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Abstract. Impossible differential (ID), zero-correlation (ZC), and inte-
gral attacks are a family of important attacks on block ciphers. For exam-
ple, the impossible differential attack was the first cryptanalytic attack on
7 rounds of AES. Evaluating the security of block ciphers against these
attacks is very important but also challenging: Finding these attacks
usually implies a combinatorial optimization problem involving many
parameters and constraints that is very hard to solve using manual
approaches. Automated solvers, such as Constraint Programming (CP)
solvers, can help the cryptanalyst to find suitable attacks. However, pre-
vious CP-based methods focus on finding only the ID, ZC, and integral
distinguishers, often only in a limited search space. Notably, none can
be extended to a unified optimization problem for finding full attacks,
including efficient key-recovery steps.

In this paper, we present a new CP-based method to search for ID, ZC,
and integral distinguishers and extend it to a unified constraint optimiza-
tion problem for finding full ID, ZC, and integral attacks. To show the
effectiveness and usefulness of our method, we applied it to several block
ciphers, including SKINNY, CRAFT, SKINNYe-v2, and SKINNYee. For the
ISO standard block cipher SKINNY, we significantly improve all exist-
ing ID, ZC, and integral attacks. In particular, we improve the integral
attacks on SKINNY-n-3n and SKINNY-n-2n by 3 and 2 rounds, respec-
tively, obtaining the best cryptanalytic results on these variants in the
single-key setting. We improve the ZC attack on SKINNY-n-n (SKINNY-
n-2n) by 2 (resp. 1) rounds. We also improve the ID attacks on all vari-
ants of SKINNY. Particularly, we improve the time complexity of the best
previous single-tweakey (related-tweakey) ID attack on SKINNY-128-256
(resp. SKINNY-128-384) by a factor of 222.57 (resp. 215.39). On CRAFT,
we propose a 21-round (20-round) ID (resp. ZC) attack, which improves
the best previous single-tweakey attack by 2 (resp. 1) rounds. Using our
new model, we also provide several practical integral distinguishers for
reduced-round SKINNY, CRAFT, and Deoxys-BC. Our method is generic
and applicable to other strongly aligned block ciphers.
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1 Introduction

The impossible differential (ID) attack, independently introduced by Biham et
al. [5] and Knudsen [25], is one of the most important attacks on block ciphers.
For example, the ID attack is the first attack breaking 7 rounds of AES-128 [28].
The ID attack exploits an impossible differential in a block cipher, which usually
originates from slow diffusion, to retrieve the master key. The zero-correlation
(ZC) attack, first introduced by Bogdanov and Rijmen [8], is the dual method of
the ID attack in the context of linear analysis, which exploits an unbiased linear
approximation to retrieve the master key.

The integral attack is another important attack on block ciphers which was
first introduced as a theoretical generalization of differential analysis by Lai
[26] and as a practical attack by Daemen et al. [13]. The core idea of integral
attacks is finding a set of inputs such that the sum of the resulting outputs
is key-independent in some positions. At ASIACRYPT 2012, Bogdanov et al.
established a link between the (multidimensional) ZC approximation and integral
distinguishers [7]. Sun et al. at CRYPTO 2015 [41] developed further the links
among the ID, ZC, and integral attacks. Thanks to this link, we can use search
techniques for ZC distinguishers to find integral distinguishers. Ankele et al.
studied the influence of the tweakey schedule in ZC analysis of tweakable block
ciphers at ToSC 2019 [1] and showed that taking the tweakey schedule into
account can result in a longer ZC distinguisher.

The search for ID, ZC, and integral attacks on a block cipher contains two
main phases: finding a distinguisher and mounting a key recovery based on the
discovered distinguisher. One of the main techniques to find ID and ZC dis-
tinguishers is the miss-in-the-middle technique [5,7]. The idea is to find two
differences (linear masks) that propagate halfway through the cipher forward
and backward with certainty but contradict each other in the middle. However,
applying this technique requires tracing the propagation of differences (resp. lin-
ear masks) at the word- or bit-level of block ciphers, which is a time-consuming
and potentially error-prone process using a manual approach. When it comes to
the key recovery, we should extend the distinguisher at both sides and trace the
propagation of more cryptographic properties taking many critical parameters
into account. In general, finding an optimum complete ID, ZC, or integral attack
usually implies a combinatorial optimization problem which is very hard to solve
using a manual approach, especially when the block size is large and there are
many possible solutions. Therefore, developing automatic tools is important to
evaluate the security of block ciphers against these attacks, mainly, in designing
and analyzing lightweight cryptographic primitives, where a higher precision in
security analysis lets us minimize security margins.

One approach to solving the optimization problems stemming from cryptana-
lytic attacks is developing dedicated algorithms. For instance, in CRYPTO 2016,
Derbez and Fouque proposed a dedicated algorithm [14] to find DS-MITM and
ID attacks. However, developing and implementing efficient algorithms is diffi-
cult and implies a hard programming task. In addition, other researchers may
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want to adapt these algorithms to other problems with some common features
and some differences. This may, again, be very difficult and time-consuming.

Another approach is converting the cryptanalytic problem into a constraint
satisfaction problem (CSP) or a constraint optimization problem (COP) and
then solving it with off-the-shelf constraint programming (CP) solvers. Recently,
many CP-based approaches have been introduced to solve challenging symmet-
ric cryptanalysis problems, which outperform the previous manual or dedicated
methods in terms of accuracy and efficiency [20,30,37,39,46]. For example, at
EUROCRYPT 2017, Sasaki and Todo proposed a new automatic tool based on
mixed integer linear programming (MILP) solvers to find ID distinguishers [37].
Cui et al. proposed a similar approach to find ID and ZC distinguishers [12].
Sun et al. recently proposed a new CP-based method to search for ID and ZC
distinguishers at ToSC 2020 [42].

Although the automatic methods to search for ID, ZC, and integral attacks
had significant advances over the past years, they still have some basic limita-
tions:

– The CP models for finding ID/ZC distinguishers proposed in [12,37,43] rely
on the unsatisfiability of the models where the input/output difference/mask
is fixed. This is also the case in all existing CP models to search for inte-
gral distinguishers based on division property [15,44] or monomial prediction
[19,23]. However, finding an optimal key recovery attack is an optimization
problem, which is based on satisfiability. Hence, the previous CP models for
finding the ID, ZC, and integral distinguishers can not be extended to a
unified optimization model for finding a complete attack. The previous CP
models for finding ID, ZC, and integral distinguishers also require checking
each input/output property individually. As a result, it is computationally
hard to find all possible distinguishers when the block size is large enough.

– The CP model proposed in [42] employs the miss-in-the-middle technique
to find ID/ZC distinguishers. This approach does not fix the input/output
differences/masks. However, the compatibility between the two parts of the
distinguisher is checked outside of the CP model by iterating over a loop
where the activeness pattern of a state cell at the meeting point should be
fixed in each iteration.

– All previous CP models regarding ID, ZC, and integral attacks only focus
on finding the longest distinguishers. However, many other important factors
affect the final complexity of these attacks, which we can not take into account
by only modeling the distinguisher part. For example, the position and the
number of active cells in the input/output of the distinguisher, the number of
filters in verifying the desired properties at the input/output of distinguishers,
and the number of involved key bits in the key recovery are only a few critical
parameters that affect the final complexity of the attack but can be considered
only by modeling the key recovery part. We show that the best attack does
not necessarily require the longest distinguisher. Hence, it is important to
unify the key recovery and distinguishing phases for finding better ID, ZC,
and integral attacks.
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– The tool introduced by Derbez and Fouque [14] is the only tool to find full ID
attacks. However, this tool is based on a dedicated algorithm implemented in
C/C++ and is not as generic as the CP-based methods. In addition, this tool
can not take all critical parameters of ID attacks into account to minimize the
final complexity. As other limitations, this tool can not find related-(twea)key
ID attacks and is not applicable for ZC and integral attacks.

– None of the previous automatic tools takes the relationship between ZC and
integral attacks into account to find ZC distinguishers suitable for integral
key recovery. Particularly, there is no automatic tool to take the meet-in-the-
middle technique into account for ZC-based integral attacks.

Our Contributions. We propose a new generic, CP-based, and easy-to-use
automatic method to find full ID, ZC, and integral attacks, addressing the above
limitations. Unlike all previous CP models for these distinguishers, which are
based on unsatisfiability, our CP model relies on satisfiability for finding dis-
tinguishers. This way, each solution of our CP models corresponds to an ID,
ZC, or integral distinguisher. This key feature enables us to extend our distin-
guisher models to a unified model for finding an optimal key-recovery attack.
Furthermore, our unified CP model takes advantage of key-bridging and meet-
in-the-middle techniques. To show the usefulness of our method, we apply it to
SKINNY[3], CRAFT [4], SKINNYe-v2 [31], and SKINNYee [32] and significantly
improve the ZC, ID, and integral attacks on these ciphers. Table 1 summarizes
our results.

– We improve the integral attacks on SKINNY-n-2n and SKINNY-n-3n by 2 and
3 rounds, respectively. To the best of our knowledge, our integral attacks are
the best single-key attacks on these variants of SKINNY.

– We improve the ZC attacks on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1)
rounds. We also propose the first 21-round ZC attack on SKINNY-n-3n. Our
ZC attacks are the best attacks on SKINNY in a known-plaintext setting.

