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Abstract. Temporal knowledge graph completion (TKGC) is an impor-
tant research task due to the incompleteness of temporal knowledge
graphs. However, existing TKGC models face the following two issues: 1)
these models cannot be directly applied to few-shot scenario where most
relations have only few quadruples and new relations will be added; 2)
these models cannot fully exploit the dynamic time and relation proper-
ties to generate discriminative embeddings of entities. In this paper, we
propose a temporal-relational matching network, namely TR-Match, for
few-shot temporal knowledge graph completion. Specifically, we design
a multi-scale time-relation attention encoder to adaptively capture local
and global information based on time and relation to tackle the dynamic
properties problem. Then, we build a new matching processor to tackle
the few-shot problem by mapping the query to few support quadruples
in a relation-agnostic manner. Finally, we construct three new datasets
for few-shot TKGC task based on benchmark datasets. Extensive exper-
imental results demonstrate the superiority of our model over the state-
of-the-art baselines.

Keywords: Temporal knowledge graph completion · Few-shot
learning · Link prediction

1 Introduction

Knowledge graphs (KGs) have proved their powerful strength in various down-
stream tasks, such as recommender system [18], information retrieval [12], con-
cept discovery [6], and question answering [25], etc. KGs represent every fact
with a triplet (s, r, o), where s, o are the subject entity and the object entity,
and r is the relation between s and o. For example, (Biden, President, USA)
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represents that Biden is the president of the USA. However, many facts are not
static but highly ephemeral. For instance, (Biden, President, USA) is true only
after (Trump, President, USA). Thus, by incorporating temporal information
into KGs, temporal knowledge graphs (TKGs) represent each fact with a quadru-
ple (s, r, o, t), where t represents a temporal constraint specifying the temporal
validity of the fact. Due to the incompleteness of TKGs, temporal knowledge
graph completion (TKGC) becomes an increasingly important research task.
The task is to infer missing facts at specific timestamps based on the existing
ones by answering queries such as (Biden, President, ?, 2022).

Most current TKGC models perform the completion task by proposing a
distance-based scoring function that incorporates the time representations. For
example, TTransE [11] modifies the distance formula of TransE [2] by adding
the temporal information, ATiSE [22] projects the representations of TKGs into
the space of multi-dimensional Gaussian distributions, TeRo [21] represents time
as a rotation in complex vector space, etc. However, these methods still do not
perform well because they all face the few-shot relations problem and dynamic
entity properties problem:

(1) Few-shot relations. Few-shot relations problem widely exists in real-
world TKGs, bringing difficulties to complete temporal knowledge graph due
to the following twofold. On the one hand, most relations in TKGs only have
a small number of quadruples. This brings difficulties for conventional TKGC
models to learn discriminative embeddings of entities, relations and timestamps
from few quadruples, because these models usually require a lot of quadruples
for training. As a result, they cannot accurately compute the distance between
embeddings for completion task. On the other hand, some new relations will
be added into TKGs consistently, so that conventional TKGC methods should
finetune to update the learned embeddings to fit new relations. Recently, some
studies, such as GMatching [19], MetaR [4], FSRL [24] and FAAN [15], have
been proposed to tackle the few-shot problem, but these methods elaborated for
static KGs cannot be applied to temporal KGs.

(a) Dynamic relation influence (b) Dynamic time influence

Fig. 1. Two examples to illustrate the influence of neighbors on the target entity varying
dynamically with the (a) relation and (b) time when completing the knowledge graph.

(2) Dynamic entity properties. Dynamic entity properties mean that
the influence of neighbors on entity varies with the time and relation
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of different completion tasks. Figure 1 illustrates two examples of dynamic
entity properties problem. Specifically, when we perform the completion task
(Biden, Make a visit, ?, 2022), the influence of entity USA on Biden is
greater than the influence of entity Jill on Biden, as shown in Fig. 1(a). This
is because the relation President shares the same work property as the rela-
tion Make a visit, while the relation Wife reflects a different family property
than the relation Make a visit. Meanwhile, as shown in Fig. 3(b), the timespan
affects the weights of different neighbors too. Despite that the entities Markel
and Putin share the same relation Call, entity Biden weights more on its neigh-
bor Putin than Markel due to the smaller timespan between Biden and Putin.
Existing few-shot KGC methods [4,15,19,24] ignore the dynamic properties of
entities, resulting in inaccurate encoding of entities. Thus, how to jointly exploit
the relation and time for TKGC remains a challenging problem.

