of the Laplacian matrix L should have the majority of the weights,
i.e., the Laplacian matrix L should be as large as possible. A larger wi indi-
cates a smaller angle between D

1
2 y and eigenvector ui. When we relax y from

{−1, 1}n×1 to [−1, 1]n×1, the relaxed scaled indicator vector D
1
2 y should be well

approximated by a linear combination of the dominant eigenvectors with smaller
eigenvalues.

Based on the linear combination of the eigenvectors with larger eigenvalues,
the polarized communities search can be formulated as a local spectral-based
eigen problem, which can be exploited via an indicator-vector y in a semi-
supervised manner. Mathematically, it is equivalent to solve the following linear
programming problem:
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min ‖y‖1 = eTy

s.t. (1)y = Vk,

(2) yi ∈ [−1, 1]

(3)

{
yi ≥ − 1

|S1| , ifi ∈ S1

yi ≥ 1
|S2| , if i ∈ S2

(8)

where e denotes the vector of all ones. The column vectors of V are formed by
the dominant eigenvectors of normalized Laplacian matrix L. The vector k is
a coefficient vector, The i-th element of the relaxed indicator-vector y can be
denoted as yi. Constraint (1) requires y be in the span of V, and constraint (2)
requires the element value range of the relaxed indicator-vector y should in [-
1,1] indicating the likelihood of node vi belonging to the polarized communities.
Constraint (3) enforces the query nodes be in the support of indicator-vector y.

We can solve the above linear programming problem via dual simplex
method. After obtaining indicator vector y, we can get the desired target com-
munities (Vx(t), Vx(−t)) by using Proposition 1.

Proposition 1. For any non-zero vector y, there exists a t ∈ [0,maxu∈V |yu|]
such that [18]: our objective function RL(y) is minimum, where, yi = 1 if
vi ∈ Vy(t), yi = −1 if vi ∈ Vy(−t),Vy(t) = {u ∈ V | yu ≥ t} and Vy(−t) =
{u ∈ V | yu ≤ −t}.

Complexity Analysis. The first step is to construct the augmented signed
graph, in particular, the attribute-based signed network is constructed in O (

n2
)
.

Then, the eigen-decomposition of Li(i = 1, 2) is computed in Eq.(5) which takes
O (

2n3
)

time for the (n × n) matrix. Furthermore, the construction of the dom-
inant eigenspace V in Eq.(8) takes O (

n3
)

time. Finally, the polarized commu-
nities can be obtained by Proposition 1. A plain way is to try every value in y,
which takes O (

n2 + n log2 n
)

time.

4.4 Discussion on Quality of Polarized Communities

In this subsection, we will discuss how different polarization measures relate to
our optimization objective.

(1) HAM is the harmonic mean of Cohesion and Opposition, which is defined
as:

Cohesion (C1, C2) =
1
2

[
d+ (C1) + d+ (C2)

]

Opposition (C1, C2) = d− (C1, C2)

HAM =
2 × Cohesion (C1, C2) × Opposition (C1, C2)

Cohesion (C1, C2) +Opposition (C1, C2)

(9)

where d+(C) =
2|E+(C)|
|C|(|C|−1) and d− (C1, C2) = |E−(C1,C2)|

|C1||C2| .
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(2) Polarity counts the number of edges that agree with the polarized struc-
ture and penalizes large communities, which is defined as:

Polarity(C1,C2) =
|E+ (C1) ∪ E+ (C2)| + 2 |E− (C1, C2)|

|C1 ∪ C2| (10)

Jointly analyzing Eqs. (9) and (10), HAM and Polarity are concerned on con-
straint (1) and constraint (2), i.e., intra-communities edge and inter-communities
edge, while the constraint (3) is totally ignored, i.e., the edges between polar-
ized communities and the rest of the network in Definition 3.1 and higher values
indicate more polarized communities.

(3) Signed bipartiteness ratio is the classical measure of the quality of the
polarized communities.

β (C1, C2) =
2|E+ (C1, C2) |+|E− (C1) |+|E− (C2) |

vol (C1 ∪ C2)

+
|E (C1 ∪ C2, V \ (C1 ∪ C2)) |

vol (C1 ∪ C2)

(11)

Signed bipartiteness ratio and our goal penalize inconsistent edges and thus the
smaller values imply more polarized communities. Compared to signed bipartite-
ness ratio, which treats inter-communities edges twice more heavily than intra-
communities edges, our objective in Eq. (1) weights intra-communities edges and
inter- communities edges as equally important. Besides, our objective regard
both intra-communities and inter-communities edges 4 times more heavily than
that of edges between polarized communities and the rest of the network. The
rationale is as follows: Intuitively, for polarized communities, the significance of
constraint (1) and constraint (2) in Definition 3.1 should be equivalent. Con-
straint (3) serves as a vitamin to measure polarized communities, which prevent
the intra/inter-communities edges from dominating the objective. In a word, our
optimization objective is consistent with the definition of polarized communities.

5 Experiments

5.1 Datasets Description

For the purpose of this study, we collect two datasets from Epinions and Slash-
dot [17]. The detailed information for both datasets is shown in Table 1.

Table 1. Dataset statistics.

Dataset #Users #Positive edges #Negative edges #Attributes #Community

Epinions 27,215 326,909 58,695 22,367 18

Slashdot 33,407 477,176 158,104 19,875 22



68 F. Yang et al.

Epinions is a consumer review site where users can view ratings and reviews
of products by other users. Epinions provides a trust mechanism where users can
determine whether to trust other users. User reviews are used to construct user-
attribute matrix F using bag-of-words.

Slashdot is an information technology website where all news is provided by
users. Users can comment on the news published on the site. Users of the site’s
community can determine whether to add other users to their friends or enemies
list. The user attribute matrix F can be constructed with user comments using
bag-of-words.

5.2 Experimental Settings

Baselines Methods. To demonstrate the effectiveness, we compare our pro-
posed PCAS with the following methods:

1. RE [1] introduces the 2-Polarized-Communities problem. Two efficient algo-
rithms are devised with provable approximation guarantees.

2. PolarSeeds [18]formulates the polarized communities problem in signed
graphs as a locally-biased eigen-problem, and uses techniques of linear algebra
to approximate the solution.

3. Timbal [13] presents an algorithm for finding large balanced subgraphs in
signed networks. By relying on signed spectral theory and a bound for per-
turbations of the graph Laplacian.

4. PCAS-noAttri is the variant of PCAS which ignores the external attributes.
5. PCAS-sameFactor considers the topology-based signed network G1 and the

attribute-based signed network G2 in Eq.(3) to have the same weight.

Parameter Settings. Since RE and Timbal is ‘query-less’, for the purpose of
fair comparison, we make the following adaptation to make them comparable. Let
the polarization communities obtained by the above two methods be (C1, C2),
(C ′

1, C
′
2) respectively, we use a simple heuristic to select the seed nodes. Specifi-

cally, nodes u and v are considered seeds respectively, if u ∈ C1∩C ′
1, v ∈ C2∩C ′

2

and (u, v) ∈ E− and deg+(u) ≥ t,deg+(v) ≥ t, where t is some pre-defined pos-
itive number. We set t to be the average degree of all positive links. In each
trial, we randomly select six pairs of antagonistic nodes via the above way from
ground-truth as the query nodes.

5.3 Performance Evaluation

Exp-1: The Effectiveness of Finding the Real Communities. We apply
the selected methods to search polarized communities and repeat the experi-
ments 100 times and the average results are reported in Table 2. From the result,
we summarize several important observations:

(1) Our proposed PCAS achieves significant improvements over the base-
lines on all the datasets, which demonstrates the effectiveness of our proposed
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Table 2. Comparisons of average recall, precision, F-Score between our method and
baselines.

Epinions Slashdot

precision recall F1 precision recall F1

PolarSeeds 0.747 0.711 0.729 0.785 0.769 0.777

RE 0.631 0.618 0.624 0.674 0.658 0.667

Timbal 0.673 0.652 0.662 0.719 0.694 0.706

PCAS-noAttri 0.729 0.706 0.717 0.773 0.756 0.764

PCAS-sameFactor 0.774 0.743 0.758 0.803 0.797 0.801

PCAS 0.793 0.750 0.771 0.821 0.804 0.812

method. Concretely, the superiority of our model arises in the following three
aspects: 1) The topology and node attribute in the attributed signed network
can be naturally integrated into an augmented signed network; 2) we adaptively
assign importance weights to topology and attribute, which can improve the
effectiveness of polarized communities search; 3) The polarized communities are
identified in local spectral eigenspaces in semi-supervised manner.

(2) Attributes contribute to the task of polarized communities search in signed
networks. As the results show, on the one hand, compared with PCAS, the perfor-
mances of PCAS-noAttri becomes worse. Further, PCAS-sameFactor performs
better than all baselines. These results prove the ability of PCAS in effectively
leveraging attribute information for polarized communities search. On the other
hand, PCAS-noAttri outperforms RE and Timbal by a large margin. Meanwhile,
PCAS-noAttri can achieve comparable result with PolarSeeds. This indicates
the superiority of finding polarized communities in local spectral eigenspace in
a semi-supervised manner.

(3) Topology and node attribute should have different importance. Although
attributes contribute to polarized communities search, they should be dis-
tinguished from topology. In Table 2, compared to PCAS , the performance
of PCAS-sameFactor has shown various degrees of degeneration. The results
demonstrates that via assigning the different importance to topology and node
attribute, the proposed PCAS can find more polarized communities.

Exp-2: Polarization Quality Analysis of Polarized Communities. The
distributions of all evaluation metrics for four methods are shown in Fig. 2. Over-
all, our proposed PCAS achieves superior results in all polarity metrics. In par-
ticular, in terms of HAM (Fig. 2(a)) and Polarity (Fig. 2(b)), it is surprising that
our method improves more significantly than its competitors. Despite HAM and
Polarity are not the goals of this paper, the possible reasons for this are as fol-
lows: 1) Although the optimization objective of RE is to measure the polarized
communities from both the consistent and inconsistent perspectives, it ignores
constraint (3) in Definition 3.1 and the node attributes, resulting in poor results.
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2) Timbal iteratively removes nodes by relying on the topology to find polarized
communities, but it fails to take into account the effect of node attributes during
the entire iteration. From Fig. 2(c) and (d), we can observe that PCAS consis-
tently outperforms all baselines, which is expected owing to the fact that our goal
is to optimize three constraints in Definition 3.1. Noted that although PolarSeeds
also optimizes the three constraints in Definition 3.1, PolarSeeds performs worse
than PCAS. The reason is that PolarSeeds only relies on the topology and does
not consider the node attributes while our PCAS integrates both topology and
node attribute during the search process.

Fig. 2. Distributions of four evaluation metrics on all communities found by PolarSeeds,
RE, Timbal and PCAS.

Exp-3:Comparison with the Efficiency of All Baselines. Figure 3 shows
the average running time of the baseline for 10 runs on each dataset. We can
observe that: (1) Among RE, PolarSeeds and Timbal, RE is the fastest method,
which is expected because its running time depends on the computation of the
dominant eigenvector of the adjacency matrix. Timbal takes more time due to the
numerous iterations to remove nodes. Compared to PCAS, PolarSeeds takes less
time as it ignores the attribute information carried by the nodes. Although PCAS
requires the calculation of node attribute similarity, PCAS is always among the
top three fastest methods. (2) Compared to PCAS, PCAS-noAttri is faster than
the PCAS because it ignores the calculation of node attribute information. Com-
pared to PCAS, PCAS-sameFactor takes less time because PCAS-sameFactor
computes node attribute information, while PCAS-sameFactor does not need to
compute the importance of the topology and attribute.
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Fig. 3. Efficiency evaluation of our
model on all datasets.

Fig. 4. Hyperparameter sensitivity anal-
ysis on both datasets.

5.4 Parameter Sensitivity Analysis

In the section, we evaluate how different settings of hyper-parameters affect the
performance of PCAS. (1)Impact of decay factor θ.To analyze the influence
of decay factor θ, we vary θ from 1.0 to 1.2 with increment 0.05, and illustrate
the performance changing curves on Epinions and Slashdot in Fig. 4. From the
results in Fig. 4(a), with the increasing of θ, we find that it brings about a great
performance improvement. Compared to θ = 1 (i.e., without decay), the results
show that there is a leap in preserving polarization by decaying ri when θ ¿ 1.
However, as θ increases further, the performance decreases sharply. The main
reason is that the larger the θ excessively weakens the importance of topology
and attribute, which fails to obtain the appropriate weights adaptively. There-
fore, we set the parameter θ=1.15. (2)Impact of the subspace dimension d.
We vary d from 100 to 500 to investigate the influence of the subspace dimen-
sion. From the results in Fig. 4(b), we find the performance of PCAS gets better
when d increases, which indicates that the subspace spanned by eigenvectors
corresponding to larger eigenvalues has better representational ability. However,
a larger subspace dimension does not always bring stronger representation abil-
ity. One possible reason is that the larger dimension of the subspace, the more
noises are introduced. Thus, we set the subspace dimension d = 224 on Epinions
and d = 258 on Slashdot.

5.5 Case Study

To further demonstrate the benefits of PCAS, we give a case study of polarized
communities on Epinions. Figure 5 shows the results of PCAS-noAttri and PCAS
when we choose antagonistic nodes v8 and v129 as query nodes. The red line indi-
cates positive links (friends) and the green line represents negative links (foes).
As is shown in Fig. 5, both PCAS-noAttri and PCAS detect closely connected
polarized communities containing query nodes. Here, we have three observations:
(1) The polarized communities (C1, C2) found by PCAS is shown in Fig. 5(a).
It is obvious that there are all dense positive edges (red line) within C1 and C2
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and all negative edges (green line) across C1 and C2 (with HAM(C1, C2)=0.26,
log2(Polarity) = 2.54, β (C1, C2)=0.673 and our RL(y)=0.753). (2) As shown
in Fig. 5(b), PCAS-noAttri finds the communities (C ′

1, C
′
2). It can be shown

that there are all negative edges (green line) across C ′
1 and C ′

2 , but there are
positive edges (red line) and negative edges (red line) within C ′

1 and C ′
2 simul-

taneously (with HAM(C1, C2)=0.23, log2(Polarity) = 2.31, β (C1, C2)=0.739
and our RL(y)=0.713). (3) By comparing Fig. 5(a) with Fig. 5(b), we can notice
that PCAS can find more polarized communities, which means that by taking
attributes into account, richer information in the attributed signed network can
be captured to discover more polarized communities.

Fig. 5. Visualization of polarized communities found via PCAS-noAttri and PCAS in
Epinions dataset with v8 and v129 as query nodes.

6 Conclusion and Future Work

In this paper, we focus on the polarized communities search task in attributed
signed networks. We propose the community search framework searching for
polarized communities in attributed signed network, which searches for two polar-
ized subgraphs on an attributed signed network for given query nodes. We lever-
age both signed network and node attribute into a unified framework PCAS by
incorporating the extended structure balance theory and the relationship between
node links and node attributes. Then, a spectral method based on Rayleigh quo-
tient is proposed. Finally, a linear programming problem is designed to detect
polarized communities by local eigenspace. Experiments on real-world datasets
demonstrate the effectiveness of our method. As for future work, we intend to
extend PCAS to find multiple communities. In addition, there are issues worth
investigating in terms of developing reasonable polarization metrics.
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Abstract. Reconstructing a subgraph through an embedding is very
useful for many subgraph-level tasks, e.g., subgraph matching and mini-
mum Steiner tree problem. To support subgraph reconstruction, a naive
approach is materializing subgraph embeddings for all possible candi-
date subgraphs in advance, which is impractical since the subgraphs are
exponential to the size of the input graph. Therefore, it is desired to
devise a subgraph embedding based on which the subgraph can be recon-
structed. To the end, we develop a novel reversible subgraph embedding
in this paper. By importing the compressed sensing theory into learning
node embeddings, we design a reversible read-out operation such that the
aggregation vector can be recovered according to the subgraph embed-
ding, where the aggregation vector acts as a bridge between the adjacency
matrix and subgraph embedding. To reconstruct the structure of the sub-
graph from the decoded aggregation vector, we present a bijective rule by
applying a simple transformation between binary number and decimal
number with a scale operation. We conduct extensive experiments over
real graphs to evaluate the proposed subgraph embedding. Experimental
results demonstrate that our proposed method greatly and consistently
outperforms the baselines in three tasks.

Keywords: Subgraph Reconstruction · Compressed Sensing ·
Reversible Subgraph Embedding

1 Introduction

Benefiting from the great representation power on complicated relationships
among a huge number of objects, the graph structure is attracting increasing
interest and has been widely used in real-world applications. Inspired by the
great success achieved by deep learning in several tasks, e.g., speech recognition
and image recognition, an extraordinary trend is emerging that equipping graph
mining with deep learning models. Generally, a prior step, also called graph
embedding, is to transform a graph into a vector or a matrix, enabling tasks
on graphs to be winged with off-the-shelf deep learning techniques. Most of the
existing algorithms [10,11,16,19,20] proposed for graph representation in the
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past few years focus on solving node-level tasks (such as node classification and
link prediction) and graph-level tasks (such as graph classification, graph gener-
ation, and so on). In addition to the two kinds of tasks, there is a great demand
for subgraph-level analysis and processing. However, designing embeddings for
subgraph-level tasks has not received much attention yet despite its importance.

1.1 Motivation

Example 1. Let us consider two classical graph problems.
(1) Subgraph Matching. Given a large graph G and a query graph q, the task
subgraph matching (SM) is to find the subgraphs in G that are isomorphic to q.
(2) Minimum Steiner Tree. Given a graph G = (V,E) with non-negative edge
weights and a set of terminal nodes R ⊆ V , the minimum Steiner tree problem
(MSTP) is defined as finding a tree T in G which covers all nodes in R with the
minimum weight, where V and E are the vertices and edges in G, respectively.

Clearly, both SM and MSTP are subgraph-level tasks, and they suffer from
intractable computational cost. Thus, a lot of efforts have been made to improve
the time efficiency [13,22] We notice that there are some works dealing with
subgraph search by importing deep learning components [5,9,26]. However, these
works focus on using deep learning models to determine a better searching order.
Thus, they still fall into the classical search frameworks.

Considering the superiority of deep learning, a question arises “can we develop
a novel paradigm, leveraging the deep learning techniques thoroughly, to handle
the subgraph-level problems?”. A promising paradigm dealing with subgraph-level
tasks consists of two key modules, i.e., prediction and reconstruction. Specifically,
given the queries over graph G, the embeddings of the target subgraphs are
inferred through the prediction model, and then the subgraphs are expected to
be identified based on the subgraph embeddings. Therefore, an effective subgraph
embedding is desired to enable such a paradigm.

Although subgraph plays an important role in graph representation learn-
ing [12,25] , there are just a few works [3,6,17] focusing on embedding subgraphs.
Sub2Vec [3] learns vector representations such that the next node in the random
walk can be predicted by the learned subgraph embedding and node embeddings.
SubRank [6] is trained inspired by the random walk proximity measure Person-
alized PageRank. S2N [17] constructs a new graph G′ by coarsely transform-
ing each given subgraph into a “node” in G′. Then it facilitates subgraph-level
tasks through node-level tasks in the graph G′. We notice that all the subgraph
embedding methods above cannot be used to recover the subgraph directly if
the subgraph embeddings are not materialized. In other words, these subgraph
embeddings fail to be plugged into the predication-and-reconstruction paradigm
above to tackle the subgraph-level tasks.

1.2 Our Approach and Contributions

Motivated by the limits of the existing subgraph embeddings, we elaborate on
learning “reversible” distributed representations of subgraphs in a low dimen-
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sional continuous vector space. The term “reversible” means that a subgraph
g can be reconstructed precisely just based on the embedding y of g. In this
paper, we extend the popular way of graph embedding, which reads out graph
by aggregating node embeddings, to a subgraph. Specifically, given the node
embedding matrix Φ, any subgraph g can be embedded as the product of Φ and
a high dimension vector x (also called as aggregation vector which depends on g),
i.e.,, y = Φx. The node embeddings can be learned by exploiting popular graph
neural networks. During the process, two major challenges have to be addressed.

– How to design a reversible read-out operation such that the aggregation vector
x can be recovered according to the subgraph embedding y?

– How to reconstruct the structure of subgraph g based on the aggregation
vector x?

To address the first challenge, we resort to compressed sensing theory, which
focuses on the exact recovery of sparse linear transformation [7]. We propose
an approach to learning node embeddings nearly satisfying Restricted Isome-
try Property, and consequently, exact decoding is achieved. We handle the sec-
ond challenge by designing a bijective rule of generating the aggregation vector
according to the adjacency matrix of subgraph g, by applying a simple transfor-
mation between binary number and decimal number with some scaling operation.
The major contributions of this paper are summarized as follows.

– To the best of our knowledge, we are the first to propose a framework for
subgraph reconstruction powered by a reversible subgraph embedding;

– We propose a novel loss function for GNN models according to the compressed
sensing theory, such that the sparse linear aggregation of node embeddings
can be decoded exactly;

– We design a bijective aggregation rule to readout the embedding of the sub-
graph, which enables that the subgraph can be reconstructed through the
aggregation vector;

– Experimental results on real graphs demonstrate the overwhelming superior-
ity of the proposed subgraph embedding in tasks like subgraph reconstruction
and graph reconstruction.

2 Problem Definition and Framework

Let G = {V (G), E(G)} represents an undirected graph, where V (G) and E(G)
denote the set of vertices and edges of G, respectively.

2.1 Problem Formulation

Definition 1. (Induced Subgraph). A graph g is an induced subgraph of G if (1)
V (g) ⊆ V (G), and (2) each two vertices have an edge in E(g) only if the two
vertices have an edge in E(G).
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Definition 2. (Embedded Subgraph). A graph g is an embedded subgraph of G
if (1) V (g) ⊆ V (G), and (2) E(g) ⊆ E(G).

Definition 3. (Subgraph Reconstruction). Assume that we have obtained a set
of learned embeddings for a graph G. Given the embedding for a subgraph g, the
subgraph reconstruction task is to reconstruct the topology structure of g according
to the available embeddings.

Notice that the topology structure of neither G nor g can be used in the
whole process of the reconstruction task.

Fig. 1. Framework of subgraph reconstruction via the reversible subgraph embedding.

2.2 Compressed Sensing

Compressed sensing theory, as known as sparse linear regression, indicates that
we can solve an underdetermined system of equations with a unique solution
under the restricted isometry hypothesis [7]. For a linear system y = Θx + ε
where y ∈ R

p, Θ ∈ R
p×n and x, ε ∈ R

n with p � n, the S-restricted isometry
constant (RIC) δS of Θ is defined as the smallest quantity such that

(1 − δS)‖x‖2�2 ≤ ‖Θx‖2�2 ≤ (1 + δS)‖x‖2�2 (1)

for all ‖x‖�0 ≤ S [7]. They propose the restricted isometry principle (R.I.P)
stating that if S obeys δS + δ2S + δ3S < 1, then we can recover any sparse x in
noiseless case with support size no more than S by solving �1-minimization

min
x̃∈Rn

‖x̃‖�1 subject to Θx̃ = y. (2)

In most applications, the sensing matrix Θ is designed as the product of a signal
basis matrix Ψ and a measurement matrix Φ. In this paper, we focus on a training
based way to design the measurement matrix Φ when Ψ is given.
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2.3 Framework

In this paper, we propose a reversible embedding technique for small subgraphs
(compared with the entire graph). Figure 1 gives the framework powered by
reversible subgraph embedding, consisting of three major steps, where the recov-
ery process is indicated via red lines.
Step 1: Learning node embeddings. The reversible property demands that the
node embeddings can be recovered when given the subgraph embedding. Thus, it
is required to design node embeddings satisfying such a constraint. Our approach
is motivated by the compressed sensing theory, that is, if we can design a set
of node embeddings that satisfy Restricted Isometry Property, any sparse linear
aggregation of the node embedding can be recovered exactly.
Step 2: Aggregation vector generation. To enable the mutual transformation
between the aggregation vector and adjacency matrix of the subgraph, a bijection
should be established. In this paper, we propose a simple but effective bijective
rule to generate an aggregation vector from the adjacency matrix.
Step 3: Subgraph embedding generation. Obtaining node embedding matrix and
aggregation vector, the subgraph embedding is straightforward to be produced
by taking their product.

3 Reversible Subgraph Embedding

3.1 Node Embedding

We will introduce how to train node embeddings which satisfy R.I.P.. The main
idea is to combine the popular graph neural network models (GNNs) with a loss
function specifically designed for compressed sensing. The loss function, also
called as orthogonal loss function, is formulated as

L =
1
2
‖(ΦΨ)ᵀ(ΦΨ) − I‖2F , (3)

where Φ is the output of GNNs and Ψ is the signal basis matrix. However,
as the size of matrix grows, making the gram matrix of ΦΨ as close as the
identity matrix is a pretty strict constraint. Hence, Abolghase et al. [1] propose
a advanced loss function L = 1

2‖(ΦΨ)�(ΦΨ)−H‖2F , where H is updated in each
training epoch following the rule

Hij =

⎧
⎪⎨

⎪⎩

1, i = j

Θij , i �= j and |Θij | < μ

μ · sgn(Θij), otherwise
. (4)

Here, Θ = (ΦΨ)�(ΦΨ) and μ is a predefined threshold and sgn(x) ={
1, x > 0
−1, x < 0

.

In our implementation, we use the discrete cosine transform (DCT) matrix as
Ψ and compute Φ through a three-layer graph convolutional networks (GCNs).



80 B. Yang and W. Zheng

In the following parts, we will briefly introduce DCT and GCNs. Discrete cosine
transform [4] is one of the most popular transformation techniques in data com-
pressing. The orthogonal version of DCT matrix Ψ is defined as

Ψi,j = ai cos(
(2j + 1)πi

2N
), i, j = 0, 1, . . . , N − 1, (5)

where

ai =

⎧
⎨

⎩

√
1
N , i = 0

√
2
N , i = 1, 2, . . . , N − 1

. (6)

Graph convolutional networks are a popular approach for semi-supervised
learning on graph-structured data, which is based on an efficient variant of con-
volutional neural networks. The graph spacial convolution layer is defined as

X(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 X(l)W (l)). (7)

Here, X(l) and W (l) denote the output and trainable weight matrix of l-th layer
respectively, Ã = A + IN is the adjusted adjacency matrix where A and IN are
adjacency matrix and identity matrix, and D̃ = diag(

∑
j A1j , . . . ,

∑
j ANj) is

the diagonal matrix taking degree of each node as elements.

3.2 Subgraph Embedding

If we establish a bijection from the adjacency matrix of a subgraph g to a sparse
vector x, we can also construct a bijection from the adjacency matrix to subgraph
embedding y = Θx. Let us consider a subgraph g of G. We define g’s adjacency
matrix Ag ∈ R

n×n in the view of the whole graph rather than restricting it to
the scale (i.e., the number of vertices contained in g). We set all elements in
corresponding rows and columns of A to 0 for those nodes not contained in g.
Then, we can not only understand the structure of g but also locate it on G.

Definition 4. (Adjacency Matrix). Given a graph G with size n and one of its
subgraph g, the adjacency matrix of g, denoted as Ag, is defined as

Ag
ij =

{
1, if i connect to j in g

0, otherwise
, ∀ i, j ∈ [n] = {1, 2, . . . , n}.

Since every element of the adjacency matrix is 0 or 1, we can view each row
or column of A as a binary number. Hence, we can encode A as a vector by
transforming each row of A into a decimal number. However, this approach is
often affordable because a binary number with length n refers to O(2n). Thus,
we just record the nodes in g by the minor adjacency matrix as defined next.

Definition 5. (Minor Adjacency Matrix). Given a subgraph g with size d, the
minor adjacency matrix of g, denoted as Ãg, is defined as

Ãg
φ(i),φ(j) =

{
1, if i connect to j in g

0, otherwise
, ∀φ(i), φ(j) > 0.
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Fig. 2. Illustration of computing adjacency vector for subgraph g.

where φ(·) is the mapping of node index as

φ : [n] → [d] φ(k) =

{∑k
i=1 1{i∈g} if k ∈ g

−1 if k /∈ g
,∀ k ∈ G.

Finally, we formulate our implementation mathematically. Let f(·) and
f−1(·) denote the transformation from binary to decimal and from decimal to
binary, respectively. Similarly, let h(·) denote the scaling function and h−1(·) as
its inverse function. The adjacency vector x can be computed following

xi =

{
h(f(Ãg

φ(i))) if φ(i) > 0

0 if φ(i) = −1
, ∀i ∈ [n], (8)

where xi and Ãi refer to the i-th element of x and i-th row of Ã, respectively.
The ultimate embedding y of subgraph g is computed as y = Θx.

Example 2. Given the graph G and its subgraph g as shown in Fig. 2, we can
directly get the node index mapping φ(·) and g’s adjacency matrix Ag. Then,
we extract the minor adjacency matrix Ãg from Ag following φ(·). Each row in
Ãg can be viewed as a binary number and compressed into a demical number
through h(f(·)). For instance, (0, 1, 1, 0), the first row of Ãg, is compressed as
h(6), where h(·) is the scaling function. Finally, we map each element in the
adjacency vector as the corresponding row of Ãg after compressed according to
φ(·), where those elements not in g are set to 0.

4 Subgraph Reconstruction

In this section, we present a reconstruction strategy. Suppose that we are
given y, the embedding of an unknown subgraph, we can reconstruct the sub-
graph by following two steps.

– Decoding the embedding into the corresponding adjacency vector;
– Reconstruct the subgraph according to the adjacency vector.
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Fig. 3. Reconstructing subgraph g based on its adjacency vector and locating it in G.

The first step actually conducts the classic decoding task in compressed sens-
ing. However, due to the loss of precision in computing, we cannot directly apply
the exact recovery algorithm depending on the noiseless case assumption. To
address the problem, we propose a decoding algorithm particularly according
to the encoding method. The key point is that in our encoding approach, each
element in the support set of adjacency matrix should be larger than a designed
threshold μ. For instance, if we set h(x) = ln(1 + x), we have μ = ln 2 (we sup-
pose that there is no isolated node in the subgraph). According to this property,
we can correct the solutions based on the classical decoding algorithm. First, we
get a basic solution x̂ by fitting a LASSO regression model, that is

x̂ = arg min
x

1
2
‖y − Θx‖2�2 + α‖x‖�1 (9)

Then we examine the support set of x̂, denoted as supp(x̂). If every element
in supp(x̂) is larger than the threshold μ, we just return x̂ as the solution. If
there is any element in supp(x̂) smaller than the threshold μ, we remove it from
supp(x̂) and resolve the equation system

y = Θsupp(x̂)x̂supp(x̂), (10)

where the Θsupp(x̂) and x̂supp(x̂) means the sub matrix or sub vector only contains
the rows or elements in supp(x̂). Intuitively, this correction step can be repeated
until all elements in supp(x̂) are larger than the threshold μ, while one step is
enough in most cases as shown in our experiments.

After getting the adjacency vector x̂, we also set a map φ′ : [n] → [d] from
the index of x̂ to supp(x̂) as

φ′(k) =

{∑k
i=1 1{i∈supp(x̂)} if k ∈ supp(x̂)

−1 if k /∈ supp(x̂)
,∀ k ∈ [n]. (11)

Then, we can reconstruct Ã following the way

Ãi = h−1
(
f−1(xargj{φ′(j)=i})

)
, ∀i ∈ [d]. (12)
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Finally, we can reconstruct A according to Ã as

Aij =

{
Ãφ′(i)φ′(j) if φ′(i), φ′(j) > 0
0 otherwise

. (13)

In the reconstruction process, we only need to input the embedding y of sub-
graph g and the node embedding matrix Θ, totally independent of the structure
of g and G.

Example 3. Figure 3 presents an example of how to reconstruct the subgraph g
according to its adjacency vector x. Once x is obtained, we can establish the
mapping of index from x to its support set supp(x). Then, we use h−1(f−1(·))
to decode each nonzero element of x into a row in g’s minor adjacency matrix
Ãg following the mapping φ(·). Finally, following the mapping φ(·) again, we
augment Ãg into g’s adjacency matrix Ag. According to Ag, it is straightforward
to infer the structure of g. Moreover, g can be located in G at the same time.

5 Experiments

5.1 Experiment Setup

To demonstrate the effectiveness, four tasks are conducted. (1) Subgraph recon-
struction: predicting the adjacency matrix of a subgraph g based on the learned
embeddings; (2) Graph reconstruction: predicting the adjacency matrix of graph
G just depends on the learned embeddings; (3) Node classification: predicting
the labels of unlabelled nodes by looking at a set of labeled nodes; (4) Graph
classification: predicting the label of each unlabelled graph.

Dataset Details: As shown in Tables 1 and 2, the widely used benchmarks for
the tasks above are collected [18,21,27]. Note that although graph reconstruction
seems like a graph-level task, the existing methods adopt node-level metrics for
evaluation currently. So, we place the datasets used in the graph reconstruction
task into the former table.

Reproducibility: The source codes are available at: https://github.com/
RevSubEmb/Reversible Subgraph Embedding. The dimension of each hidden
convolution layer is set as 256 while the dimension of the output layer and
the regularization coefficient in the decoding algorithm differs in different tasks,
which will be introduced in corresponding subsections. All the experiments are
conducted on a machine with an NVIDIA RTX 2080 GPU (12 GB memory),
Intel Xeon(R) CPU (2.50 GHz), and 256 GB of RAM.

https://github.com/RevSubEmb/Reversible_Subgraph_Embedding
https://github.com/RevSubEmb/Reversible_Subgraph_Embedding
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5.2 Subgraph Reconstruction

Given a graph G, we will randomly generate one subgraph g from G to test
whether we can recover g through learned embeddings, e.g., g’s embedding y
and node embedding matrix Θ in our approach. Generally, there are two kinds
of graphs, i.e., induced subgraph (an edge is added between two nodes in g only
if the edge exists in G) and embedded subgraph (two nodes are not necessary
to have an edge in g even if they have an edge in G). Thus, we investigate the
reconstruction over the two kinds of subgraphs.

Evaluation on Induced Subgraph Reconstruction. The existing node
embeddings, e.g., Node2Vec [10] and Attention Walk [2], can be extended to
support subgraph reconstruction. Specifically, we compute the inner product for
each pair of nodes in the subgraph as an indicating score and then choose the
highest m pairs of nodes to add edges between each selected pair of nodes. Here
m denotes the number of edges in the given subgraph. We investigate induced
subgraph with |g| equals to 5, 10, 15, and 20 on three datasets respectively, for
each |g| (i.e., the number of nodes in g) 100 induced subgraphs are generated ran-
domly. Table 3 lists the averaged precision of the methods. RSE-Θ outperforms
Node2Vec and Attention Walk greatly as it recovers the subgraphs exactly.

Evaluation on Embedded Subgraph Reconstruction. The previous node
embedding-based methods cannot be used to predict the subgraph when it is
not an induced one. In contrast, our approach has no such limit. The experi-
ments are conducted on three datasets: Cora, Citeseer, and ARXIV-GRQC. The
dimensions of the node embeddings are set as 128, 256, and 256, respectively. For
each dataset, we start with subgraphs with fixed size |g| = 2, then we iteratively
increase |g| from 2 to 30. For each size |g|, we separately generate 100 subgraphs
through random walk. The implementation details and the results of the test are
shown in Fig. 4. We can see that for pretty small |g|, our algorithm accurately
reconstructs almost all subgraphs. For each dataset, there exists a threshold d,
we call it as an invalid point, such that the success rate of exact reconstruction
reduces sharply once the subgraph size |g| reaches d. The invalid points of Cora,
Citeseer, and ARXIV-GRQC in our test are 33, 35, and 31, respectively.

Table 1. Datasets for subgraph (graph) reconstruction and node classification.

Graphs # Nodes # Edges # Classes

Cora 2708 5429 7

Citeseer 3327 4732 6

Pubmed 19717 44338 3

ARXIV-GRQC 5242 14484 –
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Table 2. Datasets for graph classification.

Datasets # Graphs # Average nodes # Classes

MUTAG 188 17.9 2

PTC 344 25.5 2

IMDb-BINARY 1000 19.8 2

IMDb-MULTI 1500 13.0 3

The reversible property of our subgraph embedding depends on compressed
sensing theory. There is an upper bound of subgraph size for exact recovery. That
is, as the subgraph grows larger, the corresponding adjacency vector becomes
denser. Then we cannot decode it exactly when the adjacency vector is not
sparse enough. The training method gives a bound p > O(|g| log n

|g| ) in [1],
where p denotes the dimension of embedding and |g| denotes the number of
vertices in a subgraph. However, since we combine the loss function with GCNs,
extra constraints are introduced, and we need to re-explore this bound.

5.3 Graph Reconstruction

The basic idea of the existing methods, e.g., Node2Vec [10] and STRAP [28],
is to predict whether there is an edge between nodes u and v based on the inner
product of corresponding node embeddings. However, we can address this task
in a novel way benefiting from the proposed reversible subgraph embedding. Due
to the reversible property of proposed embeddings for small subgraphs, we can

Table 3. Averaged precision of induced subgraph reconstruction, where |g| denotes the
number of nodes of subgraph g and numerics in brackets represent standard deviation.

Datasets |g| Node2Vec Attention Walk RSE-Θ

Cora 5 69.88 (± 10.18) 53.31 (± 17.9) 100

10 68.84 (± 11.15) 30.93 (± 16.95) 100

15 63.94 (± 7.92) 24.92 (± 14.38) 100

20 65.58 (± 9.46) 22.26 (± 10.95) 100

Citeseer 5 66.36 (± 12.94) 44.05 (± 20.90) 100

10 59.60 (± 10.11) 30.04 (± 21.84) 100

15 55.65 (± 9.64) 37.69 (± 24.24) 100

20 56.28 (± 11.77) 33.38 (± 24.05) 100

GRQC 5 70.47 (± 11.51) 69.50 (± 21.07) 100

10 70.20 (± 11.39) 51.54 (± 22.71) 100

15 70.98 (± 12.08) 47.60 (± 24.83) 100

20 73.74 (± 11.77) 39.38 (± 22.91) 100
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Fig. 4. Results of embedded subgraph reconstruction on Cora, Citeseer and ARXIV-
GRQC. For parameters in compressed sensing decoding algorithm, we set the regu-
larization coefficient α to 1 × 10−7, 1 × 10−6 and 1 × 10−5 on Cora, Citeseer and
ARXIV-GRQC, respectively, while we set the threshold μ to 0.25 in all three graphs.

partition G into small subgraphs and reconstruct these subgraphs separately.
Finally, the reconstructed subgraphs are combined to form the final solution. To
reduce the influence brought by the partition algorithm, we simply reconstruct
the ego network of each node, that is, the induced subgraph of G that contains
the node and its neighbors only. To handle high-degree nodes, we set a threshold
D. If the degree of any node is larger than D, we just randomly sample D nodes
from their neighbors and reconstruct the subgraph induced by the selected nodes.

We test the graph reconstruction task on three datasets: Cora, Citeseer,
and ARXIV-GRQC. The dimensions of embedding are set as 128, 128, and 256
respectively. To evaluate the performance of our method, we report precision,
recall, and the number of incorrectly predicted edges. The results are shown in
the top of Table 4. We can see that our method almost exactly recovers these
three graphs. Furthermore, the proposed method always keeps 100% precision
in three datasets. It is because we choose the threshold D a bit smaller than the
invalid point d, and our subgraph reconstruction algorithm works perfectly on
subgraphs with these sizes (as shown in Sect. 5.2). Since we randomly sample
neighbors when a node’s degree is larger than D, some edges may not be covered
by the selected subgraphs, which incurs a subtle decline in performance.

As shown in Table 4, we report the metric precision@k of Node2Vec and
STRAP, which denotes the precision computed by selecting the top-k pairs of
nodes in the ranked candidate edges. Here, we set k to the number of edges of
each graph. Clearly, those works are all far from reconstructing the graph exactly,
which confirms our effectiveness of the proposed reversible subgraph embedding.



Subgraph Reconstruction via Reversible Subgraph Embedding 87

Table 4. Results of graph reconstruction task, where precision (P) and recall (R) are
written in the percentage form. The threshold of degree is set to 20 for all three graphs.

Datasets Cora Citeseer GRQC

RSE-P (%) 100.00 100.00 100.00

RSE-R (%) 99.98 100.00 99.97

# False edges 6 0 4

Node2Vec (precision, %) 48.77 34.47 44.07

STRAP (precision, %) 72.68 57.91 71.81

Table 5. Results of node classification task with 20 instances per class as training set.
The column Φ and Θ means using Φ and Θ as node embeddings, respectively. The rows
means how many hops of neighbors are used to compute subgraph embedding as node
representation, where 0-hop means just using the node embedding itself.

Datasets Cora Citeseer PubMed

Φ Θ Φ Θ Φ Θ

RSE (0-hop) 32.8 13.8 43.7 16.6 49.4 37.4

RSE (1-hop) 55.2 30.8 55.1 25.9 62.0 37.5

RSE (2-hop) 67.3 45.2 56.0 32.7 72.9 35.6

Sub2Vec 29.8 31.2 36.8

SubRank 61.9 42.3 65.4

Node2vec 63.1 45.6 51.1

Attention Walk 67.9 51.5 70.2

SSP 82.8 74.3 80.1

5.4 Node Classification

We apply our method to the node classification task on datasets Cora, Cite-
seer, and Pubmed. The dimensions of node embedding are set to 128, 128, and
256 on the three graphs. We use two different splits of these datasets in the node
classification task. Both two splits select 500 instances for validation and 1000
for test. One split selects 20 instances each class for training, while the other
split uses all nodes except the validation set and test set as the training set.

Let RSE denote our proposed subgraph embedding in the paper. As men-
tioned before, either Θ or Φ in the proposed model can be used as node embed-
dings in different tasks. Intuitively, Θ is more suitable for reconstruction-related
tasks, while Φ is more suitable for data mining tasks. Hence, we will evaluate
both cases in this task. Moreover, to evaluate the proposed subgraph embedding,
we can also represent a node using the embedding of the induced subgraph gener-
ated by its 1-hop or 2-hop neighbors. The classifier is implemented by employing
a three-layer MLP that takes tanh(·) and sigmoid(·) as the activate function in
the former two layers and the output layer, respectively.
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Baselines can be divided into two categories. One is trained independently
from the downstream task, e.g., Node2Vec [10] and Attention Walk [2]. The
other one is the end-to-end model such as SplineCNN [8] and SSP [14], which
usually performs much better than the models in the former category. That
is because the extra knowledge from the downstream task can be learned and
integrated into the model. The results are presented in the Tables 5 and 6. As
observed, exploiting Φ as node embedding performs much better than using Θ,
which accords with intuition. More detailed analysis will be given in Sect. 5.6.

Table 6. Results of node classification (all nodes except validation/test set as the
training set).

Datasets Cora Citeseer PubMed

Φ Θ Φ Θ Φ Θ

RSE (0-hop) 50.9 31.9 59.5 18.3 56.5 40.7

RSE (1-hop) 77.0 43.7 73.0 37.6 73.7 50.1

RSE (2-hop) 80.5 66.0 71.9 50.3 80.2 71.3

Sub2Vec 56.2 47.4 71.2

SubRank 75.6 61.1 81.8

Node2Vec 74.0 56.7 77.8

Attention Walk 57.3 56.4 76.6

SplineCNN 89.48 79.20 88.88

SSP 87.60 79.50 88.46

Table 7. Results of graph classification task (the average accuracy on ten fold vali-
dation sets, with standard deviation in brackets)

Datasets MUTAG PTC IMDb-BINARY IMDb-MULTI

RSE-Θ 58.04 (±7.28) 43.63 (±6.69) 45.90 (± 4.41) 32.67 (± 2.78)

RSE-Φ 68.57 (±6.67) 58.11 (±3.83) 79.50 (±3.38) 52.60 (±2.67)

Sub2Vec 66.49 (± 2.28) 53.49 (± 7.53) 53.30 (± 2.01) 40.53 (± 4.46)

GIN 89.40 (±5.60) 64.60 (±7.00) 75.10 (±5.10) 52.30 (±2.80)

SEG-BERT 89.80(± 6.71) 64.84(± 6.77) 74.70 (± 3.74) 50.60(± 3.73)

5.5 Graph Classification

Different from the tasks above, each dataset in the graph classification contains
hundreds of graphs, but each of which is very small, which makes it difficult
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for our method to generate subgraph embeddings. To relieve the problem, we
combine all the graphs in each dataset as a “super” graph, on which the node
embeddings are trained. Note that the input graph of our method is not necessary
to be a connected graph. So, we can view each graph in the dataset as a subgraph
of the super graph, and we can compute its embedding following the subgraph
embedding method proposed in this paper. The classifier is implemented in the
same way as that in the node classification task. Since the amount of data is
too small for universal data splitting in transductive learning, we use 10-fold
cross validation as what [27] does. We compare our method RSE with two state-
of-the-art algorithms GIN [27] and SEG-BERT [29]. The results are reported
in Table 7. Our model performs roughly as well as the GIN on most datasets
except MUTAG. Because GIN is an end-to-end model while our embedding
method learns the representation of graphs without using any information of
the classification task, the gap is acceptable. Furthermore, we find that RSE-Φ
outperforms GIN on datasets IMDb-BINARY and IMDb-MULTI.

5.6 Discussion

Next, we discuss two questions based on the empirical results above.

– Why does the proposed subgraph embedding show significant superiority in
both subgraph and graph reconstructions?

– Why does use Φ as node embedding usually performs better than using Θ in
graph classification?

Overwhelming Superiority in (Sub-)Graph Reconstruction. Our pro-
posed method exhibits overwhelming advantages in both subgraph and graph
reconstructions, almost recovering the subgraphs and graphs precisely. The rea-
son is that our node embeddings are trained under the guidance of compressed
sensing theory such that the readout option can be decoded exactly in most
cases. Moreover, the transformation between adjacency vector and adjacency
matrix is bijection which ensures precise reconstruction of the (sub-)graph.

Φ as Node Embedding vs. Θ as Node Embedding. Θ is trained under
the guidance of R.I.P. to realize exactly sparse decoding. Furthermore, there is
another equivalent explanation of the training purpose, that is, trying to make
any k columns of Θ linear independent. Therefore, using Θ as node embedding
heavily peels the commonness between nodes and that is why it performs poorly
on classification-related tasks. However, it is also the reason why using Φ as node
embedding performs better. Since Θ = ΦΨ , where Ψ is a signal basis matrix, we
can view Φ as the coordinates in the space spanned by Ψ . So, Φ reflects how to
strip the correlation of nodes, delivering more information in classification tasks.

6 Related Work

Early graph embedding methods view each node in the graph as a word, then
generate node sequences randomly based on some specifically designed rules,
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such as random walk and deep walk [20], and finally maximize the co-occurrence
probability to create the representation. DeepWalk [20] generates training data
by truncated random walk, others like LINE [23] by at most one-step random
walk, Node2Vec [10] by truncated high order random walk, Attention Walk [2]
by attention guided random walk, and so on. Some other graph embedding tech-
niques based on matrix factorization have been proposed [19,31]. They can be
applied to reconstruct a graph by predicting edges based on proximities, how-
ever, fail to recover the graph exactly. Most graph neural network models use
the loss of downstream classification tasks as the objective function to train the
model. Since they are specifically designed in end-to-end form for node classi-
fication or graph classification task, models like GAT [24], GResNet [30], and
SSP [15], usually perform much better than probabilistic and factorization based
methods on the node classification task.

As a probabilistic embedding method, Sub2Vec [3] learns a distributed rep-
resentation for each subgraph such that the likelihood of preserving neighbor-
hood and structural properties in the feature space is maximized. SubRank [6]
introduces a new measure of proximity for subgraphs, based on which subgraph
embeddings are computed. S2N [17] introduces a translation from subgraphs
to nodes. It constructs a new graph by taking each subgraph as a “node” and
adding an edge between two “nodes” if the two corresponding subgraphs share
at least one node in the original graph. Then popular graph neural networks can
be applied on the newly constructed graph.

As for the combination of deep learning methods and subgraph-level tasks,
most existing works learn how to explore the search space under the classical
search frameworks. GLSearch [5] proposes a novel GNN-based deep Q-network to
iteratively search node pairs for the maximum common subgraph detection. Ge
et al. present a machine-based active learning component in subgraph matching,
suggesting the search order to reduce the search space [9]. RL-QVO [26] deals
with the similar task, but adopts the reinforcement learning models.

7 Conclusion

In this paper, we develop a framework to generate reversible distributed repre-
sentations for subgraphs such that the subgraph can be exactly reconstructed
once given the subgraph embedding. To the end, a reversible read-out operation
is proposed based on the compressed sensing theory. Moreover, we build a simple
but effective bijection between the aggregation vector and adjacency matrix of
the subgraph. Extensive experiments on real graphs have been conducted to eval-
uate the proposed subgraph embedding, and the experimental results confirm
the effectiveness of our approach.

Acknowledgement. This work was supported by National Natural Science Founda-
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Abstract. The problem of searching radius-bounded k-cores (RB-k-
cores) for a given query vertex is to find cohesive subgraphs satisfying
both social and spatial constraints on geo-social networks. However, the
search results are effected by two parameters: the cohesive constraint k
and the query radius r. Furthermore, as the users lack of enough pro-
fessional knowledge, it is very hard to provide reasonable parameters for
RB-k-core searches. In this case, some users will confuse that why some
expected vertices are not included in the search results, which called why-
not questions. Therefore, we will investigate the problem of answering
why-not questions on radius-bound k-core searches in this paper, which
is to find why some expected vertices are missing in the search results
and how to make the expected vertices appear in the same RB-k-cores
with query vertices. To tackle this problem, we firstly analyze the effect
of the two parameters on the search results of RB-k-core searches. Then,
we explore two effective algorithms by refining the initial search param-
eters k and r of RB-k-core searches. Finally, we conduct comprehensive
experimental studies on four real geo-social networks to evaluate both
the effectiveness and efficiency of our proposed explanation algorithms.

Keywords: Radius-bounded k-core searches · Why-not questions ·
Query refinement · Explanation

1 Introduction

In recent years, many geo-social networks have emerged, such as Foursquare and
Twitter [5]. Geo-social network combines the social network information and geo-
spatial information of users. Under this situation, finding subgraphs with high
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Fig. 1. An example of RB-k-core search

cohesiveness in geo-social networks has become a popular research topic. Given
a geo-social network G(V,E), a query vertex q in V , a positive integer k, and a
query radius r, the problem of finding radius-bound cohesive subgraphs in G is
to find all k-cores in G such that each k-core H contains query vertex q and all
vertices in H fall into a circle with the query radius r. This problem is to search
radius-bounded k-cores, named as RB-k-cores [5]. This search problem has many
real-life applications. Especially, in Facebook, there is a valuable part Event-For-
You, which can recommend events to users based on their social relationships
and personal locations. For example, a user in Facebook wants to hold a party
to play board games by gathering a group of people who are not living far away
which are bounded by a circle with a radius r and each of whom has at least
k friends in the group. The RB-k-core search can address this problem for the
user. Figure 1(a) shows a geo-social network where vertices represent users, edges
represent friendships, and locations represent the locations of users. When we set
the query vertex L, the cohesive constraint k = 3, and the query radius r = 1,
two RB-k-cores containing the query vertex L can be obtained as detailed in
Fig. 1(b), i.e., S2 = {L,D,C,B} and S3 = {G,H,F, L}.

However, the results of RB-k-core searches are sensitive to the two input
parameters k and r. Additionally, it is very hard that providing appropriate
parameters for the RB-k-core searches due to the users lack of enough profes-
sional acknowledge. If the two parameters k and r are not set good enough, the
search results cannot meet the users’ requirements. In this situation, users often
have to refine the queries multiple times to find desirable search results. The
explanation capability for users supported by query refining is thus desirable
to help them tune their original queries to obtain desirable query results. Specif-
ically, one often want to ask a why-not question that WHY an expected vertex
is NOT in the search results. Why-not question was proposed by Jagadish et al.
[1], which asks why an expected tuple is missing in the query result. Answering
why-not questions is to explore how to make the expected tuple appear in the
query results. So far, many efforts have been made to answer why-not ques-
tions based on the query refining model [2], such as refining original queries for
SQL queries [2], spatial keyword top-k queries [8], similar graph matching [9],
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structural graph clustering [10], and so on. However, the existing explanation
solutions for why-not questions are far from meeting users’ requirements.

In Fig. 1(b), when we set k = 3 and r = 1, for the query vertex L, two
RB-k-cores S2 and S3 are obtained. However, L is not satisfied with the search
results, the reason is that L confuses that why his friend M is not included in
the search results since M is his/her best friend and they are not far away. In
this situation, the user L may want to figure out an explanation for the why-not
question that why his friend M is missing in the search results and how to make
the expected vertex M appear in the search results. For the expected vertex M ,
we can answer the why-not question by relaxing at least one search parameter,
e.g., decreasing the cohesive constraint k=3 to k′ = 2 or increasing the query
radius r = 1 to r′ = 2, which can make the missing vertex M be included in the
search results. It would be very useful for users that geo-social network system
can explore explanations for why-not questions. Therefore, we investigate the
problem of answering why-not questions on RB-k-core searches in this paper.

Moreover, to answer why-not questions by refining the original query param-
eters, one common principle is that the original query results should be retained
as much as possible. That is, to guarantee the quality of answers/explanations
for why-not questions on RB-k-core searches, the original search results should
not be destroyed by the refined queries for RB-k-cores as much as possible. How-
ever, such an approach of manually seeking explanations by tuning parameters of
RB-k-core is rather tedious, which involves possibly many rounds of RB-k-core
refinement. Moreover, In the process of making the expected vertices appear in
the search results by refining the search parameters, the search parameters could
be over relaxed since many irrelevant vertices besides the expected vertices are
included in the search results under the new refined parameters. Therefore, the
main challenge of answering why-not questions on RB-k-core searches is how
to quickly explore optimal refined search parameters to make expected vertices
appear in the search results with minimum irrelevant vertices.

To sum up, the main contributes of this paper are summarized as follows:

(1) We analyze the influences of changing search parameters on the search results
of RB-k-core searches from two aspects that decreasing the cohesive con-
straint k and increasing the query radius r.

(2) We explore two effective explanation algorithms to answer why-not questions
on RB-k-core searches by refining the parameters k and r, respectively.

(3) We conduct comprehensive experiments on four real geo-social networks to
evaluate our explanation algorithms, which show that they can efficiently
answer why-not questions on RB-k-core searches.
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2 Related Work and Problem Statement

In this section, we first review related work. Then, we present problem statement.

2.1 Related Work

Group Query over Geo-Social Networks. Yang et al. [3] propose a geo-
social group query to find a group of nearby attendees with tight social relation.
[4] proposes solutions for finding a spatial-aware community (SAC) that contains
the query vertex. Wang et al. [5] propose a radius-bounded k-cores search that
aims to find cohesive subgraphs satisfying both social and spatial constraints
in large geo-social networks. [6] propose a geo-social community search problem
(GCS) to find a social community and a cluster of spatial locations. Zhu et al. [7]
explore a new group query problem of continuous geo-social groups monitoring
(CGSGM) over moving users.

Why-Not Questions. [1] answers why-not questions by identifying the “cul-
prit" operations which excludes missing tuples. [2] answers why-not questions
by generating a refined query whose query results include both original query
answers and missing answers. Chen et al. [8] answer why-not questions on spatial
keyword top-k queries [9] answers why-not questions in similar graph matching.
[10] answers why-not questions on structural graph clustering. Zheng et al. [11]
investigate the problem of answering why-not group spatial keyword queries.
[13] answers why-not questions on event pattern queries. Zhang et al. [12] pro-
pose solutions to answer why-not questions on top-k spatial keyword queries over
moving objects. [14] proposes a novel approach to answer why-not questions over
nested data. Song et al. [15] answer why questions for subgraph queries.

2.2 Preliminary

Given a geo-social network graph G(V,E), where V denotes the set of vertices
in G, and E represents the set of edges in G. The set of neighbors of a vertex u
in G(V,E) is formalized as NG(u) = {v ∈ V |(u, v) ∈ E}. And the degree of the
vertex u in G is denoted as degG(u) = |NG(u)|. The Euclidean distance between
two vertices u and v in G is denoted as d(u, v). We use C(u, r) to denote as the
circle centered at vertex u with a radius r. Given a set of vertices H, an induced
subgraph of G formed by H is denoted as G(H), a set of binary-vertex-bounded
circles with radius r is denoted as Wr(v, u).

Definition 1. k-Core. Given a geo-social network graph G and an integer k,
the k-core of graph G is the maximal subgraph of G, which is denoted as Hk,
such that ∀v ∈ Hk, degHk

(v) ≥ k.

Definition 2. Core Number. Given a geo-social network graph G and an ver-
tex v, the core number of v is the highest order of a k-core that contains v in G,
denoted by coreG[v].
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Definition 3. (Minimum Covering Circle (MCC for short)). Given a set
of vertices H, the minimum covering circle of H is the circle which encloses all
the vertices in H with the smallest radius. The vertices which lie on the boundary
of a MCC are called as boundary vertices.

Definition 4. (Radius-Bounded k-Core Search Problem). Given a geo-
social graph G(V,E), a query vertex q, a positive integer k, a query radius r,
the radius-bounded k-core (RB-k-core) search problem is to find all RB-k-cores
in G, and each RB-k-core Gr

k should satisfies the following three constraints:

(1) Connectivity constraint. Gr
k contains q and is connected.

(2) Social constraint. ∀v ∈ Gr
k, degGr

k
(v) ≥ k.

(3) Spatial constraint. The MCC of Gr
k has a radius r′ ≤ r.

(4) Maximality constraint. There exists no another RB-k-core G′
kr ⊇ Gr

k sat-
isfying (1), (2), and (3).

2.3 Problem Definition

To answer why-not questions on RB-k-core searches based on query refinement
model, we formalize the RB-k-core search as a RB-k-core query Q(k, r). There
are many possible refinements for the original RB-k-core query can be generated
for a given why-not question, which can make missing vertex be included in
the new search results of the refined RB-k-core queries. Thus, it is necessary to
define a penalty function to evaluate the quality of refined RB-k-core queries so
that only the “good“ refined RB-k-core queries are returned as possible answers
for why-not question on RB-k-core search. To ensure that the missing vertex
appear in the result, ideally the searching results of any possible refined query
Q′ will grow over the original query result R. This part of the growing vertices is
considered as irrelevant vertices and should be minimized. Therefore, the penalty
function for a refined RB-k-core query Q′ is defined as the quotient between the
number of vertices that appear in the result R′ of Q′ and the number of vertices
that appear in the result set R of Q, which is formalized:

Penalty(Q′) =

∣
∣
∣
∣
∣

n⋃

i=1

C ′
i

∣
∣
∣
∣
∣
÷

∣
∣
∣
∣
∣

n⋃

i=1

Ci

∣
∣
∣
∣
∣
, where C ′

i in R′, Ci in R (1)

Based on the above penalty function, we formally define our problem.

Problem Definition. Given a geo-social graph G(V,E), a query vertex q, a
RB-k-core query Q(k, r), the query result R of Q. A why-not question on RB-
k-core search contains an expected vertex ω; Answering this why-not question
is to seek a refined RB-k-core query Q′(k′, r′) by refining the parameters k or
r to obtain the new result R′, such that the following two conditions should be
satisfied: (1) There exists a RB-k-core in R′ which contains ω and q; (2) The
penalty Penalty(Q′) for the refined RB-k-core query Q′ is minimal.
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3 Influence Factors Analysis

In this section, we analyze the effect of r and k on RB-k-core search results.

3.1 The Analysis of k

The parameter k constrains the results of RB-k-core searches in terms of struc-
tural cohesiveness. We help missing vertex ω that do not satisfy the cohesiveness
constraint to enter the results by refined k to k′. And k′ must be less than k.

In Fig. 1(b), when r is fixed and k=3 is modified to k′=2, M can satisfy
the structural cohesiveness requirement. M can exist in a connected 2-core with
L, as seen in Fig. 2(a). The sets {G,H,F, L,M} in circle S2 together form a
connected 2-core set satisfying the constraint under the refined query Q′(2, 1).

Property 1. For the result sets R′
k of any refined query Q′(k′, r), and the result

sets R′′
k of refined query Q′′(k′′, r), if k′ > k′′, there must exist:

n⋃

i=1

C ′
i ⊆

n⋃

i=1

C ′′
i , where C ′

i in R′
k, C

′′
i in R′′

k . (2)

Fig. 2. Influence factors for RB-k-core

From Property 1, we know that the penalty value of the refinement Q′(k′, r) is
negatively related to k′, i.e., the maximum possible refined k′ is coreG(C(q,r))[ω].
Also, we can simply prove that the refined k′ is necessarily smaller than k.

3.2 The Analysis of r

The RB-k-core result sets are also affected by the query radius r, which means
that if r is not set properly, the users will not get the expected results either.

When k is fixed and r grows to d(L, J)/2 = 1.118 as shown in Fig. 2(b). Since
there exists a connected 3-core set {J,M,G,H, F, L} containing L and M , and
the radius of the MCC formed by this set is 1.118, by refining r=1 to r′=1.118,
we obtain a refined query Q′(3, 1.118) that can get the missing vertex M .
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Property 2. For the result sets R′
r of any refined query Q′(k, r′), and the result

sets R′′
r of any refined Q′′(k, r′′), if r′′ > r′, there must exist:

n⋃

i=1

C ′
i ⊆

n⋃

i=1

C ′′
i , where C ′

i in R′
r, C

′′
i in R′′

r . (3)

It follows from Property 2 that the penalty value of the refined query Q′(k, r′)
is positively related to r′, i.e., the optimal refined r′ is the minimum radius that
makes the missing vertex ω satisfy the k constraint. Also, we can simply prove
that the refined r′ is necessarily larger than the original query condition r.

4 Explanation Algorithms

In this section, we explore two effective explanation algorithms to answer why-
not questions on RB-k-core searches by refining the original query parameters.

4.1 Modifying the Cohesiveness Constraint k

RotC and RotC+ are the best RB-k-core search algorithms in [5], whose essential
idea is based on the concept of binary-vertex-bounded circles, which reduces
the search cost by sharing a large amount of reusable information. RotC and
RotC+ consider that there is only one vertex difference between adjacent binary-
vertex-bounded circles. As shown in Fig. 3, there are only three binary vertex
bounded circles constructed with L as pole, but there are six vertices in the set.
Obviously, there are many vertex differences among adjacent bounded circles.
By comparing two adjacent circles and splitting the different vertices between
the two circles into several independent enter vertices and leave vertices, we
improve this process. RotC+ builds a social network for each enter circle, and
validates the RB-k-core. We optimize this process as follows: only the current
circle is an enter circle and the next circle in the sequence is a leave circle. Only
then do we construct the social network as well as verify the RB-k-core.

Fig. 3. Multi-vertex intersection
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A basic idea for finding the best answer is to iteratively subtract k by one and
then execute the query algorithm until the expected vertex appears in the result
set. This produces a very large number of useless calculations, especially when
the difference between k′ and k is large. The basic idea may require many rounds
of iterations. The efficiency of the basic idea is very low. In order to get the best
answer quickly, we propose our refined k′ algorithm. The algorithm combines
with optimized and modified RotC+ to obtain the best refined k′ incrementally.
Combining the properties of missing vertex, we propose three pruning strategies
and an early termination condition.

Lemma 1. Given a social network G, a query radius r, a positive integer k, a
query vertex q, and a missing vertex ω, a vertex p may be a vertex in the RB-k-
core result satisfying the constraints if and only if p ∈ (C(ω, 2 ∗ r)∩ C(q, 2 ∗ r)).

Pruning Strategy 1(ψk1). According to Lemma 1, we can safely prune the
vertices outside the range C(ω, 2 ∗ r)∩C(q, 2 ∗ r) from G. We can also prune the
vertices that are not connected to q and ω in the range.

Pruning Strategy 2(ψk2). Based on Lemma 2, we can prune any vertex whose
core number or degree is smaller than or equal to the current best refined k′.

Lemma 2. Given a social network G, a current best refined k′, for any vertex
n, the vertex can be safely pruned if there exist (degG(n) ≤ k′ ∨ coreG[n] ≤ k′).

Proof. Given the current optimal refined k′, by Property 1, we know that if
there exists a refined k′′ with a lower penalty. There must be k′′ > k′. Any
MCC satisfying radius r in which there exists a k′′-core result Ru must have
any vertex ni ∈ Ru with (degG(ni) > k′ ∧ coreG[ni] > k′).

Lemma 3. The upper limit of the best possible modification of k′ is coreGk
[ω],

Gk is a graph after pruning according to Lemma 1.

Lemma 4. A binary vertex bounded circle whose center lies outside the range
C(ω, r)

⋂
C(q, r) can be safely pruned.

According to Lemma 3, the algorithm can be terminated early when the
current best refined k′ is coreGk

[ω].

Pruning Strategy 3(ψk3). Using ω and NGk
(ω) with core number value greater

than or equal to coreGk
[ω] as the pole pre-execution algorithm can help get a

larger k′ faster. And obviously, the faster we find a relatively large k′ value, the
more effective our ψk2 will be.

Algorithm 1 introduces the refined k′ algorithm, and we first prune the graph
G (Lines 1-2) based on the ψk1 of the refined k′ algorithm, and then compute
the core number of Gk and obtain the early termination condition kmax. After
pre-acquiring the current best k′ using ψk3 , we use the grouping-based pre-
processing in the RotC+ algorithm strategy to further prune the vertices that
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Algorithm 1: REFK(q, k, r, ω)
Input: A graph G(V, E), a R-Tree built with G(V, E), a query vertex q, a query

Q(k, r), a missing vertex ω
Output: Optimal refinement Q′(k′, r)

1 k′ ← 1, S ← Null;
2 Gk ← pruning G according to Lemma 1;
3 kmax = coreGk [ω];
4 S = ω + ni; \ ∗ ni ∈ NGk(ω) and coreGk [ni] ≥ kmax ∗ \
5 k′ ← pruning according to ψk3 ;
6 for vertex v ∈ (Gk − S) and coreGk [v] > k′ do
7 C = Null, D = {v};
8 for vertex u ∈ V (Gk − S) and coreGk [u] > k′ do
9 if v �= u and d(u, v) ≤ 2 ∗ r then

10 add Wr(u, v) to C; \ ∗ Wr(u, v) is a set of binary-vertex-bounded
circles with radius r ∗ \

11 add u to D;

12 if coreG(D)[ω] ≤ k′ or coreG(D)[q] ≤ k′ then
13 continue;

14 sort C;
15 for C(c, r) ∈ C do
16 X ← a set of vertices contained in C(c, r);
17 maintain the degree of the vertices in X;
18 if There exists an RB-k′′-core , k′′ > k′ then
19 k′ = k′′;

20 if k′ == kmax then
21 break;\∗terminated early∗\
22 return Q′(k′, r);

do not satisfy the condition from Gk (Lines 3-5). Then, we construct binary-
vertex-bounded circles using the vertices that are contained in Gk-S and whose
core number satisfy the requirement, classify the enter and leave circles according
to the modified classification method, prune them according to Lemma 4, deposit
them in C, and ascending them by polar angle. Then, we prune the unsatisfied
pole according to Lemma 2 (Lines 6-14). Finally, we obtain the set X of vertices
in each MCC range in C and maintain its vertex degree. The adjacent binary
vertex bounded circle after correction have only one vertex difference, so this
step can be constructed quickly by a vertex change. When the current circle is a
enter circle and the next circle is a leave circle, we construct the graph G(X), if
there exists a RB-k′′-core(k′′ > k′) containing ω in G(X), we update the current
best refined k′. By improving the algorithm in [16], the cohesiveness judgement
can be obtained in O(n + m) (Lines 15-21). If the current k′ reaches the early
termination condition, the algorithm ends and the best refinement Q′(k′, r) is
returned for the missing vertex ω (Line 22).
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For the expected vertex M , as shown in Fig. 4(a). First, according to
Lemma 1, {A,B,C,E, J} is pruned to obtain the set {G,F,L,H,M,K,D}
and kmax=2. Then, in the process of constructing binary-vertex-bounded cir-
cles using H, G and M as poles, respectively. According to ψk3 and determining
RB-k-core, the MCC composed of the set {M,G,H,L, F} satisfies r less than or
equal to 1, and the graph composed of this set is a 2-core. And then k′ is updated
to 2. Following that, according to Lemma 2, {D,K} will be pruned, and then F
and L will be used as poles to see if there is a better solution, respectively. Then,
early termination is trigged, and the best refined k′ is finally obtained as 2.

Fig. 4. Refining parameters for the missing vertex M

4.2 Modifying the Spatial Constraints r

When d(ω, q) > 2 ∗ r, REFK cannot be used to make ω appear in the query
results. This motivates us to develop a refined r′ algorithm to answer why-not
questions on RB-k-core searches.

Our algorithm consists of two parts, an expansion algorithm is used to quickly
find a subgraph of G that may contain the best refined r′. An refined r′ algorithm
is used to find the best refined r′. Given a graph G(C) in the range C(q, 2 ∗ r),
expansion algorithm is to iteratively add vertices to G(C) until G(C) satisfies
Property 3. We design several expansion strategies to quickly expand G(C). The
goal of the refined r′ algorithm is to find a circle with minimum radius in G(C)
that contains the missing and query vertices. Combining two prunes and an early
termination, we design the refined r′ algorithm based on a three-vertices circle.

Property 3. Given a positive integer k, there exists a social network Gr ∈ G. We
can obtain an RB-k-core containing ω by modifying r if and only if there exists
a connected k-core containing q and ω in Gr.

Property 4. Suppose there exists a social network Gr ∈ G containing a connected
k-core of ω and q. Gr must contain ω and at least k neighboring vertices of ω in
G with a core number greater than or equal to k.
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Algorithm 2: EXR(q, r, k, ω)
Input: A graph G(V, E), a R-Tree built with G(V, E), a index of core number

of G, a query vertex q, a query Q(k, r), a missing vertex ω
Output: The modified lower bound rmin for r, a graph G(Sc)

1 DisSet = Null;
2 for vi ∈ NG(ω) and coreG[vi] ≥ k do
3 calculate d(vi, q);
4 add < vi, d(vi, q) > to DisSet;

5 sort DisSet;
6 rmin = max(d(ω, q), d(uk, q))/2, (uk ∈ DisSet);
7 c=q , rc=2 ∗ rmin, Sc ← vertex sets V (C(c, rc));
8 for ui ∈ DisSet, (i ≥ k) do
9 construct the graph G(Sc) using Sc;

10 if There exists a RB-k-core in G(Sc) containing q and ω then
11 rmin = rc;
12 break;

13 rc = (d(ui, c) + rc)/2, update c;
14 if vj ∈ (C(c, rc) − Sc) and coreG[vj ] ≥ k then
15 add vj to Sc;

16 return G(Sc) and rmin;

Property 5. ∀Gn ∈ G, coreGn
[ω] < k. Adding ni to Gn may make coreGn

[ω] ≥ k
if and only if vertex ni ∈ G, coreG[ni] ≥ k.

In order to answer the why-not questions on RB-k-core searches by modifying
r, based on Property 3, we need to develop a method for obtaining the social
network for which the best refined r′ exists. To improve the speed of acquisition
and minimize the size of the social network that satisfies the conditions after
expansion. We designed the expansion algorithm.

As shown in Algorithm 2, We first calculate the distance between the vertices
with a core number greater than k-1 in NG(ω) and q. Then, add these distances
and the corresponding vertices to DisSet, and ascending sort them (Lines 1-
5). According to Property 4, we first get the lower bound rmin of refined r′ is
max(d(ω, q), d(uk, q))/2, uk is the kth vertex in the DisSet. Define the circle
center c as the query vertex q, expand radius rc as 2 ∗ rmin (Lines 6-7). If a set
of vertices Sc of C(c, rc) does not satisfy Property 3. According to Property 5,
we need to iteratively add vertices with a core number greater than or equal to
k into C(q, rmin). In order to expand the size of the social network that satisfies
the condition as small as possible and to obtain it as fast as possible. We take out
the next vertex ui in the DisSet sequence and use d(ui, c) + rc as the diameter
rc of the new circle, then, update the circle center c. Add the vertices in C(c, rc)
that satisfying Property 5 to Sc, and loop the above process until there exists a
connected k-core containing q and ω. Then, we update the modified lower bound
to rc. Finally, G(Sc) and rmin are returned (Lines 8-16).
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Algorithm 3: REFR(q, r, k, ω)
Input: A graph G(V, E), a R-Tree built with G(V, E), a index of core number

of G, a query vertex q, a query Q(k, r), a missing vertex ω
Output: The best refinement Q′(k, r′)

1 (G(Sc) and rmin) ← EXR(q, r, k, ω);
2 r′ = ∞;
3 for vi ∈ Sc, i = 3 to |G(Sc)| do
4 for vj ∈ Sc, j = 0 to i-1 do
5 for vx ∈ Sc, x = j+1 to i do
6 if the triangle constructed by {vi, vj , vx} is a non-obtuse triangle

then
7 construct C(c, r) of the vertex set {vi, vj , vx};

8 if d(c, q) > r or d(c, ω) > r then
9 continue;\∗In-process pruning 1 of r ∗ \

10 if r ≥ r′ then
11 continue; \∗In-process pruning 2 of r ∗ \
12 constructing the graph G(C(c, r)) of C(c, r);
13 if There exists a RB-k-core in G(C(c, r)) containing ω and q then
14 if r < rmin then
15 return rmin;\∗terminated early∗\
16 r′ = r;

17 return Q′(k, r′);

Lemma 5. The optimal refined r′ must be greater than rmin.

Proof. According to EXR, a connected k-core containing q and ω may exist in
G(Sc) only if vj (the last neighbor vertex of ω that joins Sc in the EXR) exists.
Because RotC+ prunes vertices outside the range of 2 ∗ r, if the current best
refined r′ is less than rmin, vj will be pruned.

Early Termination Strategy. Based on Lemma 5, when the current best
refined r′ ≤ rmin, the algorithm can terminate and return rmin as the best
refinement.

Pruning Strategy 1(ψr1) for Refining r. Based on Property 6, we can prune
the MCC that do not contain both query and missing vertex.

Pruning Strategy 2(ψr2) for Refining r. Based on Property 7, we can safely
prune MCC with radius greater than or equal to the current best refined r′.

Property 6. Any three vertices constructed minimum covering circle C(c, r), if
d(c, q) > r or d(c,m) > r, the MCC cannot contain both q and ω.

Property 7. According to Property 2, any minimum covering circle C(c, r′′), if
r′′ is greater than or equal to the current best refined r′, the refinement result
penalty found must be greater than the current best refinement.
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After the execution of the expansion algorithm, in order to find the best refined
r′ in G(Sc), based on the above properties, we design a algorithm for refining r.
Algorithm 3 first obtains the social network G(Sc) and the refined lower bound
rmin by calling the expansion algorithm (Line 1). Then, constructs the circle
C(c, r) by combining the vertices in Sc three-by-three when the triangle formed
by the three vertices is a non-obtuse triangle (Lines 2-5). Then, we prune the
generated circle using ψr1 and ψr2 (Lines 6-11). We update the current best
refinement if the circle is not pruned and there is a RB-k-core containing ω in
the network composed of this circle. Also, the early termination is determined
(Lines 12-16). Finally, the best refined r′ is returned (Line 17).

For the missing vertex M , as shown in Fig. 4(b). First, by executing EXR,
the candidate graph G(S1) consisting of S1 and rmin=1.118 are obtained. Then,
three vertices from G(S1) are taken for combination. Assuming that the first
combination is {J, F, L}, r′ is updated to 1.118 due to the existence of a 3-core
containing both M and L in the MCC composed by {J, F, L}. And then some
MCCs satisfying ψr1 are pruned, such as the MCC composed by {G,H, J},
and some MCCs are also pruned because the radius is larger than the current
best refined r′, for example, the MCC consisting of {J, F,C} is pruned because
its radius of 1.802 is larger than 1.118, and REFR iterates the above process.
Finally, we obtain the best refined r′ = 1.118.

5 Experiments

In this section, we evaluate the performance of our proposed algorithms.

5.1 Experimental Setup

We conducted experiments on four real datasets.
– Weeplaces(WP)1: This dataset was collected from Weeplaces. The friend-

ship network consisted of 15,799 vertices and 119,931 edges.
– Brightkite(BK)2: Brightkite used to be a location-based social network-

ing service provider where users shared their location by checking in. The
friendship network consisted of 58,228 vertices and 214,078 edges.

– Gowalla(GW)5: This dataset was collected from Gowalla. The friendship
network consisted of 107,092 vertices and 456,830 edges.

– Foursquare(FS)5: Foursquare contains 2,153,471 users and 27,098,490 social
connections. We randomly selected 100,000 users and 404,484 edges.

To the best of our knowledge, there is no work can be used to answer why-
not questions on RB-k-core searches in geo-social networks. In our experiments,
first, different why-not questions w1-w4 were designed for WP, w5-w8 for BK,
w9-w12 for GW, and w13-w16 for FS. Then, we investigate the performance of
the REFK algorithm and the REFR algorithm under different parameters.

All algorithms are implemented in GNU C++. The experiments were run on
a PC running Ubuntu 20.04, 3.9GHz CPU, 256GB RAM, and 1TB disk.
1 https://www.yongliu.org/.
2 https://www.comp.hkbu.edu.hk/.

https://www.yongliu.org/
https://www.comp.hkbu.edu.hk/
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5.2 Performance Evaluation

Exp-1: In Fig. 5, we compare the execution time of the algorithms under differ-
ent data sizes. It can be observed that the execution efficiency of the algorithms
basically increases with the increase in the dataset size. This is because the
increase in the size of the dataset leads to an increase in the number of ver-
tices to be processed with the same radius constraint. The algorithms needs to
validate more combinations. Figure 5(a) shows a special case. The REFK algo-
rithm gains an increase in execution speed as the dataset size grows from 80%
to 100%. By studying the execution process. We found that this is because the
core number of the missing vertices and some of their neighbors increased in the
last 20% of the size growth. This leads to a larger candidate refined k′ obtained
after ψk3 . Therefore, ψk2 becomes more efficient. So the execution efficiency of
REFK increases instead. Then, we found that there is no refinement strategy
that presents an overwhelming advantage over another refinement strategy. So
next, we investigated the effect of some parameters on the efficiency of algorithms
execution.

Exp-2: We investigate the effect of coreGn
[ω] of the two algorithms. As shown in

Fig. 6, we fixed the query radius r to be 5km, k to be 10, the dataset size is 100%.
In Fig. 6(a), we fixed d(q, ω) to be 7.5 km± 0.1 km. And selected missing vertices
with coreGn

[ω] values of 5-9 for the experiments. It is found that the efficiency of
REFK execution increases as coreGn

[ω] increases. This is because the larger the
coreGn

[ω] can help prune more vertices during REFK execution. At the same
time, we find that the increases in efficiency are not large. The experiments
reveal that REFK is more likely to early termination at lower coreGn

[ω]. This
is because the termination condition is easier to reach if the missing vertex with
a low core number. The balance of prunes and early termination also makes
the efficiency of REFK execution largely stable on the dataset WP with fewer
vertices. In Fig. 6(b), we constrain d(q, ω) to be 12.5km±0.1km. and stretch
coreGn

[ω] to be 10-14 to investigate the effect of coreGn
[ω] on REFR. Observing

the experimental fig, we find that the execution time of REFR decreases as the
value of coreGn

[ω] increases. This is because, indeed, the larger the coreGn
[ω]

than k, the faster it is possible to find the refined r′ that satisfies the constraint
during the REFR execution. Then the pruning efficiency is improved.

Fig. 5. Execution time of algorithms under different datasizes
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Fig. 6. Effect of coreGn [ω] Fig. 7. Effect of d(q, ω)

Exp-3: We investigate the effect of the distance between the missing and query
vertex on the efficiency of the two algorithms. We fixed r is 5km and k is 10. The
dataset size is 100%. In Fig. 7(a), we fixed coreGn

[ω] to be 7 ± 1 and studied the
effect of d(q, ω) on REFK by scaling the distance to be 5-9. The execution time
of REFK increases with distance on the three datasets, and the execution time
of REFK decreases on the FS dataset. The execution time increases because the
farther the missing vertex is from the query vertex, the weaker the cohesiveness
constraint of the two vertices, and the more difficult it is to find a higher value
of k′ quickly. However, the increase in distance means that more vertices can
be pruned by ψk1 . This constrains the execution time from growing by a great
magnitude. ψk1 works very well in the FS dataset, with a much higher percentage
of vertices pruned than the other three datasets. And in FS, REFK’s early
termination is achieved quickly, so the execution efficiency of REFK increases
instead. In Fig. 7(b), we fixed coreGn

[ω] as 12± 1, and set the distance as 11-
15 to study the effect of d(q, ω) on REFR, the algorithm’s execution time grows
rapidly as d(q, ω) increases. It is the growth of d(q, ω) that causes EXR to return
a larger rmin value and a larger candidate social network.

Exp-4: Then we investigate the execution efficiency of the algorithms on differ-
ent why-not questions on different datasets. In Fig. 8(a) we observe that there is
not much difference in the execution speed of algorithms on w1-w4. This is due
to the relatively balanced distribution and the small size of the WP. Figure 8(b)
investigates the performance of algorithms on the BK dataset. w6 and w7 have
the same number of vertices to be processed. However, the structural differ-
ence causes the REFR algorithm to trigger early termination quickly on w7.
But the REFE algorithm can obtain a faster execution speed on w6. Since the
missing vertex does not satisfy the space requirement, w1 and w8 cannot return
refinement result by the REFK algorithm. In Fig. 8(c), the candidate processing

Fig. 8. Running time of algorithms under different why-not questions
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Fig. 9. Effect of query Q Fig. 10. Penalty for different wi

vertices size of w12 is the largest, but the efficient of ψk1 and ψk3 prune a very
large number of vertices. It ensures that REFK is executed efficiently. However,
the REFR algorithm cannot guarantee the structural cohesiveness of the miss-
ing vertex within a 100km radius circle on w12. The huge vertices size leads to
the REFR timeouts. Also, we observe that REFK is slower than REFR on the
GW dataset. This may be due to the fact that the vertices in the GW dataset
are more discrete under the same cohesiveness constraint. During the execution
of REFR, w16 in Fig. 8(d) handles the maximum number of vertices in the 16
why-not questions. So it shows the worst execution efficiency on REFR. For w10

and w13, since the missing vertex does not satisfy the cohesiveness requirement,
we cannot return to refinement result using the REFR algorithm.

Exp-5: We investigate the effect of query attributes r and k on the efficiency of
the algorithms on BK and GW. By observing the experimental results in Fig. 9,
we can find that the initial r and k have almost no effect on the algorithms
execution efficiency. The algorithms’ execution efficiency is only related to the
structure of the vertices in the dataset, the difference between the query and the
missing vertex, and the properties of the missing vertex.

Exp-6: We investigate the penalties under different why-not questions on the
two datasets BK and FS. As shown in Fig. 10(a), the penalties of REFK on BK is
generally higher than that of REFR. This is because on BK, REFK usually leads
to more irrelevant vertices joins due to a smaller refined k′, while REFR brings
a smaller refined r′. On FS, as shown in Fig. 10(b), refined k′ is usually larger,
and r′ usually be expanded to larger values. So the REFR algorithm yields a
higher penalty on FS. This is also matched by our Property 1 and Property 2.
That is, larger r or k value changes bring larger penalties.

6 Conclusion

To answer why-not questions on radius-bounded k-core searches, we first ana-
lyze the influences of changing parameters on the results of RB-k-core searches.
Then, we propose two explanation algorithms by refining the parameters k and
r, respectively. Finally, we conduct extensive experiments on four real geo-social
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networks, which show that our algorithms can return high-quality refined param-
eters which can make the missing vertices appear in the results. In future work,
we will explore effective explanation algorithms for answering why-not questions
on RB-k-core searches by refining the two parameters k and r simultaneously.
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Abstract. The goal of attributed community detection is to search a
partition of the network such that there is high cohesion within each
group and low coupling between two groups. We argue that multiple
partitions of the attributed network should be captured with differ-
ent semantics and community detection should be approached from the
perspective of attribute subspace. In this paper, we integrate spectral
wavelets with attribute subspace, and develop a framework of Multi-
scale Community Detection in Subspace of Attribute (MCDSA). Our
idea is to implement graph partitioning via scale-dependent modular-
ity and independent attribute subspaces, thus making our model more
flexible and effective. In MCDSA, communities at each scale have inde-
pendent attribute subspace, which is helpful to analyze the importance
of each attribute under different network partition, better revealing the
relationship between nodes. Extensive experiments on multiple bench-
mark datasets show that, the quality of community detection can be
remarkably enhanced under the regime of attribute subspaces, achieving
the state-of-the-art performance.

Keywords: Community detection · Multi-scale · Spectral wavelets ·
Attribute subspace

1 Introduction

Community detection (CD), one of the most vital and fundamental tasks in
network analysis, has a broad range of applications in various domains, such
as functional prediction and sub-market identification. With a given network, a
community is defined as a cohesive set of nodes with more connections inside
than outside. Due to the fact that the network in general can be modelled as
a graph over vertices and edges, CD is regarded as a graph clustering problem,
where each community is corresponding to one of the clusters in the graph.
In addition to network topology, the entities, i.e., nodes are usually associated
with attribute that is important for making sense of communities. E.g., papers in
citation networks have areas of keywords. Such networks with node attributes are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 110–119, 2023.
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named as attributed graphs [1]. Attributed graphs are broadly used to represent
social networks, gene and protein interactions.

Despite the significant progress that has been achieved, current CD methods
still face challenges when applied to real-world networks. First, CD is flexible in
nature, and it is almost impossible to generate high-quality communities directly
using a predefined community size. Fortunato [3] proves that an excellent method
should be able to locate communities of different sizes to ensure that one is
closest to the real community. However, most of the existing CD can only find
a single partition of the network, which often does not meet our requirements.
Secondly, with the increase of attribute information, researchers start to explore
the relationship between topology and attribute information. Existing studies
have revealed that the performance of CD could be substantially boosted with
the help of additional information (i.e., attributes) compared to topology-only
approaches. Most of the existing studies simply regard attributes are of equal
importance to each community on the network, which is not necessarily the case
however.

In light of the aforementioned shortcomings of the existing CD methods
on attributed graph, we propose a novel Multi-scale Community Detection in
Subspace of Attribute (MCDSA), that is, to find all communities with vari-
ous semantics such that nodes are densely-connected and share homogeneous
properties within the same community. In order to deal with nodes with dif-
ferent semantics, we define the scale range and introduce the idea of spectral
wavelet to get scale-dependent network partition. In order to tackle difference of
semantic information between communities under certain partition, we provide
interpretable attribute subspaces for each community partition. In summary,
our contributions are three folds: (1) To our knowledge, we introduce spec-
tral wavelet into attributed network partitioning for the first time and define a
scale-dependent modularity on the node-attributed graph inspired by the node
attribute, modularity and graph wavelets; (2) We propose an adaptive spectral
clustering solution for the attribute subspaces on attributed graph, where each
partition is equipped with a unique set of attribute subspace weights assigned;
(3) We demonstrate the effectiveness of MCDSA by conducting extensive exper-
iments on synthetic and real-world datasets with vividly designed cases.

2 Preliminaries

Given an attributed graph via a triple G = (V,E,F), where V = {v1, v2, ..., vN}
and E are set of nodes and edge respectively, N is the number of nodes. F ∈
R

N×F is node attributes matrix with i -th row fi represents the attribute value
of node vi using an F-dimensional vector. We normalize each dimension of the
feature between [0, 1]. The topology of attributed graph G can be represented by
its adjacency matrix A = [aij ] ∈ {0, 1}N×N , where aij = 1 denotes the existence
of an edge between nodes vi and vj . The degree matrix D ∈ R

N×N is a diagonal
matrix with diagonal element dii =

∑N
i=1 aij as the degree of node vi. In our

algorithm, we also define the range of scales S = [smin, smax]. Let us define the
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normalized Laplacian matrix of the graph as L = IN−D−1/2AD−1/2. L ∈ R
N×N

is real symmetric, therefore diagonalizable: its spectrum is composed of its sorted
eigenvalues (λl)l=1...N , so that 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN ≤ 2; and of the
matrix X ∈ R

N×N of its normalized eigenvectors: X = (X1 |X2| . . . | XN ). The
framework of MCDSA is depicted in Fig. 1.

Fig. 1. Overview of the MCDSA framework. Input: topology of the attributed graph
and attribute information (suppose there exist three attributes, i.e., f1, f2, f3); Output:
network partitioning at multiple scales and the corresponding attribute subspaces.

3 Method

3.1 Scale-dependent Node Representation

Spectral Graph Wavelets. Graph wavelets were defined in [4] using the graph
Fourier modes. Its construction is based on band-pass filters defined in the
graph Fourier domain, generated by stretching a band-pass filter kernel g(·)
by a scale parameter s > 0. The stretched filter has matrix representation
Ĝs = diag (g (sλ1) , . . . , g (sλN )) that is diagonal on the Fourier modes. Hence,
the wavelet basis Ψs ∈ R

N×N at scale s reads as: Ψs = (ψs,1 |ψs,2| . . . | ψs,N ) =
XĜsX�. We use the band-pass filter kernel g(·):

g (x;α, β, x1, x2) =

⎧
⎨

⎩

x−α
1 xα for x < x1

p(x) for x1 ≤ x ≤ x2

xβ
2x−β for x > x2

(1)

where p(x) is taken as the unique cubic polynomial interpolation that respects
the continuity of g and its derivative g′.

Scale-sensitive Modularity. Since the attribute information of the attributed
graph facilitates the accurate identification of clusters, we add the attribute
information of the nodes to A for the initial community partitioning. Specifically,
we transform A into a weighted adjacency matrix A(0), where the strength of
connected edges between nodes is the attribute similarity between nodes.Gauss
kernel function is used to compute the similarity between nodes.
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The local modularity B evaluates the target communities using only local
information in the network and is defined as:bij = aij − didj

2M , where M is the total
number of edges of the graph. Since the task of this paper is attributed graph
oriented, we integrate the attribute information into the modularity matrix

B(t):b(t)ij = a
(t)
ij − d

(t)
i d

(t)
i

2M ′ , where d
(t)
i =

∑N
j=1 a

(t)
ij , M ′ is the weighted sum of

all edges of attributed graph. Then, we incorporate B(t) with the wavelet basis
Ψs to obtain the new B(t)

s at each scale s:B(t)
s = ΨsB(t) = XĜsX�B(t).

It is worth noting that the current B(t)
s already contains information about

the structure and attributes of each node in the network at each scale s, where
each row in B(t)

s is the current view of the node. The relevant distances between
nodes are calculated: ds(va, vb) = 1 − (B(t)

s,a)
T
B(t)

s,a.

Fast Wavelet Transform. When the size of the nodes in the graph exceeds
1000, the Laplacian’s diagonalization becomes computationally prohibitive and
the exact computation of the Fourier matrix X is no longer possible. Hammond
et al. [4] devised an efficient way to bypass the Laplacian’s diagonalization and
obtained an approximation of the wavelets by using Chebyshev polynomials to
approximate the filters [8]. We will write FWTs the operator corresponding to
this fast wavelet transform at scale s. Then the wavelet basis Ψs at scale s can be
efficiently approximated by: Ψs ∼ FWTs(IN ), where IN is the identity matrix
of size N.

3.2 Community Detection with Attribute Subspaces

Community Partitioning Based on Hierarchical Dendrogram Cluster-
ing. To group the nodes, the connectivity constraint is then imposed to a hierar-
chical complete linkage clustering algorithm to output a dendrogram, making sure
that each node is clustered into a group of nodes to which it has path in the origi-
nal network. For the multiple possible divisions that exist in the dendrogram, we
choose the classical k -means as the judgment benchmark, thus forming an initial
network division at scale s.

In the light of the above discussion, we now have a set of partitions P =
{Ps}s∈S , one for each scale. Let Ps ∈ R

N×Js be a matrix to indicate a commu-
nity clustering membership at scale s, where Ps = (1s,C1 |1s,C2 |...|1s,CJs

), 1s,Cj

is the binary indicator function of community Cj at scale s (i.e., 1s,Cij
= 1 if

node vi is in Cj , else 0), Js is the total number of community divisions.

Construction of Attribute Subspaces. Inspired by subspace clustering, our
approach will assign a relevant semantic information to each clustering result,
i.e., probe for relevant node features. For symbolic clarity, we will focus on sub-
space inference tasks for network partition Ps at a specific scale s in this section.
For any community at scale s, the attribute weight that makes the nodes in the
community similar to each other is calculated such that the internal nodes in
the community are similar to each other based on the attributes and not similar
to the external nodes. In other words, the weight should be such that the nodes
have a small distance from each other based on the attributes. We devise an
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operator named Entropy Weight Constraint (EWC) on the subspace inference
to infer the truthful community division. EWC defines an attribute subspace
weight method without iterative optimization and uses the objective function to
compute the attribute subspace weight vector. The objective function is:

Hs,C(w) =
1
2

∑

i∈C

∑

j∈C,i �=j

F∑

t=1

wt

(
fvit − fvjt

)2 + γ

F∑

t=1

wtlog2wt (2)

where C is the target community at scale s, wt represents the weight of the t-
dimension attribute. The former term of Eq.(2) is the distance between the nodes
within the current community, and the latter represents the negative entropy
value, the positive parameter γ is the incentive power that controls the multidi-
mensional weights. To minimize H (w), each target community one can obtain
the subspace weight vector w = [w1, ..., wt, ..., wF ], and w only has higher val-
ues in the few dimensions corresponding to the attributes in the subspace, while
the remaining dimensions are smaller. The attributes subspace weight satisfies
a constraint, namely

∑F
t=1 wt = 1, wt > 0. By minimizing H (w), we obtain:

wt =
exp (−Dt/γ )

∑F
t=1 exp (−Dt/γ )

,Dt =
1
2

∑

i∈C

∑

j∈C,i �=j

(
fvit − fvjt

)2 (3)

The derivation process is detailed in the Appendix.

Construction Normalized Cut in Subspace Projections. We use the nor-
malized cut (NCut) because it has excellent advantages in avoiding unbalanced
cuts.

NCut
(t)
W(Ps) =

Js∑

k=1

pT
k · A(t) · (1N − pk)

pT
k · Ws · 1N

(4)

The nominator calculates the sum of weights over outgoing edges of cluster k,
while the denominator calculates the sum of weights over internal and outgoing
edges of cluster k. Thus, the normalized cut trades off low inter-cluster connectiv-
ity and high intra-clustering connectivity. Due to the fact that the convergence
of NCut depends on the matrix A(t), the A(t) has a dramatic impact on the opti-
mization of NCut. Here, we enrich A(t) by acting the kernel transformation k(x,
y) on the node features:a(t)

u,v = k(x,y) · I((u, v) ∈ E), where x=f (u) and y=f (v)
are the feature vectors of vertices u and v, and I is the indicator function. In this
paper, we consider limiting the range to kernels with non-negative derivatives,
so we use Gaussian kernels as kernel functions and use the weighted Euclidean

norm:‖x − y‖ :=
√

(x − y)T diag(W)(x − y) , where
D∑

i=1

wi = 1, wi ≥ 0.

Straightforwardly, we project the entire graph into the subspace Pk and
gauge the quality of cluster k via analysing the level of separation of cluster k.
It is irrelevant how well the k -th cluster is divided from the other clusters in the
network. Consequently, the weight matrix is formalized as:

W(t)
P,W =

K∑

k=1

Wsk
◦ (

pk · 1T
N

)
(5)
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Note that the weighted adjacency matrix A(t) is unsymmetrical, making it
not interpretable and unsuitable for subsequent spectral clustering. Thus, it is
reasonable to average the sum of matrices A and AT to achieve symmetry. What
is more, if two nodes belong to the same community, their similarity is evaluated
in the corresponding subspace. In terms for two nodes belonging to different
communities, their similarity is measured as the average of the two similarities
which are calculated in each individual subspace.

4 Experiments

4.1 Experimental Setup

Datasets. Our proposed MCDSA is evaluated on six single-scale datasets and
eight SP datasets [7] with different parameters. The statistics of all datasets are
summarized in Table 1 and 2. Moreover, we provide all the data websites in the
supplement for reproducibility.

Baselines. To verify the effectiveness of MCDSA, we compare our MCDSA
with two categories representative methods: (1) Classical community detection
methods on attributed graph: NAGC [6], AGGR [11] and NotMle [10]; (2) GCNs-
based attributed graph community detection method: HCD [5], GDCL [9] and
SOA [2]. F1 and conductance(con) are used to measure the accuracy of detected
local communities. Also, we use the quality metric of community attribute simi-
larity(CAS ):CAS(C) = 1

|C|2
∑

t∈F

∑

u∈C

∑

v∈C

wt(fut − fvt)
2. It should be noted that

all of the above-mentioned evaluation metrics are specific to a particular com-
munity at the scale s, so the performance of the model needs to be evaluated by
averaging the results of the experiments of all communities at the scale s.

Table 1. Statistics of single-scale datasets used in the experiments.

Dataset |V | |E| |F | k

categorized Texas 187 283 1703 5

Washington 230 366 1703 5

Facebook 1,046 27,783 576 9

numerical Disney 124 333 28 9

ArXiv 856 2,660 30 19

Enron 13,533 176,967 18 40

4.2 Performance Comparison

Performance Evaluation. We first make a comparison of MCDSA with the
baselines for the CD task. We perform 10 times experiments on each dataset. In
particular, since all baseline methods are single-scale, we record the best results
at all scales. Table 3. reports the main results of all methods.
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Table 2. Statistical of the eight SP datasets with different parameters.

Dataset SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8

ρ ρ=1 ρ=2

k k=11 k=13 k=15 k=17 k=10 k=15 k=20 k=25

|E| 3,593 4,226 4,767 5,504 3,175 4,759 6,331 7,955

Table 3. Attributed community search performance compared with other approaches.

Dataset Metric NAGC AGGR NotMle HCD GDCL SOA MCDSA

Texas F1 0.84 0.83 0.84 0.85 0.94 0.92 0.93

CAS 0.25 0.25 0.26 0.21 0.17 0.17 0.15

Washington F1 0.79 0.73 0.82 0.79 0.87 0.87 0.89

CAS 0.35 0.27 0.25 0.27 0.25 0.23 0.21

Facebook F1 0.82 0.79 0.84 0.81 0.89 0.89 0.91

CAS 0.26 0.27 0.24 0.24 0.23 0.22 0.18

ArXiv con 0.34 0.23 0.21 0.21 0.16 0.14 0.15

CAS 0.26 0.25 0.22 0.25 0.18 0.14 0.13

Enron con 0.28 0.24 0.23 0.24 0.22 0.21 0.17

CAS 0.34 0.26 0.28 0.27 0.23 0.19 0.16

4Area con 0.37 0.29 0.31 0.3 0.24 0.26 0.21

CAS 0.31 0.3 0.29 0.31 0.27 0.24 0.19

Observations: (1) The performance of the traditional methods are worse than
that of the GCNs-based methods generally. The reason might be that the tra-
ditional methods pay too much attention to the topology of the network, which
results in the underfitting of the performance. GCNs-based methods consider
the impact of node neighbors on the target node so as to enhance the accuracy
of CD. (2) MCDSA generally achieves better performance than all baselines in
most cases, which shows that the spectral approach combines the advantages
of independent attribute subspaces. GCNs-based approaches typically embed
attributes as vectors and propagate them to neighborhood representations as
the structure progresses, which will not be sufficient to exploit the impact of
attributes on community formation, even the GCNs-based approach degrades
performance in networks with sparse topologies. (3) Although multiple matrix
factorizations are introduced in this paper, due to the use of Chebyshev polyno-
mials approximation, it will greatly reduce the complexity of the algorithm, and
benefit the CD of large networks.

Module Analysis. In this section, we evaluate experiments on different SP
networks, validate the validity of multi-scale community detection. At each scale,
we record the total number of partitions of the current network and give the
convergence of NCut in Table 4.
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With the increase of scale s, the number of network partition decreases
sharply. This is because as s grows, the constraints of the network topology
gradually relax, resulting in a smaller detection space. In particular, when the
number of scales approaches the maximum, the number of network partitions
will also increase, owing to the fact that the weight of the attribute information
of nodes increase when the effect of topology constraints is reduced, to get a
more meaningful division of the community. The change of the number of net-
work partitions further proves that the formation of community is controlled by
topology and attribute information.

Table 4. The NCut of SP at each scale with different parameter settings.

Scales SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8

s=12.20 #partitions 242 64 64 65 640 640 640 4

NCut 208.771 31.769 32.046 33.412 639.284 639.544 639.662 2.1

s=15.80 #partitions 66 53 65 3 230 640 640 72

NCut 34.076 24.876 33.049 0.616 191.466 639.544 639.662 50.462

s=20.45 #partitions 46 19 3 2 153 65 5 5

NCut 22.028 5.493 0.587 0.301 118.609 44.245 1.991 1.963

s=26.47 #partitions 16 3 17 22 6 4 3 17

NCut 4.019 0.462 5.112 10.085 2.295 1.27 0.968 8.046

s=34.26 #partitions 15 3 3 10 3 3 16 25

NCut 3.692 0.356 1.502 2.209 0.746 0.76 7.121 15.949

s=44.36 #partitions 3 4 8 3 16 15 11 5

NCut 0.341 0.511 4.511 0.328 7.921 6.549 4.564 1.618

s=57.42 #partitions 3 3 5 3 4 9 5 4

NCut 0.333 0.323 1.502 0.325 1.184 6.068 2.201 1.164

s=74.33 #partitions 3 3 9 3 10 3 3 4

NCut 0.347 0.392 3.719 0.328 2.644 1.347 0.795 1.174

Sensitivity Evaluation. As verified in Sect. 3.2, γ hold a pivotal function in
EWC. Under the MCDSA, the performance of different γ on various datasets is
shown in Fig. 2. It can be observed that when γ=0.5, the experimental results
of MCDSA on all datasets are optimal. γ represents the contribution of node
structure information and attribute information during community detection. It
is concluded that although the topology of nodes is more intuitive, the presence
of attribute information cannot be ignored either.
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Fig. 2. The effect of parameter γ in real-world datasets.

5 Conclusion

In this paper, we propose MCDSA on attributed graph, a multi-scale attributed
community detection method with multi-semantic community partitions from
the perspective of attribute subspace deduction. MCDSA is able to find all com-
munities with various semantics such that nodes are densely-connected and share
homogeneous properties within same community. Extensive experimental results
show that the performance of our method is better than that of comparison
method, and it can be applied to categorical and numerical attributed networks.
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Appendix

In Eq. (5), the minimization of the objective function H (w) is a constrained
nonlinear optimization problem for which the solution is uncertain. For this we
introduce the Lagrange multiplication to generate an unconstrained minimiza-
tion problem as shown in Eq. (6).

min H ′(w, δ) =
C∑

i=1

C∑

j=i+1

F∑

t=1

wt

(
fvit − fvjt

)2 + γ

F∑

t=1

wtlog2wt − δ

(
F∑

t=1

wt − 1

)

(6)
where δ is containing the Lagrange multiplier corresponding to the constraint.
Set the gradient of H ′(w, δ) with regard to wt and δ to 0, so we have:

∂H′

∂δ = (
F∑

t=1
wt − 1) = 0

∂H′

∂wt
=

C∑

i=1

C∑

j=i+1

(
fvit − fvjt

)2 + γ
F∑

t=1
wt (1 + log2wt) − δ = 0

(7)
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Let Dt =
∑C

i=1

∑C
j=i+1

(
fvit − fvjt

)2 , Eq. (8) can be obtained:

wt = exp
(

−Dt − γ + δ

γ

)

= exp
(

δ − γ

γ

)

× exp
(

−Dt

γ

)

(8)

According to Eq. (7),
∑F

t=1 wt = 1, thus we have:

F∑

t=1

wt =
F∑

t=1

exp
(

δ − γ

γ

)

×exp
(

−Dt

γ

)

= exp
(

δ − γ

γ

)

×
F∑

t=1

exp
(

−Dt

γ

)

= 1

(9)

By Eq. (9), we have exp
(

δ−γ
γ

)
= 1/

F∑

t=1
exp

(
−Dt

γ

)
. Substituting the above

results back into Eq. (8), Eq. (10) can be obtained:

wt = exp
(

−Dt

γ

)

/
F∑

t=1

exp
(

−Dt

γ

)

(10)

References

1. Chang, Y., Ma, H., Chang, L., Li, Z.: Community detection with attributed random
walk via seed replacement. Front. Comput. Sci. 16(5), 1–12 (2022). https://doi.
org/10.1007/s11704-021-0482-x

2. Chen, H., Yu, Z., Yang, Q., Shao, J.: Community detection in subspace of attribute.
Inf. Sci. 602, 220–235 (2022)

3. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
4. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-

tral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)
5. Li, T., Lei, L., Bhattacharyya, S., Van den Berge, K., Sarkar, P., Bickel, P.J.,

Levina, E.: Hierarchical community detection by recursive partitioning. J. Am.
Stat. Assoc. 117(538), 951–968 (2022)

6. Maekawa, S., Takeuch, K., Onizuka, M.: Non-linear attributed graph clustering by
symmetric NMF with PU learning. arXiv preprint arXiv:1810.00946 (2018)

7. Sales-Pardo, M., Guimera, R., Moreira, A.A., Amaral, L.A.N.: Extracting the hier-
archical organization of complex systems. Proc. Natl. Acad. Sci. 104(39), 15224–
15229 (2007)

8. Shuman, D.I., Vandergheynst, P., Frossard, P.: Chebyshev polynomial approxima-
tion for distributed signal processing. In: 2011 International Conference on Dis-
tributed Computing in Sensor Systems and Workshops (DCOSS), pp. 1–8. IEEE
(2011)

9. Zhao, H., Yang, X., Wang, Z., Yang, E., Deng, C.: Graph debiased contrastive
learning with joint representation clustering. In: IJCAI, pp. 3434–3440 (2021)

10. Zhao, Q., Ma, H., Li, X., Li, Z.: Is the simple assignment enough? exploring the
interpretability for community detection. Int. J. Mach. Learn. Cybern. 12(12),
3463–3474 (2021)

11. Zhe, C., Sun, A., Xiao, X.: Community detection on large complex attribute net-
work. In: Proceedings of the 25th ACM SIGKDD International Conference on
knowledge Discovery Data Mining, pp. 2041–2049 (2019)

https://doi.org/10.1007/s11704-021-0482-x
https://doi.org/10.1007/s11704-021-0482-x
http://arxiv.org/abs/1810.00946


Efficient Anomaly Detection in Property
Graphs

Jiamin Hou, Yuhong Lei, Zhe Peng, Wei Lu(B), Feng Zhang,
and Xiaoyong Du(B)

School of Information and DEKE, MOE, Renmin University of China, Beijing, China
{jiaminhou,leiyuhong,pengada,lu-wei,fengzhang,duyong}@ruc.edu.cn

Abstract. Property graphs are becoming increasingly popular for mod-
eling entities, their relationships, and properties. Due to the compu-
tational complexity, users are seldom to build complex user-defined
integrity constraints; worse, the systems often do not have the capa-
bilities of defining complex integrity constraints. For these reasons, vio-
lation of the implicit integrity constraints widely exists and leads to
various data quality issues in property graphs. In this paper, we aim
to automatically extract abnormal graph patterns and efficiently mine
all matches in large property graphs to the abnormal patterns that are
taken as anomalies. For this purpose, we first propose a new concept
namely CGPs(Conditional Graph Patterns). CGPs have the capability
of modeling anomalies in the property graph by capturing both abnor-
mal graph patterns and the attribute (i.e., property) constraints. All
matches to any abnormal CGP are taken as anomalies. To mine abnor-
mal CGPs and their matches automatically and efficiently, we then
propose an efficient parallel approach called ACGPMiner (Abnormal
Conditional Graph Pattern Miner). ACGPMiner follows the generation-
and-validation paradigm and does the anomaly detection level by level.
At each level i, we generate CGPs with i edges, validate whether CGPs
are abnormal, and mine all matches to any abnormal CGPs. Further,
we propose two optimizations, pre-search pruning to reduce the search
space of match enumerations and a two-stage strategy for balancing the
workload in distributed computing settings. Using real-life graphs, we
experimentally show that our approach is feasible for anomaly detection
in large property graphs.

Keywords: graph · abnormal data · parallel

1 Introduction

The graph model has been showing its effectiveness in modeling entities and their
relationships in a wide spectrum of applications scenarios, like knowledge bases,
transportation graphs, social networks, etc. Due to the computation complexity
of graph models, it is seldom to build complex user-defined integrity constraints

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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in large graphs [1]. Worse still, some integrity constraints are not trivial to be
expressed, e.g., a person is not allowed to have two nationalities with one as
Chinese, but is allowed to have two nationalities with one as “the United States”
and the other as “England”. Due to the above two reasons, violation of the
implicit integrity constraints widely exists and leads to various data quality
issues in the graph.

Example 1 (Motivation Example). Consider two real subgraphs G1, and G2

in Fig. 1(a), which are extracted from a classic knowledge graph YAGO [2]. G1

shows that two persons Bardas and Nikephoros are each other’s children, and
this modeling is obviously contradictory. G2 demonstrates that a person named
Preus holds both German and Norwegian nationality at the same time. This
modeling is also not correct because Norway does not allow dual citizenship.
Interestingly, although Norway does not support dual citizenship, some other
countries support dual citizenship, such as the United States and England. ��

Fig. 1. Abnormal subgraphs in YAGO and abstracted graph patterns

Thus far, most of the existing works [3–6] follow the defining-and-identifying
paradigm to do graph anomaly detection. Specifically, they first define abnormal
graph patterns and then perform graph pattern matching to identify subgraphs
that are graph isomorphic to any of the patterns. These subgraphs are consid-
ered anomalies. For example, we first define two graph patterns that are P1 and
P2 in Fig. 1(b), and then identify subgraphs that are graph isomorphic to either
P1 or P2 in a large graph, e.g., G1 and G2, which are considered as anoma-
lies. However, the defining-and-identifying paradigm has two drawbacks. On the
one hand, modeling anomalies simply using graph patterns is not adequate.



122 J. Hou et al.

For example, it is not correct that any matches to P2 are modeled as anoma-
lies. This is because, as repeatedly discussed, a subgraph G is considered as an
anomaly only when G is graph isomorphic to P2, and the attribute values (resp.
country) of vertices of G are confined to a pre-defined set of values, e.g., Norway.
On the other hand, the graph patterns need to be defined a priori. In reality,
defining the abnormal graph patterns is not trivial, and often, they are modeled
after collecting quite a few “manually-reported” anomalies. For example, patterns
P1 and P2 are modeled by the abstraction of manually-reported anomalies G1,
G2, and other isomorphic subgraphs can be identified by performing graph pat-
tern matching. Unfortunately, this manually-reported paradigm is incomplete,
leaving many more anomalies to be unrevealed.

To mine anomalies from a large property graph automatically and efficiently,
in this paper, we first propose a concept namely the conditional graph pat-
tern (a.b.a. CGP) that is able to model the anomalies properly. CGP cap-
tures the graph topology as well as the attribute value constraints and hence
compared with graph patterns, it takes a more expressive capability to model
anomalies. Take G2 in Fig. 1(a) for example. If we add an attribute constraint
x1.name =‘Norway’ on any match to the graph pattern P2, then no false posi-
tives of anomalies over Norway nationality are produced. We introduce a quan-
tifiable metric namely abnormality, based on which we are able to mine CGPs
that are considered as anomalies. Furthermore, to make CGPs useful in practice,
we propose ACGPMiner (Abnormal Conditional Graph Pattern Miner), an effi-
cient parallel approach to identifying all subgraphs in the property graph that
satisfy the requirements of CGPs. ACGPMiner combines pattern mining and
attribute discovery in a single process, designs various effective pruning strate-
gies to reduce the search space, and balances the workload in the distributed
compute settings using a two-stage strategy. Extensive experiments are con-
ducted on real-life graphs and the results show that our approach is feasible for
anomaly detection in large property graphs.

2 Problem Definition

Definition 1 (Property graph). A property graph G is modeled as a quad-
tuple (V,E,L, FA). (1) V is a set of vertices; (2) E is a set of edges, and E ⊆
V × V ; (3)each v ∈ V is labeled L(v) ∈ Θ and each e ∈ E is labeled L(e) ∈ Θ,
where Θ is an alphabet of the node and edge labels in graphs; (4) each vertex
v ∈ V is associated with a set A = {A1, . . . , An} of attributes (i.e., properties).
Attribute values of v are denoted as FA(v) = (A1, c1), (A2, c2), ..., (An, cn), where
ci (1 ≤ i ≤ n) is the attribute value of v over Ai.

Definition 2 (Subgraph, ∈). Given two graphs G1 = (V1, E1, L1, FA1) and
G2 = (V2, E2, L2, FA2), G1 is said to be a subgraph of G2, written as G1 ∈ G2,
iff (1) V1 ⊆ V2, E1 ⊆ E2; (2) for each vertex v ∈ V1, L1(v) = L2(v) and
FA1(v) = FA2(v); (3) for each edge (u, v) ∈ E1, L1(u, v) = L2(u, v).
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Definition 3 (Isomorphism, �). Two graphs G1 and G2 are said to be iso-
morphic, written as G1 � G2, iff there is a bijective function f : V1 → V2

satisfying: (1) for each vertex v ∈ V1, L1(v) = L2(f(v)); (2) for each edge
(u, v) ∈ E1, (f(u), f(v)) ∈ E2 and L1(u, v) = L2(f(u), f(v)).

Definition 4 (Graph pattern). A graph pattern is a graph P [x̄] = (VP , EP ,
LP , u), where (1) VP (resp. EP ) is a set of vertices (resp. edges); (2) LP is a
function that assigns labels to each vertex v ∈ VP (resp. edge e ∈ EP ); (3) x̄ is
a list of variables, and (4) u is a bijective mapping from x̄ to VP that assigns a
distinct variable to each vertex v ∈ VP .

Definition 5 (Graph pattern matching). A match of a graph pattern P in
the graph G is a subgraph G1 of G that is isomorphic to P , i.e., G1 ∈ G and
G1 � P .

Example 2 Figure 1 shows two graph patterns: P1 and P2. (a) P1[x0, x1] describes
two persons x0 and x1 who are each other’s children. In P1, 1) VP are two vertices
and EP are two edges; 2) LP assigns the label “person” to both two vertices and
the label “hasChild” to both two edges; 3) x̄ contains two variables x0 and x0;
and 4) u maps x0 to the left vertex and x1 to the right vertex in P1. A match
of the pattern P1 in G1 is x0 → v0 and x1 → v1. (b) Similarly, P2[x0, x1, x2]
indicates that a person x0 is a citizen of both country x1 and country x2. A
match of pattern P2 in G2 is x0 → v2, x1 → v3 and x2 → v4. ��

Graph isomorphism verifies whether two (sub)graphs have an identical struc-
ture (i.e. topology). Given a set of (sub)graphs G = {Gi, G2, ..., GN}, the iso-
morphism relation divides G into equivalence classes. Each class is abstracted as
a graph pattern and subgraphs belonging to the same class are graph isomorphic
to each other. In this way, a graph pattern can be considered as a template of
all isomorphic subgraphs and a subgraph is considered as an instance (match) of
its pattern. However, graph patterns do not contain any attribute information
which is required in property graphs. To address this issue, we introduce the con-
ditional graph pattern, given in Definition 6, to impose the attribute constraint
on the graph pattern.

Definition 6 (Conditional graph pattern). A conditional graph pattern
(a.b.a. CGP) is defined as P [x̄](X), where P [x̄] is a graph pattern and X is
sets of conditions of x̄. A condition has the form of (x.A, c), where x is a vari-
able in x̄, A denotes an attribute, and c is the attribute value attached to x over
A.

Definition 7 (Conditional graph pattern matching). A match of a CGP
P [x̄](X) in the graph G is a subgraph G1 of G that 1) is isomorphic to P and
2) satisfies all conditions in X.

In a CGP P [x̄](X), X can be ∅, which can be seen as a particular conditional
graph pattern without additional conditions, i.e., a simple graph pattern. More-
over, to reduce excessive conditional literals, we select a set of active attributes
from G that are of users’ interest or are attributes contained in most entities.
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Example 3 (1) Consider a CGP P1[x0, x1](∅). The condition of this CGP is
empty thus it can be targeted as a graph pattern. (2) Consider a CGP
P2[x0, x1, x2] (x1.name = ‘Norway′). The condition of this CGP is attached to
the variable x1, which limits the attribute “name” to the value ‘Norway’. Com-
pared to P2 depicting the structure that one person has two nationalities, This
CGP additionally requires attribute constraint that the person’s one nationality
is Norway. With the above CGPs, we can capture the abnormal subgraphs G1

and G2 in Fig. 1. ��
In order to measure the degree of anomaly of CGPs, we put forward the

concept of abnormality. Before introducing the concept of abnormality, we first
introduce the concept of support to better explain the abnormality.

Definition 8 (Support). Consider a graph G, and a CGP ϕ = P [x̄](X), where
P has a pivot [7] z ∈ x̄. We define the support of ϕ as supp(ϕ,G) = |P (G,X, z)|,
where P (G,X, z) is the set of unique vertices corresponding to the variable z for
all matches of ϕ.

Given a graph G, a CGP ϕ and a support threshold λ, we say ϕ is frequent
in G if supp(ϕ,G) ≥ λ. It is intuitive to arise a simple solution that infrequent
CGPs can capture abnormal data. But if we consider the entire graph as an
instance of a CGP, it cannot occur more than once. It is not enough to simply
look for infrequent CGPs. In this paper, we propose the abnormality to mine
abnormal CGPs as follows.

Definition 9 (Abnormality). We define the abnormality of a CGP ϕ as:

abn(ϕ,G) =
supp(ϕ,G)
supp (ϕ′, G)

(1)

Here, ϕ is generated by adding an edge or a condition to a CGP ϕ′.

If the support of ϕ′ is very large, while the extended newly CGP ϕ has
little even no support, then ϕ most likely extends some unreasonable/abnormal
information. The abnormality describes the ratio of these two support degrees.
What’s more, abnormality is an additional condition that is applied in infrequent
CGPs. So formula (1) has an implicit condition that supp(ϕ,G) ≤ λ.

The Problem Statement. Given a property graph G, a support threshold
λ ≥ 0, and an abnormality threshold ε ≥ 0, the anomaly detection problem is to
extract abnormal CGPs ϕ over G with supp(ϕ,G) ≤ λ and abn(ϕ,G) ≤ ε and
then find all matches to any abnormal CGPs.

3 ACGPMiner Approach

3.1 Overview

To mine anomalies from a large property graph automatically and efficiently,
we propose ACGPMiner (Abnormal Conditional Graph Pattern Miner), a par-
allel approach to identifying abnormal subgraphs in the property graphs that
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satisfy the requirements of CGPs. As shown in Fig. 2, ACGPMiner employs the
master-worker paradigm in a multithreaded shared-nothing environment. Com-
munication occurs between the master and workers. The master manages the
underlying cluster resources and coordinates the execution of tasks. Workers
perform actual specific data processing tasks and report the status of tasks to
the master. Each worker in {w0, ..., wn−1} is a process running on multiple cores
in {c0, ..., cm−1}.

Fig. 2. An overview of ACGPMiner

The core technique of ACGPMiner is to discover abnormal CGPs, based on
which we can detect all abnormal subgraphs that match them. To mine abnormal
CGPs, ACGPMiner first finds graph patterns P in G, then generates CGPs
with P by adding conditions, and finally verifies whether CGPs are abnormal.
Specifically, ACGPMiner discovers abnormal CGPs level by level, from smaller
CGPs to larger ones. At each level i, it digs out abnormal CGPs with i edges
through four significant steps: (1) graph pattern generation to obtain a set of
graph patterns; (2) graph pattern matching to find matches for all graph patterns
that contribute to CGP candidates; (3) CGP generation to attach conditions to
graph patterns for producing candidate CGPs based on matches, and (4) CGP
verification for validating whether a CGP is abnormal. In our design, we model
graph pattern generation and CGP generation as generating tasks, and model
graph pattern matching and CGP verification as computing tasks. Considering
that the generating tasks are typically lightweight while computing tasks are
prohibitively expensive, ACGPMiner performs generating tasks in the master
node and conducts computing tasks in worker nodes in parallel, i.e., assigning
multiple workers to compute and execute together computing tasks in parallel.

3.2 Detail Design

We now elaborate on four major steps of ACGPMiner, as shown in Fig. 3.

Graph Pattern Generation. First, we perform graph pattern generation to
generate various graph patterns that are candidates for future CGP discovery.
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As stated previously, ACGPMiner runs level by level. At each level i, it first
generates new graph patterns with i edges. Each graph pattern P ′ expands a level
i−1 graph pattern P by adding a new edge (possibly with new nodes). The main
techniques of this step have been extensively discussed in numerous works [8–
11]. In this paper, we employ the CAM code [8] to guarantee the uniqueness of
graph patterns and the FFSM-Join and FFSM-Extend search strategies [11] to
generate candidate graph patterns quickly.

Fig. 3. Four major steps of ACGPMiner

Graph Pattern Matching. Next, we perform graph pattern matching to iden-
tify matches for all graph patterns contributing to CGP discovery. ACGPMiner
depicts matches in a materialized table view consisting of three sections: TID,
IDs, and ITEMS. TID is the order of matches; IDs characterize the match
as a list of unique IDs of vertices; ITEMS represent attribute information of
each match’s vertices as a list of attribute-value pairs. For instance, G1 is a
match of P1 in Fig. 1. It can be converted to a table view containing TID
with [0] (assuming it is the first match of P1), IDs with [v0, v1] and ITEMS
with [(x0 − name,Bardas), (x1 − name,Nikephoros)]. Furthermore, ACGP-
Miner provides an incremental method, which extends the stored matches to
obtain matches of a larger graph pattern. To obtain matches of P , ACGPMiner
performs a join operation Matches(P ′) �� Matches(e), where P is generated by
adding a frequent edge e to P ′. When doing the join operator, we also perform an
isomorphism check and an automorphism check to reduce the exploration space.
Since matches may involve large graph data and are therefore computation-
ally expensive, we perform them in parallel. Specifically, we decompose matches
across multiple workers, with each worker computing a portion of graph pattern
matches.
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CGP Generation. Based on matches of the graph pattern, ACGPMiner per-
forms abnormal CGP discovery. CGP discovery is comprised of two subtasks:
CGP generation and verification. We first perform CGP generation to obtain a
set of candidate CGPs. Recall that a CGP P [x̄](X) is a graph pattern P cou-
pled with conditions X. To introduce conditions to graph patterns, we utilize the
semantic attribute information of matches, i.e., the ITEMS. We build conditions
by starting the search from singleton X collected from the ITEMS part and pro-
gressing to a larger X through the set combination level by level. For instance,
we can add a singleton (x0 −name,Bardas) on P1 to generate a candidate CGP
P1(x0.name = ‘Bardas′).

CGP Verification. After gathering a set of candidate CGPs, ACGPMiner
performs CGP verification to check whether a CGP is abnormal. ACGPMiner
applies a vertical data format for fast computation. We convert the original data
to the vertical-layout data with the format {X: TIDLIST}. Here, X is a single-
ton item, and TIDLIST is a list of TIDs containing X. For example, the original
data of G1’s matches can be converted to {{X : [(x0 −name,Bardas)],TIDList:
[0]};{X : [(x1 − name,Nikephoros)], TIDList: [0]}}. Based on this design, for
getting matches of larger conditions X, we only need to collect the intersection
of TIDLIST of X’s subsets. The support of a CGP with conditions X is the size
of TIDLIST. Once we get the support of each CGP, we can check whether it is
abnormal based on the formula (1).

Pruning. To reduce the search space, we apply the below prunings: (1) Pruning
graph patterns: If supp(P,G) ≤ λ, we cease expanding a graph pattern P to
produce a larger graph pattern. It is based on the fact that the support of graph
patterns is anti-monotonic, meaning that as the graph pattern is expanded, the
support decreases. Similarly, no CGP discovery is made if supp(P,G) ≤ λ. (2)
Pruning candidate CGPs: ACGPMiner prunes candidate condition sets of length
k containing infrequent subsets of length k − 1. If X is a frequent condition set,
then all of its subsets must also be frequent.

3.3 Discussion

Two computing tasks dominate the cost of ACGPMiner. Both tasks require
efficiently generating matches, and there is potential for improvement.

First, there may exist a huge storage overhead in graph pattern matching
since we materialize matches of all graph patterns into table views. However,
we do not need to materialize matches for infrequent graph patterns since we
prune them without making CGP discovery. Inspired by this consideration, we
use a pre-search pruning strategy to only materialize matches of frequent graph
patterns. A detailed discussion is given in Sect. 4.1.

Second, it is necessary to balance the workload for computing matches in
parallel with multiple workers. As previously mentioned, we decompose matches
onto multiple workers, where each worker computes a portion of the matches.
A basic parallelization strategy allocates all workers to compute matches for a
graph pattern. However, not all workers are required to compute each graph
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pattern’s matches. The matches may be small and solvable by a few workers.
For this case, assigning all workers could incur significant communication and
synchronization costs and waste valuable resources. To solve it, we design a
two-stage strategy for load balancing. The discussion is elaborated in Sect. 4.2.

4 Optimizations

4.1 Pre-search Pruning

We use pre-search pruning to reduce the search space of ACGPMiner. The key
insight is that we only get all matches when the support is greater than the
threshold λ. To do so, we design a domain structure and employ a heuristic
search strategy for graph pattern matching on this structure.

Domain Structure. For a graph pattern P [x̄ = x0, x1, ..., xk], its domain struc-
ture of matches can be formalized as D = (Dx0 ,Dx1 , ...,Dxk

), where Dxi
is the

set of vertices that match xi induced by m(xi) for all matches m of P in G. For
each vertex in Di, we store its unique ID and attribute information ITEM. In
addition, we store its adjacent vertex for searching matches of larger graph pat-
terns. Semantically, Dxi

represents the set of domains of the variable xi. With
the domain structure, we can directly get the support of a graph pattern, i.e.,
the size of Dz where z is the variable representing the pivot pattern node.

Example 4 To better explain domain structure, we show the representation of a
graph pattern P [x̄ = x0, x1, ..., xk] in Fig. 4(a). Here, (1) {x0, x1..xk} are a set
of variables of x̄; (2) vx is a vertex of Dx1 , and (3) {Dxk

: vy} is vx’s adjacent
vertex, indicating that vx is connected to vy, which is in the domain Dk. As
shown in Fig. 4(b), the domain structure can represent P2’s match G2. ��

Dx0 Dx1 Dx2

v2 {Dx1:v3,Dx2:v4} v4 {Dx0:v2 }v3 {Dx0:v2 }

Fig. 4. Domain structure

Graph Pattern Matching. Based on the domain structure, we employ a
heuristic search strategy in graph pattern matching to reduce the search space.
Specifically, for each vertex v ∈ Dz, we only search for one match containing
v. This is due to the fact that our support only considers the size of the vertex
specified in the pivot pattern variable. Only if the support meets the threshold
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Algorithm 1: Graph pattern matching using domain structure
// get candidate domain structure

1 D(P )=D(P ′) �� D(e);
// calculate the support

2 for each vertex u of Dz where z is the pivot do
3 find a match m that assigns u to x ;
4 if not find then
5 Remove u from the domain D

6 support=size of Dz ;
// get all matches

7 if support ≥ λ then
8 for each vertex u of Dz do
9 get all matches consisting u;

during the pre-search are all matches containing the v searched. Otherwise, we
stop the discovery.

Algorithm 1 details how we use domain structure for incremental graph pat-
tern matching. For a candidate graph pattern P , we first get its candidate domain
storage structure by joining matches of P ’s parent graph pattern P ′ and its fre-
quent extended edge e (Line 1). We stitch together domain structures Di cor-
responding to the connected pattern vertex. Then we apply heuristics to get
support on the domain structure (Line 2–6). We iterate over each vertex u ∈ Dz

and search for a match that assigns u to z (Line 3). Note that we perform iso-
morphism and automorphism checks through searching matches. If the search is
unsuccessful, u is removed from Dz (Line 5). Hence, if these vertices are consid-
ered in the later pattern matching for getting all matches (Line 7–9), it precludes
any further search and reduces the search space. After traversing all vertices of
Dz, it is easy to get P ’s support, which is equal to the size of Dz (Line 6). Only
when the support is greater than the threshold λ, do we materialize all matches
(Line 7–9).

4.2 Load Balancing

We now discuss the two-stage load balancing strategy, as shown in Fig. 5. The
key insight is that candidates with high computational costs can be assigned as
many workers as possible, while candidates with low computational costs can
be assigned only a few workers. To do so, the first stage builds an approximate
computational cost model for deciding the number of workers to compute graph
pattern matches. The second stage generates efficient execution plans and assigns
workers to perform actual parallel computing. The detailed introduction is as
follows.

The First Stage. ACGPMiner generates a pool of jobs, where each job com-
putes matches of one specific graph pattern. In this stage, our goal is to decide
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how many workers should be assigned to process a job. To do so, we build an
approximate computational cost model which predicts the size of the matches of
the newly generated graph pattern. Recall that a graph pattern P ’s matches are
generated by a join Matches(P ′) �� Matches(e). Drawing on the cost estimation
of natural joins in relational databases, we build the approximate model in the
following.

C(P ) =
T (P ′)T (e)

Max(V (P ′, c), V (e, c))
(2)

Here, T (P ′) (resp. T (e)) means the count of matches of the candidate graph
pattern P ′ (resp. e). c is the connected pattern node between P ′ and e. V (P ′, c)
(resp. V (e, c)) means the count of distinct values in P ′ (resp. e) for the variable c.
On the basis of the predicted statistics, we can divide one job among n workers
for parallel processing. If the predicted cost C(P ) is more than a given maximum
cost θ, we need n = max(1, C(P )/θ) workers. Intuitively, if a worker bears data
that exceeds the threshold in the future, then the current data will be distributed
to other workers. More expensive jobs are assigned to more workers.

The Second Stage. In this stage, we utilize the statistics from the first stage
to generate fast execution plans with good load balance. Our goal is to utilize
workers as much as possible and not keep them idle for too long. To do so,
we handle similar jobs that require almost a similar processing time at the same
time. The master continually dispatches jobs to available workers until it becomes
empty. Dispatched jobs are prioritized by predicted size; smaller and similar
jobs are processed first. Once workers are assigned to jobs, they perform actual
parallel computations, i.e., parallel graph pattern matching or parallel CGP
verification.

Fig. 5. Two-stage load balancing strategy
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5 Evaluation

5.1 Experimental Setup

Implementation. ACGPMiner is implemented in Scala and is built on top of
Spark [12]. Spark deals with iterative algorithms in an efficient way and performs
the in-memory process to faster the execution. All experiments are conducted
on Apache Spark (version 3.1.2). Each executor is set with 5 GB memory and 2
cores. The memory of the driver program is 2 GB. The total cores of each worker
are maxed to 8, and the executors of each worker are maxed to 4.

Algorithms. We implement different configurations of ACGPMiner: (1)
ParAM: ACGPMiner with the optimizations of pre-search pruning and the two-
stage load balancing strategy; (2) DomainAM: ParAM with pre-search pruning
but without the two-stage load balancing strategy; (3) TableParAM: ParAM
without pre-search pruning but with the two-stage load balancing strategy; and
(4) BaseAM: ParAM without pre-search pruning and the two-stage load balanc-
ing strategy.

The Compared Method. The CGP is a new proposed definition to mine
abnormal data. Existing works were not aimed at mining abnormal CGPs. To
compare with other methods, we implement a Baseline following the idea pro-
posed in [7], which is one of the most current state-of-the-art methods under the
automatic paradigm. We make appropriate changes to fit our topic. Specifically,
we run in iterations and discover abnormal CGPs with i edges at each iteration i,
which works similarly to our BaseAM algorithm discussed above. The difference
is that it uses a brute-force algorithm in attribute discovery. It first lists all can-
didate CGPs and then iteratively validates each CGP. Our algorithm, however,
employs a vertical-data layout for fast validation and does not require scanning
through the dataset for each CGP validation. We also implement the Baseline
in Scala with Spark for a fair comparison.

Dataset. We use the following two real-life graphs. (a) YAGO: YAGO [2]
is a knowledge graph that augments WordNet with common knowledge facts
extracted from Wikipedia. We use YAGO with 18 entity types and 36 edge
labels. We pick up YAGO with different scales, controlled by the numbers |V | of
vertices varying in {0.5M, 1M, 1.5M, 2M} and numbers |E| of edges varying in
{1M, 2M, 3M, 4M}. Each entity has an average of 3 attributes in this dataset.
(b) DBpedia [13] is another well-known knowledge graph that aims to extract
structured content from the information created in Wikipedia. We use DBpedia
with 401 entity types, 5M vertices, 268 edge labels, and 14M edges. Each entity
in this dataset has an average of 4 attributes.

Hardware Setup. We conduct experiments in an in-house cluster with virtual
nodes running CentOS 7.4. Each node is equipped with two Intel(R) Xeon(R)
Platinum 8276 CPUs (28 cores × 2 HT), 8 × 128GB DRAM, and 3TB NVMe
SSDs.



132 J. Hou et al.

5.2 Experimental Results

We compare the result of our method ACGPMiner (with all optimizations, i.e.,
ParAM) to the Baseline using a variety of configurations. We next report our
findings.

Exp-1: Effect of Support Threshold λ. We first study the performance by
varying support threshold λ on YAGO and DBpedia datasets. We set k = 3
and n = 4 and report the results in Fig. 6(a) and 6(b). First, the running time
of both algorithms grows when the support threshold decreases. It is expected
that more graph data will be involved with a smaller support threshold. Second,
ParAM outperforms Baseline all the time. For YAGO, ParAM is 1.72x faster on
average and up to 1.93x than Baseline. For DBpedia, ParAM is 1.69x faster on
average and up to 1.84x than Baseline. It confirms that our proposed algorithm is
reliable. Third, the support threshold has smaller impacts on ParAM than Base-
line. For YAGO, along with the reduction in the support threshold, the running
time of Baseline increases by a factor of 1.46 compared to ParAM’s 1.1. For
DBpedia, Baseline suffers from 3.07x performance loss while ParAM needs 2.4x
more running time. Decreasing the support threshold results in an exponential
increase in the number of possible candidates and, thus, the exponential decrease
in the performance of the mining algorithm. A feasible algorithm should be able
to handle a small support threshold. ParAM is more suitable with a low sup-
port threshold since ParAM conducts the pre-search pruning which significantly
reduces the overhead of materialized pattern matching.

Exp-2: Effect of Pattern Size k. In this experiment, we evaluate the impact
of pattern size k. We study the performance on YAGO and DBpedia datasets
by varying k from 2 to 5. We set n = 4, λ = 2000 for YAGO, and λ = 9000 for
DBpeida. The results are shown in Fig. 6(c) and 6(d). First, both ParAM and
Baseline algorithms need more time to discover abnormal CGPs with larger pat-
terns. Since more CGPs are discovered with larger patterns. Second, matches
may be exponentially large since the graph structure is more complex as the
number of pattern edges increases. It is challenging to solve such cases. ParAM
outperforms Baseline by varying k on both two datasets. ParAM outperforms
Baseline by 10 times on average for YAGO and by 3.8 times on average for
DBpedia. It again affirms that our method is feasible for property graphs. Fur-
thermore, pattern size k has more negligible impacts on ParAM than Baseline.
For YAGO, the running time of ParAM has increased by 1.7x by varying k from
2 to 5. In contrast, the running time of the Baseline has increased by 17.2x. The
result is consistent with the DBpedia dataset.

Exp-3: Scalability with |G|. We evaluate the scalability by varying the size
of graph |G| = (|V |, |E|) from (0.5M, 1M) to (2.0M, 4M). We fix k = 3, n = 3
and λ = 8000. As shown in Fig. 6(e), it takes longer to discover abnormal CGPs
for larger graphs, as expected. The execution time of ParAM is 1.72x faster
than Baseline on average. When the scale of graphs grows to (2.0M, 4M), it
takes up to 1.97x less time to discover abnormal CGPs. Moreover, ParAM is
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Fig. 6. Performance evaluation of ACGPMiner

less sensitive to the scale of the graph. As the graph scale increases, the running
time of ParAM increases by 2.26x while the time of Baseline increases by 3.9x.

Exp-4: Parallel Scalability. In this experiment, we study the parallel scala-
bility by varying the number n of workers from 2 to 10 on YAGO dataset. We fix
k = 3 and λ = 8000. As shown in Fig. 6(f), the running time decreases with the
increment of workers. Parallel graph pattern mining and CGP verification dom-
inate the cost. Nonetheless, the parallel costs are reduced when more workers
are used. ParAM outperforms Baseline by 2.0x on average and up to 2.3x.

5.3 Optimization Analysis

In this experiment, we study the effect of various optimizations. We compare
the performance of various optimizations, i.e., the pre-search pruning and the
two-stage load balancing strategy, on YAGO and DBpedia datasets by varying
support thresholds. We set k = 3 and n = 3, and the result is shown in Fig. 7.

We next report our findings. First, for both YAGO and DBpedia datasets,
ACGPMiner performs best with all optimizations (denoted by ParAM) and per-
forms worst when no optimization is involved (denoted by BaseAM), as expected.
ParAM outperforms BaseAM 1.66x on average for YAGO and 1.68x on average
for DBpedia. Second, for both datasets, the optimization of the pre-search prun-
ing is more effective than the two-stage load balancing strategy. Compared to
BaseAM, DomainAM outperforms 1.62x while TableParAM outperforms 1.12x.
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Fig. 7. The effect of optimizations

It is because we reduce much more search space by applying the pre-search prun-
ing and thus do not need to require computing. Third, we can also observe that
the running time takes longer on DBpedia dataset compared to YAGO dataset.
It again confirms that the impact of |G| is consistent: the larger G is, the longer
ACGPMiner takes.

6 Related Work

Graph Pattern Matching. Given a pre-defined graph pattern, graph pattern
matching finds subgraphs in the data graph that are similar (graph isomorphism)
to the pattern. Graph pattern matching has been extensively studied in the past
decades. A straightforward way is to find matches based on subgraph isomor-
phism [3]. However, it suffers from huge computational overhead when the graph
is big. To reduce time complexity, other methods of a family of graph simulations
have been proposed, such as an incremental simulation method [4], a bounded
simulation method [5], and a distributed simulation method [6]. However, those
methods suffer from either poor expression or in a manual way. First, graph
patterns focus on graph structures and ignore the rich attribute information
of property graphs. Furthermore, they are required to define graph patterns in
advance, which is not trivial and often is developed with a lag after multiple
occurrences of abnormal data.

Automatic Discovery of Abnormal Data. Under the automatic paradigm,
there exist a few works applying data dependencies to mine abnormal data.
Data dependencies are traditionally used to enforce data quality in relations [14–
16], and more recently in graphs [1,7,17,18]. As opposed to data dependencies
implied in relations, graph dependencies impose the functional dependencies on
graph typologies. These works aim to discover laws behind the normal graph
data. Abnormal data is considered data that does not satisfy these dependencies,
which is not intuitive. Also, those works suffer from poor performance since
they either use brute force algorithms or do not provide parallel approaches for
supporting large-scale graphs.
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7 Conclusion

In this paper, we define CGPs to formalize abnormal graph data. CGPs specify
the graph structure and attribute conditions in a uniform manner, which can
provide a fine-grained paradigm as opposed to graph patterns. We also define
the abnormality to measure the degree of exception of abnormal CGPs. Based on
the above two notions, we formalize the discovery problem for mining abnormal
graph data. To make CGPs useful in practice, we propose a parallel approach,
ACGPMiner, for efficiently and automatically mining abnormal CGPs in large-
scale graphs. Moreover, we present various optimizations: (1) we design a domain
structure and employ a heuristic search strategy for pre-search pruning to reduce
search space; (2) we provide a two-stage strategy for load balance. We implement
our approach in Scala and build it on top of Spark. Using real-life graphs, we
experimentally confirm the effectiveness of our approach.
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Abstract. Graph edge coloring is a fundamental problem in graph theory and
has been widely used in a variety of applications. Existing solutions for edge
coloring mainly focus on static graphs. However, many graphs in real world are
highly dynamic. Motivated by this, we study the dynamic edge coloring problem
in this paper. Since edge coloring is NP-Complete, to obtain an effective dynamic
edge coloring, we aim to incrementally maintain the edge coloring in a way such
that the coloring result is consistent with one of the best approximate static edge
coloring algorithms when the graph is dynamically updated. Unfortunately, our
theoretical result shows that the problem of finding such dynamic graph edge col-
oring is unbounded. Despite this, we propose an efficient dynamic edge coloring
algorithm that only explores the edges with color change and their 2-hop incident
edges to maintain the coloring. Moreover, we propose some early pruning rules to
further reduce the unnecessary computation. Experimental results on real graphs
demonstrate the efficiency of our approach.

1 Introduction

Graph edge coloring is a fundamental problem in graph analysis [6]. Given a graph G,
an edge coloring of G is an assignment of colors to the edges such that no two adjacent
edges receive the same color. The goal of edge coloring is to find a coloring with the
smallest number of colors to properly color edges of G.

Applications. Edge coloring can be used in many applications. For example:

• Privacy-preserving clustering on private network. In a private network, all vertices
are independent and private, and each of them knows nothing about vertices other
than itself and its neighbors [1,8]. Edge coloring is used as a key routine in the
privacy-preserving EM (Expectation-Maximization) clustering algorithm [32].

• Transmission scheduling in sensor networks. In wireless sensor network, transmis-
sion scheduling aims to assign time slots to nodes or edge links. Edge coloring has
long been used for transmission scheduling in wireless networks in which a proper
edge coloring is first computed, and then each time slot is mapped to a unique link
with a direction of transmission [7,14].
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• Graph visulization. In social network, graph edge coloring can be used to visualize
the network structure for graph exploration [19,29].

Motivation. Due to the wide application scenarios of edge coloring, lots of graph edge
coloring algorithms have been proposed in the literature [5,18,24,25]. However, these
algorithms mainly focus on the static graphs while many real world graphs are large
and frequently updated. For example, Facebook has more than 1.3 billion users and
approximately 5 new users join Facebook every second; Twitter has more than 300
million users and 3 new users join Twitter every second [26]. Obviously, the direct
solution that uses static algorithms to compute the edge coloring from scratch to handle
the graph update is impractical. Motivated by this, we study the dynamic edge coloring
problem and aim to propose a new incremental algorithm to maintain the edge coloring
when the graph is dynamically updated.

Our Approach. To make the dynamic edge coloring practically applicable in real appli-
cations, we should guarantee the effectiveness and efficiency of the designed algorithm
simultaneously. For the effectiveness, computing an edge coloring with the smallest
number of colors is NP-Complete unfortunately [17], which means it is very unlikely
that a polynomial time algorithm exists to compute the optimal edge coloring. On the
other hand, [16] shows that using heuristics to perform the edge coloring can not only
achieve orders of magnitude speedup in efficiency, but often find an optimal or a nearly
optimal coloring for large graphs. Following this observation, we propose an order-
ing heuristic based static edge coloring algorithm OHEColoring. For a given graph G,
OHEColoring can finish the edge coloring in O(m · dmax) time, where m is the num-
ber of edges and dmax is the maximum degree in the graph. Obviously, OHEColoring is
very efficient to compute the edge coloring for large graphs. Moreover, as verified in our
experiments, OHEColoring can also find an optimal or a nearly optimal coloring (refer
to Table 1). Therefore, we can address the dynamic edge coloring problem as follows:
after each update of the graph, we maintain the edge coloring incrementally and ensure
that the coloring is the same as the coloring result obtained by OHEColoring. In this
way, the effectiveness of the dynamic coloring can be well guaranteed. The remaining
problem is how to maintain such coloring efficiently.

No matter how desirable, we theoretically prove that incrementally maintaining
the coloring based on OHEColoring is unbounded [11,12,27] (refer to Theorem 1 in
Sect. 4.1), which means we cannot design an algorithm whose running time is poly-
nomial to the minimum amount of work that any incremental algorithm needs to do.
Despite this, we reveal the smallest edge color property of OHEColoring and devise an
new edge coloring propagation mechanism. Based on the propagation mechanism, we
propose a dynamic edge coloring algorithm by iteratively recoloring the edges whose
color may be affected due to the graph update. Although this algorithm only needs to
recolor a small number of edges in the graph, it may recolor the same edge multiple
times, which leads to unnecessary computation. Therefore, we further propose an edge
priority based recoloring algorithm in which each edge is recolored only once. Remark-
ably, our theoretically analysis show that this algorithm only needs to explore the edges
with color change and their 2-hop incident edges for the maintenance, and it is practi-
cally very efficient as verified in the experiments.
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Contributions. We make the following contributions in this paper:

(A) Unboundedness of the Dynamic Edge Coloring. We theoretically prove that incre-
mentally maintaining the coloring based on OHEColoring is unbounded.

(B) An Efficient Dynamic Edge Coloring Algorithm. We propose an efficient dynamic
edge coloring algorithm that only explores the edges with color changes and their 2-hop
incident edges to maintain the coloring. We also propose several pruning rules to further
improve the dynamic edge coloring performance.

(C) Extensive Performance Studies on Real Datasets. We conduct extensive perfor-
mance studies on six real graphs. The experimental results demonstrate the effective-
ness and efficiency of our proposed algorithms.

2 Related Work

Graph analysis has been extensively studied in the literature [1,8,15,19,21–23,29,33–
37]. Graph edge coloring is a classic problem in graph analysis. Computing the optimal
graph edge coloring is NP-Complete [17]. As graph edge coloring is NP-complete, it
is unlikely to be fixed parameter tractable when parametrized by the number of colors.
[38] proves that for graphs with treewidth w, an optimal edge coloring can be computed
in timeO(nw(6w)w(w+1)/2), where n is the number of vertices in the graph. [20] shows
that it is possible to test whether a graph has a 3-edge-coloring in time O(1.344n).
[4] proves that it is possible to optimally edge-color any graph in time 2mmO(1) and
exponential space, or in time O(2.2461m) and only polynomial space, where m is the
number of edges in the graph. [31] shows that edge coloring requires at least dmax colors
for general graphs, and this is tight for bipartite graphs. Due to the NP-completeness,
lots of approximate algorithms are proposed for edge coloring [5,18,24,25]. [16] shows
that heuristic algorithm can not only achieve orders of magnitude speedup, but often find
a solution close to the optimal coloring for large graphs. Besides, edge coloring is also
considered in the context of multigraphs [30], bipartite graphs [13], and planar graphs
[9]. There are also extensive work on distributed edge coloring algorithms [2] and online
edge coloring problems [28]. Regarding dynamic graph edge coloring, [3,10] study the
problem from the theoretical perspective. Nevertheless, these methods involve complex
data structures and practically expensive operations, which make them unable to handle
large graphs in real applications. Therefore, we have to design new practically effective
and efficient dynamic edge coloring algorithms.

3 Preliminaries

Consider an undirected an unweighted graph G = (V,E), where V (G) represents the
set of vertices and E(G) represents the set of edges in G. We denote the number of
vertices as n and the number of edges as m. Every vertex has a unique ID and we use
id(u,G) to denote the id of vertex u. We use nbr(u,G) to denote the neighbors of u
in G. The degree of a vertex u, denoted by deg(u,G), is the number of neighbors of u
in G. For simplicity, we omit G in the notations if the context is self-evident. Given a
graph G, we use dmax to denote the largest degree of vertex in G and N to denote the
set of non-negative integers.
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Algorithm 1: OHEColoring(G)
1 initialize each edge as uncolored;
2 foreach e ∈ E(G) in decreasing order of ≺ do
3 e.color ← greedyColor(G, e);

4 Procedure greedyColor(G, e)
5 C ← {0, 1, . . . , deg(u) + deg(v)}; C ← ∅;
6 foreach e′ adjacent to e in G do
7 C ← C ∪ {e′.color};
8 return min{c|c ∈ C ∧ /∈ C};

Definition 1 (Edge Coloring). Given a graph G = (V,E), an edge coloring of G is a
mapping C : E(G) → C from the set of edges E(G) to a set C of colors such that no
two adjacent edges are assigned the same color, where C ⊂ N.

For a graph G and an edge coloring C, we use |C(G)| to denote number of colors
used in C. For an edge e, we use e.color(C) to denote the color of e assigned by C.
Definition 2 (Chromatic Index). Given a graph G, the chromatic index of G, denoted
by χ(G), is the smallest number of colors needed for an edge coloring of G.

Definition 3 (Optimal Edge Coloring). Given a graph G, the optimal edge coloring of
G, denoted by � (G), is an edge coloring of G such that |�(G)| = χ(G).

Problem Statement: In this paper, we focus on the problem of dynamic edge coloring,
which is defined in the following: Given a graph, we compute the optimal edge coloring
� (G) when graph is dynamically updated by inserting/deleting edges. Since computing
the optimal edge coloring is an NP-complete problem [17], we resort to approximate
solution in this paper.

In this paper, we mainly focus on edge insertion/deletion, because vertex
insertion/deletion can be regarded as a sequence of edge insertions/deletions pre-
ceded/followed by the insertion/deletion of an isolated vertex.

4 Our Approach

4.1 General Idea and Problem Analysis

As introduced in Sect. 1, to achieve the goal of effectiveness and efficiency simulta-
neously, we aim to incrementally maintain the coloring and ensure that the dynamic
coloring result is consistent with the ordering heuristic based static edge coloring algo-
rithm OHEColoring. Therefore, we present OHEColoring first.

Ordering Heuristic Based Static Edge Coloring Algorithm. Intuitively, the edge with
the largest number of adjacent edges potentially produces the highest color. Therefore,
OHEColoring processes the edges in the decreasing order characterized by their adja-
cent edges and each edge is given the color with the smallest number that is not already
used by one of its adjacent edges. Specifically, we define the edge order as follows:
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Definition 4 (Edge Dominance ≺). Given a graph G and two edges e = (u, v), e′ =
(u′, v′) ∈ E(G) (w.l.o.g, assume deg(u) ≥ deg(v) and deg(u′) ≥ deg(v′)), we say e
dominates e′, denoted by e ≺ e′, if (1) deg(u) > deg(u′), or (2) deg(u) = deg(u′) but
deg(v) > deg(v′).

For the case that deg(u) = deg(u′) and deg(v) = deg(v′), we can further break the
tie based on the ids of vertices, and we prefer the smaller id without loss of generality
in this paper. Obviously, ≺ defines a total order of all edges in G. Following ≺, our
ordering heuristic based edge coloring is shown in Algorithm 1.

Algorithm 1 first initializes the edges in G as uncolored (line 1). Then, it iterates
over the edges in decreasing order of ≺ (line 2) and assigns each edge the color returned
by procedure greedyColor (line 3). For a given edge e, procedure greedyColor is used
to compute the smallest color not assigned to an edge adjacent to e (line 5–8).

Example 1. Consider graph G illustrated in Fig. 1 (a). According to Definition 4, we
have (v5, v6) ≺ (v5, v1) ≺ (v5, v2) ≺ · · · (v11, v12). Following Algorithm 1, we color
(v5, v6) first. As no adjacent edge of (v5, v6) is colored, then color 0 is assigned to
(v5, v6). Then, we color (v5, v1), since (v5, v6) has been colored with color 0, then
(v5, v1) is assigned with color 1. We continue the above procedure and the finial color-
ing is shown in Fig. 1.

For a graph G, the time complexity of OHEColoring to color G is O(m · dmax).
Considering that we have to iterate each edge in a graph and explore the adjacent edges
even for verifying the correctness of an edge coloring, OHEColoring is efficient regard-
ing edge coloring. In addition, as verified in our experiments, the number of colors
used by Algorithm 1 is nearly optimal. Therefore, we adopt OHEColoring as our under-
lying static algorithm and aim to incrementally maintain the coloring consistent with
OHEColoring when the graph is dynamically updated.

For dynamic algorithms, a criterion for measuring the effectiveness of dynamic
algorithms is boundedness [11,12,27]. A dynamic edge coloring algorithm A regard-
ing OHEColoring is bounded if it computes ΔO such that OHEColoring(G) ⊕ ΔO =
OHEColoring(G ⊕ ΔG), and its cost can be expressed as a polynomial function of the
size |CHANGED| of changes, where ΔG represents the updates to G, ΔO represents

Fig. 1. OHEColoring and Dynamic Edge Coloring
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the edges with color change after the updates, |CHANGED| = |ΔG|+ |ΔO|. Following
[11,12,27], A should be locally persistent, i.e., each edge only stores its auxiliary sta-
tus information and pointers to its adjacent edges; no global information is maintained
between successive calls to the algorithm. No matter how desirable, the boundedness is
beyond reach for OHEColoring, which is shown in the following theorem:

Theorem 1. Given a graph G, the dynamic edge coloring regarding OHEColoring is
unbounded.

Fig. 2. Unboundedness of Dynamic Edge Coloring

Proof. We prove it by contradiction. Consider the graph G shown in Fig. 2 (a), which is
an even length cycle. The assigned color (0 or 1) by OHEColoring is shown near each
edge. Let Δ1 denote the deletion of edge (v0, v1) and let Δ2 denote the deletion of edge
(v2n+1, v2n+2). LetG1 = G⊕Δ1,G2 = G⊕Δ2 andG3 = G1⊕Δ2. Assume that there
exists a bounded dynamic algorithm A forOHEColoring under a unit edge deletion. Let
trace(G,ΔG) be the sequence of edge A visits when ΔG is applied to G. As no color
of edges in G1 and G2 is affected compared with G, then |trace(G,Δ1)| = O(1) and
|trace(G,Δ2)| = O(1) based on the assumption.

Next, we prove that |trace(G,Δ1)| + |trace(G,Δ2)| can not be O(1), which leads
to a contradiction against the assumption. We first obtain G1 by applying Δ1 to G using
A. After that, as A decides the next operation deterministically based on the status of
visited edges, it behaves exactly the same when applying Δ2 to G and applying Δ2 to
G1 until an edge e with different status information in two processes is visited. Such
e must exist as the results of these two processes are different. As G1 is obtained by
applying Δ1 to G, trace(G,Δ1) also contains e with information updated. As A is
locally persistent, there exists a path from (v0, v1) to e in trace(G,Δ1) and a path from
(v2n+1, v2n+2) to e in trace(G,Δ2), implying |trace(G,Δ1)|+|trace(G,Δ)| = Ω(2n)
as the length of path between (v0, v1) and (v2n+1, v2n+2) is Ω(2n), which contradicts
with the conclusion that |trace(G,Δ1)| and |trace(G,Δ2)| are of constant size. Thus,
the theorem holds. �	
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4.2 A Basic Algorithm

Despite the unboundedness, the situation is not so hopeless. In this section, we present
an efficient dynamic edge coloring algorithm that only explores the edges with color
change and their 2-hop incident edges to maintain the coloring. For the ease of presen-
tation, we use adj(e,G) to denote the set of adjacent edges of e in G for a given edge e.
Moreover, we use adj≺(e,G) to denote the set of edges in adj(e,G) that dominate e and
adj�(e,G) to denote the set of edges in adj(e,G) that are dominated by e respectively.
For simplicity, we omit G in the notations if the context is self-evident. When an edge
(u, v) is inserted into/deleted from G, we use G + (u, v)/G − (u, v) to represent the
new graph after the update. According to Algorithm 1, the essence of OHEColoring is
to find a coloring C such that the color of every edge satisfies the following property:

Definition 5 (Smallest Edge Color Property). Given a graph G and an edge coloring
C, the color of edge e satisfies the smallest edge color property if e.color(C(G)) =
min{c|c ∈ N ∧ c /∈ ∪e′∈adj≺(e,G)e

′.color(C(G))}.
For simplicity, we call an edge coloring C is smallest edge coloring if all the edge

color in C satisfy the smallest edge color property and denote it as Ψ(G). Based on
Definition 5, our dynamic edge coloring problem is equal to maintain Ψ(G) when the
graph is updated. Clearly, we have the following lemma:

Lemma 1. Given an graph G and Ψ(G), when an edge e is inserted/deleted, for an
edge e′ ∈ E(G), e′.color(Ψ(G)) = e′.color(Ψ(G ± e)) if e′ ≺ e in G and G ± e.

Proof. This lemma can be proved directly based on Definition 4, Definition 5 and the
procedure of Algorithm 1. �	

According to Lemma 1, the colors of the edges that always dominate e before and
after the update keep the same in Ψ(G) and Ψ(G ± e). Thus, these edge do not need
to be considered. Apart from these edges, the colors of other edges may violate the
smallest edge color property, and thus need to be recolored. To make the colors of
these remaining edges satisfy the smallest edge color property, we reassign their colors
according to the following recursive 1:

e.color(Cnew) ← min{c|c ∈ N ∧ c /∈ ∪e′∈adj≺(e)e
′.color(Cold)}, (1)

where Cold and Cnew denote the edge coloring before and after color reassignment of
edge e. And we have the following lemma:

Lemma 2. Given a graph G and Ψ(G), when an edge e is inserted/deleted, the coloring
Cnew when Eq. 1 converges for all edges e ∈ G is Ψ(G ± e) if we start the reassignment
procedure with Ψ(G).

Proof. We use contradiction to prove it. If the coloring Cnew is not Ψ(G±e), there must
exist an edge whose color violates the smallest edge color property. This contradicts
with the condition that Eq. 1 converges. Thus, the lemma holds. �	
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Edge Color PropagationMechanism.According to Lemma 2, we can obtain Ψ(G±e)
by recursively reassigning the color of the edges whose colors in Ψ(G) may violate the
smallest edge color property regarding G±e. The remaining problem is how to conduct
the recursive color reassignment procedure effectively. A straightforward implement is
that we scan the edges whose color may violate the smallest edge color property and
reassign their colors based on Eq. 1 round by round and terminate when there is no edge
whose color is changed during that round. The drawback of this approach is that in each
round, we have to scan all the edges and reassign colors for them even there is only one
edge changes its color in that round. On the hand, following the Eq. 1, an edge e′ needs
to be reassigned its color only if the color of any edge in adj≺(e′, G ± e) changes
its color. Meanwhile, the color change of e′ may further affect the color of edges in
adj�(e′, G±e). Therefore, instead of scanning all the edges, we can start by identifying
the direct edges whose color may violate the smallest edge color property due to the
insertion/deletion of e and reassign the colors for these edges. For these edges e′ whose
colors are changed, we take the edges in adj�(e′, G±e) as candidate edges whose color
may violate the smallest edge color property and continue the above process until no
edge changes its color. Following this edge color propagation mechanism, we have the
following lemma:

Lemma 3. Given a graph G and Ψ(G), when an edge e = (u, v) is inserted,
the different between e′′.color(Ψ(G+e)) and e′′.color(Ψ(G)) leads to the other
edges’ color change, where e′′ ∈ {(u, v), (u, u′), (v, v′)} ∪ {adj≺((u, u′), G) ∩
adj�((u, u′), G+e)} ∪ {adj≺((v, v′), G) ∩ adj�((v, v′), G+e)}, u′ ∈ nbr(u′, G),
v′ ∈ nbr(v′, G).

Proof. We can prove this by contradiction. According to Definition 5, for an edge e,
the color of e is determined by the color of adj≺(e,G), which means if adj≺(e,G) =
adj≺(e,G+e) and the corresponding colors are same in G and G+e, then the color of
e is also same in G and G+e. When an edge (u, v) is inserted, if the color difference
between Ψ(G) and Ψ(G+e) is not caused by the color change of e′′ in the lemma, as
adj≺(e′′′, G) = adj≺(e′′′, G+e) for other edges e′′′ and their colors satisfy the smallest
color property, then Ψ(G) is always the same as Ψ(G+e), which contradicts with the
fact that Ψ(G) may be different from Ψ(G+e). Thus, the lemma holds. �	
Lemma 4. Given a graph G and Ψ(G), when an edge e = (u, v) is deleted, the dif-
ferent between e′′.color(Ψ(G−e)) and e′′.color(Ψ(G)) leads to the other edges’ color
change, where e′′ ∈ {(u, u′), (v, v′)} ∪ {adj�((u, u′), G) ∩ adj≺((u, u′), G−e)} ∪
{adj�((v, v′), G) ∩ adj≺((v, v′), G−e)}, u′ ∈ nbr(u′, G), v′ ∈ nbr(v′, G).

Proof. It can be proved similarly as Lemma 3. �	

Algorithm. According to Lemma 3 and Lemma 4, we can conduct the dynamic edge
coloring as follows: we first select such edges e′′ as seed edges and continuously prop-
agate the edge color changes until no new edge changes it color. Following this idea,
our basic dynamic edge coloring algorithm is shown in Algorithm 2. Given a graph G,
DECBasic first inserts/deletes (u, v) into/from G (line 1). Then, it computes the set of
edges S whose color changes lead to the difference between Ψ(G) and Ψ(G ± (u, v))
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Algorithm 2: DECBasic(G, (u, v))
1 insert / delete (u, v) from G;
2 S ← the set of edge e′′ following Lemma 3 (insertion case) / Lemma 4 (deletion case);
3 Queue q ← ∅; push edges e′′ ∈ S into q;
4 while q �= ∅ do
5 (u′, v′) ← q.pop();
6 C ← {0, 1, . . . , deg(u′) + deg(v′)}; C ← ∅;
7 foreach e′′ ∈ adj≺((u′, v′)) do
8 C ← C ∪ {e′′.color};
9 cnew ← min{c|c ∈ C ∧ /∈ C};

10 if cnew �= (u′, v′).color then
11 (u′, v′).color ← cnew;
12 foreach e′′ ∈ adj�((u′, v′)) do
13 if e′′ /∈ q then q.push(e′′);

Fig. 3. Steps of DECBasic for inserting edge (v6, v9)

following Lemma 3/Lemma 4 for edge insertion/deletion case (line 2). After that, it ini-
tializes an empty query q and pushes the edges in S into q (line 3). After that, it conducts
the edge color propagation procedure. Specifically, it first pops an edge (u′, v′) from q
(line 5). Then, it computes a new color cnew by iterating the edges in adj≺((u′, v′))
following Definition 5 (line 6–9). If cnew is different from the existing color of (u′, v′),
then, it assigns cnew to (u′, v′) (line 11) and pushes the edges in eadjout((u′, v′)) for
further recoloring (line 12–13). DECBasic finishes when q becomes ∅ (line 4).