– On CRAFT, we provide a 21-round (20-round) single-tweakey ID (resp. ZC)
attack that is 2 (resp. 1) rounds longer than the best previous single-tweakey
attack proposed on this cipher at ASIACRYPT 2022 [40].

– We improve all previous single-tweakey ID attacks on all variants of SKINNY.
We reduce the time complexity of the ID attack on SKINNY-128-256 by a fac-
tor of 222.57. Our ID attacks are the best single-tweakey attacks on SKINNY-
128-128, and all variants of SKINNY-64. We also improved the related-tweakey
ID attack on SKINNY-n-3n.

– We provide the first third-party analysis of SKINNYee by proposing 26-round
integral and 27-round ID attacks.

– We propose several practical integral distinguishers for reduced round of
Deoxys-BC, SKINNY, CRAFT, and SKINNYe-v2/ee (see Table 3).

– Our tool identified several flaws in previous cryptanalytic results on SKINNY
(see Table 2). Our tool is efficient and can find all reported results in a few
seconds when running on a regular laptop. Its source code is publicly available
at the following link: https://github.com/hadipourh/zero

https://github.com/hadipourh/zero
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Table 1. Summary of our cryptanalytic results. ID/ZC/Int = impossible differential,
zero-correlation, integral. STK/RTK = single/related-tweakey. SK = single-key with
given keysize, CP/KP = chosen/known plaintext, CT = chosen tweak. †: attack has
minor issues.

Cipher #R Time Data Mem. Attack Setting/Model Ref.

SKINNY-64-192 21 2185.83 262.63 249 ZC STK/KP [21, G.3]

21 2180.50 262 2170 ID STK/CP [47]

21 2174.42 262.43 2168 ID STK/CP [21, F.3]

23† 2155.60 273.20 2138 Int † 180,SK/CP,CT [1]

26 2172 261 2172 Int 180,SK/CP,CT [21, H.2]

27 2189 263.53 2184 ID RTK/CP [27]

27 2183.26 263.64 2172 ID RTK/CP [21, F.4]

SKINNY-128-384 21 2372.82 2122.81 298 ZC STK/KP [21, G.3]

21 2353.60 2123 2341 ID STK/CP [47]

21 2347.35 2122.89 2336 ID STK/CP [21, F.3]

26 2344 2121 2340 Int 360,SK/CP,CT [21, H.2]

27 2378 2126.03 2368 ID RTK/CP [27]

27 2362.61 2124.99 2344 ID RTK/CP [21, F.4]

SKINNY-64-128 18 2126 262.68 264 ZC STK /KP [36]

19 2119.12 262.89 249 ZC STK/KP [21, G.2]

19 2119.80 262 2110 ID STK/CP [47]

19 2110.34 260.86 2104 ID STK/CP [21, F.2]

20† 297.50 268.40 282 Int † 120,SK/CP,CT [1]

22 2110 257.58 2108 Int 120,SK/CP,CT [21, H.1]

SKINNY-128-256 19 2240.07 2122.90 298 ZC STK/KP [21, G.2]

19 2241.80 2123 2221 ID STK/CP [47]

19 2219.23 2117.86 2208 ID STK/CP [21, F.2]

22 2216 2113.58 2216 Int 240,SK/CP,CT [21, H.1]

SKINNY-64-64 14 262 262.58 264 ZC STK/KP [36]

16 262.71 261.35 237.80 ZC STK/KP [21, G.1]

17 261.80 259.50 249.60 ID STK/CP [47]

17 259 258.79 240 ID STK/CP [21, F.1]

SKINNY-128-128 16 2122.79 2122.30 274.80 ZC STK/KP [21, G.1]

17 2120.80 2118.50 297.50 ID STK/CP [47]

17 2116.51 2116.37 280 ID STK/CP [21, F.1]

CRAFT 20 2120.43 262.89 249 ZC STK/KP [21, K.2]

21 2106.53 260.99 2100 ID STK/CP [21, K.3]

SKINNYee 26 2113 266 2108 Int SK/CP,CT [21, I.3]

27 2123.04 262.79 2108 ID RTK/CP [21, I.2]

SKINNYe-v2 30 2232 265 2228 Int 240,SK/CP,CT [21, H.3]
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Outline. We recall the background on ID and ZC attacks and review the link
between ZC and integral attacks in Sect. 2. In Sect. 3, we show how to convert the
problem of searching for ID and ZC distinguishers to a CSP problem. In Sect. 4,
we show how to extend our distinguisher models to create a unified model for
finding optimum ID attacks. We discuss the extension of our models for ZC and
integral attacks in Sect. 5, and finally conclude in Sect. 6. For detailed attack
procedures of all analyzed ciphers, we refer to the full version of our paper [21].

Table 2. Attacks with a serious flaw (invalid attacks).

Cipher Attack #R Setting/Model Ref. Flaw

SKINNY-n-n ID 18 STK/CP [45] Sect. 4.2

SKINNY-n-2n ID 20 STK/CP [45] Sect. 4.2

ZC/Int † 22 SK/CP, CT [48] Sect. 3

SKINNY-n-3n ID 22 STK/CP [45] Sect. 4.2

ZC/Int † 26 SK/CP, CT [48] Sect. 3

† [48] was published after publishing the first version of our paper.

2 Background

Here, we recall the basics of ID and ZC attacks and briefly review the link
between the ZC and integral attacks. We also introduce the notations we use in
the rest of this paper. We refer to the full version of our paper for the specification
of SKINNY and SKINNYe [21, C], CRAFT [21, K.1], and SKINNYee [21, I.1].

2.1 Impossible Differential Attack

The impossible differential attack was independently introduced by Biham et al.
[5] and Knudsen [25]. The core idea of an impossible differential attack is exploit-
ing an impossible differential in a cipher to retrieve the key by discarding all key
candidates leading to such an impossible differential. The first requirement of the
ID attack is an ID distinguisher, i.e., an input difference that can never prop-
agate to a particular output difference. Then, we extend the ID distinguisher
by some rounds backward and forward. A candidate for the key that partially
encrypts/decrypts a given pair to the impossible differential is certainly not
valid. The goal is to discard as many wrong keys as possible. Lastly, we uniquely
retrieve the key by exhaustively searching the remaining candidates.

We recall the complexity analysis of the ID attack based on [10,11]. Let E
be a block cipher with n-bit block size and k-bit key. As illustrated in Fig. 1,
assume that there is an impossible differential Δu � Δl for rd rounds of E
denoted by Ed. Suppose that Δu (Δl) propagates backward (resp. forward)
with probability 1 through E−1

b (resp. Ef) to Δb (Δf), and |Δb| (|Δf|) denotes
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Fig. 1. Main parameters of the ID attack using an rd-round impossible differential
distinguisher Δu �→ Δl. The distinguisher is extended with truncated differential prop-
agation to sets Δu → Δb over rb rounds backwards and Δl → Δf over rf rounds
forward. The inverse differentials Δb → Δu and Δf → Δl involve kb, kf key bits and
have weight cb, cf, respectively.

the dimension of vector space Δb (resp. Δf). Let cb (cf) be the number of
bit-conditions that should be satisfied for Δb → Δu (resp. Δl ← Δf), i.e.,
Pr (Δb → Δu) = 2−cb (resp. Pr (Δl ← Δf) = 2−cf). Moreover, assume that kb
(kf) denotes the key information, typically subkey bits, involved in Eb (resp.
Ef). With these assumptions we can divide the ID attacks into three steps:

– Step 1: Pair Generation. Given access to the encryption oracle (and possibly
the decryption oracle), we generate N pairs (x, y) ∈ {0, 1}2n such that x⊕y ∈
Δb and E(x)⊕E(y) ∈ Δf and store them. This is a limited birthday problem,
and according to [11] the complexity of this step is:

T0 = max
{

min
Δ∈{Δb,Δf}

{√
N2n+1−|Δ|

}
, N2n+1−|Δb|−|Δf|

}
(1)

– Step 2: Guess-and-Filter. The goal of this step is to discard all subkeys in
kb ∪ kf which are invalidated by at least one of the generated pairs. Rather
than guessing all subkeys kb ∪ kf at once and testing them with all pairs,
we can optimize this step by using the early abort technique [29]: We divide
kb ∪ kf into smaller subsets, typically the round keys, and guess them step
by step. At each step, we reduce the remaining pairs by checking if they
satisfy the conditions of the truncated differential trail through Eb and Ef.
The minimum number of partial encryptions/decryptions in this step is [10]:

T1 + T2 = N + 2|kb∪kf| N

2cb+cf
(2)

– Step 3: Exhaustive Search. The probability that a wrong key survives through
the guess-and-filter step is P =

(
1 − 2−(cb+cf)

)N
. Therefore, the number of

candidates after performing the guess-and-filter is P · 2|kb∪kf| on average. On
the other hand, the guess-and-filter step does not involve k − |kb ∪ kf| bits
of key information. As a result, to uniquely determine the key, we should
exhaustively search a space of size T3 = 2k−|kb∪kf| · P · 2|kb∪kf| = 2k · P .
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Then, the total time complexity of the ID attack is:

Ttot = (T0 + (T1 + T2) CE′ + T3) CE , (3)

where CE denotes the cost of one full encryption, and CE′ represents the ratio
of the cost for one partial encryption to the full encryption.

