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Preface

The 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Eurocrypt 2023, was held in Lyon, France between April
23–27 under the auspices of the International Association for Cryptologic Research. The
conference had a record number of 415 submissions, out of which 109 were accepted.

Preparation for the academic aspects of the conference started in earnest well over a
year ago, with the selection of a program committee, consisting of 79 regular members
and six area chairs. The area chairs played an important part in enabling a high-quality
reviewprocess; their rolewas expanded considerably from last year and, for the first time,
properly formalized. Each area chair was in charge of moderating the discussions of the
papers assigned under their area, guiding PCmembers and reviewers to consensus where
possible, and helping us in making final decisions. We created six areas and assigned
the following area chairs: Ran Canetti for Theoretical Foundations; Rosario Gennaro
for Public Key Primitives with Advanced Functionalities; Tibor Jager for Classic Public
Key Cryptography; Marc Joye for Secure and Efficient Implementation, Cryptographic
Engineering, andReal-WorldCryptography;GregorLeander for SymmetricCryptology;
and finally Arpita Patra for Multi-party Computation and Zero-Knowledge.

Prior to the submission deadline, PC members were introduced to the reviewing
process; for this purpose we created a slide deck that explained what we expected from
everyone involved in the process and how PC members could use the reviewing system
(HotCRP) used by us. An important aspect of the reviewing process is the reviewing
form, which we modified based on the Crypto’22 form as designed by Yevgeniy Dodis
and Tom Shrimpton. As is customary for IACR general conferences, the reviewing
process was two-sided anonymous.

Out of the 415 submissions, four were desk rejected due to violations of the Call
for Papers (non-anonymous submission or significant deviations from the submission
format). For the remaining submissions, the review process proceeded in two stages. In
the first stage, every paper was reviewed by at least three reviewers. For 109 papers a
clear, negative consensus emerged and an early reject decision was reached and commu-
nicated to the authors on the 8th of December 2022. This initial phase of early rejections
allowed the program committee to concentrate on the delicate task of selecting a program
amongst the more promising submissions, while simultaneously offering the authors of
the rejected papers the opportunity to take advantage of the early, full feedback to improve
their work for a future occasion.

The remaining 302 papers progressed to an interactive discussion phase, which was
open for two weeks (ending slightly before the Christmas break). During this period, the
authors had access to their reviews (apart from some PC only fields) and were asked to
address questions and requests for clarifications explicitly formulated in the reviews. It
gave authors and reviewers the opportunity to communicate directly (yet anonymously)
with each other during several rounds of interaction. For some papers, the multiple
rounds helped in clarifying both the reviewers’ questions and the authors’ responses.
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For a smaller subset of papers, a second interactive discussion phase took place in the
beginning of January allowing authors to respond to new, relevant insights by the PC.
Eventually, 109 papers were selected for the program.

The best paper award was granted to the paper “An Efficient Key Recovery Attack
on SIDH” by Wouter Castryck and Thomas Decru for presenting the first efficient key
recovery attack against the Supersingular Isogeny Diffie-Hellman (SIDH) problem. Two
further, related papers were invited to the Journal of Cryptology: “Breaking SIDH in
Polynomial Time” by Damien Robert and “A Direct Key Recovery Attack on SIDH”
by Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski.

Accepted papers written exclusively by researchers who were within four years
of PhD graduation at the time of submission were eligible for the Early Career Best
Paper Award. There were a number of strong candidates and the paper “Worst-Case
Subexponential Attacks on PRGs of Constant Degree or Constant Locality” by Akın
Ünal was awarded this honor.

The program further included two invited talks: Guy Rothblum opened the pro-
gram with his talk on “Indistinguishable Predictions and Multi-group Fair Learning”
(an extended abstract of his talk appears in these proceedings) and later during the con-
ference Vadim Lyubashevsky gave a talk on “Lattice Cryptography: What Happened
and What’s Next”.

First and foremost, we would like to thank Kevin McCurley and Kay McKelly for
their tireless efforts in the background, making the whole process so much smoother for
us to run. Thanks also to our previous co-chairs Orr Dunkelman, Stefan Dziembowski,
Yevgeniy Dodis, Thomas Shrimpton, Shweta Agrawal and Dongdai Lin for sharing the
lessons they learned and allowing us to build on their foundations. We thank Guy and
Vadim for accepting to give two excellent invited talks. Of course, no program can be
selected without submissions, so we thank both the authors of accepted papers, as well
as those whose papers did not make it (we sincerely hope that, notwithstanding the dis-
appointing outcome, you found the reviews and interaction constructive). The reviewing
was led by our PC members, who often engaged expert subreviewers to write high-
quality, insightful reviews and engage directly in the discussions, and we are grateful to
both our PC members and the subreviewers. As the IACR’s general conferences grow
from year to year, a very special thank you to our area chairs, our job would frankly
not have been possible without Ran, Rosario, Tibor, Marc, Gregor, and Arpita’s tireless
efforts leading the individual papers’ discussions. And, last but not least, we would like
to thank the general chairs: Damien Stehlé, Alain Passelègue, and BenjaminWesolowski
who worked very hard to make this conference happen.