Example 2. Recall the graph G in Fig. 1 (a) and assume a new edge (v6, v9) is inserted
into G. Figure 3 shows the procedure of DECBasic to handle the insertion. After insert-
ing of edge (v6, v9), e6, e4, e3 . . . e11 are computed following Lemma 3 and are pushed
into q. After that,DECBasic processes the edge in q continuously. It first processes edge
(v6, v9) whose details are shown in Fig. 1 (b). For (v6, v9), adj≺((v6, v9)) = (v5, v6),
and the color of (v5, v6) is 0, then (v6, v9) is assigned with color 1. After that, the edges
in adj�((v6, v9)) is pushed into q if they are not in q, and the procedure continues. As
shown in Fig. 3, the whole coloring maintenance finishes in 15 steps.
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Algorithm 3: DECOpt(G, (u, v))
1 insert / delete (u, v) from G;
2 S ← the set of edge e′′ following Lemma 3 (insertion case) / Lemma 4 (deletion case);
3 Priority Queue q ← ∅; push edges e′′ ∈ S into q;
4 line 4-13 of Algorithm 2;

Theorem 2. Given a graph G and Ψ(G), when an edge(u, v) is inserted/deleted, Algo-
rithm 2 computes Ψ(G ± (u, v)) correctly.

Proof. Following Lemma 3 and Lemma 4, the edges caused the color change is pushed
in q is pushed in line 3. Moreover, for a specific edge, its color is correctly reassigned
in line 11, and the affected edges are pushed in q in line 13. According to Lemma 2,
Ψ(G ± (u, v)) correctly computed when Algorithm 2 terminates. �	
Theorem 3. Given an graph G, the time complexity of Algorithm 2 to handle the inser-
tion/deletion of an edge is O(mbasic · dmax), where mbasic denote the number of edges
pushed in q in Algorithm 2.

Proof. The time complexity of line 1–3 can be bounded by O(|S|), and these edges are
inserted into q, thus |S| < mbasic. For each edge (u′, v′) ∈ q, line 6–10 can be finished
in O(dmax), line 12 can be finished in O(dmax) as well. Thus, the time complexity of
Algorithm 2 is O(mbasic · dmax).

4.3 An Optimized Approach

Theorem 3 shows that the size of mbasic determines the whole complexity of Algo-
rithm 2. However, mbasic cannot be well bounded as some edges are pushed into q
multiple time in Algorithm 2. Consider the example shown in Fig. 3, e10 is pushed into
q due to e6 at step 1 and pop out from q at step 8. However, at step 9, e10 is pushed into
q again due to the color reassignment of e11. Obviously, processing the same edge mul-
tiple times leads to not only the loose bound of Algorithm 2 but also the its inefficiency
as verified in our experiments.

Prioritized Dynamic Edge Coloring. Reconsider the example discussed above, the
reason leading to the same edge e processes multiple times is that e is processed before
the edges in adj≺(e). In Fig. 3, e11 ∈ adj≺(e10), but e10 is processed at step 8 while
e11 is still in q. Therefore, when e11 is processed at step 9, e10 is pushed into q again.
This inspires us that we need to postpone the recoloring of an edge e until all candidate
edges in adj≺(e) have been recolored. Following this idea, we can define the edge
priority based on the edge dominance ≺ as follows:

Definition 6 (Edge Priority). Given two edge e and e′, if e≺ e′, then e has a higher
priority than e′.

According to Definition 6, when conducting the recoloring, we can process the
edges based on their edge priority. In this way, the problem that one edge may be pro-
cessed multiple times can be avoided. Following this idea, the optimized algorithm is
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shown in Algorithm 3. It shares the same framework of Algorithm 2. The only differ-
ence is that we use a priority queue to replace the queue in Algorithm 2.

Fig. 4. Steps of DECOpt for inserting (v6, v9)

Example 3. Reconsider the graph shown in Fig. 1 (a), Fig. 4 shows the steps ofDECOpt
to handle the insertion of edge (v6, v9). In Fig. 4, q is a priority queue and the edges are
processed based on their priority. Compared with DECBasic, it is clear that DECOpt
processes each edge once. As a result, DECOpt only needs 14 steps to finish the color-
ing maintenance.

Theorem 4. Given a graph G, when an edge (u, v) is inserted/deleted, let ΔΨ denote
the edges whose color in Ψ(G) and Ψ(G ± (u, v)) are different, then the number of
edges pushed in q by Algorithm 3 can be bounded by mΔ where mΔ = |{(u, v)} ∪
{adj(u, v)} ∪ {∪e∈adj(u,v)adj(e)} ∪ ΔΨ ∪ {∪e∈ΔΨ

adj�(e)}|.
Proof. In line 3 of Algorithm 3, the edges in S is inserted into q, and S ⊆ {{(u, v)} ∪
{adj(u, v)} ∪ {∪e∈adj(u,v)adj(e)}}. Moreover, for each edge e whose color changes,
DECOpt pushes e and adj�(e) into q. As DECOpt pushes each edge into q only once,
the total number of edges pushed in q is bounded by mΔ. �	
Theorem 5. Given a graph G, when an edge (u, v) is inserted/deleted, Algorithm 3
processes the update in O(mΔ(dmax + log(mΔ))).

Proof. In line 3 of Algorithm 3, as S ⊆ {{(u, v)}∪{adj(u, v)}∪{∪e∈adj(u,v)adj(e)}},
the time complexity of this part can be bounded by O(mΔ). For each edge e in q, we
have to iterate the edges in adj≺(e) to compute the new color, which can be finished in
O(dmax). For the priority q, the push/pop operation can be finished O(1)/O(log(mΔ))
if we use Fibonacci heap. Therefore, the time complexity of Algorithm 3 can be
bounded by O(mΔ(dmax + log(mΔ))). �	
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4.4 Early Pruning

In Algorithm 3, for an edge ewith color change, all the edges in adj�(e) are pushed into
q for the further color reassignment. However, in same cases, the color change of e will
not affect the colors of edges in adj�(e). In this section, we explore different coloring
cases between (u, v) and (v, w) ∈ adj�((u, v)), and aim to find some rules that can
guarantee that the color of (v, w) is not affected by color change of (u, v), and thus we
do not need to push (v, w) into the priority queue to further improve the performance.

Fig. 5. Different Coloring Cases for (u, v) and (v, w) ∈ adj�((u, v))

Figure 5 shows the different cases when the color of (u, v) changes and we will
analyze how the change affects the color of (v, w) ∈ adj�((u, v)). In Fig. 5, the color
change of (u, v) is shown near it. For example, in Fig. 5(a), [1] → [2] means the color
of (u, v) changes from 1 to 2. For ease of presentation, we use (u, v).colorold and
(u, v).color to represent the colors of (u, v) before and after the change and we use
(v, w).color to represent the color of (v, w). We catalog different cases based on the
relationships between (u, v).color and (v, w).color, and we have:

• case 1: (u, v).color = (v, w).color. (u, v) should be recolored obviously in this case.
When (u, v).color < (v, w).color, we have:

• case 2: (u, v).colorold < (v, w).color. The color of (u, v) changes from 1 to 2, (v, w)
can be possibly recolored with color 1.

• case 3: (u, v).color < (u, v).colorold < (v, w).color. The color of (u, v) changes
from 2 to 1, (v, w) can be possibly recolored with color 2.

• case 4: (u, v).colorold > (v, w).color. The color of (u, v) changes from 3 to 1.
The color of (v, w) is 2, which implies color 0 and 1 have been assigned to the
edges in adj≺((v, w)). Thus, we cannot find a color smaller than 2 to recolor (v, w).
Consequently, the color change of (u, v) does not affect the color of (v, w).
When (u, v).color < (v, w).color, we have:

• case 5: (u, v).colorold < (v, w).color. The color of (u, v) changes from 1 to 3. In
this case, (v, w) can be possibly recolored with color 1.

• case 6: (u, v).colorold > (v, w).color. The color of (u, v) changes from 2 to 3, but
the color change of (u, v) does not affect the color of (v, w). The reason is similar
to case 4.
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• case 7: (u, v).colorold > (v, w).color. The color of (u, v) changes from 3 to 2, but
the color change of (u, v) does not affect the color of (v, w). The reason is similar
to case 4.

Based on the above analysis, when the color of (u, v) changes, we have the follow-
ing rules on whether (v, w) ∈ adj�(u, v) should be pushed into q:

• Rule 1: If (u, v).color = (v, w).color, (v, w) should be pushed into q;
• Rule 2: If (u, v).color �= (v, w).color and (u, v).colorold < (v, w).color, (v, w)
should be pushed into q;

• Rule 3: If (u, v).color �= (v, w).color and (u, v).colorold > (v, w).color, (v, w) does
not need to be pushed into q;

By applying the above rules, we can further reduce the number of edges that need
to explored during the coloring maintenance.

5 Performance Studies

In this section, we evaluate the performance of our proposed algorithms. All experi-
ments are conducted on a machine with Intel Xeon CPU 2.6GHz (32 core) and 128 GB
main memory running Linux (Ubuntu Server 22.04.1, 64bit).

Datasets. We evaluate the algorithms on six real-world graphs. Enwiki is down-
loaded from LAW (https://law.di.unimi.it/datasets.php/) and the remaining datasets are
downloaded from SNAP (http://snap.stanford.edu/data/index.html/). The details of the
datasets are shown in Table 1.

Table 1. Datasets used in experiments

ID Datasets G Type |V (G) | |E (G) | davg dmax #color

G0 Twitter Social 81,306 1,768,149 43.49 2,799 2,799

G1 Skitter web 1,696,415 11,095,298 13.08 35,455 35,455

G2 Pokec Social 1,632,803 30,622,564 16.90 8,753 8,753

G3 LiveJournal Social 3,997,962 34,681,189 17.18 14,815 14,815

G4 Orkut Social 3,072,441 117,185,083 76.30 33,313 33,313

G5 Enwiki Web 5,839,060 135,700,782 23.40 224,964 224,964

https://law.di.unimi.it/datasets.php/
http://snap.stanford.edu/data/index.html/
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Table 2. Efficiency of the dynamic algorithms (in Seconds)

Graph OHEColoring Insertion Deletion

DECBasic DECOpt DECOpt∗ DECBasic DECOpt DECOpt∗

G0 7.48 0.28311 0.00257 0.00147 0.26103 0.00191 0.00112

G1 45.99 5.72610 0.08744 0.08326 4.14323 0.08543 0.08235

G2 30.10 0.04389 0.00456 0.00379 0.42940 0.00446 0.00361

G3 101.91 0.89463 0.02789 0.02720 0.76926 0.02721 0.02680

G4 723.92 1.25628 0.44875 0.09203 1.05082 0.42707 0.08281

G5 1118.75 8.03554 0.34250 0.34086 7.87554 0.32077 0.31795

Algorithms. We implement and compare four algorithms. All algorithms are imple-
mented in C++ 11, using g++ complier with −O3 optimization.

• OHEColoring: Ordering heuristic edge coloring algorithm (Algorithm 1 in Sect. 4.1).
• DECBasic: Basic dynamic edge coloring algorithm (Algorithm 2 in Sect. 4.2).
• DECOpt: Optimized dynamic edge coloring algorithm (Algorithm 3 in Sect. 4.3).
• DECOpt∗: Optimized dynamic edge coloring algorithm with pruning rules (Algo-

rithm 3 in Sect. 4.3 + Rules in Sect. 4.4).

Exp-1: Effectiveness of Static Graph Coloring Algorithm. In this experiment, we
evaluate the effectiveness of OHEColoring. Since edge coloring is a NP-complete, the
exact solution cannot find the solution in reasonable time. On the other hand, the max-
imum degree of the graph dmax is a lower bound the optimal edge coloring [31]. Thus,
to evaluate the effectiveness of OHEColoring we compare the number of colors used by
dmax and OHEColoring. The results are shown in Table 1.

As shown in Table 1, OHEColoring can always obtain the optimal results on the
datasets used in our experiment. For example, on dataset G4 (Orkut), the maximum
degree dmax is 33, 313 while the number of colors used byOHEColoring is also 33, 313.
Moreover, we also show the running time of OHEColoring on all datasets in Table 2.
It can be see that OHEColoring can finish the coloring from scratch very soon as its
time complexity is O(m · dmax). Therefore, OHEColoring is a practically efficient and
effective static algorithm for graph edge coloring, which is consistent with the conclu-
sion shown in [16] that heuristic algorithm can not only achieve orders of magnitude
speedup, but often find a solution close to the optimal edge coloring for large graphs.

Exp-2: Efficiency of the Algorithms. In this experiments, we evaluate the efficiency
of our proposed dynamic algorithms. To test the efficiency, we color the graph using
OHEColoring initially, randomly insert/delete 1,000 edges in/from the graph, and record
the average processing time for each update for insertion/deletion, respectively. More-
over, we also record the time to color the graph by OHEColoring from scratch for com-
parison. The results are shown in Table 2.
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Fig. 6. Scalability when varying |G|

As shown in Table 2, DECBasic takes the most time among three dynamic graph
algorithms for all cases. For example, on dataset G3 (LiveJournal), it uses 0.89 s/0.76 s
to insert/delete an edge on average. This is because DECBasic does not consider the
recoloring orders of the edges in adj�(e) and it may recolor the same edge multiple
times, which leads to lots of unnecessary computations. On the other hand, the aver-
age processing time of DECOpt for each edge is significantly smaller than that of
DECBasic. This is because DECOpt adopts the priority queue to maintain the recol-
oring orders of edges and it can guarantee each edge is recolored only once during the
whole maintaining procedure. Compared with DECOpt, DECOpt∗ further improve the
maintenance performance. This is because lots of the unnecessary edge recoloring are
pruned following the rules introduced in Sect. 4.4. Moreover, compared with recolor-
ing the graph using the OHEColoring from scratch, DECOpt∗ finishes the maintenance
in. The experimental results demonstrate the efficiency of our proposed algorithms in
maintaining the edge coloring when the graph is dynamically updated.

Exp-3: Scalability When Varying |G|. In this experiments, we evaluate the scalability
of our proposed algorithms when varying |G|. We vary |E| from 20% to 100% of four
large graphs, randomly sample 1,000 edges for insertion or deletion, and report the
average processing time for each update. The results are shown in Fig. 6.

Figure 6 shows that the average processing time for each update increasing when
|E| regarding all three algorithms. This is because as |E| increases, more edges need
to be recolored generally. Among our proposed three algorithms, DECBasic consumes
the most time for each update while DECOpt is much faster than DECBasic. DECOpt∗

is the most efficient one among these three algorithms and increases stably when |E|
increases. The reasons are the same as discussed in Exp-2. The experimental results
show that DECOpt∗ has a good scalability.
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6 Conclusion

In this paper, we study the dynamic edge coloring problem which aims to incremen-
tally maintain the edge coloring when the graph is dynamically updated. We propose
an efficient dynamic edge coloring algorithm and three early pruning rules to further
reduce the unnecessary computation. Experimental results demonstrate the efficiency
of proposed algorithms.

Acknowledgments. Long Yuan is supported by National Key RD Program of China
2022YFF0712100, NSFC61902184, and Science and Technology on Information Systems Engi-
neering Laboratory WDZC20205250411. Zi Chen is supported by CPSF 2021M701214. Shiyu
Yang is supported by NSFC61802127, Guangzhou Research Foundation 202201020131 and
CCF-Ant Research Fund.

References

1. Archer, A., Lattanzi, S., Likarish, P., Vassilvitskii, S.: Indexing public-private graphs. In:
Proceedings of the WWW, pp. 1461–1470 (2017)

2. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent develop-
ments. In: Synthesis Lectures on Distributed Computing Theory (2013)

3. Barenboim, L., Maimon, T.: Fully-dynamic graph algorithms with sublinear time inspired by
distributed computing. In: Proceedings of ICCS, pp. 89–98 (2017)

4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J.
Comput. 39(2), 546–563 (2009)

5. Borghini, F., Méndez-Díaz, I., Zabala, P.: An exact algorithm for the edge coloring by total
labeling problem. Ann. Oper. Res. 286(1), 11–31 (2020)

6. Cao, Y., Chen, G., Jing, G., Stiebitz, M., Toft, B.: Graph edge coloring: a survey. Graphs
Comb. 35(1), 33–66 (2019)

7. Cheng, M., Yin, L.: Transmission scheduling in sensor networks via directed edge coloring.
In: IEEE International Conference on Communications, pp. 3710–3715 (2007)

8. Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, S.: Efficient algorithms for public-private
social networks. In: Proceedings of KDD, pp. 139–148 (2015)

9. Cole, R., Kowalik, L.: New linear-time algorithms for edge-coloring planar graphs. Algo-
rithmica 50(3), 351–368 (2008)

10. Duan, R., He, H., Zhang, T.: Dynamic edge coloring with improved approximation. In: Chan,
T.M. (ed.) Proceedings of SODA, pp. 1937–1945 (2019)

11. Fan, W., Liu, M., Tian, C., Ruiqi, X., Zhou, J.: Incrementalization of graph partitioning
algorithms. Proc. VLDB Endow. 13(8), 1261–1274 (2020)

12. Fan, W., Tian, C.: Incremental graph computations: doable and undoable. ACM Trans.
Database Syst. 47(2), 6:1-6:44 (2022)

13. Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs and multigraphs.
SIAM J. Comput. 11(1), 117–129 (1982)

14. Gandham, S., Dawande, M., Prakash, R.: Link scheduling in wireless sensor networks: Dis-
tributed edge-coloring revisited. J. Parallel Distrib. Comput. 68(8), 1122–1134 (2008)

15. Hao, K., Yuan, L., Zhang, W.: Distributed hop-constrained s-t simple path enumeration at
billion scale. Proc. VLDB Endow. 15(2), 169–182 (2021)

16. Hilgemeier, M., Drechsler, N., Drechsler, R.: Fast heuristics for the edge coloring of large
graphs. In: Proceedings of DSD, pp. 230–239 (2003)



Edge Coloring on Dynamic Graphs 153

17. Holyer, I.: The np-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
18. Karloff, H.J., Shmoys, D.B.: Efficient parallel algorithms for edge coloring problems. J.

Algorithms 8(1), 39–52 (1987)
19. Khurana, U., Nguyen, V.-A., Cheng, H.-C., (Stephen) Chen, X., Shneiderman, B.: Visual

analysis of temporal trends in social networks using edge color coding and metric timelines.
In: Proceedings of IEEE PASSAT/SocialCom, pp. 549–554 (2011)

20. Kowalik, L.: Improved edge-coloring with three colors. Theor. Comput. Sci. 410(38–40),
3733–3742 (2009)

21. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W.: Efficient (α, β)-core computation: an index-
based approach. In: Proceedings of WWW, pp. 1130–1141 (2019)

22. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (α, β)-core computation
in bipartite graphs. VLDB J. 29(5), 1075–1099 (2020). https://doi.org/10.1007/s00778-020-
00606-9

23. Meng, L., Yuan, L., Chen,Z., Lin, X., Yang, S.: Index-based structural clustering on directed
graphs. In: Proceedings of ICDE, pp. 2831–2844 (2022)

24. Misra, J., Gries, D.: A constructive proof of vizing’s theorem. In: Information Processing
Letters (1992)

25. Nemhauser, G.L., Park, S.: A polyhedral approach to edge coloring. Oper. Res. Lett. 10(6),
315–322 (1991)

26. Ohsaka, N., Maehara, T., Kawarabayashi, K.: Efficient pagerank tracking in evolving net-
works. In: Proceedings of SIGKDD, pp. 875–884 (2015)

27. Ramalingam, G., Reps, T.W.: On the computational complexity of dynamic graph problems.
Theor. Comput. Sci. 158(1&2), 233–277 (1996)

28. Saberi, A., Wajc, D.: The greedy algorithm is not optimal for on-line edge coloring. In:
Proceedings of ICALP, pp. 109:1–109:18 (2021)

29. Sameh, A.: A twitter analytic tool to measure opinion, influence and trust. J. Ind. Intell. Inf.
1(1), 37–45 (2013)

30. Sanders, P., Steurer, D.: An asymptotic approximation scheme for multigraph edge coloring.
In: Proceedings of SODA, pp. 897–906 (2005)

31. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Discret. Analiz 3, 25–30
(1964)

32. Yang, B., Sato, I., Nakagawa, H.: Privacy-preserving EM algorithm for clustering on social
network. In: Proceedings of PAKDD, pp. 542–553 (2012)

33. Long Yuan, L., Qin, X.L., Chang, L., Zhang, W.: Diversified top-k clique search. VLDB J.
25(2), 171–196 (2016)

34. Long Yuan, L., Qin, X.L., Chang, L., Zhang, W.: Effective and efficient dynamic graph col-
oring. Proc. VLDB Endow. 11(3), 338–351 (2017)

35. Long Yuan, L., Qin, W.Z., Chang, L., Yang, J.: Index-based densest clique percolation com-
munity search in networks. IEEE Trans. Knowl. Data Eng. 30(5), 922–935 (2018)

36. Zhang, J., Li, W., Yuan, L., Qin, L., Zhang, Y., Chang, L.: Shortest-path queries on complex
networks: experiments, analyses, and improvement. Proc. VLDB Endow. 15(11), 2640–2652
(2022)

37. Zhang, J., Yuan, L., Li, W., Qin, L., Zhang, Y.: Efficient label-constrained shortest path
queries on road networks: a tree decomposition approach. Proc. VLDB Endow. 15(3), 686–
698 (2021)

38. Zhou, X., Nakano, S.-I., Nishizeki, T.: Edge-coloring partial k-trees. J. Algorithms 21(3),
598–617 (1996)

https://doi.org/10.1007/s00778-020-00606-9
https://doi.org/10.1007/s00778-020-00606-9


Discovering Persistent Subgraph Patterns
over Streaming Graphs

Chu Huang1, Qianzhen Zhang1(B), Deke Guo1(B), and Xiang Zhao2

1 Science and Technology on Information Systems Engineering Laboratory,
National University of Defense Technology, Changsha, China

{zhangqianzhen18,dekeguo}@nudt.edu.cn
2 Laboratory for Big Data and Decision, National University of Defense Technology,

Changsha, China

Abstract. Streaming graph analysis is gaining importance in various
fields due to the natural dynamicity in many real graph applications.
Prior subgraph discovery problem over streaming graphs mostly focuses
on characteristics like frequency and burstiness. Persistence, as a new
characteristic, is getting increasing attention. Persistent subgraph dis-
covery highlights behaviors where a subgraph appears recurrently in
many time windows, which is vital for many real-world applications
(e.g., anomaly detection). While persistent subgraph discovery enjoys
many interesting real-life applications, there is no off-the-shelf solution
to compute the persistent pattern efficiently. In this work, we are the first
to study the persistent subgraph pattern discovering problem over the
streaming graph. We devise an auxiliary data structure called TFD to
detect the persistent subgraph patterns in real-time with limited mem-
ory usage. TFD maps each subgraph into the corresponding bucket based
on hash functions to compute the persistence of each pattern. Then we
introduce optimizations to separate persistent and non-persistent pat-
terns, further improving the effectiveness and throughput in space-scarce
scenarios. Extensive experiments confirm the superiority of our proposed
method.

1 Introduction

A recent development is the proliferation of high throughput, dynamic graph-
structured data organized as streaming graphs. For example, consider the knowl-
edge graph DBpedia, which gets updated daily according to a stream of change
logs from Wikipedia [4,7,10]. Streaming graph analysis is gaining importance
in various fields such as subgraph match [5,12], frequent pattern mining [2,13],
and bursting pattern mining [18]. Apart from the above characteristics, another
important characteristic - persistence , has received growing attention. Given a
pattern P and a streaming graph with T tumbling windows, the persistence of
P is defined as the number of windows where P appears. We say P is a persis-
tent pattern if its persistence is larger than a user-defined threshold. Persistent
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Fig. 1. Concealed Cyber-attack detection

pattern often indicates the happening of abnormal or notable events. We next
use an example of detecting malicious behaviors to illustrate its basic idea.

Application. Malicious behaviors have patterns1. Security analysts can identify
malicious behaviors by monitoring the appearances of the patterns (based on the
semantics of subgraph isomorphism) in network traffics. As shown in Fig. 1(1),
some malicious behaviors try to hide by spreading their communications over
many time windows. As a result, these patterns cannot be detected by finding
frequent subgraph patterns. To detect such threats, we should use persistence
instead of frequency as an indicator. Figure 1 shows two communication patterns
and their matching results during corresponding time windows. P1 is a pattern
detected by finding frequent subgraph pattern, which is only a general broadcast-
ing mechanism and cannot give us valuable information. P2 is a pattern detected
by using persistence, representing an attack pattern. P2 describes information
exfiltration, where the victim host takes commands from the bot and exchanges
data with compromised websites that lead to a data breach.

Formally, given a streaming graph G, a persistence threshold δ, and an integer
k, the continuous persistent pattern discovering problem is to find the k-edge
subgraph patterns that appear in at least δ tumbling windows.

Challenges. Albeit important, the problem of persistent patterns discovery
lacks a dedicated technique. A straightforward way is to enumerate all possible
k-edge subgraphs in each window and then calculate the corresponding patterns
of these subgraphs to verify the existence of each pattern at current window.
The algorithm needs to calculate and store all k-edge subgraphs at each time
window, which consumes a lot of time and memory. What’s more, the algorithm
needs to re-execute subgraph isomorphism calculation to verify the existence of
each pattern in each window, which can be detrimental. In this light, advanced
techniques are desiderated to discover persistent patterns efficiently.

Our Solution. In fact, the large scale and high-dynamic of streaming graphs
make it memory and time-consuming to discover persistent patterns accurately.
It is a natural choice to compute approximations with limited memory efficiently.

Our main idea is as follows: to avoid mapping each newly produced sub-
graph to all existing candidate subgraph patterns, we propose to design an

1 https://www.verizon.com/business/resources/reports/dbir/.

https://www.verizon.com/business/resources/reports/dbir/
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auxiliary data structure called TFD, which consists of d arrays. Each newly
produced subgraph will be mapped into one bucket of the arrays by hash func-
tions h1(·), · · · , hd(·) to calculate the existence of the patterns at each time win-
dow. In this way, two isomorphic subgraphs will be mapped to the same bucket.
Based on TFD, we can avoid storing any k-edge subgraph and repeated subgraph
matching.

Contributions. The major contributions include: 1) We are the first to study
the problem of persistent patterns discovering over streaming graphs. 2) We
propose an auxiliary data structure called TFD to reduce the redundant sub-
graph matching calculations in the persistent patterns discovering process. 3)
We exploit one optimization to improve further the effectiveness of persistent
subgraph patterns discovering, which can achieve time- and memory-efficiency.
4) Extensive experiments confirm that our method outperforms the baseline
solution.

2 Problem Formulation

Definition 1 (Streaming Graph). A streaming graph G is a constantly grow-
ing sequence of directed edges {σ1, σ2, · · · , σn} where each σi = (vid1

i1
, vid2

i2
, t(σi))

indicates a directed edge from vertices vid1
i1

to vid2
i2

arriving at time t(σi) and the
superscripts of the vertices are vertex IDs.

It’s worth noting that the throughput of the streaming graph keeps varying.
For simplicity of presentation, we only consider vertex-labeled graphs.

Fig. 2. Streaming Graph

Definition 2 (Tumbling Window). Tumbling windows are a series of fixed-
sized, non-overlapping and contiguous time intervals. A tumbling window,
denoted as Wi, has a timespan with fixed-sized duration τ in G.

Example 1. A streaming graph G is shown in Fig. 2. Specifically, for the edge σ2

in G, it shows that σ2 has two vertices b2 and c3, where “b” and “c” are vertex
labels and the superscripts are vertex IDs. Besides, the timestamp of σ2 is shown
below it. The streaming graph is divided into three time windows, from start
timestamp t0 = 0, each of which has size τ = 3 and is non-overlapping.
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Definition 3 (Snapshot graph). A snapshot graph at timestamp t, denoted
as Gt, is a graph induced by all the edges in Wi that have been observed up to
and including time t where t ∈ Wi.

For any t ∈ Wi, at time t + 1 we receive an edge insertion e and add it into
Gt to obtain Gt+1. For each newly inserted edge e in Gt+1, we use the notation
Ek(e) to denote the set of k-edge subgraphs that contain e in Gt+1. Besides,
we use Gi to denote the snapshot graph of tumbling window Wi where Gi is a
graph induced by all the edges within Wi.

A subgraph gk = (Vg, Eg) is referred to as a k-edge subgraph if k edges in Gt

induce it. We define Pk as the set of all induced subgraphs with k edges in Gi.

Definition 4 (Subgraph isomorphism). Two k-edge subgraphs gk1 =
(Vg1 , Eg1) and gk2 = (Vg2 , Eg2) are isomorphic if there exists a bijection f from
Vg1 to Vg2 such that the following cases hold: 1) ∀vi ∈ Vg1 , L(vi) = L(f(vi) ∈
Vg2), and 2) ∀(vi, vj) ∈ gk1 , (f(vi), f(vj)) ∈ gk2 . The function L preserves the
vertex labels.

The isomorphism relation partitions the set of subgraphs Pk into m equiv-
alence classes, denoted by Pk

1 , · · · ,Pk
m. Each equivalence class Pk

i is called a
subgraph pattern. Note that Pk

i can be obtained by deleting the IDs (resp.
timestamps) of the vertices (resp. edges) of corresponding k-edge subgraph that
is in Pk

i . For simplicity, we use shorthand Pi to denote the generic pattern Pk
i .

We define the frequency fre(Pi ,G i) of Pi in each time window as the number of
k-edge subgraphs in Pk

i and PS as the set of different k-edge patterns in G.

Pattern Persistence Measures. Persistence, is a particular pattern of the
occurrence behavior in terms of the number of windows that a k-edge subgraph
pattern exists in a streaming graph, denoted as per(P). The persistence measure
of a pattern P is to count the number of time windows in which P exists. The
persistence of a persistent pattern should exceed a user-defined threshold δ. The
formal definition of a persistent pattern is as follows.

Definition 5 (Persistent Pattern). Given a streaming graph G, a k-edge pat-
tern P and a persistence threshold δ. P is a persistent pattern if per(P) ≥ δ.

Problem Statement. Given a streaming graph G, and parameters k, τ , and δ,
persistent patterns discovery computes the set of k-edge subgraph patterns that
the persistence is greater than persistence threshold δ.

3 The Baseline Solution

A straightforward way (Algorithm 1) to discover persistent patterns over a
streaming graph is to enumerate all possible k-edge subgraphs when a new time
window comes and then partition the set of k-edge subgraphs into different equiv-
alence classes to verify the existence of each k-edge pattern. If the persistence
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measure of a k-edge pattern exceeds a user-defined threshold, it will be returned
as a persistent pattern. More details are described below.

We use a set PS to store the different k-edge patterns in G. Each item in
PS is a tuple (P, per(P)), where P is a k-edge pattern, per(P) is the persistence
value of pattern P . Whenever a new window Wi appears, findPP updates PS
by calling computePer (Line 2–3). Then, for each pattern P in the PS, findPP
verifies whether the persistence value of P satisfies the persistence threshold δ
(Lines 4–5). Finally, it returns all persistent patterns (Line 6).

Function computePer. computePer first calls findSubgraph (omitted) to calcu-
late the k-edge subgraphs set Pk in Gi (Line 1). In detail, whenever an edge
insertion e occurs at timestamp t (t ∈ Wi), findSubgraph explores a candidate
subgraph space in a tree shape in Gt to calculate Ek(e), each node representing
a candidate subgraph, where a child node is grown with one-edge extension from
its parent node. To avoid duplicate enumeration of a subgraph, findSubgraph
checks whether two subgraphs are composed of the same edges at each level
in the tree space. After dealing with all edge insertions in Wi, we can obtain
the k-edge subgraphs set Pk in Gi. To compute the corresponding k-edge pat-
tern, computePer calls evaluateFre(omitted) to partition the subgraphs in Pk

into equivalence classes based on subgraph isomorphism calculations, each of
which can represent a pattern P (Line 2). If fre(P ,G i) ≥ 1, computePer further
check whether P ∈ PS through subgraph isomorphism calculation; if so, it sets
per(P) ← per(P) + 1. Else it adds (P, per(P) = 1) into the set PS (Line 3–6).

Algorithm 1: findPP
Input : G is a streaming graph; δ and k are the parameters.
Output : the set of persistent patterns PPSet.

1 PatternSet ← ∅, PPSet ← ∅;
2 foreach the snapshot graph of tumbling window Gi do
3 PS ← computePer(Gi, PS);

4 foreach pattern Pi ∈ PS do
5 if per(P) ≥ δ then PPSet ← PPSet ∪ {(P, per(P))} ;

6 return PPSet;
Function computePer(Gi, PS)

1 Pk ← findSubgraph(Gi);
2 evaluateFre(Pk);
3 foreach k-edge patten P do
4 if fre(P ,G i) ≥ 1 then
5 if P ∈ PS then per(P) ← per(P) + 1 ;
6 if P /∈ PS then PS ← PS ∪ (P, per(P) = 1) ;

Algorithm Analysis. There are three main steps in findPP. (1) In the k-edge
subgraph enumeration process, given an edge insertion e in Gt, let n be the
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average number of vertices of the subgraph extended from e with radius k.
findSubgraph takes O(2n2

) to explore all k-edge subgraphs that contain e. (2)
In the PS update process, let σ be the average unit time to verify whether two
k-edge subgraphs are isomorphic. evaluateFre takes O(N · (N2 − 1) · σ) time to
partition the set of k-edge subgraphs into m equivalence classes. Let M be the
number of patterns in PS. computePer takes O(m · M · σ) to update PS. (3)
findPP takes O(1) to return the persistent patterns.

4 The fastPP Framework

In this section, we first analyze the drawback of findPP and then devise a auxil-
iary data structure TFD to efficiently mine persistent patterns over a streaming
graph, which can significantly reduce memory cost and computational costs.

Why Costly? The algorithm findPP is not scalable enough to handle large
streaming graphs. Firstly, to find the k-edge patterns in each time window,
findPP needs to calculate and store all k-edge subgraphs at each time win-
dow, which consumes a large amount of time and memory. Secondly, in the PS
updated process, findPP needs to re-execute subgraph isomorphism calculation
for each pattern at the current window to check whether it exists in PS.

One can do it more efficiently with large space savings. Our idea is as follows:
we propose a new algorithm for persistent pattern discovery, which can overcome
the drawbacks introduced above. In the new algorithm, we design an auxiliary
data structure called TFD and add a state field for the counter in each bucket of
TFD to calculate the persistence of a pattern in each time window. Specifically,
for each newly produced k-edge subgraph, we use a hash function to map it into
a fixed position in the TFD. Once the state of the counter indicates that the
corresponding bucket has been counted in the current time window, the counter
no longer counts. In this way, we can calculate the persistence of the pattern
directly, and thus we can avoid storing all subgraphs of the current time window
and repeated subgraph isomorphism calculation.

Fig. 3. Data Structure of TFD

TFD (Fig. 3). TFD consists of d arrays, each of which consists of l buckets. Let
Bi[j] be the jth bucket in the ith array. Each bucket consists of a key-value pair,
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where the key is a k-edge pattern, and the value is a counter that aims to count
the persistence of the k-edge pattern. The d arrays are associated with d pairwise
independent hash functions h1(·), · · · , hd(·) respectively, each of which maps a
k-edge subgraph into one bucket of the corresponding array. If two subgraphs
are isomorphic, they will be mapped into the same bucket. It is worth noting:
Although two subgraphs are not isomorphic, they are mapped into the same
bucket due to hashish conflict. In this situation, we will use other hash functions
to map one subgraph into one bucket in the corresponding array.

Regardless of the number of subgraphs mapped into one bucket in a time
window, we should only increment this counter in the bucket by one due to the
characteristic of persistence. Therefore, for persistence calculation, we add a state
field for each counter to indicate whether this counter has been incremented in
the current time window. The state field has two states: True and False. When
a new time window comes, the state of every counter is set to True. Whenever
a k-edge subgraph gk is mapped into a bucket, only if the state of the counter
is True, we can increment the counter by one and then turn the state to False.
Thus we can directly count the persistence of the pattern in each time window.

To map a k-edge subgraph gk to auxiliary data structure during hashing
process, we encode the subgraph gk as a string representation gstr

k by exploiting
the graph invariant [18]. The graph invariant encodes subgraphs such that the
isomorphic subgraphs are mapped into the same location in the TFD. Specifically,
first, for each vertex in the k-edge subgraph, we push the degree and label of a
vertex together as its new label denoted l(v). And, for each edge e = (vi, vj , t(e)),
we label l(e) = (l(vi), l(vj)). Second, we assigned a weight to each edge. The
weight is equal to the order in which the edge’s corresponding single-edge pattern
occurs in the streaming graph. Specifically, we use w(e) to denote the weight of
edge e. If w(ei) < w(ej), then ei < ej . Else, if w(ei) = w(ej)∪ l(ei) < l(ej), then
ei < ej , where l(ei) < l(ej) means the vertex degrees of ei is lexicographically
smaller. Third, the coding string encodeSub(gk) of a subgraph gk including edges
e1, · · · , en in the gk where ei < ei+1 is l(e1) · · · l(en).

4.1 The Fast Algorithm fastPP

The new framework fastPP is shown in Algorithm 2. It first calls initializePer to
initialize the TFD (Line 1). Then it updates the TFD by calling updateTFD to
calculate the persistence for each pattern P in the TFD when a new time window
comes (Line 2–3). After dealing with the current time window, it will set the
state of counters in the TFD as True (Line 4–5). Afterwards, for each nonempty
bucket Bi[j] in the TFD, it checks whether Bi[j].value satisfies the persistence
threshold δ (Line 6–7). Finally, it returns all persistent patterns (Line 8).

Function updateTFD. updateTFD processes the snapshot graphs in Wi in
ascending (Line 1). Whenever an edge insertion e occurs at timestamp t (t ∈ Wi),
updateTFD calls findSubgraph to calculate Ek(e) (Line 2–3). For each subgraph
gk ∈ Ek(e), TFD first chooses which hash function hi(·) to map gk into one
bucket Bi[hi(gk)] in array Bi, then checks whether the Bi[hi(gk)].state is True
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Algorithm 2: fastPP
Input : G is the streaming graph; δ,k are the parameters.
Output : the set of persistent patterns PPSet.

1 TFD ← initializePer(TFD), PPSet ← ∅;
2 foreach the time window Wi of G do
3 TFD ← updateTFD(Wi,TFD);
4 foreach bucket Bi[j] in the TFD do
5 Bi[j].state ← True;

6 foreach nonempty bucket Bi[j] in the TFD do
7 if Bi[j].value ≥ δ then PPSet ← PPSet ∪ {(Bi[j].key, Bi[j].value) ;

8 return PPSet;
Function updateTFD(Wi,TFD)

1 foreach the snapshot graph Gt at time t where t ∈ Wi do
2 foreach edge insertion e at time t do
3 Ek(e) ← findSubgraph(e, Gt);
4 foreach subgraph gk ∈ Ek(e) do
5 foreach i ∈ [1, d] do
6 if Bi[hi(gk)].state == True then
7 if gk is isomorphic to Bi[hi(gk)] then
8 Bi[hi(gk)].value ← Bi[hi(gk)].value + 1;
9 Bi[hi(gk)].state ← False, break;

10 if gk is not isomorphic to Bi[hi(gk)] and
Bi[hi(gk)] == ∅ then

11 calculate the k-edge pattern P from gk;
12 Bi[hi(gk)] ← (P, (False, 1)), break;

13 return TFD;

to avoid overestimation (Line 4–6). If so, there are two cases: (1) gk is isomorphic
to the pattern P in bucket Bi[hi(gk)]. updateTFD increases the persistence of P
by 1 and sets the Bi[hi(gk)].state to False (Line 7–9). (2) gk is not isomorphic
to the pattern P and the bucket is empty. updateTFD first calculates the pattern
of gk, then inserts (P, (state = False, per(P) = 1)) into the bucket (Line 10–12).
Finally, updateTFD returns the updated TFD (Line 13).

Example 2. Figure 3 demonstrates an example of the hash process. In current
time window, subgraph g1k is hashed into bucket B1[h1(g1k)]. However, the state
of counter of B1[h1(g1k)] is False, so the TFD does nothing. When considering
subgraph g2k, we first hash it into B1[h1(g2k)]. Although the state of counter
of B1[h1(g2k)] is True, g2k is not isomorphic to P2. Thus we then hash it into
B2[h2(g2k)]. Since the state of the counter of B2[h2(g2k)] is True, the TFD will
increment the counter by one and turns the state to False. Note that we need
to compute the pattern P5 of the subgraph g3k since g3k is not isomorphic to the
pattern in any bucket. Because the bucket Bd[hd(g3k)] is empty, we will insert the
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key-value pair (P5, (False, 1)) into Bd[hd(g3k)]. Note that we will set the state of
counters in the TFD as True after the current time window is processed.

Algorithm Analysis. Compared to the baseline solution, fastPP directly maps
each newly produced k-edge subgraph into a fixed bucket in the TFD to count the
persistence of the pattern, rather than calculates and stores all k-edge subgraphs
at each time window, which significantly reduces the memory cost and time cost.
What’s more, once the state of a counter is False, fastPP will not need to verify
the existence of the pattern in the corresponding bucket in the current window,
which avoids repeated subgraph matching calculations.

5 TFD+: An Optimized Auxiliary Data Structure

In this section, we first analyze the drawback of the algorithm fastPP, and then
propose an optimized version of TFD, TFD+ to achieve effectiveness and reduce
the computational cost.

Problem Analysis. In the worst case, fastPP needs to check d buckets for
each newly produced k-edge subgraph due to hash collisions, which is time-
consuming. What’s more, if non-persistent patterns take up too many buckets,
no sufficient locations exist for persistent patterns, resulting in a lower recall
rate when memory is limited.

To achieve higher efficiency and accuracy, we propose fastPP+, which replaces
TFD with an optimized version called TFD+.

Fig. 4. Auxiliary Data Structure of TFD+

TFD+ (Fig. 4). To achieve time efficiency, the novel auxiliary data structure
TFD+ guarantees that every newly produced k-edge subgraph only needs to
access one array and one cell. To detect more persistent k-edge patterns, our key
idea is to separate persistent and non-persistent k-edge patterns. Specifically,
TFD+ consists of two parts. The first part is an array. The array is associated
with a hash function h1(·), mapping each subgraph into one cell in the array,
which records the estimated persistence of a non-persistent subgraph. Each cell
is a counter. It has l cells, where ith cell in the array is denoted as C1[i]. The
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second part consists of an array of l buckets, where ith bucket is denoted as B[i].
Each bucket corresponds to a cell in the array, i.e., B[i] corresponds to C1[i].
There are w key-value pairs in each bucket, and each key-value pair is similar
to the key-value pair of TFD. Let B[h1(P )][P ] represent the corresponding key-
value pair of k-edge pattern P if P is stored in B[i], where B[h1(P )][P ].key is
the P and the value is the corresponding counter. Initially, all state fields are
True, and the value of each counter is 0.

Algorithm 3: updateTFD+(G,TFD)
1 line 1-3 of Function updateTFD;
2 foreach subgraph gk ∈ Ek(e) do
3 foreach B[h1(gk)][j] in the bucket B[h1(gk)] do
4 if B[h1(gk)][j].state == True then
5 if gk is isomorphic to B[h1(gk)][j] then
6 B[h1(gk)][j].value ← B[h1(gk)][j].value + 1;
7 B[h1(gk)][j].state ← False, break;

8 if gk is not isomorphic to any key-value pair in B[h1(gk)] and
C1[h1(gk)].state == True then

9 C1[h1(gk)].value ← C1[h1(gk)].value + 1, C1[h1(gk)].state ← False;
10 B[h1(gk)]

min ← findMinValue(B[h1(gk)]);
11 if C1[h1(gk)].value > B[h1(gk)]

min.value then
12 swapCB(C1[h1(gk)], B[h1(gk)], B[h1(gk)]

min);

13 return TFD+;

Compared with Algorithm fastPP, Algorithm fastPP+ is only different from
the process of updating data structure. Due to the limited space, the specific
algorithm is omitted. Algorithm updateTFD+ shows the update process of TFD+.

Algorithm updateTFD+. For each subgraph gk in Ek(e), there are two cases
as follows: (1) gk is isomorphic to one of key-value pair of the B[h1(gk)]. If the
state of counter in B[h1(gk)][j] is True, updateTFD+ will check whether gk is
isomorphic to the B[h1(gk)][j]. If so, updateTFD+ will increment the counter by
1 in B[h1(gk)][j] and set the state of counter to False (Line 4–7). (2) gk is not
isomorphic to any key-value pair of the B[h1(gk)] and C1[h1(gk)].state == True.
updateTFD+ increments the counter and sets the state of the counter to False.
Then, we invoke findMinValue to find the smallest counter in B[h1(gk)] to com-
pare the counter in C1[h1(gk)] in order to determine whether the correspond-
ing pattern P is persistent enough to store in the bucket B[h1(gk)]. We use
B[h1(gk)]min to store the key-value in B[h1(gk)] with minimum persistence.
If C1[h1(gk)].value > B[h1(gk)]min.value, indicating that the estimated per-
sistence of P is larger, P should be stored in B[h1(gk)]. As a consequence,
updateTFD+ swaps C1[h1(gk)] and B[h1(gk)][B[h1(gk)]min.key].value, and
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swaps P and B[h1(gk)][B[h1(gk)]min.key].key (Lines 8–12). Finally, updateTFD+

returns the updated TFD+ (Line 13).

Example 3. Let w = 2, and Fig. 5 shows an example of the hash process in TFD+.
In current time window, we find that subgraph g1k is hashed into B[h1(gk)][1].
Since g1k is isomorphic to P5 and the state of the counter of B[h1(g1k)] is True, the
TFD+ will increment the counter by one and turns the state to False. In other
example, g3k is not isomorphic to any key-value pair in B[h1(g3k)], so the TFD+

maps the g3k into the counter C1[h1(g3k)]. The counter is updated to (False, 4).
Because 4 is larger than the smallest counter (3) in the bucket, the TFD+ sets
the key to P6 that is the pattern of the subgraph g3k, and swaps (False, 4) and
(True, 3). After that, to map subgraph g4k, because g4k is not isomorphic to any
key-value pair in B[h1(g4k)], the TFD+ maps g4k into the counter, and the counter
C1[h1(g4k)] is updated to (False, 4).

Fig. 5. Data Structure of TFD+

Theorem 1. Let T be the number of time windows in the streaming graph,
per(P) be the persistence of pattern P , ̂per(P) be the estimated persistence
reported by our fastPP+ and l = 2

ε , the approximate ratio returned by the Algo-
rithm fastPP+ is

P( ̂per(P) ≤ per(P) +
ε
∑N

i=1 P

w + 1
) ≥ 1

2
(1)

Theorem 2. Let P be the probability that P is stored in buckets, the recall rate
returned by the Algorithm fastPP+ is

P ≥ 1 −
∑N

i=1 P − per(P)
w · l · per(P)

(2)

Algorithm Analysis. Compared with fastPP, fastPP+ is more efficient since it
only needs to access one bucket for each new produced k-edge subgraph. Besides,
fastPP+ can separate persistent and non-persistent patterns and only record the
persistent patterns by using an additional bucket for each counter, resulting in
a higher recall rate.



Discovering Persistent Subgraph Patterns over Streaming Graphs 165

6 Experiments

In this section, we perform extensive experiments to show the performance of
fastPP+ for discovering persistent patterns over streaming graphs. All the algo-
rithms were implemented in C++, and run on a PC with an Intel i7 3.50GHz
CPU and 32GB memory. Every quantitative test was repeated 5 times.

Datasets. For each dataset, we divide it into 50 time windows, i.e., T = 50.

• Enron2 is an email communication network of 86K entities (e.g., employees),
297K edges (e.g., email), with timestamps corresponding to communication
data.

• Offshore3 contains in total 839K offshore entities (e.g., companies), 3.6M
relationships (e.g., establish) and 433 labels covering offshore entities and
financial activities, with timestamps corresponding to active days.

• Facebook4 is a social network of 415K entities (e.g., users), 2.1M edges (e.g.,
message), with timestamps corresponding to posts date.

Solutions for Comparison. We compare the following 3 solutions for the
persistent subgraph pattern discovery problem.

• findPP: Our baseline method for mining persistent patterns;
• fastPP: Our advanced algorithm framework that uses the TFD;
• fastPP+: fastPP+ that improves fastPP by incorporating the optimized TFD.

Metrics. We use the following four metrics:

• Recall Rate (RR): Ratio of the number of persistent patterns that are reported
to the number of persistent patterns.

• Precision Rate (PR): Ratio of the number of persistent patterns that are
reported to the number of reported patterns.

• F1 Score: 2×RR×PR
RR+PR . It is calculated from the precision and recall of the test,

which is also a measure of a test’s accuracy.
• Throughput: Kilo insertions handled per second (KIPS).

Parameter Settings. There are four parameters: the number of hash functions
d (in TFD) and the number of key-value pairs in a bucket w (in TFD+), the
number of buckets l (in TFD) and the number of cells in a bucket l (in TFD+),
and the persistence threshold δ.

In specific, we vary d from 4 to 16 with a default 12, vary w from 4 to 16
with a default 12, and vary l from 4 to 32 with a default 16. δ could be set by
domain scientists based on domain knowledge and is selected from 10 to 30 with
a default 20. In addition, we fix the subgraph size k = 4. Without otherwise
specified, when varying a certain parameter, the values of the other parameters
are set to their default values.
2 http://konect.uni-koblenz.de/networks/.
3 https://offshoreleaks.icij.org/pages/database.
4 http://socialnetworks.mpi-sws.org.

http://konect.uni-koblenz.de/networks/
https://offshoreleaks.icij.org/pages/database
http://socialnetworks.mpi-sws.org
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6.1 Performance Evaluation

EXP-1: Effect of Dataset. We first evaluate the performance of findPP, fastPP
and fastPP+ on Enron, Offshore, and Facebook. Note that, in each dataset, the
temporal edges are continuously loaded into memory according to the time
sequence of their occurrence to obtain a streaming graph. Therefor, we need
reserve space for storing all edges in each dataset. As the edges are organized as
a linked list, each edge needs for 48 bytes. To this end, we fix the memory size
of Enron, Offshore and Facebook to 50MB, 250MB, and 150MB, respectively.

Fig. 6. Experimental Results on Different Datasets and Varying Memory

F1 score (Fig. 6(1)). Our results show the F1 score of fastPP+ and its com-
petitors on three datasets with default parameters. Similar results can also be
observed under the other parameter settings. As shown in Fig. 6(1), we can
observe that the F1 score of fastPP+ is higher than all other competitors, and
fastPP is also higher than findPP. For example, on Facebook, the F1 score of
fastPP+ is higher than 95%, fastPP is higher than 90%, however findPP is smaller
than 80%. The main reason is that findPP needs enough memory to store all k-
edge subgraphs to guarantee accuracy, which will cause low performance when
the memory is limited. Compared with findPP, our data structures need not store
any subgraph, which is less affected by memory size. The reason why fastPP+

outperform fastPP is that some non-persistent patterns may be mapped into the
TFD first, resulting in insufficient locations for subsequent persistent patterns
when the number of locations of the TFD is limited. As a result, some persistent
patterns are misjudged as non-persistent patterns. Note that the F1 score of
findPP can achieve 100% under enough memory because findPP exactly counts
each pattern’s persistence under enough memory.

Throughput (Fig. 6(2)). From Fig. 6(2), we also observe that the throughput
of fastPP+ is always higher than other algorithms, and fastPP is also higher than
findPP. In specific, fastPP+ outperforms fastPP by up to 1.4 times on Enron, and
fastPP outperforms findPP by up to 4.7 times on Offshore. This is because findPP
first needs to partition Pk and calculate the k-edge subgraph patterns based on
subgraph isomorphism. Then, findPP needs to re-execute subgraph isomorphism
calculation for each pattern to check whether it exists in the PS, which also
causes high computational costs. In contrast, fastPP directly maps it into a fixed
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bucket in the TFD to form a corresponding k-edge pattern, which can avoid
expensive calculations. What’s more, fastPP+ can further improve the efficiency
since it guarantees that every subgraph only needs to access one counter and
one bucket. The performance of fastPP+ in three datasets is slightly different,
and the trends are very similar. The results show the robustness of fastPP+, so
in the following experiments, we only use Offshore dataset.

EXP-2: Effect of Memory. We evaluate the accuracy and speed of fastPP+

and its competitors with varying memory size on Offshore. In the experiment,
the memory size ranges from 200MB to 400MB.

Fig. 7. Experimental Results on Varying Parameters

F1 score (Fig. 6(3)). In this figure, we can see that the increase of memory
size has a large effect on findPP, due to insufficient space to store all subgraphs
for exactly computing the persistence of each pattern. We also find that the
increase of memory size has little effect on that of fastPP and fastPP+, and the
impact on fastPP+ is minimal. This is because they use auxiliary data structures
without storing all k-edge subgraphs. Since the TFD and TFD+ only store the
k-edge patterns and their persistence. And, fastPP+ guarantees non-persistent
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patterns will be replaced quickly and will not take up much space. Therefore,
our algorithms work well with limited memory.

Throughput (Fig. 6(4)). As expected, fastPP+ is much faster than other algo-
rithms. We can see the increase of memory size can decrease the throughput of
findPP and has little effect on that of fastPP and fastPP+. The reason is that
findPP needs less time to partition Pk into m equivalence classes. The throughput
of findPP is much lower because findPP causes redundant subgraph matching.
Due to fewer memory accesses, the throughput of fastPP+ is the best.

EXP-3: Effect of Parameters. We evaluate the RR, the PR, and throughput
of fastPP and fastPP+ with varying parameters on Offshore using fixed memory
size, i.e., 250MB. Note that when varying a parameter, we keep other parameters
as default. The results on the other datasets are consistent.

Effect of d/w (Fig. 7(1)–(3)). We vary d (resp. w) in this experiment from
4 to 16. Especially we observe that the increase of d can increase the RR and
decrease the throughput of fastPP, and the PR of fastPP is always 1. When w
increases, the throughput often decreases, and the RR and the PR often increase.
The reason is that for a larger d or w, potential persistent patterns have more
opportunities to be stored into the TFD and TFD+, and the RR of fastPP and
fastPP+ will be increased. And, for a larger w, there are more positions to store
persistent patterns so that more potential persistent patterns will be protected
from replacements and hash collisions, and the PR of fastPP+ will increase.
Because the TFD counts the persistence of patterns exactly, the PR of fastPP is
always 1. However, the throughput of fastPP will decrease since it has to check
d − 1 more buckets for each edge insertion. And the throughput of fastPP+ will
decrease because the number of memory accesses is small when the w is large.
Therefore, choosing an appropriate d or w is a trade-off between accuracy and
throughput. The larger d or w is, the higher the accuracy is, while the lower the
throughput is. If the application demands high throughput, we should decrease
the d or w. If the application requires high accuracy, we should increase d or w.

Effect of l (Fig. 7(4)–(6)). The experimental results show that the increase of
l can increase the RR and decrease the throughput of fastPP and fastPP+. This
is because when l increases, there are more tracks in the TFD and TFD+, and we
can detect more patterns simultaneously. However, resulting in more subgraph
matching calculations since we need to count the persistence of the pattern in
each track of the TFD and TFD+ in each time window. l does not affect the PR
of fastPP and fastPP+ because l does not affect the persistence of the k-edge
patterns in the TFD and TFD+.

Effect of δ (Fig. 7(7)–(9)). The experimental results show that the increase
of δ can increase the RR of fastPP and fastPP+. This is because, for a smaller
δ, the ground truth could be huge, and we can only detect the fixed number of
patterns in the TFD and TFD+. Therefore, resulting in a lower RR. We also find
that the increase of δ can increase the PR of fastPP+ since more false positives
can be filtered safely due to persistence constraints. The throughput of fastPP
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and fastPP+ is insensitive to δ since δ does not affect the number of the k-edge
patterns in the TFD and TFD+.

Fig. 8. Real-life persistent pattern (Offshore)

6.2 Case Study

We demonstrate the utilities of the persistent pattern discovery problem by
conducting a case study on Offshore. Figure 8 shows a persistent pattern obtained
by our solution. It reveals a significant move of active bearer shares companies
from tax heaven “British Virgin Islands” to “Panama”. This pattern can help
us discover the abnormal behavior of these active bearer shares companies and
analyze the causes of the abnormal behavior. Through analysis, we know that the
reason for the abnormal behavior is that the British Virgin Islands has cracked
down on bearer shares. For the British Virgin Islands, the risk of capital outflows
needs to be guarded so offshore financial markets can be better built.

7 Related Work

Streaming Graph Analysis. Many streaming graph analytics tasks have been
proposed to mine valuable information, e.g., query processing [14], time con-
strained continuous subgraph search [9], triangle counting [16], streaming graph
summarization [11] and graph sampling method [17]. In this work, we study the
persistent pattern discovery problem, which aims to find persistent patterns over
a streaming graph.

Frequent Subgraph Pattern Mining in Dynamic Graphs. The studies of
frequent subgraph pattern mining in dynamic graphs are related to our work.
Nasir et al. [13] presented TipTap, a collection of sampling-based approximation
algorithms for mining frequent k-vertex patterns in fully-dynamic graphs. Aslay
et al. [2] proposed a sampling-based method to find the latest frequent pattern
when edge updates occur on the graph. Ray et al. [15] proposed a heuristic
approach to mining a single graph that continuous updates. Abdelhamid et al.
[1] proposed a system IncGM+ for continuous frequent subgraph mining that
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prunes the search space using a set of infrequent subgraphs which are adjacent
to frequent subgraphs. While these methods seek to find frequent subgraphs, we
seek to find persistent subgraphs.

Persistent Item Mining. There is many studies for mining persistent items.
Belth et al. [3] explored the persistence of activity snippets, i.e., sequences of
reoccurring edge updates. Zhang et al. [19] proposed a fast and accurate sketch
for finding persistent items. The sketch introduced a state flag into each counter
of the sketch instead of maintaining a bloom filter to record the existence of the
element. Our research is inspired by the work [19] aforementioned, and especially
the preliminaries set a good foundation for our work. Dai et al. [6] concentrated
on finding the persistent items in data streams. Li et al. [8] proposed the notion of
persistent k-core to capture the persistence of a community in temporal networks.
Compared to them, our work adopts a different research object pattern and
considers a subgraph pattern that appears recurrently in many time windows
of the streaming graph. Therefor these methods cannot handle the persistent
pattern mining problem.

8 Conclusion

In this paper, we tackle the novel problem of discovering persistent patterns
continuously in streaming graphs. We propose an auxiliary data structure called
TFD for counting the persistence of a pattern without storing any subgraph
and avoiding repeated subgraph matching calculation, which is fast, memory
efficient, and accurate. We explore an optimized auxiliary data structure TFD+

that guarantees that every newly produced k-edge subgraph only needs to access
one counter and one bucket. Experimental results have verified that our algo-
rithms can achieve high accuracy and efficiency with limited memory usage in
real-time persistent pattern detection. We also demonstrated the utility of the
discovered persistent patterns by a case study on Offshore.
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Abstract. The relationship strength between individuals in the net-
work is an essential task in network analysis. However, existing mea-
sures of relationship strength are mostly artificially predefined, which
can only reflect the relationship strength from a single perspective. To
compensate for this, we propose a novel GNN-based model for Min-
ing Relationship Strength Changes between Nodes in dynamic networks,
named MRSCN, which learns the reasonable relationship strength from
networks. To verify the effectiveness of our measure on the relationship
strength change, we further propose a novel ε-drastic group model. We
develop two group mining algorithms. We conduct extensive experiments
on real-life dynamic networks to evaluate our models. The results demon-
strate the effectiveness of the proposed MRSCN model and the drastic
group mining method.

Keywords: Relationship strength change · Drastic group · Dynamic
networks

1 Introduction

In the real world, the relationships between various entities are constantly chang-
ing and can be described by dynamic networks, such as social networks. The
graph sequence has been introduced to model the dynamic network. At each
time point, the graph snapshot is taken to capture the status of the network.
For example, in a mobile communication network, the calls between participants
each day are modeled and captured as a graph snapshot.

Investigating relationship strength among individuals in the network is essen-
tial in network analysis. In social networks, the relationship strength indicates
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the possibility that two people become friends even though they may not know
each other at the current time. However, the relationship strength also changes
over time. Then it is crucial to study the relationship strength change for
dynamic network analysis. Based on the relationship strength change, various
drastically changing groups can be mined for human beings to track the sig-
nificant or abnormal changes in networks. For example, in financial trade net-
works, gang frauds always occur much more frequently than individual frauds.
Money laundering syndicates often evade regulation by making small but multi-
ple transactions, resulting in frequent changes in relationship strength between
individuals. Mining groups with relationship strengths changing frequently help
regulators detect potential risks in time. Due to the importance of the relation-
ship strength between entities, it is necessary to find a reasonable measure of
relationship strength.

Several works [1,4] proposed various metrics to measure the relationship
strength between nodes, such as connectivity and common neighbors. How-
ever, all these artificially predefined measurements can only reflect relation-
ship strength from a single perspective. For the example in Fig. 1, relationship
strengths between nodes of the same color change significantly when different
metrics are used. It is necessary to design a reasonable relationship strength
model to study the relationship strength change for dynamic networks.

Fig. 1. An illustrative example of existing relationship strength measurements.

In this paper, we propose a novel GNN-based model for Mining Relationship
Strength Changes between Nodes in dynamic networks, named MRSCN, which
adaptively learns the relationship strength between nodes from networks. Then
we further propose the concept of cumulative relational strength change. We also
define a drastic group model and investigate the ε-drastic group mining problem
to verify the usefulness of our measure on relationship strength change. Finally,
we conduct extensive experiments to validate the effectiveness of our method.

2 Related Work

In this section, we review related studies on dynamic network analysis, graph
embedding, and relationship strength.

As a hot area for researchers in recent years, researchers analyzed dynamic
networks from different aspects. Yang et al. [18] developed an algorithm to cap-
ture frequently changing components in dynamic networks. Qin et al. [15] pro-
posed a model to mine periodic cliques in dynamic networks. Jia et al. [10]
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proposed a method to measure the community consistency. Li et al. [14] devel-
oped a new algorithm to find stable communities based on the density-based
graph clustering framework. To the best of our knowledge, previous studies have
paid little attention to the relationship strength change in dynamic networks.

Graph embedding is used to map nodes to low-dimensional vectors based on
network topology. Existing work focuses on preserving structural and attribute
information in the embedding, such as DeepWalk [13], Node2Vec [8], DANE [7]
and so on. Graph Neural Networks (GNNs) [16], which use a deep learning frame-
work on graph data, have attracted lots of attention. GNNs have been widely
used in graph-based problems, such as GCN [12], GAT [17] and GraphSage [9].

Existing research on relationship strength can be divided into two main cat-
egories: the first one is based on the network topology to calculate relationship
strength, such as common neighbors [14] and connectivity [4]; the second one
is a combination of user interactions and user profiles. Guo et al. [11] obtained
the fused similarity matrix from different views of user interactions and user
profiles. However, there are shortcomings such as artificially predefined or con-
sidering structural information from one aspect.

3 Preliminaries

We represent the dynamic network consisting of a sequence of undirected graphs
as G =

(
G1,G2,· · ·,G‖G‖

)
, where Gt = (Vt, Et) is a graph snapshot at time t with

a set of vertices Vt and a set of edges Et, and ‖G‖ is the number of Gt in G.
N(u) denotes the neighbors of node u. Given nodes u and v, we denote d(u, v)
as the distance between u and v, namely the shortest number of hops from u
to v. The i-hop neighbors of node u, denoted as Ni(u), contain all the nodes
whose distance to u are i, i.e., Ni(u) = {v ∈ V |d(u, v) = i}. The i-hop reachable
neighbors of node u, denoted as N≤i(u), contain all the nodes whose distance to
u is no more than i (i ≥ 1). Clearly, N≤i(u) = ∪i

j=1Nj(u).
Relationship strength has no uniform definition and refers to the closeness

between individuals. To address the problem of existing predefined models cap-
turing a single relationship, we learn the relationship strength adaptively based
on GNN. The relationship strength between u and v in Gt is denoted as rst(u, v).
Furthermore, the relationship strength change between u and v from Gt to Gt+1

is defined as δt(u, v) = |rst+1(u, v) − rst(u, v)|. Our aim is to learn the reason-
able relationship strength measurement and propose the drastic group model to
verify the effectiveness of the relationship strength measurement.

4 Mining Relationship Strength Changes Between Nodes

In this section, we introduce our novel MRSCN model in dynamic networks. The
overview architecture of MRSCN is shown in Fig. 2. The key idea behind our
model is to use the GNN model to mine the relationship strength by compre-
hensively considering global and local information.
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4.1 Global Structure Information Capture

In this section, we use random walk and pointwise mutual information to encode
the global structure information.

Fig. 2. The overview of the proposed MRSCN.

Calculating Node Co-occurrence Matrix C. We use matrix C to represent
the co-occurrence frequencies between nodes. We use the random walk algorithm
here. For each vertex vi in the graph, we first select it as the starting vertex,
which is also the current vertex. We define the current state as s(t) = vi. Then
we randomly select the next vertex vj from the neighbors of vi. The transition
probability of jumping from the current node vi to vj is calculated as:

p(s(t + 1) = vj |s(t) = vi) = Ai,j/
∑

j

Ai,j , (1)

where A is the adjacency matrix. Now, we mark this newly selected vertex vj
as the current vertex and repeat such a vertex sampling process. The algorithm
terminates when the length of the vertex sequence reaches a pre-set number
called walk length η. We repeat the above procedure γ times for each node and
record the starting node vi and node vj in the sequence for each walk. For each
pair (vi, vj), We add one to the values of Ci,j and Cj,i respectively, and finally
obtain the node co-occurrence matrix C.

Calculating PPMI Matrix M. Pointwise mutual information [5] is often used
to measure the correlation of variables. In this paper, we use it to measure the
global relationship between nodes. Based on C, we calculate the PPMI matrix
M ∈ R

n×n as:

mi,j = max{log(
pi,j

pi,∗p∗,j
), 0}. (2)
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Algorithm 1. GraphSage Embedding Generation Algorithm
Input: Graph G(V, E); input features {fv, ∀v ∈ V}; depth K; weight matrices Wk;

aggregator functions AGGREGATEk; neighborhood function N : v → 2V

Output: Vector representations zv for all v ∈ V
1: h0

v ← fv, ∀ v ∈ V
2: for k = 1, . . . , K do
3: for ∀v ∈ V do
4: hk

v ← σ(Wk · MEAN({hk−1
v } ∪{hk−1

u , ∀u ∈ N (v)}))
5: end for
6: hk

v ← hk
v/‖hk

v‖2, ∀v ∈ V
7: end for
8: zv ← hK

v , ∀v ∈ V

The global structure information is encoded by applying Eq. (2). pi,j is the
estimated probability that nodes vi and vj occur during the random walk at
the same time, i.e., pi,j = Ci,j∑

i,j Ci,j
. pi,∗ and p∗,j are the estimated probability

that nodes vi and vj occur during the walk respectively, i.e., pi,∗ =
∑

j Ci,j
∑

i,j Ci,j
and

p∗,j =
∑

i Ci,j∑
i,j Ci,j

. mi,j is the measure of the global correlation of nodes vi and
vj . As we are focusing on the semantic relation, our method uses a nonnegative
pmi. It is worth noting that matrix C and matrix M need to be recomputed for
different graph snapshots.

4.2 Graph Neural Network Model

To jointly consider the global and local structure information, we integrate global
information into the GNN model. GraphSage is used to generate embeddings by
aggregating global features from the node’s local neighborhood [9].

For each node, the algorithm iteratively aggregates global information from
the node’s neighbors. The process of aggregating information from neighbors
is capturing local information. Algorithm 1 describes the embedding generation
process. We use the row vector Mv,: in M as the node feature fv and the inductive
variant of the GCN approach as the aggregator function. The final representation
of node v is expressed as zv, as shown in line 8 in Algorithm 1.

In order to learn representations in a fully unsupervised setting, we apply a
graph-based loss function:

JG (zu) = − log
(
σ

(
z�
u zv

)) − Q · Evn∼Pn(v) log
(
σ

(−z�
u zvn

))
, (3)

where v is a node that co-occurs near u on fixed-length random walk, σ is
the sigmoid function, Pn is a negative sampling distribution, and Q defines the
number of negative samples.
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4.3 Relationship Strength Change Computation

After learning the embeddings of nodes in graphs, we aim to obtain the relation-
ship strength. Here, we use the embedding vector obtained by the GNN model
as the key feature of the relationship strength change computation.

We select cosine similarity to calculate the relationship strength because we
are more interested in the directional similarity of different embeddings than in
the absolute values. The relationship strength between u and v in Gt, denoted
as rst(u, v), can be presented as:

rst(u, v) =
ztu

� · ztv
||ztu|| × ||ztv||

, (4)

The relationship strength change between u and v from Gt to Gt+1, denoted as
δt(u, v), can be calculated as follows:

δt(u, v) = |rst+1(u, v) − rst(u, v)| . (5)

Thus, the cumulative relationship strength change between u and v in
the dynamic network is given as follows:

Δ(u, v) =
‖G‖−1∑

t=1

δt(u, v). (6)

5 Drastic Group Mining

Based on the relationship strength change between nodes by the MRSCN model,
we can further mine drastic groups. In this section, we introduce our top-k ε-
drastic group mining method.

Definition 1. ε-drastic group. A set of nodes C ⊂ G is called ε-drastic group if
the following conditions holds: (1) ∀v1, v2 ∈ C, cumulative relationship strength
change Δ(v1, v2) ≥ ε; (2) |C| is maximized; (3)

∑
v1,v2∈C Δ(v1, v2) is maximized.

ε-drastic group mining problem has two optimization objectives, namely large
coverage and a large sum of relationship strength changes. In reality, they can’t
be satisfied simultaneously. We consider the problem in the following two cases:
(1) priority to make the coverage as large as possible. (2) priority to make the
sum of relationship strength changes as large as possible. Based on these two
cases, the Coverage-First algorithm (CF) and Strength Change-First algorithm
(SCF) are proposed.

First, we need to generate all drastic groups that satisfy Δ(v1, v2) ≥ ε for
any two nodes v1, v2 in the drastic group, which consists of two steps. Firstly,
we need to generate a graph containing all the nodes that satisfy Δ(v1, v2) ≥ ε
for any two nodes v1, v2 in the graph. Secondly, we enumerate maximal cliques
on the graph to return all drastic groups. Many widely used maximal clique
enumeration algorithms can be adopted, such as BasicMCE [6].
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Table 1. Datasets statistics.

Dataset n = |V | m = |E| T = ‖G‖ Avg. Degree

Chess 7301 65053 25 17.82

Lkml 30665 197356 24 12.87

Enron 66903 189353 14 5.66

P2P-Gnutella 23089 72131 9 6.25

Coverage-First Algorithm. First, all drastic groups are enumerated and
sorted in non-increasing order of their coverages. Drastic groups with the same
coverage are sorted in non-increasing order of their sums of cumulative relation-
ship strength changes. Second, all sorted drastic groups are scanned sequentially
based on the greedy strategy, i.e., the drastic group with the largest coverage
is always given priority. Suppose that K is the current result set and C is the
current scanned drastic group that is being decided whether to be added into
K or not. If C overlaps too much with a drastic group C ′in K, C might be dis-
carded. In order to evaluate the degree of overlap between C and C ′, we propose
an indicator named the overlap ratio, denoted by |C ⋂

C′|
|C| . Given a threshold α,

for C, if there exists a C ′ such that |C ⋂
C′|

|C| > α, C will be discarded. Finally,
top-k ε-drastic groups can be gained from the result set K. The time complexity
of CF is O(nlogn), where n is the number of drastic groups.

Strength Change-First Algorithm. First, all drastic groups are enumerated
and then sorted in non-increasing order of their sums of cumulative relation-
ship strength changes, and drastic groups with the same cumulative relationship
strength change are sorted in non-increasing order of their sizes, which indicate
the coverages. Second, all sorted drastic groups are scanned sequentially based on
the greedy strategy. As with CF, the overlap ratio is used to evaluate whether
the drastic group is added to the result set K. We can obtain top-k ε-drastic
groups from the result set K. The time complexity of SCF is the same as CF.

6 Experiments

6.1 Experimental Setup

We conduct experiments on four real-world datasets, including Chess, Lkml,
Enron and P2P-Gnutella, whose statistics are summarized in Table 1.

In our experiments, we compare MRSCN with three different categories of
methods, including DeepWalk [13], Node2Vec [8], GraRep [2] and DNGR [3].

Since most existing metrics are tailored for traditional graphs, we introduce
four goodness metrics evaluating drastic groups for dynamic networks, which are
motivated by separability, density, common neighbors and clustering coefficient.
Let C be the mining group. The descriptions of evaluation metrics are as follows.
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– Variability of Separability (VS) captures the intuition that the variability
of the separation between groups and the rest of the network is drastic for
the group with violent relationship strength changes between nodes: VS =∑||G||−1

t=1 |S(Gt+1) − S(Gt)|, S(Gt) is given by: S(Gt) = |{(u,v1)∈Et:u∈C,v1∈C}|
|{(u,v2)∈Et:u∈C,v2 /∈C}| .

– Variability of Density (VD) catches the intuition that the group with vio-
lent relationship strength changes has drastic connection changes: VD =
∑||G||−1

t=1 |DS(Gt+1) − DS(Gt)|, DS(Gt) is given by: DS(Gt) = 2
∑

vj∈C dt
C(vj)

|C|(|C|−1) ,

where dtC(vj) denotes the degree of vj in the group C at t timestamp.
– Variability of Common Neighbors (VCN) builds on the intuition that the

nodes in the group C with violent relationship strength changes have dras-
tic changes in common neighbors: VCN =

∑||G||−1
t=1 |CN(Gt+1) − CN(Gt)|,

CN(Gt) is calculated as: CN(Gt) = 2
|C|(|C|−1)

∑
vi,vj∈C

|N≤2
t (vi,vj)|√

|N≤2
t (vi)|×|N≤2

t (vj)|
.

– Variability of Clustering Coefficient (VCC) is based on the premise that the
connection in pair of nodes with common neighbors in C changes drasti-
cally: VCC =

∑||G||−1
t=1 |CC(Gt+1) − CC(Gt)|, CC(Gt) is given by: CC(Gt) =

1
|C|

∑
vj∈C | 2#edge(Nt(vj ,C))

dt
C(vj)·(dt

C(vj)−1)
|, where #edge(Nt(vj , C)) is the number of edges

in C whose two end nodes are vj
′s neighbors in C.

Intuitively, the group with drastic relationship strength changes between nodes
should have high VS, VD, VCN and VCC values.

6.2 Experimental Results

Exp 1. Effectiveness of the ε-Drastic Group Mining. In this experiment,
we study the effectiveness of the ε-drastic group mining. We use the SCF algo-
rithm to evaluate the effectiveness. Table 2 shows the performance of our method
compared with other methods.

From the results, we can see that MRSCN performs better than other meth-
ods in general. For example, compared to the most powerful compared method
DNGR, our MRSCN model reaches nearly 11.1%, 14.8% and 8.1% gain at VD,
VCN and VCC, respectively. The experimental results demonstrate that MRSCN
has a solid ability to mine relationship strength changes. This is due to the
effectiveness of capturing both global structure information and local structure
information. In terms of VS, our method has few obvious advantages.

Exp 2. Impact of Parameters. In this part, we analyze the impact of two
key parameters in our method, i.e., the embedding dimension d and ε. Figure 3
describes the results of our method with varying parameters on VS, VD and
VCC in Chess and Lkml, respectively. Similar results can also be observed in the
other datasets. VCN follows the same trend as VD and VCC. We first illustrate
the performance under various settings of embedding dimension while keeping
other parameters fixed, as shown in Fig. 3(a) and Fig. 3(c). We can see that the
performance of our method on VD and VCC improves as the embedding size
increases and gradually becomes stable when the embedding size increases.
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Table 2. Results of the ε-drastic group mining.

Methods Chess Lkml

VS VD VCN VCC VS VD VCN VCC

DeepWalk 0.255 0.255 0.347 0.512 0.324 0.315 0.341 0.367

Node2Vec 0.281 0.405 0.424 0.508 0.310 0.356 0.385 0.387

GraRep 0.311 0.466 0.403 0.554 0.280 0.349 0.412 0.449

DNGR 0.325 0.468 0.429 0.543 0.314 0.377 0.403 0.436

MRSCN 0.387 0.520 0.494 0.587 0.356 0.423 0.465 0.532

Methods Enron P2P-Gnutella

VS VD VCN VCC VS VD VCN VCC

DeepWalk 0.276 0.208 0.207 0.412 0.257 0.213 0.216 0.336

Node2Vec 0.355 0.261 0.231 0.398 0.290 0.209 0.230 0.342

GraRep 0.376 0.254 0.323 0.404 0.315 0.218 0.243 0.393

DNGR 0.314 0.266 0.284 0.436 0.287 0.225 0.207 0.341

MRSCN 0.358 0.318 0.326 0.547 0.266 0.246 0.228 0.354

Fig. 3. Effectiveness of our method with varying parameters on datasets.

However, we can see from Fig. 3(b) and Fig. 3(d) that both VD and VCC
values in different settings of parameter ε are irregular, because it cannot guar-
antee that the total relationship strength change of the group increases with the
increase of ε.

Exp 3. Ablation Study. To get a better understanding of how different com-
ponents affect the performance of MRSCN, we conduct ablation tests on three
datasets with one variant: MRSCN-G, which removes global features when gen-
erating the node embedding. In addition, we choose the best-performing DNGR
model as a comparison. The results w.r.t. VD and VCC are shown in Fig. 4.

We can find that the method performs better by combining global features,
which shows that capturing global structure information is able to mine relation-
ship strength changes more effectively. Moreover, we find that the basic GNN
model works better than DNGR. The experiment demonstrates the effectiveness
of mining the relationship strength changes between nodes by jointly considering
global and local structure information.
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Fig. 4. Performance comparison with variants of our method on three datasets.

7 Conclusion

In this paper, we propose a novel GNN-based model for Mining Relationship
Strength Changes between Nodes in dynamic networks, named MRSCN. We use
random walk and pointwise mutual information to capture the global structure
information. After that, we learn the reasonable relationship strength change
by GNN. Based on MRSCN, we propose the ε-drastic group model and develop
mining algorithms. We conduct experiments on real-world datasets. The results
demonstrate the effectiveness of MRSCN and the drastic group mining method.
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Abstract. Dynamic graph representation has gradually attached more
attention in the research area since many real-world graphs evolve over
time. Recent works typically represent the dynamic graph as a sequence
of discrete static subgraphs and apply a recurrent neural network (RNN)
to capture graph evolution over multiple discrete-time subgraphs. How-
ever, these approaches fail to capture the fine-grained temporal evolution
leading to introducing temporal invalid information into the structure
representation. In this paper, we propose a novel temporal evolution-
enhanced dynamic graph embedding method (TE-DyGE) to address
this limitation. To capture the fine-grained temporal evolution, TE-
DyGE first applies a temporal random walk to filter out temporally valid
information. Additionally, we introduce temporal-dependent weight to
enhance the structure attention network. We evaluate the TE-DyGE in
link prediction tasks. The experimental results demonstrate a generally
higher performance of TE-DyGE compared with several state-of-the-art
related baselines.

Keywords: Dynamic Graphs · Representation Learning

1 Introduction

Graph representation is a fundamental problem for many applications due to
its ability to encode the graph structure into a linear space. Low-dimensional
vectors, also known as embeddings, capture properties of nodes enabling the
graph to be used in various downstream tasks such as node categorization [13,19],
link prediction [2], and recommendation [16,24]. Existing graph representation
learning works focus primarily on static graphs containing fixed sequences of
nodes and edges. However, dynamic graphs arise naturally in the real world
because graph structures such as company relation graphs, credit card fraud
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graphs [9], co-authorship networks [11], and user-item interaction graphs [5]
constantly evolve. The representation of dynamic graphs contains not only the
graph structure information but also the temporal evolution.

Fig. 1. Discrete-time dynamic graph (DTDG).

Fig. 2. Visual illustration of temporal evolution-enhanced DTDG (Edges are labeled
by time).

For instance, dynamic company relation graphs represent not only the net-
works between companies but also the volatility of the financial market. The
volatility of the financial market is usually a significant feature for analyzing the
movements of the financial markets.

The above dynamic graph examples urge graph representation methods to
model the temporal evolution of dynamic graphs. The dynamic graphs are evolv-
ing with the insertion and deletion of nodes and links at any time [18], leading
to the challenge of capturing the temporal evolution of the node based on the
changed actions in it and its neighborhoods. In order to represent the compli-
cated time-varying graph structures, existing works divide a dynamic graph by
the same time window into a sequence of snapshots [6–8,17] that can be referred
to as a discrete-time dynamic graph (shown in Fig. 1 (a)).

Discrete-time dynamic networks cover changing topology and feature over
time by representing the dynamic graph as multiple static snapshots at differ-
ent time intervals. Each subgraph contains the final statement of entities during
a certain time period. DySAT [14] applies a structure self-attention network
to capture the structure information for each snapshot and a temporal self-
attention network to join the structure information of discrete snapshots in all
time intervals. DyHATR [25] proposes a hierarchical attention model to cap-
ture the heterogeneity of static snapshots by node-level and edge-level attention.
Then they model the evolution representation among snapshots by an attentive



Temporal Evolution-Enhanced Dynamic Graph Embedding Network 185

GRU/LSTM module. EvolveGCN [12] also proposes a combination of GNNs
(structure attention network) and RNNs (temporal attention network). Unlike
the DySAT and DyHATR, which use the temporal attention network to update
the node embedding, they utilize the RNN to regulate the parameters in the
GNN model.

The existing works primarily consider the structure information of discrete
snapshots resulting in no temporal information inside the snapshots being col-
lected. As shown in Fig. 1 (b), the fine-grained temporal evolution inside the
subgraph (t0 → t1 → t2) cannot be represented. This limitation of existing
works leads to encoding meaningless and obsolete information into the graph
embedding.

Specifically, when time is respected, some neighboring nodes actually offer
no information to the embedding of the target node, e.g., in a social network
graph (Fig. 2), we have two messages m1 = (v1, v2, t0) and m2 = (v2, v3, t3). The
user v1 sends a message to the user v2 at the time t0, and v2 sent a message to
the user v5 at the time t3. If t0 < t3, we can assume that the message m2 is
affected by the message m1 (temporal valid). In contrast, m1 does not contribute
to the representation of m2 (temporal invalid). Thus, ignoring the fine-grained
temporal evolution may lead to capturing vast quantities of temporally invalid
information.

In addition, in many practical settings, the strength of the edges gradually
decays over time. In an online fraud network, if two devices share the same IP
address and behave similarly, such as visiting the same websites within a short
time frame (less than an hour), they likely belong to the same person. Instead,
even if two devices have the same IP and exhibit similar behavior over a long
period of time, such as a week or a month, it is improbable that they belong to
the same user. Due to the lack of temporally weighted edges, the vast majority
of existing methods embed obsolete information, which is expected to result in
less accurate predictions of future links.

Considering the preceding instances, we present a temporal evolution-
enhanced dynamic graph embedding method (TE-DyGE) to address the limita-
tion of ignoring the fine-grained temporal evolution inside the discrete subgraphs.
Firstly, we introduce temporal random walks to preclude the temporally
invalid sequences of edges. Instead of sampling simply the structure neighbors,
the temporal random walk samples discrete subgraphs based on the ascending
order of the time sequence. A temporal random walk is a sequence of nodes
linked by edges with non-decreasing timestamps, thereby capturing the tempo-
rally valid information. In subgraph GT1 , for example, the non-sequential walk
{(v5, v2, t3), (v2, v1, t0), (v1, v6, t4)} will not be sampled because v6 exists in the
past with regard to v5.

Secondly, we propose a temporally weighted structure attention network,
which captures temporal evolution representations of discreet subgraphs by
incorporating time distance as edge weight. Time distance can be defined
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as a time difference of two edges, D{(v2, v1, t0), (v3, v1, t1)} = t1 − t0. The pro-
posed network avoids embedding obsolete information by attaching importance
to temporally relevant edges and trying to subdue the old interactions.

We summarize the key contributions of this paper below:

1. We propose a novel discrete-time dynamic graph embedding method named
TE-DyGE, which can model fine-grained temporal evolution. To the best
of our knowledge, the proposed TE-DyGE is the first attempt to leverage
temporal evolution inside the discrete-time subgraph.

2. We apply a temporal random walk to deliver temporal evolution information
into the graph embedding network.

3. We propose a temporally weighted structure attention network that intro-
duces the time distances as weights of edges in node embedding.

4. TE-DyGE outperforms several state-of-the-art baselines on the task of link
prediction using four real-world datasets.

2 Related Works

This work is related to graph representation learning, especially learning the
temporal evolution of dynamic graphs.

2.1 Static Graph Representation Learning

Static graph representation learning can be separated into two groups: unsu-
pervised learning and supervised or semi-supervised learning. Early works focus
on unsupervised representation learning, which prefers dimensionality reduction
based on spectral graph topology and properties [20]. Inspired by the skip-gram
model in the natural language domain, several graph representation works [2,13]
use skip-gram to maximize the likelihood of co-occurrence in random walks to
learn the node embedding. Specifically, they use random walks to sample a fixed-
length sequence of nodes from a graph, then use the skip-gram model to learn
the node embedding. Relatively recent static graph representation works focus
on supervised and semi-supervised learning. A number of convolution graph neu-
ral networks (GCN [3]) extend the convolution neural network by operating the
convolution layers to aggregate information from neighbors. Some methods [22]
additionally apply an attention mechanism [21] to learn the importance of neigh-
bor nodes. However, the above works fail to consider the dynamic graphs, which
evolve over time.

2.2 Dynamic Graph Representation Learning

Existing dynamic graph representation works tend to split a dynamic graph by
the same time window into a sequence of snapshots [6]. Several works capture
the evolution features by incrementally updating the node embedding. They
use the embedding from the previous time step as the initial embedding, How-
ever, the long-range variation and the complex time-varying features can not
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be preserved by the initial embedding. Recent works focus on separating the
graph structure representation task and the evolution representation task into
two independent modules. DySAT [14] captures the graph structure embedding
for each discrete-time subgraph and then applies temporal attention to learn-
ing the temporal importance of discrete-time subgraphs. The temporal attention
module benefits from capturing the most relevant historical context of the sub-
graph. Xue et al. [25] applies a similar architecture to dynamic heterogeneous
graph representation learning, and they additionally introduce RNN to capture
more stable evolution features among discrete subgraphs. Wang et al. [23] pro-
posed CoEvoGNN for modeling the dynamic sequence. They implement GCN,
GAT, and GraphSAGE as subgraph structure aggregators and propose a stack
temporal attention module for preserving and fusing influences of previous sub-
graphs’ embedding. EvolveGCN [12] uses RNN to learn the temporal evolution
and use learned temporal features to regulate the parameters in GCN (subgraph
structure aggregator).

3 Problem Definition

Existing discrete-time dynamic networks [14,25] represent the dynamic graph
as a set of static discrete subgraphs. Each subgraph is defined as Gt = (V, Et),
which primarily considers the vertices and edges. In this paper, we model the
discrete-time dynamic graph with the timestamps of edges, defined as follows.

Definition 1 (Discrete-time Dynamic Graph in TE-DyGE). A dynamic
graph is described as an order list of graph snapshots, G = {G1,G2, ...,GT },
where T denotes as the number of time steps. Each snapshot is defined as Gt =
(V, Et, T ), where V is a shared vertices set and Et is the set of temporal edges
between vertices in V. And T : E → R

+ maps the edges to their corresponding
timestamp.

Dynamic graph representation aims to learn the node representation et
u ∈ R

d,
where d is the expected output embedding dimension. Each node u ∈ V at time
step t = {1, 2, 3..., T}. et

u retains both the structure centered at node u and the
temporal evolutionary behaviors such as link/node insertion and deletion up to
time step t.

4 Framework

TE-DyGE is developed to describe the dynamic representation of each entity
(node) by incorporating two dimensions of temporal evolution: temporal struc-
ture neighborhoods and discrete-time subgraphs (listed from fine to coarse gran-
ularity). We proposea fine-grained temporal weighted attention module
by introducing the temporal evolution of each node based on the temporal ran-
dom walk and time distance. For the coarse level of dimensions, we aggregate the
output representations of all discrete-time subgraphs by a coarse-grain tem-
poral attention module. Figure 3 shows a brief architecture of the TE-DyGE.
We describe the details methodology in this section.
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Fig. 3. Framework of TE-DyGE

4.1 Fine-grained Temporal Weighted Attention

To obtain the temporal structure embedding of each node, we design a fine-
grained temporal weighted attention module. In this module, we seek to incor-
porate fine-grained temporal evolution via - (i) temporal neighborhood sets gen-
erated by the temporal random walk, and (ii) a graph structure self-attention
layer based on temporally weighted edges.

Temporal Neighbors. Instead of relying only on the structural neighbors to
aggregate node representation (et

u), TE-DyGE samples the time-complex inter-
action sequences using temporal random walks. The random walk method is used
by network embedding methods [2,13] to build the corpus of node context. A
temporal random walk incorporates temporal dependence into the random walk
method, so providing the graph embedding network with information regard-
ing temporal evolution. Following the work of Nguyen et al. [10] and Shekhar
et al. [15], we define a temporal random walk as a sequence of nodes linked by
edges with non-decreasing timestamps. The set of possible temporal structure
neighborhoods of a node u in subgraph Gt = (V, Et, T ) at time τ is described as
Nτ (u) = {(v, τ ′) | e = (u, v, τ ′) ∈ Et ∧ T (e) > τ}. We can select the next node
in a temporal random walk from Nτ (u).

Definition 2 (Temporal Random Walk). A temporal random walk of length
k from node v1 to vk in graph Gt = (V, Et, T ) is a sequence of vertices Sτ =
〈v1, v2, . . . , vk〉 such that (vi, vi+1, τ) ∈ Et for 1 ≤ i < k. The timestamps are in
valid temporal order: τ (vi, vi+1) ≤ τ (vi+1, vi+2) for 1 ≤ i < (k − 1).

We define Sτ as the space of all temporal random walks in a subgraph G. Sτ (u) is
a set of temporal random walks from Sτ , which represents the temporal neighbor-
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hoods of node u. The temporal neighborhoods of a node u can be generated based
on the temporal random walk, over which we apply a self-attention network to
generate embeddings for nodes. We next introduce a temporally weighted graph
embedding network for more intuitively oriented temporal-based considerations.

Temporally Weighted Structure Self-attention. The input of this layer is
temporal random walks sampled from a subgraph Gt, and a set of initializing
input node embeddings {xu ∈ R

D,∀u ∈ V}, where D is the input embedding
dimension.

Temporally Weighted Edges. TE-DyGE extends a structure attention net-
work [14,25] to model fine-grained temporal graph structure embedding by incor-
porating temporally weighted edges. Intuitively, temporally recent edges indicate
more important linkages between entities and more direct interactions. In order
to measure the temporal weight of edges, we introduce the time distance, which
is the “in-between” time of consecutive edges in a temporal random walk. Time
distance is defined to assess the different weight between a current interaction
and an interaction from the distant past. It is formally defined as follows:

Definition 3 (Time Distance). The time distance of node v to the target node
u is described as D(u, v) = (τ(u, v) − t0u), where t0u = min{τ(u, vi) | vi ∈ Sτ (u)}
is the creation time of a temporal random walk from the node u.

The time distance depends on the initial edge ei = (u, v, t0) of the temporal
random walk. And the creation time varies across distinct temporal random
walks. Thus, we define the temporal weight for a particular edge (u, v, τ(u, v))
with respect to the node u based on the time distance as follows:

wuv =
exp {D(u, v)}

∑
j∈Sτ (u)

exp {D(u, j)} (1)

where Sτ (u) represents the set of temporal neighbors of node u. We apply the
softmax function to normalize the temporal weight. The temporal weight wuv

is then employed in the structure self-attention layer.

Temporal Structure Self-attention. The temporal structure self-attention layer
aims to aggregate features of a target node u by learning the importance of each
temporal neighborhood. The function of the structure weight coefficient can be
defined as follow:

αuv = softmax(euv) =
exp (euv)

∑
j∈Sτ (u)

exp (euj)
(2)

euv = σ
(
aT [W sxu‖W sxv]

)
∀(u, v, τ) ∈ Et (3)

where W s is a shared weight transformation matrix for each node in the sub-
graph; a is a weighted vector used to parameterize the feed-forward layer α; σ(·)
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denotes the activate function and ‖ represents the operation of concatenation.
The learned coefficient αuv is normalized across all temporal neighbors of node
u by the softmax function. We apply the LeakyReLU non-linearity to compute
the structure attention weights.

Existing works solely aggregate the latent embedding of neighbors using the
learned structure attention weight coefficients. Unlike previous efforts, we include
the temporal weight in the node representation function. The final representation
of a node u in subgraph Gt can be computed as follows:

ht
u = σ

(
∑

u∈Nv

wuv × αuvW sxu

)

(4)

In our implementation, we use an exponential linear (ELU) activation for the
output embedding of node u. With the support of temporal weight and structural
attention coefficient, representations of nodes are aggregation over neighbors that
are close in time.

4.2 Coarse-grained Temporal Attention Module

Decoupling nodes’ temporal evolution and subgraphs’ temporal history into
independent layers contributes to the efficiency [14]. Thus, we further propose
a coarse-grained temporal attention module to capture the temporal history
of discrete-time subgraphs. This module offers the capacity to model sequen-
tial information and learn evolutionary patterns from discrete-time subgraphs.
The input of the coarse-grained temporal attention module is node embed-
dings for different subgraphs obtained from the temporally weighted struc-
ture attention layer. As an example, the input for a node u is defined as
{x1

u,x2
u, ...,xT

u | xt
u ∈ R

D′}, where D′ is the dimension of the input embedding.
We assume that the output embedding for node u is {h1

u,h2
u, ...,hT

u | ht
u ∈ R

F ′}
with dimensionality F ′. The input and output representations are packed across
time to Xu ∈ R

T×D′
and Hu ∈ R

T×F ′
respectively.

In contrast to temporally weighted structure attention, which focuses on the
representation of temporal neighbors, coarse-grained temporal attention relies
solely on the temporal evolution of each discrete-time subgraph. We apply the
scaled dot-product attention [21] to learning the node embedding at different
subgraphs. We denote queries, keys, and values as Qu = XuW q, Ku = XuW k

and V u = XuW v respectively by mapping input into different feature spaces,
where W q,W k and W v are trainable parameters. The coarse-grained temporal
self-attention function is defined as:

Hu = βu · V u = softmax

(
(XuWq) (XuWk)T

√
F ′ + M

)

· (XuWv) (5)

where βu ∈ R
T×T is the attention weight matrix and M ∈ R

T×T denotes the
mask matrix, which is used to enforce the auto-regressive property. To preserve
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the auto-regressive property and encode the temporal order, we permit each time
step t to attend over all preceding time steps. And we define the mask matrix
as follows:

Mij =

{
0, i ≤ j

−∞, otherwise
(6)

where i, j denotes the different time steps. The attention weight becomes zero
when Mij = −∞. Furthermore, we utilize multi-head attention to enhance the
capability of TE-DyGE to capture multiple facets or types of graph evolution.
Finally, the node u can be represented as:

Hu = Concat
(
H1

u,H2
u, . . . , Hk

u

)
∀u ∈ V (7)

where k is the number of attention heads, and Hu ∈ R
T×F ′

.

4.3 Objective Function

The aim of TE-DyGE is to capture both the fine-grained temporal evolution of
each node and the structural evolution of discrete-time subgraphs. The objective
function is defined to preserve the temporal structure neighbors of a node across
multiple time steps. We apply a binary cross-entropy loss function in each time
step to encourage node u to have similar embedding features with its temporal
neighbors.

L =
T∑

t=1

∑

u∈V
(

∑

v∈St
τ (u)

− log
(
σ

(
< et

u,et
v >

))

−np ·
∑

u′∈P t
n(u)

log
(
1 − σ

(
< et

u′ ,et
v >

))
⎞

⎠

(8)

where σ is the sigmoid function; < · > is the inner product operation; P t
n(u) is a

negative sampling distribution for subgraph Gt and np is the negative sampling
ratio.

5 Experiments

The experiments are designed to investigate the quantity of the proposed TE-
DyGE framework. Experiments are conducted using a wide array of temporal
graphs with distinct structural and temporal properties derived from a variety
of application sectors. We propose three types of experiments to evaluate and
analyze the proposed in different aspects:

1. Performance of TE-DyGE. We compare the TE-DyGE with several state-
of-the-art static and dynamic graph representation learning methods on the
link prediction task.
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2. Effectiveness of Proposed Contributions. We evaluate the temporal ran-
dom walk and temporal weighted edge separately and verify the effectiveness
of fine-grained temporal evolution.

3. Parameters Sensitivity. We analyze the TE-DyGE in varying parameters.

5.1 Datasets

To analyze the quantity of the generated embedding, we conduct experiments on
communication real-world networks. We consider two publicly available dynamic
network datasets: Enron [4], and UCI [11]. Links in Enron represent the message
interactions between core employees in the Enron corporation. UCI describes
social interactions in an online community. All these datasets can indicate a
complex-evolved real-world communication network.

Table 1. Statistics of datasets.

Communication

Attribute Enron UCI

# of Nodes 143 1,809

# of Links 2,347 16,822

# of Time steps 12 13

5.2 Baselines

To evaluate the benefits of using temporal information for link prediction, we
first provide comparisons with static graph embedding techniques. We integrate
all discrete-time subgraphs into a static graph to provide the entire history of
the dataset.

– node2vec [2]: Utilizes second-order random walk sampling to capture node
representations.

– GAT [22]: A static graph embedding method that employs the attention
mechanism.

We develop off-the-shelf implementations for node2vec1 and GAT2 by referencing
their original implementations. Additionally, we evaluate the TE-DyGE against
the state-of-the-art discrete-time dynamic graph embedding baselines.

– DyGEM [1]: Capture evolution feature by incrementally learning graph
autoencoders with differing layer sizes.

– DySAT [14]: Obtain the dynamic representation by decoupling the structure
and temporal information into independent modules. It uses the attention
mechanism in both models.

– EvolveGCN [12]: Use an RNN to evolve the GCN parameters to capture
the dynamic evolution of the graph.

1 https://github.com/eliorc/node2vec.
2 https://github.com/PetarV-/GAT.

https://github.com/eliorc/node2vec
https://github.com/PetarV-/GAT
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5.3 Experimental Setup

The task of link prediction aim to predict the links at final subgraph GT based on
the learned node representation over the previous subgraph {G1,G2, ...,GT−1}.

Implementation. We randomly sample an equal number of negative samples
(pairs of nodes without links) for training and testing. We set the length of the
temporal random walk as 8 on all datasets. And the number of heads for multi-
head attention is set to 8. The dimension of the output embedding is 32. We use
Adam and stochastic gradient descent to optimize and update parameters in the
proposed model.

Metric. We train a Logistic Regression classifier and use the area under the
ROC curve (AUC) metric to evaluate the performance. In order to ensure the
fairness of the experimental results, we repeatedly run all baselines and our
models ten times and report the best values.

Environment. All the experiments are run on a machine with GeForce RTX
2080 Ti GPU.

5.4 Effectiveness of TE-DyGE

The results of link prediction are shown in Table 2, which indicates that the
proposed method, TE-GyGE, achieves the best performance over all datasets
among static graph representation baselines and dynamic graph representation
baselines. Specifically, dynamic graph representation methods have an approxi-
mately better AUC score when compared to static graph representation meth-
ods. This proves that aggregating the temporal evolution of nodes is responsi-
ble for the superior performance of dynamic graph representation methods on
link prediction tasks. We can also find that DySAT often achieves comparable
performance to our model. One possible reason is that they use an attention
mechanism to aggregate the graph structure embedding and joint the structure
and temporal modeling with multi-attention aggregators.

We further compare the performance at each time step among the baselines
and the proposed method (Fig. 4). We observed that TE-DyGE often has a
higher AUC score at the first time step than other methods. It’s probable that
the time distance initializes the temporal importance of edges, resulting in a
such excellent performance.

5.5 Effectiveness of Proposed Contributions

We first conduct an ablation study on two contributions: temporal random walk
and temporally weighted structure attention layers. We conduct the ablation
experiment over all datasets. Figure 5 represents the effectiveness of the TE-
DyGE without the temporal random walk (the blue bar) and the TE-DyGE
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Table 2. Link prediction results (* and † denote the TE-DyGE without the temporal
random walk and the TE-DyGE without the temporally weighted edges respectively).

Enron UCI

Method AUC AUC

node2vec 69.35 ± 1.2 62.35 ± 0.8

GAT 72.58 ± 0.8 71.32 ± 0.5

DyGEM 67.57 ± 0.3 75.89 ± 0.5

DySAT 85.27 ± 0.3 80.56 ± 0.3

EvolveGCN 77.58 ± 1.45 81.43 ± 0.5

TE-DyGE 87.64 ± 0.2 83.26 ± 0.5

Fig. 4. Performance at each time step (solid line denotes TE-DyGE)

without the temporal weighted edge (the brown bar) separately. The results indi-
cate that DE-DyGE outperforms the ablation variants by a margin of 2%AUC
on average.

On the other hand, to evaluate the effectiveness of fine-grained temporal
evolution, we conduct an ablation study by independently removing the fine-
grained temporal evolution and the coarse-grained temporal evolution from TE-
DyGE.

– No Fine-grained: We simply remove the temporal random walk and the
temporal weight in the fine-grained temporal attention module. Thus the TE-
DyGE can jointly capture the structure and temporal history of discrete-time
subgraphs.

– No Coarse-grained: We remove the coarse-grained temporal attention mod-
ule for this experiment, Because the node embeddings are jointly optimized
based on Eq. 8, the removal of the coarse-grained temporal attention module
primarily results in no explicit subgraphs’ temporal evolution modeling.
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Fig. 5. Ablation study on temporal random walk and temporal weighted edge (Left);
Ablation study on fine-grained temporal evolution and coarse-grained temporal (Right)

Fig. 6. Effects of the number of heads in multi-head attention

From Fig. 5, we can find a reasonable result that TE-DyGE without fine-grained
evolution has an acceptable performance since it can capture both graph struc-
ture and evolution features. The fine-grained temporal evolution enhances the
dynamic graph representation model by about 3% increase in AUC.

5.6 Parameters Sensitivity

We analyze the critical parameters: the number of multi-heads and the dimension
of output embedding for TE-DyGE. The effects of a number of multi-heads in
both the fine-grained temporal attention module and the coarse-grained tempo-
ral attention module are examined. The rest parameters are kept fixed when we
vary the analyzed parameter. Figure 6 demonstrates that multi-head attention on
both the fine-grained attention and coarse-grained attention layers enhances the
TE-DyGE. The performance stabilizes at 8 attention heads, which is adequate
for capturing graph evolution from the most number of latent facets. Similarly,
the TE-DyGE can benefit from the final output embedding with 32 dimensions
(Fig. 7).
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Fig. 7. Effects of the number of output dimensions

6 Conclusion

This paper proposes a novel temporal evolution-enhanced dynamic graph rep-
resentation method named TE-DyGE. TE-DyGE can capture the fine-grained
temporal evolution information from the discrete-time dynamic graph. In par-
ticular, TE-DyGE aggregates the node embedding based on sampled temporal
valid neighbors with introducing the temporally weighted edges in each discrete-
time subgraph. TE-DyGE then joints the representation of subgraphs at different
time steps by attention aggregator. This allows the proposed method to repre-
sent not only the temporal history across all subgraphs but also the temporal
evolution of each node. Our experimental results demonstrate considerable per-
formance improvements for TE-DyGE over static and dynamic graph embedding
baselines.
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Abstract. Mining top-k frequent patterns is an important operation
on graphs, which is defined as finding k interesting subgraphs with the
highest frequency. Most existing work assumes a static graph. However,
graphs are dynamic in nature, which is described as streaming graphs.
Mining top-k frequent patterns in streaming graphs is challenging due
to the streaming nature of the input and the exponential time complex-
ity of the problem. A naive solution is to calculate approximations of
the frequent patterns in the streaming graph and then find the top-k
answers, which is a memory- and time-consuming method. In this paper,
we design a novel auxiliary data structure, FPC, to detect valid subgraph
patterns and their frequency in real-time. We first convert each newly
produced subgraph into a sequence and then map it into corresponding
tracks in FPC based on hash functions. We theoretically prove that FPC
can provide unbiased estimation and then give an error bound of our algo-
rithm. In addition, we propose a vertical hashing and candidate buckets
sampling technique to further improve FPC with higher space utilization
and higher accuracy. Extensive experiments confirm that our approach
generates high-quality results compared to the baseline method.

1 Introduction

With the proliferation of graph data, mining frequency-based subgraph patterns
have been extensively investigated due to its wide applications [6,15], includ-
ing bioinformatics, security, and social sciences. The goal of frequent subgraph
mining is to find subgraphs whose appearances exceed a user-defined threshold.
Such subgraphs might be indicative of important protein interactions, common
social norms, or frequent activity between users.

Existing studies on frequency-based subgraph patterns mining [5,8,11,13]
mainly focus on static graphs. Nevertheless, many graphs in the real world are
dynamic in nature, which continuously evolve over time. For example, consider
the knowledge graph DBpedia, which gets updated every day according to a
stream of change logs from Wikipedia [9]. These graphs are treated as streaming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 199–216, 2023.
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graphs. In specific, a streaming graph is defined as an unbounded sequence of
directed edges {e1, e2, · · · , ex} where each item ei indicates an edge between two
labeled vertices arriving at a particular time ti.

In this research, we address the problem of mining frequent patterns over a
streaming graph. As an example of the importance of frequent patterns and their
practical uses in a streaming graph, consider a music streaming service, and a
graph of its users, where users (nodes) are temporarily connected by an edge
when they listen to the same song within a certain interval of time. Analyzing
the behavior of frequent patterns over time allows us to study the evolving taste
of users in music and use this information for song recommendations.

An important limitation of discovering all frequent patterns in a streaming
graph is that the user-defined threshold is hard to set. If the threshold is set too
low, few patterns are found, and the user may miss valuable information. On the
contrary, if the threshold is set too high, millions of subgraphs may be found,
and algorithms may have very long execution times, or even run out of memory
or storage space. To this end, we focus on the top-k version of the frequent
pattern mining problem, which is finding k interesting patterns with the highest
frequency over a streaming graph.

Challenges. The large scale and high dynamicity make it both memory- and
time-consuming to keep track of the exact changes in the frequencies of all pat-
terns at all times. It is a natural choice to resort to efficiently compute approxi-
mations. Recent advances have resulted in the development of frequent patterns
mining in evolving graphs [3,16], which can be revised to provide top-k frequent
patterns as new data arrives. They propose to maintain a uniform sample of
subgraphs via reservoir sampling [19], which in turn allows ensuring the uni-
formity of the sample when an edge insertion occurs. Based on the sample of
subgraphs, we can estimate the frequency of different patterns, after which we
rank all patterns for top-k results.

Since the estimation accuracy depends on the sample size, the algorithm
needs to maintain a large number of subgraphs of the streaming graph for mining
top-k frequent patterns accurately, which is memory-consuming. Moreover, the
algorithm needs to conduct expensive subgraph matching calculations for these
sampled subgraphs to estimate the frequency of each pattern after all updates
have occurred at the current timestamp, which is time-consuming. In this light,
advanced techniques are desiderated to mine top-k frequent patterns efficiently.

Our Solution. Based on the above discussion, existing methods cannot yield
high efficiency for continuous top-k frequent pattern mining over streaming
graphs in both spaces and mining time. Our paper aims for a new way to
solve the problem. Our main idea is as follows: instead of using the sampling
techniques to maintain the subgraphs, we propose to design an auxiliary data
structure called FPC to detect valid patterns and their frequency in real-time.
We use k buckets, each new produced subgraph will be mapped into one bucket
by hash functions h1(·), · · · , hk(·) to estimate the frequency directly. In this way,
we can avoid storing any subgraph of the streaming graph in the mining process.
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Contributions. In short, the major contributions we have made are summarized
below:

– We are the first to study the top-k version of frequent patterns mining problem
over streaming graphs. We propose an auxiliary data structure called FPC to
store the potential top-k results with accuracy and efficiency guarantee under
limited memory.

– We provide an unbiased estimation of the frequencies for the patterns stored
in FPC with a theoretical guarantee. In addition, we design a new graph
invariant that maps each subgraph to its sequence space representation in
the FPC for deriving high efficiency.

– We propose an optimal strategy called vertical hashing to map a subgraph
into more than one bucket in FPC and replace the least frequent pattern with
the newly produced subgraph pattern. In this way, we can achieve higher
space utilization and higher accuracy.

Extensive experiments using three real-life streaming graphs show that our
proposed method outperforms the baseline solution in terms of efficiency, mem-
ory size and estimation accuracy.

2 Preliminaries

Definition 1 (Streaming graph). A streaming graph is an unbounded time
evolving sequence of items {e1, e2, e3, · · · , en}, where each item ei = (v1, v2, t(ei))
indicates a directed edge from vertex v1 to v2 arriving at time t(ei). This sequence
continuously arrives from data sources like routers or monitors at high speed. It
should be noted that the throughput of the streaming graph keeps varying. There
may be multiple (or none) edges arriving at each time point.

Figure 1 shows a constantly time evolving sequence of items and a streaming
graph G formed by the data items. We use Gt = (Vt, Et) to denote the graph
observed up to time t.

Fig. 1. Streaming Graph

A subgraph Sm = (VS , ES) is referred to as a m-edge subgraph if it is induced
by m edges in Gt. For any t ≥ 0, at time t + 1, we receive an edge insertion e
and add it into Gt to obtain Gt+1. For each newly inserted edge e in Gt+1, we
use Sm(e) to denote the set of m-edge subgraphs that contain e in Gt+1.
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Definition 2 (Subgraph isomorphism). Two subgraphs Sm
1 = (V1, E1) and

Sm
2 = (V2, E2) are isomorphic if there is a bijection function f : V1 → V2 such

that 1) ∀v ∈ V1, L(v) = L(f(v)), and 2) ∀(vi, vj) ∈ E1, (f(vi), f(vj)) ∈ E2. The
function L preserves the vertex labels.

Let C be a set of m-edge subgraphs that have an isomorphism relation. We
call the generic graph P = (VP , EP , L), which is isomorphic to all the members
of C, the m-edge pattern of C, where VP is a set of vertices in P , EP is a set of
directed edges with size m and L is a function that assigns a label for each vertex
in VP . Note that, P can be obtained by deleting the IDs (resp. timestamps) of
the vertices (resp. edges) of any k-edge subgraph in C. We define the frequency
of any m-edge pattern as the number of subgraphs in C.

Problem Statement. Given a streaming graph G, and the user-defined param-
eters k, m. The problem of top-k frequent pattern mining consists of finding k
interesting m-edge patterns with the highest frequency at each timestamp.

3 The Baseline Solution

In literature [3], the algorithm enumerated all frequent patterns over a streaming
graph. It used a reservoir sampling [19] technique to maintain a uniform sample
of subgraphs when an edge update occurs and then estimated the frequency
of each pattern via subgraph matching. To obtain a reasonable baseline, we
extend the algorithm proposed in [3] to mine top-k frequent m-edge patterns
over streaming graphs. Figure 2 shows the framework of our baseline solution
FPM.

Fig. 2. Solution framework of FPM

Whenever an insertion edge e occurs at timestamp t, FPM first needs to
calculate Sm(e). Specifically, FPM explores a candidate subgraph space in a tree
shape in Gt, each node representing a candidate subgraph, where a child node is
grown with a one-edge extension from its parent node. The intention is to find
all possible subgraphs with size m grown from e. To avoid duplicate enumeration
of a subgraph, FPM checks whether two subgraphs are composed of the same
edges at each level in the tree space.
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After obtaining all the m-edge subgraphs in Sm(e), FPM needs to decide
whether to add the subgraphs si in Sm(e) to a sample set S with a fixed size M .
If |S| < M , FPM directly adds si into the sample set S. Otherwise, if |S| = M ,
FPM removes a randomly selected subgraph in S and inserts si with probability
M/N . Here, N is the total number of m-edge subgraphs encountered from time
t to time 0. After that, a uniform sample set S of subgraphs can be maintained
at any time t, and all the subgraphs are selected with equal probability M/N .

Then FPM partitions the set of subgraphs in S into T equivalence classes
based on subgraph isomorphism, denoted by C1, . . . , CT , and calculates the
number of m-edge subgraph pattern P of each equivalence class Ci (i ∈ [1, T ]).
As proofed in [3], for any isomorphism class i ∈ [1, T ], |f̃i-fi| <= ε/2 holds with
probability at least 1 − δ/T , when we set M = log(1/δ) · 4+ε

ε2 , where f̃i is the
estimated frequency, fi is the real frequency and 0 < ε.

Finally, FPM calculates the k interesting m-edge patterns set Sm
k with the

highest frequency by arranging all |Ci| (i ∈ [1, T ]) in a descending order.

Complexity Analysis. In the m-edge subgraphs enumeration process, given an
insertion edge e in Gt, let n be the number of vertices of the subgraph extended
from e with radius m. FPM takes O(2n2

) to find the m-edge subgraphs that
contain e. In the subgraph sampling process, for each newly produced subgraph
m-edge subgraph, FPM takes O(1) to add it into the reservoir. In the frequency
estimation process, FPM takes O((M3−M)·η) to partition the m-edge subgraphs
in S into T equivalence classes, where η is the average unit time to verify whether
two m-edge subgraphs are isomorphic. And then for each timestamp, FPM takes
O(T ·η) to update the frequency of each pattern in S. Finally, it takes O(k·log2T )
to obtain the top-k frequency pattern results.

4 TopKF: A Progressive Solution

In this section, we first analyze the drawbacks of the baseline solution, and
then introduce our progressive solution to significantly reduce the memory and
computational cost in quest of top-k frequent pattern mining.

4.1 Problem Analysis

Why Costly? The baseline algorithm is not scalable enough to handle large
streaming graphs due to the following two limitations:

1) Large memory consumption: As mentioned above, to ensure the accuracy
of the sampling results, it is necessary to guarantee the sampling subgraph set
with a certain size M , i.e., M >= log(1/δ) · 4+ε

ε2 . Thus, there are a lot number
of m-edge subgraphs need to be stored at each timestamp, which consumes
a large amount of memory.

2) Large computational cost: In the frequency estimation process, whether
it is to classify the sample set or update the frequency of the pattern at each
time, subgraph matching is required. Since it is an NP-complete problem, the
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large number of subgraph matching computations can lead to high latency
when dealing with streaming graphs.

Our Idea. Based on the above analysis and to significantly improve the algo-
rithm, we design an auxiliary data structure called FPC to efficiently estimate
the frequencies of each m-edge pattern. Specially, for each newly produced m-
edge subgraph, we use a hash function to map it into a fixed position in FPC.
In this way, we can count the frequency of the pattern directly without storing
any subgraphs, thus avoiding the repeated subgraph isomorphism calculation.

FPC Structure(Fig 3(a)). FPC consists of l buckets. Let B[i] be the i-th bucket
in FPC. Each m-edge subgraph si in Sm(e) is mapped into one bucket B[h(si)]
through a hash function h(·). Each bucket consists of two parts: a counter
B[i].count and a subgraph set B[i].sub. The counter can provide an unbiased
estimation frequency for each newly produced m-edge pattern. The subgraph
set consists of d cells. Each cell is used to store a key-value pair and a flag
< ID, fre, flag >. The key is the subgraph pattern ID, which uniquely identi-
fies a set of isomorphic subgraphs, the value is its estimated frequency, and the
flag is used to check whether the frequency is exact or has an error. In specific,
we use another hash function s(·) to map si to {+1,−1}. For each subgraph si

mapped into the bucket B[h(si)], it will be recorded in one or both of the two
parts.

Fig. 3. Data structure and insertion examples of FPC

4.2 The Progressive Algorithm Framework

Based on FPC, we propose a new algorithm TopKF to calculate top-k frequent
patterns with higher effectiveness and efficiency. It first calls InitialFPC to initial-
ize the auxiliary data structure FPC. Then it calls UpdateFPC to handle subgraph
insertion and estimate the frequency of each pattern P in FPC, after which it
reports the k interesting m-edge patterns set Sm

k with the highest frequency.
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Function UpdateFPC. For each si ∈ Sm(e), UpdateFPC first maps si to
sequence and then chooses a hash function h(·) with a value range [0, l) to map
si into bucket B[h(si)], where l is the number of the buckets in FPC. Specifically,
there are three cases demonstrated how to insert si into B[h(si)]:

Case 1: If si is isomorphic to the pattern pj in B[h(si)].sub, according to the flag
of pj , there are two situations. 1) the flag of pj is true, UpdateFPC increments
its frequency by 1; 2) the flag of pj is false, UpdateFPC not only increases its
frequency, but also adds B[h(si)].count by s(si)(s(si) ∈ {−1,+1}).
Case 2: If si is not isomorphic to any pattern stored in B[h(si)].sub and
B[h(si)].sub is not full, UpdateFPC first calculates the pattern pi of si by delet-
ing its vertex IDs and edge timestamps, and then insert < pi, 1, true > into
B[h(si)].sub.

Case 3: If B[h(si)].sub is full and there is no pattern isomorphic to si,
UpdateFPC uses a replacement strategy to guarantee B[h(si)].sub to maintain
the patterns with higher frequency. It uses the counter B[h(si)].count to unbias-
edly estimate the frequency of each pattern denoted as ˜frei = B[h(si)].count ∗
s(si). If ˜frei is smaller than the minimum fre in B[h(si)].sub, UpdateFPC inserts
the pattern pi of si into B[h(si)].count, i.e., adding B[h(si)].count by s(si); Oth-
erwise, after inserting the pi into B[h(si)].count, UpdateFPC replaces the pattern
pn who has the minimum fre with pi. Specifically, UpdateFPC modifies the key-
value pair < ID, fre, flag > of pn by setting the ID field with pi, the frequency
field to ˜frei + 1 and the flag field to false. If the flag of the replaced pattern
pn is true, then pn is inserted into B[h(si)].count, i.e., adding B[h(si)].count by
pn.fre ∗ s(pn).

Example 1. In Fig. 3(b), we take the bucket B[h(s1)] as an example to show the
subgraph insertion process of UpdateFPC. When s2 arrives, it is mapped into the
bucket B[h(s1)], and s(s2) = 1. The pattern p1 is isomorphic to s2, so UpdateFPC
increases the frequency of p1 to 28. Since the flag of p1 is false, UpdateFPC also
needs to insert s2 to B[h(s1)].count and set it to −25 + s(s2) = −24 (in case
1). When s9 is mapped into the bucket B[h(s1)], and s(s9) = 1. There is no
pattern isomorphic to s9 in B[h(s1)].sub and B[h(s1)].sub is full, thus we have
˜fre9 = B[h(s1)].count · s(s9) = −23. Because ˜fre9 is smaller than the minimum

frequency 14 in B[h(s1)].sub, UpdateFPC only needs to add s9 to B[h(s1)].count
and set it to −24+s(s9) = −23 (in situation 1 of case 3). When s11 is mapped into
the bucket B[h(s1)], and s(s11) = −1, the ˜fre11 = 23 > 14. Thus, UpdateFPC
inserts the pattern p11 to B[h(s1)].count, and replaces the ID field of that cell
with p11, sets the frequency field to ˜fre11+1 = 24, and further sets the flag field
to false (in situation 2 of case 3).

Subgraph Sequence Representation. We define a function m: si → Seqi

to map graph si to its sequence space representation Seqi. The goal of this
conversion procedure is to map the subgraph into a string representation making
each subgraph have a unique code, which is a well-known technique called graph
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invariants. If m-edge subgraph si is isomorphic to subgraph sj , then m(si)
= m(sj). There are several possible graph invariants [12,20], but most of them
impose a lexicographic order among the subgraphs, which is clearly as complex as
graph isomorphism. In this paper, we generate a degree sequence via both degree
and label as our graph invariant that can achieve higher efficiency. Specially, we
first compress the degree and label of a vertex v together as its new label l(v).
Then, for each edge e= (vi, vj , t(e)), we label l(e)=(l(vi), l(vj)). After that, we
use the weight of each edge to determine the edge mapping order O(·) of a
subgraph. We assign each single-edge pattern a weight w(·) in the streaming
graph, which is equal to the order of the occurrence of the pattern. If w(ei) <
w(ej), then O(ei) < O(ej). Else, if w(ei) = w(ej), the order of the encoding
sequence is determined according to the vertices degree. If l(ei) < l(ej), then
O(ei) < O(ej). Here, ties are broken arbitrarily. Finally, for a subgraph sj , we
obtain the mapping sequence m(sj) = {l(e1), . . . , l(en)}, where O(ei) < O(ei+1).

Algorithm Analysis. Compared to the baseline solution FPM, TopKF does not
need to store the sampled m-edge subgraphs since it uses hash functions to map
each m-edge subgraph into a fixed bucket in the FPC. This significantly reduces
memory consumption. And the proposed unbiased estimation avoids a large
number of repeated subgraph matching calculations. Note that, the memory size
of TopKF mainly depends on parameters l and d. Users can tune the parameter
to make a trade-off between accuracy and speed depending on the application
requirements. As shown in our experiments, the precision rate increases as d
becomes larger while throughput decreases. Because in a bucket, more cells can
reduce the replace operation when the bucket is full and increase the checking
cost when there are two subgraphs mapped into the same bucket.

4.3 Mathematical Analysis

In this section, we provide a performance analysis for TopKF. The storage of
each pattern in FPC is accurate, which means for a pattern p and a subgraph
s, its frequency will be added up if and only if they are isomorphic subgraphs.
Thus, the error is mainly caused by unbiased estimation. Firstly, we prove that
our algorithm can provide an unbiased estimated frequency. Then, we show the
variance and the error bound of unbiased estimation.

Proof of Unbiasedness. For each pattern pi, FPC can provide an unbiased
estimated frequency ˜frei. If pi is in the subgraph set and its flag is true, ˜frei

is equal to the corresponding frequency field in the subgraph set. Otherwise,
˜frei=B[h(si)].count ∗ s(pi).

Theorem 1. The estimation of ˜frei is unbiased, i.e., E( ˜frei) = frei, here frei

is the real frequency.
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Proof. For an insertion subgraph si, the expected increment to ˜frei is 1 if pi (pi

is pattern of si) is the next pattern insert into B[h(si)].sub and 0 otherwise. Let
˜frei

′
be the estimated frequency after the next subgraph comes. According to

whether the flag of pi is true and whether it is the next pattern, there are four
cases should be considered and analyzed.

Case 1: The flag of pi is true and pi is the next pattern.
The corresponding frequency recorded in the subgraph set is increased by

1, i.e., pi.fre′ = pi.fre + 1, where pi.fre denotes the recorded value of pi in
B[h(si)].sub. pi is still in the subgraph set and its flag is true. Thus, we have
˜frei

′
=pi.fre′= ˜frei + 1.

Case 2: The flag of pi is true and pi is not the next pattern.
The corresponding frequency recorded in the subgraph set stays the same.

If pi is still in the subgraph set, we have ˜frei
′
=pi.fre′= ˜frei. Otherwise, pi is

eliminated from the subgraph set, then pi is inserted into the counter and its
flag becomes false. Then B[h(si)].count′ = B[h(si)].count+ ˜frei. Thus, ˜frei

′
=

B[h(si)].count′ ·s(pi) = B[h(si)]. count ·s(pi)+ ˜frei ·s(pi)2. Since s(pi) is a hash
function with a random value of {1,−1}, so E(s(pi)) = 0, E(s(pi)2) = 1. We
have E(B[h(si)].count · s(pi)) = B[h(si)].count · E(s(pi)) = 0. Thus, E( ˜frei

′
) =

E(B[h(si)].count · s(pi)) + ˜frei · E(s(pi)2)= ˜frei.

Case 3: The flag of pi is false and pi is the next pattern.
If there is no pattern whose flag is false replaced from the subgraph set, we

have ˜frei
′
= (B[h(si)].count + s(pi)) · s(pi) = ˜frei + 1. Otherwise, pi replaces

the pattern pn which has the lowest frequency in the subgraph set and its flag is
true. We have B[h(si)].count′ = B[h(si)].count+ s(pi) + ˜fren · s(pn). Thus, our
estimation satisfies ˜frei

′
= B[h(si)].count′ ·s(pi) = ˜frei

′
+1+ ˜fren ·s(pn) ·s(pi).

Finally, we have E( ˜frei
′
) = ˜frei

′
+ 1 + E( ˜fren · s(pn)) · E(s(pi)) = ˜frei + 1.

Case 4: The flag of pi is false and pi is not the next pattern.
Let pl be the next pattern. We have ˜frei = B[h(si)].count · s(pi). If the flag

of pj is true, it does not influence the counter. Thus, ˜frei
′
= ˜frei. Otherwise,

B[h(si)].count is added by s(pl). If there is no pattern whose flag is true removed
from the subgraph set, we have ˜frei

′
= (B[h(si)].count+ s(pl)) · s(pi) = ˜frei +

s(pi)·s(pl). Since s(pi) and s(pl) are independent, then we have E(s(pi))·s(pl)) =
E(s(pi))·E(s(pl)) = 0. Thus, E( ˜frei

′
) = ˜frei+E(s(pi)·s(pl)) = ˜frei. Otherwise,

pl replaces the pattern pn which has the lowest frequency in the subgraph set and
its flag is true. We have B[h(si)].count′ = B[h(si)].count + s(pl) + ˜fren · s(pn).
Thus, our estimation satisfies ˜frei

′
= B[h(si)].count′ · s(pi) = ˜frei + s(pl) ·

s(pi) + ˜fren · s(pn) · s(pi). As proved before, we have E(s(pl) · s(pi)) = 0 and
E( ˜fren · s(pn) · s(pi)) = 0. Thus, E( ˜frei

′
) = ˜frei + E(s(pl) · s(pi)) + E( ˜fren ·

s(pn) · s(pi)) = ˜frei.
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In summary, we have proved that the expected increment to ˜frei is 1 if
pi is the next pattern and 0 otherwise, which indicates that we always have
E( ˜frei) = frei. In other words, our estimation is unbiased.

Variance and Error Bound. Here, we show the variance and the error bound
of our estimation for each pattern in Theorems 2 and 3.

Theorem 2. Let p1, p2,· · · ,pn be the pattern inserted into B[h(si)]. We can get
the bound of the variance of our estimation

V ar( ˜frei) ≤ Σ
pj �=pi

(frej)2 (1)

Proof. If the flag of pi is true, we have ˜frei = frei. Otherwise, ˜frei=(Σpj∈ϕfrei ·
s(pj)) · s(pi), where ϕ is the set of patterns whose flag is false. As
proofed in Theorem 1, we have E( ˜frei) = frei, thus the Var( ˜frei)=
Es(pj)∈{1,−1}((Σpj∈ϕ,j �=ifrei · s(pj)) · s(pj))2 = Es(pj)∈{1,−1}(Σpj∈ϕ,j �=ifrej ·
s(pj))2. Since s(pj) and pi are independent, the cross terms have the same
chance to be 1 and −1. Thus the expectation of their sum is 0. Therefore, we
have V ar( ˜frei) =Es(pj)∈{1,−1}(Σpj∈ϕ,j �=i frej · s(pj))2 ≤ Σpj �=pi

(frei)2.

Theorem 3. Let l = e
ε2 , then P (| ˜frei − frei| ≥ ε||fre||2) ≤ 1

e

Proof. Based on Chebyshev’s theorem, we can obtain that P (| ˜frei − frei| ≥
√

eΣpj �= pi(frei)2) ≤ V ar( ˜frei)√
eΣpj �=pi(frei)2

≤ 1
e . For patterns in B[h(si)], we have

Σpj
(frej)2 = 1

l (||fre||2)2. Then P (| ˜frei − frei| ≥ ε||fre||2) ≤ P (| ˜frei − frei|≥
ε
√

l · Σh(pj)=h(pi)fre2j ) ≤ P (| ˜frei − frei| ≥ √
eΣpj �= pi(frei)2) ≤ 1

e .

5 FPCS : Augmented Auxiliary Data Structure

In this section, we propose FPCS , which is an augmented version of FPC by
adding vertical hashing and candidate buckets sampling techniques.

Vertical Hashing. In FPC, if frequent replacement operations occur in a
bucket, the expected patterns with high frequency may also be replaced, caus-
ing a lower accuracy. To this end, we assign a fingerprint f(si)(0 ≤ f(si) ≤ F )
(occupies less than 8 bits) to each subgraph si in FPCS where f(si) = h(si)%F
and compute a sequence of bucket addresses {Bx[h(si)]|1 ≤ x ≤ r} for si

(0 ≤ h(si) < l). We store its pattern pi into the first bucket with an empty
cell and add the key-value < ID, fre, f(si), f lag > into the corresponding posi-
tion. In this way, FPCS can provide more candidate buckets for a newly produced
subgraph, reducing the errors caused by constant replacement.
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Fig. 4. Subgraph insertion example of FPCS

To compute the sequence of bucket addresses, we first use the linear congru-
ence method to generate a sequence of r random values {qx(·)|1 ≤ x ≤ r} with
f(·) as seeds. The linear congruence method is as follows: select a timer a, small
prime b and a module p, then

{
q1(si) = (a × f(si) + b)%p

qx(si) = (a × qx−1 + b)%p, (2 ≤ x ≤ r)
(2)

Using the linear congruence method can make sure enough sequences are gener-
ated and there will be no repetitive numbers in the sequence. Then we generate
the sequence of bucket addresses as following

{Bx[h(si)]|Bx[h(si)] = (B[h(si)] + qx(si))%m, 1 ≤ x ≤ r} (3)

Example 2. Figure 4 shows an example of subgraph insertion in FPCS . The
inserted subgraph s1 is mapped to 3 buckets with hash address sequence
B1[h(s1)], B2[h(s1)] and B3[h(s1)] via vertical hashing. And then FPCS searches
all the cells in candidate mapped buckets for patterns that are isomorphic to s1.
If no, s1 is stored in the first empty cell with key-value pair < p1, 1, f(s1), T >.

Candidate Buckets Sampling. With the vertical hashing technique, we need
to check r×d candidate mapped cells whenever inserting a subgraph, which will
be time-consuming. To improve the updating speed while guaranteeing a rea-
sonable collision rate, we propose a bucket sampling technique. That is, instead
of considering all the r × d cells, we only select w candidate mapped buckets
as a sample from the bucket address sequence {Bx[h(·)]}. We only check these
w buckets in updating and queries. The method to select these w buckets for
a subgraph si is also a linear congruence method. We first compute a w length
sequence based on Eq. 4, and then choose w buckets with the address.

{B� qx(si)
r �%r

[h(si)], 1 ≤ x ≤ w} (4)
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Note that, with the hash address sequence, FPCS may store subgraph pat-
terns with different hash values in the same bucket. It is unnecessary to perform
subgraph matching for every pattern stored in the candidate mapped buckets in
updating and queries. Thus, we use the fingerprint to efficiently filter a larger
amount of undesirable patterns. Given two subgraphs s1 and s2, if and only if
f(s1) = f(s2) they may be isomorphic subgraphs.

6 Experiments

In this section, we report and analyze experimental results. All the algorithms
were implemented in C++ and ran on a PC with an Intel i7 3.50GHz CPU and
32GB memory. In all experiments, we use BOB Hash1 with different initial seeds
to implement the hash functions. Every quantitative test was repeated 5 times,
and the average was reported.

Datasets. We use three real-life datasets:

• Twitter [2] is a social network containing 4.9M entities (e.g., users) and 32M
edges (e.g., mentions), which is the largest one of the three datasets.

• Facebook [18] contains 415K entities (e.g., users) and 2.1M edges (e.g., mes-
sage). If user X posts a message on the wall of another user Y , then a directed
edge from node X is created to node Y with timestamps to the post’s date.

• Enron [1] is an email communication network of 86K entities (e.g., ranks
of employees), 297K edges (e.g., email), with timestamps to communication
data.

Algorithms. We implement and compare three algorithms:

• FPM: Our baseline method via reservoir sampling;
• TopKF: Our advanced algorithm with the auxiliary data structure FPC;
• TopKFS : Our augmented algorithm uses the auxiliary data structure FPCS

with some optimizations.

Metrics. We use the following five metrics:

• Average Relative Error (ARE): 1
Ψ

∑
si∈Ψ |frei − ˜frei|/frei, where frei is the

real frequency of subgraph si, ˜frei is its estimated frequency, and Ψ is the
query set. In the experiments, we query each actually frequent subgraph once
in the auxiliary data structure to search top-k frequent subgraph patterns.

• Recall Rate (RR): The ratio of the number of correctly reported patterns to
the number of correct patterns.

• Precision Rate (PR): The ratio of the number of correctly reported patterns
to the number of reported patterns.

• F1 Score: 2×RR×CR
RR+PR , the harmonic average of precision and recall, and it is

also a measure of a model’s accuracy.
• Throughput: Kilo insertions per second (Kips).

1 http://burtleburtle.net/bob/hash/evahash.html.

http://burtleburtle.net/bob/hash/evahash.html
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Parameter Settings. To evaluate the performance of TopKFS and its competi-
tors, we first fix d = 24, k = 400 and vary the value of memory size ranges from
100MB to 300MB in 50MB increments. And then, to evaluate the influence of
some key parameters, we fix the memory usage of FPCS and FPC and vary d
from 12 to 48 in 12 increments and vary k from 200 to 800 in 200 increments to
see how parameters influence the performance of the auxiliary data structure.
For other parameters, we fix the subgraph size m = 3, fix the vertical hashing
range r = 6 and address sample probability w = 3. Without otherwise specified,
when varying a certain parameter, the values of the other parameters are set to
their default values.

Fig. 5. ARE, RR, PR and Throughput on different metrics
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6.1 Experiments on Different Metrics

In this section, we evaluate the performance of TopKFS , TopKF, FPM with vary-
ing memory sizes on three real-life datasets. We mainly show the result of ARE,
RR, PR and Throughput of the three algorithms with default parameters. Sim-
ilar results can also be observed under the other parameter settings.

ARE (Fig. 5(1)-(3)): We find that, the ARE of TopKFS is much lower than
all other competitors. Specifically, TopKFS outperforms TopKF by up to 3.29
times and FPM by up to 492.24 times on Twitter. On the other two datasets,
the ARE of TopKFS is around 5.51, and 442.18 times lower than TopKF and
FPM, respectively. Moreover, the increase of memory can decrease the ARE of
the three algorithms. The ARE of TopKFS can achieve around 3.7 × 10−5 under
the memory of 300MB on Enron.

RR (Fig. 5(4)-(6)): We find that, the RR of TopKFS is around 1.10, and 1.46
times higher than TopKF and FPM on Twitter, respectively. And on the other two
datasets, we can find similar results. Specifically, the CR of TopKFS is around
1.19 and 1.60 times higher than FPC and FPM, respectively.

PR (Fig. 5(7)-(9)): The experiment results show that the PR of TopKFS is
around 1.27, and 3.04 times higher than TopKF and FPM, respectively. And
TopKFS can achieve around 1 under the memory of 150MB on Enron, 250MB
on Facebook and 300MB on Twitter, which is smaller than TopKF and FPM
achieve.

Effectiveness Analysis. All the experiment results show that TopKF and
TopKFS have higher accuracy than the baseline solution on each dataset. The
reason is that FPM needs to sample a large number of subgraphs to guarantee
accuracy and store all the sampled subgraphs for estimating the frequency of
each pattern exactly. Thus, when memory is not sufficient, FPM achieves a low
accuracy. While TopKFS and TopKF use an auxiliary data structure without
storing any sampled m-edge subgraph. It only stores the m-edge patterns and
their frequency, we can store it into memory directly. In addition, TopKFS can
further improve the accuracy since FPCS can provide more candidate mapped
buckets with vertical hashing technique to reduce errors caused by replacement.

Throughput (Fig. 5(10)-(12)): The experiment results show that the inser-
tion throughput of TopKF is around 1.13, and 3.57 times higher than TopKFS and
FPM, respectively. Moreover, the insertion throughput of TopKFS and TopKF
increases as the memory increases, while FPM does the opposite.

Efficiency Analysis. The experiment results show that TopKFS and TopKF are
more efficient than FPM, because FPM carries out expensive subgraph matching
calculations to estimate the frequency of each subgraph pattern after all updates
have occurred at the current timestamp. In contrast, TopKFS and TopKF use an
auxiliary data structure to unbiasedly estimate the frequency of each pattern in
real-time which can avoid redundant calculations. In addition, the throughput of
TopKF is also higher than TopKFS , because FPC only needs one memory access
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for each subgraph insertion. While FPCS keeps a hash address set, leading to
an extra check time. In addition, under a small memory, the throughput of
FPM is higher because it needs less time to partition the set of subgraphs in
S into T equivalence classes. As memory increases, FPM needs to process more
sampled subgraphs. While TopKFS and TopKF can achieve higher throughput
with memory increasing, since they have more buckets to handle the subgraph
insertion, greatly reducing the hash collisions.

Fig. 6. Performance varying d on Twitter

Fig. 7. Performance varying k on two datasets

6.2 Experiments on Varying Parameters

In this section, we evaluate the performance of TopKFS , TopKF with varying
parameter d on Facebook using bounded-size memory, i.e., 200MB, and then
evaluate F1 Score and throughput of TopKFS , TopKF, FPM with varying param-
eter k on Twitter and Facebook with the same memory. Note that, when varying
a parameter, we keep other parameters as default. The results on the other
datasets are consistent.

Effect of d (Fig. 6(1)-(4)): The experimental results show that the increase of
d can increase the recall rate and decrease the throughput of TopKFS and TopKF.
While the ARE and RR are not influenced explicitly. The reason could be that
for a larger d, it is more likely to store those patterns that can be top-d patterns
in a bucket. Moreover, with the increase of d, the throughput of TopKFS and
TopKF decrease since they need to check more cells in each bucket and execute
more subgraph matching calculations for subgraph insertion. Therefore, users
can adjust d to strike a good trade-off between precision and speed.
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Effect of k (Fig. 7(1)-(4)): Our experimental results show that the F1 Score
of TopKFS and TopKF decrease as the k increases. And there is a minor change
in the throughput of TopKFS and TopKF with the varying k. This is because
TopKFS and TopKF store all the patterns with high frequency in a fixed-size
auxiliary data structure, regardless of the value of k. After all the subgraphs at
the current moment are inserted, TopKFS and TopKF can directly search the
top-k frequent patterns from the data structure.

7 Related Work

We categorize the related work as follows.

Frequent subgraph Mining. Inokuchi et al. [10] first introduced the prob-
lem of Frequent Subgraph Mining (FSM). It uses a generate-and-select method
based on anti-monotonicity. However, it generates numerous candidates that are
infrequent or do not exist in the database, causing a lot of time overhead [12].
To solve this problem, [20] proposed gSpan algorithm which adopts a pattern-
growth approach to recursively grow patterns by scanning the graph database.
Though FSM has also been widely studied on a single static graph. None of the
proposed approaches [4,5,8,11,13], either exact or approximate, are applicable
to streaming graphs.

Top-k Frequent Patterns Mining. While top-k frequent patterns mining
adopts a different approach, combining the mining and ranking phases into one.
Since they do not need to mining all the patterns, they are more effective than
traditional frequent subgraphs mining methods and not require user to set a
precise minimum threshold. TGP [14] algorithm was designed to find the top-k
closed subgraphs. It uses a structure called Lexicographical pattern net to quickly
check if a subgraph is closed. The FS3 [17] algorithm was proposed to find an
approximate set of top-k frequent subgraphs. It invented a novel Markov Chain
Monte Carlo sampling which performs a random walk over the p-size subgraphs
of the graph. However, this sampling is non-uniform. Later, another algorithm
kFSIM [7] was proposed to mine top-k fixed size frequent subgraphs. But it still
cannot guarantee the completeness and accuracy of the results.

8 Conclusion

Top-k frequent pattern mining has been wildly used in numerous fields. In this
work, we tackle the novel problem of mining top-k frequent patterns continuously
in a streaming graph. We propose an auxiliary data structure called FPC to
unbiasedly estimate the frequency of the pattern and use a replacement strategy
to maintain a much smaller pattern set, which is fast, memory efficient, and
accurate. We prove its unbiasedness mathematically and design a new graph
invariant that map each subgraph to its sequence space. In addition, we explore
an augmented version FPCS by some other optimization strategies to speed up
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the frequency estimation process and improve its accuracy. Experimental results
show that our algorithms can achieve high accuracy and efficiency with limited
memory usage in real-time top-k frequent pattern mining.
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Abstract. Recently, with the proliferation of path query-based appli-
cations, extensive research has concentrated on the path query problem.
Existing works either focus on the path query over temporal graphs or
skyline path query over static graphs, ignoring the temporal information.
Meanwhile, edge-labeled temporal graphs are widespread in our daily life,
such as traffic networks labeled with “expressway” or “provincial road”.
In this paper, we define a novel skyline path query over temporal graphs
with labels. To handle this problem, we first devise an index named MP-
index, divided into two phrases of MP nodes search and Mout set con-
struction. Based on this index, we propose an efficient TMP algorithm to
provide the skyline path query over temporal graphs with labels. Finally,
extensive experiments show the effectiveness and efficiency of our pro-
posed algorithm.

Keywords: Temporal Graph · Skyline Paths · Query Algorithms

1 Introduction

With the proliferation of path query-based applications, such as searching the
shortest path in traffic networks [13,16], discovering temporally connected com-
ponents [9], research efforts [1,8,21] have been devoted to some key techniques
in path queries over temporal graphs. Formally, edges in a temporal graph
are always associated with temporal information, that is, a node can connect
with another at specific time instances. Consequently, path query over temporal
graphs is more complicated than that of static graphs. Yang et al. [20] proposed
an algorithm to calculate the optimal cost path under the time-dependent graph.
Wu et al. [17] first defined the earliest arrival path, the latest departure path,
the fastest path and the shortest path over temporal graphs. Chen et al. [2] used
the idea of two-hop labeling to query the earliest arrival path over temporal
bipartite graph. However, most existing research focused on path queries with
a single factor (time costs, distance, etc.), which cannot solve the problem of
multiple factors paths over temporal graphs.

Skyline path query extends skyline query to solve the problem of path query
with multi-factors. Tian et al. [14] suggested two pruning strategies for finding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 217–233, 2023.
https://doi.org/10.1007/978-3-031-30675-4_15
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skyline paths on road networks. Gong et al. [5] proposed a hierarchical index and
skyline path query in a multi-constrained road network. Shekelyan et al. [12]
introduced the multiple standard linear skyline path query, and designed the
algorithm to calculate the linear skyline path.

However, the existing skyline path queries ignore two main factors: (i) tem-
poral information and (ii) label elements, which lead to a huge gap between aca-
demic research and real application and cannot satisfy users’ diversified query
intentions.

Fig. 1. The traffic network.

Example 1. Figure 1 shows a traffic network, and the 4-tuple <start time, time
costs, distance, type> over an edge represents the start time, time costs, physical
distance, and the type this edge. Assuming a user wants to travel from A to E,
the user not only wants to arrive smoothly at the least cost of time and distance,
but wants to take a plane during the trip. There are three routes from A → E.
If we consider the time conflict in temporal graph, the route A → B → C → E
are excluded, as users from A to B cannot catch up with flights to C. In the
remaining two routes, although the route A → C → E dominates the route
A → D → E, it does not meet users’ needs to take a plane. So the final result
should start from A to E via D.

The above example requires a new type of path query, skyline path query
over edge-labeled temporal graphs, which provides a set of non-dominance sky-
line paths from two given nodes with a specific label. The most intuitive way
is to adopt the skyline path query method at every time instance to find the
skyline paths in the entire time interval. In that way, we need to recompute
the skyline paths at every time instant, leading to substantial re-computational
costs. Similarly, existing path query methods over temporal graphs can only
meet single-factor query intention, but cannot solve the skyline path query.

Therefore, in this paper, we first present a novel skyline path query over edge-
labeled temporal graphs. To solve this problem, we propose an index called Main-
Point(MP), which includes MP discovering, and Mout set construction. Based
on this index and pruning strategy, we propose a path query algorithm called
TMP. Moreover, this index also supports the dynamic update of the temporal
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graphs. Finally, extensive experiments over real datasets have demonstrated the
efficiency and effectiveness of our proposed algorithm.

In general, the contributions of this paper are as follows:

– According to many practical applications in real life, we propose a novel
problem of skyline path query over temporal graph with labels.

– We propose a MainPoint(MP) index, and design a TMP query algorithm
based on MP and pruning strategies to solve the skyline path query over
temporal graph with labels.

– Finally, the experimental results show that our method has better query per-
formance and shorter query time.

The rest of the paper is organized as follows. We introduce related works in
Sect. 2. In Sect. 3, we formally define the skyline path query. Then we propose
MP index and TMP algorithm in Sects. 4 and 5, respectively. We show the
experimental results in Sect. 6, and conclude the paper in Sect. 7.

2 Related Work

Temporal Path. Wu et al. [17] proposed the reachability query algorithm to
judge whether two nodes on the temporal graph are reachable. Wang et al. [16]
proposed TD-G-tree index to support shortest path queries under time depen-
dence. To find the optimal departure time with the least travel time, Ding
et al. [4] proposed a path query algorithm based on classical Dijkstra. Yuan
et al. [21] studied the constrained shortest path query on the time dependent
graph, but its weight on the edge of the time period does not change.

Although time factor is considered in these path queries, most researches
only focus on path queries with single constraint (e.g. fastest path, earliest arrival
path), which still cannot solve the path query problem with multiple constraints.

Skyline Path. Tian et al. [14] firstly extended skyline query to skyline path
query on road networks. Kriegel et al. [7] focused on the skyline on paths in
a road network with evolving preferences, such as distance, diving time, and
gas consumption. Yang et al. [18] focused on constructing a multi-cost, time-
dependent, uncertain graph model of a road network based on GPS data from
vehicles that traversed the road network.

Skyline path queries solve the problem of multi-constraint path queries, but
they mainly concentrate on static graphs without considering the temporal infor-
mation. Additionally, they ignore the impact of edge labels.

Label Path. Rice et al. [11] proposed a hierarchical graph index technology with
reduced hierarchy to solve shortest path queries restricting the type of roads or
modes of travel. Hassan et al. [6] studied the dynamic graph with labeled edges
and introduced an Edge-Disjoint Partitioning method to solve the shortest path
query with edge label constraints. Valstar et al. [15] defined the reachability
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query problem with label constraints, and solves the reachability problem with
label constraints by searching some landmarks to establish an index.

Like temporal paths, label paths are also with single constraints. Most of the
studies ignore the path problem with multiple constraints. Therefore, we define
the problem of skyline path query over temporal graphs with labels. As far as
we know, we are the first to propose this problem.

3 Problem Definition

Let G = (V,E) be a labeled temporal graph, where V represents the set of nodes,
and E represents the set of edges. An edge e ∈ E is a 6-tuple (u, v, s, λ, d, l),
where u, v ∈ V , s is the starting time, λ is the traversal time go from u to v
starting at time s and ending at s + λ, d is the cost from u to v, and l is the
label of each edge.

A temporal path Pvs,vt
from vs to vt can be represented as a sequence of edges

Pvs,vt
=< e1, e2, · · · , en >, where ei = (vi, vi+1, si, λi, di, l) for each i ∈ [1, n].

Notice that there is a constraint between adjacent edges, that is si + λi ≤ si+1,
because we cannot go from b to c before the previous path a → b arrived.

The starting and ending time of Pvs,vt
is s1 and sn+λn, respectively. So the

time cost is λPvs,vt
= sn + λn − s1, the distance is dPvs,vt

=
∑n

i=1 di, and the
label set is the union of sub-path labels, i.e. lpu,v

=
⋃n

i=1 li. Notice that, we focus
on directed temporal graphs, since undirected graphs can be easily transformed
through two bi-directed edges.

Then we can define the path domination relation between temporal paths.

Definition 1 (Path domination). Given two paths Pvs,vt
and P ′

vs,vt
with dif-

ferent time costs, distances and labels, Pvs,vt
dominate another path P ′

vs,vt
iff

λ < λ
′
, d ≤ d

′
(or λ ≤ λ

′
, d < d

′
), and l ⊇ l′, denoted as P ′

vs,vt
� Pvs,vt

.

Definition 2 (Skyline Path Query). Given two nodes u and v in tempo-
ral graph G and label set L, the skyline path query aims to find a set of paths
Pset(u, v), such that ∀(u, v, ts, C) ∈ Pset(u, v) is a skyline path that cannot dom-
inated by any other path from u at ts to v with label L, where C = (λ, d, l)
represents that the total time cost by node u arriving at v is λ, the sum of dis-
tances is d, and the label constraint set is l ⊇ L.

Example 2. As shown in Fig. 1. The path PA→B→C is not a temporal path
because it violate the temporal order. In contrast, PA→C→E is a temporal path
where the time cost is 7 + 3 − 2 = 8, distance cost is 5 + 2 = 7 and label set is
{Train} ∪ {Bus} = {Train,Bus}. In the set of temporal paths from A to E,
PA→D→E and PA→C→E don’t dominate each other, they are both skyline paths.

4 MP-Index Construction

4.1 Main Points Discovering

As we know, the degree of a node measures the total number of edge connections,
representing its importance in the entire graph [3,15,19]. For example, suppose
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we travel from one city to another in the railway transportation network. We will
pass through some relatively large central cities with many railway connections.
Inspired by these observations, we design an index based on the nodes with a
large degree and record the connections with it.

In the beginning, we will find the nodes with a relatively large degree, and
define them as the main points. The main idea in finding these main points is to
greedy remove the boundary nodes until the entire graph cannot be connected
through the main points, where boundary nodes are the nodes with a degree
of 1. Notice that, we conduct the main points discovering over the sum of all
temporal edges.

Specifically, we first sort the nodes in descending order of their degrees and
initialize them as a candidate set. We also define the node with the current
largest degree as a judge node and put it in the Main Point Set (MPSet). Then
in each iteration, we delete the current judge node and update the degree of its
neighbors. The neighbors who become boundary nodes after the update will also
be deleted from the candidate set during this period. When the candidate set is
empty, we will obtain the main point set, called MPSet.

Example 3. As shown in Fig. 1, we get the candidate set S = {C,A,E,B,D, F}
after sorting by degree. In the 1-iteration, we will find the node with the current
largest degree, i.e., C, and regard it as part of MPSet. And the degree of its
neighbors will be minus 1. As a consequence, B and F will be deleted due to
their degrees becoming 1. In the 2-iteration, the judge node becomes A and will
be added to MPSet. After that, we remove its neighbors D will from S. In the
3-iteration, the remaining candidate node E will be regarded as part of MPSet.
Finally, we get the MPset={C,A,E}.

Algorithm 1: findMP Algorithm
Input: A temporal graph G
Output: MPset

1 MPset= ∅, sortorder= ∅
2 sortorder ← sort nodes v ∈ G in descending order according to degree (v)
3 while sortorder �= ∅ do
4 MPset ← MPset ∪ v // v is the first node in sortorder
5 Remove node v from sortorder
6 for w ∈ pre (v) ∪ suc (v) do
7 degree (w) ← degree (w) − 1

8 while degree (w) = 1 do
9 Remove node w from sortorder

10 return MPset;

The pseudo-code of findMP algorithm is shown as Algorithm 1. Given the
temporal graph G, the findMP algorithm aims to find the node set of main points,
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i.e. MPSet. At first, we initialize the MPSet and sort the nodes in descending
order according to their degree (Lines 1-2). Then add the node with large degree
to MPset each time, and delete its adjacent edges and boundary nodes until the
sortorder set is empty (Lines 3-9). Finally, the MPset is returned (Line 10).

Time Complexity. The time complexity of Algorithm 1 is O(N ∗dmax), where
N is the number of nodes and dmax is the maximum degree of the node.

4.2 Mout Set Recording

After finding the main point nodes, we want to construct an efficient index based
on them. In this subsection, we first introduce the concept of Mout set to record
the consequential nodes of main point nodes.

Definition 3 (Mout). Mout (v) represents the set of other MP nodes that v
can reach. For each 4-tuple (w, ts, te, C) ∈ Mout (v), it indicates node v departs
at ts and arrives at MP w at te, C = (λv,w, dv,w, lv,w) represents that the total
time cost by node v arriving at w is λv,w, the sum of distances is dv,w, and the
label constraint set is lv,w.

MPset and Mout construct are the core of the MP-index, where MPset
shows the main point nodes and Mout shows the eligible connections between
main point nodes. Since MPset has been found in the previous subsection, our
task is to find the Mout. The main idea of finding Mout (v) is to traverse MP
nodes in reverse topological order, and record eligible connections with 4-tuple
between v and w into Mout (v) in each iteration.

Specifically, we first topologically sort each node in temporal graphs accord-
ing to Formula (1), where din(v) denotes the in-degree of node v, and pre(v)
represents incoming neighbor nodes of node v. Next, we traverse each MP node
in reverse topological order to record the eligible connections over the sum of all
temporal edges. In each iteration, we conduct an improved breadth-first-search
(BFS) algorithm to traverse the out-edges of a particular MP node and record
connections with eligible 4-tuple between MP nodes. The reason to utilize reverse
topological order is to reduce colossal re-computational costs. In detail, the nodes
with small topology numbers no longer need to repeatedly traverse those with a
larger one, because these nodes have been traversed in previous visits. Moreover,
the eligible connections recorded by each MP node will be transmitted to their
upper MP node.

T (v)

⎧
⎨

⎩

0 din(v) = 0

maxu∈pre(v)(T (u) + 1) otherwise
(1)

In addition, there will still be some redundant paths during the construction
process. According to Definition 1, we have the following pruning strategy when
building the index.

When we traverse from a particular MP node v, we suppose that there are
two paths Pv,w and P

′
v,w between them, and Pv,w � P

′
v,w. Only the 4-tuple
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of P
′
v,w will be transmit to Mout(u), and it is unnecessary to transmitted the

4-tuple of Pv,w, because their domination relationship.

Example 4 As shown in Fig. 1, we assume that node F and C are MP nodes.
When we visted node C, since PC→F � PC→E→F , we pass ∀(V, ts, te, C

′
) ∈

Mout(F ) to Mout(C) through path PC→E→F where C
′
.λ ≥ 15.

Algorithm 2: Mout Construction
Input: A temporal graph G, MPset
Output: Mout

1 MPset ← sort node u ∈ MPset in descending order of topology number
2 for u ∈ MPset do
3 Mout(u) ← ∅
4 Q← ∅, Q.push(v) // v ∈ suc(u)
5 while Q is not empty do
6 w ←Q.pop()
7 if w ∈ MPset and dis(u, w) ≤ k then
8 Cu,w = (λ, d, l) ;
9 Mout(u) ← (w, ts.te, Cu,w)

10 if (w, t
′
s, t

′
e, C

′
u,w) � (w, ts, te, Cu,w) then

11 Remove (w, t
′
s, t

′
e, C

′
u,w) from Mout(u);

12 for (z, t
′′
s , t

′′
e , Cw,z) ∈ Mout(w) do

13 if t
′′
s ≥ max{te, t

′
e} and dis(u, z) ≤ k then

14 Mout(u) ← (z, ts, t
′′
e , Cu,z)

15 if w /∈MPset, z ∈ suc(w), te(u, w) ≤ ts(w, z), dis(u, z) ≤ k then
16 Q.push(z)

17 return Mout(u)

18 return Mout;

Meanwhile, in order to make our index suitable for large graphs, we introduce
a constant k to limit the size of index construction, where k means that MP nodes
can reach within k hops. The value of k is related to the size of the temporal
graph and the number of topological layers. We limit the size of Mout (v) to all
MP node elements obtained by traversing k steps starting from v.

Algorithm 2 describes the process of building Mout sets. We first sort the
MP nodes according to their topology number (Line 1). For each MP node u, we
construct a Mout(u) for it (Line 3). Then we initialize an empty queue Q, and
add out-neighbors of u to the queue (Line 4). Subsequently, we judge whether
the queue Q is empty, if not, we will conduct the iteration (Lines 5-16). In the
t-th trial, for nodes that are MP nodes and can be reached in k steps, it will
be added into Mout(u) (Lines 7-9). If two 4-tuple in the set are completely
dominated, then the dominated elements are removed from Mout(u), and the



224 L. Ding et al.

eligible elements are added to Mout(u) according to pruning strategy (Lines
10-14). If the node is not MP, then the subsequent neighbor node that conforms
to the temporal relationship will be added to the queue (Lines 15-16).

In addition, considering the temporal graph are evolve over time, our index
also supports for the graph updates. There are two cases for a newly added node,
i.e., v, according to the node v connected. Case (i): if the node that v connects
to is an MP node, the index will not be changed, because MPset and Mout set
remain unchanged. Case (ii): if the node that v connects to is a non-MP node,
i.e., u, where v is also a boundary node. As a consequence, u becomes an MP
node, and the corresponding MPset and Mout(z) will also be modified, where z
is the MP node that can reach u within k steps.

Time Complexity. The time complexity of Algorithm 2 is O(Nmp ∗ k ∗ dmax)
in the worst case, where Nmp represents the number of MP and k ∗ dmax means
the maximum number of elements in the Mout set, which is actually a constant.

5 Skyline Path Query Based on MP Index

5.1 Bidirectional Topology

Before querying, we first consider the problem that the two nodes given by the
user are unreachable. For MP index, this is the worst case of query. We need to
return results after traversing all nodes between nodes, which will reduce the effi-
ciency index. Therefore, before querying, we introduce a bidirectional topology
to judge some obviously unreachable nodes. If the two nodes are unreachable,
the query results will be returned directly.

Assuming the given two nodes are u and v, we utilize two variables to judge
whether they are reachable quickly. The first variable is the forward topological
sorting value in Formula (1). Furthermore, the second variable is the reverse
topological sorting value given in Formula (2), where Dmax represents the max-
imum path length in the temporal graph. Based on these two variables, we have
the Theorem 1 to judge whether two nodes are reachable.

RT (v)

⎧
⎨

⎩

Dmax dout(v) = 0

minu∈suc(v)(RT (u) − 1) otherwise
(2)

Theorem 1. In the temporal graph, for the given two nodes u and v, if T (u) ≥
T (v) or RT (u) ≥ RT (v), then u to v must not be reachable in the temporal
graph. That is, there is no path between u and v.

Proof. Suppose that u can reach v when T (u) ≥ T (v). Then there is at least
one path from u to v. Therefore, in topological sorting, the access order of v
must be after u, that is, T (u) < T (v). This contradicts the assumption. The
proof of RT (u) is similar.
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5.2 Query Algorithm Based on MP-Index

Since the MP index only stores some main point nodes and their connection
information, we can easily tackle the skyline path query between these main
point nodes in linear time. However, the query node may not be the main point
node in practical application scenarios. So we have the following theorem to
guarantee the availability of the skyline path query between non-MP nodes.

Theorem 2. The skyline path query of any non-MP node can be converted to
skyline path query of MP node.

Proof. According to Theorem 1, at least one of the two nodes on the edge is
an MP node. So if a node is a non-MP node, its adjacent node must be an MP
node. Therefore, the skyline path query of a non-MP node can be converted to
the skyline path query of the adjacent MP node.

For a given starting node u and target node v, the given nodes of query are
divided into the following three cases. (1) Both u and v are MP. (2) One of u
and v is MP. (3) u and v are not MP. We will give the corresponding solutions
in each case.

Due to the limited size of the set, we can get the results directly from Mout
that can be reached in k steps. When the path is exceed k steps, we need to do
further analysis. For query nodes u and v, we first record the td = T (v) − T (u)
to represent the topological distance between two nodes, and judge when the
two nodes meet. Then we can tackle the case (1) according to Theorem 2.

Algorithm 3: TMP skyline path query
Input: TMP(G, u, v, td, L)
Output: Pset(u, v)

1 Pset(u, v) ← ∅ ;
2 if T (u) ≥ T (v) or RT (u) ≥ RT (v) then
3 return Pset(u, v)

4 if u, v ∈ MPset then
5 return based-query(TMP(G, u, v, td, L))

6 if u ∈ MPset then
7 for w ∈ pre(v) do
8 td = td − 1 , Pset(u, w) ←based-query(TMP(G, u, w, td, L))
9 if (w, ts, te, C) ∈ Pset(u, w) and te ≤ ts(w, v) then

10 Pset(u, v) = Pset(u, v) ∪ (v, ts, te(w, v), Cu,v) , return Pset(u, v)

11 if v ∈ MPset then
12 for w ∈ suc(u) do
13 td = td − 1 , Pset(w, v) ←based-query(TMP(G, w, v, td, L))
14 if (v, ts, te, C) ∈ Pset(w, v) and ts ≥ te(u, w) then
15 Pset(u, v) = Pset(u, v) ∪ (v, ts(u, w), te, Cu,v) , return Pset(u, v)
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For case (2) and case (3), it is more complicated. For case (2), we convert u
or v to adjacent outgoing or incoming nodes, and then the topological distance
will be updated as td = td−1. For case (3), we convert u and v at the same time,
convert u to an adjacent outgoing node, and convert v to an adjacent incoming
node, and then td = td − 2.