To address the above problems, we propose a Temporal-Relational
Matching network for few-shot temporal knowledge graph completion (TR-
Match). Specifically, we firstly follow the few-shot settings [14,17] to split and
generate each task with support and query quadruples based on relation. Sec-
ondly, we propose a multi-scale time-relation attention encoder to learn the
representations of support quadruples with dynamic properties. The encoder
adaptively aggregates local neighbor information based on time and relation to
obtain quadruple representations, and interacts the representations with global
relational information among all support quadruples via a multi-head atten-
tion mechanism. Thirdly, we introduce a matching processor to deal with the
few quadruples and unseen relations existing in few-shot scenario. The proces-
sor utilizes an attention-based LSTM to generate the informative representation
of each query quadruple, and maps the query to few support quadruples in a
relation-agnostic manner to deal with new relation by ranking the similarity
between quadruples. Main contributions of this paper are summarized as follow:

– We propose a novel few-shot TKGC model, namely TR-Match, to deal with
the dynamic few-shot problem.

– In TR-Match, the multi-scale time-relation attention encoder can dynamically
encode quadruples based on the time and relation. Furthermore, the matching
processor can map the query quadruples to support quadruples in a relation-
agnostic manner to achieve few-shot TKCG task.

– We create three few-shot TKG datasets and conduct extensive experiments
to demonstrate the superiority of our model over state-of-the-art baselines.

2 Related Work

2.1 Temporal Knowledge Graph Completion Methods

Recently, many temporal knowledge graph embedding models have been pro-
posed, which encode time information in their embeddings. TTransE [11] mod-
ifies the distance formula of TransE [2] to complete the temporal knowledge
graph by adding the projection of temporal information and carrying out vector
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calculation. ATiSE [22] considers the temporal uncertainty during the evolution
of entity/relation representations over time and projects the representations of
TKGs into the space of multi-dimensional Gaussian distributions. TeRo [21] pro-
poses scoring functions which incorporate time representations into a distance-
based score function. DE-SimplE [5] uses diachronic entity embeddings to rep-
resent entities at different time steps and exploit the same score function as
SimplE [8] to score the plausibility of a quadruple. Based on ComplEx [16],
TComplEx [10] and TNTComplEx [10] analogously factorize the input TKG,
which both models represent as a 4th-order tensor. TeLM [20] performs 4th-order
tensor factorization of a TKG, using the asymmetric geometric product instead
of complex Hermitian operator. These conventional TKGC methods do not con-
sider the few-shot relations problem. Although FTMF [1] takes into account the
few-shot relations problem, it focuses on temporal knowledge graph reasoning.

2.2 Few-shot Knowledge Graph Completion Methods

Recently, few-shot knowledge graph completion has attracted more and more
research attention. GMatching [19] is the first one-shot knowledge graph com-
pletion model which consists an entity encoder to average ground aggregation
of heterogeneous neighbors and a matching processor to measure the similarity
between the support triple and the query triple. Based on GMatching, FSRL [24]
uses an attention mechanism to aggregate neighbor information and a LSTM-
based encoder to represent few-shot relations by support entity pairs. FAAN [15]
is the first to propose a dynamic attention mechanism for one-hop neighbors
adapting to the different relations which connect them. MetaR [4] focuses on
transferring relation-specific meta to represent and fast update few-shot rela-
tions. MetaP [7] extracts the patterns effectively through a convolutional pat-
tern learner and measures the validity of triples accurately by matching query
patterns with reference patterns. GANA [13] puts more emphasis on neighbor
information and accordingly proposes a gated and attentive neighbor aggregator.
However, these models developed for static knowledge graphs cannot be applied
to temporal knowledge graphs.

