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Abstract. Due to the representation gap between unstructured natural
language questions and structured knowledge graphs (KGs), it is chal-
lenging to answer questions over KGs. The existing semantic parsing-
based methods struggle for building structured queries that can be exe-
cuted over the KG, and thus they are difficult to cover diverse com-
plex questions. The information retrieval-based methods suffer from poor
interpretability. In this paper, we present a novel approach powered by
machine reading comprehension. To transform a subgraph of the KG
centered on the topic entity into text, we sketch the subgraph through a
carefully designed schema tree, which facilitates the retrieval of multiple
semantically-equivalent answer entities. Instead of seeking answers from
all the automatically generated paragraphs, we pick out the promising
paragraphs containing answers by a contrastive learning module. Finally,
it is straightforward to deliver the answer entities based on the answer
span that is detected by the machine reading comprehension module. The
results on benchmark datasets demonstrate that our method achieves
significant improvement compared with the existing methods.

Keywords: Knowledge Graphs · Question Answering · Machine
Reading Comprehension · Schema Tree

1 Introduction

By modeling the complex relationships among varieties of entities, knowledge
graphs (shorted as KGs) have been widely used in many real-world applica-
tions, such as recommendation [30], fraud detection [33], and cyber security [18].
Generally, a knowledge graph is a structured repository that contains a collec-
tion of facts in the form (subject, relation, object). Knowledge graph question
answering (KGQA) is an important task that aims at answering natural language
questions based on a given knowledge graph, providing an easy and intuitive way
to query knowledge graphs. Currently, how to understand and answer complex
questions remains a challenging problem as they are often grounded to multiple
facts in the underlying KG. For example, “Who won the prize at the spin-off of
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the 1885 Wimbledon Championships-Gentlemen’s Singles?” is a multi-hop ques-
tion involving two facts (the 1885 Wimbledon Championships, spin-off, ?x) and
(?obj, win, ?x). Moreover, the notorious ambiguity and variability of natural
language further increase the difficulty of KGQA.

Fig. 1. An example question whose SPARQL query has multiple UNION operators.
A subgraph of Wikidata is presented, where the red node denotes topic entity. (Color
figure online)

The existing methods developed for KGQA can be roughly divided into three
groups, i.e., rule-based/template-based (RT-based) methods, semantic parsing-
based (SP-based) methods, and information retrieval-based (IR-based) methods.
RT-based methods [34] exhibit superiority in precision but fail to handle the
flexible and varied representation of the same semantic meanings. Existing SP-
based methods try to transform natural language question q into symbolic logic
form, e.g., SPARQL, which can be executed against the knowledge graph to get
answers to q [6,12]. However, the existing SP-based methods are difficult to cover
diverse complex queries (e.g., multi-hop reasoning, constrained relations, and
numerical operations) [15]. For instance, let us consider the question in Fig. 1.
To answer this question, the system should generate a complex SPARQL that is
composed of three different basic graphs combined by two “UNION” operators.
IR-based methods regard the process of finding answers as a classification task
[21,24]. Most methods adopt deep neural networks like GNN to learn entity
embeddings and rank candidate entities. One major challenge of these methods
is lacking interpretability because they only take the ranking scores as objective.
Moreover, the IR-based methods are not effective to deal with the multi-answer
or aggregation questions as it is not known how many entities will be involved
in the answers. For example, the question in Fig. 1 has 205 answers in total. It
is difficult to predict the number of answers precisely.

To address the drawbacks of the existing methods, we propose a novel frame-
work powered by machine reading comprehension (shorted as MRC) in this
paper. Benefiting from the powerful pre-trained language model (PLM), MRC
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is promising to find the answers from plain text without complex structured
queries. Thus we need to transform the knowledge graph or its subgraph into text
(KG2Text). However, generating text for triples is a time-consuming task. To
facilitate KG2Text, we present an effective approach based on a newly designed
structure, namely k-hop schema tree, which sketches the subgraph through
aggregation nodes. Meanwhile, it is natural to support the retrieval of multi-
ple semantically-equivalent answers. Since generating text for irrelevant triples
not only leads to noisy information but also is time-wasting, it is required to
rule out the triples that are not relevant to the question. To the end, we per-
form relation linking to reduce the search space by excluding the paths that do
not contain any desired relations. If the refined schema tree is still too large,
multiple paragraphs will be generated for its decomposed subtrees respectively.
For the automatically generated paragraphs, contrastive learning is applied to
pick the target paragraph containing the answers. Powered by MRC, knowledge
graph reasoning is regarded as the natural language understanding (NLU) task
to obtain the aggregation answer that can be traced back to find all the answers
along the schema tree. The contributions of the paper are summarized as follows:

– We develop a novel approach to KGQA based on MRC, migrating the KG
reasoning to an NLU task that benefits from PLMs.

– We propose the schema tree to sketch the subgraph through aggregation
nodes, facilitating KG2Text and supporting the retrieval of multiple answers.

– Contrastive learning is invoked to pick the target paragraph from all the
generated paragraphs, over which MRC is conducted to find the answers.

– Empirical studies on benchmark datasets have demonstrated the effectiveness
of the proposed method.

2 Problem Definition and Preliminary

2.1 Problem Definition

Definition 1 (Knowledge Graph). A knowledge graph (KG), denoted by G =
(E ,L,R), is a directed graph consisting a set of triples (h, r, t), where E, L, and
R represent the set of entities, literals, and relations (including predicates and
properties), respectively. Specifically, h ∈ E, t ∈ E ∪ L, and r ∈ R represents the
relation between two entities h and t.

Definition 2 (k-hop Path Tree). Given an entity e ∈ E, the k-hop path tree
rooted at e, shorted as k-PT(e), is a tree formed by combining all k-hop sequence
of triples starting from e.

Note that the “path” in the k-PT (e) ignores the direction of triples. k-PT (e)
can be constructed through the extended breadth-first search by ignoring the
direction and allowing the reusing of the nodes.

Definition 3 (Aggregation Node). Given a k-PT (e), several entities are
grouped as an aggregation node if they share the same father node with the iden-
tical edge labels.
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An aggregation node actually clusters the entities that act the same seman-
tic role, making it feasible to return multiple semantically-equivalent answers.
Specially, a single node in k-PT (e) can be viewed as an aggregation node if it
cannot be grouped with other nodes.

Definition 4 (k-hop Schema Tree). Given an entity e ∈ E, the k-hop schema
tree rooted at e, shorted as k-ST(e), is a tree in which the starting node of each
edge is an entity/aggregation node and each ending node is an aggregation node.

Example 1. For the subgraph presented in Fig. 2(a), the corresponding 2-hop
path tree rooted at the entity “California” is shown in Fig. 2(b). Figure 2(c)
depicts the 2-hop schema tree, where the aggregation node in the second layer
groups entities Hayfork Airport and Lake Tahoe Airport.

Definition 5 (Topic Entity). Given a question q, its topic entity is the entity
e ∈ E that is linked to a mention in q.

Problem Statement 1. Given a question q and a knowledge graph G, the task
is to find answers to q from the knowledge graph G.

Fig. 2. An illustration of path tree and schema tree, where l denotes location, c denotes
country, HA denotes Hayfork Airport, and LTA denotes Lake Tahoe Airport.

2.2 Preliminary

KG2Text. Given a subgraph g in G, KG2Text aims at generating high-quality
sentences to represent g. Recently, researchers mainly use encoder-decoder neural
networks with attention [25,29] to address this problem. In this paper, we use
the KG2Text tool JointGT [13] which presents three pre-training tasks on an
encoder-decoder framework and a structure-aware self-attention layer.

Contrastive Learning. Contrastive Learning pulls semantically similar pair
close and keeps dissimilar data away in continuous space, by using self-
supervision signals. Inspired by SimCSE [8], we collect triples (q, p+, p−), where
p+ is called a positive instance corresponding to a paragraph containing the
answers and p− is a negative instance corresponding to a paragraph without
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any answer. Thus, the model picks out the sentences which are more likely to
contain the final answers to the question.

Machine Reading Comprehension. Machine reading comprehension (MRC)
requires a machine to answer questions based on a given textual context. It has
attracted increasing attention with the incorporation of various deep-learning
techniques over the past few years. The performance of the MRC task highly
depends upon the ability to understand natural language for a machine. We
notice that any MRC model could be applied to our framework and we choose
a simple MRC model [26] in our experiments.