We then compare td with k. If td ≤ k, we search the 4-tuple in Mout(v)
and add the qualified temporal path to the final result set, and terminate the
process. Else if td > k, it indicates that the information between two nodes is
not completely saved in the existing Mout set, we need to further analysis this
situation. First, we traverse the Mout(w) where w is the k-th hop nodes in the
Mout(u) . If there are corresponding query nodes and conform to the temporal
relationship, we will accumulate the distance and time, add the union set of
the label set to the final result set. Note that, we do not need to traverse all
the elements in Mout(w), according to the path dominance relationship and the
k-hop range. We also design the following two pruning strategies for unqualified
elements to speed up the query.

Algorithm 4: TMP skyline path query (Continued)
1 for w ∈ suc(u) and z ∈ pre(v)) do
2 td = td − 2 , Pset(w, z) ←based-query(TMP(G, w, z, td, L))
3 if (z, ts, te, C) ∈ Pset(w, z) and ts ≥ te(u, w),te ≤ ts(z, v) then
4 Pset(u, v) = Pset(u, v) ∪ (v, ts(u, w), te(z, v), Cu,v) , return Pset(u, v)

5 Function based-query(TMP(G, u, v, td, L)):
6 if ∃(v, ts, te, C) ∈ Mout(u) and C.l ⊆ L then
7 Pset(u, v) ← (v, ts, te, C);

8 if td ≤ k then
9 return Pset(u, v);

10 for (w, ts, te, C) ∈ Mout(u) and dis(u, w) = k do
11 if (w, ts, te, C) � (v, t

′
s, t

′
e, C

′
) ∈ Pset(u, v) then

12 continue

13 based-query(TMP(G, w, v, td − k, L))

14 return Pset(u, v)

The Element Pruning Strategy within the td Hop. When we visit the k-th
hop element w in Mout(v), the limit range changes from td hop to td − k hop.
If the hop number in Mout(w) is larger than td − k, it is no longer traversed.

Candidate Path Pruning Strategy. If a path can be dominated by another
in the candidate set, the subsequent traversal will not continue from it, because
the path starting from this element must not be the optimal path.

Algorithm 3 describes the TMP algorithm. Give two nodes u and v, the
TMP algorithm returns the skyline temporal path from them. We first initialize
Pset(u, v) to record the result (Line 1). Then, we judge whether the two nodes
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are reachable according to the bidirectional topology (Lines 2-3). If u and v are
both MP nodes, function based-query is called (Lines 4-5). If only one of the
two nodes is an MP node, we convert it to the outgoing neighbor MP node or
incoming neighbor MP node for calculation, and remove the ones that do not
meet the temporal relationship to obtain the result set (Lines 6-15). If both
nodes are not MP nodes, we convert the nodes simultaneously to the outgoing
neighbor MP node and the incoming neighbor MP node, and then call function
based-query to calculate, and finally get the result set (Lines 16-19). The function
of based-query gives the first case of query, where both query nodes are MP. If
there are eligible elements and the number of hops is within k steps, the result is
directly obtained (Lines 21-24). When the number of hops is greater than step
k, first prune the k-th hop element according to the pruning strategy, and then
call based-query repeatedly to get the result (Lines 25-28).

Time Complexity. The worst case is when the query nodes u and v are not
MP nodes. In that case, we need to visit all outgoing neighbor nodes of u and all
incoming data nodes of v. The time complexity is O(din ∗ dout), where din and
dout represent the number of incoming neighbor nodes and outgoing neighbor
nodes, respectively.

Correctness. The TMP algorithm is based on the MP-index, which records
the main point nodes and the crucial connections with their eligible 4-tuple
information. The TMP algorithm considers all the situations of the query nodes,
that is, both MP nodes or non-MP nodes, or one is an MP node and another not.
We thoroughly consider how to obtain the corresponding skyline path between
the two given nodes in different situations. Through the above steps, the integrity
of the query algorithm and the correctness of the query results are ensured.

6 Experiment

6.1 Experimental Settings

Datasets. We select 10 datasets to test our proposed algorithm, which are Bit-
coin, DBLP, epinions, mathoverflow, wiki, Digg, collegeMsg, Elec, Askubuntu, and
Facebook. Among them, mathoverflow, collegeMsg and Askubuntu datasets are
from SNAP1, remaining datasets from KONECT2. The edges of these datasets
contain time elements, but no label elements. So we modified datasets on this basis,
and randomly added label elements at the edge to meet our algorithm.

The summary of datasets is shown in Table 1. |V | and |E| denote the number
of nodes and edges of temporal graph, respectively. davg and dmax denote the
average and maximum degrees of nodes in temporal graph, respectively.

1 http://snap.stanford.edu/data/.
2 http://konect.cc/.

http://snap.stanford.edu/data/
http://konect.cc/
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Algorithms. Our experiments are conducted against the following designs:

– TD algorithm: Because there is no algorithm exactly the same as the problem
studied in this paper, we improved the Dijkstra [10] algorithm and designed
the TD algorithm based on the temporal label graph.

Table 1. Datasets

Dataset |V | |E| davg dmax

collegeMsg 1,899 6,452 6.79 564
wiki 2,356 6,432 5.46 320
Bitcoin 5,881 35,592 12.1 1,298
Elec 7,118 103,675 29.1 1,167
DBLP 12,590 49,759 7.90 714
Digg 30,398 87,627 5.76 310
Facebook 47,985 257,576 10.73 11,250
mathoverflow 88,580 506,550 11.43 14,320
epinions 131,828 841,372 12.76 3,622
Askubuntu 560,180 4193,430 14.97 91,751

– TL-NODE: NODE [5] is an index-based algorithm to solve the multiple con-
strained skyline path in static graphs, ignoring the temporal information and
label factors. We adjust it and design a TL-NODE algorithm to solve our
defined problem.

Table 2. Index construction time (ms) and index size (MB)

Dataset MP Topo TMP
Time Size Time Size Time Size

collegeMsg 377.11 5.0 5.21 0.5 382.32 5.5
wiki 524.75 6.2 10.76 1.2 535.51 7.4
Bitcoin 753.21 17.4 50.14 2.1 803.35 19.5
Elec 2,472.57 54.1 123.40 3.4 2,595.97 57.5
DBLP 1,730.73 36.7 60.24 6.8 1,790.97 43.5
Digg 2,247.28 67.2 156.10 12.5 2,403.38 79.7
Facebook 4,874.47 102.3 322.45 24.6 5,196.92 126.9
mathoverflow 3,861.25 348.5 495.12 38.5 4,356.37 387
epinions 5,562.66 587.2 562.32 54.6 6,124.98 641.8
Askubuntu 105,888.85 1,003.4 1,234.56 87.6 107,123.41 1,091
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6.2 Index Evaluation

Index Construction Time. We first evaluate the index construction time of
the two phrases of our proposed algorithm by setting the parameter k to 20. For
simplicity, MP is short for the Main Points Index, Topo denotes the bidirectional
topology, and TMP includes MP index and bidirectional topology.

In Table 2, we can observe that the construction time of MP index is far more
than that of Topo comparing the second column and the fourth column. And
the total index construction time (i.e. TMP) on the collegeMsg is less than one
second, and on the Askubuntu is less than 110 s.

We also compare the index construction time of our proposed TMP algorithm
with the modified TL-NODE algorithm. As shown in Fig. 2 (a), the construction
time of MP and TMP is significantly better than TL-NODE. The reason is
that the TL-NODE algorithm will increase the construction costs after adding
temporal factors, and the index needs to be incremental recomputed. Besides,
TL-NODE does not have a pruning strategy to reduce redundant computations.
Even in some smaller graphs, the construction time of TMP is nearly 10 times
faster than that of TL-NODE. In larger graphs, the construction time of TMP
is also significantly better than that of TL-NODE.

Fig. 2. Index construction time and size

Index Size. We first compare the index size of the two phrases of our proposed
algorithm. Table 2 shows the sizes of MP and TMP in different datasets under
the default parameter k = 20. We can observe that the sizes of MP and TMP are
between 5MB and 1.1GB through all the selected datasets. Then, we compare our
proposed algorithm with the TL-NODE algorithm. As shown in Fig. 2 (b), the
TL-NODE index size is between 10MB and 2.5GB among all selected datasets.
We can also observe that the index size of our proposed algorithm is smaller than
that of TL-NODE. Moreover, in some datasets, such as Digg and Facebook, TMP
is more than 5 times smaller than TL-NODE.
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6.3 Query Time Evaluation and k Value Influence

Query Time Evaluation. We randomly set 100 query nodes from datasets.
The ratio of reachable nodes to unreachable nodes is 1:1. Table 3 shows the
average query time of the four algorithms on datasets. It can be seen that TD
algorithm performs the worst. Especially for large graphs, its query time will
increase exponentially. TL-NODE is a hierarchical index structure algorithm.
We can see in collegeMsg and Bitcoin datasets, the query time of TL-NODE
is less than that of MP algorithm, but with the increase of data volume, the
advantages are no longer obvious. TMP adds a bidirectional topology before
establishing the MP index. Queries between unreachable nodes are filtered out,
so the perform is better than MP.

k Value Influence. In building the TMP index, we limit the number of traversal
steps to handle large-scale graphs. As a result, the different steps may affect the
index construction time and query time. Therefore, we conduct experiments to
evaluate the influence of different k values. We set different values for k as 10,
20, 30, and 40, respectively. Table 4 shows the TMP index’s construction time
and average query time when k takes different values. From the table, we can see
that the time of TMP index construction increases with the increase of k value,
because the number of layers determines the scale of traversal. At the same time,
as the value of k increases, the query time decreases. This is because more path
information is stored in the index, which can cover more queries.

Table 3. Average query time (ms)

Dataset TD TL-NODE MP TMP

collegeMsg 4,023.76 264.15 351.61 280.15
wiki 6,206.45 785.23 456.55 300.66
Bitcoin 10,235.20 621.36 786.11 651.22
Elec 120,034.45 2,340.54 1,236.16 560.37
DBLP 835,610.36 3,011.54 865.45 756.47
Digg – 6,874.21 1,357.52 566.68
Facebook – 10,463.26 6,147.56 1,235.17
mathoverflow – 21,354.33 6,248.66 1,635.25
epinions – 50,214.21 10,521.14 6,215.33
Askubuntu – 82,457.66 23,556.35 12,548.64
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Table 4. The influence of k value

Dataset TMP Construct Time (ms) Average Query Time (ms)
k = 10 k = 20 k = 30 k = 40 k = 10 k = 20 k = 30 k = 40

collegeMsg 210.34 382.32 476.55 523.21 60.54 25.15 20.00 14.33
wiki 323.15 535.51 756.60 875.35 82.16 30.66 22.30 18.98
Bitcoin 652.10 803.35 924.00 1,025.30 267.54 100.35 89.64 58.75
Elec 987.20 2,595.97 3,412.33 4,687.00 945.55 560.37 422.14 400.66
DBLP 795.31 1,790.97 2,234.14 4,221.98 758.66 356.47 287.45 200.00
Digg 1,244.00 2,403.38 3,287.00 5,978.45 943.78 566.68 420.04 350.78
Facebook 2,446.37 5,196.92 6,678.75 8,796.00 2,653.00 1,235.17 852.77 504.00
mathoverflow 1,958.00 4,356.37 5,673.11 7,446.71 3,574.24 1,635.25 1,021.45 884.22
epinions 3,566.36 6,124.98 9,874.24 11,234.22 15,243.00 6,215.33 5,567.58 4,324.54
Askubuntu 69,860.21 107,123.41 184,655.21 243,654.67 35,448.30 12,548.64 10,004.50 8,798.66

6.4 Influence of the Number of Labels

The number of query labels may impact the query results, so we conduct exper-
iments to evaluate the influence of the different numbers of labels. We use the
datasets of collegeMsg, Elec, Facebook, and Askubuntu to verify the impact of
the number of labels on the query time. We set the label quantity values to 2,
4, 6, 8, and 10, respectively, and the ratio of reachable to unreachable is 1:1. As
shown in Fig. 3, as the number of labels increases, the query time of all algorithms

Fig. 3. Influence of the number of labels on different data sets
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will increase accordingly. Because when the number of labels increases, the paths
that meet the query conditions will increase. Similarly, we can see that the TD
algorithm consumed much time (in Facebook and Askubuntu datasets, if the
query time exceeds 100s, it is expressed as 100s). Moreover, the TL-NODE algo-
rithm uses a hierarchical structure based on backbone and clustering, increasing
efficiency in judging skyline paths with labels. However, redundant labels are not
pruned when building the index, and the overall query time is higher than MP
and TMP. The query time of MP is slightly longer than that of TMP because
TMP judges some unreachable nodes and reduces the query time.

7 Conclusion

In this paper, we define a novel skyline path query over edge-labeled temporal
graphs. To Solve this problem, we first design an index called MP, consisting
of MP discovering and Mout set construction. Moreover, we propose a TMP
algorithm based on MP-index and bidirectional topology strategy to solve the
skyline path query over temporal graphs with labels. Finally, through experi-
ments on real datasets and comparison with other algorithms, the experimental
results show that our algorithm performs well.
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Abstract. Structural Graph Clustering (SCAN) is a fundamental prob-
lem in graph analysis and has received considerable attention recently.
Existing distributed solutions either lack efficiency or suffer from high
memory consumption when addressing this problem in billion-scale
graphs. Motivated by these, in this paper, we aim to devise a distributed
algorithm for SCAN that is both efficient and scalable. We first propose a
fine-grained clustering framework tailored for SCAN. Based on the new
framework, we devise a distributed SCAN algorithm, which not only
keeps a low communication overhead during execution, but also effec-
tively reduces the memory consumption at all time. We also devise an
effective workload balance mechanism that is automatically triggered by
the idle machines to handle skewed workloads. The experiment results
demonstrate the efficiency and scalability of our proposed algorithm.

Keywords: graph · clustering · distributed processing

1 Introduction

With the proliferation of graph applications, research efforts have been devoted
to many problems in analyzing graphs [4,14,15,18,22,23,27,28,30,31]. Among
them, graph clustering (e.g. [17,19,25]) is a fundamental problem and many
different clustering algorithms have been proposed, while most of them partition
the entire set of vertices into disjoint clusters. For real graphs, however, it is
usual that not all vertices are members of clusters: some vertices are hubs [10]
that bridge many clusters, and some vertices are just outliers [25]. Following
this idea, structural graph clustering (SCAN) [25] is proposed to distinguish the
different roles of the vertices and to uncover overlapping clusters. In the real
world, SCAN is essential for many applications (e.g. [7,10,12,24]). For example,
the identified hubs are believed to play an important role in viral marketing
[7] and epidemiology [24]. Additionally, the identification of hubs in the WWW
improves the search for relevant authoritative web pages [12].
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Motivation. In real-world applications, the scale of graphs is large and grows
exponentially. The size of the graphs can usually exceed the memory size of a sin-
gle machine, which gives rise to the need for distributed algorithms [8,9,13,26].
In the literature, a number of distributed algorithms for SCAN have been pro-
posed [11,19,32,33]. Specifically, ParallelSCAN [32], SparkSCAN [33] and CASS
[11] are parallelized and implemented on big-data engines (e.g. Hadoop MapRe-
duce [20] and Apache Spark [29]). However, it was verified in [19] that they all
suffer from high communication overhead, which leads to their inefficiency in
processing billion-scale graphs. Recently, DSCAN [19] was proposed to reduce
the communication cost and hence improve clustering efficiency. DSCAN first
removes edges of adjacent vertices that are locally found to be dissimilar, and
then stores the adjacency lists of all remote vertices in each machine such that
the clustering is run locally. Nevertheless, because DSCAN requires storing the
remote adjacency lists in advance, the per-machine memory consumption can be
exponentially larger than the original graph partition. In the worst case, DSCAN
even needs to store the whole graph in each machine. This leads DSCAN to easily
run out of memory as verified in our experiments.

Motivated by these, in this paper, we aim to develop an efficient and scalable
distributed algorithm for the problem of SCAN. The developed algorithm should
not only have a low communication overhead, but also maintain a low memory
consumption.

Our Idea. Our general idea to overcome these challenges is simple: instead of
processing the clustering for all vertices together in each machine, we propose a
fine-grained framework for distributed clustering that divides the local vertices
in each machine into batches and processes each of them separately. Based on
this new clustering framework, we are able to not only reduce the communication
overhead, but also control the memory consumption. However, to make our idea
practically applicable, the following challenges still need to be addressed: (1)
how to efficiently perform the fine-grained clustering without storing all remote
adjacency lists in each machine? (2) how to keep the correctness of clustering
results across different batches? (3) how to handle the skewed workload which
commonly occurs in distributed systems?

Contributions. In this paper, we address the efficiency and scalability issues in
existing works and make the following contributions: (1) we propose a new dis-
tributed algorithm for SCAN based on our fine-grained framework for distributed
clustering. Besides keeping a low communication overhead during execution, our
new algorithm can also effectively control the memory consumption during the
clustering, which significantly improves the scalability and efficiency of exist-
ing algorithms; (2) we design an effective work-stealing mechanism to handle
unbalanced workloads; (3) we conduct extensive performance studies using large
real-world graphs. The experiment results demonstrate that our proposed algo-
rithm is efficient and scalable for SCAN in billion-scale graphs.
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2 Preliminary

Let G = (V,E) denote an unweighted undirected graph, where V (G) is the set of
vertices and E(G) is a set of directed edges. We denote the number of vertices as
|V (G)| and the number of edges as |E(G)|. For a vertex u ∈ V (G), we use N (u)
to denote the neighbors of u. The structural neighborhood of a vertex u, denoted
by N(u), refers to the set of neighbors of u plus u itself (i.e. N(u) = N (u)∪{u}).

Definition 1. (Structural Similarity) The similarity between two vertices u
and v, denoted by σ(u, v), is defined as the number of common vertices in N(u)
and N(v) normalized by the geometric mean of their cardinalities: σ(u, v) =

|N(u)∩N(v)|√
|N(u)||N(v)| .

Given a similarity threshold 0 < ε ≤ 1, we call two vertices u and v are
similar if σ(u, v) ≥ ε, or dissimilar otherwise. The ε-neighborhood of u, denoted
by Nε(u), is defined as the subset of vertices in N(u) that are similar to u.

Definition 2. (Core Vertex) Given an integer μ ≥ 1, a vertex u is a core
vertex if |Nε(u)| ≥ μ, or a non-core vertex otherwise.

A cluster C is a subset of V (G) with |C| ≥ 2. For a core vertex u and a
vertex v, if v is similar to u, then u and v belong to the same cluster. A vertex u
that is not in any cluster is a hub vertex if its neighbors belong to two or more
clusters, and it is an outlier vertex otherwise.

Problem Statement. Given a graph G = (V,E), parameters 0 < ε ≤ 1 and
μ ≥ 1, the problem of distributed SCAN aims to compute the roles of all the
vertices and the clusters in G in the distributed context.

Fig. 1. SCAN on Graph G with ε = 0.7, μ = 4

Example 1. Consider the graph G shown in Fig. 1. When running SCAN with
ε = 0.7 and μ = 4 on G, the similarity value σ(u, v) is shown on each edge
(u, v). The core vertices are marked in grey. SCAN identifies two clusters, namely
{v1, v2, v3, v4, v5, v6} and {v0, v8, v10, v11, v12}, and isolates vertex v7 as a hub and
vertex v9 as an outlier, which are shown in the figure.
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Fig. 2. Example Partitions of G

Graph Storage. Given a data graph G, we use the widely used hash partition-
ing by default, which is also used in the existing works on distributed SCAN
algorithms [11,19,32,33]. Specifically, we assume the data graph is partitioned
by vertices, that is, for each vertex v ∈ V , we store it with its adjacency list
(v;N (v)) in one of the partitions. Each partition is referred to as G. We call a
vertex that resides in the local partition a local vertex, or a remote vertex oth-
erwise. Figure 2 demonstrates an example hash partitioning of G from Fig. 1,
which is equally partitioned into two machines by its vertices. In each partition,
the local vertices and remote vertices are marked in solid and dashed vertices
respectively. As can be seen, every local vertex has its adjacency list stored in
the same machine. Although we use the hash partitioning in this paper, our app-
roach is orthogonal to partitioning, i.e., it flexibly supports all graph partitioning
methods.

3 Related Works
In this section, we extend the description of the related works on SCAN intro-
duced in Sect. 1. We roughly divide the existing works into two categories: dis-
tributed solutions and centralized solutions. We focus on the distributed solu-
tions for this problem. We also briefly introduce the centralized solutions.

The Distributed Solutions. In the literature, the distributed algorithms for
SCAN have been well studied [11,19,32,33]. In [32], a distributed SCAN algo-
rithm PSCAN was proposed based on MapReduce [6]. The map function refines
the adjacency list of the vertices, while the reduce function calculates the struc-
tural similarity between vertices. However, as the Hadoop MapReduce model
requires storing intermediate results into a distributed file system for each iter-
ation, it is thus unsuitable for SCAN that includes iterative tasks as shown in
[33]. To improve the inefficiency of PSCAN, SparkSCAN [33] and CASS [11]
were further proposed based on Apache Spark [29] with the advantages of its
iterative computation. Nevertheless, it was recently verified in [19] that PSCAN,
SparkSCAN and CASS all suffer from high communication overhead introduced
by their based big-data engines, which leads to the inefficiency and long pro-
cessing time for billion-scale graphs. Following the observation, DSCAN was
proposed in [19], which reduces the communication cost by first locally remov-
ing unpromising edges (u, v) with min{ |N(u)|

|N(v)| ,
|N(v)|
|N(u)|} < ε2 in each machine, and
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then supplementing the local graph partition by fetching and storing the neigh-
bor sets of all remote vertices. By doing this in advance, the SCAN algorithm
can be run individually in each machine without requiring any separate commu-
nication, which consequently improves efficiency. However, it is verified in our
experiments that when storing the adjacency lists of remote neighbors, the mem-
ory consumption in each machine is exponentially larger than the original graph
partition, which easily exceeds per-machine memory capacity (as verified in Exp-
1). Moreover, although DSCAN reduces the size of stored remote adjacency lists
by first removing unpromising edges locally, it is experimentally verified in our
paper that DSCAN still runs out of memory on billion-scale graphs unless ε is
relatively large (e.g. ε = 0.9), when most edges have been removed.

The Centralized Solutions. A number of centralized algorithms have been
proposed to accelerate SCAN [2,3,16,21]. Recently, pSCAN [2] introduces
dynamic pruning techniques to reduce the amount of similarity computation.
Specifically, it introduces similar and effective degrees, which are the lower and
upper bounds of (|Nε| − 1) for each vertex. While conducting the clustering,
it records the similar and effective degrees for the vertices and their neighbors,
and uses them for early termination in the core checking. In addition to the
sequential algorithms, a number of parallel algorithms for SCAN are also pro-
posed [3,16,21]. However, they all assume that each thread has direct access
to the complete graph, which cannot be trivially applied to our problem. As
the pruning techniques in centralized solutions can effectively reduce computa-
tion cost, our algorithm adopts similar pruning methods to improve the overall
performance.

4 Our Approach

4.1 A Fine-grained Framework for Clustering

Based on the above analysis, we have to make a fresh start and design a new
efficient and scalable distributed algorithm tailored for distributed SCAN. The
design goals of our new approach are: (1) Low memory consumption. Our app-
roach should have a low memory consumption in each machine in the dis-
tributed system; (2) Low communication overhead. Our approach should effec-
tively reduce the communication overhead caused by the shuffling of intermedi-
ate results; (3) Parallelism. Our approach should fully utilize the computation
resources of the distributed system; (4) Load balance. As a distributed solution,
our approach should be able to handle the situation with imbalanced workload.

As analyzed in the above section, although DSCAN can reduce the commu-
nication overhead of big-data engine-based solutions, it leads to a high memory
consumption. Revisiting DSCAN’s algorithm procedure, it can be observed that
DSCAN’s high memory consumption results from the prior storing of a large
number of adjacency lists of remote vertices. Inspired by this, we process clus-
tering in a finer granularity to reduce the size of stored remote adjacency lists
at each time, which is based on the following lemma:
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Lemma 1. Given three clusters found by SCAN, namely C0, C1 and C2, if
C1

⋃
C2 = C0 and C1

⋂
C2 = ∅, then there exists v1 ∈ C1 and v2 ∈ C2 such that

v1 and v2 are structural similar.

Proof. The lemma can be proven directly based on the definition of structural
connectivity in SCAN.

According to Lemma 1, the clustering results for local vertices V (G) in
each machine can be obtained by first dividing V (G) into disjoint batches
S = {S0, S1, · · · , Sn}, then clustering separately for each Sv ∈ S and the clusters
are updated once a new batch is computed. By doing so, instead of storing all
remote adjacency lists in every machine for all time, the remote adjacency lists
for only each batch of vertices are fetched when needed and stored in a fixed-
size cache. The benefits of adopting this approach are threefold: (1) the memory
consumption is well-managed as the number of vertices in each batch and the
cache size are both controlled; (2) the parallelism is not sacrificed since the mul-
tiple vertices are processed in each step; (3) the communication overhead is low
because there is no exchange of intermediate results and only the remote adja-
cency lists that do not exist locally are fetched and cached. In order to make the
idea practical, we first introduce the overview of our algorithm FgSCAN in Algo-
rithm 1. The detailed implementation of our algorithm and the load-balancing
mechanism are delayed to the following sections.

Algorithm 1: FgSCAN(G = {G1, · · · ,Gn}, B)
1 foreach machine do

2 foreach Sv ∈ V (Gi) divided into � |V (Gi)|
B

� batches do
3 CoreCheck(Sv);
4 CoreCluster(Sv);

5 All machines send their clustering results to the first machine;

Algorithm. As shown in Algorithm 1, given a list of partitions {G1, · · · ,Gn}
of G and a batch size B defining the maximum number of vertices in each
batch, all machines start the clustering together. Each machine first divides the
vertices in its local partition Gi into batches, each with size B (line 2). For each
batch Sv, FgSCAN runs CoreCheck and CoreCluster on Sv. Specifically, CoreCheck
determines the role for each v in Sv by checking whether v is core or non-core,
while CoreCluster determines the belonging cluster for each core vertex v in Sv

by unioning v with its similar neighbors (lines 3-4). Finally, the cluster ids of all
vertices are sent to the first machine, which are combined there (line 5).
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Fig. 3. Example of FgSCAN with ε = 0.7, μ = 4

Example 2. Reconsider G and its partitions shown in Fig. 1 and Fig. 2, and
assume the parameters for SCAN are set as ε = 0.7 and μ = 4. We set batch size
B = 3. The execution of FgSCAN is shown in Fig. 3. Note that Fig. 3 only shows
the detailed execution of FgSCAN on machine 1 as the execution on machine 2 is
similar. The local and remote vertices are marked as solid and dashed vertices.
For clearness of presentation, in Fig. 3, the vertices processed in each batch are
marked in grey and the similarity σ(u, v) between each vertex pair (u, v) that
is computed is shown on each edge (u, v). Initially, the similarities between all
vertex pairs are unknown, as demonstrated in Fig. 3 (a).

Initially, the batch of vertices {v0, v2, v4} is processed, as shown in Fig. 3 (b).
After running CoreCheck, v0 and v4 are found to be core vertices as the num-
bers of their structural similar neighbors are both greater than or equal to μ. In
CoreCluster, the similar neighbors of v4, namely {v1, v2, v3, v5, v6}, are unioned
with v4 and assigned a cluster id of 1, which are shown by the labels above ver-
tices in Fig. 3 (b). Similarly, v0 is unioned with its similar neighbors {v8, v10, v11}
with a cluster id of 2. Note that v7 is not assigned to the same cluster as v0
because it is dissimilar to v0. Subsequently, the batch of vertices {v6, v8, v10} is
processed, which is shown in Fig. 3 (c). After running CoreCheck, v6, v8 and v10
are found as core vertices. However, because v6 and v8 are both dissimilar to
v7, vertex v7 cannot be unioned into any of the clusters. The processing of the
last batch {v12} in the next iteration is not demonstrated in Fig. 3 because no
change is made on clustering. Finally, the clustering results of machine 1 and
machine 2 are combined, shown in Fig. 3 (d).
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Fig. 4. Architecture

4.2 Architecture

Our framework adopts a share-nothing architecture in a n-machine cluster as
shown in Fig. 4. Each machine consists of the following components:

RPC Handler. RPC handler is used to communicate between machines, which
is supported with a RPC server and a RPC client. The server is responsi-
ble for answering incoming requests from other machines, while the requests
are sent through the client. There are four RPC functions, namely FetchSim(),
FetchNbr(), QueryCluster() and WorkSteal():

– FetchSim(): FetchSim() takes a list of vertex pairs {(u0, v0), · · · , (un, vn)} as
its arguments and returns a list of results {r0, · · · , rn}, where each result r is
either true, false or unknown, based on whether each vertex pair is similar,
not similar or unknown yet.

– FetchNbr(): FetchNbr() takes a list of vertices {v0, · · · , vn} as its arguments
and returns their neighbor sets {(v0,N (v0)), · · · , (vn,N (vn))}.

– FetchCluster(): FetchNbr() takes a list of vertices {v0, · · · , vn} as its arguments
and returns their cluster ids {C0, · · · , Cn}.

– WorkSteal(): WorkSteal() dynamically steals others’ workload when the cur-
rent machine is idle.

Similarity Table Tsim: There is a local similarity table in each machine that
records the pairwise similarity between the local vertices and their neighbors.
Given a vertex pair (u, v) in Tsim, Tsim(u, v) returns true if u and v are similar,
or false otherwise.

Cluster Tree Tc: There is a union-find tree [5] in each machine that efficiently
maintains a set of nodes partitioned into disjoint clusters. Given a vertex u,
Tc.cluster(u) returns the cluster id of u. Moreover, given two vertices u and v,
Tc.union(u, v) merges the two clusters of u and v into the same cluster.
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Cache C: There is a shared cache that stores the fetched adjacency lists of
remote vertices. The shared cache has a fixed-size and is designed to be lock-
free. Given a list P of (v,N (v)) pairs, C.add(P ) inserts all pairs in P to the
cache and removes random existing pairs when the cache is full.

4.3 Algorithm Implementation

This section first presents the pruning technique used in CoreCheck, then the
implementation details of CoreCheck and CoreCluster based on the discussed
architecture. Specifically, given a vertex u ∈ G, let simu and diffu denote the
number of u’s neighbors that are similar and dissimilar to u, respectively. Given
a vertex u, if simu ≥ μ − 1, then u is immediately a core vertex. Additionally, if
|N (u)| − diffu < μ− 1, then u is immediately a non-core vertex. The correctness
of these two pruning rules can be proved directly based on Definition 2. Following
the idea, by recording simu and diffu for each vertex u during core checking,
CoreCheck stops computing the similarity between u and its neighbors as soon
as u is found to be a core or non-core vertex. The detailed implementation of
CoreCheck and CoreCluster are as follows:

Algorithm 2: CoreCheck(Sv,G)
1 Sf ← ∀(u, v) where u ∈ Sv, v ∈ N (u) and (u, v) �∈ Tsim;
2 R ← FetchSim(Sf ); Add the similarity results R to Tsim;
3 parallel foreach u ∈ Sv do
4 simu ← 0; diffu ← 0;
5 foreach v ∈ N (u) do
6 if Tsim(u, v) = true then
7 simu ← simu + 1;
8 if simu ≥ μ − 1 then
9 u.role ← Core; break;

10 else if Tsim(u, v) = false then
11 diffu ← diffu + 1;
12 if |N (u)| − diffu < μ − 1 then
13 u.role ← NonCore; break;

14 FetchNbr(
⋃

u∈Sv
v ∈ N (u) s.t. (u, v) �∈ Tsim and v is remote);

15 parallel foreach u ∈ Sv do
16 foreach v ∈ N (u) s.t. (u, v) �∈ Tsim do
17 Tsim(u, v) ← CompSim(u, v);
18 Repeat lines 6-13;

CoreCheck. CoreCheck checks if a batch of local vertices are core vertices. As
shown in Algorithm 2, given a batch of local vertices Sv and a graph partition G,
the vertex pairs of every vertex u in Sv and u’s neighbor v whose similarity to u
is unknown locally are added to Sf (line 1). Then their similarities are fetched
remotely by calling FetchSim() (line 2). For each vertex u in Sv, variables simu
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Algorithm 3: CoreCluster(Sv,G)
1 FetchCluster(

⋃
u∈Sv

N (u));

2 parallel foreach u ∈ Sv s.t. u.role = Core do
3 foreach v ∈ N (u) s.t. Tsim(u, v) = true

and Tc.cluster(u) �= Tc.cluster(v) do
4 Tc.union(u, v);

5 Sf ← ∅;
6 foreach u ∈ Sv s.t. u.role = Core do
7 foreach v ∈ N (u) s.t. (u, v) �∈ Tsim, v is remote

and Tc.cluster(u) �= Tc.cluster(v) do
8 Sf .add(v);

9 FetchNbr(Sf );
10 parallel foreach u ∈ Sv s.t. u.role = Core do
11 foreach v ∈ N (u) s.t. (u, v) �∈ Tsim and Tc.cluster(u) �= Tc.cluster(v) do
12 Tsim(u, v) ← CompSim(u, v);
13 if Tsim(u, v) = true then Tc.union(u, v);

and diffu are initialized to record the number of similar and dissimilar neighbors
of u (lines 3-4). For each neighbor v of u, if u and v are similar, simu is increased
by one and u is a core vertex if the number of u’s similar neighbors is larger
than or equal to μ − 1 (lines 6-9); otherwise, if u and v are dissimilar, diffu is
increased by one and u is not a core if the maximum possible number of similar
neighbors left is smaller than μ − 1 (lines 10-13). After this, for each vertex u in
Sv, CoreCheck fetches the neighbor sets of all u’s neighbors vs if the similarity
between u and v is unknown and v is remote (line 14). Then, for every u in Sv

and for each of u’s neighbor v, their similarity is computed locally and CoreCheck
repeats lines 6-13, which decides the role for each vertex u (lines 15-18).

CoreCluster. CoreCluster clusters a list of local vertices and their neighbors. As
shown in Algorithm 3, given a batch of local vertices Sv and a graph partition G,
the cluster ids of the neighbors of every u in Sv are first fetched remotely (line
1). Then for every core vertex u in Sv, for any of u’s neighbor v whose cluster
id is different from u’s and u is similar to v, the clusters of u and v are merged
into the same cluster (lines 2-4). Then, for each core vertex u in Sv, for each of
u’s remote neighbor v whose cluster id is different from u’s and their similarity
are unknown, the neighbor set of v is fetched remotely (lines 6-9). After this,
CoreCluster computes the similarity of core vertex u in Sv and u’s neighbors with
unknown similarity and different belonging clusters (lines 10-12). If u and v are
similar, their belonging clusters are merged (line 13).

Example 3. Reconsider the partition G of G shown in Fig. 2 (a) and assume the
parameters for SCAN are set as ε = 0.7 and μ = 4. Figure 5 demonstrates the
execution of CoreCheck and CoreCluster when processing a batch of vertices.

Given the initial batch Sv = {v0, v2, v4} in Fig. 5 (a), CoreCheck checks
whether any of them is a core vertex in Fig. 5 (b). Firstly, as the similarities
between all vertex pairs are unknown, the adjacency lists of remote neighbors of
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Fig. 5. Running Example of FgSCAN with ε = 0.7, μ = 4

v0, v2 and v4 are fetched together by FetchNbr(), as shown by the right column
of vertices in Fig. 5 (b). Then CoreCheck starts core checking for vertices in Sv by
computing the similarity between them and their neighbors. In Fig. 5 (b), only
the similarity σ(u, v) between each vertex pair (u, v) that is computed is shown
on the edges. For v0, it can be seen that v7 is dissimilar to v0 and {v11, v8, v10}
are all similar to v0. Thus, simv0 ≥ μ − 1 and v0 is a core. For v2, after v1 is
found to be dissimilar to v2, CoreCheck notices that v2 has at most two neighbors
whose similarity to it can be potentially true, which is smaller than μ − 1 (i.e.
|N (v2)|−diffv2

< μ−1). Hence, v2 is a non-core and the similarity computation
for (v2, v4) and (v2, v5) is skipped. For v4, after {v1, v2, v3} are all found similar
to it, CoreCheck finds that simv4 ≥ μ − 1. Then, v4 is immediately a core and
the similarity computation for (v4, v5) and (v4, v6) is skipped. The core vertices
v0 and v4 are labelled in grey in Fig. 5 (b). In CoreCluster shown in Fig. 5 (c), the
similar neighbors of each core vertex are clustered together with it. As can be
seen, v0 is clustered with {v8, v10, v11} and v4 is clustered with {v1, v2, v3, v5, v6}.

4.4 Load Balance

In the real world, there are some skewed graphs that cause the split workload for
the machines unbalanced. Existing solutions [11,19,32,33] all distribute workload
based on the pre-partitioned local vertices in each machine, which may still suffer
from load skew during clustering. As a result, we address the straggler problem
by devising a dynamic work stealing based mechanism. Its main idea is that the
idle workers automatically “steal” the unfinished workload from the busy workers
to accelerate the whole process. Following the idea, we implement dynamic work
stealing to accommodate FgSCAN’s architecture and execution.

In FgSCAN, the computation in each machine is divided into multiple itera-
tions and a batch of vertices is processed in each round. Dynamic work stealing
is triggered when any machine M completes computing all batches of vertices
assigned to it. In this case, work stealing happens as follows: (1) the machine
will send a StealWork() RPC to a busy machine M ′; (2) when M ′ receives the
request, it removes half of the unprocessed batches from its task pool and sends
the removed batches to machine M ; (3) M receives the vertex batches and con-
tinues the clustering. It can be easily verified that no machine will become idle
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unless each machine has at most one unprocessed batch of vertices. In Algo-
rithm 1, StealWork() is added after line 4 to trigger dynamic work-stealing once
a machine finishes processing all its batches.

4.5 Algorithm Analysis

Theorem 1. Clusters are correct and complete after running FgSCAN.

Proof. After running CoreCheck on all batches of vertices, the roles of all vertices
are known. Besides, CoreCluster strictly follows Lemma 1, which means the clus-
tering of u and v only happens when u is a core and u and v are similar. Thus,
the clustering is correct. Moreover, when running CoreCluster on all batches of
vertices, all similar edges where it is possible to force cluster union are explored.
As a result, the clusters are complete. �	
Theorem 2. The memory consumption of FgSCAN in each machine is bounded
by O(|G| + min{∑

v∈∪u∈SvN (u) |N (v)|, |C|}), where |G| is the size of the graph
partition, Sv is any of the vertex batches and |C| is size of the fixed-size cache.

Proof. According to the procedure of FgSCAN, each machine by default main-
tains the graph partition G in its main memory, occupying a size of O(|G|). In
each iteration, the adjacency lists of neighbors of a maximum of |Sv| vertices
are fetched, leading to a maximum size of the stored remote adjacency lists as
O(

∑
v∈∪u∈SvN (u) |N (v)|), while the maximum size of the cache is O(|C|). Addi-

tionally, the role and cluster for each v ∈ V (G) are maintained, whose total sizes
are both bounded by O(|V (G)|). As a result, the total memory in each machine
is bounded by O(|G| + min{∑

v∈∪u∈SvN (u) |N (v)|, |C|}). �	

5 Evaluation

In this section, we evaluate the efficiency of the proposed algorithms. All the
experiments except Exp-2 are performed on a local cluster of 10 machines, each
with one 4-core Intel Xeon CPU E3-1220, 16GB memory, 1T disk, connected
via a 10Gbps network, running Red Hat Linux 7.3, 64 bit. Each machine runs 4
workers. For Exp-2, we use a machine with one 20-core Intel Xeon CPU E5-2698
and 128 GB main memory running Red Hat Linux 7.3, 64 bit.

Datasets. We evaluate our algorithms on eight real-world graphs. The size of the
graphs is shown in Table 1. All datasets are downloaded from SNAP (http://snap.
stanford.edu/data), KONECT (http://konect.cc/networks) and LAW (http://
law.di.unimi.it/datasets.php).

Algorithms. We compare FgSCAN with the existing distributed SCAN algo-
rithms, namely ParallelSCAN, SparkSCAN, CASS and DSCAN, and the state-
of-the-art sequential algorithm pSCAN. All the algorithms except the big-data
engine-based solutions are implemented in Rust 1.43. For big-data engine-based
solutions (i.e. ParallelSCAN, SparkSCAN, CASS), we implement them on their

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://konect.cc/networks
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
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Table 1. Statistic of the datasets

Dataset Name |V | |E| Max degree Average degree

BerkStan BK 685K 7 M 84,230 22.18

LiveJournal LJ 4M 68 M 20,333 17.9

Orkut OR 3M 117 M 33,313 38.1

DBpedia DB 18M 172 M 472,799 18.85

Twitter-WWW TW 42M 1.46 B 2,997,487 70.5

Friendster FS 65M 1.81 B 5,214 27.5

Twitter-MPI TM 52M 1.96 B 3,691,240 74.7

UK-2007 UK 134M 5.51 B 6,366,528 41.2

original platforms. We implement DSCAN and pSCAN following their original
implementations. FgSCAN is implemented with RPC [1], while adopting similar
optimization as DSCAN that removes unpromising local edges before execution.

In the experiments, the workload balance mechanism is enabled for FgSCAN
by default. We set the size of the fixed-size cache to 5 GiB and the batch size
B to 1000. The time cost is measured as the amount of wall-clock time elapsed
during the program’s execution. If an algorithm cannot finish in 10,000 s or runs
out of memory, we denote the processing time as INF. Moreover, if an algorithm
runs out of memory, we also mark the case with a × on the top of the figure. In
the experiments, we set the default parameters for SCAN as ε = 0.5 and μ = 5.

Fig. 6. Processing Time on Each Dataset Fig. 7. Centralized Comparison

Exp-1: Efficiency on Different Datasets. In this experiment, we evaluate the
efficiency of the algorithms on all datasets. We use the default parameters and
report the average processing time of the algorithms in Fig. 6. As can be seen,
our proposed algorithm FgSCAN always significantly outperforms the big-data
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engine-based algorithms, namely ParallelSCAN, SparkSCAN and CASS. This
is because FgSCAN effectively reduces the communication overhead. Moreover,
although DSCAN demonstrates a similar performance as FgSCAN, it runs out
of memory on all of the billion-scale graphs TW, FS, TM and UK. Comparatively,
FgSCAN does not have the problem and can finish clustering efficiently in all the
billion-scale graphs, which verifies the effectiveness of the fine-grained framework
in controlling memory consumption.

Exp-2: Comparison with Single-Threaded Algorithm. In this experiment,
we evaluate the performance of FgSCAN on a single machine, compared to the
existing state-of-the-art single-threaded solution pSCAN [2]. We evaluate the
performance of FgSCAN on TW by increasing the number of cores used, while
pSCAN is always executed with one core. As shown in Fig. 7, FgSCAN requires 2
cores to outperform pSCAN in the worst case, which clearly demonstrates that
FgSCAN only introduces little overhead.

Fig. 8. Efficiency When Varying Similarity Threshold ε

Exp-3: Efficiency when varying ε and μ. In this experiment, we evaluate
the efficiency when varying similarity threshold ε and neighborhood threshold
μ. In Fig. 8, we run the experiments with ε = 0.3, 0.6, and 0.9, respectively.
As shown, the running time of big-data engine-based algorithms is steady for
different ε values due to exhaustively computing all structural similarities and
thus irrelevant to ε. When ε grows larger, FgSCAN and DSCAN both run faster
because there is more unnecessary computation that can be pruned. Moreover,
when ε = 0.3 and 0.6, DSCAN fails to cluster the billion-scale graphs due to
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Fig. 9. Efficiency When Varying Neighborhood Threshold μ

the out-of-memory issue; in contrast, when ε = 0.9, DSCAN successfully finishes
clustering on all the billion-scale graphs without running out of memory. This is
because when ε is large, a huge number of edges can be removed in each machine
in advance, which considerably reduces the size of stored remote adjacency lists.
Moreover, in Fig. 9, we run experiments with μ = 5, 10, and 15. As can be seen,
all algorithms perform quite steadily regarding the different values of μ. This
is because all big-data engine-based algorithms need to compute all structural
similarities regardless of μ, while DSCAN and FgSCAN can prune unnecessary
computation to achieve a similar performance when μ varies.

Fig. 10. Load Balancing
Fig. 11. Scalability
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Exp-4: Effectiveness of Load Balance. In this experiment, we evaluate the
effectiveness of our load balance mechanism. We report the processing time
of each machine when the load balance mechanism is enabled or not on UK.
As shown in Fig. 10, without load balance mechanism, the processing time in
each machine is quite unbalanced. In contrast, after enabling work-stealing, all
machines have a similar running time and the average time taken for work-
stealing overhead occupies only 1.2% of total processing time, shown by the
grey fillings.

Exp-5: Scalability. In this experiment, we evaluate the scalability of FgSCAN.
We report the average processing time and speedup on UK when varying the
number of machines in Fig. 11. As can be seen, FgSCAN demonstrates almost
linear scalability as the number of machines increases in the cluster. The scala-
bility of FgSCAN comes from its high parallelism as analyzed in Sect. 4.1.

6 Conclusion

In this paper, we study the problem of distributed SCAN. We first propose
a novel fine-grained clustering framework. Based on it, we devise a new dis-
tributed SCAN algorithm, FgSCAN, which not only keeps a low communica-
tion overhead, but also effectively reduces the memory consumption and prunes
unnecessary computation during the clustering. In addition, we design an effec-
tive work-stealing mechanism to handle unbalanced workload. The experiment
results demonstrate the efficiency and scalability of our proposed algorithm.
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Abstract. All-pairs SimRank calculation is a classic SimRank problem.
However, all-pairs algorithms suffer from efficiency issues and accuracy
issues. In this paper, we convert the non-linear simrank calculation into
a new simple closed formulation of linear system. And we come up with
a sequence of novel algorithms to efficiently solve the linear system with
accuracy guarantees. To reduce the memory consumption and improve
the computational efficiency, we build a hierarchical framework to calcu-
late the all-pairs SimRank scores, which includes locally coarse calcula-
tion and globally refine calculation. We first solve the local linear systems
generated from the subgraphs, then we refine the SimRank scores on the
full graph from the residuals of the local structures. We also show that
our algorithms outperform the state-of-the-art all-pairs SimRank com-
putation algorithms on real graphs.

Keywords: SimRank Calculation · All Pairs · Graph Algorithms

1 Introduction

SimRank [6] is a widely used link-based similarity measurement between two
vertices in graphs, and SimRank has been widely used in many applications,
such as recommendation systems [1], web mining [8], spam detection [17] and
social network analysis [10]. The link-based similarity measurement is based on
two intuitive statement: (i) two objects in a graph are similar if they are linked
by similar objects, and (ii) two identical objects have the greatest similarity of
1.0. The recursive definition allows SimRank model to capture the similarity
scores of two vertices based on the global structure of a directed graph, so this
model produce high-quality similarity results. All-pairs SimRank calculation is
one of the classic SimRank problems, which is calculating the SimRank scores
of all the node pairs in a directed graph G with a given decay factor of c.

In the past decade, all-pairs SimRank calculation has been extensively stud-
ied [3–6,9,12–14,19,21–28]. However, all these all-pairs SimRank algorithms suf-
fer from two major deficiencies.

– Efficiency issue. Some all-pairs SimRank calculation algorithms [3,6,12–
14,21,22,25,27] cost O(n2) memory or more [4,5,9], which is not suitable for
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large-scaled graphs. Because these algorithms are based on matrix multipli-
cation, and the SimRank matrix is always very sparse, there will be a lot of
redundant calculations in the calculation process.

– Accuracy issue. A part of methods [3–5,9,23–25] are equivalent to random
walk without the first-meeting constraint, but the first encounter constraints
is defined in the original definition of SimRank [6]. Therefore, the accuracy
of the solutions of these algorithms is not guaranteed.

Motivations. The state-of-the-art all-pairs algorithms are RLP(Reduced Local
Push, also known as opt-FLP) [19] and IncSR [24]. IncSR [24] follow the approx-
imate SimRank definition to accelerate computation, therefore, the maximum
error of algorithm IncSR cannot be guaranteed. RLP updates the SimRank
matrix by pushing the residuals to the neighbors. Theoretically, the average
time complexity of RLP is O( d̄2

c((1−c)2)ε ), in which, d̄ is the average degree of
the graph. However, there still be a lot of redundant residual calculation, which
won’t be added to the SimRank matrix, when the threshold is very small. For
example, when we set ε = 0.001, on large scale graphs, the efficiency of RLP
will be greatly affected. We observe that the SimRank values are mainly concen-
trated from the local structures. So we divide the calculating process into two
stage, locally coarse calculation and globally fine calculation. In this paper, we
aim to quickly and correctly calculate all-pairs SimRank matrix on large graphs.

Contributions. We first derive a simpler closed formulation of linear system from
the original SimRank definition in work [6], and develop a efficient method to
solve the linear system. The computations are divided into two stages. Firstly,
we make locally coarse calculation through the local structures of the graph.
All the calculations of the first stage can be done entirely in a limited RAM,
which greatly improve the updating efficiency of residuals, and we’ll drop some
redundant residuals to improve the efficiency. Then we refine the SimRank scores
on the full graph from the residuals generated in the first stage. Based on the
symmetry of SimRank matrix, we also have done some optimization work during
the calculation. In summary, we have made the following contributions:

– We derived a simple closed formulation of linear system from the original
SimRank definition, and we come up with an algorithm to efficiently solve
the linear system.

– We propose a hierarchical framework to reduce the scale of the residuals.
– We present some optimizations to improve the efficiency of our algorithms.
– Our methods outperform the state-of-the-art algorithms on real graphs.

2 Preliminaries

Table 1 shows the notations that are frequently used in the remainder of the
paper, and in Subsect. 2.1 we will first introduce some basic concepts that will
be used later. Based on the conceptions introduced in Subsect. 2.1, we derive the
closed formulation of linear system for SimRank computation in Subsect. 2.2.
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Table 1. Table of Notations

Notation Description

c the decay factor

ε the maximum absolute error

G = (V, E) directed graph G with vertex set V and edge set E

G2 = (V 2, E2) node pair graph of G

n, m the number of vertices and edges in G

dout(i), dout(i, j) out-degree of node i in G and node pair (i, j) in G2

din(i), din(i, j) in-degree of node i in G and node pair (i, j) in G2

A Adjacency matrix

Q the column normalization matrix of A, Q[i, j] = 1
din(j)

I(v), O(v) the set of in-neighbors and out-neighbors of vertex v

I(u, v), O(u, v) I(u, v) = I(u)× I(v), O(u, v) = O(u)× O(v)

S, s(u, v) SimRank matrix and SimRank score of u and v

2.1 Background of SimRank

Let G = (V,E) be an unweighted directed graph with |V | = n and |E| = m. We
aim to calculate the similarity matrix S with a maximum error is less than ε,
i.e. max (|S − S′|) ≤ ε. Given two nodes u and v in a directed graph G = (V,E),
the SimRank score of u and v is defined as follows:

s(u, v) =

⎧
⎪⎨

⎪⎩

0, I(u) = ∅ or I(v) = ∅
1, u = v

c
|I(u)|·|I(v)|

∑
x∈I(u),y∈I(v) s(x, y), u �= v

(1)

where I(u) donates the set of in-neighbors of u, and c ∈ (0, 1) is a decay factor,
which typically set to 0.6 or 0.8 [6,12].

In the original paper [6] of SimRank, Jeh and Widom show that SimRank
score can be thought as flowing from nodes to its neighbors on G2 graph, which
is a linear system, so we can make a closed form of SimRank without non-
linear symbols. Before making a closed form of linear system derivation, we first
introduce some basic concepts that will be used later.

Definition 1. (G2 Graph). Let G = (V,E) be an unweighted directed graph,
its node pair graph G2 = (V 2, E2) is defined as follows: V 2 = {(x, y)|x, y ∈ V }
and E2 = {((x1, x2), (y1, y2)) |(x1, y1), (x2, y2) ∈ E}
Definition 2 (Kronecker Product). The Kronecker product of two matrices

A ∈ R
m×n and B ∈ R

p×q is a matrix of Rmp×nq, A ⊗ B =

⎡

⎢
⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤

⎥
⎦

Definition 3 (Vec-Operator). S ∈ R
n×n is a SimRank matrix, V ec(S) =

[s11, · · · , sn1, s12, · · · , sn2, · · · , snn]�, S[i, j] = V ec(S)[i + (j − 1) × n]
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Theorem 1. Let the new id of node pair (i, j) in G2 graph is (i − 1)n + j, in
which i and j are the node id in graph G, AG2 = AG ⊗AG and QG2 = QG ⊗QG

Proof. It’s easy to derive this from Definitions 1 and 2.

Fig. 1. Joy Graph and Its Node Pair Graph

Fig. 2. Adjacency Matrices of G and G2

Figure 1(a) is an unweighted directed graph G, and Fig. 1(b) is the node pair
graph G2. The adjacency matrices of Fig. 1 are shown in Fig. 2, the adjacency
matrix of directed graph G is AG, the adjacency matrix of node pair graph G2 is
AG2 = AG ⊗ AG. The column normalized matrix of AG is QG, and the column
normalized matrix of AG2 is QG2 = QG ⊗ QG.

2.2 Linear System for SimRank

As mentioned above, SimRank scores are flowing in G2. The SimRank value
s(u, u) is constant of 1.0, so we call node pair (u, u) the source node of SimRank
flow. And the SimRank scores of (u, v) are the amount of SimRank flows that
propagated into (u, v) from the source nodes. According to Theorem 2, we rebuild
a SimRank graph G2

S . As is shown in Fig. 3(a), SimRank graph G2
S is transformed

from G2.

Theorem 2. Let S ∈ R
n×n be the SimRank matrix, the closed linear formula-

tion of SimRank is
V ec(S) = P · V ec(S)

in which P [k, :] =

{
ei ⊗ ej i = j

c · QG2 [:, k]� i �= j
, k = i + (j − 1)n, V ec(S)[k] = 1.0

when k = i + (i − 1)n.
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Proof. S[i, j] is the SimRank score between vertex i and j. Since the SimRank
matrix is a symmetric matrix, so

S[i, j] = S[j, i] = V ec(S)[(i − 1) · n + j] = V ec(S)[i + (j − 1) · n]

According Eq. (1) we can get that

V ec(S)[i + (j − 1)n] =

{
1 i = j

c · QG[:, i]� ⊗ QG[:, j]� · V ec(S) i �= j

in which c ∈ (0, 1), i, j = 1, 2, 3 · · · n, QG[:, i]� is the transition of the i-th column
of matrix QG, we could get the following equation.

V ec(S) = P · V ec(S) (2)

P [k, :] =

{
ei ⊗ ej i = j

c · QG2 [:, k]� i �= j
(3)

in which k = i + (j − 1)n, and QG2 [:, k]� = QG[:, i]� ⊗ QG[:, j]�.
So the all-pairs SimRank scores are the solution of the linear system. Since

S[i, i] = 1.0, so V ec(S)[k] = 1.0, when k = i + (i − 1)n.

Definition 4 (SimRank Graph). Given a directed graph G(V,E), and Sim-
Rank Graph G2

S is a weighted directed graph with an adjacency matrix of P�, in
which P is defined in Eq. (3).

When c = 0.6, P is shown in Fig. 3(b), and the SimRank Graph G2
S is shown

in fig.3(a).

Fig. 3. SimRank Graph and Residual Graph

2.3 Numerical Solution

In this subsection, we come up with an algorithm to get the numerical solution
of the linear system of Eq. (2). We first give the definitions.

Definition 5 (Numerical Solution). Let S be the theoretical solution of the
linear system, given an absolute error threshold ε, the numerical solution returns
an estimated matrix Sk, such that max(|Sk − S|) < ε
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Suppose we have an estimate solution V ec(Sk) of V ec(S) for Eq. (2). The incre-
ment of Sk is the residuals, namely Rk. And V ec(Rk) = V ec(Sk − Sk−1). A
more accurate V ec(Sk) can be obtained by each iteration.

V ec(Sk) = P · V ec(Sk−1)
= V ec(Sk−1) + V ec(Rk) (4)

V ec(Rk) = V ec(Sk) − V ec(Sk−1) = P · V ec(Rk−1) (5)

Since the SimRank values of the source nodes are always 1, the residuals of the
source nodes are always 0. So Eq. (5) can be rewrite as follows,

V ec(Rk) = P̃ · V ec(Rk−1) (6)

in which P̃ = P − Diag(V ec(I)).
Equation(2) means that the SimRank flow is propagated in SimRank Graphs

and, Eq. (6) means that the residuals flow is propagated in Residual Graphs
G2

RS which is shown in Fig. 3(c). Equations (4) and (6) shows how the numerical
solution V ec(Sk−1) and the residual V ec(Rk−1) are updated to V ec(Sk) and
V ec(Rk): the flow is aggregated from its neighbors and scaled by the the weight
of the edge. From Eq. (5), when ‖V ec(Rk)‖∞ is small, V ec(Sk) would converge
to V ec(S).

Algorithm 1. ForwardFlow(G, c, ε)
Require: Directed Graph G; Maximum error ε and Decay factor c
Ensure: Approximately Solution Sk

1: Set node pair QUEUE Qu, HASH TABLE Sk = Rk = I
2: for all v ∈ V do
3: Qu.push(v, v)
4: while Qu �= ∅ do
5: (u, v) = Qu.pop()
6: tmp = Rk[u, v]
7: Rk[u, v] = 0
8: for all (ou, ov) ∈ O(u, v) and ou �= ov do
9: res = c·tmp

I(ou,ov)

10: Sk[ou, ov] = Sk[ou, ov] + res
11: Rk[ou, ov] = Rk[ou, ov] + res

12: if Rk[ou, ov] ≥ (1−c)ε
c

and (ou, ov) not in Qu then
13: Qu.push(ou, ov)
14: return Sk

The basic algorithm of solving the linear system are shown in Algorithm 1.
Since Sk[i, i] = 1, we first set V ec(S0) = V ec(R0) = V ec(I) (line 1), and we
restore the active nodes in an queue Qu. Then we update the residual matrix Rk

(in line 6, line 7, line 9 and line 11) and the SimRank matrix Sk (in line 9-10).
The calculation process of the joy graph in Fig. 1 are shown in Fig. 4. At

first, initialize Sk = Rk = I, and the active node pairs are the source nodes.
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Then update the residuals of the active nodes’ neighbors, since only source node
(3, 3) has out neighbors, so we update Rk[2, 1] = Rk[1, 2] = 0.3 and Sk[2, 1] =
Sk[1, 2] = 0.3, and the active node pairs are (1, 2) and (2, 1). Since (1, 2) and
(2, 1) have got no out neighbors, the update process is terminated.

Fig. 4. Calculation Process, c = 0.6, ε = 0.01

Theorem 3. When ‖V ec(Rk)‖∞ < (1−c)ε
c , max(|Sk − S|) < ε

Proof. Assuming that the algorithm terminates at the k-th iteration, so
‖V ec(Rk)‖∞ < (1−c)ε

c . ‖V ec(Rk+1)‖∞ = ‖P̃ ·V ec(Rk)‖∞. ‖P̃ ·V ec(Rk)‖∞ ≤
‖P̃‖∞ · ‖V ec(Rk)‖∞. According to Eqs. (3) and (6), ‖P̃‖∞ ≤ c, so
‖V ec(Rk+1)‖∞ ≤ c · ‖V ec(Rk)‖∞. The maximum absolute error is
∑∞

i=k+1 ‖V ec(Ri)‖∞ < ‖V ec(Rk)‖∞(
∑

i=1 ci) → c·‖V ec(Rk)‖∞
1−c < ε.

Only non-zero scores will be stored and updated in Sk and Rk, and the scale of
active nodes queue Qu is less than nnz(Rk), so the space cost of algorithm 1 is
O(nnz(Rk) + m + n), in which O(nnz(Rk)) is non-zero SimRank scores. Each
iteration reduce the maximum ‖V ecRk‖∞ to c ·‖V ec(Rk)‖∞ in the worst cases,
so the time complexity is O

(
logc(1 − c)ε · nnz(Rk) · max(dout)2

)
.

3 A Hierarchical All-Pairs SimRank Calculation
Framework

With the increase of the scale of the graph and the decrease of ε, the number of
non-zero values in Sk and Rk will increase sharply, which will greatly affect the
updating efficiency. Meanwhile, we find that, 1) the update order in Sk and Rk

will not change the calculation results, 2) and the SimRank score of each node
pair is mainly affected by the local structures, 3) and the non-zero SimRank
values are densely distributed around source nodes. So we can first solve the
linear system of subgraphs, and then refine the results in full graph.

In this section, we propose a hierarchical framework, shown in Fig. 5, to solve
the linear system. We first introduce the hierarchical calculation framework in
Subsect. 3.1, and then propose some optimizations in Subsect. 3.2.
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Fig. 5. Hierarchical Framework

3.1 Hierarchical Framework

We first employ a graph partitioning algorithm (e.g., METIS1) that decompose
the large graph G into several small blocks such that the number of the edges
with endpoints in different blocks is minimised. In Fig. 6, we partition G into
2 blocks, G1 ∪ G2, along with 1 edge {(6, 3)} across the blocks. Then SimRank

matrix and residuals matrix are divided into 3 kinds of blocks, S =

[
S1 Scrs

S�
crs S2

]

,

R =

[
R1 Rcrs

R�
crs R2

]

, in which, the SimRank values and residuals of the subgraphs

are restored in Si and Ri respectively, and the values of cross parts G2
crs are

restored in Scrs and Rcrs respectively.

Algorithm 2. Hierarchical Framework
Require: Graph G and {G1, G2, ..., Gk}; Absolute error ε and Decay factor c
Ensure: All-pairs SimRank Score matrix S
1: Initialize Scoarse and HASH TABLE Sfine

2: Initialize Rcoarse as identity matrices and HASH TABLE Rfine

3: while not Rcoarse.empty() do
4: for all Gi do
5: Rout = SubForwardFlow(Gi ∪ Outer(Gi), Ri, c, ε)
6: update Rcoarse and Rfine From Rout

7: while not Rfine.empty() do
8: SubForwardFlow(G, Rfine, c, ε)
9: return S = Scoarse + Sfine

As is shown in Fig. 5, we present a hierarchical framework to calculate the
All-Pairs SimRank values: locally coarse calculate and globally refine. The algo-
rithm of the hierarchical framework is shown in Algorithm 2. We first initialize
Scoarse = S1 ∪ ...∪Sk and Rcoarse (line 1-2). In the first stage (line 5), we locally
1 http://glaros.dtc.umn.edu/gkhome/views/metis.

http://glaros.dtc.umn.edu/gkhome/views/metis
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update Si from Ri, and return the residuals for the next stage (line 6). In the
second stage (line 7-8), we update the sparse hash table Sfine from Rfine.

Algorithm 3. SubForwardFlow(G∗, R, c, ε)
Require: G∗ = (G ∪ Outer(G)); residuals R; Maximum error ε and Decay factor c
Ensure: Outer residuals Rout

1: Set node pair QUEUE Qu, and load SimRank score matrix S
2: for all non-zero coordinates (u, v) in R do
3: Qu.push(u, v)
4: S[u, v] = S[u, v] + R[u, v]
5: while Qu �= ∅ do
6: (u, v) = Qu.pop()
7: tmp = R[u, v]
8: R[u, v] = 0
9: for all (ou, ov) ∈ O(u, v) and ou �= ov do

10: res = c·R[u,v]
I(ou,ov)

11: if ou ∈ G and ov ∈ G then
12: S[ou, ov] = S[ou, ov] + res
13: R[ou, ov] = R[ou, ov] + res

14: if R[ou, ov] ≥ (1−c)ε
2c

and (ou, ov) not in Qu then
15: Qu.push(ou, ov)
16: else
17: Rout[ou, ov] = Rout[ou, ov] + res
18: save(S)
19: return Rout

We use SubForwardFlow to update Si in the first stage and Sfine in the
second stage. The SubForwardFlow are shown in Algorithm 3. Algorithm Sub-
ForwardFlow and ForwardFlow are very similar. But the SubForwardFlow will
update and restore the outer SimRank values in Rout (line 17) and return Rout

(line 19) in the first stage.

Fig. 6. Another Joy Graph

In Fig. 6, for example, after the locally coarse calculation stage, we can get

Scoarse =

[

S̃1

S̃2

]

, and Rfine =

[
Rcrs

R�
crs

]

. After the globally fine calcu-
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lation stage, we can get Sfine =

[
ΔS1 Scrs

S�
crs ΔS2

]

. S̃1 and S̃2 are all dense, and

Sfine is sparse.

Theorem 4. The results obtained from Algorithm 2 are the numerical solutions.

Proof. From Theorem 3, we can get that the residuals of the locally coarse
calculation are less than ε

2 , and the residuals of the globally fine calculation are
also less than ε

2 . So the global residuals are less than ε
2 + ε

2 = ε.

Fig. 7. Reduced SimRank Graph

3.2 Optimization

The SimRank matrix is symmetrical, s(u, v) = s(v, u), and the SimRank graphs
are also symmetrical. So we can just conduct the SubForwardF low algorithm
on reduced SimRank graphs, e.g., Fig. 7(b). The pruning operation is conducted
at the first step (line 7-8), and the reduction operation is conducted at other
steps (line 9-10). In Fig. 7(b), for example, after the locally coarse calculation
stage, we can get Scoarse, in which we only need half of the space to store S̃1

and S̃2, and Rfine. After the globally fine calculation stage, we can get Sfine, in
which we only need half of the space to store ΔS1 and ΔS2.

Algorithm 4. optSubForwardFlow(G∗, R, c, ε)
Require: G∗ = (G ∪ Outer(G)); residuals R; Maximum error ε and Decay factor c
Ensure: Outer residuals Rout

1: the same as line 1-4 of Algorithm 3
2: while Q �= ∅ do
3: (u, v) = Q.pop()
4: tmp = R[u, v]
5: R[u, v] = 0
6: for all (ou, ov) ∈ O(u, v) and ou �= ov do
7: if u == v and ou < ov then
8: continue
9: if ou < ov then

10: swap(ou, ov)
11: the same as line 11-17 of Algorithm 3
12: save(S)
13: return Rout
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4 Related Work

The SimRank matrix can be calculated by all-pairs algorithms, or by traversing
all nodes using the single-source algorithms. The all-pairs algorithms can be
divided into Iterative methods and Non-iterative methods, and the single source
algorithms can be divided into index based methods and index free methods.

4.1 All-Pairs SimRank Algorithms

Iterative Methods. There are lots of research on static all pairs SimRank calcu-
lations [3,6,9,12,14,19,21,22,24,27]. The naive iterative method [6] is the first
All-Pairs SimRank algorithm, which requires O(n2) space and O(km2) time. By
using patial sum in [12], the time complexity is improved to O(kdn2), Yu. [22]
further improved the time complexity to O(kd′n2) (d′ < d) by constructing
a minimum spanning tree. Yu. [21,27] also improve the time complexity to
O(kmin{mn,nlog7

2}) by CSR. For the iterative methods, k should be set at
least logc ε for the given ε [12].

Non-Iterative. In paper [9], Li. come up with NI-SR with a linear formulation for
the all-pairs SimRank calculations. Through SVD decomposition and the Kro-
necher production, they can quickly calculate and update the SimRank matrix.
The time complexity of NI-SR is O(r4n2). Based on the linear formulation in
[9], Yasuhiro. [3] come up with another non-iterative method, namely SimMat,
and SimMat has a better time complexity of O(rn). Based on G2 graph, Lu. [14]
come up with another non-iterative method BiPCG [14]. The time complexity
of BiPCG is O(kmn) and the space cost is O(n2). The state-of-the-art all-pairs
SimRank calculating method is FLP(RLP) [19]. FLP improve the efficiency by
only calculating the SimRank values which is larger than (1 − c)ε with local
push methods. The space complexity of FLP(RLP) is O(nonzero(R) + m + n),
in which nonzero(R) is the non-zero values of residual matrix, and the time
complexity is O

(
d̄2

c(1−c)2ε

)
.

4.2 Other SimRank Algorithms

Index-Based. Index-Based Algorithms are Monte Carlo based algorithms, and
the are generally divided into two phases, preprocessing phase and query phase.
In the preprocessing phase, the algorithms will build an index to restore the
random walks. Different algorithms have different methods of index construction
and random walk strategies. Daniel F. firstly come up with a index based Monte
Carlo algorithm for computing single source SimRank in MC [2]. They first
build FingerPrint graphs to restore the random walks with a preprocessing time
of O(n log(n)

ε2 ). TSF [16] is another index-based single-source algorithm, and they
compress the random walks in Rg one-way graphs. SLING [18] firstly use

√
c

walks to build the index with a preprocessing time of O(m
ε + n log n

δ

ε2 ). READS
[7] is an optimized version of

√
c walk based algorithm. They build an index of
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nR compressed
√

c walks such that the algorithms only need to generate a few
more walks in the query phase.

Index-Free. The index-free algorithms can be divide into into two phases,
reversed walks and forward walks. The reversed walks to find the meeting nodes,
and the forward walks to reach the nodes of non-zero similarity. Uniwalk [15] gen-
erates unidirectional random walks from the source node on undirected graphs,
and Uniwalk regard the midpoint of the random walks as the meeting point.
TopSim is an index-free algorithm based on local exploitation, but TopSim is
only able to exploit a few levels on large graphs, which leads to a low precision.
ProbeSim [11] apply the

√
c walks in the reversed and forward walks, and use

reverse reachability tree to compactly store the reversed
√

c walks. Wei. [20]
build a partial index by precomputing the l − hopPPR of a small subset of vk

to further improve the efficiency of ProbeSim.

5 Experiments

In this section, we conduct experiments to verify the effectiveness of the proposed
algorithms. All experiments are conducted on a machine with a Intel(R) Xeon(R)
CPU E7-4820 v2 @ 2.00GHz CPU and 128 GB memory. All algorithms are
implemented in C++ and compiled by g++ 5.4.0 with the -O3 option.

Table 2. Datasets

Name n m Average degree Partitions

small ca-GrQc(CG) 5242 14496 2.76 5
wiki-Vote(WV) 7115 103689 14.57 5
ca-HepTh(CH) 9877 25998 2.63 5

median email-Enron(EN) 36692 367662 10.02 5
loc-Brightkite(LB) 58228 214078 7 5
soc-sign-Slashdot(SL) 77357 516575 6.7 5

large Youtube(YT) 1134890 5975248 5.27 10
soc-LiveJournal(LJ) 4847571 68993773 14.23 20

We use 8 datasets, which are commonly used in the literature [19,28] for
all-pairs calculation. Our datasets used in experiments are from Stanford Large
Network Dataset Collection2. The statistical information of these datasets is
shown in Table 2. The major competitor is the state-of-the-art all-pairs solution
RLP [19] (Reduced Forward Local Push). We set c = 0.6, and ε = 0.01 by
default. In our algorithm, namely HF, the default number of partitions we devide
the graph is shown in Table 2. We divide the graph into blocks as shown in the
table. The standard of our graph division is mainly to put each sub-graph into
RAM for calculation, while taking into account the calculation efficiency.
2 http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html


264 L. Zhang et al.

Metrics. We use the Naive method [6] with 55 iterations to compute the ground-
truth SimRank values of each node pair. Since the naive method can only be
conducted in small and medium graphs. Therefore, we only verify the correctness
of the algorithms on small and medium graphs. We compute the maximum error
with respect to the ground-truth.

Fig. 8. Maximum Error

Effectness. We conduct RLP and HF on small and medium datasets, with ε
changes from 0.001 to 0.1. As is shown in Fig. 8, the maximum errors of RLP
and HF are marginally below the set epsilon, which not only satisfied the error
requirements, but also reduces some unnecessary calculations. Meanwhile, we
can find that almost all the maximum errors of algorithm HF are lower than
the maximum errors of RLP. This is because the termination condition in HF
is half of RLP. So there are more pushes in HF, which leads to smaller absolute
errors.

Time Efficiency

Varying ε The CPU time costs are shown in Fig. 9 with the varying of ε. We can
see that the CPU time of RLP increase sharply with the decrease of ε, and HF is
at most 100× faster than RLP when ε = 0.001. The reason is that the updating
operations in RAM is much faster than the operations in hash tables when the
residuals matrix is very large. Even there are more updating operations in HF,
HF still much faster overall, especially when ε is very small. From Fig. 9 we can
see when ε ≤ 0.01, HF performs better on most graphs.

Varying Average Degree. In addition, the efficiency of RLP will be greatly
affected by the increasing of the average degrees. This is because the scale of
residuals matrix R is increasing exponentially. In HF, however, most of the
updates are conducted in sub-models, and the sub-models are updated in RAM.
As is shown in Fig. 9, with the increase of accuracy and average degrees, HF
performs better than RLP.
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We also find that when ε ≤ 0.01 and avg_deg ≤ 7(graph CH, CG and LB),
the efficiency of HF is a little worse. That’s because the scale of nonzero data
of RLP is not very large, and the initialization conductions of HF costs too
much time. However, HF is less sensitive to the scale of nonzero data during
the calculations. For example, when the scale of nonzero number is large, e.g.
ε < 0.01, and the average degrees are very high (avg_deg ≥ 7), the efficiency of
RLP will be greatly affected.

Fig. 9. Time Efficient

Memory Efficiency

Varying εAs is shown in Fig. 10, HF is in better performance when ε ≤ 0.01.
However, the space consumption of HF is a little larger when ε ≥ 0.01. Because
in HF most of the update operations are conducted in RAM, when ε > 0.01,
some of the pre-allocated space is unused.

Fig. 10. Memory Efficient
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Large Graphs

We also conduct experiments on large-scale graphs, YT and LJ. When we set
ε = 0.001, the memory consumption of RLP exceeds the limit. But algorithm
HF can still do calculations, because we can limit the memory consumption of
each sub-model by increasing the number of sub models.

6 Conclusions

In this paper, we derived a simpler closed form of SimRank, and proposed a
Hierarchical Framework to calculate the all-pairs SimRank. We further optimize
the proposed algorithm by reducing half unnecessary update operations. The
experiments shows that HF performs better than the state of the art algorithm
RLP.

In the Hierarchical Framework, the sub-modules can be small, most of the
updating in HF can be conducted in RAM completely. Through the experiment,
even the HF makes more ‘pushes’ than RLP, however, most of the operations
are conducted in RAM rather than hash tables, the time efficiency of a single
update operation is 5 to 10 times that of RLP, therefore, the overall speed of
HF is much faster. Meanwhile, as we can limit the memory consumption of each
sub-model by increasing the number of sub-models, so the HF can be applied
on a large scale graph with high accuracy. Our experiments also show that HF
outperforms the state-of-the-art all-pairs SimRank algorithm RLP.
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tion of China under the grant No. 62072460, 62076245, 62172424, 62276270, and Beijing
Natural Science Foundation (4212022).
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Abstract. In the real world, road networks with weight and label on edges can
be applied in several application domains. The shortest path query with label
restrictions has been receiving increasing attention recently. To efficiently answer
such kind of queries, a novel index, namely, Contraction Hierarchies with Label
Restrictions (CHLR), is proposed in the literature. However, existing studies
mainly focus on the static road networks and do not support the CHLR main-
tenance when the road networks are dynamically changed. Motivated by this,
in this paper, we investigate the CHLR maintenance problem in dynamic road
networks. We first devise a baseline approach to update CHLR by recomputing
the potential affected shortcuts. However, many shortcuts recomputed in base-
line do not change in fact, which leads to unnecessary overhead of the base-
line. To overcome the drawbacks of baseline, we further propose a novel CHLR
maintenance algorithm which can only travel little shortcuts through an update
propagate chain with accuracy guarantee. Moreover, an optimization strategy is
presented to further improve the efficiency of index maintenance. Extensive and
comprehensive experiments are conducted on real road networks. The experi-
mental results demonstrate the efficiency and effectiveness of our proposed algo-
rithms.

Keywords: Contraction Hierarchy with Label Restrictions · Dynamic Road
Networks · Shortest Path Query

1 Introduction

Shortest path query (SPQ) in road networks is a fundamental problem in graph analysis
and has been widely studied due to its applications in various fields. Recently, with the
proliferation of applications, the information of road networks becomes more complex
and diversified, such as edge weight (e.g., transit time, toll fee) and edge label (e.g., toll
road, trucks prohibited road). Existing works mainly aim to address the SPQ with mini-
mum weight, i.e., find the shortest path with minimum distance or toll fee between two
locations [1,3,6,12,14,28]. However, the label information of edges can service more
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personalized scenarios. For example, if the drivers do not want to pay the toll fee, all toll
roads should be neglected in the route planning [5]. Moreover, if a truck driver requires
path service, the path returned should avoid all trucks prohibited roads [21]. The SPQ
with considering the label constraints has many practical applications, such as person-
alized location-based services [29], logistics and commercial transportation [13]. [24]
formalizes this problem as Label Constrained Shortest Path (LCSP) query. Formally,
given a restricted label set R, LCSP query aims to find the shortest path with minimum
weight avoiding the edges with labels in R. To efficiently answer the LCSP query, [24]
proposes a novel index which is based on Contraction Hierarchies, namely, Contraction
Hierarchies with Label Restrictions (CHLR). In CHLR, a shortcut e = ((u, v), w, l)
denotes a path from u to v with weight w and label l. By shortening the path traversal,
CHLR can significantly improve the LCSP query processing performance.

Motivation. In the real world, road networks can be dynamically changed. For each
edge, the toll fee can be changed at any time by traffic department and the transit time is
time-dependent due to the change of traffic conditions [23,31]. Specifically, the traffic
conditions can be updated by collecting the travel information of taxi-hailing app users
and drivers (e.g., Didi, Uber). However, the number of app users and drivers is huge. In
2022, Didi has 15 millions drivers and 493 millions users [11], Uber has 3.5 millions
drivers and 93 millions users [9]. They can generate massive updates for traffic condi-
tions per second. Accordingly, the edge weight can be dynamically changed at a high
frequency. Moreover, the label of edges can be changed as well. For example, roads can
be labelled as light traffic road, medium traffic road and heavy traffic road depending on
the traffic conditions which will change in real time [19]. Unfortunately, most existing
works for CHLR focus on static road networks and do not support the CHLR mainte-
nance in dynamic road networks, which makes them unpractical for real applications.
Motivated by this, in this paper, we study the CHLR maintenance problem in dynamic
road networks.

Our Approach. To solve the CHLR maintenance problem in dynamic road networks,
we first propose a Baseline approach. When an edge eo changes its weight and label,
a naive approach is to find all potential affected shortcuts due to the change of eo,
and then recompute the affected shortcuts by invoking the existing CHLR construction
algorithm [24]. However, the Baseline would recompute lots of shortcuts that actu-
ally do not change, which leads to expensive overhead of Baseline. To overcome the
drawbacks of Baseline, in this paper, we devise a more efficient CHLR maintenance
algorithm. Specifically, we design a novel update propagate chain to avoid massive
invalid updates in Baseline. In the update propagate chain, the neighborhood of short-
cuts are defined as parents, child and partner. We observe that a shortcut only affects its
child, and the weight of child can be obtained by its parents. We give an update order
for the update propagate chain following the observation. Moreover, to further improve
the efficiency, we propose an optimization strategy based on weight count of shortcuts,
which can guarantee that shortcuts will only be recomputed when necessary. We prove
that the optimized algorithm has a tightly theoretical boundedness in terms of the num-
ber of changed shortcuts EΔ, i.e., O(|EΔ| · log|EΔ| + |EΔ| · dmax), where dmax is the
maximum degree.
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Contributions. This paper has the following contributions.

(1) The first work for CHLR maintenance in dynamic road networks. In this paper we
aim to incrementally maintain the CHLR when the road networks are dynamically
changed. To the best of our knowledge, this is the first work to address the CHLR
maintenance problem in dynamic road networks.

(2) Efficient CHLR maintenance algorithms. In this paper, we devise an efficient
CHLR maintenance algorithm. Specifically, we design a novel update propagate
chain to only propagate the updated shortcuts, which can avoid massive invalid
updates in Baseline. Moreover, we propose an optimization strategy based on
weight count of shortcuts, which can guarantee that shortcuts will only be recom-
puted when necessary. We prove that the optimized algorithm has a tightly theoret-
ical boundedness.

(3) Extensive experiments on the real road networks. We conduct extensive and com-
prehensive experiments on real road networks. As shown in our experiments, the
optimized CHLR maintenance algorithm has good efficiency and effectiveness. It
can achieve up to 2 orders of magnitude speedup compared with Baseline.

2 Related Work

Shortest Path Indexes in Road Networks. Graph analysis has been receiving increas-
ing attention recently [7,8,18,20,26,27,32]. In the literature, many shortest path query
(SPQ) algorithms are proposed based on traditional methods, such as Dijkstra [12],
they compute the shortest path on the weighted road networks directly. Recently, many
index-based SPQ algorithms are proposed achieving remarkable results on speeding
up the query process. Hub Labeling (HL) [1,3,15] is one of the most important short-
est path indexes , which can improve the efficiency of SPQ by reducing the points on
the shortest path. Pruned Landmark Labeling (PLL) [2] and Parallel Shortest-distance
Labeling (PSL) [16] are further proposed based on HL. Arterial Hierarchy (AH) [33]
index can improve the query time efficiently by splitting a graph into grid structure.
Contraction Hierarchies (CH) [4,10,14] is a fundamental index that can reduce the
number of iterations during the SPQ process by introducing shortcuts. Moreover, Hier-
archical 2-hop labelling(H2H) [22] and P2H [6] combine the advantages of 2-hop
labelling and hierarchy among all vertices. Based on CH, [24] proposes an impor-
tant shortest path index under the label restrictions (CHLR) in labelled road networks.
[17,25] experimentally investigate the performance of different SPQ algorithms in mul-
tiple dimensions.

Shortest Path Index Maintenance in Dynamic Road Networks. In real world, road
networks often change in practice. Hence, it is necessary to study the maintenance
of shortest path indexes. [30] gives a solution for maintaining HL index in dynamic
road networks. [6] introduces mechanisms for P2H index maintenance for edge weight
updating. In order to maintain CH index, a number of methods [23] are proposed. More-
over, for the theoretical boundedness of the dynamic maintenance of CH and H2H, [31]
presents the theoretical analysis according to the weight increase and decrease sce-
nario separately. However, the CHLR maintenance problem in dynamic road networks
remains to be investigated.
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3 Preliminaries

Let G = (V,E,w, Σ, l) be a directed, weighted and labelled road network, where V
and E are the set of vertices and edges in the road network, respectively. w represents
the weight function w : E → R

+ mapping each edge to a positive weight number. Σ is
a finite alphabet used for labeling edges in G and l is a function l : E → Σ mapping
edges to labels in Σ. Besides, a vertex order function φ : V → {1, · · · , |V |} is used
to sort vertices in G. The neighbors of a vertex v are denoted as N(v). The neighbors
with higher/lower order than v are denoted as N+/−(v). We use n and m to denote the
number of vertices and edges in the road network, respectively. A path in G is denoted
as Ps,t = {e1, e2, · · · , ek} passing from s to t. The length of the path is expressed as
w(Ps,t) =

∑
1≤i≤k w(ei). The label of path is denoted as l(Ps,t) = l(e1)∪ l(e2) · · · ∪

l(ek). The order of P is the minimum order of vertices in the path, denoted as φ(P ).
For simplicity, G is denoted as G = (V,E) if the context is self-evident. Note that the
approach proposed in this paper can be smoothly adapted to undirected road networks
as an undirected edge can be considered as two directed edges.

Definition 1. (Label Constrained Shortest Path (LCSP)) Given a road network G =
(V,E), a restricted label set R and two vertices s and t, the LCSP under restricted
labels R from s to t is a path PR

s,t = {e1, e2, · · · , ek}, such that, (1) for 1 ≤ i ≤ k,
l(ei) ∩ R = ∅, i.e., the path avoids all restricted labels in R; (2) w(PR

s,t) is minimum,
i.e., PR

s,t is the shortest path satisfying condition (1).

Fig. 1. An example for road network G and CHLR on G

Example 1. Consider the road network G shown in Fig. 1, for a LCSP query with s =
v11, t = v9, R = {c}, there are two LCSPs P1 = {(v11, v2), (v2, v8), (v8, v9)} and
P2 = {(v11, v10), (v10, v9)}. For both paths, the length is 7, the restricted label c is
avoided, and there is no other path shorter than them without label c.
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3.1 Contraction Hierarchies with Label Restrictions

To address LCSP query efficiently, [24] proposes a novel shortest path index based on
Contraction Hierarchies (CH) with label restrictions.

Definition 2. (Contraction Hierarchies with Label Restrictions (CHLR) Given a
road network G = (V,E) and a vertex order function φ, for two edges e′ = (u, q) and
e′′ = (q, v) where φ(q) < φ(u), φ(q) < φ(v), a shortcut e = ((u, v), w, l) is created
with w = w(e′) + w(e′′) and l = l(e′) ∪ l(e′′) if there is no path P ′ shorter than
P = {e′, e′′} satisfying φ(P ′) > φ(P ) and l(P ′) ⊆ l(P ). The CHLR index on G is
the set of shortcuts, denoted as E′. The road network with CHLR is called augmented
graph, denoted as G′ = (V,E ∪ E′).

Example 2. Considering the road network G in Fig. 1(a), the order of each vertex is
marked close the vertex. The CHLR index on G is shown in Fig. 1(b), which is rep-
resented in blue dotted lines. For instance, e = ((v1, v9), 4, {a, b, c}) is a shortcut for
edges (v1, v3) and (v3, v9), as φ(v3) < φ(v1), φ(v3) < φ(v9) and there is no path
P ′ from v1 to v9 shorter than P = {(v1, v3), (v3, v9)} satisfying φ(P ′) > φ(P ) and
l(P ′) ⊆ l(P ).

CHLR-Based LCSP Query. Given a road network G, and G′ with CHLR, to address
a LCSP query for PR

s,t, the result can be retrieved by using a bidirectional Dijkstra
query variant which performs a simultaneous forward query from s in upward graph
G′↑ and backward query from t in the downward graph G′↓, where E(G′↑) = {e =
(u, v)|φ(u) < φ(v) ∧ l(e) ∩ R = ∅} and E(G′↓) = {e = (u, v)|φ(u) > φ(v) ∧
l(e) ∩ R = ∅}. The query terminates once the minimum key for the priority queue of
Dijkstra’s algorithm exceeds the tentative shortest distance and PR

s,t on G is obtained.

CHLR Construction. Given a road network G and a vertex order function φ, CHLR
can be constructed through contracting vertices in the increasing order of φ. When con-
tracting a vertex q, based on Definition 2, for each pair of neighbors (u, v) in N+(q),
a potential shortcut e = (u, v) is considered with l(e) = l((u, q)) ∪ l((q, v)) and
w(e) = w((u, q)) + w((q, v)). If there is a path P ′ shorter than P = {(u, q), (q, v)}
satisfying φ(P ′) > φ(P ) and l(P ′) ⊆ l(P ), e is unnecessary and can be omitted in G′.
Otherwise, e is created as a shortcut and inserted into G′. P ′ can be retrieved by Dijk-
stra’s algorithm from u to v through vertices with higher order than q and edges with
labels in l(P ). When all vertices are contracted, all shortcuts in CHLR are obtained.

3.2 Problem Statement

In this paper, we investigate the CHLR maintenance problem on dynamic road net-
works. Given a road network G and edge change including weight increase/decrease
and label change, we incrementally update the CHLR index on G after the edge change.

4 Baseline Approach

To address the CHLR maintenance problem, in this section, we first explore a Baseline
approach. Consider a changed edge e = (q, v) with new weight or label, the main idea
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of Baseline is to explore the affected shortcuts and recompute the affected shortcuts.
There are two steps: 1) Explore the affected shortcuts. Due to the change of e = (q, v),
assume φ(q) < φ(v), the shortcuts like e′ = (u, v) produced by contracting q and
incident to e may be changed. As e′ can be updated by recontracting q who can produce
e′, q is marked as the vertex to be recontracted and stored into Θ. Recursively, the
change of e′ may further affect more shortcuts. Similarly, the vertices supporting the
affected shortcuts are stored into Θ. 2) Recompute the affected shortcuts. When all
effected shortcuts are explored, they can be updated by recontracting the vertex in Θ by
invoking the existing CHLR construction algorithm [24].

Example 3. Consider the road network G shown in Fig. 1. If an edge e = ((v4, v6), 5, {
b}) is changed to e = ((v4, v6), 1, {c}), following the Baseline, at step 1, the vertices to
be recontracted in Θ is {v4, · · · , v7, v11, v12}. Then, we recontract them in the increas-
ing order of φ at step 2. For instance, when recontracting v4, it will produce two new
shortcuts e1 = ((v5, v6), 3, {b, c}) and e2 = ((v7, v6), 6, {a, c}).
Theorem 1. The time complexity of Baseline is O(|Θ| · d2max · m · logn), where dmax is
the maximum degree of vertices in G′.

Proof. At step1, for each affected shortcut e, exploring the shortcuts that e further
affects and finding the vertices that can update e consume O(dmax) time, and the num-
ber of the affected shortcuts is O(|Θ|). Next, at step 2, for each vertex in Θ, it can
produce O(d2max) shortcuts. Furthermore, to generate a shortcut, [24] invokes Dijkstra’s
algorithm with time complexity O(m · logn). Therefore, the total time complexity of
Baseline is O(|Θ| · d2max · m · logn).

Drawbacks of Baseline. Unfortunately, the Baseline approach may introduce unnec-
essary overhead. First, the affected shortcuts explored at step 1 may do not change their
weights and labels. Second, at step 2, all shortcuts incident to vertices in Θ will be
recomputed by vertex contraction. However, most of them are unchanged in fact. All of
these lead to unnecessary overhead of Baseline.

5 CHLR Maintenance Algorithm

In this section, we explore a new CHLR maintenance algorithm to update index more
efficiently by avoiding the overhead of Baseline for unchanged shortcuts.

Framework. Consider a road network G and a changed edge e, due to the weight
or label change of e, we can recursively update shortcuts in a BFS-like way. In our
new CHLR maintenance algorithm, we aim to reveal an update propagate chain among
shortcuts. Only when current shortcut e′ is changed, it will extend the update propagate
chain to update more shortcuts incident to e′. In this way, the unnecessary overhead of
Baseline for updating unchanged shortcuts can be reduced sharply.

Definition 3. (Neighborhood of Shortcuts) Given the CHLR index on the road net-
work G, for a shortcut e = (u, v) and two shortcuts e′ = (u, q) and e′′ = (q, v), if
φ(q) < φ(u), φ(q) < φ(v) and l(e) = l(e′)∪ l(e′′), then, e′ and e′′ are the parents of
e, denoted as (e′, e′′) ∈ N−(e). e is the child of e′ and e′′, denoted as e = N+(e′, e′′).
e′ is a partner of e′′, denoted as e′ ∈ N=(e′′).
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Algorithm 1. CalWeight
Input: shortcut: e
Output: the weight of e: k

1: k ← ∞; cnt(e) ← 0;
2: if e ∈ G and w(e) �= ∞ then k ← w(e); cnt(e) ← 1;

3: for each (e′, e′′) ∈ N−(e) do
4: if w(e′) + w(e′′) < k then k ← w(e′) + w(e′′); cnt(e) ← 1;
5: else if w(e′) + w(e′′) = k then cnt(e) ← cnt(e) + 1;

6: return k;

Lemma 1. Given a road network G and a shortcut e, the weight of e can be computed
by w(e) = min{w,w(e′) + w(e′′)|∀(e′, e′′) ∈ N−(e)}, where w is the weight of e in
G if e is an original edge in G.

Algorithm of CalWeight. Based on Lemma 1, we first propose a weight calculation
algorithm to compute the weights of shortcuts on the augmented graph G′, which is
named CalWeight. The pseudocode is shown in Algorithm 1. Since the pseudocode is
self-explanatory, we omit the detailed description for brevity. Note that cnt of Algo-
rithm 1 can be ignored here which will be introduced later.

After obtaining the weights of shortcuts, based on Definition 2, the shortcuts with
same (u, v) but different labels may conflict with each other in G′. For instance, there
are two shortcuts e = ((u, v), w1, {a, b}) and e′ = ((u, v), w2, {a, b, c}), w1 < w2.
Then, for any LCSP query with restricted label set R, if the target PR

s,t passes through
u and v, e has higher priority than e′ and PR

s,t will never pass through e′. It’s because
e′ has heavier weight and stricter label constraint than e. To distinguish the conflict
relationship, we propose the formal definition of shortcut dominance below.

Definition 4. (Shortcut Dominance) Given a road network G and CHLR on G, con-
sider two shortcuts e and e′ for vertices u and v with different weights or labels, if
w(e) ≤ w(e′) and l(e) ⊂ l(e′), then e dominates e′, e′ is dominated by e. Φ(e) is the
dominant shortcut set of e, e′ ∈ Φ(e).

Lemma 2. Given a road network G and CHLR on G, considering two shortcuts e and
e′, if e dominates e′, then e′ can be removed from CHLR safely.

Algorithm of KeepSCDom. Following Lemma 2, we propose a KeepSCDom algo-
rithm to keep the shortcut dominance, the pseudocode is shown in Algorithm 2. Given
a shortcut e, type is used to mark the weight increase or decrease of e, Q is a priority
queue to store the changed shortcuts. Based on Definition 4, if e can be dominated by
e′ in the augmented graph G′, e is marked as invalid shortcut in G′, the weight of e
is assigned as ∞ (line 1–2). Otherwise, if the weight of e increases, we recompute the
weight of shortcut e′ in Φ(e), if w(e′) < w(e), e′ is not dominated by e anymore. In this
case, e′ becomes valid in G′ (line 4–9). In another hand, if the weight of e decreases,
it can dominate more shortcuts who have heavier weight and longer label than e. Such
dominated shortcuts become invalid in G′ (line 10–14). Since the weights of shortcuts
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Algorithm 2. KeepSCDom
Input: shortcut: e; type
Output: the queue: Q
1: if ∃e′ ∈ G′, s.t., e′.u = e.u and e′.v = e.v and l(e′) ⊂ l(e) and w(e′) ≤ w(e) then
2: w(e) ← ∞; cnt(e) ← 0; Φ(e′) ← Φ(e′) ∪ e;
3: else
4: if type =‘inc’ then
5: for each e′ ∈ Φ(e) do
6: k ←CalWeight (e′);
7: if k < w(e) then
8: if (e′,‘dec’)/∈ Q then Q.push(e′,‘dec’);
9: w(e′) ← k; Φ(e) ← Φ(e) \ e′; G′ ← G′ ∪ {e′};
10: if type =‘dec’ then
11: for each e′ ∈ G′, s.t., e′.u = e.u and e′.v = e.v and l(e′) ⊃ l(e) do
12: if w(e′) ≥ w(e) then
13: if (e′,‘inc’)/∈ Q then Q.push(e′,‘inc’);
14: w(e′) ← ∞; cnt(e′) ← 0; Φ(e) ← Φ(e) ∪ e′;

15: return Q;

in line 9 and line 14 are updated, they are pushed into Q to further update more short-
cuts.

Now, we analyse the update propagate chain among shortcuts.

Definition 5. (Update Propagate Chain) When the weight of a shortcut e decreases
or increases, e only changes its child shortcuts e′′ in N+(e, e′), where e′ is a partner of
e in N=(e). Specifically,

– when w(e) decreases, update w(e′′) = w(e) + w(e′) if w(e′′) > w(e) + w(e′);
– when w(e) increases, recompute w(e′′) by invoking CalWeight algorithm.

If w(e′′) changes, KeepSCDom algorithm is utilized to keep the shortcut dominance
and e′′ is pushed into Q to be the next shortcut of the update propagate chain.

Definition 6. (Update Order) Given the augmented graph G′, the update order
of edges e = ((u, v), w, l) is the order to be processed in the priority queue Q,
denoted as φ(e). For other arbitrary edge e′ = ((u′, v′), w′, l′), φ(e) < φ(e′) if
min{φ(u), φ(v)} < min{φ(u′), φ(v′)} or min{φ(u), φ(v)} = min{φ(u′), φ(v′)}
and |l| < |l′|.
Theorem 2. Based on Definition 5 and Definition 6, when an edge change for e arrives,
performing the update propagate chain from e and propagating the update following the
update order can update CHLR correctly.

Proof. Theorem 2 holds based on two significant facts. (1) Given an updated shortcut
e, e only affects its child shortcuts e′′. The weight of e′′ can be updated following
Definition 5. Specifically, if w(e) decreases, it only needs to determine whether e will
produce a shorter path for e′′, if so,w(e′′) = w(e)+w(e′). Otherwise, ifw(e) increases,
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Algorithm 3. CHLRMaintenance

Input: augmented graph: G′; changed edge: eo = ((u, v), wo, lo); new weight: wn; new label:
ln
Output: the updated augmented graph: G′

1: Q: priority queue; Q ← ∅;
2: if ln �= lo then
3: eo ← ((u, v), ∞, lo); en ← ((u, v),w(en), ln); w(eo) ← CalWeight (eo);
4: if w(eo) > wo then Q.push(eo,‘inc’); KeepSCDom (eo,‘inc’);

5: if w(en) > wn then w(en) ← wn; Q.push(en,‘dec’); KeepSCDom (en,‘dec’);

6: else
7: eo ← ((u, v), wn, lo); w(eo) ← CalWeight (eo);
8: Q.push(eo,w(eo) > wo?‘inc’:‘dec’); KeepSCDom (eo,w(eo) > wo?‘inc’:‘dec’);

9: while !Q.empty() do
10: (e,type) ← Q.pop();
11: \* update weight for child shortcut *\
12: for each e′ ∈ N=(e) do
13: e′′ ← N+(e, e′);
14: if type =‘inc’ and w(e′′) �= ∞ then
15: \* recompute weight of e′′ *\
16: k ← CalWeight (e′′);
17: if w(e′′) < k and (e′′,‘inc’) /∈ Q then
18: w(e′′) ← k; Q.push(e′′,‘inc’); KeepSCDom (e′′,‘inc’);

19: if type =‘dec’ then
20: \* directly update weight of e′′ *\
21: if w(e′′) > w(e) + w(e′) then
22: w(e′′) ← w(e) + w(e′);
23: if (e′′,‘dec’) /∈ Q then Q.push(e′′,‘dec’); KeepSCDom (e′′,‘dec’);

it’s necessary to recompute w(e′′) by invoking CalWeight. This is because due to the
weight increase of e, the shortest path for e′′ may be destroyed by e and a new shortest
path should be generated by other parents of e′′. Moreover, for other shortcuts incident
to e but with lower order than e, since e will only affect the shortcuts with higher order
than it based on the contracting process of CHLR, they will not be affected by e. (2)
For accuracy guarantee, parents shortcuts should be updated before their child shortcut.
By Definition 3 and Definition 6, for shortcut e′′ = N+(e, e′), we have φ(e) < φ(e′′)
and φ(e′) < φ(e′′). Hence, updating the shortcut with lowest order in Q at each time
ensures that their child shortcut will be updated correctly as the weights of their parents
shortcuts are up to date now. In this way, CHLR can be updated correctly.

Algorithm ofCHLRMaintenance. Based on Theorem 2, we propose our CHLRmain-
tenance algorithm, the pseudocode is shown in Algorithm 3. Given the augmented graph
G′, a changed edge eo with new weight wn and new label ln, we first update eo and
create en with new weight and label (line 2–8). If the label of eo is changed, we com-
pute the weight of eo with old label, if the weight increases, eo is pushed into Q with
type=‘inc’, meanwhile, if weight of en with new label decreases, en is pushed into Q
with type=‘dec’ (line 3–5). Otherwise, eo is pushed into Q depending on the weight
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increase or decrease (line 7–8). After that, the update propagate chain starts. At each
time, Q selects the shortcut e with lowest order φ(e) to propagate update. Following the
update rules in Definition 5, we update the weight of each child e′′ of e. If the weight of
e increases, the weight of e′′ is recomputed by invoking CalWeight algorithm. And if
w(e′′) increases due to e, e′′ is pushed into Q with type=‘inc’ and invokes KeepSCDom
algorithm (line 14–18). On the other hand, if the weight of e decreases, we just update
the weight of e′′ directly if w(e′′) > w(e) + w(e′). Then, e′′ is pushed into Q and
invokes KeepSCDom algorithm if w(e′′) decreases (line 19–23). When all shortcuts in
Q finish their update propagation, we obtain the new CHLR on G′ correctly.

Fig. 2. Example for update process of CHLRMaintenance algorithm

Example 4. Consider the road network G and CHLR on G shown in Fig. 1, the neigh-
borhood of shortcuts is shown in Fig. 2. Given an updated edge eo = ((v4, v6), 5, {b}),
and new weight 7 and new label {c} for eo, following Algorithm 3, as the label of eo

changes, eo becomes ((v4, v6),∞, {b}) and is pushed into Q with type=‘inc’, while
en = ((v4, v6), 7, {c}) is created and pushed into Q with type=‘dec’. Then, eo first
updates its child shortcuts e1 = ((v5, v6), 7, {b}) and e2 = ((v7, v6), 7, {a, b}). As the
weight of eo is ∞ now, we recompute w(e1) and w(e2), their weights are unchanged.
Next, en produces two new child shortcuts e3 = ((v5, v6), 9, {b, c}) and e4 = ((v7, v6),
12, {a, c}). Here, based on Definition 4, e1 can dominate e3 as w(e1) < w(e3) and
l(e1) ⊂ l(e3), therefore, e3 is invalid in G′. Subsequently, e4 further produces a new
child shortcut e5 = ((v11, v6), 16, {a, b, c}). Now, Q is empty, the algorithm finishes.

5.1 Optimization Strategy

To further improve the efficiency of CHLR maintenance, we explore an optimization
strategy based on the following observation. Reconsider the update operation of Algo-
rithm 3, for a shortcut e from Q, when the weight of a shortcut e increases, we have
to recompute the weight of each child shortcut e′′ of e (line 16 of Algorithm 3) when-
ever w(e′′) will change or not. However, if e does not support the current weight of
e′′, i.e., w(e′′) < w(e) + w(e′) where e and e′ are the parents of e′′, w(e′′) will not
be affected by e. Moreover, even e and e′ can support the current weight of e′′, i.e.,
w(e′′) = w(e) +w(e′), if there exists another couple of parents e1 and e′

1 that can sup-
port w(e′′), w(e′′) will not change as well. To avoid the invalid computation for weight,
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Algorithm 4. CHLRMaintenance∗

Input: augmented graph: G′; changed edge: eo = ((u, v), wo, lo); new weight: wn; new label:
ln
Output: the updated augmented graph: G′

1: Q: priority queue; Q ← ∅; en ← ((u, v),w(en), ln);
2: if ln �= lo then
3: if w(eo) = wo and cnt(eo) < 2 then cnt(eo) ← 0; Q.push(eo,‘inc’);

4: if w(en) = wn then cnt(en) ← cnt(en) + 1;

5: if w(en) > wn then w(en) ← wn; cnt(en) ← 1; Q.push(en,‘dec’);

6: else
7: if w(eo) = wo then cnt(eo) ← cnt(eo) − 1;

8: if w(eo) = wn then cnt(eo) ← cnt(eo) + 1;

9: if w(eo) > wn then w(eo) ← wn; cnt(eo) ← 1; Q.push(eo,‘dec’);

10: if w(eo) < wn and cnt(eo) < 1 then cnt(eo) ← 1; Q.push(eo,‘inc’);

11: while !Q.empty() do
12: (e,type) ← Q.pop();
13: for each e′ ∈ N=(e) do
14: e′′ ← N+(e, e′)
15: if type =‘inc’ and w(e′′) �= ∞ then
16: if cnt(e′′) ≥ 1 and w(e) + w(e′) = w(e′′) then
17: cnt(e′′) ← cnt(e′′) − 1;
18: if cnt(e′′) < 1 and (e′′,‘inc’) /∈ Q then Q.push(e′′,‘inc’);

19: if type =‘dec’ then
20: if w(e′′) = w(e) + w(e′) then cnt(e′′) ← cnt(e′′) + 1;
21: else if w(e′′) > w(e) + w(e′) then
22: w(e′′) ← w(e) + w(e′); cnt(e′′) ← 1;
23: if (e′′,‘dec’) /∈ Q then Q.push(e′′,‘dec’);
24: if type =‘inc’ then w(e) ← CalWeight (e); KeepSCDom (e,‘inc’);
25: else KeepSCDom (e,‘dec’);

we propose an optimized CHLRmaintenance algorithm based on weight count. We first
give the definition of weight count.

Definition 7. (Weight Count) Given a road network G and the CHLR on G, for each
shortcut e in CHLR, the weight count of e is the number of parents that can sup-
port the weight of e, denoted as cnt(e), i.e., cnt(e) = |{(e1, e2)|w(e) = w(e1) +
w(e2), (e1, e2) ∈ N−(e)}|. Note that if e is an original edge in G with weight w(e),
cnt(e) is increased by one.

Lemma 3. In the update propagate chain, when the weight of a shortcut e increases,
for e’s each child shortcut e′′, e′′ = N+(e, e′), ifw(e′′) < w(e)+w(e′) or cnt(e′′) > 1,
w(e′′) will not change, the weight update for e′′ can be skipped safely.

Algorithm of CHLRMaintenance∗. Following Lemma 3, we devise our optimized
algorithm CHLRMaintenance∗. The pseudocode is shown in Algorithm 4. Given the
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augmented graph G′, a changed edge eo, new weight wn and new label ln for eo, we
first update the weight count cnt for eo and en. The weight w(eo) is destroyed, cnt(eo)
is assigned as 0 and eo is pushed into Q with type =‘inc’ (line 3). For shortcut en, if
w(en) = wn, we increase cnt(en) by one (line 4). Besides, if w(en) decreases due to
wn, cnt(en) is assigned as 1 and en is pushed intoQwith type =‘dec’ (line 5). In another
hand, if the label of en is unchanged, cnt(eo) can be updated similarly depending on the
change ofw(eo) (line 7–10). After that, the update propagate chain starts from the short-
cuts in Q. At each time, Q selects the shortcut e with lowest order φ(e) to propagate
update. If e will increase its weight, for each child shortcut e′′, e′′ = N+(e, e′), based
on Lemma 3, only if cnt(e′′) ≥ 1 and w(e) + w(e′) = w(e′′), cnt(e′′) is decreased by
1. Then, if cnt(e′′) < 1, e′′ is pushed into Q with type =‘inc’ (line 15–18). Otherwise,
if e has decreased its weight and w(e′′) = w(e) + w(e′), then we add cnt(e′′) by 1.
If w(e′′) > w(e) + w(e′), we directly update w(e′′) by w(e) + w(e′) and assign 1 to
cnt(e′′). Meanwhile, e′′ is pushed into Q with type =‘dec’ (line 19–23). Finally, we
update w(e) if type=‘inc’ and invoke KeepSCDom algorithm (line 24–25). Note that,
in line 14 of KeepSCDom algorithm, we omit the update for w(e′) as it will be updated
later in line 24 of CHLRMaintenance∗ algorithm. When all shortcuts in Q finish their
update propagation, we obtain the new CHLR on G′ correctly.

Fig. 3. Example for update process of CHLRMaintenance∗ algorithm

Example 5. Consider the road networkG and CHLR onG shown in Fig. 1, Fig. 3 shows
the update process of Algorithm 4. Given the same updated edge eo = ((v4, v6), 5, {b}),
and new weight 7 and new label {c} for eo, when process the child shortcuts of eo,
compared with Algorithm 3, the update operation for e1 = ((v5, v6), 7, {b}) is skipped
as cnt(e1) = 2, Algorithm 4 just needs to decrease cnt(e1) by 1. Hence, Algorithm 4
can improve the efficiency of CHLR maintenance.

Theorem 3. The time complexity CHLRMaintenance∗ algorithm isO(|EΔ|·log|EΔ|+
|EΔ| · dmax), where EΔ denotes the changed shortcuts in CHLR.

Proof. In CHLRMaintenance∗ algorithm, only the changed shortcuts will be pushed
into the priority queue Q. Q needs to sort shortcuts based on their update order which
consumes O(|EΔ| · log|EΔ|) time. Moreover, when update a shortcut e = (u, v) in
Q, if type =‘dec’, e can be updated in O(1) time (line 22 of Algorithm 4), otherwise,
if cnt(e) < 1, we need to recompute the weight of e by visiting its parents which
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costs O(dmax) time. Meanwhile, to keep the shortcut dominance, in the worst case, the
weights of all shortcuts incident to (u, v) should be computed (line 6 of Algorithm 2)
with O(dmax) time. Therefore, the total time complexity of CHLRMaintenance∗ is
O(|EΔ| · log|EΔ| + |EΔ| · dmax).

6 Performance Studies
Datasets. We evaluate our algorithms on 8 real road networks, in which, the weight of
edges is the length of each road and the label shows the category of different roads. The
datasets are downloaded from DIMACS1. Table 1 gives the statistic of datasets, where
|Σ| is the number of labels and dmax represents the maximum degree of vertices in the
corresponding augmented graphs. All the experiments are conducted on a machine with
Xeon(R) Gold 6258R CPU 2.70GHz and 1TB RAM running Linux.

Table 1. Statistic of the real datasets

Dataset n m |Σ| dmax Dataset n m |Σ| dmax

NV 261155 311043 15 145 FL 1,048,506 1,330,551 23 133

LA 413,574 499,254 23 147 CA 1,613,325 1,989,149 28 139

OH 676,058 842,872 24 142 TX 2,073,870 2,584,159 25 152

IL 793,336 1,012,817 23 129 US 2,353,8407 57,131,384 32 258

Algorithms. We compare the performance among these algorithms: (1) Rebuild: the
state-of-the-art algorithm to construct CHLR index [24]; (2) Baseline: the Baseline app-
roach proposed in Sect. 4; (3) CHLRM: the CHLRMaintenance algorithm proposed in
Sect. 5; (4) CHLRM∗: the CHLRMaintenance∗ algorithm with optimization strategy
proposed in Sect. 5.1.

For the vertex order in the road networks, we generate vertex order following the
method used in [14,24] with the same setting.

Exp-1: Efficiency of Algorithms When Varying the Percent of Weight Decrease
/Increase. In this experiment, we evaluate the efficiency of Baseline, CHLRM and
CHLRM∗ with varying the percent of weight decrease/increase on all datasets. On each
dataset, we randomly select 1000 edges as changed edges. We use Wo to denote the
original weights of the changed edges. We first change edges’ labels and decrease their
weights as 20%Wo–80%Wo. The running time of three algorithms with different percent
of weight decrease is recorded in Fig. 4. Then, we increase their weights as 120%Wo–
200%Wo. The corresponding running time is shown at Fig. 5.

On all datasets, CHLRM∗ and CHLRM can achieve up to 2 orders of magnitude
speedup compared with Baseline. It’s because that Baseline often performs the update
for edges whose weights are not changed, which leads to unnecessary overhead of
Baseline. However, our CHLRM∗ and CHLRM can avoid the unnecessary overhead by

1 https://www.diag.uniroma1.it/challenge9/data/tiger/.

https://www.diag.uniroma1.it/challenge9/data/tiger/
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Fig. 4. Running time of different algorithms varying the percent of weight decrease

Fig. 5. Running time of different algorithms varying the percent of weight increase

a novel update propagate chain, in which, only the changed shortcuts can further affect
other shortcuts. For the efficiency of algorithms when varying the percent of weight
increase, Fig. 5 shows similar phenomena with Fig. 4. CHLRM∗ is fastest among three
algorithms. Furthermore, CHLRM∗ outperforms CHLRM on all datasets. It’s because
CHLRM∗ utilizes the optimization strategy based on weight count, which can further
avoid the invalid update. Moreover, the running time of three algorithms changed with
varying the percent of weight decrease/increase is inapparent, which demonstrates our
algorithms have good scalability with the percent of weight change.

Exp-2: Efficiency of Algorithms When Varying the Number of Changed Edges. In
this experiment, we compare the efficiency of Rebuild, Baseline, CHLRM and CHLRM∗

algorithms with changing 0.1%|E|–100%|E| edges. The results are shown in Fig. 6.
CHLRM and CHLRM∗ are always faster than Baseline. Compared with Rebuild,

CHLRM and CHLRM∗ spend less time updating the CHLR when 10% edges change.
Meanwhile, when 100% edges are changed, the running time of CHLRM and CHLRM∗

is near to the time of rebuilding the CHLR by Rebuild algorithm. The experiment results
indicate the significant efficiency of our CHLRM and CHLRM∗ algorithm.

Exp-3: Effectiveness of CHLR Maintenance Algorithms. In this experiment, we
evaluate the effectiveness of different algorithms by comparing the hit rate of them.
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Fig. 6. Running time of different algorithms varying the number of changed edges

Fig. 7. Hit rate of different algorithms varying the number of changed edges

The hit rate is denoted as |EΔ|
|EU | , where EΔ denotes the shortcuts whose weights are

changed and EU denotes the shortcuts recomputed by algorithms.
As shown in Fig. 7, with the increasing of the number of changed edges, the hit rate

of three algorithms increases as well due to more shortcuts will be further changed.
Besides, CHLRM performs better than Baseline, CHLRM∗ achieves the highest hit rate
among them on all update cases. It verifies that our CHLRM can avoid the unnecessary
update compared with Baseline, and CHLRM∗ can further reduce the invalid update
benefitted from the optimization strategy, which also confirms the reasons for the effi-
ciency of our optimized algorithm at Exp-1 and Exp-2.

7 Conclusion

In this paper, we propose a novel CHLR maintenance algorithm, in which an update
propagate chain is designed to propagate the shortcuts whose weights are actually
changed without losing the accuracy guarantee. Moreover, an optimization strategy is
presented to make sure that shortcuts are updated when necessary, it can further improve
the efficiency of index maintenance. Extensive and comprehensive experiments are con-
ducted on real road networks. The experimental results demonstrate the efficiency and
effectiveness of our optimized algorithms which can achieve up to 2 orders of magni-
tude speedup compared with Baseline.
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Abstract. Multimodal data can provide supplementary information of
the subjects, which is of great potential for exploring the data-driven
insights in various application scenarios. A large amount of researches
focus on modal fusion to deriving quality representations of multimodal
data. However, missing modality is a common issue, i.e. a sample may
not contain full modalities, bringing difficulties to apply existing modal
fusion methods on the incomplete multimodal data. In this paper, we
present GRMI, a graph-based framework for representation learning
of multimodal data with incompleteness. GRMI constructs a bipartite
graph for multimodal data, where samples and modalities are viewed as
two types of nodes, and the observed modality values as edges. GRMI
leverages Graph Neural Network (GNN) to derive edge embeddings and
sample node embeddings on the graph, which can be respectively used for
missing modality imputation and modal fusion. A self-supervised strat-
egy is utilized to pretrain the GNN by fully exploiting the multimodal
data. Extensive experiment results show the superiority of the proposed
framework over existing state-ofthe-art methods for both modality impu-
tation task and modal fusion task.(The source code has been anony-
mously uploaded to https://github.com/GRMI2022/GRMI).

Keywords: multimodal data · incompleteness · graph representation
learning · self-supervised learning

1 Introduction

Most of existing works on multimodal data assume that the data are complete,
i.e. each sample contains full modalities [5,7,9,15,18,21]. However, in real-world,
missing modality is a common issue due to data corruption, equipment damage,
budget limitation or human mistake. The incompleteness brings challenges, such
as inconsistent feature dimensions, to explore these multimodal learning methods
on the original dataset. Excluding the data with missing modalities is a simple
and widely-used way to tackle the challenges. While it may bring new problems:
low-data-volume and data-bias.
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There are two popular strategies to solve the modality incompleteness prob-
lem. One is to try to impute the missing modality, leveraging the seen modalities
of a give sample to reconstruct the missing ones, through expressive deep neural
networks, e.g. autoencoders, Generative Adversarial Networks (GANs) [2,13].
While this strategy fails to make full use of modality values from other samples.
Another strategy attempts to directly accomplish a modality fusion to get qual-
ity sample representations for downstream tasks, with the missing modalities
present in the input data [4,10,11,17]. However, due to the complexity of miss-
ing patterns in real-world multimodal data, the strategy not only requires large
amount of groups (exponentially related with the number of modalities), but also
can hardly handle unseen missing patterns during training time. Furthermore,
accurate modality imputation is also an important task for multimodal learning.

To address the problems, we present a new representation learning framework
(GRMI) for multimodal data with incompleteness. The core characteristic of
GRMI is to leverage graph structure to share the complementary information
among samples, with well-designed self-supervised learning strategy (the pipeline
is shown in Fig. 1). Particularly, GRMI models the multimodal data as a bipar-
tite graph, where samples and modalities are encoded into two types of nodes,
and the attributed edges represent the available modality values between the
sample nodes and modality nodes (an example is illustrated in the left part of
Fig. 1). Here, a modality node plays a role of bridging the samples that hold
this modality. It facilitates the information passing among these samples, which
are of various conditions of missing modalities. Based on the graph structure,
good edge embeddings and sample node embeddings can be respectively used for
modal imputation and modal fusion. To achieve this goal, GRMI utilizes GNNs
with a self-supervised learning approach, which is composed by three learning
objectives. The pretrained GNN model can be further used for other tasks, e.g.
modal imputation, sample classification, by fine-tuning. Experiments show that
GRMI advanced the state-of-the-art performances on multiple datasets.

2 Problem Formulation

A multimodal dataset is denoted as D = {xi1,xi2, · · · ,xim}ni=1, where m is the
number of modalities and n is the number of samples. The j-th modality value of
the i-th sample is denoted as xij . For multimodal data with missing modalities,
a mask matrix is denoted as M = {0, 1}n×m, where the value of the vector xij

can be observed only if Mij = 1. This paper aims to design a model that can
learn from an incomplete multimodal dataset, deriving quality representations
for modal imputation and modal fusion.
Multimodal data as a bipartite graph: Multimodal data D with mask
matrix M can be represented as an undirected bipartite graph G = (V, E),
where V = VS ∪ VM is the node set that consists of two types of nodes.
VS = {u1, u2, . . . , un} is the sample node, each node represents a sample; VM =
{v1, v2, . . . , vm} is the modality node. E is the edge set, where edges only exist
between nodes in different partitions: E = {euivj

|ui ∈ VS , vj ∈ VM ,Mij = 1},
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where the edge attributes euivj
takes the values of the corresponding data xij .

To simplify the notation euivj
, we use eij in the context of multimodal dataset

D, and euv in the context of graph G.
Modal imputation as edge embedding learning: Given a sample i with
missing modality j (Mij = 0), the goal of modal imputation is to estimate the
edge value êij , which is as similar as possible to the true value eij . It relies on
deriving an expressive edge embedding to support the estimation.
Modal fusion as node embedding learning: Modal fusion aims to generate
quality representations for samples, i.e. sample node embeddings, which can be
used for downstream tasks. Here, we pick sample classification as the example
task. Suppose Y ∈ R

n is the classification labels and V ∈ {0, 1}n the train/test
partition, where Vi = 0 refers to the label of sample i is to be predicted. The goal
of sample classification is to minimize the difference between Ŷi and Yi (∀Vi = 0),
where Ŷ is the predicted labels.

3 Methodology

In this section, we introduce the proposed framework for representation learning
of multimodal data with missing modality. Inspired by GRAPE [19], the frame-
work first modelled incomplete multimodal data in a bipartite graph structure,
which has been detailed in the previous section. Then, GNN is used to accomplish
the information passing among multimodal samples in the graph. Meanwhile, we
design a self-supervised learning strategy to pretrain the GNN, which could bring
benefits for both modal imputation and modal fusion task. Figure 1 shows the
pipeline of GRMI.

3.1 GNN Architecture

We first project the original values of different modalities into a unified dimension
to constitute the initial edge embedding, via a modal-specific linear transforma-
tion: eij = fj(xij), where fj(·) is composed of a transformation matrix with a
bias vector for j-th modal. Then, at each GNN layer l, we update the embed-
dings for nodes and edges in turn. In detail, it first aggregates the neighboring
edge information for a node as follows:

n(l)
u = AGG(σ(P (l)[h(l−1)

u ||e(l−1)
uv ])|∀v ∈ N (u, E)) (1)

Then, node embedding h
(l)
u is updated by fusing the information from both

the pre-layer h
(l−1)
u and the neighbours n

(l)
u :

h(l)
u = σ(Q(l)[h(l−1)

u ||n(l)
u ]) (2)

Next, we combine the information of the pre-layer edge embedding e
(l)
uv and

the head/tail node embeddings as the updated edge embedding:
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Fig. 1. The framework of GRMI. The left part illustrates the process of construction
the bipartite graph from the multimodal data with incompleteness.

e(l)uv = σ(W (l)[e(l−1)
uv ||h(l)

u ||h(l)
v ]) (3)

We denote the final edge embedding as the concatenation of the embeddings
of head and tail node, with a feedforward neural networks fedge:

êuv = fedge(h(L)
u ||h(L)

v ) (4)

3.2 Embeddings for Modal Imputation and Modal Fusion

Here, we introduce how to utilize the embeddings, generated by GNN on the
bipartite graph, to support the key application tasks on multimodal data with
incompleteness. (1) Edge embedding for modal imputation. Given a sample
with missing modality, there is no edge between the the sample and the modality
node in the original bipartite graph. While we can derive its edge embeddings
êuv from the two nodes. As euv is linearly transformed from the original modal-
ity value, we can directly set the objective of modal imputation as minimizing
the distance between êuv and euv. (2) Node embedding for modal fusion.
With L-layers GNN, the massive information from multiple modalities and other
samples have been encoded into the embedding of each sample node h

(L)
u , i.e.

the result of modal fusion. We can use the embeddings of the labeled samples
(Vi = 1) as the input to train a classifier, and then apply it on the unlabeled
samples to obtain their classification results.
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3.3 Self-supervised Learning Strategy

We propose a self-supervised learning strategy to pretrain the GNN model, which
contains three training tasks.

Masked Edge Reconstruction. MER mimics the modal imputation process
that making an estimation for the modality values on masked edges through
an autoencoder way. In particular, we randomly mask out edges E with the
rate rmask to generate G′ = (V, E ′|E ′ = E \ Emask) as the model input. Let e
denotes the initial embedding of a masked edge that linearly transformed from
the corresponding original modality value, and ê refers to the output embedding
that encoded by the L-layers GNN. We use a simple fully-connected (FC) layer
as the decoder to generate the reconstruction result. The mean-square error is
used as the loss function.

Lmer =
1

|Emask|
∑

e∈Emask

(e − fmer(ê))2 (5)

Edge-edge Contrasting. EEC aims to promote the representational ability
of the edge embeddings of unimodal. It adopts a contrastive learning way to
identify the edge embedding pairs extracted from the same sample. Particularly,
given two different modalities v and v′, namely modality pairwise combination
v2v′, we randomly select edges connected to the corresponding nodes, e.g. euv
and eu′v′ . Then, we make up edge pairs from the two modalities, that the edges
from the same sample are denoted as positive pairs (u = u′), and the others the
negative ones (u �= u′). The learning objective is to learn such an edge embedding
space in which positive pairs stay close to each other while negative ones are far
apart. InfoNCE (denoted as Lv2v′

) is used as the contrastive loss function for
modality pairwise combination v2v′. For a dataset of M -modalities, there are
M(M −1)/2 different modality pairwise combination. For each combination, we
calculate two contrastive loss Lv2v′

and Lv′2v, and hence the loss of EEC task
is defined as:

Leec =
1

M(M − 1)

M∑

v=1

M∑

v′=1

(Lv2v′ |v �= v′) (6)

Node-edge Matching. NEM focuses on the quality of sample embeddings,
i.e. the ability of fully fusing the multimodal information. Here, it is achieved by
enabling the model to distinguish the matched sample node embedding and edge
embedding in a contrastive way. In particular, we randomly select a sample node
embedding h

(L)
u and an edge embedding êu′v as the input to a fully connected

layer, followed by a sigmoid function to predict a two-class probability pnem. If
the edge is connected to the node, i.e. u = u′, it is a positive node-edge pair,
and vice versa. To enhance the difficulty of the distinguishing task, we select the
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edges whose embeddings are similar to the positive ones as the negative set. The
loss function is defined as:

Lnem = − 1
|Z|

∑
CE(ynem, pnem) (7)

where CE(·, ·) is the cross-entropy function, ynem is the ground-truth label, |Z|
is the normalization factor.

We aggregate the loss of the three tasks as the whole objective of the self-
supervised learning approach. With the pretrained GNN model, it can be further
used for modal imputation and modal fusion tasks via a fine-tuning way.

4 Experiment

4.1 Data

Three popular datasets are used [1,3,14]. The statistics is shown in Fig. 1).
Incompleteness of datasets: We evaluate the performance of our algo-

rithm and the baseline models on different missing ratio. Given a incompleteness
ratio ρ, we randomly delete a part of data from the original complete datasets
to ensure that ρ% of the data have missing modality. For example, given a M -
modal dataset, we randomly extract ρ/(M − 1)% samples to remove their one
modality, ρ/(M −1)% samples two modalities, and so on. Not that, we guarantee
that each samples retains at least one modality (Table 1).

Table 1. Statistics of Datasets (M : # of modalities; |C|: # of classes)

Dataset Train Valid Test M |C|
POM 600 100 203 3 9

IEMOCAP 2717 798 938 3 2

NTU 1393 246 373 2 67

4.2 Baseline Methods

We compare our model with three categories of approaches, one for modal impu-
tation and two for modal fusion. Imputation: K Nearest Neighbors (KNN),
Autoencoder based generator (AE) [8], and Multimodal Factorization Model
(MFM) [16]. Fusion with disregarding missing modality: Tensor Fusion
Network (TFN) [20], Low-rank Multimodal Fusion (LMF) [12], and Hypergraph
Neural Network (HGNN) [6]. Fusion with consider missing modality: Het-
erogeneous Graph-based Multimodal Fusion (HGMF) [4], and SMIL [13].
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4.3 Experimental Setup

Here, we introduce the tasks, measurements and implementation details.
Imputation task and evaluation measurements: In this tasks, we

attempt to estimate the values of the missing modalities. The experiments are
conducted on POM dataset. For each method, only the two observed modalities
are used as the input to reconstruct the missing one. Root mean square error
(RMSE) is adopted to evaluate the imputation performance.

Sample classification task and evaluation measurements: We con-
duct experiments on datasets from two application domains, namely Multi-
modal Emotion Recognition and 3D Object Recognition. For binary classification
datasets, we utilize F1 score to evaluate the model performance. For multi-class
datasets, we report the classification accuracy Acc-k, where k denotes the num-
ber of classes.

4.4 Result Analysis

Imputation. We conduct the imputation task on POM dataset with various
incompleteness rate. The performance of the methods, which can support the
imputation task, are illustrated in Fig. 2. We can observe that GRMI outperforms
both the generative and discriminative baselines on this task. The incompleteness
inevitably brings adverse effect on the performance, because it would decrease
the available data for model training. While GRMI is the most robust one to
the incompleteness.

Fig. 2. RMSE for different methods under various multimodal incompleteness rate on
POM dataset

Sample Classification. We evaluate the impact of missing modality by chang-
ing the multimodal incompleteness rate from 0% to 80% intermittently by 20%.
The prediction performance of the different methods on the three datasets is
shown in Table 2 and Table 3.
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Table 2. Acc (%) for different methods under various multimodal incompleteness rate
on POM (M=3) and NTU (M=2) datasets.

Method POM NTU

0% 20% 40% 60% 80% 0% 20% 40% 60% 80%

TFN 36.55 35.60 34.42 32.74 30.71 83.59 82.19 80.86 79.28 77.07

LMF 36.47 35.83 34.73 33.18 32.01 83.04 81.80 80.39 78.41 76.21

HGNN 37.17 36.23 35.26 34.27 32.37 84.28 82.43 81.38 79.73 77.87

HGMF 36.88 36.17 35.15 34.76 33.81 83.94 82.95 81.74 80.35 78.68

SMIL 36.97 36.36 35.28 34.56 33.63 84.10 83.02 81.83 80.24 78.50

GRMI 37.39 36.98 36.36 35.89 35.22 84.39 83.21 82.23 81.48 80.32

Table 3. F1 scores for different methods under various multimodal incompleteness
rate (ρ) on IEMOCAP (M=3) datasets.

Emotion ρ TFN LMF HGNN HGMF SMIL GRMI

Happy 0% 84.31 84.41 85.30 85.55 85.40 85.63

20% 83.34 83.42 84.26 84.99 84.87 85.16

40% 82.27 82.34 82.87 84.04 83.92 84.42

60% 81.08 80.94 81.77 82.75 82.81 83.79

80% 79.74 79.34 80.46 81.49 81.66 82.82

Sad 0% 83.25 83.69 85.39 86.12 85.76 85.92

20% 82.54 82.70 84.11 85.30 85.02 85.24

40% 81.45 81.27 82.69 84.18 84.11 84.51

60% 80.20 79.81 81.32 82.80 82.86 83.59

80% 78.29 77.83 79.68 81.37 81.50 82.52

Angry 0% 85.55 85.24 85.85 86.11 86.04 86.25

20% 84.85 84.59 84.97 85.59 85.47 85.85

40% 84.06 83.70 84.14 85.01 84.84 85.34

60% 83.06 82.57 83.08 84.17 84.08 84.81

80% 81.86 81.30 81.90 82.96 83.07 84.16

Neutral 0% 68.37 68.45 69.54 69.68 69.79 69.81

20% 67.61 67.78 68.98 69.21 69.24 69.41

40% 66.76 66.91 68.01 68.45 68.35 68.68

60% 65.15 65.26 66.46 67.25 67.03 67.76

80% 63.58 63.75 64.96 65.86 65.79 66.70

Our approach significantly outperforms all the state-of-the-art competitors
among most ratios of modality missing, which display the efficiency of our app-
roach in the sample classification problem. The improvement over the strongest
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baselines w.r.t Accuracy achieves 4.2% on POM (ρ = 80%) and 2.1% on NTU
(ρ = 80%), F1 score achieves 1.4% in average on IEMOCAP (ρ = 80%).

On datasets without missing (ρ = 0%), most of the methods achieve competi-
tive performance. It demonstrates the effectiveness of design of the modal fusion
in these methods. While GRMI perform slightly better than the other meth-
ods on most of datasets. It demonstrates that the graph structure and three
pre-training tasks enable the model to obtain high-quality multimodal represen-
tations, which can effectively deal with the downstream task.

All methods suffer from the increasing of missing rate. The higher missing
rate gets worse performance. It proves that the missing issue would bring signif-
icantly adverse impact on downstream tasks of multimodal data. However, with
the consideration of missing modalities, the decline proportions of the perfor-
mance of SMIL, HGMF and GRMI are usually smaller than the others. It shows
the necessity of handling the missing issue for multimodal fusion.

Among the methods without considering missing modality, the performance
of HGNN is better than TFN and LMF. It may benefit from the design of the
hyperedge convolution operation in HGNN, which can alleviate the impact of
missing data to a certain extent. However, it can be seen that all these methods
perform poorly under high missing rate.

Compare to SMIL, the incorporation of graph techniques brings performance
improvement for HGMF, which demonstrates the ability of GNN of passing infor-
mation among samples. GRMI shows the superiority among the methods with
considering missing issue. Its performance is the closest one to the model learned
from a full modality dataset. It indicates that GRMI can better leverage the rich
information among samples and modalities for modal fusion with incompleteness.

5 Conclusion

In this paper, we introduces a novel framework for representation learning of
multimodal data with incompleteness. The key idea is to model the data as
a bipartite graph, and leverage GNN with a self-supervised learning strategy
to accomplish the information interaction among massive samples and modali-
ties. Based on the graph, the two common tasks, modal imputation and modal
fusion, can be naturally convert to the graph representation learning. The graph
structure also promises the flexibility on data with large amount of modalities,
and the ability of tackling unseen missing patterns. The proposed model demon-
strates significant performance improvement on multiple datasets beyond the
state-of-the-art methods.
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Abstract. Network representation learning is a de-facto tool for graph
analytics. The mainstream of the previous approaches is to factorize the
proximity matrix between nodes. However, if n is the number of nodes,
since the size of the proximity matrix is n × n, it needs O(n3) time and
O(n2) space to perform network representation learning. The proposed
approach computes the representations of the clusters from similarities
between clusters and computes the representations of nodes by referring
to them. If l is the number of clusters, since l � n, we can efficiently
obtain the representations of clusters from a small l× l similarity matrix.
Experiments show that our approach can perform network representation
learning more efficiently and effectively than existing approaches.

Keywords: Efficient · Algorithm · Network representation learning

1 Introduction

Many real-world applications can be naturally modeled as graphs [4,5,7]. Net-
work representation learning converts each graph node to a fixed-length vec-
tor such that the representation vectors preserve the inherent properties and
structures of the graph. Since it is easy to subject the representation vectors to
feature-based machine learning methods such as LIBLINEAR, network repre-
sentation learning has become a fundamental task in graph analytics. NetMF
is a matrix factorization-based network representation learning approach [10].
It realizes higher accuracy in performing node classification than DeepWalk
and its variants. However, NetMF needs to factorize a dense n × n proximity
matrix between nodes where n is the number of nodes, and thus it needs O(n3)
time and O(n2) space. This paper proposes G

¯
raph C

¯
lustering-based N

¯
etwork

R
¯
epresentation L

¯
earning, GC-NRL. It performs graph clustering for a given

graph and computes a similarity matrix between clusters. It then computes the
representation vectors of the clusters by factorizing their similarity matrix with
sparse matrices. It determines the representation vectors of the nodes by referring
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 297–307, 2023.
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to those of clusters. Since it uses the similarity matrix between clusters instead
of the proximity matrix between nodes, it can efficiently compute the represen-
tation vectors. In the remainder of this paper, Sect. 2 gives an overview of the
background, Sect. 3 introduces our approach, Sect. 4 reviews our experimental
results, and Sect. 5 provides conclusions.

2 Preliminaries

Given graph G = (V,E) with V being the set of n nodes and E being the
set of m edges, network representation learning computes a low-dimensional
representation vector xv of dimension d for each node v ∈ V where d � n is
the predefined number of dimensions. Representation vector xv is set to capture
the structural property of node v. NetMF is a factorization-based approach that
computes the following n × n high-order proximity matrix between nodes [10]:

M = log(max(M′, 1)), M′ = vol(G)
bT (

∑T
r=1(D

−1A)r)D−1 (1)

In this equation, log(·) is an element-wise logarithm, vol(G) =
∑

1≤i,j≤n A[i, j] is
the volume of the graph where A[i, j] is the [i, j] element of the adjacency matrix
A corresponding to the edge weight from the j-th node to the i-th node, b is the
number of negative samples [10], T is the window size, and D is the diagonal
matrix D = diag(A1n) where 1n is a vector of length n with all ones. NetMF
obtains the representation vectors by using the d left singular vectors and the
first d singular values after computing the SVD of matrix M. However, it needs
O(n3) time and O(n2) space to compute matrix M of n × n size. Furthermore,
NetMF degrades the quality of representation vectors by truncating the small
nonzero elements from the proximity matrix.

3 Proposed Method

Instead of proximities between nodes, we exploit similarities between clusters to
reduce the computational cost since the number of clusters is much smaller than
that of nodes [11]. Since similarities between clusters represent the structural
property of the graph, we can effectively generate the representation vectors by
using them. Let ci be the i-th cluster, we perform graph clustering and compute
representation vectors of ci by using a similarity matrix between clusters. We
compute the representation vectors of the nodes from the representation vectors
of the clusters. Let W be the row normalized adjacency matrix and ri be the
representation vector of ci, we compute the representation vectors of node v as
xv =

∑l
i=1

∑
w∈Ci

W [v, w]ri. In this equation, l is the number of clusters, Ci is
a node set included in ci, and W [v, w] is the edge weight between node v and w.

3.1 Similarity Between Clusters

To compute representation vector ri, we factorize the similarity matrix between
clusters. Our approach uses the IncMod method for graph clustering since it
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can compute clusters efficiently [11]. Note that, since the IncMod method can
handle undirected and directed graphs, our approach can handle both graphs.
The IncMod method automatically sets number of clusters l based on graph
structure; we cannot specify the number of clusters.

Our approach determines the similarity matrix between clusters from the
difference from a random graph. Specifically, if S is the l × l similarity matrix
between clusters, we define its elements as follows:

S[i, j]=
∑

v∈Ci

∑
w∈Cj

A[v, w] − 1
vol[G]

∑
v∈Ci

∑
w∈V

A[v, w]
∑

v∈V

∑
w∈Cj

A[v, w]
(2)

Since 1
vol[G]

∑
v∈Cj

∑
w∈V

A[v, w] is the ratio of edge weights connected to clus-
ter ci, if we assume that G is a random graph, the second term of the right
side in Eq. (2), 1

vol[G]

∑
v∈Ci

∑
w∈V

A[v, w]
∑

v∈V

∑
w∈Cj

A[v, w], corresponds to
the expectation of the sum of edge weights connected to cluster ci from cj . On
the other hand, the first term,

∑
v∈Ci

∑
w∈Cj

A[v, w], corresponds to the sum of
edge weights actually connected to cluster ci from cj . Therefore, S[i, j] would be
positive if ci and cj are well-connected compared to a random graph; otherwise,
it would be negative. As a result, S effectively represents the structural rela-
tionships between the clusters. Therefore, even if nodes are included in different
clusters, our approach can place the nodes closely in the representation space if
their clusters have high similarity.

Our approach uses SVD on S to compute the representation vectors of the
clusters. Specifically, we decompose S as S = UΣV� and compute representa-
tion matrix R as R = UΣ

1
2 . If ri is the i-th row vector of R, we use ri as the

representation vector of the i-th cluster. However, using row vectors in R has a
problem in computing the representation vectors of the clusters. Since the size
of S is l× l, the length of ri is l. Therefore, if l < d, the representation vectors of
the clusters would be shorter than the representation vectors of the nodes with
length d. As a result, it is difficult to effectively use the representation vectors
of the clusters to compute the representation vectors of the nodes if l < d.

3.2 Dimensionality Expansion

If l < d, our approach expands the dimensionality of the representation vectors
of the clusters by exploiting a sparse matrix. Let E be the l×d expansion matrix
and ei be the i-th column vector of E, we set the elements of ei as follows:

ei[j] =

⎧
⎪⎪⎨

⎪⎪⎩

√
l

log l with probability log l
2l

0 with probability 1 − log l
l

−
√

l
log l with probability log l

2l

(3)

To obtain R, we project low-dimensional matrix UΣ
1
2 into a high-dimensional

space by using E. Specifically, we expand the dimensionality of the representation
vectors by computing R = UΣ

1
2 E as shown in Algorithm 1. Let ri be the i-th

column vector of matrix R, we have the following property for R:
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Lemma 1. Let E(·) represent expectation, if i �= j holds, we have E(r�
i rj) = 0.

Proof. Let U′ = UΣ
1
2 , since ri = U′ei from Algorithm 1, we have

r�
i rj =

∑l
k=1

(∑l
i′=1 U

′[k, i′]ei[i′]
)(∑l

j′=1 U
′[k, j′]ej [j′]

)

=
∑l

k=1

∑l
i′=1

∑l
j′=1 U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
(4)

If i �= j, we have E(ei[i′]ej [j′]) = 0. As a result, if i �= j, we have

E
(∑l

k=1

∑l
i′=1

∑l
j′=1 U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
)
= 0 (5)

Therefore, we have E(r�
i rj) = 0 from Eq. (4). �

The column vectors in UΣ
1
2 are orthogonal to each other since SVD produces

orthogonal matrices. Specifically, let u′
i be the i-th column vector of U′ = UΣ

1
2 ,

we have (u′
i)

�u′
j = 0 such that i �= j, which is a necessary condition for preserv-

ing pairwise similarities between vectors [1]. On the other hand, Lemma 1 shows
that each column of matrix R would be orthogonal to each other, the same as
matrix U′. Consequently, Lemma 1 indicates that we can preserve the preferable
property for the representation vectors even after dimensionality expansion. In
terms of the quality of dimensionality expansion, we have the following lemma:

Lemma 2. Let V (·) represent variance, the following equation holds if we have
i �= j: V (r�

i rj) =
∑l

k=1

∑l
i′=1

∑l
j′=1(U

′[k, i′])2(U ′[k, j′])2.

Proof. From Eq. (4), we have

V (r�
i rj) =

∑l
k=1 V

(∑l
i′=1

∑l
j′=1 U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
)

(6)

Since i �= j holds, we have
(∑l

i′=1

∑l
j′=1 U ′[k, i′]U ′[k, j′]ei[i′]ej [j′]

)2

=
∑l

i′=1

∑l
j′=1(U

′[k, i′])2(U ′[k, j′])2(ei[i′])2(ej [j′])2

+ 2
∑l

i′=1

∑l
j′=1

∑
i′′<i′

∑
j′′<j′ U ′[k, i′]U ′[k, j′]U ′[k, i′′]U ′[k, j′′]ei[i′]ej [j′]ei[i′′]ej [j′′]

(7)

Since E((ei[i′])2(ej [j′])2)= l
log l

log l
l · l

log l
log l
l =1 and E(ei[i′]ej [j′]ei[i′′]ej [j′′]) =

0,

E
((∑l

i′=1

∑l
j′=1U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
)2)=

∑l
i′=1

∑l
j′=1(U

′[k, i′]U ′[k, j′])2

(8)
As a result, from Eq. (5), (6), and (8), if i �= j, we have

V (r�
i rj) = E

((∑l
i′=1

∑l
j′=1 U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
)2)

− (
E

(∑l
k=1

∑l
i′=1

∑l
j′=1 U

′[k, i′]U ′[k, j′]ei[i′]ej [j′]
))2

=
∑l

k=1

∑l
i′=1

∑l
j′=1(U

′[k, i′])2(U ′[k, j′])2

(9)

which completes the proof. �
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As shown in Lemma 2, since V (r�
i rj) is represented as the cumulative sum-

mation of l elements, it would have a small value as number of clusters l is small.
Besides, as shown in Lemma 2, V (r�

i rj) is independent from number of dimen-
sions d. This indicates that we have the preferable property of the column vectors
in R for the representation vectors regardless of the expanded dimensionality.
Algorithm 1 has the following property:

Lemma 3. Algorithm 1 takes O(d log l+l3) time and O(ld) space for computing
representation matrix R.

Proof. It would take O(d log l) time to compute E. It takes O(l2) time to com-
pute S. Besides, it needs O(l3) time to compute SVD on S. It requires O(l2 log l)
time to compute R = UΣ

1
2 E since ei has log l nonzero elements. It needs O(l2),

O(d log l), and O(ld) spaces to hold S, E, and R, respectively. Therefore, Algo-
rithm 1 needs O(d log l + l3) time and O(ld) space. �

3.3 SVD Computation

The previous section described the approach for the case of l < d. If we have
l ≥ d, we can obtain the representation vectors of the clusters with length d by
computing the SVD of rank d for S. However, since the computation cost of SVD
is O(l3), it is impractical to compute SVD if we have a large number of clusters.
To efficiently compute SVD, we use l × d basic matrix B whose i-th row vector,
bi, is set as follows:

bi[j] =

⎧
⎪⎪⎨

⎪⎪⎩

√
1

log d with probability log d
2d

0 with probability 1 − log d
d

−
√

1
log d with probability log d

2d

(10)

Algorithm 2 details the procedure. It uses basic matrix B to project l × l large
matrix S into an l × d low-dimensional space corresponding to matrix S′ as a
form of S′ = SB. However, since the size of S is l × l, it requires high memory
cost if we directly hold S. To reduce the memory cost, our approach processes
row vectors of S one by one. Specifically, let si be the i-th row vector of S and
s′
i be the i-th row vector of S′, we compute row vectors as s′

i = siB, as shown in
Algorithm 2. Since it does not directly use S, we can reduce the memory cost in
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computing SVD. Let V′� = V�B�, Algorithm 2 computes the representation
matrix by factorizing the following l × l matrix S̃:

S̃ = SBB� = S′B� = UΣV′� (11)

We have the following property for matrix S̃:

Lemma 4. For matrix S̃, E(S̃[i, j]) = S[i, j] holds.

Proof. From Eq. (11), we have

S̃[i, j]=siBb�
j =si[b1b�

j b2b�
j . . . blb�

j ]
�=

∑l
j′=1S[i, j

′]
(∑d

k=1bj′ [k]bj [k]
)

(12)
If j′ = j, we have E

(∑d
k=1 bj′ [k]bj [k]

)
= 1. Otherwise, E

(∑d
k=1 bj′ [k]bj [k]

)
= 0

holds. As a result, we have E(S̃[i, j]) = E
(∑l

j′=1 S[i, j
′]
(∑d

k=1 bj′ [k]bj [k]
))
=

S[i, j], which completes the proof. �

As shown in Eq. (11), we can exactly compute matrix S̃ by using Algorithm 2.
Therefore, this lemma indicates that we can effectively approximate S as S̃.
Concerning the approximation quality, we have the following property;

Lemma 5. We have V (S̃[i, j]) =
(

1
log d − 1

d

)
(S[i, j])2 + 1

d

∑
j′ �=j(S[i, j

′])2.

Proof. From Eq. (12), we have

V (S̃[i, j]) =
∑l

j′=1(S[i, j
′])2 V

(∑d
k=1 bj′ [k]bj [k]

)
(13)

If j′ = j, we have
(∑d

k=1 bj′ [k]bj [k]
)2=

∑d
k=1(bj [k])

4 + 2
∑d

k=1

∑
k′<k(bj [k])

2(bj [k′])2 (14)

In this equation, we have E(
∑d

k=1(bj [k])
4) = d 1

(log d)2
log d
d = 1

log d . Besides, since

k′ < k, we have E((bj [k])2(bj [k′])2) = 1
(log d)2

(log d)2

d2 = 1
d2 . As a result, we have

E(2
∑d

k=1

∑
k′<k(bj [k])

2(bj [k′])2) = d(d − 1) 1
d2 = 1 − 1

d . Therefore, if j′ = j, we
have E

((∑d
k=1 bj′ [k]bj [k]

)2)= 1
log d + 1 − 1

d . As a result, if j′ = j, we have

V
(∑d

k=1bj′ [k]bj [k]
)
=E

((∑d
k=1bj′ [k]bj [k]

)2)−(
E

(∑d
k=1bj′ [k]bj [k]

))2= 1
log d − 1

d

(15)
If j′ �= j, the following equation holds:

(∑d
k=1 bj′ [k]bj [k]

)2=
∑d

k=1(bj′[k])2(bj [k])2+2
∑d

k=1

∑
k′<kbj′[k]bj [k]bj′[k′]bj [k′]

(16)
In this equation, we have E(bj′ [k]bj [k]bj′ [k′]bj [k′]) = 0. Besides,
(bj′ [k])2(bj [k])2 = 1

(log d)2 holds with probability (log d)2

d2 ; (bj′ [k])2(bj [k])2 = 0,
otherwise. Therefore, if j′ �= j, we have

E
((∑d

k=1 bj′ [k]bj [k]
)2)= d 1

(log d)2
(log d)2

d2 = 1
d (17)
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As a result, if j′ �= j, we have

V
(∑d

k=1 bj′ [k]bj [k]
)
= E

((∑d
k=1 bj′ [k]bj [k]

)2)−(
E

(∑d
k=1 bj′ [k]bj [k]

))2= 1
d
(18)

Therefore, we have

V (S̃[i, j]) =
(

1
log d − 1

d

)
(S[i, j])2 + 1

d

∑
j′ �=j(S[i, j

′])2 (19)

which completes the proof. �

Lemma 5 indicates that V (S̃[i, j]) would be small as the dimensions of the
representation d increase. Therefore, Algorithm 2 can effectively compute the
representation vectors as d increases. The computational and memory costs of
Algorithm 2 are as follows:

Lemma 6. Algorithm 2 needs O(l2 + ld2) time and O(ld) space for computing
representation matrix R.

Proof. Since bi would have log d nonzero elements, it would take O(l log d) time
to compute B. It needs O(l2) time to compute S. Since each column of B has
log d nonzero elements, it needs O(l log d) time to compute S′ = SB. It takes
O(ld2) time to compute SVD on S′ and O(ld) time to compute R = UΣ

1
2 .

Besides, it needs O(l) space to hold si and O(ld) space to hold B, S′, and R. As
a result, Algorithm 2 takes O(l2 + ld2) time and O(ld) space. �

3.4 Representation Learning Algorithm

Algorithm 3 gives a full description of our algorithm. It first identifies the clusters
using the IncMod method (line 1). If the number of clusters, l, is smaller than
the number of dimensions, d, it computes the clusters’ representation vectors
from Algorithm 1 (line 2–3). Otherwise, it computes the representation vectors
using Algorithm 2 (line 4–5). It then computes the representation vectors for the
nodes from the obtained representation vectors of the clusters (line 6–7). The
computational and memory costs of Algorithm 3 are given as follows:

Theorem 1. Our approach takes O(m+ d log l+ l3) time and O(nd+m) space
if l < d holds. Otherwise, it requires (m+ l2 + ld2) time and O(nd+m) space.

Proof. The IncMod method needs O(m) time and O(m) space [11]. If l < d, as
shown in Lemma 3, it takes O(d log l+ l3) time and O(ld) space to compute the
representation vectors of the clusters. Otherwise, it needs O(l2 + ld2) time and
O(ld) space, as shown in Lemma 6. It needs O(m) time to compute the repre-
sentation vectors of the nodes. It needs O(nd) space to hold the representation
vectors. As a result, it needs O(m + d log l + l3) time and O(nd + m) space if
l < d holds. Otherwise, it takes (m+ l2 + ld2) time and O(nd+m) space. �
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Algorithm 3. GC-NRL
Input: graph G = (V,E) and number of dimen-

sion d
Output: representation vector xv for each node
1: compute the clusters in G by using IncMod

method;
2: if l < d then
3: compute matrix R from Algorithm 1;
4: else
5: compute matrix R from Algorithm 2;
6: for each v ∈ V do
7: compute xv =

∑l
i=1

∑
w∈Ci

W [v, w]ri;

Fig. 1. Processing time.

Table 1. Characteristics of the experimental graphs.

CC DBLP YT LJ YT

#Nodes 44,034 317,080 1,138,499 3,997,962 65,608,366

#Edges 390,722 2,099,732 5,980,886 69,362,378 3,612,134,270

#Labels 15 50 47 50 50

4 Experimental Evaluation

This section compared our approach to the previous approaches; FastRP [3],
REFINE [14], RandNE [13], FREDE [12], LightNE [9], LouvainNE [2], and
NetMF [10]. As shown in Table 1, we used five real-world graphs; CoCit (CC),
com-DBLP (DBLP), YouTube (YT), com-LiveJournal (LJ), and com-Friendster
(FS). For NetMF, we set the target rank of eigendecomposition to 1,024 as in
[10]. We set negative sampling to 20, as shown in [6]. We set the window size
used in NetMF, as well as FastRP, REFINE, RandNE, and LightNE to ten by
following [10]. We set the number of nodes from which we compute personalized
PageRank to 1,000 for FREDE. For RandNE and FastRP, we set weights used in
the high-order proximity matrices to one, the same as in [10]. For REFINE and
LightNE, we set the number of diffusion steps to two by following the previous
paper [14]. For LouvainNE, we set the damping parameter to 0.01 following [2].
We used the same programming language, C++, to implement the approaches
examined. We conducted the experiments on a Linux server using an Intel Xeon
Platinum 8280 CPU with a 2.70GHz processor and 1.5 TB memory.

4.1 Network Representation Learning Time

We evaluated the network representation learning time of each approach.
Figure 1 plots the processing time to compute the representation vectors from
the given graphs. This experiment set the number of dimensions to d = 128.

As shown in Fig. 1, our approach offers higher efficiency than the previous
approaches; it is up to 5.5, 43.7, 77.3, 99.9, 111.5, 601.0, and 293071.0 times faster
than LouvainNE, FastRP, REFINE, RandNE, LightNE, FREDE, and NetMF,
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Table 2. Node classification performance of each approach.

Approach Micro-F1 [%] Macro-F1 [%]
CC DBLP YT LJ FS CC DBLP YT LJ FS

Proposed 37.127 16.823 2.894 10.599 0.145 23.179 17.539 12.933 9.801 0.836

FastRP 14.268 4.970 0.666 1.250 0.034 5.072 4.692 3.136 2.109 0.463

REFINE 29.310 12.236 2.645 9.902 0.069 20.935 17.419 3.627 7.583 0.202

RandNE 16.659 5.686 2.128 9.449 0.037 1.904 2.766 5.403 3.908 0.587

FREDE 30.150 9.868 2.662 9.790 0.049 19.189 13.367 8.685 7.062 0.833

LightNE 14.651 5.642 2.367 9.461 0.035 4.963 2.456 5.758 4.109 0.575

LouvainNE 36.969 16.613 2.783 10.462 0.144 22.642 17.161 8.235 9.273 0.828

NetMF 13.879 − − − − 8.119 − − − −

respectively. NetMF incurs a high computational cost to apply eigendecompo-
sition to the proximity matrix since the matrix has O(n2) number of nonzero
elements. RandNE and REFINE incur high computation costs to obtain the
orthogonal matrix used in the iterative projection procedure. LightNE also incurs
high computation costs to perform orthonormalization for the basic matrix used
in SVD. FastRP incurs high computation costs since it recursively performs
expensive matrix computations to obtain the representation vectors. FREDE
needs a high computational cost to compute personalized PageRank and SVD
iteratively. The computation cost of LouvainNE is high as the Louvain method
is iteratively performed to obtain the hierarchical structure. On the other hand,
the proposed approach factorizes the small l× l similarity matrix by performing
graph clustering only once to efficiently generate the representation vectors.

4.2 Multi-label Node Classification

This experiment performed node classification. We used the one-vs-rest logis-
tic regression model implemented by LIBLINEAR. In the test phase, the one-
vs-rest model yielded a ranking of labels rather than an exact label assignment.
We took the assumption that was made in DeepWalk; the number of labels for
nodes in the test data is given [8]. Table 2 shows the Micro-F1 and Macro-F1
scores where we set the training ratio to 5%. We set the number of dimensions
to d = 128. For DBLP, YT, LJ, and FS, we omit the results of NetMF since it
failed to compute the representation vectors due to the lack of memory space.

Table 2 indicates that our approach yields higher Micro-F1 and Macro-F1
scores than the previous approaches. This is because, as described in Sect. 3.1,
we exploit the structural similarity matrix to capture the relationships between
clusters and compute the representation vectors of the clusters by factorizing
their similarity matrix. NetMF applies the element-wise matrix logarithm to the
proximity matrix. However, it harms the quality of representations by cutting
small nonzero elements. Even though the base matrices used of FastRP, REFINE,
and RandNE would be orthogonal, they do not accurately capture the structural
property of nodes since the obtained representation vectors are not orthogonal
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after performing the iterative projection procedure. Although FREDE uses per-
sonalized PageRank, it fails to capture the structural property of nodes. Since
the path-sampling approach used in LightNE yields a sparse proximity matrix
where at most m node pairs can have nonzero elements, it has difficulty in effec-
tively representing the proximities between nodes. Since LouvainNE does not
exploit relationships between clusters, it separates nodes independently in the
representation space according to the clusters.

5 Conclusions

This paper addressed the problem of improving the efficiency and accuracy of
network representation learning. We perform graph clustering just once and fac-
torize the similarity matrix between clusters to capture the structural property
of the graph. Experiments show that our approach is more efficient than existing
approaches with greater accuracy.
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Abstract. Deep Learning (DL) has been widely used in many applica-
tions, and its success is achieved with large training data. A key issue is
how to provide a DL solution when there is no efficient training data to
learn initially. In this paper, we explore a meta learning approach for a
specific problem, subgraph isomorphism counting, which is a fundamen-
tal problem in graph analysis to count the number of a given pattern
graph, p, in a data graph, g, that matches p. This problem is NP-hard,
and needs large training data to learn by DL in nature. To solve this prob-
lem, we design a Gaussian Process (GP) model which combines graph
neural network with Bayesian nonparametric, and we train the GP by a
meta learning algorithm on a small set of training data. By meta learning,
we obtain a generalized meta-model to better encode the information of
data and pattern graphs and capture the prior of small tasks. We handle
a collection of pairs (g, p), as a task, where some pairs may be associated
with the ground-truth, and some pairs are the queries to answer. There
are two cases. One is there are some with ground-truth (few-shot), and
one is there is none with ground-truth (zero-shot). We provide our solu-
tions for both. We conduct substantial experiments to confirm that our
approach is robust to model degeneration on small training data, and
our meta model can fast adapt to new queries by few/zero-shot learning.

1 Introduction

Deep Learning (DL) has achieved remarkable success in database systems to sup-
port estimation tasks [12,13]. The success lies in not only end-to-end modeling
but also learning from a large number of training data. Almost all the work focus
on DL techniques assuming that it is possible to collect enough training data to
learn a model. A natural question that arises is what a system can do if there
is only a few training data to learn a model that can be effectively used. The
solution rules out learning a model until the training dataset is large. To allevi-
ate this data insufficient issue, a new learning paradigm called meta learning [6]
is developed by the machine learning community. The target of meta learning
is to learn a model and refine the model with limited or even no training data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 308–319, 2023.
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if any from time to time. We will discuss it with a specific problem – subgraph
isomorphism counting, as it is difficult to come up with a general solution to
deal with the requirement of sufficient training at this stage.

In this paper, we study subgraph isomorphism counting queries that support
a variety of applications. A subgraph isomorphism counting query is specified
by a pair of data graph g and a pattern graph p, aiming to find the number
of matches of p in g. As subgraph isomorphism problem is NP-complete [1],
the counting problem is also difficult to solve. In general, given a set of data
graphs, G = {g1, · · · , gn} and a set of pattern graphs P = ∪1≤i≤nP(gi), where
P(gi) is the set of pattern graphs associated with gi, Liu et al. [4] propose DL
models by feeding the queries (g, p) in G and P with their true counts as the
training data. The models are used to predict unseen queries. The DL models [4]
need hundreds of thousands of training queries, and for each graph gi, its P(gi)
should also be large enough. In real applications, the data graphs may come
from different domains, and the pattern graphs may be diverse regarding the
sizes, node/edge labels, and structures. It is infeasible to exhaustively collect a
sufficiently large training set to synthesise comprehensive features to be learned.

Hence, for subgraph counting, learning a DL model from limited training
pairs of G and P is an inevitable and challenging task. To deal with the problem,
we construct a meta model to learn the prior knowledge of subgraph counting
across multiple tasks. Here, a task is a batch of queries which may be subject
to underlying distribution within the task. For a new task where a small num-
ber of training queries, a.k.a, shots, is possibly available, the meta model can
swiftly adapt to answer new queries that are subject to the similar distribution
of the task. Inspired by deep kernel learning [9] and deep kernel transfer [6],
we devise a new meta model that warps a Graph Neural Network (GNN) as a
special Gaussian Process (GP). For one thing, the GNN preserves the powerful
modeling capability of DL for subgraph counting. For the other thing, Bayesian
nonparametric, inherited by GP, enables learning from scratch over small sam-
ples with a distribution-free assumption. Furthermore, as the new task may not
provide new training data, we adapt the kernel-based meta learning algorithm
to support this zero-shot case in a data-driven fashion.

The contributions of this paper are summarized as follows: ① We study sub-
graph isomorphism counting in a paradigm of meta-learning. We propose a GP
model, called RGIN-GP, that combines GNN and kernel method, aiming to
learn over limited training data. We employ a Bayesian meta-learning algorithm
to train the meta model. ② We provide solutions for both few-shot and zero-shot
cases to deal with a new subgraph counting task. In particular, for zero-shot,
we propose a new data-driven approach to predict the count values for a new
task without any ground-truth. ③ We conduct extensive experiments on real
and synthetic graph datasets for different task configurations. The experimental
results verify the superiority of meta learned RGIN-GP on small training data
and its effectiveness for few/zero-shot learning.
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2 Preliminaries

We model both data graph g and pattern graph p as a labeled undirected graph,
i.e., a tuple G = (V,E,LV , LE , ΣV , ΣE). Here, V is a set of nodes, E is a set of
undirected edges, and LV (LE) is a mapping function that maps a node u ∈ V
(edge e ∈ E) to a node label (edge label) in ΣV (ΣE). We denote neighbors of
node u in G as N(u) = {v|(u, v) ∈ E}.

Subgraph Isomorphism: Given a data graph g = (Vg, Eg, LV , LE , ΣV , ΣE)
and a pattern graph p = (Vp, Ep, LV , LE , ΣV , ΣE), subgraph isomorphism p to
g is an injective function f : Vp �→ Vg such that (1) for every u ∈ Vp, LV (u) =
LV (f(u)), (2) for every (u, v) ∈ Ep, (f(u), f(v)) ∈ Eg, and (3) for every e =
(u, v) ∈ Ep and e′ = (f(u), f(v)) ∈ Eg, LE(e) = LE(e′).

Subgraph Isomorphism Counting Query: A graph database is a set of
small/medium sized graphs, G = {g1, g2, · · · , gn}, with a set of pattern graphs
P = ∪1≤i≤nP(gi), where P(gi) is a set of pattern graphs associated with gi.
For simplicity, we use P = {p1, p2, · · · , pm} to denote the whole possible set of
patterns. Given a data graph g ∈ G, and a pattern graph p ∈ P(g), a subgraph
isomorphism counting query, (g, p), is to find the total number of subgraph
isomorphism matchings of p to g, denoted as c(g, p). Here, a node (edge) in p is
allowed to be unlabeled, indicating its label can be any one in LV (LE).

A regression model for subgraph counting can be built from a collection of
training queries, X = {x1, x2, · · · , x|X|}, where xi = (gi, pi) is a query, associated
with the true count c(xi) (or c(gi, pi)). The model will predict the count ĉ(g∗, p∗)
for an unseen test query (g∗, p∗). Here, either g∗ or p∗, or both g∗ and p∗ does not
appear in the training data X. We use the absolute error as Eq. (1) to evaluate
the accuracy of the estimated count.

abs-error(g∗, p∗) = |c(g∗, p∗) − ĉ(g∗, p∗)| (1)

Note that the regression model can answer the subgraph isomorphism query, i.e.,
whether p∗ is subgraph isomorphism to g∗ by ĉ(g∗, p∗) > 0.5.