3 Preliminaries

In this section, we first present the notations of the temporal knowledge graph,
then introduce the few-shot learning settings of our model, and finally define the
few-shot temporal knowledge graph completion task in this work.

3.1 Temporal Knowledge Graph

Let E , R and T represent a finite set of entities, relations and timestamps,
respectively. A TKG is a collection of facts represented as a set of quadruples
G = {(s, r, o, t)} ⊆ E ×R×E ×T in which s ∈ E and o ∈ E are subject entity and
object entity respectively, r ∈ R is the relation and t ∈ T denotes the happened
time of these facts.
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Fig. 2. A few-shot learning settings example, where few-shot size is 3.

Fig. 3. A few-shot TKGC task Tconsult example.

3.2 Few-Shot Learning Settings

In this work, we classify the relations in TKG into two categories, frequent rela-
tions Rfreq and sparse relations Rsp, based on the frequency of their occurrence.
Following GMamtching [19], the quadruples with the relations in Rfreq construct
background knowledge graph G

′
to get neighbor information. Each sparse rela-

tion corresponds to a few-shot relation. Following the standard few-shot learning
settings [14,17], we consider the completion problem of quadruples with sparse
relation r ∈ Rsp as a task, so as to access a set of tasks. In our problem, each
task Tr corresponds to a sparse relation r ∈ Rsp, and has its own support/query
set: Tr = {Sr,Qr}. Each support set Sr only contains few support quadruples
{(s1, r, o1, t1), (s2, r, o2, t2), ..., (sk, r, ok, tk)}, and |Sr| = k denotes the few-shot
size. Besides, query set Qr contains all query quadruples of relation r, includ-
ing positive query quadruples Q+

r = {(si, r, o
+
i , ti)|(si, r, o

+
i , ti) ∈ G, o+i ∈ C}

and corresponding negative query quadruples Q−
r = {(si, r, o

−
i , ti)|(si, r, o

−
i , ti) /∈

G, o−
i ∈ C}. C is the candidate entity set, and the candidate entity set in this

work is composed of all entities, i.e. C = E .
Moreover, we divide all the tasks into two sets, meta-train set Tmtr and meta-

test set Tmte. Notably, the relations in Tmte does not appear in Tmtr. And we
leave out a subset of relations in Tmtr as the meta-validation set Tmtv. Figure 2
illustrates a few-shot learning settings example.
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3.3 Few-Shot Temporal Knowledge Graph Completion

In this work, our purpose is to predict the object entity o given the subject
entity, relation and timestamp: (s, r, ?, t). In contrast to previous conventional
TKGC methods that usually assume enough quadruples are available for train-
ing, this work studies the case where only few training quadruples are available.
To be more specific, the goal is to rank the true object entity higher than other
candidate entities in candidate entity set C to complete the quadruples in query
set, given only few support quadruples. Figure 3 is an example of task Tconsult.

Define �Θ(Qr|Sr) as the ranking loss of task Tr, Θ is the set of model param-
eters, the probabilistic optimization objective for this problem is given as:

L = argmax
Θ

Er∼R [�Θ(Qr|Sr)] . (1)

4 Proposed Model

In this section, we give an introduction to our model in detail. This work aims
to compute a similarity score PΘ((sq, r, oq, tq),Sr) for each query (sq, r, oq, tq)
given the support set. To achieve this purpose, we propose a completion net-
work including an encoding and matching step, as shown in Fig. 4. Specifically,
the encoding step utilizes multi-scale time-relation attention encoder to dynam-
ically encode entity and time to obtain the representations of support and query
quadruples, then the matching step uses matching processor to calculate the
similarity between support and query quadruples for TKGC.

4.1 Multi-scale Time-Relation Attention Encoder

As shown in Fig. 4, multi-scale time-relation attention encoder is designed to
obtain the temporal-relational representations of support and query quadruples.
In this module, we design an adaptive neighbor aggregator and utilize a multi-
head attention to capture the local and global information in TKGs, respectively.