April 2023 Carmit Hazay
Martijn Stam
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Truncated Boomerang Attacks
and Application to AES-Based Ciphers

Augustin Bariant(B) and Gaëtan Leurent(B)

Inria, Paris, France

gaetan.leurent@inria.fr

Abstract. The boomerang attack is a cryptanalysis technique that com-
bines two short differentials instead of using a single long differential.
It has been applied to many primitives, and results in the best known
attacks against several AES-based ciphers (Kiasu-BC, Deoxys-BC). In
this paper, we introduce a general framework for boomerang attacks
with truncated differentials.

We show that the use of truncated differentials provides a significant
improvement over the best boomerang attacks in the literature. In par-
ticular, we take into account structures on the plaintext and ciphertext
sides, and include an analysis of the key recovery step. On 6-round AES,
we obtain a competitive structural distinguisher with complexity 287 and
a key recovery attack with complexity 261.

The truncated boomerang attack is particularly effective against
tweakable AES variants. We apply it to 8-round Kiasu-BC, resulting in
the best known attack with complexity 283 (rather than 2103). We also
show an interesting use of the 6-round distinguisher on the full TNT-
AES, a tweakable block cipher using 6-round AES as a building block.
Finally, we apply this framework to Deoxys-BC, using a MILP model
to find optimal trails automatically. We obtain the best attacks against
round-reduced versions of all variants of Deoxys-BC.

Keywords: Truncated differential · Boomerang attack · AES ·
Kiasu · Deoxys · TNT-AES · MILP

1 Introduction

The AES [15] is the most widely used block cipher today, and we have a good under-
standing of its security. Its round function is strongly byte-aligned; this simpli-
fies the analysis with the wide-trail strategy, and many cryptanalysis techniques
rely on truncated trails to take advantage of this property. After 20 years of analy-
sis, we have a high confidence in the design, and many recent tweakable proposals
reuse the AES round function with different tweakey schedules (Kiasu-BC [26],
Deoxys-BC [28], and TNT-AES [1]). However, an attacker can introduce a differ-
ence in the additional tweak of these constructions, so they must be analysed in
the related-tweak model, and by extension in the related-key model. In these mod-
els, the boomerang attack is particularly effective because both high-probability
c© International Association for Cryptologic Research 2023
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differentials composing the boomerang reach more rounds. In particular, the best
known attacks against Kiasu-BC and Deoxys-BC are boomerang attacks (Tables 2
and 3).

In this work, we carefully and systematically analyse the interaction between
truncated differentials and boomerang attacks. Our approach is similar to the
analysis of impossible differential attacks in [11]: we aim at providing a unified
formula taking into account many details of a broad class of attacks. We integrate
and improve a set of techniques proposed in different variants of the boomerang
attack, leading to the best boomerang attacks against several AES-based ciphers.

Our Results. We present a generic framework to describe boomerang attacks
based on truncated differentials (Sect. 3). Instead of first building a boomerang
distinguisher and then appending extra key recovery rounds, we consider the trun-
cated boomerang attack as a whole, including the key recovery exploiting the first
and last round transitions. The framework integrates and improves on previous
analyses, including structures of plaintexts and ciphertexts [9], and truncated dif-
ferentials as introduced by Wagner [39]. Our improvements come principally from
the use of structures of ciphertexts, which were underused in recent works. We
also consider boomerang trails with smaller probability than the random case, and
mount attacks by gathering enough samples to detect the bias.

We first apply our framework to reduced AES (Sect. 4). On 6-round AES, we
obtain a distinguisher with complexity 287, and a key-recovery with complexity
261, improving the previous best boomerang attack with complexity 271 [10].

We adapt the key-recovery attack to 8-round Kiasu-BC (Sect. 5) by revisit-
ing a previous boomerang attack with complexity 2103 [18]. Using structures of
ciphertexts, we obtain the best attack against Kiasu-BC, with complexity 283.

We also apply a variant of the 6-round attack to the full TNT-AES [1], and
obtain a marginal distinguisher with complexity slightly below 2128 (Sect. 6). The
attack is not competitive with the generic attack against TNT with complexity
O(

√
n · 23n/4) [25], but it uses a lower memory (232 instead of 296), and it can

distinguish TNT with 6-round AES from TNT with a PRP. Moreover, this is the
first property of 6-round AES that can be used to target a generic construction
using 6-round AES as a building block (to the best of our knowledge). We also
provide an attack on reduced TNT-AES, using a 5-round boomerang trail.