Problem Statement: Our problem is to build a meta model M to support
subgraph isomorphism counting tasks, where a task T is a batch of queries
{(gi, pi)}b

i=1 that may be subject to underlying distribution within the task.
The model M is trained by a set of training task D = {T1, · · · , Tn} where
all the queries have the ground-truth. Specifically, a test task T ∗ is the union
of two subsets of queries, S∗ and Q∗, denoted as T ∗ = (S∗,Q∗). Here, S∗ =
{(g∗

i , p∗
i )}k

i=1 is called the support set, where the ground-truth count c(g∗
i , p∗

i )
for each i ∈ [1, · · · k] is given. And Q∗ = {(g∗

j , p∗
j )}b

j=k+1 is called the query set
where each query (g∗

j , p∗
j ) is to be answered by model M. Note that S∗ may be

empty, i.e., |S∗| = 0 (called zero-shot), and is small in size when it is non-empty
(called few-shot). The problem is how to build and exploit M to answer queries
in Q∗ on-demand with the assistant of S∗ which may be empty.

In this paper, we explore the following 5 task configurations where a sin-
gle variable (e.g., a data or pattern graph) is controlled. ① Same Graph Tasks



Learning with Small Data: Subgraph Counting Queries 311

(SameG): Data graphs are from a single domain. The data graphs that appear
in training tasks will not appear in any testing task. The pattern graphs P(gi)
that are associated with a data graph gi will appear together with gi in a task
where gi appears. ② Same Pattern Tasks (SameP). Data graphs are from a sin-
gle domain. The pattern graphs that appear in training tasks will not appear
in any testing task. The data graphs gi will appear in a task together with pj

if pj ∈ P(gi) appears in the task. ③ Hybrid Domains with Same Graph Tasks
(HySameG). Data graphs are from multiple domains whereas data graphs in one
task are from the same domain. For one domain, training and testing tasks fol-
low SameG. ④ Hybrid Domains with Same Pattern Tasks (HySameP). Data graphs
are from multiple domains whereas data graphs in one task are from the same
domain. For one domain, training and testing tasks follow SameP. ⑤ Random
Tasks (Random). Data graphs are from a single domain. Pairs are randomly and
disjointly distributed in all the training and testing task sets.

2.1 GNN-Based Encoder for Subgraph Counting

Recently, a learning framework has been proposed for subgraph isomorphism
counting of a pair of data and pattern graphs in [4]. This neural network frame-
work is composed of graph representation layers, interaction layers, and Multi-
layer perceptron (MLP), to learn M with large training data. [4] explores differ-
ent options for the graph representation layers and the interaction layers, where
a GNN variant, Relational Graph Isomorphism Network (RGIN) coupled with
a sum pooling interaction layer achieves the best trade-off between prediction
accuracy and efficiency. Below, we introduce RGIN and sum pooling interaction
which we deploy as the encoder of our meta model.

RGIN Graph Representation: The K-layer GNN [3] follows a neighborhood
aggregation paradigm to update the representation of each node by alternatively
applying an aggregation function and a combine function in K iterations. Take
the RGIN layer as an example, let e

(k)
v denote the representation of node v

generated in the k-th iteration. For each node v, the aggregate function in Eq. (2)
distinguishes its neighbors by the edge label, and aggregates the |ΣE | types
of neighbors respectively. Here, W

(k)
l is the weight matrix for the neighbors

with edge label l in the k-th layer. Then, the representations for |LE | types are
further summed to one representation a

(k)
v . In the combine function of Eq. (3),

the aggregated a
(k)
v is summed up with the (k − 1)-layer representation e

(k−1)
v ,

which is transformed by the weight W
(k)
0 , and finally is transformed by an MLP

layer.

a(k)
v =

∑

l∈ΣE

∑

u∈N(v),LE((u,v))=l

W
(k)
l e(k−1)

u (2)

e(k)v = MLP(W (k)
0 e(k−1)

v + a(k)
v ) (3)

For the data graph g and pattern graph p, two independent RGIN models gen-
erate the data graph and pattern graph node embedding, respectively.
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Sum Pooling Interaction. The interaction layer is to combine the data graph
and pattern graph embeddings into one pair-wise embedding. The sum pooling
interaction sums up the node embedding of the data and pattern graphs, respec-
tively, and concatenates the two vectors to a long vector, as shown in Eq. (4).

h = Concat

( ∑

v∈Vg

e(K)
v ,

∑

v′∈Vp

e
(K)
v′

)
(4)

The concatenated embedding h will be used to predict ĉ(g, p) for query (g, p).

Fig. 1. Meta Model Train & Test

3 A Meta Learning Approach

Based on the neural network encoder, we introduce how to build a meta subgraph
counting model M. The model is trained on a collection of training tasks D =
{T1, · · · , Tn}, where task-common parameters are learned to capture the prior
knowledge of the subgraph counting tasks. For a test task T ∗ = (S∗,Q∗), the
meta model M will adapt to T ∗ by few-shot learning if |S∗| > 0 or by zero-shot
learning if |S∗| = 0 to perform task-specific estimations.

Our basic idea is inspired by Deep Kernel Transfer [6] which learns a task-
common Gaussian Process (GP) model shared by multiple query tasks. We pro-
pose a model called RGIN-GP that warps the RGIN with sum pooling as a
feature transfer layer in a kernel function. The neural network parameter and
the kernel hyperparameter are jointly optimized by deep kernel learning [9]. Con-
cretely, in the training process illustrated in Fig. 1(a), RGIN-GP computes the
kernel function for each training task Ti as a batch, where the parameters are
optimized by minimizing the negative marginal (log) likelihood of task Ti. In
testing, for a test task T ∗ = (S∗,Q∗), the model leverages the kernel matrix of
the task T ∗ to predict the queries in Q∗ conditioned on the support set S∗ by
Bayesian inference (Fig. 1(b)). In the case of zero-shot, i.e., |S∗| = 0, we take a
data-driven approach to build the kernel by making use of one task, Ti, drawn
from the training data (Fig. 1(c)).
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3.1 RGIN Gaussian Process (RGIN-GP)

To learn over a small set of samples, nonparametric modeling is an effective
method in Bayesian learning. Inspired by this, we construct a kernel function
for RGIN with a sum pooling layer by deep kernel learning [9]. Given an input
x = (g, p) as a pair of data and pattern graphs, the deep kernel function K
measures the similarity of a pair of inputs xi, xj as

K(xi, xj ;w, θ) = K(F(xi;w),F(xj ;w); θ) (5)

Here, F(x;w) is a non-linear transformation specified by a deep neural network
with parameters w, i.e., the RGIN together with the sum pooling interaction
layer. And the function K(hi, hj ; θ) is a stationary kernel function that is invari-
ant to input transformation with the hyperparameter θ, e.g., the RBF kernel.

Given n training inputs, X = {x1, · · · , xn}, the deep kernel K defined
in Eq. (5), the model f(X) is a Gaussian Process as Eq. (6) [7] that we
call RGIN-GP, where μX = [μ]n is an assumed constant mean and KX,X =
[K(xi, xj ;w, θ)]n×n is the covariance function.

f(X) = [f(x1), · · · , f(xn)]T ∼ N (μX ,KX,X) (6)

To make prediction for the testing inputs X∗ = {x∗
1, · · · , x∗

m}, we need to com-
pute the conditional distribution p(f(X∗)|f(X)) as the prediction, assuming
the output is disturbed by a Gaussian noise N (0, σ2). It is also proved to be a
Gaussian distribution as Eq. (7), where the expectation and covariance of the
predictive distribution can be solved in closed form in Eq. (8)–(9).

f(X∗)|f(X) ∼ N (E(c∗), C) (7)

E(c∗) = μX + KT
X,X∗ [KX,X + σ2I]−1(c − μX) (8)

C = KX∗,X∗ − KT
X,X∗ .[KX,X + σ2I]−1KX,X∗ (9)

Here, c = [c(xi)]n is the ground-truth of the input X. KX,X = [K(xi, xj ;w,
θ)]n×n, KX,X∗ = [K(xi, x

∗
j ;w, θ)]n×m and KX∗,X∗ = [K(x∗

i , x
∗
j ;w, θ)]m×m are the

train-train, train-test, test-test kernel matrices, respectively. The expectation
E(c∗) will be treated as the explicit prediction counts ĉ, and the diagonal element
of matrix C in Eq. (9) measures the variance of the prediction.

Training the GP is to fit the neural network weight w and the kernel hyper-
parameter θ by minimizing the negative (log) likelihood of X as Eq. (10).

Lmll = − log p(c|X) ∝ cT [KX,X + σ2I]−1c + log |KX,X + σ2I| (10)

To train an RGIN-GP, the neural network weights w and the kernel hyperpa-
rameter θ are jointly optimized by stochastic gradient descent.

3.2 Meta Learning for RGIN-GP

Given training task set D = {T1, · · · , Tn}, we discuss how to train an RGIN-GP
as a meta model and test it in the few-shot and zero-shot scenarios.
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Meta Training: The meta training process is to learn (w, θ) of the kernel K
that minimizes the negative marginal likelihood across all the training tasks. As
shown in Fig. 1(a), for each gradient step, a task T is sampled from the training
tasks, then the marginal likelihood Lmll (Eq. (10)) is computed over all the pairs
in the task, i.e., S ∪Q, and the parameters (w, θ) are updated for that task. The
meta training algorithm is different from training the kernel from scratch, where
marginalization of the likelihood is computed on all data instead of a distinct
task. The learned parameters (w, θ) better leverage the structure of the tasks,
which are shared across all tasks as the task-common parameters.

Table 1. Profile of Datasets

Dataset Data Graphs Pattern Graphs # (g, p) c(g, p)
|Vg| |Eg| |ΣV | |ΣE | # g |Vp| |Ep| |ΣV | |ΣE | # p

MUTAG [10, 28] [20, 66] [3, 7] [3, 4] 188 [3, 4] [2, 3] [1, 2] [1, 2] 24 4,512 [0, 156]
SYN-S [10, 28] [20, 66] [3, 7] [3, 4] 30,681 [3, 4] [2, 3] [1, 2] [1, 2] 240 30,681 [0, 126]
SYN-M [10, 56] [22, 132] [3, 7] [3, 4] 102,057 [3, 8] [2, 12] [1, 2] [1, 2] 1,680 102,057 [0, 128]
SYN-L [64, 512] [64, 2, 048] [16, 64] [16, 64] 127,897 [3, 16] [2, 16] [2, 16] [2, 16] 100 127,897 [0, 512]

Few-shot Testing: Given a testing task T ∗ = (S∗,Q∗) where |S∗| �= 0, the
meta model will adapt to the task based on its support set and the task-common
parameters learned. As shown in Fig. 1(b), the predictive distribution of Eq. (7)
for the query set Q∗ is computed by conditioning on the support set S∗, which
analytical solution is given in Eq. (8)–(9).

Zero-shot Testing: Given a testing task T ∗ = (S∗,Q∗) where |S∗| = 0, the
meta model cannot adapt to the task based on its support set. In the litera-
ture [10], zero-shot learning is mainly done for classification where the classes
are limited. Different from classification, To make predictions for the regression
task, we utilize training tasks. The basic idea is to borrow some training task
Ti as the support set for the new coming task T ∗ as shown in Fig. 1(c). The
assumptions are that the training tasks and test task may be similar regarding
data/pattern graphs, and they share some specific task structures. The kernel
K leverages the similarity. First, a training task is sampled randomly from the
training data. Then, a set of auxiliary data (X, c) is randomly drawn from the
task to serve as the support set and is used to compute the posterior of the
parameters p(ρT ∗ |c,X).

3.3 Feature Encoding

Encoding initial node representation e
(0)
v for RGIN-GP in the neural network

mapping F is important in learning. For subgraph isomorphism, the node/edge
labels of a pattern node serve as the predicates of the pattern, and are used
to filter nodes in the data graph. However, the widely used one-hot encoding
of the labels is lack insight for the analytical subgraph counting. We utilize
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frequency-based encoding and pre-trained embedding-based encoding to encode
label information and topological structure, which are specifically proposed for
subgraph counting tasks [13].

4 Experimental Studies

In this section, we give the test setting and report our experimental results.
Implementation and Setting: We give the settings of RGIN-GP. For the neu-
ral network transformation F , the number of RGIN layers is 3, where each
hidden layer has 64 units and a Dropout probability of 0.2. For the station-
ary kernel function K, we use the spectral mixtures based kernels [8]. For the
embedding based encoding, we try 4 scalable task-independent node embed-
ding approaches, and finally choose ProNE [11] as the embedding algorithm for
the label-augmented graph. Following the setting in [11], the dimension of the
embedding is 128. The learning framework is built on PyTorch. We use the Adam
optimizer with a decaying learning rate to train our models via 200 epochs. The
initial learning rates αw and αθ are set to 5e-4 and 1e-3 empirically, respectively.

Datasets: We use one real graph dataset MUTAG, and three synthetic graph
datasets SYN-S, SYN-M and SYN-L. MUTAG collection has 188 unique com-
pounds where nodes represent atoms and edges represent bonds. The 24 patterns
are from [4]. The three synthetic datasets are generated by the generator of [4].
SYN-S follows the same scale as MUTAG, and SYN-M enlarges the scale of the
MUTAG data and pattern graphs two times. SYN-L follows the largest scale of
the data and pattern graphs in [4]. Table 1 lists the profile of the four datasets.

Baseline Approaches: We compare meta learned RGIN-GP (RGIN-GP) with the
neural network baselines RGIN+SumPool and RGIN+DIAMNet [4].

Evaluation Metrics: We use the mean of abs-error (Eq. (1)), i.e., MAE, of the
counts and the accuracy of the subgraph isomorphism query to evaluate the
model performance.

Exp-1: RGIN-GP vs. Neural Network Models. We first compare our
RGIN-GP with its neural network counterpart RGIN+SumPool, and a more power-
ful model RGIN+DIAMNet on the MUTAG dataset. For RGIN-GP, we organize the
training and testing pairs as Random tasks with 128 pairs in each task. Testing is
conducted in the zero-shot mode with 128 auxiliary pairs drawn from the training
data. For the two neural network models, they are trained by standard supervised
learning. Table 2 shows the testing performance on 20% testing pairs when the
training pairs are set to 60%, 40%, and 20% of the overall pairs, respectively. In
general, the 3 RGIN-GP variants remarkably outperform the two neural network
models w.r.t. MAE. The neural network RGIN+SumPool and RGIN+DIAMNet suf-
fer from model degradation. The implication of this experiment is our RGIN-GP
is robust, data-efficient and much easier to train than its neural network coun-
terpart.
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Table 2. MAE (↓)/Accuracy (↑) on MUTAG and SYN-L

Train Ratio Model MUTAG SYN-L

MAE Acc. MAE Acc.

0.6 RGIN+SumPool 10.41 ± 6.25 0.89 ± 0.02 14.47 ± 4.32 0.95 ± 0.01

RGIN+DIAMNet 3.29 ± 0.82 0.83 ± 0.06 5.55 ± 3.58 0.97 ± 0.00

RGIN-GP(onehot) 0.96 ± 0.15 0.92 ± 0.07 2.03 ± 0.02 0.93 ± 0.00

RGIN-GP(freq) 0.92 ± 0.18 0.94 ± 0.04 2.05 ± 0.01 0.93 ± 0.00

RGIN-GP(prone) 0.87 ± 0.13 0.93 ± 0.02 2.03 ± 0.01 0.93 ± 0.00

0.4 RGIN+SumPool 8.78 ± 9.14 0.88 ± 0.03 6.04 ± 3.78 0.93 ± 0.04

RGIN+DIAMNet 7.72 ± 1.21 0.85 ± 0.36 5.62 ± 2.30 0.95 ± 0.03

RGIN-GP(onehot) 0.94 ± 0.14 0.92 ± 0.06 2.21 ± 0.06 0.93 ± 0.00

RGIN-GP(freq) 0.87 ± 0.12 0.91 ± 0.05 2.21 ± 0.05 0.93 ± 0.00

RGIN-GP(prone) 0.82 ± 0.13 0.89 ± 0.04 2.19 ± 0.05 0.93 ± 0.00

0.2 RGIN+SumPool 8.65 ± 5.12 0.87 ± 0.02 7.07 ± 2.63 0.96 ± 0.01

RGIN+DIAMNet 8.66 ± 5.11 0.87 ± 0.02 5.30 ± 3.34 0.98 ± 0.01

RGIN-GP(onehot) 1.19 ± 0.23 0.84 ± 0.02 2.27 ± 0.07 0.93 ± 0.00

RGIN-GP(freq) 1.21 ± 0.07 0.87 ± 0.05 2.19 ± 0.03 0.93 ± 0.00

RGIN-GP(prone) 1.21 ± 0.08 0.84 ± 0.01 2.20 ± 0.04 0.93 ± 0.00

Exp-2: Sampled Data for Few/Zero-Shot Testing. We investigate the
effect of adding sampled data from the training tasks to the support set of the
test task in the zero-shot and few-shot scenarios for the 5 task types. For SameG,
SameP and Random, 7 tasks from MUTAG are used for training. For HySameG and
SameP, 239 tasks from SYN-S are added to the training tasks. We test 28 MUTAG
tasks by varying the number of shots and the auxiliary pairs in 0 ∼ 64 and
0 ∼ 128, respectively. The size of all the tasks is 128. The testing performance
over the 5 task configurations is shown in Table 3. For SameG, HySameG, and
Random, the upper-left cell of the table is the worst performance for zero-shot
without auxiliary data and the lower-right cell is the best performance for 64
shots with 128 auxiliary. As the number of shots or auxiliary pairs increases, the
test performance improves from the upper-left to the upper-right, lower-left and
upper-right. For a fixed size support set, the more data from the shot, the better
the performance. However, we find for tasks with the type SameP and HySameP,
adding auxiliary data from training tasks will degrade the MAE and accuracy.
Recall that SameP and HySameP task is one new pattern p∗ for different data
graphs G in a database. We observe that for different patterns, p1 and p2, their
true count distributions of G are rather different, because of the different topology
between p1 and p2. A large discrepancy between the ground-truth distribution
makes the zero-shot transfer difficult.

Exp-3: Comparison with Algorithmic Approaches. We compare our meta
learned RGIN-GP with traditional subgraph counting algorithms, including 7
approximate algorithms in the GCARE benchmark [5], and an exact counting
algorithm VF2 [2] implemented by NetworkX. The MAE, quantiles of the error
and the total counting time are presented in Table 4. The prediction results of
RGIN-GP are collected by 5-fold cross-validation where one model is trained over
20% MUTAG pairs that are organized in 7 tasks with type of Random and size of
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Table 3. Test MAE (↓)/Accuracy (↑) for Zero-shot

MAE/Acc.
# auxiliary data
0 16 32 64 128

SameG # shots

0 8.06/0.72 4.01/0.82 3.13/0.84 2.37/0.84 2.24/0.86
1 6.97/0.74 3.5/0.83 2.84/0.82 2.29/0.84 1.73/0.87
4 6.22/0.77 3.14/0.83 2.71/0.85 2.28/0.85 1.81/0.87
16 3.65/0.82 2.68/0.83 2.24/0.85 2.04/0.86 1.79/0.87
64 1.80/0.85 1.67/0.86 1.67/0.86 1.49/0.87 1.48/0.87

SameP # shots

0 7.08/0.75 15.02/0.57 15.78/0.50 15.00/0.54 14.92/0.48
1 6.10/0.77 11.11/0.52 12.45/0.54 16.45/0.40 14.54/0.42
4 4.54/0.80 11.84/0.51 11.65/0.52 11.27/0.55 11.01/0.53
16 2.51/0.84 6.48/0.54 6.68/0.63 6.51/0.64 10.09/0.57
64 1.34/0.88 2.61/0.76 2.57/0.76 3.89/0.70 3.68/0.69

HySameG # shots

0 10.92/0.28 3.68/0.86 3.02/0.88 2.23/0.89 1.67/0.91
1 8.51/0.49 3.76/0.86 2.69/0.87 2.01/0.90 1.81/0.90
4 4.91/0.81 3.61/0.86 2.44/0.89 2.13/0.90 1.71/0.91
16 3.71/0.87 2.89/0.88 1.88/0.89 1.77/0.90 1.59/0.91
64 1.49/0.89 1.35/0.90 1.29/0.90 1.21/0.91 1.11/0.92

HySameP # shots

0 10.22/0.23 11.35/0.27 10.60/0.30 10.93/0.32 9.62/0.37
1 7.67/0.32 7.77/0.36 9.54/0.36 8.32/0.36 9.34/0.42
4 4.67/0.49 5.94/0.48 5.96/0.46 6.79/0.48 5.41/0.50
16 1.95/0.78 2.50/0.72 2.45/0.71 2.54/0.69 2.62/0.70
64 0.86/0.90 1.00/0.84 1.08/0.85 1.05/0.85 1.02/0.88

Random # shots

0 8.05/0.73 4.38/0.81 2.72/0.84 1.79/0.85 1.41/0.85
1 7.17/0.76 3.83/0.82 3.45/0.83 1.74/0.84 1.43/0.87
4 6.00/0.78 3.49/0.82 2.39/0.84 1.84/0.85 1.46/0.86
16 3.98/0.79 2.21/0.82 2.06/0.81 1.45/0.84 1.26/0.85
64 1.81/0.86 1.61/0.86 1.51/0.86 1.35/0.86 1.23/0.88

128. The prediction is conducted by zero-shot testing with 128 auxiliary pairs. In
Table 4, RGIN-GP achieves the lowest MAE among the 8 approximate approaches
and its prediction is 6× faster than the exact algorithm VF2.
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Table 4. Comparison with Subgraph Counting Algorithms

Method RGIN-GP WJ CS CSET IMPR JSUB BSK SumRDF VF2

MAE 1.32 8.05 25.35 7.87 40.28 7.69 156.15 6.48 0
5% −4.66 −48 −56 −56 −24 −48 0 −45 0
25% 0.01 −4 −4 −4 0 −4 0 0 0
50% 0.01 0 0 0 0 0 0 0 0
75% 0.35 0 0 0 0 0 66 0 0
95% 3.68 0 0 0 252.96 0 932 2.21 0
Time (s) 0.14 0.59 0.98 0.55 0.82 0.61 693.02 40.55 0.89

5 Conclusion

In this paper, we study an NP-complete problem, subgraph isomorphism count-
ing, by DL techniques. To alleviate the reliance on a large volume of training
data, we devise a GP, called RGIN-GP. The model is trained end-to-end by a
meta learning algorithm, which aims to exploit the knowledge prior of train-
ing tasks. Compared with the baseline approach, the meta trained RGIN-GP
reduces the MAE from 8 to 1, with only one thousand training samples.
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Abstract. Heterogeneous information networks (HINs) are ubiquitous
in real-world social systems. To effectively learn representations of HINs,
Graph Neural Networks (GNNs) have been widely studied as a powerful
tool. Nevertheless, there is growing concern that GNNs are prone to make
biased predictions in critical decision-making scenarios such as link pre-
diction and social recommendation. Despite recent progress on fair graph
learning, few attempts have been made toward promoting fairness in HIN
embedding models. In this paper, we study the problem of mitigating
link prediction bias in HINs. First, we formalize the definition of fair-
ness in link prediction in HINs, and design fairness measures for the link
prediction task. Second, we propose a flexible and model-agnostic debi-
asing framework named FairHELP for learning fair embeddings in HINs.
Third, we conduct extensive experiments on three real-world datasets.
The results validate the effectiveness of the proposed fairness measures
and the FairHELP framework in achieving fair and accurate link predic-
tion results.

Keywords: Heterogenegous Information Networks · Graph Neural
Networks · Link Prediction · Algorithmic Fairness

1 Introduction

Heterogeneous information networks (HINs) contain abundant information with
various types of nodes and multi-typed structural relations. To better process
and analyze HINs, heterogeneous network embedding has emerged as a funda-
mental technique for various downstream network analysis tasks, such as node
classification, link prediction, clustering, etc. Among the tasks, link prediction,
aiming at inferring missing relations or future interactions in the network, plays
a vital role in various social network mining applications, such as social recom-
mendations [14].
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Recently, Graph Neural Networks (GNNs) [10] have achieved significant
progress in network representation learning. The key idea of GNNs is to learn
node embeddings via neighborhood message passing and information aggrega-
tion, which has achieved superior performance compared to traditional network
embedding techniques in various network analysis tasks [11,12]. Inspired by the
strength of GNNs in learning effective network representations, a myriad of het-
erogeneous graph neural network models have been proposed to deal with the
more complex information in HINs, such as RGCN [15], HAN [18], HGT [8], etc.

Despite the success of the heterogeneous GNN models in achieving state-of-
the-art performance, little attention has been paid to understanding the fair-
ness and trustworthiness of HINs. Recently, some research has revealed that
GNN models are prone to inheriting and exacerbating the data bias during the
message-passing process [4]. Although there have been progress in developing
fair GNNs [1,4,13], very few works have concentrated on fairness issues in HINs.
For example, in the link prediction task for recommending jobs to applicants,
the embedding algorithms may be more likely to recommend high-salary jobs to
males, exacerbating discrimination against females with similar qualifications.

In this paper, we focus on learning fair HIN embeddings for link prediction via
Graph Neural Networks. Different from the existing fair GNN models that focus
on homogeneous networks, we aim to mitigate the semantic disparity caused by
the heterogeneity of demographic groups (race, gender, etc.) in HINs. Specifi-
cally, we seek to solve two main challenges: 1) how to measure fairness in HINs
with heterogeneous sensitive attributes; 2) how to mitigate bias in heterogeneous
graph neural networks for link prediction. To address these above problems, we
propose a novel HIN embedding framework named FairHELP. First, we for-
mally provide appropriate fairness measures for link prediction in HINs. Then,
we propose an adversarial learning based HIN embedding framework by encour-
aging the model to learn de-biased link embeddings that are independent of the
intrinsic link semantics. The experiments demonstrate that FairHELP produces
fair and accurate link prediction performance compared with state-of-the-art
baselines.

2 Related Works

2.1 Heterogeneous Information Network Embedding

Over the past few years, significant progress has been made toward hetero-
geneous information network embedding. Metapath2vec [5] and HIN2VEC [6]
adopt meta-paths constrained random walks to extract complex semantics in
HINs. Recently, inspired by the success of GNNs, RGCN [15] and CompGCN [17]
design the relation-specific feature aggregation mechanisms for embedding learn-
ing in HINs. HAN [18] and HGT [8] adopt different attention mechanisms for
heterogeneous node feature aggregation. In summary, the heterogeneous GNN
models have become a powerful tool in learning HIN embeddings for various
network analysis tasks.
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2.2 Fairness in Machine Learning

In the research area of network representation learning, increasing research
attention has been focused on the fairness of network representations [2,13].
Recently, FairDrop [16] proposes a pre-processing method which reduces the
homogeneity of the network to promote fairness. FairGNN [4] proposes a GNN-
based fairness-aware learning framework for fair node classification. FairHIN [19]
employs several bias-mitigating techniques including data pre-processing, model
in-processing, and post-processing to improve fairness in HIN embeddings. In
summary, most existing methods are designed for homogeneous networks, and
the fair embedding methods for heterogeneous networks are highly demanded.

3 Preliminaries

Definition 1 (Heterogeneous Information Network Embedding). A
heterogeneous information network (HIN) is defined as a graph G =
(V, E ,A,R) with a node mapping function φ : V → A, and an edge mapping
function ψ : E → R, where V and E denote nodes and edges in G. A and R
denote the sets of node types and edge types, and |A| + |R| > 2. HIN embed-
ding aims to learn a low-dimensional vector zi ∈ R

d for each node vi ∈ V, where
d is the embedding dimension, and d � |V|.

Definition 2 (Semantic Disparity for Heterogeneous Link Prediction).
In the HIN G, each node v ∈ V is mapped to a node type φ(v) ∈ A, and is
associated with a binary sensitive attribute sφ(v) ∈ {0, 1}. For the link prediction
task, we aim at predicting the existence of links with type r(φ(v), φ(u)) ∈ R. We
define the semantic subgroup srρ

for link type r(φ(v), φ(u)) as the composition
of the demographic groups of the node pair (v, u), where S = {srρ1, srρ2, ..., srρT }
is the semantic subgroup set with T types of semantics. The semantic disparity
for heterogeneous link prediction refers to the discrepancy of the model in
favoring different link semantic subgroups in S by making positive predictions.

Definition 3 (Demographic Parity Discrepancy (DPd)). Demographic
Parity [3] requires the positive predictions of link ŷ to be independent of the
semantic subgroups, i.e., ŷ ⊥ S. Specifically, the Demographic Parity Discrep-
ancy (DPd) is defined as:

DPd = max
srρ∈S

E[ŷ = 1|s = srρ
] − min

srρ∈S
E[ŷ = 1|s = srρ

]. (1)

Definition 4 (Equalized Odds Discrepancy (EOd)). To consider the posi-
tive predictions with ground truth in evaluation, we follow the definition of Equal-
ized Odds [3] and propose Equalized Odds Discrepancy (EOd) as:

EOd = TPRd + FPRd, (2)

where TPRd and FPRd is defined as:
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TPRd = max
srρ∈S

E[ŷ = 1|y = 1, s = srρ
] − min

srρ∈S
E[ŷ = 1|y = 1, s = srρ

], (3)

FPRd = max
srρ∈S

E[ŷ = 1|y = 0, s = srρ
] − min

srρ∈S
E[ŷ = 1|y = 0, s = srρ

]. (4)

Definition 5 (Demographic Parity Variance (DPv) and Equalized
Odds Variance (EOv)). As the DPd and EOd neglect the distribution differ-
ence among the intermediate groups, we propose Demographic Parity Variance
(DPv) and Equalized Odds Variance (EOv) as:

DPv = Var
srρ∈S

(E[ŷ = 1|s = srρ
]), (5)

EOv = TPRv + FPRv. (6)

where Var(·) is the variance function, TPRv and FPRv are the variances of TPR
and FPR across all link semantic subgroups in S.

4 Methods

In this section, we propose a novel Fairness-aware Heterogeneous information
network Embedding framework for Link Prediction named FairHELP. We pro-
vide an overall framework of FairHELP in Fig. 1, which consists of a GNN-based
network embedding generator fG , a link predictor fL, and a semantic subgroup
discriminator fD. We elaborate on each part in detail as follows.

Fig. 1. The overall framework of the proposed FairHELP. In the example movie net-
work, user nodes have gender (Male, Female) as the sensitive attribute, and movie
nodes have genre (Non-Romance, Romance) as the sensitive attribute. The framework
contains the following three parts. (1) Network embedding generator, (2) link predictor,
and (3) semantic subgroup discriminator.
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4.1 Network Embedding Generator

In this section, we introduce the basic structure of the GNN model as the net-
work embedding generator fG . The core idea of GNNs is to aggregate attribute
message from the neighboring nodes iteratively. For a target node v, the message
at the l-th layer is aggregated as:

MSG(l)
v = f

(l−1)
AGG

({
h(l−1)

u : u ∈ N (v)
})

, (7)

where N (v) is the neighboring nodes of v, and h(l−1)
u is the feature vector of node

u at the (l-1)-th layer, and fAGG is the aggregation function. For heterogeneous
GNN models, without loss of generality, the aggregated message in Eq. (7) can
be extended as:

MSG
(l)
v =

{
f
(l−1)
AGG(φ1)

({
h
(l−1)
u : u ∈ N φ1 (v)

})
, ..., f

(l−1)
AGG(φN )

({
h
(l−1)
u : u ∈ N φN (v)

})}
,

(8)
where φ1, ..., φN ∈ A are the node types in G. Notably, fAGG can take various

formats based on heterogeneous information types. For example, the HAN model
[18] performs attention-based dual-level aggregations based on both node-level
and semantic-level information, while HGT [8] performs different aggregations
according to both node types and link types, etc.

After the aggregation process, the target node v’s feature at the l-th layer is
updated based on the message at this layer and its feature hv at the previous
layer:

h(l)
v = f

(l)
UPD

(
h(l−1)

v ,MSG(l)
v

)
, (9)

where fUPD is the update function.
After L layers of message passing and feature update, node v’s embedding

h(L)
v at the output layer is denoted as:

h(L)
v = f

(L)
G (G,xv) , (10)

where xv is the initial feature vector of node v, and f
(L)
G is the GNN-based

network embedding generator with L layers. In this way, we obtain the node
embeddings with both structural and attribute similarity in the original network.
In our proposed framework, the network embedding generator fG is flexible as
any GNNs with a structure that follows Eq. (8)–(9) can be utilized. With the
generated network embedding, we then employ a link predictor for task-specific
model training.

4.2 Link Predictor

In the link prediction settings, the model takes node embedding pairs to compute
link probabilities via a scoring function, such as dot product, cosine similarity,
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etc. For a node pair (v, u) in HIN G, instead of directly computing the link
probability scores, we first obtain the link embedding from the node embeddings
via the Hadamard product operator [7]1:

hvu = hv � hu. (11)

Then we adopt a linear neural network to compute the link probability score:

ŷvu = σ
(
h�

vu · w
)
, (12)

where w ∈ R
d is the weight parameter, and σ is the sigmoid activation function.

For model training, we follow the contrastive learning methods [2] to max-
imize the likelihood of true links compared to the negative link samples. The
binary cross entropy loss for the link prediction task is formulated as follows:

min
θG ,θL

Ltask = − 1
|E+

r ∪ E−
r |

∑

(v,u)∈E+
r ∪E−

r

[yvu log (ŷvu) + (1 − yvu) log (1 − ŷvu′)] ,

(13)
where E+

r and E−
r represent the true links and negative link samples of link type

r, respectively. ŷvu is the output of the link prediction results for node pair (v, u),
and yvu is the ground truth link label. θG and θL are model parameters of fG
and fL.

4.3 Semantic Subgroup Discriminator

It has been demonstrated that network embedding generated by GNN models
may inherit bias from the data [1,4], which makes the link predictor produce
unfair predictions. In this section, we propose to eliminate the bias from the
link embeddings. Specifically, we aim to answer the following question: will the
algorithm make decisions regardless of the links’ semantic subgroups? In other
words, will the model be biased against specific semantic subgroups?

Ideally, for a link (v, u), given the link’s semantic subgroup as the sensi-
tive attribute svu and the link embedding hvu, we make the following fairness
assumption of independence:

fL(hvu) ⊥ svu ∀(v, u) ∈ E , (14)

where fL(hvu) is the model’s output from the link predictor. Equation (14)
indicates that, for a fair prediction model, the predictions of link existence would
be the same regardless of the link semantics.

To achieve the above independence assumption, we propose an adversarial
learning framework as follows. Specifically, we adopt a link semantic subgroup
discriminator fD which tries to predict svu for each link (v, u) ∈ E given the

1 Other operators such as concatenation are also applicable here, we leave the analysis
of different operators for future studies.
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link embedding hvu. Meanwhile, the embedding generator fG aims to learn link
embeddings that fool the discriminator fD to make inaccurate predictions on
the link semantic subgroup svu. The above training process can be written as a
min-max game:

min
θG

max
θD

Ladv = −
∑

(v,u)∈E
Ls(fD(fG(G,xu) � fG(G,xv), svu)), (15)

where fG(G,xv) � fG(G,xu) generates the link embedding hvu, and Ls is the
cross-entropy classification loss for predicting sensitive attribute svu from hvu.

4.4 Model Training

We define the overall loss as a combination of link prediction loss and adversarial
loss:

L = min
θG ,θL

max
θD

(Ltask + αLadv) , (16)

where θG , θL, and θD are the parameters of fG , fL, and fD, respectively. α is a
balancing parameter that controls the contribution of the adversarial debiasing
framework.

For model training, we first train the network embedding generator and the
link predictor to optimize on θG and θL, then we fix θG and θL to train the dis-
criminator and update θD. We optimize the overall loss of the model in Eq. (16)
via the ADAM optimizer [9].

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments on three real-world HIN datasets: Movie-
Lens2, DBLP3, and LastFM4. We summarize the dataset statistics in Table 1.

Evaluation Metrics. We adopt the prediction Accuracy and Area Under ROC
(AUROC) scores to evaluate the link prediction performance as utility metrics.
For fairness evaluation, we employ the Demographic Parity Discrepancy (DPd),
Equalized Odds Discrepancy (EOd), Demographic Parity Variance (DPv), and
Equalized Odds Variance (EOv) defined in Sect. 3 as fairness metrics.

2 http://www.movielens.org/.
3 http://arnetminer.org/billboard/citation.
4 http://ir.ii.uam.es/hetrec2011.

http://www.movielens.org/
http://arnetminer.org/billboard/citation
http://ir.ii.uam.es/hetrec2011
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Table 1. The statistics of the datasets.

Datasets A-B #A #B #A-B Target X-Y Sens. X Sens. Y

MovieLens User-Movie 943 1,682 100,000 User-Movie gender genre

DBLP Paper-Author 14,376 14,475 41,794 Paper-Author topic area

Paper-Conf 14,376 20 14,376

LastFM Artist-User 17,632 1,892 92,834 Artist-User popularity activeness

Artist-Tag 17,632 1,088 23,253

User-User 1,892 1,892 25434

*Sens.: sensitive attribute.

Baselines. We compare FairHELP with the following state-of-the-art meth-
ods, including random walk-based methods, fairness-aware methods, and GNN-
based methods. The random walk-based methods include Metapath2vec [5].
For fairness-aware methods, we adopt FairHIN [19] with its two variations:
FairHIN-dp and FairHIN-eo. For the GNN-based methods, we choose
RGCN [15], CompGCN [17], HAN [18], and HGT [8]. We compare the
above GNN-based models with the FairHELP integrated adaptations, denoted
as RGCN-fair, CompGCN-fair, HAN-fair, and HGT-fair, respectively.

5.2 Bias Mitigation Performance in Link Prediction

We report the utility and fairness results in Table 2. From the results, we can
observe that, 1) the FairHELP framework achieves the fairest results
across all datasets compared to the vanilla versions of the GNN models. 2)
FairHELP can maintain a good link prediction performance in terms
of Accuracy and AUROC compared to Metapath2vec and FairHIN. Although
Metapath2vec and FairHIN has relatively fair link prediction results compared
with other baselines, they perform poor in prediction utility, especially for
FairHIN. A possible explanation is that since FairHIN directly adds demographic
parity and equal opportunity to the loss function, it encourages the model to give
uniform predictions for all links. Hence the fairness may look “well ensured”, but
the model utility is not guaranteed in this circumstance. In summary, the results
validate that our proposed FairHELP can achieve an excellent fairness-accuracy
trade-off among all baselines.

5.3 Parameter Analysis

To better analyze the contribution of the adversarial loss in mitigating bias, we
vary the balancing parameter α in {0.001, 0.005, 0.01, 0.05, 0.1}. Figure 2 shows
the performance of four GNN-based FairHELP models on three datasets in terms
of DPd and accuracy. We observe that, with an increasing value of α, the DPd
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Table 2. The comparison results of the proposed FairHELP with the baselines. We
show the average performance (%) over five independent runs. Arrows (↑,↓) indicate
the direction of better performance. The shaded area shows that FairHELP improves
the link prediction fairness, meanwhile keeping the model utility.

Dataset Models Accuracy(↑) AUROC(↑) DPd(↓) EOd(↓) DPv(↓) EOv(↓)

Metapath2vec 67.97±0.24 66.92±0.22 10.28±1.31 15.39±1.96 0.21±0.04 0.30±0.10

FairHIN-dp 54.50±6.19 55.67±8.44 41.14±11.10 81.98±20.56 3.20±1.81 6.38±3.47

FairHIN-eo 55.94±5.53 57.97±6.83 35.49±19.33 71.61±35.33 2.81±2.27 5.59±4.33

RGCN 70.60±0.46 77.47±0.47 18.83±2.10 32.27±3.87 0.79±0.17 1.10±0.27

RGCN-fair 69.49±1.47 77.32±0.43 16.28±1.04 27.84±2.51 0.58±0.07 0.83±0.10

CompGCN 72.74±2.43 79.28±2.91 20.03±3.09 30.85±6.96 0.62±0.15 0.82±0.28

CompGCN-fair 67.82±2.60 75.64±2.52 13.33±1.15 22.20±2.25 0.37±0.08 0.57±0.09

HAN 71.34±0.17 77.65±0.14 19.14±1.86 32.76±3.43 0.79±0.13 1.09±0.21

HAN-fair 70.88±0.79 77.14±0.39 17.88±2.50 29.94±4.79 0.66±0.18 0.86±0.26

HGT 78.01±0.17 85.25±0.20 16.99±0.75 20.00±2.43 0.46±0.05 0.41±0.10

MovieLens

HGT-fair 75.51±2.90 82.54±3.67 14.79±3.38 19.53±7.93 0.37±0.10 0.39±0.23

Metapath2vec 60.51±0.12 64.55±0.12 19.59±0.65 32.77±1.50 0.53±0.03 0.96±0.11

FairHIN-dp 82.12±0.88 89.96±0.45 42.38±1.96 21.32±3.92 3.49±0.32 0.41±0.09

FairHIN-eo 48.43±22.29 46.46±28.07 34.36±9.60 37.83±21.28 2.26±1.25 1.40±1.34

RGCN 74.10±0.80 82.40±1.07 48.21±1.22 48.74±5.67 3.79±0.18 2.16±0.36

RGCN-fair 74.34±0.56 82.99±0.79 45.73±2.04 42.55±4.29 3.52±0.13 1.62±0.25

CompGCN 69.22±0.93 70.31±3.11 34.37±5.15 44.50±7.71 1.85±0.60 1.60±0.59

CompGCN-fair 68.96±1.31 69.71±3.09 29.75±6.06 43.25±4.50 1.39±0.56 1.77±0.36

HAN 66.80±3.77 71.86±3.72 38.77±16.02 51.43±15.92 2.73±1.78 2.91±1.69

HAN-fair 63.65±2.89 68.56±3.02 26.39±9.45 48.07±16.35 1.08±0.58 2.32±0.98

HGT 72.67±0.71 79.59±0.80 39.48±1.72 39.84±8.40 2.53±0.13 1.23±0.49

DBLP

HGT-fair 72.49±0.31 78.38±0.42 35.31±1.68 34.14±5.91 2.05±0.17 0.93±0.22

Metapath2vec 53.07±0.13 53.10±0.13 9.74±0.09 16.85±0.84 0.15±0.00 0.25±0.01

FairHIN-dp 49.87±0.32 49.90±0.29 1.44±0.74 5.37±1.54 0.00±0.00 0.03±0.01

FairHIN-eo 50.00±0.21 50.11±0.18 1.19±0.33 4.49±1.39 0.00±0.00 0.02±0.01

RGCN 71.05±1.08 77.05±0.79 58.87±1.21 106.95±3.07 7.90±0.45 14.08±0.92

RGCN-fair 67.30±0.55 74.97±0.53 46.18±1.92 80.49±4.21 4.83±0.35 8.35±0.68

CompGCN 74.43±1.23 78.40±0.56 64.75±5.75 113.47±12.12 10.17±1.58 16.91±2.93

CompGCN-fair 73.45±1.94 77.52±0.95 62.26±4.26 107.62±7.29 8.98±1.17 14.8±1.96

HAN 75.91±2.69 79.0±1.89 68.57±8.09 121.91±15.71 11.70±2.80 19.76±4.62

HAN-fair 71.10±1.06 76.83±1.88 57.20±6.45 99.08±14.49 7.36±1.61 12.45±3.01

HGT 72.17±0.96 78.96±0.53 52.94±3.12 86.99±6.11 6.80±0.68 10.96±1.22

LastFM

HGT-fair 71.14±0.80 78.61±0.37 50.81±1.50 83.45±2.41 6.18±0.32 9.90±0.49

results generally decrease, indicating that the models are becoming fairer. Mean-
while, the prediction accuracy also drops as α increases, which shows a fairness-
accuracy trade-off in our framework, and similar observations are also discovered
in [4,16]. Besides, a larger α will make the model harder to train properly, which
may be a possible reason for the large variance in the results with α > 0.01. In
summary, α = 0.01 maintains a good fairness-accuracy trade-off.
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Fig. 2. Parameter analysis of FairHELP on four GNN models with different balancing
parameters α. We evaluate the link prediction fairness regarding DPd (top row) and
the link prediction accuracy (bottom row). The results show that increasing the value
of α will improve model performance in fairness and result in a drop in model utility
as a trade-off.

6 Conclusion

In this paper, we propose FairHELP, a novel fairness-aware heterogeneous infor-
mation network embedding framework for link prediction. First, we formalize
the fairness definitions for link prediction in HINs based on semantic disparity.
Second, we design effective fairness measures for the semantic disparity in link
prediction with heterogeneous sensitive attributes. Third, we propose a bias mit-
igation framework, which employs adversarial learning to encourage the model
to learn link embeddings independent of the link semantic subgroups. Our exper-
imental results on three real-world heterogeneous network datasets demonstrate
that FairHELP achieves satisfying results with a good trade-off between fairness
and utility compared with state-of-the-art baselines.
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Abstract. Graph partitioning is an important preprocessing step for
distributed processing of large-scale graph data. By balancing work-
loads and reducing communication costs among nodes, graph partition-
ing methods improve the efficiency of homogeneous clusters for process-
ing power-law graphs. However, a real cluster usually consists of het-
erogeneous nodes, each with different computing and communication
ability. Nodes handle the same workload with different time cost, and
the slowest node is the bottleneck. Therefore, a Heterogeneous environ-
ment Aware Edge Partitioning method (HAEP) is proposed to balance
graph processing time by skewing the workload. HAEP can adapt to the
challenge of unbalanced performance among nodes. First, a k-time bal-
anced graph partitioning problem is defined to balance the expected time
cost of graph processing in heterogeneous environments. Then, a neigh-
borhood heuristic expansion is performed according to the node perfor-
mance, minimizing the communication time among nodes and assigning
an appropriate workload for each node. Further, a distributed method
of HAEP, DHAEP, is proposed to improve the efficiency of graph parti-
tioning. The performance evaluation shows that HAEP and DHAEP can
improve graph processing efficiency by up to 41% compared to state-of-
the-art partitioning methods, and the graph partition time of DHAEP
is 15% of HAEP.

Keywords: Graph partitioning · Heterogeneous environments ·
Distributed computing

1 Introduction

As the scale of graph data increases, many distributed graph processing sys-
tems have been developed for large-scale graph processing, such as Pregel [13],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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GraphLab [12], PowerGraph [7] and PowerLayer [6]. Graph partitioning is an
important preprocessing step in distributed graph processing systems, balancing
workloads among cluster nodes while reducing communication costs.

Edge partitioning can partition a power-law graph more efficiently than tradi-
tional vertex partitioning in homogeneous clusters. Skew-degree distributions [7]
often appear in many large-scale real-world graphs, such as web or social graphs.
However, the computing and communication ability among physical nodes are
often unbalanced in real cluster environments. For example, in a real EC2 cluster
with 128 nodes [5], the highest network bandwidth of nodes is 500 MB/s and the
lowest is only 37.5 MB/s. When homogeneous graph partition methods allocate
the same workload to the cluster nodes, the graph processing time of each node
is different, and the slowest node becomes the system bottleneck.

In this paper, a Heterogeneous environment Aware Edge Partitioning method
(HAEP) is proposed to balance graph processing time by skewing the workload.
HAEP can adapt to the challenge of uneven node performance in heterogeneous
clusters. First, the k-time balanced graph partitioning problem is defined, and
the goal is to balance the expected graph processing time cost of heterogeneous
clusters. Then, the neighborhood heuristic expansion is performed according to
the node performance, minimizing the communication time among nodes and
assigning an appropriate workload to the nodes. Further, a Distributed Hetero-
geneous environment Aware Edge Partitioning method (DHAEP) is proposed
to improve the efficiency of graph partitioning. The main contributions in this
paper are as follows:

– The time balanced graph paritioning method HAEP is proposed to solve
the challenge of unbalanced performance among nodes. HAEP balances the
expected time cost of graph processing for each node by heuristic neighbor-
hood expansion and reduces communication time among nodes by assigning
center boundary vertices. HAEP effectively partitions power-law graphs in
heterogeneous computing environments.

– DHAEP is proposed to solve the scalability issue in heterogeneous computing
environments. DHAEP can speed up graph partitioning time for HAEP while
keeping the quality.

– An extensive evaluation of multiple real-world graphs shows that, in most
cases, HAEP and DHAEP handle power-law graphs more efficiently com-
pared to seven graph partitioning methods in heterogeneous computing envi-
ronments.

2 Related Work

Graph partitioning is an unavoidable and challenging problem in distributed
graph computing, which has been studied for decades. Most of the existing
graph partitioning methods assume that the partitioning is performed in a homo-
geneous computing environment. Existing homogeneous methods include vertex
partitioning and edge partitioning.Vertex partitioning is a traditional graph par-
titioning method that replicates edges across partitions by assigning vertices to
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partitions. Many vertex partitioning methods [9] use the multi-level heuristic
scheme. A recent study [1] finds that edge partitioning methods are more effi-
cient in most real-world large graphs. Because these real-world graphs (e.g.,
network graphs and social networks) typically have skewed power-law degree
distributions, edge partitioning methods are able to provide better workload
balancing in power-law graphs. Bourse et al. [1] propose that the vertex parti-
tioning method can be converted into an edge partitioning method.

The above graph partitioning algorithms always assume that the hardware
environment is homogeneous. However, heterogeneous computing environments
[3,4] are ubiquitous in distributed computing. The clusters often use hardware
computing units with different types of instruction sets and architectures, and
use various programming frameworks compatible with heterogeneous hardware
platforms [2]. The computational efficiency of graph processing systems is often
affected by the performance of the cluster nodes. Michael et al. [10] offer some
graph partitioning strategies to improve data-ingress on heterogeneous clusters.
Chen et al. propose a multi-layer graph partitioning algorithm [5] considering
the bandwidth difference of cluster networks. However, the algorithm is not fast
enough for the current scale of graph data. HeAPS [17] is a streaming graph
partitioning algorithm in a heterogeneous environment, but the algorithm is a
vertex partitioning method for sparse graphs.

3 Problem Definition

In the problem of graph partitioning, an undirected graph is represented by
G = (V,E), where V is the set of all vertices in the graph G, n = |V | is the size
of the vertex set, and E represents the set of all edges in the graph G, m = |E|
is the size of the edge set. The symbol Compi represents the computing time
of graph processing in the partitioning Pi. fp(Ei, Vi) represents the computing
amount of the partition Pi, and compi represents the computing ability of the
partition Pi, then the computing time is defined as

Compi =
fp(Ei, Vi)

compi
(1)

The computational cost depends on the number of edges rather than the
number of vertices, so the partition computation amount of edge partitioning
can be represented by the function fp(Ei).

The cut type of the graph affects the communication mode among partitions.
Edge partitions synchronize information by copying vertices, so the communica-
tion time Commi can be defined as

Commi =
k∑

j=1,i �=j

fm(Vi, Vj)
commi,j

(2)

The function fm(Vi, Vj) represents the total amount of communication in the
partition Pi, and the communication ability between the cluster nodes Workeri
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and Workerj is represented by the symbol commi,j . The time cost of graph
processing in each partition Pi is consist of computing time and communication
time. In addition, considering that the time cost is also affected by the system
I/O mode, the time cost of graph processing in the partition is defined as

Ti =
{

Compi + Commi if I/O = SISO
Max(Compi + Commi) otherwise

(3)

Based on the above discussion, our k-time balanced graph partitioning tai-
lored in heterogeneous computing environments is defined as follows.

Definition 1. k-time balanced graph partition. Given a graph G = (V,E) and a
partition number k, k-time balanced partition aims to find a partitioning scheme
G = {G1, · · · , Gk} such that

– The time cost of graph processing in each partition is balanced, i.e., Ti ≤
(1 + λ)

∑k
j=1 Tj/k;

– The sum of computing time of each partition is minimized, i.e., min∑k
i=1 fp(Ei)/compi;

– The
communication time of each partition is minimized, i.e., min

∑k
i=1 Commi,

where Commi =
∑k

j=1,j �=i fm(Vi, Vj)/commi,j .

4 HAEP

4.1 Neighbor Expansion

The main idea of neighborhood extension is to balance the computation time of
each partition by heuristically selecting edges for each partition.

Heuristic Selection of Edges. The vertex set Bs = {v | v ∈ V (Ei) ∧ ∃ev,u ∈
E\Ei} is represented as Ei boundary. Based on the edge partitioning of expan-
sion, the graph G can be divided into k balanced partitions by using the bound-
ary set Bs. The vertices associated with at least one partition are called bound-
ary vertices in an expansion process. In each partition, the edge set is expanded
according to heuristic rules. When the size of the edge set reaches a limit or
there are no edges suitable for expansion, the expansion will stop.

Through the above process, an edge partition can be obtained. Each expan-
sion selects a vertex from the boundary set to minimize increase in vertex repli-
cation, and the selected vertex is added to the vertex set Cs as a marker. The
basic heuristic for selecting a vertex [6,7,18] is defined as

vmin = argminv∈Bs\Cs
|N(v)\Bs| (4)
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Algorithm 1.Heuristic Neighbor Expansion
1: function Expand(E, comp)
2: Cs ← ∅ � comp = {comp1, ..., compk}
3: for each Pi ∈ P do
4: Bs, Ei ← ∅
5: αi = compi/

∑k
j=1 compj

6: while |Ei| ≤ (1 + λ)|E| ∗ αi/k do
7: if Bs\Cs = ∅ then
8: v = random vertex in V \Cs

9: else
10: v ← argminv∈Vi\Cs |N(v)\Bs|
11: end if
12: ALLOCEDGES(Cs, Bs, Ei, v)
13: end while
14: end for
15: end function

Balance Setting. Neighbor expansion requires an explicit termination condi-
tion. First, the computational cost of each partition is estimated as follows.

fp(Ei) = |Ei| (5)

When all partitions are divided, the balance condition for the computation cost
of each partition is as follows.

|Ei|/Ci ≤ ((1 + λ)
∑k

j=1 |Ej |/Cj)
k

(6)

The imbalance factor, λ ≥ 0, is a constant parameter. The relative expansion of
each partition αi is as follows.

αi =
compi∑k
j=1 compj

(7)

The judgment condition for the end partitioning of each partition can be
expressed as follows.

|Ei| ≤ (1 + λ)|E| ∗ αi

k
(8)

The Algorithm 1 summarizes the whole process of neighbor expansion. The
heuristic expansion process requires p rounds of iteration. In each round i, the
edge set Ei will be obtained from the graph. Initially, the core set Cs is empty
(line 1). Then the expansion operation is performed (lines 3–13). Figure 1 shows
the expansion process of HEAP in a heterogeneous cluster. Each color represents
a node in the cluster. First, the boundary set Bs and edge set Ei are initialized
(line 4). Line 5 estimates the expansion ability αi of each partition. The ratio of
α in Fig. 1 is 3:2:1. In each round (lines 6–13), Ei is expanded when it satisfies
Eq. 8. If Bs\Cs = ∅, a vertex is randomly selected from V \Cs, otherwise vertex
is selected according to the Eq. 4. Finally, v is added to the core set Cs and the
adjacent edges of v are added to the Ei.
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Fig. 1. Expansion of HEAP. The ratio of the performance of each color (blue, red,
green) in the cluster is 3 : 2 : 1. (Color figure online)

4.2 Center Boundary Vertices

In distributed graph processing systems, border nodes usually incur communi-
cation costs. Reconsidering Compi and Commi for each partition, HAEP also
needs to reallocate center boundary nodes in order to further reduce the expected
time cost of partitions. Note that setting the center vertex does not increase the
computation time of the partition, as it only adjusts the center node mapping.
The center of boundary vertex v is assigned to the partition with minimal cost.
v is assigned to Pi, such that

i = argminj∈{i1,··· ,ik}Compj + Commj + ΔCommj . (9)

Once the center of v is assigned to a partition Pi, the time cost of that
partition will include the communication time of vertex v.

4.3 Distributed HAEP

In most cases, the HAEP algorithm is efficient enough to process data sequen-
tially. But the graph of the real world is getting bigger, and the target scale
of graph analysis has gone from a billion edges to a trillion edges. In order to
partition a graph using HAEP, a distributed partitioning algorithm is required.

The core of the distributed algorithm is the use of two distributed processes:
an expansion process and an allocation process. The expansion process computes
and manages the boundary vertices for each partition. The allocation process dis-
tributedly manages the allocation of vertices and edges. First, the input graph
is randomly distributed into the allocation process. Each expansion process ran-
domly selects a vertex to start expanding. The algorithm is performed iteratively.
Although the partition results of DHAEP are consistent with the final partition
results in Fig. 1, the partition results of DHEAP are not always consistent in
real-world graphs. The edges allocated during the algorithm iteration are copied
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and sent from the allocation process to the expansion process, and at the end of
the calculation, the entire edge is allocated to the extension process.

5 Experiments

5.1 Experiment Settings

In order to verify the correctness of the algorithm, four different graph datasets
will be used, namely, HT, AS, LJ and OK from SNAP [11]. All experimental
datasets are shown in Table 1. DBH [16], HDRF [15], SNE [18], NE [18], DNE [8],
HEP [14] and HASH partitioning methods are chosen to compare with HAEP
and DHAEP.

Table 1. Datasets

Graph Vertices Edges Type

higgs-twitter (HT) 456,631 14,855,875 Social Network

com-livejournal (LJ) 3,997,962 34,681,189 Social Network

as-skitter (AS) 1,696,415 11,095,298 Topology Graph

com-orkut (OK) 3,072,441 117,185,083 Social Network

Experiments use graph processing algorithms, PageRank (PR), Single Source
Shortest Path (SSSP) and Connected Component (CC) running time as metrics
to evaluate the performance of different partitions. The partitioning efficiency of
HAEP and DHAEP is evaluated by measuring replication factor and partitioning
time.

Table 2. Cluster Topologies

Topo CPU(Number) Network(Number)

T1 3.4 GHz(32) 1 Gbps(32)

T2 1.6 GHz(16),3.4 GHz(16) 500 bps(16), 1Gbps(16)

T3 1.6 GHz(2),3.4 GHz(30) 500 bps(2), 1Gbps(30)

A homogeneous cluster topology (T1) and two heterogeneous cluster topolo-
gies (T2, T3) are used in comparative experiments. Table 2 lists topologies and
their symbols.
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5.2 Experiment Results

To test the performance of HAEP and DHAEP methods, these methods are
compared with other state-of-the-art partitioning methods in different environ-
ments. These graph partitioning methods divide the input graph into 8 parti-
tions. After partitioning, the PageRank, BFS and CC algorithms are performed
on the topology shown in Table 2.

Fig. 2. Replication factor of real-world graphs.

Fig. 3. Performance results on real-world graphs.

Figure 2 shows the comparison results of replication factors of HEAP,
DHAEP and other partitioning methods. In the heterogeneous environment,
HAEP can still approximate the replicator of NE and is the partition with the
best replicator effect in the experiment. To more clearly compare the experimen-
tal results, the normalized runtime results of PageRank, BFS and CC are plotted
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Fig. 4. Runtime for partitioning real-world graphs.

against hash partitioning. Figure 3 shows a normalized runtime comparison on
three plots. HEAP and DHAEP usually have a better running performance.
Figure 3(e) shows that HAEP and DHAEP can improve graph processing effi-
ciency by up to 41% compared to state-of-the-art partitioning methods. However,
in Fig. 3(a) and Fig. 3(d), the runtime of HAEP in T2 is still lower than that of
the NE algorithm. In partitions with weak communication ability, the bottleneck
of execution time at this time is determined by communication time. The skewed
workload may increase the communication processing time of nodes. Figure 4
measures the graph partitioning time of different graph partitioning algorithms
with the HEP algorithm as the baseline in the T1 cluster. DHAEP reduces the
partition time by 85%–90% compared to HAEP.

6 Conclusion

Traditional graph partitioning methods fail to handle power-law graphs effi-
ciently in heterogeneous clusters. Based on the idea of balancing expected graph
processing time cost, HAEP and DHAEP algorithms are proposed to adapt to
the challenge of performance imbalance among nodes. DHAEP solves the issue
of scalability in heterogeneous environments whiling keeping the quality. The
performance evaluation shows that HAEP and DHAEP can greatly imporve the
performance of graph processing and are quite efficient to partition large-scale
power-law graphs.
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problems. Firstly, existing methods iteratively aggregate node embed-
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the triadic closure structure to assign different aggregating weights. To
well retain the local structural information, our proposed approach gen-
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1 Introduction

Graph is an important data representation model to reflect the structure of social
networks, in which each node corresponds to a person or a social entity, and the
link between two nodes shows their interaction. When studying the evolution of
social networks, link prediction is of great significance. It refers to the task of
predicting missing links or links that are likely to occur in the future [5].

Recently, numerous methods of link prediction have been implemented. As
an effective and popular method, network embedding maps high-dimensional
nodes of graphs to low-dimensional vector spaces. Embedding-based techniques
mainly include matrix factorization [12], random walk [7] and deep learning [3].
In this paper, we mainly concentrate on the deep learning methods. Generally
speaking, this kind of methods first obtains node embeddings and then extracts
edge embeddings by combining the corresponding node representations to predict
likely but unobserved links finally. Goyal et al. [6] demonstrated the excellent
performance of deep learning based embedding in link prediction. However, there
still remain some unsolved problems for this kind of methods:

(1) When obtaining node embeddings, traditional methods iteratively aggregate
nodes from neighborhood. Based on such an inefficient aggregation strategy,
complicated neighborhood weight settings will lead to a high node aggrega-
tion cost, while simple neighborhood weight settings (e.g. the same weight for
the same order nodes) will result in the loss of global structural information.

(2) When generating an edge embedding from two node embeddings, existing
methods regard the two nodes equivalent without considering their different
contributions to the formation of the edge. In fact, the topology-dependent
formation of an edge between two nodes depends on their respective degrees.
Ignoring such information will result in the loss of local structural informa-
tion and affect the performance of link prediction.

In this paper, we propose a novel embedding approach for link prediction
named Triadic closure based direct Aggeragtion and weighted Concatenation
(TriAC for short), which can effectively improve aggregation efficiency while
preserving the global structural information. Moreover, emphasizing on such
triadic closure structure will better capture important nodes in the formation of
edges, and thus improve the final quality of edge embeddings.

The main contributions of this work are summarized as follows.

– When obtaining node embeddings, this paper directly aggregates multi-order
neighbors to the central node and utilizes the triadic closure structure to
assign different aggregating weights. Larger weight will be assigned to neigh-
bors with richer triadic structures. These neighbors are usually aggregated
more times in traditional iterative aggregation. Thus, node embeddings can
be efficiently obtained with direct aggregation, rather than complicated iter-
ative aggregation of traditional methods.
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– When obtaining edge embeddings, this paper proposes a novel approach to
generate edge embeddings through the weighted summation of the corre-
sponding node embeddings. The weight is based on the number of triadic
neighbors of each node, where more triadic neighbors implies higher impor-
tance of a node, hence higher weight. Weighted summation of node embed-
dings can better preserve the local structural information of the two ends.
By associating the rank of matrix, we show the superiority of summation,
compared with Hadamard product and direct concatenation.

2 Related Work

Embedding-based methods for link prediction mainly include matrix factoriza-
tion [12], random walk [7] and deep learning [3]. Matrix factorization represents
attributes of a graph in the form of sparse matrix. It decomposes the sparse
matrix to obtain node embeddings. However, when graph scale increases, it
becomes difficult to calculate the eigenvalues corresponding to the Eigen matrix
[12]. Given a starting node, random walk repeatedly samples one of its neigh-
bors as the next visiting. After obtaining a sufficient number of random walk
sequences, the SkipGram [2] model is employed for vector learning to obtain
the node embedding. Though random walk methods involve higher-order neigh-
bors, nodes in the same window share a uniform weight [7], ignoring structural
difference in neighborhood.

The growing research on deep learning has led to a deluge of Deep Neural
Networks (DNN) based methods applied to graphs. Graph Convolutional Net-
works (GCN) [11] iteratively aggregates the embeddings of neighbors for a node
to obtain its new embedding. GraphSAGE [8] generates the node embedding
through feature aggregation within a fixed-size neighbor set. GAT [15] intro-
duces an attention mechanism into the propagation process and assigns different
attention weights to each neighbor to identify important neighbors. SEAL [16]
utilizes Node2Vec [7] to obtain node embedding, then takes node embedding
as part of the subgraph representation. DeepEdge [1], an edge-based embedding
method, models edges as function of nodes, then jointly optimizes the edge func-
tion and node representations with a new objective-graph likelihood. CensNet
[10] co-embeds both nodes and edges to a latent feature space by using a line
graph of the original undirected graph.

Fig. 1. Framework of TriAC.
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3 Method

In this section, we introduce our proposed approach – Triadic closure based
direct Aggregation and weighted Concatenation (TriAC), which consist of three
parts: triadic closure based direct aggregation, weighted concatenation and link
prediction (Fig. 1).

3.1 Triadic Closure Based Direct Aggregation

The social triad, a group of three people, is one of the simplest and most funda-
mental social groups [9]. Close social network connections consist of the social
triad relationship [14]. Let G = (V,E) denotes a network, where V refers to the
set of nodes and E ∈ V × V represents the set of relationships connecting those
nodes. If for any two nodes in a triad Δ, i.e., ∀vi, vj ∈ Δ, there exists eij ∈ E,
then we call Δ a closed triad or triadic closure.

Take Fig. 2 as an example, v0 is the central node, and its first-order neighbors
are {v1, v2, v3, v4, v5, v6, v7}. TriAC first samples these first-order neighbors. If
two first-order neighbors have a connecting edge, such as (v1, v7), they will form
a triadic closure structure with their “common friend” (v0). Thus, the first-order
triadic neighbors are {v1, v5, v6, v7}. Similarly, the second-order triadic neighbors
can be obtained as {v8, v9, v13, v14}. Finally, we can obtain the triadic set as
{v1, v5, v6, v7, v8, v9, v13, v14}.

Fig. 2. Example for the triadic set identification.

After neighbor grouping, the neighbors are directly aggregated to obtain the
embedding of the central node. Different from previous methods [8,11,15], TriAC
assigns two types of weights, one for triadic neighbors, the other for non-triadic
neighbors. The non-triadic aggregating weight is 1−α/n while the triadic aggre-
gating weight is 1 + θ/Θ, where n denotes the number of sampled neighbors, α
refers to the number of the triadic neighbors, θ represents the number of triaidc
closures that a node belongs to and Θ refers to the maximal number of tri-
aidc closures that the node has in the aggregated neighnorhood. This weighting
scheme implies that if a central node has more triadic neighbors, those non-
triadic neighbors would be less important to the central node compared with
the triadic neighbors during aggregating. Thus, TriAC makes the embedding of
the central node biased towards the triadic neighbors.
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Fig. 3. Different node aggregation strategies.

Figure 3 shows the difference between traditional iterative aggregation and
TriAC direct aggregation. Figure 3(a) refers to traditional iterative aggregation.
Nodes are iteratively aggregated to the central node. The labeled number implies
the times that a node would be aggregated. The central node has five first-order
neighbors and ten second-order neighbors. The five first-order neighbors need
to aggregate their own neighborhood (the second-order neighbors of the target
node) to obtain corresponding embeddings, and then aggregate their embeddings
to the target node. Figure 3(b) shows the aggregating process of TriAC. The
triadic set and non-triadic set are first identified. There are 12 triadic neighbors
and 3 non-triadic neighbors. Then, these neighbors are directly aggregated to
the central node with different aggregating weights (as labeled in Fig. 3(b)). The
non-triadic aggregating weight is 3/15 = 0.2 and the triadic aggregating weight
is 1 + θ/4 (the maixmal number of triadic closures for a node is 4 in Fig. 3(b))
where θ is the number of triadic closures that a node belongs to. Figure 3 shows
that the triadic closure based direct aggregation can obtain node embeddings
efficiently, avoiding complicated iterative aggregations of traditional methods.

3.2 Weighted Concatenation for Edge Embedding

In order to obtain an edge embedding, existing methods combine two node
embeddings by Hadamard product, summation or direct concatenation. On one
hand, these methods regard the two nodes equivalent without considering their
different contributions to the formation of the edge. On the other hand, to the
best of our knowledge, there is no existing research that theoretically analyzes
the pros and cons of these concatenating methods. To tackle these problems,
TriAC introduces a weight scheme for edge concatenation.

Supposing there are two nodes vi, vj , the corresponding node embeddings
hi = [hi1, hi2, ..., hid], hj = [hj1, hj2, ..., hjd], TriAC defines the edge embedding
eij as

eij = Lihi + Ljhj = [Lihi1 + Ljhj2, ..., Lihid + Ljhjd],

Li =
2li

li + lj
;Lj =

2lj
li + lj

, (1)
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where Li denotes the concatenation weight of vi, li refers to the number of triadic
neighbors of vi. According to the handshake lemma [4], each edge in a graph has
two ends, i.e., each edge provides 2◦ for the graph. Therefore, our proposed
TriAC sets the total weights of the two nodes to 2, i.e., Li + Lj = 2.

Here, we present an example to show the superiority of weighted concate-
nation. After obtaining node embeddings, Fig. 4(a) directly mixes them to get
the edge embedding, ignoring their structural differences. In contrast, Fig. 4(b)
highlights the structural difference that vj has 5 triadic neighbors while vi only
has 2 triadic neighbors. This is to say, li = 2, lj = 5, Li = (2li)/(li + lj) =
4/7, Lj = (2lj)/(li + lj) = 10/7. Obviously, vj contains more information due
to its rich triadic structure. Therefore, in the concatenating process, vj has a
greater contribution to the formation of the edge.

Fig. 4. Two concatenation schemes.

Compared with Hadamard product and direct concatenation, the edge
embedding obtained from node embeddings summation is of higher possibil-
ity to contain more structural information. We explain this by associating the
linear correlation between edge embeddings with the rank of a matrix.

Assuming there is a batch of node embedding matrices where each of them
consists of n random node embeddings, we can select two of these matrices and
combine them to obtain a new matrix. The new matrix is thus the corresponding
edge embedding matrix and each row represents an edge representation. The edge
embeddings should reflect the structural difference between edge, which can be
characterized by the linear correlation between these embeddings. Therefore, the
rank (denoted as r(·)) of a edge embedding matrix is able to evaluate whether
the edge embedding can better reflect the structural differences between edges.

Let A = (aij)m∗n and B = (bij)m∗n (n ≤ m) denote two node embedding
matrices. Let (A,B)m∗2n, (A � B)m∗n, and (A + B)m∗n be the result of the
matrix obtained by the direct concatenation, the Hadamard product, and the
summation, respectively. It is obviously that r(A � B) ≤ min(r(A), r(B)) ≤
r(A,B) ≤ r(A)+r(B), and r(A+B) ≤ r(A)+r(B), which means the rank of (A�
B) will only decrease while the rank of (A,B) and (A + B) is likely to increase.
However, the direct concatenation involves a DNN to complete dimensionality
reduction, which can further results in a loss of its rank. To sum up, the rank of
a matrix obtained by summation is likely to increase without involving any loss,
which is superior to Hadamard product and direct concatenation.
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3.3 Link Prediction

In this paper, the link prediction problem is transformed into a binary clas-
sification problem. The edges are classified according to their embedding rep-
resentations, which can be implemented by using a deep neural network. The
pseudocode of TriAC is shown in Algorithm 1.

Algorithm 1.Triadic Closure Based Direct Aggregation and Weighted Concate-
nation (TriAC)
Require: network G;

triadic sequence T ; non-triadic sequence G − T ;
activation function σ;
concatenating weight W ;
neural network f ;
the number of sampled neighbors n;
the number of triadic closures that a node belongs to θ ;
the maximal number of triadic closures that a node has Θ;

Ensure: Link prediction result yi,j for i = 1, 2, ..., N ; j = 1, 2, ..., N ; i �= j
1: for i = 1, 2, ..., N do
2: li = length(Ti);
3: h0

i = (1 − li/ni)Ti + (1 + θi/Θi)(G − T )i;
4: end for
5: for i = 1, 2, ..., N do
6: hi = σ(W0h

0
i + b0) + σ(W1h

0
i + b1);

7: end for
8: for i = 1, 2, ..., N ; j = 1, 2, ..., N ; i �= j do
9: Li = 2li

li+lj
, Lj =

2lj
lj+li

;

10: eij = Lihi + Ljhj = [Lihi1 + Ljhj2, ..., Lihid + Ljhjd];
11: end for
12: for i = 1, 2, ..., N ; j = 1, 2, ..., N ; i �= j do
13: e∗

ij = f(eij);
14: yij = softmax(e∗

ij);
15: end for

4 Experiments

4.1 Datasets and Settings

Seven state-of-the-art graph embedding methods are selected as baselines,
including DeepWalk [13], GCN [11], GAT [15], GraphSAGE [8], DeepEdge [1],
CensNet-VAE [10], and SEAL [16]. Besides, we also design ITER (adopting our
proposed direct aggregation approach but weighted by the aggregation times of
traditional ITERative aggregation methods, rather than the number of triadic
closures) as one of baselines. Table 1 shows the networks used in experiments.
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Table 1. Datasets.

Networks | V | | E |
Hamster 1858 12534

Yeast 2375 11693

Facebook 4039 88234

Douban 13786 214391

CS4 22499 43858

4.2 Performance of Link Prediction

The experimental results are shown in Table 2. All in all, our approach has
the best or occasionally 2nd best performance for all metrics in all datasets.
In contrast, ITER is not competitive among those baselines. It implies that
weighted with aggregation times of iterative aggregation is not enough to yield
high-quality node embeddings. The local topology structure should be involved.

Table 2. Comparison with state-of-the-art methods (the best one in bold and the 2nd
best with underline).

Networks Metric Deep GCN GAT Graph DeepEdge CensNet SEAL TriAC ITER

Walk SAGE

PRE 0.8034 0.7328 0.8317 0.8150 0.6950 0.8359 0.9105 0.8991 0.8678

Hamster ACC 0.9158 0.7310 0.8344 0.7780 0.8860 0.8357 0.8901 0.9231 0.8735

ROC 0.8962 0.8357 0.9099 0.8900 0.8530 0.9081 0.9452 0.9465 0.9257

PRE 0.8192 0.7930 0.7670 0.8480 0.8300 0.8567 0.8946 0.9145 0.8881

Yeast ACC 0.9427 0.8260 0.8590 0.8100 0.8910 0.8564 0.8984 0.9466 0.9119

ROC 0.9133 0.8340 0.8390 0.9260 0.9160 0.9190 0.9585 0.9440 0.9258

PRE 0.8311 0.7573 0.9325 0.8169 0.8520 0.8965 0.9456 0.9647 0.9610

Facebook ACC 0.9581 0.8234 0.9543 0.8545 0.8760 0.9041 0.9523 0.9552 0.9546

ROC 0.9389 0.8697 0.9711 0.9223 0.9310 0.9421 0.9831 0.9892 0.9820

PRE 0.6136 0.8060 0.7076 0.7123 0.7211 0.7456 0.7722 0.7967 0.7662

Douban ACC 0.6344 0.8166 0.7259 0.7015 0.7376 0.7488 0.7874 0.8300 0.7819

ROC 0.6504 0.8244 0.7386 0.7354 0.7431 0.7514 0.7853 0.8598 0.7327

PRE 0.8774 0.8524 0.9127 0.9056 0.9171 0.9225 0.9330 0.9763 0.6762

CS4 ACC 0.8426 0.8223 0.9025 0.9018 0.8825 0.9027 0.8474 0.9775 0.6819

ROC 0.8567 0.7961 0.8712 0.8892 0.9017 0.8914 0.9079 0.9946 0.7327

4.3 Performance of Node Direct Aggregation

There are three common iterative aggregation schemes: (1) Assigning the
same weight to all neighbors (typically used in GCN); (2) Assigning different
weights to each neighbor according to the self-attention mechanism (typically
used in GAT); (3) Sampling a fixed number of neighbors and assigning the same
weight (typically used in SAGE). We compare our proposed direct aggregation
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Table 3. Comparison of link prediction results (ROC) with state-of-the-art aggregation
methods for node embedding.

Networks SUM (summation) HM (hadamard product) CAT (direct concatenation)

GCN GAT SAGE TriAC GCN GAT SAGE TriAC GCN GAT SAGE TriAC

Hamster 0.8435 0.9157 0.9100 0.9414 0.8347 0.8271 0.8900 0.9412 0.8315 0.9132 0.8546 0.9375

Yeast 0.8421 0.8490 0.8473 0.9371 0.8206 0.8366 0.8260 0.9353 0.885 0.8398 0.8573 0.9321

Facebook 0.8607 0.9741 0.9334 0.9853 0.8605 0.9609 0.9223 0.9848 0.8602 0.9711 0.9257 0.9869

Douban 0.8244 0.7386 0.7354 0.8424 0.8110 0.7255 0.7249 0.8311 0.8206 0.7321 0.7301 0.8400

CS4 0.7843 0.8652 0.8816 0.9884 0.7518 0.8592 0.8638 0.9803 0.7672 0.8661 0.8785 0.9816

Mean 0.8310 0.8685 0.8615 0.9389 0.8157 0.8419 0.8454 0.9345 0.8329 0.8665 0.8492 0.9356

with these aggregation schemes, and then the different concatenation methods
are employed to generate edge embeddings from node embeddings. It should be
noted that here these concatenation methods do not involve any weight.

Table 3 shows that our proposed direct aggregation approach has competi-
tive and stable performance over diverse approaches (GCN, GAT and SAGE)
under different concatenation methods, i.e. summation (SUM), Hadamard prod-
uct (HM) and direct concatenation (CAT). Besides, SUM shows superior per-
formance than HM and CAT, which is in accordance with our previous claims.

4.4 Performance of Edge Concatenation

Table 4. Comparison of link prediction results (ROC) with different concatenation
methods for edge embedding.

Networks HM HM-W CAT CAT-W SUM SUM-W

Hamster 0.9412 0.9245 0.9375 0.9438 0.9414 0.9465

Yeast 0.9353 0.9312 0.9321 0.9555 0.9371 0.9440

Facebook 0.9848 0.9914 0.9869 0.9908 0.9853 0.9892

Douban 0.8311 0.8404 0.8400 0.8436 0.8424 0.8598

CS4 0.9803 0.9904 0.9816 0.9931 0.9884 0.9946

Table 4 presents the results of three different concatenation methods with
or without weight. Obviously, the performance of link prediction is significantly
improved with weighted concatenation. Especially, SUM-W is still better than
HM-W and CAT-W, which again verifies our previous claims. Therefore, both
the proposed direct aggregation and the proposed weighted edge concatenation
contribute to the performance improvements of link prediction.

5 Conclusion

In this paper, we propose a deep learning based embedding approach, i.e., TriAC,
to learn structure-preserving embeddings for link prediction in social networks.
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Different from the existing methods, TriAC directly aggregates node embed-
dings by adopting the triadic closure structure in social networks. Also, TriAC
generates edge embeddings with weight that in line with the number of triadic
closures. Experimental results on five datasets show that the proposed TriAC can
better predict links in social network, outperforming state-of-the-art methods.
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Abstract. In recent years, contrastive learning has emerged as a successful
method for unsupervised graph representation learning. It generates two or more
different views by data augmentation and maximizes the mutual information
between the views. Prior approaches usually adopt naive data augmentation strate-
gies or ignore the rich global information of the graph structure, leading to sub-
optimal performance. This paper proposes a contrast-based unsupervised graph
representation learning framework, MPGCL. Since data augmentation is the key
to contrastive learning, this paper proposes constructing higher-order networks
by injecting similarity-based global information into the original graph. Then,
adaptive and random augmentation strategies are combined to generate two views
with complementary semantic information, which preserve important semantic
information while not being too similar. In addition, the previous methods only
consider the same nodes as positive samples. In this paper, the positive sam-
ples are identified by capturing global information. In extensive experiments on
eight real benchmark datasets, MPGCL outperforms both the SOTA unsupervised
competitors and the fully supervised methods on the downstream task of node
classification. The code is available at: https://github.com/asfdd3/-miao/tree/src/
MPGCL.

Keyword: Graph Neural Networks Graph Representation Learning
Unsupervised Learning Self-Supervised Learning Contrastive learning

1 Introduction

Graph representation learning aims to obtain a low-dimensional embedding of the nodes
in the graph to encode the attributes and structural features of the nodes. However,
existing methods are primarily established in a supervised manner [1, 2], which requires
abundant labeled nodes for training. Recently, contrastive learning [3] addressed the
problem of label dependency. Contrastive learning maximizes the mutual information
[30] between similar instances andminimizes themutual information between dissimilar
instances by following the InfoMax [4] principle, enabling the learning of differentiated
embeddings even in unsupervised case.

First, data augmentation has been shown to be a key component of contrastive learn-
ing [37]. Existing methods such as DGI [3], inspired by DIM [8], using randomly shuf-
fling features to generate negative samples is difficult to provide a powerful supervised
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signal in the case of sparse feature matrices. MVGRL [9] performs graph diffusion to
enhance the original graph, which enriches the global information but injects noise at
the same time. GRACE [10] and BGRL [18] adopt a simple augmentation strategy that
results in the disruption of important semantic information. Second, how to define pos-
itive and negative samples is still rarely explored. For example, BGRL only regards the
same nodes as positive samples, which obviously ignores the rich global information of
the graph. GRACE and GCA [11] require a large number of negative samples to improve
the performance of downstream tasks, requiring high computational and memory costs,
which is unrealistic in reality.

To address the problems of existing graph contrastive learning, we propose a sim-
ple and efficient framework to learn node representations, denoted asMulti-Perspective
GraphContrastiveLearning (MPGCL). Specifically, in order to enable the original view
to perceive more global information, the original graph is diffused. However, only a sim-
ple graph diffusionwill unavoidably introduce a large amount of noise.We first construct
a k-NN graph by node features to filter out these noisy edges and combine them with
the original adjacency matrix to generate a higher-order network. Then augmentation
is performed on the higher-order network. It is known that an appropriate increase in
the inconsistency of the two views can further facilitate the learning of differentiated
embeddings, so we perform a combination of adaptive and random augmentation strate-
gies for the higher-order networks. In addition, it is crucial to construct positive and
negative samples to provide self-supervised signals. Previous approaches [10, 11] have
required introducing a large number of negative samples to prevent model collapse.
Recently, BYOL [13] in computer vision proposed using momentum updating Siamese
networks as an architecture to maximize the mutual information of identical instances
without explicit negative samples for contrastive learning. However, optimizing only
the above objectives in the graph domain ignores the rich structural information of the
graph. Since different nodesmay also have similar semantic information, the same nodes
should not simply be defined as positive samples. To alleviate this problem, we search
from a global perspective to capture potential positive samples while injecting a small
number of negative samples to enrich node contextual information.

In summary, our contributions are as follows:

• We propose an efficient framework, MPGCL, for data augmentation from multiple
perspectives. First, we inject global information into the original graph to construct
a higher-order network. Then further augmentation is performed on the higher-order
network enabling the information of the twoviews to complement each other after aug-
mentation,whichprovides a powerful self-supervised signal for cross-viewcontrastive
learning.

• We consider that the graph contains rich structural information, from a global per-
spective instead of considering only the same nodes as positive samples, we mine the
representation space for potential positive samples, while injecting a small number of
negative samples to further enrich the self-supervised signal.

• We conduct extensive experiments on eight real-world datasets, and compared with
twelve existing methods, MPGCL consistently achieves better performance.
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2 Related Work

In recent years, graph representation learning algorithms have attractedmuch attention in
the scientific community. Most successful graph representation methods combine neural
networks with graph structured data. Most of the existing graph neural network methods
follow message passing mechanisms, such as GCN [1], GAT [2], GraphSAGE [13] and
their various variants. Despite the great success of these methods, most of them follow
a semi-supervised learning paradigm, i.e., they require a large number of node labels or
graph labels. Firstly, labeling labels depends on human intervention and requires exper-
tise in the relevant domain, making it costly [14]. Secondly, the generalization ability
of the model in supervised scenarios is poor, and it is easy to overfit [15]. Therefore,
learning how to perform graph representation without relying on labels is crucial.

Contrastive learning, a manner of unsupervised learning, learns representations by
contrasting positive and negative pairs and has succeeded in vision [12, 31–33] and nat-
ural language processing [34, 35]. Here we focus on graph-related contrastive learning
methods. Initially, many traditional unsupervised representation learning [5–7, 26, 36]
methods also imply the idea of contrastive learning behind them, e.g., node2vec [5] and
DeepWalk [6] generate sequences of nodes based on random wandering, forcing neigh-
boring nodes to have similar representations. Recent works DGI [3] and InfoGraph [16]
combine contrastive learning with neural networks and propose to maximize the mutual
information of node and graph level representations. MVGRL [9] proposes multi-view
contrastive learning and uses an augmentation strategy of graph diffusion to optimize a
similar objective as DGI. However, MVGRL has the same drawback as DGI, i.e., the
readout function often has difficulty satisfying the requirements of the injective function,
leading to a graph-level representation that does not contain sufficient global information
as the size of the input graph increases. GMI [17] builds on DGI to maximize the mutual
information of nodes and edges using implicit data augmentation. However, the above
methods suffer from the same drawback that they require mutual information estima-
tors with parameterization to score positive and negative sample pairs, which severely
increases the time and space overhead. GRACE [10] and GCA [11] adopt a node-level
contrastive strategy by considering the same nodes in the two augmented views as posi-
tive sample pairs and all other nodes as negative samples, avoiding the negative impact of
adopting the readout function and without parameterizedmutual information estimators.
Although achieving significant success, GRACE and GCA introduce a large number of
negative samples to prevent model collapse to trivial solutions, and the hyperparameters
of the augmentation need to be carefully chosen to generate two high-quality views.
BGRL [18] and SelfGNN [19], inspired by BYOL [13], proposed unsupervised repre-
sentation learning of graphs without using negative samples. However, regard only the
same nodes as positive samples ignores the rich structural information in the graph and
requires the design of complex asymmetric structures.

3 Method

3.1 Problem Formulation and Graph Neural Network

Problem formulation. let G = (V , E) denote a graph, where V = {v1, v2, · · · , vN },
E ⊆ V × V represent the node set and the edge set respectively. We denote the feature
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matrix and the adjacency matrix as X ∈ R
N×F and ∈ {0, 1}N×N , where xi ∈ R

F is the
feature of vi, and Aij = 1 iff

(
vi, vj

) ∈ E . There is no given class information of nodes in
G during training in the unsupervised setting. Our objective is to learn a GNN encoder

f (X , A) ∈ R
N×F

′
receiving the graph features and structure as input, that produces node

embeddings in low dimensionality, i.e., F
′ � F . We denoteH = f (X , A) as the learned

representations of nodes, where hi is the embedding of node vi. These representations
can be used in downstream tasks, such as node classification.

Graph neural network. Denote a graph as G = (V , E) where the node features are
xv for v ∈ V . In this paper, we focus on the node classification task using Graph Neural
Networks (GNNs). GNNs generate node-level embedding hv through aggregating the
node features xv of its neighbors. Each layer of GNNs serves as an iteration of aggre-
gation, such that the node embedding after the k-th layers aggregates the information
within its k-hop neighborhood. The k-th layer of GNNs can be formulated as:

a(k)
v = AGGREGATE(k)

({
h(k−1)
v : u ∈ N (v)

})

h(k)
v = COMBINE(k)

(
h(k−1)
v , a(k)

v

) (1)

Different GNNs use different formulations of the COMBINE and AGGREGATE
functions. In this work, we will focus on GCN encoders. Formally, the GCN propagation
rule for a single layer is as follows:

GCNi(X, A) = σ

(
D̂

− 1
2 ÂD̂

− 1
2 XWi

)
(2)

where A
∧

= A + I is the adjacency matrix with self-loops, D
∧

is the degree matrix, σ is a
non-linearity such as ReLU, and Wi is a learned weight matrix for the k-th layer.

3.2 Overall Framework

As shown in Fig. 1, the proposed framework MPGCL in this paper follows the graph
contrastive learningparadigm.Thegoal is tomaximize themutual informationof positive
sample pairs in different views to learn node representations. The framework consists
of three main parts, data augmentation, Siamese networks for momentum updating, and
cross-network contrastive learning. We first perform data augmentation on the original
graph to generate two views and feed the two views into the Siamese networks to obtain
the representation of the two views. Finally, cross-view contrastive learning is performed
to pull closer to the representation of the positive sample pairs while distinguishing the
embeddings of different nodes.

3.3 Graph Data Augmentation

The success of contrastive learning in computer vision relies heavily on data augmen-
tation [20], e.g., by rotation, cropping, and scaling. It is challenging to apply methods
from the vision domain directly to graphs due to their non-Euclidean nature. Therefore,
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designing augmentation strategies on graph-structured data remains a challenge. In this
paper, we propose to augment the original graph at both the node attribute and topology
levels. However, unlike previousmethods, we inject high-quality global information into
the original graph first to construct the higher-order network. Then the combination of
adaptive and random augmentation strategies is adopted for the topology and attribute
information of the higher-order network to ensure that the two generated views pre-
serve adequate semantic information while not being too similar. The data augmentation
techniques used are described in detail below.

Fig. 1. The overview of MPGCL

High-order network construction. We transform a graph via diffusion to gener-
ate a congruent view. The effectiveness of this method attributed to the extra global
information provided by the diffused view. This process is formulated as follows:

S =
∞∑

k=0

θkT
k ∈ R

N×N (3)

where θ is a parameter to control the distribution of local and global signals, T ∈ R
N×N

is the transition matrix to transfer the adjacency matrix. In this paper, we adopt the
Personalized PageRank (PPR) kernel to power the graph diffusion. Formally, given the
adjacency matrix A, the identity matrix I , and the degree matrix D, the equation can be
reformulated as:

SDiff = α
(
I − (1 − α)D− 1

2AD− 1
2

)−1
(4)

whereα is a tunable parameter for the randomwalk teleport probability. However, simply
constructing the diffusion graph introduces noisy edges, which is not beneficial for
message passing.We construct the feature similarity graph based on the cosine similarity
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of node features. The low-quality edges are filtered by computing the intersection of the
diffusion graph and the feature similarity graph. The rules for feature similarity graph
construction are as follows.

SFeatij = x�
i xj

‖xi‖ ‖xj‖ (5)

Then we choose 6 nearest neighbors following the above cosine similarity for each
node and obtain the feature similarity graph. Finally, we combine the original adjacency
matrix with the intersection of the diffusion graph and the feature similarity graph to
generate the higher-order network. This process is formulated as:

AHD = A ∪
(
SFeat ∩ SDiff

)
(6)

Topology augmentation. Topology-level data augmentation aims to explore differ-
ent topological views by modifying the graph structure. We randomly remove edges and
adaptively remove edges for higher-order network.

For randomly removing edges, we first sample a random masking matrix R̃ ∈
{0, 1}N×N . If the higher-order network AHD

ij = 1, then its value obeys the Bernoulli

distribution R̃ij ∼ B(1 − pr), otherwise R̃ij = 0. Here pr is the probability of each edge
being removed. The final adjacency matrix can be denoted as:

Ã = AHD ◦ R̃ (7)

For adaptively removing edges, we consider the probability of removing an edge is
closely related to the importance of the edge. In this paper, the importance of an edge
is calculated by measuring the importance of two nodes connected by the edge. First,
given the node centrality measure ϕc(·) : V → R

+, we use the average of the degree
centrality of the two nodes connected the edge to measure the importance of the edge,

i.e. si, j = log
ϕc(vi)+ϕc(vj)

2 .
We normalize the importance scores of the edges to obtain the probability values:

pi, j = min

(
smax − si, j
smax − μs

· pe, pτ

)
(8)

where smax and μs are the maximum and average values of the importance of the edge.
pe is the hyperparameter controlling the overall edge removal probability. pτ is the cutoff
probability, which prevents the probability of removing an edge from being excessively
high and thus destroying the graph structure.

Feature augmentation.Most augmentation strategies focus mainly on the topology
and do not consider the importance of attribute-level augmentation. We adopt adaptive
masking and random masking for node features.

For randomly masking, we randomly mask a fraction of dimensions with zeros in
node features. Formally, we first sample a random vector m̃ ∈ {0, 1}F where each
dimension of it independently is drawn from a Bernoulli distribution with probability
1 − pm, i.e., m̃i ∼ B(1 − pi), ∀i. Then, the generated node features X̃ can be denoted
as:

X̃ = [
x1 ◦ m̃; x2 ◦ m̃; · · · ; xN ◦ m̃

]T (9)
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For adaptively masking, we expect to pi reflect the importance of the i-th dimension
of node features. Define that if a dimension frequently occurs in important nodes,
this dimension is usually considered to be necessary, where the importance of the i-th
dimension can be denoted as:

wf
i =

∑

u∈V
xui · ϕc(u) (10)

where xui is the i-th dimensional feature of node u. ϕc(u) is the importance of node u.
Similar to the topology-level augmentation, we normalize the weights. The proba-

bility of the i-th dimensional importance of the final node attribute can be formulated
as:

pfi = min

(
sfmax − sfi

sfmax − μ
f
s

· pf , pτ

)

(11)

where sfi = logwf
i , s

f
max andμ

f
s is the maximum and the average value of sfi respectively,

and pf is a hyperparameter that controls the overall magnitude of feature augmenta-
tion. pτ is the cutoff probability, which prevents the probability of masking from being
excessively high.

3.4 Network Structure

Siamese networks [21] is a neural architecture that contains two or more identical struc-
tures to make multi-class prediction or entity comparison. Traditionally, it has been used
on supervised tasks such as signature verification and face matching [22]. Recently,
Siamese networks appeared in the self-supervised approach to computer vision BYOL
[18] for representation learning. In this paper, we use an architecture similar to the
Siamese network, as shown in Fig. 1, consisting of an online network encoder and a tar-
get network encoder. Both encoders have the same internal architecture. The difference
between them is that the online network updates its parameters by backpropagation,
while the target network updates its parameters by learning the content of the online
network. This process is implemented using momentum updates. The updated rules can
be formulated as:

φ ← τφ + (1 − τ)θ (12)

where τ , φ, and θ are the momentum, target network parameters and online network
parameters, respectively. Since the target network adopts the strategy of momentum
update, it makes the network structure asymmetric. The model does not collapse to a
trivial solution without using negative samples.

Prior methods [13, 19] relied on MLPs as predictors connected to the encoder to
increase the asymmetry of the network to prevent model collapse [21]. We empirically
found that introducing a small number of negative samples in the cross-view contrastive
learning can replace the prediction head and enrich the supervised signal. Therefore, we
drop the prediction head.
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Fig. 2. The red dashed lines are positive sample pairs and the blue dashed lines are negative
sample pairs. We pull the same representation in both views close by the objective function and
push the representation of different nodes far away. (Color figure online)

3.5 Cross-View Contrastive Learning

Contrastive learning can be successful in the graph domain in large part because of
following the classical InfoMax [4] principle which maximizes the mutual information
between similar instances. Specifically, in cross-view contrast learning, an objective
function is defined to pull the distance between positive samples while pushing away
the distance between negative samples. In this paper, we define the objective function
for contrastive learning from two perspectives.

In this paper, we define the objective function from two perspectives. One perspec-
tive is to capture potential positive samples.. For example, in an academic collaboration
network whose nodes denote authors and edges denote collaborations between authors,
even if two authors work on the same research topic (same label), they may not be
connected in the graph because they have neither collaborated nor shared any collabora-
tors in the past. We believe that such semantically similar but disconnected entities can
be mined by searching global information. As in Fig. 1, in each iteration, the original
graph dataG = (X , A) performs augmentation to generate two semantically informative
complementary views G̃1 and G̃2, which are then fed to the online network fθ and the
target network fφ to obtain the node representations Z(1) and Z(2).Then, we construct
the similarity matrix by calculating the cosine similarity of the node representations
and selecting top-k similar nodes for each node as positive samples, such as the nodes
corresponding to the red dashed lines in Fig. 2. The objective is to minimize the distance
between positive sample pairs. The above process can be represented by:

Lsim = − 1

N

N∑

i=1

∑

vj∈Pi

z(1)
i

(
z(2)
j

)T

‖z(1)
i ‖‖z(2)

j ‖
(13)
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where zi is the embedding representation of the node vi and Pi is the set of positive
samples of vi. The above objective does not introduce negative samples, and although
it achieves better results [18], it ignores the rich contextual information of the graph
topology. In addition, using the above objective function alone requires a prediction
head to further increase the asymmetric structure of the model. Therefore, we enriched
the contextual information by introducing a small number of negative samples, while
discarding the prediction head. As shown in the blue dashed line in Fig. 2, this paper
further pushes the distances of different nodes by introducing a small number of negative
samples between views. The loss function with the introduced negative samples can be
represented by:

Lcl = − 1

N

N∑

i=1

log
exp

(
sim

(
z(1)i , z(2)i

)
/τ

)

∑
k∈{Pi∪Ni} exp

(
sim

(
z(1)i , z(2)i

)
/τ

) (14)

where sim(·) denotes the cosine similarity and τ is a temperature hyperparameter. Finally,
the final objective function is obtained by integrating Eq. (13) and Eq. (14) as follows:

L = λ · Lsim + (1 − λ) · Lcl (15)

where λ is the influence factor to balance the two loss functions, and the two losses are
regularization terms for each other. Loss function Lsim captures positive samples from a
global perspective, andLcl further introduces negative samples to enrich self-supervised
signals. We balance the strength of the two regularization terms Lsim and Lcl by tuning
λ.

4 Experiment

In this section, we conduct node classification tasks on eight widely used benchmark
datasets to verify the effectiveness of MPGCL. In the following, we introduce the
datasets, describe the experimental setup, and then report our experimental results.

4.1 Dataset

We use eight datasets provided by the PyTorch Geometric library, including Cora [23],
Citeseer [23], Pubmed [23], Wiki-CS [24], Amazon-computers [25], Amazon-photos
[25], Coauthor-CS [25], and Coauthor-Physics [25]. Note that these are benchmark
datasets that are widely used in the evaluation of node classification.

• Cora, Citeseer and Pubmed are citation networks where each node represents an
article, and the edges connected by two nodes represent the citation relationship. For
example, Cora consists of seven papers in machine learning, and the nodes have a
total of seven categories.

• Wiki-CS is a reference network constructed based on Wikipedia; the nodes represent
articles about computer science, the edges represent links between the articles, and
the Nodes are labeled with ten classes, each representing a field branch.
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• Amazon-computers and Amazon-photos are two networks of co-purchase relation-
ships constructed from Amazon. The nodes are commodities, and if two kinds of
commodities are frequently purchased together, an edge exists between the two nodes.
Nodes have 10 and 8 classes, respectively.

• Coauthor-CS and Coauthor-Physics are extracted from Microsoft Academic Graph.
Nodes represent authors, and edges represent the collaboration between two authors.
Each node has a sparse bag-of-words feature based on the paper keywords of the
author. The label of an author corresponds to their most active research field. Nodes
have 10 and 8 classes, respectively.

We adopt a public split for theWiki-CS dataset [24]. Since no public split is available
for Coauthor-CS, Coauthor-Physics, Amazon-computers and Amazon-photo, we follow
the split of most methods, i.e., 10%, 10%, and 80% for the training set, validation set and
test set, respectively. We perform 20 training sessions for different splitting methods and
report the average performance for each dataset in Table 1. It is known that although the
three citation networks mentioned have standard fixed splitting methods, they are not
reliable in evaluating GNN methods [25]. Therefore, we report in Table 2 the average
results of 20 random splits. Note that the baseline for their comparison also uses random
splits.

4.2 Baselines

We consider the following three representative classes of methods as a baseline, includ-
ing two traditional unsupervised methods node2vec [5] and DeepWalk [6], two semi-
supervised methods GCN [1] and GAT [2] and eight self-supervised learning methods
GAE [26], DGI [3], MVGRL [9], GRACE [10], GCA [11], BGRL [18], COSTA [38]
and AFGRL [39], where they are trained in an end-to-end fashion.

4.3 Experimental Setup

Evaluation protocol. We follow the linear evaluation protocol introduced in DGI [3]
for the node classification task. All nodes in the original graph are first trained without
supervision. After that, we freeze the parameters of the encoder and get the embedding
of all nodes. We provide the learned embeddings across the training set to the logistic
regression classifier [27] and give the results on the test nodes.We repeat the experiments
in Tables 1 and Table 2 twenty times and report the average accuracy with the standard
deviation.

Setting-up.We used Pytorch-Geometric 2.0.4 and Pytorch 1.11.0 to implement the
methods in this paper, experimenting on a server with two NVIDIA GeForce3090 (with
24 GB memory each). Our model was initialized with Glorot [28] using the AdamW
[29] optimizer with the initial learning rate and weight decay rate set to 10−5. We used
the same encoder architecture in all experiments. The target and online networks use
two layers of standard GCN as our encoders, each followed by a BatchNorm layer. We
use PreLU activation in all experiments.
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Table 1. Node classification accuracy for the Wiki-cs, Amazon and Coauthor datasets, where
X , A, Y denote node features, adjacency matrix and labels, respectively. Bold indicates the best
performing method. Baseline results are from BGRL [18] and AFGRL [39].

Method Input Wiki-cs Computers Photo CS Physics

Node2vec A 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04

DeepWalk A 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15

GAE X , A 70.15 ± 0.01 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07

DGI X , A 75.35 ± 0.14 75.35 ± 0.14 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52

MVGRL X , A 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03

GRACE X , A 78.19 ± 0.01 87.46 ± 0.22 92.15 ± 0.24 92.93 ± 0.01 95.26 ± 0.02

GCA X , A 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03

BGRL X , A 79.36 ± 0.53 89.68 ± 0.31 92.87 ± 0.27 93.21 ± 0.18 95.56 ± 0.12

COSTA X , A 79.12 ± 0.02 88.32 ± 0.03 92.56 ± 0.45 92.95 ± 0.12 95.74 ± 0.02

AFGRL X , A 77.62 ± 0.49 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10

MPGCL X, A 80.42 ± 0.22 90.87 ± 0.13 93.85 ± 0.15 93.69 ± 0.09 96.05 ± 0.08

GCN X , A, Y 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

GAT X , A, Y 77.65 ± 0.11 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15

Table 2. Classification accuracy on the three citation network datasets. Bold indicates the best
performing algorithm.Note that we use the random split followed byGRACE [10] and the baseline
method of comparison is also random.

Method Cora Citeseer Pubmed

Node2vec 74.8 52.3 80.3

DeepWalk 75.7 50.5 80.5

GAE 76.9 60.6 82.9

DGI 82.6 ± 0.4 68.8 ± 0.7 86.0 ± 0.1

GRACE 83.3 ± 0.4 72.1 ± 0.5 86.7 ± 0.1

BGRL 83.83 ± 1.61 72.32 ± 0.89 86.03 ± 0.33

MPGCL 85.81 ± 0.56 74.51 ± 0.21 87.04 ± 0.12

4.4 Result and Analysis

Tables 1 and 2 summarize the node classification accuracy of allmethods on the eight real
graph benchmark datasets. Compared with other supervised and self-supervised meth-
ods, MPGCL achieves the best classification accuracy on all eight benchmark datasets,
demonstrating the robust performance of our proposed method. Note that the existing
baseline has achieved high classification accuracy in the Coauthor and Amazon datasets;
MPGCL can achieve further significant improvements. The reasons for our success are
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as follows, (1) We propose a novel data augmentation strategy to construct a higher-
order network by injecting high-quality global information into the original view, and
then adopt a combination of adaptive and random augmentation strategies for the higher-
order network topology and attribute information. (2) Capture potential positive samples
from a global perspective instead of simply regarding the same nodes as positive sam-
ples, and introduce a small number of negative samples to enrich the self-supervised
signals further.

Fig. 3. Comparison of MPGCL and its variants.

4.5 Ablation Study

In this section, to verify the effectiveness of each of our proposed components, we per-
form ablation experiments on the Amazon-photos and Cora datasets. The experimental
results are shown in Fig. 3, for the variant MPGCL-w/o-HD, we investigate the effec-
tiveness of constructing a higher-order network. It can be seen that by constructing the
higher-order network for the Cora dataset improves 0.7%, which proves that it is mean-
ingful to introduce high-quality global information to the original view. For the variants
MPGCL-w/o-Uniform and MPGCL-w/o-Adaptive, we adopt a single data augmenta-
tion for the higher-order network. From Fig. 3, we can find that the performance of a
single augmentation strategy for the original view only decreases by 0.3% and 0.4%,
respectively, in the Cora dataset. This proves the significance of our multi-perspective
augmentation.

To verify the effectiveness of searching positive samples from a global perspective
and introducing negative samples reasonably in cross-view comparisons, we report the
variants MPGCL-w/o-Global and MPGCL-w/o-CL. As can be seen from Fig. 3, on
Amazon-photos, compared with MPGCL, MPGCL-w/o-Global and MPGCL-w/o-CL
decreases the performance by 0.5% and 1.1%, respectively. The effectiveness of captur-
ing positive samples from the global and introducing a small number of negative samples
is verified.

4.6 Analysis of Hyper-parameters

In this section, we perform a parameter-sensitive analysis of MPGCL, as shown in
Fig. 4, where we demonstrate the stability of our model by modifying the probability of
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Fig. 4. Classification results of our method on different dataset with different hyperparameters.

Table 3. Hyperparameter settings.

Method Wiki-cs Computers Photo CS Physics

pf , 1 0.1 0.1 0.1 0.4 0.1

pf , 2 0.1 0.1 0.1 0.3 0.1

pe, 1 0.2 0.3 0.5 0.3 0.4

pe, 2 0.4 0.3 0.5 0.2 0.4

α 0.05 0.05 0.05 0.05 0.05

λ 0.7 0.7 0.7 0.8 0.8

τ 0.7 0.7 0.7 0.7 0.7

K 3 4 3 4 4

embedding sizes 256 128 256 256 128

hidden sizes 512 256 512 512 256

removing edges and the probability of masking. For Amazon-photos, we propose that
the augmentation strategy performs better in most cases. Existing approaches [10, 11]
rely on carefully designed hyperparameters to guarantee the generation of two different
views to obtain the best performance. Note that we propose multiple angle augmentation
to obtain better performance even when both have the same probability. We also explore
the effect of the number of positive samples on the performance of MPGCL. As shown
in Fig. 4, the best performance is obtained when k = 4 (i.e., each node has four as
positive samples in addition to itself). Note that the performance of the model also does
not fluctuate significantly by modifying the k value, which confirms that our method is
insensitive to hyperparameters compared to other methods while outperforming them in
most cases. We also notice a slight decrease in performance when the value of k is too
large, due to the fact that node embeddings tend to be similar when the value of k is too
large. In addition, the hyperparameter configurations for all datasets are summarized in
Table 3.
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4.7 Visualization

To further intuit the performance of our model, as shown in Fig. 5, we use a visualization
algorithm to project the node embedding of the Cora dataset into 2D space and compare
it with the node representation obtained using the GRACE methods. Where different
colors of nodes indicate different categories, we can see that our proposed method can
present a clearer outline in 2D space compared to the GRACE algorithm, which is more
conducive to handling downstream tasks.

Fig. 5. Visualization of the learned node embedding on the Cora dataset.

5 Conclusion

In this paper, we propose an efficient contrast-based unsupervised learning framework,
MPGCL, which first introduces global information to the original view to construct a
higher-order network, then performs data augmentation on the higher-order network to
generate two viewswith complementary semantic information.We search for potentially
positive samples from the global representation. Experiments are conducted on eight
publicly available datasets, MPGCL consistently outperforms other SOTA methods,
demonstrating the effectiveness of our approach.
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Abstract. Open Table-and-Text Question Answering (OTTQA) task
aims at answering questions that require retrieving and combining infor-
mation from unstructured passages and semi-structured tables. Despite
the great success achieved by the existing models, they still flaw in several
drawbacks, including lacking valuable global or contextual information
at the linking stage, ignoring potential error propagation and noise dis-
traction from linking to retrieval, and neglecting the huge structural gap
between table and passage. To address these problems, in this paper we
propose a novel joint link-retrieve OTTQA framework, where the table
block embedding and passage embedding are shared in the unified frame-
work, and all modules are trained jointly. More specifically, we encode
the table block and passage by taking full advantage of their global and
contextual information and then leverage a contrastive learning approach
to deeply interact with their embedding and link them together. Mean-
while, we establish a novel retrieval method to retrieve fusion blocks
after linking, which does not require explicitly generating or encoding
the fusion block but only focuses on the passage most relevant to the
question. Furthermore, considering the structural gap between the table
and text, we introduce the Table-to-Text as an auxiliary task to help the
model better understand the structural difference and capture the inner
semantic correlations between them. Our empirical study demonstrates
that the proposed framework achieves new state-of-the-art performance.
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1 Introduction

Open Table-and-Text Question Answering(OTTQA) is a question-answering
task, which requires retrieving and combining information from unstructured
passages and semi-structured tables to answer a specific question. Compared
with traditional Open-Domain Question Answering(ODQA), which only needs
to retrieve unstructured text [12,16,26], OTTQA is more challenging and in line
with the real world where a large amount of world’s knowledge is stored not
only in unstructured passages but also in semi-structured tables. Chen et al.
[5] construct a large dataset OTT-QA for this new task. In particular, ques-
tions in OTT-QA are multi-hop and require aggregating information from both
tables and texts to answer. As illustrated in Fig. 1, to answer the question “How
many points per game did Lebron James get in the NBA Season suspended by
COVID?”, an OTTQA system first needs to retrieve that the NBA Season sus-
pended by COVID was the 19-20 Season and James got 25.3 points per game
in the 19-20 Season from the passage and table corpora respectively; and then
aggregates this information to get the answer 25.3.

Fig. 1. An example of OTT-QA, an OTT-QA model needs to retrieve evidence from
tables and passages and then perform multi-hop reasoning to find answers

To retrieve tables and passages at the same time, Chen et al. [5] propose an
early fusion mechanism, which links table blocks and passages as fusion blocks
first, and then retrieves these obtained fusion blocks. In particular, they input a
row of the table as the table block into GPT-2 [23], a generative language model,
to generate titles of passages and calculate the BM25 [8] score of the generated
titles with the ground-truth titles to link table block and passages. After linking,
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they adopt the DPR [12] as the retriever which needs to concatenate the table
block and linked passages to explicitly generate the fusion block and encode the
fusion block and question to retrieve question-related fusion blocks as evidence.
Similarly, Zhong et al. [31] use BLINK [30] which is an entity linking model and
can link against all Wikipedia entities as the linker and DPR as the retriever.
They take the cell of the table block as the input of BLINK to link relevant
passages for each cell to form the fusion block.

Despite the above Linker-Retriever-Reader methods have been proven to be
more efficient than the Retriever-Reader models that retrieve tables and passages
separately [5] [31], there still exist the following shortages: Firstly, both Chen
et al. [5] and Zhong et al. [31] only focus on local information and ignore global
information. Between them, Chen et al. [5] link the table block and passage only
through the title of the passage, ignoring the entire content information of the
passage. Zhong et al. [31] only input the cell instead of the entire table block
into the BLINK, which results in the linker lacking sufficient contextual informa-
tion. Secondly, the DPR retriever requires to generate and encode the fusion
block explicitly. Under this mechanism, passages in the fusion block are treated
equally, even though there are incorrectly linked passages and passages irrele-
vant to the question in the fusion block. Error propagation and noise interference
brought by this mechanism will cause a serious impact on retrieval, degrading
the performance of the entire model. Thirdly, the table block is encoded by
transformer-based [27] encoder like BERT [7] and RoBERTa [18]. However, this
type of encoder is suitable for the input of unstructured plain texts rather than
semi-structured tables. And there is a significant structural gap between the
table and the passage that prevents the encoder from understanding the table
well.

To address these above limitations, we propose an improved Joint Link-
Retrieve framework(JLRF). Specifically, for the first challenge, we utilize
a linker based on contrastive learning. We employ dual encoders to separately
encode table blocks and passages. Based on that, we then calculate the score
of the table block and passage to optimize their representations, so that the
linked table block and passage have a higher score to link each other. Our linker
takes full advantage of the contextual information of table block and passage
and links them together effectively. For the second challenge, we propose
a novel retrieval method to compute the similarity of fusion blocks after link-
ing, which does not require explicitly generating and encoding fusion blocks. We
encode the question and compute similarity for question embedding with table
block embedding and passage embedding in the linking step. The similarity of
the fusion block is obtained by considering the score of the table block with the
highest score of passage in the fusion block. In this way, we share the table block
embedding and passage embedding to alleviate the error propagation, and only
focus on the passage that is most relevant to the question to reduce noise inter-
ference. For the third one, we introduce the Table-to-Text task, reformulating
the table block fluently in natural language as an auxiliary task. The task can
promote the table block encoder to understand the content together with the
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structure of the table block, to narrow the structural gap between the table and
the passage.

As shown in Fig. 2, our framework consists of Linker, Retriever, and Table-
to-Text modules. Since embedding is shared in these modules and these modules
are trained simultaneously, the framework is called Joint Link-Retrieve Frame-
work(JLRF). Finally, We feed the retrieval results of JLRF to the reader to
answer questions. Our contributions can be summarized as follows:

– We propose a novel Joint Link-Retrieve Framework(JLRF) for Open Table-
and-Text Question Answering where the table block embedding and passage
embedding are shared in the framework and all modules in the framework are
trained simultaneously.

– We leverage a contrastive learning-based linker that can take full advantage of
the global information of the table block and passage, and propose a crafted
retriever that can mitigate error propagation and reduce noise interference
without explicitly generating or encoding fused blocks.

– We introduce an auxiliary table-to-text task to alleviate the structural gap
between table and text, helping the encoder better understand the table.

– Experiments show that JLRF can significantly improve retrieval performance.
Moreover, we achieve new state-of-the-art results in linking, retrieval, and
question-answering evaluations.

2 Related Work

2.1 Open Domain Question Answering

Given questions, open domain question answering(ODQA) retrieves evidence
candidates from external resources and provides their answers. Previous ODQA
works typically follow the two-stage retriever-reader pipeline where a retriever
first gathers relevant passages as evidence candidates, then a reader extracts
answers from the retrieved candidates [4]. To retrieve evidence, traditional
retrieval methods (e.g., TF-IDF [11] and BM25 [8]) generally retrieve passages
based on the lexical overlap between the given question and candidate passages.
Though great success has been achieved, these methods can not capture the
semantics similarity, resulting in sub-optimal solutions. Further, representation-
based retrieval models which can capture semantic information have been devel-
oped in the past few years [32]. Among them, DPR [12] employs two independent
BERT encoders to encode the given question and passages, respectively and then
calculates their relevance based on the similarity of these two encoded represen-
tations. Nogueira et al. [20] input both the question and the candidate passage
into one single BERT to score their relevance. These two model structures are
called two-tower and one-tower architectures, respectively. The former is faster to
retrieve relevant passages due to the representation of questions and passages are
calculated separately, thus the representations of all candidate passages could be
pre-processed and one can utilize efficient similarity search toolkits (e.g., FAISS
[10]) when deploying the retrieval model. The Latter has better performance
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because of its strong interactivity, but limited retrieval speed, and it hardly
works for large-scale candidate documents/passages. In this paper, considering
the efficiency and sharing representations, we focus on the two-tower structure.

After retrieving evidence, the reader is further adapted to extract answers. In
general, existing readers can be classified into the following two types: (1) extrac-
tive readers that predict an answer span from the evidence candidates, and (2)
generative readers directly generate answers in the text-generation paradigm.
For example, Extended Transformer Construction (ETC) [1] is an extractive
reader that supports long-sequence texts (up to 4,096 tokens) as input through
a carefully designed global-local sparse attention mechanism. Fusion-in-Decoder
(FiD) [9] is a T5-based [24] generative reader whose encoder embeds the given
question and the retrieved passages separately. Then the decoder is aware of
the attention over the concatenation of the embedding and generates the corre-
sponding answer. Grounding the truth that generative readers are more flexible
than extractive ones (e.g., the generative readers can provide answers not limited
to the text span from retrieved candidates), we equip our retrieval model with
generative readers.

2.2 Open Table and Text Question Answering

Semi-structured tables are essential knowledge sources storing a significant
amount of real-world knowledge. Open table and text question answering
(OTTQA) extends ODQA to a more realistic scene where not only the textual
passages but also semi-structured tables are provided for answering questions.
Chen et al. [5] pioneer this task and construct the OTT-QA dataset for this
task. Specifically, they collect OTT-QA samples based on the HybridQA [6]
dataset, a close-domain table-and-text question-answering dataset where each
question is aligned with a Wikipedia table and multiple entity-centric passages.
To answer questions in HybridQA, models should reason between tabular and
textual information. To adapt HybridQA to the open domain, Chen et al. [5]
first remove hyperlinks between tables and passages, and then decontextualize
the original context-dependent questions via crowd-sourcing. As a result, the
proposed OTT-QA contains about 45.8K context-independent questions.

To build OTTQA systems, Chen et al. [5] propose an early fusion mechanism
to improve the retrieval performance, which groups each table segment with its
relevant passages to a fusion block before retrieval. The fusion blocks could
serve as the basic retrieval units to facilitate the retrieval of relevant evidence
across different modalities. Then, a DPR model is adopted to retrieve relevant
fusion blocks which are further fed into a reader to provide answers. Similarly,
Zhong et al. [31] utilize the BLINK, an effective entity linking model, to link
each cell of the table block with passages. Besides, they propose a chain-centric
reasoning and pre-training framework (CARP), which employs a hybrid chain to
model the explicit intermediate reasoning process across tables and passages for
question answering and leverages a chain-centric pre-training strategy. Finally,
the retrieved evidence and the reasoning chain are used to get the final answers.
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3 Methodology

Fig. 2. An overview of JLRF containing three modules: Linker, Retriever, and Table-
to-Text generator. All three modules are trained end-to-end.

The structure of our proposed Joint Link-Retrieve Framework (JLRF) is illus-
trated in Fig. 2, which contains three modules, i.e., linker, retriever, and table-to-
text generator. Specifically, the linker (Sect. 3.1) that can take full advantage of
the global information of table blocks and passages is utilized to link each table
block with its relevant passages to form a fusion block. The retriever (Sect. 3.2)
uses fusion blocks as the basic retrieval units and retrieves the evidence candi-
dates relevant to the given question without explicit generation and encoding
of fusion blocks. To narrow the semantic gap between tables and passages, a
table-to-text generator (Sect. 3.3) is adopted as an auxiliary module to generate
textual descriptions for table blocks. The table block embedding and passage
embedding are shared among these modules and these modules are trained at
the same time. Finally, the given question as well as the retrieved evidence can-
didates are fed into a generative reader (Sect. 3.4) to reason and generate the
corresponding answer.

3.1 Linking Table Blocks with Passages

To incorporate the global information of the table blocks and passages, we
employ a contrastive learning-based linker. Specifically, we first input a table
block t and a passage p separately into dual BERT encoders to obtain their
representations Et and Ep, which could be formally defined as:

t = [CLS]〈title〉[T]〈section title〉[ST]〈headeri〉[H]〈celli||ni=1〉[C] (1)
p = [CLS]〈title〉[T]〈passage〉 (2)
Et,Ep = BERT1(t),BERT2(p) (3)
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where n is the number of cells in the table block, 〈title〉, 〈section title〉, 〈header〉,
〈cell〉 and 〈passage〉 are contents of the table block (i.e., title, section title,
header, and cells) and passage. [CLS], [T], [ST], [H] and [C] are special tokens
to indicate the different information sources. In this way, we can not only fully
utilize the global information of table blocks and passages but also easily share
the representation of table blocks and passages in subsequent modules.

Then, we adopt the representation of the first token (i.e., [CLS]) as the
overall representations of the input table block t and passage p, respectively.
The similarity between t and p is calculated as the dot product of their overall
representations:

sim(t, p) = E�
t,0 · Ep,0 (4)

where Et,0 and Ep,0 denote the representation of the first token in t and p,
respectively.

After calculating the similarity between table blocks and passages, we use the
Multi-Similarity-Loss [29] to optimize the linker, which is a contrastive learning-
based loss function:

Ll =
1
m

m∑

i=1

{
1
α

log

[
1 +

∑

k∈Pi

e−α(sjk−λ)

]
+

1
β

log

[
1 +

∑

k∈Ni

eβ(sjk−λ)

]}
(5)

where m is the number of table blocks in each batch, sjk is the similarity between
table block btj and passage bpk, Pi and Ni are the positive and negative passage
sets of batch i respectively, α, β are the scaling factor hyper-parameters, λ is
a pre-defined penalty coefficient, which punishes positive samples if their scores
below λ and negative samples if their scores above λ.

During linking process, for each table block t, we group t with its relevant
passages to a fusion block Ft = {t, pt,1, pt,2 . . . , pt,|Ft|−1}, where the similarity
between each pt,i and t exceeds λ.

3.2 Retrieving Evidence Candidates

To alleviate error propagation and reduce noise interference, our retriever shares
the representations of table blocks and passages with the linker. In this way, the
linker and retriever can interact with each other in an end-to-end manner to
mitigate the error propagation issue.

In detail, we encode the question q to obtain its representation Eq via a
BERT encoder, and then calculate the similarity between q and each fusion
block F = {t, pt,1, pt,2 . . . , pt,|Ft|−1} as:

Eq = BERT1(q) (6)

sim′(q,F) = E�
q,0 ·E�

t,0 +max{0,E�
q,0 ·E�

pt,1,0,E
�
q,0 ·E�

pt,2,0, . . . ,E
�
q,0 ·E�

pt,|Ft|−1,0}
(7)
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Therefore, the similarity between q and F is calculated based on the similarity
between q and t as well as the similarity between q and its most relevant passage
in F . Since most of the questions in OTTQA are two-hop questions, the way
we compute the similarity of fusion blocks enables the retriever to focus only on
the table block and passage most relevant to the question, thereby reducing the
noise of irrelevant passages. This approach is simple yet effective since it does
not require explicitly generating and encoding each fusion block like Chen et al.
[5].

Next, the InfoNCE loss [21] is adopted as supervised signals to optimize the
retriever:

Lr = − 1
m

m∑

i=1

es′
i

∑n
j=1 es′

ij

, (8)

where m and n are the number of questions and fusion blocks in each batch, s′
ij

denotes the similarity between question qi and fusion block Fj . s′
i indicates the

similarity between question qi and the ground-truth fusion block.
During the inference process, we retrieve top-k fusion blocks with the highest

similarity with the given question, which are further fed into a reader (Sect. 3.4)
as evidence candidates to reason and provide its answer.

3.3 Table-to-Text Generation

To fully understand the structure and content of table blocks, we utilize table-
to-text generation as an auxiliary task to reformulate each table block into its
textual description. In this manner, the table-to-text generator could help the
table block encoder (i.e., BERT1) better comprehend and encode table blocks,
thus bridging the structural gap between table and text.

Textual Description Collection. ToTTo [22] is a widely-used table-to-text dataset
based on Wikipedia tables that are the same source and form as the table in
OTTQA, whose goal is to generate the final text given the table and table meta-
data(such as the title), and set of highlighted cells. Since there are no ground-
truth textual descriptions for the table blocks in OTT-QA, similar to An et al.
[2] who use the T5 model based on prompt-tuning strategies [13,15,17] to gen-
erate table-text, we train a T5 model on the ToTTo to obtain a table-to-text
annotator. Then, the annotator is used to generate/label textual descriptions
for the table blocks of OTT-QA, serving as the pseudo labels to supervise our
table-to-text generator.

Table-to-Text Generator. We pair the table block encoder (i.e., BERT1) with
a transformer decoder (which is also initialized by the weights of BERT in a
BERT-to-BERT structure [25]) to form our table-to-text generator. We calculate
cross-entropy loss(i.e., CE(·, ·)) between the generated textual description y and
the pseudo label ŷ:

Lt = CE(y, ŷ) (9)
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with the help of the table-to-text auxiliary task, the table block encoder is able to
better understand the table block content to reduce the structural gap between
the table and the passage. Since the table-to-text module is only used in the
training process, during inference, the decoder is dropped.

The summation loss of the above three modules (i.e., linker, retriever, and
graph-to-text generator) is used to jointly train JLRF in an end-to-end manner:

L = Ll + Lr + Lt, (10)

3.4 Reasoning and Answering

For the given question, our JLRF retrieves top-k relevant fusion blocks. We not
only sort the retrieved fusion blocks but also sort and filter the passages inside the
fusion blocks(i.e., passages with a similarity to the question below the threshold μ
will be discarded.). Lastly, a reader is leveraged to reason the information across
the retrieved fusion blocks and provide the final answer. Here, we directly utilize
FiD [9] as our reader. In detail, FiD adopts the backbone of transformer encoder-
decoder architecture [28] and concatenates the given question and fusion blocks
as input. Then, the decoder performs attention over the whole input sequences
to aggregate and reason information across the fusion blocks and generate the
corresponding answer. To train the FiD reader, cross-entropy loss between the
generated answer a and the ground truth answer â is calculated:

LFiD = CE(a, â) (11)

4 Experiments

4.1 Experiment Setup

We set α, β, and λ in our linker to 1, 1, and 0, respectively, and set the threshold
for filtering passages μ to 0. There are 8 questions, 16 table blocks, and 50
passages in each batch when training the JLRF. During training the reader, we
use top-15 (k = 15) retrieved fusion blocks as evidence for each question and
there are 16 questions in each batch. We use the AdamW optimizer [19], linear
warmup of 1,000 steps, and set the learning rate to 3e-5 to train both JLRF and
FiD reader.

In order to train our framework quickly and smoothly, we first use the linker-
predicted labels directly and then use the ground-truth labels to generate fusion
blocks. During the inference process, we use FAISS [10] to store the pre-processed
embeddings and build the index for fast search. The BERT encoder used in JLRF
is implemented based on the bert-base model with default settings (768 hidden
size, 12 multi-head attention, and 12 hidden layers).
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4.2 Dataset and Evaluation

We evaluate the performance of our approach on the OTT-QA dataset [5]. OTT-
QA is a large-scale table-and-text open-domain question-answering benchmark
that aims to evaluate open-domain question answering over both tabular and
textual knowledge. Table 1 lists the statistics of OTT-QA, as we can see, OTT-
QA contains over 40 K questions and it also provides a corpus collected from
Wikipedia with over 400 K tables and 6M passages.

Table 1. Data statistics of OTT-QA dataset

Type Numbers

Questions in the training set 41,469

Questions in the development set 2,214

Questions in the test set 2,158

Total tables 410,740

Total passages 6,342,314

Following Chen et al. [5], we adopt exact match (EM) and F1 scores to eval-
uate QA model performance. Precision, recall, and F1 are used to evaluate the
linking performance. In addition, we follow the more fine-grained and challeng-
ing metric of Zhong et al. [31] to evaluate the retrieval performance, fused block
recall at top-k ranks (R@k) is adopted, where a fused block is considered as
a correct match when it comes from the ground truth table and contains the
correct answer.

4.3 Baseline Methods

We compare our model with several typical baselines and the state-of-the-art
baselines as follows:

• HYBRIDER is originally designed for the closed-domain HybridQA [6]
which is a two-stage model dealing with the heterogeneous information across
table and text, respectively. Since this model requires a ground truth table
with its hyperlinks to do modularized reasoning, Chen et al. [5] use BM25 to
retrieve the most relevant table and passages to reconstruct an approximated
input for this model.

• GPT+DPR+ETC is proposed by Chen et al. [5] with the early fusion
mechanism. This method uses GPT-2 as the linker, DPR as the retriever,
and ETC as the reader. The ETC reader receives the 4096 token space with
the top-k retrieval results and generates answers for the given questions.

• CAPR [31] is chain-centric reasoning and pre-training framework, which
utilizes a hybrid chain to model the explicit intermediate reasoning process
across table and text for question answering. This method uses BLINK as the
linker, DPR as the retriever, and CAPR as the reader.
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• DUREPA [14] is a dual reader-parser framework that takes both textual
and tabular data as input, and generates either direct answers or SQL state-
ments based on the context. In detail, if the answer is listed in the passages,
DUREPA generates the answer directly. Otherwise, it generates a SQL state-
ment and executes the statement to extract the answer from the table. The
model is equipped with BM25 to retrieve tables and passages separately.

Table 2. Overall linking and retrieving performances. The bold denotes the best
performance. † indicates the results are re-implemented by us. Hit@4K is used to
measure the retrieval recall on 4096 tokens.

Methods Linking Retrieval

Precision Recall F1 R@1 R@10 R@100 Hit@4K

GPT + DPR 50.7 50.1 50.4 – – – 52.4

BLINK + DPR 68.7† 52.6† 59.6† 16.3 46.7 75.5 –

JLRF(ours) 60.6 79.8 68.9 30.2 61.7 86.3 68.2

Table 3. Question Answering results on the dev set and blind test set. The bold
denotes the best performance.

Models Dev Test

EM F1 EM F1

BM25+HYBRIDER 10.3 13.0 9.7 12.8

DUREPA 15.8 – – –

GPT+DPR+ETC 28.1 32.5 27.2 31.5

CAPR 33.2 38.6 32.5 38.5

JLRF + FiD(ours) 36.3 43.0 35.4 40.9

4.4 Main Results

Table 2 shows the experimental results of linking and retrieving. As the only
reported retrieval performance of Chen et al. [5] is Hit@4K which means the
retrieval recall for table blocks on the retrieved 4096 tokens, we also report the
result of our JLRF with Hit@4K for fair. Our model significantly outperforms all
the baselines in most of the metrics. Specifically, since our linker focuses on the
global information of table blocks and passages, and can better understand the
table with the help of table-to-text auxiliary tasks, we achieve an improvement
of 18.5% / 9.3% over GPT+DPR / BLINK+DPR in terms of F1 score in linking
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evaluation. For retrieval evaluation, along with the mitigation of error propaga-
tion and the reduction of noise interference, our model outperforms GPT+DPR
by 15.8% in terms of Hit@4K and outperforms BLINK+DPR by 15.9%, 15.0%,
and 10.8% in terms of R@1, R@10, and R@100, respectively.

Table 4. Ablation experiments of JLRF on the OTT-QA dataset. The bold denotes
the best performance.

Methods Linking Retrieval

Precision Recall F1 R@1 R@10 R@100

JLRF 60.6 79.8 68.9 30.2 61.7 86.3

w/o table-to-text 56.6 69.3 62.2 25.5 54.8 79.2

w/o joint training 51.5 63.6 56.9 22.1 50.8 75.8

w/o embedding sharing 51.5 63.6 56.9 12.5 42.6 68.2

Table 5. Experiments on the effect of retrieval results on reading. We input 4096 tokens
and top-1 top-5 fusion blocks of JLRF into Longformer respectively to compare with
the GPT+DPR+ETC baseline on the dev set. The bold denotes the best performance.

Models EM F1

GPT+DPR+ETC

with 4096 tokens 28.1 32.5

JLRF+Longformer

with top-1 fusion block 22.8 26.2

with top-2 fusion blocks 24.9 26.5

with top-3 fusion blocks 26.3 27.9

with top-5 fusion blocks 28.7 32.6

with 4096 tokens 29.4 34.1

Table 3 shows the results of question answering evaluation, with significant
improvement in the retrieval performance, our reader also achieves the new state-
of-the-art (SOTA) performance in terms of both EM and F1 scores. In detail,
compared with CAPR, the previous SOTA method, we achieve an improvement
of 3.1% / 4.4% in terms of EM / F1 metric on the dev set and an improvement
of 2.9% / 2.4% in terms of EM / F1 metric on the blind test set.
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4.5 Ablation Study

Effectiveness of Joint Framework. In order to explore the effectiveness of
each module in our framework, We sequentially add the following settings for
ablation experiments:

• JLRF (w/o table-to-text) removes the Table-to-Text module.

• JLRF (w/o joint training) trains the linker and retriever separately.

• JLRF (w/o embedding sharing) breaks the joint framework and adopts
DPR as the retriever which requires the explicit generation and encoding of
fusion blocks.

The effects of these ablations are shown in Table 4. In each case, the eval-
uation scores are lower than our vanilla JLRF, justifying the rationality of our
framework. Specifically, compared with vanilla JLRF, JLRF (w/o table-to-text)
drops 6.7% in terms of F1 score on linking performance and 4.7% in terms of
R@1 score on retrieving performance. On this basis, JLRF (w/o joint training)
drops another 5.3% and 3.4% respectively. In particular, JLRF (w/o embedding
sharing) dramatically drops another 9.6% on the R@1 score of retrieval. From
the above results, it can be concluded that our joint framework can significantly
improve the performances of linking and retrieval, the Table-to-Text module
can narrow the gap between tables and passages, and joint training can mitigate
error propagation in lining and retrieval.

Effect of Retrieval on Reading. Since the FiD reader we adopted is different
from those readers in baseline methods, in order to explore the effect of retrieval
on reading, we also replace the FiD reader with the longformer [3] reader (which
is the same route as the ETC reader). We attempt the following strategies to
input the longformer reader with the retrieved fusion blocks: (1) the concate-
nation of the most relevant fusion blocks until up to 4,096 tokens (denoted
as “longformer with 4,096 tokens”), and (2) top-k (k ∈ {1, 2, 3, 4, 5}) relevant
fusion blocks (denoted as “longformer with top-k fusion blocks”). We compare
the above-modified models with GPT+DPR+ETC baseline [5] on the develop-
ment set. As shown in Table 5, the retrieval performance of the modified JLRF
is better than GPT+DPR, and the Longformer (with 4096 tokens) outperforms
the ETC model. In addition, as the increase of input length, the performance
of Longformer also increases, and our Longformer reader achieves competitive
results with ETC as long as top-5 fusion blocks are input. Based on the above
analysis, we conclude that the improvement of retrieval can significantly improve
the QA performance of the reader.

5 Conclusion

In this paper, we study Open Table-and-Text Question Answering(OTTQA)
and propose a Joint Link-Retrieve Framework(JLRF) where table block embed-
ding and passage embedding are shared, and the linker and retriever are jointly
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trained in an end-to-end-manner. We leverage a contrastive learning-based linker
to fully exploit the global and contextual information of table blocks and pas-
sages. In the meanwhile, we propose a novel retrieval method to compute the
similarity of the fusion block which does not require explicitly generating and
encoding the fusion block after linking. Besides, considering the structural gap
between the table and passage, we utilize table-to-text as an auxiliary task to
help the table block encoder better comprehend tables. Extensive experiments
show that our framework has the ability to take full advantage of global informa-
tion, mitigate error propagation, reduce noise interference, and bridge the gap
between table and passage. We achieve new state-of-the-art performances on the
OTT-QA dataset.

Acknowledgement. This research is supported by the National Natural Science
Foundation of China (Grant No. 62072323, 62102276), Shanghai Science and Technol-
ogy Innovation Action Plan (No. 22511104700), Natural Science Foundation of Jiangsu
Province (Grant No. BK20210705, BK20211307), the Major Program of Natural Sci-
ence Foundation of Educational Commission of Jiangsu Province, China (Grant No.
21KJD520005), the Priority Academic Program Development of Jiangsu Higher Edu-
cation Institutions, and the Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization.

References

1. Ainslie, J., et al.: ETC: Encoding long and structured inputs in transformers. In:
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
268–284. Association for Computational Linguistics (2020). https://aclanthology.
org/2020.emnlp-main.19

2. An, S., et al.: Input-tuning: adapting unfamiliar inputs to frozen pretrained models.
arXiv preprint arXiv:2203.03131 (2022). https://arxiv.org/abs/2203.03131

3. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer.
arXiv preprint arXiv:2004.05150 (2020). https://arxiv.org/abs/2004.05150

4. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. In: Meeting of the Association for Computational Linguis-
tics(ACL), pp. 1870–1879. Association for Computational Linguistics, Vancouver,
Canada (2017). https://aclanthology.org/P17-1171

5. Chen, W., Chang, M.W., Schlinger, E., Wang, W.Y., Cohen, W.W.: Open question
answering over tables and text. In: International Conference on Learning Repre-
sentations(ICLR) (2021). https://openreview.net/forum?id=MmCRswl1UYl

6. Chen, W., Zha, H., Chen, Z., Xiong, W., Wang, H., Wang, W.Y.: HybridQA: a
dataset of multi-hop question answering over tabular and textual data. In: Find-
ings of the Association for Computational Linguistics(EMNLP). pp. 1026–1036.
Association for Computational Linguistics (2020). https://aclanthology.org/2020.
findings-emnlp.91

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Conference of the North
American Chapter of the Association for Computational Linguistics(NACL), pp.
4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(2019). https://aclanthology.org/N19-1423

https://aclanthology.org/2020.emnlp-main.19
https://aclanthology.org/2020.emnlp-main.19
http://arxiv.org/abs/2203.03131
https://arxiv.org/abs/2203.03131
http://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://aclanthology.org/P17-1171
https://openreview.net/forum?id=MmCRswl1UYl
https://aclanthology.org/2020.findings-emnlp.91
https://aclanthology.org/2020.findings-emnlp.91
https://aclanthology.org/N19-1423


A Joint Link-Retrieve Framework for OTTQA 383

8. Harman, D.K.: Overview of the third text retrieval conference (TREC) (1995)
9. Izacard, G., Grave, E.: Leveraging passage retrieval with generative models for

open domain question answering. In: Conference of the European Chapter of the
Association for Computational Linguistics(EACL), pp. 874–880. Association for
Computational Linguistics (2021). https://aclanthology.org/2021.eacl-main.74

10. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data (TBD) 7(3), 535–547 (2021). https://doi.org/10.1109/TBDATA.
2019.2921572

11. Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. J. Documentation 28, 11–21 (1972). https://doi.org/10.1108/eb026526

12. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answer-
ing. In: Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781. Association for Computational Linguistics (2020).
https://aclanthology.org/2020.emnlp-main.550

13. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Conference on Empirical Methods in Natural Language Process-
ing(EMNLP), pp. 3045–3059. Association for Computational Linguistics, Online
and Punta Cana, Dominican Republic (2021). https://aclanthology.org/2021.
emnlp-main.243

14. Li, A.H., Ng, P., Xu, P., Zhu, H., Wang, Z., Xiang, B.: Dual reader-parser on hybrid
textual and tabular evidence for open domain question answering. In: Meeting of
the Association for Computational Linguistics and International Joint Conference
on Natural Language Processing (ACL&IJCNLP), pp. 4078–4088. Association for
Computational Linguistics (2021). https://aclanthology.org/2021.acl-long.315

15. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Meeting of the Association for Computational Linguistics and International
Joint Conference on Natural Language Processing (ACL&IJCNLP), pp. 4582–
4597. Association for Computational Linguistics (2021). https://aclanthology.org/
2021.acl-long.353

16. Li, Y., Li, W., Nie, L.: Dynamic graph reasoning for conversational open-domain
question answering. ACM Trans. Inf. Syst. (TOIS) 40(4), 1–24 (2022). https://
doi.org/10.1145/3498557

17. Liu, X., et al.: GPT understands, too. arXiv preprint arXiv:2103.10385 (2021).
https://arxiv.org/abs/2103.10385

18. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019). https://arxiv.org/abs/1907.11692

19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations(ICLR) (2019). https://openreview.net/
forum?id=Bkg6RiCqY7

20. Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv preprint
arXiv:1901.04085 (2019). https://arxiv.org/abs/1901.04085

21. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 (2018). https://arxiv.org/pdf/
1807.03748.pdf

22. Parikh, A., et al.: ToTTo: a controlled table-to-text generation dataset. In: Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 1173–
1186. Association for Computational Linguistics (2020). https://aclanthology.org/
2020.emnlp-main.89

23. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019). https://
github.com/openai/gpt-2

https://aclanthology.org/2021.eacl-main.74
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1108/eb026526
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.315
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://doi.org/10.1145/3498557
https://doi.org/10.1145/3498557
http://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1807.03748.pdf
https://arxiv.org/pdf/1807.03748.pdf
https://aclanthology.org/2020.emnlp-main.89
https://aclanthology.org/2020.emnlp-main.89
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2


384 J. Zou et al.

24. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. (JMLR) 21(140), 1–67 (2020). https://jmlr.org/
papers/v21/20-074.html

25. Rothe, S., Narayan, S., Severyn, A.: Leveraging pre-trained checkpoints for
sequence generation tasks. Trans. Assoc. Comput. Linguist. 8, 264–280 (2020).
https://aclanthology.org/2020.tacl-1.18

26. Sachan, D., et al.: End-to-end training of neural retrievers for open-domain
question answering. In: Meeting of the Association for Computational Lin-
guistics and International Joint Conference on Natural Language Process-
ing (ACL&IJCNLP), pp. 6648–6662. Association for Computational Linguistics
(2021). https://aclanthology.org/2021.acl-long.519

27. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems(NeurIPS), vol. 30.
Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

28. Vaswani, A., et al.: Attention is all you need. In: Conference on Neural Informa-
tion Processing Systems (2017). https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

29. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with
general pair weighting for deep metric learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition(CVPR) (2019). https://
arxiv.org/abs/1904.06627

30. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot
entity linking with dense entity retrieval. In: Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 6397–6407. Association for Compu-
tational Linguistics (2020). https://aclanthology.org/2020.emnlp-main.519

31. Zhong, W., et al.: Reasoning over hybrid chain for table-and-text open domain
question answering. In: Raedt, L.D. (ed.) International Joint Conference on Arti-
ficial Intelligence(IJCAI), pp. 4531–4537. International Joint Conferences on Arti-
ficial Intelligence Organization (2022). https://doi.org/10.24963/ijcai.2022/629

32. Zhu, F., Lei, W., Wang, C., Zheng, J., Poria, S., Chua, T.S.: Retrieving and read-
ing: a comprehensive survey on open-domain question answering. arXiv preprint
arXiv:2101.00774 (2021). https://arxiv.org/abs/2101.00774

https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.tacl-1.18
https://aclanthology.org/2021.acl-long.519
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.06627
https://arxiv.org/abs/1904.06627
https://aclanthology.org/2020.emnlp-main.519
https://doi.org/10.24963/ijcai.2022/629
http://arxiv.org/abs/2101.00774
https://arxiv.org/abs/2101.00774


L2QA: Long Legal Article Question
Answering with Cascaded Key Segment

Learning

Shugui Xie1, Lin Li1(B), Jingling Yuan1, Qing Xie1, and Xiaohui Tao2

1 Wuhan University of Technology, Wuhan, China
{xieshugui,cathylilin,yjl,felixxq}@whut.edu.cn

2 University of Southern Queensland, Toowoomba, Australia
xiaohui.tao@usq.edu.au

Abstract. Evidences inLegalQuestionAnswering (LQA)help infer accu-
rate answers. Current sentence-level evidence extraction based methods
may lose thediscourse coherence of legal articles since they tend tomake the
extractedsentencesscatteredoveranarticle.Tothisend,thispaperproposes
acascadedkeysegment learningenhanced framework forLongLegalarticle
QuestionAnswering, namelyL2QA. The framework consists of three cas-
caded modules: Sifter, Reader, and Responder, which first transfers a long
legal article into segments and each segment is inherent in the discourse
coherence from consecutive sentences. And then, the Sifter is trained by
automatically siftingoutkeysegments inan iterativeanswer-guidedcoarse-
to-fine way. The Reader utilizes a range of co-attention and self-attention
mechanisms to obtain the semantic representations of the question and key
segments. Finally, theResponder predicts final answers in a cascadedman-
ner, identifying where the answer is located. Conducted onCAIL 2021 Law
MRCdataset, our L2QA achieves 83.1Macro-F1 and 65.8 EM and outper-
forms a state-of-the-art legal QAmodel by 4.1% and 9.1%.

Keywords: Legal Question Answering · Key Segment · Coarse-to-fine

1 Introduction

Legal Question Answering (LQA) refers to finding answers to a given question
by reading and understanding a set of legal articles [1]. To assist the research
community in LQA with multiple question types, several datasets have been con-
structed, such as JEC-QA with 28,641 multiple-choice and multiple-answer ques-
tions [2], COLIEE-2021 with 800 yes/no questions [3], the United States Multi-
state Bar Examination(MBE) corpus with 600 yes/no [4], OAB exam data [5],
and so on. The CJRC-20211 has four kinds of question types, including single-
span, yes/no, unanswerable and multi-span answers [6], which is publicly released
1 http://cail.cipsc.org.cn/.
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with the greatest variety of question types in LQA. The various question types in
LQA expand its applicability, however, brings further challenges to QA models.

Legalarticlesare rigorously structuredand logical.Adenselyconnectedencoder
stack is designed to obtain multi-scale semantic features of legal articles [7]. But,
when dealing with various answer types, it is highly demanded to accurately locate
evidence sentences for answer prediction. Current studies demonstrate the effec-
tiveness of extracting evidence like key sentences or paragraphs to guide answer
prediction in long article question answering [8–12]. Recently, self-training [10]
method is employed to supervise the evidence extractor with auto-generated evi-
dencesentence labels inaniterativeprocess.Fewevidenceannotations(strongsemi-
supervision)combiningwithabundantdocument-levellabels(weaksupervision)are
also adopted for evidence extraction [11]. However, the above methods are mainly
based on sentence-level or span-level extraction. They tend to make the extracted
sentencesscatteredoverthearticle,whichresultsinunsatisfiedansweringforconsec-
utiveevidencesentences.Ontheotherhand,atparagraph-levelevidenceextraction,
reinforcement-based methods are used to jointly train the model for answer predic-
tion [13,14], where the evidence is obtained through a ranker that learns a weight
distribution fromthe retrievedpassage-level text andassignsprobabilities basedon
the relevance of each passage to the question.However, the passage-level extraction
method is limited by the input size of the language model. To meet this size limit,
the popular hard truncation method may not guarantee contextual semantics (dis-
coursecoherence).Theirperformancebecomesunstablewhensomeanswersneedto
be reasoned through multiple, consecutive sentences.

It is observed that preserving the contextual semantics (discourse coherence) of
evidencesentencescanhelpoutputtingaccurateanswers.Tacklingtheproblem,this
paperproposesL2QA,aSifter,Reader,Responder cascadedframeworkwithanswer-
guided key segment learning. The Sifter first divides a long legal article into several
segments in a dynamic programming method, to guarantee each of which contains
oneormoreconsecutive sentences.Wethendesignananswer-guided learningonthe
Sifter, in a coarse-to-finemanner to selectmorekey segments fromthearticle andgo
through several iterations. TheReader utilizes co-attention and segment-level self-
attention mechanisms to learn semantic representation. The Responder maps the
semantic representation to the input of a multi-label classification task and obtains
the final answer in a cascaded manner. Conducted on a legal QA dataset, our L2QA
framework achieves 83.1 in Macro-F1 and 65.8 in EM and outperformed the state-
of-the-art model by 4.1% and 9.1%.

2 Methodology

This study is focused on the following legal question answering task:

– Input: a long legal article x, a question q
– Output: y (span(s), yes, no, unknown)

The answer is an element of the set containing single-span, multi-span, yes,
no, and unknown As an extractive reading comprehension task, the L2QA is
modeled as a multi-label classification task with the above four answer types.
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Our L2QA is a cascaded two-stage training, answer-guided key segment learn-
ing framework for long legal question answering, as shown in Fig. 1.

Fig. 1. Overview of L2QA framework.

2.1 Sifter: Answer-Guided Key Segment Selection Module

As shown in Fig. 1, the Sifter aims to maintain the discourse coherence of the
input legal article x and question q to guide answer prediction while satisfy-
ing the input size of text representation learning model. Based on the Dynamic
Programming (DP) algorithm, the Sifter first segments the legal article x and
question q into several segments, each of which contains one or more consecu-
tive sentences. A coarse-to-fine relevance calculation is then performed between
legal segments and key fact segments. It is an iterative process based on an
answer-guided training method. Segments with the highest relevance scores will
be merged with the existing key fact segments, forming a new set of key fact
segments. The segments sifted out through several iterations are fed into the
semantic representation module, Reader, in the order of the original article.

Dynamic Programming Algorithm Based Segmentation. A legal article
is divided to several segments based on a dynamic programming algorithm that
pre-defines the cost of all punctuation marks in a legal article. Here, if a seg-
mentation is ended with a punctuation mark, its cost in DP is lower than a hard
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truncation that usually loses discourse conference. We traverse the entire legal
article, record all punctuation marks and the corresponding cost, and when the
distance between two punctuation marks is greater than the maximum segment
length (e.g., 64), recording a hard truncation. The ending with a punctuation
mark, possibly a full stop “.”, a question mark “?”, or a comma mark “,”,
deserves a lower cost and the hard truncation gets a higher cost. Then, based
on all the punctuation marks and their costs, we traverse forward in a reverse
order to obtain the segmentation strategy of minimizing the sum of all segments
costs. The smaller the cost, the more suitable this segmentation strategy is for
the input legal article, which theoretically ensures that our segments will not be
hard truncation as much as possible. See the description of different segmenta-
tion methods in Sect. 3.1.

Iterative Coarse-to-Fine Key Segment Sift. Key fact segments will be
sifted out via several iterations, as illustrated in Fig. 1. In each iteration, the
coarse sift process obtains several segments which have the highest relevance
scores with the previous key fact segments. The initial key fact segment is the
question segment s0. The fine sift process adopts the relevance score calculation
again between existed key segments and the output segments from the coarse
sift process. Such a design is motivated by the realization that the relevance
scores obtained from coarse sift lack of sufficient accuracy without interaction
and comparison between the high score segments, similar to the re-ranking prob-
lem [15].

In each fine sift step, the top-m1 relevance score segments will be merged
with key segments and form the new key fact segments (evidence). m1 is the
parameter. After iterations, the question segment SZ0(the same as S0) and key
fact segments SZ1-SZl

will be obtained, and labeled as xl. The size of SZ0+SZ1-
SZl

is m. The accumulated quantity of key segments is determined by the input
size of the downstream module reader.

Relevance Learning. Relevance learning is trained in a supervised manner:

losssifter(S) = CrossEntropy(R, relv label(S)) (1)

relv label(S) ∈ [0, 1]len(S) = [1, · · · , 1
︸ ︷︷ ︸

SZ0

, 0, · · · , 0
︸ ︷︷ ︸

SZ1 irrelevant

, 1, · · · , 1
︸ ︷︷ ︸

SZ2 relevant

, · · · ] (2)

where the training sample S is either a sequence of continuous segments xrand

sampled from the legal article x or a mixture of all relevant and randomly selected
irrelevant segments xrelv.

The relevance learning obtains the embedding of all input tokens through a
pretrained model. Then MLP (sigmoid) performs a multi-label classification task
on the embedding, aiming to obtain the token logits. We regard the classification
result of the input sequence as its confidence on the question. The average of all
tokens in the range of each segment as the confidence of this segment, that is,
the relevance with the input question. Then the segment relevance is produced
by the mean pooling result of the token logits.
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2.2 Reader: Semantic Representation Module

The Reader is a cascaded structure with a range of co-attention [16,17] and
segment-level self-attention.

Encoding Question and Key Segments. We firstly employ a pretrained
language model such as Electra to obtain initial embedding of question segment
and key legal segments EQ

1 ∈ R
n×h, Ex

1 ∈ R
m×h, where h is the hidden size.

We concatenate three tokens of “[CLS][UNK][YES][NO]” token, following
those common Machine Reading Comprehension tasks, the tokenized question q
and a final “[SEP]” token. The tokenized key segments SZi

and a final “[SEP]”
token are concatenated in the same way. Then segments from SZ0 to SZl

are
concatenated and fed into the pretrained language model.

The co-attention mechanism has been shown effective in other MRC mod-
els [16,17], outputting a co-dependent representation of the question and key
fact segments. It takes EQ

1 , Ex
1 as inputs and respectively outputs Qx

2 ∈ R
n×h

and xQ
2 ∈ R

m×h and feed them to the segment-level self-attention layer.

Segment-Level Self-attention. This layer works for gathering information on
key tokens in each key segment. The token-level representation is given by:

xQ
3 = Transformer(xQ

2 ) ∈ R
m×h (3)

xQ
3 is the concatenation from segment Sx

Z1
to segment Sx

Zl
and the question self-

attention is calculated in the same way. Finally, a mean pooling is used to obtain
the segment representation xQ

4 ∈ R
l×h as:

xQ
4 [i, :] = MeanPooling(Sx

Zi
) (4)

where Sx
zi is the i-th segment representation in xQ

3 .
The difference between the original multi-head self-attention and our

segment-level self-attention layer is that we incorporate an attention mask that
is the sum of consists of two masks as introduced in equations below.

Ms[i, j] =

{

0 i, j ∈ same segment
−∞ otherwise

(5)

Mrand[i, j] =

{

0 128 random tokens
−∞ otherwise

(6)

where Ms ∈ R
m×m is a segment-level attention mask, as each segment represen-

tation only focus on the token information inside the segment. Mrand ∈ R
m×m

is a random mask for each segment to pay attention to some tokens of other
segments. The 0 will not be overwritten by negative infinity.

Qx
3 will be concatenated with xQ

3 as token-level representation EQS ∈ R
m+n

and fed into the Responder. Also, the legal article and question segment repre-
sentation H ∈ R

(l+1)×h is obtained through the concatenation of Qx
4 and xQ

4 .
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2.3 Responder: Answer Predictor

Since our task is an extractive reading comprehension task, the final answer will
be obtained through the start and end positions. In Responder, a dense layer FS

with Tanh activation function is first employed as segment learning layer. It takes
H ∈ R

(l+1)×h as inputs and outputs the segment representation HS ∈ R
(l+1)×h.

Answer Start and End Locator. The segment representation HS and token-
level representation EQS are used as the inputs to predict the start position of
the answer. Since the row-dimension of EQS ∈ R

(m+n)×h is different from that of
HS ∈ R

(l+1)×h, the HS cannot directly concatenate to EQS . Then HS ∈ R
(l+1)×h

is tiled with H2
S ∈ R

(m+n)×h along row-dimension: H2
S [i, :] = HS [Li, :] ∈ R

h.
Note that Li indicates the index of the segment where the i-th token is located.
Thus, the model can consider the information of the segment learning layer when
predicting the answer start. The start logits of the answer are predicted by:

Hstart = Fstart([H2
S ;EQS ]) ∈ R

(m+n)×h (7)

ostart = HstartWstart ∈ R
m+n (8)

where ostart is the output logit vector of the start positions of the answer, Fstart

is a dense layer with Tanh activation function, and Wstart ∈ R
(h×1) is a trainable

parameter. Hstart will be used in answer end locator.
Similarly, the end logits of the answer are predicted by:

Hend = Fend([Hstart;EQS ]) ∈ R
(m+n)×h (9)

oend = HendWend ∈ R
m+n (10)

where oend is the logit vector of the end positions of the answer, Fend is a dense
layer with Tanh activation function, and Wend ∈ R

(h×1) is trainable.
We map the LQA task into a multi-label classification task. The cross-entropy

loss is computed over the aforementioned output start and end logits, and jointly
minimizes these two cross-entropy losses.

lossstart = CrossEntropy(ostart, start label) (11)
lossend = CrossEntropy(oend, end label) (12)
Minimize(lossstart + lossend) (13)

3 Experiment

3.1 Dataset and Experimental Setup

The CAIL 2021 Law MRC dataset (CJRC) [6] contains data released in 2019
and 2021(39333+4200 examples). Following the official splitting of CAIL 2021
Law MRC contest, we get the train set(43133), dev set(1000) and test set(1000).
Note that Dev(Test) has 3 sets and each question type is 200 samples.
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In Train set, 56.38% articles’ length are longer than the input size of pre-
trained models(512). The commonly used data segmentation method, sliding
window, results in hard truncated segments accounting for 97.1%, which can’t
guarantee the semantic coherence of sentences since a sentence is cutoff directly.
Our DP-based segmentation do much better with 6.9% hard truncated segments.

Our L2QA adopts a two-stage training method, that is, the training of Sifter
and the training of Reader, Responder are separated. It takes approximately 10 h
and 30 h to train the two modules respectively with a TITANX GPU. The HFL
released legal-electra-base [18] is used as our pretrained model.

The number of segments selected in the first iteration m1, and the number in
the second iteration m2 in Sifter are set as 3 and 5. The single segment size is set
to 64 tokens. The learning rate and batch size of Sifter and Reader are 7×10−5,
4. The gradient accumulation of Sifter and Reader are set to 4, 8 respectively.
And the train epoch is set to 2,4 respectively. The Adamw is used for optimizer.

Our baselines are some existing methods which enhance QA performance
from different perspectives, i.e., Sliding Window method [19], CogLTX [20],
RikiNet [17], MTMSN [21] and MacBERT [22]. Our evaluation measures are
extract match(EM) and macro-average F1(Macro-F1), the same as SQuAD [23].

3.2 Main Results

Overall performance comparisons are conducted between previously published
works and our L2QA. The average results of Exact Match(EM), Macro-F1 on
both 3 dev sets and 3 test sets are listed in Table 1.

Table 1. Overall performance comparisons.

Average Dev Average Test

EM F1 EM F1

1 - Sliding Window [19] 59.8 76.2 61.9 77.2

2 - CogLTX [20] 60.2 77.9 60.7 78.3

3 - CogLTX+12 hidden layers attention 59.8 77.5 60.4 77.9

4 - CogLTX+4,8,12 hidden layers attention 60.2 78.2 61.3 78.8

5 - RikiNet [17] 60.1 77.5 61.6 78.2

6 - MTMSN [21] 44.2 67.3 44.8 67.1

7 - MacBERT-base [22] 60.4 80.3 60.3 79.8

L2QA(Ours) 64.0 81.9 65.8 83.1

The CogLTX used as Sifter module in L2QA has achieved improvement in
Macro-F1 over the sliding window method on both the dev set and test set
(Dev set: Macro-F1 from 76.2 to 77.9; Test set: Macro-F1 from 77.2 to 78.3).
It demonstrates the effectiveness of extracting evidence like legal segments. The
effects of the hidden layers of pretrained models are also widely studied [24]. The
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attention over the 4th, 8th and 12th hidden layers achieve better performance
than the other two methods (dev set:Macro-F1 78.2; test set:Macro-F1 78.8).
The result shows that it is worth adding an attention to the hidden layers of the
pretrained model to improve the model’s answer prediction ability.

RikiNet focuses on semantic understanding, utilizing a set of attention mech-
anisms and sliding window. For the reason of using dynamic paragraph dual-
attention, the training of the RikiNet takes more than 80 h, which is three times
the training time of CogLTX. It brings improvements over the single CogLTX
model (Dev set: Macro-F1 from 76.2 to 77.5; Test set: Macro-F1 from 77.2 to
78.2). MTMSN aims to deal with questions of multi-type answers. The result
shows 44.2 EM and 67.3 Macro-F1 on dev set, 44.8 EM and 67.1 Macro-F1 on
test set. Predicting the number of answers and the type of answer in MTMSN
brings a negative effect to the result in this long legal article dataset.

For our L2QA, the accuracy of the trained Sifter sifting out key sentences
exceeds 99.5%. And, L2QA outperforms the other six baselines on both dev set
and test set (dev set: 64.0 EM, 81.9 Macro-F1; test set: 65.8 EM, 83.1 Macro-F1).
The result demonstrates that the cascaded answer-guided key segment learning
framework is capable of accurately answering multiple type questions.

3.3 Ablation Study

We conduct an in-depth ablation study on probing three key modules with results
shown in Table 2. All three modules show their importance to the L2QA per-
formance and cascading the three key modules significantly improves the frame-
work’s performance in answering legal questions.

Table 2. Ablation study of our L2QA.

Setting EM F1 Setting EM F1

L2QA 64.9 82.5 L2QA 64.9 82.5

(a) - Sifter 63.3 80.2 (e) - Rand Mask(64 token) 64.7 81.3

(b) - Reader 52.6 79.4 (f) - Responder 63.7 80.8

(c) - Co-attention 63.6 81.3 (g) - Reader & Responder 60.4 78.1

(d) - Key segment
Self-attention

64.8 81.9

(1) Ablations of Sifter: In (a), we remove the entire Sifter and replace it with
the sliding window method. Since our Reader is designed corresponding to the
segments involved in Sifter, after removing the Sifter, we make some difference to
Reader, replacing the segment-level self-attention with token-level self-attention.
We can see that after removing the Sifter, the performance drops sharply, for
example, EM is reduce to 63.3 from 64.9.
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(2) Ablations of Reader: In (b), we keep the Sifter, the Responder and remove
the Reader. In (c), and (d), we remove the co-attention layer, and key segment
self-attention layer respectively. In (e), we remove the random mask and keep
the segment mask as introduced in Sect. 2.2. It shows that after removing each
component of Reader, the performance drops accordingly. Moreover, the question
self-attention layer and co-attention layer both enhance the performance.

(3) Ablations of Responer: In (f), components in the Responder are fur-
ther replaced. We have simplified models through two parallel calculations on
the start logits and end logits, which means canceling the cascaded manner for
answer prediction. The result of Macro-F1 drops from 82.5 to 80.8. In (g), we
further remove the Sifter and Reader, which results in additional performance
decreasing, suggesting the essence of Reader and Responder in L2QA.

4 Conclusions

This study proposes a new Legal Question Answering framework namely L2QA
that reads legal articles to answer multi-type questions. The L2QA is constituted
by three modules, Sifter, Reader and Responder, working in a cascaded manner
to predict the final answers. Experiments conducted on the CAIL 2021 Law
MRC dataset show the promising performance of the proposed L2QA and its
superior to state-of-the-art QA models.
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Abstract. Query-based moment retrieval aims to localize the most relevant
moment in an untrimmed video according to the given natural language query.
Existing retrieval models require the same length for easy training and use. There-
fore, videos with different lengths are pre-processed using the fixed sampling
method. As a result, the longer the video, the more video clips are lost, thus affect-
ing the accuracy of retrieval. We observed the fixed sampling method causes two
accuracy issues, including missing clips and sparse clips. In this paper, we pro-
pose an adaptive video clip sampling method including resampling missing clips
and enhancing sparse sampled clips to increase the retrieval accuracy. Resampling
missing clips is used to address situations in which annotated clips are completely
lost during fixed sampling. Enhancing sparse sampled clips aims to prevent the
clips containing the same semantics from being too sparse. Our approach first
obtains multiple video features through the adaptive sampling methods based on
the backbone networks. Then we propose a consistency loss maintenance method
to learn the semantics of adaptive sampled features. The extensive experiments on
three real datasets demonstrate the effectiveness of our proposed method, espe-
cially for long videos.