Adaptive Neighbor Aggregator. The influence of neighbors on one entity
keeps changing based on the relevance of relation and the length of timespan.
The neighbor with similar relation and smaller timespan put a higher weight
on certain entity. However, existing few-shot KGC methods [15,19,24] cannot
simultaneously consider the relation and timespan to obtain discriminative entity
representations.

To tackle the above issue, we design a time-relation attention mechanism to
dynamically assign neighbor weights. For every entity e, our model constructs
the neighbors of e, i.e., Ne = {(e′

i, r
′
i, t

′
i)|, (e, r

′
i, e

′
i, t

′
i) ∈ G

′}, by searching for the
quadruples in background knowledge graph G

′
whose subject entity is e. e

′
i is

the object entity which is regarded as a neighbor of e, r
′
i is the relation between
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Fig. 4. The framework of TR-Match: it first obtains representations of the support
and query quadruples by multi-scale time-relation attention encoder, then captures
the similarity score between support and query quadruples by matching processor.

e and e
′
i, and t

′
i is the time of fact (e, r

′
i, e

′
i). Then, the weight αi of the neighbor

e
′
i on entity e can be calculated as follows:

αi =
exp

((
v�

r W1vr
′
i

)
× 〈Φ(t), Φ(t′

i)〉
)

∑
(e

′
j ,r

′
j ,t

′
j)∈Ne

exp
((

v�
r W1vr

′
j

)
× 〈Φ(t), Φ(t′

j)〉
) . (2)

It can be seen from Eq. (2) that we assign the weight αi by jointly considering
the relevance of different relations and the length of timespan. Specifically, the
relevance of different relations can be calculated through vT

r W1vr
′
i
. vr denotes

the embedding of current task relation r, which can be randomly initialized as a
d-dimension vector, i.e. vr ∈ R

d. W1 ∈ R
d×d is a learnable parameter which is

the similarity matrix to calculate the relevance between relations. The length of
timespan can be measured via the inner product of paired time encoding, i.e.,
〈Φ(t), Φ(t′

i)〉. To ensure that the neighbors with smaller timespan have relatively
higher weights, we refer to [23] to encode the time t as follows,

Φ(t) =

√
1
d
[cos (ω1t) , sin (ω1t) , . . . , cos (ωdt) , sin (ωdt)] , (3)

where {ω1, ω2, ..., ωd} is a set of learnable parameters. With this encoding func-
tion, the neighbors with smaller timespan can receive higher weights on time
factor, i.e., if |t − t

′
i| < |t − t

′
j |, then 〈Φ(t), Φ(t′

i)〉 > 〈Φ(t), Φ(t′
j)〉.
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Having obtained the weights of neighbors, we can learn entity e’s represen-
tation by adaptively aggregating neighbor information and its own information.

he = σ(W2

∑

(e
′
i,r

′
i ,t

′
i)∈Ne

αive
′
i
+W3ve), (4)

where he denotes e’s entity representation obtained from the adaptive neighbor
aggregator. ve is the embedding of entity e, which can be randomly initialized
as a d-dimension vector, i.e. ve ∈ R

d. σ(·) denotes activation function of Relu.
W2,W3 ∈ R

d×d are trade-off parameters learned by MLP, which balance the
importance between neighbor information and entity itself information.

Multi-head Attention for Support Set. The entity representations obtained
above consider only local neighbor information, but ignore global relational infor-
mation in support set. Due to this, we use a multi-head attention module to
generate informative representations of support set by refining the relational
information of support set. We use the combination of the entity pair represen-
tations and time embedding as the input Ur of multi-head attention to better
capture the temporal dependence between support quadruples:

ur
i = (hsi

‖hoi
) + Φ(ti), Ur = [ur

1,u
r
2, ...,u

r
k], (5)

where ur
i is the initial representation of support quadruple (si, r, oi, ti). hsi

and hoi
are the representations of entities si and oi, respectively, obtained by

the adaptive neighbor aggregator. ‖ denotes concatenation operation to gather
paired representations hsi

and hoi
. Moreover, we take the time embedding Φ(ti)

as positional encoding to capture the temporal dependence of support quadru-
ples. After that, we can obtain the support quadruple representations via the
following multi-head attention layer,

headi = softmax
(
QiK�

i√
2d

)
Vi (6)