In Sect. 7, we build a MILP model implementing our framework, to find
good parameters for the full attack automatically. The model allows both fixed
differences and truncated differences, and takes into account the complexity
of the key recovery, instead of just optimizing a boomerang distinguisher. It
confirms that our basic attack on AES is optimal within our framework.

Finally, we apply the MILP model to Deoxys-BC, and obtain improved
attacks against most variants (Sect. 8). Although the boomerang trails on AES
and Deoxys-BC are quite different, the underlying analysis is the same.

Due to space constraints, some results are only available in the full version
of this paper [6]. Our code is also available as additional data [7].
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Distinguishers and Key-Recovery Attacks. In this work, we report dinstiguishers
and key-recovery attacks, with key-recovery typically having a lower complexity
on the same number of rounds. Obviously, a key-recovery attack can be used as a
distinguisher, but we focus on structural distinguishers that only use statistical
properties of the block cipher, without guessing subkey material (denoted as
“independent of the secret key” in [24]). Indeed, a series of recent works have
proposed complex distinguishers on 5-round [24] and 6-round AES [2,5,33], and
we obtain similar results with simpler techniques. This notion of distinguisher is
not clearly defined, but our distiguishers can be used with secret S-Boxes, which
is not the case for most key-recovery attacks.

2 Preliminaries

2.1 The AES Round Function

AES was designed in 1998 by Daemen and Rijmen (as Rijndael) and won the
NIST standardization competition in 2000 [15]. Three instances of the cipher
exist, for key sizes of 128, 196 and 256 bits, but we only consider AES-128 in
this paper. Since we do not exploit the AES key schedule, we only describe the
round function. AES-128 operates on a 128-bit state, represented as a 4×4-byte
array, and iterates on 10 rounds a round function composed of the following
operations:

– SubBytes: The AES S-Box is applied to each byte of the state.
– ShiftRows: The second row is shifted by 1 cell to the left, the third row by

2 cells, and the fourth row by 3 cells.
– MixColumns: Each column is multiplied by an MDS Matrix.
– AddRoundKey: Each byte is XORed with a byte of the round key.

There is one extra AddRoundKey operation before the first round, and the last
round omits the MixColumns operation.

Due to the popularity of the AES, and its availability in hardware on several
platforms, many constructions reuse its round function. In particular, Kiasu [27]
and Deoxys [28] are two tweakable block ciphers that reuse the AES round func-
tion, with a modified tweakey schedule (combining the key and tweak) to com-
pute the round (tweak)keys. Deoxys has been selected in the CAESAR portfolio.
TNT-AES [1] is another tweakable block cipher using the AES round function,
where the tweak is only XORed to the internal state twice.

Kiasu-BC Tweakey Schedule. Kiasu-BC has a 128-bit key and 64-bit tweak, with
10 rounds. The round tweakeys are computed as ki + t where ki is the round
key following the AES key schedule, and t is the tweak (encoded in the first two
rows). In particular, Kiasu-BC with the zero tweak is the same as the AES.
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Table 1. AES distinguisher and key recovery attacks with known and secret S-Boxes.
CP: chosen plaintexts/ACC: chosen plaintexts and adaptively-chosen ciphertexts

Rounds Type Data Time Ref

AES Distinguishers 5 Multiple-of-n 232 CP 236.6 [24]

6 Yoyo 2122.8 ACC 2121.8 [33]

6 Exchange attack 288.2 CP 288.2 [5]

6 Exchange attack 284 ACC 283 [4]

6 Truncated differential 289.4 CP 296.5 [2]

6 Truncated boomerang 287 ACC 287 Subsect. 4.1

AES Key-recovery 6 Square 232 CP 271 [14]

6 Partial-sum 232 CP 248 [21]

6 Boomerang 271 ACC 271 [10]

6 Mixture 226 CP 280 [3]

6 Retracing boomerang 255 ACC 280 [19]

6 Boomeyong 279.7 ACC 278 [32]

6 Truncated boomerang 259 ACC 261 Subsect. 4.2

AES Secret S-Box KR 5 Square 240 CP 240 [37]

5 Multiple-of-n 253.3 CP 252.6 [22]

5 Retracing boomerang 225.8 ACC 225.8 [19]

6 Square 264 CP 290 [37]

6 Truncated boomerang 294 ACC 294 Subsect. 4.3

Table 2. Boomerang (B) and rectangle (R) attacks against variants of Deoxys-BC.
Most attacks succeed with probability 1/2.