Keywords: Query-based moment retrieval · Multi-modal · Consistency · Video
sampling

1 Introduction

Query-based moment retrieval (a.k.a. natural language video localization) has drawn
increasing attention over the last years, which aims to locate the start and end boundaries
of the most relevant video segment from an untrimmed video according to a given
natural language query. For example, given an untrimmed video in Fig. 2 and a query
“fire sparks erupt,” we aim to locate the best matching segment for the query.

Most existing moment retrieval works [2–5,10,11,13] focus on different aspects of
this emerging task, such as the query representation learning [7], video context mod-
eling [1,9], and cross-modal fusion [11,13], while ignoring the video segment repre-
sentations. Figure 1 shows the recent methods can be classified into unfixed size and
fixed size sampling methods, where fixed size sampling methods (i.e. videos of differ-
ent lengths are sampled into the same length for easy training and use) perform better.

However, the longer the video, the more video clips are lost, thus affecting the accu-
racy of retrieval. Generally, a video contains different segments, each consisting of clips
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 395–404, 2023.
https://doi.org/10.1007/978-3-031-30675-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30675-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-30675-4_28


396 L. Kong et al.

Fig. 1. Comparison of the performance of existing methods on TACoS dataset in recent years.

Fig. 2. An example of query-based moment retrieval in videos based on fix-sampling.

and semantically linked to a sentence. A clip is made up of continuous frames. In the
example shown in Fig. 2 with 9 clips, a clip “fire sparks erupt” may be missed if the
fixed sampling size is set to 5, causing inaccurate information learning in models.

Fixed sampling size leads to limited adaptability in existing models. It is challenging
to determine a suitable sampling size due to varying video lengths affecting represen-
tation accuracy differently. We find that longer videos lose more clips, and short seg-
ments become sparse after sampling. Therefore, an adaptive video sampling is desired
to reduce performance loss.

In this work, we propose an adaptive video clip sampling to improve accuracy of
existing moment retrieval models to avoid missing and sparse clips from fixed sampling.
The training phase adaptively samples videos by resampling missing clips and enhanc-
ing sparse clips. We adopt three widely used backbone networks [11,13,14] to obtain
fusion representations, and design a consistency loss function to learn more accurate
semantic information and reduce the loss caused by fixed sampling.

The contributions of our work are as follows:

– We propose an adaptive sampling method to avoid missing clip and sparse clip
caused by fixed sampling.

– We propose consistency loss maintenance on multiple fusion representation base
on backbone networks. The maintenance is used to learn the semantics of adaptive
sampled features, which reduces the loss caused by fixed sampling.

– We demonstrate the effectiveness of our proposed approach on three real moment
retrieval datasets. Our approach shows better improvement, especially for long
videos.
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2 Analysis of the Existing Fixed Size Sampling Methods

In this section, we formally introduce the problem of query-based moment retrieval. We
then analyze why the existing fixed size sampling methods are unable to achieve high
accuracy especially on long videos.

2.1 Problem Formulation

Given an untrimmed video V u = {vu
1 , . . . , vun} with n frames and a sentence query

Q = {w1, . . . , wm} with m words, our task aims to retrieve the best semantic matching
M in V , i.e. the moment M = V [i, j] from frame vi to vj that delivers the same
semantic meaning as the input query sentence Q.

In order to answer Q on V semantically, the goal is to train a retrieval model by
building potential relationships between given video-sentence pairs. More specifically,
given a training video stream S = {s1, . . . , sz}, let {X,T,A} be the training set of
the video-sentence pairs. The k-th video segment xk(= S[i, j]) ∈ X is specified by its
annotation ak = (i, j) ∈ A (i.e. labeling the start and end frame of the video segment
S[i, j]), and can be semantically described by its corresponding text tk ∈ T .

2.2 Problems of Existing Video Representations with Fixed Sampling Size

The existing fixed sized sampling approaches first segment the input video stream S into
a number of video clips. Each video clip ci consists of T frames. For each video clip
ci, its feature is represented as vo

i . Therefore, we could use features of all video clips
to represent the whole video feature, denoted V o = {vo

1 , . . . ,v
o
p}, where vo

i ∈ R
d,

p =
⌊
z
T

⌋
, and d is the feature dimension. In order to feed different number of video

clips into the same training model, the existing methods transform different lengths of
videos into fix number of video clips. Such transformation is called fixed size sampling.
To be specific, given a fix numberN , the video is transformed into a sampled video with
N clips, where each vr

i = vo
�p×i/N�. Then the feature of the sampled video is denoted

as V S = {vS
1 , . . . ,vS

N},vS
i ∈ R

d.
Figure 3(a) shows a video with 17 clips, and Fig. 3(b) shows a sampled video with

9 clips. Let x1, x2, and x3 be three segments in the original video with corresponding
texts t1, t2, and t3. Other segments have no text annotation.

Figure 3(b) illustrates the two issues caused by fixed size sampling.

(i) Missing clips. Some video clip (e.g. x2) is not sampled (i.e. the only clip’s fea-
ture representing x2 does not exist in the sampled video), which results in some
important clips are missing after fixed size sampling.

(ii) Sparse clips. When a segment contains a small number of clips, the number of clips
to be sampled may be very sparse, thus affecting the accuracy of model training.
For example, the segment x1 only contains two clips. After fixed sampling, only
one clip is sampled, which means 50% of clips are lost.

Table 1 shows the statistic of the above two issues and the total number of video-
sentence pairs in three datasets. We observe that the missing clip issue happens fre-
quently in TACoS dataset. It is mainly because TACoS contains more number of long
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Fig. 3. Examples of sampled video clips using fix-interval sampling. (a) Original video, and (b)
sampled clips.

Table 1. The statistics of (i)missing clips, (ii) sparse clips, and the total number of video-sentence
pairs (denoted ALL) in three datasets with the fixed sampling size N = 200.

Video length (Sec.) ActivityNet dataset TACoS dataset TACoS2DTAN dataset

issue (i) issue (ii) All issue (i) issue (ii) All issue (i) issue (ii) All

0–100 0 271 28, 272 0 0 2, 096 0 0 2, 329

100–200 1 26, 030 32, 083 0 1, 729 5, 647 0 1, 894 5, 171

200–300 1 11, 289 11, 505 24 3, 372 3, 556 4 3, 368 3, 396

300–400 0 33 33 31 1, 663 1, 678 0 1, 606 1, 607

400–500 0 32 32 104 1, 775 1, 775 7 1, 701 1, 702

500–600 0 5 5 61 933 934 1 913 913

600–700 0 9 9 193 1, 539 1, 546 12 1, 523 1, 523

700–+∞ 0 18 18 478 1, 586 1, 586 40 1, 586 1, 586

videos than ActivityNet, which results in many short segments in TACoS dataset have a
high probability of not being sampled. Meanwhile, the sparse issue occurs frequently in
the videos within 100 ∼ +∞ seconds in the three datasets, because the fixed sampling
makes the sampling interval large.

3 An Adaptive Sampling

Based on the analysis in Sect. 2.2, we propose an adaptive sampling approach to avoid
missing clips and sparse clips.

3.1 Framework Overview

Figure 4 shows the overall framework of our method which consists three parts: back-
bone network, adaptive sampling, and consistency maintenance. (i) Backbone network
is adopted by most of the existing approaches to train the retrieval model. (ii) Adap-
tive sampling includes resampling missing clips and enhancing sparse sampled clips.
Resampling missing clips aims to adjust feature representation by substituting features
corresponding to the important but unsampled clips for those unimportant or highly
repetitive clips due to fixed size sampling. Enhancing sparse clips aims to enhance the
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Fig. 4. The basic framework of our model.

feature representation for sparse clips. (iii) Consistency maintenance is used for gener-
ating the fusion of adjusted features and enhanced features by making multiple feature
representations close to each other in the vector space.

3.2 Backbone Network

For completeness of presentation, we first briefly introduce the widely adopted back-
bone network in query-based movement retrieval. Generally, the backbone network
consists of three parts: video encoder, sentence encoder, and cross-modal interaction.
Specifically, given a video feature V S , the video encoder computes the hidden represen-
tation Hv of this video. Similarly, for the text tk, sentence encoder computes the hidden
representation Hs of tk. Cross modal interaction calculates the fusion representation of
video and text, denoted F = {f1, . . . ,fN}, fi ∈ R

d, as follows:

Hv = V ideoEncoder(V S), Hs = SentenceEncoder(tk)
F = CrossModalInteraction(Hv,Hs). (1)

After obtaining F , the backbone network will get a time segment through classifi-
cation or regression. Since different backbone networks define different loss functions,
we use Lbone to denote the loss function of a backbone network.
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Fig. 5. Examples of resampling missing clips and enhancing sparse sampled clips. (a) Original
video, (c) resampled clips, (d) enhanced clips, and (e) fixed sampled clips with consistency main-
tenance.

3.3 Resampling Missing Clips

For missing clips issue, we propose a solution to resample missing clips. This solution
adjusts feature representation by replacing features of annotated and lost clips with
those of unannotated clips.

We first uniformly select N clips from the original p clips. Suppose there is a sen-
tence describing a moment with the annotation a = (s, e) ∈ A. Moreover, clip number
e − s is less than the interval p

N . The training model cannot learn the feature infor-
mation of video clips that matches the sentence. Therefore, for each sentence in the
training set, if its corresponding video segment clips are not selected, we replace the
last clip’s feature with the middle of the corresponding clip’s feature of this segment to
obtain a new video representation. The definition of obtaining each feature vr

i in a new
video representation V r = {vr

1,v
r
2, . . . ,v

r
N}, vr

i ∈ R
d is given below:

vr
i =

{
vo

� s+e
2 �, if �s mod r� �= 0 & �e mod r� �= 0 &

⌊
s
r

⌋
=

⌊
e
r

⌋
= i

vo
�r×i�, others

(2)

where r = p
N is the number of clips separated by the fixed sampling clips. It is notewor-

thy that since there is no annotated segment information in the test phase, this sampling
method is only used as auxiliary information to learn in the training phase. Specific
auxiliary learning operations will be introduced in Sect. 3.5.

3.4 Enhancing Sparse Sampled Clips

For spare clips issue, we propose an enhancing solution for sparse clips by repeating a
set of video clips, to achieve an enhancement effect. This creates a new video represen-
tation, which also serves as auxiliary information.
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Specifically, we define a set of sampling rates R = {r1, r2, . . . , rw}, rj ∈ R
1,

which is used to select the degree of enhancement for a single clip. The more the rate,
the more the enhancement. For each sampling rate rj , we get the enhanced video rep-
resentation V e

j = {ve
1,v

e
2, . . . ,v

e
N}, ve

i ∈ R
d from V S as:

ve
i = vS⌊⌊

i
rj

⌋
×rj

⌋, (3)

where Eq. 3 is the enhancing function, and rj is the sampling rate.
Then each video V e

j is considered as the input of the backbone network. We take

the union of {V r} and {V e
1 , . . . , V e

w} as {V
′
1 , . . . , V

′
w+1}. For each V

′
i , a fusion repre-

sentation set is obtained as {F
′
1, . . . , F

′
w+1} by the backbone.

3.5 Consistency Loss Maintenance

In this section, we propose consistency loss maintenance method to use F
′
i to assist

the learning of the original fusion representation F . Since F
′
i and F are the fusion

of the same video and sentence pair, the representation F
′
i should be similar to the

representation F . Therefore, to reduce the distance of F
′
i and F in the vector space, F

is maintained by the consistency loss function defined in Eq. 4.

Lcon =
w+1∑

i=1

SmoothL1(F, F
′
i ), (4)

where Lcon is a smooth L1 loss function and w + 1 is the number of sampled features.
The representation of fusion feature in Fig. 5(e) obtained by the consistency mainte-

nance is closer to the representations in Fig. 5(c) and Fig. 5(d). Then we can retrieve the
time boundary by a better fusion representation F = {f1, . . . ,fN},fi ∈ R

d than that
without the adaptive sampling and consistency loss maintenance method. Combining
with the backbone loss fuction Lbone, the final loss function is defined as:

L = Lbone + λ1Lcon, (5)

where λ1 are hyper-parameter to control the balance of the two losses.

4 Experiments

4.1 Datasets and Evaluation Metrics

In order to validate our adaptive sampling approach, we conduct experiments on three
real datasets, ActivityNet Captions [6]1, TACoS [8]2, and TACoS2DTAN [12]. Table 2
shows the details of these datasets.

We adopt “R@n and IoU=m”, the two evaluation metrics proposed in [3] to mea-
sure our approach. “R@n” means the top-n retrieved moment results. IoU is calculated

1 http://activity-net.org/challenges/2020/tasks/anet_captioning.html.
2 https://www.coli.uni-saarland.de/projects/smile/page.php?id=tacos.

http://activity-net.org/challenges/2020/tasks/anet_captioning.html
https://www.coli.uni-saarland.de/projects/smile/page.php?id=tacos
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Table 2. Dataset details.

Datasets Number of video-sentence pairs Video lengths (Sec.) Segment lengths (Sec.)

Training set Validating set Test set Min Average Max Min Average Max

ActivityNet 37, 417 17, 505 17, 031 2 124 755 1 37 409

TACoS 10, 146 4, 589 4, 083 49 332 1, 403 1 6 167

TACoS2DTAN 9, 790 4, 436 4, 001 49 333 1, 403 1 28 843

Table 3. Performance comparison on TACoS using the C3D features. (“-” indicates that CPN
cannot provide corresponding results.)

Methods R@1
IoU0.1

R@1
IoU0.3

R@1
IoU0.5

R@5
IoU0.1

R@5
IoU0.3

R@5
IoU0.5

Time Per
Pair

Train
Video
Mem

Num Para

CPN 33.01 24.66 15.04 − − − 19.750ms 13873MB 20.82MB

CPN+Adaptive 33.23 26.25 16.68 − − − 25.781ms 14917MB 20.82MB

CMIN 32.48 24.64 18.05 62.13 38.46 27.02 9.016ms 6959MB 18.96MB

CMIN+Adaptive 38.97 28.46 18.35 66.19 41.10 29.90 14.078ms 13251MB 18.96MB

Table 4. Performance comparison on ActivityNet using the C3D features.

Methods R@1
IoU0.3

R@1
IoU0.5

R@1
IoU0.7

R@5
IoU0.3

R@5
IoU0.5

R@5
IoU0.7

Time Per
Pair

Train
Video
Mem

Num Para

CPN 62.81 45.10 28.10 − − − 19.437ms 16713MB 14.82MB

CPN+Adaptive 63.71 45.63 26.85 − − − 20.187ms 18947MB 14.82MB

CMIN 63.61 43.40 23.88 80.54 67.95 50.73 8.750ms 6963MB 18.97MB

CMIN+Adaptive 63.43 43.55 24.25 81.51 68.43 50.93 14.687ms 13265MB 18.97MB

as IoU = min(j,ĵ)−max(i,̂i)

max(j,ĵ)−min(i,̂i)
, where S[i, j] is the ground truth segment, and Ŝ [̂i, ĵ] is

the retrived segment. “R@n and IoU=m” means the percentage of queries having at
least one result whose IoU is larger than m in top-n results. And the “mIoU” means the
average IoU of all top-1 retrieved results.

4.2 Performance Comparisons

Firstly, we show the improvement of our approach. We used CPN and CMIN as the
backbone network, and conducted experiments using C3D features to test the improve-
ment of using adaptive sampling. The experimental results on the TACoS and Activ-
ityNet datasets are shown in Tables 3 and 4. We can see that our adaptive sampling
improved both CPN and CMIN on TACoS dataset. It demonstrates that our adaptive
sampling method can adapt to long videos.

Secondly, we validate the ability to solve the problems in Sect. 2.2 through experi-
ments with varying video lengths using CMIN. Figure 6 shows improvement in mIoU
with our approach (green lines) compared to CMIN with fixed size sampling (blue
lines). Our approach improves retrieval accuracy. Long videos show better improve-
ments than since long videos have more missing and sparse clips than short videos.
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Fig. 6.Videos with different lengths in TACoS and ActivityNet using the CMIN backbone. (Color
figure online)

Table 5. Performance comparison on ActivityNet and TACoS2DTAN using the I3D features.

Methods ActivityNet TACoS2DTAN

R@1
IoU0.3

R@1
IoU0.5

R@1
IoU0.7

R@1
IoU0.3

R@1
IoU0.5

R@1
IoU0.7

CMIN 58.70 36.61 16.03 47.66 34.51 16.57

CMIN+Adaptive 58.96 36.99 16.51 49.84 35.47 17.67

CPN 63.20 44.89 27.16 47.69 36.33 21.58

CPN+Adaptive 64.49 45.87 27.52 48.53 36.11 21.99

VSLNet 63.16 43.22 26.16 47.11 36.34 26.42

VSLNet+Adaptive 60.81 43.78 27.00 49.54 39.19 26.84

Thirdly, we illustrate the generality of our approach using different backbone net-
works. We perform experiments on ActivityNet and TACoS2DTAN using the I3D [1] fea-
tures. The experimental results are shown in Table 5. We can see that adaptive sampling
improve the effectiveness of three backbone networks (i.e. CMIN, CPN, and VSLNet)
on different datasets.

5 Conclusion

In this paper, we proposed a novel adaptive video frames sampling approach for query-
based moment retrieval in videos. Specifically, we resample the missing clips and
enhance the sparse clips to reduce the loss caused by most recent fixed sampling meth-
ods. We further proposed consistency loss maintenance to learn the semantic of the
missing clips and the sparse clips. As a result, our approach improves the retrieval
accuracy on three real datasets especially for long videos under different backbone net-
works.
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Abstract. Text-to-video retrieval aims to find relevant videos from text queries.
The recently introduced Contrastive Language Image Pretraining (CLIP), a pre-
trained vision-language model trained on large-scale image and caption pairs, has
been extensively used in the literature. Existing studies have focused on directly
applying CLIP to learn the temporal dependency. While leveraging the dynam-
ics of the video intuitively sounds reasonable, learning temporal dynamics has
demonstrated no advantage or only small improvements. When temporal dynam-
ics are not incorporated, most studies focus on constructing representative images
from a video. However, we found these images tend to be noisy, degrading the
performance of text-to-video task. This observation is the intuition for designing
the proposed model, we introduce a novel tree-based frame division method to
focus on the most relevant image for learning.

Keywords: Text-Video Retrieval · CLIP · Video Segmentation

1 Introduction

With the growth of online video-sharing platforms, text-video retrieval (TVR) has
attracted significant attention from industry and academia. In these video-sharing plat-
forms, searching for videos through a text-based query has become one of the main
functionalities. In TVR, the model tries to learn a similarity function that performs fea-
ture learning both from videos and texts. The retrieval model needs to understand cross-
modal relations and their semantics independently. Therefore, reducing the semantic
and modality gaps in video-text is a significant and challenging task for TVR.

Over the past years, various TVR models have been proposed [1,4,10,12], which
usually formulate the task as learning and matching based on the multi-modality
encoder’s output to the same embedding space. Recently, Contrastive Language Image
Pretraining(CLIP) [14] introduced a contrastive learning-based matching method for
images and text and gained a lot of attention by outperforming existing image models
in image classification. The CLIP [14] is trained on image-text pairs to align image
and text data into a joint embedding space. CLIP4Clip [12] adapted pre-trained weight
of CLIP for video and performed both text-to-video (T2V) and video-to-text (V2T)
retrieval tasks. In CLIP4Clip [12], the video representation is obtained by performing
a frame sampling on a given video. A set of multiple images is encoded by ViT [3],
and aggregated into an image representation. CLIP4Clip [12] proposed several frame
aggregating methods. The best performing models obtain the representative image from

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 405–414, 2023.
https://doi.org/10.1007/978-3-031-30675-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30675-4_29&domain=pdf
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a video by aggregating video frames using mean-pooling. This image is later compared
with the text embeddings for computing similarities.

The CLIP4Clip outperformed existing pretrained models including Frozen [1] and
ClipBERT [10]. However, the visual backbone which extends image-language pre-
trained model to video-language tends to over-smooth the video frames when fusing
the video representation. This over-smoothing becomes more problematic when a video
clip involves frequent scene changes. To this end, we propose a novel framework based
on themultiple choice learning (MCL) scheme to considermultiple scenes from a video.
Rather than aggregating all frames into a single image in CLIP4Clip, we propose the
non-parametric video segmentation method named MCL-C4C (MCL-CLIP4Clip) that
splits the clip into multiple segments for better matching with the given text by relaxing
the problem to MCL. Thus, a text query in a video-text pair can better attend to the
video encoding focusing on the target sub-frames. Our contributions are as follows:

– We introduce a novel framework that splits a video into multiple video segments in
recursive fashion for obtaining multiple clean average frames.

– We construct each average frame from the segments, and resort to MCL scheme for
choosing the most relevant image that matches with the given text queries.

– We show how our framework can be easily applied to existing work, and show per-
formance improvement over CLIP4Clip.

2 Related Work

2.1 Video and Language Understanding for T2V Retrieval

Text-to-video (T2V) retrieval, along with video-to-text (V2T), is one of the most popu-
lar tasks for video-language understanding. Since then, various methods [1,4,10,12,16]
have been proposed with the spotlight on T2V retrieval tasks. ClipBERT [10] and
Frozen [1] employed sparse sampling and single uniform sampling extraction from the
raw video, respectively. Another line of work is based on visual representation learning
from text paired with images. CLIP [14] used natural language supervision for image
representation learning and had shown significant improvements over various exist-
ing computer vision models. CLIP4Clip [12], which first introduced how CLIP can be
applied to videos, successfully extracted representative images from videos by simply
taking the average of frames and applying CLIP for T2V and V2T tasks. CLIP4Clip
outperformed previous approaches in the T2V task with a large margin, and has been
further extended in [4,16]. These works [4,16] focused on a better alignment of word-
video tokens by splitting videos into fixed-length segments. We further study on video
segmentation with variable lengths while maintaining the benefit of CLIP pretraining.

2.2 Multiple Choice Learning

Multiple choice learning (MCL) [7] is an algorithm that produces multiple structured
outputs. In MCL [7], data examples are put into a multiple output model and trained by
multiple output loss. MCL has been extended in many ways [8,9,11,15], mainly focus-
ing on image classification and segmentation. In this study, we adopt the MCL scheme
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into TVR, treating video segments as multiple models. We aim to select the most likely
model (or sub-video in our context) from the multiple models. Backpropagation only
flows to the selected model in the training step. In the following section, we show how
our proposed approach segments a video into multiple video subsets.

3 Proposed Methods

Fig. 1. The overall structure of proposed model based on CLIP4Clip [12]. Our methods are high-
lighted in a box with dotted lines, where other modules are borrowed from CLIP4Clip [12]. The
content in parentheses is the dimension of the video. The output for final learning uses the con-
cept of multiple choice learning to become a specific subset of video judged to have the most
significant similarity to the text within the batch size.

We propose a novel framework based on the MCL scheme to address the aforemen-
tioned effects caused by scene changes in video clips. Instead of learning a pair between
a whole single clip and its corresponding text, we consider multiple scenes in a given
clip. We treat multiple scenes as an ensemble (multiple) of models, with texts as labels.
Through MCL, we select the most relevant scene frommultiple scenes for better match-
ing between a video and its corresponding text. With the best match obtained through
MCL, we can better learn the video representations by focusing on the exact match
scene instead of the whole video with redundant scenes attached. Our method is based
upon the backbone from CLIP4Clip [12] which adopts CLIP [14] for the encoders.
The overall structure of our method is presented in Fig. 1. We use the same text
encoder, a 12-layer 512-wide model with eight attention heads, from CLIP4Clip [12] to
extract text features. The video encoder is ViT [3] which was used in CLIP4Clip [12].
In CLIP4Clip [12] the parameter-free approach uses cosine similarity between the
text encoding and the average frame obtained from mean-pooling. The sequential
transformer approach uses a transformer with trainable parameter to obtain video
representation.
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Fig. 2. MCL-C4C performed on selected video, which divides a 3-seconds range video into four
frames using Frozen [1] and visualizes the final result by dividing it into Global, Local, and
SubLocal representations through a step-by-step tree structure expressed by a level.

We further study the best performing two approaches: parameter-free and sequen-
tial transformer in CLIP4Clip. We also consider the video representation using the
encoding for each frame as Vi = {F1, F2, ..., FN} and text caption representation
Tj . We extend the existing framework by proposing the Tree-based Video Segmenta-
tio algorithm and resort to MCL for finding better representative images, where we
apply mean-pooling on each segment.

3.1 Tree-Based Video Segmentation

The input data consist of video-text pairs. Each video Vi ∈ V matches each text cap-
tion Ti ∈ T , where a video Vi can be further represented as a collection of N frames:
Vi = {F1, F2, F3, ..., FN}. Our proposed method performs video segmentation using
binary splits in a binary tree. As shown in Fig. 2, we start with a video clip as a root
node. A video is split into two segments, which are represented as two nodes (Local1
and Local2) at level 1 in a binary tree context. From level 2 and onward, we exam-
ine the consecutive frames and recursively perform a binary split on tree nodes to the
next level only when necessary using the threshold. While our proposed algorithm is
general enough to handle long video clips, we only consider up to level 2 (or four
leaves at most). Each tree node performs its own “mean-pooling” on its correspond-
ing video frames. This mechanism has two benefits. First, we can alleviate the over-
smoothing effect by aggregating the sub-frames that are relevant each other. Second, the
text queries can better find the relevant videos through comparing with all tree nodes
with MCL.
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3.2 Global-Local Video Representation

Global. We treat the existing video representation in CLIP4Clip as the Global repre-
sentation. We therefore use the root node as the Global representation.

We denote the Global representation of video i as Gi which is expressed as below:

Gi = mean-pooling(Vi) = mean-pooling(F1, F2, ..., FN ), (1)

where Fi is the generated representation of each frame and N is the index of last frame.

Algorithm 1. Tree-based Video Segmentation

Require: Video representation V ∈ R
(B×N×512) � B and N are batch size and frame number

Ensure: Video frames Vi = {F1, F2, ..., FN} � Fn is each frame of video
Gi ← Mean(Vi) � Global representation
M ∈ R

1×N ← 0 � Initialize video frame mask
S ∈ R

N×N ← Vi · V �
i � S is a score matrix

S0 ← S[0]
S′
0 ← S0[1 :].append(0) � Shift

SGlobal ← S0 − S′
0 � Computes forward difference

cp′ ← argmax(SGlobal) � After first largest point has empty score
cp ← argmax(SGlobal[: cp′]) � Second largest point is actual cutaway point
MaskLoc1 ← M [: cp] = 1
MaskLoc2 ← M [cp :] = 1
Locj = Vi ∗ MaskLocj

for j = 1, 2 do
SLoc = Locj · Loc�

j

SLock = S[k] � k is the First nonzero frame index in Locj
S′
Lock

= SLock [k :].append(0)
SLocal ← SLock − S′

Lock

SLocal[SLocal ≥ λ] = 1 � λ is a meaningful score threshold
SLocal[SLocal < λ] = 0
scp′ = argmax(SLocal) � After first largest point has empty score
scp = argmax(SLocal[: scp′]) � cutaway point in Locj
MaskSubLocu ,MaskSubLocu+1 = MaskLocj [: scp], MaskLocj [scp :]

end for
SubLocu = Vi ∗ MaskSubLocu

Out = (G + Mean(Locj) + (Mean(SubLocu) × # SubLoc frame
# Global frame ))

Local. In Fig. 2, mean-pooling is applied to each of the child nodes, and Local repre-
sentations can be obtained. From the root node (input video) to level 1, we divide the
video into two segments based on the scene transition point. We recursively repeat the
process to the child nodes following Algorithm 1. At each leaf node, we compute the
“path sum” from the root, which is used in MCL.

We first compute the cosine similarity between the frames of each video to find the
scene transition point and make a similarity matrix S. The created S has number of
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frame N by N size, and each value sij represents the similarity between the i-th frame
and the j-th frame. We apply the forward difference to the similarity between the first
frame and the rest of the frame to find the cutaway point of the video. In this case, since
one dimension is reduced by applying the forward difference, we append a zero-column
vector at the end of S to match the dimension with the existing matrix. Using this, we
can obtain the difference in similarity between the first frame and the other frame. In
this matrix, the cutaway point is the index of the value with the second largest difference
in similarity with the first frame. By applying the forward difference, it is possible to see
how much the similarity of each frame changes sequentially, and this value increases as
there is a rapid change between frames. Since the similarity between the first frame and
the previously added zero will have a meager value, the index with a zero value will
have the largest value in the matrix obtained through the forward difference. Similarly,
when the frame of a video is less than N , the last index of the actual video frame will
have the greatest value because the similarity is calculated with nonexistent value in a
video. Thus, cp is the value with the second largest similarity difference.

Then, Loc1 and Loc2 are generated based on cp having the largest similarity dif-
ference. One video is divided based on cp through the generated mask Loci, and the
similarity is calculated separately through text and cosine similarity between the two
videos. The Local representation is expressed as Loci. As shown in Algorithm 1, the
Local representations on level 1 can be expressed as follows:

Loc1 = mean-pooling(F1, ..., Fcp), (2)

Loc2 = mean-pooling(Fcp+1, ..., FN ), (3)

where cp denotes the cutaway point in Local area.
Likewise, we can further define named SubLocal representations for the nodes on

level 2. SubLocal representations are split into two nodes from each Local representa-
tion. For each SubLocal cutaway point, as indicated scp in Algorithm 1. However, all
videos have not necessarily multiple cutaway point; thus, SubLocal representation is
extracted only if there is a difference in similarity beyond a specific threshold λ. The
method for extracting the SubLocal representation is divided into a tree structure in the
Local representation, as shown in Fig. 2. From level 1, we have Local representations
with mask based on the cutaway point. Accordingly, Loc1, masked to the right by the
cutaway point, determines the cutaway point based on its similarity to the first frame.
However, for Loc2 masked from the left based on the cutaway point, we determine the
cutaway point to obtain it using similarity with the frame immediately following it. Fur-
ther, suppose all the values in the video do not exceed the threshold. In that case, the
division of the video stops there, and each SubLocal representation becomes the same
as the Local representation. Hence, SubLocal representation exists only when there is
a frame difference exceeding a threshold from the frames in a node from the previous
level.

SubLoc1 = mean-pooling(F1, ..., Fscp1), (4)

SubLoc2 = mean-pooling(Fscp1+1, .., Fcp), (5)
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where the scp1 is the cp which is obtained in a similar way when finding cp in level 1.
We can find other SubLocal representation from another Local representation below:

SubLoc3 = mean-pooling(Fcp+1, ..., Fscp2), (6)

SubLoc4 = mean-pooling(Fscp2+1, .., FN ). (7)

Global-Local Aggregation. When Global representation is solely used, it is a
video representation from the previous model, CLIP4Clip [12]. Local representations
obtained from MCL-C4C focus on insignificant segmented fragment information by
losing entire video content. The model cannot easily distinguish videos containing sim-
ilar content when using the Local representation only. So we combine Global and Local
representations, achieving better than Global-only and Local-only methods. From the
obtained binary tree-based structure, we add up the Global and Local representations.
If we divide the video into two (up to level 1), we get the final output by summing the
tree structure at the first level, namely Global representation which is the root node,
and Local representation which is the child node of the root node. Suppose the video
is divided into four or fewer (up to level 2). In that case, the final output is multiplied
by a slight weight to reduce the influence of the SubLocal representation obtained in
level 2. In short, the purpose of the summation of each representation is to increase the
proportion of Local representation in the final output.

3.3 MCL-CLIP4Clip

The mean-pooling method and sequential transformer method in CLIP4Clip [12] gen-
erate an image by performing just frame-wise mean-pooling over sampled frames with
each method. However, when a video involves scene changes, the mean-pooling on a
whole frame only obtains noisy video representation. Based on this observation, the
fundamental assumption ofMCL-C4C is that the given text query does not reasonably
match the whole video, but better matches directly to a sub-frame.

In Fig. 2, we show the results through recursive tree structure algorithm in the areas
marked by dotted lines after using cosine similarity in Fig. 1. In the first level, a video
is divided into a subset of videos called Loc1 and Loc2 according to the cp. The output
for each level is given by Algorithm 1. In the second level, if at least one of the frame
differences is over the threshold, Loc2 is split again through the dividing point, such
as SubLoc3 and SubLoc4, creating a new video subset. The proposed method has a
complete binary tree structure, and we obtain the final output by a weighted sum of
edges connecting from root to leaf, rather than simply using the leaf node value.

The similarity between j-th text representation Tj and i-th video representation Vi

in our methods is measured by the cosine similarity as below:

sim(Vi, Tj) = max
m

T�
j V̄ m

i

‖Tj‖‖V̄ m
i ‖ , (8)

where V̄ m
i denotes Global-Local aggregated representation m-th segment of Vi. The

Global-Local aggregation is the sum of the path from the root to the given node in
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Fig. 2. On training, we use cross-entropy loss on each T2V and V2T task.

Lv2t = − 1
B

∑

B

log
exp(sim(Vi, Ti))

ΣB
j=1exp(sim(Vi, Tj))

(9)

Lt2v = − 1
B

∑

B

log
exp(sim(Vi, Ti))

ΣB
j=1exp(sim(Vj , Ti))

(10)

L = Lv2t + Lt2v, (11)

where B denotes the batch size and L denotes training loss.

Table 1. Result on MSR-VTT [17] dataset with [5], [13], and MSVD [2] dataset.

Methods meanP seqTransf

R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓
MSR-VTT 7k-training

CLIP4Clip [12] 43.6 68.5 78.9 17.2 42.5 69.0 78.9 17.9

Ours (Div2) 43.6 69.4 79.3 16.5 42.9 69.5 80.1 15.8

Ours (Div4) 43.6 69.8 79.7 15.5 43.7 69.5 80.4 16.5

MSR-VTT 9k-training

CLIP4Clip [12] 42.4 69.7 80.8 15.7 43.7 71.0 81.2 14.7

Ours (Div2) 44.1 70.8 80.6 13.9 44.4 72.5 81.8 13.4

Ours (Div4) 43.4 72.2 80.2 14.4 44.3 72.8 82.9 13.3

MSVD

CLIP4Clip [12] 46.2 76.1 85.2 9.9 45.3 75.8 84.8 10.1

Ours (Div2) 46.6 76.3 85.3 9.9 45.6 75.9 84.8 10.0

Ours (Div4) 46.5 76.1 85.3 9.9 45.2 75.8 84.8 10.1

4 Experiments

To verify performance improvement by applying our method on [12], we only set the
baseline as methods of [12] and follow the same evaluation criteria.

4.1 Datasets

MSR-VTT. MSR-VTT [17] is a dataset consisting of 10,000 videos and 20 sentence
captions per video. Each video has a duration between about 10 and 30 s. According to
the previous dataset split variant, we evaluate our model on a 7k-training [13] set and
9k-training [5] set, respectively, having 7,180 and 9,000 training videos. The testing
dataset samely uses 1,000 clip-text pairs provided by [17].
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MSVD. MSVD [2] contains 1,970 videos of various lengths from 1 to 62 s. On average,
each video is paired with a set of 40 sentences. The split was suggested by [6] consisting
of 1,200 videos for training, 100 for validation, and 670 for testing.

4.2 Experimental Details

Our proposed model relies on a text encoder and a video encoder with CLIP (ViT-
B/32) [14]. For the experiments, we use four NVIDIA GeForce RTX 2080 Ti GPUs,
with initial learning rates set to 1e−4. The batch size is set to 64. The maximum number
of frames is set to 12 same as [12]. So, we train our model with only two different
approaches, where one of the settings uses 2-split videos and the other setting uses up
to 4-split videos. Because, splitting to 2 or up to 4 segments is enough in this study.
However, our proposed scheme is general enough to handle multiple splits if necessary.

4.3 Experimental Results

We compare the performance of our approach to the baselines from CLIP4Clip [12].
We apply our MCL schemes on two approaches to verify the effectiveness of our
proposed model. Two approaches are expressed as meanP and seqTransf in Table 1,
which correspond to parameter-free and sequential transformer. Table 1 summarizes
the model performance across different datasets: [13], [5] and [2]. For the baselines, we
conduct experiments in our environment using the code provided in [12]. Our method
achieves the better or same performance as most datasets and metrics, excluding R@10
on meanP in MSR-VTT 9k [5].

5 Conclusion

In this paper, we propose MCL-C4C, which matches the text embedding with the most
likely subset videos, based onMCL scheme. Two best performing models in CLIP4Clip
use mean-pooling to aggregate frames, the average frame tends to be noisy when video
frames have high dynamics. Our approach addresses this problem by segmenting a
video through our proposed mechanism. Our video segmenting algorithm examines the
difference of each frame representation, and dynamically split the video if necessary.
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Abstract. Automatic medical image report generation has attracted
extensive research interest in medical data mining, which effectively alle-
viates doctors’ workload and improves report standardization. The main-
stream approaches adopt the Transformer-based Encoder-Decoder archi-
tecture to align the visual and linguistic features. However, they rarely
consider the importance of cross-modal interaction (e.g., the interac-
tion between images and reports) and do not adequately explore the
relations between multi-modal medical data, leading to inaccurate and
incoherent reports. To address these issues, we propose a Cross-modal
Memory Transformer model (CMT) to process multi-modal medical
data (i.e., medical images, medical terminology knowledge, and medi-
cal report text), and leverage the relations between multi-modal medical
data to generate accurate medical reports. To explore the interaction of
cross-modal information, we design a novel cross-modal feature memory
decoder to memorize the relations between image and report features.
Furthermore, the multi-modal feature fusion module in CMT exploits
the multi-modal medical data to adaptively measure the contribution
of multi-modal features for word generation, which improves the accu-
racy of generated reports. Extensive experiments on three real datasets
demonstrate that our proposed CMT outperforms benchmark methods
on automatic metrics.

Keywords: Medical Data Mining · Medical Report Generation ·
Encoder-Decoder Architecture

1 Introduction

Medical image reports serve an essential role in medical diagnosis and treatment
[7]. In clinical practice, doctors describe medical images in free text to compose
medical image reports as diagnostic evidence. However, the quality of reports
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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depends significantly on the levels and experience of doctors, which leads to
a tremendous workload for doctors and uneven quality of reports. Therefore,
automatic medical report generation [1,13,18] has attracted extensive research
interest in medical data mining to alleviate doctors’ workload while improving
the quality and automation of medical image reports.

Most existing approaches follow the Encoder-Decoder paradigm to automati-
cally generate medical image reports. Although these works can generate textual
narratives for medical images, there are several issues that need to be further
addressed. Firstly, the interaction between cross-modal features is not fully uti-
lized. A few approaches employ memory units to record the relation between one
modality, i.e., the relation between images [5] and that between texts [4]. They
do not sufficiently consider the interaction between cross-modality features in
the word generation process, leading to the problem of image-report inconsis-
tency. Secondly, the relationships between multi-modal medical data need to be
further exploited. Most works [1,2,18] only use knowledge as an intermediate
medium and do not explore the associations between different modal data.

To tackle the above limitations, in this paper, we propose a Cross-model
Memory Transformer model (CMT) to generate medical image reports. CMT
exploits the multi-modal nature of medical data to simultaneously incorporate
three modalities of medical data, improving the quality of medical report gen-
eration. In order to enhance the interaction of cross-modal features, we design a
memory module in the CMT decoder to memorize the interaction between the
visual features of images and the linguistic features of reports. Furthermore, to
exploit the characteristics of multi-modal medical data, a multi-modal feature
fusion module is employed to perform sequence prediction by adaptively com-
puting the contribution of multi-modal medical features to report sequences, and
to generate accurate medical reports. Experimental results on three real-world
datasets demonstrate the effectiveness of our proposed CMT.

2 Cross-modal Memory Transformer

To generate accurate and consistent medical image reports, we propose a cross-
modal memory Transformer, which consists of four components, i.e., a visual
encoder, a medical term enhanced module, a cross-modal feature memory
decoder, and a multi-modal feature fusion module. The overview of our pro-
posed CMT is illustrated in Fig. 1.

2.1 Visual Encoder

Given a medical image I, the visual encoder is adopted to extract visual fea-
tures fv for I. The visual encoder is composed of a pre-trained CNN and a
Transformer-based encoder [15], which can be formalized as:

fp = {fp
1 , fp

2 , ..., fp
i , ..., fp

N} = CNN({I1, I2, ..., Ii, ..., IN}), (1)
fm = AddNorm(Attention(fpWq, fpWk, fpWv)), (2)
fv = AddNorm(FFN(fm)), (3)
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Fig. 1. An overview of our CMT architecture for medical report generation.

where N is the number of patches, AddNorm includes a residual connection
and a normalization layer, Attention denotes a multi-head attention, and FFN
represents the fully connected feed-forward network.

2.2 Medical Term Enhanced Module

The medical term enhanced module is employed to learn the contextual infor-
mation representation of medical terminologies related to medical reports, which
helps to improve the accuracy of the report generation.

Following the works [1] and [17], two medical terminology corpora are created
to store descriptions of medical terminologies and findings that frequently appear
in medical reports for gastrointestinal and thoracic diseases. Subsequently, the
medical term enhanced module is adopted to process the two corpora mentioned
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above for contextual information learning. The terminological features f t are
extracted by the medical term enhanced module, which can expressed as:

f b = BERT (Corpus), (4)

f t = Softmax(FFN(Attentionmask(f b))), (5)

where f b denotes the output of the BERT, Corpus represents the sequence in
the corpus, f t is terminological features from a softmax distribution of output
sequence, Attentionmask indicates the masked multi-head attention operation.

2.3 Cross-modal Feature Memory Decoder

The cross-modal feature memory decoder is devised to memorize the key infor-
mation of the transformation process of visual features to linguistic features, and
generate linguistic features based on the previously generated words and visual
features. The whole process is formally defined as:

fs = AddNorm(Attentionmask(fe)), (6)

f i = AddNorm(Attention(Wqsfs,Wksfv,Wvsfv)), (7)

fm = Memory(f i), (8)

f l = AddNorm(FFN(fm)), (9)

where fs and f i denote intermediate outputs of the decoder, fe represents word
embedding vectors, fv is visual features, fm is the memory features, Wqs, Wks,
and Wvs are matrices of learnable weights, Memory indicates the memory mod-
ule, and f l is the linguistic features.

As mentioned above, the memory module is devised to record the interaction
and mapping between visual features and linguistic hidden states. Specifically, it
employs a memory matrix to pass mnemonic information during the generation
process of the decoder, where the mnemonic information memorizes the inter-
action and mapping of visual features and word vectors. The memory matrix is
updated simultaneously with the decoding process, which is formulated as:

Qm = Mm
t−1Wqm, (10)

Km = Concat[Mm
t−1, f

i
t−1]Wkm, (11)

Vm = Concat[Mm
t−1, f

i
t−1]Wvm, (12)

fo = Attention(Qm,Km,Vm), (13)
fm = AddNorm(FFN(AddNorm(fo))), (14)

Mm
t = FFN(Add(Mm

t−1, f
m)), (15)

where Qm, Km, and Vm denote inputs of the multi-head attention layer, Wqm,
Wkm, and Wvm are weight matrices, Concat indicates the concatenation oper-
ation, fo is the output from the multi-head attention layer, Mm

t represents the
memory matirx of time step t, and Add is the matrix add operation.
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2.4 Multi-modal Feature Fusion Module

In order to take full advantage of the association of medical multi-modal data,
a multi-modal feature fusion module is designed to adaptively fuse the medi-
cal features of these three modalities. The multi-modal feature fusion module
adaptively fuses three medical features using three operations: the element-wise
summation

⊎
, element-wise multiplication ⊗, and vector summation ⊕ [6]. For-

mally, the multi-modal feature fusion module can be expressed as:

ff = f t
⊎

fv, (16)

fa = w(ff
⊎

f l) ⊗ ff ⊕ ((1 − w)(ff
⊎

f l)) ⊗ f l, (17)

Output = FFN(fa), (18)

where ff is the combination of terminological features and visual features, ensur-
ing that our CMT reconsiders the effect of terminology context before word
prediction, and w denotes the weight of attention.

2.5 Training

For each sample (I, r), where I is a group of images and r is the corresponding
report composed of the ground truth sequence, the loss of report generation L
is minimized by the cross-entropy loss:

L(θ) = −
N∑

i=1

log(pθ(si|s1:i−1)), (19)

where θ is the parameters of our CMT model, s1:i−1 represents the ground truth
sequence of the report r.

3 Experiment

3.1 Experimental Settings

Dataset. Three real-world medical image report datasets are used in our exper-
iment, which are described as follows.

GE [1]. The GE dataset consists 15,345 white light images of gastrointestinal
endoscopy and 3,069 corresponding Chinese reports. For medical terminologies
in GE, the gastroenterologists provide 126 medical terminologies frequently used
in the report, containing 37 normal and 89 abnormal terminologies.

IU-CX [8]. The IU-CX is a widely used chest X-ray dataset. 2896 radiology
reports with both frontal and lateral view chest X-ray images are extracted from
the original dataset. For the construction of medical terminology corpus, we auto-
matically extracted the medical terminologies for IU-CX from the “Abstract”
field in the report, including 80 abnormal findings and 17 normal terminologies.
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MIMIC-CXR [10]. The MIMIC-CXR is the largest public chest X-ray dataset
with 473,057 images and 206,563 reports. Following the same data extraction
criterion as IU-CX, we extract 142,772 images and 71,386 reports. The medical
terminologies for MIMIC-CXR are the same as that for IU-CX.

Parameter Settings. The three datasets are randomly split into the training,
validation and testing set in the ratio of 7:1:2. A pre-trained DenseNet-121 is
adopted to extract image features, where the patch size is set to 7 ∗ 7. The
number of layers and heads in Transformer-based modules are set to 3 and 8.
The number of rows and dimension in Memory Matrix are set to 3 and 512 with
random initialization. The hidden dimension in our CMT is set to 512.

Evaluation Metrics. We employ automatic metrics to evaluate the perfor-
mance, including evaluation metrics widely-used in medical report generation
models, i.e., BLEU, CIDEr, ROUGE-L, and METEOR.

Baselines. The state-of-the-art report generation and image captioning
approaches are used as baselines to compare with our CMT, including SaT [16],
AAtt [14], CoAtt [9], Transformer [4], R2GEN [4], RGKG [18], PPKED [13],
CMN [3], and KdTNet [1]. For IU-CX, the template retrieval methods such
as HRGRA [12] and KEP [11] are also compared with our CMT for thoracic
diseases. Note that due to the lack of predefined templates on GE, these two
methods are not used for comparison on GE.

3.2 Results on Report Generation

To demonstrate the effectiveness of our proposed CMT, we compared the perfor-
mance of CMT and baseline approaches on three datasets for automatic metrics,
with the results presented in Table 1, where the best and second best results are
highlighted.

It is observed that our CMT outperforms all baseline approaches on the
CIDEr (or METEOR) and BLEU-n scores for all three datasets, which demon-
strates the consistency and accuracy of our CMT in generating medical reports.
For CIDEr, our CMT improves the performance by 0.85%–6.04% compared to
the current state-of-the-art results, which indicates that our CMT is capable
of generating more coherent reports since CIDEr is widely used to evaluate
the similarity between generated medical reports and ground-truth reports. In
terms of METEOR and BLEU, our CMT also achieves optimal results, which
demonstrates that our CMT can generate accurate medical reports because
METEOR considers both the precision and recall of the generated reports on
the ground truth, and BLEU measures the consensus. As for ROUGR-L, our
CMT performance is slightly worse than PPKED. One possible explanation is
that PPKED employs additional medical knowledge (e.g., retrieved radiology
reports) to address the issue of data bias, making it easier to generate the same
subsequence in generated reports as the ground-truth report.

Qualitative Analysis. To further investigate the effectiveness of our CMT,
the qualitative analysis on three datasets is performed. Figure 2 presented the
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Table 1. Comparison of report generation models on automatic metrics

Dataset Methods CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

GE SaT 0.557 0.613 0.643 0.552 0.506 0.414

AAtt 0.579 0.617 0.649 0.549 0.491 0.419

CoAtt 0.674 0.748 0.774 0.654 0.618 0.575

RGKG 0.684 0.726 0.752 0.676 0.609 0.554

Transformer 0.604 0.691 0.689 0.572 0.584 0.521

R2GEN 0.679 0.736 0.779 0.677 0.619 0.574

PPKED 0.691 0.749 0.791 0.684 0.624 0.579

CMN 0.686 0.742 0.782 0.679 0.621 0.572

KdTNet 0.692 0.748 0.792 0.686 0.624 0.583

CMT(ours) 0.698 0.748 0.795 0.689 0.628 0.586

IU-CX SaT 0.294 0.307 0.216 0.124 0.087 0.066

AAtt 0.295 0.308 0.220 0.127 0.089 0.068

CoAtt 0.277 0.369 0.455 0.288 0.205 0.154

HRGRA 0.343 0.322 0.438 0.298 0.208 0.151

KER 0.277 0.369 0.455 0.288 0.205 0.154

RGKG 0.304 0.367 0.441 0.291 0.203 0.147

Transformer – 0.342 0.396 0.254 0.179 0.135

R2GEN – 0.371 0.470 0.304 0.219 0.165

PPKED 0.351 0.376 0.483 0.315 0.224 0.168

CMN – 0.375 0.475 0.309 0.222 0.17

KdTNet 0.341 0.375 0.474 0.316 0.225 0.169

CMT(ours) 0.354 0.374 0.485 0.321 0.229 0.175

Dataset Methods METEOR ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

MIMIC-CXR SaT 0.124 0.263 0.299 0.184 0.121 0.084

AAtt 0.118 0.266 0.299 0.185 0.124 0.088

CoAtt 0.138 0.274 0.410 0.267 0.189 0.144

Transformer 0.125 0.265 0.314 0.192 0.127 0.090

R2GEN 0.142 0.277 0.353 0.218 0.145 0.103

PPKED 0.149 0.284 0.360 0.224 0.149 0.106

CMN 0.142 0.278 0.353 0.218 0.148 0.106

KdTNet 0.148 0.281 0.358 0.226 0.151 0.108

CMT(ours) 0.158 0.283 0.372 0.241 0.156 0.113

visualization results of CMT on three datasets, including the image with ground-
truth report and attention maps, the reports generated by our CMT, and the
mappings from visual (image regions) and textual features (words and termi-
nologies), where the attention maps and mapping areas are highlighted with
different colors. It can be observed that our CMT is able to cover the normal
medical descriptions and abnormalities for all three datasets. For example, the
regions (i.e., sigmoid colon) and types (i.e., Yamada polyp) of the lesion in
the first sample of GE are correctly reported in the generated report. Similarly,
our CMT also precisely generates locations or types of the organ and lesion
for IU-CX and MIMIC-CXR samples. In addition, reports generated by CMT
cover essential medical terminologies describing normal conditions and abnormal
symptoms, such as “Yamada polyp”, “smooth mucosa”, and “clear vascular tex-
ture” in the GE samples, and “mediastinal contour”, “vascular engorgement”,
and “no pleural effusion” in the IU-CX and MIMIC-CXR samples. Meanwhile,
the report generated by CMT is consistent with the abnormal regions in the
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Fig. 2. Sample cases of CMT on GE (the first part), IU-CX (the middle part) and
MIMIC (the last part). The left column is the image with generated attention maps
by CMT, the middle column is the ground-truth report, and the right column is the
CMT generated reports and the mappings of image region and medical terminologies.
Bold text indicates consistency between the generated reports and ground truth.
Underlined text indicates the correspondence between the generated reports and the
attention maps.

attention maps. The result explicates that CMT is capable of generating reports
consistent with the reports written by doctors.

To study the manner in which the CMT aligns the visual features with the ter-
minological features, the image-text attention mappings of several terminologies
from the multi-head attention layer of the cross-modal feature memory decoder
are visualized, with the results exhibited in the lower right of each sample in
Fig. 2. It is observed that the CMT is capable of aligning the locations in the
image with the medical terminologies of the disease or organs. This observa-
tion indicates that our model not only improves the accuracy of medical report
generation, but also better aligns images and important medical terminologies.

3.3 Ablation Studies

Effect of Components. The ablation studies are conducted on three datasets
to explore the utility of each module in CMT, which are demonstrated in Fig. 3.
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Fig. 3. Ablation study for different designs

\MTEM excludes the medical term enhanced module from CMT, \MM and
\MFFM drops the memory module in the cross-modal feature memory decoder
and the multi-modal feature fusion module, respectively. CMT\MM performs
the worst, indicating that memorizing the relation between visual and linguis-
tic features will bring gains in accuracy for automatic report generation tasks.
CMT\MTEM also has poor results, which suggests that introducing critical ter-
minology knowledge into the report generation task is effective in enhancing the
quality of reports. The performance of CMT\MFFM is worse than that of CMT,
indicating that considering medical features of different modalities before word
prediction can improve prediction performance.

4 Conclusion

In this paper, we propose a cross-modal memory Transformer model for accurate
and coherent medical reports generation, which is able to process three modali-
ties of medical data simultaneously and exploit the interaction between the dif-
ferent modalities of data. The cross-modal feature memory decoder is designed
on the top of visual encoder to memorize the interaction between medical image
and report features. A medical term enhanced module is adopted to provide the
terminological information. Furthermore, the multi-modal feature fusion mod-
ule exploits the cross-modal data to measure the contribution of multi-modal
features for sequence generation. Extensive experiments on three real datasets
show that our CMT outperforms baseline approaches.
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Abstract. Expression-Level Information Extraction is a challenging
Natural Language Processing (NLP) task that aims to retrieve impor-
tant information from the linguistic documents. However, there still
lacks the up-to-date data sources for accelerating the Expression-Level
Information Extraction, especially in the field of Chinese financial high
technology. To fill this gap, we present Fintech Key-Phrase: a human-
annotated Chinese financial high technology field related key-phrase
dataset, which contains more than 12K paragraphs together with the
annotated domain-specific key-phrases. We extract the publicly released
reports on Chinese Management’s Discussion and Analysis (CMD&A)
from the well-known Chinese Research Data Services Platform (CNRDS)
and then filter the Financial High-Tech related reports. The Finan-
cial High-Tech key-phrases are annotated through pre-defined philoso-
phy guidelines to control the annotation quality. To demonstrate that
our released Fintech Key-Phrase helps retrieve valuable information in
the field of Chinese financial high technology, we adopt several superior
Information Retrieval systems as representative baselines to validate its
significance and report the performance statistics correspondingly. We
hope this dataset can facilitate the scientific research and further explo-
ration in the Chinese Financial High-Tech domain. We have made our
Fintech Key-Phrase dataset and experimental code of the adopted base-
lines accessible at Github (https://github.com/albert-jin/Fintech-Key-
Phrase/). To motivate newcomers to get involved in the Information
Retrieval of the Chinese financial high technology field, we have built an
open website (https://albert-jin.github.io/FintechKP-frontend/) and a
real-time information retrieval API tool (https://31863ew564.zicp.fun/
information_retrieval/).
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1 Introduction

In Natural Language Processing (NLP), Information Retrieval remains crucial
as it includes various research directions, such as Named Entity Recognition
[22,23] and Relation Extraction [24]. Expression-Level Information Extraction is
a sub-task of Information Retrieval that focuses on retrieving interesting words,
phrases, or even paragraphs from large-scale textual documents [16], and is simi-
lar to Named Entity Recognition. It requires the machine to obtain a comprehen-
sive semantic understanding and accurately identify whether each atomic expres-
sion (Minimum Semantic Unit) in a sentence contains interesting information.
Expression-Level Information Extraction can facilitate many other downstream
NLP tasks, such as the Passage Retrieval-based Question Answering [1,12] and
Document Topic Classification [20]. Thus, Expression-Level Information Extrac-
tion continues to be one of the major linguistic processing problems in recent
years.

Despite the recent success in Expression-Level Information Extraction, there
is still a lack of specific-domain related information extraction datasets with
which to extrapolate its potential in research and application, which limits the
further development of textual semantic analysis. In particular, to our knowl-
edge, there are few disclosed data sources for the Expression-Level Information
Extraction task in the Chinese Financial High-Tech field.

To fill these gaps and stimulate in-depth research, we present a new dataset,
named Chinese Financial High-Tech Based Key-Phrase (Fintech Key-Phrase),
which can be regarded as the newest Chinese domain-specific Expression-Level
Information Extraction benchmark.

1) First, the original corpus consisting of nearly one hundred thousand annual
financial corporation reports is extracted from the well-known Chinese
Research Data Services Platform (CNRDS)1.

2) Then, we design an enterprise category mapping strategy to filter the high
technology enterprise parts from all annual financial reports. The filtered
enterprise annual reports are the original documents used to generate our
Fintech Key-Phrase.

3) Considering the dataset reliability, the annual reports are manually annotated
by crowd-sourced annotators based on pre-defined annotation rules rather
than automatic labelling based on fixed matching patterns.

In this work, we make the following major contributions:

– We propose a new Chinese Financial High-Tech dataset (Fintech Key-Phrase)
for Information Retrieval, which is derived from the publicly released Chinese
Management’s Discussion and Analysis (CMD&A). To the best of our knowl-
edge, together with more than 1.2K human-annotated instances, Fintech Key-
Phrase is the largest reliable Chinese benchmark for the Expression-Level
Information Extraction task;

1 https://www.cnrds.com/.

https://www.cnrds.com/
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– To highlight the importance of our Fintech Key-Phrase in Expression-Level
Information Extraction, we conduct comprehensive experiments by utiliz-
ing several (state-of-the-art) SOTA approaches. Experimental results demon-
strate that our dataset can serve as solid baseline for future Information
Extraction related research;

– The original corpus (Excel format), the annotated Key-Phrase dataset (JSON
format), and the experimental evaluation scripts (Python) are publicly
released2 for reproducibility;

– To motivate newcomers to get involved in the Chinese Financial High-Tech
Information Retrieval field, we have built a series of tools, including an open
website3 and the corresponding real-time information retrieval APIs4.

2 Related Work

2.1 Expression-Level Information Extraction

Expression-Level Information Extraction, which acts as a popular text mining
technique, has recently received much attention due to humans’ continuously
increasing need for valuable knowledge retrieved from numerous digital docu-
ments [3]. It requires automatically discovering valuable domain-specific informa-
tion (e.g., phrases, proper nouns, and event descriptions) from large-scale unstruc-
tured documents [25]. The extracted results can effectively facilitate many NLP
tasks, such as Question Answering [14] and Sentiment Analysis [13,15].

Recently, diverse studies have yielded significant performances in the Expres-
sion level Information Extraction. Zhou et al. [26] present the PowerBioNE, an
Hidden Markov Models HMM & K-Nearest Neighbor algorithm (KNN) based
system, which enhances the post-processing patterns to extract the interesting
entities from a sentence automatically. Zhiheng et al. [11] introduce the BiLSTM-
CRF network, which transfers the initial information extraction to a simple
sequence tagging problem. Fei et al. [7] introduce a novel multitask learning
method based on dispatched attention module. Nguyen et al. [19] propose a joint
extraction framework for Information Extraction, named Multi-Stage Attentional
U-Net, which extracts the valuable information from large-scale unstructured
texts. Shen et al. [22] propose Parallel Instance Query Network (PIQN), which
sets up global and learnable instance queries to extract interest phrases from
a sentence in a parallel manner. Also, inspired by the Object Detection task
[13], Shen et al. [23] propose Locate and Label, a two-stage information retrieval
method, to find the domain-specific named entities from a sentence.

2.2 Domain-Specific Benchmarks

Despite numerous model innovations made in the Expression-Level Informa-
tion Extraction, multiple widely used benchmarks also have been put forward.
2 https://github.com/albert-jin/Fintech-Key-Phrase/.
3 https://albert-jin.github.io/FintechKP-frontend/.
4 https://31863ew564.zicp.fun/information_retrieval/.

https://github.com/albert-jin/Fintech-Key-Phrase/
https://albert-jin.github.io/FintechKP-frontend/
https://31863ew564.zicp.fun/information_retrieval/
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There exists a vast number of widely used datasets for open-domain informa-
tion extraction. NNE [21] is an English language dataset that is designed to
extract the people, locations, and organisation from natural language texts. Ger-
mEval 2014 [4] is a well-known German NER benchmark which is built on top of
the German News and Wikipedia Corpora. It involves 12 named entity classes,
including Person, Location, Organisation, and Others.

Furthermore, many domain-specific benchmark datasets have been con-
structed by researchers to promote the development of the domain-specific infor-
mation retrieval task. Li et al. [16] propose a large-scale chemical patent analy-
sis benchmark for the ChEMU 2022 campaign, which focuses on promoting the
drug design techniques and material manufacturing analysis in the Biological
Chemical domain. In the mental health field, Soumitra et al. [9] re-annotate the
CEASE-v2.0 dataset [8] and propose a new benchmark dataset about emotion-
cause suicide.

3 Fintech Key-Phrase: A New Dataset for Expression-
Level Information Retrieval

3.1 Main Motivation

With the advent of technology and industrialization, the 21st century has contin-
ued the inevitable trend of technological revolutions and economic globalization.
The financial high technology field has recently received much attention from
both industries and academic communities. An intelligent financial analysis sys-
tem can effectively help investors to conduct various investment activities (e.g.,
stock price forecasting and corporate risk aversion). The solutions about how
to efficiently extract interesting information from the financial high technology
domain remain an important research direction. For the mainstream supervised
Neural Network-based (NN-based) approaches, the quality of annotated corpora
directly affects the model’s final performance. However, since domain-specific
information extraction is still in its infancy, there is no available data sources in
the financial high technology domain. This severe data deficiency has caused a
considerable gap in the specific domain-related research. The TENCENT AI &
NLP team built a natural language processing & analysis tool, TexSmart5 [17], to
conduct various NLP tasks (e.g., Nested Named Entity Recognition, and Fine-
Grained Semantic Expression). Nevertheless, due to its open-domain oriented
feature, TexSmart handles poorly in some domain-specific scenarios (Financial
High-Tech domain).

We make a detailed Information Retrieval comparison between the Infor-
mation Retrieval performance of TexSmart and the financial experts’ agreed
standard. As shown in Fig. 1, the TexSmart mispredicts multiple Missing Items
(that should be included in the interesting keywords) and Redundant Items
(that should not be included in the interesting keywords), which is an appar-
ent discrepancy compared with the financial experts’ professional annotations.
5 https://texsmart.qq.com/en.

https://texsmart.qq.com/en
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Fig. 1. Information extraction results comparison between the open-domain text
understanding interface TexSmart and our ideal tagging results annotated by the finan-
cial experts.

This incorrect key-phrase identification affects the downstream NLP tasks. Thus,
it is essential to develop an high-quality Financial High-Tech domain Informa-
tion Retrieval dataset to generate a better information extraction model. To fill
these gaps, we contribute a sizeable human-annotated dataset, named Fintech
Key-Phrase, for the Expression-Level Information Extraction. We hope that our
proposed Fintech Key-Phrase plays an important role in discovering the valuable
knowledge in the Chinese financial high technology field.

3.2 Dataset Construction Guidelines

The construction of our presented dataset contains a series of preparation pro-
cedure.

Corpus Source Collecting. Before manual annotations, the corpora collection
strategy is a crucial step that directly affects the annotating procedures and the
final dataset qualities. The corpus collection can be divided into two primary
steps: Extraction from CMD&A, and Fintech Domain Filtering.

Extraction from CMD&A. The Internet stores a massive quantity of Chinese
financial market data, such as company trade records and corporate annual
reports. On the Internet, the well-known Chinese Research Data Services Plat-
form (CNRDS) has recorded a large amount of historical information on most
Chinese public companies. Specifically, the CNRDS platform stores hundreds
of millions of pieces of multi-dimension textual information for comprehensive
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analysis in all aspects, such as research reports, stock volatility records, credit
or annual reports, and legal documents. We pay attention to the Chinese annual
enterprise reports, which are also called Management’s Discussion and Analysis
(CMD&A)6. CMD&As primarily include both the business information (e.g.,
Financial Statements) and non-business information (e.g., Corporate Adminis-
trations, Core Techniques) together with the professional perspectives of these
corporations. We request the official API and download the CMD&A docu-
ments of Chinese financial enterprises from 2008 to 2022 (14-years span until
the present). The downloaded corpus contains up to millions of annual enter-
prise reports.

Fintech Domain Filtering. After acquiring abundant CMD&A documents, we
need to filter the high technology companies from the original documents accu-
rately. We found that China Securities Regulatory Commission (CNSRC)7 has
formulated the China National Economic Industry Classification Guidelines8.
The Guidelines indicate the pre-defined industrial classification for all Chinese
public companies, including the industrial categories and their corresponding
indexes (e.g., 核燃料加工 Nuclear-Fuel Processing [No. 253], and 航空器制
造 Spacecraft Manufacturing [No. 3726]). We utilize these classification guide-
lines to filter the high technology-related CMD&A documents from the original
corpus.

Here, we briefly introduce the data statistics of the filtered CMD&A docu-
ments:

– The High-Tech CMD&A annual reports comprise more than 16,600 docu-
ments, and the documents have recorded up to 2692 different companies’
annual business reports;

– The High-Tech CMD&A documents contain about 11171 words on average.
The maximum length and the minimum length in the documents are 115 and
32,006 words, respectively;

– The statistics on the document lengths and the document released time in
the different intervals are shown in Fig. 2.

Key-Phrase Annotation. Different from automatic construction, human
annotation can endow datasets with higher recall and precision while decreasing
unexpected noise. We formulate several primary labelling schemes as follows to
circumscribe the scope of the interesting phrases that need to be annotated. In
other words, given a set of specific-domain documents, crowd-sourced annota-
tors were recruited to mark the target texts following these regulations. The
pre-annotated documents is assigned to the students which are now the Mas-
ters of Finance from Nanjing University Business School. These crowd-sourcing
annotators have a wide financial related background knowledge, which is crucial
and essential to the overall quality of our Fintech Key-Phrase.
6 https://www.cnrds.com/Home/index#/FeaturedDatabase/DB/CMDA.
7 http://www.csrc.gov.cn/.
8 http://www.csrc.gov.cn/csrc/c100103/c1452025/content.shtml.

https://www.cnrds.com/Home/index#/FeaturedDatabase/DB/CMDA
http://www.csrc.gov.cn/
http://www.csrc.gov.cn/csrc/c100103/c1452025/content.shtml
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Fig. 2. Statistics of the High-Tech enterprises CMD&A reports.

– Word Meaning Rules. Annotators should pay more attention to the
phrases related to the enterprise products, techniques, attributes, and events
that lead to better insights into the enterprise nature or its recent condition,
and the theme of the whole document;

– Suffixes Exclusion Rules. Annotators should delete the common-used suf-
fixes of each key-phrase because of the semantic redundancy situation;

– Conjunction Exclusion Rules. Regarding to the conjunctions between two
key-phrases, annotators should drop the conjunctions because the conjunc-
tions have no semantics;

– Universal Semantic Rules. Annotators should skip labelling the micro-
aspect words, such as the proprietary phrases created by the enterprise itself;
Annotators are recommended to extract the explicit phrases which contain
universal semantic information rather than infrequently appearing phrases.

Table 1 gives several annotation instances from our annotations, from which
we can better understand the pre-defined tagging scheme.

Table 1. Examples of key-phrase annotations that follow the labelling scheme above.

Sentence Key-Phrases

S1 完成“面向下一代互联网感知-智能流量控制设备产业化项目”
互联网感知 智能流量控制

S2 天融信开展永磁环保柜、永磁环网柜及环网柜等开发项目
永磁环保柜 永磁环网柜 环网柜

S3 哈工易科加强物联网市场基础建设,加大研发人工智能机器人
物联网 人工智能机器人
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After the annotation steps above, we generate more than 12,000 labelled
instances. Notice that the distraction of annotators might lead annotators them-
selves to the omission of some key-phrase labelling, which may be harmful to the
quality of our dataset. Considering these possible situations, we integrate all the
labelled phrases and back-label them into the previously annotated dataset to
ensure the key-phrases coverage of a certain quality. After the back-label step,
the dataset is additionally populated with up to 165 key-phrases.

3.3 Dataset Statistics

After crowd-sourcing annotations, we randomly split our dataset into a subset
for training and a subset for test, in which the training set contains up to 11579
samples, and the test set contains up to 610 samples where the ratio is about
19:1 following the same schedule of previous works [24].

Figure 3 statistics the key-phrases counts in different length segment inter-
vals. We can clearly observe that the majority of Fin-tech domain key-phrases
are scattered in the length range from 1 to 6, together with a smart part of
key-phrases whose length is more than 7. This observation indicates that, gener-
ally, the key-phrases in which the financial experts are interested are short and
simple.

Fig. 3. The length scattering of the split train set (Blue) and the test set (Orange).
(Color figure online)

4 Experiments

To provide follow-up researchers with explicit baseline comparisons towards our
Fintech Key-Phrase, we conduct extensive experiments on a series of Neural
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Network driven SOTA methods. Owing to our experiments’ exhaustiveness and
comprehensiveness, we hope that the experimental results reported in this work
are sufficient to qualify as meanwhile representative baselines for future domain-
specific information retrieval research.

4.1 Baseline Models

The baseline models which we choose are all rely on the Pre-trained Lan-
guage Models (PLMs), including Chinese-BERT [2,5] and Chinese-RoBERTa
[18]. Based on the publicly released code9 and its experimental settings, we
adopted six information extraction models to evaluate their different perfor-
mances. These baseline models’ details are listed as follows:

– BERT-Linear is a simple but effective approach which directly adds a single
label decoding classifier after the feature encoder BERT;

– RoBERTa-Linear replaces the Transformer BERT with the enhanced
Transformer A Robustly Optimized BERT (RoBERTa) to better utilize the
large-scale PLMs’ superiority compared with the BERT-Linear ;

– BERT-CRF is also a BERT-based labelling model which replaces the simple
Full-Connected classifier with a complex Conditional Random Field (CRF)
[6] classifier compared with the model BERT-Linear ;

– RoBERTa-CRF replaces the BERT-CRF ’s BERT encoder with the
advanced RoBERTa encoder to gain better information retrieval perfor-
mances, which is similar to BERT-Linear ;

– BERT-BiLSTM-CRF adds an extra Bidirectional Long Short Term Mem-
ory (Bi-LSTM) network among the BERT encoder and the CRF classifier of
the BERT-CRF to better capture the dependencies on observation sequences;

– RoBERTa-BiLSTM-CRF replaces the BERT-BiLSTM-CRF ’s BERT
encoder with the enhanced Transformer RoBERTa to achieve superior per-
formance (Fig. 4).

4.2 Performance Results

Following previous works [10,11], we adopt the F1-score as evaluation metric,
which is also a typical classification metric in multi-label classification tasks.
Formally, F1-score could be interpreted as a weighted balance of the Recall met-
rics and Precision metrics. Generally, a powerful information extraction model
always leads to a higher F1-score performance.

As we know, experimental random fluctuations are crucial factors that might
affect the model’s final performance. Since one single experiment for each base-
line has certain random fluctuations, these experimental results lack enough sta-
bility and representative conclusions. The unexpected issues include the CPU or
GPU’s random seeds, which are used to initialize model parameters (e.g., Linear

9 https://github.com/hemingkx/CLUENER2020.

https://github.com/hemingkx/CLUENER2020


434 W. Jin et al.

Fig. 4. Overall architectures of all the baselines we adopted. The feature encoders can
be substituted with various Transformer-based PLMs.

Layer, Dropout Layer), the trivial difference of hyperparameter setting, and so
on.

To alleviate the perturbation from various random factors, we perform ten-
fold Information Extraction cross-validation on our Fintech Key-Phrase instead
of conducting model training and evaluation just once. The average F1-score
and Standard Deviation on the test set are reported in Table 2, which can rep-
resent the final capabilities of these baselines. We hope these extensive exper-
imental results can act as standard baseline performances for research on the
Expression-Level Information Retrieval task in the cross-field of Chinese finan-
cial high technology.

From the Table 2 overall F1-score performance comparisons on our Fin-
tech Key-Phrase dataset, we clearly find the following capability rankings of
these baselines: RoBERTa-BiLSTM-CRF >BERT-BiLSTM-CRF >RoBERTa-
CRF >BERT-CRF >RoBERTa-Linear >BERT-Linear. The performance gain
of BERT-BiLSTM-CRF is trivial when compared with the BERT-CRF (simi-
lar with RoBERTa-CRF and RoBERTa-CRF counterparts). We speculate that
this is because stacking multiple layers could bring a small performance gain, but
sometimes the performance is reduced when the network depth is increased. Dis-
regarding the trivial factors, these results further demonstrate the powerful capa-
bilities of the Transformer-based encoders: BERT and its variant, RoBERTa,
the superiority of CRF layer over other simple classifiers, and the effectiveness
of BiLSTM for the long-term language sequence modelling. Based on the empir-
ical explorations on the Fintech Key-Phrase dataset, we expect a wide range
of powerful SOTA methods for the Expression-Level Information Retrieval task
will be proposed in future.
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Table 2. Performance statistics of the ten-fold evaluation experiments (under differ-
ent random seeds) on Fintech Key-Phrase dataset towards the adopted six baselines,
from which the Min and Max columns respectively denote the Minimum F1-score and
Maximum F1-score. The column Avg.±Std. denotes the average performances within
the standard deviation range of all adopted baselines.

Baseline/Experiments 1 2 3 4 5 6 7 8 9 10 Min Max (Avg.± Std.)

BERT-Linear 75.45 76.29 77.92 77.19 76.94 77.32 75.72 77.47 75.29 76.38 75.29 77.92 (76.596± 0.864)
RoBERTa-Linear 79.44 80.57 78.37 80.16 78.92 78.79 78.37 80.16 78.71 79.32 78.37 80.57 (79.278± 0.752)
BERT-CRF 81.25 80.22 80.78 81.51 80.31 79.92 81.41 80.75 80.49 79.41 79.41 81.51 (80.645± 0.689)
RoBERTa-CRF 81.93 80.57 81.77 82.31 81.93 80.57 81.77 81.65 82.31 80.96 80.57 82.31 (81.475± 0.66)
BERT-BiLSTM-CRF 80.96 81.62 81.24 80.27 81.48 81.24 80.96 82.07 81.60 80.48 80.96 82.07 (81.202± 0.526)
RoBERTa-BiLSTM-CRF 81.77 81.62 82.31 80.75 80.96 81.25 81.93 81.41 82.31 80.75 80.75 82.31 (81.512± 0.551)

5 Case Study

To understand the in-depth significance of our proposed Fintech Key-Phrase, we
collect some information retrieval comparison instances between our well-trained
baseline RoBERTa-BiLSTM-CRF and the TENCENT TextSmart. The TEN-
CENT TextSmart is one of the most advanced open-domain information retrieval
tools in China, which is well-known and convenient. As shown in Table 3, four
specific examples are listed. For each case, the standard results of expert anno-
tations, our trained baseline’s extracted phrases, and the TexSmart ’s extracted
phrases are shown in different columns, respectively. As we expected, all the sam-
ples clearly demonstrate the effectiveness of RoBERTa-BiLSTM-CRF, which is
fully trained on Fintech Key-Phrase benchmark. Before the analysis, it should
also be emphasized that the experts mainly pay attention to the concept-level
phrases of Financial High-Tech domain rather than the reified things.

Specifically, we could have the following observations. (1) In the first case, our
trained baseline correctly predicts all the annotated phrases which are annotated
by experts, while the TexSmart API makes several wrong predictions such as the
redundant extracted expressions (长期 , 50%) and the missed expressions (天然
气 ). (2) For the second case, our model performs very well while the TexSmart
makes several minor errors. Compared with the expert annotation phrases, the
minor errors includes: missing the words研究 for the phrase聚氨酯研究 ; over-
predicting the word 所 for the phrases, 醇胺工程研究 and 节能新材料研究 ;
and missing the words分析 for the phrase分析检测中心 . The examples shown
in the third and fourth rows are similar to the above cases.

All the listed cases prove sufficient evidence that our fully-trained RoBERTa-
BiLSTM-CRF is far superior to the other methods for the Financial & High-
Tech domain Expression-Level Information Retrieval tasks. In conclusion, the
case analysis demonstrates that it is practical and helpful to provide a high-
quality dataset to solve the inaccuracy problem for the domain-specific informa-
tion extraction task.
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Table 3. Case analysis of the information extraction performance comparisons between
the baseline RoBERTa-BiLSTM-CRF and the TENCENT TextSmart official released
API. Referring to the expert annotations as standards, the words which are crossed
out denote the incorrect predictions.

Original Text Expert Annotations
Our RoBERTa
BiLSTM-CRF

TexSmart Preds

从长期来看，全球天然气的需求将增长

50%以上，是化石燃料中增长最快的。
天然气

化石燃料

天然气

化石燃料

长期

50%
化石燃料

研究院下设聚氨酯研究所、醇胺工程研究所

、节能新材料研究所、分析检测中心等部门。

聚氨酯研究

醇胺工程研究

节能新材料研究

分析检测中心

聚氨酯研究

醇胺工程研究

节能新材料研究

分析检测中心

聚氨酯

醇胺工程研究所

节能新材料研究所

检测中心

植物提取物、人参提取物、人参皂苷单体分离

方法的研究、产品的开发取得了阶段性成果。

植物提取物

人参提取物

人参皂苷单体分离

植物提取物

人参提取物

人参皂苷单体分离

植物提取物

人参提取物

人参皂苷

单抗行业现状及未来发展趋势单克隆抗体

药物是当今国际医药界的前沿领域。

单抗

单克隆抗体药物

单抗

单克隆抗体药物

未来

当今

6 Released Tools for Financial High-Tech Domain
Information Retrieval

To motivate newcomers to get involved in the Financial High-Tech specific-
domain Information Retrieval field, we have built a series of functional tools,
including a website 10 which gives brief introductions on our Fintech Key-Phrase
together with six real-time user interactive planes11 for information extraction
(corresponding to six adopted baselines), and the released information extraction
APIs12. The tools allow the user to know more about our Fintech Key-Phrase
benchmark and query the key expressions from a piece of Chinese Financial
High-Tech domain text.

6.1 Website of Our Fintech Key-Phrase

As shown in Fig. 5, when accessing the homepage, you will see that the screen
displays four major sections:

– Introduction mainly gives a brief introduction of the Fintech Key-Phrase
benchmark. The main plane shows the original statistics and the train/test
split details of the Fintech Key-Phrase dataset. Mouse-clicking on the Learn
More button, the specific information including the DataSet Construction
Motivation, and DataSet Construction Procedures is displayed;

10 Online Website: https://albert-jin.github.io/FintechKP-frontend/.
11 https://albert-jin.github.io/FintechKP-frontend/model_prediction_rblc.html.
12 https://31863ew564.zicp.fun/information_retrieval.

https://albert-jin.github.io/FintechKP-frontend/
https://albert-jin.github.io/FintechKP-frontend/model_prediction_rblc.html
https://31863ew564.zicp.fun/information_retrieval
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Fig. 5. The functional partitions of our released website. The part (a), (b), (c), and
(d) respectively depict the four pages: Introduction, Model Prediction, Application
Interface and Summary.

– Model Prediction mainly provides convenient user experiences of the well-
trained baselines’ performances for all possible users. In Real-time Model Pre-
diction section, mouse-clicking on one of the six sub-planes (e.g., the BERT-
BiLSTM-CRF or RoBERTa-BiLSTM-CRF ), it redirects to a new user inter-
face in which you can make Chinese fin-tech domain information extraction
in real-time;

– Application Interface introduces the detailed API requesting and calling
approaches for each well-trained baseline, including various calling parameters
(e.g., headers, body, and standard returned formats);

– Summary Last but not least, we summarize our major contributions towards
our proposed Fintech Key-Phrase in the last part of the website.

6.2 Released APIs

To further accelerate future research on domain-specific information retrieval, we
release a series of online APIs13. As depicted in Fig. 5 (c), users should prepare
all needed request parameters in advance, including:

– (1) The request method only allows the POST way. The API querying process
may affect a certain network delay, wait for a few seconds patiently;

– (2) The request headers should contain content-type: application/json to
ensure that the returned data belongs to the standard JSON format;

13 https://31863ew564.zicp.fun/information_retrieval.

https://31863ew564.zicp.fun/information_retrieval
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– (3) It needs to attach the complete Chinese sentence into the body parameter
sent. Also, please select a baseline from the list: [bert_linear, roberta_linear,
bert_crf, roberta_crf, bert_lstm_crf, roberta_lstm_crf] and attach it into
the body parameter, model_type;

– (4) Furthermore, the real-time APIs are under long term maintenance. We
encourage users who are interested in to contact with us proactively and
report their questions or issues.

7 Conclusion

In the current work, we propose a high-quality human-annotated dataset, Fin-
tech Key-Phrase. To the best of our knowledge, the benchmark is the first also
the largest Chinese fin-tech domain information extraction dataset. The dataset
aims to provide the missing training data sources in the Chinese financial high
technology field information retrieval task. The professional also careful anno-
tation procedures under a series of pre-defined annotation guidelines ensure the
dataset’s overall quality. We hope our proposed corpus extraction methodol-
ogy and the key-phrase annotation guidelines will be helpful to future research
in domain-specific Information Retrieval. Furthermore, we conduct comprehen-
sive experiments by utilizing several SOTA approaches, where the experimental
results can serve as solid baselines for future research studies. The Fintech Key-
Phrase benchmark and corresponding experimental code are publicly released14.
To motivate subsequent related works, we build a customized website and real-
time information retrieval APIs for the Fintech Key-Phrase benchmark. In the
future, we plan to complete the following works: (1) Annotate more Financial
High-Tech domain corpus from other possible information channels (e.g., Chinese
Business Website, Innovation China Website); (2) Conduct more experiments on
other advanced information retrieval approaches on our Fintech Key-Phrase to
improve the performances fully.
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Abstract. The growth of online data has increased the need for retriev-
ing semantically relevant information from data in various modalities,
such as images, text, and videos. Thanks to the powerful representation
capabilities of deep neural networks (DNNs), deep cross-modal hamming
retrieval (i.e., DCMHR) models have become popular in cross-modal
retrieval tasks due to their efficiency and low storage cost. However,
the vulnerability of DNN models makes them susceptible to small per-
turbations. Existing attacks on DNN models focus on supervised tasks
like classification and recognition, and are not applicable to DCMHR
models. To fill this gap, in this paper, we present BACH, an adversar-
ial learning-based attack method for DCMHR models. BACH uses a
triplet construction module to learn and generate well-designed adver-
sarial samples in a black-box setting, without prior knowledge of the
target models. During the learning process, we estimate the gradient of
the objective function by using random gradient-free (RGF) method. To
evaluate the effectiveness and efficiency of BACH, we perform thorough
experiments on 3 popular cross-modal retrieval dataset and 13 state-
of-the-art DCMHR models, including 6 image-to-image retrieval models
and 7 image-to-text retrieval models. As a comparison, we select two
established adversarial attack methods: CMLA for white-box attack and
AACH for black-box attack. The results show that BACH offers compa-
rable attack performance to CMLA while requiring no knowledge of the
target models. Furthermore, BACH surpasses AACH on most DCMHR
models in terms of attack success rate with limited queries.

Keywords: Cross-modal Retrieval · Hashing · Robustness ·
Adversarial perturbation

1 Introduction

The rapid advancement in storage and encoding techniques has greatly impacted
human life by enabling people to search the internet for what they desire.
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While various search techniques have been developed with the growth of social
media and multi-modal data, they mostly only work with similarity-based search
within a single modality, such as the keyword and tag-based searches, which no
longer suffice in the face of diverse multi-modal data [9,32].

To address this limitation, cross-modal retrieval has been proposed and is
gaining widespread attention [6,9,18,43]. It maps data from different modalities
into a common space with the same dimension, and measures the semantic simi-
larity by comparing samples in this space. However, measuring semantic similar-
ity between data from different modalities is a significant challenge, which is also
known as the heterogeneous gap problem. Conventional cross-modal retrieval
methods assess semantic similarity by measuring the distance between samples
in a common space [18]. Specifically, samples from different modalities with the
same semantics are close in the common space [25]. Representational encoding
in this space can be either real-valued or binary [37]. While real-valued encoding
is often impractical for large dataset, the binary encoding is preferred for large
dataset as it reduces storage costs and speeds up retrieval [14], and is used in
cross-modal hashing to map data semantics into a binary space and measure
semantic similarity using Hamming distance [22].

The quality of semantic feature extraction has a significant impact on the
performance of encoding. To minimize the impact of the heterogeneous gap prob-
lem, an effective feature extraction method is essential [1]. Existing hash-based
cross-modal retrieval methods are based on shallow architectures [13,41], and
rely on features extracted by human experts. To date, with the growth of deep
learning techniques in computer vision [33], natural language processing [36],
and speech analysis [17], deep neural networks (DNNs) have become popular for
improving the performance of cross-modal retrieval. DNNs can effectively detect
semantic similarities between different modalities, and build cross-modal correla-
tions through their superior representational capabilities. Due to their powerful
representational capabilities, DNNs are trained to identify semantic similari-
ties between different modalities and build cross-modal correlations. Research
has shown that DNN-based cross-modal retrieval models outperform traditional
shallow models [7].

However, it has been well established that even a well-trained deep learning
model can be easily misled by inputs with subtle, human-undetectable perturba-
tions, known as the adversarial examples [5,26,34,40]. To date, many effective
adversarial methods have been proposed to attack trained DNN models [23].
These attacks can be categorized as white-box or black-box based on whether
the attacker has access to the target model’s internal information. While these
attack methods are primarily designed for supervised tasks such as classifica-
tion or recognition, little attention has been given to studying the impact of
adversarial samples on deep hamming learning in cross-modal retrieval area.

The cross-modal retrieval task differs significantly from tasks like classifica-
tion and recognition. Firstly, cross-modal retrieval models are trained through
unsupervised or semi-supervised methods without ground-truth labels, making
them more susceptible to misleading information. Secondly, the objective of
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attacks on cross-modal retrieval models is to generate semantically unrelated
samples rather than incorrect classifications. This makes existing adversarial
attacks unsuitable for attacking cross-modal retrieval models. Additionally, there
are two major challenges in performing adversarial attacks on deep cross-modal
hamming retrieval (DCMHR) models in a black-box setting: 1) the attacker does
not have access to information about the target model, including the network
architecture, model parameters, and loss functions, and can only obtain the out-
put of the target model through queries; 2) there are often practical constraints
on queries, such as a maximum number of queries allowed.

To tackle these challenges, we introduce BACH, a black-box adversarial
attacking method for deep cross-Modal hamming retrieval (DCMHR) models.
BACH specifically targets DCMHR models and generates adversarial samples
by maximizing the hamming distance of semantically similar samples, thereby
greatly impairing the performance of DCMHR models. To evaluate the effective-
ness of BACH, we conduct experiments on 13 state-of-the-art DCMHR models
and 3 popular dataset (i.e., MIRFlickr-25K, NUS-WIDE, and CIFAR-10) in
three aspects: 1) attacking DCMHR models on both image-to-image and image-
to-text retrieval tasks; 2) investigating the impact of the number of samples
in the query dataset used to construct triples on the attack performance; and
3) comparing BACH against the state-of-the-art white-box attack method (i.e.,
CMLA [20]) and the black-box attack method (i.e., AACH [19]).

To summarize, this paper makes the following contributions:

– We propose BACH, a learning-based approach for adversarial attacks on deep
cross-modal hamming retrieval models in a black-box environment. Unlike
existing white-box attack methods, BACH does not require any prior knowl-
edge and thus, is more practical in real-world applications. To the best of
our knowledge, BACH is the first method designed for attacking cross-modal
retrieval models in a black-box setting.

– We select a query-based black-box attacking strategy with performance com-
parable to white-box attack methods. This is achieved through the use of the
random gradient-free (RGF) method and a limited number of target model
queries.

– We evaluate the effectiveness and efficiency of BACH by conducting experi-
ments on 13 state-of-the-art cross-modal retrieval models and 3 benchmark
dataset. The results show that BACH performs comparably to the white-box
attack methods while only requiring a limited number of queries. Our app-
roach can be used to assess the robustness of cross-modal retrieval models.

The rest of the paper is organized as follows. Section 2 briefly introduces
deep cross-modal retrieval task and problem formulation. Section 3 presents the
technical details of our approach BACH. Section 4 shows our experimental setup
as well as the experimental results. Related work is discussed in Sect. 5. Section 6
presents the conclusion and future extensions of this work.
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2 Background

2.1 Deep Cross-Modal Retrieval and Problem Formulation

Cross-modal retrieval task refers to using image or text as queries to search
for data with another modal in the database, such as using text to search for
images or using images to search for text. A well-trained DCMHR model can
retrieval semantically relevant data from the database. As shown in Fig. 1(a),
using a picture of a flower as a query, the DCMHR model can retrieve some text
about the flower, and we define that this picture and the retrieval result (i.e.,
text) are semantically relevant. In this paper, we use O = {Ov, Ot} = {oi}Ci=1 to
represent a cross-modal database with C samples. Herein, sample oi = {ov

i , ot
i} is

an image-text pair, where ov
i and ot

i represent the image data and textual data,
respectively.

Generally, DCMHR use DNN to extract semantic features Fv ∈ R
C×kv ,

Ft ∈ R
C×kt from the original data, where kv, kt is the feature-length. After

using the feature extraction architecture on the dataset, the semantic features
are calculated as:

F v = fv
base (O

v, θv
base) , F t = f t

base

(
Ot, θt

base

)
, (1)

where θv
base, θt

base are the parameters that need to be trained for the two feature
extraction architectures. Moreover, kv and kt are generally set to be the same
in order to extract the equipotential features.

Deep cross-modal retrieval model aims to learn two hash functions fv
hash,

f t
hash that project image or text samples onto the Hamming space. This process

can be formulated as:

Bv = sign (fv
hash (F v, θv

hash)) , Bt = sign
(
f t

hash

(
F t, θt

hash

))
, (2)

where Bv, Bt ∈ {−1, 1}C×d are the binary code, d is the length of the hash
space, F v, F t ∈ [−1, 1]C×d are the binary-like representation generated by the
output layer of a target deep cross-modal network, and θv

hash and θt
hash are two

parameters that need to be learned for the hash function.
The semantic similarity between samples from different modalities is evalu-

ated by the Hamming distance of the learned binary codes in a hash space:

D(X,Y ) =
1
2
(K − 〈X,Y 〉) , (3)

where X and Y are the binary codes of the samples, K is a constant that maintain
the distance magnitude. A well-trained cross-modal hash retrieval model should
preserve semantic similarity structure between samples of different modalities.
Specifically, image sample ov

i whose Hamming distance from its positive sam-
ple ot

iP
(with the shortest Hamming distance) is less than negative sample ot

iN
(with the longest Hamming distance). Here, we can construct a sample’s triple{
ov

i , o
t
iP

, ot
iN

}
. Hash function is encouraged to satisfy the inequality as follows:

D(fv
hash(o

v
i ), f

t
hash(o

t
iP )) < D(fv

hash(o
v
i ), f

t
hash(o

t
iN )) (4)
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Next, we consider generating restricted adversarial perturbations η that can
fool the DCMHR models. The attacking goal can be formalized as the following
inequality:

D(fv
hash(o

v
i + ηv), f t

hash(o
t
iP )) > D(fv

hash(o
v
i + ηv), f t

hash(o
t
iN )) (5)

The adversarial images ov
i +ηv obtained by adding well-designed perturbations η

can make the retrieval performance of the retrieval model significantly degraded.
For example, as shown in Fig. 1(b), given an adversarial flower sample, the
retrieval results are some irrelevant textual items with the original flower target.

Fig. 1. Examples of query results for the original and adversarial image samples

3 Black-Box Attack on DCMHR Models

This part details our proposed black-box adversarial attack named BACH
against DCMHR models. Figure 2 shows the overall working pipeline, which
mainly consists of three parts. The first part carries out cross-modal query-
ing. The second part constructs a cross-modal triplet for every image based on
the query results, and the third generates the adversarial example of an image
according to the cross-modal triplet. In this paper, we generate adversarial sam-
ples only for images, not text because adding perturbations to text can be easily
detected.

3.1 Black-Box Attack Framework

Firstly, we input M image-text pairs samples as cross-modal data queries
(Oq =

{
Ov

q , Ot
q

}
, where Ov

q = {ov
i }M

i=1 and Ot
q = {ot

i}M
i=1) to the target retrieval

model. Then, we constructing a triplet
{
ov

i , ot
iP

, ot
iN

}
for each sample by get the

hamming distance between M samples. Specifically, for an image-text triplet{
ov

i , ot
iP

, ot
iN

}
, the goal of attacking cross-modal Hamming retrieval model can

be formulated as follows:

min
ηv

D(fv
hash(o

v
i + ηv), f t

hash(o
t
iN ))−

D(fv
hash(o

v
i + ηv), f t

hash(o
t
iP )), s.t. ‖ηv‖p ≤ εv.

(6)
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Fig. 2. Overview of BACH

An adversarial image ôv
i = ov

i + ηv should satisfy two constraints: 1) the
hamming distance between adversarial sample and it’s positive sample should
be as large as possible, while with negative sample should be as small as possible;
Cause the generation of adversarial samples is guided by positive and negative
samples to change the pixels of the original image. Specifically, see Fig. 2(c) for
example, we continuously push away the hamming distance between the original
sample and positive sample (1 to 6), and narrow the hamming distance between
the original sample and negative sample (7 to 1), until reaching the preset num-
ber of iterations T . The value setting of threshold T is detailed in Sect. 4.2; 2)
The perturbation ηv in the attack should be human-imperceptible. To this end,
we use ‖ηv‖p ≤ εv to constrain the magnitude of the perturbation. ηv refers to
the pixel changes guided by positive and negative samples in this paper. Specif-
ically, let h be the length of perturbation, ‖·‖p be the lp-norm paradigm, we

define the perturbation as ‖η‖p = p

√
1
h (|η1|p + |η2|p + · · · + |ηh|p). The dimen-

sion of the perturbation is consistent with the raw image in the image dataset.
Note that, the lε∞ bound is the most common way to limit the magnitude of
an image, as it strictly limits the maximum image pixel from being perceived.
Therefore, we choose the lε∞-norm attack in this paper.
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However, the optimization problem of Eq. (6) is an NP-hard problem, inspired
by the C&W [4] attack, we rewrite the objective loss function as:

minΓ (ov
i , ot

iP , ot
iN , εv)

= min
M∑

i=0

max(D(B̂v
i , Bt

iN ) − D(B̂v
i , Bt

iP ) + κ, 0), s.t. ‖ηv‖∞ ≤ εv,
(7)

B̂v
i = fv

hash (ov
i + ηv) ,

Bt
iN = f t

hash

(
ot

iN

)
,

Bt
iP = f t

hash

(
ot

iP

)
,

(8)

and κ ≥ 0 is a tuning parameter for attack transferability.
In the white-box setting, the optimization problem of Eq. (7) can be solved

by back-propagating the loss function gradient. In the black-box setting, how-
ever, we cannot get the network information of target model and only get the
model output (i.e., B∗

i , ∗ ∈ {v, t} in Eq. (8)). Gradient-based estimation is the
most effective method in black-box attacks. Inspired by [29], we use the ran-
dom gradient-free (RGF) method to estimate the gradient of the loss function
in Eq. (7), and Ilyas et al. [11] have proved this method is optimal to estimate
the gradient. Specifically, the gradient ∂Γ

∂ov
i

(defined as ĝi) of an image sample ov
i

can be estimated by the following equation:

ĝ =
1
q

q∑

i=1

ĝi, with ĝi =
f (x + σui, y) − f(x, y)

σ
· ui, (9)

where {ui}q
i=1 are the random vectors sampled independently from a uniform

distribution P on R
D, q is the number of the random direction, σ is the sampling

variance and D is the dimension of original image. We set σ = 0.01, and q = 50
in this paper. However, it is a box-constraint problem for Eq. (7) that cannot be
solved directly based on the commonly-used optimizers. Therefore, we used the
following treatment to perturbation εv to solve this problem:

εv =
1
2
(tanh(εv) + 1) − ov. (10)

Then, we choose the Adam [16] optimizer to solve Eq. (7). Finally, we learn the
following adversarial perturbations for cross-modal retrieval:

ηv = argmin
εv

Γ (ov
i , ot

iP , ot
iN , εv). (11)

Now that we have detailed the attack method’s whole process, specifically,
we attack the target retrieval model by inputting the adversarial sample. The
entire process of adversarial sample generation is shown in Algorithm 1. Line 1 to
Line 4 of the algorithm is the querying part. Line 5 to Line 6 describe the triplet
construction. Line 7 to Line 11 illustrate the adversarial sample generation,
where Line 9 corresponds to the gradient estimation.
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Algorithm 1: Black-box Adversarial Perturbation Generation Method for
Deep Cross-modal Hash Retrieval Models (BACH)
Input : Target deep cross-modal retrieval model: f∗

hash (o∗
i ), ∗ ∈ {v, t}, data

O =
{
ov

i , ot
i

}C

i=1
, iteration T , adversarial queries M

Output: A adversarial sample of query image: ôv
i = ov

i + ηv

1 initialize iter = 0;

2 Random select query data
{
ov

i , ot
i

}M

i=1
;

3 Compute Bt = sign
(
f t

hash

(
Ot

q

))
;

4 Compute Bv = sign
(
fv

hash

(
Ov

q

))
;

5 Compute Hamming distance matrix according to Equation (3) based on
{
Bv, Bt

}
=

{
Bv

i , Bt
i

}M

i=1
;

6 Create cross-modal triplets
{
ov

i , ot
iP

, ot
iN

}
for every image ov

i ;
7 Select ηv:while iter ≤ T do
8 ηv = argmin

εv
Γ (ov

i , ot
iP

, ot
iN

, εv);

9 Estimate ĝi using Equation (9);
10 Using Adam optimizer;
11 iter = iter + 1;

12 return ôv
i ;

4 Experiment

This section evaluates the performance of BACH on several commonly-used deep
cross-modal hamming retrieval models and dataset. We assess the attack on
image-to-text retrieval task and image-to-image retrieval task.

4.1 Dataset

The dataset of image-to-text retrieval task include MIRFlickr-25K and NUS-
WIDE. The dataset of image-to-image retrieval task include CIFAR10 and NUS-
WIDE. We use these three dataset to train several deep cross-modal hamming
retrieval models. In all of our attack experiments below, dataset are divided into
three-part, including train, query, and gallery parts. Note that the attacks does
not use the train set.

MIRFlickr-25K contains 25,000 images from the Flickr website, each image
with a corresponding text description constituting an image-text pair. Accord-
ing to [42], we randomly divided the dataset into a training dataset with 5000
samples and a test dataset with 20000 samples. There are M samples as query
dataset in the test dataset, while remaining samples as a gallery set.

NUS-WIDE is a multi-label dataset containing 81 labels. There are 269,648
image-text pairs. We select a total of 195834 samples from the most commonly
used 21 labels as the image retrieval dataset according to [12]. We select 500
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Table 1. The attack performance in term of mAP on the state-of-the-art DCMHR
models for image-to-text retrieval task, based on MIRFlickr-25K and NUS-WIDE sets

Dataset MIRFLICKR-25k NUS-WIDE
CL 16 32 64 128 16 32 64 128
Method REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK
DJSRH 0.66 0.60 0.66 0.61 0.67 0.61 0.68 0.62 0.46 0.41 0.49 0.43 0.45 0.41 0.53 0.44
AGAH 0.74 0.59 0.77 0.60 0.78 0.62 0.77 0.63 0.62 0.43 0.64 0.45 0.65 0.46 0.65 0.46
SSAH 0.64 0.60 0.68 0.61 0.69 0.61 0.71 0.61 0.48 0.41 0.51 0.41 0.53 0.41 0.53 0.42
DCMH 0.71 0.62 0.74 0.62 0.72 0.63 0.73 0.64 0.64 0.43 0.66 0.44 0.65 0.46 0.67 0.46
DSAH 0.69 0.60 0.70 0.60 0.71 0.61 0.71 0.61 0.56 0.42 0.60 0.42 0.61 0.43 0.62 0.44

a REG is the abbreviation of regular that used to represent regular retrieval perfor-
mance, and ATK is the abbreviation of attack that used to represent attack perfor-
mance.
b CL refers to code length. Here, M is set to 500 and T is set to 800.

pairs for each label to construct the training dataset randomly, with 100 pairs
of each label randomly selected to query, and the rest are used as the gallery
dataset. In addition, this paper uses NUS-WIDE as a dataset for attacking the
deep cross-modal hamming retrieval models for image-to-image retrieval task.
Following [8], a total of 5000 samples are selected randomly as the query dataset
and the remaining samples as a gallery set.

CIFAR10 dataset consists of 60,000 images whose sizes are 32×32 and belong
to 10 categories. Each category has 6,000 images. There are 50,000 training
images and 10,000 testing images. We extract 100 samples for each category from
the testing dataset for querying, and the remaining samples are as a gallery set.

To evaluate BACH, we use two commonly used evaluation criteria for cross-
modal retrieval tasks in the field of information retrieval, namely, mean Average
Precision (mAP) and Normalized Discounted Cumulative Gain (NDCG).

Table 2. The attack performance in term of NDCG on the state-of-the-art DCMHR
models for image-to-text retrieval task, based on MIRFlickr-25K and NUS-WIDE sets

Dataset MIRFLICKR-25k NUS-WIDE
CL 16 32 64 128 16 32 64 128
Method REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK
DJSRH 0.63 0.59 0.66 0.60 0.66 0.61 0.68 0.62 0.48 0.41 0.49 0.42 0.53 0.43 0.54 0.44
AGAH 0.76 0.61 0.79 0.62 0.80 0.62 0.81 0.63 0.64 0.44 0.67 0.44 0.68 0.45 0.68 0.46
SSAH 0.64 0.59 0.67 0.60 0.67 0.52 0.69 0.62 0.49 0.42 0.50 0.42 0.53 0.43 0.54 0.44
DCMH 0.75 0.62 0.75 0.62 0.76 0.63 0.77 0.63 0.63 0.43 0.64 0.44 0.65 0.44 0.66 0.45
DSAH 0.68 0.59 0.70 0.60 0.71 0.61 0.72 0.62 0.58 0.42 0.60 0.42 0.61 0.43 0.61 0.44

a CL refers to code length. Here, M is set to 500 and T is set to 800.

4.2 Evaluation

BACH is a black-box adversarial attack on DCMHR models. To evaluate the
effectiveness and efficiency of BACH, we design experiments to answer the fol-
lowing three research questions:
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– RQ1: Is BACH effective to attack classical deep cross-modal hamming
retrieval models for image-to-text and image-to-image retrieval tasks?

– RQ2: Does the number of samples of the query dataset used to construct
triples affect the attack performance?

– RQ3: How does BACH perform compared with existing white-box and black-
box attacking methods?

Table 3. The attack performance in term of mAP on the state-of-the-art DCMHR
models for image-to-image retrieval task, based on CIFAR10 set

Dataset CIFAR10
Code Length 12 24 36 48
Method REG ATK REG ATK REG ATK REG ATK
SDH 0.46 0.10 0.64 0.11 0.66 0.12 0.67 0.14
DSH 0.62 0.10 0.66 0.13 0.67 0.14 0.68 0.14
ADSH 0.88 0.15 0.88 0.15 0.87 0.15 0.87 0.15
DSDH 0.73 0.14 0.75 0.15 0.75 0.15 0.75 0.16

a Here, M is set to 500, T is set to 800.

Firstly, we show the performance of BACH on several retrieval models. To
verify the ability of the attack, we re-produce 7 state-of-the-art DCMHR models
for image-to-text retrieval task, including DJSRH [32], AGAH [28], SSAH [18],
DCMH [7], DSAH [22], PRDH [38] and CMHH [2]. We construct six state-of-the-
art DCMHR models for image-to-image data retrieval task, including DSH [24],
DIHN [35], DSDH [21], ADSH [15], HMH [39] and SDH [30]. In addition, to
evaluate the attack performance of the adversarial samples with different hash
code lengths, for the cross-modal retrieval task, we use 16, 32, 64, and 128
as the length, respectively. Moreover, for image-to-image retrieval tasks, there
are two dataset, where the CIFAR10 dataset takes values of 12, 24, 36, and
48 for hash code length, and the NUS-WIDE dataset takes values of 8, 16,
24, and 32 for hash code length. We attacked the above retrieval models, and
the comparison between the regular retrieval performance and the performance
after being attacked in terms of the mAP/NDCG score. The attack results on the
DCMHR models for image-to-text retrieval task are shown in Tables 1 and 2. The
attack results of image-to-image retrieval task are in Tables 3 and 4. Furthermore,
due to the special requirements of the HMH method for hash code length, 8-bit
and 24-bit hash code lengths do not satisfy the HMH requirements, so we do
not perform 8-bit and 24-bit attacks on CIFAR10 and NUS-WIDE for HMH.
BACH produces adversarial samples that effectively degrade the performance of
all the above well-trained retrieval models, which means that all our attacks are
successful, demonstrating the lack of robustness of these existing deep retrieval
models to small adversarial perturbations.

To construct a triplet of samples, we need to query the hash codes of M
samples. Different M will led to different attack performances, so we will take
M as 200, 300, 500, and 1000 respectively, to perform the attack. The com-
parison of the attack performance on MIRFlickr-25K, NUS-WIDE is shown



Black-Box Attacking on Deep Cross-Modal Hamming Retrieval Models 451

Table 4. The attack performance in terms of mAP and NDCG on the state-of-the-art
DCMHR models for image-to-image retrieval task, based on NUS-WIDE set

Dataset NUS-WIDE (mAP) NUS-WIDE (NDCG)
CL 8 16 24 32 8 16 24 32
Method REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK REG ATK
DSH 0.66 0.24 0.69 0.26 0.70 0.27 0.71 0.27 0.45 0.26 0.45 0.26 0.45 0.27 0.45 0.27
ADSH 0.80 0.27 0.85 0.28 0.86 0.29 0.87 0.29 0.51 0.28 0.59 0.28 0.61 0.28 0.63 0.29
DIHN 0.74 0.25 0.79 0.27 0.81 0.27 0.80 0.27 0.48 0.26 0.51 0.27 0.58 0.27 0.58 0.29
DSDH 0.77 0.26 0.76 0.26 0.80 0.27 0.80 0.28 0.50 0.28 0.55 0.28 0.59 0.30 0.59 0.23
HMH - - 0.74 0.26 - - 0.78 0.27 - - 0.53 0.28 - - 0.52 0.28

a CL refers to code length. Here, M is set to 500 and T is set to 800.

Table 5. Comparison of the attack performance for different Adversarial Queries (M)
in terms of mAP scores, the code length is set to 32 bits, T is set to 800

Tasks Adversarial Queries
MIRFlickr-25K NUS-WIDE

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

REG 0.74 0.78 0.68 0.75 0.66 0.64 0.51 0.60

BACH

200 0.70 0.68 0.66 0.64 0.59 0.52 0.44 0.46
300 0.65 0.64 0.64 0.63 0.50 0.46 0.42 0.44
500 0.62 0.60 0.61 0.61 0.44 0.42 0.41 0.43
1000 0.62 0.61 0.62 0.61 0.45 0.41 0.42 0.43

a I → T denotes retrieval text using an adversarial image query.

in Table 5 (mAP). The mAP scores decreases as M increases, so the attack
performance gradually improves. However, we find that the attack performance
slightly decreases when the M increases from 500 to 1000, which may be due
to some inaccurate information obtained when querying the target model, so
high-quality query samples will help to improve the query efficiency and attack
performance.

Meanwhile, we compare the impact of different iterative numbers, T , on the
attack performance during adversarial sample generation. Here we fix M to
500, and the attack performance comparison on the baseline databases is shown
in Table 6. We find the retrieval performance degrades gradually as the number
of iterations becomes larger, meaning the attack performance becomes better.
However, when T grows from 500 to 800, the attack performance increase is
insignificant. Since there is often a limit on the number of queries, we consider
T takes 800 as the optimal value.

Last, we compare BACH performance to white-box and black-box attack
methods, and the results are shown in Table 7. CMLA [20] is a work to attack
DCMHR models in a white-box setting. In contrast, AACH [19] attacks DCMHR
models in a black-box setting. Therefore, AACH does not require a priori knowl-
edge, such as the structure of the target network. However, AACH requires
constructing a surrogate model, which we do not need. We attack by directly
estimating the gradient of the loss function. We compare the attack performance
of the three methods on top of two different dataset according to [19]. CMLA
achieves the best performance, which is attributed to the fact that CMLA has
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Table 6. Comparison of the attack performance for different iteration (T ) in terms of
mAP scores, the code length is set to 32 bits, M is set to 500.

Tasks Iteration
MIRFlickr-25K NUS-WIDE

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

REG 0.74 0.78 0.68 0.75 0.66 0.64 0.51 0.60

BACH

300 0.66 0.63 0.60 0.69 0.46 0.50 0.44 0.55
500 0.63 0.60 0.62 0.62 0.44 0.45 0.41 0.45
800 0.62 0.60 0.61 0.61 0.44 0.42 0.41 0.43

a I → T denotes retrieval text using an adversarial image query.

Table 7. Comparison of the attack performance of BACH, CMLA and AACH in terms
of mAP scores on different dataset, the code length is 32 bits.

Tasks Methods
MIRFlickr-25K NUS-WIDE

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

REG 0.74 0.78 0.68 0.75 0.66 0.64 0.51 0.60
CMLA 0.52 0.60 0.60 0.56 0.46 0.40 0.36 0.33
AACH 0.63 0.62 0.56 0.65 0.44 0.50 0.40 0.41
BACH 0.62 0.61 0.61 0.58 0.44 0.49 0.41 0.40

a I → T denotes retrieval text using an adversarial image query.

all the prior knowledge of the target model as a white-box attack. However, the
attack performance of our BACH is more potent than AACH on both benchmark
dataset. It validates the effectiveness of our approach.

5 Related Work

5.1 Deep Cross-Modal Hashing

In order to measure the semantic similarity between samples of different modal-
ities and maintain the similarity between data samples, the features of data
samples belonging to different modalities are often mapped into a common
subspace. As shown in Fig. 3, Hash codes learning and retrieval tasks are all
based on this common subspace. For example, Inter-Media Hashing [31] uses
inter-modal and intra-modal consistency as benchmarks to construct a common
Hamming space and introduces regularized linear regression into the hashing
process. Latent Semantic Sparse Hashing [43] the latent space through sparse
coding and matrix factorization and then fuses the features of different modal
data into a unified hash code. The Composite Correlation Quantization [27]
uses the maximum mapping method to construct a common subspace. Collective
Matrix Factorization Hashing [5] and Supervised Collective Matrix Factorization
Hashing [6] exploit collaborative matrix factorization to learn hash codes from
different modalities. Based on common subspace learning, adding label infor-
mation can effectively improve the performance of cross-modal retrieval models,
and such supervised models can generate hash codes that preserve semantics.
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The Semantic Correlation Maximization [42] method proposed earlier attempts
to integrate label information into the learning process to obtain a similarity
matrix. Semantics Preserving Hashing [23] first used a distribution function to
formulate the hashing process, converted the semantic relationship contained in
the label information into a probability distribution, then trained the model by
minimizing the Kullback-Leibler divergence.

Fig. 3. Regular cross-modal Hamming retrieval

Meanwhile, DNN can enhance the feature learning capability for different
modal data, which yields deep cross-modal hashing using DNN as a feature
extraction network. Typical approaches are Deep Cross-Modal Hashing [14] and
Pairwise Relation Guided Deep Hashing [38], both of which use deep convolu-
tional networks and fully connected networks to extract the image and text fea-
tures, respectively, while adding semantic labeling information to maintain the
original semantic similarity between samples. The Deep Visual-Semantic Hash-
ing [3] method further uses Long Short Term Memory (LSTM) [10] to learn
textual information in the form of sentences. Self-Supervised Adversarial Hash-
ing [18] proposes to capture semantic features from different modalities further
using generative adversarial networks and proposes labeling networks to generate
hash codes of label vectors.

5.2 Adversarial Attacks

Szegedy et al. were the first to propose the concept of adversarial sample [5], and
they found that small perturbations that are not sensitive to the human visual
system can make the neural network too sensitive to produce false recognition.
Subsequent researchers have proposed many more powerful and effective meth-
ods for attack generation. The existing adversarial attacks can be divided into
two main categories: white-box attacks and black-box attacks. White-box attacks
refer to the information of the target model is fully accessible, and the most com-
monly used white-box attacks are fast gradient symbolic method (FGSM) [8]
and projected gradient descent method (PGD) [23]. Although the performance
of white-box attacks is relatively high, obtaining specific information about the
target model in the real world is complicated. The black-box attack can only
obtain the model’s output or even the information about the model is completely
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unknown. This setting increases the difficulty of attacks, but it is more practi-
cal than white-box. Research shows that, black-box attacks based on gradient
estimation are already close to the performance of the best white-box attacks.

6 Conclusion

This paper presents BACH, a learning-based adversarial attack method aimed
at fooling deep cross-modal retrieval models on hamming space in a black-
box setting. BACH consists of three parts: first, it calculates the hamming
distance between samples through cross-modal querying; second, it constructs
cross-modal triplets (i.e., original sample, positive sample, and negative sample)
for each image based on the hamming distance; and third, it learns to generate
adversarial samples by pulling the negative samples close and pushing away the
positive sample, using a random gradient-free gradient estimation method to
reduce the number of queries. BACH was tested on 3 popular dataset and 13
state-of-the-art deep cross-modal hamming retrieval models, including 6 mod-
els for image-to-image retrieval and 7 models for image-to-text retrieval. The
experiments show that BACH can effectively attack existing retrieval models
and has comparable attack performance to the white-box attack method (i.e.,
CMLA) and the black-box attack method (i.e., AACH). The results highlight the
unreliability of current cross-modal hamming retrieval models, as well-designed
perturbations can easily mislead them in practice. Thus, BACH can serve as a
baseline for evaluating the robustness of cross-modal hamming retrieval models,
and call for advanced method to enhance the robustness of cross-modal retrieval
models in the future.
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Abstract. Question retrieval aims to find the semantically equiva-
lent questions from question archives for a user question. Recently,
Transformer-based models have significantly advanced the progress of
question retrieval, which mainly focus on capturing the content-based
semantic relations of two questions. However, they can not well capture
the category-based semantic relations of two questions, even question cat-
egories are very important to identify the semantic equivalence of two
questions. To capture both the content-based and category-based seman-
tic relations, we study the issue of improving Transformer by highlight-
ing and incorporating the category information. To this end, we innova-
tively propose the Category-Highlighting Transformer Network (CHT).
Because questions are not equipped with explicit categories, CHT first
uses a category identification unit to construct category-based seman-
tic representations for the question and its embedded words. Second, to
“deeply” capture the category-based and content-based semantic rela-
tions, we develop the category-highlighting Transformer by improving the
self-attention unit with the category-based representations. The cascaded
category highlighting Transformers are used for modelling “individual”
semantics of a question and “joint” semantics of two questions. Extensive
experiments on three public datasets show that the category-highlighting
Transformer network outperforms the state-of-the-art solutions.

Keywords: Question answering · Question retrieval · Transformer

1 Introduction

Question answering (QA) has been a popular platform where users can seek rel-
evant answers for their questions. As a key component of QA systems, question
retrieval aims to retrieve semantically equivalent questions from the question and
answer archives. By the equivalent questions, a QA system will aggregate, rank
and show their answers to users. Due to the importance of question retrieval, it
has attracted much attention from the communities of both academia and indus-
try [8,12,13]. Meanwhile, a variety of models have been proposed for addressing
the challenge of question retrieval, i.e., lexical gap— semantically equivalent
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questions have different words. The work [12,24] takes the translation probabil-
ity from an archived question to the user question as their semantic similarity.
In work [2,8,13], the topic distributions of two questions are constructed and
used for identifying their semantic equivalence. With the development of deep
learning techniques, various neural network architectures have been proposed
for deep encoding two questions [18,23]. Recently, pre-trained representation
models, such as BERT [5] and ERNIE [17], have been proposed to model the
semantics of questions, and have achieved significant performance gains.

These neural network architectures and pre-trained models focus on mod-
elling the content-based semantic relations of two questions. Different from them,
we propose new insights and solution to capture the semantic relations of both
content-level and category-level. Data insight: questions with different categories
can not be semantically equivalent. The question categories represent the impor-
tant semantics of a question [10,11], and are critical for the semantic equivalence
identification of questions. This is because questions with different categories can
not be semantically equivalent. For example, given two questions “how to res-
cue a phone that fell into the water” and “where to rescue a phone that fell
into the water”, they have high text similarity but are not semantically equiv-
alent, because they belong to different question categories, i.e., “solution” and
“location”. Technical insight: Transformer can not well capture the category-
based semantic relations of questions. Many Transformer-based solutions have
been developed and achieved new state-of-the-art results of question retrieval.
The self-attention in Transformer mainly focuses on modelling the contextual
dependencies of words, while don’t specially model the semantics on question
categories. So Transformer-based solutions can not well capture the category-
based semantic relations of two questions.

Solution: Category-Highlighting Transformer Network. According to the
above insights, we propose to improve Transformer by incorporating the category
information, for capturing both content-based and category-based semantic rela-
tions of two questions. To realize this idea, we develop the category-highlighting
Transformer network (CHT) with two cascaded units:

Category Identification Unit (CIU). In the datasets of question retrieval, ques-
tions are not equipped with explicit categories. CIU is developed to construct
category-based semantic representations for a question and its embedded words.
We define some question categories for a question dataset, e.g., “time”, “loca-
tion” and “people”. Based on the categories, CIU estimates the relevance
between a question and each category, and uses the relevance as weights to sum
the embeddings of categories. The summed embedding is used for representing
the category-based semantics of the question. The relevance between a word and
the summed embedding as well as the word and the categories is estimated and
used for constructing the category-based semantic representation of the word.

Category-Highlighting Transformer Unit. For deeply modelling both category-
based and content-based semantic relations of two questions, we develop the
cascaded category-highlighting Transformers to model “individual” semantics
of a question and the “joint” semantics of two questions. In each Transformer,
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we improve the self-attention unit by incorporating the category-based attentive
similarities that are estimated based on the category-based representations of
words, so that both content-based and category-based semantics are captured.

Our contributions are concluded as follows:

• We propose new insights for question retrieval from data and technical views.
• We develop the category-highlighting Transformer network to model both

content-based and category-based semantic relations of two questions, with-
out the supervision of question-to-category labelling data.

• We are the first to improve the self-attention unit in Transformer by incor-
porating the question category information.

• We conduct extensive experiments on three public datasets and validate the
effectiveness of the category-highlighting Transformer network.

2 Preliminaries

Question retrieval aims to find semantically equivalent questions from a large
question repository D for a user question q. It can be formulated:D = f(q,D),
where f is a pipeline of selecting candidate questions D from D. A classical
pipeline consists of two stages, i.e., retrieval and identification. The retrieval
stage is to find relevant candidates, and the identification stage is to select the
semantically equivalent questions from the candidates. The retrieval stage needs
to be completed in a limited time. So it typically uses some term-matching
solutions to find candidate questions, e.g., language model [16] and BM25 [15].

2.1 Related Work of the Identification Stage

Many solutions have been proposed to identify the semantic equivalence of two
questions, which can be grouped into four classes:

Term-Matching Solutions. Many traditional techniques of information
retrieval are used for estimating the semantic similarity of two questions, such as
BM25 [15] and language model [16]. These solutions are based on an assumption
that two questions with higher text similarity are more likely to be semantically
equivalent, suffering from the lexical gap challenge.

Translation-Model Solutions. These solutions use the translation probability
from one question to another question to identify the semantic equivalence of
two questions [7,22]. The word-to-word translation probabilities are first learned
from different parallel corpora, and then are applied to some retrieval models.

Topic-Model Solutions. These solutions [2,8] identify the semantic relations
of two questions in the latent topic space. The work [2] proposes a topic model
that incorporates category information into the process of discovering latent
topics. The work [8] proposes a Question-Answer Topic Model (QATM) that
learns the latent topics from the question-answer pairs.

Deep Learning Solutions. The deep learning techniques have been widely
applied in question retrieval, and achieve better performance than traditional solu-
tions. The work [20] uses a bidirectional LSTM to generate multiple positional
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Fig. 1. The architecture of category-highlighting Transformer network.

sentence representations for each question. In work [4], a Siamese CNN is proposed
to estimate the semantic similarity of two questions. Recently, the pre-training lan-
guage models have been demonstrated strong performance on text representations
in many NLP tasks, such as BERT [5] and Sentence-BERT [14].

3 Category-Highlighting Transformer Network

To accurately identify the semantically equivalent questions, we propose new
insights: 1) questions with different categories can not be semantically equiva-
lent ; 2) Transformer can not well capture the category-based semantic relations
of questions. Accordingly, we design the category-highlighting Transformer net-
work (CHT) to model both content-based and category-based semantic relations
of two questions, and show its architecture in Fig. 1. CHT first exploits a category
identification unit to automatically construct the category-based semantic rep-
resentations for a question and its embedded words. Second, we develop the cas-
caded category-highlighting Transformers by incorporating the category-based
representations of words into the self-attention unit, so that both content-based
and category-based relations of questions can be captured and deeply modelled.
Moreover, the category-based representations of two questions and the deeply
encoded results of the category-highlighting Transformers are combined in a
decoder function to estimate the semantic equivalence of two questions. We for-
mulate the category-highlighting Transformer network as follows:

eq(q, d) = σ1(w1[c(q); c(d); che(q, d)], b1) (1)

where c(q) and c(d) are the category-based representations of question q and d,
learned by the category identification unit. The che(q, d) is the deeply encoded
results over q and d, which contain both content-based semantics and category-
based semantics. It is constructed by our cascaded category-highlighting Trans-
formers. The [; ] is the concatenation operation. The σ1 is a m×n×1 MLP with
activation function ReLU, ReLU and Sigmoid. The w1 and b1 are the weight
vectors and bias vectors, respectively.
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3.1 Category Identification Unit

As motivated in Sect. 1, in the datasets of question retrieval, both user questions
and archived questions are not equipped with explicit question categories. To
capture the category-based semantics, we propose to automatically construct the
category-based representations for a question and its embedded words. Initially,
we need to define some question categories for a dataset. Inspired by the work
[6] that uses the 5W1H (“what”, “when”, “where”, “why”, “who”, “how”) to
extract main events from news articles, we define question categories as “time”,
“location”, “people”, “solution”, “cause”, “object” and “other”. Note that fine-
grained categories can also be defined and applied to our model.

Given a set of predefined question categories C, we construct the category-
based semantic representation of a question q as follows:

c(q) =
∑

c∈C

w(c, q)e(c),
∑

c∈C

w(c, q) = 1. (2)

where e(c) is the embedding of c. We use BERT to encode the category c and take
the embedding of [CLS] as e(c). To well construct the semantic representation
over a set of categories, w(c, q) is used for adjusting the weight of e(c). If c is
more relevant to q w(c, q) is higher. So we estimate w(c, q) as follows:

w(c, q) = σ2(w2[e(c); e(q);CoA(e(c), e(q))] + b2) (3)

where σ2 with parameters w2 and b2 denotes a three-layer MLP with activation
functions ReLU, ReLU and Sigmoid. The CoA is a function of performing some
interactions over e(c) and e(q), such as e(c) − e(q) , |e(c) − e(q)| and e(c) ∗ e(q).

Inspired by the topic model where both sentences and words are represented
as latent topics [1], we argue that in a question q, a word tq should have a
category-based representation. Since the word is embedded by a question, its
category-based representation can be partly derived from the categories of the
question, i.e., question-specific category representation. Besides, a word may
appear in many questions, and thus it should have a global category represen-
tation. Combining the question-specific and global category representations, we
construct the category-based representation for a word as follows:

c(tq, q) = w(e(tq), c(q))c(q)+
∑

c∈C

w(e(tq), e(c))e(c),
∑

c∈C

w(e(tq), e(c)) = 1. (4)

where c(q) is the category-based representation of q. The w(e(tq), c(q)) is the
weight of c(q), and w(e(tq), e(c)) is the weight of e(c), which are estimated by
Eq. 3. The w(e(tq), c(q))c(q) is to capture the question-specific category seman-
tics, and

∑
c∈C w(e(tq), e(c))e(c) is to model the global category semantics.

3.2 Category-Highlighting Transformer

To deeply model the content-based and category-based relations of two ques-
tions, we develop the cascaded category-highlighting Transformers as encoders,
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i.e., individual encoder and joint encoder (see Fig. 1). Given a question pair q and
d, the individual encoder models q and d individually, and derives the “individ-
ual” semantic representation for each question. The joint encoder first concate-
nates the individual semantic representations of q and d, and then encodes the
concatenated results to derive the “joint” semantic representation. We formulate
the cascaded category-highlighting Transformers as follows:

che(q, d) = [IT (q); IT (d);JT (IT (q), IT (d))] (5)

where IT and JT are two category-highlighting Transformers, denoting the indi-
vidual encoder and joint encoder respectively. For a question q (or d), IT first
encodes the words in q to get their embeddings, and then averages the embed-
dings as the individual semantics of q. To get the joint semantics of q and d,
JT first concatenates IT (q) and IT (d) with a start token [CLS] and separated
token [SEP], and then encodes the concatenated result. The embedding of [CLS]
is taken as the joint semantics of q and d.

We design the category-highlighting Transformer by improving the self atten-
tion unit with the category-based representations of words (IT and JT ). Specif-
ically, we first apply the category-based representations of words to estimate the
category-based attentive similarities between a word and other words. Second,
the context-based attentive similarities are estimated by the scaled Dot-Product
[19]. The category-based attentive similarities and context-based attentive simi-
larities are combined as the final attentive similarities. The category-highlighting
attention unit is formulated as follows:

Attention(Q,K, V,G,H) = softmax(
QKT + λGHT

√
dk

)V, λ ∈ (0, 1) (6)

where Q=EqW
Q, K =EqW

K , V =EqW
V , G=CqW

G, H =CqW
H . The Cq =

{c(t1q, q), · · · , c(tnq , q)} is the category-based representations of words {t1q, · · · , tnq }
in a question q, and c(tnq , q) is estimated by Eq. 4. The Eq is the context-based
representations of words. The WQ, WK , WV , WG and WH are projection matri-
ces. The GHT is to model the category-based attentive similarity, and QKT is
to model the context-based attentive similarity. The parameter λ is the weight
of GHT , to balance the importance of QKT and GHT .

4 Experiments

4.1 Experimental Setup

Experimental Objectives. Experimental objectives are designed as follows:

• O1: Can CHT better accomplish the question retrieval task than baselines?
• O2: Can CHT effectively model the category-based relations of two questions?
• O3: Ablation Study. What is the effectiveness of components in CHT?
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Table 1. Performance comparisons.

Model Acc. (%) AUC. (%) Acc. (%) AUC. (%) Acc. (%) AUC. (%)

BankQ LCQMC Quora

BiMPM 79.48 87.50 83.59 93.75 85.82 93.46

RE2 81.07 88.94 84.74 94.78 89.20 95.56

BERT 84.06 89.34 86.70 94.84 91.07 96.96

ERNIE 84.66 92.31 87.17 95.89 91.08 96.84

Sentence-BERT 83.53 90.95 84.07 94.62 88.69 94.84

tBERT 80.65 88.82 85.12 93.13 89.31 95.69

CHT 85.24 92.43 88.98 96.23 91.67 97.11

Datasets Description. We conduct experiments on three public datasets.

• BankQ [3]: It is the largest QA dataset in the financial domain and sampled
from the session logs of an online bank custom service system.

• Quora1: The dataset is sampled from a Q&A website Quora.com. Each ques-
tion pair is labeled with a binary value that indicates equivalent or not.

• LCQMC [9]: It is a large-scale Chinese question retrieval dataset and sam-
pled from the largest online Chinese question answering platform, i.e., Baidu
Knows.

Comparison Solutions. According to the survey in Sect. 2.1, we select state-
of-the-art solutions as baselines to verify the above experimental objectives:

• BiMPM [21]: BiLSTM model is used for encoding questions, and multiple
matching methods are aggregated to model the relations of two questions.

• RE2 [23]: The aligned features, original point-wise features, and contextual
features are applied to residual networks.

• BERT [5]: It is a well-known pre-training representation model, widely applied
to many NLP tasks and achieves new state-of-the-art results.

• ERNIE [17]: It is a pre-training framework where the lexical, syntactic, and
semantic information are learnt by using multi-task learning strategy.

• Sentence-BERT [14]: It is a framework with twin networks, and individually
generates an embedding for every sentence.

• tBERT [13]: It first learns topic-based representations for words, and then
use them to improve BERT for semantically equivalent question detection.

Performance Metrics. Similar to the studies [13,17,23], we use the accuracy
and AUC metrics to measure the effectiveness of all models.

Reproducibility. The parameters of all models are assigned the default values
for fair comparisons. Specifically, the batch sizes of models on the BankQ and
LCQMC datasets are 32 and that of models on Quora datasets is 64. All models
are developed in Python 3.8 and Pytorch 1.10 development environment. We set
the learning rate to 2e − 5 and use the warm-up learning rate method.

4.2 Experimental Results

To verify the experimental objective O1, we perform all models over the three
public datasets, and show their performances in Table 1. BERT and ERNIE
1 https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs.

https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs
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Table 2. Effectiveness of modelling the category-based relations of two questions.

Model Acc. (%) Acc. (%) Acc. (%)

ND PS other

BiMPM 84.52 82.16 74.48

RE2 84.59 85.82 75.61

BERT 90.48 83.25 80.52

ERNIE 89.24 86.77 80.31

Sentence-BERT 88.12 83.77 80.45

tBERT 83.47 84.59 76.19

CHT 90.81 86.88 80.59

Table 3. Ablation study: effectiveness of components in CHT.

Model Acc. (%) AUC. (%)

CHT-che+BERT 84.30 92.16

CHT-cqd 84.57 92.31

CHT-gh 85.04 92.27

CHT-ind 84.72 92.41

CHT-joint 84.71 92.31

CHT 85.24 92.43

perform better than other baselines. tBERT uses the topic distributions of words
to improve BERT. But it is hard to construct the accurate topic distributions for
a word because its context (question) is very short. Sentence-BERT is a modifi-
cation of BERT and is to reduce the computation cost of BERT not improve the
accuracy of BERT. Besides, we see that CHT performs better than all baseline
models on three datasets. Compared with BERT and ERNIE, CHT not only
benefits from the pre-trained embeddings but also benefits from the incorpo-
ration of question categories in Transformer. The above comparisons positively
verify O1: CHT better accomplishes the question retrieval task than baseline
models.

To verify experimental objective O2, we make an analysis based on BankQ.
Specifically, we first divide the test examples into three groups by manually
labelling, i.e., negative examples with different categories (ND), positive exam-
ples with the same categories(PS), and other. Secondly, we investigate the per-
formances of models over the three groups and show the results in Table 2. It
can be seen that 1) the advantage of CHT on the ND group is larger than that
on the PS group. This is because examples with different categories can not be
semantically equivalent, but examples with the same categories may be positive
examples or negative examples. CHT can better capture the data insight than
baseline models; 2) The advantage of CHT on PS group is larger than that on
the other group, since the examples with the same categories are more likely
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to be positive examples. These metric comparisons verify the ability of CHT on
modelling category-based semantic relations of two questions.

To verify the effectiveness of components in CHT (O3), we conduct the abla-
tion study and present the results in Table 3. The notation CHT-cqd denotes the
category-based representations are not applied, i.e., c(q) and c(d) in Eq. 1 are
not applied. The CHT-che+BERT denotes the cascaded category-highlighting
Transformers are not applied, and BERT is used for generating the deep encoding
result che(q, d). It can be seen that the metrics of CHT are higher than those of
CHT-che+BERT and CHT-cqd. The above comparisons verify the effectiveness
of both the category identification unit and the cascaded category-highlighting
Transformers. In the cascaded category-highlighting Transformers, the first one
is to model the individual semantics of a question, and the second one is to
model the joint semantics of two questions. We test the two category-highlighting
Transformers, and show their results in Table 3 where the CHT-ind denotes the
individual semantics are not applied, and CHT-joint denotes the joint semantics
are not applied. Comparing the metrics of CHT, CHT-ind and CHT-joint, we
find that CHT performs better than CHT-ind and CHT-joint. This illustrates
that the combination of the individual semantics and joint semantics can bet-
ter capture the relations of two questions than any single one. Besides, on AUC
metric, CHT-ind performs better than CHT-joint. This illustrates that the joint
semantics are more important for modelling the relations of two questions than
the individual semantics.

In the category-highlighting Transformer, we use the category-based repre-
sentations of words to improve the self-attention unit of the original Transformer.
Specifically, in Eq. 6, both the category-based attentive similarity (GHT ) and
context-based attentive similarity (QKT ) are used for updating the embedding of
words. Comparing the original Transformer, we incorporate the category-based
attentive similarity GHT into the self-attention unit. To verify the effective-
ness of this incorporation, we perform an experiment where GHT is not applied
to CHT and denote the results as CHT-gh in Table 3. Comparing the metrics
between CHT and CHT-gh, we find that CHT performs better than CHT-gh.
The comparisons illustrate that the incorporation of category-based attentive
similarity helps to identify the semantic relations of two questions.

5 Conclusion

In this paper, we propose new insights from data and technical perspectives, to
address the lexical gap challenge of question retrieval. To capture these insights,
we develop a category-highlighting transformer network (CHT), which mod-
els both content-based and category-based semantic relations of two questions.
Experiments demonstrate 1) the category-highlighting transformer network can
better accomplish the question retrieval task than baseline models; 2) The incor-
poration of implicit question categories can effectively identify the semantic dis-
tinctions of two questions with high text similarity yet different categories.
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Abstract. Context-aware neural machine translation aims to use the
document-level context to improve translation quality. However, not all
words in the context are helpful. The irrelevant or trivial words may
bring some noise and distract the model from learning the relationship
between the current sentence and auxiliary context. To mitigate this
problem, we propose a novel end-to-end encoder-decoder model with
a layer-wise selection mechanism to sift and refine the long document
context. To verify the effectiveness of our method, extensive experiments
and extra quantitative analysis are conducted on four document-level
machine translation benchmarks. The experimental results demonstrate
that our model significantly outperforms previous models on all datasets
via the soft selection mechanism.

Keywords: Neural Machine Translation · Context-aware Translation ·
Soft Selection Mechanism

1 Introduction

Recently, neural machine translation (NMT) based on the encoder-decoder
framework has achieved state-of-the-art performance on the sentence-level trans-
lation [2,5,6,23,24,26,31–33]. However, the sentence-level translation solely con-
siders single isolated sentence in the document and ignores the semantic knowl-
edge and relationship among them, causing difficulty in dealing with the dis-
course phenomenon such as lexis, ellipsis, and lexical cohesion [27,30].

To model the document-level context, there are two main context-aware neu-
ral machine translation schemes. One approach introduces an additional con-
text encoder to construct dual-encoder structure, which encodes the current
source sentence and context sentences separately and then incorporates them
via the gate mechanism [3,4,9,16,28,29]. The other one directly concatenates
the current source sentence and context sentences as a whole input to the stan-
dard Transformer architecture, though the input sequence might be quite long
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 471–486, 2023.
https://doi.org/10.1007/978-3-031-30675-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30675-4_34&domain=pdf
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Fig. 1. An example of the source and the context sentence. Above is a source sentence
to be translated, and below is its context in the same document. The underlined words
are useful to disambiguate the source sentence, while the rest is less important.

[1,3,20,25]. The previous works [1,13] conclude that the Transformer model has
the capability to capture long-range dependencies, where the self-attention mech-
anism enables the simple concatenation method to have competitive performance
with multi-encoder approaches.

Most aforementioned previous methods use the whole context sentences and
assume that all words in the context have a positive effect on the final transla-
tion. Despite the benefits of part of the context, not all context words are useful
to the current translation. In Fig. 1, the underlined words provide supplemen-
tary information for disambiguation, while the others are less important. The
irrelevant words may bring some noise and redundant content, increasing the
difficulty for the model to learn the relationship between the context and the
translation. Therefore, these useless words should be discarded so that the model
can focus on the relevant information of the current sentence.

In this work, we propose an end-to-end model to translate the source doc-
ument based on layer-wise context selection over encoder. In our model, the
context is concatenated with current source sentence as external knowledge to
be fed into the unified self-attention, where they are precisely selected among
multiple layers to gradually discard useless information. The criteria on context
selection is based on context-to-source attention score which are recursively cal-
culated layer-by-layer. Ultimately, the context on the top layer is expected to
be the most useful knowledge to help current source sentence translation. The
architecture of our model looks like a Tower of Hanoi over the Transformer
structure (HanoiT). Our proposed model captures all context words at the bot-
tom layer and focuses more on the essential parts at the top layer via the soft
selection mechanism.

To verify the effectiveness of our method, we conduct main experiments and
quantitative analysis on four popular benchmarks, including IWSLT-2017, NC-
2016, WMT-2019, and Europarl datasets. Experimental results demonstrate that
our method significantly outperforms previous baselines on these four popular
benchmarks and can be further enhanced by the sequence-to-sequence pretrained
model, such as BART [12]. Analytic experiments and attention visualization
illustrate our proposed selection mechanism for avoiding the negative interference
introduced by noisy context words and focusing more on advantageous context
pieces.
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2 Our Approach

In this section, we will describe the architecture of our HanoiT, and apply
HanoiT to context-aware machine translation.

2.1 Problem Statement

Formally, let X = {x(1), .., x(k), .., x(K)} denote a source language document
composed of K source sentences, and Y = {y(1), .., y(k), .., y(K)} is the cor-
responding target language document. {x(k), y(k)} forms a parallel sentence,
where x(k) denotes the kth source sentence and y(k) is the translation of x(k).
X<k = {x(1), .., x(k−1)} denotes the historical context of x(k) and X>k =
{x(k+1), .., x(K)} represents the future context. Given the current source sen-
tence x(k), the historical context X<k, and the future context X>k, the transla-
tion probability is calculated by:

P (y(k)|X; θ) =

N∏

i=1

P (y
(k)
i |X, y

(k)
<i ; θ) (1)

where y
(k)
i is the ith word of the kth target sentence and y

(k)
<i are the previously

generated words of the target sentence y(k) before ith position. y(k) has N words.
In this work, we use one previous and one next sentence as the context.

2.2 HANOIT

Figure 2 shows the overall structure of our HanoiT model. At the bottom of
the encoder, it models the concatenation of the source sentence and the context
with unified self-attention layers. At the top of the encoder, it gradually selects
the context words according to the attention weights.

Embedding. We use the segment embedding to distinguish the current sentence,
source, and target context sentences. In Fig. 2, we concatenate the current sen-
tence and the source context as a whole. To model the positions of the different
parts, we also reset the positions of the current source sentence and source con-
text sentences. Therefore, the final embedding of the input words is the sum of
the word embedding, position embedding, and segment embedding, which can
be described as:

E = Ew + Ep + Es (2)

where Ew is the word embedding, Es is the segment embedding from the learned
parameter matrix, and Ep is the position embedding.
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Fig. 2. Overview of our proposed model HanoiT. For simplicity, layer normaliza-
tion and other components of the Transformer architecture are omitted in the pic-
ture. Cross symbols denote dropped words. (x1, x2) is the current source sentence and
(x′

1, x
′
2, x

′
3, x

′
4, x

′
5, x

′
6) is the source context. N1 and N2 denote the number of unified self-

attention layers and selection layers. (x′
1, x

′
2, x

′
3, x

′
4, x

′
5, x

′
6) → (x′

1, x
′
2, x

′
4) → (x′

1, x
′
2)

is the selective procedure, where important words are selected gradually by multiple
selection layers.

Encoder. Since the inputs of context-aware neural machine translation are com-
posed of several sentences, we build our model based on the multi-head atten-
tion to capture long-range dependencies and compute the representation of the
document-level context. Our encoder consists of two groups of layers: unified
self-attention layers and selection layers. The unified self-attention layers is to
compute a joint representation of the source sentence and the context, while the
selection layer is to select the context for the next layer.

Unified Self-attention Layer. Given the concatenation of the source sen-
tence and the source context, we obtain the document representation s0 =
{s01, .., s

0
p, .., , s

0
m} after the embedding layer, where p is the length of x(k) and

m is the length of source concatenation. Then, we feed the s0 into N1 unified
self-attention layers to compute their representations.

sl = FFN(MultiHeadAttn(sl−1; θN1)) (3)

where the l is the number of the unified self-attention layer and l ∈ [1, N1].

Selection Layer. After N1 unified self-attention layers, we get representations
of source concatenation sN1 = {sN1

1 , .., sN1
p , .., sN1

m }, which can be used to select
important context words. In the selection layer, we apply multi-head attention
to sN1 , and then average attention scores across different heads, which can be
described as below:

ai,j =
1

h

∑

1≤i≤h

MultiHeadAttn(sN1) (4)
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where h is the number of attention heads. ai,j represents the average attention
score between the ith token and the jth token.

Then, we calculate the average attention score between ith word and other
tokens in the source current sentence x(k):

ai,�=i =
1

p

∑

j∈[1,p],j �=i

ai,j (5)

where ai, �=i represents the average correlation between ith word and the other
words, and p is the number of tokens in the source sentence.

In order to decide which context words should be selected, we compute the
correlation scores s between each context word and the whole source sentence.
For the kth context word, we count how many words in the current sentence
have a higher attention score with it compared to the average attention score
ai, �=i:

sk =
∑

i∈[p+1,m]

δai,k≥ai, �=i (6)

where δai,k≥ai, �=i
equals 1 if ai,k ≥ ai, �=i else 0, p is the number of tokens in the

source sentence, and m is the total number of tokens in the concatenation of the
source sentence and the source context.

Finally, we can select the context words with top correlation scores sk. We
use vk to denote whether the kth word is selected:

vk = δsk≥q∗p (7)

where δsk≥q∗p equals to 1 if sk ≥ q ∗ p else 0, p is the number of tokens in the
source sentence, and q ≤ 1 is a hyper-parameter to control the percentage of the
selective context. In this work, we set q ∈ [0.1, 0.5] according to the performance
in the validation set.

Decoder. The source selective concatenation sN2 = {sN2
1 , .., sN2

p , .., sN2
m1

} is fed
into the standard Transformer decoder to predict the final translation.

2.3 Bi-lingual Context Integration

Section 2.2 only considers the mono-lingual context, i.e. the source context. In
practice, when translating a document, we can also obtain the target context by
sentence-level translating the document before context-aware translation [27]. In
this section, we extend our HanoiT model to integrate the bi-lingual context,
i.e. the source context and the target context.



476 J. Yang et al.

Fig. 3. Overview of the extended HanoiT to integrate the bilingual context. Cross
symbols denote masked words. Source concatenation consists of the current source
sentence (x1, x2) and source context (x′

1, x
′
2, x

′
3, x

′
4). Target concatenation is composed

of the source sentence (x1, x2) and the target context (y′
1, y

′
2, y

′
3, y

′
4). Then the source

and target selective concatenations are incorporated by the gate mechanism to predict
the final translation.

Formally, let X = {x(1), .., x(k), .., x(K)} denote a source language docu-
ment composed of K source sentences and Y = {y(1), .., y(k), .., y(K)} denotes
the sentence-level translation of X. X<k is the historical source context and
X>k is the future source context. Similarity, we denote historical target context
{y(1), .., y(k−1)} as Y<k and future target context {y(k+1), .., y(K)} as Y>k. We
model the translation probability that is conditioned on the bi-lingual source
context X �=k and target context Y�=k as:

P (y(k)|X; θ) =

N∏

i=1

P (y
(k)
i |X, Y�=k, y

(k)
<i ; θ) (8)

where y
(k)
i is the ith word of the kth target sentence and y

(k)
<i are the previously

generated words of the target sentence y(k) before ith position.

Encoder. As shown in Fig. 3, the current source sentence and the source context
are merged as the source concatenation. Besides, the current source sentence
and the target context are also merged as the target concatenation. Both con-
catenations are fed into unified self-attention and selection layers to compute
representations of source concatenation sN2 and target concatenation tN2 .

Decoder. With the above encoder, we obtain the representations of the selec-
tive source concatenation sN2 = {sN2

1 , .., sN2
p , .., sN2

m1
} and the selective target

concatenation tN2 = {tN2
1 , .., tN2

p , .., tN2
n1

}, where m1 and n1 are lengths of selec-
tive source and target concatenation. Given both selective concatenations, we
deploy the multi-head attention by two attention components. Using query, key,
value parameters (WQ

s ,WV
s ,WK

s ), the decoder gets the hidden state zsi . Simi-
larly, another hidden state zti is generated by the additional attention component
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with parameters (WQ
t ,WV

t ,WK
t ). Considering the previous insight [10] that the

gate network is a good component for bi-lingual context setting, we employ the
gate mechanism to incorporate the source and target context.

Gate Mechanism. Given the ith hidden states zsi and zti , the gate mechanism
can be described as:

γi = cσ(Wsz
s
i + Utz

t
i + b) (9)

where Ws and Ut are parameters matrices and b is a bias. c ∈ [0, 1] is a hyper-
parameter to control range of the gate weight. σ(·) is the sigmoid function.

zi = (1 − γi)z
s
i + γiz

t
i (10)

where zi is the ith decoder final hidden state derived from the source context
and target context.

2.4 Training

Given the mono-lingual context only, the training objective is a cross-entropy
loss function on the top of Eq. 1. The objective Lm is written as:

Lm = −
∑

X,y(k)∈D

log Pθ(y
(k)|X) (11)

where θ are model parameters.
Considering the bi-lingual context, the training objective Lb is calculated as:

Lb = −
∑

X,y(k),Y�=k∈D

log Pθ(y
(k)|X, Y�=K) (12)

where θ are model parameters.
The quality of the target context depends on the sentence-level translation

model, which may bring additional errors. To reduce the possible harm by these
errors and make the training stable, our model optimizes a combination of the
mono-lingual objective Lm and the bi-lingual objective Lb:

Lall = αLm + (1 − α)Lb (13)

where α is a scaling factor to balance two objectives between Lm and Lb. We
find when the value of α equals 0.5, our model gets the optimal performance by
balancing two objectives. We adopt Eq. 11 to train the model with mono-lingual
context, and Eq. 13 to train the model with bi-lingual context.

3 Experiments

To prove the efficiency of our method, we conduct experiments on four public
benchmarks.
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Table 1. Sentence-level evaluation results on four tasks with BLEU% metric using the
source context. Bold numbers denote the best BLEU points. RNN and Transformer
are context-agnostic baselines and others are context-aware baselines. The results with
the symbol “†” are directly reported from the previous work. BLEU points with the
symbol “*” are re-implemented by ourselves. “‡” denotes our proposed method.

Mono-lingual Context IWSLT-2017 NC-2016 Europarl WMT-2019

RNN [2] 19.24† 16.51† 26.26† –

Transformer [26] 23.28† 22.78† 28.72† –

Transformer (our re-implementation) 24.52* 24.45* 29.98* 38.02*

ECT [25] 24.32* 24.40* 30.08* 38.14*

Dual Encoder [9] 24.14* 24.36* 30.12* 38.12*

DCL [41] 24.00† 23.08† 29.32† –

HAN [30] 24.58† 25.03† 28.60† –

Transformer + QCN [40] 24.41† 22.22† 29.48† –

SAN [16] 24.55† 24.78† 29.75† –

Flat Transformer [13] 24.87† 23.55† 30.09† 38.34*

HanoiT (our method) 24.94‡ 25.22‡ 30.49‡ 38.52‡

3.1 Datasets

To evaluate our method, we use the same dataset as previous work, including
IWSLT-2017, NC-2016, Europarl, and WMT-2019 En-De translation [16].

IWSLT-2017. This corpus is from IWSLT-2017 MT track and contains tran-
scripts of TED talks aligned at the sentence level.

NC-2016. NC-2016 dataset is from Commentary v9 corpus. Newstest2015 and
newstest2016 are used as the valid and the test set.

Europarl. The dataset from Europarl v7 is split into training, valid and test sets
according to the previous work [16]. Europarl is extracted from the European
Parliament website.

WMT-2019. The WMT-2019 dataset comes from the WMT-2019 news trans-
lation shared task for English-German. Newstest2016, newstest2017, and new-
stest2018 are concatenated as the valid set. Newstest2019 is used as the test
set.1

3.2 Implementation Details

Considering the model performance and computation cost, we use one previous
and one next sentence as the source and target context for all our experiments.
1 https://www.statmt.org/wmt19/.

https://www.statmt.org/wmt19/
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Table 2. Sentence-level evaluation results on four tasks with BLEU% metric using the
bi-lingual context. Bold numbers represent the best BLEU points. The results with
the symbol “†” are directly reported from the previous work. BLEU points with the
symbol “*” are re-implemented by ourselves. “‡” represents our proposed method.

Bi-lingual Context IWSLT-2017 NC-2016 Europarl WMT-2019

ECT [25] 24.38* 24.55* 30.24* 38.16*

Dual Encoder [9] 24.26* 24.46* 30.25* 38.24*

DCL [41] 23.82† 22.78† 29.35† –

HAN [30] 24.39† 24.38† 29.58† –

CADec [27] 24.45* 24.30* 29.88* –

SAN [16] 24.62† 24.36† 29.80† –

HanoiT (our method) 25.04‡ 25.28‡ 30.89‡ 38.55‡

The evaluation metric is case-sensitive tokenized BLEU [18]. For different bench-
marks, we adapt the batch size, the beam size, the length penalty, the number of
unified self-attention layers N1, and the number of selection layers N2 to get bet-
ter performance. For all experiments, we use a dropout of 0.1 and cross-entropy
loss with a smoothing rate of 0.1 for sentence-level and context-aware baselines
except notification. All sentences are tokenized with Moses [11] and encoded by
BPE [21] with a shared vocabulary of 40K symbols. The batch size is limited
to 2048 target tokens by default. For the IWSLT-2017 dataset, we deploy the
small setting of the Transformer model, which has 6 layers with 512 embedding
units, 1024 feedforward units, 4 attention heads, a dropout of 0.3, a l2 weight
decay of 1e-4. For the NC-2016 dataset, we use the base setting of Transformer
[26], in which both the encoder and the decoder have 6 layers, with the embed-
ding size of 512, feedforward size of 2048, and 8 attention heads. We set both
dropout and attention dropout as 0.2 for our method. For the Europarl and
the WMT-2019 dataset, the base setting of the Transformer model with 4000
warming-up steps is used.

3.3 Baselines

For the mono-lingual and the bi-lingual context setting, we compare our method
with other baselines.

Mono-lingual Context: RNN [2] and Transformer [26] are backbone models.
ECT [25] simply concatenates the source sentence and context into the standard
Transformer model. Besides, Dual Encoder [9] uses two encoders to incorporate
the source sentence and context sentences to predict the translation. Moreover,
DCL [41] incorporates context hidden states into both the source encoder and
target decoder. Flat Transformer [13] focus on the current self-attention at
the top. Furthermore, HAN [30] and SAN [16] introduce the hierarchical and
selection attention mechanism. QCN [40] is a query-guided capsule networks.
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Table 3. Sentence-level evaluation results on four benchmarks with BLEU% met-
ric under the mono-lingual context setting. The architecture N1 + N2 represents our
HanoiT consists of N1 unified self-attention layers and N2 selection layers. The archi-
tecture (N1 = 6, N2 = 0) only uses six unified self-attention layers with the segment
embedding, which select all context words to generate the final translation.

Architecture IWSLT-2017 NC-2016 Europarl WMT-2019 Average

6 + 0 24.48 24.64 30.22 38.22 29.39

5 + 1 24.32 24.95 30.52 38.46 29.74

4 + 2 24.55 24.52 30.72 38.37 29.54

3 + 3 24.64 24.88 30.65 38.12 29.58

2 + 4 24.74 24.60 30.62 38.62 29.65

1 + 5 24.94 25.22 30.49 38.40 29.85

0 + 6 24.56 24.75 30.66 37.98 29.49

Bi-lingual Context: CADec [27] is composed of identical multi-head attention
layers, of which the decoder has two multi-head encoder-decoder attention with
encoder outputs and first-pass decoder outputs. Also, Dual Encoder, ECT,
DCL, HAN and SAN can also use the bi-lingual context to improve the per-
formance.

3.4 Main Results

Mono-lingual Context. We present the results of our proposed method, sentence-
level baselines, and other context-aware baselines in Table 1, which all only use
the mono-lingual source context. The context-aware baselines include ECT, Dual
Encoder, DCL, HAN, SAN, and Flat Transformer. The sentence-level Trans-
former model gets 24.52, 24.55, 29.98, and 38.02 BLEU points on four bench-
marks. Compared to this strong baseline, our model also significantly gains
an improvement of +0.42, +0.77, +0.81, and +0.51 BLEU points respectively
on four benchmarks. Furthermore, our method outperforms SAN by +0.39,
+0.44, +0.74 BLEU points on IWSLT-2017, NC-2016, and Europarl datasets.
We also observe that most context-aware models gain better performance than
the sentence-level model Transformer, especially on IWSLT-2017, NC-2016, and
Europarl datasets. We conjecture these three datasets are suitable for evalu-
ating context-aware models, where the current sentence needs to learn longer
dependencies.

Bi-lingual Context. Under the bi-lingual context setting, our method also out-
performs other baselines, including Dual Encoder, ECT, DCL HAN, CADec,
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Fig. 4. Ratio of the source and target context selected words on the NC-2016 dataset.
Our model selects useful words from both the source and the target context gradually
layer by layer. Therefore, the number of context words reduces as the depth of selection
layer increasing.

and SAN. HanoiT can achieve improvements of +1.02, +1.33, +0.91, +0.53
BLEU points than the sentence-level Transformer baseline. It proves that
HanoiT also can be compatible with the target context to select useful words.
Besides, HanoiT can significantly outperform the related baseline SAN model by
+0.49, +0.50, +1.14 BLEU points, achieving better performance on three bench-
marks. We also observe that the bi-lingual context provides marginal improve-
ments over the mono-lingual context. According to these results, we infer that
whether the context-aware model benefits from the bi-lingual context setting is
dependent on the specific dataset.

4 Analysis

Attention Visualization. Our model encodes the concatenation of the source
words and all context words by the unified attention layers at the bottom layers.
As shown in Fig. 5(a), the model focuses on the source sentence “What do you do
when you have a headache ?” and all context words “You swallow an aspir@@ in
.” using the self-attention mechanism, which ensures that all context words can
provide the external guidance and implicitly contribute to the translation. The
context words with higher attention weights tend to be selected. In Fig. 5(b), the
model only focuses on the source sentence and selected context word “aspir@@”.
The source word “headache” has a correlation with the context word “aspir@@”.
In this way, our method pays more attention to the current sentences and the
selected words, while the other context words also provide the supplemental
semantics for the current sentences at the bottom.
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Fig. 5. Attention visualization of the encoder self-attention weights of the bottom
unified attention layer (a) and top layer after the selection operation (b).

Number of Selection Layers. To better understand the impact of the selection
layers for the translation performance, we tune different numbers of concatena-
tion self-attention layers (N1 layers) and selection layers (N2 layers) to get the
better performance under the mono-lingual setting. For the fair comparison, we
keep the N1 +N2 = 6, which equals the number of the base setting Transformer
layers. As shown in Table 3, we find that the architecture “N1 = 1, N2 = 5”
gains the best average performance on four benchmarks. Besides, stacking too
many selection layers also leads to worse performance, which may be caused by
wrongly discarding too many context words. In summary, our proposed model
uses all context words by unified self-attention layers, and focuses those impor-
tant context words at the top of encoder blocks.

Ratio of Selected Words. We investigate how many words in the context are
selected on the NC-2016 dataset. Figure 4 shows that the first selection layer
reserves only 60% words from the context. After multiple selection layers, the
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Table 4. Results of our method with the offline (1 previous + 1 next) and the online
(1 previous) setting.

Context IWSLT-2017 NC-2016 Avg.

Online (1 previous) 24.62 24.78 24.70

cre Offline (1 previous + 1 next) 24.94 25.12 25.07

ratio gradually reduces to 48.24%. Another obvious phenomenon is that the
ratio of the target context is less than that of the source context. An intuitive
explanation is that we use the source sentence words to select source or target
context words, where source-source attention has a higher score compared with
the source-target attention. Representations of the same language have a closer
relationship than those of different languages on average [19].

Online vs. Offline Setting. Table 4 lists results of our method with different
context settings. “1 previous” denotes the online setting where the context only
includes one previous sentence. “1 previous + 1 next” denotes the offline setting
where the context includes one previous and one next sentence. From the table,
we can find that our proposed method has the similar performance with online
and offline settings on the IWSLT-2017 and NC-2016 datasets. We also try the
longer context including “2 previous + 2 next” and “3 previous + 3 next”, but
find no significant improvement.

Mono-lingual vs. Bi-lingual Context. For the source and target mono-lingual
context setting, our method gets 24.94 and 24.98 BLEU points on the IWSLT-
2017 dataset. Furthermore, we conduct experiments with the bi-lingual context
sentences and get 25.04 BLEU points, where the target context sentences are
the translation of the source context sentences. The bi-lingual context setting of
our method has limited improvement over the mono-lingual context setting. The
reason is that the target-side context shares similar information to the source-
side, which also has been found by the previous work [16].

Leveraging Pre-trained Model. Since the parameters of our model are the same
as the standard Transformer, our model can be initialized with the pre-trained
model to enhance our method. The pre-trained model BART-large [12] is used
for initialization under the mono-lingual context setting. We extract 12 bot-
tom layers of the BART encoder and 6 bottom layers of the BART decoder
to initialize our model. On IWSLT-2017 dataset, our model gains +1.91 BLEU
improvement (24.94 → 26.85) with pre-trained model BART.

5 Related Work

Sentence-level Machine Translation. Sentence-level neural machine translation
has developed immensely in the past few years, from RNN-based [2,6,24,32,33,
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36], CNN-based [5], to the self-attention-based architecture [23,26,31,34,35,37–
39]. However, these models always performed in a sentence-by-sentence man-
ner, ignoring the long-distance dependencies. The past or future context can
be important when it refers to using discourse features to translate the source
sentence to the target sentence.

Context-aware Machine Translation. Context-aware machine translation aims
to incorporate the source or target context to help translation. Previous works
[3,7,9,15,22,27–29] have proven the importance of context in capturing differ-
ent types of discourse phenomena such as Deixis, Ellipsis, and Lexical Cohe-
sion. Others [3,9,16,28,29] explore the dual encoders and concatenation-based
context-aware models.

Recently, a promising line of research to improve the performance of the
context-aware NMT is to select useful words of the whole context, which can be
used to enhance the positive use of context [8,17,42]. Other researchers propose
selective attention mechanism by introducing sparsemax function [14,16].

6 Conclusion

In this work, we explore the solution to select useful words from the context. We
propose a novel model called HanoiT, consisting of unified self-attention layers
and selection layers. The experiments on both mono-lingual and bi-lingual con-
text settings further prove the effectiveness of our method Experimental results
demonstrate that our proposed method can select useful words to yield better
performance.
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Abstract. As a key sub-task in the field of speculation and nega-
tion extraction, Speculation and Negation Scope Resolution (SpNeSR)
focuses on extracting speculative and negative texts within sentences, i.e.,
distinguishing between factual and non-factual information, which means
it is an important and fundamental task in Natural Language Processing
(NLP) community. Previous work utilized various methods for SpNeSR
that are quite domain-specific, and failed to build a unified framework
with good generalization. In addition, they were limited by the sizes of
datasets and ignored producing more samples for training, since SpNeSR
is a data-hungry task. With consideration of the above problems, we not
only propose a unified Machine Reading Comprehension (MRC) formu-
lation for SpNeSR, but also design a Data Augmentation (DA) method
fit for scopes. Experimental results on several English and Chinese cor-
pora manifest that both MRC and DA mechanism are effective, and our
MRC model with DA is superior to several state-of-the-arts.

Keywords: Speculation and negation scope · Machine reading
comprehension · Data augmentation

1 Introduction

Speculation and Negation Scope Resolution (SpNeSR) aims to identify the
scope of a cue, where a cue is a word or phrase with speculative/uncertain or
negative/counterfactual semantics, e.g., speculative cues “may”/“indicate that”
in the sentences S1.1/S1.2, and negative cues “not”/“no longer” in S1.3/S1.4. And
a scope is a continuous span governed by the corresponding cue, e.g., scope “may
be liquid water on the planet” of the cue “may”, just as exemplified by Fig. 1.

Early studies relied on rules [1,18,19] and traditional machine learning meth-
ods [11,26,27]. Neural networks on SpNeSR can learn lexical [6] and syntactic
knowledge from parse trees [20,21]. But these work have the following limita-
tions: 1) They depend on rules difficult to summarize, or syntactic features rely-
ing on NLP tools; 2) They did not treat multi-token cues as complete phrases,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 487–496, 2023.
https://doi.org/10.1007/978-3-031-30675-4_35
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Fig. 1. Examples of scopes, where speculative and negative cues are colored, and
{scopes} are in {curly braces} with corresponding colors (the same below). (Color
figure online)

and considered the first token for simplification [20,21], which may lead to incom-
plete semantics; 3) They are confined to datasets of specific domain, e.g., bio-
medicine [22], detective fictions [6], and did not build a unified paradigm, since
structures of scopes of several cues are similar across different datasets; 4) They
failed to produce more instances since it is a data-driven task.

To address the aforementioned challenges, we propose a novel method termed
Scope Resolution via Machine Reading Comprehension Formulation with Data
Augmentation, i.e., SR-MRC-DA. Our main contributions are three-fold: 1) We
formulate SpNeSR as a unified MRC paradigm applied to several datasets and
compatible with various cues, including multi-token ones; 2) We leverage data
augmentation for SpNeSR; 3) Experimental results on several English and Chi-
nese corpora indicate that our model is superior to state-of-the-arts.