Zr = [head1, ..., headN ]WO (7)

where Zr = [zr
1, z

r
2, ..., z

r
k] ∈ R

k×2d is the support quadruple representations.
WO ∈ R

2Nd×2d is parameter matrix and N is the number of heads. Qi =
UrW

Q
i , Ki = UrWK

i , Vi = UrWV
i are the ‘queries’, ‘keys’ and ‘values’ of the

ith head attention. WQ
i ,WK

i ,WV
i ∈ R

2d×2d are the projection matrices of the
ith head attention. The multi-head attention mechanism fully interacts with the
global relational information of the support set.

4.2 Matching Processor

Conventional TKGC models are mainly encountered with two issues: (1)They
require a large number of quadruples to train usually learn poor embeddings
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under few-shot scenario that most relations only have a few quadruples. (2)They
should be finetuned to adapt newly added relations since the learned embeddings
are unavailable to update after training. To this end, we propose a matching
processor that includes an embedding step and a matching step to address the
poor embeddings and new relation problems, respectively.

In the embedding step, we choose LSTM to improve the quality of query
embedding because LSTM can selectively capture the feature impact of support
set on query [17]. Moreover, we argue that different support quadruples have dif-
ferent weights for a query because of the semantic divergence existing in support
quadruples. Therefore, we design an Att module based on attention mechanism
to dynamically aggregate support quadruples. Finally, we combine LSTM and
Att module to generate informative representation hi of query quadruple as
follows:

hi = ĥi + qr, ĥi, ci = LSTM(qr, pi−1, ci−1) , (8)

where LSTM(·) is a standard LSTM cell with input qr, hidden state pi−1 and
cell state ci−1, and qr = (hsq

‖hoq
) + Φ(tq) is the initial representation of query

(sq, r, oq, tq). The hidden state pi−1 regarded as a hidden representation of query
(sq, r, oq, tq) can be calculated via the Att module as follows:

pi−1 = hi−1 +
∑

zr
j∈Zr

βjzr
j , (9)

βj =
exp(h�

i−1z
r
j)∑

zr
m∈Zr

exp(h�
i−1zr

m)
, (10)

where βj is the weight of support quadruple (sj , r, oj , tj) and zr
j is the repre-

sentation of support quadruple (sj , r, oj , tj) obtained by Eq. (7). After l layer
LSTM, we can obtain the representation hl of query (sq, r, oq, tq).

In the matching step, our goal is to rank the query quadruples to find the best
candidate object entity with respect to a certain relation, so as to complete the
missing quadruples. Considering that the new relation will be added to TKGs,
it is not suitable to complete quadruples by calculating the distance between
subject entity, relation and object entity. This is because new relation unseen in
the training process cannot be presented in testing process without finetuning.
To address this, we aim to directly achieve the completion task in an end-to-
end network via a relation-agnostic matching. Specifically, we rank the query
quadruples via the similarity score between query and support set which can be
defined as the sum of inner product between quadruple representations:

Score(qr,Zr) =
∑

zr
j∈Zr

h�
l z

r
j , (11)

where hl and zr
j are query and support quadruple representations, respectively.

It is worth noting that, the representations of query quadruples learned from
Eq. (8) do not embed relation directly, meaning that each query representation
is relation-agnostic. Thus, we match the quadruples only based on the similarity
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of entities and timespans between query and support quadruples. As a result,
given a new relation, our matching process can find the best candidate object
entity by selecting a query quadruple similar to support quadruples with new
relation.

4.3 Loss Function and Training

We train the model on meta-training task set Tmtr. We encourage high similarity
scores for positive pairs and low similarity scores for negative pairs. The objective
function is a hinge loss defined as follow:

L =
R∑
r

∑

q+
r ∈Q+

r ,q−
r ∈Q−

r

[
λ + Score(q−

r ,Zr) − Score(q+
r ,Zr)

]
+

, (12)

where [x]+ = max(0, x) is standard hinge loss, and λ is a hyperparameter rep-
resents safety margin distance. The detail of the training process is shown in
Algorithm 1.