Model Rnd Previous New

Data Time Mem Ref Data Time Mem Ref

RTK1 8 B 288 288 273 Full version [6]

9 B 2135 2174 2129 Full version [6]

RTK2 8 B 228 228 227 [34]a B 227 227 227 Full version [6]

9 B 298 2112 217 [34] B 255.2 255.2 255.2 Full version [6]

10 B 298.4 2109.1 288 [42] B 294.2 295.2 294.2 Sect. 8

11 R 2122.1 2249.9 2128.2 [42] B 2129 2223.9 2129 Sect. 8

RTK3 10 B 222 222 217 [34] B 219.4 219.4 218 Full version [6]

11 B 2100 2100 217 [34] B 232.7 232.7 232.7 Full version [6]

12 B 298 298 264 [42] B 267.4 267.4 265 Full version [6]

13 R 2125.2 2186.7 2136 [43] B 2126.7 2170.2 2126.7 Sect. 8

14 R 2125.2 2282.7 2136 [43] B 2129 2278.8 2129 Full version [6]
aThe probability of Sasaki’s trail is 2−56 with structures, thus we believe that the com-
plexity of the attack is actually 230 in data and time and 229 in memory.
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Table 3. Attacks against Kiasu-BC and TNT-AES

Rounds Type Data Time Ref

Kiasu-BC 7 Square (KR) 243.6 CP 248.5 [17]

8 Meet-in-the-Middle (KR) 2116 CP 2116 [38]

8 Imposs. Diff (KR) 2118 CP 2118 [18]

8 Boomerang (KR) 2103 ACC 2103.1 [18]

8 Truncated boomerang (KR) 283 ACC 283 Sect. 5

TNT-AES ∗-5-∗ Boomerang (dist.) 2126 ACC 2126 [1]

5-∗-∗ Impossible differential (KR) 2113.6 CP 2113.6 [25]

∗-∗-∗ Generic (dist.) 299.5 CP 299.5 [25]

∗-5-∗ Truncated boomerang (dist.) 276 ACC 276 Full version [6]

5-5-∗ Truncated boomerang (KR) 287 ACC 287 Full version [6]

∗-6-∗ Truncated boomerang (dist.) 2127.8 ACC 2127.8 Sect. 6

Deoxys-BC Tweakey Schedule. Deoxys-BC has two variants: Deoxys-BC-256 has
a 256-bit tweakey with 14 rounds, and Deoxys-BC-384 has a 384-bit tweakey with
16 rounds. The tweakey material is composed of a variable length key and tweak
summing to 256 or 384 bits; for simplicity, we assume that the key length is a
multiple of 128. The tweakey material is divided in words of 128 bits (denoted
TKi). Eventually, the round tweakey of round j is defined as:

STKj =

{
RCj + TK1

j + TK2
j For Deoxys-BC-256

RCj + TK1
j + TK2

j + TK3
j For Deoxys-BC-384

TKi
j is the tweakey state, initialized as TKi

0 = TKi and updated with

TK1
j+1 = h(TK1

j ) TK2
j+1 = h(LFSR2(TK2

j )) TK3
j+1 = h(LFSR3(TK3

j ))

where h is a byte permutation, and LFSR2 and LFSR3 are LFSRs that operate
in parallel on each byte of the tweakey. This construction (the STK construc-
tion [27]) ensures that differences in subtweakey byte position may only cancel
out up to i − 1 times every 15 rounds if differences are introduced in i tweakey
words.

Notations. We denote E a block cipher operating on a state of n bits. In a 4×4
matrix, the bytes are numbered in the AES order (column-major) When ki is a
sub(twea)key, we denote keq

i = MixColumns−1(ki).

2.2 Differentials and Truncated Differentials

We use + to denote the XOR operation (the addition in F
v
2u). A differen-

tial is defined by an input difference Δin ∈ {0, 1}n and an output difference
Δout ∈ {0, 1}n. We use the notation Δin

p−→
E

Δout when a differential exists with
probability p, where the probability is defined over a random plaintext P :
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Fig. 1. Example of a truncated differential trail on 3-round AES.

p = Pr[Δin −→
E

Δout] = Pr [E(P ) + E(P + Δin) = Δout]

Since E is a permutation, we have Pr[Δin −→
E

Δout] = Pr[Δout −−−→
E−1

Δin].
A truncated differential is defined by a set of input differences Din and a

set of output differences Dout. We use the notation Din
p−→
E

Dout to denote the
existence of a truncated differential with probability �p, defined as (with Avg
denoting the average):

�p = Avg
Δin∈Din

Pr [E(P ) + E(P + Δin) ∈ Dout]

We also define the probability of the reverse truncated differential as

�p = Avg
Δout∈Dout

Pr
[
E−1(P ) + E−1(P + Δout) ∈ Din

]
In general, the two probabilities are different, and related as follow:

�p

|Dout| =
�p

|Din| = Avg
Δin∈Din,Δout∈Dout

Pr [E(P ) + E(P + Δin) = Δout]

Figure 1 gives an example of a truncated differential on 3 rounds of AES,
with respectively 4, 1, and 4 active S-Boxes in each round. The probability of
the truncated differential is �p = 2−24 and the reverse probability is �p = 2−24.