3 Overview of Our Approach

Fig. 3. Architecture of the proposed approach, consisting of four major steps. Red
node indicates the topic entity. (Color figure online)

As depicted in Fig. 3, we propose a novel approach to KGQA, consisting
of four components, i.e., schema tree construction, text generation, paragraph
selection, and answer generation via MRC.

Schema Tree Construction. Motivated by fact that the answers to a question
share the identical entity type and they appear in semantically-equivalent struc-
tures in the KG to represent the input question, we propose a novel algorithm
to group and merge the semantically-equivalent nodes in a carefully designed
schema tree. Specifically, for a question q, we extract the k-hop path tree rooted
at the topic entity e0 from the knowledge graph, aggregate the child nodes of
one parent node connected by the same relation into an aggregation node, and
refine the tree. In this way, we get a new subtree rooted at e0, named schema
tree, which simplifies the subgraph while preserving all necessary structure infor-
mation in the knowledge graph.

Text Generation. The structure information of knowledge graphs is more diffi-
cult to understand and deal with for a computer than serialized text. It motivates
us to generate texts for the built schema tree by employing KG2Text models and
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retrieve answers from the generated texts. On one hand, the tree structure almost
complies with text writing. On the other hand, the generated text is more con-
cise benefiting from the aggregate nodes, removing the repeated and redundant
paths. Besides, just like the article describing objects from different aspects in
segments, if the schema tree k-ST (e) is too large, we will decompose it into
smaller subtrees and generate a raw paragraph for each of them respectively.

Paragraph Selection. Since the amount of the generated texts from the knowl-
edge graph may be still huge even if pruned by extracted relations from the
question. Hence, we need to further filter out the unpromising generated texts.
Motivated by SimCSE, we develop a paragraph selection module SimCPE to
pick out the target paragraphs. In training stage, for each question qi, we use
the paragraph containing answers as a positive instance p+i . The paragraph hav-
ing no answers or that is borrowed from the paragraphs of other questions will
be taken as a negative instance p−

i . Thus the triples (qi, p
+
i , p−

i ) for contrastive
learning can be collected to fine-tune the model. In test stage, we choose those
paragraphs whose similarity to qi goes beyond a predefined threshold.

Answer Generation via MRC. To find answers from the target paragraphs,
we resort to the MRC model [26], because 1) the answers to questions are mostly
nodes in schema tree, thus can be extracted from generated text. This process
can be regraded as a sequence tagging problem, which is exactly what the MRC
model elaborates. 2) the model can solve the questions which need arithmetic
operations or aggregate functions, thus improving the performance. Specifically,
we use this MRC model to find answer spans from the candidate texts. Once the
aggregate nodes are labeled as answer spans, the final answers can be delivered
straightforwardly by reporting the entities clustered in the aggregation node.

Advantages of the Proposed Framework. Compared to previous methods,
our approach exhibits the following advantages:

(1) The novel schema tree has achieved lossless simplification of semantically-
equivalent entities, which can alleviate the burden of text generation and
improve the quality of generated texts.

(2) With the aggregation node, we can return an answer set that may contain
multiple entities at once, thus overcoming the drawback of IR-based methods
that they do not know how many entities will be involved in the answers.

(3) We can anchor the schema tree that generates the text containing answers,
guaranteeing the interpretablity of our method.

(4) Our method utilizes the semantic correlation with the question to retrieve
subgraphs from the underlying knowledge graph and finds answers in gen-
erated text, thus can handle the question with multiple answers containing
different subgraph patterns respectively, which is difficult to address for both
IR-based methods and SP-based methods.
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Algorithm 1. Schema Tree Construction
Require: a natural language question q, a topic entity e0, knowledge graph G;
Ensure: a schema tree k-ST (e0).
1: D ←triples within k hops from e0, Ents ←all entities in D
2: Dict ←create an empty dict, an index structure where key is entity and value is