Algorithm 1: TR-Match Training

Input: Meta-training task set Tmtr; background knowledge graph G
′
; randomly

initial TKG embeddings; initial model parameters Θ.
1 for epoch=0:M-1 do
2 Shuffle the tasks in Tmtr;
3 for Tr in Tmtr do
4 Sample k quadruples as support set Sr;
5 Sample a batch of positive query quadruples Q+

r ;
6 Pollute the object entity in Q+

r to get Q−
r ;

7 Obtain the representations of entities in Sr, Q+
r and Q−

r by Eq. (2)-(4);
8 Obtain the representations of support quadruples in Sr by Eq. (5)-(7);
9 Calculate the matching score for query in Q+

r and Q−
r by Eq. (8)-(11);

10 Calculate the batch loss L of task Tr by Eq. (12);
11 Update parameters Θ by Adam optimizer;
12 end
13 end
14 return Optimal model parameters Θ

5 Experiments

In this section, we begin with an introduction about how to construct datasets
for few-shot settings. Then, we provide an overview of baselines and implement
details. Finally, we conduct a series of experiments and provide an analysis of
the experimental results.
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Table 1. Dataset details of ICEWS14-few, ICEWS05-15-few and ICEWS18-few. |E|,
|T | and |Rsp| are the number of the entities, timestamps, and sparse relations, respec-
tively. #Tasks is the number of tasks of Tmtr/Tmtv/ Tmte. #Frequency is the frequency
interval of sparse relations Rsp.

Dataset |E| |T | |Rsp| #Tasks #Frequency

ICEWS14-few 7121 365 114 92/11/11 (10,200)
ICEWS05-15-few 10471 4017 99 81/9/9 (50,500)
ICEWS18-few 24572 365 99 81/9/9 (50,500)

5.1 Datasets

Since conventional temporal knowledge graph datasets, such as ICEWS14,
ICEW S05-15 and ICEWS18 [3], are not suitable for few-shot settings, we con-
struct three new datasets ICEWS14-few, ICEWS05-15-few and ICEWS18-few
based on conventional datasets for few-shot TKGC. The details of each dataset
are illustrated in Table 1. Following GMatching [19], we construct each dataset
by selecting appropriate number of sparse relations based on the size of corre-
sponding conventional dataset as follows:

ICEWS14-few. To construct ICEWS14-few dataset, we select the relations
with number less than 200 but greater than 10 quadruples as sparse relations
Rsp, and the relations with number more than 200 are considered as frequent
relations Rfreq from ICEWS14 dataset. Then, we use 92/11/11 task relations
for Tmtr/Tmtv/ Tmte.

ICEWS05-15-few. To construct ICEWS05-15-few dataset, we select the
relations with less than 500 but more than 50 quadruples as the sparse relations
Rsp from ICEWS05-15 dataset, and the relations in greater than 500 as frequent
relations Rfreq from ICEWS05-15 dataset. Then, we use 81/9/9 task relations
for Tmtr/Tmtv/ Tmte.

ICEWS18-few. ICEWS18-few dataset is constructed in the same way as
ICEWS05-15-few. The frequency interval of Rsp and Rfreq in ICEWS18-few
is the same as ICEWS05-15-few. We use 81/9/9 task relations for Tmtr/Tmtv/
Tmte.

5.2 Baselines

Since there is no few-shot TKGC model focusing on the completion task for
comparison, we select two kinds of baseline models for comparison in this exper-
iment: few-shot KGC models and conventional TKGC models. (1) As for few-
shot KGC models, we adopt the following state-of-the-art models as baselines:
GMatching [19], MetaR [4], FSRL [24] and FAAN [15]. Since all few-shot KGC
models are static and cannot be generalized into dynamic scenario, we provide
these models with all the quadruples in the original datasets and neglect time
information, i.e., neglecting t in (s, r, o, t). (2) As for conventional TKGC models,
we adopt the following state-of-the-art models for comparison: DE-SimpIE [5],
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TNTComplEx [10], ATISE [22], TeRo [21] and TeLM [20]. Following GMatch-
ing, when evaluating these conventional TKGC models, we use the quadruples
in background knowledge graph G

′
, the quadruples in Tmtr and the quadruples

in support set of Tmtv and Tmte as the train set.