2.3 Boomerang Attacks

Boomerang attacks, introduced by Wagner in 1999 [39], use adaptive plaintext
and ciphertext queries to generate quartets with specific differences at an inter-
mediate state of the cipher. The attacker decomposes the full cipher E into two
subciphers E0 (the upper part) and E1 (the lower part), with E = E1 ◦E0, with
high probability differentials on E0 and E1 (of probabilities p and q), denoted
respectively Δin

p−−→
E0

Δout and ∇in
q−−→

E1
∇out. The attack proceeds as follows:



Truncated Boomerang Attacks and Application to AES-Based Ciphers 9

Fig. 2. Construction of a boomerang quartet.

1. Generate pairs of plaintext (P, P ′) such that P + P ′ = Δin, and query the
corresponding ciphertexts (C,C ′) = (E(P ), E(P ′)).

2. Shift the ciphertexts pairs into new pairs (C,C ′) = (C +∇out, C
′ +∇out) and

query their decryptions (P , P ′) = (E−1(C), E−1(C ′)).
3. Look for pairs with P + P ′ = Δin.

Analysis. We have E0(P ) = E−1
1 (C) because E = E1 ◦ E0. In particular,

E0(P ) + E0(P
′
) = E−1

1 (C) + E−1
1 (C ′) + E0(P ) + E−1

1 (C) + E0(P ′) + E−1
1 (C ′)

Moreover, the differentials in E0 and E1 imply that:

Pr[E0(P ) + E0(P ′) = Δout] = p

Pr[E−1
1 (C) + E−1

1 (C) = ∇in] = q

Pr[E−1
1 (C ′) + E−1

1 (C ′) = ∇in] = q

When the three events are satisfied, we obtain E0(P )+E0(P ′) = Δout and with
an additional probability p, P + P

′
= Δin. Finally, assuming that all events are

independent, we compute the boomerang trail probability pb as a lower bound
of the probability of the boomerang relation P + P ′ = Δin:

Pr
[
E−1(E(P ) + ∇out) + E−1(E(P + Δin) + ∇out) = Δin

] ≥ pb = p2 × q2

Figure 2 shows the construction of a boomerang quartet. When p2×q2 � 2−n,
this gives a distinguisher for the cipher using O(p−2 × q−2) quartets because the
probability of detecting a quartet is 2−n for a random permutation. In most
cases, the distinguisher can be converted into a key recovery by exploiting key
dependencies in the distinguisher.

2.4 Improvements of the Boomerang Attack

Analysis of the Connection Probability. The analysis above assumes that
the four pairs involved in a boomerang quartet follow their corresponding differ-
entials independently. In practice, we usually obtain a probability higher than
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p2q2, but it is also possible for the four events to be incompatible [30]. Several
techniques have been proposed to improve this analysis.

Multiple Differentials. Since the differences Δout and ∇in are not used by the
attacker, boomerang quartets can be detected with any internal difference, as
long as the same difference is obtained with both pairs. Following the analysis
of [8,39], this increases the probability to

pb = p̂2q̂2 p̂ =
√∑

Δout

Pr[Δin −−→
E0

Δout]2 q̂ =
√∑

∇in

Pr[∇in −−→
E1

∇out]2

The Sandwich Attack. Instead of splitting the cipher E into two parts E =
E1 ◦ E0, Dunkelman, Keller and Shamir [20] proposed to split it in three parts
E = E1 ◦Em ◦E0 with a small Em in the middle. For the analysis, they evaluate
the probability of the boomerang trail using the connection probability r of Em:

Pr
[
P + P

′
= Δin

]
≥ pb = p2q2r

r = Pr
[
E−1

m (Em(X) + ∇in) + E−1
m (Em(X + Δout) + ∇in) = Δout

]
The connection probability r can be evaluated experimentally, and some specific
choices of Em result in r = 1 (in particular, when Em is the identity, we fall
back to the standard analysis of boomerangs). The Boomerang Connectivity
Table (BCT) was later introduced [13] to analyze the case where Em is an S-
Box layer. The case where Em is composed of several rounds has been analyzed
in further works [16,36,40]. Recent works also show that setting Em to a single
S-Box layer might lead to unaccurate connection probabilities [41].