2 Approach

Task Definition. Given a set of cues {Cue0, . . . ,CueI−1} in a sentence Sen,
SpNeSR is required to determine a scope Scpi for each Cuei, where i = 0, . . . , I−
1, and each cue is regarded an individual sample. A cue is a sub-string of its
scope, i.e., Cuei ⊆ Scpi ⊆ Sen. We use golden cues for SpNeSR. Therefore, a
sample can be represented as S = {Cuei,Scpi}, and MRC version of a sample is
a triple group S = {Q,C,A}, where

– Q is the Question that integrates the type and position of Cuei. Specially,
English and Chinese versions of Q are:

What is the scope of the [Typi] cue [Cuei] at the position [Loci]?
位置为 [Loci]的 [Typi]线索词 [Cuei]的作用范围是什么？

where [Typi] ∈ {speculative/不确定 , negative/否定 } denotes the type of cue,
[Loci] is the location/position of [Cuei] in the current sentence.

– C is the Context that refers to the current sentence Sen.
– A is the Answer that is a sub-string (i.e., Scpi) of C (i.e., Sen).

Data Augmentation. For each sample S, we perform the following automatic
data augmentation operations for C during the training phase:
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Fig. 2. Overall architecture of SR-MRC-DA model, where curly braces are just used
to highlight scopes, instead of tokens of input.

1) Out-of-Scope Mask (OSM) is designed for the token tj that is OUT of the
scope, i.e., {tj |tj ∈ C&tj /∈ A}, and tj is replaced by the token [MSK] with the
probability of pOSM. OSM generates nOSM more samples for the current S;

2) In-Scope Mask (ISM) is launched for tj that is IN the scope and is NOT
the CUE, i.e., {tj |tj ∈ C&tj ∈ A&tj �= Cuei}. Then, tj is replaced by [MSK]
with the probability of pISM. ISM reduplicates nISM more samples for S.

Since the least frequent cues can hardly influence the performance, we choose
αd ∈ (0, 1) of the original training samples and apply data augmentation oper-
ations, instead of using all the samples. Then we can obtain a set of produced
samples whose size is not too large, and the distribution of cues is almost con-
sistent with the original set.

Model Structure. Figure 2 shows the architecture of SR-MRC-DA model.
Firstly, we concatenate Q and C to obtain the input X, and then use Bert-
base [4] to encode X as the hidden representation H0 ∈ R

d×L, where d is the
dimension of hidden states in Bert, and L is the length of X:

X = {[CLS],Q, [SEP],C, [SEP]} (1)
H0 = Bert(X) (2)

To learn more meaningful semantics for scopes, H0 is fed into Residual Net-
works (RNet) [8] to compute high-level information of start and end indices of
the scope separately:

Hs = RNets(H0) (3)
He = RNete(H0) (4)

where each RNet is comprised of a stack of several identical Residual Layers, i.e.,
RNet = {RLayeri}. Formally, each residual layer RLayeri with the input H0 is
calculated as follows:

Hr = FC2(GELU(FC1(LN(H0)))) (5)
RLayeri(H0) = H0 +Hr (6)
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where FCs are Fully-Connected layers, and LN is Layer Normalization operation.
Finally, the probability distributions of each token being a start and end index
of a scope are predicted as:

ps = softmax(WsHs + bs) (7)
pe = softmax(WeHe + be) (8)

The objective function L(θ) of the model is designed as:

L(θ) = − 1
N

[ε
N−1∑

i=0

log Ps(yi
s|θ) + (1 − ε)

N−1∑

i=0

log Pe(yi
e|θ)] (9)

where N is the number of samples, yi
s and yi

e are annotated start and end indices
of the i-th sample, ε is the trade-off coefficient, and we set ε = 0.5.

3 Experimentation

In this section, firstly, we introduce experimental settings, including corpus, eval-
uation details, and baselines. Then we give detailed experimental analysis.

3.1 Experimental Settings

Corpus. To evaluate our model, we select these datasets: 1) BioScope [22] con-
sists of three sub-corpora: biological scientific abstracts (Abs), clinical radiology
reports (Cli), full papers (Ful); 2) CoNLL-2010 Shared Task [7] proposed Task2
(Tk2) for biological speculation scope resolution; 3) CD-Sco (CD) [17] is Conan
Doyle stories with negation scopes, and contains two test sets: the Adventure of
the Cardboard Box (Cdb) and Red Circle (Cir); 4) Sfu [10] consists of reviews
from Epinions.com; 5) CNeSp [28] is a Chinese corpus includes three sub-corpora:
financial articles (Fin), product reviews (Rev), scientific literature (Sci).

Evaluation Details. 1) In-domain evaluation. We launch 10-fold cross valida-
tion on Abs, Sfu, Fin, Rev, Sci [20,21,27,28], and report the performance on the
test set of CD [17]; 2) Cross-domain evaluation. Results of Cli, Ful, and Tk2 are
predicted by models trained on Abs [7,20,21,27]. Percentage of Correct Scopes
(PCS ) [20,21,27] is the main evaluation metric, where a scope is resolved cor-
rectly if all the tokens are determined whether in the scope or not. Percentage
of Correct Left/Right Boundaries (PCLB/PCRB) are partial measurements.

Baselines. We consider models with complex syntactic features: 1) CNN-Path
[21] and BiLSTM-Path [20] regards SpNeSR as a token classification problem,
using syntactic paths from cues to tokens as the syntactic features. Depend-
ing on constituency/dependency trees, CNN-Path and BiLSTM-Path are clas-
sified as CNN-CPath/CNN-DPath and BiLSTM-CPath/ BiLSTM-DPath. We
also employ MRC baselines: 2) QANet [24] consists of convolution and self-
attention; 3) Bert-MRC uses Bert-base [4] and employs MRC framework for
SpNeSR defined in §2, but considers neither data augmentation nor residual
networks.
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Table 1. Performance of speculation scope resolution. Format: PCS (%).

Models Abs Cli Ful Tk2 Sfu Fin Rev Sci

CNN-CPath 85.75 73.92 59.82 58.86 65.49 71.63 53.87 54.47
CNN-DPath 74.43 64.39 52.98 53.63 62.95 67.84 51.47 49.72
BiLSTM-CPath 86.20 73.11 63.10 65.34 67.86 74.09 54.15 54.70
BiLSTM-DPath 79.54 62.68 49.85 51.40 66.11 73.68 53.68 52.96
QANet 74.87 65.02 52.53 52.66 64.90 72.54 51.06 51.62
Bert-MRC 84.18 73.56 63.69 62.25 69.06 75.16 57.62 56.83
SR-MRC-DA 88.41 75.09 65.48 64.67 72.83 77.87 60.41 58.14

Table 2. Performance of negation scope resolution. Format: PCS (%).

Models Abs Cli Ful Cdb Cir Sfu Fin Rev Sci

CNN-CPath 70.86 89.66 55.32 71.97 58.59 65.86 70.17 53.65 40.68
CNN-DPath 77.14 87.82 53.99 71.21 59.38 67.34 71.23 53.31 42.59
BiLSTM-CPath 80.11 88.74 55.05 71.97 57.81 70.88 70.41 55.84 45.19
BiLSTM-DPath 80.28 92.30 62.50 73.48 57.03 71.49 71.15 57.22 44.93
QANet 74.06 90.11 48.67 72.66 62.50 72.73 72.26 59.28 45.56
Bert-MRC 79.30 91.38 62.77 75.76 64.06 74.04 74.84 62.83 49.73
SR-MRC-DA 82.43 93.33 64.36 77.27 65.63 77.41 77.95 64.89 49.59

3.2 Overall Results

Table 1 and 2 present that SR-MRC-DA is superior to other baselines, proving
the validity and usefulness of MRC and DA. We attribute the success to these
aspects: 1) The complex structure of the encoder. Based on Bert with multi-head
attention layers, SR-MRC-DA is stronger on encoding than simpler models, e.g.,
CNN-Path; 2) The unified MRC formulation for multi-domain corpora. Com-
pared with models designed for a certain domain (e.g., CNN-Path and BiLSTM-
Path for BioScope), our model is fit for all the datasets considered in this paper,
and can learn generalized knowledge across datasets; 3) The application of data
augmentation (DA), which can produce more samples for training and enable
SR-MRC-DA to have better robustness than the models without DA, e.g., Bert-
MRC; 4) PCS is a strict evaluation metric requiring exact matching of scopes,
and can best reflect the performance of SpNeSR models, rather than token-level
F1-score. For example, although SR-MRC-DA can obtain higher F1 (89.64) than
BiLSTM-CPath (89.15), BiLSTM-CPath is superior to SR-MRC-DA in term of
PCS on Tk2 corpus. Therefore, we do not consider F1.

3.3 Detailed Analysis

Detailed Analysis involves those aspects, i.e., light-weighted MRC model, data
augmentation, error analysis, and top cues.
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Fig. 3. The performance of SR-MRC-DA model with regard to αd defined in §2. “Spe”
and “Neg” mean the task of Speculation and Negation scope resolution, respectively.

Light-Weighted MRC Model. To eliminate the influence from large-scale pre-
trained models and complicated syntactic features, we consider QANet, which is
a light-weighted MRC model and significantly outperform CNN-Path that uses
syntactic features on several datasets. Therefore, these performance can validate
the effectiveness of MRC formulation.

Scale of Data Augmentation. We present Fig. 3 where αd is the main argu-
ment, and select Abs and Sfu as the evaluation sets. We focus on αd because
produced training samples should have similar distributions of cues with the orig-
inal set, where infrequent cues have little impact on results. Figure 3 shows that
appropriately increasing the size of training set can boost the results on Abs and
Sfu, and the best PCSs are usually obtained when αd = 0.4 or 0.5. However,
performance drops especially when αd >0.5 due to overfitting and weak gen-
eralization. Besides, too many augmented training samples may have different
distributions of cues compared with the original set when sampling randomly.

Error Analysis. We dive into each corpus separately.

BioScope. 1) The performance of SR-MRC-DA model on speculation scopes is
higher than negation in Abs, since speculation scopes are usually phenomenons or
conclusions with complete semantic chunks (S5 in Fig. 4). But the most frequent
negative cues “not” and “no” and are flexible in negating words, phrases, and
clauses (S6 in Fig. 4); 2) Short sentences and the high proportion of “no” (77.36%)
account for the excellent performance of negation scopes in Cli. However, the
results of speculation are lower than that of Abs, attributed to the different top
cues in Abs (top 3: “may”, “suggest”, “suggesting”) and Cli (top 3: “or”, “may”,
“evaluate for”) (S7 in Fig. 4); 3) The performance on Ful and Tk2 is quite low
caused by long and complicated sentences and scopes, or by words and phrases
in parentheses representing references at the end of a sentence, which hardly
appears in Abs (S8 in Fig. 4).

CD-Sco. In addition to the errors of top cues (e.g., “not”/“no”, S9 in Fig. 4), some
cues with prefix/suffix (e.g., “un-”/“-less”) are quite rare (15.97%) and are also
the main mistakes (S10 in Fig. 4), whose minority account for low results.

Sfu. Free-style review texts distinguish Sfu from scientific and fiction corpora.
The results on Sfu are lower than that on Abs, because the grammar of Sfu is
not so standard. Our model achieves better results on Sfu than CD-Sco because
of shorter scopes in Sfu. Top cues are analyzed below.
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Fig. 4. Some typical error cases, where {annotated scopes} are in {curly brace} and
〈predicted scopes〉 are in 〈angle brackets〉. (Color figure online)

CNeSp. Table 1 and 2 show that some token-based models (e.g., CNN-Path and
BiLSTM-Path) get unsatisfactory results on CNeSp because of tokenization.
But SR-MRC-DA is a character-based model without errors of Chinese word
segmentation. Our model obtains excellent performance on Fin whose texts are
grammatical, and scopes are usually opinions of stock trends, which is the main
source of erros. Besides, polysemy may also cause mistaken scopes, e.g., “或 ”
has the meanings of “may/possibly” (S13 in Fig. 4) and “or”. The performance on
Rev is lower than Fin because of free-style texts, e.g., error scopes because cues
may be at the end of the scope (S14 in Fig. 4). All the models gain worse results
on Sci owing to the fewer samples and longer sentences containing terminology
of scientific literature (S15 in Fig. 4).

Top Cues. Figure 5 displays PCSs of the most frequent cues in Abs and Sfu that
represent two typical language styles (i.e., scientific literature and free reviews)
in SpNgSR, since performance depends largely on top cues. 1) Speculative Cues.
Several top cues, e.g., “may”, “suggest”, “suggesting”, “indicate that”, occupy
42.87% among Abs, and generally state opinions or situations with complete
semantic chunk. The performance of “or” is lower than others because of multi-
ple usage for linking tokens, phrases, and clauses. Top cues of Sfu are different
from that of Abs, i.e., “if” and “or” account for 39.40% in total, where “if” are
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Fig. 5. The performance of top 10 cues on Abs and Sfu corpus using SR-MRC-DA
model. In terms of morphology, different forms of one word are considered as different
cues, since the structure of scopes may vary among them.

primarily used to lead conditional (S11 in Fig. 4) or object sentences (i.e., yes
or no). The polysemy of top cues results in the lower performance on Sfu-Spe
than Abs-Spe; 2) Negative Cues are concentrated on “not” & “no” that occupy
72.77%/79.47%, where “not” make up 60.73%/66.67% in Abs/Sfu. Their perfor-
mance in Abs is a bit higher than that in Sfu. Abs contains scientific texts with
correct grammar. But “not” is flexible Sfu, e.g., negating a word or verbal phrase
(S12 in Fig. 4), leading to the difficulty of detecting right boundaries of scopes.

Additionally, we can draw more conclusions: 1) Multi-token cues (e.g., “indi-
cate that”, “rather than”) achieves excellent performance, which means SR-MRC-
DA is suitable for both single- and multi-token cues; 2) Some top cues get unsat-
isfactory results, e.g., “unable” and “either”, owing to their small proportions
(1.75% and 1.12%) and different structures of scopes from others. Unlike most
negative cues in Sfu, “either” is often used after a negative statement or at the
end of the sentence, and obtains low PCLB (56.32%).

4 Related Work

Scope Resolution. Early work started from heuristic rules. Özgür et al. [19]
exploited part-of-speeches of cues and syntactic structures for speculation. Øvre-
lid et al. [18] employed rules dervied from dependency trees. Apostolova et al.
[1] proposed lexico-syntactic rules. With the release of BioScope [22], Zhu et al.
[26] regarded the cue as a predicate and mapped its scope into constituents
as arguments. Zou et al. [27,28] considered tree kernel-based method [27] and
sub-structure modelling [28] based on syntactic trees. Li et al. [11] devised semi-
Markov and latent-variable CRF. Recently, neural networks have been applied
to SpNgSR. Fancellu et al. [6] adopted feed forward and BiLSTM networks with
word-embedding and lexical features for negation scope detection. Qian et al.
[20,21] regarded SpNgSR as a token-level classification task, applying CNN [21]
and LSTM [20] working on syntactic paths. With the emergence of large-scale
pre-trained models, Zhao et al. [25] directly employed Bert as the encoder.

MRC for NLP. By casting information extraction tasks into MRC frameworks,
researchers can integrate discriminative clues into template-based questions. For
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event trigger and argument extraction, Du et al. [5] generated questions by pre-
defined templates. Li et al. [13] framed entity-relation extraction as a multi-turn
MRC. Li et al. [12] proposed a unified MRC paradigm for flat and nested NER.
Some studies designed more complex paradigms. Mao et al. [16] utilized a joint
training dual-MRC framework to handle aspect based sentiment analysis. Liu
et al. [14] developed topic-relevant and context-dependent methods for question
generation with better generalization.

Data Augmentation For NLP. Token and phrase-level operations, e.g., ran-
dom insertion, swap, deletion, are used in text classification [23]. NER models
[3] employed token, synonym, and mention replacement (or shuffle, dropout).
For event argument extraction, Liu et al. [15] used a pre-trained MRC model to
label samples according to semantic roles and event types. For sentiment anal-
ysis, Chen et al. [2] proposed antonym and synonym replacement. Hsu et al.
[9] used a sequence-to-sequence encoding model to produce words and replace
unimportant terms.

5 Conclusion

This paper proposes SR-MRC-DA model for Speculation and Negation Scope
Resolution. SR-MRC-DA is a unified MRC model for multi-domain evaluation
on several datasets, and integrates data augmentation. Experiments on several
English and Chinese datasets demonstrated the effectiveness and generalization
of our model. In the future, our study will expand to end-to-end framework and
more useful DA mechanisms.
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Abstract. Document-level event factuality identification (DEFI) aims
to assess the veracity degree to which an event mentioned in a document
has happened, which is crucial and fundamental for many downstream
tasks of Natural Language Processing (NLP). Thus far, studies on DEFI
typically regard it as a supervised classification task relying on anno-
tated information, suffering from data scarcity since there is only one
existing corpus (DLEF) consisting of two annotated sub-corpora based
on news reports. The uneven distribution and data scarcity of DLEF
and the existing annotation-relied methods limit the research progress
on the DEFI task. To tackle this issue, we introduce a two-stage data
augmentation strategy from text to graph via contrastive learning for
DEFI (CoDE), which modifies a document at lexical, sentence, and doc-
ument levels differently. Experiments on two widely used datasets show
that our proposed model outperforms the state-of-the-art model, which
demonstrates the effectiveness of our method for DEFI.

Keywords: Document-level Event Factuality Identification ·
Contrastive learning · Data augmentation

1 Introduction

Document-level event factuality identification (DEFI) is defined as the level of
information expressing the veracity towards the factual nature of events men-
tioned in a certain discourse or context [19], namely, the task of determining
whether an event is a fact, a possibility, or an impossible situation from the view
of document [18]. In general, according to both modality and polarity, event fac-
tuality identification (EFI) is a five-label classification task that can be classified
into five categories: Certain Positive (CT+), Certain Negative (CT-), Possible
Positive (PS+), Possible Negative (PS-) and Underspecified (Uu).

Identifying document-level event factuality is a challenging task. As illus-
trated by Fig. 1, the factuality from document to sentence may vary. Sentence-
level event factuality values are often varied due to the influence of speculation
words and negation words, e.g., S4 is defined as CT- under the impact of nega-
tion don’t , S5 is PS+ according to speculation if and will , S7 is CT+ under the
impact of modal officially and declare . However, the document-level event fac-
tuality value of the example given in Fig. 1 is uniquely determined as CT- based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 497–512, 2023.
https://doi.org/10.1007/978-3-031-30675-4_36
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Fig. 1. An example of document-level event factuality, where event factuality varies
from sentences to document.

on the full-text semantic content. Such variation and conflict between docu-
ment and sentences are highly likely to happen in real scenarios. When assessing
document-level event factuality, in addition to the inconsistencies of event fac-
tuality between sentences and document, there are often conflicts between the
truth values of the sentences within a document, as S1, S2, and S3 shown in
Fig. 1. Such inter-sentence conflicts can increase the complexity and difficulty of
the DEFI task.

Various studies exploited document-level event factuality with different
approaches. Qian et al. [18] proposed an adversarial neural network to embark
on the task of DEFI. Zhang et al. [29] facilitated DEFI by using cross-domain
negation and speculation scope features. Cao et al. [3] proposed a graph-based
model by using graph convolutional networks [11] relying on event triggers. All of
which are annotation-dependent methods focusing on exploiting semantic infor-
mation, yet the semantic information that can be exploited is limited due to the
uneven distribution of data and the scarcity of annotation information. Thus
far, there is only one publicly available dataset, i.e., DLEF, constructed from
reported news texts with authorized factuality value [18] for this task. Due to
the rigorous nature of news reports, documents in DLEF dataset annotated with
different event factuality values are highly unevenly distributed and further suf-
fer from the dilemma of data scarcity, thus limiting the research progress on this
task.

To tackle the issue analyzed above, we propose a novel two-stage method,
i.e., Contrastive Learning based Document-level Event Factuality Identification
framework (CoDE). Specifically, we propose four different data augmentation
strategies to hierarchically modify a document at the lexical, sentence, and global
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levels to generate similar representation variants in the text stage, which allows
an implicit enhancement of document graph augmentation. More specifically, we
use hidden states of some specific layer (e.g., #8, #9, #12) of the pretrained
language model, i.e., BERT [6], which contain most of the syntactic and semantic
information [10] to ensure maximum usage of a certain document’s text.

In summary, our contributions are three-fold as follows.

1. We propose a novel contrastive learning framework, CoDE, for document-
level event factuality identification. To our best knowledge, this is the first
method that optimizes document hierarchically from the perspective of both
plain text and graph.

2. We design four data augmentation strategies that modify a document at the
lexical, sentence, and global levels from a text perspective to construct similar
representations implicitly from a graph perspective on the basis of contrastive
learning.

3. Extensive experiments are conducted on two widely used datasets to verify
the effectiveness of our model. The experimental results demonstrate that our
model achieves state-of-the-art performances, showcasing that our method is
an effective way to further improve the performance of DEFI task.

2 Related Work

2.1 Event Factuality Identification

Event factuality identification (EFI) is a fundamental task in event extraction,
which is crucial and helpful for many natural language understanding (NLU)
applications, e.g., rumor detection [2,15,24], knowledge base construction [26]
and fake news detection [1,22]. Currently, studies on EFI of different levels all
rely on annotated information.

Sentence-Level EFI. Saurí et al. [19,20] constructed a widely-used sentence-
level EFI corpus: FactBank and proposed a rule-based model in the early phase
of SEFI studying. On the basis of FactBank, Qian et al. [16,17] first proposed
a two-step framework combining rule-based approaches and machine learning
and further devised a generative adversarial network with auxiliary classification
for SEFI. Current deep learning models have demonstrated the importance of
syntactic and semantic structures of sentences to identify important context
words for EFI tasks. Based on this, Veyseh et al. [25] proposed a graph-based
neural network for SEFI. Le et al. [13] devised a novel model that explicitly
considers multi-hop paths with both syntax-based and semantic-based edges
among words to obtain sentence structures for representation learning in SEFI.

Document-Level EFI. Existing studies on document-level event factuality are
still scarce. Qian et al. [18] constructed the first and only document-level event
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Table 1. Event Factuality Category.

Modality Polarity
Positive(+) Negeative(−) Underspecified(u)

Certain(CT) CT+ CT- NA
Possible(PS) PS+ PS- NA

Underspecified(U) NA NA Uu

factuality dataset, DLEF, with two widely used English and Chinese subcor-
pus, and proposed an LSTM-based adversarial neural network (Att_2+AT) for
DEFI. Zhang et al. [30] used a gated convolutional network and self-attention
layer to capture feature representation of the overall information for the DEFI
task, which outperforms Att_2+AT. Recently, Cao et al. [3] proposed a state-
of-the-art graph-based method (ULGN) by utilizing Gaussian distribution to
aggregate uncertain local information into a global document structure to assess
document-level event factuality.

2.2 Contrastive Learning

Contrastive learning aims to learn effective representation by pulling semanti-
cally close neighbors together and pushing apart non-neighbors [9,27], which is
popular in both natural language processing [8,21] and computer vision [4,23].
Data augmentation strategies are frequently used in contrastive learning meth-
ods to generate positive pairs.

For text representation, positive variants can be generated by some simple
text data augmentation methods, e.g., reordering, back-translation, and mix-up.
Gao et al. [8] generate similar variants by feeding the same input to the encoder
twice with different dropout masks. For vision representation, similar positive
variants are usually generated by flipping, rotation, cropping, and distortion
from an image [4,23].

While the principles of contrastive learning have been broadly accepted, the
implementation is still being explored, with the general guiding principles of
alignment and uniformity [27].

3 Methodology

3.1 Task Definition

Let Di ∈ D
n denotes the i-th document in a dataset which contains n docu-

ments, we present a document Di = {s1, s2, . . . , sM} as a sequence of M sen-
tences, where each sentence is composed of K words that can be denoted as
si = {w1, w2, . . . , wK}. Generally, if the j-th word wj is an event, it then can be
denoted as wj = ej .

The goal of DEFI seeks to predict a real-valued score in the range of [-2,2] to
indicate the occurrence possibility for an event derived throughout a document.
Each real-valued score corresponds to a class of event factuality value. Typically,
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Fig. 2. The architecture of our proposed CoDE framework for document-level event
factuality identification. Lines with an arrow indicate the flow direction of vectors,
dashed lines with a filled arrow represent the initialization of graph/node by original
text embedding, dashed lines with a line arrow represent the initialization of augmented
graph/node by corresponding augmented variant.

event factuality values are composed of modality and polarity [19,20], where
modality depicts the certainty degree of events and polarity coveys whether an
event happens. Table 1 shows the detail of event factuality values, where NA
means not applicable.

In the following subsections, we will introduce our contrastive learning frame-
work with four different data augmentation strategies from text to graph for
document-level event factuality identification based on these notations.

3.2 Overview

Graph-based methods [13,16,30] have shown their superiority in EFI tasks.
Thus, we adopt graph convolutional networks into our framework. Existing stud-
ies on document-level contrastive learning either generate variants from plain
texts or from graph structure, neither of which can fully exploit some specific
intrinsic high-level feature of documents. To fully use information from both
text and graph, we first optimize the DEFI document from a text perspective at
multi-granularities, and then use these information to implicitly generate similar
graph variants with contrastive learning for DEFI.

Our approach is schematically illustrated in Fig. 2, which is composed of three
major modules: (1) Document Encoding Module, which consists of 4 different
data augmentation strategies to modify documents at different text granular lev-
els; (2) Implicit Graph-level Optimization Module, which relies on the generated
variants from text to optimize document structure that implicitly constructs
augmented graph via contrastive learning to optimize representation; (3) Graph
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Fig. 3. Illustration of OUR lexical-level replacement (LLR) operation.

Learning Module, which utilizes a simple but efficient graph structure via graph
convolutional networks [11] to identify document-level event factuality.

3.3 Document Encoding

Lexical-Level Replacement (LLR). Among the various text augmentation
strategies in Natural Language Processing (NLP), Wei et al. [28] proposed four
easy data augmentation techniques for boosting performance on text classifica-
tion tasks, including Synonym Replacement (SR), Random Insertion (RI), Ran-
dom Swap (RS) and Random Deletion (RD), which can surprisingly enhance
the robustness and performance of a proposed model. Figure 3 shows the pro-
cess of applying LLR data augmentation strategy to event token. Due to our
lexical-specific augmentation condition, we use the off-the-shell and effective SR
strategy in practice. Precisely, our LLR operation can be defined as follows.

esi = SynRep(ei) (1)

where SynRep(·) denote a synonym replacement method, e.g., WordNet, ei
denotes event word wi, esi denotes the synonym of ei, respectively. We then
feed ei and esi into pretrained language model encoder to get their embedding,
which can be defined as follows.

ei = BERT(ei)
esi = BERT(esi )

(2)

where BERT(·) is the BERT base pretrained language model, ei and esi denote
the embedding of ei and esi , respectively.

Sentence-Level Masking (SLM). Masking-based data augmentation strat-
egy has been widely applied in many NLP applications, e.g., sentiment anal-
ysis [5] and question answering [7]. By using masking strategy, the robustness
and performance of a model are better improved. Inspired by existing studies,
we introduce a term masking strategy that randomly masks tokens over a sen-
tence. Figure 4 shows the process of applying SLM data augmentation strategy
to sentences. By operating such augmentation strategy, the generated sentences
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Fig. 4. Illustration of our sentence-level masking (SLM) operation.

Fig. 5. Illustration of our document-level deletion and document-level jittering (DLDJ)
operation.

only have minor differences in some tokens, which are similar to the original
sentence. The whole process can be formulated as follows.

MPi = {idx1, idx2, . . . , idxk, . . . , idxLsi
}

ŝi = {ŵ1, ŵ2, . . . , ŵn}
= SLM({w1, w2, . . . , wn})

ŵi =

{
wi, i /∈ MPi

[MSK], i ∈ MPi

(3)

where MPi denotes the mask proportion set of a sentence, idxLsi
denotes the

token index (with the maximum length to Lsi) to be masked out by [MSK],
SLM(·) is the sentence-level masking function. Similar to LLR, the embedding
of si and ŝi is defined as follows.

si = BERT(si)
ŝi = BERT(ŝi)

(4)

where si and ŝi denote the embedding of si and ŝi, respectively.

Document-Level Deletion and Jittering (DLDJ). Deletion is a common
data augmentation strategy in computer vision and natural language to increase
data variety to help models generalize better via creating subsets of images and
texts [21,23]. Thus, we formulate our document-level deletion (DLD) strategy
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as a function on Di, which is defined as follows.

DPi = {idx1, idx2, . . . , idxLDi
}

D̂i = {ŝ1, ŝ2, . . . , ŝn}
= DLD({s1, s2, . . . , sn})

ŝi =

{
si, i ∈ DPi

[DEL], i /∈ DPi

(5)

where DPi denotes the delete proportion of sentence index idx, DLD(·) is the
document-level deletion function. [DEL] denotes the deletion token.

DDLD
i = BERT(Di)

D̂DLD

i = BERT(D̂i)
(6)

where DDLD
i and D̂DLD

i denote the embedding of Di and D̂i encoded by BERT
model after DLD operation, respectively.

Similar to the widely used color-jittering method [12], we apply PCA jittering
operation to D̂DLD

i . The document-level jittering operation (DLJ) is defined as
follows.

D̂DLD

i = [h0, h1, . . . , hd]

D̂i = DLJ(D̂DLD

i )
= [h0 + δ, h1 + δ, . . . , hd + δ]

δ = [p0, p1, . . . , pd][αλ0, αλ1, . . . , αλd]T

(7)

where D̂i denotes the jittered embedding D̂DLD

i , DLJ(·) denotes the document-
level jittering function, d is the dimension, α ∼ (0, σ2), pi and λi are the i-th
eigenvector and eigenvalue, respectively.

The whole process of document-level encoding, i.e., DLDJ (DLD and DLJ),
is illustrated in Fig. 5.

3.4 Implicit Graph-Level Optimization

We adopt graph convolutional networks [11] in our framework and construct a
simple but efficient graph structure to represent documents with three kinds of
nodes, i.e., document node, sentence node, and event node. For a document to
be converted into a graph, a document node represents the entire document,
sentence nodes are connected adjacently according to context, and event nodes
are connected with their corresponding sentence node. We connect all event
nodes, including event derived at document-level, with document node. Each
node is initialized by its corresponding embedding from Sect. 3.3. The document
structure is shown in Fig. 2

Surprisingly, the graph variants similar to the original graph are generated
automatically in an easy and implicit way as positive samples for the contrastive
learning phase.
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3.5 Contrastive Learning Objective

We apply an l-layer GCN [11] to convolve on our constructed DEFI graphs.
The optimal l is set to be 2 after extensive experiments on the performance of
GCN [11]. The (l + 1)-th GCN-layer-wise inference is defined as follows.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (8)

where Ã = A + I, A and I denotes the adjacency matrix of the constructed
graph and identity matrix, respectively. σ(·) denotes an activation function, such
as ReLU(·) = max(0, ·). W (l) denotes a layer-specific trainable weight matrix.

The i-th element of the (l+1)-th GCN-layer-wise inference matrix is defined
as follows.

h
(l+1)
i = σ(

∑
j∈ne(i)

1√
D̃i,iD̃j,j

h
(l)
j W (l)) (9)

D̃i,i =
∑

j∈ne(i)

Ãi,j (10)

where ne(i) denotes the neighbor nodes set of the i-th node.
We take the last layer’s hidden state as the final representation of the docu-

ment node rd = hd(l+1) to de predicted as p = softmax(Wrd + b).
A contrastive learning objective is applied to optimize the document node

representation. Suppose a minibatch with size N , we obtain set {Rd} with size
2N after constructing positive pairs (rdi , r

d
j ) by hierarchically modifying docu-

ment at different granular levels from text to graph with strategies proposed in
Sect. 3.3 and Sect. 3.4. The contrastive learning loss for a positive pair {rdi , rdj }
is defined as follows.

l(i, j) = −log
exp(sim(rdi , r

d
j )/τ)∑2N

k=1 Ik �=i exp(sim(rdi , r
d
j )/τ)

sim(rdi , r
d
j ) =

rd�
i rdj

||rdi || ||rdj ||

(11)

where sim(·, ·) is the cosine similarity function, I is the indicator function that
specify whether k �= i, and τ is a temperature hyperparameter.

The overall contrastive loss is defined as all positive pairs in a minibatch as
follows.

LCLS =
2N∑
i=1

2N∑
j=1

(l(i, j) + l(j, i)) (12)

Following Qian et al. [18], we use cross-entropy as the loss function as follows.

LD(θ) = − 1
M

M−1∑
i=0

log p(y(i)
j |x(i); θ) (13)
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Table 2. Statistics of DLEF_en and DLEF_zh.

Dataset Uu CT- PS- PS+ CT+ Total

DLEF_en 12 279 12 274 1150 1727
DLEF_zh 20 1342 36 848 2403 4649

where M is the number of instances, p(y(i)
j |x(i); θ) denotes the probability of

instance xi being predicted as the golden label y(i). θ is a hyper-parameter.
Thus, the final loss is defined as follows, where α is a hyperparameter.

L = LD(θ) + αLCLS (14)

4 Experimentation

4.1 Experimental Settings

To verify the effectiveness of our model, we conduct experiments on two widely-
used English and Chinese datasets constructed by Qian et al. [18]. The statistics
of these two datasets are shown in Table 2.

We use the AdamW algorithm [14] to optimize model parameters. The opti-
mal dropout rate and the learning rate are set to 0.7 and 2e−5, respectively.
The number of graph convolution layers is set to 2. The size of the hidden states
of our graph convolution layer is 768. In our implementations, our method uses
HuggingFace’s Transformers library1 to implement the BERT Base model.

To be fairly compared with previous studies [3,18,29,30], we focus on the
performance of CT+, CT− and PS+, and conduct 10-fold cross-validation on
both English and Chinese dataset. F1 score is adopted to evaluate each category
of event factuality, micro-/macro-averaged F1 score is also adopted for the overall
performance evaluation of event factuality categories.

4.2 Baselines

To verify the effectiveness of our CoDE framework, we conduct the following
strong baselines for comparison.

– BERT Base [6], which utilizes the BERT-base to encode documents, and
uses the [CLS] token for prediction.

– Att_2+LSTM [18], which utilizes intra-sentence attention to capture the
most important information in sentences, and employs the long short-term
memory network (LSTM) for DEFI.

– Att_2+AT [18], which leverages the intra-sentence and inter-sentence atten-
tion to learn the document representation. Adversarial training is adopted to
improve the robustness.

1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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Table 3. Experimental results on the document-level event factuality datasets (English
and Chinese respectively). The best performance is in bold.

Dataset Methods CT+ CT- PS+ Micro-F1 Macro-F1

DLEF_en MaxEntVote 75.14 58.17 35.89 68.42 56.40
Att_2+LSTM 79.18 65.25 53.65 73.23 66.03
SentVote 83.98 70.22 57.85 78.06 70.68
Att_2+AT 89.84 76.87 62.14 83.56 76.28
BERT 89.38 71.82 69.09 83.53 76.76
GCNN 91.19 80.28 70.76 86.37 80.74
ULGN 92.25 85.53 74.01 87.83 83.26
BERT_SSF 92.37 83.83 76.15 88.34 84.37
BERT_MSF 92.50 83.71 76.38 88.64 84.24
CoDE(Ours) 93.97 86.79 84.21 91.23 88.32

DLEF_zh MaxEntVote 72.22 62.44 58.29 67.72 64.32
Att_2+LSTM 81.89 68.82 49.78 71.12 67.28
SentVote 80.68 72.66 58.39 74.70 70.58
Att_2+AT 87.52 83.35 74.06 84.03 81.64
BERT 84.79 88.71 79.33 85.83 84.28
GCNN 89.60 85.38 76.81 86.03 83.93
BERT_SSF 90.94 88.53 85.43 89.20 88.37
BERT_MSF 92.09 90.08 85.71 90.34 89.35
ULGN 93.16 94.12 86.78 92.48 91.35
CoDE(Ours) 94.26 94.96 89.53 93.77 92.92

– MaxEntVote [18], which uses maximum entropy model to identify sentence-
level event factuality, and considers voting mechanism, i.e., choose the value
committed by the most sentences as the document-level factuality value.

– SentVote [18], which is similar to MaxEntVote model, voting mechanism is
used to identify document-level event factuality. Inter-sentence is not consid-
ered in it.

– GCNN [30], which uses a gated convolution network and self-attention layer
to capture the feature representation of the overall information to identify
the document-level event factuality.

– BERT_SSF [29], which utilizes detected negation and speculative scope as
a whole to incorporate with BERT.

– BERT_MSF [29], which utilizes detected negation and speculative scope
separately.

– ULGN [3]2, which proposes a graph-based model [11] via graph neural net-
works relying on event triggers. The original results of ULGN somewhat are
far to reach in practice, so we adopt the best implementation results via its
publicly available code instead.

2 https://github.com/CPF-NLPR/ULGN4DocEFI.

https://github.com/CPF-NLPR/ULGN4DocEFI
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Table 4. Experimental results on ablation study. The best performance is in bold.

Dataset Methods CT+ CT- PS+ Micro-F1 Macro-F1

DLEF_en CoDE(Ours) 93.97 86.79 84.21 91.23 88.32
w/o LLR 93.83 85.11 78.43 90.32 85.79
w/o SLM 92.57 89.23 72.34 89.15 84.72
w/o DLDJ 90.43 89.80 71.19 86.98 83.81

DLEF_zh CoDE(Ours) 94.26 94.96 89.53 93.77 92.92
w/o LLR 93.86 94.36 89.16 93.27 92.46
w/o SLM 93.68 93.97 88.76 92.93 92.14
w/o DLDJ 94.07 93.97 85.54 92.47 91.20

4.3 Results and Analysis

Experimental results on the document-level event factuality datasets are shown
in Table 3, and we can observe from the experimental results that:

1. Our model outperforms all the baselines on both English and Chinese DLEF
datasets. Notably, on the English dataset, our model’s micro-/macro-F1 score
outperforms the current state-of-the-art model ULGN by 3.4/5.06, and out-
performs the previous state-of-the-art model Att_2+AT by 7.67/12.04, on
the Chinese dataset, our model’s micro-/macro-F1 score outperforms the
current state-of-the-art model ULGN by 1.29/1.57, and outperforms the pre-
vious state-of-the-art model Att_2+AT by 9.74/11.28, which showcases the
robustness and effectiveness of our proposed method for document-level event
factuality identification.

2. It can be observed that there is quite an experimental gap between traditional
deep learning models, i.e., Att_2+AT and GCNN, and graph-based models,
i.e., CoDE and ULGN, we contribute this success to graph structure that is
more suitable for processing document-level text-oriented tasks. For tasks like
DEFI, it’s important and crucial to have a better understanding and global
view of given documents. Traditional deep learning models treat document
text as a long sequence and then process in a linear way, which can’t capture
the global structure and information of a document. On the contrary, graph
structure can better encapsulate a document and its corresponding data, and
better utilizes documents with the higher global feature.

3. The performance of the BERT-based models, i.e., BERT [6], BERT_SFF [29],
BERT_MSF [29], is also satisfactory, which showcases BERT as one of the
best models that can obtain deeper semantic information. CoDE outperforms
BERT on both English and Chinese datasets. We attribute the performance
to the effectiveness of our proposed contrastive learning framework with data
augmentation strategies at different text granular.

4. CoDE shows a huge nonnegligible improvement in the accuracy performance
on PS+ samples, which varies from [7.83, 48.32] and [2.75, 31.24] on the
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Fig. 6. An example of document-level event factuality identification prediction made
by CoDE on the DLEF dataset correctly.

English and Chinese datasets, respectively, which demonstrate our proposed
method for solving the data scarcity problem that the DEFI task suffered.

4.4 Ablation Study

To verify the effectiveness of our proposed method, we design an ablation test to
investigate the effectiveness of those proposed strategies separately. As shown in
Table 4, we can observe that by removing the proposed data augmentation strat-
egy from different levels separately, both Micro-F1 and Macro-F1 show different
degrees of decrease Namely, by removing the data augmentation strategy from
different text granular, the micro-/macro-F1 dropped by 0.91/2.53, 2.08/3.6, and
4.25/4.51 on the English dataset, and 0.5/0.46, 0.84/0.78 and 1.3/1.72, respec-
tively. The overall trend is that the decline increases at the lexical level, sentence
level, and document level in ascending order.

Specifically, the Macro-F1 values dropped significantly both on the DLEF
English and Chinese datasets, which further supports our method for solving
the data scarcity problem of DEFI task.

4.5 Case Study

Figure 6 provides an example correctly predicted by CoDE on the test set of
DLEF. In this sample, event token pay is converted into its synonym show
and give , which enriched the semantic information of the original text without
erasing key information. SLM operation randomly masked some words out of
sentences to enhance the robustness via adding noise. DLDJ deletes S1 and
further adds noise globally, then optimizes representation by contrastive learning.
The success correct prediction is a tribute to every stage and every step of our
proposed CoDE framework.

4.6 Error Analysis

To better understand the errors made by CoDE for DEFI, we analyze the outputs
of our proposed CoDE framework on the test set of DLEF dataset. Figure 7 shows
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Fig. 7. An example of document-level event factuality identification prediction made
by CoDE on the DLEF dataset incorrectly.

a sample of what was incorrectly predicted by CoDE. This sample demonstrates
a common problem where multiple different event mention words are annotated
in a text uniquely defined by an document-level event. Thus, LLR operation
introduces more irrelevant information by converting if into whether . Further-
more, by SLM and DLDJ, some important information may be randomly erased,
e.g., S1 being deleted. This example suggests that CoDE may perform better by
applying data augmentation strategies at different granular levels in a more effi-
cient and cautious way.

5 Conclusion

In this paper, we propose a novel contrastive learning framework: CoDE for
document-level event factuality identification, which not only modifies docu-
ments at the lexical, sentence, and global levels to generate similar variants
hierarchically, allowing us generate graph variants automatically in an implicit
and easy way, but also employ contrastive learning at graph phase for better rep-
resentations. Extensive experiments showed that our framework achieves state-
of-the-art performances.
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Abstract. Abstractive multi-document summarization (MDS) para-
phrases the salient key information scattered across multiple documents.
Due to the large length of the documents, most previous methods opt
to first extract salient sentence-level information and then summarize it.
However, they neglect the aspect information: documents are often well-
organized and written down according to certain aspects. The absence of
aspects renders the generated summaries not comprehensive and wastes
the prior aspect knowledge. To solve the issue, we propose a novel aspect-
guided joint learning framework to detect aspect information for guiding
the generating process. Specifically, our proposed method adopts feed-
forward networks to detect the aspects in the given context. The detected
aspect information serves as both constraints of the objective function
and supplement information expressed in the context representations.
Aspect information is explicitly discovered and exploited to facilitate gen-
erating comprehensive summaries. We conduct extensive experiments on
the public dataset. The experimental results demonstrate that our pro-
posed method outperforms previous state-of-the-art (SOTA) baselines,
achieving a new SOTA performance on the dataset.

Keywords: Abstractive multi-document summarization ·
Aspect-guided generator · Aspect information

1 Introduction

Multi-document summarization (MDS) paraphrases multiple thematically
related documents into a fluent, condensed, and informative summary [14,21,26].
MDS facilitates a wide range of applications, including generating Wikipedia
abstracts [18,35], creating news digests [1], and opinion summarization [2]. Com-
pared with single document summarization (SDS), MDS generates more compre-
hensive summaries from documents, where the given documents comprise various
aspects and can overlap and complement with each other [14], and is accordingly
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 513–522, 2023.
https://doi.org/10.1007/978-3-031-30675-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30675-4_37&domain=pdf
https://doi.org/10.1007/978-3-031-30675-4_37


514 H. Chen et al.

more complicated as it involves incredibly lengthy input documents and tries to
capture and organize information scattered across the long input [8,21].

Traditional methods in MDS are based on feature engineering [8], statistical
learning [3], and graph [8,24]. Most of them extract key information, which is rep-
resented by most salient textual units, structural dependencies among phrases,
keywords, or semantic clusters, to aid in generating summaries [21]. Recently,
pre-trained language models (PLMs) have significantly accelerated the develop-
ment of text summarization. Previous methods based on PLMs can be roughly
divided into four popular categories: (1) sparse attention [6,32]; (2) hierarchi-
cal model architecture [18,34] focus on improving the capability of models to
process all information from multiple documents simultaneously; (3) extract-
then-generate methods [31,33]; (4) divide-and-conquer approaches [10,12] aim
to shorten the length of input context by extracting salient texts or individu-
ally summarizing each part of multiple documents. Previous work reports that
extract-then-generate methods, hierarchical models, most traditional methods,
and human performance are all based on a common belief: Summaries should be
generated in a top-down way. They first detect key information from the input
documents explicitly and then use it to guide the summarization [15,23].

Fig. 1. A brief illustration for multi-document summarization.

However, previous work is hardly aware of aspect information. Summaries
are usually considered as plain text even though they summarize various aspects
elaborated by multiple documents. As shown in Fig. 1, these aspects compose
key information, summarize the input documents, and thereby guide humans
in a top-down way to write summaries. A pipeline method [35] is proposed to
exploit aspect information for summarization. It first learns to distinguish topics
discussed by the input documents and then encodes these topics together with
the documents to perform summarization. Despite its outstanding performance,
it leaves two problems unsolved: (1) the pipeline method separates aspect detec-
tion from summarization, thus suffering from cascade errors; (2) the detected
aspect information indirectly aids the generator (merely by inputting the implicit
aspect representation). We argue that aspect information is essential and should
be explicitly adopted to supervise the generating process of summaries.

In this paper, we propose a novel aspect-guided joint learning framework
that captures aspect information as both constraints of the objective func-
tion and sufficient expressive power for representations to guide the generating
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process. Specifically, we construct feed-forward networks to detect the aspect
information expressed by the representations of input documents and the gener-
ated summaries. Models are required not only to infuse representations with aspect
information but also to eliminate the inconsistency between the aspects expressed
by documents and summaries, which guides summaries to describe the aspects
mentioned in corresponding documents. We evaluate our proposed method on the
summarization benchmark. Based on the same backbone, our method outperforms
the strong baseline models and achieves a new state-of-the-art performance on the
benchmark. Our main contributions are summarized as follows:

– We introduce a novel aspect-guided joint learning framework that detects
aspect information to guide the generating process of summaries.

– We exploit the inconsistency between the aspects expressed by documents and
summaries to constrain the objective function and give sufficient expressive
power to representations, which aids in the generating process of summaries.

– Experimental results show that our framework significantly outperforms pre-
vious SOTA methods on the MDS benchmark. We provide a case study to
show our recovered missing key information.

2 Related Work

MDS resolves potentially diverse and redundant information in the given mul-
tiple documents to distill a coherent, concise, and informative summary [26],
which fuels progress in generating Wikipedia abstracts [18,35], creating news
digests [1], and opinion summarization [2]. Compared with SDS, MDS is more
challenging due to the longer input and more redundant information, which exac-
erbates the difficulty of abstractive MDS in retaining the most critical contents
and paraphrasing them [8].

Traditional MDS techniques, which are based on term frequency-inverse doc-
ument frequency [27], graphs [22], latent semantic analysis [3], and clustering [11]
with manually crafted features [5,8], obtain key information represented by
words, sentences, graphs, and semantic clusters to guide the generator. With
recent significant improvement in SDS brought by large-scale PLMs [16,28], most
researchers tackle MDS based on PLMs in four ways with two underlying pur-
poses: 1) To enhance the long-input processing capability of models, they propose
sparse attention [6,32] and hierarchical model architectures [18,34]. The former is
proposed for reducing the memory complexity of transformer-based PLMs while
the latter is designed for capturing dependency information among sentences and
words. 2) To shorten the length of source input, researchers adopt extract-then-
generate methods [4,31,33] and divide-and-conquer approaches [10,12]. The for-
mer extract salient texts (key information) from the given documents and then
summarize them, the latter divide the given documents into sections and then
individually summarize them to form a final summary.

As to extract-then-generate methods, traditional methods, and hierarchical
model architectures, they try to first collect and merge the information scattered
across the source input in a heuristic way, and then summarize the derived key



516 H. Chen et al.

information. Inspired by the paradigm, we focus on exploring and modeling the
aspect information, which is crucial and often neglected in previous work, as key
information to explicitly supervise the generating process of summaries.

Aspect information is hardly exploited by previous MDS methods in generic
summary generation [9,25]. Some aspect-based work focuses on identifying
aspects (e.g., words or phrases) in human-written opinions for opinion sum-
marization and sentiment analysis [30]. The aspect-specific context will aid in
distinguishing the sentiment polarities of reviews about different aspects of a
product. To facilitate identifying aspect-level keywords, a previous work [1] pro-
poses a system to automatically extract aspect-level keywords in a heuristic way
without assuming human-annotated training data.

Recently, human-annotated aspect information significantly increases with
some held-out aspect-oriented abstractive summarization datasets. They com-
prise WikiAsp for aspect-oriented Wikipedia summarization [13], meta-review
dataset (MRED) for structure-controllable meta-review generation [29], and
summaries of popular and aspect-specific customer experience (SPACE) dataset
for opinion mining [2]. They facilitate the development of human-annotated
aspect information and make it available for generators.

We focus on modeling the human-annotated aspect information instead of
the heuristically extracted one since noise information can be introduced in the
latter and thus confuses the generator. TWAG [35] proposes a pipeline method
to first model the aspect information and then perform abstractive MDS, which
we compare with.

3 Methodology

We formulate the task and then introduce our method. In MDS, the input doc-
ument set D = {Di}ni=1 consists of multiple documents and is expressed by its
concatenate context X. The generated output is their summary y of length T .
Given input documents X and the previously generated tokens y<t, the learning
models in MDS are required to maximize the likelihood of the given optimal
summary y∗. The generated summary tokens y can be described by,

y∗ = arg max
y

P (y | D,A) = arg max
y

T∏

t=1

P (yt | D,A, y<t) , (1)

where A comprises all aspects expressed by the input documents and is detected
by the feed-forward network FFN,

A = FFN(D). (2)

Previous work treats the summary as plain text, neglecting the fact that
most documents are well organized and written down according to the underly-
ing aspect information, which guides human-written summaries of multiple doc-
uments [35]. That is to say, aspect information is a constraint of the objective
function, which is fitted by the generator in the training process. However, such
a constraint (aspects A) is missed in previous work, resulting in their increased
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risk of falling into suboptimal results. To deal with the problem, we construct
feed-forward networks to estimate the aspect information expressed by the repre-
sentations of input documents and generated words, respectively. The imbalance
in the amount of two source aspect information supervises the generator, guiding
it to recover the missing target aspect information.

4 Experiments

4.1 Dataset

We experiment on MRED [29]. MRED is a highly abstractive dataset focusing on
meta-reviews from a peer-reviewing system (ICLR) which contains essential and
high-density opinions. It is provided for structure-controllable text generation.
The meta-reviews are manually written to summarize the aspects described in
different reviews and we use sent-ctrl version of MRED.

4.2 Baselines

We compare ETAGE with previous state-of-the-art methods (comprising an
extractive model and 4 abstractive models) on the three datasets:
TextRank [24] is a common extractive summarization baseline model which
uses vertex scores calculated by a graph-based “random-surfer model” to rank
sentences.
TWAG [35] is a two-step abstractive summarization method that first detects
the aspects described by the multiple source documents and then performs sum-
marization based on the detected aspects.
BertAbs [19] is an abstractive summarization model with encoder initialized
with BERT [7] and transformer decoder randomly initialized.
Longformer [6] is a pre-trained language model tackling long input by sparse
attention. Following BertAbs [19], We initialize the encoder with Longformer
and randomly initialize the transformer decoder.
BART [16] is a SOTA abstractive summarization model pre-trained with the
objective of denoising autoencoding.

We also compare with other baselines mentioned in the work proposing the
corresponding dataset.

4.3 Implementation Details

We complete our experiments on a single RTX3090 GPU. We first load the
pre-trained models released by Huggingface1 as the backbones. To keep in line
with the basic settings of baselines for fair comparison, we adopt the common
hyper-parameters used in the transformer-based baseline models. Specifically,
we apply AdamW algorithm [20] to optimize model parameters with a learn-
ing rate of 1e–5. We evaluate our generated summaries against the reference
1 https://huggingface.co/models.

https://huggingface.co/models
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manually written ones by calculating the F1-scores of ROUGE1, ROUGE2, and
ROUGEL [17]. Following previous work, we adopt the Rouge evaluation script2

provided by Huggingface with “use stemmer” enabled.

Table 1. Performance on MReD. The signal † denotes that the results of models are
quoted in the original paper proposing MReD. The rest of the results are based on our
implementation.

Model R-1 R-2 R-L

MMR† 32.37 6.28 17.58

LexRank† 32.60 6.66 17.48

TextRank† 33.52 7.20 17.75

TWAG 27.82 7.22 19.99

Longformer 23.39 5.63 20.52

BertAbs-BERTbase 23.57 6.67 18.59

BART†
large 38.59 10.61 22.93

Ours-BARTlarge 39.04 11.00 23.65

4.4 Main Results

We compare our method with all of the previous SOTA methods on MReD.
We also further implement several common strong baselines for comparison and
deeper analysis. Table 1 shows the main results of the baseline models and our
method. We can observe that our method outperforms the existing SOTA base-
lines on MReD in the BART backbone. Specifically, with BARTlarge as the PLM,
our method surpasses BARTlarge by 0.45/0.39/0.72 of ROUGE-1/2/L scores,
achieving new SOTA performance on MReD. The experimental results show the
effectiveness of the overall framework of our method.

We attribute the improvement to the incorporation of aspect information
and our proposed joint learning framework for two reasons. First, aspect infor-
mation significantly improves the performance of models. We observe the perfor-
mance gaps (the aforementioned gains of ROUGE-1/2/L scores) between mod-
els that adopt our framework and models with the same backbones neglecting
aspect information. The difference between the two kinds of models is that the
former incorporates aspect information by constraining the objective function,
which indicates that by properly infusing models and constraining the objec-
tive function with aspect information, models are able to achieve more signifi-
cant improvements. Second, learning aspect information in a joint way largely
enhances the effectiveness of models. Compared to TWAG which models aspect
information in a two-step way, our proposed method significantly outperforms
TWAG by 11.22/3.78/3.66 on MReD.
2 https://github.com/huggingface/transformers/blob/main/examples/pytorch/

summarization/.

https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/
https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/
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4.5 Case Study

We present the case study of our proposed method and the corresponding
baseline model. As shown in Fig. 2, the baseline model BARTlarge misses the
aspect information of “rebuttal-process”, paraphrases too much information
about “strength”, and wrongly generates the unmentioned aspect “weakness”,
which ruins the comprehensiveness, faithfulness, and conciseness of the gener-
ated summary. Compared with BARTlarge, our proposed method recovers the
missing aspect and faithfully generates the summary.

Fig. 2. The case study of our proposed method.

5 Conclusion

Multi-document summarization (MDS) is a long-standing task and is challeng-
ing due to the requirement of paraphrasing the key information scattered across
multiple documents. In this paper, we introduce our aspect-guided joint learn-
ing framework, which captures aspect information to constrain the optimization
and aids representation learning. Our method adopts a multi-task joint learn-
ing method to avoid introducing the cascade error and impeding the interac-
tion between aspect detection and generation. The extracted aspect information
guides the generating process, improving the comprehensiveness and faithfulness
of the generated summaries. The experimental results on three commonly used
summarization datasets not only show that our method outperforms the strong
baseline models, but also validate the effectiveness of the detected aspects which
are accurate and well guide the generating process.
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Abstract. Tabular data annotation, which aims to match cells (or col-
umns) to their semantic entities (or types), is crucial to tackling the
absence of table content. Recent approaches tend to learn embeddings
for tabular data based on deep learning models, but are not conducive
to parsing tabular data without metadata. While the metadata may
not always be available, entity-related textual information can be easily
obtained through external sources such as knowledge bases. Motivated by
this, we introduce entity-related textual details in this study to enhance
the understanding of tabular data. To obtain better embeddings, we
propose a novel model TETA, which adopts the graph convolutional
network to refine semantic and structure information from constructed
graph features based on tables, entities, types, and text. Meanwhile, we
adopt a multi-task learning technique to improve its performance and
robustness. We compare TETA with five baselines on five datasets. The
results of tabular data annotation and novelty classification demonstrate
the effectiveness and promise of TETA.

Keywords: Tabular data annotation · Text data · Graph
convolutional network · Multi-task learning

1 Introduction

Nowadays, tabular data is ubiquitous on the web, and it can provide precious
information for broad applications such as table question answering [18,20] and
semantic parsing [10]. However, incomplete tables (e.g., erroneous structure align-
ment, ambiguous cells, or missing column names) often exist due to the uneven
quality of web data and transmission errors at certain moments. To tackle this
issue, tabular data annotation is a fundamental task of crucial importance. The
majority of scholars have focused on modifying and fine-tuning pre-training mod-
els [4,6,12,18] such as transformers for better embedding representations, while
ignoring their inability to fully understand the structural information of tabular
data. Furthermore, it requires large artificial corpora and elaborately huge train-
ing cost for pre-training. ColNet [2],TabGCN [11], and TCN [14] employ different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 523–533, 2023.
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but convolution-related methods. However, most of the models’ [4,14,18] perfor-
mance will be greatly compromised without metadata. Fortunately, large quanti-
ties of entity-related text exist in the Knowledge Bases (KBs), which may facilitate
the semantic understanding of tabular data. In this paper, we propose a novel app-
roach incorporating entity-related text for tabular data annotation. Considering
the capability of Graph Convolutional Network (GCN) to capture deep structure
information among massive graph data with elaborate relationships [5,15–17,19],
we use GCN to learn embeddings of mixed data.

Challenges. Modeling tables, entities, types, and text into graph data and
leveraging these features to complete the tabular data annotation task is chal-
lenging since it raises two significant questions: (1) How to construct a graph
based on mixed tabular-textual data? (2) How to design the model architecture
to fully utilize the tabular and textual data for the annotation task?

To answer these two questions, we propose a highly effective model TETA
by integrating tabular and textual data information. For question (1), we create
various types of graph nodes for the crucial features in tables and text, and the
relationships between them can be modeled as different types of edges. For ques-
tion (2), we adopt a two-layer GCN to learn embeddings for tabular and textual
data simultaneously. Moreover, we adopt a multi-task learning technique, which
designs three classifiers to focus the model’s attention on the column-type, cell-
entity, and text-type classification tasks. Model parameters are updated inversely
through three tasks’ weighted joint loss.

Contributions. We summarize our contributions as follows:

• We realize that entity-related text benefits the semantic understanding of
tabular data. This idea motivates us to incorporate text extracted from the
KBs to enhance the performance of tabular data annotation.

• To encode the relationships between tabular and textual data and capture
the syntactic structure of tables, we design a graph construction approach to
transform the data into various nodes and edges of a graph.

• We propose a novel model TETA based on a GCN to jointly learn the embed-
dings of text, table, entity, and type nodes. TETA also adopts a multi-task
learning technique to obtain better embeddings.

• To demonstrate the capabilities of TETA, we compare it with five baselines
on five datasets and results show that TETA significantly improves the per-
formance of tabular data annotation tasks. The performance of TETA on
novelty classification for the downstream task also demonstrates the useful-
ness of learned embeddings.

2 Problem Definition

Table Definition. Given a table set T = {τ1, . . . , τn}, the k-th table τk

includes m rows Rk = {rk
1 , . . . , rk

m} and o columns Ck = {ck
1 , . . . , c

k
o}. The

cell set Xk = {xk
11, . . . , x

k
1o, . . . , x

k
m1, . . . , x

k
mo} is obtained by traversing the row
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set Rk (or column set Ck) by row (or by column), where xk
ij denotes the cell

belonging to row rk
i and column ck

j . For tabular data annotation, each column
c ∈ Ck cor-responds to a single type tc, and each cell x ∈ Xk is corresponding
to a specific entity ex. We denote the entity set and type set w.r.t. T as E and
T, respectively.

Text Definition. We assume an entity-related text set S = {S1, . . . , Sn} can
be obtained for each table τk ∈ T . The text set for τk is denoted as Sk, where
each sentence sx ∈ Sk contains several words that can be auxiliary information
for a table cell x ∈ Xk. Concretely, the syntactic structure of sentence sx is
(entity, copula, proper noun). Here, proper noun is a type generalization of the
entity.

Text-Enhanced Tabular Data Annotation. Tabular data annotation [3,11]
can be divided into Cell Entity Annotation (CEA), Column Type Annotation
(CTA), and Column Pair Annotation (CPA). Following previous work [11], we deal
with the first two tasks in a semi-supervised manner. That is, for each table τk ∈ T ,
we assume that a subset of Ck has been annotated with their corresponding types,
and a subset of Xk has been annotated with their corresponding entities. Then, for
the cells and columns without annotations, we aim to predict entity ex that best
describes the semantics of cell x (w.r.t. CEA task) and type tc that best describes
the semantics of column c (w.r.t. CTA task) with the help of S.

3 TETA Architecture

This section introduces the model architecture that contains four key compo-
nents: (1) Text extraction: we extract the entity-related text by using several
automatic extraction tools. (2) Graph construction: we construct various types
of nodes and edges for different tabular elements, entities, types, and text. (3)
Representation learning: we adopt a two-layer GCN to convert features of various
graph nodes into text-enhanced embedding. (4) Multi-task learning: we design
a multi-task learning module that minimizes a joint loss over three classification
tasks to train the node embedding. We detail each component below.

3.1 Text Extraction

Given a table τk ∈ T , its text set Sk can be extracted according to its cell set
Xk. Specifically, for a cell x ∈ Xk annotated with entity ex, we directly extract
its related text sx from a relevant KB based on ex. For a cell x ∈ Xk without
entity annotation, we extract its related text sx from the KB based on x. Then
we adopt existing NLP tools to filter text that isn’t in the form of (entity, copula,
proper noun). The filtered result will be stored in the text set Sk.
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3.2 Graph Construction

Given a table set T and a text set S related to T , we construct a graph for
them. Figure 1 shows an example constructed graph, and we will describe the
construction methods of nodes and edges below.

Graph Construction of Nodes. To preserve the structure information and
capture the crucial features, we construct various types of nodes for each table
τk ∈ T . Specifically, we create tabular element nodes (white rounded rectan-
gle) including table node nτ , row node nr, column node nc, and cell node nx,
which comprehensively express the content and structure information of the
table. Then, to capture the semantic features of entities and types, we create
entity node ne (blue ellipse) and type node nt (yellow ellipse) for each entity
e ∈ E and type t ∈ T, respectively. Finally, to obtain additional text informa-
tion, we create text node ns (red right-angled rectangle) for each text s ∈ S.

Fig. 1. Graph construction of a web table, entities, types, and entity-related text.
(Color figure online)

Graph Construction of Edges. To represent elaborate relationships between
nodes and mine deeper semantic and structural information of tabular data, we
construct various types of edges, including:

• The tabular basic edge Et (black solid line) is used for capturing the basic
structural relation between tabular elements, including the cell-row edge, the
cell-column edge, the row-table edge, and the column-table edge.

• The knowledge edge Eκ (yellow solid line) preserves the relationship between
entity e and type t. For instance, if column c is annotated with type tc and its
cell x is annotated with entity ex, then a knowledge edge Eκ exists between
entity node ne and type node nt.

• The annotation edge Ea (blue dashed line and yellow dashed line) indicates
the annotation information between the cell node nx and the entity node ne

(or the column node nc and the type node nt).
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• The auxiliary edge Eu (red solid line) connects the text node ns and the col-
umn node nc, i.e., the node of column c that includes the cell x corresponding
to text sx. Since text sx interprets entity ex in terms of describing type tc,
establishing Eu between ns and nc can benefit the CEA task and be more
helpful for the CTA task.

• The lexical similarity edge El (black double dotted line) aims to connect two
lexically similar cell nodes nx, nx′ , so that the model’s ability to capture the
relationships and information among cell nodes can be enhanced. If the cosine
similarity between two cell nodes is higher than the threshold ε, then it is
considered that there is a lexical similarity between them.

3.3 Representation Learning

To capture the semantic features of tabular data, we learn the embedding of
each type of node in the constructed graph, which is depicted in Fig. 2(a).

Fig. 2. The process of representation learning and training.

Matrix Construction. We obtain feature matrix V and adjacent matrix A
based on the graph nodes and edges. For nodes nx, ne, nt, ns with text values,
we convert them to the features of the corresponding nodes by means of word
vectorization [11,14]. Specifically, the feature of a node is the average of its con-
tained word vectors, i.e., vx/e/t/s = mean(

∑
word∈text(nx/e/t/s)

Vectorize(word)).
For row node nr and column node nc, we use the mean of the feature vectors
of cells belonging to them as their features, i.e., vr/c = mean(

∑
x∈r/c vx). Simi-

larly, the feature of the table node nτ is the mean of the feature vectors of all row
nodes (or column nodes) in the table, i.e., vτ = mean(

∑
r/c∈τ vr/c). Therefore,

we obtain the feature matrix V ∈ R
N×d1 = [vτ ,vr,vc,vx,ve,vt,vs]�, where N

and d1 represent the total number and feature dimension of all types of nodes,
respectively. Meanwhile, we establish adjacency matrix A ∈ R

N×N by traversing
all nodes and all edges, where each node has a self-connecting edge, and each
edge takes the form of an undirected symmetric edge [8,11].
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Embedding Learning. Given feature matrix V and adjacent matrix A, we
adopt the GCN [8] to learn text-enhanced embedding representations of tabular
data. As the receptive field of the network increases with the number of GCN
layers, information from higher-order neighborhoods can be obtained by stacking
and convolving through multiple GCN layers. However, if the network is too
deep, the node embedding will be affected by irrelevant nodes, and the effect
will decrease instead. Thus, we set the number of GCN layers to 2, and the
calculation formula for each GCN layer is as follows:

L(�+1) = ReLU(ÃL(�)W�) (1)

where L is the input or output in each layers and � represents the number
of GCN layer (L(0) = V). The output of each subsequent layer is the input
of the next layer. W� ∈ R

d′
1×d′

2 is the weight matrix of the �-th layer. Ã =
D−1/2AD−1/2 is a Laplacian regular matrix, which is the result of symmetric
normalization of the adjacency matrix A. The element value of the diagonal
degree matrix D is the sum of the in and out degrees of the corresponding
nodes, i.e., Dii =

∑N
j=1 Aij +

∑N
k=1 Aki. With a two-layer GCN, we obtain the

embeddings h ∈ R
N×d2 = [hτ ,hr,hc,hx,he,ht,hs]� of different types of nodes.

3.4 Multi-task Learning

To enhance the performance of TETA on CEA and CTA tasks, we design a multi-
task learning module for training. The multi-task learning module consists of
three parts: column-type classifier, cell-entity classifier, and text-type classifier,
as shown in Fig. 2(b). Take column-type classifier as an example, to predict the
type tc of an unannotated column c, we project the column embedding hc to the
type space through the projection matrix Pt, and then send the projected vector
to the type classifier. Specifically, we use a Fully Connected (FC) layer to vary
the dimensions and then use the softmax function to output the predicted value
for each category. The cell-entity classifier and text-type classifier are similar.
The formula for three classifiers is as follows:

pc/x/s = softmax(Wt/e/s(Pt/e/shc/x/s) + bt/e/s), (2)

where Wt/e/s ∈ R
d2×q/d2×g/d2×z and bt/e/s ∈ R

q/g/z are the parameter matrix
and the bias matrix of the FC layer, respectively, d2 is the dimension of embed-
ding, q/g/z represents the number of type, entity or text-type categories.

Joint Training. We jointly train three tasks via Adam [7] to optimize model
parameters. We use cross-entropy as the loss function of three classification tasks.
The final loss is the weighted sum of the losses of the three tasks, where the
weight ratio is set to 1:2:0.5 (the optimal ratio of manual adjustment):

L = −
[

1

Nc

Nc∑
i=1

q∑
j=1

yt
ij log pcij +

2

Nx

Nx∑
i=1

g∑
j=1

ye
ij log pxij +

0.5

Ns

Ns∑
i=1

z∑
j=1

ys
ij log psij

]
(3)
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where Nc, Nx, Ns represent the number of training samples for annotated
columns, cells, and text, respectively. q, g, z represent the number of categories
of the corresponding task, and yt

ij , y
e
ij , y

s
ij represent the symbolic function of the

real labels of three tasks. For instance, if the real category of the sample i is j,
it outputs 1; otherwise, 0. pcij , pxij

, psij
represent the predicted probability that

the sample i belongs to the category j in three tasks.

4 Experiments

4.1 Experiment Setup

Datasets. We use five web datasets whose statistics are summarized in Table 1.
Note that T2Dv2 and Wikipedia only contain type annotations from DBpedia.
Thus, they can only be used for the CTA task. For all the datasets, we randomly
select 30% of the entities and types as novel entities and types for the downstream
task of novel classification. The cells and columns annotated with these novel
entities or types are considered unannotated. In the remaining cells and columns
annotated with un-novel entities and un-novel types, respectively, we randomly
divide the training set and test set by the ratio of 70%:30%.

Compared Methods. To verify the effect of adding the text-type classifica-
tion task to loss computation, we divide the proposed model TETA into a base
version and a full version, where TETA-base removes the text classification task
while retaining the text nodes. We also compare with five baselines: ColNet [2],
TaBERT [18], TURL [4], Doduo [12], and TabGCN [11].

Implementation Details. All experiments are implemented in Ubuntu 16.04
LTS operating system and Anaconda-Pytorch environment, using a 2080TI-12G
GPU for training. The hyperparameters of baselines are consistent with the
corresponding papers, and for comparison, the hyperparameters of TETA are
consistent with TabGCN. TETA uses Wikipedia as KB source for entity-related
text extraction. We use StanfordOpenIE [1] and Spacy to filter out worthless
text. As the full version of TURL uses table and metadata and only T2Dv2 has

Table 1. The statistics of datasets.

Datasets Table Row Column Un-novel Novel Total Un-novel Novel Total

(mean) (mean) entity entity entity type type type

Wiki M 40 35.7 4.2 959 410 1369 39 16 55

Web M 404 34.2 3.7 732 313 1045 38 16 54

Limaye 327 31.3 3.8 551 235 786 13 5 18

T2Dv2 367 85.2 4.9 – – – 34 14 48

Wikipedia 590 26 5 – – – 22 9 31

https://bit.ly/3l0gy8Y
https://bit.ly/3l0gy8Y
https://bit.ly/3n9fWQc
https://bit.ly/3n9fWQc
https://bit.ly/3n9fWQc
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partial metadata, we implement two variants TURL-v3 (metadata & cells) and
TURL-v4 (cells) on T2Dv2 dataset. We use the micro-average F1-score as the
evaluation metric and repeat 10 times in each experiment for all the models.

Table 2. Micro-average F1-score comparison on CEA and CTA tasks.

Model Wiki M Web M Limaye T2Dv2 Wikipedia

Entity Type Entity Type Entity Type Type Type

ColNet – 0.2000 – 0.4700 – 0.4700 0.5900 0.6000

TaBERT – 0.2000 – 0.4900 – 0.4700 0.5900 0.5900

TURL-v3 – – – – – – 0.7604 –

TURL-v4 – 0.5402 – 0.8607 – 0.6190 0.6945 0.6951

Doduo – 0.1333 – 0.8158 – 0.7619 0.6027 0.8915

TabGCN 0.2462 0.3333 0.8110 0.8500 0.7936 0.8571 0.8082 0.8527

TETA-base 0.2554 0.3333 0.8121 0.8500 0.8051 0.8571 0.8438 0.8605

TETA-full 0.2615 0.3333 0.8219 0.8684 0.8127 0.9524 0.9062 0.9690

4.2 Experimental Results

Performance Comparison of the CEA and CTA Tasks. Table 2 shows
results for all methods on five datasets. Except for TabGCN and TETA-base/full,
other methods can only complete the CTA task. ColNet and TaBERT perform
worst. ColNet’s accuracy largely depends on the coverage of the KB and the
informativeness of randomly sampled cells. Although the pre-training method of
TaBERT includes the column type prediction, after fine-tuning for the semantic
parsing task, TaBERT has lost its advantage on the CTA task. TURL works
surprisingly well on the Wiki M dataset, because TURL’s pre-training corpus
WikiTables contains tables of the Wiki M dataset. However, without metadata,
TURL’s performance is not as good as TETA-full’s on the remaining datasets.
Doduo tokenizes the tabular data by column, ignoring the connection between
the cells in the same row, so the complete structure information cannot be cap-
tured, resulting in tepid performance. TabGCN and TETA-base/full learn the
embeddings of the whole table to simultaneously finish the CEA and the CTA
tasks, thus outperforming other methods in most cases. Without the loss of
text classification, TETA-base also achieves higher micro-average F1-scores than
other methods in most cases, demonstrating the helpfulness of textual data to
the annotation task. Meanwhile, TETA-full adds the loss of text classification
to help the model focus its attention on the entity and type information of text.
Therefore, TETA-full can better capture tables’ deep semantic information and
outperforms TabGCN by up to 12% (i.e., the CTA task on Wikipedia).

Ablation Study. To verify the effectiveness of the graph structure, we analyze
the effectiveness of TETA by setting multiple variants. -T only focuses on the
CEA task by removing all type nodes and type-related edges. Note that the
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category of the text cannot be obtained when type nodes are removed. Thus,
the text classifier is also removed. Similarly, -E only focuses on the CTA task by
removing all the entity nodes and entity-related edges (the cell-entity edge of the
annotation edge, and the knowledge edge), which is divided into -ES̃ without
text nodes and -ES with text nodes. -S removes the text nodes and their edges.
-A removes the text classification task during training while reserving text nodes
and auxiliary edges. -L removes lexical similarity edges. Table 3 shows the results
of three datasets with both entity and type annotations. Except for TETA-full,
each model has a certain decline in metrics due to the lack of specific components,
where TETA-L drops the most in the absence of the lexical similarity edge. Thus,
all components of TETA contribute to performance improvements and the lexical
similarity edge plays a significant role in the CEA task.

Table 3. Ablation study result of CEA and CTA tasks.

Model Wiki M Web M Limaye

Entity Type Entity Type Entity Type

TETA-ES̃ – 0.3333 – 0.8333 – 0.8571

TETA-ES – 0.3333 – 0.8417 – 0.9048

TETA-T 0.2523 – 0.8099 – 0.8043 –

TETA-S 0.2462 0.3333 0.8110 0.8500 0.7936 0.8571

TETA-A 0.2554 0.3333 0.8121 0.8500 0.8051 0.8571

TETA-L 0.2492 0.3333 0.6678 0.8684 0.6055 0.9524

TETA-full 0.2615 0.3333 0.8219 0.8684 0.8127 0.9524

Downstream Task - Novelty Classification. The novelty classification
task is to determine whether an unannotated cell/column belongs to a novel
entity/type that has not been seen. In addition to the cells (or columns) belong-
ing to 30% novel entities (or types), we also add cells (or columns) used as
test data for the CEA (or CTA) task to explore the effectiveness of learned
embeddings in distinguishing novel from un-novel entities (or types). Note that
only TabGCN and TETA can accomplish this task. Specifically, we project the
embedding hx/c of an unannotated node nx/c into the entity (or type) space
and compare with all un-novel entities (or types), measured by cosine similarity.
If the similarities between the projected vector of the node and the projected
vectors of all un-novel entities (or types) do not exceed a given threshold, the
entity (or type) category of the cell (or column) x/c is determined as novel, oth-
erwise un-novel: σ(maxe/t∈Eu/Tu cos(Pe/thx/c, Pe/the/t) ≤ ϕe/t), where E

u ⊂ E

and T
u ⊂ T represent un-novel entities set and un-novel types set, respectively, σ

is the Kronecker delta function, and ϕe/t is the novelty threshold. The results of
novelty classification are shown in Table 4, where the novelty threshold ϕe and
ϕt are both manually optimized to 0.85-0.9. TETA-base/full’s performance is
better than TabGCN on both novel-entity and novel-type classification in most
cases, demonstrating the effectiveness of the embeddings learned from TETA.
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Table 4. F1-score comparison on the novelty classification task.

Model Wiki M Web M Limaye T2Dv2 Wikipedia

Entity Type Entity Type Entity Type Type Type

TabGCN 0.8050 0.8000 0.8850 0.8020 0.7770 0.8890 0.8000 0.7870

TETA-base 0.7720 0.8100 0.8860 0.8170 0.7960 0.9230 0.8110 0.7870

TETA-full 0.7720 0.8240 0.8980 0.8580 0.7720 0.9600 0.8310 0.8230

5 Related Work

Tabular Data Annotation. Existing methods for tabular data annotation can
be mainly divided into three categories: graph-based inference methods [9,13],
pre-training methods [4,6,12,18], and convolution-related approach [2,11,14].
The graph-based inference methods use logistic models for prediction, whose
features are manually constructed by domain knowledge. Despite being pre-
trained with a specific large corpus, the pre-training models cannot capture the
complete structured information of tabular data due to the fundamental way of
linearizing cells of tabular data. Several convolution-related models have been
proposed to address the above issues, using automatic feature generation tools
and convolution operations to improve efficiency and better capture structural
information, respectively. Our proposed model TETA enhances the GCN’s abil-
ity to classify cells and columns by adding entity–related textual information and
multi-task learning module, thus can better capture the semantic and structural
information of the tabular data without metadata.

Representation Learning of Tabular and Textual Data. The popularity of
pre-training language models has promoted the development of the joint learning
of tabular and textual data [10,18,20]. Among these methods, the most related
work to TETA is TaBERT [18], which uses CTA task as a pre-training method
but finetunes on question answering tasks. BRIDGE [10] and MT2Net [20] are
trained for DB-related tasks. None of these are suitable for annotating tables.

6 Conclusion

We present TETA, a novel model for learning text-enhanced representations on
tabular data via graph convolutional network and multi-task learning. Different
from existing methods, TETA (1) utilizes entity-related text extracted from the
knowledge base to assist the model in better understanding the semantic and
structural information of tables, (2) jointly learns enhanced embedding of text,
tables, entities, and types for better representation, (3) uses a multi-task learning
method to improve model performance and robustness. We evaluate TETA on
five datasets for tabular data annotation tasks and a downstream task, the results
of which demonstrate the effectiveness and promise of our model. In the future,
we will explore the potential of using other graph neural networks and test other
downstream tasks of mixing table understanding with text.
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Abstract. Event extraction aims to identify event triggers and cor-
responding arguments. Existing methods are mainly devoted to well-
designed deep neural networks based on the assumption that training
data are high-quality. However, noisy labels are unavoidable in real-world
scenarios, which is challenging for current event extraction applications.
This paper proposes a novel Two-stage label rectification framework
(Tolar) to tackle this problem from explicit and latent aspects. In the first
stage, an event schema mapping module is designed to rectify the explicit
label inconsistency. Then a self-adaptive iteration module addresses the
latent semantic noise in the second stage. In order to cope with extremely
noisy labels, we further design a Cooperative Global Pointer Network
(CoGPN) to train two global pointer networks concurrently and let them
filter possibly noisy labels mutually. Extensive experiments on ACE 2005
and MAVEN with synthetic noise demonstrate that our framework Tolar
effectively enhances event extraction methods, and our CoGPN achieves
state-of-the-art performance in extremely noisy settings.

Keywords: Event extraction · Natural language processing · Noisy
label learning · Global pointer network

1 Introduction

Event extraction (EE) [7] is a significant yet challenging task in information
extraction (IE), aiming to detect events and extract event arguments from
unstructured text. Recent EE is benefited from the rich contextualized rep-
resentations generated by pretrained language models (PLMs) and elaborate
downstream fine-tune strategies [1,8,9]. These approaches focus on improving
the performance of PLMs with high quality data labels. However, EE is a data-
hungry task and suffers from noisy labels. It is necessary to deal with noisy labels
in real-world EE scenarios. We divide noisy labels into explicit label inconsistency
and latent semantic noise. The former is the contradiction between the labels of
event types and corresponding argument roles. The latter is inconsistent with
the latent semantic of the sample when the text spans or types of triggers and
arguments are annotated by mistake. Figure 1 illustrates an example of two types
of noise. Owing to the misleading word “killing”, an Ownership Transfer event
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. An example for two types of noisy labels and corresponding rectification. The
words in red are noisy labels, the words in green are corresponding revisions, and the
words in blue are clean labels. (Color figure online)

is labeled as an Attack event by mistake. However, the event type Attack con-
tradicts the argument roles “Buyer” and “Artifact”, since they do not belong to
the Attack event according to the event schema. This contradiction is referred
to as the explicit label inconsistency. Besides, the word “Tuesday” denotes the
time that the man murdered seven people and the word “Massachusetts” was
the actual place where the transaction happened. The incorrect label “Time:
Tuesday” is regarded as the latent semantic noise, which is more challenging.

To address the above issues, we propose a novel two-stage label rectification
framework (Tolar) for noisy event extraction. In the first stage, we focus on the
explicit label inconsistency. Since event schema suggests that events with specific
types will contain arguments with particular roles, we leverage the pre-defined
event schema to rectify the incorrect event type labels in the source data. As
shown in Fig. 1, since “Buyer” is an exclusive argument role in the Ownership
Transfer event and “Artifact” is not the participant in the Attack event, we
correct the event type label “Attack” into “Transfer-Ownership”.

In the second stage, to tackle the latent semantic noise, we propose a self-
adaptive iteration strategy. The basic idea is that deep neural models tend to give
low confidence to noisy labels despite being profoundly influenced. We first train
an event extraction model with pre-processed training data from the first stage
and then utilize this model to predict the entire training set. According to the
confidence of predicted results, the model adaptively corrects the probable noisy
labels into proper labels with high confidence. Such self-correction procedure is
iterated until obtaining a convergent model.

In addition, it is tough for PLMs to deal with extremely noisy labels when the
noise rate is over 50%. To alleviate this problem, we introduce a novel Coopera-
tive Global Pointer Network (CoGPN). We train two independent Global Pointer
Networks (GPN) [10] simultaneously. One GPN is span-specific, which focuses
on identifying the start and end position of triggers or arguments. Another GPN
is cascade [9], which aims to extract the span and types concurrently for candi-
date triggers or arguments. During the training phase, the two GPNs select the
small loss samples as clean ones for each other to update the parameters in each
mini-batch. CoGPN takes advantage of different emphases on learning tasks of
the two GPNs to filter different types of error introduced by noisy labels. In
the inference phase, the logits from span-specific GPN additionally enriches the
logits from the cascade GPN.
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We verify our method on two synthetic datasets with different noise rates
based on two datasets, ACE 2005 and MAVEN. Experimental results show that
our method significantly improves existing event extraction models in various
noisy settings, and CoGPN outperforms the state-of-the-art under extremely
noisy settings. In summary, the main contributions of this paper are three-fold:

– To the best of our knowledge, we are among the first to address noisy event
extraction. To this end, we propose Tolar, a two-stage label rectification
framework for noisy event extraction from both explicit and latent aspects
based on the event schema mapping mechanism and self-adaptive iteration.

– To ensure the robustness of models encountering extreme noise, we further
propose a novel cooperative global pointer network (CoGPN) that utilizes
the different learning abilities of two GPNs to filter noisy labels mutually.

– We construct two benchmarks for noisy event extraction task and conduct
comprehensive experiments. Experimental results demonstrate that the Tolar
framework can efficiently improve the EE models, and CoGPN achieves the
state-of-the-art performance in extremely noisy settings.

2 Methodology

2.1 Problem Statements

For noisy event extraction scenarios, an event schema is pre-defined, including k
event types {t1, t2, · · · , tk} and corresponding argument roles {R1, R2, · · · , Rk},
where Ri = {ri,1, ri,2, · · · , ri,L} is the argument role set of specific event type ti.
Consider an event sample (Tp, Yp), where Tp is the input event text, and Yp is
the corresponding label. The purpose of noisy event extraction is to extract the
actual triggers and arguments from Tp while Yp could be mislabeled.

2.2 Framework Overview

The overview of Tolar framework is illustrated in Fig. 2, composed of two stages:
the event schema mapping stage and the self-adaptive iteration stage. In the
first stage, the source data is transferred to the event schema mapping module,
utilizing the event schema mapping to revise explicit label inconsistency between
event types and argument roles. The pre-processed data from the first stage is
then fed to the self-adaptive iteration module in the second stage, where the
event extraction model corrects the latent noisy labels iteratively according to
the confidence score. The event extraction model consists of an PLM encoder
and different decoding and inference strategies.

2.3 Event Schema Mapping Stage

We first introduce event schema mapping as a data processing stage. The argu-
ments with particular roles ri,j ∈ Ri will be involved in the event of specific type
ti, which expresses the mapping from argument role to event type. Specifically,
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Fig. 2. The architecture of the Tolar framework.

when the labels of argument roles are reliable, any particular argument role ri,j

will indicate the event type ti. Thus, we apply the following logical rule to rectify
the explicit label inconsistency:

∃rcur,j (rcur,j ∈ Ri ∧ rcur,j /∈ (R − Ri)) ∧ (tcur �= ti) ⇒ ti (1)

where rcur,j ∈ Rcur and tcur represent the current labels of argument roles and
event type within the given event label Yp. Ri is the argument role set of specific
event type ti while R is the universal set of argument roles.

When the labels of arguments are also noisy, only one particular argument
role will be inadequate. We reinforce the additional restriction that all labels of
argument roles within the given event label Yp should be involved in the same
specific event type ti:

∃rcur,j (rcur,j /∈ (R − Ri)) ∧ ∀rcur,j (rcur,j ∈ Ri) ∧ (tcur �= ti) ⇒ ti (2)

2.4 Self-adaptive Iteration Stage

In the self-adaptive iteration stage, we first train an event extraction model
with pre-processed training data from the first stage and then utilize this
model to predict the whole training set. For each event sample (Tp, Yp) from
the training set Dtrain, we obtain the logits produced by the event extraction
model and estimate the span and types for each trigger and argument. The
logits is denote as logitsp

trg = {[l1,1
trg, l

1,2
trg, · · · , l1,k

trg], · · · , [lN,1
trg , lN,2

trg , · · · , lN,k
trg ]} and

logitsp
arg = {[l1,1

arg, l
1,2
arg, · · · , l1,L

arg], · · · , [lN,1
arg , lN,2

arg , · · · , lN,L
arg ]} for trigger detection

and argument extraction respectively, where N is the length of Tp, k is the num-
ber of event types and L is the size of argument role set R. For each event type
ti or argument role rj , we operate sigmoid function on the logits to estimate the
confidence score of predicted result and set average score of each event type ti
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or argument role rj as the threshold of confidence S :

Si
trg =

1
M × N

M∑

p=1

N∑

q=1

sigmoid
(
lq,i
trg

)
(3)

Sj
arg =

1
M × N

M∑

p=1

N∑

q=1

sigmoid
(
lq,j
arg

)
(4)

where M is the size of the training set. The model self-corrects the probable noisy
labels with low confidence according to the threshold S. For trigger label set
Y p

trg = [yp,1
trg, y

p,2
trg, · · · , yp,k

trg ] and argument label set Y p
arg = [yp,1

arg, y
p,2
arg, · · · , yp,L

arg]
in Yp of p-th event sample, we estimate the confidence score for each label yp,u

trg ∈
Y p

trg and yp,v
arg ∈ Y p

arg, denoted as Cp,u
trg and Cp,v

arg. When Cp,u
trg or Cp,v

arg is lower
than the corresponding threshold Su

trg or Sv
arg, the model correct the noisy label

yp,u
trg or yp,v

arg into all labels with high confidence over the threshold:

yp,u
trg ← {lp,i

trg|lp,i
trg ∈ logitsp

trg, sigmoid(lp,i
trg) > Si

trg} (5)

yp,v
arg ← {lp,j

arg|lp,j
arg ∈ logitsp

arg, sigmoid(lp,j
arg) > Sj

arg} (6)

Since there might be no lp,i
trg or lp,j

arg that has confidence score higher than the
threshold in current p-th event sample. We temporarily remove the latent noisy
label yp,u

trg or yp,v
arg and train a new event extraction model with corrected data in

the next iteration.

2.5 Cooperative Global Pointer Network

When encountering extremely noisy labels, the confidence of clean labels could
be affected, which brings accumulated error in each iteration due to the sample-
selection bias. To alleviate this problem, we further propose the CoGPN. For each
token hi, the span-specific GPN gs(·) produces the logits to predict whether hi

corresponds to the start or end position of a trigger or argument. The cascade
GPN gc(·) generates the multi-head logits of the span and type concurrently,
each head of cascade GPN focuses on the span representation of a certain event
type or argument role. Specifically, we first use linear layers to obtain the head
and tail position representation for the cascade GPN gc(·) (Eq. 7, Eq. 8) and the
span-specific GPN gs(·) (Eq. 9, Eq. 10).

Qα,hτ
= WQ,hτ

H + bQ,hτ
(7)

Kβ,hτ
= WK,hτ

H + bK,hτ
(8)

Qα = WQH + bQ (9)
Kβ = WKH + bK (10)

Here, H ∈ R
N×H denote the hidden embedding of whole event text Tp. WQ,hτ

,
WK,hτ

, WQ, WK ∈ R
1×H , bQ,hτ

, bK,hτ
, bQ and bK are trainable parameters.

hτ is one of the multi-head for particular type τ . Then, the logits for span s[α : β]
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corresponding to the position of a trigger or an argument is calculated as Eq. 11.
While the logits for span s[α : β] of certain type τ is computed as Eq. 12:

logitsα,β
span = (RαQα)� (RβKβ) = Q�

α Rβ−αKβ (11)

logitsα,β
hτ

= (RαQα,hτ
)� (RβKβ,hτ

) = Q�
α,hτ

Rβ−αKβ,hτ
(12)

Rα and Rβ are rotary position embedding [10] that inject relative position infor-
mation to the logits.

Different from named entity recognition, the labels of event extraction are
relatively sparse. Therefore, we apply Circle loss [10] to alleviate label imbalance.

Lcircle = log

⎛

⎝1 +
∑

(Qα,Kβ)∈P
e−logitsα,β

⎞

⎠ + log

⎛

⎝1 +
∑

(Qα,Kβ)∈N
elogits

α,β

⎞

⎠

(13)
Qα, Kβ represent the head and tail indexes of the span s[α : β]. P denotes the
set of spans with the ground-truth label. N denotes the set of spans that are
not triggers or arguments. logitsα,β can be logits from the gs(·) or gc(·).

Algorithm 1. Cooperative Training Algorithm
Input: The training set Dtrain, the span-specific GPN gs(·), the cascade GPN gc(·),

noise rate γ, max training epoch Emax.
Output: The final span-specific GPN gs(·) and cascade GPN gc(·).
1: for Each epoch E ← 1, 2, · · · , Emax do
2: Shuffle the noisy training set Dtrain and generate K mini-batch B
3: Update the selection rate R: R ← 1 − E−1

Emax
γ

4: for Each mini-batch B ← B1, B2, · · · , BK do
5: Ds ← {Isl|Isl ∈ B, Lcircle(gs, Isl) ≤ Lcircle(gs, B)[R]}
6: Dc ← {Isl|Isl ∈ B, Lcircle(gc, Isl) ≤ Lcircle(gc, B)[R]}
7: Update gs(·) on Dc based on Eq. 13
8: Update gc(·) on Ds based on Eq. 13
9: end for

10: end for
11: return gs(·), gc(·)

During the training phase, the two GPNs mutually treat the small loss event
samples as possible clean. Specifically, in each mini-batch B, gs(·) and gc(·)
select R percentage of training samples form B. The value of selection rate
R = 1 − E−1

Emax
γ depends on the noisy rate γ (inferred via validation set), and

linear decreasing along with current epoch E , since deep neural networks initially
fit clean samples, and then gradually fit noisy ones. As shown in Algorithm1,
the selection process is elaborated in lines 3 to 6. Then, the selected samples
from gs(·) are transferred to gc(·) for parameter updates, and the selected sam-
ples from gc(·) are transferred to gs(·) simultaneously. The parameter updating
process is described in lines 7 to 8 of Algorithm 1. In the inference phase, we
add the logitsα,β

span to the logitsα,β
hτ

as the fusion logits.
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3 Experiments

3.1 Experimental Setup

Benchmark Setting. For evaluation, we apply Tolar to several strong EE
methods and CoGPN on ACE 2005 1 and MAVEN 2 with synthetic noise. In
order to approximate real-world noise, we produce challenging synthetic noise
instead of random noise. Specifically, for each sample in ACE 2005, we replace
the span of triggers and arguments with other verbs or entities within the same
sample. Meanwhile, we replace the types of triggers and arguments with other
types in the identical dataset. Since MAVEN is an event detection dataset, only
the labels of triggers will be replaced. The probability of this replacement is
{20%, 40%, 60%, 80%} to simulate the increasing noise rate. Following prior
work [11], we keep the splits of training, validation and test set for ACE 2005
and MAVEN. The detailed splits and the statistics of the two datasets are shown
in Table 1. In order to optimize models with the validation set, we only generate
noisy labels on the training set.

Table 1. Statistics of ACE 2005 and MAVEN.

Datasets Documents Sentences Types Roles Samples Train Valid Test

ACE 2005 599 15,789 33 35 5,349 529 30 40

MAVEN 4,480 49,873 168 - 118,732 2,913 710 857

Evaluation Metric. We adopt the criteria defined in previous work [6]: A
trigger is correctly classified if its span and event type match those of a gold-
standard trigger.An argument is correctly classified if its span and argument role
match those of any of the reference argument mentions. The trigger classification
task (T-C) and argument classification task (A-C) are evaluated via micro F1
scores.

Baselines. We compare our work to a number of competitive methods con-
stituted by both event extraction models and noisy label learning methods.
All event extraction methods use BERT [4] as encoder, except PAIE utilizes
BART [5] as the backbone:

– CRF: A sequence labeling-based baseline that incorporates BERT and the
additional Conditional Random Field (CRF) layer.

– CasEE [9]: A pointer network-based joint learning framework that solves
overlapping event extraction with cascade decoding.

1 https://catalog.ldc.upenn.edu/LDC2006T06.
2 https://github.com/THU-KEG/MAVEN-dataset.

https://catalog.ldc.upenn.edu/LDC2006T06
https://github.com/THU-KEG/MAVEN-dataset
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– EEQA [1]: A MRC-based method that extracts the event arguments in an
end-to-end manner.

– PAIE [8]: A prompt-based model designed for event argument extraction
task. We extend PAIE to event extraction including both trigger and argu-
ment classification via a pipeline-based paradigm.

– S-model [2]: This method estimates the noise transition matrix via an addi-
tional softmax layer that connects the correct labels to the noisy ones.

– MentorNet [3]: MentorNet provides a curriculum for student network to
focus on the samples where labels are probably correct.

– JoCoR [12]: A joint training method that calculates a joint loss with co-
regularization for each training example.

3.2 Main Results

Table 2 illustrates the main experimental results. Our Tolar significantly pro-
motes various strong event extraction models. The F1 scores can be improved
by 10.2% at most on ACE 2005 and 13.0% at most on MAVEN. Most noisy
label learning methods encounter a sharp decline with the increase of noise rate,
while Tolar maintains its performance until the noise rate reaches 80%. Mean-
while, Tolar enhances the F1 scores by 8.9% at most on ACE 2005 and 8.2% at
most on MAVEN, compared with vanilla event extraction models. Though Tolar
decreases a lot when the noise rate is 80%, CoGPN achieves 50.1% and 41.7%
F1 scores on ACE 2005 and MAVEN respectively, obtaining further 15% perfor-
mance gains compared with PAIE (the best performance among all baselines).
The results indicate the superiority of CoGPN.

In addition, Table 2 shows that EEQA and PAIE are more stable than CRF
and CasEE when dealing with increasing noise. We speculate that the well-
designed templates of these methods fully utilize the priori knowledge of PLMs,
which guarantees their stability in noisy settings. We also observe that S-model
slightly enhances various event extraction models on ACE 2005, while playing a
negative role on MAVEN. Considering MAVEN is a fine-grained event detection
benchmark with 168 event types, it is quite difficult for S-model to acquire a noise
transition matrix. MentorNet achieves competitive performance under low-level
noisy circumstances while losing its advantages or even worse than vanilla event
extraction models when the noise rate is over 50%. We suppose that sample-
selection bias induces performance decline in high-level noisy scenarios.

3.3 Ablation Study

We verify the effectiveness of different components in Tolar + CoGPN by remov-
ing each module. (1) event schema mapping. We remove the event schema
mapping in the first stage. (2) self-adaptive iteration. The data from the first
stage will be used for training CoGPN directly without self-adaptive iteration.
(3) span-specific GPN. We drop the span-specific GPN gs(·) and only train
the cascade GPN gc(·). (4) cooperative training. We retain two GPNs with-
out the cooperative training algorithm. To evaluate the performance of each
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Table 2. Overall performance (F1%), where T-C and A-C denote trigger classification
and argument classification. Results of all the methods are the average of random five
times. We highlight the best result and underline the second best. Only denotes vanilla
event extraction models without any noisy label learning methods.

Datasets ACE 2005 MAVEN

Noise Rate (%) 20 40 60 80 20 40 60 80

Task T-C A-C T-C A-C T-C A-C T-C A-C T-C T-C T-C T-C

Only CRF 71.4 55.4 66.9 51.0 56.3 42.6 34.3 27.1 65.8 60.8 42.3 18.8

CasEE 71.2 56.1 66.7 51.6 57.1 42.2 35.1 27.4 66.3 61.0 44.2 19.1

EEQA 70.8 52.1 65.9 49.6 57.9 43.4 37.6 28.2 63.3 59.2 46.7 22.9

PAIE 72.9 57.6 68.3 54.5 59.6 46.6 38.8 30.9 66.5 62.1 48.1 24.7

S-model + CRF 71.8 55.2 64.8 48.6 53.2 40.6 33.7 26.3 61.0 57.6 37.5 14.7

CasEE 71.3 56.3 66.9 50.4 56.8 43.0 32.1 27.0 61.3 58.9 41.8 16.2

EEQA 71.0 52.4 67.4 51.8 58.5 43.9 39.8 27.6 61.8 57.8 44.2 20.5

PAIE 73.6 58.3 69.0 55.4 60.1 47.7 40.4 30.1 63.4 60.2 46.6 23.4

MentorNet + CRF 72.8 56.5 70.3 53.6 54.7 41.4 30.1 25.6 66.5 61.4 36.3 14.6

CasEE 72.7 56.3 69.9 53.0 56.5 41.6 30.4 25.7 66.8 61.7 39.9 15.5

EEQA 71.0 52.4 68.2 50.6 60.1 45.8 36.5 27.3 64.1 61.9 46.8 20.4

PAIE 74.2 58.6 72.4 56.0 60.8 49.4 37.2 29.7 66.8 62.3 47.7 22.0

JoCoR + CRF 71.5 55.6 67.4 51.5 54.4 40.7 35.8 27.2 65.3 60.9 44.4 19.1

CasEE 71.4 56.1 66.8 52.2 58.3 40.5 36.6 28.2 66.3 61.4 45.9 19.6

EEQA 70.9 52.2 65.3 49.8 56.7 45.4 36.9 27.6 64.0 59.4 47.0 21.4

PAIE 73.4 57.9 72.3 57.4 61.2 47.9 40.6 31.6 65.8 61.9 48.8 24.2

Tolar + CRF 73.6 56.7 71.4 55.5 63.7 50.8 38.4 30.6 66.5 62.5 49.3 20.4

CasEE 73.4 56.9 71.3 56.1 65.0 50.6 38.9 30.7 67.4 64.2 52.0 22.3

EEQA 72.3 52.7 71.0 52.4 66.8 52.9 42.6 34.0 64.8 62.1 54.9 25.8

PAIE 75.2 59.6 73.0 57.8 66.5 53.5 43.3 35.2 67.1 63.8 55.4 27.2

CoGPN 74.0 58.8 73.1 58.0 68.4 55.7 58.2 50.1 67.2 65.3 59.6 41.7

module, we divide ACE 2005 into three subsets, namely, I, II, III. I is relatively
easy, where only the labels of triggers are replaced with noisy labels. II is a sub-
set where both triggers and arguments can be noisy labels. However, We either
replace the span of triggers and arguments with other verbs or entities within
the same sample or replace their types with other types in ACE 2005. III is the
most challenging, where all labels of triggers and arguments can be noisy.

The Table 3 reveals that: (1) Event schema mapping stage significantly
improves the performance in I set and plays a positive role in II set and III
set, thanks to the restricted logical rule in Eq. 2. (2) Self-adaptive iteration is
vital, the F1 scores will drop by 2.3%–8.6% along with the increasing noise rate.
(3) Removing the span-specific GPN will lead to an evident decline on II set
and III set. It indicates the superiority of CoGPN that utilize both the span
and type features. (4) When the noise rate comes to 60% or more, the F1 scores
will decrease dramatically on both II set and III set. It demonstrates that the
cooperative training algorithm ensures outstanding resistance to extreme noise.
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Table 3. Ablation study on Tolar + CoGPN. We conduct trigger classification task
on ACE 2005 (with synthetic noise).

Datasets I II III

Noise Rate (%) 20 40 60 80 20 40 60 80 20 40 60 80

Tolar + CoGPN 76.6 75.9 73.7 65.7 74.8 73.7 69.5 58.8 70.7 69.2 62.6 53.8

w/o event schema mapping 74.3 72.8 69.6 59.1 74.1 72.5 67.8 55.9 70.1 67.4 61.3 52.6

w/o self-adaptive iteration 74.8 71.3 64.5 59.7 71.5 69.0 60.9 51.3 68.4 65.3 54.5 47.2

w/o span-specific GPN 74.6 73.0 70.3 55.4 72.0 70.7 65.6 50.4 69.5 66.3 59.0 47.5

w/o cooperative training 77.2 74.8 70.4 52.2 75.5 73.2 65.3 45.5 71.2 67.8 58.4 40.9

4 Conclusion

This paper proposes a novel two-stage label rectification framework Tolar for
noisy event extraction settings, which is an non-trivial yet practical scene. Tolar
deals with explicit label inconsistency via event schema mapping and utilizes
the self-adaptive iteration to cope with the latent semantic noise. Experimental
results show the promising performance and efficiency of our methods to handle
challenging synthetic noise.
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Abstract. Recently, multimodal information extraction has gained
increasing attention in social media understanding, as it helps to accom-
plish the task of information extraction by adding images as auxiliary
information to solve the ambiguity problem caused by insufficient seman-
tic information in short texts. Despite their success, current methods do
not take full advantage of the information provided by the diverse repre-
sentations of images. To address this problem, we propose a novel unified
visual prompt tuning framework with Mixture-of-Experts to fuse differ-
ent types of image representations for multimodal information extrac-
tion. Extensive experiments conducted on two different multimodal infor-
mation extraction tasks demonstrate the effectiveness of our method. The
source code can be found at https://github.com/xubodhu/VisualPT-
MoE.

Keywords: Multimodal information extraction · Mixture-of-Experts ·
Prompt learning · Social media

1 Introduction

Recently, multimodal information extraction (MIE) has gained increasing atten-
tion in social media understanding, as it helps to accomplish the task of informa-
tion extraction by adding images as auxiliary information to solve the ambigu-
ity problem caused by insufficient semantic information in short texts. Existing
approaches focus on using multimodal interaction mechanisms to enhance the
representation of text and images, which have achieved promising results in many
multimodal information extraction tasks [16,20].

Despite their success, current approaches do not take full advantage of the
information provided by the diverse representations of images. As shown in
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Fig. 1, the current approaches of representing images can be broadly classified
into two categories, namely pixel-level representations and semantic representa-
tions. The pixel-level representations can be obtained by using a convolutional
neural network (CNN) to encode the entire image [7,14,16,19] or salient regions
of the image [1,4,18], containing low-level visual information such as texture,
shape and contour, presented as feature maps. The semantic representations
contain high-level visual information related to the salient objects in the image
and are represented as text embeddings, such as object labels, semantic struc-
tures, and image caption, which can be obtained using object detection [12],
scene graph generation [20], and image caption generation [11], respectively.
There is a significant semantic gap between the pixel-level representation and
the semantic representation due to the different forms of the two, and the cur-
rent approaches can only use one of them, which limits the image representation
capability.

Fig. 1. Examples of different ways for representing an image.

In this paper, we argue that an image with diverse representations is worth a
thousand words and that multimodal information extraction tasks can be accom-
plished more effectively using different types of image representations. However,
there are two challenges in using these diverse types of image representations for
multimodal information extraction. First, as mentioned above, there is a huge
semantic gap between semantic and pixel-level representations. Second, their
contribution to the accomplishment of each MIE task is different.

To address these issues, we propose a unified visual prompt tuning framework
with mixture-of-experts (VisualPT-MoE) for multimodal information extraction
tasks. Specifically, to eliminate the semantic gap between pixel-level representa-
tions and semantic representations, we project both types of representations as
prompts. To fuse different types of image representations, we consider the weights
of different image representations and combine the image representations with
different weights by Mixture-of-Experts (MoE). In addition, considering that
images are not always helpful for information extraction [13], we additionally
introduce one prompt from the pseudo image representation to mitigate the
interference caused by unhelpful images.
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Our main contributions are summarized as follows:

– Firstly, to the best of our knowledge, we are the first to propose the use of
both pixel-level and semantic representations of images with a huge semantic
gap in multimodal information extraction tasks.

– Secondly, we propose a novel unified visual prompt tuning framework with
mixture-of-experts for multimodal information extraction tasks, which can
eliminate the semantic gap between pixel-level representations and semantic
representations and consider the contributions of diverse image representa-
tions in accomplishing the specific multimodal information extraction task.

– Finally, we have conducted experiments on multimodal named entity recog-
nition and multimodal relation extraction, and the experimental results show
that our proposed method can significantly and consistently outperform the
state-of-the-art on both tasks.

2 Overview

Our overall framework of VisualPT-MoE is shown in Fig. 2, which contains four
main components: (1) diverse image encoders (i.e. image regions encoder, full
image encoder, object detection encoder, image caption encoder and pseudo
image encoder); (2) visual prompts fusion module; (3) visual-enhanced text
encoder; (4) task-specific decoder.

Fig. 2. Overall framework of VisualPT-MoE.
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3 Method

3.1 Diverse Image Encoders

As shown in Fig. 2, we use five different image encoders to obtain diverse image
representations, namely image regions encoder, full image encoder, object detec-
tion encoder, image caption encoder and pseudo image encoder.

For the image regions encoder, we first use a visual grounding model to
obtain the top 3 significant regions and feed them into the regions encoding
module, which consists of a convolutional neural network and a pooling layer, to
obtain the pixel-level representation. Finally, we concatenate the representations
of the 3 regions together to get the final pixel-level image regions representation
Ir ∈ R

2048×Mr , where Mr = 3 × 2 × 2 = 12.
For the full image encoder, we input the image into ResNet [3] to get the pixel-

level full image representation Ie ∈ R
2048×Me , where Me = 49 is the number

of regions in the image and 2048 is the dimension of the representation of each
region in the image.

For the object detection encoder, we first input the image into the Faster
RCNN [9] and select the top 3 objects with the higher object classification scores
as object labels. After that, we concatenate the names of the object labels as
plain text and obtain the semantic representation of object labels Io ∈ R

768×Mo

by using the Embedding layer of BERT [2], where Mo is the length of the object
labels text.

For the image caption encoder, we first input the image into VIT-GPT21

to obtain the image caption. Then we also treat the caption as plain text and
obtain the semantic representation of the image caption Ic ∈ R

768×Mc by using
the Embedding layer of BERT, where Mc is the length of the caption.

Considering the text-image mismatch problem [13,14], we propose a trainable
pseudo image encoder to generate a pseudo image representation. Specifically,
we initialize an Embedding layer of length Mp with 768 dimensions as the pseudo
image encoder to obtain the pseudo image representation Ip ∈ R

768×Mp , where
Mp is the max length of the Mr, Me, Mo and Mc.

3.2 Visual Prompts Fusion Module

The visual prompts fusion module is used to project the five image representa-
tions into different visual prompts (the image representations serve as prompts
for the text, which is the same as the visual prefix in [1]) with the same dimen-
sions and combine the different prompts to get the fused visual prompts.

Firstly, we unify the length of the different image representations as M .
Then we use the trainable weight matrices Wr ∈ R

d×2048, We ∈ R
d×2048, Wo ∈

R
d×768, Wc ∈ R

d×768 and Wp ∈ R
d×768 to project them as prompts:

e1 = WrIr ;e2 = WeIe ;e3 = WoIo ;e4 = WcIc ;e5 = WpIp , (1)

1 https://huggingface.co/nlpconnect/vit-gpt2-image-captioning.

https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
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where {e1,e2,e3,e4,e5} ∈ R
d×M are the weight matrices, d = 768.

Then we input the different prompts into the router module based on the
mixture-of-experts (MoE) technique, which consists of a cross-modal interaction
layer and a multilayer perceptron (MLP) with one hidden layer. The cross-modal
interaction layer is used to obtain the relevance between the text representation
and the image representations, which is defined as follows:

Rl =
( 1
n + 2

n+2∑

i=1

Hl−1
i

) � (
1
E

E∑

j=1

ei), 1 ≤ l ≤ 12, (2)

where Rl ∈ R
M∗d is the l-th layer relevance between the text representation from

the l − 1 Transform layer and the image representations from different experts,
E is the number of experts (in this paper, E is 5).

Next, we input Rl into an MLP with an activation function of Softamx to
get the corresponding weights of each expert at each layer:

αl = Softmax(W l
2 (relu(W l

1Rl)) + ε), (3)

where relu is an activation function, W l
1 ∈ R

M∗d×M∗d, W l
2 ∈ R

E×M∗d, ε ∈ R
E

and ε ∼ N (0, 1
E2 ), αl ∈ R

E . Finally, we weight the representations of all experts
to get the fused visual prompt of the l−th layer P l ∈ R

d×M :

P l =
E∑

i=1

αiei , αi ∈ αl (4)

We use the balance loss [15] to allow the router module to select each expert
more equally during training, which regards the largest weight among the experts
in every layer as the loss:

Lbalance =
12∑

l=1

Max(αl) (5)

3.3 Visual-Enhanced Text Encoder

The visual-enhanced text encoder uses BERT [2] as the backbone. Specifically,
we first add a [CLS] token and a [SEP] token at the beginning and end of the
text input as S ∈ R

768×(n+2). Then we feed the S to the Embedding layer to
get the text representation of the 0-th layer H0 ∈ R

768×(n+2). Next, we input
the text representation of l − 1 layer Hl−1 and the fused visual prompt of the
l layer P l into the l-th Transformer layer to obtain the visual-enhanced text
representation of l-th layer Hl . The detailed process is as follows.

We first project the Hl−1 as the “queries”, “keys” and “values” of the l-th
layer according to the attention mechanism [7]:

Ql = W l
QHl−1;Kl = W l

K Hl−1;V l = W l
V Hl−1, (6)
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where {W l
Q ,W l

K ,W l
V } ∈ R

d×d are the weight matrices. Then, we project P l

as additional “keys” Kl
p and “values” V l

p to obtain Hl :

Kl
p = φl

kP l ;V l
p = φl

vP l (7)

Hl = Softmax(
(Ql)T [Kl

p ;Kl ]√
d

)[V l
p ;V l ]T (8)

where {φl
k ,φl

v} ∈ R
d×d are the weight matrices, Hl ∈ R

(n+2)×d. After 12 layers
of Transformer, we obtain the final representation H12 ∈ R

(n+2)×d.

3.4 Task-Specific Decoder

Finally, depending on the specific multimodal information extraction task, the
visual-enhanced text representation is fed to the task-specific decoder to obtain
the final results.

For the multimodal named entity recognition (MNER), we regard MNER as
a sequence labeling task following [1,7,14,16]. We use Softmax as a decoder to
predict the MNER results p(yner|H12) and use cross entropy and balance loss
(see Sect. 3.2) to obtain the final loss for this task:

Lner =
1
B

B∑

j

( − λ log p(y(j)
ner|H12) + (1 − λ)L(j)

balance

)
, (9)

where B is the batch size, λ is a hyper-parameter.
For the multimodal relation extraction (MRE), we take the representation of

[CLS] in H12 as input and use the Softmax as the decoder to predict the MRE
results p(yre|H12) following [1] and use the same loss as MNER:

Lre =
1
B

B∑

j

( − λ log p(y(j)
re |H12) + (1 − λ)L(j)

balance

)
(10)

4 Experiment

4.1 Dataset

For the MNER task, we use Twitter2015 [19] dataset and Twitter2017 [7]
dataset. There are four types of entities: Person (PER), Organization (ORG),
Location (LOC) and others (MISC). In total, there are 4,000/1,000/3,357
and 3,373/723/723 sentences in train/development/test set contained in
Twitter2015 and Twitter2017, respectively.

For the MRE task, we use MNRE dataset [20]. It contains 9,201 sentences
and 15,485 entity pairs with 23 types of relations. There are 12,247/1,624/1,614
entity pairs in train/development/test set, respectively.
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4.2 Parameter Settings

We conduct all the experiments on NVIDIA GTX 2080 Ti GPUs with PyTorch
1.7.1. The parameters settings of our model are as follows:

– We use BERTbase as the backbone of our visual-enhanced text encoder.
– We use ResNet50 for image regions encoding and image encoding. We use

Faster-RCNN-ResNet50, VIT-GPT2 for object labels and image caption,
respectively.

– We use the grid search in the development set to find the learning rate
of visual-enhanced text encoder and visual prompts fusion module within
[1e−5, 7e−5], the learning rate of decoder within [3e−4, 3e−2], the batch size
within [8,32], and the hyper-parameter λ within [1e−4, 1e−6].

4.3 Baselines

To demonstrate the effectiveness of our model (VisualPT-MoE), we compare our
model with several representative text-based models and multimodal models.

For the MNER, we compare four text-based models and ten multimodal mod-
els. The text-based NER models are: (1) CNN-BiLSTM-CRF [8], (2) HBiLSTM-
CRF [5], (3) BERT-CRF and (4) MRC-MNER-Text [4]. The multimodal NER
models are: (1) Ada-CNN-BiLSTM-CRF [19], (2) GVATT-HBiLSTM-CRF [7],
(3) Ada-BERT-CRF [16], (4) MAF [14], (5) MRC-MNER [4], (6) UMT [16], (7)
UMGF [18], (8) MEGA [20], (9) VisualBERT [6], and (10) HVPNet [1].

For the MRE, we compare two text-based RE models and five multimodal
RE models. The text-based RE models are: (1) PCNN [17] and (2) MTB [10].

Table 1. Performance comparison on MNER and MRE. The results from [4] and [1].

Methods Twitter2015 Twitter2017 MNRE

Precision Recall F1 Precision Recall F1 Precision Recall F1

CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37 – – –

HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37 – – –

BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44 – – –

MRC-MNER-Text 76.35 69.46 72.24 87.12 84.03 85.55 – – –

PCNN – – – – – – 62.85 49.69 55.49

MTB – – – – – – 64.46 57.81 60.86

Ada-CNN-BiLSTM-CRF 72.75 68.74 70.69 84.16 80.24 82.15 – – –

GVATT-HBiLSTM-CRF 73.96 67.90 70.80 83.41 80.38 81.87 – – –

Ada-BERT-CRF 69.87 74.59 72.15 85.13 83.20 84.10 – – –

MAF 71.86 75.10 73.42 86.13 86.38 86.25 – – –

MRC-MNER 78.10 71.45 74.63 88.78 85.00 86.85 – – –

UMT 71.67 75.23 73.41 85.28 85.34 85.31 62.93 63.88 63.46

UMGF 74.49 75.21 74.85 86.54 84.50 85.51 64.38 66.23 65.29

MEGA 70.35 74.58 72.35 84.03 84.75 84.39 64.51 68.44 66.41

VisualBERT 68.84 71.39 70.09 84.06 85.39 84.72 57.15 59.48 58.30

HVPNet 73.87 76.82 75.32 85.84 87.93 86.87 83.64 80.78 81.85

VisualPT-MoE 76.11 75.16 75.63 86.89 87.96 87.42 84.81 83.75 84.28
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The multimodal RE models are: (1) UMT [16], (2) UMGF [18], (3) MEGA [20],
(4) VisualBERT [6], and (5) HVPNet [1].

4.4 Performance Comparison

Firstly, we compare VisualPT-MoE and HVPNet with other multimodal meth-
ods. From the Table 1, both methods perform better than other multimodal
methods, which demonstrates the effectiveness of the prompt tuning framework.

Then, we compare VisualPT-MoE with HVPNet, our method performs bet-
ter than HVPNet on three datasets. Especially on the MNRE dataset, our model
significantly outperforms HVPNet by 2.43 points in the F1 score, which demon-
strates that our method of fusing diverse image representations is effective.

4.5 Ablation Study

Table 2. Ablation study of our model. We use E1, E2, E3, E4 and E5 to represent
the different experts from image regions encoder, full image encoder, object detection
encoder, image caption encoder and pseudo image encoder, respectively.

Methods Twitter2015 Twitter2017 MNRE

Precision Recall F1 Precision Recall F1 Precision Recall F1

References

BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44 – – –

MTB – – – – – – 64.46 57.81 60.86

HVPNet 73.87 76.82 75.32 85.84 87.93 86.87 83.64 80.78 81.85

HVPNet w/o E1 73.15 75.23 74.18 85.11 87.56 86.32 64.67 60.63 62.58

HVPNet w/o E2 72.71 75.69 74.17 85.63 86.90 86.26 81.66 80.00 80.82

VisualPT-MoE 76.11 75.16 75.63 86.89 87.96 87.42 84.81 83.75 84.28

Using Single Image Representation

E1 only 73.15 75.44 74.28 85.66 86.68 86.17 81.96 80.94 81.45

E2 only 72.13 76.42 74.21 85.16 87.49 86.31 61.80 62.19 62.00

E3 only 72.58 76.38 74.43 85.33 87.86 86.58 61.73 62.50 62.11

E4 only 73.10 75.65 74.35 85.45 86.97 86.21 63.71 65.00 64.35

E5 only 72.11 75.67 73.85 84.52 87.27 85.87 65.16 58.44 61.61

Fusing Multiple Image Representations by Averaging Strategy

E3+E4+E5 w/ AVG 73.80 75.69 74.74 86.55 87.19 86.87 64.77 66.47 65.61

E1+E2+E3+E4 w/ AVG 74.01 75.86 74.93 85.67 88.08 86.86 83.39 82.34 82.86

E2+E3+E4+E5 w/ AVG 73.93 76.21 75.05 86.35 87.56 86.95 64.31 67.21 65.73

Fusing Multiple Image Representations by MoE Strategy

E3+E4+E5 w/ MoE 74.29 76.04 75.15 86.32 87.79 87.05 66.36 65.11 65.73

E1+E2+E3+E4 w/ MoE 74.32 76.41 75.35 86.54 87.36 86.95 83.83 83.44 83.63

E2+E3+E4+E5 w/ MoE 74.58 76.61 75.58 86.56 87.65 87.10 67.60 68.34 67.97

Firstly, we investigate the effectiveness of single image representation on different
tasks. As shown in “Using Single Image Representation” in Table 2, different
representations have different effects on different tasks. Specifically, in the MNER
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datasets, the best results are achieved with the model using the representation
of object labels (E3). In the MRE dataset, the best results are achieved with the
model using the representation of pixel-level image regions (E1).

Secondly, we investigate the effectiveness of using diverse image representa-
tions on different tasks. As shown in both the “Fusing Multiple Image Represen-
tations by Averaging Strategy” and the “Fusing Multiple Image Representations
by MoE Strategy” parts in Table 2, using multiple image representations does
perform better than using a single image representation, which illustrates the
effectiveness of using diverse image representations.

Finally, we investigate the effectiveness of the MoE fusion strategy in fus-
ing different image representations on different tasks. From the table, we can
find that using the same image representations, our MoE fusion strategy always
performs better than the averaging fusion strategy, which illustrates the effec-
tiveness of our MoE fusion strategy.

5 Conclusion

In this paper, we propose VisualPT-MoE, a unified visual prompt tuning frame-
work with mixture-of-experts for multimodal information extraction. Specifi-
cally, we propose projecting different image representations into prompts to
eliminate the semantic gap and introducing the prompt from the pseudo image
representation to alleviate the interference caused by mismatched images. And,
we use MoE to fuse all prompts to get the final prompt and establish the rela-
tionship between the image and the text. We conduct experiments and ablation
studies to show that using diverse image representations can effectively improve
model performance and MoE can effectively fuse different prompts.
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Abstract. Polysemy is a widespread linguistic phenomenon. A word
can carry a variety of semantic information and is recognized as a def-
inite semantic in a specific context. However, in many models that are
good at processing text sequences, words are usually treated as a sin-
gle embedding, which ignores the polysemy characteristics of words and
makes it difficult to model the process of semantic cognition. To fill
this gap, this paper models a variety of RNNs from the perspective of
the Markov decision process (MDP) and classifies them as Single-state
RNN (SRNN), pointing out SRNN deficiencies in polysemy and semantic
cognitive processes. A Polymorphic Recurrent Neural Network (PRNN)
that can effectively simulate the process of human semantic cognition is
proposed by improving the policy function. PRNN selects the specific
semantics to be expressed according to the actual context in which the
word is located. Extensive experimental results show that PRNNs are
superior to RNNs in many natural language processing tasks. The anal-
ysis of specific cases shows how PRNNs simulate the process of human
language cognition.

Keywords: Natural Language Processing · Recurrent Neural
Network · Markov Decision Process · Word Embedding

1 Introduction

Natural Language Understanding (NLU) mainly contains two problems: poly-
semy and semantic cognition.

– Polysemy: This is an inherent property of natural language words. A word
can contain multiple meanings at the same time.

– Semantic Cognition: This is a problem caused by polysemy. People need
to determine the explicit semantics expressed by a word through a specific
context.

Table 1 presents examples of polysemy and semantic cognition challenges
faced in language modeling and machine translation. In the example of the
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language model, the word apple can express both a kind of fruit and a kind
of electronic product, and only under a particular context, can we tell the spe-
cific meaning. In the other example, the specific context again determines the
word we refer determines what the word we refer to, such as readers or scientists.
If polysemy is not considered, the word we may only be considered as similar
to other personal pronouns such as they, from a grammatical perspective. In
machine translation, a word can express multiple meanings, which means that
the same word corresponds to several different translations during the machine
translation process. For example, the word ‘hot’ has many meanings in English,
it can describe temperature, it can be used to express taste, it can also describe a
person’s temper, etc. This leads to the need to combine the context in the trans-
lation process to accurately find the words corresponding to the hot meaning.
In both cases, the problem of polysemy is obvious.

Table 1. Polysemy in NLP

Polysemy in language model Polysemy in machine translation

word text word original-en translation-cn

apple I like to eat apple hot hot bath 热水浴

I like to use apple. Pepper is hot 胡椒是辣的

We We are readers, they are riders hot on pop music 热衷于流行音乐

We are scientists hot music apple 节奏强的音乐

From the above analysis, it is not difficult to see that the problems of polysemy
and semantic cognition are widespread. However, in many current natural lan-
guage understanding models, such as the Vanilla RNN (VRNN) [1], Long Short-
Term Memory (LSTM) [2] and Gated Recurrent Unit (GRU) [3], words are usually
mapped to a fixed embedding. As shown in the following formula, the word xi is
input into the embedded model g to generate the corresponding embedded ei.

ei = g(xi) (1)

There are two explanations for this mapping:

– Each embedding represents a single semantics. According to the transmission
effect, it is easy to conclude that a word contains only a single semantic,
which contradicts the inherent properties of natural language itself and cannot
model the actual process of human semantic cognition.

– Each embedding is a fusion of multiple semantics. Although this method
solves the problem of polysemy to a certain extent, it is elementary to cause a
phenomenon of semantic chaos. For example, the word hot mentioned above
has many completely different meanings. When its multiple semantics are
combined and fixed embedded representation is used, it is difficult to explain
the state of the embedding corresponding to the word. Therefore, it is difficult
to determine whether a word accurately represents its meaning in a specific
context.
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In the cognitive process, humans must recognize a specific meaning based
on the current environment or context in which the text is placed [4]. In the
NLP task, the deterministic meaning of words in the sequence is determined
as the sequence is learned. In the current study, Recurrent Neural Networks
(RNN) and their variants are widely used in NLP tasks due to their advan-
tages in long-sequence information processing. Different variants of RNN share
a common mathematical formulation. Take RNNs that are good at processing
natural language sequences as an example, in the iterative process of an RNN,
at each time stamp i, the original input xi is mapped to an embedding ei via a
lookup table, and then the new context vector hi is generated based on ei and
the previous context information hi−1. The process repeats until time t. RNN
treats each input as a fixed embedding, in which all possible meanings are mixed
up in an indistinguishable manner. From a human cognitive point of view, this
does not accurately represent the multiple semantics of words. Ideally, a limited
number of different meanings should be explicitly encoded so that the same word
is represented by different embedding vectors in different contexts.

It can be seen that it is difficult for RNNs to meet the modeling of the two core
NLU problems of polysemy and semantic cognition. To fill this gap, we propose to
solve this problem from a new cognitive incentive perspective, model the RNN as
a Markov decision process (MDP), and establish a mapping relationship between
RNN and MDP, in the decision process from multiple different models trained
on a large corpus generate embeddings that tend to have different semantics and
select the embedding that best fits the context, so that a word can be mapped
to multiple embeddings. As far as we know, we are the first to adopt this view.
Our analysis shows that the current RNN can be classified as Single-state RNN
(SRNN), which does not consider the ambiguity of input objects. From the MDP
point of view, we find that RNNs with different types of recursive units only care
about the state transition function and ignore the policy function in MDP. This
insight provides a new way to build new models that overcome the limitations
of current RNN structures. Specifically, we propose a Polymorphic Recurrent
Neural Network (PRNN) and analyze it from the perspective of MDP. PRNN
uses multiple pre-training models to build multiple embeddings (states) for the
input object at each time and develops a strategy function in the process of
analyzing from the MDP perspective, which can determine which embedding of
the object should be used in the current state based on the object’s environment.
Then PRNN realizes the multi-semantic expression of words through multiple
embedding. Finally, PRNNs are evaluated in text classification and machine
translation tasks. The results show that PRNN outperforms existing RNNs in
terms of effectiveness.

In summary, the main contributions of this paper are as follows:

1. A solution to explicitly modeling polysemy is given through the way that one
word corresponds to multiple embeddings.

2. A solution for explicitly modeling semantic cognitive phenomena is given.
Use the RNNsden layer vector of the recurrent neural network to select the
semantics of the word in the current context.
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3. A generalization framework for improving recurrent neural networks is given,
different types of recurrent neural networks are modeled from the perspective
of the Markov decision process, and their shortcomings in decision pre-trained
found.

2 Related Work

Word embeddings are a by-product of modeling NLP tasks [5]. It is widely used
because it can capture a certain degree of semantic and grammatical relationship
between words. There has been much research on word embeddings to improve
the accuracy of NLP tasks. In this chapter, based on the number of embedding
used or generated by the model, a summary of related research will be made
from two aspects: Single Embedding Model and Multiple Embedding Model.

– Single Embedding Models: Traditionally the word embedding-based mod-
els, such as Skip-Gram, CBOW model [5], Glove [6], and fastText [7], mostly
assume that each word is represented by a unique vector. Using fixed embed-
ding to represent words makes it difficult to accurately represent the multi-
ple meanings of words in different contexts. Various recent models such as
Bert [8]and ELMo [9] provided a context-sensitive way to build word vec-
tors, but all possible meanings of a word are still mixed up within a fixed
vector. Furthermore, various self-attention models such as Transformer [10],
GPT [11] and Transformer-XL [12], are based on the multi-head mecha-
nism, which can be roughly regarded as the treatment of polysemy. Although
these attention models can better solve the long-distance dependency prob-
lem of sequences, they cannot handle continuous decision-making processes
and ignore the information contained in some local features, which is cru-
cial when dealing with a series of text sentences. Moreover, even though
the attention-based model considers more factors than previous models, it
still has a unique embedded representation of words. From the perspective
of human cognition, it is still difficult to express the multiple semantics of
words. Pittaras proposed a model of semantic frequency vector weighting for
word embedding [13]. Although this way of enhancing semantics improves the
accuracy of common semantic expressions of words, it reversely weakens the
expression of other semantics of words, which limits the possibility of multiple
semantic expressions of words.

– Multiple Embedding Models: Reisinger and Mooney introduced a multi-
prototype vector space model (VSM), where word sense discrimination is
applied by clustering context [14]. In 2014, Tian, Fei and others introduced
a skip-gram model based on probability expansion, which can learn multiple
prototype word vectors according to a priori probability and generate a fixed
number of word meanings for each word using a clustering algorithm with
parameters [15]. Neelakantan et al. Proposed a skip-gram polysemy expan-
sion model in 2014, which is the first model that can automatically learn
the number of word meanings [16]. In the training process, if the similarity
between the current context and the existing word meaning vector is lower
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than a certain threshold, the model will generate a new word meaning vector.
However, these models lack cognitive motivation, thus difficult to fully utilize
the context information to determine which state an object should exhibit in
a particular environment in line with the human cognitive process. Subba and
Kumari propose a heterogeneous stacking ensemble-based sentiment analy-
sis framework using multiple word embeddings [17]. In the whole emotion
analysis task, the process of text processing is completed by multiple mod-
els in parallel. On the whole, multiple embedded words represent the same
word. Although there are multiple embeddings as a whole to represent the
same word, in specific applications, each embedding corresponds to a separate
classifier, which essentially still uses a fixed vector to represent the word.

The perception of words and the decision to choose which meaning to choose
at each moment in a given context (action selection) will influence subsequent
decisions, as well as the processing of subsequent textual tasks. Using multiple
pre-trained models to generate embeddings, and combining the ability of RNN
to process sequences with the ability of MDP to make continuous decisions, we
propose a Polymorphic Recurrent Neural Network (PRNN) to deal with word
polysemous phenomena.

3 Modeling RNN as Markov Decision Process

In this section, we give a brief introduction to MDP and formulate it with a
definite policy function. We then show how a general structure of RNN is mod-
eled as MDP. In particular, we analytically show that RNN using different types
of recurrent units can be classified as Single-state Recurrent Neural Networks
(SRNN) from the MDP perspective.

3.1 Markov Decision Process

A Markov decision process (MDP) [18] is formulated as a 5-tuple (S,A, Pa, Ra, γ)
as shown in Table 2. When an action at is applied to the state st−1, only the next
state st can be obtained. As a result, we can get Pa(st−1, at, st) = 1. Accordingly,

Table 2. Notations of Markov decision process.

S: a set of states

A: a set of actions

Pa(st−1, at, st): the probability that an action at in state st−1 at time t− 1 will
lead to state st

Ra(st−1, at, st): a reward function, which is received after the transition from
state st−1 to state st, due to the action at.

γ: a discount factor, which represents the difference of importance
between the future and present rewards.
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we can define a state transition function T (st−1, at) = st, applying at on st−1

leads to the next state st through the function T .
The core problem of MDP is to find a policy function π : st−1 ⇒ at, which

specifies the action at that the decision maker will choose to apply on state
st−1. The process of finding a policy, whether using policy iteration [19], value
iteration [18] or reinforcement learning [20], depends on the reward function
Ra(st−1, at, st) and discount factor γ.

Fig. 1. A general architecture of RNN.

3.2 MDP with a Definite Policy Function

In the traditional definition of MDP, a reward function Ra is needed to obtain
the reward after an action takes place in a certain state at a time, but the role
of Ra varies in different situations.

– MDP without a definite policy function. The reward function is in place
to help effectively find an optimal policy, e.g., for searching for the best path
in the classic grid world [21]. The policy will eventually converge regardless
of whether to use the policy iteration or value iteration to obtain the optimal
policy.

– MDP with a definite policy function. The reward function will have no
effect except for evaluating the quality of a policy function. With the given
policy function, we choose a certain action at a state in a greedy way.

In other words, when the policy function is unknown, we rely on the reward
function to solve the optimal policy. When a specific policy is found, a greedy
search algorithm can be employed to select the best action, and the resulting
state-action sequence in an episode is a fixed sequence. In addition, whether a
decision process is MDP depends on whether the Markov property is satisfied in
this process. That is, the action taken by the agent at a moment only depends
on the current state, and does not depend on the previous states.

Given the above clarifications, MDP with a definite policy function can be
formulated as a 4-tuple (S,A, T, π).
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3.3 Single-State Recurrent Neural Network

A general network structure of RNN is shown in Fig. 1. The processing of a
sequence x1, x2, ..., xt using RNN can be expressed by the following formula.

ei = f(xi)
hi = T (hi−1, ei)

(2)

The process of mapping the original one-hot input xi to an embedding ei is
represented by the function f . Subsequently, RNN process the sequence infor-
mation and constructs new context information hi according to the input ei and
previous context information hi−1. At last, the context information sequence
h1, h2, ..., ht or the latest hidden vector ht is used for classification or regression.

According to the above description, RNN can be naturally modeled as MDP
with a definite policy function, as shown in the following formula.

S = {h0, h1, h2, ..., ht−1, ht}
A = {e1, e2, e3, ..., et−1, et}
hi = T (hi−1, e

∗
i )

e∗
i = πhi−1(ei) = ei

(3)

The state set S consists of each step of the hidden layer hi of the sequence. The
action set A consists of the embedding ei that is generated by the input xi at
each step. At each time step the i, the input xi only generates a single embedding
(action) ei due to the limitation of this structure, so only the action ei can be
selected as the best action e∗

i . The state transfer function T at time i takes the
state hi−1 and action e∗

i , and results in the next state hi. The core problem of
MDP is to find a policy π specifying the action πhi−1 that the decision maker
will choose to act on the state hi−1. In RNN, when the input xi is given, the
corresponding optimal action e∗

i is fixed and determined according to f .
Whether SRNN or PRNN, the reward function of MDP is realized by the

loss function of the whole network in the actual calculation process. The greater
the calculated loss, the lower the reward of action ai. In the training process,
with the continuous optimization of the model, the loss of the loss function will
be lower and lower, which also means that the total reward for all actions is
increasing, thus making every step of the action get the best choice. Since the
reward function is the same and replaced by the loss function of the neural
network, it will not be repeated in the description of the PRNN model below.

Typical RNN architectures such as VRNN, LSTM and GRU can be viewed as
different types of transfer functions (recurrent units) ht = T (ht−1, et) to improve
the performance of RNNs. They are summarized as follows:

VRNN implements ht = T (ht−1, et) as:

ht = sigmoid(Uet + Wht−1) (4)
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LSTM implements ht = T (ht−1, et) by introducing 3 gates:

ft = σ(Wf · [ht−1, et] + bf )
it = σ(Wi · [ht−1, et] + bi)
˜Ct = tanh(Wc · [ht−1, et] + bc)

Ct = ft ∗ Ct−1 + it ∗ ˜Ct

ot = σ(Wo[ht−1, et] + bo)
ht = ot ∗ tanh(Ct)

(5)

GRU implements ht = T (ht−1, et) by introducing 2 gates, namely reset gate and
update gate:

zt = σ(Wz · [ht−1, et])
rt = σ(Wr · [ht−1, et])
˜ht = tanh(W · [rt ∗ ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt)˜ht

(6)

The above analysis shows that RNN has been modeled as MDP. It can be seen
that existing RNNs pay more attention to the transfer function T , and adopt an
over-simplified policy function π. While well-designed gates help RNNs remem-
ber more information or forget certain things, the policy function is incapable of
reflecting the polymorphism of information objects. Indeed, RNNs with differ-
ent types of recurrent units can be uniformly classified as Single-state Recurrent
Neural Networks (SRNN), in the sense that they treat an information object as
having only a single fixed state. In reality, an object can have multiple meanings
(states), and only in a certain context, the object shows a specific state. There-
fore, we propose a Polymorphic Recurrent Neural Network (PRNN) to capture
the polymorphism of information objects, with an effective policy function to
determine which specific state an object is in based on the context.

4 Polymorphic Recurrent Neural Network

The proposed PRNN is a generalized form of SRNN. In order to better solve the
ambiguity of words, it is necessary to express multiple meanings of words at the
same time, and then select the most reasonable embedding as the final action
for the current input according to the context information. We will first model
PRNN as MDP and then explain its detailed structure.
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4.1 Modeling PRNN as MDP

The modeling of PRNN as MDP is shown in the following formula.

S = {h0, h1, h2, ..., ht−1, ht}
A = {ed1

1 , ed2
1 , ..., edN

1 }, {ed1
2 , ed2

2 , ..., edN
2 },

..., {ed1
t , ed2

t , ..., edN
t }

hi =T (hi−1, e
∗
i )

e∗
i =πhi−1(e

d1
i , ..., edN

i )

(7)

The state set S consists of each step hi of the hidden layer of the sequence. Each
original input object xi has N states (embeddings){e1i , e

2
i , ..., e

N
i } to represent the

possible meanings of xi, as compared to SRNN which uses a fixed ei. Using a fixed
ei to represent the possible existence of a variety of meanings may cause several
problems. For instance, the word apple can mean either an electronic product or
a kind of fruit, but when mixing these two kinds of meanings in ei, it is difficult
to decide whether it should be closer to banana or dell. In PRNN, in order to
further distinguish the different meanings of a limited number of input objects,
the embeddings {e1i , e

2
i , ..., e

N
i } are differentiated to generate new embeddings

{ed1
i , ed2

i , ..., edN
i }. The action set A consists of the differentiated embeddings

of all input objects. This construction method of A is analogic to discretizing
the different states (meanings) that an input xi may exist in, hence avoiding
the deficiencies of SRNN in the action set. Furthermore, after the construction
of the action set is completed, it is crucial to select the action according to
the current environment. That is, according to the context, the object state e∗

i

that best conforms to the current context should be selected as the action. The
policy function π of the PRNN takes the context hi−1 and the differentiated
embeddings {ed1

i , ed2
i , ..., edN

i } of all possible meanings of the input object xi

Fig. 2. Generalized form of PRNN when processing sequence information.



564 C. Zhang et al.

as parameters, and selects the optimal meaning e∗
i that most conforms to the

current environment, as shown in the policy section of the Eq. 7. PRNN makes
better use of context information than SRNN’s policy function as shown in
Eq. 3. The selected e∗

i is the optimal meaning that the current input object
xi best corresponds to the current environment hi−1, and is also the action to
be applied to hi−1. Through the state transition function T , we can obtain the
context of the next timestamp. The state transition function can be any SRNN’s
transfer function for a specific task.

This wraps up the modeling of PRNN as MDP. The advantages of PRNN
over RNN can be seen by comparing Eq. 3 with Eq. 7. When PRNN does not
entail different meanings of xi(i.e. N = 1), it degenerates to an RNN with the
same state transition function. Therefore, PRNN is a generalization of RNN
from an MDP point of view.

4.2 Network Structure and Policy Function

Figure 2 shows the network structure of PRNN. Among them, g1∼N are dif-
ferent external pre-training models trained based on large corpora. External
pre-trained models tend to represent different semantics due to their different
architectures and their training corpora. Through multiple mutually indepen-
dent functions g1∼N , the corresponding multiple embeddings {e1i , e

2
i , ..., e

N
i } are

generated. These embeddings represent the various semantics that a word can
appear in. Then, the embeddings generated by g1∼N are differentiated by mul-
tiplying different diagonal matrices. The independence of g1∼N and the differ-
entiation process of the embeddings guarantee the discretization of the different
meanings of the input xi at each moment. The policy function πhi

is then called
for to select the most suitable meaning from the discrete meanings according to
the context information hi. Considering that the attention mechanism [22] has
achieved great success, we adopt an attention mechanism in our policy function.
Our policy function πhi

is described as follows:

ed1
i , ed2

i , ..., edN
i = [d1e1i , d

2e2i , ..., d
NeNi ]

πhi
(ed1

i , ed2
i , ..., edN

i ) =
N

∑

j=1

σ(ci)je
dj

i

σ(xi) =
exi

∑

k exk

ci = [hi−1e
d1
i , hi−1e

d2
i , ..., hi−1e

dN
i ]

(8)

ci consists of the dot product of each embedding eji and the context hi−1,
indicating the importance of the different embeddings in the current context
hi−1. It is then converted to discrete probability values via the softmax function
σ, and combined with the embedding eji in the form of a weighted sum. The policy
function π determines which embedding needs to select or pay more attention
to. PRNN improves RNNs’ structure by approving the policy function π, and
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establishing links between the context information and various states that may
exist in the original input. This policy function allows PRNN to capture multiple
states for an object and use context information to determine its current state.

5 Experiments

We evaluate our models on text classification tasks (AGNews1 and IMDB [23])
and machine translation tasks (Multi30k [24]). For AGNews and IMDB, we
inherited the initially provided training and validation sets and used accuracy
as the performance measure. For Multi30k, we also use the default training and
validation sets. Bilingual Evaluation Understudy (BLEU) [25] is selected as the
evaluation metric to evaluate the effect of PRNN on Multi30k. BLEU is the most
commonly used evaluation metric for machine translation tasks.

5.1 Experimental Parameters

To evaluate the PRNN and eliminate unnecessary interference, we simplify the
entire network structure as much as possible when dealing with specific tasks,
to better highlight the role of key elements of the PRNN. In the experiment, we
chose the random embedding2, GloVe and Gensim as three independent func-
tions to realize the conversion of the original input to various states (embedding).
Random embedding is generated from experimental datasets, while GloVe and
Gensim models are externally trained pretrained functions, trained on differ-
ent corpora, to provide embeddings with complementary semantics for words.

Algorithm 1. N-embeddings PRNN.
Input: Sequence {x1, x2, ..., xt}, Hidden h0

for i = 1 to t do
for j = 1 to n do

eji = gj(xi)
edji = ejid

j

end for
e∗
i = πht−1(e

d1
i , ed2i , ..., edNi )

hi = T (hi−1, e
∗
i )

oi = σ(Wohi + bo)
end for
if dataset is Multi30k then

Output: Sequence {o1, o2, ..., ot}
else if dataset is AGNews or IMDB then

Output: ot
end if

1 http://groups.di.unipi.it/∼gulli/AG corpus of news articles.html.
2 Implemented by PyTorch embedding.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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At the same time, the embedding size and N embedding of different parame-
ters are set for comparative experiments. All calculations are shown in Algo-
rithm1. The input sequence is defined as x1, x2, ..., xt. Subscript t indicates the
sequence length. We define N as the number of states (embeddings), and call
it N-Embeddings. Embedding size indicates the dimension of each embedding.
Note that when N -embedding is 1, the PRNN degenerates to an RNN using the
same recursive unit. Therefore, we use the 1-Embedding as the baseline in each
set of comparison experiments. For Multi30k, since the experimental results of
the GloVe and Gensim models fluctuate greatly, we choose the random embed-
ding as the baseline of 1-Embedding. LSTM and GRU are variants of the RNN
model. We will extend the PRNN application to LSTM and GRU and conduct
experiments to further verify our theoretical correctness.

5.2 Experimental Results and Analysis

The experimental results of AGNews and IMDB are shown in Table 3, when
the N-Embedding increases, PRNN obtains better results than the baseline. In
each set of comparative experiments, the PRNN accuracy with 3-Embeddings is
higher than the baselines where the 3 generative embedding functions are used
alone. The accuracy of most 2-Embedding is also higher than the baseline, and
the rest is basically the same as the baseline. The experimental performance of

Table 3. Experimental results on AGNews and IMDB dataset. The bold part indicates
that PRNN outperforms the baseline, and * indicates the best result in a set of runs.

Dataset Model Dimension Accuracy for N-embedding

1 1 1 2 2 3

Random-g1 GloVe-g2 Gensim-g3 g1&g2 g1&g3 g1&g2&g3

AGNews RNN 50 89.13% 87.03% 89.82% 90.3% 89.74% 90.9%*

100 89.38% 89.28% 90.67% 91.06% 90.75% 91.14%*

200 90.23% 90.52% 90.56% 90.72% 90.49% 90.73%*

LSTM 50 89.9% 88.13% 90.77% 90.69% 91.25%* 91.14%

100 90.26% 90.76% 90.69% 91.09% 90.7% 91.26%*

200 90.48% 90.93% 90.85% 90.9% 90.73% 91.22%*

GRU 50 90.07% 91.34% 91.12% 90.81% 91.17% 91.39%*

100 90.34% 90.81% 90.69% 91.11% 91.07% 91.15%*

200 90.48% 90.92% 90.86% 90.77% 90.84% 90.93%*

IMDB RNN 50 77.49% 78.57% 81.98% 82.96% 81.19% 83.05%*

100 81.87% 82.3% 78.8% 81.36% 82.34% 82.88%*

200 82.3% 83.16% 77.07% 82.76% 82.63% 83.27%*

LSTM 50 80.8% 82.35% 82.15% 83.86% 82.89% 84.24%*

100 79.59% 81.1% 79.11% 82.49% 82.63% 83.94%*

200 83.3% 83.62% 84.42% 84.07% 83.63% 84.43%*

GRU 50 80.35% 82.95% 82.31% 83.73%* 82.3% 82.53%

100 78.96% 80.82% 80.67% 79.7% 80.15% 82.84%*

200 83.02% 83.36% 83.44% 83.53%* 80.36% 83.44%
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Table 4. Experimental results on Mult30k. The bold part indicates that PRNN out-
performs the baseline, and * indicates the best result in a set of runs.

Dataset model Dimension BLEU for N-embedding

1 2 3

Mult30k RNN 100 27.69 29.19* 27.71

200 28.9 29.33 30.48*

LSTM 100 27.01 27.64* 26.46

200 27.54 30* 28.63

GRU 100 27.05 29.28* 27.87

200 27.22 29.47 29.75*

Multi30k is the same as the previous datasets, and adding N-Embedding can
improve the BLEU score, as shown in Table 4. Experimental results show that
just one embedding is not enough, we do need more embeddings to express an
object, and more contextual information to determine which embedding (state)
to adopt.

In the calculation process, PRNN regards multiple embeddings as actions
and selects the e∗

i that best matches the current semantics through the strategy
function π combined with the context. We select a specific sentence from the ag
dataset with 200-dimensional embeddings to observe the entire selection process,
as shown in Fig. 3. As you can see, we provide embeddings generated by three
different functions as actions. In the process of policy, due to the continuous
change of the context, the scores of different embeddings in the current environ-
ment are also constantly changing. The score is actually a quantification of the
performance of the embedding for the current environment, and the embedding
with the highest score can better represent the current semantics. Compared
to RNNs that use a single function to generate embeddings, PRNNs offer a
better alternative. At the same time, different semantic environments make the
embeddings of the same word selected by the policy function different. On the
basis of the previous sentence, we choose the word ‘it’ to demonstrate, in the

Fig. 3. In a complete sentence of AGNews, the PRNN strategy function continuously
selects the optimal embedding process among the three embedding functions according
to the current environment.
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Fig. 4. The process of selecting the optimal embedding for the word ‘it’ in two sentences
by the PRNN policy function among the three embedding functions.

first sentence ‘it’ refers to Halliburton, and in the second sentence ‘it’ refers to
power. The process of policy selection in Sentence 1 and Sentence 2 in the case
of 200-dimensional embeddings is shown in Fig. 4. For sentence 1, we tend to
choose Gensim to generate the embedding to represent ‘it’, while for sentence
2, we tend to choose GloVe as the embedding to represent ‘it’. Therefore, in
the two sentences, ‘it’ has two different embedding representations. This is the
specific embodiment of PRNN’s advantages over RNN. From the perspective
of MDP, we provide three kinds of embedding actions for the same word ‘it’
with different semantics, while RNN only has a single embedding with multiple
semantics. Therefore, in the task, ‘it’ under the PRNN model can be represented
by the corresponding embedding under different semantic environments, while
RNN has no choice. This also fully proves that PRNN is the most appropriate
embedding strategy based on the current context.

5.3 Stability of PRNN

In the process of model evaluation, the stability of the model is a very important
evaluation index. The effect of the neural network model usually depends on
the initialization parameters of the model. Some models can only obtain good
experimental results under the carefully designed random number seed, which
leads to the model being difficult to be widely used in more data sets and tasks.
We choose 10 random seeds to experiment with RNN and 3-Embedded PRNN to
observe the stability of the model in the case of using 100-dimensional embedding
for IMDB.

As shown in Fig. 5, the accuracy of PRNN under all seeds is higher than the
baseline, and it can be clearly seen that the fluctuation of the results is smaller.
The mean and variance of the results of the 10 experiments were calculated, as
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Fig. 5. With 100-dimensional embeddings for IMDB, ten experiments with different
seeds are performed on a 3-Embedding PRNN and three separate embedding models
RNN.

shown in Table 5. It can be clearly seen that the accuracy of the PRNN model
is nearly 3% points higher than the baseline model, and the variance is only one
of 10 of the limit model. This remarkable improvement in model stability and
accuracy makes our model very reliable.

Table 5. Mean and variance of the 3-Embedding PRNN and three separate embedding
model RNNs in ten experiments with different seeds, using 100-dimensional embeddings
for IMDB.

PRNN Random GloVe Gensim

Mean 83.33% 80.28% 81.14% 79.83%

Variance 0.0016 0.0244 0.0499 0.097

6 Conclusions and Future Work

Through in-depth analysis of the objective difficulties existing in current nat-
ural language understanding, we model multiple variants of Recurrent Neural
Network (RNN) as Single-state Recurrent Neural Network (SRNN) from the
perspective of the Markov Decision Process and find that current SRNN play a
deficiency role in polysemy and semantic cognition. The Polymorphic Recurrent
Neural Network (PRNN) model in this paper is proposed by improving the num-
ber of word embeddings and the policy function. The PRNN model explicitly dis-
cretizes the various semantics contained in a word and can observe how the model
performs the process of semantic cognitive decision-making in different contexts.
This innovation provides a new perspective for further improvement of RNN
and provides a progress ladder for revealing the black-box phenomenon of deep
learning models in natural language processing. In addition, the PRNN model
also provides a new way to fuse multiple pre-trained word vectors within the
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same model efficiently. PRNN has proved its effectiveness and stability through
extensive experimental results.

In the future, we will apply PRNN to more datasets and tasks to verify its
generality. Maintaining the number of embeddings for each word dynamically
and expanding the policy function through reinforcement learning to obtain a
more elegant network structure will improve PRNN in our following work. Then
reduce the running time of the PRNN model and improve the effectiveness of
PRNN, making its improvement on the basic model more obvious.
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Abstract. Event detection (ED) aims to recognize triggers and their
types in sentences. Previous work employs distantly supervised methods
or pre-trained language models to generate sentences containing events
to alleviate data scarcity. Further, determining the spans and types of
triggers is complex and may have deviations. In this paper, we propose
to unleash Pre-trained Masked Language Model (PMLM) knowledge for
label signal guided ED by a novel trigger augmentation. We directly
generate triggers by leveraging the rich knowledge of PMLM through
masking triggers. However, these newly replaced triggers may not corre-
spond to the label of the masked trigger. To control such trigger augmen-
tation noises, we design a label signal guided classification mechanism
with event type-subtype guidance. To ensure the quality of generated
triggers, a semantic consistency mechanism is introduced. Experimen-
tal results on the ACE2005 and FewEvent show the effectiveness of our
proposed approach.

Keywords: Trigger augmentation · Label signal guided event
classification · Sentence semantic consistency

1 Introduction

As a challenging subtask of event extraction, event detection (ED) aims to iden-
tify and classify triggers. As per the general ACE2005 annotation guideline:
an event type contains one or more event subtypes. A sentence example is as
follows: “He lost an election to a dead man.” Here, “election” triggers a “Per-
sonnel: Elect” event where “Personnel” is the event type and “Elect” is the event
subtype.

So far, many methods have been proposed, extending from feature-based
approaches to advanced deep learning methods [8,11]. Although previous meth-
ods achieve success in many aspects, data scarcity is a growing challenge that
can not be ignored as mainstream models become bigger and bigger. The lack
of training data seriously hinders the performance of existing methods, which
are under the supervised learning paradigm and eager for the large training
dataset. To alleviate the problem, Liu et al. [6] propose a multilingual approach
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 572–581, 2023.
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by machine translation to bootstrap the source data. However, ensuring the map-
ping between tokens and labels across languages is complex and may have devi-
ations. There also have been some efforts to enlarge training data for ED models
by exploiting distantly supervised techniques [1,11,12]. Moreover, some work
[8,13] leverages pre-trained language models to automatically generate training
data for models. The common in these methods is to generate sentences contain-
ing events. However, there are two main weaknesses: 1) there are noises in the
generated sentences and need extra mechanisms (such as knowledge distillation)
to control; 2) ED is a token-level classification task, determining the spans and
subtypes of triggers is difficult, and may have deviations.

To address the aforementioned problems, we explore directly generating
proper triggers without changing the context, which can not only weaken noises
but also reuse the labels of triggers in the original sentence. Inspired by Dai
et al. [2], we propose a novel trigger augmentation approach by leveraging the
existing pre-trained masked language model (PMLM) to automatically generate
triggers. By replacing original triggers with generated ones, we can obtain candi-
date sentences with different triggers. Specially, we aim to fine-tune a PMLM on
the existing training dataset by masking triggers so it can generate alternative
triggers and corresponding scores. Yet trigger augmentation might still involve
noises due to the complexity of natural language and the large vocabulary of
PMLM. So we also design a label signal guided classification mechanism
with event type-subtype guidance, including event type classification (ETC)
and event subtype classification (ESC). The results of ETC serve as signals to
guide ESC. Through the medium of ETC, we can calculate multiple times and
finally select the maximum value of the product of ETC and ESC as the final
result. In this manner, though the result of ETC is not correct, the final result
may also be right. We also design a sentence semantic consistency mech-
anism that makes the semantics between the candidate and original sentence
as similar as possible to ensure the quality of the generated triggers. With the
right generated triggers, the semantics of sentences are naturally similar. Our
contributions in this paper can be summarized as follows:

– Propose a novel trigger augmentation approach (called PMLMLS) for ED to
directly generate alternative triggers by leveraging the knowledge of PMLM;

– Build a label signal guided classification mechanism with event type-subtype
guidance for ED which helps control noises in trigger augmentation;

– Employ a sentence semantic consistency mechanism to ensure the quality of
generated triggers;

– Experimental results on the ACE2005 and FewEvent demonstrate the effec-
tiveness of our method and achieve state-of-the-art performance.

2 Methodology

Figure 1 shows the proposed PMLMLS model, which leverages the knowledge of
the pre-trained masked language model (PMLM) to improve ED. The model con-
sists of two stages: (1) Trigger Augmentation: to employ PMLM to generate
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Fig. 1. The overview of our proposed PMLMLS.

alternative triggers and corresponding scores; (2) Label Signal Guided Event
Classification: to utilize label signal to guide event type-subtype classification
which helps control noises in (1).

2.1 Trigger Augmentation

As presented in Sec. 1, our motivation is to obtain proper candidate triggers with-
out changing the context. The overall strategy is to mask the trigger with a spe-
cial token and leverage PMLM to generate the candidates. Formally, assume that
x = [x1, . . . , xi, . . . , xn] is a sentence of n tokens with only one trigger located at
xi, the masked sentence x′ would have the form: x′ = [x1, . . . , [MASK], . . . , xn]
where [MASK] is the special token to symbolize the trigger. x′ is then employed
as the input of PMLM to obtain the representation hmask of [MASK]:

hmask = PMLM(x′) ∈ Rd (1)

where d denotes the dimension of the hidden layer in PMLM. Then we utilize
PMLM head (i.e., LMhead) to obtain top k triggers T = [t1, . . . , ti, . . . , tk] and
corresponding scores s = [s1, . . . , si, . . . , sk]:

(T , s) = LMhead(hmask) (2)

where LMhead is a pre-trained two-layer non-linear classifier with layer normal-
ization and the output dimension is the size of the vocabulary of PMLM. The
score si is the probability of LMhead on the corresponding candidate trigger ti.
Note that the sum of s is not equal to 1 and then we normalize s:

si =
si

∑k
j=1 sj

∈ R (3)
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Before we fill T into [MASK] and obtain k candidate sentences, we preliminarily
judge the quality of T through xi ∈ T or not. If xi /∈ T , then the quality of T
is unreliable and we will abandon it.

Considering that the trigger is usually the core word (verb or noun) of
the sentence, there would be many choices in the scope of the vocabulary of
PMLM. Sometimes it even generates candidates that are appropriate in the
context but completely irrelevant to the original word with high scores (e.g.
the example in the introduction). To help PMLM generate suitable candi-
dates that are related to the original trigger, we add the previous and next
sentences of x as a prompt to x′. The enriched x′ would have the form:
x′ =

[
Sent1, [SEP ], x1, . . . , [MASK], . . . , xn, [SEP ],Sent2

]
where [SEP ] is

the special token to identify the span of sentences.

2.2 Label Signal Guided Event Classification

To control noises in trigger augmentation, we design a label signal guided
classification mechanism with event type-subtype guidance.

Label Signal Guided Classification Mechanism: Considering that an
event type consists of one or more event subtypes, we design a label signal
guided classification mechanism, first event type classification (ETC) then event
subtype classification (ESC). Formally, as per the pre-defined event schema, we
have an event type set C and an event subtype set Y. The overall goal is to
predict all events in gold set Ex of the sentence x. We aim to maximize the joint
likelihood of training data D:

∏

x∈D

⎡

⎣
∏

(t,c,y)∈Ex

p
(
(t, c, y) | x

)
⎤

⎦ =
∏

x∈D

[
∏

t∈Tx

[
p(t | x)p(c | x, t)p(y | x, t, c)

]
]

(4)
where Tx denotes the triggers set occurring in x, t denotes the trigger in Tx , c
denotes the event type of t, and y denotes the event subtype of t. The result of
ETC is leveraged as a signal to guide ESC. It is a tree with a layer height of
3, the root node is the trigger, and the second and third layers are event types
and subtypes respectively. The children of the second layer node are the event
subtypes contained in the event type, and the weights of edges are probabilities
of ETC and ESC classifiers. When classification, the trigger selects a path to the
leaf node in a depth-first search (DFS) based on the edge weight.

To control noises in the trigger augmentation, we do not only utilize the label
corresponding to the maximum value of the ETC prediction result as a signal but
the top m results as signals. When starting from each node, instead of choosing
one path, we choose m paths as per the signals. Finally, the maximum value
of the product of all edge weights on the search path is employed as the final
result. In this manner, though the result of ETC is not correct, the final result
may also be right. We can obtain the global optimal solution to a certain extent
through multiple searches.
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Event Type-Subtype Guidance Classification Network: As per the
aforementioned mechanism, we build an event type-subtype guidance classifica-
tion network containing ETC and ESC. The thought of ETC and ESC are sim-
ilar while ETC is trained on candidate sentences and obtain event type results,
ESC is trained on original sentences and obtain event subtype results as per the
results of ETC. Assume that X̂ is the candidate sentences obtained by the orig-
inal sentence x after Sec. 2.1. Then we utilize the PMLM to obtain the hidden
presentation of tokens in X̂ and x:

Ĥ = PMLM(X̂) H = PMLM(x) (5)

where the PMLM is the one in Sec. 2.1, they share weights, Ĥ is the embedding
of tokens in candidate sentences, and H is the embedding of tokens in the original
sentence. Then Ĥ is used as the input of ETC to obtain the event type result
Ĉ:

Ĉ = ETC(Ĥ) (6)

where ETC is a two-layer non-linear classifier with dropout and layer normal-
ization. In addition, we obtain the score of candidate sentence s by Eq. 2 and 3.
Therefore we obtain the weighted probability over event type p̂ by the product
of Ĉ and s normalized by softmax(·):

p̂ = softmax
( z∑

i=1

siĈi

)
(7)

Then the top m probability v and the corresponding event type label id � of p̂
consist of signals to guide ESC:

y = max {vi · softmax(ESC�i(H))|i = 1, . . . , m} (8)

where ESC contains L classifiers and each is a two-layer non-linear classifier with
dropout and layer normalization. L denotes the number of event types, ESC�i

denotes choosing the �i-th classifier as per �i, vi ·softmax(ESC�i(H)) denotes the
product of probabilities, and y denotes the final event subtype result of tokens
in x.

2.3 Training

This section describes the training of our model. In addition, to further make sure
the quality of generated triggers, sentence semantic consistency is introduced.

Sentence Semantic Consistency: In Sec. 2.1, we preliminarily judge the
quality of the candidate triggers by xi ∈ T or not. But for x ∈ T \ {xi}, the
quality can not be guaranteed. Considering the only difference between candi-
date and original sentences is triggers. Therefore, we try to make the semantics
between the candidate and the original sentence as similar as possible. In this
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work, we utilize the mean squared error between Ĥcls and Hcls as a supervised
target for the loss function:

Ls =
1

|Hcls|

|H cls|∑

i=1

(Hcls,i − Ĥcls,i)2 (9)

where Ĥcls and Hcls denote the semantics of candidate and original sentences
respectively, |Hcls| denotes the dimension of Hcls, and Hcls,i denotes the i-th
element of Hcls.

Joint training: Finally, to train PMLMLS, the following combined loss
function is employed:

L = LETC + αLESC + βLs (10)

where LETC employs cross-entropy loss between the real and predicted event
type labels, LESC employs the same loss on the real and predicted event subtype
labels, α and β are the trade-off parameters.

3 Experiments

In this section, we explore the following questions:
Q1: Can PMLMLS better utilize the knowledge of PMLM to boost the per-

formance of ED? Q2: Is every module essential? Q3: How do hyper-parameters
affect the performance of PMLMLS?

3.1 Settings

Datasets: We conduct experiments on the event detection benchmark ACE2005,
which has 599 English annotated documents and 8 event types total of 33 event
subtypes. The same split as the previous work [8,11] is used.