To keep the data complexity less than the full codebook, we require T0 < 2n.
In addition, to retrieve at least one bit of key information in the guess-and-filter
step, P < 1

2 should hold. Note that Eq. 2 is the average time complexity of
the guess-and-filter step; for each ID attack, we must evaluate its complexity
accurately to ensure we meet this bound in practice. To see the complexity
analysis of the ID attack in the related-(twea)key setting, refer to [21, A].

2.2 Multidimensional Zero-Correlation Attack

Zero-correlation attacks, firstly introduced by Bogdanov and Rijmen [8], are the
dual of the ID attack in the context of linear analysis and exploit a linear approx-
imation with zero correlation. The major limitation of the basic ZC attack is its
enormous data complexity, equal to the full codebook. To reduce the data com-
plexity of the ZC attack, Bogdanov and Wang proposed the multiple ZC attack
at FSE 2012 [9], which utilizes multiple ZC linear approximations. However, the
multiple ZC attack relies on the assumption that all involved ZC approximations
are independent, which limits its applications. To overcome this assumption of,
Bogdanov et al. introduced the multidimensional ZC attack at ASIACRYPT
2012 [7]. We briefly recall the basics of multidimensional ZC attack.

Let Ed represent the reduced-round block cipher E with a block size of
n bits. Assume that the correlation of m independent linear approximations
〈ui, x〉 + 〈wi, Ed(x)〉 and all their nonzero linear combinations are zero, where
ui, wi, x ∈ F

n
2 , for i = 0, . . . ,m − 1. We denote by l = 2m the number of ZC

linear approximations. In addition, assume we are given N input/output pairs
(x, y = Ed(x)). Then, we can construct a function from F

n
2 to F

m
2 which maps x

to z(x) = (z0, . . . , zm−1), where zi := 〈ui, x〉 + 〈wi, Ed(x)〉 for all i. The idea of
the multidimensional ZC distinguisher is that the output of this function follows
the multivariate hypergeometric distribution, whereas the m-tuples of bits drawn
at random from a uniform distribution on F

m
2 follow a multinomial distribution

[7]. For sufficiently large N , we distinguish Ed from a random permutation as
follows.

We initialize 2m counters V [z] to zero, z ∈ F
m
2 . Then, for each of the N pairs

(x, y), we compute zi = 〈ui, x〉 + 〈wi, y〉 for all i = 0, . . . , 2m − 1, and increment
V [z] where z = (z0, . . . , zm−1). Finally, we compute the following statistic:

T =
N · 2m

1 − 2−m

2m−1∑
z=0

(
V [z]
N

− 1
2m

)2

. (4)

For the pairs (x, y) derived from Ed, i.e., y = Ed(x), the statistic T follows a
χ2-distribution with mean μ0 = (l−1) 2

n−N
2n−1 and variance σ2

0 = 2(l−1)(2
n−N
2n−1 )2.
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However, it follows a χ2-distribution with mean μ1 = (l − 1) and variance σ2
1 =

2(l − 1) for a random permutation [7]. By defining a decision threshold τ =
μ0 + σ0Z1−α = μ1 − σ1Z1−β , the output of test is ‘cipher’, i.e., the pairs are
derived from Ed, if T ≤ τ . Otherwise, the output of the test is ‘random’.

This test may wrongfully classify Ed as a random permutation (type-I error)
or may wrongfully accept a random permutation as Ed (type-II error). Let the
probability of the type-I and type-II errors be α and β. Then, the number of
required pairs N to successfully distinguish Ed from a random permutation is
[7]:

N =
2n(Z1−α + Z1−β)√

l/2 − Z1−β

, (5)

where Z1−α, and Z1−β are respective quantiles of the standard normal distribu-
tion. Thus, the data complexity of the multidimensional ZC attack depends on
the number of ZC approximations, l = 2m, and the error probabilities α and β.

To mount a key recovery based on a multidimensional ZC distinguisher for
Ed, we extend Ed by a few rounds at both ends, E = Ef ◦ Ed ◦ Eb. Given N
plaintext/ciphertext pairs (p, c = E(p)), we can recover the key in two steps:

– Step 1: Guess-and-filter. We guess the value of involved key bits in Eb (Ef)
and partially encrypt (decrypt) the plaintexts (ciphertexts) to derive N pairs
(x, y) for the input x = Eb(p) and output y = E−1

f (c) of Ed. Assuming that
wrong keys yield pairs (x, y) randomly chosen from F

2n
2 , we use the statistic

T to discard all keys for which T ≤ τ .
– Step 2: Exhaustive Search. Finally, we exhaustively search the remaining key

candidates to find the correct key.

The time complexity of the guess-and-filter step depends on the number of
pairs N and the size of involved key bits in Eb and Ef. Given that typically a
subset of internal variables is involved in the partial encryptions/decryptions,
we can take advantage of the partial sum technique [16] to reduce the time
complexity of the guess-and-filter step. Moreover, by adjusting the value of α
and β, we can make a trade-off between the time and data complexities as α and
β affect the data, and β influences the time complexity of the exhaustive search.

2.3 Relation Between the Zero-Correlation and Integral Attacks

Bogdanov et al. [7] showed that an integral distinguisher1 always implies a ZC
distinguisher, but its converse is true only if the input and output linear masks
of the ZC distinguisher are independent. Later, Sun et al. [41] proposed the
following theorem that the conditions for deriving an integral distinguisher from
a ZC linear hull in [7] can be removed.

Theorem 1 (Sun et al. [41]). Let F : F
n
2 → F

n
2 be a vectorial Boolean func-

tion. Assume A is a subspace of F
n
2 and β ∈ F

n
2 \ {0} such that (α, β) is a ZC

1 Under the definition that integral property is a balanced vectorial Boolean function.
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approximation for any α ∈ A. Then, for any λ ∈ F
n
2 , 〈β, F (x + λ)〉 is balanced

over the set
A⊥ = {x ∈ F

n
2 | ∀ α ∈ A : 〈α, x〉 = 0}.

According to Theorem 1, the data complexity of the resulting integral distin-
guisher is 2n−m, where n is the block size and m is the dimension of the linear
space spanned by the input linear masks in the corresponding ZC linear hull.

At ToSC 2019, Ankele et al. [1] considered the effect of the tweakey on ZC
distinguishers of tweakable block ciphers (TBCs). They showed that taking the
tweakey schedule into account can lead to a longer ZC distinguisher and thus
a longer integral distinguisher. They proposed Theorem 2, which provides an
algorithm to find ZC linear hulls for TBCs following the super-position tweakey
(STK) construction of the tweakey framework [24] (see Fig. 2).

Theorem 2 (Ankele et al. [1]). Let EK(T, P ) : F
t×n
2 → F

n
2 be a TBC follow-

ing the STK construction. Assume that the tweakey schedule of EK has z parallel
paths and applies a permutation h on the tweakey cells in each path. Let (Γ0, Γr)
be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents a pos-
sible sequence for the intermediate linear masks. If there is a cell position i such
that any possible sequence Γ0[i], Γ1[h−1(i)], Γ2[h−2(i)], . . . Γr[h−r(i)] has at most
z linearly active cells, then (Γ0, Γr) yields a ZC linear hull for r rounds of E.

Fig. 2. The STK construction of the tweakey framework.

Ankele et al. used Theorem 2 to manually find ZC linear hulls for several
twekable block ciphers including SKINNY, QARMA [2], and MANTIS[3]. Later,
Hadipour et al. [22] proposed a bitwise automatic method based on SAT to search
for ZC linear hulls of tweakable block ciphers. This automatic method was then
reused by Niu et al. [34] to revisit the ZC linear hulls of SKINNY-64-{128,192}.

2.4 Constraint Satisfaction and Constraint Optimization Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. More formally,
a CSP is a triple (X ,D, C), where X = {X0,X1, . . . , Xn−1} is a set of variables;
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D = {D0,D1, . . . ,Dn−1} is the set of domains such that Xi ∈ Di, 0 ≤ i ≤ n − 1;
and C = {C0, C1, . . . , Cn−1} is a set of constraints. Each constraint Cj ∈ C is a
tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1} ⊆ X and Rj is a relation on the
corresponding domains, i.e., Rj ⊆ Di0 × · · · × Dik−1 .

Any value assignment of the variables satisfying all constraints of a CSP
problem is a feasible solution. The constraint optimization problem extends the
CSP problem by including an objective function to be minimized (or maximized).
Searching for the solution of a CSP or COP problem is referred to as constraint
programming (CP), and the solvers performing the search are called CP solvers.

In this paper, we use MiniZinc [33] to model and solve the CSP and COP
problems over integer and real numbers. MiniZinc allows modeling the CSP and
COP problems in a high-level and solver-independent way. It compiles the model
into FlatZinc, a standard language supported by a wide range of CP solvers.
For CSP/COP problems over integer numbers, we use Or-Tools [35], and for
CSP/COP problems over real numbers, we employ Gurobi [17] as the solver.

2.5 Encoding Deterministic Truncated Trails

Here, we recall the method proposed in [42] to encode deterministic truncated
differential trails. Thanks to the duality relation between differential and linear
analysis, one can adjust this method for deterministic truncated linear trails;
thus, we omit the details for the linear trails. We define two types of variables
to encode the deterministic truncated differential trails. Assume that ΔX =
(ΔX[0], . . . ,ΔX[m − 1]) represents the difference of the internal state X in an
n-bit block cipher E, where n = m · c, and ΔX[i] ∈ F

c
2 for all i = 0, . . . ,m − 1.