(relation, aggregate node) pair
3: for ent in Ents do
4: Dent ←triples with one-hop relation of ent from D
5: for each relation ri in Adjacent(ent) do
6: agg ent ← merge all tail entities adjacent ent
7: add (ent, ri, agg ent) into Dict
8: k-ST (e0) ←empty tree rooted at e0
9: frontier ← Queue(e0)

10: while not IsEmpty(frontier) do
11: if depth < k then
12: entp ←pop frontier
13: tmp ←retrieve {(r′, aggnodes′)} from Dict with key entp
14: for r′ and aggnodes′ in tmp do
15: k-ST (e0) ← add an edge labelled with r′ from entj to aggnodes′

16: for node in aggnodes′ do
17: if node is not the same with its ancestor then
18: add node to frontier
19: return k-ST (e0)

4 Text Generation

4.1 Schema Tree Construction

Given a natural language question q as input, we first obtain the topic entity
e0 by using the existing method, e.g., spciy-entity-linker1. Then we extract and
sketch the subgraph centered on the topic entity e0 from KG. Algorithm 1 out-
lines the process of constructing a schema tree.

For each entity e ∈ G, it may have outgoing and incoming edges as G is a
directed graph. For ease of presentation, they are all called the edges starting
from the entity e in the following sequel. We extract the set D of triples within
h hops from e0 and merge adjacent edges of the same relation, as shown in
Algorithm 1 (lines 4–7). Then we merge tail entities with the same relation
r starting from each e ∈ D via breadth-first search, as shown in Algorithm 1
(lines 10–18). The combined entities form an aggregation node, taking one of the
entities as its label. A special mark “*” can be assigned to indicate the role of the
aggregation node. For example, as shown in Fig. 2, for the entity California, we
merge the tail entities connected by the relation “location” into an aggregation
node named “*Hayfork Airport”. We can merge entities to form aggregation
nodes iteratively. Finally, the schema tree k-ST (e0) is constructed.

1 https://github.com/egerber/spaCy-entity-linker.

https://github.com/egerber/spaCy-entity-linker
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Algorithm 2. Schema Tree Refinement
Require: a schema tree k-ST (e), a question q;
Ensure: a refined schema tree k-ST (e).
1: Rl ← invoke relation linking methods for q, R ←{}
2: for each path Pj in k-ST (e) do
3: Rp ← relations in path Pj

4: if ∃rel ∈ Rp, rel ∈ Rl then
5: R ← R ∪ Rp

6: k-ST (e)←prune k-ST (e) and maintain relations in R
7: return k-ST (e)

To prevent introducing too many noisy triples, we perform relation linking-
based path refinement as shown in Algorithm 2. Any relation linking methods,
e.g., Falcon2.0 [23] and GenRL [22], can be applied to the question. From the
topic entity e0, we iteratively examine each path of the schema tree k-ST (e)
and maintain the path if and only if it contains a relation in the relation list
Rt (line 2–7). We update the schema tree and remove the relation out of list R
(line 9). In other words, we discard the path or sub-path which does not contain
any relation in the linked relations. Though list Rl may do not contain golden
relation rgold, the schema tree could include rgold via the other relation in Rl in
the same path. In the end, we obtain a refined schema tree k-ST (e).

4.2 Text Generation

In this process, we transform a schema tree into a set of paragraphs. JointGT is
employed in our task. Since the number of triples in the whole schema tree k-
ST (e0) is beyond model capacity, we decompose k-ST (e0) into subtrees {Ti}m

i=1

based on relations {ri}m
i=1, ri ∈ R0 = {r|(e0, r, e1r) ∈ k-ST (e0)}:

Ti = (e0, ri, e1ri
) ∪ T ′(e1ri

),

where T ′(e1ri
) is the subtree rooted at e1ri

. Then, we linearize Ti into a
sequence Tlinear = {ω1, ω2, . . . , ωn} consisting of n tokens. For instance,
“ (A, r1, B), (B, r2, C)” is transformed into “< H > A < R > r1 < T > B
< H > B < R > r2 < T > C”. We put Tlinear into the encoder-decoder frame-
work with a structure-aware self-attention layer proposed by JointGT frame-
work: xTi

= Encoder-Decoder(Tlinear), where xTi
is the representation of subtree

Ti. Then, we use xTi
to generate paragraph corresponding to subtree Ti.