In addition, we also conduct experiments on another benchmark FewEvent
[3], which contains 70,852 instances for 19 event types graded into 100 event
subtypes in total. To validate the performance of PMLMLS in the data scarcity
scenario, we randomly select 30 instances for each event subtype in each trial.
In a trial, the proportion of instances for each event subtype in the training,
development, and test set are 70%, 10%, and 20% respectively.

For evaluation, we employ standard Precision (P ), Recall (R), and the F1

score following the previous work [8,11]. And we employ the average of 5 exper-
imental results as the final result.

Baselines: To verify PMLMLS, we compare our method with models based
on the aforementioned two strategies and other SOTA methods.

For ACE2005, we compare PMLMLS with several state-of-the-art models in
three categories: (1) Multi-label classification model: DMCNN [1], MLBiNet
[7], and ED3C [9]; (2) QA-based model: RCEE ER [5]; (3) Data augmen-
tation model: GMLATT [6], DMBERT [12], DRMM [10], EKD [11], and
GPTEDOT [8]. For FewEvent, we compare PMLMLS with the following mod-
els: PLMEE [13], DMBERT [12], and EEQA [4].
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Table 1. Overall performance (a) and ablation study (b) on the ACE2005 test set.
In (a), ∗ indicates models based on PLMs. In (b), all the models in this table utilize
RoBERTa-base. (The same as below)

Model P R F1

DMCNN [1] 79.7 69.6 74.3

GMLATT [6] 78.9 66.9 72.4

DMBERT∗ [12] 77.6 71.8 74.6

RCEE ER∗ [5] 75.6 74.2 74.9

DRMM∗ [10] 77.9 74.8 76.3

EKD∗ [11] 79.1 78.0 78.5

MLBiNet [7] 74.7 83.0 78.6

ED3C∗ [9] 75.1 83.5 79.1

GPTEDOT∗ [8] 82.3 76.3 79.2

PMLMLS (ours)∗ 76.6 82.8 79.6

(a) Overall performance

Model P R F1

ED 74.3 73.0 73.6

LSED 74.8 75.2 75.0

PMLMED-all 73.4 79.0 76.1

PMLMED-cp 76.2 78.0 77.1

PMLMED-ssc 75.8 78.9 77.3

PMLMED 76.0 80.7 78.3

PMLMLS-all 74.0 80.2 77.0

PMLMLS-cp 76.8 80.5 78.6

PMLMLS-ssc 76.6 80.5 78.5

PMLMLS 76.6 82.8 79.6

(b) Ablation study

Implementations: We choose RoBERTa-base as the pre-trained masked
language model and experiment with MindSpore. The hidden state and dropout
of ETC and ESC are set to 768 and 0.1 respectively. The trade-off parameters α
and β are set to 0.6 and 0.2 respectively. The learning rate is set to 1e−5 for the
Adam optimizer and the batch size of 4 is employed during training. k is set to
4 denotes trigger augmentation will generate 4 alternative triggers. m is set to
2 denotes ESC will compute 2 times as per the top 2 probability of ETC. The
epoch is set to 50 and the early stop is set to 8.

3.2 Overall Performance

Table 1 (a) presents the performance of all baselines and PMLMLS on the
ACE2005 test set. For Q1, we can observe that:

1) By fully leveraging the rich knowledge of the pre-trained masked lan-
guage model and label signal guided classification, PMLMLS outperforms all
baselines with simpler architecture. Our method, only using a shared PMLM,
surpasses GPTEDOT [8] which utilizes two PLMs and achieves competitive per-
formance with the new SOTA. Furthermore, compared with other models that
need the extra complicated module to control noise (e.g. knowledge distillation),
PMLMLS only utilizes a two-stage classification based on label signal.

2) By directly generating alternative triggers from the pre-trained masked lan-
guage model, PMLMLS achieves better results compared to other data argumen-
tation models. Our method improves F1 by 1.0% and 0.4% over the SOTA EKD
[11] based on distant supervision and GPTEDOT [8] based on GPT-2 respectively.
Compared with generating sentences containing events, directly generating alter-
native triggers can weaken noise and reuse the label of the original sentence.
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Table 2. Overall performance and ablation study on the FewEvent test set.

Model P R F1

PLMEE∗ [13] 60.1 58.2 59.1

DMBERT∗ [12] 60.3 58.4 59.3

EEQA∗ [4] 61.2 59.3 60.2

PMLMLS (ours)∗ 62.0 60.3 61.1

(a) Overall performance

Model P R F1

ED 60.2 53.3 56.5

LSED 60.7 54.1 57.2

PMLMED 57.4 59.6 58.5

PMLMLS 62.0 60.3 61.1

(b) Ablation study

Table 2 (a) presents the performance of PMLMLS on the FewEvent test set.
We can see that: our proposed model has an improvement compared with all
baselines, thus further confirming the advantages of PMLMLS for ED.

3.3 Ablation Study

To verify Q2, for ACE2005, first, for the importance of label signal, we take
the following baselines: (1) ED: the base model based on the PMLM without
trigger augmentation and label signal guided classification; (2) LSED: based on
(1), LSED adds label signal guided classification. Second, based on the trigger
augmentation, three components need to be evaluated, the previous and next
sentences prompt (context prompt, cp), label signal guided classification (ls),
and sentence semantic consistency (ssc) respectively. There are a total of 8 com-
binations, one of which is PMLMLS. Therefore, we choose the remaining 7 com-
binations as degradation experiments. They are (3) PMLMED-all: the baseline
model based on trigger augmentation, without cp, ls, and ssc; (4) PMLMED-cp:
based on (3), add ssc; (5) PMLMED-ssc: based on (3), add cp; (6) PMLMED:
based on (3), add cp and ssc; (7) PMLMLS-all: the baseline model based on
trigger augmentation and label signal guided classification, without cp and ssc;
(8) PMLMLS-cp: based on (7), add ssc; (9) PMLMLS-ssc: based on (7), add cp.

For FewEvent, there is no concept of the document, and the training data is
in the form of sentences, so there is no context prompt. Degradation experiments
include: (1) ED: the baseline only utilizes RoBERTa-base; (2) LSED: based on
(1), add label signal guided classification; (3) PMLMED, based on (1), add
trigger augmentation. From Table 1 (b), we can observe that:

1) The trigger augmentation, cp, ssc, and ls are necessary for PMLMLS
to achieve the highest performance. Remove any component, performance will
decrease. In particular, the F1 score decreases by 1.0%, 1.1%, 1.3%, and 4.6%
when removing cp, ssc, ls, and trigger augmentation. Note that when removing
trigger augmentation, cp and ssc will also remove.

2) Label signal guided classification is helpful at any time. There are 10
degradation experiments, and we can divide them into 5 groups: a) ED and
LSED; b) PMLMED-all and PMLMLS-all; c) PMLMED-cp and PMLMLS-cp; d)
PMLMED-ssc and PMLMLS-ssc; e) PMLMED and PMLMLS. The difference
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Table 3. Performance of PMLMLS on the ACE2005 test set with different k and m.

k m

1 2 3 4 5 6 1 2 3

P 74.6 75.5 76.9 76.6 74.9 75.6 75.8 76.6 76.8

R 75.0 78.4 79.5 82.7 80.9 74.5 81.6 82.7 82.9

F1 74.8 76.9 78.2 79.6 77.8 75.1 78.6 79.6 79.7

between the two experiments in each group is whether to perform label signal
guided classification. We can see that the effect of using label signal guided
classification in each set of experiments is better than not using and the average
improvement is 1.3%.

3) Adding additional training data is an effective method for data scarcity.
Yet it will inevitably introduce noises. The key is to control noises while increas-
ing the training data. Compared with ED, PMLMED-all adds additional training
data without extra mechanisms to control noises, we can see that the F1 score
increases, but at the cost of a decrease in P . When additional mechanisms (cp,
ssc, or both) are added to control noise, the scores of P , R, and F1 increase over
ED. In addition, from Table 2 (b), we can see that: Compared with ACE2005,
the effect of each module is better in the scarcer FewEvent.

3.4 Parameter Analysis

To illustrate Q3, in addition to the hyperparameters of the neural network, two
additional hyperparameters need to be set. They are the number of alternative
triggers generated for the masked trigger k and the top m results of ETC consist
of signals to guide ESC.

To study the importance of k, we experiment with different k on the ACE2005.
From the left of Table 3, the highest performance of the proposed model is achieved
when k is 4 which denotes trigger augmentation generates 4 alternative triggers
for the masked trigger. More specially, when k ≤ 3, as k increases, P , R, and
F1 increase. We can see the knowledge of the pre-trained masked language model
can predict proper and various triggers, alleviate data scarcity and improve perfor-
mance. When k equals 4, P drops slightly compared to k equals 3. Though achiev-
ing the highest, we can see it is a bit noisy but more profitable. When k ≥ 5, noise
dominates and affects the performance of the ED model.

To provide more insights into the influence of label signal guided classifica-
tion, we conduct experiments with different m on the ACE2005. From the right of
Table 3, we can see that with the increment of m, the performance of PMLMLS
improves. That is because PMLMLS makes multiple judgments when making the
final result, weakening the interference of noise. Note that using label signal guided
classification will affect the parallelism and need more time since we need to select
the corresponding classifier in ESC as per the results of ETC. Even though the F1

score when m = 3 is higher than when m = 2, however, the improvement is slight.
So we select m = 2 as the final result to balance F1 and time costing.
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4 Conclusions

In this paper, we propose a novel trigger augmentation method (called PMLMLS)
for ED leveraging the rich knowledge of the pre-trained masked language model.
Unlike other data augmentation methods that generate sentences containing
events, PMLMLS directly generates alternative triggers by masking triggers to
weaken noises from the source. We also design a label signal guided classification
mechanism with event type-subtype guidance to alleviate the noises in trigger aug-
mentation. Sentence semantic consistency is also introduced to ensure the quality
of generated triggers. Comprehensive experimental results on the ACE2005 and
FewEvent demonstrate the effectiveness of the proposed method.
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Abstract. So far, Multimodal Named Entity Recognition (MNER) has
been performed almost exclusively on English corpora. Chinese phrases
are not naturally segmented, making Chinese NER more challenging;
nonetheless, Chinese MNER needs to be paid more attention. Thus, we
first construct Wukong-CMNER, a multimodal NER dataset for the Chi-
nese corpus that includes images and text. There are 55,423 annotated
image-text pairs in our corpus. Based on this dataset, we propose a
lexicon-based prompting visual clue extraction (LPE) module to capture
certain entity-related visual clues from the image. We further introduce
a novel cross-modal alignment (CA) module to make the representa-
tions of the two modalities more consistent through contrastive learning.
Through extensive experiments, we observe that: (1) Discernible perfor-
mance boosts as we move from unimodal to multimodal, verifying the
necessity of integrating visual clues into Chinese NER. (2) Cross-modal
alignment module further improves the performance of the model. (3)
Our two modules decouple from the subsequent predicting process, which
enables a plug-and-play framework to enhance Chinese NER models
for Chinese MNER task. LPE and CA achieve state-of-the-art (SOTA)
results on Wukong-CMNER when combined with W2NER [11], demon-
strating its effectiveness.

Keywords: Multimodal Named Entity Recognition · Prompt
Learning · Contrastive Learning

1 Introduction

Traditional Named Entity Recognition (NER) refers to the task of identifying
and classifying the noun phrases that predefined semantic categories in unstruc-
tured texts, such as organizations, location and person names, etc. [20]. NER
plays a fundamental role in many natural language processing (NLP) tasks
including question answering, relation extraction and entity linking. Recently,
billions of multimodal posts containing image-text pairs are shared in social
media platforms. To extract relevant information from social media, multimodal
named entity recognition (MNER) has attracted much attention. MNER extends

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 582–596, 2023.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30675-4_43&domain=pdf
https://doi.org/10.1007/978-3-031-30675-4_43


A Large-Scale Chinese Multimodal NER Dataset with Images Modality 583

traditional text-based NER by incorporating visual clues from images as an aid,
because visual context can help resolve ambiguous words in the texts.

So far, most of the research [18,21,22,36] on multimodal named entity recog-
nition is for the English corpus while Chinese multimodal named entity recog-
nition lacks sufficient attention. There are billions of users on Chinese social
media platforms and huge amounts of multimodal data are generated every day.
Therefore, investigation on MNER for Chinese corpora is necessary. Compared
with Chinese NER, Chinese MNER is aimed at social media data with short
and rough context and colloquial language. So how to combine the attached
multimodal data to enhance the text is very critical.

Sui [20] proposed a large-scale Chinese Multimodal NER Dataset with speech
clues, which introduces acoustic modality as the supplement of the textual
modality. In this paper, we also focus on Chinese multimodal NER. However, dif-
ferent from the above works, we pursue to couple Chinese textual modality with
the visual modality. To promote the research of Chinese multimodal NER, we
construct a Chinese multimodal NER dataset with images modality. To the best
of our knowledge, this is the first Chinese multimodal named entity recognition
dataset with image modality. Figure 1 shows some samples within our dataset.

Fig. 1. Examples of image-text pairs in our Wukong-CMNER dataset.

Compared with other fields such as news articles, texts on social media have
inherent problems such as colloquialism and short context. Existing works have
achieved good performance, which mainly focus on incorporating visual repre-
sentation into textual representation using cross-modal attention [15,26,33,36].
Recently, some researchers [1,2,29] study the use of captions or a label set as
a way to enrich the context for MNER. However, existing approaches still have
the following two limitations:
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One remarkable limitation is that they ignore the mapping relation between
visual objects and named entities. In a sentence containing multiple entities and
multiple types, there is more than one mapping between named entities and
visual objects within an image. For example, in Fig. 1(c), there are two visual
objects and named entities. Previous multimodal NER methods [17,36] repre-
senting the image with only one vector may mislead their models to extract
different types of entities into the same type. Compared with these methods
which combine image-level features into multimodal features, object-level fea-
tures can reflect the mapping relation between visual objects and text words.
However, if all visual objects are extracted from images as in these studies [3,38],
many irrelevant vision clues may introduce noise to affect entity recognition.

The other limitation is the popular semantic gap problem. Since the rep-
resentations of text and image come from different encoders, they are mapped
to different semantic spaces. Accordingly, the inconsistent representations may
prevent the model from establishing a good connection between the text and
image. Thus, it is difficult to directly use these inconsistent representations for
feature fusion and capture the correspondence between words in text and regions
in image.

To capture the mapping relations between visual objects and textual enti-
ties (the first limitation), we introduce a lexicon-based prompting visual clue
extraction (LPE) module. We first adopt the visual grounding toolkit [32] for
extracting visual region objects using general words of pre-defined entity types.
The extracted regions are more related to the named entities in the sentence.
Unlike English, where there are spaces between characters, Chinese has a more
complex composition and no explicit word boundary, which poses many difficul-
ties for Chinese NER. To overcome this limitation, many works [12,13,16] pay
attention to incorporating word information by utilizing lexicon features. In this
work, we also use words that match from the lexicon to construct prompts. Then
a gate mechanism utilizes the relevance between the lexicon-based prompts and
region visual clues to refine the entity-related representation. To tackle the sec-
ond issue, we propose a cross-model alignment (CA) module to make the presen-
tations of text and visual more consistent. Specifically, we maximize the mutual
information between the corresponding text-image pairs through a region-word
contrastive loss.

This paper proposes two embedding enhanced modules (LPE and CA) for
Chinese MNER. The two embedding enhanced modules decouple from the sub-
sequent entity prediction. LPE and CA are devised as efficient embedding com-
puting modules. Chinese NER model such as W2NER [11] and LEBERT [13]
can combine with them to predict Chinese MNER. Such separable embedding
and prediction enable our modules as a plug-and-play framework to enhance
Chinese NER models.

The main contributions of this work can be summarized as follows:

– We construct Wukong-CMNER, the first human-annotated Chinese multi-
modal NER dataset with images modality, where each annotated sentence is
paired with its corresponding image data. To the best of our knowledge, our
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Wukong-CMNER is currently the largest multimodal NER dataset. Moreover,
our Wukong-CMNER can foster research on Chinese MNER.

– We propose two general modules (LPE and CA) based on Wukong-CMNER,
which can extract the proper visual clues and make the representations
between the two modalities more consistent. And the two modules we pro-
posed are based on self-supervised learning, without requiring any additional
data annotations, and can be easily extended to other multimodal tasks.
Moreover, our modules decouple from the subsequent predicting process,
which can be combined with other unimodel Chinese NER models to tackle
Chinese multimodel NER.

– We conduct extensive experiments on Wukong-CMNER, including traditional
Chinese NER models and MNER models for English corpora. Experimental
results demonstrate that our two modules can boost the performances of
Chinese NER models when they are equipped with our modules to address
Chinese multimodel NER task.

2 Related Work

2.1 Chinese NER

Compared with English, there is no explicit word boundaries in Chinese sen-
tences, posing many difficulties to Chinese NER. Therefore, how to incorporate
word information into a character-based models is the key challenge in Chinese
NER. Zhang [37] first introduced a lattice LSTM to encode both characters and
words for Chinese NER. Based on this method, many recent studies improve it
by following efforts in terms of training efficiency [7,16], graph structure [4,8],
model degradation [19], and Transformer-based lexical enhancement [12,17,28].
Liu et al. [13] integrated external lexicon knowledge into BERT layers directly
by a Lexicon Adapter layer. Li et al. [11] presented a novel method by model-
ing NER task as word-word relation classification, pushing the state-of-the-art
performances of Chinese NER. Different from previous methods, we explore the
idea of using word information to extract entity-related visual clues from the
image.

2.2 Multimodal NER

There has been vast prior research about MNER on social media, the criti-
cal challenge is how to combine text representation with image representation.
Zhang et al. [36] first proposed a co-attention network to incorporate the visual
information. Since text-irrelevant visual signals can bring noises, some works
explore to extract text-related visual clues using the attention mechanism while
restraining other visual features [15,18,33]. Besides, Sun et al. [21,22] introduced
a text-image relation propagation method to filter text-related visual features.
To address the semantic gap problem, Zheng et al. [38] leveraged adversarial
learning to map two different representations into a shared space. Wu et al. [29]



586 X. Bao et al.

leveraged object labels as visual features to bridge vision and language. Chen
et al. [2,24] transformed images into captions. Wang et al. [20] utilized entity-
related prompts for extracting proper visual clues. Since we study Chinese NER,
we use lexicon information to design prompts and exploit them to capture visual
clues from entity-related visual regions directly.

Table 1. The statistics of Wukong-CMNER dataset.

Total Train Dev Test

Image-text Pairs 53,554 35,233 9,231 9,090

Unique Tokens 5,781 5,369 4,240 4,241

Avg Sent Len 26.93 26.93 26.94 26.93

Max Sent Len 40 40 36 39

Entity 34,388 22,409 5,987 5,992

#ORG 9,742 6,381 1,677 1,684

#PER 12,013 7,781 2,144 2,088

#LOC 2,148 1,381 401 366

#GPE 10,485 6,866 1,765 1,854

3 Dataset Acquisition and Comparison

To study the task of Chinese multimodal NER containing image-text pairs, we
annotate a new dataset called Wukong-CMNER, which is publicly available at
https://github.com/10652835/Wukong MNER. In this section, We first describe
how we collect and select data (Sect. 3.1). We then present statistics and an
analysis of the dataset (Table 1). Finally, we compare Wukong-CNNER with
traditional Chinese NER datasets and multimodal NER datasets for the English
corpus (Sect. 3.2).

3.1 Dataset Collection and Annotation

Wukong-CMNER is constructed in the following stages.
1) Obtaining Image-Text Pairs. We use Noah-Wukong dataset [6] as the

source of image-text pairs. Noah-Wukong dataset is a large-scale Chinese cross-
modal dataset, containing 100 million image-text pairs from the web, which is
collected according to a high-frequency Chinese word list of 200K queries. We
filter out sentences with special characters, such as (person name), and sentences
less than 10 Chinese words. Since some image links in the Noah-Wukong dataset
are not available for download, we discard them.

2) Tool Labeling. Hanlp [9] is a multilingual NLP library for researchers and
companies, we use ERNIE [23] model trained on close-source Chinese corpus
loaded with Hanlp to assign labels to entities in each sentence, including names

https://github.com/10652835/Wukong_MNER
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of people (PER), location (LOC), organization (ORG), and geopolitical entities
(GPE), which is consistent with Ontonotes [27].

3) Manual Inspection And Labeling. To ensure the quality of annotation,
we employ 3 annotators to inspect and add complementary annotations to the
results of the previous phase. For those sentences with different annotations, we
discuss them one by one and finally reach the agreements for all cases.

4) Preparing Data Split. We split Wukong-CMNER into train, validation
and test. To this end, we randomly divide 80%, 10% and 10% of image-text
pairs for train, test, and validation, respectively. Table 1 shows the statistics
of Wukong-CMNER dataset. We show the total number of image-text pairs.
We also calculate the number of unique tokens and the statistics of tokens per
caption.

3.2 Dataset Comparison

Since Wukong-CMNER is a Chinese NER dataset, we compare it with the four
currently mainstream Chinese NER datasets, namely Ontonotes [27], MSRA [5],
Weibo [10,19], Resume [37]. Meanwhile, since Wukong-CMNER dataset is also a
multimodal dataset, we compare it with two English multimodal NER datasets
Twitter-2015 [36] and Twitter-2017 [15], and the Chinese speech multimodal
NER dataset CNERTA [20].

As shown in Table 2, we can find that Wukong-CMNER has the following
advantages over other datasets: (1) Wukong-CMNER is the first Chinese multi-
modal MNER dataset that contains both images and text. (2) Wukong-CMNER
is currently the largest public dataset for named entity recognition.

Table 2. A comparison between Wukong-CMNER and other widely-used NER
datasets.

Dataset Train Dev Test Total Language Modality

MSRA 46,364 – 4,365 50,729 Chinese Text

Ontonotes 15,724 4301 4,346 24,371 Chinese Text

Weibo 1,350 271 270 1,891 Chinese Text

Resume 3,821 463 477 4,761 Chinese Text

Twitter-2015 4,000 1,000 3,257 8,257 English Text+Image

Twitter-2017 3,373 723 723 4,819 English Text+Image

CNERTA 34,102 4,440 4,445 42,987 Chinese Text+Speech

Wukong-CMNER 35,233 9,231 9,090 53,554 Chinese Text+Image

4 Methodology

4.1 Overview

The overall structure of our model is shown in Fig. 2, which consists of three
main components: Firstly, a Lexicon-based Prompting Visual Clue Extraction
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Fig. 2. Framework of our model.

Module (Sect. 4.2) is designed to extracted entity-related visual clues with a
Vision-Language Pre-training (VLP) Model from the corresponding image. Sec-
ondly, a Cross-modal Alignment Module (Sect. 4.3) is proposed to make the
representations of the two modalities more consistent through contrastive learn-
ing. Finally, the Cross-modal Feature Fusion Module (Sect. 4.4) fuses the input
textual embeddings and the extracted entity-related visual clues to obtain the
final visual-aware text representation for NER prediction or as input into other
models for further processing.

Task Definition. Given a Chinese text T = {x1, x2, . . ., xn} and its associated
image I as input, the goal of MNER is to extract a set of entities into one of the
pre-defined types y = {y1, y2, . . . , yn}. Following most existing work on MNER,
we formulate the task as a sequence labeling problem.

Feature Extraction. For the Chinese sentence T, we first convert each token
xi into word pieces and feed them into a pre-trained language model. After
obtaining the embeddings, we employ max pooling to gain word representations
based on the word piece embeddings. Finally, we obtain text representation
Ts = {w1, w2, . . . , wn}.

Since the global image features may express abstract concepts, they play the
role of a weak learning signal. As for the image I, we adopt the visual ground-
ing toolkit for extracting local visual objects [34]. Furthermore, we introduce
general words of pre-defined entity types (i.e., miscellaneous, person, location
and organization) to encourage discovering more objects related to entities in
the sentence. Then, we rescale extracted object images to 224×224 pixels as
visual objects O = {o1, o2, . . ., om}. Finally, we utilize the pretrained Swin-
Transformer [14] in Wukong [6] to extract regional features Vr = {r1, r2, . . .,
rm} in an end-to-end manner.
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4.2 Lexicon-Based Prompting Visual Clue Extraction Module

In Chinese NER, many recent studies [12,13,16] use word-matching methods
to enhance character-based models, which has been proven to be effective. In
this work, we exploit the lexicon information to design a set of entity-related
prompts. We extract the entity-related visual clues with corresponding weights
by comparing the relevance between the entity-related visual region and every
prompt, as well as weaken the influence of task-irrelevant noises.

Prompt Design. Given a Chinese sentence with n characters T = {x1, x2,
. . ., xn} and a Chinese Lexicon D, we find out all the potential words inside
the sentence by matching the character sequence with D. Specifically, we first
construct a Trie based on the D, then traverse all character subsequences of the
sentence and match them with Trie to obtain all potential words. Taking the
truncated sentence “ 南京市长 (Nanjing Mayor)” as an example, we can find
out three different words inside it, “ 南京 (Nanjing)”, “ 南京市 (Nanjing City)”
and “ 市长 (Mayor)”. Subsequently, we obtain a potential entity dictionary De

for each sentence.
We design the entity-related prompts for a sentence T as the form of “ 一张

关于 [wi] 的图片 (an image of [w̄i] )”,w̄i ∈ DT
e , where DT

e represents the entity-
related vocabulary obtained from the sentence T and wi denotes a phrase from
DT

e . For sentences that do not match any phrase, in other words, the dictionary
De is empty, and hence we design the prompt as the form of “ 一张关于空白的
图片 (an image of blank)”.

Visual Clue Extraction. In this work, we adopt Wukong [6] as the VLP,
which is pre-trained on the large-scale multi-modality Chinese dataset named
Noah-Wukong Dataset. Given the input region image ri ∈ R

C×H×W , we resort
to the Swin-transformer image encoder of Wukong to obtain its embedding:
ri = Wukongimg(oi); Meanwhile, we use Wukong’s text encoder to obtain the
embedding of prompt si = Wukongtext(Pi).

Wang [25] computed the relevance between global image and prompts. Since
the global image features may express abstract concepts, we choose to obtain
the relevance between entity-related region images O and every prompt Pi for
the pairs< T,I >:

p(Pi|O) =
|O∗|∑

k=1

exp(< si, rk > /τ)
∑|De|

j=1 exp(< sj, rk > /τ)
(1)

where O∗ represents the region images set extracted from image I, < ·, · >
denotes the cosine similarity between two vectors and τ is a temperature param-
eter.

Finally, we consider the weighted embeddings of the prompt incorporating
entity-related region image features as entity-related visual clues ŵi = p(Pi|O)×
si. We proposed to fuse entity-related visual clues ŵ with text representation Ts

in Sect. 4.3.
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4.3 Cross-Modal Alignment Module

Since the representations of text and image come from different encoders, the
representations between them are inconsistent. The previous work cannot align
the representations between the two modalities, our cross-modal alignment(CA)
module try to bridge the semantic gap for cross-model consistent representations.
Zhang et al. [35] proposed to capture inter-modality correspondences via multiple
contrastive losses. Inspired by their work, we maximize the mutual information
between the corresponding pairs through contrastive learning.

The inputs of the CA module are the text representations Ts, the regional
visual representations Vr. We maximize the mutual information between image
regions and words for constructing consistent representations. As we all know,
it is difficult to directly maximize mutual information, and hence we choose to
maximize the lower boundary the mutual information by optimizing contrastive
losses. The updated text representation and image representation are used as
the output of the CA module for subsequent cross-modal fusion.

Region-word Contrastive Loss. Intuitively, we believe that the entity-related
regions in the individual image should be consistent with corresponding words
in an input sentence. Thus, we propose the region-word contrastive loss to fur-
ther make the text representation more consistent with the visual representa-
tion. Given a batch of (Vr,Ts) pairs, Ts = {w1, w2, . . . , wn} represents the text
presentation containing n words and Vr = {r1, r2, . . . , rm} denotes the visual
representation containing m entity-related regions. We use attention to learn
connections between entity-related regions Vr and words in sentence Ts. We
first compute the cosine similarity between all words in the sentence and all
entity-related regions in the corresponding image. We next compute the soft
attention αi,j for word representation wi and region representation rj as:

αi,j =
exp(ρ1 < wi, rj >)

∑|O∗|
k=1 exp(ρ1 < wi, rk >)

(2)

where ρ1 is a sharpening hyper-parameter to reduce the entropy of the soft
attention. Thus, the entity-related region feature for the ith word in the sentence
is computed as ci =

∑|O∗|
j=1 αi,jrj . Then, the score function between all words

in the sentence T and all entity-related regions in the corresponding image I is
defined as:

Sword(I, T ) = log(
|T∗|∑

h=1

exp(ρ2 < wh, ch >))
1

ρ2 /τ (3)

where ρ2 is a hyper-parameter that determines the weights of the most aligned
word-region pair, |T ∗| represents the total number of words in the sentence T.
Finally, the region-word contrastive loss can be formulated as:

Lword(Ii, Ti) = −log
exp(Sword(Ii, Ti))∑N
j=1 exp(Sword(Ii, Tj))

(4)
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4.4 Cross-Modal Fusion

In this section, we introduce how to fuse visual clues representation {ŵi}|DT
e |

i=1

with text representation Ts = {w1, w2, . . . , wn} described in Sect. 4.1. Firstly,
we concatenate the above two representations and add the representation of
special tokens of [CLS] and [SEP]:

[CLS], w1, w2, . . . , wn, [SEP], ŵ1, . . . , ŵ|DT
e |, [SEP]. (5)

To capture the position information and the type information, we also add the
position embedding and segmentation embedding into them. The concatenated
representations are subsequently fed into multiple layers of modality-aware self-
attention.

With the assumption that it is beneficial to use the information of target
token types when computing the attention scores [25,31], we take the modality
type into consideration when computing the attention query. Let xi represent the
input token that corresponds to wi or ŵi. The attention weight corresponding
to the jth token in the sequence is computed as:

αij = softmax(
(Kxj)T (QQ2V (xi))√

N + |DT
e | ) (6)

where QQ2V and K denote the query and key matrices respectively. The query
matrix QQ2V contains four forms depending on the modality of the query and the
value: Qw2w,Qw2ŵ,Qŵ2w and Qŵ2ŵ. The final textual representation output
is then calculated as:

xi :=
N+|DT

e |∑

j=1

αijxj (7)

We apply the K layer of modality-aware self-attention to embed the concate-
nated embeddings, and obtain the visual-aware text embeddings from the last
layer for prediction or as input for other models.

4.5 Model Training

In summary, we train the main task (MNER) and our self-supervised learning
task (LPE and CA) jointly. The final loss function is computed as follows:

Ltask =
1
N

N∑

i=1

(λcLword + (1 − λc)Lmner) (8)

where λc ∈ [0, 1] is a hyperparameter and Lmner is the loss function used by the
MNER task. The goal of model training is to minimize Ltask loss.
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5 Experiments

5.1 Experimental Setups

Datasets. We conduct extensive experiments on the proposed dataset, namely
Wukong-CMNER.

Baselines. To demonstrate the necessity of studying Chinese multimodal
named entity recognition and the effectiveness of two modules we proposed, we
compare with extensive baselines including Chinese NER and multimodal NER
baselines: LEBERT [13], LexiconAugment [16], Flat [12], MECT [28], W2NER
[11], UMT [33], MAF [30]. Considering the structure of the model, we conduct
ablation experiments on W2NER and LEBERT, that is, we combine our LPE
and CA with W2NER and LEBERT, respectively.

Metrics. We use overall precision (P), recall (R) and F1 score (F1) to evaluate
the performance of the models, which are widely used in many recent works.

5.2 Main Results

Table 3. Precision (%), Recall (%) and F1 score (%) of baselines and our method on
Wukong-CMNER. ↑ means the points higher than the corresponding baselines without
the proposed modules.

Model Modality Corpora Wukong-CMNER

P R F1

LexiconAugment Text Chinese 74.39 71.83 73.09

LEBERT Text Chinese 78.25 80.93 79.57

Flat-Transformer Text Chinese 79.21 81.91 80.54

MECT Text+Glyph Chinese 72.86 76.41 74.59

W2NER Text Chinese 81.34 81.96 81.65

UMT Text+Image English 66.13 79.74 72.26

MAF Text+Image English 77.63 80.86 79.21

LEBERT+LPE+CA Text+Image Chinese 80.43 81.23 80.83(↑1.26)

W2NER+LPE+CA Text+Image Chinese 81.40 83.95 82.66(↑1.01)

Table 3 shows the results of baselines and some baselines enhanced by the pro-
posed modules. From the table, we find:

(1)During the training, we replace pre-trained language model from bert-
base-cased to bert-base-chinese. Comparing the performances of MNER model
(UMT and MAF) designed for English corpus with that of Chinese NER model,
even though visual modality has been introduced, they still perform worse than
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some Chinese named entity recognition models which only use textual modality.
These results indicate that Chinese MNER datasets have their specific prop-
erties, which cannot be made full use by English MNER models and further
illustrate the necessity of constructing a Chinese MNER dataset to investigate
Chinese MNER.

(2)Introducing visual modality can boost the performance of the character-
based models. After LEBERT and W2NER are equipped with our LPE and CA
modules, their performances increase by 1.26% and 1.01% respectively. These
experimental results demonstrate the effectiveness of introducing the visual
modality in character-based NER models.

(3)W2NER equipped with LPE and CA can achieve the SOTA result on
Wukong-CMNER. The result shows that our modules can provide character-
based with proper visual information that does not contain in lexicon.

5.3 Ablation Study

To investigate the effectiveness of the LPE and CA modules, we perform com-
parisons between the two full models and its ablation methods.

As shown in Table 4, both the two full models benefit from the LPE module
and CA module. Specifically, for the model LEBERT, without the LPE and CA
module, w/o LPE + CA drops 1.26 F1 scores; without w/o CA drops 0.37 F1
scores. After the CA module and both two modules are removed from W2NER, its
F1 scores drop by 0.38 and 1.01 respectively. These results indicate that both the
LPE and CA module take effect. The LPE module captures proper visual clues
to assist character-based NER models in identifying entities more accurately and
the CA module makes the representation of the two modalities more consistent.

We also present the performance of each entity category in Table 4. In most
entity categories, our methods show superior performance compared with base-
lines. All models perform poorly in the categories of ORG and LOC. We specu-
late that the reason may be that the models have difficulty in extracting visual
clues related to these two types of entities.

Table 4. Ablation Study of our LPE and CA Modules. We turn off the CA module and
both two modules on two full model respectively, which are represented as “w/o CA”
and “w/o CA + LPE”. We also present the model performance in terms of different
entity types.

Methods Wukong-CMNER

PER GPE ORG LOC F1

LEBERT+LPE+CA 86.76 83.63 59.28 73.91 80.83

w/o CA 86.67 83.31 58.93 72.02 80.46(↓0.37)

w/o LPE+CA 87.88 81.20 53.08 71.94 79.57(↓1.26)

W2NER+LPE+CA 88.67 84.98 63.66 75.26 82.66

w/o CA 88.38 84.93 63.52 75.79 82.28(↓0.38)

w/o LPE+CA 87.65 84.58 63.42 74.64 81.65(↓1.01)
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6 Conclusion

In this paper, we explore Chinese multimodal NER with both textual and visual
contents. To achieve this, we construct a large scale human-annotated Chinese
multimodal NER dataset, named Wukong-CMNER. Based on the dataset, we
propose a lexicon-based prompting visual clue extraction module to find entity-
related visual clues. We further design a cross-modal alignment module to alle-
viate the semantic gap problem. Through extensive experiments, we find that
the model designed for MNER on English corpora is not suitable for Wukong-
CMNER. These results illustrate the necessity of our work. The experimental
results on Wukong-CMNER show that LPE and CA take effect in improving
the Chinese MNER performance. LPE+CA combined with W2NER creates
new SOTA on Wukong-CMNER.
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Abstract. Empathy is an important characteristic to be considered
when building a more intelligent and humanized dialogue agent. How-
ever, existing methods did not fully comprehend empathy as a complex
process involving three aspects: cognition, affection and behavior. In this
paper, we propose CAB, a novel framework that takes a comprehensive
perspective of cognition, affection and behavior to generate empathetic
responses. For cognition, we build paths between critical keywords in the
dialogue by leveraging external knowledge. This is because keywords in a
dialogue are the core of sentences. Building the logic relationship between
keywords, which is overlooked by the majority of existing works, can
improve the understanding of keywords and contextual logic, thus enhance
the cognitive ability. For affection, we capture the emotional dependen-
cies with dual latent variables that contain both interlocutors’ emotions.
The reason is that considering both interlocutors’ emotions simultane-
ously helps to learn the emotional dependencies. For behavior, we use
appropriate dialogue acts to guide the dialogue generation to enhance the
empathy expression. Extensive experiments demonstrate that our multi-
perspective model outperforms the state-of-the-art models.

Keywords: Empathetic dialogue · Dialogue generation · Cognition
affection and behavior

1 Introduction

Empathy is the ability to understand others’ feelings, and respond appropriately
to their situations . Previous studies have shown that empathetic dialogue mod-
els can improve user’s satisfaction in several areas, such as customer service [14],
healthcare community [26] and etc. Therefore, how to successfully implement
empathy becomes one of the key issues to build an intelligent and consider-
ate agent. In recent years, many studies have been conducted on the task of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 597–606, 2023.
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Fig. 1. A dialogue from the EmpatheticDialogues dataset. The cognitive ability is
improved by retrieving entities (bold in black) and relationships (grey) from ConceptNet
and building paths between critical keywords (red) to generate a high quality response
under the influence of anxious and confident emotions and wishing dialogue act. (Color
figure online)

empathetic dialogue generation, which are mainly divided into two categories:
One is to enhance the understanding of a user’s situation and emotion by lever-
aging knowledge from one or more external knowledge bases [11,15,21,25] or
adding emotion causes as prior emotion knowledge [3,25]. This is to improve
the cognitive ability. The issue of the existing work is that they overlook the
importance of paths between users’ critical keywords, which can actually reflect
the contextual logic in the conversation. Although some studies [25] build paths
between emotion concepts and cause concepts, they mainly focus on the causal-
ity aspect and ignore the fact that paths between any keywords can help. The
second category is to design emotion strategies, such as mixture of experts [12],
emotion mimicry [17] and multi-resolution emotions [10] to generate appropri-
ate responses from the affection aspect. Unfortunately, these studies learn to
respond properly mainly according to the speaker’s emotion rather than both
interlocutors’ emotions. In this paper, we aim to improve the aforementioned
weak aspects of the existing works to help advance the study of empathetic
dialogue generation.

Psychological research shows that empathy is a complex mental process
involving three aspects of interlocutors: cognition, affection and behavior [13].
Specifically, cognitive empathy refers to the ability to understand and interpret
a user’s situation [2]; affective empathy is an emotional reaction based on dif-
ferentiating the emotions of oneself and others [13]; behavioral empathy means
verbal or non-verbal forms of communication used in the empathetic dialogue [6].
Among the existing works, some only consider the aspects of congition and affec-
tion [21,28]; others mainly consider the aspect of behavior [1,27]. None of the
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existing works had comprehensively considered all the three aspects (cognition,
affection, behavior), which we believe are all important. In the following, we
elaborate in detail with the example in Fig. 1. The dialogue in Fig. 1 shows that
(1) Cognition: The speaker is anxious about attending a job interview. In the
first turn, there exists a path between <job, interview> with internship as a
bridge to enhance the understanding of the keywords and the context. In the
next turn, the paths between < poorly, asked> and < asked, job> are built to
alleviate the problem that it is difficult to capture the contextual logic based
on limited context. Thus, it can be seen that the paths , which establish the
relationships between utterances, are critical to improve the cognitive ability.
(2) Affection: In interpersonal conversations, responses are usually influenced
by both interlocutors’ emotions [5]. As shown in Fig. 1, in the second turn,
instead of both sides falling into anxiety, the listener is able to perceive the
speaker’s emotion and accept the emotion difference between them, thus gener-
ating a response with more positive emotion (hopeful). Therefore, how to learn
the emotional dependencies between the context and target response based on
both interlocutors’ emotions is critical for responding properly. (3) Behavior:
Appropriate dialogue acts are used as communicative form to enhance empathy
expression. For example, the listener inspires the speaker by encouraging and
makes the speaker relaxed by wishing. Different from [27], we consider that all
the responses (rather than some of them) are generated by the guiding of dialog
act. In this way, we can guide dialogue generation better.

To this end, we propose a novel empathetic dialogue generation model includ-
ing aspects of Cognition, Affection and Behavior (CAB) to achieve a compre-
hensive empathetic dialogue task. Specifically, since keywords are important to
understand the contextual logic, our model builds paths between critical key-
words through multi-hop commonsense reasoning to enhance the cognitive abil-
ity. Conditional Variational Auto Encoder (CVAE) model with dual latent vari-
ables is built based on both interlocutors’ emotions, and then the dual latent
variables are injected into the decoder together with the dialogue act features
to produce empathetic responses from the perspective of affection and behavior.
Our contributions are summarized as follows:

– To the best of our knowledge, we are the first to propose a novel framework
for empathetic dialogue generation based on psychological theory from three
perspectives: cognition, affection and behavior.

– We propose a context-based multi-hop reasoning method, in which paths are
established between critical keywords to acquire implicit knowledge and learn
contextual logic.

– We present a novel CVAE model, which introduces dual latent variables to
learn the emotional dependencies between the context and target responses.
After that, we incorporate the dialogue act features into the decoder to guide
the generation.

– Experiments demonstrate that CAB generates more relevant and empathetic
responses compared with the state-of-the-art methods.1

1 Code and data are available at https://github.com/geri-emp/CAB.

https://github.com/geri-emp/CAB
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2 Related Work

Recently, there has been numerous works in the task of empathetic dialogue gen-
eration proposed by Rashkin et al. [20]. Lin et al. [12] assign different decoders
for various emotions, and fuse the output of each decoder with users’ emotion
weights. Majumder et al. [17] adopt emotion stochastic sampling and emotion
mimicry to respond to positive or negative emotions for generating empathetic
responses. Li et al. [10] construct an interactive adversarial learning network con-
sidering multi-resolution emotions and user feedback. Liu et al. [16] incorporate
anticipated emotions into response generation via reinforcement learning. Gao
et al. [3] adopt emotion cause to better understand the user’s emotion. How-
ever, all of the above methods only consider the user’s emotion and ignore the
influence between both interlocutors’ emotions in the dialogue.

Several studies have incorporated external knowledge into empathetic dia-
logue generation. Li et al. [11] employ multi-type knowledge to explore implicit
information and construct an emotional context graph to improve emotional
perception. Liu et al. [15] prepend the retrieved knowledge triples to the gold
responses in order to get proper responses. However, these approaches retrieve
knowledge triples without fully considering the contextual meaning of the words.
Although Wang et al. [25] adopt ConceptNet to explore the emotional causality
by commonsense reasoning between the emotion clause and the cause clause, the
logical relationships between other utterances may be ignored. Sabour et al. [21]
use ATOMIC for commonsense reasoning to better understand the user’s sit-
uation and feeling, but reasoning on a whole dialogue history may neglect the
important role of keywords in the context. To overcome the above proposed
shortcomings, we propose a context-based multi-hop commonsense reasoning
method to enrich contextual information and reason about the logical relation-
ships between utterances.

3 Method

3.1 Task Formulation and Overview

In empathetic dialogue generation, each dialogue consists of a dialogue history
C = [S1, L1, S2, L2, . . . , SN−1, LN−1, SN ] of 2N -1 utterances and a gold empa-
thetic response LN = [w1

N , w2
N , . . . , wn

N ] of n words, where Si and Li denote the
i-th utterance of speaker and listener respectively. Our goal is to generate an
empathetic response R = [r1, r2, . . . , rm] based on the dialogue history C, the
speaker’s emotion es, the listener’s emotion el, and the listener’s dialogue act al.

We provide a overview of CAB in Fig. 2, which consists of five components:
(a) Emotional Context Representation. The predicted emotions, es and el,
are fed into context C by emotional context encoder to obtain the emotional
context representation ĤS and ĤL; (b) Affection. Then prior network and
posterior network capture dual latent variables zs and zl, based on ĤS and ĤL

in the test and training phase; (c) Cognition. To build paths P , we leverage
ConceptNet to acquire external knowledge and incorporate it into C to obtain a
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Fig. 2. The overall architecture of CAB.

knowledge-enhanced context representation ĤC ; (d) Behavior. The dialogue
act features Ea are distilled based on a predictor and the embedding layer;
(e) Response Generation. The three-stage decoder generates an empathetic
response R based on the aspects of affection, cognition and behavior.

We evaluate the model on EmpatheticDialogues [20], which is a publicly avail-
able benchmark dataset for empathetic dialogue generation. However, dialogues
in this dataset do not contain labels of emotion and dialogue act for each lis-
tener’s utterance, and we annotate emotion and dialogue act by Emoberta [7]
and EmoBERT [27], respectively, to support the studies in this paper.

From Sect. 3.2 to Sect. 3.7, we introduce CAB briefly due to space limit. More
model and experiment details are in the full version [4].

3.2 Emotional Context Encoder

Input Representation. We divide the dialogue history into two segments
CS = [S1, S2, . . . , SN ] and CL = [L1, L2, . . . , LN−1]. Following the previous
work [12], we first gain the embedding of speaker context, listener context, global
context and gold response respectively. Then the embedding of speaker context
and listener context are fed into the Transformer-based inter-encoder (ItrEnc)
to obtain HS and HL, and the Transformer encoder (TransEnc) encodes the
embedding of global context and gold response into HC and HN .

Emotion Classification. To understand the emotions of the speaker and the
listener, we project the hidden representations of the first token from HS and
HL into the emotion category distribution Ps and Pl to predict their emotions.
Then we send the emotions to a trainable emotion embedding layer to obtain
the emotion states embedding matrix Eemos and Eemol.
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Emotion Self-attention. To make the latent variables in Sect. 3.3 incorporate
both interlocutors’ emotions, HS and HL are concatenated with Eemos and
Eemol and then fed into a self-attention layer followed by a linear layer to obtain
the emotional context representation ĤS and ĤL.

3.3 Prior Network and Recognition Network (Affection)

We introduce dual latent variables z∗ ∈ {zs,zl} in CVAE, mapping the input
sequences C∗ ∈ {CS , CL} into the output sequence LN via z∗. Taking speaker
as an example, we illustrate how to realize the prior network and the recognition
network. The prior network pθ(zs|CS) is parameterized by 3-layer MLPs to
compute the mean μ′

s and variance σ′2
s of zs. The network structure of the recog-

nition network qϕ(zs|CS , LN ) is the same as that of the prior network, except
that the input also includes HN . In order to learn the emotional dependencies
based on both interlocutors’ emotions, we fuse zs and zl due to the emotional
similarity coefficient β between Eemos and Eemol to obtain z = β ·zs+(1−β)·zl.

3.4 Knowledge Acquisition and Fusion (Congnition)

Knowledge Acquisition. We first obtain the keyword set τall of size cw from
CS based on the TextRank algorithm [18]. Then we build paths as follows:

a. Take one keyword in τall as the head entity hi ∈ τall, then feed the embed-
ding of hi and speaker context into ItrEnc to extract the semantic features of
hi. The Top-K knowledge triples in ConceptNet associated with hi are retrieved
based on a score and removed relation set [11].

b. To ensure that the triples are logically related to other keywords τother,
we first obtain the semantic features of hj ∈ τother like step a. After ranking the
triples by relevance between tail entity and hj , we select Top-k triples. If the
tail entity is same as hj , which indicates there exists a one-hop path between hi

and hj , we add them to the final keywords set τr (e.g. red circles in Fig. 2). If
not, the tail entity is added to τall to continue finding the paths by repeating
step a and b. Finally, we retain some paths P (e.g. the paths connected by grey
arrows in Fig. 2) for futher fusion. The attention weight vector g is calculated
to measure importance of each word in C with τr by the attention mechanism.

Knowledge Fusion. We first convert the paths into sequences. Then the
sequences are fed into the two-layer Bi-GRU to obtain the knowledge repre-
sentation Hk. Finally, following previous work [21], we concatenate Hk with
context at token-level to learn the knowledge-enhanced context representation
ĤC .

3.5 Dialogue Act Predictor and Representation (Behavior)

To guide the communicative form of empathetic dialogue generation, our model
uses the first token of ĤC to predict dialogue act al. Then, al is fed into the
embedding layer to learn the dialogue act embedding representation Ea.
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3.6 Response Generation

Finally, the aforementioned information Ea, g, z and ĤC are applied at the
Transformer-based decoder (TransDec) through the following three stages: (1)
The embedding of the start-of-sequence token ESOS and Ea are fed into a lin-
ear layer, then the high-level act features are adopted to guide the generation.
(2) We design a multi-head keywords attention, which takes the output of the
cross-attention layer as query, the dot-product over g and ĤC as key and value.
Then TransDec outputs the hidden state HG. (3) To learn the emotional depen-
dencies, we concatenate z and HG at token-level and use pointer network [23]
to output the probability distribution of each word in the vocabulary.

3.7 Training Objectives

We jointly optimiaze the emotion classification loss, dialogue act prediction loss,
the loss of CVAE model and bag-of-word loss as:

L = γ1Ls + γ2Ll + γ3La + γ4L(C∗, CN ; θ, ϕ) + γ5Lbow (1)

where γ1, γ2, γ3, γ4 and γ5 are hyper-parameters.

4 Experiments

4.1 Experimental Setup

Baselines. We compare our model with the state-of-the-art models as follows:
(1) Transformer [22]: The vanilla Transformer with the pointer network trained
by optimizing the generation loss. (2) Multi-Trans [20]: A variant of Trans-
former that includes emotion classification loss in addition to the generation
loss to jointly optimize the model. (3) MOEL [12]: A model that includes sev-
eral Transformer decoders, and the outputs are softly combined to generate
responses. (4) MIME [17]: A model adopting emotion mimicry and emotion
clusters to deal with positive or negative emotions. (5) EmpDG [10]: A gen-
erative adversarial network that considers multi-resolution emotion and intro-
duces discriminators to supervise the training in semantics and emotion. (6)
KEMP [11]: A model that uses two-type knowledge to help understand and
express emotions. (7) CEM [21]: A method for generating empathetic responses
by leveraging commonsense to improve the understanding of interlocutors’ situ-
ations and feelings.

Implementation Details. We implement all models in PyTorch2 with GeForce
GTX 3090 GPU, and train models using Adam optimization [8] with a mini-
batch size of 16. All common hyper-parameters are the same as the work in [12].
We adopt 300-dimensional pre-trained 840B GloVE vectors [19] to initialize the
word embeddings, which are shared between the encoders and the decoder. The
hidden size is 300 everywhere, and the size of latent variable is 200. We use the
2 https://pytorch.org/.

https://pytorch.org/
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Table 1. Results of the automatic evaluation, and w/o Cog/Aff/Beh indicate ablation
experiments and the best results of all models are bold.

Models PPL DIST-1 DIST-2 EmoSA EmoLA ActA

Transformer 34.11 0.49 1.91 - - -

Multi-Trans 36.42 0.43 1.85 28.91 - -

MOEL 36.59 0.60 3.12 32.33 - -

MIME 37.52 0.32 1.22 34.88 - -

EmpDG) 37.37 0.45 1.89 32.45 - -

KEMP 36.39 0.66 3.08 36.57 - -

CEM 36.11 0.66 2.99 39.07 - -

CAB 34.36 1.13 4.23 40.52 72.23 41.72

W/o Cog 33.88 0.94 3.33 39.42 71.82 43.09

W/o Aff 34.98 1.12 3.97 34.25 - 37.25

W/o Beh 34.79 1.06 3.83 40.05 72.20 -

KL annealing of 15,000 batches to achieve the best performance. During test,
the batch size is 1 and the maximum greedy decoding steps is 50.

Automatic Evaluation Metrics. We choose the widely used PPL [24],
Distinct-1, Distinct-2 [9] as our main automatic metrics. PPL is used to estimate
the generation quality of a model in general. Distinct-1 and Distinct-2 are used
to measure the diversity of responses. Since emotion accuracy of speaker/listener
(EmoSA/EmoLA) reflects the understanding of both interlocutors’ emotions
and dialogue act accuracy (ActA) can determine whether the proper dialogue
acts are chosen to produce responses, we also report these metrics.

4.2 Results and Analysis

Automatic Evaluation Results. The overall automatic evaluation results
are shown in the Table 1. Our model CAB outperforms the baselines on all met-
rics significantly. The lower PPL score implies that CAB has a higher quality
of generation generally, reflecting the importance of considering empathy from
multi-perspective. The remarkable improvements in Distinct-1 and Distinct-2
suggest that the introduction of external knowledge can be beneficial in improv-
ing the understanding of dialogue history and thus generating a wider variety
of response. The higher accuracy of emotion classification verifies the validity of
modelling both interlocutors’ emotions separately.

Ablation Study. As shown in the bottom part of Table 1, we also conduct
ablation experiments to explore the effect of each component. From the results,
we can observe that all metrics decrease except for PPL, especially Distinct-1 and
Distinct-2, when commonsense knowledge acquisition and fusion are removed
(w/o Cog), suggesting that the paths capture additional information to enhance
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cognitive ability, thus improving the quality and diversity of responses. The
increasing PPL score may be due to the introduction of knowledge, which may
have an impact on the fluency of the generated responses. In addition, we find
that only considering the speaker’s emotion by removing the latent variable
of listener (w/o Aff) yields lower emotion accuracy and higher PPL score,
and thus it is difficult to generate appropriate responses without understanding
both interlocutors’ emotions exactly. All metrics decrease when we remove the
classification of dialogue act and the dialogue act features fused at the decoder
(w/o Beh), indicating the emphasis of the dialogue acts in improving empathy.

5 Conclusions

In this paper, we build paths by leveraging commonsense knowledge to enhance
understanding of the user’s situation, considering both interlocutors’ emotions
and guiding responses generation through dialogue act, namely by generating
empathetic responses from three perspectives: cognition, affection and behavior.
Extensive experiments based on benchmark metrics have shown that our method
CAB outperforms the state-of-the-art methods, demonstrating the effectiveness
of our method in improving empathy of the generated responses.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (61672144, 61872072).
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Abstract. Many efficient multimodal entity linking (MEL) methods
have been developed in recent years. However, most MEL methods still
suffer from two drawbacks. On the one hand, the inconsistency of modal
encoding brings the semantic gap between modalities in the feature
space and blocks the multimodal fusion. On the other hand, previous
attention-based multimodal fusions cannot efficiently handle noise. To
address these issues, we propose a Multimodal Encoder Representation
from Transformers for Multimodal Entity Linking (Mert-MEL). Firstly,
we concatenate contexts of mentions and Wikidata abstracts of candi-
date entities as inputs. Then we utilize transformer encoders to extract
features of both textual and visual information, and employ contrastive
learning to better align feature spaces. We also incorporate phrase-level
text embeddings to get rich textual representations. Subsequently, we use
a combination of global fusion and bottleneck fusion to integrate multi-
modal information and extract key information instead of noise. Finally,
we send the fused embeddings to an MEL head to predict the matching
scores between the mention and the candidate entities, and then link the
mention to the candidate with the highest score. Experiments demon-
strate that Mert-MEL prominently outperforms strong baselines on two
MEL datasets.

Keywords: Multimodal entity linking · Contrastive learning ·
Multimodal fusion

1 Introduction

Entity linking (EL) is a crucial downstream task of natural language processing
(NLP), which aims to link a given mention to the corresponding entity in a knowl-
edge graph (KG) [25]. EL is widely applied in many areas, such as Web search
[2], information extraction [16], question answering [21] and so on. Most exist-
ing EL work only considers the text modality, which is able to achieve excellent
performance if the text contains enough information. However, in social media
platforms like forums and blogs, people tend to present multimodal information
such as a sentence with pictures or videos. The diversity of modalities guaran-
tees the adequacy of information, while a single modality is possibly not able
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. An example of Multimodal Entity Linking. turkey links to the turkey meat.

to provide enough information. For example, as shown in Fig. 1, if a social post
only contains the sentence I love turkey so much, it is hard to determine whether
the turkey in the post is chicken or a country, as well as the EL models. But
when the picture is given, we are confident to assert that turkey should be linked
to Turkey Meat (Q4200953) instead of Turkey (Q43). Thus, in order to develop
EL models that have the ability to process multimodal information like human,
multimodal entity linking (MEL) is proposed to improve the performance of raw
EL tasks with the introduction of visual information [29].

The core of MEL models is fusing multimodal information. Most existing
models apply convolution neural network (CNN) to encode images and apply
bidirectional long short-term memory (BiLSTM) or pretrained language models
(PLMs) to encode texts. And then they utilize co-attention mechanism and gated
fusion layer to integrate the feature of two modalities into one embedding, which
is used for downstream tasks. These models have achieved excellent results, but
there are still two drawbacks:

– Semantic gap between modalities. Many models conventionally employ
CNN and BiLSTM as encoders, while new architecture like Transformer [28] is
proved to have better performance on encoding data [10,17]. Models applying
the transformer-based BERT [8] to encode texts have gained improvement,
while they still use CNN to encode images. As reported in [26], different
architectures of two encoders could create a semantic gap between the feature
space of the representations of two modalities, increasing the difficulty of
multimodal fusion.

– Noise during multimodal fusion. Most MEL models use co-attention
mechanism to integrate the two modalities in self-attention layers [29], where
the query and key matrices are from different modalities. It is a fine-grained
method to fuse their features, which also brings much noise from each modal-
ity into the final embedding. Additionally, the performance of self-attention is
also affected by the semantic gap, because it is hard to determine the atten-
tion between embeddings in different feature space, and the false attention
obviously brings noise.
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To address the above issues, we propose a Multimodal Encoder Representa-
tion from Transformers for MEL (Mert-MEL). Specifically, we firstly use Wiki-
data to obtain abstracts of candidate entities, and construct textual inputs by
concatenating the contexts of mentions and the abstracts. Then, in order to
bridge the semantic gap, we utilize transformer encoders with the same architec-
ture to extract features of visual information and token-level features of textual
information. We also utilize one-dimensional convolution on the token-level fea-
tures to generate phrase-level features. Then we use a mixed fusion mechanism
to integrate the three features, which consists of two global fusion layers and
a bottleneck fusion layer. In the global fusion layer, we concatenate the visual
features and one of the two textual features respectively, and send them to a
multi-layer transformer for fully information exchange. Then we reassemble the
features and send them to the bottleneck fusion layer. The bottleneck fusion layer
is also a multi-layer transformer but only allows them to exchange information
through several units, which limits the flow of information and forces the model
into collecting key information, instead of noise. Consequently, we obtain the
embeddings with multimodal information from the bottleneck fusion layer. The
above part of our model is called Mert. In order to further bridge the semantic
gap and obtain better embeddings, we employ contrastive learning [4] to pretrain
Mert. Finally, we send the embeddings generated by the pretrained Mert to an
MEL head which consists of two fully connected layers and a softmax layer, to
predict the matching score between the mention and the candidate entity. Then,
the mention is linked to the candidate with the highest matching score.

The main contributions of our work can be summarized as follows:

– We propose a transformer-only MEL model Mert-MEL, unifying architectures
of encoders for different modalities and bridging the semantic gap between
them.

– We are among the first to apply bottleneck fusion to MEL, based on which
we propose a mixed fusion mechanism for fusing information from different
modalities and reducing noise during information exchange effectively.

– We conduct comprehensive experiments and analysis on real-world datasets,
and results demonstrate that Mert-MEL outperforms strong baselines.

2 Related Work

Multimodal Fusion. Multimodal fusion is the process of fusing representations
of different modalities into a single representation. Typically, it can be divided
into three categories: early fusion, middle fusion and late fusion. Early fusion is
simple but ignores the heterogeneity among different modalities [11]. Late fusion
can capture heterogeneous information but has high computational cost [27].
Middle fusion mitigates the disadvantage of the above two strategies because
it can capture the deep interactive information from different modalities [9,30].
The above fusion strategies indeed improve the model performance. However,
they are unable to align the semantic space of the modalities well, which may
bring much noise into the final representation. In our models, we employ the
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bottleneck fusion [23], which forces information of different modalities to pass
through several bottleneck units with lower computational cost.

Contrastive Learning. Contrastive learning [4] is widely used to align the feature
space of representations of different modalities. Alec et al. [24] proposes a simple
but efficient contrastive pretraining method. It predicts the probability that a
caption matches a given image. Singh et al. [26] proposes a language and vision
alignment model which learns strong representations through joint pretraining
on both unimodal and multimodal data, encompassing cross-modal alignment
objectives and multimodal fusion objectives. Wang et al. [29] proposed a mul-
timodal entity linking method with gated hierarchical multi-modal fusion and
contrastive training, which is able to catch fine-grained inter-model correlations.
In our work, we adapt the method in CLIP [24] to pretrain our model before
input data into the MEL module. The method is efficient and help mitigate the
semantic space between two modalities.

Multimodal Entity Linking. The MEL task maps mentions with multimodal
information to entities in a structured knowledge base (KB) such as Wikidata
[13]. Bunescu et al. [3] first proposed to link a named mention to an entity in a
knowledge base. Existing EL methods can be divided into two categories: local
approaches [6,7] and global approaches [14,15]. Local approaches disambiguate
mentions individually using lexical mention-entity measures and contextual fea-
tures. Global approaches make use of document-level features to disambiguate
all the mentions in the documents. They can also model semantic relationships
between entities in the KB. Moon et al. [22] pioneered the study of multi-modal
entity linking. It leverages modal attention mechanism to fuse features of images,
texts and characters. Zhang et al. [34] proposes a model which highlights the
effect of removing the negative impact of noisy images and leverages multiple
attention mechanisms to get richer information from the texts and images with
mentions and their corresponding candidate entities.

3 Methodology

3.1 Preliminary

Let D = {xi}N
i=1 denote the input multimodal samples, where xi = {xt

i, x
v
i }.

The textual input xt = {s, (m1,m2, · · · ,mn)} contains a sentence s =
{s1, s2, · · · , sls} and mentions mi ∈ s in the sentence, where si means the i-
th token of s and ls is the length of the sentence. The visual input xv is an
image in RGB format.

The MEL task aims to link the mentions in a sentence to the corresponding
entities in a KG. Let K denote the used KG, e ∈ K denote the ground truth
entity of a mention m in the sentence s. θ denotes parameters of the model and ê
denotes the linked entity. Then the problem is to maximize the probability that
the model links m to e:

argmax
θ

P (ê = e|xt, xv,K,m, θ) (1)
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Fig. 2. The architecture of Mert-MEL

3.2 Overview of Mert-MEL

Figure 2 shows the architecture of Mert-MEL. The model consists of four compo-
nents: (1) multi-level feature extraction, (2) global fusion, (3) bottleneck fusion,
and (4) MEL head. Different from conventional model like GHMFC [29], our
model treats MEL as a binary classification task. Therefore, we specifically design
the input data at first. Then a sample goes through the multi-level feature extrac-
tion module. After that, the output embeddings are fused by the global fusion
module. Subsequently, the fused multimodal representations go through the bot-
tleneck fusion module for further refining. Finally, a MEL head is performed on
the final image-aware textual embedding to predict the matching score between
the mention and the candidate entity.

3.3 Input Design

In Mert-MEL, the semantic information of a mention m is represented by the
whole sentence s = {s1, s2, · · · , sls} that m belongs to, where si is the i-th token
and ls is the sentence length. And an entity e is represented by its properties
and the corresponding values in the KG, which is called the entity abstract and
denoted by a = {a1, a2, · · · , ala}, where ai is the i-th token and la is the abstract
length. For example, the entity Michael Jackson is represented as Name: Michael
Jackson, Gender: male, Occupation: singer, dancer · · · . Then we concatenate s
and a as xc = ([CLS], s1, s2, · · · , sls , [SEP], a1, a2, · · · , ala). Finally, xc and the
visual input xv are fed into the model together.

Note that a sample is positive if the mention matches the entity, otherwise it
is negative. During training, the number of positive samples and negative samples
in a batch is equal, in order to avoid the imbalanced classification problem [19].

3.4 Preprocess

The Mert-MEL model takes a pair (or a batch of pairs) of image and text as
input. The input image is in form of a matrix with RGB channels, and the text
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is a string. The processor contains two parts. The visual feature extractor do a
series of transforming jobs. It resizes the image to a unified size of (C,H,W ),
where C, H and W mean channel, height and width respectively. Then it nor-
malizes the image data with given mean and standard deviation. Finally, the
image is divided into P × P patches. By default, C = 3, W = H = 224, and
P = 16. The tokenizer for the input text generates the corresponding token IDs
and attention masks. The sequence length is limited to a fix value (such as 64 or
128 in practice), while the rest part is truncated. The preprocessed images and
sentences are directly sent to encoders.

3.5 Encoders

We use a transformer encoder to extract the contextual features of the text. The
text encoder outputs the hidden state vectors ht of the input texts, including
the additional ht

CLS for the [CLS] token.
The image encoder adopts the ViT architecture [10]. Similar to the text

encoder, we flatten the P ×P patches into a sequence, with an additional [CLS]
token ahead, and feed it into the encoder. The image encoder outputs hidden
state vectors hv likewise.

3.6 Multi-level Feature Extraction

Generally, the semantic information of tokens close to an entity is beneficial
to disambiguation, and the image is more likely to be related to a phrase in
the sentence. Hence, inspired by the work in [29], we not only extract visual
embeddings and token-level textual embeddings in this module, but also extract
phrase-level textual embeddings.

The textual input xc and visual input xv are fed into the text encoder and
the image encoder separately, then we get the token-level textual embeddings
ht ∈ R

lc×d and visual embeddings hv ∈ R
lv×d respectively, where lc and lv

are the length of xc and the patch number of xv respectively, d is the dimen-
sion of the feature space. Afterwards, k one-dimensional convolution kernels
[W1,W2, · · · ,Wk] are performed on ht, whose kernel size are [l1, l2, · · · , lk].
Then the local feature of the j-th token extracted by the i-th kernel is

pi,j = ReLU
(
Wi · hc

[j:j+li−1] + bi

)
. (2)

After that, we perform max pooling on all local features extracted by the k
kernels for each token, so as to retain the most prominent features.

pj = max {p1,j ,p2,j , · · · ,pk,j} (3)

Now we get the phrase-level embeddings hp = [p1,p2, · · · ,plc ] ,pi ∈ R
d of

the textual input. The two levels of token embeddings constitute multi-level
features of textual inputs, which enrich the semantic information of entities and
contribute to disambiguation.
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3.7 Global Fusion

We concatenate ht and hv as [ht,hv], then put it into a multi-layer trans-
former. Finally, we get [ht

v,hv
t ], where ht

v is called image-aware token-level tex-
tual embeddings and hv

t is called token-level text-aware visual embeddings.
Similarly, we put [hp,hv] into another multi-layer transformer and get image-

aware phrase-level textual embeddings hp
v and phrase-level text-aware visual

embeddings hv
p.

[
ht

v,hv
t

]
= Transformert

(
[ht,hv]

)
(4)[

hp
v,hv

p

]
= Transformerp ([hp,hv]) (5)

In the end, we obtain the image-aware multi-level textual embeddings Tv by con-
catenating ht

v and hp
v, and obtain the multi-level text-aware visual embeddings

Vt by concatenating hv
t and hv

p.

Tv = [ht
v,hp

v] (6)

Vt = [hv
t ,hv

p] (7)

3.8 Bottleneck Fusion

After global fusion, we pair Tv and Vt, and feed them into the bottleneck fusion
module [23].

This module is intended for further information interchange between the
two modalities, which forces the model into concentrating on the most relevant
information in each modality. This module stacks several layers of transformer
encoder. Specifically, we initialize bottlenecks B = [b1,b2, · · · ,b|b|], where bi ∈
R

d is a zero vector and |b| is the number of bottlenecks. In each fusion layer, the
concatenation of textual embeddings and bottlenecks goes through a transformer
encoder, and then the resulted bottlenecks goes through another transformer
encoder with visual embeddings. The update process can be written as follows:

[
Tv

�+1‖B̂�+1

]
= Transformerv

(�) ([Tv
�‖B�]) (8)

[
Vt

�+1‖B�+1

]
= Transformert

(�)

([
Vt

�‖B̂�+1

])
(9)

The final fused textual embeddings Tv
b are used in the later downstream task.

3.9 Contrastive Learning

So far, the above part of the whole model is called Mert, which is a multimodal
encoder essentially. Before applying Mert to MEL, we firstly use contrastive
learning to pretrain Mert, inspired by CLIP [24].

Given a batch containing m multimodal samples {x1, · · · , xm}, let Ev
i ,Et

i ∈
R

d denote the L2-normalized embedding of the [CLS] token in Vt
b and Tv

b of the
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i-th sample respectively. And Ev = [Ev
1,E

v
2, · · · ,Ev

m]T , Et = [Et
1,E

t
2, · · · ,Et

m]T .
Ev,Et ∈ R

m×d. Then we calculate the scaled pairwise cosine similarities,

L = EvEtT et, (10)

where t is a trainable temperature parameter, and L ∈ R
m×m.

Let y = [1, 2, · · · ,m] be the labels, and then we obtain the total symmetric
loss with the following formula:

Lv = CrossEntropyLoss(L,y), (11)

Lt = CrossEntropyLoss(LT ,y), (12)
L = (Lv + Lt)/2. (13)

The goal of pretraining is to minimize L so that the distance between a
textual embedding and a visual embedding gets shortened if they are from the
same sample, otherwise gets enlarged.

3.10 MEL Head

The MEL head utilizes the bottleneck-fused features Tv
b = [tv

b 1, t
v
b 2, · · · , tv

b 2lc ],
tv
b i ∈ R

d, which is output by the pretrained Mert, to predict the matching score
between the mention m and the candidate entity e.

We take out hCLS from Tv
b , which is the embedding of the [CLS] token and has

fused the semantic information of m and e with the help of visual modality. In our
model, hCLS is exactly tv

b 1, because we set [CLS] as the first token. Subsequently,
we send hCLS into two fully connected layers to obtain the logits. And then we
get the probabilities that whether m matches e, after softmax.

h̃CLS = Tanh(W1hCLS + b1) (14)

lm:e = W2h̃CLS + b2 (15)
pm:e = Softmax(lm:e) (16)

where W1,b1 and W2,b2 are the weights and biases of the two fully connected
layers respectively, and lm:e = [ltm:e, l

f
m:e], where ltm:e is the score that m matches

e, and lfm:e is the score that m does not match e. Here ltm:e is called the matching
score between m and e.

For training, we minimize the cross entropy loss:

L = CrossEntropyLoss(pm:e,y) (17)

where y is the ground truth label.
For inference, we link m to the candidate ẽ that has the maximum matching

score:
ẽ = argmaxe ltm:e (18)
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4 Experiments

4.1 Datasets, Baselines and Settings

Datasets. The dataset we use to pretrain the Mert model is flickr 30k [33],
which has been used for many multimodal tasks. It contains 31,783 images, which
are photographs of daily activities, events and scenes. Each image accompanies
5 descriptive sentences from different perspectives.

We carry out experiments on two MEL datasets: Wiki-MEL and Richpedia-
MEL [35]. In both datasets, the textual and visual descriptions of mentions
are collected from Wikipedia, and each mention can be linked to an entity in
Wikidata. The Wiki-MEL dataset contains over 22k samples, and the Richpedia-
MEL dataset has about 17.8k samples. In the Richpedia-MEL dataset, most
samples have multiple descriptive images, and we only take the first image of a
sample as the visual input.

To obtain the candidate entities of a mention, we input the mention into the
Wikidata look-up API, and then choose the first 100 entities of the returned
results as the candidates, after removing the ground truth entity. And we use
the first candidate to construct the negative sample of the mention. Finally,
we collect essential information of all entities in the datasets to construct their
abstracts, including basic properties of human, such as sex, occupation, lan-
guages, birth date, death date, and brief description. The statistics of datasets
are summarized in Table 1.

Table 1. Summary statistics for the datasets.

Dataset Samples Mentions Text length (avg.) Mentions (avg.) Neg. candidates (avg.)

Wiki-MEL 22,070 25,846 8.2 1.17 1.85

Richpedia-MEL 16,851 16,922 16.0 1.00 1.71

Baselines

– ARNN [12], which combines RNN implemented by GRU unit [5] with atten-
tion mechanism, and uses the encoder-decoder structure.

– BERT [8], which encodes tokenized text with multi-layer transformers, and
has been pretrained with specific objectives.

– BLINK [32], which uses a bidirectional encoder to model entities and a cross
encoder for EL, both based on BERT, to achieve zero-shot EL.

– JMEL [1], which mainly uses fully connected layers and simple concatena-
tion, and encodes the contexts of mentions and entities separately.

– DZMNED [22], which employs modal attention mechanism to fuse embed-
dings from CNN and BiLSTM. It predicted entity in the KG on the basis of
all extracted context information.

– DZMNED-BERT, a variant of DZMNED, which uses BERT to extract
textual features.
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– HieCoATT-Alter [21], which considers question hierarchy, and computes
word-level, phrase-level and question-level features. It involves parallel co-
attention and alternating co-attention mechanism.

– MEL-HI [34], which incorporates multiple attention mechanism in LSTM to
improve visual representation with noise.

– GHMFC [29], which applies co-attention mechanism to extract multimodal
features, and uses BERT to extract entity features. It performs entity linking
according to cosine similarity between mentions and entities.

– ViLT [18], a simple multimodal model using transformer. It directly uses
BERT and ViT to process textual and visual features, and sends the embed-
dings to a transformer encoder.

– FLAVA [26], which is a transformer-based multimodal model pretrained with
many objectives, and is efficient on most vision recognition and language
understanding tasks. This model serves as a basic component of Mert-MEL.

– Mert-MEL, the model we proposed in this paper.

Settings. Both image encoder and text encoder are transformer encoders with
the ViT [10] architecture, and pretrained in FLAVA [26], which have 12 heads
and 12 layers, and the intermediate size is 3072. The size of the input image is
224 × 224 and the patch size is 16 × 16. The dimensions of visual features and
textual features are all set to 768. The phrase-level feature extractor consists of
3 Conv1D modules with kernel size 3 and padding 1, which ensures unchanged
sequence length. The Multi-layer Transformer in Global Fusion has the same
dimensions as the encoders, which is also pretrained in FLAVA but only has
6 layers. The bottleneck fusion layer has 4 bottlenecks, 8 heads and 6 layers
with 0.1 dropout probability. At the end, the MEL head has 2 linear layers with
size 768-768-2. For pretraining Mert and training Mert-MEL, we optimize all
parameters by AdamW [20] with learning rate 5 × 10−5, batch size 32, dropout
0.4, and epoch 5. All experiments are conducted on a NVIDIA� V100 GPU.

We use the Top-k accuracy as the evaluation metric, which can be calculated
as follows:

Accuracytop−k =
1
N

N∑
i=1

I(ei ∈ Ẽk) (19)

where N is the total number of samples, ei is the ground truth entity of the i-th
sample, and Ẽk is the set of candidates whose matching scores rank top k among
all the candidates of the i-th sample. I is the indicator function, which is set to
1 if the receiving condition is satisfied, and 0 otherwise.

The source code is available at https://github.com/aanonymity/mert-mel.

4.2 Main Experimental Results

In the experiments we conduct, we evaluate on the performance of Mert-MEL,
and compare it with other baselines. Table 2 shows the Top-1,5,10,20 accuracy
results of all models on the two datasets.

https://github.com/aanonymity/mert-mel
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Table 2. MEL results of the compared models at Top-1, 5, 10, 20 accuracy (%). (T:
textual modal, V: visual modal, C: character). † stands for results produced by original
implementations, and baselines with ‡ are implemented according to corresponding
papers. Other baselines are implemented by the Transformers library [31].

Modalities Models Wiki-MEL Richpedia-MEL

Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

T ARNN † [12] 32.0 45.8 56.6 65.0 31.2 39.3 45.9 54.5

T BERT † [8] 31.7 48.8 57.8 70.3 31.6 42.0 47.6 57.3

T BLINK † [32] 30.8 44.6 56.7 66.4 30.8 38.8 44.5 53.6

T+V JMEL ‡ [1] 31.3 49.4 57.9 64.8 29.6 42.3 46.6 54.1

C+T+V DZMNED ‡ [22] 30.9 50.7 56.9 65.1 29.5 41.6 45.8 55.2

C+T+V DZMNED-BERT ‡ 34.7 53.9 58.1 70.1 32.4 43.7 48.2 60.8

T+V HieCoATT-Alter ‡ [21] 40.5 57.6 69.6 78.6 37.2 46.8 54.2 62.4

T+V MEL-HI ‡ [34] 38.6 55.1 65.2 75.7 34.9 43.1 50.6 58.4

T+V GHMFC † [29] 43.6 64.0 74.4 85.8 38.7 50.9 58.5 66.7

T+V ViLT [18] 24.9 58.9 76.5 90.4 25.5 61.9 76.7 87.4

T+V FLAVA [26] 37.0 73.4 85.5 95.2 56.9 81.5 87.7 95.4

T+ V Mert-MEL 43.9 80.1 92.8 98.0 59.1 82.3 88.7 93.8

Firstly, we observe that models with visual modality generally outperforms
text-only models. Multimodal models such as MEL-HI, GHMFC and our Mert-
MEL have significantly higher Top-1 accuracy than text-only models such as
ARNN, BERT and BLINK. Specifically, the Top-1 accuracy of Mert-MEL is
12.2% and 27.5% higher than that of BERT on Wiki-MEL and Richpedia-MEL
respectively. This indicates the necessity to mine the underlying information in
visual modality, which could largely improve the accuracy of MEL.

Secondly, models with advanced fusion method and stronger feature extrac-
tors perform better than others. While JMEL simply employs fully connected
layers and embedding concatenation, GHMFC applies co-attention mechanism
and gated fusion, whose Top-1 accuracy is 12.3% and 9.1% higher than JMEL
on Wiki-MEL and Richpedia-MEL respectively. Our Mert-MEL applies a mixed
fusion mechanism which can better deal with the noise than co-attention,
and thus gains improvement in all metrics to varying degrees, compared with
GHMFC. In addition, models employing the transformer-based encoders tend
to have better performance. Specifically, DZMNED-BERT has 2–5% improve-
ment in each metric compared with the raw DZMNED. FLAVA and Mert-MEL,
which employ transformer encoder to extract textual and visual features, rank
the top 2 in all metrics. This demonstrates that stronger feature extractors can
prominently improve the performance of MEL models.

Thirdly, the method for entity linking is comparatively crucial to the results.
Models such as BERT, GHMFC and HieCoATT-Alter extract multimodal men-
tion features and entity features with different encoders respectively, and then
perform entity linking based on the cosine similarities between the features.
Obviously, this method hardly achieves high performance because the inconsis-
tency of encoders brings a semantic gap between the feature space of mentions
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and entities, which leads to the cosine similarity not working well. By contrast,
Models with a different entity linking method, such as FLAVA and Mert-MEL,
achieve much higher performance, where the Top-1 accuracy of FLAVA is 18.2%
higher than that of GHMFC on Richpedia-MEL. These models concatenate the
contexts of the mention and the entity abstract as the input text, and then use
fully connected layers to calculate the matching score from the fused textual
embeddings, which utilizes the ability of neural network to mine the underlying
information from features.

Finally, the performance of Mert-MEL takes the lead in almost all metrics
on the two datasets. Compared with the second best model FLAVA, Mert-MEL
has 6.9% and 2.2% improvement in the Top-1 accuracy on the Wiki-MEL and
Richpedia-MEL respectively. The image encoder and text encoder of Mert-MEL
have the same architecture, which is helpful to align the feature space of the two
modalities. The global fusion layer and the bottleneck fusion layer also make a
big difference to the performance, which we will discuss in the next section.

4.3 Ablation Experiments

In this section, we study the effect of each module in Mert-MEL via ablation
experiments on Wiki-MEL. Table 3 shows the performance of 5 incomplete mod-
els. Obviously, the removal of any module leads to lower performance.

Phrase-Level Feature Extraction. We extract phrase-level textual features
in order to enrich the representation of texts and capture more accurate semantic
information. Absence of phrase-level feature leads to all the Top-k accuracy drop-
ping in varying degrees, among which the reduction of Top-1 accuracy reaches
4.5%. Phrase-level features not only enrich the textual information together with
token-level feature, but also contribute to better attention weights in the cross-
modal attention layer of global fusion and bottleneck fusion module, because
the visual information may not only be related to a single word in the sentence,
but more likely to be related to a phrase. The result proves that this multi-level
feature extraction absolutely improves the performance of the whole model.

Global Fusion. The global fusion module stacks multiple layers of multi-head
attention, which plays the role of co-attention between two modalities, and

Table 3. Results of Mert-MEL ablation experiments on Wiki-MEL (BF: Bottleneck
Fusion, CL: Contrastive Training, PT: Phase-Level Encoder, GF: Global Fusion).

Models Top-1 Top-5 Top-10 Top-20

Mert-MEL 43.9 80.1 92.8 98.0

- BF 36.1 72.8 86.9 94.7

- CL 38.8 78.0 88.5 96.2

- PT 39.4 79.3 89.8 96.6

- GF 36.5 76.8 90.3 97.2
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ensures each embedding can absorb global information from another modality
so as not to leave out key points. After removing this module, the destructive
effect turns most notably in Top-1 accuracy, which decreases by 7.8%.

Bottleneck Fusion. The bottleneck fusion module is also crucial to our model.
It sets several bottlenecks and limits features of the two modalities to communi-
cate only through them. This forces the bottlenecks to collect the most impor-
tant information and then refine the features. Consequently, the noise brought
by global fusion is also eliminated. Without bottleneck fusion, the Top-1 and
Top-5 accuracy of the model ranks last with a terrific reduction about 7%.

Contrastive Learning. The contrastive learning helps to align the feature
space of the two modalities, making the model easier to be trained on MEL task.
After removing this step, the Top-1 accuracy decreases by 5.1%. The reduction
of performance proves that contrastive pretraining is an effective strategy.

Results of ablation experiments show that all the modules of Mert-MEL boost
the performance of the whole model, especially the two fusion modules. The
improvements brought by contrastive learning and phrase-level feature extrac-
tion are relatively small, but they still make a difference and cannot be ignored.

4.4 Parameter Sensitivity Analysis

In this section, we test the performance of our model with different parameters
of bottleneck fusion module on Wiki-MEL, which is shown in Fig. 3. Firstly, we
fix the number of Bottleneck Fusion layers to 6, epoch number to 5, and then
train the model with the number of bottlenecks equal to 2, 4, 8, 16, 32, 64 and
128 respectively. Results indicate that setting 4 bottlenecks is the best choice.
Fewer bottlenecks are not enough to contain key information, while too many
bottlenecks means more noise comes in. This is consistent with the trend that
the accuracy starts to fall when the number of bottlenecks grows over than 4.

After that, we fix the number of bottlenecks to 4, epoch number to 5, and then
train the model with the number of bottleneck fusion layers equal to 2, 4, 6, 8,
10 and 12 respectively. Figure 3(b) shows that the performance of model reaches
the peak when the number is 6. Fewer layers mean that the two modalities

Fig. 3. Top-1 accuracy with different parameters of bottleneck fusion module.
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have fewer opportunities to obtain information from each other. However, the
Top-1 accuracy drops sharply when the number of layers increases to 8 from 6,
proving that too many interactions between the two modalities bring in more
noise, which is harmful for the performance. Both of the above two experiments
demonstrate that it is necessary to restrict the communication between the two
modalities.

4.5 Case Study

We further analyze the effectiveness of Mert-MEL by real-world cases in Fig. 4,
which are chosen from the datasets and external sources of Wikipedia.

In case 1 and 2, our model correctly links the mentions to the corresponding
entities. Specifically, in case 1, Mert-MEL mines the relationship between the
camera in the image and the word photojournalist in the entity abstract, and
gives the highest matching score to the ground truth entity. In case 2, the textual
description of the mention leads to successful linking, which implicitly indicates
that the mentioned person performed a part in a play and should be an actor.

In case 3, our model fails to predict the correct answer. The top two entities
Fan Cong and Zhu Mujie have completely different labels, but have the same
alias Dashan. While among the candidate entities whose labels are Dashan, the
ground truth entity ranks first. In case 4, Mert-MEL assigns high matching scores
to the entities whose names include Philip VI and who are noblemen. But it fails
to distinguish the ground truth from these similar entities, partly owing to the
failure to recognize Philip VI of France as a whole.

Fig. 4. Multimodal entity linking cases (Each case contains visual information, textual
information, and an entity. The mention is in bold blue text. The MEL results are
ranked, and the correct answer is in bold blue text. Some of the images have been
cropped to fit the table). (Color figure online)
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Lack of key information could lead to wrong predictions. In case 5, the ground
truth entity gets an extremely low score. As a matter of fact, the textual infor-
mation does not provide any clue that helps to make the correct prediction. It
shows that Mert-MEL may not perform well when the given sentence has little
correlation with abstracts of entities.

5 Conclusion and Future Work

In this paper, we propose Mert-MEL, an effective model for MEL. Mert-MEL is
completely based on Transformer, which is used to extract and fuse features. In
order to fully capture semantic information in the text, it extracts both token-
level textual features and phrase-level textual features. Additionally, it employs
a mixed fusion mechanism, which combines global fusion and bottleneck fusion.
We also introduce contrastive learning to reduce the semantic gap between two
modalities. Experiments show that our models have excellent performance, which
are capable of mining and fusing the information of two modalities sufficiently,
and reducing the noise in the extracted features effectively.

In the future, we will continue to find out a method to extract fine-grained
mention-level features, in order to improve our models further. Besides, removing
the MEL head, the remaining Mert can also be used for other multimodal down-
stream tasks by adding a task head theoretically, so we also hope to generalize
our model to other tasks in the future.
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Abstract. Expressing empathy is a trait in human daily conversation,
in which people are willing to give responses containing appropriate
emotions and topics on the basis of understanding the interlocutor’s
situation. However, empathetic dialogue models trained by data-driven
training method tend to generate general responses, which are usually
monotonous and difficult to infuse emotions and topics concurrently.
To solve this issue, we propose a novel model that generates two sub-
responses, namely, emotion feedback and topic discussion, then integrates
them to optimize empathetic responses. Specifically, in the sub-response
generation stage, we introduce emotion lexicon and commonsense knowl-
edge to make sub-responses focus on emotional words and topic-related
words respectively, which drives the sub-responses to be contextually
related from different perspectives. Afterward, we utilize cross atten-
tion to integrate the global information to optimize the final response.
Our model is trained on the pre-trained language model BART. Exper-
imental results show that our method can generate responses involving
emotion and topic well, and compared with existing methods, empathy
and relevance are improved. Our code is available at https://github.com/
outsider-lj/edsgi bart.

Keywords: empathetic dialogue generation · commonsense
knowledge · pre-trained language model

1 Introduction

Enabling machines to communicate like humans is a long-term goal of open-
domain dialogue generation. Empathy is an essential human trait, which reflects
our ability to share the feelings of others [28]. The empathetic dialogue sys-
tem aims to recognize user’s emotion and situation, then generates responses
accordingly. Such empathetic dialogue system can improve user’s experience
and establish long-term human-machine interaction, thereby it is widely used
in social companion, psychological counseling and other fields. Recently, many
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Fig. 1. An example of Empathetic Dialogue with commonsense knowledge. Emotion
feedback is highlighted in green, topic discussion is highlighted in purple, and common-
sense concepts are highlighted in blue. Numbers under words denote emotion intensity.

researches on empathetic dialogue generation have focused on user’s situation
cognition [25,31], user’s emotion recognition [8,13,34] and empathetic response
strategies [5,26,27].

To explore the specific characteristics of empathetic responses, we observe
the real daily dialogue dataset Daily Dialogue [11] and the empathetic dialogue
dataset Empathetic Dialogue [24]. We find that human’s responses frequently
include emotion feedback and topic discussion. Among them, the empathetic
responses often start with emotion feedback and then have a topic discussion,
as shown in Fig. 1. However, due to a lot of repetitive general sentences in the
dataset and the data-driven training strategy of deep learning models, it’s easy
for the empathetic dialogue model to generate general responses but difficult to
express both emotional and topic-related content. The responses such as “I’m
sorry to hear that.” which only express emotion and “What do you think?”
which only discuss the topic, neither can well reflect the model’s empathy, it’s
hard for users to feel well understood.

In this paper, we address the above problems by generating two sub-responses,
namely emotion feedback and topic discussion, and then integrating them to opti-
mize the final responses. First of all, we segment and categorize the responses in the
dataset based on the rules in Sect. 4.1. In short, we treat the utterances with more
emotionally expressive words (mostly adjectives or adverbs) as emotion feedback;
the utterances with more topic-related words (mostly nouns or verbs) as topic dis-
cussions. Following the example in Fig. 1, the first reply contains a clear emotional
word “sorry”, but no topic-relatedword, sowe treat it as a emotion feedback.There
are no explicit emotional words in the second utterance, but “physical therapy” is
related to the current topic “arthritis”, so it is a topic discussion. Secondly, we
introduce emotion lexicon and commonsense knowledge to help the model under-
stand the contexts and generate sub-responses. In our opinion, the attention to
“pain” can help the model respond with appropriate emotion, and the attention
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to “arthritis” and “traveling” can improve the semantic richness of topic discus-
sion. At last, we think about that the separately generated sub-responses may have
problems of semantic inconsistency and duplicate text. Therefore, inspired by the
idea of deliberation [33], we integrate the sub-responses and further check to gen-
erate more smooth responses.

To sum up, we propose the Empathetic Dialogue Sub-response Generation
and Integration (EDSGI) model. It includes one encoder and three decoders
which are used to generate and integrate the two sub-responses. In the encoder,
we utilize commonsense knowledge to expand the dialogue context and boost
the understanding of the dialogue context. In the two sub-response decoders,
the gated cross attention is used to pay attention to the emotional words and
topic-related words of the context respectively. In the integration decoder, we
adopt two cross attention to integrate sub-responses and adjust final responses
respectively. As the pre-trained language model BART [6] has good language
expression ability, and its structure is consistent with the Transformer [30], we
train EDSGI based on BART.

Our contributions can be summarized as: (a)Wepropose a novelmodel EDSGI,
which can generate and integrate emotion feedback and topic discussion. This
model makes responses better incorporate both emotional expressions and topic
discussions, thus reducing the general responses. (b) In the stage of sub-response
generation, we introduce multi-type knowledge to improve the model’s under-
standing of the dialogue context, and focus on emotional words and topic-related
words respectively to promote diversity and contextual relevance of responses. (c)
Automatic and human evaluation results show that our model has a better perfor-
mance on empathy and relevance compared to previous methods.

2 Related Work

Rashkin et al. [24] firstly propose the empathetic dialogue generation task and
open source the Empathetic Dialogue dataset. Since then, some empathetic dia-
logue datasets, such as EDOS [32] and PEC [37] have been conducted succes-
sively. The research on empathetic dialogue generation is mostly based on the
Transformer [30]. Lin et al. [12] propose MoEL model which builds multiple
decoders for different emotions, and integrates them into the final responses.
Majumder et al. [18] propose to model response emotions by emotion cluster-
ing and emotion imitation. Gao et al. [2] utilize the gated attention to focus on
words related to the emotion causes. Wang et al. [31] simultaneously model the
emotion, topic and situation of the dialogue context. However, due to the small
amount of data in the Empathetic Dialogue dataset, models based on simple
transformer are difficult to fully learn the interaction patterns in empathetic
dialogue, so the generated responses are often general and monotonous.

There are also many applications of pre-trained models in empathetic
dialogue generation due to their strong language representation abilities.
EmpTransfo [34] adds next-sentence emotion head and next-sentence language
head to GPT2 [22]. Liu et al. [17] regard the responses generated by GPT as
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inputs for secondary training and inject predicted emotion during generation.
Li et al. [10] firstly leverage causal emotion information to supplement input
of GPT. Zaranis et al. [35] fine-tune T5 [23] by three objectives of response
language modeling, sentiment understanding, and empathy forcing. The above
studies take the pre-trained model as a whole, resulting in limited improve-
ment. The model performance, that is empathy and topic relevance of generated
responses, can be further improved.

External knowledge, such as emotion lexicon [19,20] and commonsense
knowledge [3,29], can improve the model’s ability of cognition, reasoning and
generation, so it is often used in empathetic dialogue generation. Li et al. [8]
exploit the words’ emotion intensity knowledge to understand users’ emotion
states on the fine-grained level. Sobour et al. [25] use COMET [1] for common-
sense reasoning to help the model understand the user’s situation. Liu et al.
[15] add knowledge to the beginning of the decoder input to guide empathetic
responses generation. Li et al. [9] exploit multi-type knowledge to conduct an
emotional context graph to perceive and express implicit emotions. Among them,
few of the existing researches introduce multi-type knowledge. Meanwhile, the
knowledge is often used to improve cognition, but it doesn’t play a sufficient role
on generation.

In this paper, we make use of the pre-trained model’s language ability to alle-
viate the problem of small dataset. Meanwhile, we improve the internal struc-
ture of the pre-trained language model, which facilitates the introduction of
knowledge and the integration of emotions and topics. In addition, we intro-
duce emotion lexicon and commonsense knowledge, which are used to improve
understanding of context and focus on emotional words and topic-related words
during generation.

Fig. 2. An overall architecture of EDSGI.
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3 Methology

The overview of EDSGI is shown in Fig. 2, it has three stages: (a) context encod-
ing, (b) sub-response generation, and (c) sub-response integration. We formulate
the task as follow: Given the dialogue context D = {U1, U2, . . . , UL} contain-
ing L utterances and Ui =

{
wi

1, w
i
2, . . . , w

i
K

}
with K tokens. Utterances with

odd subscripts (U1, U3 . . .) are user’s utterances, even subscripts (U2, U4 . . .) are
empathetic responses. We concatenate the previous L utterances of D as input.
Meanwhile, we insert [BOS] at the beginning of the sequence and [EOS] at the
end of every utterance to form the input sequence X = {x0, x1 . . . , xN}. In stage
(a), we utilize commonsense knowledge to extend the input sequence X, encode
it and recognize the user’s emotion e. In stage (b), we generate emotion feedback
Y emo = {yemo

1 , yemo
2 , . . . , yemo

Me } and topic discussion Y tpc =
{
ytpc
1 , ytpc

2 , . . . , ytpc
Mt

}

respectively. In stage (c), we integrate Y emo and Y tpc to obtain the final empa-
thetic response Y = {y1, y2, . . . , yM}.

3.1 Context Encoding

In stage (a), we firstly leverage ConceptNet [29] to extend dialogue context.
ConceptNet is a common large-scale multilingual commonsense knowledge, each
assertion of which is a form of (head concept, relation, tail concept, confidence
score). We follow the rules in [15] to select up to three extremely relevant asser-
tions for each no-stop word, every dialogue context includes up to 10 assertions.
For encoding the knowledge without additional pre-training and involving con-
text information, we follow K-BERT [14] to process the context sequence X
through the knowledge layer and seeing layer to get KX and V M separately.
The difference is, we treat all relations in selected assertions as semantically
related, and do not insert specific relations to X. This reduces the length of
KX. Therefore, KX is a sequence that concepts of selected assertions inject
into their corresponding position in X. The visual matrix V M represents the
attention relationship between words in KX, that is, the context words pay
attention to all context words and their own related concepts, and the concepts
pay attention to themselves and the context words linking them. In this way,
the knowledge does not interfere with each other but can contain context infor-
mation. The specific approach is intuitively shown in Fig. 3.

After getting KX and V M , we input KX to embedding layer which sums the
word embedding (EW ), soft position embedding (EP ) [14] and dialogue state
embedding (ES) of each token to get the embedding representation EC(KX).

EDSGI uses the Transformer Encoder to learn the context semantic fea-
ture. Transformer Encoder is a stacked structure composed of multi-head self-
attention and feed forward layers. For injecting the features of the knowledge
into the corresponding words, we add V M to the multi-head self-attention of
each layer as a mask matrix according to [14]. We obtain the encoder hidden
state Hcon = {hx0 , hx1 , . . . , hxN

} which contains the information of common-
sense knowledge and dialogue context:

Hcon = TRSEnc(EC(KX), V M) (1)
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Fig. 3. The input and output form of knowledge layer, seeing layer and embedding
layer [14].

In particular, after encoding, commonsense knowledge information is involved
into the dialogue context words, so we only extract the features of N dialogue
context words from the output of TRSEnc.

Emotion Classification: Recognizing the current users’ emotion states is a
indispensable step of empathetic dialogue generation. We utilize a simple atten-
tion which introduces a trainable vector ve to obtain the emotion attention
weight αi, and sum the hidden states hxi

by weights αi to get the user’s emotion
feature r:

αi =
exp(veThxi

)
∑N

j=1 exp(veThxj
)

(2)

r =
N∑

i=1

αihxi
(3)

We use a linear layer with softmax operation to project r into an emotion cate-
gory distribution. e denotes user’s emotion label, the negative log likelihood loss
is defined as:

Lemo = − log P(e|X) (4)

3.2 Sub-response Generation

After encoding dialogue context, we conduct two decoders TRSDecemo and
TRSDectpc to generate sub-responses. The normal Transformer Decoder layer
includes multi-head masked self-attention, multi-head encoder-decoder cross
attention and feed forward layers. In order to make the two sub-responses
involve emotion and topic respectively, inspired by [2], we add gated cross
attention above the original cross attention of the two decoders to enhance
the attention of emotional words or topic-related words in the dialogue con-
text. We utilize two different gate sequences Gemo = {gemo

0 , . . . , gemo
i , . . . , gemo

N }
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and Gtpc =
{
gtpc0 , . . . , gtpci , . . . , gtpcN

}
to control which word information that is

selected from Hcon by the two decoders, the gated cross attention weight of the
i−th position on Hcon can be calculated as:

z
(l)
i =

gi � exp(qlW
q
l (hxi

Wh
l )T )

∑N
j=1 gj � exp(qlW

q
l (hxj

Wh
l )T )

(5)

where gi is the emotion gate or topic gate at the i−th position on Hcon, ql is
the output of the cross attention in the l−th decoder layer, W q

l and Wh
l are the

trainable weight parameters of layer l.
We gain Gemo/tpc by external knowledge. We take the emotion intensity

calculated through the emotion lexicon NRC−VAD [19] as the emotion gate.
NRC−VAD is an emotion lexicon containing Valence-Arousal-Dominance scores
for more than 20,000 English words. We calculate the emotion intensity value of
words xi as follow:

η(xi)=min−max(||V (xi) − 1
2
,
A(xi)

2
||
2
) (6)

where min-max() represents min-max normalization. ‖ . ‖k denotes the lk norm,
V (xi) and A (xi) are the scores on the valence and arousal dimensions. If word
xi is not in NRC−VAD, we set η(xi) to 0. So the emotion gate gemo

i = η (xi).
We set the topic gate as the binary gate, meanly gtpci ε {0, 1}. If we can search

xi in ConceptNet, gtpci = 1, it means TRSDectpc will focus on xi during gener-
ating topic discussion. In this scheme, Gtpc is discrete, and gradient can’t back-
propagate during optimizing the model. Therefore, we use the Gumbel-softmax
trick [4] to sample from the Gumbel distribution instead of directly sampling
from the category.

We finally obtain the decoder hidden states Hemo =
{
hemo
y0

, hemo
y1

, . . . , hemo
yMe

}

and Htpc =
{
htpc
y0

, htpc
y1

, . . . , htpc
yMt

}
from TRSDecemo and TRSDectpc, then uti-

lize the fully collected network to predict the generation probability and get
Y emo and Y tpc. The sub-response generation is based on the dialogue context
X and previous generated words y

emo/tpc
<i , the loss functions are defined as:

Lemo−re = −
Me∑

i=0

log P(yemo
i | yemo

<i ,X) (7)

Ltpc−re = −
Mt∑

i=0

log P(ytpc
i | ytpc

<i ,X) (8)

3.3 Sub-response Integration

Since the sub-responses are generated by the two separate decoders, there may be
some problems such as semantic repetition or inconsistency. According to [33],
deliberation during decoding would involve global information and get better
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generation results, we design TRSDecinteg to integrate Y emo and Y tpc obtained
in Sect. 3.2. The sub-responses generated by EDSGI are different from the golden
responses, so we take Hemo and Htpc as input of TRSDecinteg. Based on the
Transformer Decoder structure, we add the other cross attention between the
original masked self-attention and cross attention, where the key and value are
[Hemo

⊕
Htpc], and the query is the output of masked self-attention layer. At

this point, every decoder layer of TRSDecinteg can obtain the information of the
generated tokens through the masked self-attention, integrate the sub-responses
through the first cross attention, and revise through the second cross attention.
The final response Y is also obtained from fully collected network. The loss
function is:

Lfin = −
M∑

i=0

log P(yi | y<i, Y
emo, Y tpc,X) (9)

3.4 Model Training

EDSGI is actually a multi-task learning model, which includes the tasks of emo-
tion recognition, sub-response generation and sub-response integration. The idea
of EDSGI is to generate sub-responses first and then integrate them, so the train-
ing process is also divided into two stages. The loss function of the first stage is
defined as:

Lsub = θLemo−re + σLtpc−re + μLemo (10)

where θ, σ and μ are hyperparameters. In the case of obtaining the optimal sub-
responses, we train the integration decoder, and the loss is Lfin. At this time,
we do not perform gradient backpropagation on parts other than TRSDecinteg
and only update the parameters of TRSDecinteg.

4 Experimental Setup

4.1 Dataset

We apply Empathetic Dialogue dataset [24] for experiments. The dataset con-
tains 24,850 open-domain multi-turn dialogues between two participants. And
each group of data provides the speaker’s current situation and fine-grained
emotion labels of 32 categories. The train/valid/test subset is divided by 8:1:1
following the original dataset definition.

There is no distinction between emotion feedback and topic discussion in the
Empathetic Dialogue dataset. Therefore, we define rules to divide each turn of
the listener’s responses into emotion feedback and topic discussions for training.
We split responses by end punctuation at first, and then annotate the responses
by the rule. We treat the non-question utterances that appear more than three
times as emotion feedback. In addition, the sentences with more emotional words
than concepts are classified as emotion feedback, where emotional words and
concepts are filtered by NRC−VAD [19] and ConceptNet [29]. Correspondingly,
the sentences in which the number of concepts exceeds the number of emotional
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words are regarded as topic discussions. We also regard the non-general responses
ending with question marks as the exploration of topic content. If through the
above judgment, the utterance does not belong to the two types, we divide it
according to the length. Precisely, we regard utterances with more than 10 words
as topic discussions, otherwise are emotion feedback. After data preprocessing,
the ratio of emotion feedback to topic discussion in the train subset is 20,447 /
32,551.

To evaluate the accuracy of the above segmentation results, we randomly
sample 100 dialogues from the preprocessed Empathetic Dialogue dataset. Then,
we ask three annotators to annotate whether the categories of the sub-responses
are correct. The evaluation criteria is based on the annotation rule in Sect. 4.1. If
all categories of the response’s sentences are correct, the score is 1 (else 0). The
average score of three annotators is 78, which means the segmentation accuracy
is 78%, and the Fleiss’ kappa (κ) is 0.34, which reaches a fair agreement.

4.2 Comparison Models

We select advanced models based on the pre-trained language model in empa-
thetic dialogue generation as comparison models: (1) BART [6]: a pre-trained
model based on normal Transformer. (2) Multi-BART: it is trained on BART
with multi-task strategy (emotion classification and text generation) like [24].
(3) EmpBot [35]: it is trained on T5 [23], with three training objectives: response
language modeling, sentiment understanding and empathy forcing. (4) Roberta-
GPT2 [15]: it uses Roberta [16] as encoder, GPT2 [22] as decoder, and injects
commonsense knowledge to the beginning of the decoder inputs. (5) DialogGPT
[36]: it is a common dialogue pre-trained model which is based on GPT struc-
ture and trained on large-scale dialogue datasets. (6) EmpGPT [17]: based on
GPT2, it uses the idea of deliberation and injects expected emotion into response
generation.

4.3 Implementation Details

Our training has two stages, the first is the training of the encoder and sub-
response decoders, the second is the training of the integration decoder. In the
second stage, we only optimize the integration decoder, the parameters of the
rest of the model remain unchanged. We train on BART-base1 model with 6
layers (NL is 6.) and 12 heads. During training, we set the batch size to 8, and
the learning rate to 2e−5. The hyperparameters θ, σ and μ are 0.5, 0.5 and
1 respectively. In addition, we reproduce some advanced empathetic dialogue
generation models based on the hyperparameters mentioned in their papers. For
fair comparison, we use top-k and top-p sampling methods for all generation,
k = 5, p = 0.9.

1 https://huggingface.co/facebook/bart-base.

https://huggingface.co/facebook/bart-base
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4.4 Evaluation Metrics

Automatic Evaluation: BLEU [21] calculates n-gram overlap ratio of golden
responses and generated responses. We use BLEU-avg (the average of BLEU-
1,-2,-3,-4) to verify sentence similarity between generated and true responses in
this paper. Dist-1 and Dist-2 [7] are the proportion of the distinct unigrams /
bigrams in all the generated results which evaluate discourse diversity. PPL is
short for perplexity which shows the uncertainty of generation.

Human Evaluation: Open-domain dialogue generation lacks reliable auto-
matic evaluation metrics, so human evaluation plays an important role. Firstly,
we use the common human rating method like [18]. Specifically, we randomly
sample 100 dialogues from the test dataset. Three professional annotators use
the Likert scale to rate the generated responses from different models on a scale
of 1 to 5 for empathy, relevance, and fluency. The scores 1, 3, and 5 indicate unac-
ceptable, moderate, and excellent performance. We calculate the average score
of each aspect. In addition, we also perform A/B test for human evaluation.
Three professional annotators choose the better response between two models
for the same context. If both are good or bad to the same degree, they can choose
a Tie. We resample 100 dialogues for every A/B test to ensure persuasiveness,
it reflects the quality of responses intuitively.

5 Results and Discussions

5.1 Response-Generation Performance

Automatic Evaluation: The automatic evaluation results are shown in
Table 1. We provide the PPL of generating the sub-responses and the final empa-
thetic responses. Figure 4 shows the generation probability of the two types of
responses. The words in the final response are mainly selected directly from sub-
responses, so the probabilities are mostly 1. This leads EDSGI to own a low PPL
in the integration process. Although the perplexity score of EDSGI is relatively
worse due to the insufficient data of sub-responses, the other automatic scores
of EDSGI are obviously better. The promotion on BLEU proves the rational-
ity of our structure, which can better learn the reply pattern of true responses.
Additionally, the higher values of Dist-1 and Dist-2 indicate our approach is
effective for generating non-generic and diverse responses. Our models can gen-
erate responses containing both general emotional expressions and specific topic
discussions. The results on BLEU and Dist-1/2 confirm our method finds a good
balance between response diversity and similarity to real responses. It will be
further verified in the case study. Moreover, EDSGI and EmpGPT both utilize
the idea of deliberation. EmpGPT takes the responses generated by the GPT as
input for secondary training. We only use the source data for training and the
deliberation is mainly reflected in the integration of sub-responses, which makes
better use of limited data.
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Table 1. Results on automatic evaluation and human rating. All automatic evaluation
results are the mean of 5 runs for a fair comparison. The results marked mean the best
results in this table. The PPL of EDSGI contains the two-stage results. Emp., Rel.
and Flu. are short for Empathy, Relevance, and Fluency. The Fleiss-Kappa of results
in Emp., Rel., and Flu. are 0.21, 0.22, and 0.24, which all reach fair agreements.

Models PPL Dist-1 Dist-2 BLEU Emp. Rel. Flu.

BART 16.25 2.36 13.11 6.38 3.65 3.64 4.50

MultiBART 14.75 2.34 12.52 6.00 3.37 3.35 4.42

EmpBot 12.02 2.50 13.09 6.17 3.16 3.15 4.47

Roberta-GPT2 16.89 2.11 12.32 6.98 3.21 3.14 4.32

DialogGPT 15.01 2.54 14.95 7.69 3.30 3.34 4.49

EmpGPT 11.53 2.59 14.84 8.28 3.69 3.76 4.51

EDSGI 14.62/2.51 2.60 15.58 8.63 4.02 4.12 4.42

Fig. 4. The probability of every word in the generated responses.

Human Evaluation: From the human rating results shown in Table 1, our
model is better than other models in empathy and relevance. It indicates that the
targeted learning for dialogue’s emotion and topic is effective in making responses
take both the emotion (empathy) and topic (relevance) into account. The fluency
of our model’s responses is relatively low. The reason may be that the final
responses of our model prefer to select words in sub-responses, inconsistency or
logical problems are likely to occur. The specific analysis is given in Sect. 5.4. The
A/B test results in Table 2 can demonstrate more directly that our responses are
better than the other mentioned pre-trained models. In the comparison between
our model and other models, the ratio of win is far more than the ratio of loss.

Table 2. Results on A/B test. The Fleiss-Kappa of results is 0.33, which reaches a fair
agreement.

EDSGI vs Win (%) Loss (%) Tie (%)

BART 44.33 27.00 28.67

MultiBART 53.00 29.67 17.33

EmpBot 53.33 28.67 18.00

Roberta-GPT2 51.00 27.00 22.00

DialogGPT 55.33 20.00 24.67

EmpGPT 53.67 29.33 17.00
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Table 3. Results on ablation study. Here pip, kg, gcatt are short for pipeline, knowledge
and gated cross attention. The best results are highlighted.

gcatt kg pip PPL Dist-1 Dist-2 BLEU

× × × 14.91 / 5.57 2.49 15.47 8.51

× × √
14.63 /2.46 2.46 15.03 8.54

× √ √
14.58 /2.54 2.53 15.47 8.41

√ √ √
14.62 / 2.51 2.60 15.58 8.63

5.2 Ablation Study

Effect of Training Strategy: Due to the two generation stages of EDSGI,
the model can be trained by two strategies, pipeline training and joint training.
The first strategy is to train the sub-response generation to the optimal, and
then train the integration stage. The latter strategy optimizes all tasks together.
The experimental results in Table 3 show that joint training has higher PPL.
During joint training, we find that three tasks can’t achieve the optimal at the
same time, so we choose the model that has the minimum sum of all tasks’ PPL.
However, the integration is often underfitting and sub-response generation is
often overfitting, so the final responses have many context-free words. Although
the Dist-1/2 is higher than the pipeline, the final responses deviate greatly from
the sub-responses and have the problem of irrelevant context. Besides, joint
training also increases the influence between multiple tasks.

Effect of Knowledge: We introduce the knowledge layer and the seeing layer
of KBERT to the empathetic dialogue generation for the first time. It can be
seen in Table 3 that after adding knowledge, the values of Dist-1/2 are promoted,
but the BLEU decreases. This confirms that the monotonous general utterances
decrease, and the responses are more diverse.

Effect of Gated Cross Attention: In order to make the two sub-responses
pay more attention to emotion and topic respectively, the gated cross attention
is used in EDSGI. It can be seen from Table 3 that the similarity with golden
responses and the diversity of responses both improve. It reveals that the use of
gated cross attention makes knowledge play a better role.

5.3 Case Study

Table 4 shows some example responses generated by different models. Among
them, the responses of EDSGI have more specific context-related words, such
as “constant traffic trouble” and “group”, which can reflect topic relevance.
Meanwhile, responses have clear emotional expressions, such as “that is a good
idea!”. In Table 4, we can see that the final responses are the selection and
adjustment of sub-responses. It reflects the function of the integration decoder,
which replaces words with lower probability or repeated expressions to make the
responses more fluent.



EDSGI: Empathetic Dialogue Sub-response Generation and Integration 635

Table 4. Example responses generated by different models.

Emotion: Angry

Context: Speaker: Around town it seems like traffic has been horrible lately. Driving
around town is just crazy.

Golden response: People just do not seem to pay attention when they are in a hurry

BART: I am sorry to hear that. I hope it goes better

MultiBART: What makes you so annoyed about driving

EmpBot: That is terrible. what do you do when you are out?

Roberta-GPT2: I hate that! I am so sorry you were in such pain!

DialogGPT: I know right? I am so sorry to hear that. I have to work late so i have to
drive all night

EmpGPT: I am so sorry to hear that. what do you mean?

Emotion feedback: I have never been to a major city

Topic discussion: That is a nightmare. Are you in rush hour?

EDSGI: I have never been in a city like that. Are you in constant traffic trouble?

Emotion: Lonely

Context: Speaker: Hi, i feel so lonely sometimes because all my friends live in a different
country

Listener: Oh, i am sure you are lonely. Maybe you can join some kind of club that lets
you meet new friends?

Speaker: I was thinking about it! I wanted to join a group for local moms

Golden response: That is a good idea! This way you can also meet friends for yourself,
but also maybe meet new friend’s for your children to hang out with while you do with
their moms!

BART: I hope you can find some good friends

MultiBART: I hope you can find someone soon!

EmpBot: I know what you mean. i hope you find a new place to live!

Roberta-GPT2: I bet you have a great time!

DialogGPT: I have friends who live in other parts of the world

EmpGPT: Yeah, that would be fun! It is a good idea!

Emotion feedback: That is a good idea

Topic discussion: I think it is a good idea to join some group

EDSGI: That is a good idea! I think it is a good group to join

5.4 Error Analysis and Outlook

Dataset Quality Problem: We segment the responses of the Empathetic Dia-
logue dataset based on rules. This method reduces the cost of manual annotation,
but there is a problem of inaccurate segmentation. Some utterances that express
both emotions and topics are difficult to define. In the future, we can annotate
small amount of data manually, and utilize them to train the model to classify
all sentences of responses.

Low Fluency: Low fluency mainly reflects on insufficient correlation between
response sentences. In order to ensure that there is no content overlap between
sub-responses, including emotions and topics respectively, there is no interaction
between the sub-response decoders. But there will be a problem that the sub-
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response semantics are not consistent enough, which directly affects the fluency
of the final responses. In the future, we plan to introduce a module which utilizes
the gate mechanism to check whether the semantic of words in sub-responses is
inconsistent and add a penalty to the loss.

6 Conclusion

In this paper, we propose a new model EDSGI, including context encoder, sub-
response decoder and integration decoder. Among them, we introduce knowl-
edge to improve the model’s understanding of the dialogue context, use the
gating strategy to make the sub-responses focus on emotional words and topic-
related words respectively, and adopt the cross attention mechanism to integrate
and deliberate sub-responses. EDSGI is trained on BART, experimental results
demonstrate that our responses can incorporate both emotion and topic well,
the semantic richness and empathy are improved.
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Abstract. Learning distributed representations of events is an indis-
pensable but challenging task for event understanding. Existing studies
address this problem by either composing the embeddings of event argu-
ments as well as their attributes, or exploiting various relations between
events like co-occurrence and discourse relations. In this paper we argue
that the knowledge learned from sentence embeddings and word seman-
tic meanings could be leveraged to produce superior event embeddings.
Specifically, we utilize both natural language inference datasets for learn-
ing sentence embeddings and the knowledge base WordNet for word
semantics. We propose a Multi-Level Supervised Contrastive Learning
model (MLSCL) for learning event representations. Our model fuses
diverse semantic resources at the levels of sentences, events, and words
in an end-to-end way. We conduct comprehensive experiments on three
similarity tasks and one script prediction task. Experimental results show
that MLSCL achieves new state-of-the-art performances on all tasks
consistently and higher training efficiency than prior competitive model
SWCC.

Keywords: event representation · event similarity · ontology
knowledge

1 Introduction

Learning distributed representations of events in the form of (subject, predicate,
object) is a challenging but valuable task that supports various applications for
event comprehension, such as event detection, script prediction, and event induc-
tion. Event representations (i.e., event embeddings) could be derived by model-
ing the interactions of event arguments [1,5], leveraging related event knowledge
[4], and modeling discourse relations among events [8]. It is common practice to
exploit document-level co-occurrence information of events in corpus as supervi-
sion signal [9]. While recent developments have enabled impressive improvements
on this task, diverse types of available semantic resources including datasets for
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sentence representation learning task and ontology knowledge base have not been
fully leveraged by existing works.

The intuition of our method can be described as follows: From one point of
view, the task of learning sentence representation enjoys rich and carefully anno-
tated resources, such as the datasets of natural language inference (NLI). We
argue that leveraging these datasets contributes to learning event representations
since events consisting of (subject, predicate, object) could be viewed as some
kinds of short sentences. Therefore, it is natural to employ SimCSE [10], which
demonstrates that a contrastive objective can be extremely effective when cou-
pled with pre-trained language model to produce superior sentence embeddings,
to learn event representations based on labeled NLI datasets.

From another point of view, ontology knowledge plays an important role in
understanding events, especially new events that people have no idea about. For
example, “police department catch robber” could be regarded as an instance
of “administrative unit get hold of scoundrel” through conceptualizing “police
department” to “administrative unit”, “catch” to “get hold of”, and “rob-
ber” to “scoundrel” respectively. Both events are analogous to each other, and
thus should share closer event embeddings. Intuitively, introducing the seman-
tic ontology knowledge base WordNet [20] could facilitate event representation
learning.

To make full use of existing semantic resources for more supervision, we
propose a simple but effective method by combining sentence-level, event-level
and word-level embedding enhancement strategies in a single contrastive learn-
ing framework. Specifically, our model consists of three strategies at different
granularity: (1) At sentence-level, we follow SimCSE training method on several
NLI datasets which cover numerous sentence pairs in high-quality. (2) At event-
level, we extract events from NewYork corpus and consider co-occurring events
as positive pairs as well as introduce co-occurrence frequencies as the strength
of the connection between two events. (3) At word-level, we leverage ontology
knowledge in WordNet to make event semantic abstraction. The conceptualized
events are viewed as positive samples for anchor event. Our model aims to pull
the embedding of a given anchor event closer to its positive events, and push
away negative events.

The contributions of this paper could be summarized in three folds.

1. To the best of our knowledge, we are the first to fuse sentence-level,
event-level, and word-level embedding enhancement strategies with kinds of
datasets or knowledge bases in a single model to learn event embeddings.

2. To alleviate event sparsity in text corpus, we devise a novel augmentation
method to conceptualize events, which generates positive and negative sam-
ples for a target event based on the ontology knowledge base WordNet.

3. We evaluate our model on two event similarity tasks and the script predic-
tion task. The model achieves state-of-the-art performances with substantial
improvement compared to prior methods. Furthermore, we verify the training
efficiency improvement after performing sentence-level strategy compared to
SWCC [9] indeed.
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2 Related Work

Event representation learning aims to learn distributed embeddings for struc-
tured events represented as a (subject, predicate, object) triple. Training neural
networks for robust event embeddings is effective to capture event-level seman-
tics under the assumption of the embeddings of similar events are close to each
other while those of dissimilar events are far away from each other in the same
vector space.

Some previous studies learn event embeddings based on the interactions of
event arguments and introduce related knowledge of event semantic property.
[1] proposed to use a novel neural tensor network which can learn the semantic
compositionality over event arguments to train event embeddings. [2] fed the con-
catenation of word embeddings for each event argument to a neural network to
acquire event embeddings. [5] designed tensor-based composition models, which
combine the subject, predicate, and object to produce the final event representa-
tion. There are also a number of studies utilizing external knowledge to enhance
event embeddings. [3] proposed to leverage attributes and properties of entities
involved in events to improve event embeddings. [6] captured fine-grained event
properties using both event-level features (e.g., sentiment polarity of a given
event) and entity-level features (e.g., animacy of participants). [4] had the capa-
bility of distinguishing events with a subtle difference with intent and sentiment
knowledge. [11] incorporated an event knowledge base, which uses triple facts to
describe various relations between events. [12] proposed to learn similar infer-
ence patterns instead of exact matching to exploit knowledge in event knowledge
base.

Event representations could also be generated by modeling event-event rela-
tions, such as easily accessible co-occurrences of events as well as discourse
relations among events. Different applications deal with different structures of
events, including event pairs, event chains, and event graphs. [7] integrated tem-
poral information over an event chain and utilized LSTM to generate event rep-
resentations. [13] was the first to construct an event evolutionary graph based
on narrative event chains, and then use a graph neural network to learn event
embeddings. [17] used a self-attention mechanism to recognize and model event
segments besides event pairs. [8] proposed a multi-relational event embedding
approach by investigating 11 fine-grained syntactic relations. [16] enhanced the
event embeddings by mining their connections at multiple granularity levels
following [13]. [18] constructed a heterogeneous graph network to model event
chains with three relation types. [15] employed a variational auto-encoder to
model the scenario-level knowledge (also called event contexts) to obtain event
representations. [14] traced the events back to their original texts and exploited
the texts’ informative constituents describing the events to obtain more com-
prehensive event semantic embeddings. Contrastive learning has recently been
applied to the task of event representation learning. [19] performed data aug-
mentation on two types of structures, i.e., event chains and event graphs, which
alleviates the issue of data sparsity and insufficient labeled data. [9] extended
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Fig. 1. Visualize the procedure of word-level event augmentation through WordNet by
taking a specific example.

the InfoNCE loss with multiple weighted positive samples, and used a prototype-
based clustering method to gather events with similar topics.

3 Methodology

To make full use of existing semantic resources, we propose a contrastive learning
framework to learn better event embeddings with sentence-level, event-level and
word-level strategies. We will elaborate on them in the following descriptions
successively.

At sentence-level, we utilize sentence pairs in the datasets of NLI to train the
pre-trained encoder for powerful representation ability. Thanks to the release
of model checkpoint by [10], we could adopt the off-the-shelf model with no
extra time cost to serve as our pre-trained encoder. The following mention
of pre-trained encoder is denoted as “Event-RoBERTa”. Then we use “Event-
RoBERTa” as our backbone and carry out event-level and word-level fine-tuning.

At event-level, we consider event pairs that co-exist in the text corpus are
related semantically and may share information such as similar topics or sce-
narios. Hence, we introduce a co-occurrence frequency matrix to enhance event
embeddings. The co-occurrence loss is defined based on InfoNCE [10] as Eq. 1:

L1 = − log
freq · g(za,zc)

g(za,zc) +
∑

neg∈N (a) g(za,zneg)

g(za,zc) = eh(za,zc)/τ1

(1)

where freq is a normalized frequency and a larger value means two events co-
occur more frequently. g(za,zc) is a similarity function (e.g., cosine similarity)
between anchor event embedding za and co-occurring event embedding zc both
encoded by Event-RoBERTa. N (a) is the set of in-batch negative event samples.
τ1 is the temperature coefficient. Additionally, We feed the anchor event to the
encoder twice using different dropout masks and compute standard InfoNCE
loss.

At word-level, we introduce ontology knowledge to provide guidance for learn-
ing event representations. As well known, WordNet includes various ontology
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knowledge organized into sets of word sense, each of which groups several syn-
onym words called “synset”. For the purpose of introducing this type of knowl-
edge to enlarge the positive set of the anchor event, it’s desirable to develop
an ontology-based augmentation strategy. We decompose the strategy into the
following steps and present a concrete example in Fig. 1:

(1) For an anchor event (subject, predicate, object), we employ word sense
disambiguation on the event by [21] to mount its arguments to ws, wp, wo

respectively, where w represents a synset.
(2) We compute d-depth transitive closures of each synset to collect the

hypernyms as related synsets.

hyper(wrole) = [wrole, hrole
1 , hrole

2 , · · · , hrole
l ] (2)

where hyper(·) serves as the closure collecting function and hl is more general
than specific synset hl−1. The superscript role denotes s, p, or o. The length of
each composed hypernyms is l.

(3) From each hypernym closure, we sample one synset randomly and obtain
its lemma (a lemma is a canonical form or morphological form of a word in
linguistics), which represents a specific word included in the synset. The com-
position of lemmas generates a new event that could be regarded as a positive
event performing semantic abstraction for the anchor event.

(4) Calculate the WordNet-based semantic similarity between anchor event
and positive event. We decompose WordNet-based similarity to the sum of path
similarity between event arguments, which could be formulated as:

wn sim (e1,e2) =
∑

t∈{s,p,o}

1
md(wt

1, wshare) + md(wt
2, wshare) + 1 (3)

where wshare is the first synset in the intersection of hyper(wt
1) and hyper(wt

2)
(the nearest synset to arrive by taking wt

1 and wt
2 as source synset respectively).

And md(·) computes the minimum distance from wt to wshare.
(5) We corrupt the positive event by replacing a lemma with a random lemma

to be a hard negative event and also calculate the WordNet-based similarity.
Given the positive event and hard negative event augmented with ontology

knowledge, we modify similarity function in Eq. 1 with the injection of WordNet-
based similarity as Eq. 4:

f(za,zo) = eh(za,zo)·wn sim(ea ,eo )/τ2 (4)

where wn sim(·) computes the WordNet-based similarity for anchor event and
augmented event, and a softmax layer is applied to normalize with others among
the batch. It is noted that N2(a) not only includes the in-batch negatives but
also contains a hard negative event.

To sum up, we jointly fine-tune the model with the sum of loss:

L = L1 + L2 (5)
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Table 1. Experimental results on event similarity tasks. The best results are in bold.

Model Hard Similarity

(Accuracy %)

Transitive Similarity (ρ)

Original Extended

Role-Factor Tensor 43.5 20.7 0.64

KGEB 52.6 49.8 0.61

FEEL 58.7 50.7 0.67

NTN-IntSent 77.4 62.8 0.74

UniFAS 78.3 64.1 0.75

MulCL 78.3 64.3 0.76

SWCC 80.9 72.1 0.82

MLSCL 83.5 75.1 0.82

4 Experiments

Following the common practice in event representation learning [4,15], we con-
duct evaluations on two event similarity tasks and a script prediction task to
compare the performance of our approach against a variety of event embedding
models developed in recent years.

4.1 Dataset and Implementation Details

At event-level, we collect statistics on the co-occurrence of two events in the same
document as the same as [9]. At word-level, we perform word sense disambigua-
tion by [21] to link words (or spans) involved in event arguments to ontology
senses in WordNet. It ended up with 129,807 distinct events with their corre-
sponding synsets. We follow the training method of SimCSE with loss adjustment
well-suited for event-level and word-level fine-tuning. We conduct experiments
on Nvidia Tesla V100 GPU. We train our model with a batch size of 64 using an
Adam optimizer. The learning rate is set to 2e−6 for the event representation
model. The temperature coefficient is set to 1.0, 1.0 at event-level and word-level
respectively. The depth of the transitive closure is set to 5.

4.2 Performance on Event Similarity Tasks

We evaluate the representation ability of our proposed approach, which deter-
mines whether it improves the classification accuracy for similar and dissimilar
event pairs. Two related tasks are available to assess that are consistent with
[5]: (1) Hard Similarity Task and (2) Transitive Sentence Similarity.

Hard Similarity Task reports Accuracy ∈ [0, 1] metric, which indicates the
fraction of cases where the similar pair receives a higher cosine score than the
dissimilar pair.

Transitive Sentence Similarity uses the metric of Spearman’s correlation
(ρ ∈ [−1, 1]) to measure the relatedness between cosine similarity of event pair
calculated by model and the annotated similarity score.
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Table 2. Evaluation performance on the MCNC task. The best result is in bold.

Model Accuracy (%)

PPMI 30.52

BiGram 29.67

Word2Vec 37.39

SWCC 44.50

MLSCL 47.2

Comparison Methods. According to the introduction of related work in
Sect. 2, we compare the performance of our approach against the following
competitive baselines: Role-Factor Tensor [5], KGEB [3], FEEL [6], NTN-
IntSent [4], UniFAS [15], MulCL [19], SWCC [9].

Overall Performance. Table 1 reports the overall performances of baseline
models on both the hard similarity task and the transitive sentence similarity
task. In a word, MLSCL achieves state-of-the-art performances and substantially
improves accuracy on two datasets of hard similarity task.

It is worth noting that our model outperforms knowledge-based models [3,
4,6] by a large margin. Since these baseline models only use knowledge about
properties of event instances, it implies that semantic resources we utilized are
effective at improving event representation.

Let us zoom in on the comparison of our model MLSCL against the most com-
petitive baseline SWCC. From the perspective of implementation, they both use
co-occurrence-based contrastive learning. MLSCL adopts additional sentence-
level and word-level strategies for powerful pre-trained encoder by contrastive
learning method, while SWCC uses prototype-based clustering to put events
sharing similar topics together. For the two datasets of hard similarity task,
MLSCL improves the accuracy from 80.9% to 83.5% and from 72.1% to 75.1%.
It means that our learning strategies, including the absorption of supervision sig-
nals from NLI datasets and the introduction of ontology knowledge in WordNet
are more effective than prototype-based clustering in terms of gathering seman-
tically similar or relevant events. For the transitive similarity task, our model has
a similar performance with SWCC in terms of Spearman’s correlation. On one
hand, this task relies more on event co-occurrence information which is shared
for both MLSCL and SWCC. On the other hand, the human-crafted annotation
scores may not be absolutely consistent with the actual situation.

4.3 Performance on Script Prediction Task

We also conduct inferring experiments on the Multiple Choice Narrative Cloze
(MCNC) task [8] to evaluate the generalization of the event representations
for script knowledge. To be specific, we adopt the summation of the individual
event embeddings as the sequence representation and calculate its similarity with
candidate event embeddings to evaluate their correlation. The candidate event
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Table 3. Ablation study for MLSCL on the three datasets.

Model Hard Similarity
(Accuracy %)

Transitive Similarity (ρ)

Original Extended

RoBERTa 31.3 22.7 0.41

w/ sentence-level 54.8 53 0.77

w/ sentence-level + word-level 74.8 68.8 0.71

w/ sentence-level + word-level + event-level 83.5 75.1 0.82

corresponding to the highest similarity score will be selected as the predicted
next event. We employ several other unsupervised learning models to serve as
baselines: PPMI [22], BiGram [23], Word2Vec [24], SWCC [9].

The prediction accuracy of each model is shown in Table 2. MLSCL out-
performs other baselines under the zero-shot transfer setting by a large margin,
suggesting that it improves the quality of the event representations and has much
more generalization to the downstream task.

4.4 Ablation Study

As aforementioned, our model MLSCL is built on multi-level contrast learning
method. To verify the effectiveness of each level, we perform an ablation study by
adding a certain level one by one and reporting the corresponding performance
for all event similarity tasks. From Table 3, we could observe that adding each
level would lead to a significant improvement in performance. It demonstrates
that all three levels are indispensable in our framework. They are complementary
to each other in improving the quality of event embeddings. The lack of sentence-
level transfer fine-tuning results in a performance drop, which indicates that it
also helps the model generalize better.

Fig. 2. The loss change while the training
steps increase.

Fig. 3. The accuracy change of hard
similarity task while the training steps
increase.



Improving Event Representation with Available Semantic Resources 647

4.5 Training Efficiency

We have demonstrated above that our model outperforms all baseline models
consistently on three benchmark datasets and all components of it are indispens-
able. To investigate its efficiency of training, we compare Event-RoBERTa with
SWCC by observing how its loss and evaluating metric changes as training steps
increase. As shown in Fig. 2, the loss of Event-RoBERTa decreases sharply with
increasing training steps and converges faster than SWCC. Figure 3 shows that
Event-RoBERTa achieves much better performance than SWCC at the same
training step. The reason may be that Event-RoBERTa has fewer parameters
than SWCC with the removal of the prototype clustering module, and it has
been trained on NLI datasets for sentence-level fine-tuning in advance.

5 Conclusion

In this work, we propose multi-level supervised contrastive learning framework
MLSCL to generate embeddings that are more informative for events. Further-
more, we evaluate the performance of our model on two tasks about event simi-
larity and script prediction. We found that great improvement could be achieved
by utilizing semantic resources. Additionally, Event-RoBERTa has much higher
training efficiency than its most competitive baseline SWCC by performing event-
level and word-level strategies. In future work, we will explore other knowledge
bases to verify the necessity and effectiveness of introducing ontology knowledge.
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Abstract. Incorporating external commonsense knowledge can enhance
machines’ cognition and facilitate informative dialogues. However, cur-
rent commonsense knowledge-grounded dialogue generation works can
only select knowledge from a finite set of candidates retrieved by infor-
mation retrieval (IR) tools. This paradigm suffers from: 1) The knowl-
edge candidate space is limited because IR tools can only retrieve existing
knowledge from the given knowledge base, and the model can only use the
retrieved knowledge; 2) The knowledge selection procedure lacks enough
interpretability to explain the selected result. Moreover, with the increas-
ing popularity of pre-trained language models (PLMs), many knowledge
selection methods of non-PLM models have become incapable because of
the input/structure restrictions of PLMs. To this end, we propose a sim-
ple but elegant SEG-CKRG, and introduce a novel PLM-friendly Gener-
ative Knowledge Selection (GenSel) to select knowledge via a generative
procedure. Besides selecting the knowledge facts from the retrieved candi-
date set,GenSel can also generate newly extended knowledge.GenSel also
improves interpretability because the output of the knowledge selection is
a natural language text. Finally, SEG-CKRG usesGPT-2 as the backbone
language model. Extensive experiments and analyses on a Chinese dataset
have verified the superior performance of SEG-CKRG.

Keywords: dialogue generation · knowledge-grounded

1 Introduction

Open-domain dialogue response generation (RG) models enable machines to con-
verse with humans using natural language and play an important role in human-
computer interaction [43]. However, machines lack enough real-world knowledge
cognition because they can only access the parametric knowledge of a model
besides the dialogue history [45]. Thus, machines struggle to thoroughly under-
stand the semantics of dialogue histories and generate informative responses.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Seeking information from external knowledge sources is an effective solution
[50], i.e., knowledge-grounded dialogue response generation (KRG) [4,17].

Compared to RG models, the superiority of KRG models derives from the
ability to use external knowledge [42]. The general paradigm of KRG can be
summarized as three stages [7,39]: 1) Knowledge-Retrieval stage: it first employs
an efficient Information Retrieval (IR) tool to retrieve a set of knowledge can-
didates in a coarse-grained way. The retrieved knowledge candidates contain
much irrelevant information because IR tools only consider the literal feature;
2) Knowledge-Selection stage: To filter out irrelevant information and select
contextually-relevant knowledge, KRG also has a knowledge selection stage using
more fine-grained methods; 3) Response Generation stage: it finally generates the
target response by accessing the dialogue history and selected knowledge. Among
such three stages, the second knowledge selection stage plays the most crucial
role in the research of KRG and has received much attention [10,23,28].

This paper focuses on commonsense knowledge-grounded dialogue response
generation (CKRG). Despite many successes [42,46], CKRG still suffers from
several challenges, especially in the era of pre-trained language models (PLMs)
[14,19]. First, the knowledge candidate space (i.e., the knowledge can be selected
and used when generating the response) is fixed and limited. On the one hand,
IR tools can only retrieve knowledge candidates already existing in the knowl-
edge base. On the other hand, the model can only use the knowledge candidate
already retrieved by IR tools. This may lead to insufficient knowledge coverage
[42]. Second, in the knowledge selection stage, previous CKRG works [46,50]
often use deep but complex networks, which lack enough interpretability to
explain the knowledge selection procedure. For example, it is hard to deter-
mine which knowledge facts have been selected. Finally, although PLMs are
powerful, they also bring many thorny restrictions to the downstream applica-
tions [15], such as the length (most PLMs can only operate at most 512/1024
tokens), the input format (must be plain text), the network structure, and so on.
Consequently, many knowledge selection methods originally proposed for non-
PLM-based models have become incapable in the era of PLMs; then, knowledge
selection can only rely on the external network or the implicit self-attention
mechanism [23,49].

Considering these challenges, we propose SEG-CKRG, a simple but elegant
CKRG model. As shown in Fig. 1, SEG-CKRG introduces a novel Generative
Knowledge Selection (GenSel) mechanism, which regards knowledge selection as
a generative problem. GenSel uses a PLM to explicitly generate contextually-
relevant knowledge based on the dialogue history and the knowledge candidate
set retrieved by IR tools. By regarding this task as a generative problem, GenSel
can not only select knowledge from the candidate set retrieved by IR tools, but
can also extend the knowledge by externalizing the inherent knowledge of PLMs.
Then, SEG-CKRG generates the target response conditioned on both the gen-
erated knowledge and the retrieved knowledge. Considering both the generative
knowledge selection procedure and the dialogue generation procedure are genera-
tive problems, we can train/infer SEG-CKRG in an end-to-end fashion. We pre-
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Fig. 1. An example. SEG-CKRG can use Generative Knowledge Selection to select the
existing knowledge and extend the new knowledge, then generates the response.

train two GPT-2 models [27] as the backbone PLMs. To boost the knowledge rep-
resentation density and the infusing of two generative procedures, we propose an
Efficient Input Representation technique and a Dual-Head Generator technique,
respectively.

We conduct extensive experiments on a Chinese conversational dataset
Weibo-ConceptNet [41], whose dialogues have been aligned to a commonsense
knowledge base, ConceptNet [32]. Experimental results have verified that SEG-
CKRG has significantly outperformed previous state-of-the-art models, and
GenSel can not only accurately select the knowledge but also generate new
contextually-relevant knowledge. We also bring extensive analyses to investigate
our approach further.

2 Methodology

2.1 Preliminary

Response Generation (RG). Suppose D = {(Hi, Ri)}N is a conversational
corpus, where Hi = (h1, · · · , h|Hi|) is the dialogue history, Ri = (r1, · · · , r|Ri|)
is the response. Then, RG learns a conditional language model PRG(Ri|Hi) to
generate Ri conditioned on Hi: PRG(Ri|Hi) =

∏
PRG(rt|r<t,Hi).
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Fig. 2. An overview of SEG-CKRG. We show the input/output examples. In this
example, SEG-CKRG has selected a knowledge fact ‘(sport, RelatedTo, Hockey)’ and
extended a ‘(sport, RelatedTo, badminton)’ in the example.

Knowledge-Grounded Response Generation (KRG). RG models tend to
generate generic responses such as ‘I don’t know.’ [13] because PRG can only
use the insufficient knowledge hidden in the parameters θRG and the dialogue
history. To address this issue, KRG methods try to seek more knowledge from
the external knowledge base, such as encyclopedic knowledge [7], commonsense
knowledge [32], and so on [26].

More specifically, in the commonsense knowledge-grounded dialogue response
generation (CKRG) scenario, there is a knowledge base K = {ki = (ehi , eri , e

t
i)}M ,

where ki is a commonsense fact triplet, ehi , eri , and eti are the corresponding head
entity, relation, and tail entity, respectively. Then, for each dialogue history Hi,
we need to employ an IR tool to retrieve a set of commonsense facts Ki =
{ki,j}L, L << M form K. Finally, the problem of CKRG is given by:

PCKRG(Ri|Hi) =
∏

PCKRG(rt|r<t,Hi,Ki) (1)

where PCKRG is a conditional language model with the ability to access the
knowledge Ki. Although Ki is the filtered results via IR tools, IR tools can only
consider the token-level literal feature. Thus, a more fine-grained context-aware
knowledge selection procedure is needed in PCKRG. In non-PLM CKRG works,
this procedure can be explicitly modeled and then integrated into PCKRG. For
example, [50] employs graph attention network [34]. In the era of PLM, limited
by the input format and network structure, this procedure can only be implicitly
performed by the integrated self-attention mechanism or external tools, bringing
less interpretability but more limitations to the knowledge selection procedure.

2.2 Problem Definition and Overview

As shown in Fig. 2, unlike previous CKRG works, SEG-CKRG introduces a novel
Generative Knowledge Selection (GenSel) mechanism, which regards knowledge
selection as a generative problem. The objective of SEG-CKRG is:

PGenSel(KG
i |Hi,Ki) · PResGen(Ri|Hi,Ki,K

G
i ) (2)
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where PGenSel(KG
i |Hi,Ki) first generates the contextually-relevant knowledge

KG
i conditioned both the dialogue history Hi and the retrieved knowledge Ki;

subsequently, PResGen(Ri|Hi,Ki,K
G
i ) generates the target response Ri.

2.3 Generative Knowledge Selection

SEG-CKRG uses a generative method to explicitly select and extend knowledge.
Similar to other generation tasks, it is a conditional language modeling problem:

PGenSel(KG
i |Hi,Ki) =

∏
PGenSel(kG

t |kG
<t,Hi,Ki) (3)

Efficient Input Representation. Most PLMs can only accept plain texts as
input, which means the structural commonsense knowledge must be linearized
to plain text. Thus, the input of PGenSel is given by:

Si = [ωK(Ki), ωH(Hi), P rompting] (4)

where ωH(Hi) linearizes the dialogue history with role (human/bot) labels and
turn identifiers; Prompting is a prompting text1 [52] to hint the PLM about
the following generation action; ωK(Ki) linearizes the structural Ki = {ki,j =
(ehi,j , e

r
i,i, e

t
i,i)}M to a sequence. To reduce the loss of structural information and

improve the representation density, ω(Ki) uses a graph-level pattern:

ω(Ki) = (ωG(gi,1);ωG(gi,2); · · · ;ωG(gi,j); · · · )

ωG(gi,j) = ([G], ehgi,j , e
rg
i,j , e

tg
i,j,1, [T ], etgi,j,2, · · · )

(5)

where Ki is first compressed as a set of 1-hop graphs Gi = {gi,j = ehgi,j , e
rg
i,j ,

{etgi,j}}; namely, ∀k ∈ Ki that have the same head entity ehgi,j and the same rela-
tion ergi,j are placed to the corresponding 1-hop graph gi,j ; then, gi,j is sequentially
linearized and concatenated with a graph separator [G] and a tail entity separator
[T ]. Compared to previous triplet-level patterns [42,52], our graph-level pattern
can reduce the length of the linearized knowledge and achieve higher represen-
tation density. Higher representation density means more knowledge facts can
be included under the same length limitation.

Generation. The goal is to generate the linearized contextually-relevant knowl-
edge sequence ωK(KG

i ). We adopt a widely-used auto-regressive GPT-2 [27] to
implement PGenSel(KG

i |Hi,Ki) and generate the ωK(KG
i ):

ωK(KG
i ) = GPT2(Si) = GPT2([ωK(Ki), ωH(Hi), P rompting]) (6)

In the training stage, we use a weakly-supervised way [51,52] to construct
the generation goal KG

i . Given a knowledge candidate set Ki retrieved by IR
1 The translated text is ‘First generate the relevant knowledge based on the left

knowledge candidates and the dialogue history, and then generate a response.’.
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tools, if there is a knowledge candidate k ∈ Ki whose head entity and tail entity
appear in the dialogue history Hi and the dialogue response Ri, respectively;
then this k is added to the target KG

i .
During the generation, KG

i is fully generated based on the Ki and Hi. Intu-
itively, the generated KG

i can select the relevant knowledge from Ki. Besides, as
a generative model, GPT2 can also extend to generate the relevant knowledge
that is not included in the KG

i , which is an inherent feature of generative lan-
guage models [9]. Meanwhile, the generated ωK(KG

i ) is a natural language text,
which can explicitly explain the results of knowledge selection and extension.

2.4 Dialogue Response Generation

Finally, we use the same GPT2 to generate the dialogue response Ri based
on the dialogue history Hi, the retrieved knowledge Ki, and the generated
contextually-relevant knowledge KG

i . We feed the input SDG
i to the GPT2, esti-

mate PResGen(rt|R<t,Hi,Ki,K
G
i ), and then generate the Ri:

SDG
i = [ωK(Ki), ωH(Hi), P rompting, ωK(KG

i )]

Ri = GPT2(SDG
i ) = GPT2([ωK(Ki), ωH(Hi), P rompting, ωK(KG

i )])
(7)

where the generation head WR is newly introduced compared to Eq. 6. This is
because two generative procedures have different generation spaces, two separate
generation heads help avoid confusion. Such a two-head generation mechanism
is called Dual-Head Generator.

2.5 Training

Two generative procedures can be jointly trained in an end-to-end fashion by
sharing the same GPT-2. We have pre-trained two different GPT-2 models and
our SEG-CKRG on two Nvidia RTX-3090 GPUs:

General GPT2: The general-purpose or dialogue-oriented base size2 Chinese
GPT-2 resources are not very abundant [31]. Consequently, we first pre-train a
Chinese GPT2 for our experiments. We implement a base size GPT2 language
model network using the Huggingface transformer library3 and PyTorch. There
are 12 layers of 768-dimensional (for both the hidden states and embeddings)
and 12-head Transformer layers. The vocabulary includes 30,000 subwords and
200 special symbols (placeholders). For efficiency, the maximum input length is
limited to 512 tokens. This GPT-2 is first pre-trained on massive Chinese unsu-
pervised data, including massive open-released news, movie/product comments,
and Wikipedia data. In total, there are 18.4M sessions and 5.22B tokens. During
the training, the batch size is 512, the number of total training steps is 80,000,
and the optimizer is AdamW. After 4,000 warm-up steps, the learning rate will
reach 2e−4; then, the learning rate will linearly decay to 0.
2 a base size PLM models always has about 100M parameters.
3 https://huggingface.co/.

https://huggingface.co/
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Dialogue-Oriented GPT2: We also fine-tune a dialogue-oriented GPT-2. We
use the Chinese conversational pre-training corpus LCCC-large released by [37],
which includes 7.2M/4.7M sessions of single/multi-turn dialogues and 380M
tokens in total. This GPT-2 is initialized from our general GPT-2, the batch
size is 512, the number of total training steps is 180,000, and the optimizer is
AdamW. It has the same learning rate strategy as GPT-2, except for the highest
learning rate is decreased to 1.5e−4.

SEG-CKRG: Finally, SEG-CKRG is fine-tuned on the general GPT2 (by
default) or the dialogue-oriented GPT2 (in ablation study). The batch size is
set to 32, the maximum training epoch is set to 15. The best epoch on the
validation set is adopted in the following test stage.

3 Experiment

3.1 Settings

Dataset. We test models on a Chinese dataset Weibo-ConceptNet [41], which
has been aligned to a well-known commonsense knowledge base ConceptNet
[32]. The training/validation/test set includes 102K/5.6K/5.6K single-turn dia-
logues. Each utterance has 10.3 words on average. The commonsense graph has
696,466 facts, 27,189 entities, and 26 relations. On average, each dialogue has
77.7 candidate facts that are retrieved from ConceptNet.

Comparison Models. We first selected several non-PLM baselines: 1) Seq2Seq :
an attentive Seq2Seq RG Model [3,24]; 2) PGN : Seq2Seq + Pointer-Genetor
copy network [29]; 3) ConKADI : a KRG model with the felicitous knowledge
selection mechanism [41]; 4) GOKC : a KRG model with a novel knowledge
copy mechanism [1]. We also selected several fine-tuned base-size PLM meth-
ods: 5) BERT2Seq, 6) BERT-PGN : We changed the encoder of Seq2Seq and
PGN to the ‘hfl/chinese-bert-wwm-ext’ [5] BERT encoder [6]. 7) CDial-GPT2 :
An open-released conversational GPT-2 RG models [37]. We select the GPT-2
configuration ‘GPT2LCCC-base’. 8) MHKD-GPT2 : A PLM-based KRG models
[42], which is based on CDial-GPT2.

Implementation. We use the official codes for ConKADI, GOKC, CDial-
GPT2, and MHKD-GPT2, and we re-implement the remaining models using
PyTorch. For non-PLM models, we use a 2-layer 768d bi-GRU/LSTM4 encoder,
2-layer 768d GRU/LSTM decoder, Adam optimizer, 1e-4 learning rate. For all
baselines, we use 32 batch size, up to 20 epochs, and finally select the best model
on the validation set. Due to the different requirements, BERT2Seq, BERT-PGN
use the corresponding BERT tokenizer and vocab, Seq2Seq, PGN, GOKC, and

4 our codes use GRU, the others keep the original setting.
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ConKADI use the original tokenizer and vocab, CDial-GPT2 and MHKD-GPT2
use CDial-GPT2 ’s tokenizer and vocab. The implementation of our SEG-CKRG
will be released at https://github.com/pku-sixing/DASFAA23 GenSel.

Automatic Evaluation Metrics. Different models use different tokenizers;
thus, we conduct character-level evaluations to avoid such differences. We use the
following automatic metrics: 1) F1 : it is the F-measure of character-overlapping
relevance [1]; 2) BLEU-4 : it is the 4-gram BLEU to evaluate the precision-
oriented relevance [25]; 3) ROUGE : we use ROUGE-L to evaluate the recall-
oriented relevance [18]; 4) EM-A/G/X : we use embedding evaluate the semantic
relevance, the embedding is computed using Average/Greedy/Extrema [21]; 5)
DI-1/2 : we use Distinct-1/2 to evaluate the diversity [12]; 6) Ent : we use 4-gram
entropy to evaluate the informativeness [30]; 7) Mean: following [42], we compute
the geometric mean of all previous scores to evaluate the overall performance.

3.2 Automatic Evaluation

Table 1. Automatic Evaluation Results. First/Second denotes the first/second best.

Model F1 ROUGE BLEU-4 EM-A EM-G EM-X DI-1 DI-2 Ent Mean

Seq2Seq 16.20 12.40 1.09 0.869 0.677 0.649 0.32 3.22 8.61 2.09

PGN 16.56 12.65 1.23 0.872 0.676 0.651 0.58 8.13 9.55 2.54

GOKC 18.13 14.95 1.47 0.881 0.684 0.695 0.35 7.95 10.35 2.56

ConKADI 19.20 14.60 1.94 0.885 0.679 0.664 0.38 11.22 12.04 2.81

BERT2Seq 17.49 13.21 1.93 0.877 0.670 0.658 0.26 2.77 8.83 2.18

BERT-PGN 18.76 13.72 2.52 0.892 0.674 0.664 0.36 6.91 9.69 2.64

CDial-GPT2 14.79 12.31 1.61 0.866 0.675 0.653 0.26 3.69 8.47 2.13

MHKD-GPT2 18.77 16.60 2.45 0.874 0.690 0.667 0.28 4.13 9.43 2.46

SEG-CKRG 21.02 17.15 3.11 0.896 0.708 0.689 0.48 9.94 11.13 3.09

As reported in Table 1, SEG-CKRG has achieved tier-1 results (the first and the
second best) in all metrics and significantly outperformed previous methods in
the Mean score, demonstrating the best overall performance and effectiveness.
In addition, rather than pursuing the best score on a single-dimensional metric
or only using some handpicked metrics, the philosophy of SEG-CKRG is multi-
dimensional because a single automatic metric is not reliable [21].

Relevance: In the three overlapping-based metrics (i.e., F1, BLEU-4, and
ROUGE), SEG-CKRG has the best results because our approach can simul-
taneously seek information from both the pre-trained language model and the
external knowledge source to help the dialogue generation. In another three
embedding-based relevance metrics (i.e., EMB-A/G/X), SEG-CKRG also has
the best overall performance, showing the dialogue responses generated by our
approach are more semantically relevant to the ground truth. Besides, we can also
find that PLM-based models have better relevance performance than non-PLM-
based models in the mass. Indicating the necessity of using PLMs in CKRG.

https://github.com/pku-sixing/DASFAA23_GenSel
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Table 2. Human Annotation Results. Scores denotes SEG-CKRG is significantly
better (sign-test, p-value < 0.005). The 2/3 agreement ratio (at least 2 judges gave the
same) is 95.4%, the 3/3 ratio is 54.8.2%.

% Fluency Rationality Informativeness

Compare to Lose Tie Win Lose Tie Win Lose Tie Win

Seq2Seq 36.7 22.3 41.0 31.0 11.7 57.3 31.3 7.0 61.7

GOKC 8.3 6.0 85.7 9.0 7.0 84.0 15.0 4.0 81.0

ConKADI 11.0 5.3 83.7 25.0 3.0 72.0 38.6 1.4 60.0

BERT-PGN 36.7 6.6 56.7 42.3 2.3 55.4 45.6 2.4 52.0

CDial-GPT 20.6 9.4 60.0 38.6 5.7 55.7 41.0 3.0 56.0

MHKD-GPT 27.6 14.7 57.7 38.3 2.7 59.0 40.6 3.4 56.0

Human 33.6 31.4 35.0 46.3 14.0 39.7 62.3 8.7 29.0

Diversity and Informativeness: The situation is different in this part.
ConKADI and our SEG-CKRG notably surpass other models. Between such
two models, SEG-CKRG is slightly lower than ConKADI, and the reason can
be summarized as 1) SEG-CKRG does not sacrifice the relevance to improving
diversity and informativeness; 2) SEG-CKRG does not use any copy mecha-
nism. Copy mechanism can copy words from the dialogue history or the external
knowledge directly, which can significantly boost diversity and informativeness in
the automatic evaluation. For example, compared with Seq2Seq/BERT2Seq, the
copy variant PGN/BERT-PGN has more notable improvements in such metrics.
However, we find previous copy works tend to repeat the given query rather than
extend the new information, and then we decide not to equip this mechanism.

3.3 Human Evaluation

We employed three well-educated native-speaker to evaluate the practical gen-
eration quality of SEG-CKRG. The criteria include three dimensions: 1) Flu-
ency : is this response grammatically correct and fluent? 2) Rationality: does
this response logically conform to the current dialogue context? 3) Informative-
ness: can this response provide enough meaningful information?

As reported in Table 2, we sampled 100 comparison cases5 and com-
pared SEG-CKRG with the three best baselines in the automatic evaluation
(ConKADI, BERT-PGN, and GOKC) and the naive Seq2Seq. We have several
findings: 1) Although Seq2Seq is the naive baseline, the comparison result is not
the worst, especially in terms of fluency. This is because the task and the net-
work of Seq2Seq are simple but stable; 2) Compared to GOKC and ConKADI,
SEG-CKRG has notable advantages, indicating the importance of introducing
the PLMs to CKRG; 3) Compared to BERT-PGN, SEG-CKRG is still better,
demonstrating the effectiveness of using external knowledge. Finally, we also

5 5*100 pair-wise comparisons in total.
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Table 3. Generated knowledge types. # is the average counting per response.

# Original #Actual #Generated #Selected #Extend

77.7 52.5 1.282 1.157 0.124

Table 4. Ablation Study.

# Setting ROUGE EMBED-X DIST2 Mean

0 Full 17.15 0.689 9.94 3.09

Different Backbones

1 DialogueGPT2 16.72 0.686 9.69 3.05

2 FromScratch 15.64 0.682 5.12 2.56

Different Knowledge Accessing

3 w/o GenSelKnow 16.52 0.690 8.11 2.95

4 w/o SelKonw 12.24 0.659 9.70 2.66

5 w/o All (general GPT2) 12.44 0.665 8.03 2.56

6 w/o All (dialogue GPT2) 12.62 0.665 7.76 2.59

compare SEG-CKRG with the human-generated ground-truth response. SEG-
CKRG is comparable to the human in terms of fluency. However, SEG-CKRG is
still behind the human in terms of rationality and informativeness. This shows
we still have a large room to improve CKRG in future works.

3.4 More Analyses

Generated Knowledge. As reported in Table 3, we counted the types among
the knowledge generated by our Generative Knowledge Selection (GenSel). The
original dataset has 77.7 facts per dialogue, but our model could only use 52.5
randomly sampled facts because of the restriction of the backbone GPT-2. We
can find GenSel generated 1.282 facts per response on average, and about 9.7%
of them are extended knowledge. It indicates 1) GenSel can indeed extend the
knowledge and 2) using IR tools to explicitly retrieve knowledge candidates is
still necessary.

Backbone GPT2. We have pre-trained two GPT-2 models; the first general
GPT-2 is pre-trained on the general unsupervised data, and the second dialogue-
oriented GPT-2 is further fine-tuned on a large-scale conversational dataset [37].
As shown in Table 4, if we train a SEG-CKRG based on the second dialogue-
oriented GPT-2 (#1), although the perplexity is lower (9.93 vs 11.04), the real
performance is even worse than the SEG-CKRG trained on the general GPT-2
(#0). We think our GenSel prefers the general backbone. Meanwhile, we also
train a SEG-CKRG without initializing from a pre-trained GPT-2 (#2). The
results are worse in every dimension, indicating the necessity of pre-training.
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Table 5. Case Study. For SEG-CKRG, we report the generated knowledge (K:) and
response (R:). We use red/blue color to highlight the selected/extended knowledge.

Query #1 水果茶好喝吗? Does fruit tea taste good?

Seq2Seq 还可以，我觉得挺好喝的。Not bad, I think it’s good.

ConKADI
还行吧我觉得喝茶水果的最好吃的。
Not bad, I think drinking tea and fruit the best foods.

BERT-PGN
我觉得挺好喝的就是水果茶比较好喝。
I think it’s very good, that is the fruit tea is good.

SEG-CKRG

K: [G]水果 HasProperty 酸 [G] 樱桃 InvIsA 水果
[G] fruit, HasProperty,sour [G] fruit, InvIsA, cherry

R: 还不错,酸酸甜甜的,酸樱桃味的很好喝。
Not bad. It’s sour and sweet. The sour cherry taste is good.

Query #2 为啥我不喜欢用拍照? Why don’t I like taking pictures?

Seq2Seq 因为你好看啊。Because you look beautiful.

ConKADI
因为你不喜欢拍照啊，我喜欢手机。
Because you don’t like taking pictures. I like mobile phones.

BERT-PGN
因为手机拍的太好看了。
Because the pictures taken by the phone are so beautiful.

SEG-CKRG
K:[G]拍照 InvCapableOf 手机 [G]taking pictures, InvCapableOf, phone
R: 我也不喜欢,手机拍出来的效果也不好。
I don’t like it either. The pictures taken by the phone are bad.

Knowledge Accessing. As shown in Table 4, we first remove the usage of
knowledge generated by Generative Knowledge Selection (GenSel) (#3), and the
performance is worse. It verifies GenSel can indeed help SEG-CKRG to select
the existing knowledge and to extend to generate new relevant knowledge. Sub-
sequently, similar to [52], we remove the usage of retrieved knowledge and try to
externalize the implicit knowledge inherent in the backbone PLM (#4). It can be
seen that the performance of (#4) is significantly worse than the original model.
Thus, we think it is still necessary to explicitly access external knowledge even in
the era of PLMs. Finally, we discard all knowledge usages and purely fine-tune
two RG models based on our general GPT-2 (#5) and dialogue-oriented GPT-2
(#6). Both (#5) and (#6) are worse than previous model variants, showing the
value of modeling dialogue response with external knowledge. We also find if
we do not use any external knowledge, the dialogue-oriented GPT-2 is better
than the general GPT-2, which differs from the previous (#0 vs #1). It verifies
SEG-CKRG prefers to general GPT-2 again. In addition, (#2) and (#5) have
similar overall performance, showing that explicit commonsense knowledge and
implicit PLM knowledge play similar importance in our SEG-CKRG.

3.5 Case Study

We report two cases in Table 5 In the first case, SEG-CKRG generated two com-
monsense knowledge facts. We can find one knowledge fact is selected from the
retrieved knowledge candidate set, but the other does not exist in the retrieved
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Table 6. Error Case. Same notations as the Case Study.

Query #1
一句话证明你是搞游戏的。
One sentence proves that you are a game enthusiast.

Seq2Seq 对啊，我也是这么想的？Yes, I think so too.

ConKADI
没有啊，电脑的时候电脑剧，你怎么看的。
No, it’s a computer drama. What do you think of it.

BERT-PGN
哈哈哈，我就是这么想的，不知道为什么。
Hahaha, that’s what I think. I don’t know why.

SEG-CKRG
K:[G]游戏Synonym玩 [G]game, Synonym, play
R: 我玩的不是游戏 是情怀。 What I play is not a game, but faith!

Query #2 哈哈哈哈你家的男朋友呢? Ha ha ha, where’s your boyfriend?

Seq2Seq 你男朋友是谁？Who is your boyfriend?

ConKADI 我家的男朋友在家里。 My boyfriend stays at home.

BERT-PGN
我家男朋友都不知道怎么回事了，我还是个孩子。
My boyfriend doesn’t know what’s going on. I’m still a child.

SEG-CKRG
K:[G]男朋友 Causes 拍照 [G]boyfriend, Causes, taking pictures
R: 哈哈哈哈 拍照技术好。 Haha, haha, he is good at taking pictures

knowledge candidate set. This case verifies that our Generative Knowledge Selec-
tion mechanism can not only select knowledge but also extend the new knowl-
edge. Subsequently, we can find the response generated by SEG-CKRG is highly
relevant to the dialogue history and such generated knowledge facts, demon-
strating the important role of the generated knowledge. Besides, compared to
baselines, SEG-CKRG is the only one that can keep fluency, rationality, and
informativeness at the same time. In the second case, we can find although
ConKADI, BERT-PGN, and SEG-CKRG tried to introduce the new knowledge
concept phone, only SEG-CKRG answered a proper response.

Limitations. Although SEG-CKRG has surpassed all baselines, we also find a
limitation in the current work, i.e., Error Propagation. SEG-CKRG sequentially
generates the selected/extended knowledge and the dialogue response. Thus, if
irrelevant knowledge has been generated in the first knowledge generation pro-
cedure, the next response generation procedure will be impacted. We report two
typical error cases in Table 6. In the first case, SEG-CKRG generated a new
but incorrect knowledge fact ‘(game, Synonym, play)’ in the knowledge genera-
tion procedure. SEG-CKRG wrongly predicted the relation between ‘game’ and
‘play’, where the correct relation should be ‘CapableOf’. But fortunately, this
level of error has little impact on the following dialogue response generation.
SEG-CKRG still generated a better response than other baselines. In the next
case, SEG-CKRG has generated an existing but contextually-irrelevant knowl-
edge fact. This error has significantly impacted the relevance of the generated
response. Without considering the dialogue query, the response generated by
SEG-CKRG is still fluent.
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4 Related Work

Knowledge-Grounded Response Generation (KRG): Due to the inability
to access enough knowledge, traditional RG models [33,35] always generate safe
but boring responses in spite of the given query [12,13]. Consequently, KRG
models try to solve this issue by accessing the external knowledge bases [20,36,
48]. Commonsense knowledge is a popular knowledge type in the current research
[32,51], which helps a model to understand the dialogue, extend the topic, and
then generate informative responses [38,40,41,44,46,50].