We use an integer variable AX[i] to encode the activeness pattern of ΔX[i] and
another integer variable DX[i] to encode the actual c-bit difference value of ΔX[i]:

AX[i] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ΔX[i] = 0

1 ΔX[i] is nonzero and fixed

2 ΔX[i] can be any nonzero value

3 ΔX[i] can take any value

DX[i] ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} AX[i] = 0

{1, . . . , 2c−1} AX[i] = 1

{−1} AX[i] = 2

{−2} AX[i] = 3

Then, we link AX[i] and DX[i] for all i = 0, . . . , m − 1 as follows:

Link(AX[i], DX[i]) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if AX[i] = 0 then DX[i] = 0

elseif AX[i] = 1 then DX[i] > 0

elseif AX[i] = 2 then DX[i] = −1

else DX[i] = −2 endif

MiniZinc supports conditional expression ‘if-then-else-endif ’, so we do not need
to convert to integer inequalities. Next, we briefly explain the propagation rules of
deterministic truncated differential trails.

Proposition 1 (Branching). For F : F
c
2 → F

2c
2 , F (X) = (Y, Z) where Z = Y = X,

the valid transitions for deterministic truncated differential trails satisfy

Branch(AX, DX, AY, DY, AZ, DZ) := (AZ = AX ∧ DZ = DX ∧ AY = AX ∧ DY = DX)
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Proposition 2 (XOR). For F : F
2c
2 → F

c
2, F (X, Y ) = Z where Z = X ⊕ Y , the

valid transitions for deterministic truncated differential trails satisfy

XOR(AX, DX, AY, DY, AZ, DZ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if AX + AY > 2 then AZ = 3 ∧ DZ = −2

elseif AX + AY = 1 then AZ = 1 ∧ DZ = DX + DY

elseif AX = AY = 0 then AZ = 0 ∧ DZ = 0

elseif DX + DY < 0 then AZ = 2 ∧ DZ = −1

elseif DX = DY then AZ = 0 ∧ DZ = 0

else AZ = 1 ∧ DZ = DX ⊕ DY endif

Proposition 3 (S-box). Assume that S : F
c
2 → F

c
2 is a c-bit S-box and Y = S(X).

The valid transitions for deterministic truncated differential trails satisfy

S-box(AX, AY) :=(AY �= 1 ∧ AX + AY ∈ {0, 3, 4, 6} ∧ AY ≥ AX ∧ AY − AX ≤ 1)

For encoding the MDS matrices, see [21, B]. To encode non-MDS matrices, such as
the matrix employed in SKINNY, as described in [21, D], we can use the rules of XOR
and branching to encode the propagation.

3 Modeling the Distinguishers

Although the key recovery of ZC and ID attacks are different, the construction of
ZC and ID distinguishers relies on the same approach, which is the miss-in-the-middle
technique [5,6]. The idea is to find two differences (linear masks) that propagate halfway
through the cipher forward and backward with certainty but contradict each other in
the middle. The incompatibility between these propagations results in an impossible
differential (resp. unbiased linear hull).

Suppose we are looking for an ID or ZC distinguisher for Ed, which represents rd
rounds of a block cipher E. Moreover, we assume that the block size of E is n bits,
where n = m · c with c being the cell size and m being the number of cells. We convert
the miss-in-the-middle technique to a CSP problem to automatically find ID and ZC
distinguishers. We first divide Ed into two parts, as illustrated in Fig. 3: An upper part
Eu covering ru rounds and a lower part El of rl rounds. Hereafter, we refer to the trails
discovered for Eu (El) as the upper (lower) trail. We denote the internal state of Eu

(El) after r rounds by XUr (XLr). The state XUru (or XL0) at the intersection of Eu

and El is called the meeting point.
Let AXUr and AXLr denote the activeness pattern of the state variables XUr

and XLr, as shown in Fig. 3. Let DXUr and DXLr denote the actual difference val-
ues in round r of Eu and El. We encode the deterministic truncated differen-
tial trail propagation through Eu and El in opposite directions as two indepen-
dent CSP problems using the rules described in Sect. 2.5. We exclude trivial solu-
tions by adding the constraints

∑m−1
i=0 AXU0[i] �= 0 and

∑m−1
i=0 AXLrl �= 0. Let

CSPu(AXU0, DXU0, . . . , AXUru , DXUru) be the model for propagation of deterministic trun-
cated trails over Eu and CSPl(AXL0, DXL0, . . . , AXLrl , DXLrl) for E−1

l .
The last internal state in Eu and the first internal state of El overlap at the meet-

ing point as they correspond to the same internals state. We define some additional
constraints to ensure the incompatibility between the deterministic differential trails
of Eu and El at the position of the meeting point:
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Fig. 3. Modeling the miss-in-the-middle technique as a CSP problem

CSPM (AXUrl , DXUrl , AXL0, DXL0) :=

m−1∨

i=0

⎛

⎜
⎝

(AXUru [i] + AXL0[i] > 0) ∧
(AXUru [i] + AXL0[i] < 3) ∧
AXUru [i] �= AXL0[i]

⎞

⎟
⎠ ∨

m−1∨

i=0

⎛

⎜
⎝

AXUru [i] = 1 ∧
AXL0[i] = 1 ∧
DXUru [i] �= DXL0[i]

⎞

⎟
⎠ = True

(6)

The constraints included in CSPM guarantee the incompatibility between the upper
and lower deterministic trails in at least one cell at the meeting point. Lastly, we define
CSPd := CSPu ∧ CSPl ∧ CSPM , which is the union of all three CSPs. As a result, any
feasible solution of CSPd corresponds to an impossible differential. We can follow the
same approach to find ZC distinguishers.

Although we encode the deterministic truncated trails in the same way as [42],
our method to search for distinguishers has some important differences. Sun et al. [42]
solves CSPu and CSPl separately through a loop where the activeness pattern of a cell at
the meeting point is fixed in each iteration. The main advantage of our model is that
any solutions of CSPd corresponds to an ID (or ZC) distinguisher. In addition, we do
not constrain the value of our model at the input/output or at meeting point. These
key feature enables us to extend our model for the key recovery and build a unified
COP for finding the nearly optimum ID and ZC attacks in the next sections.

We showed how to encode and detect the contradiction in the meeting point. How-
ever, the contradiction may occur in other positions, such as in the tweakey schedule
(see Theorem 2), leading to longer distinguishers. Next, we show how to generalize
this approach to detect the contradiction in the tweakey schedule while searching for
ZC-integral distinguishers according to Theorem 2.

Consider a block cipher E that follows the STK construction with z parallel inde-
pendent paths in the tweakey schedule. Assume that E applies the permutation h to
shuffle the position of cells in each path of tweakey schedule. Let STKr[i] be the ith
cell of subtweakey after r rounds. For all i = 0, . . . , m−1, we define the integer variable
ASTKr[i] ∈ {0, 1, 2, 3}, to indicate the activeness pattern of STKr[i]. Then we define the
following constraints to ensure that there is a contradiction in the tweakey schedule
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and the condition of Theorem 2 holds:

CSPTK(ASTK0, . . . , ASTKrd−1) :=

m−1∨

i=0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

rd−1∑

r=0

bool2int
(
ASTKr[h

−r(i)] �= 0
) ≤ z

∧
rd−1∨

r=0

(
ASTKr[h

−r(i)] = 1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∨
(

rd−1∧

r=0

ASTKr[h
−r(i)] = 0

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(7)

Equation 7 guarantees that at least one path of the tweakey schedule has at most
z active cells, or it is totally inactive. Finally, we create the CSP problem CSPd :=
CSPu ∧ CSPl ∧ CSPTK to find ZC distinguishers of tweakable block ciphers taking the
tweakey schedule into account. According to Eq. 7, if the sequence of linear masks in the
involved tweakey lane has z non-zero values, i.e., {1, 2}, then at least one of the taken
non-zero values should be 1. We also practically verified on reduced-round examples
that this condition is indeed necessary to obtain valid ZC-integral distinguishers. This
essential condition is ignored in [48]; unfortunately, their claimed distinguishers (and
hence their attacks) are invalid. We contacted the authors of [48], and they confirmed
our claim.

In our model for distinguisher, we assume that the round keys are independent.
Thus, our method regards even those differential or linear propagations over multiple
rounds that cannot occur due to the global dependency between the round keys as
possible propagations. We also consider the S-box as a black box and do not exploit its
internal structure. As a result, regardless of the (twea)key schedule and the choice of
S-box, the ID/ZC/Integral distinguishers discovered by our method are always valid.