5 Answer Selection

To retrieve answers from the text for the question, we first determine the target
paragraphs in Sect. 5.1, based on which the final answers are generated powered
by machine reading comprehension models in Sect. 5.2.
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5.1 Paragraph Selection

Although we have refined the schema tree in the previous step, it is inevitable
to generate irrelevant paragraphs that correspond to some subtrees Ti. Thus, we
propose a Simple Contrastive Learning of Paragraph Embeddings, shorted as
SimCPE, to pick out the most promising paragraphs that contain the answers.

As shown in Fig. 4, for each question qi we use the paragraph which con-
tains answers as positive instance p+i and the paragraph which does not con-
tain answers or the paragraph for other questions as negative instance p−

i , thus
obtaining triples (qi, p

+
i , p−

i ). We apply RoBERTalarge framework as a basic
model and try to narrow the distance between qi and p+i and keep qi and p−

i

away in continuous space. We minimize the objective Li loss function:

− log
esim(qi,p

+
i )/τ

∑N
j=1(e

sim(qi,p
+
j )/τ + esim(qi,p

−
j )/τ )

,

where the similarity measure sim(x1, x2) is cosine similarity xT
1 x2

||x1|||̇|x2|| , N is mini-
batch size and τ is a temperature hyperparameter. In the test phase, we input
previously generated paragraphs, output the probability of containing answers
for each paragraph, and deliver the k paragraphs with the highest probability.

Fig. 4. Examples for contrastive learning. Orange circles denote representations
of the question and ground truth text, and blue denotes noisy text. E is the encoder.

5.2 Answer Generation via MRC

Since an answer span may appear multiple times in the automatically generated
paragraphs, we present a multi-span framework to tackle multi-span questions
inspired by [26]. The paragraph containing at least one answer is assigned the
possible-correct tagging. At training time, we maximize the marginal probability
of possible-correct taggings:

log p(S|h) = log
∑

S∈S
(

m

Π
i=1

pi[Si]),

pi = softmax(f(hi))
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where h is the representation of question and text generated by KG2Text module
via BERT [4], f is a parameterized function, S is the set of possible-correct
taggings and m is length of text. At test time, we output the tagging with the
max probability: Ŝ = arg max

S∈V

m

Π
i=1

pi[Si], where V includes all possible taggings as

for IO tags. We predict for each token whether it is part of the answer individually
following the paper [4]. Then, we collect the predicted spans as answers. If the
span contains the special mark “*” indicating an aggregation node, we can collect
all the semantically-equivalent answers in the corresponding aggregation node.
Meanwhile, the chain starting from e0 to the detected aggregation node in the
schema tree can be taken as the inferential chain of evidencing answers.

6 Experimental Evaluation

In this section, we evaluate the proposed method through extensive experiments
and report the results.

6.1 Experimental Settings

In our experiments, we made the next settings. (1) JointGT: We choose
JointGT(Bart), and fine-tune on WebNLG following [13]. (2) MRC: We choose
TASEIO+SSE as a base model, train on Drop following [26], and fine-tune on
our datasets. (3) Depth k: Considering the complexity of datasets, k is set to
2.

6.2 Benchmark Datasets

Table 1. Statistics of datasets.

Datasets Train Dev Test

LC-QuAD2.0 17,413 4,353 6,046

WebQSP 2,848 250 1,639

Table 1 lists the statistics of the used datasets.
WebQuestionsSP (WebQSP). [32] contains 4737 question-answer pairs with
Freebase as the KG. We use the same splits and pre-processing as [24].

LC-QuAD 2.0 [7] is a larger dataset based on Wikidata. The paraphrases
and SPARQL queries are compatible with both Wikidata and DBpedia-2018.

6.3 Baselines

We choose the following methods as the baselines:
QAnswer [5]: QAnswer is a system that relies on the simple template-based

SPARQL queries that are then ranked and executed to get the answer.
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Platypus [19]: Platypus is designed as a QA system driven by NLU, using
grammar rules and template-based techniques for complex questions.

GRAFT-Net [28]: Graphs of Relations Among Facts and Text Networks
(GRAFT-Net) classifies nodes in subgraphs containing KG entities and text.