Structures. Biham, Dunkelman and Shamir have introduced a variant of the
boomerang attack using structures for the key recovery [9]. They start from
a boomerang distinguisher with fixed differences Δin and ∇out, and add extra
rounds at the beginning and at the end. By propagating the differences Δin and
∇out, they obtain a set of possible input differences Din and output differences
Dout. In a typical SPN cipher, these sets are vector spaces.

The attacker builds a structure P + Din = {P + δ : δ ∈ Din}, and uses it
as starting point for the attack. A structure of |Din| elements defines |Din|2/2
pairs, and |Din|/2 of them lead to the fixed difference Δin. Therefore, the use of
structures covers additional rounds without increasing the data complexity.

Structures can also be used on the ciphertext side, by shifting each ciphertext
with all differences in Dout. However, many later works do not use structures on
the ciphertext side.

Retracing Boomerang. Dunkelman et al. [19] proposed an improvement where
the ciphertexts are chosen so that the two returning pairs (C,C) and (C ′, C ′) are
dependant: if one passes the trail on E1, the other passes it too. This increases
the probability of the trail to pb = p2q. In the same spirit, Rahman et al. [32]
recently proposed a boomerang attack embedding a yoyo distinguisher.
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3 Truncated Boomerang Attacks

We consider boomerang attacks with truncated differentials, as introduced by
Wagner in the original paper [39]. We obtain a key-recovery attack, improving on
the use of structures of Biham et al. [9] by considering truncated differentials for
the full cipher, instead of starting from a shorter boomerang distinguisher with
fixed input/output differences and adding truncated trails for the key-recovery
rounds. Some boomerang attacks of this type have been proposed on AES [10]
and Kiasu-BC [18], but they only use structures on the plaintext side. Our
framework unifies and improves on previous boomerang attacks, using truncated
differentials for E0 and E1, and structures on both sides.

3.1 Truncated Boomerang Distinguisher

Let us consider two truncated differentials D0
in

p−−→
E0

D0
out and D1

in

q−−→
E1

D1
out with

probabilities �p, �p and �q, �q on E0 and E1. We assume that D0
in is a vector subspace

of {0, 1}n and 0 /∈ D1
out. The truncated boomerang attack proceeds as follows:

1. Choose a random plaintext P0, and query the encryption oracle over the
structure P0 + D0

in; for each i ∈ D0
in, we define Pi = P0 + i and Ci = E(Pi).

2. For each ciphertext Ci, query the decryption oracle over the set Ci + D1
out:

for each j ∈ D1
out, we define Ci

j
= Ci + j and Pi

j
= E−1(Ci

j
).

3. Count the number of pairs (Pi
j
, Pi′

j′
) with Pi

j
+ Pi′

j′
∈ D0

in (and i 	= i′).
This can be done efficiently by projecting the plaintext values on the orthog-
onal complement of D0

in in {0, 1}n, and looking for collisions.
4. If needed, repeat steps 1 to 3 with different plaintext structures.

Analysis. We consider a potential quartet (P, P ′, P , P ′) corresponding to
(C,C ′, C,C ′), with P + P ′ ∈ D0

in and C + C,C ′ + C ′ ∈ D1
out. We have:

Pr[E0(P ) + E0(P ′) ∈ D0
out] = �p

Pr[E−1
1 (C) + E−1

1 (C) ∈ D1
in] = �q

Pr[E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in] = �q

Following the sandwich attack analysis (with Em = id), we define the connection
probability:

r = Pr

⎡
⎢⎣E0(P ) + E0(P ′) ∈ D0

out

∣∣∣∣∣∣∣
E0(P ) + E0(P ′) ∈ D0

out

E−1
1 (C) + E−1

1 (C) ∈ D1
in

E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in

⎤
⎥⎦

If the four events hold, we have P + P ′ ∈ D0
in with an additional probability �p.

This analysis of the truncated boomerang distinguisher is the same as proposed
by Wagner [39], but our attack is more general with structures on both sides.
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In general, we have E−1
1 (C)+E−1

1 (C) and E−1
1 (C ′)+E−1

1 (C ′) in D1
in, there-

fore they are equal with probability |D1
in|−1, and this implies E0(P ) + E0(P ′) ∈