5.3 Implementation

In our model, all entities and relations embeddings are initialized randomly with
dimension of 100. The few-shot size k is set to 3 for the following experiments. We
select the best hyperparameters that can achieve the highest MRR in validation
set. The maximum number of local neighbors in adaptive neighbor aggregator
is set to 50 for all datasets. In addition, we use LSTM in matching proces-
sor, the dimension of hidden state is 200 in our experiments. The number of
layers of LSTM is set to 4 for ICEWS14-few and ICEWS05-15-few, and 5 for
ICEWS18-few. The margin distance λ is set to 10. We implement all experiments
with PyTorch and use Adam optimizer [9] to optimize model parameters with a
learning rate of 0.001.

For models Gmatching, MateR, FSRL and FAAN, the few-shot size k is
the same as our model, and the other parameters use the optimal parameters
from the original papers. For models DE-SimpIE, TNTComplEx, ATiSE, TeRo,
TeLM, we refer to the best hyperparameter settings of baseline methods reported
in their original papers. We report two standard evaluation metrics: MRR and
Hit@N. MRR is the mean reciprocal rank and Hits@N is the proportion of correct
entities ranked in the top N, with N = 1,5,10.

5.4 Performance Comparison

Experimental Comparison with Baselines. We compare TR-Match with
nine baselines on ICEWS14-few, ICEWS05-15-few and ICEWS18-few datasets,
respectively, to evaluate the effectiveness of TR-Match. The performances of all
models are reported in Table 2, where the best results are highlighted in bold,
and the best performance of the two kinds of baselines on different datasets
is underlined. It can be seen that our model outperforms all the baselines by
achieving a higher MRR and Hits@1/5/10.

Compared to the few-shot KGC baselines, TR-Match consistently outper-
forms the best few-shot KGC baseline, i.e., FSRL, by achieving 3.0/13.4/18.1%
improvement of MRR metric on ICEWS14-few/ICEWS05-15-few/ICEWS18-few
datasets, respectively. This is because, compared to few-shot KGC models ignor-
ing the temporal information, TR-Match can jointly and adaptively take the
relation and time into consideration to aggregate local information, resulting in
more accurate entity representations. Moreover, few-shot KGC models assume
that different support quadruples are of equivalent importance to each query,
while TR-Match can adaptively assign weights to support quadruples via match-
ing process to capture the discriminative information.

Compared to the conventional TKGC baselines, TR-Match achieves signif-
icant improvements over the best results of conventional TKGC baselines by
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Table 2. The overall results of all methods. The best results are highlighted in bold, and the best
performance of the two kinds of baseline are marked as underline.

Model ICEWS14-few ICEWS05-15-few ICEWS18-few
MRR H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

GMatching [19] .213 .132 .286 .381 .222 .118 .318 .438 .184 .097 .269 .364
MetaR [4] .224 .104 .352 .444 .215 .074 .333 .455 .132 .031 .240 .334
FSRL [24] .306 .205 .403 .490 .246 .149 .363 .467 .199 .113 .287 .376
FAAN [15] .241 .147 .343 .418 .200 .109 .291 .394 .155 .111 .177 .264
DE-SimpIE [5] .265 .163 .364 .464 .208 .124 .278 .382 .192 .109 .263 .371
TNTComplEx [10] .218 .130 .317 .402 .097 .045 .138 .199 .138 .070 .195 .283
ATiSE [22] .259 .153 .377 .479 .179 .087 .271 .378 .097 .049 .142 .196
TeRo [21] .236 .131 .355 .469 .187 .086 .292 .408 .165 .087 .240 .336
TeLM [20] .270 .166 .364 .481 .198 .108 .282 .383 .203 .115 .280 .385
TR-Match(Ours) .315 .220 .431 .529 .279 .176 .385 .497 .235 .150 .324 .408