PullNet [27]: PullNet uses self-learning to extract the subgraph related to
the question. It combines the heterogeneous information, updates the subgraph,
and finally uses GCN to perform representation learning on nodes.

UNIQORN [20]: UniQORN copes with questions by advanced graph algo-
rithms for Group Steiner Trees, identifying the best answer candidates.

EmbedKGQA [24]: EmbedKGQA uses neutral network to get the represen-
tation of question and uses ComplEx embeddings of entities. Then it computes
the similarity between question and candidate entities.

NSM [10]: NSM uses a teach-student framework to generate and learn super-
vision signal, thus enhancing the performance of reasoning against the KG.

6.4 Main Results

The results of our method and baselines are shown in Table 2. We can find that:
(1) The experimental results indicate that the existing methods, e.g. GRAFT-

Net and PullNet, have poor performance on LC-QuAD2.0, while our approach
achieves state-of-the-art performance on LC-QuAD2.0 and is much better than
the above baselines. PullNet trains an effective subgraph retrieval module based
on the shortest path between topic entities and answer entities. However, PullNet
uses external corpus to enhance performance. UniQORN uses Group Stein Tree
(GST) to reason against Wikidata, but ineffective to cover multi-hop queries
with constraints. Our method exhibits a powerful ability to extract information
from Wikidata that contains thousands of relations and billions of entities.

Table 2. Results on LC-QuAD2.0 and WebQSP. We copy the results on LC-
QuAD2.0 in [20] and copy the results on WebQSP in [10].

Methods LC-QuAD2.0 WebQSP

Hits@1 Hits@5 Hits@1

QAnswer – 31.8 –

Platypus – 10.9 –

GRAFT-Net 26.5 41.8 66.4

PullNet 11.9 28.1 68.1

UniQORN 25.2 41.4 –

EmbedKGQA – – 66.6

NSM – – 74.3

ours 42.6 53.7 75.2
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Table 3. Adaptive Ability of MRC model (Hits@1).

Methods WebQSP

vanilla model (no fine-tune) 62.2

+ LC-QuAD2.0 train set 66.0

+ WebQSP train set 75.2

(2) Our method also achieves state-of-the-art performance on WebQSP.
EmbedKGQA uses ComplEx embeddings to obtain the representation of enti-
ties and computes the similarity between the question and entities, ignoring the
path information. NSM shows a competitive performance as it applies a teacher-
student framework to learn intermediate supervision signals. However, it highly
depends on the golden path, and is difficult to find all the semantically-equivalent
answers. In contrast, we sketch the structure around the topic entity by schema
trees and fit the refined paragraphs that are generated from decomposed schema
subtrees into a multi-span MRC model. Thus, we can answer questions that even
do not have explicit paths via natural language understanding.

6.5 Detailed Analysis

Adaptive Ability. We emphasize the importance of our proposed framework
based upon MRC to select answers in Sect. 3. To further study its adaptive
ability, we perform experiments to compare two variants including: (1) +LC-
QuAD2.0 train set (fine-tune) using question-answer pair on LC-QuAD2.0 as
train set. (2) +WebQSP train set (fine-tune) using WebQSP to fine-tune MRC
model. As shown in Table 3, our proposed MRC model exhibits a certain infer-
ence ability even without fine-tuning. It has significant improvement when fine-
tuned on the corresponding dataset. Thus, our framework based on MRC shows
promising performance in adapting to other question-answering datasets.

Effect of KG2Text. To study the effect of KG2Text, we compare the perfor-
mance of w/o KG2Text (without using KG2Text model to generate texts, con-
catenating the triples in schema tree instead) with our complete model equipped
with the KG2Text module. The experimental results are shown in Table 4 (line
1 and line 3). We can see that the performance on both datasets decreases,
indicating the contribution of KG2Text module. However, there is a significant
difference on effect of this module on two datasets. Without KG2Text mod-
ule, the decline on LC-QuAD2.0 is particularly severe, nearly three forth. While
on WebQSP, the decline is relatively small, only 6.0%. The questions of LC-
QuAD2.0 are more difficult to understand for the machine as they correspond
to more complex subgraphs and more fluent and logical text. Hence, when the
text is simply concatenated by strings, it is almost impossible for the model to
answer the complex questions.
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Table 4. Ablation study (Hits@1).