Before extending our models for key recovery, we first show some of the interesting
features of our new model for distinguishers. We can optimize the desired property by
adding an objective function to our CSP models for finding distinguishers. According
to Theorem 1, maximizing the number of active cells at the input of the ZC linear
hull is equivalent to minimizing the data complexity of the corresponding integral dis-
tinguisher. Therefore, we maximize the integer addition of the activeness pattern at
the input of the ZC-Integral distinguisher. Thanks to this feature, we discovered many
practical integral distinguishers for reduced-round Deoxys-BC, SKINNY, SKINNYe-v2,
SKINNYee, and CRAFT. Table 3 briefly describes the specification of our integral dis-
tinguishers for five ciphers. We note that finding integral distinguishers with minimum
data complexity is a challenging task using division property [15,44] or monomial pre-
diction [19,23], especially when the block cipher employs large S-boxes. However, our
tool can find integral distinguishers with low data complexity by only one iteration
that takes a few seconds on a regular laptop. For a more detailed comparison between
our method and monomial prediction or division property, see [21, M].

4 Modeling the Key Recovery for Impossible Differentials

In this section, we present a generic framework which receives four integer numbers
(rb, ru, rl, rf) specifying the lengths of each part in Fig. 1, and outputs an optimized
full ID attack for r = rb + ru + rl + rf rounds of the targeted block cipher. To this
end, we extend the CSP model for ID distinguishers in Sect. 3 to make a unified COP
model for finding an optimized full ID attack taking all critical parameters affecting
the final complexity into account.
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Table 3. Summary of integral distinguishers for some ciphers, cell size c ∈ {4, 8}.

Cipher #Rounds Data complexity Ref

SKINNY-n-n 10/11/12 25·c/28·c/213·c [21, J]

SKINNY-n-2n 12/13/14 26·c/29·c/214·c [21, J]

SKINNY-n-3n 14/15/16 27·c/210·c/215·c [21, J]

SKINNYe-v2/SKINNYee 16/17/18 232/244/264 [21, J]

CRAFT 12/13/14/15 228/244/256/264 [21, K.4]

Deoxys-BC-256 5/6 224/256 [21, L]

Deoxys-BC-384 6/7 232/264 [21, L]

Before discussing our framework, we first reformulate the complexity analysis of
the ID attack to make it compatible with our COP model. Suppose that the block size
is n bits and the key size is k bits. Let N be the number of pairs generated in the
pair generation phase, and P represents the probability that a wrong key survives the
guess-and-filter step. According to Sect. 2.1, P = (1−2−(cb+cf))N . Let g be the number
of key bits we can retrieve through the guess-and-filter step, i.e., P = 2−g. Since P < 1

2
,

we have 1 < g ≤ |kb ∪ kf|. Assuming that (1 − 2−(cb+cf))N ≈ e−N·2−(cb+cf)
, we have

N = 2cb+cf+log2(g)−0.53. Moreover, suppose that LG(g) = log2(g) − 0.53. Therefore, we
can reformulate the complexity analysis of the ID attack as follows:

T0 = max

⎧
⎨

⎩

min
Δ∈{Δb,Δf}

{2
cb+cf+n+1−|Δ|+LG(g)

2 },

2cb+cf+n+1−|Δb|−|Δf|+LG(g)

⎫
⎬

⎭
, T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2) CE′ + T3) CE , Ttot < 2k,

Mtot = min
{
2cb+cf+LG(g), 2|kb∪kf|}, Mtot < 2k.

(8)

When searching for an optimal full ID attack, we aim to minimize the total time
complexity while keeping the memory and data complexities under the threshold values.
As can be seen in Eq. 8, cb, cf, |Δb|, |Δf|, and |kb∪kf|, are the critical parameters which
directly affect the final complexity of the ID attack. To determine (cb, |Δb|), we need to
model the propagation of truncated differential trails through Eb, taking the probability
of all differential cancellations into account. To determine kb, we need to detect the
state cells whose difference or data values are needed through the partial encryption
over Eb. The same applies for partial decryption over E−1

f to determine cf, |Δf|, kf.
Moreover, to determine the actual size of kb∪kf, we should take the (twea)key schedule
and key-bridging technique into account.

4.1 Overview of the COP Model

Our model includes several components:

– Model the distinguisher as in Sect. 3. Unlike the previous methods, our model
imposes no constraints on the input/output of the distinguisher.
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– Model the difference propagation in outer parts for truncated trails Δb
E−1

b←−−−
Δu and Δl

Ef−−→ Δf with probability one. Unlike our model for the distinguisher part,
where we use integer variables with domain {0, . . . , 3}, here, we only use binary vari-
ables to encode active/inactive cells. We also model the number of filters cb and cf

using new binary variables and constraints to encode the probability of Δb
Eb−−→ Δu

and Δl
E−1

f←−−− Δf.
– Model the guess-and-determine in outer parts. In this component, we model

the determination relationships over Eb and Ef to detect the state cells whose
difference or data values must be known for verifying the differences Δu, and Δl.
Moreover, we model the relation between round (twea)keys and the internal state to
detect the (twea)key cells whose values should be guessed during the determination
of data values over Eb, and Ef.

– Model the key bridging. In this component, we model the (twea)key schedule
to determine the number of involved sub-(twea)keys in the key recovery. For this,
we can use the general CP-based model for key-bridging proposed by Hadipour
and Eichlseder in [18], or cipher-dedicated models.

– Model the complexity formulas. In this component, we model the complexity
formulas in Eq. 8 with the following constraints:

D[0] :=minΔ∈{Δb,Δf}{ 1
2
(cb + cf + n + 1 − |Δ| + LG(g))},

D[1] :=cb + cf + n + 1 − |Δb| − |Δf| + LG(g),

T[0] :=max {D[0], D[1]} , T[0] < n,

T[1] :=cb + cf + LG(g), T[2] := |kb ∪ kf| + LG(g), T[3] :=k − g,

T :=max{T[0], T[1], T[2], T[3]}, T < k.

(9)

Lastly, we set the objective function to Minimize T.

All variables in our model are binary or integer variables with a limited domain
except for D and T[i] for i ∈ {0, 1, 2, 3} in Eq. 9, which are real numbers. MiniZinc
and many MILP solvers such as Gurobi support max, and min operators. We also
precompute the values of LG(g) with 3 floating point precision for all g ∈ {2, . . . , k},
and use the table feature of MiniZinc to model LG(g). As a result, our COP model
considers all the critical parameters of the ID attacks. We recall that the only inputs
of our tool are four integer numbers to specify the lengths of Eb, Eu, El, and Ef. So,
one can try different lengths for these four parts to find a nearly optimal attack. We
can also modify the objective function of our model to minimize the data or memory
complexities where time or any other parameter is constrained. One can extend this
single-tweakey model for the related-tweakey setting, as we will show next.

4.2 Detailed Model for SKINNY

Next, we show in more detail how to perform each step. To this end, we build the COP
model for finding full related-tweakey ID attacks on SKINNY as an example. We choose
the largest variant of SKINNY, i.e., SKINNY-n-3n with cell size c ∈ {4, 8} to explain
our model (see [21, C] for the cipher specification). In what follows, given four integer
numbers rb, ru, rl, rf, we model the full ID attack on r = rb + ru + rl + rf rounds of
SKINNY, where rd = ru + rl is the length of the distinguisher and rb, and rf are the
lengths of extended parts in backward and forward directions, respectively.
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Model the Distinguisher. We first model the difference propagation through the
tweakey schedule of SKINNY. For the tweakey schedule of SKINNY, we can either use
the word-wise model proposed in [3] or a bit-wise model (see Algorithm 1). Here, we
explain the bit-wise model. The tweakey path of TK1 only shuffles the position of
tweakey cells in each round. Thus, for tweakey path TK1, we only define the integer
variable DTK1[i] to encode the c-bit difference in the ith cell of TK1. For tweakey path
TKm, where m ∈ {2, 3}, we define the integer variables DTKmr[i] to encode the c-bit
difference value in the ith cell of TKmr, where 0 ≤ i ≤ 15. We also define the integer
variables ASTKr[i] and DSTKr[i] to encode the activeness pattern as well as the c-bit
difference value in the ith cell of STKr. Our CSP model for the tweakey schedule
of SKINNY is a bit-wise model. We use the table feature of MiniZinc to encode the
LFSRs. To this end, we first precompute the LFSR as a lookup table and then constrain
the variables at the input/output of LFSR to satisfy the precomputed lookup table.
This approach is applicable for encoding any function that can be represented as an
integer lookup table, such as DDT/LAT of S-boxes. We tested word-wise and bit-wise
models and found the word-wise model more efficient.

Algorithm 1: CSP model for the tweakey schedule of SKINNY

Input: Four integer numbers (rb, ru, rl, rf)
Output: CSPDTK

1 R ← rb + ru + rl + rf − 1;
2 Declare an empty CSP model M;
3 M.var ← {DTK1[i] ∈ {0, . . . , 2c − 1} : 0 ≤ i ≤ 15};
4 M.var ← {DTK2r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
5 M.var ← {DTK3r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
6 M.var ← {ASTKr[i] ∈ {0, 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
7 M.var ← {DSTKr[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
8 for r = 0, . . . , R; i = 0, . . . , 7 do
9 M.con ← Link(ASTKr[i], DSTKr[i]);

10 for r = 1, . . . , R; i = 0, . . . 15 do
11 if i ≤ 7 then
12 M.con ← table([DTK2r−1[h(i)], DTK2r[i]], lfsr2);
13 M.con ← table([DTK3r−1[h(i)], DTK3r[i]], lfsr3);

14 else
15 M.con ← DTK2r[i] = DTK2r−1[h(i)];
16 M.con ← DTK3r[i] = DTK3r−1[h(i)];

17 for r = 0, . . . , R; i = 0, . . . 7 do
18 M.con ← DSTKr[i] = DTK1[hr(i)] ⊕ DTK2r[i] ⊕ DTK3r[i];

19 return M;

In the data path of SKINNY, SubCells, AddRoundTweakey, and MixColumns can
change the activeness pattern of the state while propagating the deterministic differ-
ences. Thus, for the internal state before and after these basic operations, we define
two types of variables to encode the activeness pattern and difference value in each
state cell. Next, as described in Algorithm 2 and [21, algorithm 6], we build CSPu
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and CSPl. We also build the CSPM according to Eq. 6. The combined CSP model is
CSPd := CSPu ∧CSPl ∧CSPM ∧CSPDTK . Hence, any feasible solution of CSPd corresponds
to a related-tweakey ID distinguisher for SKINNY-n-3n. By setting DTK30 in Algorithm
1 to zero, we can find related-tweakey ID distinguishers for SKINNY-n-2n. We can also
set DTK1, DTK20, DTK30 in Algorithm 1 to zero to find single-tweakey ID distinguishers
of SKINNY.