Fig. 5. The MMR of TR-Math and FSRL for each relation on ICEWS14-few and
ICEWS05-15-few.

obtaining 16.7/34.13/15.8% gains of MRR metric on ICEWS14-few/ICEWS05-
15-few/ICEWS18-few datasets, respectively. This is because conventional TKGC
models requiring large-scale training data fail to achieve satisfying performance
on such three datasets with few-shot relations. By contrast, our model is power-
ful to handle few-shot data by calculating the similarity between quadruples in
matching processor.

Comparison over Different Relations. To demonstrate the superiority of
our model in more detail, we set up comparative experiments on ICEWS14-few
and ICEWS05-15-few with different relations. In this experiment, we compare
our proposed TR-Match with the best few-shot static KGC baseline FSRL. The
experimental results are shown in Fig. 5, where Relation ID represents a class of
relation. On ICEWS14-few, our TR-Match outperforms FSRL in MRR metric
with 8 out of 11 relations. On ICEWS05-15-few, our TR-Match outperforms
FSRL in MRR metric with 8 out of 9 relations. Experimental results indicate that
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Table 3. The results of ablation experiment.

Model ICEWS14-few ICEWS05-15-few ICEWS18-few
MRR H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

TR-Match(v1) .291 .197 .394 .497 .245 .135 .369 .483 .208 .129 .286 .362
TR-Match(v2) .197 .104 .315 .373 .241 .145 .339 .434 .166 .102 .225 .304
TR-Match(v3) .297 .203 .401 .488 .261 .152 .379 .486 .193 .114 .273 .363
TR-Match(Ours) .315 .220 .431 .529 .279 .176 .385 .497 .235 .150 .324 .408

Fig. 6. Impact of few-shot size on ICEWS14-few and ICEWS05-15-few.

TR-Match is more powerful to learn discriminative quadruple representations by
taking the advantage of time encoding in both encoding step and matching step.

5.5 Ablation Study

We perform experiments on all the datasets with several variants of our proposed
model to provide a better understanding of the contribution of each module to
our proposed model. The ablative results are shown in Table 3. In TR-Match(v1),
we use the neighbor encoder proposed by GMatching [19] instead of our proposed
adaptive neighbor aggregator to encode entities. Experiments demonstrate that
dynamically aggregating neighbors based on relation and time can improve the
model performance compared to aggregating neighbors with fixed weights. In TR-
Match(v2), we remove multi-head attention from our model. The experimental
results demonstrate that multi-head attention can stably boost the performance
of our model by capturing the global relational information for support set. In TR-
Match(v3), we replace Att in matching processor with mean-pooling. Experimen-
tal results show that Att can improve our model performance by adaptively aggre-
gating support features compared to fixed support weights.

5.6 Impact of Few-shot Size

In this subsection, we study the impact of few-shot size k. We perform
experiments on TR-Match, FSRL [24], and FAAN [15] models on ICEWS14-
few and ICEWS05-15-few datasets, and set different k values from a subset
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{2, 3, 4, 5, 6, 7}. Experimental results in Fig. 6 demonstrate that: (1) The perfor-
mance of TR-Match is always better than the comparative models, indicating
the capability of our proposed method in few-shot TKGC. (2) TR-Match obtains
relatively stable boosts compared to FSRL and FAAN, which shows the robust-
ness of TR-Match to few-shot size.

6 Conclusion

In this paper, we propose a new few-shot temporal knowledge graph completion
model, i.e., TR-Match, which consists of an encoding step and a matching step. In
the encoding step, we can dynamically aggregate the local and global information
to generate temporal-relational representations, so as to capture the dynamic
properties in completion task. In the matching step, we can map the query to
few support quadruples in a relation-agnostic manner to overcome the few-shot
problem. Additionally, we construct three datasets suitable for few-shot learning
based on public datasets. The experimental results show the superiority of our
model and the effectiveness of each component in our model.
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