Methods LC-QuAD2.0 WebQSP

fine-tuned model 42.6 75.2

w/o SimCPE 19.45 66.5

w/o KG2TEXT 10.77 69.18

Table 5. Effect of depth k (Hits@1).

Methods LC-QuAD2.0 WebQSP

k= 1 20.5 34.3

k= 2 42.6 75.2

Effect of SimCPE. To study the effect of SimCPE, we compare w/o SimCPE
(fine-tune MRC model without SimCPE) with our fine-tuned approach on LC-
QuAD2.0 and WebQSP. As shown in Table 4 (lines 1–2), the performance on
both datasets decreases when disabling SimCPE, which proves the efficiency
and necessity of SimCPE. However, the degree of decline in two datasets has a
different picture. Specifically, removing SimCPE causes more than half loss in
Hits@1 on LC-QuAD2.0 dataset, while a slight decrease of 8.7% in WebQSP. The
main reason for this result may be resulted from the size of the corresponding
knowledge graph. The knowledge graph LC-QuAD2.0 is very large, thus the
generated subgraph is also very large as well. With the help of SimCPE, we can
quickly eliminate the unrelated texts and improve the accuracy. As for WebQSP,
the knowledge graph is relatively small, so the truncation effect of SimCPE is
much smaller than the former.

Effect of Depth k. We further study the influence of depth k. The results
are reported in Table 5. Obviously, the Hits@1 drops sharply as there are many
two-hop questions on both datasets. It reveals that equipped with higher-order
relations our approach can handle more complex questions demanding multi-hop
reasoning. Besides, since most questions have 2-hop structures in the knowledge
graph, we set k to 1 and 2 in the experiments.

6.6 Case Study

As shown in Table 6, we provide several cases in LC-QuAD2.0 to further inves-
tigate and analyze our proposed approach.
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Table 6. Case study on LC-QuAD2.0, where * means this entity is an aggregation
node with its members in parentheses.

Case Id Question Generated Text Returned Answers Ground Truth

1 14791 What has influenced the
sculptors of Man in Shower
in Beverly Hills?

The creator of Man in Shower in Beverly
Hills is David Hockney, who was
influenced by *Francis Bacon (Francis
Bacon,Pablo Picasso).

Francis Bacon Pablo Picasso

Pablo Picasso Francis Bacon

2 9652 What are the names of
Keira Knightley’s sibling
and father?

The sister of Keira Knightley is Caleb
Knightley who is also the son of Will
Knightley.

Caleb Knightley Caleb Knightley

Will Knightley Will Knightley

3 27990 Who is the curator of São
Paulo Museum of Art?

The architect of São Paulo Museum of
Art, which is located in Sao Paulo, Brazil,
was Lina Bo Bardi. It is the home of the
architect, Adriano Pedrosa and the
museum ’s director, Heitor Martins.

Adriano Pedrosa Adriano Pedrosa

Heitor Martins

4 20699 Which is the rock band,
member of which was Tom
Petty?

Tom Petty is a member of Tom Petty and
the Heartbreakers, a band that includes
the band, Traveling Wilburys.

Tom Petty and the
Heartbreakers

Tom Petty and the
Heartbreakers

Traveling Wilburys

5 25382 Name an English written
daily newspaper that
starts with letter “T”.

*the New York Times (The New York
Times, Daily Times, ...) are all owned and
operated by the company Nagaland Post.

The New York
Times

The Times...

Daily Times The Dallas
Morning News

... The Guardian

Both Case 1 and Case 2 are successful cases. The former shows that our
approach can process questions with many answers. By merging all entities that
influence the entity “David Hockney” into an aggregation node, the model is able
to find all the answers. The latter one illustrates that our method can handle
the complex question with multiple special interrogative words. Powered by the
MRC model that targets at processing multi-span questions, our approach can
find the sibling and father of “Keira Knightley” simultaneously.