Algorithm 2: CSPu for upper trail in distinguisher of SKINNY

Input: CSPDTK .var and the integer numbers rb, ru
Output: CSPu

1 roff ← rb;
2 Declare an empty CSP model M;
3 M.var ← CSPDTK .var;
4 M.var ← {AXUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
5 M.var ← {DXUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
6 M.var ← {AYUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
7 M.var ← {DYUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
8 M.var ← {AZUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
9 M.var ← {DZUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};

10 M.con ← ∑15
i=0 AXU0[i] +

∑15
i=0 DTK1[i] +

∑15
i=0 DTK20 +

∑15
i=0 DTK30[i] ≥ 1;

11 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
12 M.con ←Link(AXUr[i],DXUr[i]) ∧ Link(AYUr[i],DYUr[i]) ∧ Link(AZUr[i],DZUr[i]);

13 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
14 M.con ← S-box(AXUr[i], AYUr[i]);

15 for r = 0, . . . , ru − 1, i = 0, . . . , 7 do
16 M.con ← XOR(AXUr[i], DXUr[i], ASTKroff+r[i], DSTKroff+r[i], AZUr[i], DZUr[i]);
17 M.con ← (AZUr[i + 8] = AYUr[i + 8]) ∧ (DZUr[i + 8] = DYUr[i + 8]);

18 for r = 0, . . . , ru − 1, i = 0, . . . , 3 do
19 I1 ← [AZUr[P [i]], AZUr[P [i + 4]], AZUr[P [i + 8]], AZUr[P [i + 12]]];
20 I2 ← [DZUr[P [i]], DZUr[P [i + 4]], DZUr[P [i + 8]], DZUr[P [i + 12]]];
21 O1 ← [AXUr+1[i], AXUr+1[i + 4], AXUr+1[i + 8], AXUr+1[i + 12]];
22 O2 ← [DXUr+1[i], DXUr+1[i + 4], DXUr+1[i + 8], DXUr+1[i + 12]];
23 M.con ← Mdiff (I1, I2, O1, O2);

24 return M;

The first operation in the round function of SKINNY is SubCells. However, we
can consider the first SubCells layer as a part of Eb and start the distinguisher
after it. This way, our model takes advantage of the differential cancellation over the
AddRoundTweakey and MixColumns layers to derive longer distinguishers. It happens if
the input differences in the internal state (or tweakey paths) are fixed and can cancel
out each other through AddRoundTweakey or MixColumns. In this case, we skip the
constraints in line 14 of Algorithm 2 for the first round, r = 0.

Model the Difference Propagation in Outer Parts. To model the deter-

ministic difference propagations Δb
E−1

b←−−− Δu, and Δl
Ef−−→ Δf, we define a binary
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variable for each state cell to indicate whether its difference value is zero. Since the
SubCells layer does not change the status of state cells in terms of having zero/nonzero
differences, we ignore it in this model.

To model the probability of difference propagations Δb
Eb−−→ Δu, and Δl

E−1
f←−−− Δf,

note that there are two types of probabilistic transitions. The first type is differential
cancellation through an XOR operation. The second type is any differential transi-

tion (truncated
S−→ fixed) for S-boxes; this is only considered at the distinguisher’s

boundary, at the first S-box layer of Ef or the last of Eb.
Let Z = X ⊕ Y , where X, Y, Z ∈ F

c
2. Let AX, AY, AZ ∈ {0, 1} indicate whether the

difference of X, Y, Z are zero. We define the new constraint XOR1 to model the difference
propagation with probability one through XOR:

XOR1(AX, AY, AZ) := (AZ ≥ AX) ∧ (AZ ≥ AY) ∧ (AZ ≤ AX + AY) (10)

We define a binary variable CBr[i] (CFr[i]) for each XOR operation in the rth round
of Eb (resp. Ef) to indicate whether there is a difference cancellation over the corre-
sponding XOR, where 0 ≤ i ≤ 19. We also define the following constraint to encode
the differential cancellation for each XOR operation:

XORp(AX, AY, AZ, CB) := if (AX + AY = 2 ∧ AZ = 0) then CB = 1 else CB = 0 (11)

Algorithm 3 and [21, algorithm 7] describe our model for difference propagation over
Eb and Ef. We combine CSP

dp
b and CSP

dp
f into CSPDP := CSP

dp
b ∧ CSP

dp
f to model the

difference propagation through the outer parts.

Model the Guess-and-Determine in Outer Parts. We now detect the state
cells whose difference or value is needed for the filters in Δb → Δu and Δl ← Δf.

We first discuss detecting the state cells whose difference values are needed. The
difference value in a state cell is needed if the corresponding state cell contributes to a
filter, i.e., a differential cancellation. We know that AddRoundTweakey and MixColumns
are the only places where a differential cancellation may occur. We thus define the
binary variables KDXBr[i] and KDZBr[i] to indicate whether the difference value of Xr[i]
and Zr[i] over Eb should be known. We recall that the difference cancellation through
each XOR over Eb is already encoded by CBr[i]. If CBr[i] = 1, then the difference value
in the state cells contributing to this differential cancellation is needed. For instance,
if CBr[i] = 1, then KDZBr[P [i + 4]] = 1 and KDZBr[P [i + 4]] = 1, where 0 ≤ i ≤ 3 and
0 ≤ r ≤ ru −1. Besides detecting the new state cells whose difference values are needed
in each round, we encode the propagation of this property from the previous rounds,
as in lines 14–17 of Algorithm 4. We also define new constraint (line 11) to link the
beginning of Eu to the end of Eb. For Ef, we also define new binary variables KDXFr[i]
and KDZFr[i] to indicate whether the difference values of Xr[i] and Zr[i] are needed.
Then, we follow a similar approach to model the determination of difference values.

When modeling the determination of data values, SubCells comes into effect. We
explain modeling the determination of data values over S-boxes in Eb; a similar model
can be used for Ef. Suppose that Yr[i] = S(Xr[i]), and the value of ΔXr is known. If
we want to determine the value of ΔYr[i], e.g., to check a filter, we need to know the
value of Xr[i]. Accordingly, we need the value of Xr[i] if either we want to determine
Yr[i], or we want to determine ΔYr[i]. On the other hand, if neither data nor difference
values after the S-box is needed, we do not need to know the data value before the
S-box. Therefore, we define binary variables KXBr[i] and KYBr[i] to indicate whether the
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Algorithm 3: CSPdp
b difference propagation through Eb for SKINNY

Input: CSPDTK .var, CSPu.var and the integer number rb
Output: CSPdp

b

1 Declare an empty CSP model M;
2 M.var ← CSPDTK .var;
3 M.var ← {AXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var ← {AZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var ← {CBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 19};
6 for i = 0, . . . , 15 do
7 M.con ← if AXU0[i] ≥ 1 then AXBrb [i] = 1 else AXBrb [i] = 0;

8 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

9 M.con ← Minvdiff1

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

AXBr+1[i]
AXBr+1[i + 4]
AXBr+1[i + 8]
AXBr+1[i + 12]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

AZBr[P [i]]
AZBr[P [i + 4]]
AZBr[P [i + 8]]
AZBr[P [i + 12]]

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠;

10 M.con ← XORp(AZBr[P [i + 4]], AZBr[P [i + 8]], AXBr+1[i + 8], CBr[i]);
11 M.con ← XORp(AZBr[P [i]], AZBr[P [i + 8]], AXBr+1[i + 12], CBr[i + 4]);
12 M.con ← XORp(AXBr+1[i + 12], AZBr[P [i + 12]], AXBr+1[i], CBr[i + 8]);

13 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
14 M.con ← XOR1(AZBr[i], ASTKr[i], AXBr[i]);
15 M.con ← XORp(AXBr[i], ASTKr[i], AZBr[i], CBr[i + 12]);
16 M.con ← (AXBr[i + 8] = AZBr[i + 8]);

17 return M;

values of Xr[i] and Yr[i] are needed. Then, we model the determination flow over the
S-boxes as follows:

S-boxgd(KXBr[i], KYBr[i], KDXBr[i]) :=

{
(KYBr[i] ≥ KXBr[i]) ∧ (KYBr[i] ≥ KDXBr[i])∧
(KYBr[i] ≤ KXBr[i] + KDXBr[i])

We also model MixColumns according to [21, Equation 16] when encoding the determi-
nation of data values over Eb and Ef.