D0
out; hence r ≥ |D1

in|−1. Moreover, if D1
in and D0

out are vector subspaces,
then Σ = E0(P ) + E0(P ′) + E0(P ) + E0(P ′) ∈ D1

in; in particular, Σ ∈ D0
out

with probability |D0
out ∩ D1

in|/|D1
in|; this implies E0(P ) + E0(P ′) ∈ D0

out hence
r ≥ |D0

out ∩ D1
in|/|D1

in|.
Assuming that all the events are independent, each quartet (Pi, Pi′ , Pi

j
, P

j′

i′ ),
defined by a pair (i, j), (i′, j′), follows the truncated boomerang trail with prob-

ability pb, and randomly satisfies Pi
j
+ Pi′

j′
∈ D0

in with probability p$:

pb = �p · �p · �q2 · r r ≥ |D1
in|−1 (1)

p$ = |D0
in|/2n (2)

We assume that the boomerang probability can be well approximated as
pb + p$. We distinguish the cipher E from a random permutation when the

expected number of remaining quartets (quartets with Pi
j

+ Pi′
j′

∈ D0
in) is

significantly higher for E than for a random permutation. We define the signal-
to-noise ratio:

σ = pb/p$ (3)

When σ � 1, we obtain a distinguisher using Q = O(p−1
b ) quartets. More

precisely, with Q = μ · p−1
b (μ a small constant) we expect μ remaining quartets

with the cipher E, versus μ ·σ−1 � 1 for a random permutation. A distinguisher
that detects the presence of at least one quartet has a success rate of 1 − e−μ.

When σ is smaller, we need to collect a large number of quartets, and compare
the expected number of remaining quartets qb for E and q$ in the random case:

qb = Q × (p$ + pb) = Q × p$(1 + σ) q$ = Q × p$

We detect the bias with Q = O(p−1
$ σ−2) = O(p−1

b σ−1) samples, following [29,
Theorem 2]. Using Q = c×p−1

b σ−1 with a small constant c and setting a threshold
at Q × p$(1 + σ/2), the distinguisher has a success rate of Φ(

√
c/2), with Φ the

cumulative distribution function of the standard normal distribution.
If Q is smaller than the number of quartets in a full structure

(|D0
in|2|D1

out|2/2), we use a partial structure with only
√

2Q elements. Other-
wise, we need N = 2Q × |D0

in|−2|D1
out|−2 structures of S = |D0

in||D1
out| elements.

Finally, we obtain a distinguisher with a constant probability of success with the
following complexity in number of quartets, time, data, and memory:

Q = O (
max(p−1

b , σ−1 · p−1
b )

)
(4)

T = D = max(
√

2Q, 2Q × |D0
in|−1|D1

out|−1) (5)

M = min(D, |D0
in||D1

out|) (6)

Application to 6-Round AES. To explain the truncated boomerang distin-
guisher in practice, we give a truncated boomerang trail on 6-round AES in
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Fig. 3. A truncated boomerang trail on 6-round AES.

Fig. 3, using the 3-round trail of Fig. 1 twice. D0
in and D1

in are the sets of all
states that have zeros on all diagonals except the main one. D0

out is the same as
the output set of Fig. 1, and D1

out is active on the main anti-diagonal (it differs
because we omit the last MixColumns operation). We have

|D0
in| = |D0

out| = 232 �p = 2−24 �p = 2−24

|D1
in| = |D1

out| = 232 �q = 2−24 �q = 2−24

Since D0
out ∩ D1

in = {0}, we have r = |D1
in|−1, and the analysis above gives the

following parameters:

pb = �p · �p · �q2 × |D1
in|−1 = 2−128 σ = 2−32

p$ = |D0
in|/2n = 2−96 Q = c · 2160

Using c = 4 and the formulas of Eqs. (4), (5), and (6), we obtain a distin-
guisher with complexity:

T = D = 299 M = 264
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The distinguisher is given in algorithm form in the full version [6]. It makes 267

encryption queries and 299 decryption queries, for a total data complexity of
D = 267 + 299 ≈ 299. In total, we have Q = 235 × 264 × 264/2 = 2162 quartets

(Pi, Pi′ , Pi
j
, Pi′

j′
), so that the expected number of remaining quartets is:

q$ = Q × 2−96 = 266 qE = Q × (2−96 + 2−128) = 266 + 234

The distinguisher returns the correct answer with probability Φ(
√

c/2) ≈ 0.84.
This distinguisher is interesting because it is very generic: it does not require

knowledge of the S-Box or the MDS matrix, and it can be considered as “key-
independent” in the sense of [24]. As seen in Table 1, the complexity is slightly
higher than previous distinguishers with similar properties. However, the sim-
plicity of this distinguisher makes it more likely to be applicable when 6-round
AES is used as a building block in a more complex structure, as shown in Sect. 6
against TNT-AES.

3.2 Truncated Boomerang Key-Recovery Attack

We now consider key-recovery attacks. As opposed to typical differential or linear
attacks, we do not add rounds on top of the distinguisher. Instead, we assume
that the truncated boomerang covers the full targeted cipher, and we design
a key-recovery attack with smaller complexity than the corresponding distin-
guisher.