Case 3 and Case 4 are both surprising cases. The answers are partially correct
because some answers do not belong to ground truths. The main reason is that
our method retrieves all relations related to the question, and the MRC model
fails to distinguish “curato” from “manager” (or “rock band” from “musical
group”) quite clearly. However, from a perspective of real-world applications,
the result may be pretty good. In most cases, the user is prone to use common
words rather than professional words as she may not know the vocabulary of the
huge knowledge graph. Moreover, it demonstrates that our methods can solve
questions with semantically-equivalent subgraphs.

Case 5 is a failed case where our approach fails to handle character-level
constraints. It returns all English written daily newspapers without considering
the constraint “starts with letter ‘T”’. Although the MRC model can distinguish
them in the text by dealing with the nodes in aggregation nodes separately, it is
overwhelmed when encountering character-level constraints. That is because all
character-level information has been hidden by aggregation nodes and is invisible
in generated texts. If we present all entities in the aggregation node to the MRC
model, the text will be long-winded for the model to understand.
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7 Related Work

KGQA: Zheng et al. apply template-based methods including two steps, gen-
erating templates offline and understanding questions online [34]. Existing SP-
based methods [2,6,12,17,31] try to transform natural language questions into a
symbolic logic form which can be executed over the KG to return answers. Ding
et al. introduce frequent query substructures to rank existing query structures
or build new queries [6]. Kapanipathi et al. present a system that successfully
utilizes a generic semantic parser, particularly AMR, to deal with a KGQA task
for the first time [12]. Chen et al. propose a two-stage formal query building
approach that automatically predicts the query structure and uses it as a con-
straint to avoid generating noisy candidate queries [2]. Liang et al. present a novel
approach that can first identify the type of each question by training a Random
Forest model and use it to guide different processes to generate SPARQL queries
[17]. IR-based methods [3,10,11,21,24] regard answer selection as a classification
task. Most studies use deep neural networks like GNN to score candidate entities.
Qiu et al. introduce reinforcement learning to formulate multi-relation question
answering as a sequential decision problem [21]. The proposed model performs
an efficient path search on the knowledge graph to obtain answers and utilizes
beam search to significantly reduce the number of candidates. Meanwhile, based
on attention mechanism and neural network, policy network can enhance the
unique influence of different parts of a given question on triple choice. He et
al. propose a teacher-student framework to find a reasonable path via super-
vision signals at intermediate steps [10]. The main student model learns how
to find answers to specific questions, while the teacher model strives to learn
intermediate state supervision signals.

KG2Text: KG2Text is an important problem that generates natural language
sentences from structured facts in the knowledge graph. Traditional methods
[14] mainly focus on rule-based algorithms but subject to low adaptability. [1]
proposes seq-to-seq and graph-to-seq framework to generate sentences from well-
structured data and a large dataset KGText. KGText is a new pretrained cor-
pus in which English sentences from Wikipedia are aligned with subgraphs from
Wikidata for a total of about 1.8 million (subgraph, text) pairs. The method
ensures that each subgraph and its paired sentences describe nearly the same
facts. Based on that, [13] adds a structure-aware self-attention layer to better
instruct sentence generation and proposes three pre-training tasks, including
graph enhanced text reconstruction, text enhanced graph reconstruction, and
graph-text embedding alignment, to explicitly promote the graph-text align-
ment.

MRC: Machine Reading Comprehension (MRC) requires a machine to answer
questions based on a given textual context. Some pre-trained language models,
like Bert [4] and BART [16], are trained on a large-scale corpus and fine-tuned
on the downstream dataset, showing impressive performance on MRC. As for
long-text, [9] proposes a model that learns to chunk text more flexibly via rein-
forcement learning and decides the next segment to process. However, forcing
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answers to a single span limits its ability to understand questions as some recent
datasets contain multi-span questions, i.e., questions whose answers are a set of
non-contiguous spans in the text. Naturally, models that return a single span
cannot answer these questions. To answer multi-span questions, [26] proposes a
new architecture to cast the problem as a sequence tagging task. In other words,
the model predicts whether each token is part of an output.

8 Conclusion

We present a novel framework for KGQA based on machine reading comprehen-
sion. To facilitate KG2Text, we propose schema tree that sketches the subgraph
centered on the topic entity. The search space is reduced by removing the irrel-
evant triples and paragraphs through relation linking and constrastive learning.
The empirical results show that our approach outperforms the existing methods.
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