We now explain how to detect the subtweakey cells that are involved in the deter-
mination of data values. Let IKBr[i] be a binary variable that indicates whether the
ith cell of subtweakey in the rth round of Eb is involved, where 0 ≤ r ≤ rb − 1 and
0 ≤ i ≤ 15. One can see that IKBr[i] = 1 if and only if i ≤ 7 and KYBr[i] = 1. Otherwise
IKBr[i] = 0. We define binary variables IKFr[i] to encode the involved subtweakey in
Ef similarly. Algorithm 4 and [21, algorithm 8] describe our CSP models for the guess-
and-determine through Eb and Ef. We refer to CSPGD := CSP

gd
b ∧ CSP

gd
f as our CSP

model for the guess-and-determine through the outer parts.

Model the Key Bridging. Although the subtweakeys involved in Eb and Ef are
separated by rd rounds, they may have some relations due to the tweakey schedule.
Guessing the values of some involved key cells may determine the value of others.
Key-bridging uses the relations between subwteakeys to reduce the number of actual
guessed key variables. We can integrate the generic CSP model for key-bridging over
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Algorithm 4: CSPgd
b guess-and-determine through Eb for SKINNY

Input: CSPu.var, CSP
dp
b and the integer number rb

Output: CSPgd
b

1 Declare an empty CSP model M;

2 M.var ← CSPu.var ∪ CSP
dp
b .var;

3 M.var ← {KDXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.con ← {KDXBr[i] ≤ AXBr[i] : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
5 M.var ← {KDZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
6 M.con ← {KDZBr[i] ≤ AZBr[i] : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
7 M.var ← {KXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
8 M.var ← {KYBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
9 M.var ← {IKBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};

10 for i = 0, . . . , 15 do
11 M.con ← if AXU0[i] = 1 then KDXBrb [i] = 1 else KDXBrb [i] = 0;
12 M.con ← if AYU0[i] = 1 then KXBrb [i] = 1 else KXBrb [i] = 0;

13 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

14 M.con ← if KDXBr+1[i] = 1 then

⎛

⎜
⎝

KDZBr[P [i]] = AZBr[P [i]]∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]∧
KDZBr[P [i + 12]] = AZBr[P [i + 12]]

⎞

⎟
⎠;

15 M.con ← if KDXBr+1[i + 4] = 1 then KDZBr[P [i]] = AZBr[P [i]];

16 M.con ← if KDXBr+1[i + 8] = 1 then

(
KDZBr[P [i + 4]] = AZBr[P [i + 4]]∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]

)

;

17 M.con ← if KDXBr+1[i + 12] = 1 then

(
KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]

)

;

18 M.con ← if CBr[i] = 1 then (KDZBr[P [i + 4]] = 1 ∧ KDZBr[P [i + 8]] = 1);
19 M.con ← if CBr[i + 4] = 1 then (KDZBr[P [i]] = 1 ∧ KDZBr[P [i + 8]] = 1);

20 M.con ← if CBr[i + 8] = 1 then

⎛

⎜
⎝

KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]] ∧
KDZBr[P [i + 12]] = 1

⎞

⎟
⎠;

21 M.con ← Minvdata

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

KXBr+1[i]
KXBr+1[i + 4]
KXBr+1[i + 8]
KXBr+1[i + 12]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

KYBr[P [i]]
KYBr[P [i + 4]]
KYBr[P [i + 8]]
KYBr[P [i + 12]]

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠;

22 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
23 M.con ← KDXBr[i] ≥ KDZBr[i];
24 M.con ← KDXBr[i + 8] = KDZBr[i + 8];
25 M.con ← if CBr[i + 12] = 1 then KDXBr[i] = 1;
26 M.con ← (IKBr[i] = KYBr[i] ∧ IKBr[i + 8] = 0);

27 for r = 0, . . . , rb − 1, i = 0, . . . , 15 do
28 M.con ← S-boxgd(KYBr[i], KXBr[i], KDXBr[i]);

29 return M;
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arbitrary tweakey schedules introduced in [18] into our model. However, the tweakey
schedule of SKINNY is linear, and we provide a more straightforward method to model
the key-bridging of SKINNY. We explain our model for SKINNY-n-3n; it can easily be
adapted for the smaller variants.

For the ith cell of subtweakey after r rounds, we have STKr[i] = TK1[hr(i)] ⊕
LFSRr

2(TK1[hr(i)]) ⊕ LFSRr
3(TK3[hr(i)]). Accordingly, knowing STKr[h

−r(i)] in
3 rounds yields 3 independent equations in variables TK1[i],TK2[i],TK3[i], which
uniquely determine the master tweakey cells TK1[i],TK2[i], and TK3[i]. Hence, we
do not need to guess STKr[h

−r(i)] for more than 3 different rs. To take this fact into
account, we first define new integer variables IK ∈ {0, . . . , rb + rf − 1}, KE ∈ {0, 1, 2, 3},
and KS ∈ {0, . . . , 48}. Then, assuming that roff = rb + ru + rl and z = 3, we use the
following constraints to model the key-bridging:

CSPKB :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

IK[i] =

rb−1∑

r=0

IKBr[h
−r(i)] +

rf−1∑

r=0

IKFr[h
−(roff+r)(i)] for 0 ≤ i ≤ 15,

if IK[i] ≥ z then KE[i] = z else KE[i] = IK[i] for 0 ≤ i ≤ 15,

KS =
15∑

i=0

KE[i]

(12)

Model the Complexity Formulas. We now show how to combine all CSP models
and model the complexity formulas. The variable KS in Eq. 12 determines the number
of involved key cells, corresponding to |kb ∪ kf| = c · KS involved key bits for cell size c.
We can model the other critical parameters of the ID attack as shown in Algorithm 5.
We combine all CSP problems into a unified model and define an objective function to
minimize the time complexity of the ID attack.

Results. We applied our method to find full ID attacks on all variants of SKINNY in
both single and related-tweakey settings. Our model includes integer and real variables,
so we used Gurobi to solve the resulting COP problems. Table 1 shows our results. Our
ID attacks’ time, date, and memory complexity are much smaller than the best previous
ID attacks. Notably, the time complexity of our 19-round single-tweakey ID attack on
SKINNY-128-256 ([21, Figure 8], details in [21, F.2]) is smaller by a factor of 222.57

compared to the best previous one [47]. As another example, we improved the time
complexity of the related-tweakey ID attack on SKINNY-128-384 by a factor of 215.39

[21, Figure 10], with smaller data and memory complexity than the best previous one
[27]. Our tool can discover the longest ID distinguishers for SKINNY so far in both
single and related-tweakey settings. However, we noticed that the best ID attacks do
not necessarily rely on the longest distinguishers. For instance, our single-tweakey ID
attacks on SKINNY use 11-round distinguishers, whereas our tool also finds 12-round
distinguishers.

We also applied our tool to CRAFT and SKINNYee. On CRAFT, we found a 21-
round ID attack which is 2 rounds longer than the best previous single-tweakey attack
presented at ASIACRYPT 2022 [40]. For SKINNYee, we found a 27-round related-
tweakey ID attack. Our tool can produce all the reported results on a laptop in a few
seconds. Besides improving the security evaluation against ID attacks, our tool can
significantly reduce human effort and error.
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We also used our tool to check the validity of the previous results. To do so, we
fix the activeness pattern in our model to that at the input/output of the claimed
distinguisher. Moreover, we constrain the time, memory, and data complexities to the
claimed bounds. An infeasible model indicates potential issues with the claimed attack.
We manually check the attack to find the possible issue in this case. If the model is
feasible, we match the claimed critical parameters with the output of our tool. In case
of any mismatch, we manually check the corresponding parameter in the claimed attack
to ensure it is calculated correctly.

We followed this approach to check the validity of the ID attacks on SKINNY
proposed in [45]. For example, our tool returns ‘unsatisfiable’ when we limit it to find
a 22-round ID attack on SKINNY-n-3n with the claimed parameters in [45]. To figure
out the issue, we relax the time/memory/data complexity bounds and only fix the
activeness pattern according to the claimed distinguisher. This way, our tool returns
different attack parameters compared to the claimed ones. According to [45, Sec. 6],
cb + cf is supposed to be 18c for 22-round ID attack on SKINNY-n-3n with cell size c.
However, our tool returns cb = 6c and cf = 15c, and thus cb + cf = 21c. Accordingly,

Algorithm 5: COP model for the full ID attack on SKINNY

Input: Four integer numbers rb, ru, rl, rf
Output: COP

1 Declare an empty COP model M;
2 M ← CSPd ∧ CSPDP ∧ CSPGD ∧ CSPKB;
3 M.var ← g ∈ {1, . . . , z · 16 · c} ; /* Corresponding to parameter g */

4 M.var ← Cb ∈ {0, . . . , 20 · rb + 16} ; /* Corresponding to cb */

5 M.var ← Cf ∈ {0, . . . , 20 · rf + 16} ; /* Corresponding to cf */

6 M.var ← Wb ∈ {0, . . . , 16} ; /* Corresponding to |Δb| */

7 M.var ← Wf ∈ {0, . . . , 16} ; /* Corresponding to |Δf| */

8 M.var ← {D[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For data complexity */

9 M.var ← {T[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For time complexity */

10 M.var ← Tmax ∈ [0, z · 16 · c];
11 M.var ← Cb =

∑rb−1
r=1

∑19
i=0 CBr[i] +

∑15
i=0 KXBrb [i];