Pretrained Language Models (PLMs): PLMs such as BERT [6], RoBERTa
[22], GPTs [2,27], and BARTs [11] have shown the dominate advantages in many
NLP tasks [16]. PLMs can transfer the knowledge learned from massive unsuper-
vised corpus to the open-domain RG models and bring significant improvements
[8,31,37,47]. As for KRG models, previous works have shown PLMs can further
prompt the text knowledge-grounded dialogue response generation [4,49] and
the commonsense knowledge-grounded dialogue response generation [52].

Knowledge Selection: It is a research focus in KRG [7]. Non-PLM KRG mod-
els often adopt specific modules to conduct this job. [50], and [46] adopt graph
neural networks, [41] uses the posterior response to help the learning of knowl-
edge selection, [20], and [1] introduces copy networks to select the knowledge,
[10] proposes a sequential knowledge selection paradigm, [28] proposes a global-
to-local paradigm. In the era of PLMs, most knowledge selection methods that
are originally designed for non-PLM KRG models become incompatible due to
the restrictions of PLMs. Thus, the knowledge selection can only rely on the
self-attention implemented by the Transformers of PLMs [23] or use the exter-
nal module [49]. Meanwhile, such works can only select knowledge from a fixed
and limited knowledge space, and the selection procedure is not very transpar-
ent. Different from such works, SEG-CKRG proposes a PLM-friendly Generative
Knowledge Selection mechanism, which regards knowledge selection as a gener-
ative problem. Thus, our method can not only select the existing knowledge but
also extend the new knowledge. Another difference is our work can explain the
selection result using the human understandable natural language. In addition,
although TBS [52] uses a PLM to generate knowledge, it does not include any
knowledge selection procedure. The methodology of TBS is similar to our model
(#4) in Table 4. Please refer to the corresponding results.

5 Conclusion

We propose an end-to-end CKRG model SEG-CKRG. Unlike previous works
that can only use the limited and fixed knowledge retrieved by IR tools, SEG-
CKRG introduces a novel Generative Knowledge Selection (GenSel) mechanism
to select existing knowledge and extend new knowledge in a generative way.
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More importantly, the knowledge selection/extension procedure has higher inter-
pretability than previous works because the output is a natural language text.
SEG-CKRG is implemented based on two Chinese GPT-2s pre-trained by our-
selves. Finally, experimental results have shown the very competitive perfor-
mance of SEG-CKRG.

Our future work includes three directions. First, we will continue to address
the mentioned limitation; Second, we will explore and verify the effectiveness of
GenSel in more different types of knowledge, such as text-based and table-based
knowledge; Third, we are considering jointly modeling the CKRG task and the
conversational relation extraction simultaneously by extending the potential of
GenSel.
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Abstract. Lexicon plays a critical role in Chinese Named Entity Recog-
nition (CNER). The major reason lies in that words in the lexicon, lex-
icon words for short, are highly related to entity mention boundaries.
Most lexicon enhanced CNER approaches focus on introducing lexicon
words to the input and hidden layers. However, existing lexicon enhanced
methods make the method hard to be adaptable and put weak lexicon
constraints on architectures. To tackle these challenge, we propose a uni-
fied lexicon enhanced CNER framework. Specifically, lexicon word iden-
tification (LWI) task is proposed to locate and classify textual references
to lexicon words. Similar to CNER task, this task is formalized either as
sequence labeling or character relation classification, adopts CRF or Co-
Predictor (Character relation classification) as the task specific layer, and
is optimized with log-likelihood function of sequence probability or cross
entropy of character pair relation type distribution. LWI task shares the
input and hidden layers with CNER task. The whole framework is pre-
trained with LWI task and fine-tuned with CNER task. Experimental
results on two benchmark CNER datasets show the better effectiveness
and flexibility than state-of-the-art baselines.

Keywords: Named Entity Recognition · Lexicon augmentation ·
Lexicon based Word Identification · Lexicon based Pre-training

1 Introduction

Named Entity Recognition (NER) is fundamental to many downstream tasks,
such as question answering and knowledge graph construction. As information
extraction subtask, NER locates textual references to named entities, i.e. men-
tions, in unstructured text and classify them into predefined categories for named
entities. How to locate these mentions is key to NER. Mention boundaries are
also word boundaries [19]. In other words, word boundaries provide prior knowl-
edge for mention locations of named entities. Different from English NER, Chi-
nese NER (CNER) task deals with sequences of Chinese characters without
explicit word boundaries. Thus Chinese NER task is more challenging.

Early Chinese Word Segmentation (CWS) based CNER methods often per-
form word segmentation first to derive the word boundaries and then sequence
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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labeling to word sequence like in English. Although derived word boundaries
provide knowledge for CNER, obviously the derived knowledge is unreliable and
contains errors which will be cascaded to the following NER step. Thus current
mainstream CNER methods are based on character. Recent attempt to incorpo-
rate word information into CNER is Lexicon enhanced CNER methods. Lexicon
knowledge is often utilized to improve the performance of CNER.

How to incorporate lexicon knowledge into current methods is often highly
dependent on model architectures. Without loss of generality, a typical model
architecture is usually divided into three parts: input layer, hidden layers, mini-
mal parameterized task specific layer (task specific layer). Here the task specific
layer is to predict the final score with model parameters as few as possible, such
as softmax function and Linear layer for classification task. Lexicon words are
often introduced to either the input or hidden layer. Lexicon word features are
used in the embedding layer of lattice-lstm [12] or as word cells in the hidden
layer of lattice-lstm [19]. Lexicon words are encoded in either nodes or edges
of graph neural networks [5,16]. Other methods takes lexicon words as weak
supervision for character representation learning in the attention mechanisms
of Convolution Networks or Transformers [4,10]. Generally, lexicon enhanced
networks designed for one kind are not suitable for other kinds.

However, current lexicon enhanced CNER methods are often related to a cer-
tain model, which has two drawbacks. On one hand, these specific model lexicon
enhanced CNER methods are not applicable directly and adaptable to new model
architectures. Almost no model architectures always keep their state-of-the-art
performances for a certain CNER task. Model specific lexicon enhanced CNER
methods provide little guidance for future work. On the other hand, whether
lexicon word features in the input or hidden layer are taken as implicitly soft
constraints on models. Therefore, how to make lexicon enhanced CNER methods
more flexible and take full advantage of lexicon knowledge is challenging.

To tackle these challenges, we propose a universal lexicon enhanced CNER
framework to adapt to various model architectures. The proposed framework,
namely LWICNER, includes a Lexicon Word Identification task parallel to
CNER task, referred to LWI, an additional LWI task specific layer to the net-
work architecture, and rich lexicon word supervision with corresponding loss
functions for pre-training.

Specifically, in light of word segmentation task [1,14,17] in multitask learning
scenario, the proposed LWI task is to locate and classify the textual references to
lexicon words in unstructured text. Due to highly related to CNER task, the LWI
task is formalized either as sequence label or as character relation classification.
Then LWI task specific layer is designed as CRF or character relation classi-
fication layer like co-predictor [9] correspondingly. Both LWI and CNER task
share the input and hidden layers. Next, supervision information from named
entities and lexicon words are transformed into either a target tag sequence in
sequence label or a character relation matrix in character relation classification.
Correspondingly, the loss function of the LWI task is defined as the log-likelihood
function of sequence probability or cross entropy between predicted and target
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character pair relation type distribution. Finally, the whole framework is learned
with LWI task for pre-training and trained with CNER task for fine-tuning.

To verify its effectiveness, we conduct comprehensive experiments under
sequence labeling and character relation classification implementation of our
proposed framework with different model architectures. For sequence labeling,
we adopts lattice-lstm [19] network architecture while we utilizes W2NER as
the backbone network for character relation classification. Experimental results
on public benchmark datasets, Weibo and Resume, indicate that the proposed
framework outperforms state-of-the-art CNER approaches on both datasets.
Compared with other lexicon enhanced methods, its performance improvement
is significantly higher. Our code and data are released1.

The main contributions of the proposed framework can be summarized as
follows:

– A lexicon word identification task is proposed, which is highly related to
CNER task, and can be formalized as either sequence labeling or character
relation classification.

– LWI specific layer is implemented as CRF or character relation classifier. The
corresponding loss function is log-likelihood function for tag sequence or cross
entropy for character pair relation.

– Model parameters are first pre-trained with the LWI task and then fine-tuned
with the CNER task, which is better than jointly training on both CNER and
LWI task.

– Comprehensive experiments on benchmark CNER datasets are conducted to
show its better effectiveness and flexibility than state-of-the-art baselines.

2 Related Work

According to the basic unit of input sequences fed into CNER architecture,
existing CNER approaches fall into two categories: word based and character
based CNER methods. As mentioned in the previous section, word based CNER
method involves performing word segmentation first and then NER from the
derived word sequence similar to English NER, which will lead to cascaded
errors. Here we focus on word enhanced methods including word segmentation
and lexicon enhanced methods.

Character based approaches use the character sequences as input. [11]
learns multi-prototype Chinese character embeddings and applies these features
to CNER task. [3] introduces the character-level and radical-level representa-
tions into the BiLSTM-CRF network. [8] regards each Chinese character as an
image, extracts the features through Convolution neural network, and combines
extracted features to character-level features with the help of attention mech-
anism. W2NER [9] is a unified NER architecture to retreat the NER task as
word-word relation classification to recognize three major types named entities,
i.e. flat, overlapped and discontinuous named entities.
1 https://github.com/morediligent/LWICNER.

https://github.com/morediligent/LWICNER
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Word Segmentation enhanced CNER methods improve the perfor-
mance of CNER task by introducing word segmentation task to the model in
multitask learning scenario. [1] take the word segmentation and adversarial trans-
fer learning based model into CNER to eliminate the noise interference by using
three LSTM models in private CNER task space, CWS mission task and shared
space. [17] proposes a CNN-LSTM-CRF architecture, learns the model param-
eters with CNER and CWS task jointly to improve the prediction accuracy of
entity boundaries. [14] introduces CWS task as a supplement to the CNER task
for Chinese social media and jointly optimizes two task loss functions.

Lexicon enhanced CNER approaches predict the entity boundaries
and categories of entity mentions with the help of lexicon knowledge. Lattice-
LSTM [19] is the first to utilize the lexicon and generate a classical lattice struc-
ture. Motivated by this idea of Lattice-LSTM [19], many related studies appear
to apply the lexicon into CNER task. [10] proposes a flat structure which con-
sists of spans instead of lattice structure, and is composed of transformer layers
with special position encoding. [4] solves the conflicting candidate lexicon word
problem through CNN, which runs easily in parallel. [5] adds a global node to
capture the global sentence semantic information, and extends the dependency
distance based on the graph structure. [12] connects the lexicon information
with the character embedding to solve the complex sequence modeling problem.
Along this line, [18] makes Transformer Encoder accommodate both character-
level and word-level features with distance-aware and un-scaled attention mech-
anism. In all, existing approaches adopt the dynamic architecture, which is not
easily adaptable.

3 Formalization of CNER Task

As mentioned before, how to locate these textual references (mentions) is key
to NER task. According to mention location methods, existing approaches often
reduce CNER task to sequence labeling and character-character relation classifi-
cation method. The former is dominating especially for flat NER and the latter
is universal for nested, overlapping and flat NER methods.

3.1 Sequence Labeling

Given an input character sequence s = c1, c2, . . . , cn, where cj means the
jth character, sequence labeling method [7,19] is to obtain a tag sequence
ŷ = ŷ1, ŷ2, . . . , ŷn to locate mentions with a certain tagging scheme, such as
BIOES and BMES tagging scheme. The tag sequence ŷ is either produced with
strictly each label per character from conditional random fields [7,19] or gener-
ated loosely by sequence-to-sequence methods [15].

Take the latter tagging scheme for instance. Given the character sequence
s =“龙门石窟潜溪寺 ”, which means Qianxi Temple near Longman Grottoes, its
target tag sequence under the BMES scheme is y =B-Location, M-Location, M-
Location, E-Location, B-Location, M-Location, E-Location. For each character
cj , its target (ground truth) and predicted tag is denoted as yj and ŷj .
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3.2 Character Relation Classification

Character relation classification method, originated from word-word relation
classification method [9], is to classify the character pair into pre-defined rela-
tion types by constructing a character graph to locate mentions in each input
sequence.

Given a character sequence s = c1, c2, . . . , cn, it is to predict the relation
type between each character pair {(ci, cj)}n

i,j=1, and derive a character relation
matrix r̂ = (r̂ij)n×n to describe the character relation graph, where r̂ij means
the relation type between character ci and cj . The predefined character relation
type set is denoted as R = {0, . . . , 19}. Each rij ∈ R means tail character ci

lies rij characters behind head character cj of the same entity mention. r̂ij = 0
means no relations.

The input character sequence s =“龙门石窟潜溪寺 ” is the same as above,
its target relation matrix is as Eq. (1). For each sequence s, its target (ground
truth) and predicted relation matrix is denoted as r and r̂.

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
3 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

4 Proposed Method

Based on the observation of high correlation between lexicon word and named
entity mention boundaries, we propose a novel Lexicon Word Identification task,
incorporate it to the CNER backbone.

4.1 Observation

Lexicon words provides reliable boundary and semantics knowledge to CNER
task who has no explicit word boundaries. Here we utilize the reliable knowledge
as supervision information. As mentioned before, the supervision information for
CNER task is either a tag sequence y or a character relation matrix r for each
sequence s.

We locate the word mentions in the input sequence s through exacting string
matching method. The lexicon is denoted as D, which is a word set D = {w}
with each word w = c1, c2, . . . , cm as a character sequence. For a word w ∈ D,
we determine whether it appears in sequence s as whether w is a sub-string of
s. In this way, we derive the word mentions in sequence s denoted as Ds. For
instance, s =“龙门石窟潜溪寺 ” and the derived word mentions Ds = {“龙门 ”,
“石窟 ”, “龙门石 ”}.
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Fig. 1. The labels using the BMES tagging pattern. The upper labels are generated
from the named entity information and the nether labels are generated from the lexicon
based words information.

Fig. 2. Illustration of Character relation matrix for CNER(right) and LWI(right) task.
NNC (Next-Neighbor-Character) and THC (Tail-Head-Character) are relation types.

With sequence labeling method for entity mentions, word mentions Ds are
transformed to a tag sequence γ under a certain tagging scheme for each sequence
s. The target tag sequence is γ = B,M,E,E,O,O,O to identify lexicon word in
sequence s =“龙门石窟潜溪寺 ” and y to locate entity mentions in s as shown in
Fig. 1. The correlation ρs(γ, y) between γ and y is computed as Eq. (2), where
I(·) is the indicator function that equals to 1 when the condition holds and 0
otherwise. Statistical information over benchmark datasets are shown in Fig. 3.

ρs(γ, y) =
∑n

i=1 I(γi == yi)
n

(2)

With character relation classification method for entity mentions, word men-
tions Ds are formatted as a relation matrix τ for each sequence s. For sequence
s =“龙门石窟潜溪寺 ”, the relation matrix τ and r are to locate word and entity
mentions in s respectively as shown in Fig. 2.The correlation ρr(τ, r) between τ
and r is computed as Eq. (3). Statistical correlation information over benchmark
datasets are shown in Fig. 4.

ρr(τ, r) =

∑n
i=1

∑n
j=1 I(τij == rij)

n2
(3)

Statistical results in Figs. 3 and 4 over these correlation values for both bench-
mark datasets suggests that lexicon word boundaries are highly correlated with
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Fig. 3. The correlation of the target tag sequence between LWI and CNER task using
BMES tagging scheme.

Fig. 4. The correlation of the target character relation matrix between LWI and CNER
task.

named mention boundaries. Therefore we propose a novel Lexicon Word Identi-
fication task (LWI), which is highly related to CNER task.

4.2 Formalization of LWI Task

Lexicon word Identification task is to locate and classify textual references to
words in the lexicon D. For each sequence s, we construct its word mention
set Ds through exact match between lexicon words and s efficiently with the
algorithm [19].

Formalized as sequence labeling, LWI task aims to decode a tag sequence
γ̂ = γ̂1, γ̂2, . . . , γ̂n with each tag per character based on the learned model for
s. Here we define the tag set as G = {B, M, E, S, O} to indicate whether the
current character is a beginning, middle, end, single, stop character of a lexicon
word. We use γ̂ and γ to distinguish the predicted and target (ground truth) tag
sequence. We train the model under the supervision of γ which is derived from
Ds for sequence s.

Formalized as character relation classification, LWI task is to classify each
character pair (ci, cj) into pre-defined relation types τ̂ij ∈ A, obtain a rela-
tion matrix τ̂ = (τ̂)n×n like Eq. (1) as a character graph. Here we define
A = {0, 1, . . . , 19}. Each relation type a ∈ A means tail character ci lies a
characters behind head character cj of the same word mention. Specially a = 1
means ci is next to cj . To differentiate the predicted and ground truth relation
matrix, we utilize τ̂ and τ . LWI models are trained under the supervision of τ
derived from the word mention set Ds.
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Fig. 5. The Proposed LWICNER framework with (1) red curve as the data flow in
pre-training stage; (2) black curve as the data flow in fine-tuning stage. (Color figure
online) .

4.3 Network Architecture

Traditionally the proposed model architecture is mainly composed of input, hid-
den, LWI and CNER task specific layers as Fig. 5.

Input Layer. Each character sequence s is fed into the input layer, such as
BERT or word2vec lookup table. The character embedding in this sequence
is obtained as X = (xi)n×1 with xi ∈ Rd as the d-dim embedding vector of
character ci.

Hidden Layers. The major kinds of hidden layers include Graph Neural
Networks [5,16], Lattice-LSTM [19], Transformer [9,10] and Convolution Net-
works [2,9]. For some methods, hidden layers deal with only one kind like Lattice-
LSTM [19]. For other methods, hidden layers are often made up of several kinds
like W2NER [9], which includes Transformer, bi-LSTM and Dilated Convolution
layers. Character representations or character pair representations are updated
through these layers as

H = HL(X) ∈ Rn×d′
,

P = HP(X) ∈ Rn×n×d′

respectively. HL and HP are the function of hidden layers for character and
character pair respectively.

CNER Specific Layer. Either character representations H or pair represen-
tations P is fed into the entity recognition task specific layer with two typical
implementation methods denoted as CRF and Co-Predictor respectively.

(1) CRF is the dominating implementation method. With character representa-
tions H as input, it calculates the probability that the decoded tag sequence
is y for each input sequence s as Eq. (4). y′ means one possible decoded
sequence. {Wt

CRF}t∈T ∪{b
(ti,tj)
CRF )}ti,tj∈T are all parameters of the CNER

task specific layer. T is the set of all possible categories pre-defined based
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on named entities under a certain scheme. For BMES scheme, T = {B-
Location, . . ., E-Person}.

P (y|s) = exp(
∑

j W
yj

CRFhj + b
(yj−1,yj)
CRF )

∑
y′ exp(

∑
j W

y′
j

CRFhj + b
(y′

j−1,y′
j)

CRF )
(4)

(2) Co-Predictor [9] is a universal method to accommodate all kinds of enti-
ties. It takes both character representations H and pair representations P
as input. Character pair scores are obtained from directly linear transfor-
mation of pair representations P denoted as MLP(P) and indirectly biaffine
transformation of character representations H denoted as B(hi,hj). For
each sequence s, these predicted character pair scores over different relation
types are normalized as a probability distribution P (r̂ij) through softmax
in Eq. (5).

P (r̂ij) = softmax(B(hi,hj) +MLP(Pij)) (5)

LWI Specific Layer. Either character representations H or character pair
representations P is fed into the following lexicon word identification task spe-
cific layer with two similar implementation methods to CNER specific layer, i.e.
CRFw and Co-Word-Predictor.

(1) CRF takes character representations H as input, and calculates the proba-
bility that the decoded tag sequence is γ for each input sequence s as Eq. (6).
γ′ means one possible decoded sequence. {Wg

CRFw
}g∈G ∪{b

(gi,gj)
CRFw

)}gi,gj∈G

are all parameters of the LWI task specific layer denoted as CRFw. G is the
set of all possible categories pre-defined under a certain scheme.

P (γ|s) = exp(
∑

j W
γj

CRFw
hj + b

(γj−1,γj)
CRFw

)
∑

γ′ exp(
∑

j W
γ′
j

CRFw
hj + b

(γ′
j−1,γ′

j)

CRFw
)

(6)

(2) Co-Predictor [9] takes both character representations H and pair represen-
tations P as input for LWI task denoted as Co-Word-Predictor. Character
pair scores are obtained from directly linear transformation of pair repre-
sentations P denoted as MLPw(P) and indirectly biaffine transformation
of character representations H denoted as Bw(hi,hj). For each sequence s,
these predicted character pair scores over different relation types are nor-
malized as a probability distribution P (τ̂ij) through softmax in Eq. (7).

P (τ̂ij) = softmax(Bw(hi,hj) +MLPw(Pij)) (7)

4.4 Training Paradigm

Considering the homogeneity of both LWI and CNER tasks, we adopt the pre-
training and fine-tuning paradigm. Specifically, we learn these parameters from
the input, hidden and LWI specific layers with the optimization of L∗w, where
∗ = {s, r} is the implementation method of task specific layer, in the pre-training
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stage. Here data flows according to the red curve in Fig. 5. Then we train these
parameters from the input, hidden and CNER specific layers with the optimiza-
tion of L∗ in the fine-tuning stage, where data flow is transformed according to
the dotted black curve in Fig. 5.

Both task specific layers are implemented as CRF and CRFw separately
for CNER and LWI task. Given the training set {(s, y)} for CNER task, its loss
function is defined as the log-likelihood function of P (y|s) with L2 regularization
as Eq. (8). All the parameters in the model architecture are denoted as Θ. Given
the training set {(s, γ)} for LWI task, its loss function is defined as the log-
likelihood function of P (γ|s) with L2 regularization as Eq. (9). All the parameters
in the model architecture are denoted as Θw. The only difference between Θ and
Θw lies in the parameter difference between CRF and CRFw.

Ls =
∑
(s,y)

logP (y|s) + λ

2
‖Θ‖2 (8)

Lsw =
∑
(s,γ)

logP (γ|s) + λ

2
‖Θw‖2 (9)

Both task specific layers are implemented as Co-Predictor and Co-Word-
Predictor respectively for CNER and LWI task. For the training set {(s, r)} of
CNER task, its loss function is defined as the cross entropy between the ground
truth and predicted relation label distribution for each character pair (ci, cj)
in Eq. (10), i.e. rij and P (r̂ij) respectively. rij is a one-hot vector to denote
which relation type the character pair belongs to. For the training set {(s, τ)}
of LWI task, its loss function is defined as the cross entropy between the ground
truth one-hot vector τij and predicted relation label distribution P (τ̂ij) for each
character pair (ci, cj) in Eq. (11).

Lr = −
∑
(s,r)

1
n2

n∑
i=1

n∑
j=1

rij logP (r̂ij) (10)

Lrw = −
∑
(s,τ)

1
n2

n∑
i=1

n∑
j=1

τij logP (τ̂ij) (11)

5 Experiments

To demonstrate the effectiveness and flexibility of our proposed framework, we
conduct comprehensive experiments on benchmark datasets. Experimental set-
ting and results are shown in the following subsections.

5.1 Experimental Setup

Datasets. Weibo [6,13] and Resume [19] are two public benchmark datasets
for CNER task. Corpus in Weibo [6,13] is from social media, which contains
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1.4(73.8), 0.27(14.5), 0.27(14.8) thousands of sentences (characters) for train-
ing, validation and testing separately. Sentences in Resume [19] is from personal
resume data. It is divided into three parts with 3.8(124.1)k training sentences
(characters), 0.46(13.9)k validation sentences (characters) and 0.48(15.1)k test-
ing sentences (characters).

Lexicon. We use the Chinese Giga-Word2 as the lexicon D. It is composed
of 708k words including 5.7k one-character words, 291.5k two-character words,
278.1k three-character words, 129.1k other words [12]. The Giga-Word is a gen-
eral and professional lexicon.

Table 1. Hyper-parameter Setting for LWICNER-L

Parameter Value Parameter Value

char emb size 30 bigram emb size 50
lattice emb size 50 LSTM hidden size 200
char dropout 0.5 lattice dropout 0.5
LSTM layer 1 learning rate lr 0.015

Model Architecture. To investigate the flexibility of our proposed frame-
work, we consider two kinds of models architectures with dominating task spe-
cific layers: CRF and co-predictor. Specifically, we adapt Lattice-LSTM [19] and
W2NER [9] to our proposed framework LWICNER, and obtain two implemen-
tation methods denoted as LWICNER-L and LWICNER-W respectively.

Table 2. Hyper-parameter setting for LWICNER-W

Parameter Value Parameter Value

clip grad norm 1e–3 emb dropout 0.5
weight decay 0 bert learning rate 5e–6
con dropout 0.5 learning rate 1e–3
dist emb size 10 batch size 4
type emb size 20 warm factor 0.1

Baseline Methods. To show the effectiveness of our proposed methods includ-
ing LWICNER-L and LWICNER-W, we compare them with two kinds of base-
lines. One is the character based CNER methods without word information,
such as W2NER [9]. The other is the lexicon enhanced methods, including
Lattice-LSTM [19], Tender [18], LGN [5], FLAT [10], softLexicon [12]. Some
performances of baselines are reported in the original paper while others are
reproduced according to the hyper-parameter setting in the original paper. All
the performances are derived on one GPU 3080 with 10GB memory.
2 https://catalog.ldc.upenn.edu/LDC2011T13.

https://catalog.ldc.upenn.edu/LDC2011T13
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Implementation Details. We choose the hyper-parameter setting of our pro-
posed LWICNER-L and LWICNER-W with the best performance on valida-
tion set shown in Tables 1 and 2. The performance is measured by P(precision),
R(recall) and F1(F1-score).

5.2 Effectiveness Study

All the performances listed in Table 3 are the same as that reported in their orig-
inal papers. Performances of our proposed LWICNER-W in terms of three evalu-
ation metrics are reported on test sets of both datasets as Table 3. LWICNER-W
is better than LWICNER-L in most cases, so here we only show the performances
of LWICNER-W.

Table 3. Results of State-of-the-art Baselines and LWICNER-W on Benchmark
datasets.

Resume Weibo
P R F1 P R F1

Lattice LSTM 94.81 94.11 94.46 53.04 62.25 58.79
Tender – – 95.00 – – 58.17
LGN 95.37 94.84 95.11 57.14 66.67 59.92
FLAT – – 95.86 – – 68.55
Soft-Lexicon 96.08 96.13 96.13 70.94 67.02 70.05
W2NER 96.01 96.01 96.01 71.65 67.70 69.62
Ours 96.08 96.26 96.17 73.91 69.14 71.45

Our proposed framework LWICNER, implemented as LWICNER-W, out-
performs all the baseline methods listed in Table 3. Among all the baselines,
SoftLexicon and W2NER are two representative methods of CNER methods
with and without lexicon knowledge, and perform better than other baselines.

Compared with the best baseline method without lexicon knowledge
W2NER, the performance improvement is 0.0729%, 0.260%, 0.167%, 3.15%,
2.13%, 2.63% in terms of Precision, recall and F1-score on Resume and Weibo.
The performance gain of LWICNER-W is owing to the addition of lexicon word
identification task because it shares the same network architecture with W2NER
except the LWI specific layer. Thus it is effective to utilize the lexicon knowledge.

Compared with the best baseline with lexicon knowledge SoftLexicon, the
performance improvement is 0%, 0.135%, 0.0416%, 4.19%, 3.16%, 2.00% in
terms of Precision, recall and F1-score on Resume and Weibo. SoftLexicon
injects the lexicon word features into the input layer, and the lexicon constraints
become weaker as layers go deeper. LWICNER-W incorporates lexicon knowl-
edge directly to task specific layer. Performance comparison results indicate that
LWICNER makes a fuller use of lexicon knowledge than SoftLexicon.
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5.3 Flexibility Study

With the original codes released by the authors, we reproduce the perfor-
mances of Lattice-LSTM and W2NER with the hyper-parameter setting in
Tables 1 and 2 respectively. Our proposed framework LWICNER is implemented
as two kinds of network architectures, namely Lattice-LSTM and W2NER,
and obtains corresponding methods LWICNER-L and LWICNER-W. We com-
pare the LWICNER-L with its backbone network Lattice-LSTM under the
same hyper-parameter setting and results are shown in Table 4. We compare
LWICNER-W with its backbone network W2NER under the same hyper-
parameter setting and results are shown in Table 5.

Table 4. Performance comparison between LWICNER-L and its backbone

Resume Weibo
P R F1 P R F1

Lattice LSTM 96.51 94.42 94.71 63.64 47.34 54.50
LWICNER-L 96.50 95.06 94.77 67.62 45.89 54.68
Improvement(%) –0.01036 0.6778 0.06335 6.254 –3.063 0.3303

For most metrics on two datasets, LWICNER-L performs better than Lattice-
LSTM. F1-score of LWICNER-L is consistently higher than that of Lattice-
LSTM on both datasets. However, comparison results are inconsistent under
precision and recall metrics. For Resume, precision of Lattice-LSTM is slightly
better while recall of Lattice-LSTM is 3.063% higher on Weibo. LWICNER-L
provides harder lexicon constraints on the network architectures than Lattice-
LSTM, which is more likely to prompt the precision than recall on Weibo.

Table 5. Performance comparison between LWICNER-W and its backbone

Resume Weibo
P R F1 P R F1

W2NER 96.01 96.01 96.01 71.65 67.70 69.62
LWICNER-W 96.08 96.26 96.17 73.91 69.14 71.45
Improvement(%) 0.07291 0.2604 0.1666 3.154 2.127 2.629

LWICNER-W is always better than its corresponding backbone model
W2NER under all the three metrics on both datasets due to the usage of lexi-
con word knowledge. Especially the precision improvement on Weibo is slightly
higher than recall improvement. This coincides with the result from the above
table. In other words, our proposed framework is more likely to improve the
precision.

Through the above analysis, the performance gain of the proposed framework
is significantly high for both network architectures. This suggests our proposed
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LWICNER is flexible enough for these kinds of network architectures. Besides,
LWICNER-W is better than LWICNER-L due to the limitation of sequence
labeling formulation. Sequence labeling implemented as Lattice-LSTM is friendly
to flat NER while character relation classification implemented as W2NER is
suitable for all kinds of NER, such as discontinuous, overlapping and flat NER.
LWICNER implemented as Lattice-LSTM cannot take full advantage of lexicon
words with many overlapped lexicon words.

Compared with overlapped entities mentions in CNER task, overlapped
words are common in the lexicon. For example, “居留 ” and “居留权 ” are
nested, i.e.totally overlapped, while “龙门石 ”, “石窟 ” are partly overlapped.
Thus the improvement space of LWICNER-L are left for future.

5.4 Influence of Sparsity Phenomena

Some sentences contain only one entity mention, while others contain a few. The
former is referred to as sparsity phenomena. Take sequence labeling for example,
we compute the ratio of the number of named entity labels (“B”, “M”, “E”, “S”)
to the total number of all tagged labels (“B”, “M”, “E”, “S”, “O”) on Resume and
Weibo, as shown in Table 6. Here we referred to the ratio as named entity ratio.

Table 6. The named entity ratio on the Resume and Weibo

Named entity labels Total labels Ratio of named entity labels
to total labels(percent)

Train Dev Test Train Dev Test Train Dev Test

Resume 79012 8444 9910 127916 14353 15577 61.76 58.83 63.61
Weibo 4951 971 1078 75128 14779 15112 6.59 6.57 7.13

We find that the named entity ratio on Weibo is much lower than on Resume,
which means Weibo is more sparse than Resume. That’s why the performances
on Resume are higher than these on Weibo. Named entity supervision informa-
tion provides enough knowledge for CNER on Resume while little knowledge for
CNER on Weibo. That’s the reason of the higher performance gain of lexicon-
enhanced methods on Weibo.

The sparsity phenomena on Weibo also explains why precision improvement
is larger than recall improvement. Recall improvement depends on the relation-
ship between input sequences in the sparse scenario. However, the proposed
framework only focuses on augmenting the knowledge of each input sequences.
Thus the framework works better under the measure of precision in the sparse
scenario. Incorporation of lexicon words into the network architectures will help
make these training sequences related implicitly like Lattice-LSTM.
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5.5 Ablation Study

We conduct an ablation study for training paradigm to explore why pretrain-
finetune paradigm is used here. We compare the proposed framework LWICNER
with jointly training methods, which learns model parameters to optimize the
loss sum of LWI and CNER tasks denoted as L∗ + L∗w. Specifically, there are
two implementations under different formalization methods. Performances of
LWICNER and Ls +Lsw are shown in Table 7 while these of LWICNER-W and
Lr + Lrw are demonstrated in Table 8.

Table 7. Different Training paradigms with Lattice-LSTM backbone

Resume Weibo
P R F1 P R F1

LWICNER-L 96.50 95.06 94.77 67.62 45.89 54.68
Ls + Lsw 94.77 94.48 94.62 65.41 42.03 51.18

It is obvious that the proposed framework LWICNER performs consistently
better than jointly training paradigm L∗ + L∗w on both datasets under all the
metrics in Tables 7 and 8. The underlying reason is the highly correlation between
LWI and CNER task in terms of supervision format, network architecture and
loss function.

Table 8. Different Training paradigms with W2NER backbone

Resume Weibo
P R F1 P R F1

LWICNER-W 96.07 95.89 95.98 73.91 69.14 71.45
Lr + Lrw 95.63 95.21 95.42 72.02 66.51 69.91

6 Conclusion

To accommodate different model architectures of CNER task, a unified lexicon
enhanced CNER framework is proposed. The framework includes the Lexicon
word identification task, and its homogeneous implementation to CNER task.
The formalization, task specific layer and loss function are designed for this novel
task. Different from existing lexicon based methods, the proposed framework
is more flexible that it work better for two major kinds of architectures on
benchmark datasets. More importantly, it achieves better performances than
state-of-the-art CNER methods on benchmark datasets. The remaining question
is how to improve the framework in the entity-sparse scenario.
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Abstract. Chinese idiom is a distinctive language phenomenon, which
usually consists of four Chinese characters and expresses a non-
compositional and metaphorical meaning. Therefore, Chinese idioms
pose unique challenges for Chinese machine reading comprehension. To
address this issue, researchers proposed a Chinese idiom cloze task and
a large-scale Chinese idioms dataset ChID. Existing methods have pro-
posed a number of models and achieved reasonable performance on ChID.
However, they fall short of fully exploring the precise representations and
distinctions of the meanings of idioms, especially idioms with similar
meanings. In this paper, we propose a prompt-based representation indi-
vidual enhancement method (PRIEM). This method fuses the context-
specific representation and the generic definition representation of the
idioms, and uses the prompt method to guide the model in learning
the metaphorical meanings of idioms purposefully. To further improve
the distinction representations of idioms with similar meanings, PRIEM
adopts a method of idiom representation mapping and decomposing
based on orthogonal projection to obtain the common and individual rep-
resentations of idioms respectively. Experimental results on ChID show
that our model outperforms state-of-the-art models.

Keywords: Chinese idiom · reading comprehension · prompt
method · orthogonal projection · individual representation

1 Introduction

As a special linguistic phenomenon, Chinese idioms pose unique challenges for
Chinese machine reading comprehension [11]. They mainly derive from ancient
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literature, and usually consist of four characters [15]. Now new idioms are still
emerging, mainly based on Internet slang or hot events, but the number is small.
The generation of idioms is a slow process, and with the passage of time, the mean-
ing and scenarios of idioms gradually evolve. The metaphorical meanings of some
Chinese idioms are consistent with their literal meanings, such as “衣食住行 ” (lit-
eral meaning: “clothing, food, housing and transportation”). But more idioms have
metaphorical meanings that are far from their literal meanings, such as “盲人摸
象 ” (literal meaning: “a blind man touches an elephant”;metaphorical meaning:
“inadequate understanding of things and reckless speculation”). Due to the com-
mon non-compositionality and metaphorical meaning of Chinese idioms [25], the
key to Chinese idiom reading comprehension is not only to understand the con-
text but also to get prior knowledge of the idioms. And we also should pay more
attention to the big difference between literal and metaphorical meanings [9,22].

To address this issue, Zheng et al. [25] created the Chinese idiom cloze task
and the dataset ChID to evaluate the ability of machines to comprehend Chinese
idioms. As shown in Table 1, this task is to choose one idiom that best matches
the context from seven idiom options given a sentence with blanks, and the
candidate set of 7 idioms is specified by the ChID dataset. Currently, researchers
mainly use the deep learning model to obtain the contextual representation of
the blanks. Zheng et al. [25] used Bi-LSTM [26] to get the hidden state which is
used to deduce the probability of selecting one candidate idiom. The pre-trained
BERT model adopts a self-attention mechanism [21], and performs better than
Bi-LSTM. Then Wang et al. [23] proposed a method of integrating the idiom’s
definition, its character representation and its context based on the BERT model.
Long et al. [12] proposed a method of using near-synonym idioms to alleviate
the inconsistency between literal and metaphorical meanings, which constructed
a synonym graph based on idioms with high semantic similarity.

For the Chinese idiom cloze task, the key is to get the idiom representation
that can comprehensively consider various factors that form idioms, and make
a distinction between idioms with similar semantics. Currently, deep learning
models are still insufficient in mining the precise representations and accurate
meanings of idioms. Introducing the definitions of idioms can help the model
learn the semantics of idioms, but simply concatenating the original passages and
idioms’ definitions cannot ensure the model learns the correspondence between
the candidate idiom and the passage and the grammatical function that the
idiom plays in the passage. This leads to the poor generalization representations
of idioms. Using synonym graphs based on idioms with high semantic similarity
is beneficial for understanding the semantics of idioms but increases the difficulty
of distinguishing idioms with similar semantics.

To address the limitations above, we propose a prompt-based representa-
tion individual enhancement method (PRIEM) for the Chinese idiom cloze task.
We first introduce the definitions of idioms using a prompt template “成语
[MASK] 的定义是 D ” (meaning: “The definition of idiom [MASK] is D”). By
using this method, the model learns to take into account the generic mean-
ing and the grammatical function of an idiom when filling in the blank. Then,
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Table 1. An example of Chinese idiom cloze.

Passage & Blanks: 突然从身后看台传来一小球迷_____的加油声, 惹
得国乒男 队主教练也不禁回头张望。 Suddenly from the stands behind
came a small fan’s _____ cheering. The head coach of the national
table tennis men’s team couldn’t help but look back.

No. idioms literal meaning metaphorical meaning
(general definition)

1 “闻风破胆 ” hear the wind,break the gall extreme fear of a certain force
2 “声嘶力竭 ” shout oneself hoarse shout with all your might
3 “咬牙切齿 ” gnash one’s teeth hate to the extreme
4 “凶神恶煞 ” fiends and demons very vicious person
5 “怒气冲天 ” rage to the sky very furious
6 “甜言蜜语 ” sweet words honeyed phrases nice words to please or to coax
7 “大声疾呼 ” urgent shout appeal to society
Ground Truth: “No.2”

we fuse the context-specific representation of the idiom and the generic defini-
tion representation of the idiom by using a mapping-based method. As a result,
we obtain an extended representation of the idiom across multiple contexts. Next,
we decompose the original representation of idioms in the candidate idioms Set
into common representation and individual representation through an orthogonal
projection. Finally, we use the joint projection method to adjust the weights of
the original representation and the individual representation, so that we can get
a more comprehensive and precise representation of the idiom. Experiments on
the ChID dataset show that our model outperforms the state-of-the-art models,
especially when the candidate idioms are near-synonyms.

Our main contributions are summarized as follows:

– We propose a prompt method to introduce the definition of idiom, and fuse the
contextual representations of idiom across multiple contexts, which enhances
the generalization of representation.

– We propose a method of idiom representation mapping and decomposing
based on orthogonal projection to enhance the individual representation and
the distinctions between idioms.

– Experimental results on ChID show that our model outperforms state-of-the-
art models. The accuracy on dataset Test reaches 95.7%, and the accuracy
on dataset Sim, which has more synonyms or near-synonyms idioms, is sig-
nificantly improved to 97.9%.
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2 Related Work

Cloze test is a typical reading comprehension task that is essential to assessing
machine reading ability [2,4]. Researchers have created a number of cloze-style
reading comprehension datasets [6,8] to facilitate cloze research. Chinese idioms
and English slang are special forms of language with unique expressions and a
long history [16]. The non-literal deep metaphor of Chinese idioms has brought
great challenges to the research on chinese idiom cloze task [18]. ChID has set-
tings similar to CLOTH [24], where the answers are selected from the given
options. But unlike most existing cloze test corpora, the answers from ChID
usually do not appear in the context.

Zheng et al. [25] proposed the Chinese idiom cloze task and used Bi-LSTM,
Attentive Reader, and Standford Attentive Reader as benchmark models. Atten-
tive Reader [6] added attention mechanism [14] to Bi-LSTM, and Stanford
Attentive Reader [2] adopted bilinear function as a matching function to cal-
culate attention weight. With the emergence of the BERT model [5], researchers
have gradually adopted the BERT model to solve the Chinese idiom Cloze task.
The first BERT-based dual-embedded idiom cloze model [19] learned the dual-
embedding of idioms to predict the idioms in the blanks. However, the basic
BERT models still face challenges in dealing with long sequences and under-
standing metaphorical meanings of idioms. Subsequently, by introducing exter-
nal knowledge, idiom definitions and idioms’ characters can be used to correct
the misuse of idioms [23]. Long et al. [12] found that the literal meaning of many
idioms was significantly different from their metaphorical meaning, so they con-
structed a synonym graph according to the meanings of idioms and encoded the
idiom into a new representation. However, it is more challenging for this method
to distinguish idioms with similar meanings.

Idioms also play a certain grammatical role in sentences, such as subject,
object, and attribute. Although the above methods introduce the definitions of
idioms, they do not consider the grammatical functions of idioms in sentences.
Therefore, these models cannot obtain a more complete and comprehensive con-
textual representation of the idiom in different contexts. In this paper, we use
the prompt [10] method to transfer the knowledge gained from pre-training to
the idiom cloze task. The generalization ability of idiom representation can be
enhanced by fusing the generic definition representation of idioms based on
the prompt template. We also propose a method of representation mapping
and decomposing based on orthogonal projection to eliminate the commonality
between idioms and enhance the individual representation.

3 PRIEM Model

In order to introduce external knowledge and guide the model to learn the
metaphorical meanings of idioms purposefully, we construct the prompt tem-
plate for the idiom definition to obtain the generic representation of idioms.
Thus, we can effectively solve the problem of deep metaphors and obtain the
good generalization of idiom representation in different contexts.
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Fig. 1. Architecture of our model, M is the number of idioms in the candidate set.

Next, although many idioms are composed of different characters, they have
similar meanings. But there are subtle semantic differences between these idioms
with similar meanings. So we decompose the representation of idioms to extract
their common features representation and individual features representation.
And in order to alleviate the problem of data imbalance, we propose a joint
projection method to adjust the weights of individual representations of idioms.

3.1 Model Frame

The framework of the PRIEM model is shown in Fig. 1. The input is a passage
with a blank: “[CLS] 小球迷 [MASK] 的加油声 [SEP] , ” and the candidate
idioms set C : “1.闻风破胆, ” “2.声嘶力竭 ” , etc. The output is the best matching
idiom selected from the candidate idioms set C to fill up the blank. The model
consists of two parts: Idioms Fusion Representation Learning (the bottom of
Fig. 1) is to fuse the idiom representation across multiple contexts, and Idioms
Individual Representation Learning (the top of Fig. 1) is to decompose the idiom
representation based on orthogonal projection.

The first part is based on the BERT model. The input on the left side is the
original passage, which is used to obtain the context-specific representation in a
specific context. The input on the right side is the prompt template of the generic
definition, which is used to obtain the generic representation in a static context.
Two special tokens [CLS] and [SEP] are used as the boundary markers leading
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and ending the input passage sequence, and the blank in the input passage is
replaced by [MASK] token. After obtaining the representations of two inputs
through the BERT model, we perform the representation fusion under different
semantic dimensions. In the second part, We adopt the representation mapping
and decomposing method based on orthogonal projection to extract the indi-
vidual representations of idioms by eliminating the commonalities among the
candidate idioms.

3.2 Learning Idioms Fusion Representation

The purpose of this part is to obtain the generalized representation of idioms
across multiple contexts, which is mainly composed of the following three steps:
obtaining the context-specific representation of idiom in a specific context,
obtaining the generic definition representation of idiom in a static context, and
fusing the above two representations. These steps are described in detail below.

Idioms Context-Specific Representation. For the passage set T , the t-th
(t ∈ T ) sequence can be expressed as Ot = {[CLS],w1,w2, · · · , [MASK], · · · ,
wn, [SEP]}.Weuse theBERTto process this sequence and obtain the hidden repre-
sentation for [MASK] in the last (l-th) encoding hidden layer as the context-specific
representation h

(l)
Ot

∈ R
N×d, where N is the maximum length of the sequence and

d is the dimension of the hidden layer.

h(0)
ot = Embedding (Ot) (1)

h
(l)
Ot

= Transformer
(
h
(i−1)
Ot

)
, i ∈ {1, . . . , l} (2)

The context-specific representation h
(l)
Ot

of the idiom is based on the original
passage, so the representation of the same idiom in different contexts should
be different. Since idioms are a condensed special language phenomenon, under-
standing the accurate representation of idioms requires additional background
knowledge rather than simple context. This makes the representation h

(l)
Ot

is
highly context-specific and does not sufficiently exploit the precise representa-
tion of the idiom. Therefore, we need to fuse the representations of the same
idiom in different contexts to enhance the generalizability of the idiom represen-
tation. Next, we need to learn the generic definition representation of idioms in
the static context by introducing the definition of idioms.

Idioms Generic Definition Representation. By using prompt method, we
construct the prompt template of idiom definition to get generic definition rep-
resentation of idioms in the static context. The structure of the prompt template
is similar to that of the original passage sequence, and also has a [MASK] token,
which guides the model to learn how to choose an appropriate idiom to fill in
the blank and also let the model feel the grammatical functions of idioms in
sentences.
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For the t-th (t ∈ T ) sequence in the passage set T , we create the correspond-
ing prompt template Pt = {[CLS] 成语 [MASK] 的定义是 D[SEP] } (meaning:
[CLS] The definition of idiom [MASK]is D[SEP]]), where D represents the def-
inition of the corresponding idiom. For example, the prompt template of the
sequence in Fig. 1 can be “[CLS] 成语 [MASK] 的定义是嗓子喊哑 ,气力用尽,形
容竭力呼喊 [SEP] ”(meaning:[CLS]The definition of idiom[MASK]is hoarse voice,
exhaustion of strength, to describe trying to shout[SEP]). We use the BERT to
process this prompt template, and obtain the hidden representation for [MASK]
in the last (l-th) encoding hidden layer as the generic definition representation
h
(l)
Pt

∈ R
N×d, where N is the maximum length of the sequence and d is the

dimension of the hidden layer.

h
(0)
Pt

= Embedding (Pt) (3)

h
(l)
Pt

= Transformer
(
h
(i−1)
Pt

)
, i ∈ {1, . . . , l} (4)

Idioms Representation Fusion. Finally, we fuse the context-specific repre-
sentation and the generic definition representation using a representation map-
ping method. In other words, we map the generic definition representation h

(l)
Pt

of the idiom in the static context into the space of the context-specific represen-
tation h

(l)
Ot

of the idiom, and get the fusion representation h
(l)
Ft

as follows:

h
(l)
Ft

= Map
(
h
(l)
Pt

, h
(l)
Ot

)
(5)

where Map is a projection function that projects vector a to vector b :

Map (a, b) =
a · b

|b|
b

|b| (6)

3.3 Learning Idioms Individual Representation

Even idioms with similar semantics often have some subtle differences in meaning
in actual scenarios. This is mainly because the idioms’ meanings originated from
different old stories, and the process of generating metaphorical meanings is also
different. As a result, although these idioms have similar semantics, they may
express different emotional positions or apply to different scenarios.

As a special linguistic phenomenon, the Chinese idioms should be represented
as a subspace of Chinese semantic space. So, we map the representation of idioms
in the candidate Set C into this subspace by using the orthogonal projection [17].
In this way, the representation of the idiom is decomposed into the common
representation and the individual representation, which are orthogonal to each
other. The common representation represents the baseline of this subspace, and
the individual representation represents the individualized representation of the
idiom relative to the baseline.
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Fig. 2. The orthogonal projection and the joint projection. On the left is the orthog-
onal projection obtaining the individual representation, and on the right is the joint
projection obtaining the joint representation.

The process of orthogonal projection is shown in the left diagram of Fig. 2
(Take 2-dimensional space as an example). h (ci) is the original representation
vector of an idiom; Hc is the common representation vector of idioms in the
candidate idioms set, which is the average of the weighted sum of the represen-
tation vectors of all idioms in the candidate set; h (c∗

i ) is the projection of the
original representation vector onto the common representation vector; u (ci) is
the individual representation vector of the idiom after the orthogonal projection,
which is orthogonal to the common representation vector.

Firstly, the candidate idioms are encoded into a low-dimensional vector by
an embedding layer as follows:

h (ci) = Embedding (ci) , i ∈ {1, . . . ,M} (7)

where M is the number of idioms in the candidate idioms set.
Secondly, the common representation Hc of the idioms is obtained as follows:

Hc =
1
M

M∑
i=1

wcih (ci) (8)

where wci represents the learned weight of the i-th idiom representation.
We use the representation mapping method mentioned above (see equation

(6)) to obtain the projection h (c∗
i ).

h (c∗
i ) = Map (h (ci) ,Hc) (9)

Thirdly, the individual representation u (ci) of each idiom in the candidate
set C is obtained by using orthogonal projection as follows:

u (ci) = Map (h (ci) , (h (ci) − h (c∗
i ))) , i ∈ {1, . . . ,M} (10)

Finally, in order to further improve the generalization ability of the model
and take into account the individual and the common representations among
idioms thoroughly. We take the weighted sum of the original representation and
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individual representation as the final representation. The process of the joint pro-
jection is to obtain the joint representation j (ci) as shown in the right diagram
of Fig. 2.

j (ci) = αu (ci) + βh (ci) (11)

where α is the weight of the individual representation u (ci) of the idiom, β is
the weight of the original representation h (ci) of the idiom, and α + β = 1.

3.4 Selecting the Correct Candidate Idiom

Selecting the correct candidate idiom can be regarded as a classification problem.
After obtaining the fusion representations h

(l)
Ft

and the joint representation j (ci),
we then calculate the probability of selecting candidate idiom ci (ci ∈ C) among
all candidates given the context Ot as follows:

P (ci | Ot) =
exp

(
w ·

(
j (ci) ⊗ h

(l)
Ft

)
+ b

)

∑M
i′=1 exp

(
w ·

(
j (ci′) ⊗ h

(l)
Ft

)
+ b

) (12)

where w ∈ R
d is the model parameter, b ∈ R is the bias parameter, and ⊗ is the

element-wise multiplication. The training goal is to minimize the cross-entropy
loss between the ground truth and the prediction as follows:

loss = −
M∑
i=1

cg log P (ci | Ot) (13)

M is the number of idioms in the candidate set, and cg is the one-hot vector of
the ground truth.

3.5 Method Integration

First, for the passage set T , the t-th (t ∈ T ) original passage Ot and the cor-
responding prompt template passage Pt are selected as the input of the model.
After getting the idiom’s context-specific representation h

(l)
Ot

and the idiom’s
generic definition representation h

(l)
Pt

, we can obtain the fusion of these two rep-
resentations h

(l)
Ft

, which is used as an input of the classifier. Second, after getting
the common representation Hc of idioms in the candidate idioms set C and the
individual representation u (ci) by using orthogonal projection, we can obtain
the joint representation j (ci) by using joint projection, which is used as another
input of the classifier. Finally, according to the similarity between the fusion rep-
resentation h

(l)
Ft

and the joint representation j (ci), the candidate idiom with the
highest probability is selected as the prediction result of the model. Pseudocode
is shown as Algorithm 1.
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Algorithm 1. PRIEM
Input: Ot — Original context passage.

Pt — Definition-based passage.
C — Candidate set of idioms.

Output: S — A set of matching idioms.
1: S = ∅ .
2: for each iteration t do
3: h

(l)
Ot

= Transformer (Ot);
4: h

(l)
Pt

= Transformer (Pt);
5: Calculate h

(l)
Ft

by Equation (5);
6: for each ci in C do
7: h (ci) = Embedding (ci) , (ci ∈ C);
8: Calculate Hc by Equation (8);
9: h (c∗

i ) ← h (ci) mapping to Hc

10: Calculate u (ci) by Equation (10);
11: j (ci) = αu (ci) + βh (ci);
12: end for
13: Select ci by Equation (12);
14: S = S + ci
15: end for
16: return S

Table 2. ChID dataset statistics.

In-domain Out-of-domain Total
Train Dev Test/Ran/Sim Total Out

Passages 520,711 20,000 20,000 560711 20,096 580,807
Tokens per passage 99 99 99 99 127 100
Distinct idioms 3848 3458 3502 3848 3626 3848

4 Experiments

4.1 Experimental Setup

We use the large-scale idiom reading comprehension dataset called ChID [25]
which is divided into in-domain data and out-of-domain data. The in-domain
data contains a training set Train, a validation set Dev and a test set Test.
The out-of-domain data is test set Out. In addition, we also evaluated the gen-
eralization ability of the model on Ran and Sim. These two datasets have the
same passages as Test, but the method of constructing the candidate idioms
set is different. In Ran, there is no similarity between the candidate idioms and
the ground truth. On the contrary, in Sim, the metaphorical meanings between
the candidate idioms and the ground truth are very close. The idioms with sim-
ilar meanings in the candidate idioms set are more likely to be the interference
option, so Sim is more challenging than Ran. The detailed statistics of ChID
are shown in Table 2.
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We use a pre-trained model with whole word masking BERT-wwm [3], with
128 as the maximum length of the input passage. The initial learning rate is
5e-5, and the warm-up steps are 1000. The optimizer AdamW [13] is used based
on a Warm-up Linear Schedule. The model takes an average of 5 epochs to
accomplish the training. Our code is available online.

Table 3. Performance comparison in terms of accuracy on ChID. (PRIEM-p-o-j :
α = 0.15)

Model Dev Test Ran Sim Out

Human – 87.1 97.6 82.2 86.2
LM 71.8 71.5 80.7 65.6 61.5
AR 72.7 72.4 82.0 66.2 62.9
SAR 71.7 71.5 80.0 64.9 61.7
BERT-wwm 75.4 75.7 83.7 70.2 66.1
SKER 76.0 76.3 87.0 68.8 68.3
BTSM 81.9 81.8 92.9 74.1 72.0
CM 83.0 83.1 92.3 76.1 77.6
PRIEM-prompt 84.4 84.5 89.6 78.8 78.2
PRIEM-op 94.2 94.5 76.5 95.8 90.9
PRIEM-p-o 95.8 95.7 74.4 97.9 92.6
PRIEM-p-o-j 84.3 84.7 93.1 79.2 78.4

4.2 Experimental Results and Discussion

Methods Comparison. We compared our model with the following methods.
The first three baselines all use Bi-LSTM as their backbones. The next four
methods are all based on the BERT model. SKER, BTSM and CM are the
latest methods.

Language Model (LM): It uses Bi-LSTM [7] to obtain the hidden states of
the blanks, and uses them to select candidate Chinese idioms.

Attentive Reader (AR): This method uses Bi-LSTM with the attention
mechanism [6].

Standard Attentive Reader (SAR): An improvement on AR [2]. It uses a
bilinear function as a matching function to get the attention weights.

BERT-wwm: An upgrade on the BERT model using Whole Word Masking
(WWM) [3], masking the whole word instead of masking Chinese characters.

Synonym Knowledge Enhanced Reader (SKER): A synonym graph is
constructed using the idiom representation [12], and then the graph is encoded
to replace the original representation of the idiom.
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BERT-based Two-stage Model (BTSM): A two-stage model is to fine-tune
the idiom-oriented BERT [20] on a specific idioms dataset.

Correcting the Misuse (CM): The definitions of idioms are introduced, and
the attribute attention mechanism [1,23] is used to balance the different repre-
sentations of idioms.

PRIEM-prompt: Our model only uses the prompt method.

PRIEM-op: Our model only uses the orthogonal projection.

PRIEM-p-o: Our model uses both the prompt method and the orthogonal
projection.

Fig. 3. Representation distribution of idioms before and after orthogonal projection.
Each number represents an idiom. The three idioms circled are “风平浪静 ” (No.53,
general definition: “Life and situation are stable.”), “天下太平 ” (No.107, general defi-
nition: “The whole society is peaceful and tranquil.”) and “一帆风顺 ” (No.132, general
definition: “It went very smoothly without any hindrance.”), and their meanings are
very close. Obviously, the representations of these three idioms are very close before
the orthogonal project. But after the orthogonal, their representations are far away
from each other. Therefore, the idioms with similar meanings are easier to distinguish.

PRIEM-p-o-j: Our model uses the prompt method, the orthogonal projection,
and joint projection.

Evaluation Metric: The evaluation metric is accuracy, which is the percentage
of predicted idioms in the test set that are identical to the ground truth.

Experimental Results. The experimental results are shown in Table 3. The
results of Human, LM, AR, and SAR are taken directly from [25]. The results of
our PRIEM-p-o on Dev, Test, Sim, and Out are significantly better than those
of other models. Especially on Test, Sim, and Out, the accuracy is improved
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by 20.0%, 27.7%, and 26.5% compared with the BERT-wwm baseline method.
Instead of constructing a synonym graph to represent idioms as in SKER model,
we use the orthogonal projection to obtain distinguishable idiom representations.
Instead of simply concatenating the definitions of the idioms and the original
passages as in CM model, we construct the prompt template to introduce the def-
initions of the idioms. It can guide the model to learn the metaphorical meanings
of idioms purposefully and also consider the grammatical functions of idioms.

As shown in Table 3, our model (PRIEM-p-o) achieves the best performance
on Sim, which shows that PRIEM-p-o is good at distinguishing idioms with
similar meanings. However, PRIEM-p-o does not perform well on Ran. Because
our model pays too much attention to the individual representation of idioms
through orthogonal projection, and does not reserve enough common represen-
tation of idioms, thus resulting in insufficient semantic representation of idioms
as a whole. Therefore, we propose PRIEM-p-o-j which uses the joint projec-
tion to take into account both the original representation and the individual
representation of idioms, achieving the best performance on Ran.

Fig. 4. Performance comparison of ablation experiments.

4.3 Ablation Study

In order to further evaluate the contribution of each part in our method, four
variants of PRIEM are provided in Table 3.

The results of the ablation studies in Table 3 reveal that these three parts
are all helpful for this task. To show the effect of our PRIEM-op method on
distinguishing idioms with similar meanings, we selected 200 idiom samples. We
used the t-SNE algorithm to draw the distributions of 200 idiom representations
before and after the orthogonal projection, as shown in Fig. 3. It can be seen
that the distributions of idiom representations after orthogonal projection are
more dispersed, so the idioms with similar meanings are easier to distinguish.
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As shown in Fig. 4, PRIEM-p-o on Dev, Test, Sim and Out achieve the
best performance, which verifies that the prompt method and the orthogonal
projection are helpful to the performance of the model. And the orthogonal pro-
jection has more contribution to the performance improvement of the model. It
shows that the orthogonal projection can obtain the individual representation of
idioms, so as to effectively distinguish the idioms with similar meanings. How-
ever, these two methods are less helpful for Ran, mainly because the candidate
idioms in Ran are not similar to the ground truth idiom.

PRIEM-p-o-j achieves an accuracy of 93.1% on Ran, which is the best perfor-
mance among all methods. That is because PRIEM-p-o-j uses the joint projection
to take into account both the original representation of idioms and the individ-
ual representation of idioms. The fundamental reason that no method performs
well in all datasets is that there are huge differences in the selection strategies
of candidate idioms in the datasets. Thus, PRIEM-p-o-j is actually a dynamic
compromise of the original representation and the individual representation.

Fig. 5. Impact of the weight α of the individual representation.

4.4 Joint Projection Parameter Adjustment

Our model PRIEM-p-o performs significantly better on Dev, Test, Sim and
Out than the previous methods, but does not perform well on Ran. Thus,
We propose a joint projection method to make the model capable of taking
into account both the original representation and the individual representation
of idioms, while alleviating the imbalance of candidate idioms. The parameter
α ∈ [0, 1] is the weight of the individual representation. When α is adjusted, the
accuracy on each dataset is shown in Fig. 5.

When α ∈ (0, 0.2], the performance on the five datasets is consistent,
decreases slightly. Because the individual representation of idiom accounts for
a small proportion, the introduction of individual representation is not enough,
which will interfere with the model to make the right choice.
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When α exceeds 0.2, it is clear that the performance on Ran changes in the
opposite direction to the other four datasets. The performance on Dev, Test,
Sim, and Out is getting better, and the performance on Ran is getting worse.
This is due to the difference between Ran and other datasets. The larger α is, the
further the model learns the distinction between idioms with similar meanings.
But the idioms in Ran are not similar. Therefore, the performance on Ran is
greatly affected by the proportion of reserving their original representation, and
is the best without orthogonal projection.

5 Conclusion

In this paper, we propose a prompt-based representation individual enhancement
method for the Chinese idiom cloze task. We introduce external knowledge to
enhance the generalization of the idiom representation by fusing the context-
specific representation and the generic definition representation of the idioms. We
also use orthogonal projection to increase the distinction of the candidate idiom
representation, and use joint projection to adjust the weight of the individual
representation of idiom. Experimental results show that our model performs
state-of-the-art on different test sets of the Chinese idiom reading comprehension
dataset ChID. The ablation experiments also verify the effectiveness of three
parts of our method. The precise representation of idioms can be obtained by
our method, which is beneficial to the downstream tasks of NLP. And our method
can also be applied to the reading comprehension of English slang.
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Abstract. Event extraction aims to extract information of triggers and arguments
from texts. Recent advanced methods leverage information from other modalities
(e.g., images and videos) besides the texts to enhance event extraction. However,
the different modalities are often misaligned at the event level, negatively impact-
ing model performance. To address this issue, we firstly constructed a new multi-
modal event extraction benchmark Text Video Event Extraction (TVEE) dataset,
containing 7,598 text-video pairs. The texts are automatically extracted from
video captions, which are perfectly aligned to the video content in most cases.
Secondly, we present a Cross-modal Contrastive Learning for Event Extraction
(CoCoEE) model to extract events from multi-modal data by contrasting text-
video and event-video representations. We conduct extensive experiments on
our TVEE dataset and the current benchmark VM2E2 dataset. The results show
that our proposed model outperforms baseline methods in terms of F-score. Fur-
thermore, the proposed cross-modal contrastive learning method improves event
extraction in each single modality. The dataset and code will be released once
upon acceptance.

Keywords: Cross-modal · Event Extraction · Contrastive Learning

1 Introduction

Event Extraction (EE) aims to identify triggers and associated arguments, playing a
crucial role in downstream tasks such as timeline summarization [10,15] and text sum-
marization [2,4]. Most research focuses on the text modality of EE [6,16], and some
extract events from image and video modalities, neglecting that event extraction can
be complemented and enhanced by considering cross-modal information. Initial efforts
towards the multi-modal EE mainly considered image due to its simplicity in collect-
ing text-image pairs with related contents. Beyond the image, the video modality covers
more EE-related information. Therefore, recent research moved from the image to video
modality coupled with the text to combine multi-modal information to enhance EE.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 699–715, 2023.
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In multi-modal event information, different words and phrases in sentences can trig-
ger the same event type, whereas the events of the same type mostly occur in a similar
scene with similar entities in different videos. For example, in Fig. 1 (a), the Arrest
event is triggered by the word “arrested” in the sentence, which is different from the
word “detained” triggering the same Arrest event type. But in videos, the Arrest event
content is almost the same between Fig. 1 (a) and (b). Similarly, event types that are hard
to detect from videos may have similar sentence descriptions. Learning the event distri-
butions from the text modality can help extract these challenging video events. Hence,
cross-modal learning can enhance EE by learning the event distribution incorporated in
different modalities.

With the success of contrastive learning in cross-modal research [8,28,30], [1] pro-
posed to pre-train on videos with their auto-generated Automatic Speech Recognition
(ASR)transactionsinacontrastivelearningmannertopairtextsandvideosforeventextrac-
tion.However, current cross-modal contrastive learningmethods cannot ensure the align-
ment of the event contents across modalities. This inevitably introduces mis-alignments
of events for paired instances, negatively impacting theEEmodels.Meanwhile, they con-
structed contrastive samples equally without considering the difference in event contents
with anchor samples. This limits the learning ability of the contrastive methods on event
extraction since events composed in different contrastive samplesmayhave diverse levels
of distinction with anchor samples. For example, in Fig. 1, the difference in event con-
tents between (a) and (c) is more significant compared with (d) and (c). It is because (a)
thoroughly describes an Arrest event, which is totally different from the instance (c) that
describes theDemonstrateevent.While(d)contains theAttackevent,whichisnot thesame
as sample (c), they are similar in theDemonstrate event contents.

Fig. 1. Four samples from the proposed TVEE dataset. Every sample has a sentence labelled with
text events and a video segment with video events. Triggers are marked in bold with event types
in red colour, arguments are marked with underlines with roles in green colour, and video event
type sets are listed below videos. (Color figure online)
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To address these issues, we firstly construct a novel dataset namedTextVideoEvent
Extraction (TVEE), which is composed of pairs of sentences and videos with aligned
events, i.e., sentence and video in a pair describe the same event contents. To encode
the task-specific (i.e., EE) multi-modal representation, we present a Cross-modal
Contrastive Learning Event Extraction (CoCoEE) model with three modules: text event
extractor, video event extractor andCross-modal contrastive Learner (CoLearner). The
two event extractors deal with the extraction of event triggers and arguments from sen-
tences and the extraction of events from videos, respectively. The CoLearner contrasts
text-video and event-video representations with different sample weights by comparing
their event contents to enhance both single- and multi-modal event extraction.

In a nutshell, we summarize our contributions as follows:

– We build a benchmark dataset named TVEE. To the best of our knowledge, it is the
first dataset that pairs texts and videos using the same event descriptions to guarantee
the event content alignment. The dataset consists of 7,598 pairs annotated with 36
event types and 36 argument roles.

– We present a contrastive learning model with three modules that assigns different
weights to contrastive samples based on the occurrences of events to extract events
by contrasting cross-modal representations.

– We conduct experiments on two benchmark datasets TVEE and VM2E2 [1]. The
proposed model outperforms the state-of-the-art (SOTA) on both single- and multi-
modal EE in terms of F-score, showing the effectiveness of the proposed contrastive
method.

2 Model

We present the proposed model in Fig. 2, which contains three modules: (1) The text
event extractor is a stack of the BERT model and two Conditional Random Field
(CRF) layers for labeling the input text sequence with event types and argument roles
(Sect. 2.2). (2) The video event extractor is a Transformer-based model to extract events
from videos (Sect. 2.3). (3) The CoLearner contrasts text-video and event-video repre-
sentations by comparing event contents and assigns weights to samples condition on
the occurrences of event types (Sect. 2.4).

2.1 Task Definition

Given a pair of sentence and video (x, v), the task aims to extract events from each
modality, where events are defined as:

Text Event(s). A text event e constitutes one trigger r associated with arguments (i.e.,
entities). Every argument has an argument role for an event type, which reveals the
relation between the argument entity and the event.

Video Event(s). Considering the temporal change of entity positions, extracting argu-
ments from videos is a hard sub-task of video event extraction, so we do not extract
video arguments. Hence we denote event with event type for video modality.
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2.2 Text Event Extractor

The module takes in sentences and outputs triggers and arguments using the corre-
sponding trigger and argument extractors.

Fig. 2. An overview of the proposed CoCoEE model consisting of the text event extractor, the
video event extractor and the CoLearner. The text event extractor is composed of a text encoder
(BERT), a trigger extractor and an argument extractor, which is shown in brown. The video event
extractor performs in a sequence-to-sequence manner with an encoder and a decoder, which is
shown in purple. The CoLearner contrasts text-video and event-video representations based on
their event contents. We only show positive pairs s2 − v2, s1 − v3, Arrest− v2 (the same event),
and negative pairs s1−v2, s1−v4, Arrest−v3, Arrest−v4 (different events). Please note, s1 also
contains the Demonstrate event as v4. However, the dominant event of v4 is Attack, therefore, it
forms a negative pair to s1 with a small weight. (Color figure online)

Trigger Extractor. Given an input sentence x, we firstly feed the sentence to the BERT
model (i.e., text encoder) to produce the contextualized representation x ∈ R

n×dt ,
where dt is the embedding dimension of a token and n is the number of input tokens.
Then a CRF layer is stacked on top of the text encoder to label triggers with

Lt = − 1
N

N∑

i=1

logP(yi|xi),

where N is the size of the training set and yi is the ground truth label sequence of xi.
Argument Extractor. Given a trigger r and its event type e, we obtain the trigger
vector representation r using the span vector in x and get the representation e of event
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type e with an embedding layer. Then r and e are concatenated with the sequence
representation x. The argument entities are labeled by another CRF layer:

La = − 1
N

N∑

i=1

nE∑

j=1

logP (yi|xi; r
j
i ; e

j
i ),

where nE is the size of the ground truth event set of s. The overall loss of the text event
extraction is formulated as:

Ltext = Lt + La.

2.3 Video Event Extractor

Given a video v, the module calculates its representation and generates the video events.
Specifically, we follow [1] to extract features in terms of video-level, frame-level object
label, frame-label region and frame-level object coordinates. A concatenation of the
feature embeddings are fed to the video encoder. A Transformer encoder layer is used as
the video encoder to calculate the video representation vout. Then a Transformer-based
decoder is introduced to generate the event type sequences. The loss of the video event
extractor, which is represented as Lvideo, is calculated following [19] with a standard
teacher-forcing strategy with cross-entropy loss.

2.4 Cross-Modal Contrastive Learner

The CoLearner aims to enhance event extraction on the text and video modalities by
contrasting their event contents. Specifically, we design two loss functions to contrast
text-video and event-video representations and incorporate event contents to assign
weights to contrastive samples. To contrast representations between texts and videos,
for a sentence x, the representation of the first output token of the BERT model is used
as the global representation sg ∈ R

dt , for a video v, we use the average pooling out-
put of the representation output by the video encoder vout as its global representation
vg ∈ R

dv . dt and dv are the dimensions of the global text representation and global
video representation, respectively. Then two learnable networks ft and fv are used to
project the two representations into a shared embedding space with dimension d to get
s = ft(sg) ∈ R

d and v = fv(vg) ∈ R
d, respectively.

Contrastive Losses. Intuitively, the distance between s and v describing similar events
should be closer in the shared embedding space than the distance between s and v′

with unrelated events. Based on this intuition, a text-video contrastive loss is defined,
leveraging each other modality to enhance text and video representations by matching
texts and videos conditioned on their event contents.

To compare cross-modality event contents, considering that text triggers and video
event types are not directly comparable, we contrast their event type sets. For a sample,
its event type set is the union set of the two modalities. Specifically, for a sample, if the
similarity of its event content with the anchor sample is higher than θ, then it is positive,
otherwise negative. The method of calculating event content similarity between samples
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and the sample weight μwill be introduced in the following content. In this way, vectors
of text-video pairs describing similar event contents are pulled together, and pairs with
different event contents are pushed apart. The text-video contrastive learning loss is
defined as:

Lg(s,v) = Es′ [μt(k, l) · S(s′,v) + μt(i, l) · S(s,v) + ε]+
+Ev′ [μt(i, j) · S(s,v′) + μt(i, l) · S(s,v) + ε]+,

where i, j, k, l are the indexes of samples s, v′, s′ and v, respectively, S(·, ·) is the
cosine distance function. ε is the margin parameter that requires the distances between
anchor-positive and anchor-negative to be larger than ε.

For text event extraction, argument extraction relies on both global text representa-
tion and event representation, where global text representation is refined by Lg. Like
text-video contrastive learning, representations of an event and the video depicting it
tend to be closer than irrelevant videos. We employ event contrastive learning by match-
ing event-video pairs rather than event-text pairs because that event representation is
trained along with text event extraction, which does not need to be contrasted with text.
Specifically, for an event type e, we push apart its representation from the negative sam-
ple video representation v′ and reduce the distance from the positive sample video v. To
contrast events and videos, the method of selecting negative samples is similar to Lg:
if the similarity of the event and the event content of a video is bigger than θ, then they
are positive samples for each other, otherwise negative.

The event-video contrastive learning loss is defined as:

Le(e,v) = Ee′ [μe(e′, i) · S(e′,v) + μe(e, i) · S(e,v) + ε]+
+Ev′ [μe(e, j) · S(e,v′) + μe(e, i) · S(e,v) + ε]+,

where i,j are the indexes of the samples v and v′, respectively.
The overall loss of CoLearner is defined as:

LCoLearner =
∑

(s,v)∈D

λ1Lg(s,v) +
∑

v∈D

∑

e∈Eall

λ2Le(e,v),

where λ1 and λ2 are hyperparameters to balance weights of Lg and Le, respectively,
and D is the training set.

Sample Weight. As mentioned above, treating contrastive samples chosen based on
their event contents equally is not reasonable because different pairs of samples have
various degree of difference. To address this problem, we assign weight score to the
contrastive sample with index j by measuring the similarity between its event content
and the anchor sample with index i. The similarity of event contents between two sam-
ples is defined as:

Sim(i, j) =
|Ei ∩ Ej |

|Ei ∪ Ej | + δ
,
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where δ is a small constant used to avoid the denominator to be 0 and Ei is the event
type set of the i-th sample. For Lg, the sample weight can be presented as:

μt(i, j) = Sim(i, j) − θ.

Similarly, the similarity between an event type and the event content of the i-th
sample is defined as:

Sim(e, i) = 1 − |Ei − {e}|
|Ei| + δ

,

where Ei − {e} means Ei except event type e.
For Le, the sample weight is calculated by:

μe(e, i) = Sim(e, i) − θ.

2.5 Training and Inference

For the text event extractor, during the training phase, the trigger extractor and argument
extractor both use ground truth annotations to train the model. While in the inference
phase, the argument extractor uses the extracted event triggers and types from the trigger
extractor to predict arguments.

The two event extractor losses and CoLearner loss are jointly optimized:

L = λ3Ltext + λ4Lvideo + λ5LCoLearner,

where λ3, λ4 and λ5 are hyperparameters to balance the losses.
To reduce the gap between the training phase and inference phase, we freeze the

video encoder when contrasting video representations with event type embeddings.

3 TVEE Dataset

3.1 Data Collection

Event Schema. We follow the event schema from the ACE2005 benchmark [23],
which contains 8 superior event types and 33 event types. However, there are many
videos that cannot be covered by the current event types, so we add three more event
types, which are Contact.Speech, Disaster.Disaster and Accident.Accident.

Data Source. We collect data from the On Demand News1 channel that contains inter-
national news videos with broad coverage of event types. In addition, news from this
channel generally has multiple sentences describing events embedded as captions in the
videos. As a result, we collected 24,129 news videos and split them into frames. As
sentences are embedded in pictures as captions, we then employ an Optical Character
Recognition (OCR) tool2 to extract sentences from frames. The sentences are located

1 https://www.youtube.com/c/ondemandnews.
2 https://cloud.tencent.com/product/ocr-catalog.

https://www.youtube.com/c/ondemandnews
https://cloud.tencent.com/product/ocr-catalog
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at the bottom of the frames. Hence we cut the frames and extracted sentences from the
bottom portion. To further alleviate the OCR mistakes, we choose the longest continu-
ous frames corresponding to the same sentence as a single video segment. Then we drop
the frames without captions and video segments less than three frames. The remaining
7,598 instances are kept as our sentence-video pairs.

3.2 Data Annotation

To annotate events from texts, we follow the ACE2005 [23] to annotate triggers, event
types, entities and argument roles in a two-stage iterative manner. To save the annotation
cost, we adopt the state-of-the-art information extraction model ONEIE [13] to obtain
pseudo-event annotations from raw sentences. We annotated all event types in a specific
video segment for video annotation.

In the first annotation stage, we employed ten expert annotators to correct the pseudo
labels, supplement event annotations missed by the ONEIE model and another ten
annotators to annotate videos. In the second annotation stage, six experienced anno-
tators were invited to double-check the annotations to guarantee the annotation quality.
Then we asked four annotators to evaluate 100 samples selected at random, resulting
in inter-annotator agreements of 83.4% and 85.6% for the text and video modalities,
respectively. The statistics of TVEE are listed in Table 1.

Table 1. Statistics of TVEE. The sentence length is measured in tokens, while the video length is
measured in seconds.

Statistics Item
# Instances # Events #Average Events/Instance Average Length Max Length Min Length

Sentence 7,598 6,584 0.87 17.0 43 12

Video 7,598 5,487 0.72 6.7 7 4

4 Experiments

In this section, we describe the experimental setup in Sects. 4.1–4.4. Then we show
and analyse the main results in Sect. 4.5. To demonstrate the efficiency of the proposed
methods, we conduct ablation studies on the TVEE dataset in Sect. 4.6, which details
the contribution of the CoLearner and event type-wise benefits.

4.1 Datasets

We conduct experiments on the TVEE and VM2E2 datasets [1]:

– TVEE. The TVEE is randomly split into training, development and test sets with a
ratio of 8:1:1.
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– VM2E2. VM2E2 is a text-video dataset with 13,239 sentences and 860 videos for
multi-modal event coreference resolution and event extraction. Among them, a total
of 562 sentence-video pairs are constructed conditioning on the same event type that
shared between modalities. Each pair contains one event only. In addition, VM2E2
contains 16 multi-modal event types, which are defined from the LDC ontology. We
follow [1] to split the sentence-video pairs into training and test sets, which contain
411 and 151 samples, respectively.

4.2 Evaluation Metrics

We evaluate the model with Precision (P), Recall (R) and F-score (F1) for both single-
and multi-modal settings. For text event extraction, a trigger prediction is considered
correctly extracted if the text span and event type both match one of the ground-truth
text triggers; an argument is considered correctly extracted when the text span, argu-
ment role and event type all match one of the ground-truth text arguments [12]. For
video event extraction, an event prediction is considered correct if its event type matches
one of the ground-truth video events. For multi-modal setting, an event prediction is
considered correct if it matches one of the golden text events or ground-truth video
events (only event type).

Table 2. The results of the proposed CoCoEE on the TVEE and VM2E2 [1] test sets in compar-
ison with three SOTA methods, EEQA [5], JSL [18] and JMMT [1]. Best results are highlighted
in bold. All metrics are presented in percentages (%).

Dataset Training Model Text Evaluation Video Evaluation Multi-modal Evaluation

Trigger Argument

P R F1 P R F1 P R F1 P R F1

TVEE Text EEQA [5] 81.5 70.6 75.7 47.7 56.8 51.9 – – – 81.5 70.6 75.7

CoCoEET 76.0 76.6 76.3 62.9 44.2 51.9 – – – 76.0 76.6 76.3

Video JSL [18] – – – – – – 48.2 51.6 49.8 48.2 51.6 49.8

CoCoEEV – – – – – – 49.1 60.7 54.3 49.1 60.7 54.3

Multi-modal JMMT [1] 74.3 80.2 77.1 50.1 54.9 52.3 55.4 57.0 56.2 87.2 88.6 87.9

CoCoEE 80.7 76.4 78.5 65.6 45.4 53.6 56.4 57.4 56.9 92.9 92.9 92.9

VM2E2 Text EEQA [5] 44.3 40.1 42.1 15.2 18.6 16.7 – – – 44.3 40.1 42.1

CoCoEET 41.5 45.6 43.5 20.5 15.3 17.5 – – – 41.5 45.6 43.5

Video JSL [18] – – – – – – 21.2 18.6 19.8 21.2 18.6 19.8

CoCoEEV – – – – – – 27.3 31.2 29.1 27.3 31.2 29.1

Multi-modal JMMT [1] 39.7 56.3 46.6 17.9 24.3 20.6 32.4 37.5 34.8 76.1 69.5 72.7

CoCoEE 47.3 47.7 47.5 26.7 18.5 21.8 33.2 37.2 35.1 78.2 75.6 76.9

4.3 Compared Methods

Text Event Extraction. To compare the event extraction in the text modality, we adopt
the following two baselines, which only consider sentences in TVEE:
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– EEQA. We use the SOTA model EEQA from [5] as our baseline for text EE. To
rebuild EEQA on new event types, we follow [5] to define new event type question
templates.

– CoCoEET. This baseline is the text event extraction module of CoCoEE without
the CoLearner, i.e., it consists of a BERT encoder and two CRF decoders.

Video Event Extraction. To compare the event extraction in the video modality, we
use the following two baselines, which only consider videos in TVEE:

– JSL. We follow [1] to use a SOTA model of grounded image extraction JSL [18]
as the video event extraction baseline to extract events from key frames. For a fair
comparison, we only keep the event detection part from the JSL model.

– CoCoEEV. This baseline is the video event extraction module of CoCoEE with-
out the CoLearner, i.e., it generates event type sequences with a video encoder and
decoder.

Multi-modal Event Extraction. We compare the SOTA model of text-video event
extraction JMMT [1] with CoCoEE on both TVEE and VM2E2. When comparing the
event types from videos, we modify the JMMT model to generate sequences of event
types while argument sequences are ignored for direct comparison.

4.4 Implementation Details

We use the BERT_base model3 to produce contextualized representations. We extract
five video features following [1], including (1) 2D Video Features, (2) 3D Video Fea-
tures, (3) Object Region Features, (4) Object Label Features, (5) Object Coordinate
Features.

In our experiments, we use the encoder and decoder of the T5_base4 as the video
encoder and decoder, respectively. Event extraction losses are much higher than con-
trastive learning losses when training together. To balance losses of different modules,
we set λ1, λ2, λ3, λ4 as 1.0 and λ5 as 1000.0 to make sure that they are the same in
magnitude. All losses are jointly optimized using the Adam optimizer with a learning
rate of 0.00001. We trained models for 60 epochs on a Tesla V100 GPU about 10 h with
a batch size of 16. The parameters are searched on the validation set by selecting the
highest sum value of text trigger classification F1, text argument classification F1 and
video event classification F1.

4.5 Main Results

Table 2 presents the overall results of our model in comparison with related work
on both TVEE and VM2E2 test sets. CoCoEE outperforms related SOTA models in
extracting events in terms of F1, thus achieving the best results in both single- and
multi-modal EE.

3 https://huggingface.co/bert-base-uncased.
4 https://huggingface.co/t5-base.

https://huggingface.co/bert-base-uncased
https://huggingface.co/t5-base
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Text Evaluation. In text evaluation, although the two baselines EEQA and CoCoEET

have different performances on their precision and recall, they are almost the same
in terms of F1, where CoCoEET is a bit higher than EEQA. Compared with EEQA
and CoCoEET, our CoCoEE gains consistent improvements on F1 in terms of trigger
extraction and argument extraction on both test sets, indicating the effectiveness of the
CoLearner on text EE. Furthermore, CoCoEE outperforms JMMT on text evaluation on
both test sets for its higher precision than JMMT, which shows the superiority of our
proposed model. As JMMT integrates inputs of the two modalities that complement
each other on event information and jointly predicts events, it can produce a higher
recall than CoCoEE.

Video Evaluation. CoCoEE outperforms JSL and CoCoEEV on both TVEE and
VM2E2 datasets, showing that the CoLearner can also improve video EE. As improve-
ments, CoCoEE gains better precision and recall compared with JMMT, leading to
SOTA F1 in the video evaluation.

On VM2E2, it is similar to the results on TVEE that CoCoEE has an incremental
increase of both precision and F1 from JST, CoCoEEV and JMMT. Unlike on TVEE,
JMMT performs the best recall, which is also because of the integration of inputs of the
two modalities and the joint event prediction. Since most videos have only one event
due to their short time, the video event extraction is similar to a classification task.
Hence the recall values of CoCoEET and JMMT are almost the same.

Multi-modal Evaluation. CoCoEE outperforms all the baselines when used in the
multi-modal evaluation, illustrating the effectiveness of CoCoEE on multi-modal EE.
Performances of models, which are trained with either texts or videos, are shared in
the multi-modal setting. As our video EE focuses on event types only, the multi-modal
evaluation also only predicts event types without considering textual triggers or argu-
ments, which will cause a much higher value of precision, recall and F1 than uni-modal
results.

Fig. 3. Four examples from the TVEE dataset. The main region of events in videos are labeled by
red boxes. (Color figure online)
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4.6 Ablation Study

To better illustrate the contribution of all modules of the CoCoEE, we conduct ablation
studies with the following five settings on text evaluation and video evaluation5:

– Pair-CL. This setting selects the original pairs from TVEE as positive samples, and
the others as negative, i.e., selecting contrastive samples based on their correspond-
ing relations rather than event contents.

– -CoLeaner. This setting extracts events using single-modal modules without
CoLearner, i.e., for text evaluation, using text event extractor to label triggers and
arguments; for video evaluation, using video event extractor to generate event type
sequences.

– -Lg + µ. The text-video contrastive learning loss Lg and sample weight μ are
removed.

– -Le + µ. The event-video contrastive learning loss Le and sample weight μ are
removed.

– -µ. The sample weight μ is removed.

Table 3. The results of ablation studies on the TVEE test set. Best results are highlighted in bold.
All metrics are presented in percentages (%).

Setting Text Evaluation Video Evaluation

Trigger Argument

P R F1 P R F1 P R F1

-CoLearner 76.0 76.6 76.3 62.9 44.2 51.9 49.1 60.7 54.3

Pair-CL 75.2 78.3 76.7 61.5 45.3 52.2 48.2 60.3 53.6

-Le + µ 76.3 78.5 77.5 62.3 46.1 53.0 54.3 57.8 56.0

-Lg + µ 76.5 77.1 76.8 64.1 45.6 53.3 49.1 60.7 54.3

-µ 78.2 77.7 78.0 66.4 44.7 53.4 54.3 57.8 56.0

CoCoEE 80.7 76.4 78.5 65.6 45.4 53.6 56.4 57.4 56.9

The Pair-CL outperforms -CoLearner setting on text evaluation but underperforms
on video evaluation. The reason may be that the text semantic understanding can be
enhanced by contrasting the corresponding relations with videos [28]. However, the
performance of the video evaluation with lower inherent complexity [14] may be dam-
aged by the greater proportion of negative samples when using the pair relation to select
contrastive samples. The -μ setting outperforms -Le + μ and -Lg + μ settings on the
overall EE results, which shows that the combination of text-video and event-video
contrastive learning can benefit both trigger extraction and argument extraction for text
EE and video EE. The performance of video EE in the -Le + μ setting is same to -μ,
because when we optimize the Le loss, parameters of the video encoder are frozen.

5 Because the multi-modal evaluation only focuses on event type extraction, it can’t show the
performance of every module, we perform ablation study on text evaluation and video evalua-
tion.
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Effects of Text-video Contrastive Learning. Compared with Pair-CL and -CoLearner
settings, by contrasting samples based on event contents, the -Le + μ setting, which
exploits global representations, obtains improvement on both trigger extraction and
argument extraction on the text and video evaluation.

Table 4. F-scores of text trigger extraction on different superior event types with -CoLearner
setting and CoCoEE. Values in bold means that it is bigger than the other setting. All metrics are
presented in percentages (%).

Event Type -CoLearner CoCoEE Event Type -CoLearner CoCoEE

Business 4.0 0.0 Justice 85.4 83.3

Conflict 73.2 78.5 Contact 84.5 82.8

Personnel 66.1 60.2 Transaction 13.1 18.6

Life 92.1 95.1 Movement 74.1 80.6

Effects of Event-video Contrastive Learning. Compared with Pair-CL and -
CoLearner settings, the -Lg + μ improves text argument extraction, which shows the
effectiveness of learning event representations by contrasting with videos on text argu-
ment extraction. Meanwhile, the performance of video EE in the -Lg + μ setting is the
same to -CoLearner due to the frozen video encoder parameters.

Effects of Sample Weight. When introducing the contrastive sample weight μ,
CoCoEE increases the performances on F-scores of text EE and video EE compared
with -μ, which shows the necessity of weighing samples.

Effects of Cross-modal Contrastive Learning. As shown in Table 3, most cross-
modal contrastive learning settings outperform the single-modal setting, demonstrating
that contrasting EE across modalities has better performance than extracting events that
only considers a single modality.

Effects of CoLearner on Different Text Event Types. We compare the performance
of -CoLearner and CoCoEE settings on text event types for text evaluation, which is
shown in Table 4. The F-scores are improved with CoCoEE on four text event types,
where Movement obtains the most improvement and Personnel declines the most. By
observing videos of these event types, it turns out that it is easier to identify events by a
human from the videos corresponding to the improved event types than the declined
ones. We list two examples from TVEE in Fig. 3 (a) and (b). The crowd gathered
in (a) is the main content in the video, which indicates a Conflict.Demonstrate event
directly; however, in (b) the Business.Start-Org event can only be identified by the red
rope (in the red box) from the third picture. A intuitive description of visual events
can help improve the text representation. Otherwise, the videos will introduce noise to
the event extraction model. Therefore, we can conclude that the performance of cross-
modal enhancement on text modality largely depends on the clarity of events in videos.



712 S. Wang et al.

Table 5. F-scores of event extraction on different superior event types with -CoLearner setting and
CoCoEE. Values in bold means that it is bigger than the other setting. All metrics are presented
in percentages (%).

Event Type -CoLearner CoCoEE Event Type -CoLearner CoCoEE

Business 0.0 0.0 Justice 21.3 25.5

Conflict 25.2 28.2 Contact 70.6 65.4

Personnel 3.4 5.1 Transaction 8.3 11.2

Life 67.5 70.2 Movement 33.1 26.5

Disaster 67.3 71.3 Accident 54.1 43.2

Effects of CoLearner on Different Video Event Types. We compare the performance
of -CoLearner and CoCoEE settings on video event types for video evaluation, which
is shown in Table 5. We can see that six event types gain improvements with Justice
event type improving the most; Contact, Movement and Accident decline compared
with -CoLearner results. Similar to text event extraction, by observing data in TVEE,
we found that the improved event types always have intuitive text event descriptions in
sentences, but the declines do not. For example, in Fig. 3, videos in example (c) and (d)
describe Justice.Convict and Contact.Meet events obviously. The Justice.Convict events
are mostly mentioned in sentences with direct triggers. However, because Contact.Meet
event is not so important for text as other event types, many sentences do not mention
it directly. As a result, event types with specific triggers and intuitive event descriptions
in corresponding sentences are possible to gain improvement in video event extraction.
In contrast, contrastive learning on other event types may introduce noise to the model.

5 Related Work

5.1 Event Extraction

Most event extraction research focuses on the sentence level. Early efforts on event
extraction mainly used common convolutional neural network, recurrent neural net-
work and their variants [16,17] to tackle the extraction of triggers and arguments. With
the success of Pretrained Language Models (PLMs), Transformers-based models such
as BERT have been employed to improve the task [9,22]. In computer vision field,
event extraction is performed as Situation Recognition [18], which classifies images
with actions (visual events) and extracts frames (arguments) consisting of entities and
roles. [20] classified events and extracted frames from videos. Unlike [20] that only
extracted one event from a video, we extract all events from a specific video.

To learn better representation, [24] leveraged contrastive learning for the Automatic
Speech Recognition (ASR) of massive unlabeled data. To utilize knowledge from other
modalities, some studies introduced multi-modal data to perform multi-modal event
extraction. [29] demonstrated the effectiveness of extracting events with visually based
entity data. [21] proposed a dual recurrent multi-modal model to improve text event
detection with external news images. [11] extracted events from both text and image
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data jointly by projecting them into a common embedding space in an unsupervised
way. They also constructed a text-image multi-modal event extraction dataset called
M2E2. Most similar work to ours is [1], which proposed a Transformer-based model to
extract events from text and video data jointly. It uses a pre-trained text-video retrieval
model to retrieve the most relevant text-video pairs. Meanwhile, they released a text-
video event extraction dataset namely VM2E2 that pairs sentences and videos based
on the event type. Our work is different from [1] in mainly two aspects. Firstly, sen-
tences from our proposed TVEE dataset are embedded as cations in videos, which are
perfectly aligned to the video event contents in most cases, thus saving the sentence-
video alignment cost. Secondly, our TVEE dataset is ten times larger than the VM2E2
dataset. Thirdly, we target to enhance representations of the two modalities with con-
trastive learning for further event extraction, rather than integrating them and predicting
events jointly, hence we have a better performance on single-modality too.

5.2 Contrastive Learning

Contrastive learning methods have shown the effectiveness in representation learning
via pulling together positive samples to anchor samples and pushing apart negative
samples in the representation space [3,7]. Contrastive learning has achieved impressive
performance in many natural language processing tasks, such as question answering
[26] and information extraction [24,25]. [24] pre-trained for EE in semantic structures
by contrastive learning to learn event structures. [25] pre-trained a model which lever-
aged contrastive learning to learn triggers and arguments based on their events. How-
ever, they only focused on learning EE in the limited text modality, neglecting the rich
event information in other modalities.

Constrastive learning has also been demonstrated to perform greatly in multi-modal
tasks. [27] introduced a contrastive learning based model to not only learn inter-modal
similarities but also take intra-modal representation into account. [28] proposed a text-
video match model exploiting rich information in videos to learn better text constituents
representation for unsupervised grammar induction. However, it only focused on using
videos to enhance text representations. Meanwhile, they treated contrastive samples
equally, which dose not take the distinction of different contrastive samples pairs into
account. Different from their work, in this paper, we conduct cross-modal contrastive
learning and assign weights to contrastive sample pairs by measuring the difference
between their event contents. Moreover, event representations are also learnt by con-
trasting with videos to improve argument extraction.

6 Conclusion

In this work, we contrasted text video pairs to assist event extraction by considering
their event information. We introduced a new dataset called TVEE, which consists of
sentence-video pairs describing the same events. We will publicly release the dataset to
stimulate further research on multi-modal event extraction and other tasks. Meanwhile,
we proposed a contrastive learning based model composed of two contrastive losses and
a negative sample weighting function. Experiments on twomulti-modal event extraction
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datasets showed that our model could improve event extraction and outperformed the
baselines on this task.
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Abstract. The Winograd Schema Challenge (WSC) is a popular bench-
mark for commonsense reasoning. Each WSC instance has a component
that corresponds to the mention of the correct answer option of the two
options in the context. We observe that the answers of many instances
are insensitive to the options. In this paper, based on this observation,
we propose an approach based on fine-tuning the pre-trained language
model for WSC by distinguishing sensitive and insensitive options. First,
we split WSC instances into option-sensitive and insensitive categories,
and use option expanding and option masking strategies to weaken the
options so that the model does not pay attention to options when they
are insensitive during fine-tuning. Second, we treat the two categories as
intermediate-task of each other, and use transfer learning to improve the
performance. We fine-tune BERT-Large and T5-XXL with our approach
on WINOGRANDE, a new dataset of WSC, and the experiment shows
our method outperforms baselines by a large margin, achieving state-of-
the-art, which indicates the effectiveness of our instance-distinguishing
strategy.

Keywords: WSC · Transfer Learning · Option Weakening

1 Introduction

The Winograd Schema Challenge (WSC) is a pronoun resolution problem, intro-
duced for testing AI agents for commonsense knowledge [6]. The latest WSC
dataset WINOGRANDE (WG) [14] is a larger and more difficult variant than
the original WSC. WG is formatted as a fill-in-the-blank problem where the
blank corresponds to the mention of the correct answer option of the two options.

We observe that the answers of many WSC instances are insensitive to the
options. The insensitivity is reflected in two aspects: (1) The answer is irrelevant
to the content of the options, and changing the options to other contents, such
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as swapping each other, remains the same. (2) The answer is irrelevant to the
mention of options but depends on the location and the order in where the
options are mentioned in the sentence. Take Table 1 as an example. The first
block of Table 1 shows two option-insensitive instances and the second block
shows an option-sensitive instance.

Table 1. Examples of option-sensitive and option-insensitive instances. Option 1 is
red and option 2 is blue. The first line of each division is the original instance from
WINOGRANDE, and the second line is the new instance after swapping options.

Sentence option1/option2 answer
Option-Insensitive

Emily never had as much money to spend as
Carrie, because _ had a good job.

Emily/Carrie 2

Carrie never had as much money to spend as
Emily, because _ had a good job.

Carrie/Emily 2

The commodities trader decided to buy wool
and sell cotton because the _ was priced low.

wool/cotton 1

The commodities trader decided to buy cotton
and sell wool because the _ was priced low.

cotton/wool 1

Option-Sensitive
I picked up a bag of peanuts and raisins for a snack.
I wanted a sweeter snack out so I stored the _ for now.

peanuts/raisins 2

I picked up a bag of raisins and peanuts for a snack.
I wanted a sweeter snack out so I stored the _ for now.

raisins/peanuts 1

In this paper, based on the above observation, we divide a WSC dataset into
the option-sensitive subset and option-insensitive subset. Then we propose two
methods on the two subsets:

For the option-insensitive subset, we design two Option Weakening strate-
gies to reduce the effect of options during the answer inference process, so that
the model does not pay attention to these insensitive options when fine-tuning
the pre-trained language model. Furthermore, we regard the option-sensitive
subset and option-insensitive subset as each other’s intermediate-task and take
advantage of Intermediate-Task Transfer Learning [2,8,11] to improve the
fine-tuning effect on the pre-trained language model. See Sect. 3 for details.

We fine-tune BERT [3] and T5 [12,13] model on WG, a new dataset of WSC,
with our approach, and the experiment shows our method outperforms baselines
by a large margin, achieving state-of-the-art.

In a nutshell, our main contributions in this work are threefold:

• We observe the difference between option-sensitive and insensitive instances
of WSC and leverage intermediate-task transfer learning to joint train both
option-sensitive and option-insensitive instances.



718 D. Li et al.

• We propose a variety of option weakening strategies when training option-
insensitive instances, so the model is not or rarely pays attention to options.

• Experimental results on WG show that our approach substantially outper-
forms baselines and achieves state-of-the-art performance.

2 Related Work

There are 4 group methods that have been used to solve the WSC.
The first group approach is a rule and feature-based approach [10], the per-

formances of these approaches heavily rely on the coverage and quality of the
manually defined rules and features.

The second group approach is a knowledge-based approach. These approaches
leverage different commonsense knowledge resources such as search engines [4]
or knowledge base [16] to solve WSC questions in an explainable way.

The third group approach is a neural approach [7,9]. These approaches rely
on neural networks and deep learning, but they do not use any human-defined
features.

The fourth group approach is a language model approach. [15] are the first
to use pre-trained language models. They compute the probabilities of each
candidate for each pronoun using language models, by predicting the resolution
of the ambiguity with higher probability.

[8] propose a new multitask benchmark, RAINBOW with the six datasets,
NLI, COSMOSQA, HELLASWAG, PIQA, and SOCIALIQA, and WINO-
GRANDE. [8] summarize three Intermediate-task Transfer Learning strategies:
multitask training, sequential training, multitask fine-tuning and analyzing the
characteristics of the three methods.

[5] use the latest advances in language modeling to build a single pre-trained
QA model, UNIFIEDQA. UNIFIEDQA advocates for a unifying view of QA
formats by building a format-agnostic QA system. [5] treat WINOGRANDE as
Multiple-choice QA (MC), and use the format containing questions that come
with candidate options. We follow the same format.

3 Our Approach

We approach WSC by fine-tuning the pre-trained language model on the training
set. We observe the difference between option-sensitive and insensitive instances,
and our motivation is to distinguish them. How to distinguish whether an
instance is option-sensitive or insensitive is our first work.

We note that if both options are person names (except for names that contain
specific meanings, such as Snow White and Pinocchio), the instance is option-
insensitive, and we divide it into INS (option-insensitive), otherwise it may be
option-insensitive or may be option-sensitive. We tried some methods to distin-
guish them, but the results were not good. It is a difficult task, so we divide it
into SEN (option-sensitive) without any distinction. In the following, we give
an empirical analysis of such treatment.
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3.1 Option Weakening

For the INS subset, we design Option Weakening strategy to reduce the effect
of options during the answer inference process, so that the model does not pay
attention to these insensitive options when fine-tuning the pre-trained language
model. Option Weakening consists of two strategies: Option Masking and Option
Expanding.

Option Expanding (OE). Option Expanding constructs some pseudo instances
for an instance. The options of these instances are replaced with other words,
and the other content of the sentence and the answer remain the same. When
we fine-tune the pre-trained language model on these instances with different
options but the same context and answer, the model may be informed that the
options are unimportant and redundant. Exchange options is a simple method,
which we call Option Expanding by Exchanging.

Option Masking (OM). Option Masking constructs a new instance by masking
options with symbol1 and symbol2 for an instance. We consider three different
types of symbol1 and symbol2, which are indefinite reference symbols, anonymous
symbol and unused symbol.

Indefinite reference symbols refer to indefinite names that can refer to anyone,
such as Tom, Dick and Harry, Joe Blow and Joe Shmoe in the English tradition.

Anonymous symbols refer to those symbols that contain unknown and
anonymous semantics, such as X and Y. X represents mystery, unknown and
unsolved(e.g., Mr. X, Dr. X). Y has a similar meaning when it appears with X.
In our work, we mainly use this OM method for ablation experiments.

Unused symbols refer to unused symbols reserved in the symbol table. The
pre-trained language model has not processed these symbols in the pretraining
stage, and the semantics of these symbols are blank.

3.2 Intermediate-Task Transfer Learning

Intermediate-task transfer learning is a widely applied technique, which first
fine-tunes the pre-trained language models on an intermediate-task before the
target task of interest. After dividing a WSC dataset into the INS subset and
SEN subset, we regard them as each other’s intermediate task and improve the
fine-tuning effect on the pre-trained language model by transfer learning (Fig. 1).

Pretraining Intermediate-Task 
Fine-tuning

Target Task 
Fine-tuning

Fig. 1. Overview of Intermedia-Task Transfer Learning.
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We design four training strategies, which are Single-Task and three
intermediate-task transfer learning strategies, following [8]. These strategies are
shown below:

(1) Single-Task: independent training on INS or SEN, respectively
(2) Multitask Training: training on INS and SEN all at once. In this case,

Multitask Training is equivalent to not distinguishing between INS and SEN,
which is the baseline of our experiment below.

(3) Sequential Training: first training on INS, and then continuing to train
on the SEN alone and vice versa.

(4) Multitask Fine-tuning: first training on INS and SEN all at once through
multitask training, and then continuing to fine-tune on the INS or SEN
alone.

4 Experiments

In this work, We fine-tune BERT and T5 with our approach on WG, a new
dataset of WSC. WG dataset is split into training, development, and test sets.
The training set is available in five different sizes, XS, S, M, L, and XL. The
primary measure performance metric is the Area Under the (learning) Curve,
which is computed by accuracies for models trained on all different sizes.1 The
label of the test set is unpublished, and researchers can submit data to the Allen
AI leaderboard once a week, and the website will test and publish the accuracy
and AUC score.

4.1 Implementation Details

We use the PyTorch 1.6.0 implementation of pre-trained language model, BERT-
large and T5-XXL. To identify INS from the WG, we use the NER flair tool [1].
We set Adam optimizer with an initial learning rate of 1e−5.

Considering the training cost of BERT and T5 models, the purpose of our
experiments on BERT is to verify the effects of various strategies of our approach,
while the purpose of experiments on T5 is to further verify the conclusions on
BERT and make some comparisons and additions.

BERT. We fine-tune BERT on the training set with XL size, using the batch
size of 32, early stopping with wait step of 10, the primary measure performance
metric is accuracy. We experiment with four Option Weankening strategies. They
are Option Expanding, Option Masking with X and Y, Option Masking with
Tom and Dick, and Option Masking with token 104 and token 105. Token 104
and token 105 are two unused tokens in the vocabulary of BERT. Considering the
randomness of the neural network, to show that the improvement of our method
is statistically significant, we set 15 random seeds to repeat the experiments,
and use a p-value of less than 0.05 from pairwise t-test to indicate statistical
significance.
1 https://github.com/allenai/mosaic-leaderboard/tree/master/winogrande/

evaluator.

https://github.com/allenai/mosaic-leaderboard/tree/master/winogrande/evaluator
https://github.com/allenai/mosaic-leaderboard/tree/master/winogrande/evaluator
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Table 2. Meaning of various symbols

Symbol Mean

WG WINOGRANDE set
WGdev WG development set
WGtest WG test set
WGxl WG training set with XL size
WGtrain Combination of WGxs,s,m,l,xl

WGdev·ins the INS division of WGdev

OM Option Masking
WGm(X,Y )

xl·ins OM with X and Y on WGxl·ins

Model-A fine-tune model on A
Model-A-B fine-tune model on A and B sequentially

Table 3. Statistic of the WINOGRANDE dataset.

#INS #SEN #All #INS / #All

train_xs 100 60 160 0.63
train_s 378 262 640 0.59
train_m 1440 1118 2558 0.56
train_l 5710 4524 10234 0.56
train_xl 23424 16974 40398 0.58
dev 734 533 1267 0.58
test 1068 699 1767 0.60

T5. We fine-tune T5 on all different sizes (XS, S, M, L, XL) training set, the
primary measure performance metric is the AUC, using the batch size 24, early
stopping with wait step of 10. We fine-tune T5 on WG and experiment with
one Option Weankening strategy, Option Masking with X and Y. Considering
the training cost of T5-XXL and using the AUC as the primary measure metric,
some randomness has been eliminated, we set a random seed.

Symbols Table. Table 2 describes the meanings of the various symbols that
appear in this work.

4.2 Analysis of the Dataset

Table 3 shows the statistical data of various divisions of the WG dataset. It is
clear that in the WG training, development, and test set, the proportions of the
instances of INS are approximately 60%. It will not lead to the problem of the
different distribution of training set and test set in our subsequent work.
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Table 4. The performance on WGdev and WGtest on BERT. The first two columns
represent models trained on INS and SEN, respectively. The data in column 3 is the
accuracy on the development set. The first line of data is H0 of t-test, and the following
lines are H1. The data in column 4 is the accuracy of H1 minus H0. The * in the upper
right corner of the number indicates that there is a statistically significant difference
between H0 and H1(p-value <= 0.05).

Model Dev Test
INS SEN ACC H1-H0 Acc

Multitask Training (baseline) 66.59(0.65) H0 65.20
Single-Task + OM Multitask Training 67.27(0.55) 0.68∗

Single-Task + OM Sequential Training 67.90(0.72) 1.31∗ 66.89
Single-Task + OM Multitask Fine-tune 67.91(0.59) 1.32∗

Table 5. The performance on WGdev and WGtest on T5. The measure metric is the
AUC score in %.

Model Dev Test

T5-WGtrain (baseline) 87.91 87.63
Sequential Training + OM 89.34 88.29

4.3 Overall Results

Tables 4 and 5 show the performance of our approach on WG.
The two parts of our work, option weakening and intermediate task transfer

learning, are independent of each other. The overall effect is determined by the
effect of the two methods.

Table 4 shows some combinations of methods with a statistically significant
improvement on the baseline. Single-Task training and Option Masking on INS
and sequential training on SEN improve the accuracy by 1.31% on the develop-
ment set and 1.69% on the test set.

Table 5 shows sequential training and Option Masking improve the perfor-
mance. We raise the AUC score of baseline from 87.91% to 89.43% on the devel-
opment set, and from 87.63% to 88.29% on the test set, achieving SOTA.

4.4 Ablation Study

Option Weakening. Table 6 and Table 7 show the performance on Option Weak-
ening for BERT-Large and T5, respectively.

From the first block of Table 6, we can see that all four Option Weakening
methods are effective, and the Option Masking with Tom and Dick improves
accuracy the most, but the standard deviation of this method is indeed the
highest. From the second block, We can find no statistically significant differ-
ence between the four methods. Considering the mean, standard deviation, and
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Table 6. The performance on Option Weakening for BERT-Large. m(X,Y ) stands for
Option Masking with X and Y, m(Tom,Dick) stands for Option Masking with Tom
and Dick, m(unused1, unused2) stands for Option Masking with token 104 and 105, ee
stands for Option Expanding by Exchanging. The data in column 2 are the accuracy
on development set in %.

Model Acc H1-H0

t-test to None with OW on WGdev·ins

BERT-WGxl·ins 65.91(1.28) H0
BERT-WGm(X,Y )

xl·ins 66.79(0.78) 0.88∗

BERT-WGm(unused1,unused2)
xl·ins 66.87(0.86) 0.92∗

BERT-WGm(Tom,Dick)
xl·ins 67.18(1.04) 1.27∗

BERT-WGee
xl·ins 66.62(0.85) 0.71∗

t-test to m(X,Y) with other OW on WGdev·ins

BERT-WGm(X,Y )
xl·ins 66.79(0.78) H0

BERT-WGm(unused1,unused2)
xl·ins 66.87(0.86) 0.08

BERT-WGm(Tom,Dick)
xl·ins 67.18(1.04) 0.39

BERT-WGee
xl·ins 66.62(0.85) −0.171

t-test to None with m(X,Y) on WGdev·sen
BERT-WGxl·sen 66.09(1.80) H0
BERT-WGm(X,Y )

xl·sen 64.29(1.46) −1.80∗

training cost, we think Option Masking with X and Y is the most appropriate
Option Weakening method. So we do not use the other three Option Weakening
methods to continue our experiments.

From the last block of Table 6 and Table 7, we can see that Option Mask-
ing method harms the accuracy on WGsen, but the accuracy on WGsen is still
much higher than the random accuracy of 50%. It enlightens us that the pro-
portion of option-insensitive instances in WGsen is not low. Using empirical
estimates, the accuracy of option-sensitive instances on Model T5-WGm(X,Y )

xl·sen
is approximately equal to 50%. Considering the extreme case, the accuracy of

Table 7. The performance on Option Masking with X and Y for T5. The data in
column 2 are the AUC of accuracy fine-tuned on WGxs,s,m,l,xl. The data in column 3
are the accuracy fine-tuned on WGxl.

Model AUC ACC

T5-WGtrain·ins 88.34 93.46
T5-WGm(X,Y )

train·ins 89.56 93.74
T5-WGtrain·sen 87.05 93.06
T5-WGm(X,Y )

train·sen 78.63 82.36
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option-insensitive instances on Model T5-WGm(X,Y )
xl·sen is 100%, then the propor-

tion of option-insensitive instances shall not be less than 64.72%. If the accuracy
of option-insensitive instances on Model T5-WGm(X,Y )

xl·sen is 93.06%, the proportion
shall be 75.15%.

Table 8. The performance on WGdev·ins of Intermediate-task Transfer Learning for
BERT-Large.

Transfer Learning Acc H1-H0

Multitask Training(baseline) 66.59 H0
Single-Task Training 65.99 −0.60
Sequential Training 66.13 −0.46
Multitask Fine-tuning 67.83 1.24∗

Table 9. The performance on WGdev·ins of Intermediate-task Transfer Learning for
T5-XXl.

Transfer Learning AUC

Multitask Training (baseline) 87.90
Single-Task Training 87.80
Sequential Training 88.99

Intermediate-Task Transfer Learning. Table 8 and Table 9 show the performance
of Intermediate-task Transfer Learning for BERT-Large and T5-XXL. From
Table 8, we can see that multitask fine-tuning is significantly better than the
baseline(multitask training). From Table 9, we can see that sequential training
is effective for T5.

5 Conclusion

In this paper, we distinguish sensitive and insensitive options for the Winograd
Schema Challenge (WSC). We divide WG, a WSC dataset, into the option-
sensitive and option-insensitive subsets and propose Option Weakening and
Intermediate-task Transfer Learning strategies on the two subsets. We conduct
extensive experiments and the results illustrate the effectiveness of our proposed
strategies.

In our work, splitting SEN into Option-Insensitive and Option-Sensitive sub-
set is a difficult task. Through our experiments, we find that even conducting
Option Weakening on SEN, the accuracy is still much higher than the random
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accuracy of 50%. Combined with the data set analysis, we believe that Option-
Insensitive subset accounts for a large proportion in SEN. According to the
empirical estimation method, the proportion is more significant than 64.72%,
and with a high probability of being less than 75.15%. If we can split SEN with
high accuracy, we will get a better result. From another perspective, distinguish-
ing Option-Insensitive and Option-Sensitive in SEN is also a task that requires
common sense for reasoning and is worth investigating. In essence, our method
exploits useful features and weakens useless features. It is a method of apply-
ing feature engineering to the large-scale pre-trained language model, which is a
problem worth studying.
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ment Project of China (No. 2021ZD0110700).
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Abstract. Distant supervision (DS) has been proposed to automatically
annotate data and achieved significant success in fine-grained entity typ-
ing(FET). Despite its efficiency, distant supervision often suffers from
the noisy labeling problem. To solve the noisy labeling problem, exist-
ing approaches assume the existence of “clean” and “noisy” sets in the
training data and use different types of methods to utilize them. How-
ever, they still suffer from the confirmation bias problem in the “noisy”
set and the false positive problem in the “clean” set. To address these
issues, we propose a novel semi-supervised learning method with mixed
label smoothing and pseudo labeling for distantly supervised fine-grained
entity typing. Specifically, to solve the false positive problem on the
“clean” set, we propose a mixed label smoothing method to smooth the
labels of the “clean” set to train the FET model. To solve the confir-
mation bias problem on the “noisy” set, we do not consider the labels
in the “noisy” set and use a pseudo labeling technique to deal with the
“noisy” set. Extensive experiments conducted on three widely used FET
datasets show the effectiveness of our proposed approach. The source
code is publicly available at https://github.com/xubodhu/NFETC-SSL.

1 Introduction

Fine-grained entity typing (FET) is an essential task in natural language pro-
cessing that aims to classify an entity mentioned in a sentence into a predefined
set of fine-grained types. The extracted entity type information can be used for
many downstream applications, such as entity linking, relation extraction and
question answering. To reduce manual efforts in labeling training data, distant
supervision has been adopted to automatically annotate a large number of unla-
beled mentions in the training corpus. Specifically, an unlabeled entity mention
will be linked to an existing entity in the knowledge base, and then all possible
types of the entity will be assigned to the entity mention.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 727–736, 2023.
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Despite its efficiency, distant supervision often suffers from the noisy labeling
problem, as it assigns labels in a context-agnostic manner. To address the noisy
labeling problem on FET, from a data perspective, existing approaches assume
the existence of “clean” and “noisy” sets in the training data and use three
different types of methods to utilize them. The first is a class of supervised
methods that try to select the clean set of them to train the FET model [4,8,16].
However, these methods greatly reduce the amount of training data and do not
take full advantage of the annotated data. Some of these methods even require
additional manual annotation. The second is a class of supervised methods that
use both “clean” and “noisy” data to train the FET model. They model the
losses for “clean” and “noisy” sets separately and use partial label loss to train
the “noisy” set [9,17]. Despite making full use of the annotated data, they suffer
from the confirmation bias problem on the “noisy” set. Since they assume that
the type with the highest probability among the candidate types in the “noisy”
set is the correct type and use it as the optimization target during the training
process. The third is a class of semi-supervised methods that treat the “clean” set
as labeled data and the “noisy” set as unlabeled data to train the FET model [2].
Despite their success, the semi-supervised methods suffer from the false positive
problem on the “clean” set. Since they assume that samples whose candidate
types can form a single path in the type hierarchy are “clean”. However, the
“clean” samples are not always true, they also contain noise [16].

To address these issues, we propose a novel semi-supervised learning method
with mixed label smoothing and pseudo labeling for distantly supervised fine-
grained entity typing. We first divide the training data into “clean” and “noisy”
sets according to the previous strategy [2,9,16,17], and then propose two novel
strategies to deal with both sets, respectively. Specifically, to solve the false pos-
itive problem on the “clean” set, we propose a mixed label smoothing method,
including hierarchical label smoothing and online label smoothing methods, to
generate smoothed labels to train the FET model to mitigate the overfitting
of the model to noisy labels, while considering the hierarchical and correlation
relationships between the labels. To solve the confirmation bias problem on the
“noisy” set, we do not consider the labels in the “noisy” set and treat them
as unlabeled data. Then we a pseudo labeling technique to deal with the unla-
beled data to regularize the FET model. We demonstrate the effectiveness of
our method through the experiments. Experiment results on three public bench-
marks show that our framework has achieved state-of-the-art results.

2 Overview

2.1 Problem Definition

We follow the same setting adopted by [2,9,10,17,19]. The input is a knowledge
base Ψ with type hierarchy Y, and an automatically labeled training corpus
(samples) D obtained by distant supervision with Y. The output is a type-path
in Y for each mention in a test sentence from a corpus Dt.
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Specifically, we define Γ = {t1, t2, · · · , tK} as all candidate type-path labels,
where K is the total number of paths. Each label is a type-path from the root
node to the terminal node, and a terminal node could be either a leaf node or a
non-leaf node (e.g. /person/artist/actor and /person/artist). The training
corpus D consists of triples with form {(mi, ci,yi)}N

i=1. For each training sample,
we denote the context sentence as a word sequence ci = {w1, w2, · · · , wn}, and
entity mention mi = {wj , · · · , wk} as a continuous sub-sequence from the context
sentence. We treat samples labeled with single type path (i.e. triples (mi, ci,yi)
in D whose corresponding ||yi ||1 = 1) as “clean” set and others as “noisy” set,
where the “clean” set can be considered labeled data DL and the “noisy” set can
be considered unlabeled data DU . The main challenge of distantly supervised
entity typing systems is to exploit both the “clean” set and “noisy” set to obtain
a high-performance classifier.

2.2 Framework

Fig. 1. The overall framework of our semi-supervised learning method. Ls and Lu are
the cross-entropy loss functions on the labeled data and unlabeled data, respectively.

The framework of our semi-supervised learning method is shown in Fig. 1. We
first divide the training data into “clean” and “noisy” sets according to the
previous strategy [2,9,16,17], and treat the “clean” set as labeled data and the
“noisy” set as unlabeled data. Then we train the FET model using the labeled
data DL, while regularizing the model using the unlabeled data DU .

For training on labeled data, we propose a mixed label smoothing method to
smooth the original labels and use the smoothed labels to train the FET model to
alleviate model overfitting to noisy labels. Specifically, the mixed label smoothing
method consists of a hierarchical label smoothing(HLS) method and an online
label smoothing(OLS) method. The hierarchical label smoothing method consid-
ers the prior knowledge of the type hierarchy, while the online label smoothing
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method considers the relevance of the types. For training on unlabeled data, we
first perform two data augmentation methods to the same unlabeled sample to
generate two augmented samples and then use one of them to generate hard
pseudo labels. The model is trained on the other one to align the predictions
with the pseudo labels.

In this paper, for a fair comparison with previous works [2,10,17,19], we
adopt NFETC [17] as the FET model.

3 Method

3.1 Mixed Label Smoothing for Labeled Data

According to the observation, each sample may suffer from the noisy labeling
problem in labeled data. To solve the problem, label smoothing has been pro-
posed to mitigate the label noise. It can prevent the model from outputting
overly confident predictions and becoming less confident in both the noisy and
correct labels [6]. In this paper, we propose a mixed label smoothing method,
which consists of a hierarchical label smoothing method and an online label
smoothing method.

Hierarchical Label Smoothing. We first use hierarchical label smoothing [16]
(HLS) to generate static soft labels to smooth the original labels, since predicting
an ancestor type of the true type is better than some other unrelated types. The
process of hierarchical label smoothing can be formulated as follows:

y̌ =
1 − α − β

||y||1 · y + α · u +
β

||ŷ||1 · ŷ, (1)

where y is the original label vector, u is a uniform label distribution and ŷ is the
ancestor label vector, α and β are hyperparameters used to control the weights
of uniform label distribution u and ancestor label vector ŷ, respectively.

Online Label Smoothing. We also consider the correlation between types
and use online label smoothing [18] (OLS) to smooth the original labels. Since
predicting a related type of the true type is also better than some other unre-
lated types. In this paper, we propose a variant of online label smoothing that
filters out low-confidence predictions to generate dynamic soft labels during the
training process.

Formally, for the t-th training epoch, we initialize an all-zero asymmetric
correlation matrix St ∈ R

K×K , where K is the total number of types, and each
row St

k represents the correlation between all types and the k-th type. For each
labeled sample (mi, ci, y∗

i ), where y∗
i is the distantly supervised type, pi is the

predicted label distribution obtained by the FET model. When the sample is
correctly classified by the model and its prediction probability p(y∗

i |mi, ci) is
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greater than a predefined threshold φ, we update the row of y∗
i in St

y∗
i
, which

can be formulated as:

St
y∗
i

= St
y∗
i

+ I(p(y∗
i |mi, ci) > φ)pi (2)

At the end of t-th training epoch, we normalize the cumulative matrix St

row by row as represented by:

St
k,k′ ← St

k,k′
∑K

l=1 St
k,l

(3)

Finally, we smooth the original label vector y at the t + 1 epoch as follows:

y̆t+1 = (St)Ty (4)

Mixed Label Smoothing. Finally, we combine both the static smoothed labels
and the dynamic smoothed labels as the final smoothed labels to train the model.
The mixed label smoothing at the t-th training epoch can be represented by:

ỹt ← γy̌ + (1 − γ)y̆t, (5)

where γ is used to balance HLS and OLS. The training loss on labeled data at
the t-th training epoch can be represented by:

Lt
s = H(ỹt,p), (6)

where H is the cross-entropy loss function. It constrains the model not to be
overconfident in labels of the labeled data and avoids overfitting to noisy labels.

3.2 Pseudo Labeling for Unlabeled Data

For the “noisy” set, existing methods relabel them by selecting the type with
the highest probability from the available candidate types, which leads to the
confirmation bias problem. Therefore, in this paper, we do not consider the labels
of the “noisy” set and treat them as unlabeled data. Inspired by FixMatch [12],
we use the pseudo labeling technique to generate reliable labels for unlabeled
data to regularize the FET model.

Specifically, for an unlabeled sample x = (m, c), we first apply two data
augmentation methods to the same unlabeled sample to generate a pair of aug-
mented samples. In this paper, we use dropout [3] as the data augmentation
method, which can generate a pair of latent vectors with similar semantics
but different representations. After that, we feed the pair of augmented sam-
ples to the FET model and obtain the prediction distributions p1(y|ω(x)) and
p2(y|ω(x)), respectively. Next, we use one of them to generate a hard (one-
hot distribution) pseudo labels based on argmax operation. The FET model
is trained on the other one to align the prediction distribution with the hard
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pseudo labels. Therefore, the training loss on unlabeled data can be expressed
as:

Lu = I(max(p1(y|ω(x))) > τ)H(p̂1(y|ω(x)), p2(y|ω(x))), (7)

where H is the cross-entropy loss function and p̂1(y|ω(x)) is the hard pseudo
label of the unlabeled sample x. We use the threshold τ to control the model to
train only hard pseudo labels with high confidence for filtering out noisy labels.

3.3 Training Process

The overall training process of our semi-supervised learning method is shown in
Algorithm 1.

Algorithm 1. The Training Process Algorithm
Inputs: The labeled data DL and unlabeled data DU , hyperparameters of HLS and
OLS α, β, γ and φ, the hyperparameters of SSL τ and λ, the number of epochs E.
Output: the fine-grained entity typing model fθ.

1: Initialize parameters θ for the model fθ, training epoch t ← 1;
2: for t ← 1 to E do
3: Initialize St = 0
4: for iteration ← 1 to �N/B� do
5: Sample a batch of BL ⊂ DL and BU ⊂ DU ;
6: Generate smoothed label ỹt of BL according equation 5;
7: Output predicted probability distribution p through fθ;
8: Calculate the overall loss by equation 8 and update the parameters θ;
9: for i ← 1 to |BL| do

10: Update St through equation 2;
11: end for
12: end for
13: Normalize St according to equation 3;
14: end for

We first initialize parameters θ for the fine-grained entity typing model fθ and
the training step t (Step 1). Then we iterate for E epochs to update the param-
eter θ of the model. Specifically, for t-th epoch, we first initialize the all-zero
matrix St (Step 3). In each iteration, we take a batch of data from the labeled
data and the unlabeled data respectively (Step 5). Then we generate smoothed
labels for the batch BL of the labeled data by mixed label smoothing (Step 6).
The predicted probability distribution p can be output by feeding BL and BU

together into the fine-grained entity typing model fθ (Step 7). Our training loss
consists of Ls and Lu. We train these jointly and update the parameters θ (Step
8). The final loss function is defined as follows:

L = Ls + λLu, (8)
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where λ is a hyperparameter used to balance the two losses. Additionally, we
update St with the predicted probability distribution with high confidence
according to Eq. 2 (Step 9–11) and apply row-wise normalize the St by Eq. 3
at the end of t-th training epoch (Step 13).

4 Experiment

4.1 Datasets and Metrics

We conduct experiments on three widely used distantly supervised fine-grained
entity typing datasets, namely Wiki [5], OntoNotes [14] and BBN [13]. We use
the strict accuracy, loose macro-averaged F1 score and loose micro-averaged F1
score to evaluate the performance of the FET model, which are widely used in
many recent works [2,9,17,19].

4.2 Baselines

We compare our method NFETC-SSL with several state-of-the-art FET
methods, including AFET [9], Attentive [11], AAA [1], NDP [15], Box [7],
NFETC [17], NFETC-CLSC [2], NFETC-VAT [10] and NFETC-AR [19].

4.3 Performance Comparison

Table 1. Performance Comparison on The Three Benchmarks.

Methods Wiki OntoNotes BBN

ACC Ma-F1 Mi-F1 ACC Ma-F1 Mi-F1 ACC Ma-F1 Mi-F1

Attentive [11] 59.7 80.0 75.4 51.7 71.0 64.9 48.4 73.2 72.4

AFET [9] 53.3 69.3 66.4 55.3 71.2 64.6 68.3 74.4 74.7

AAA [1] 65.8 81.2 77.4 52.2 68.5 63.3 65.5 73.6 75.2

NDP [15] 67.7 81.8 78.0 58.0 71.2 64.8 72.7 76.4 77.7

Box [7] – 81.6 77.0 – 77.3 70.9 – 78.7 78.0

NFETC [17] 68.9 81.9 79.0 60.2 76.4 70.2 73.9 78.8 79.4

NFETC-CLSC [2] – – – 62.8 77.8 72.0 74.7 80.7 80.5

NFETC-AR [19] 70.1 83.2 80.1 64.0 78.8 73.0 76.7 81.4 81.5

NFETC-VAT [10] - - - 63.8 78.7 73.0 76.7 80.7 80.9

NFETC-SSL 71.1 84.4 80.7 64.4 79.7 74.3 77.8 82.1 82.4

We report the metrics of strict accuracy (ACC), loose macro-averaged F1 score
(Ma-F1) and loose micro-averaged F1 score (Mi-F1) on three benchmarks. Table 1
shows the overall performance. We highlight the statistically significant best scores
of each metric in bold. We find that our method achieves the new state-of-the-
art performance on three benchmarks, demonstrating that our method can indeed
effectively train the FET model. The detailed analysis is as follows.
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Firstly, compared with the basic NFETC method, our method has a sig-
nificant improvement (improving the strict accuracy on the three benchmarks
from 68.9 to 71.1 (Wiki), 60.2 to 64.4 (OntoNotes) and 73.9 to 77.8 (BBN), respec-
tively). That indicates the necessity of noise reduction in the distantly supervised
FET task and the effectiveness of our proposed method.

Secondly, compared with other NFETC-based methods, our method NFETC-
SSL performs better than NFETC-CLSC and NFETC-VAT under most met-
rics when using the same backbone and similar hyperparameters settings, indicat-
ing that our semi-supervised learning method is better than theirs. Our method
NFETC-SSL performs better than the state-of-the-art method NFETC-AR, indi-
cating that the pseudo-labels predicted by the model are not all reliable due to
they are trained with pseudo-labels of all the data and we set a threshold τ .

4.4 Ablation Study

To investigate the effectiveness of each component proposed in our framework,
we perform comparisons between the full model and its ablation methods on
OntoNotes and BBN.

Table 2. Ablation Study of Our NFETC-SSL Method on OntoNotes and BBN.

Method OntoNotes BBN

Stric-Acc Macro-F1 Micro-F1 Strict-Acc Macro-F1 Micro-F1

NFETC-SSL 64.4 79.7 74.3 77.8 82.1 82.4

w/o Lu 63.0 78.3 72.8 76.7 81.1 81.5

-w/o OLS 62.2 77.8 72.1 76.1 80.7 81.0

-w/o HLS 60.5 75.9 69.6 75.9 80.2 81.0

-w/o MLS 57.8 74.4 67.7 75.5 80.3 80.1

As shown in Table 2, NFETC-SSL benefits from the pseudo labeling mod-
ule and mixed label smoothing(MLS) module. Specifically, without the pseudo
labeling module (w/o Lu), which means removing the effect of consistency reg-
ularization, the Strict-Acc score, Macro-F1 score and Micro-F1 score drop 1.4,
1.4 and 1.5 on OntoNotes, respectively. A similar situation can also be found on
BBN. That shows that the pseudo labeling module is beneficial to the training of
our FET model.

Based on w/o Lu, we investigate the effectiveness of our mixed label smooth-
ing(MLS) module, which consists of hierarchical label smoothing and online
label smoothing. Without considering the online label smoothing (w/o OLS),
the Strict-Acc score, Macro-F1 score and Micro-F1 score drop 0.8, 0.5 and 0.7
on OntoNotes, respectively. That shows that it is reasonable to introduce OLS
to consider the correlations between types on different paths. Without consid-
ering hierarchical label smoothing (w/o HLS), the Strict-Acc score, Macro-
F1 score and Micro-F1 score drop 2.5, 2.4 and 3.2 on OntoNotes, respectively.
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This shows that it makes sense for HLS to introduce prior knowledge of the type
hierarchy. And without using the mixed label smoothing module (w/o MLS),
the Strict-Acc score, Macro-F1 score and Micro-F1 score drop 5.2, 3.9 and 5.1
on OntoNotes, respectively. That demonstrates the effectiveness of our MLS
module.

5 Conclusion

In this paper, we study the noisy labeling problem on the fine-grained entity
typing (FET) task and propose a novel semi-supervised learning method with
mixed label smoothing and pseudo labeling for distantly supervised fine-grained
entity typing. Specifically, we consider the “clean” set as labeled data and the
“noisy” set as unlabeled data. For the labeled data, we propose to use mixed
label smoothing to generate smooth labels for model training due to the false
positive problem in the labeled data. For unlabeled data, we do not consider
its original labels to avoid the confirmation bias problem. We use the model’s
predicted labels as pseudo labels and encourage the model to have low entropy on
unlabeled data, enhancing confidence in the correct label. We conduct extensive
experiments and ablation studies to demonstrate the effectiveness and robustness
of our method.
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Abstract. Few-shot learning has been used to tackle the problem of
label scarcity in text classification, of which meta-learning based methods
have shown to be effective, such as the prototypical networks (PROTO).
Despite the success of PROTO, there still exist three main problems:
(1) ignore the randomness of the sampled support sets when comput-
ing prototype vectors; (2) disregard the importance of labeled samples;
(3) construct meta-tasks in a purely random manner. In this paper, we
propose a Meta-Learning Siamese Network, namely, Meta-SN, to address
these issues. Specifically, instead of computing prototype vectors from the
sampled support sets, Meta-SN utilizes external knowledge (e.g. class
names and descriptive texts) for class labels, which is encoded as the
low-dimensional embeddings of prototype vectors. In addition, Meta-SN
presents a novel sampling strategy for constructing meta-tasks, which
gives higher sampling probabilities to hard-to-classify samples. Extensive
experiments are conducted on six benchmark datasets to show the clear
superiority of Meta-SN over other state-of-the-art models. For repro-
ducibility, all the datasets and codes are provided at https://github.
com/hccngu/Meta-SN.

Keywords: text classification · few-shot learning · meta-learning

1 Introduction

Text classification is a pivotal task in natural language processing, which aims to
predict labels or tags for textual units (e.g., sentences, queries, paragraphs and
documents). It has been widely used in various downstream applications, such as
Relation Extraction [40] and Information Retrieval [28]. With the rapid develop-
ment of deep learning, these approaches generally require massive labeled data
as training set, which is manually expensive to derive. To address the problem,
few-shot learning [39] has been proposed, which aims to train classifiers with
scarce labeled data. Previous studies [5,37,38] have shown that meta-learning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13945, pp. 737–752, 2023.
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Fig. 1. A comparison between PROTO and our method (Meta-SN) in a 3-way 2-shot
classification task. The dashed box represents the support set randomly sampled from
the training data. Left: The black dot represents the prototype vector calculated from
the support set. Since the given query instance whose true label is purple is closest
to the estimated prototype vector of the green class, PROTO misclassifies it to green.
This essentially attributes to the randomness of the sampled support sets. Middle:
The triangles represent the initialized prototype vectors computed from the external
descriptive texts of classes, which are independent to the sampled support sets. Right:
After refinement with the Siamese network, prototype vectors and samples are mapped
into a low-dimensional space, where the inter-class distance between different prototype
vectors are enlarged and the intra-class distance between samples and the corresponding
prototype vector is shortened. (Color figure online)

techniques can be effectively used in few-shot learning. In meta-learning, the goal
is to train a model based on different meta-tasks constructed from the training
set and generalize the model to classify samples in unseen classes from the test
set. Each meta-task contains a support set and a query set. Specifically, the sup-
port set is similar to the training set in traditional supervised learning but it
only contains a few samples (instances)1; the query set acts as the test set but it
can be used to compute gradients for updating model parameters in the train-
ing stage. As a representative meta-learning method, the prototypical network
(PROTO) [35] first generates a prototype vector for each class by averaging the
embeddings of samples in the support set of the class. Then it computes the
distance between a query instance in the query set and these prototype vectors.
Finally, it predicts the query instance to the class with the smallest distance.

Despite the success, there are three main problems in PROTO. First, the
true prototype vector of each class should be intuitively fixed. However, the
computation of prototype vectors could be adversely affected by the randomness
of the sampled support sets, which could lead to the incorrect prediction of
queries’ labels (see Fig. 1a). Second, when calculating prototype vectors, all the
samples in the support set are given the same weight. This fails to distinguish
the importance of samples when predicting query instances’ labels. Third, meta-
tasks are randomly constructed from the training data. This could lead to simple

1 We interchangeably use sample and instance in this paper.
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meta-tasks composed of samples that are easy to be classified, which are thus
insufficient to generalize the model.

In this paper, to address the issues, we propose a Meta-Learning Siamese
Network, namely, Meta-SN. Instead of estimating prototype vectors from the
sampled support sets, we compute these vectors by utilizing external knowledge
on the class labels (see Fig. 1b), which includes class names and related descrip-
tive texts (e.g., Wiki titles and Wiki texts) as shown in Table 1. This elimi-
nates the dependence of prototype vector estimation on the sampled support
sets and also the adverse impact of randomness. After that, we further refine
these prototype vectors with a Siamese Network. In particular, we map both
samples and prototype vectors into a low-dimensional space, where the inter-
class distance between different prototype vectors is enlarged and the intra-class
distance between samples and their corresponding prototype vectors is short-
ened (see Fig. 1c). Further, we learn the importance of a sample in the support
set based on its average distance to the query set. The closer a sample is to
the query set, the more important the sample is for label prediction, and the
larger the weight should be assigned. Finally, we adopt a novel sampling strategy
to construct meta-tasks which assigns higher sampling probability to the hard-
to-classify samples. On the one hand, the closer the distance between different
prototype vectors, the more difficult the corresponding classes can be separated.
On the other hand, the more distant a sample in the support set is to the pro-
totype vector, the more difficult the classification task will be. Therefore, we
give higher sampling probabilities to hard-to-classify tasks to help generalize
our model. The main contributions of the paper are summarized as follows:

– We propose a novel Meta-learning Siamese Network (Meta-SN) for few-
shot text classification. Instead of estimating prototype vectors from the sam-
pled support sets, Meta-SN constructs the prototype vectors with the external
descriptive information of class labels and further refines these vectors with a
Siamese network. This alleviates the adverse impact of sampling randomness.

– We present an effective sampling strategy to construct meta-tasks, which
assigns higher sampling probability to the hard-to-classify samples. This
boosts the model’s generalization ability. We further learn the importance
of a labeled sample by considering its average distance to the query set.

– We evaluate the performance of our model on six benchmark datasets, includ-
ing five text classification datasets and one relation classification dataset.
Experimental results demonstrate that Meta-SN can achieve significant per-
formance gains over other state-of-the-art methods.
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Table 1. An example for 3-way 2-shot text classification on the Huffpost dataset,
where only two support instances are given in each of the three classes. The ground-
truth label of the query instance is Class B. External knowledge on class labels includes
class names and related descriptive texts from Wikipedia, which are used to generate
prototype vectors in Meta-SN.

Support set

(A) Politics (1) Trump’s Crackdown On Immigrant Parents Puts More Kids In An Already Strained System.
(2) Ireland Votes To Repeal Abortion Amendment In Landslide Referendum.

(B) Entertainment (1) Hugh Grant Marries For The First Time At Age 57.
(2) Mike Myers Reveals He’d ‘Like To’ Do A Fourth Austin Powers Film.

(C) Sports (1) U.S. Olympic Committee Ignored Sexual Abuse Complaints Against Taekwondo Stars: Lawsuit.
(2) MLB Pitcher Punches Himself In Face Really Hard After Blowing Game.

Query instance
Which class? ‘Crazy Rich Asians’ Trailer Is Already A Magnificent Masterpiece
External knowledge (class name and related descriptive texts)
(A) Politics is the set of activities that are associated with making decisions in groups
(B) Entertainment is a form of activity that holds the attention and interest of an audience
(C) Sports pertain to any form of competitive physical activity or game

2 Related Work

The mainstream approaches for few-shot text classification are based on meta-
learning. In this section, we first introduce the background of meta-learning and
then review how to apply meta-learning in few-shot text classification.

2.1 Meta-learning

Meta-learning, also known as “learning to learn”, refers to improving the learning
ability of a model through multiple meta-tasks so that it can easily adapt to new
tasks. Existing approaches can be grouped into three main categories:

Metric-based Methods. These kinds of methods aim to learn an appropriate
distance metric to measure the distance between query samples and training
samples. The label of a query sample is then predicted as that of the training
sample with the smallest distance. The representative methods include Siamese
Network [19], Matching Network [38], PROTO [35] and Relation Network [37].
Among these models, PROTO is simple-to-implement, fast-to-train and can
achieve state-of-the-art results on several FSL tasks. Based on PROTO, our
proposed method is also a metric-based method.

Optimization-based Methods. These kinds of methods learn how to optimize.
Instead of simply using a traditional optimizer, such as stochastic gradient
descent (SGD), they train a meta-learner as an optimizer or adjust the opti-
mization process. A representative method is MAML [5], which emulates the
quick adaptation to unseen classes during the optimization process. Other
optimization-based models include Reptile [30], iMAML [31] and MetaOpt-
Net [21].
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Model-based Methods. Model-based methods learn a hidden feature space and
predict the label of a query instance in an end-to-end manner, which lacks inter-
pretability. Compared with optimization-based methods, model-based meth-
ods could be easier to optimize but less generalizable to out-of-distribution
tasks [15]. The representative model-based methods include MANNs [33], Meta
networks [29], SNAIL [26] and CPN [7].

2.2 Few-Shot Text Classification

Few-shot text classification has received great attention recently [9,34]. In par-
ticular, meta-learning has been applied to solve the problem [1,8]. For exam-
ple, DS-FSL [1] adds distributional signatures (e.g. word frequency and infor-
mation entropy) to the model within a meta-learning framework. MEDA [36]
jointly optimizes the ball generator and the meta-learner, such that the ball
generator can learn to produce augmented samples that best fit the meta-
learner. MLADA [10] integrates an adversarial domain adaptation network with
a meta-learning framework to improve the model’s adaptive ability for new tasks
and achieves the superior performance. There also exist methods that further
extend PROTO to the problem. For example, HATT-Proto [6] learns weights of
instances and features by introducing the instance-level and feature-level atten-
tion mechanism, respectively. LM-ProtoNet [4] adds a triplet loss to PROTO to
improve the model generalization ability. IncreProtoNet [32] combines the deep
neural network with PROTO to better utilize the training data. LaSAML [24]
improves performance of PROTO by incorporating label information into fea-
ture extractors. LEA [14] derives meta-level attention aspects using a new meta-
learning framework. ContrastNet [2] introduces a contrastive learning framework
to learn discriminative representations for texts from different classes. Despite
the success, all these methods disregard the randomness of the sampled support
sets when computing prototype vectors and employ a completely random con-
struction of meta-tasks. This adversely affects their wide applicability in various
real-world tasks.

3 Background

In this section, we give a formal problem definition and summarize the standard
meta-learning framework for few-shot classification [38].

Problem Definition. Given a set of labeled samples from a set of classes Ytrain,
our goal is to develop a model that learns from these training data, so that we
can make predictions over new (but related) classes, for which we only have a
few annotations. These new classes are denoted as Ytest, which satisfies Ytrain ∩
Ytest = ∅.

Meta-training. In meta-learning, we emulate the real testing scenario with meta-
tasks during meta-training, so our model can learn to quickly adapt to new
classes. To create a training meta-task, we first sample N classes from Ytrain.
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Fig. 2. The overall architecture of Meta-SN for a 3-way 2-shot problem. For details of
each step, see Sect. 4.

After that, for each of these N classes, we sample K instances as the support set
S and L instances as the query set Q. The support set is used as training data
while the query set is considered as testing data. Our model is updated based
on the loss over these testing data. Given the support set, we refer to the task
of making predictions over the query set as N -way K-shot classification.

Meta-testing. In the testing stage, we also use meta-tasks to test whether our
model can adapt quickly to new classes. To create a testing meta-task, we first
sample N new classes from Ytest. Similar as in meta-training, we then sample
the support set and the query set from the N classes, respectively. Finally, we
evaluate the average performance on the query set across all testing meta-tasks.

4 Algorithm

In this section, we describe our Meta-SN algorithm. We first give an overview of
Meta-SN, which is illustrated in Fig. 2. Meta-SN first represents each word with
a d-dimensional embedding vector (Step ①), based on which the embeddings of
samples and prototype vectors are initialized. Then it constructs meta-tasks by
giving higher sampling probability to tasks that are hard to classify (Step ②).
After that, it generates sample pairs based on the support sets and prototype
vectors (Step ③), and also assigns weights to these sample pairs (Step ④). Meta-
SN further employs a Siamese Network to map samples and prototype vectors
into a space that is much easier to be classified (Step ⑤). Finally, Meta-SN feeds
a query and all the prototype vectors into the Siamese Network (Step ⑥) to
derive their embeddings, based on which the probability of the query in each
class is calculated (Step ⑦). The overall procedure of Meta-SN is summarized in
Algorithm 2. Next, we describe each component in detail.
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4.1 Word Representation Layer

In this layer, we use pre-training models, such as fastText [16] and BERT [3],
to represent each word with a d-dimensional embedding vector. Then for each
class cj , we can construct its initial embedding vector f0(cj) by averaging the
embeddings of words contained in its descriptive texts. Similarly, we can also
derive the initial embedding vector f0(si) for a sample si.

4.2 Task Sampler

This module is used to construct meta-tasks from training data. Different from
previous works that construct meta-tasks in a completely random manner, we
assign higher sampling probability to tasks that are hard to classify. Intuitively,
the closer the distance between prototype vectors, the more difficult the corre-
sponding classes can be separated; the more distant a sample in the support set
is to the prototype vector, the more difficult the task will be. Therefore, our goal
is to construct more meta-tasks, where prototype vectors are close to each other
and samples in a class are far away from the corresponding prototype vector.

To achieve the goal, we first define a probability score pc
i,j to capture the

correlation between classes ci and cj :

pc
i,j =

e−dis(f0(ci),f0(cj))

∑|C|
k=1 e−dis(f0(ci),f0(ck))

, (1)

where |C| is the number of classes in the training set and f0(·) represents the
initial embedding vector.

After that, given a class ci, we define a probability score ps
ij to sample the

j-th instance sj in the class:

ps
i,j =

edis(f0(ci),f0(sj))

∑mi

k=1 edis(f0(ci),f0(sk))
, (2)

where mi is the number of instances in class ci.
Based on Eqs. 1 and 2, we utilize a greedy algorithm to construct meta-tasks.

We first randomly sample a class c1 in Ytrain. Then we sample the second class
c2 with the probability scores {pc

1,j}|C|
j=2. From Eq. 1, a class that is closer to c1

has a higher probability to be sampled. Next, we sample the third class c3 based
on the mean probability distribution {pc

1,j+pc
2,j

2 }|C|
j=3, which indicates that a class

with a small distance to both c1 and c2 will be more likely to be sampled. We
repeat the process to sample N classes in total. After N classes are derived, for
each class ci, we constitute the support set Si and the query set Qi by sampling
K and L instances via the probability distribution {ps

i,j}mi
j=1, respectively. From

Eq. 2, a sample that is more distant from ci has a higher sampling probability.
The pseudocode of meta-task sampling is summarized in Algorithm 1.
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Algorithm 1. Task_Sampler
Input: Training data {Xtrain, Ytrain}; N classes in a meta-task; K samples in each

class in the support set and L samples in each class in the query set.
Output: a meta-task including a support set S, a query set Q and a set Ctarget of

their label information.
1: S, Q, Ctarget ← ∅, ∅, ∅;
2: c1 = Sample(Random, Ytrain, 1); � Sample(P, Y, N) denotes selecting N elements

from Y with the probability P .
3: Ctarget ← Ctarget ∪ c1;
4: for i ∈ [2, N ] do

5: Calculate P = {
∑i−1

k=1 pc
k,j

i−1
}|C|
j=i by Equation 1.

6: ci = Sample(P, Ytrain\Ctarget, 1);
7: Ctarget ← Ctarget ∪ ci;
8: end for
9: for ci ∈ Ctarget do

10: Calculate P = {ps
i,j}mi

j=1 by Equation 2.
11: S ← S ∪ Sample(P, X ci

train, K); � X ci
train denotes samples with label ci in

Xtrain.
12: Q ← Q ∪ Sample(P, X ci

train\S, L);
13: end for
14: return S, Q, Ctarget

4.3 Constructing Sample Pairs

After meta-tasks are sampled, we next generate sample pairs. For each meta-
task, we first construct sample pairs from the prototype vector set Φ. Specifically,
we pair prototype vectors φi with φj , and denote the pair as 〈φi, φj〉. Further,
we pair each sample in the support set S with all the prototype vectors in Φ.
Specifically, we pair sample si with prototype vector φj , and denote the pair as
〈si, φj〉. If the two items in a pair are in the same class, we denote the label of
the pair as 1; otherwise, 0. For each pair, we generate its weight by the weight
generator (see Sect. 4.4).

4.4 Weight Generator

This module is used to learn weights for sample pairs. For a sample pair 〈si, φj〉,
we define the weight of the sample pair to be inversely proportional to the average
distance between si and the query set Q = {ql}L

l=1:

w〈si,φj〉 = softmax

[

− 1
L

L∑

l=1

dis(fθ(si), fθ(ql))

]

, (3)
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Algorithm 2. Meta-SN Training procedure
Input: Training data {Xtrain, Ytrain}; T meta-tasks and ep epochs; N classes in the

support set or the query set; K samples in each class in the support set and L
samples in each class in the query set; the model parameter θ.

Output: The model parameter θ after training.
1: Randomly initialize the model parameters θ;
2: for each i ∈ [1, ep] do
3: for each j ∈ [1, T ] do
4: S, Q, Ctarget ← Task_Sampler(Xtrain, Ytrain, N, K, L);
5: Construct sample pairs by S, Ctarget;
6: Calculate w by Equation 3;
7: Input sample pairs to the Siamese Network;
8: Calculate Lc by Equation 4;
9: Update θ to θ′ by Equation 5;

10: Input Q, Ctarget to the model with parameter θ′;
11: Calculate Lce by Equation 6;
12: end for
13: Update θ by Equation 7;
14: end for
15: return θ

where fθ(·) is the embedding vector of a sample generated from the Siamese
network (see Sect. 4.5). We use the Softmax function to normalize the weight
over all the samples in the support set. Further, for a sample pair 〈φi, φj〉, we
manually set its weight to a hyper-parameter α, which can be used to control
the distance between two different class prototype vectors.

4.5 Siamese Network

Siamese network contains two identical sub-networks that have the same network
architecture with shared parameters to be learned. Each sub-network consists
of a TextCNN [17] and a fully connected (FC) layer. In practice, sample pairs
are taken as the input of the Siamese network, where each sample is fed into a
sub-network.

To optimize the Siamese network, given a set of sample pairs {〈xil, xir〉}n
i=1

with a label set {yi}n
i=1, we utilize the contrastive loss function defined in Eq. 4,

which aims to enlarge the distance between two samples in zero-labeled pairs
and shortens that between two samples in one-labeled pairs.

Lc(θ)=
n∑

i=1

w〈xil,xir〉[yidis(fθ(xil), fθ(xir))

+(1 − yi)max(0, δ − dis(fθ(xil), fθ(xir)))], (4)
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Table 2. Statistics of datasets.

Dataset # tokens/example # samples # train cls # val cls # test cls

HuffPost 11 36900 20 5 16

Amazon 140 24000 10 5 9

Reuters 168 620 15 5 11

20 News 340 18820 8 5 7

RCV1 372 1420 37 10 24

FewRel 24 56000 65 5 10

Here, θ denotes the trainable parameters of the Siamese network. We also intro-
duce a margin δ. For zero-labeled pairs, they can only contribute to the loss
function if their distance is smaller than the margin. We update model parame-
ters θ with SGD:

θ′ = θ − α∇θLc(θ), (5)

where α is the learning rate. With one-step update, θ becomes θ′. Based on θ′,
the Siamese network can map query instances and prototype vectors into low-
dimensional embedding vectors. After that, we calculate the probability logits
of a query qi in class cj and feed the results into a cross-entropy function:

Lce(θ′) =
L∑

i=1

−log(
e−dis(fθ′ (qi),fθ′ (cj))

∑N
k=1 e−dis(fθ′ (qi),fθ′ (ck))

). (6)

Following the optimization strategy in MAML [5], we update θ by:

θ ← θ − β∇θ
1
T

T∑

t=1

Lce(θ′
t), (7)

where β is the meta learning rate and T represents the number of meta-tasks in
each epoch. This boosts the generalization ability of the model to unseen classes
with only one-step update. The overall procedure of Meta-SN is summarized in
Algorithm 2.

5 Experiments

In this section, we comprehensively evaluate the performance of Meta-SN. In
particular, we compare the classification accuracy of Meta-SN with seven other
methods on six benchmark datasets to show the effectiveness of our model.

5.1 Datasets

We use six benchmark datasets: HuffPost [27], Amazon [13], Reuters-21578 [22],
20 Newsgroups [20], RCV1 [23] and FewRel [11]. In particular, the first five are
for text classification while the last one is for few-shot relation classification.
Statistics of these datasets are summarized in Table 2. All processed datasets
and their splits are publicly available.
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5.2 Experiment Setup

Baselines. We compare Meta-SN with seven state-of-the-art methods,
which can be grouped into three categories: (1) metric-based methods:
PROTO [35], HATT-Proto [6] and ContrastNet [2]; (2) optimization-based meth-
ods: MAML [5]; and (3) model-based methods: Induction Networks [8], DS-
FSL [1] and MLADA [10]. Specifically, HATT-Proto extends PROTO by adding
instance-level and feature-level attention to the prototypical network. Contrast-
Net introduces a contrastive learning framework to learn discriminative repre-
sentations for texts from different classes. Induction Networks learns a class-wise
representation by leveraging the dynamic routing algorithm in the meta-learning
training procedure. DS-FSL is a model that utilizes distributional signatures of
words to extract meta-knowledge. MLADA integrates an adversarial domain
adaptation network with a meta-learning framework to improve the model’s
adaptability to new tasks.

Implementation Details. We implemented Meta-SN by PyTorch. The model
is initialized by He initialization [12] and trained by Adam [18]. We run the model
with the learning rates 0.2 for contrastive loss and 0.00002 for cross-entropy
loss on all the datasets. We apply early stopping when the validation loss fails
to improve for 20 epochs. Since ContrastNet adopts BERT as the pre-training
model for word embeddings while most other competitors like HATT-Proto,
DS-FSL and MLADA use fastText in their original papers, we implemented
both fastText-based and BERT-based2 Meta-SN for fair comparison. In Siamese
network, we follow [17] to use the 1-dimensional filter of sizes [1, 3, 5], each with
16 feature maps in CNN. We set the dimensionality of the fully connected layer
to 64 and the number of meta-tasks T in each epoch to 3. We also fine-tune α
(weight of sample pairs composed of two prototype vectors) by grid search over
{1, 3, 5, 7, 9} and set it to 5 on all the datasets. For Induction Network and DS-
FSL, we report their results from [1]. For other competitors, part of their results
are derived from the original papers; for the datasets where results are absent,
we use the original codes released by their authors and fine-tune the parameters
of the models. We run all the experiments on a single NVIDIA v100 GPU. In
our experiments, we set K to 1 in 1-shot task, 5 in 5-shot task and L to 25. We
evaluate the model performance based on 1,000 meta-tasks in meta-testing and
report the average accuracy over 5 runs.

5.3 Classification Results

We report the results of 5-way 1-shot classification and 5-way 5-shot classifica-
tion in Table 3. From the table, Meta-SN achieves the best results across all the
datasets. For example, in the fastText-based comparison, Meta-SN achieves an
average accuracy of 69.1% in 1-shot classification and 85.2% in 5-shot classifica-
tion, respectively. In particular, it outperforms the runner-up model MLADA by
2 We use the pretrained bert-base-uncased model for all datasets.
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Table 3. Mean accuracy (%) of 5-way 1-shot classification and 5-way 5-shot classifi-
cation over all the datasets. We highlight the best results in bold.

Methods HuffPost Amazon Reuters 20News RCV1 FewRel Average
1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

fastText- MAML [5] 35.9 49.3 39.6 47.1 54.6 62.9 33.8 43.7 39.0 51.1 51.7 66.9 42.4 53.5
PROTO [35] 35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 32.1 35.6 49.7 65.1 42.1 51.1
Induct [8] 38.7 49.1 34.9 41.3 59.4 67.9 28.7 33.3 33.4 38.3 50.4 56.1 40.9 47.6
Hatt-Proto [6] 41.1 56.3 59.1 76.0 73.2 86.2 44.2 55.0 43.2 64.3 77.6 90.1 56.4 71.3
DS-FSL [1] 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 54.1 75.3 67.1 83.5 60.1 78.0
MLADA [10] 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 55.3 80.7 81.1 90.8 65.3 82.8
Meta-SN 54.7 68.5 70.2 87.7 84.0 97.1 60.7 78.9 60.0 86.1 84.8 93.1 69.1 85.2

BERT- ContrastNet [2] 52.7 64.4 75.4 85.2 86.2 95.3 71.0 81.3 65.7 87.4 85.3 92.7 72.7 84.3
Meta-SN 63.1 71.3 77.5 89.1 87.9 96.7 72.1 83.2 67.3 88.9 86.8 94.6 73.6 87.3

Table 4. Ablation study: mean accuracy (%) of 5-way 1-shot classification and 5-way
5-shot classification over all the datasets. We highlight the best results in bold. All the
results are based on fastText.

Models HuffPost Amazon Reuters 20News RCV1 FewRel Average
1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

Meta-SN-rpv 46.0 61.5 62.9 80.1 75.0 89.9 52.2 70.0 52.3 79.1 76.1 85.9 60.8 77.9
Meta-SN-ew 51.4 64.9 68.4 83.3 81.1 93.4 57.9 74.4 57.7 82.5 81.7 89.3 66.4 81.3
Meta-SN-rts 52.1 66.1 69.3 84.5 81.6 95.1 60.0 76.8 58.7 84.2 79.7 88.8 66.9 82.6
Meta-SN-ln 53.8 68.0 69.6 87.1 83.3 96.0 59.8 78.0 59.5 85.4 84.3 92.6 68.4 84.5
Meta-SN 54.7 68.5 70.2 87.7 84.0 97.1 60.7 78.9 60.0 86.1 84.8 93.1 69.1 85.2

a notable 3.8% and 2.4% improvement in both cases. When compared against the
PROTO model, Meta-SN leads by 27.0% and 34.1% on average in 1-shot and 5-
shot classification, respectively. These results clearly demonstrate that our model
is very effective in improving PROTO. While Hatt-Proto upgrades PROTO by
learning the importance of labeled samples, it disregards the randomness of the
sampled support sets when computing prototype vectors and constructs meta-
tasks randomly, which degrades its performance. Further, in the BERT-based
comparison, Meta-SN also outperforms ContrastNet over all the datasets. All
these results show that Meta-SN, which generates prototype vectors from exter-
nal knowledge, learns sample weights and constructs hard-to-classify meta-tasks,
can perform reasonably well.

5.4 Ablation Study

We conduct an ablation study to understand the characteristics of the main com-
ponents of Meta-SN. One variant ignores the randomness of the sampled support
sets and directly uses the mean embedding vectors of samples in the support sets
as the prototype vectors. We call this variant Meta-SN-rpv (random prototype
vectors). To show the importance of weight learning for samples, we set equal
weights for all sample pairs and call this variant Meta-SN-ew (equal weights).
Another variant removes the task sampler and constructs meta-tasks in a com-
pletely random way. We call this variant Meta-SN-rts (random task sampler).
Moreover, to study how external knowledge affects the classification results, we
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Fig. 3. The t-SNE visualization comparison of sentence embeddings in meta-testing
on the HuffPost dataset. Note that these classes are unseen in meta-training. All the
results are based on fastText.

only extract knowledge from label names to construct prototype vectors and
call this variant Meta-SN-ln (label names). This helps to study the model
robustness towards the richness of external descriptive information. The results
of the ablation study are reported in Table 4. From the table, we observe: (1)
Meta-SN significantly outperforms Meta-SN-rpv in all the comparisons across
datasets. This shows the importance of eliminating the adverse impact induced
by the randomness of sampled support sets when calculating prototype vectors.
(2) Meta-SN also beats Meta-SN-ew clearly. For example, in 5 shot classification
task on Amazon, the accuracy of Meta-SN is 87.7% while that of Meta-SN-ew is
only 83.3%. This shows the importance of weight learning for sample pairs. (3)
Meta-SN leads Meta-SN-rts in all the 1-shot classification and 5-shot classifica-
tion tasks. This is because Meta-SN-rts constructs meta-tasks randomly while
Meta-SN focuses more on the hard-to-classify meta-tasks to boost the model
training. (4) The average performance gaps between Meta-SN-ln and Meta-SN
on both 1-shot and 5-shot classification tasks are 0.7%. This shows that the
inclusion of external descriptive texts for class labels can bring only marginal
improvement on the classification results. Although we use only class names to
derive the initial embeddings of class prototype vectors, Meta-SN can progres-
sively refine these embeddings and thus lead to superior performance.

5.5 Visualization

We next evaluate the quality of generated embeddings of Meta-SN. Specifically,
Fig. 3 uses t-SNE [25] to visualize the sentence embeddings of the query set
generated from different methods on the HuffPost dataset. For other datasets,
we observe similar results that are omitted due to the space limitation.

Figure 3(1) shows the results of AVG, which generates the sentence embed-
ding by directly averaging the embeddings of the words contained in the sen-
tence. From the figure, embeddings of sentences with different class labels are
entangled with each other. While PROTO (Fig. 3(2)) and Hat-Proto (Fig. 3(3))
can produce higher quality of sentence embeddings, it still fails to distinguish
some classes. Further, our method Meta-SN can generate embeddings that are
clearly separated on all the datasets, as shown in Fig. 3(4). These results show
the superiority of Meta-SN in generating high-quality embeddings.
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Fig. 4. Hyperparameter sensitivity study on the HuffPost dataset. Here, T is the num-
ber of meta-tasks in each training epoch, α is the weight controlling the distance
between prototype vectors, and dfc is the output embedding dimensionality of query
samples. All the results are based on fastText.

5.6 Hyper-parameter Sensitivity Analysis

We end this section with a sensitivity analysis on the hyper-parameters. In par-
ticular, we study three main hyper-parameters: the number of meta-tasks T used
in each training epoch, the weight α controlling the distance between prototype
vectors, and the output embedding dimensionality dfc of query samples. In our
experiments, we vary one hyper-parameter with others fixed. The results on
the HuffPost dataset are shown in Fig. 4. For other datasets, we observe similar
results, which are omitted due to the limited space. From the figure, we see:

(1) Meta-SN gives very stable performance over a wide range of T values. This
shows that Meta-SN is insensitive to the number of meta-tasks in meta-
training.

(2) With the increase of α, the distance between prototype vectors of different
classes is zoomed in and the performance of Meta-SN generally becomes
better. We also notice a mild dip when α is set too large. This is because a
large value of α enforces the model to focus more on enlarging the distance
between different class prototype vectors, but disregards the importance
of shortening the distance between a sample and its corresponding class
prototype vector.

(3) As the output embedding dimensionality dfc increases, Meta-SN achieves
better performance. This is because when the dimensionality is small, the
embedding vectors cannot capture enough information for classification.

6 Conclusion

In this paper, we studied the few-shot text classification problem and proposed
a meta-learning Siamese network Meta-SN. Based on PROTO, Meta-SN maps
samples and prototype vectors of different classes into a low-dimensional space,
where the inter-class distance between different prototype vectors is enlarged
and the intra-class distance between samples and their corresponding proto-
type vectors is shortened. We generated prototype vectors based on the exter-
nal descriptive texts of class labels instead of from the sampled support sets.
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We learned the importance of samples in the support set based on their dis-
tances to the query set. We also put forward a novel meta-task construction
method, which samples more hard-to-classify meta-tasks to boost training. We
conducted extensive experiments to show that Meta-SN can significantly outper-
form other competitors on six benchmark datasets w.r.t. both text classification
and relation classification tasks. Future work includes applying Meta-SN to other
fields, such as computer vision, and exploring other representative meta-learning
methods to improve their performance in few-shot text classification.
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