12 M.var ← Cf =
∑rf−2

r=0

∑19
i=0 CFr[i] +

∑7
i=0 CFrf−1[i] +

∑15
i=0 KXF0[i];

13 M.var ← Wb =
∑15

i=0 AXB1[i];

14 M.var ← Wf =
∑15

i=0 AXFrf−1[i];
15 M.con ← D[0] = 0.5 · (c(Cb + Cf) + n − c · Wb + LG(g) + 2);
16 M.con ← D[1] = 0.5 · (c(Cb + Cf) + n − c · Wf + LG(g) + 2);
17 M.con ← D[2] = min(D[0], D[1]);
18 M.con ← D[3] = c · (Cb + Cf) + n + 1 − c · (Wb + Wf) + LG(g);
19 M.con ← T[0] = max(D[2], D[3]);
20 M.con ← T[1] = c · (Cb + Cf) + LG(g);
21 M.con ← T[2] = c · KS ; /* Corresponding to |kb ∪ kf| */

22 M.con ← T[3] = k − g;
23 M.con ← g ≤ T [2];
24 M.con ← Tmax = max(T [0], T [1], T [2], T [3]);
25 M.con ← (T[0] < n ∧ Tmax < k);
26 M.obj ← Minimize Tmax;
27 return M;
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Fig. 4. ID attack on 19 rounds of SKINNY [n-2n], |kb ∪kf| = 26 ·c, cb = 6 ·c, cf = 15 ·c,
Δb = 7 · c, Δf = 16 · c

the actual probability that a wrong tweakey is discarded with one pair is about 2−21c.
So, the 22-round ID attack on SKINNY-n-3n in [45] requires more data and thus time
by a factor of 23c. The time complexity of the 22-round ID attack on SKINNY-64-
192 (SKINNY-128-384) in [45] is 2183.97 (resp. 2373.48). As a result, the corrected attack
requires more time than the exhaustive search. We also checked the 20-round ID attacks
on SKINNY-n-2n in [45]. We noticed that a similar issue makes the corrected attack
require more data than the full codebook or more time than the exhaustive search. We
contacted the authors of [45], and they confirmed our claim.
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5 Modeling the Key Recovery of ZC and Integral Attacks

Similar to our approach for ID attacks, we can extend our models for the ZC and
integral distinguishers to make a unified model for finding full ZC and ZC-based integral
attacks. One of the critical parameters in the key recovery of ZC and integral attacks is
the number of involved key cells in the outer parts. Another effective parameter is the
number of involved state cells through the outer parts. Thus, we should consider these
parameters when modeling the key recovery of the ZC and integral attacks. Moreover,
the meet-in-the-middle and partial-sum techniques are essential to reduce the time
complexity of integral attacks. Therefore, taking these techniques into account, we
provide a generic CP model for key recovery of ZC and ZC-based integral attacks as
follows:

– Model the distinguisher as described in Sect. 3.
– Model the guess-and-determine part by modeling the value paths in the outer

part and detecting the state/key cells whose values are needed in key recovery.
– Model the key bridging for the key recovery.
– Model the meet-in-the-middle technique for the key recovery of integral

attacks.
– Set the objective function to minimize the final time complexity, keeping the

data and memory complexities under the thresholds.

We only describe modeling the meet-in-the-middle technique. Other modules can be
constructed similarly to our models for ID attacks. Given that there is no restriction for
the output of ZC-integral distinguishers in our model, some ZC-integral distinguishers
might have more than one balanced output cell. With more than one balanced cell, we
might be able to use the meet-in-the-middle (MitM) technique [38] to reduce the time
complexity. For example, we can use MitM if the ZC-integral distinguisher of SKINNY
has two active output cells in one column, indicating that the sum of these cells is
balanced. Then, we can recover the integral sums of these two cells for any keyguess
separately and merge compatible key guesses that yield the same sum, i.e., that sum
to zero overall.

To consider the MitM technique, we model the path values for each output cell
of the distinguisher separately in an independent CP submodel. We also define a new
integer variable to capture the number of involved key cells in each path. For example,
our CP model for integral attacks on SKINNY splits into 16 submodels for the appended
rounds after the distinguisher. Each submodel aims at encoding the involved cells in
retrieving a certain output cell of the distinguisher. We note that these submodels,
together with our CP model for distinguisher, are all combined into one large unified
CP model. This way, we can encode and then minimize the complexity of the most
critical path, which requires the maximum number of guessed keys in the guess-and-
filter step. Similarly to our CP model for ID attacks, our model for ZC and integral
attack receives only four integer numbers as input and returns the full ZC or ZC-based
integral attack.

We solve our CP models for integral attacks in two steps with two different objective
functions:

– We first solve a CP model to minimize the number of involved key cells.
– Next, we limit the number of involved key cells to the output of the previous step

and solve the CP model with the objective of maximizing the number of active
cells at the input of ZC-integral distinguisher.
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As a result, besides reducing the time complexity, we can reduce the data complexity
of the resulting integral attacks. To compute the exact final complexity, we introduce
an additional helper tool, AutoPSy, which automates the partial-sum technique [16],
and apply it as a post-processing step to the CP output. AutoPSy optimizes the column
order in each round of partial-sum key recovery.

We applied our unified framework for finding full ZC and integral attacks to CRAFT,
SKINNYe-v2, SKINNYee, and all variants of SKINNY and obtained a series of substan-
tially improved results. Table 1 briefly describes our results. More details on our ZC
and integral attacks can be found in [21, G, H, I.3]. As can be seen in [21, Figures 14,
15, 19], the inputs of the corresponding ZC distinguishers have 4 active cells, and the
outputs have 2 active cells. The previous tools which fix the input/output linear masks
to vectors with at most one active cell can not find such a distinguisher.

Our CP models for ZC and integral attacks include only integer variables. Thus,
we can take advantage of all integer programming (IP) solvers. We used Or-Tools in
this application, and running on a regular laptop, our tool can find all the reported
results in a few seconds.

When reproducing the best previous results on SKINNY with our automatic tool,
we again noticed some issues in previous works. The previous ZC-integral attacks on
SKINNY proposed by Ankele et al. at ToSC 2019 [1] have some minor issues where the
propagation in the key recovery part is incorrect. For example, in the 20-round TK2
attack in [1, Figure 20] between X18, Y18, the last row is not shifted; in the 23-round
TK3 attack in [1, Figure 22], the mixing between Y20, Z20 is not correct. In both cases,
this impacts the correctness of all following rounds. However, the attacks can be fixed
to obtain similar complexities as claimed.

The comparison with those attacks highlights three advantages of our automated
approach: (1) Our approach is much less prone to such small hard-to-spot errors; (2)
Our approach can find distinguishers with many active input cells (rather than just
one as classical approaches), which is particularly helpful in ZC-integral attacks where
a higher input weight implies a lower data complexity; (3) Our approach optimizes
the key recovery together with the distinguisher, which together with (2) allows us to
attach more key-recovery rounds (7 vs. 5 for TK2 in [1], 9 vs. 7 for TK3 in [1]).

6 Conclusion and Future Works

In this paper, we presented a unified CP model to find full ID, ZC, and ZC-based
integral attacks for the first time. Our frameworks are generic and can be applied to
word-oriented block ciphers. To show the effectiveness and usefulness of our approach,
we applied it to CRAFT, SKINNYe-v2, SKINNYee, and all members of the SKINNY
family of block ciphers. In all cases, we obtained a series of substantially improved
results compared to the best previous ID, ZC, and integral attacks on these ciphers.
Our tool can help the cryptanalysts and the designers of block ciphers to evaluate the
security of block ciphers against three important attacks, i.e., ID, ZC, and ZC-based
integral attacks, more accurately and efficiently. While we focused on the application
to SPN block ciphers, it is also applicable to Feistel ciphers. Applying our approach to
other block ciphers such as AES or Feistel ciphers is an interesting direction for future
work.

Our improved results show the advantage of our method. However, it also has some
limitations. Our CP model for the distinguisher part detects the contradictions in the
level of words and does not exploit the internal structure of S-boxes (i.e., DDT/LAT)
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to consider bit-level contradictions. Thus, one interesting future work is to provide a
unified model considering bit-level contradictions. We note that our CP framework for
ID, ZC, and integral attacks is modular. The key-recovery part of our CP model can
be combined with other CP-based methods for finding distinguishers. For example,
regardless of the distinguisher part, one can feed our CP model for the key-recovery
part by a set of input/output activeness patterns for the distinguisher part to find
the activeness pattern yielding the best key-recovery attack. Next, one can use a more
fine-grained CP model that detects bit-level contradictions to check if the selected
activeness pattern yields an ID or ZC distinguisher. We recall that in CP models,
we can specify a set of input/output activeness patterns by a set of constraints, and
we do not have to enumerate all possible input/output activeness patterns. Currently,
our tool automatically applies the partial-sum technique as a post-processing step in
integral attacks for a refined complexity analysis. Thus, another interesting future work
is integrating the partial-sum technique into our CP model for integral attacks. This
way, one may be able to improve the integral attacks further.
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