When σ ≥ 1, the truncated boomerang distinguisher is easy to turn into a
key-recovery attack, but we cannot reduce the complexity. Indeed, the bottleneck
of the distinguisher is to have enough data so that a boomerang quartet exists.
When a quartet with P +P ′ ∈ D0

in is found, it has a high probability of following
the boomerang, and standard methods can be used to recover key candidates.
Therefore, we focus on the case σ � 1, where the distinguisher requires multiple
quartets following the boomerang.

Given a candidate quartet with P +P ′ ∈ D0
in, we can extract some key infor-

mation assuming that it follows the boomerang. If this is the case, we have two
pairs of known plaintexts (P, P ′) and (P , P ′) following the truncated differential
D0

in

p−−→
E0

D0
out, and two pairs of known ciphertexts (C,C) and (C ′, C ′) following

the truncated differential D1
in

q−−→
E1

D1
out. Using standard techniques from differen-

tial cryptanalysis, we can usually extract partial information about the first and
last subkeys. We denote by κ the number of key bits that can be extracted, and
by 	 the average number of κ-bit key candidates suggested by a quartet. Note
that the key information suggested by a quartet might be incompatible between
both pairs of plaintexts following the upper differential (or between both pairs of
ciphertexts following the lower differential), in this case the quartet is discarded.

We follow the standard approach to identify the most likely candidates for the
κ bits of key: we build a table of 2κ counters corresponding to key candidates, and
we increment the counter of each key suggested by each quartet. With enough
data, the right key is expected to be among the top 2κ−a counters (a denotes
the advantage of the attack).
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Analysis. Following the previous analysis, we expect Q×(p$+pb) quartets with
P + P ′ ∈ D0

in: Q × pb quartets following the boomerang trail (right quartets),
and Q × p$ false positives. For a right quartet, the correct key is among the
deduced key candidates, and for a wrong quartet, we expect that 	 random key
candidates are deduced. Assuming that all the quartets behave independently,
the wrong counters follow the binomial distribution B(Q, (p$ + pb) × 	 × 2−κ)
and the right counter follows the distribution B(Q, p$ × 	×2−κ +pb). We denote
the probabilities of suggesting a wrong key and the right key as:

pw = (p$ + pb) × 	 × 2−κ ≈ p$ × 	 × 2−κ (7)

p0 = p$ × 	 × 2−κ + pb ≈ pw + pb (8)

We obtain a higher signal-to-noise ratio σ̃ than previously:

σ̃ = pb/pw = σ × 2κ/	 (9)

When σ̃ � 1, only a handful of right quartets are necessary to have the right
key ranked first, so that Q = O(p−1

b ).
When σ̃ � 1, the counters can be approximated by normal distributions, and

we use the work of Selçuk [35, Theorem 3] to evaluate the number of samples
needed to have the right key among the top 2κ−a key candidates (depending on
the success rate). For a fixed value of a, we need Q proportional to p−1

b σ̃−1, and
the complexity increases linearly in a. Finally, the increased signal-to-noise ratio
σ̃ � σ reduces the data complexity to:

Q = O (
max(p−1

b , σ̃−1 × p−1
b )

)
(10)

D = max(
√

2Q, 2Q × |D0
in|−1|D1

out|−1) (11)

The time complexity is harder to evaluate; it can be bounded with TE the
cost of an oracle call (by convention, TE = 1), and TC the cost of deducing key
candidates from a quartet:

T = D × TE + Q × p$ × TC (12)

When TC � 2n × |D0
in|−2|D1

out|−1, we have Q × p$ × TC � D and the second
term is negligible; the cost of the attack is thus dominated by the oracle queries.
Otherwise, it is often possible to reduce the second term with more advanced
filtering, but this requires a dedicated analysis for each attack.

After recovering 2κ−a candidates for the κ-bit partial key, the full key can
be recovered by exhaustive search of the remaining bits with complexity 2n−a,
or by launching a variant of the attack on a different set of key bits.

Success Probability. When σ̃ � 1, the average values of right and wrong
counters are high enough to approximate them with normal distributions. In
that case, the success rate can be evaluated using the formula given by [35],
under additional assumptions about the independence of key counters, and order
statistics:

PS = Φ

(√
μσ̃ − Φ−1(1 − 2−a)√

σ̃ + 1

)
(13)

with μ = Q × pb the expected number of right quartets.
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When σ̃ is high, the binomial distributions of right and wrong counters have
their average values respectively Q × pb ≈ 1 and Q × pw � 1. As discussed in
[35, Sect. 3.2.1], the normal approximation is inaccurate in this case; we obtain a
more accurate estimate of the success probability using a Poisson approximation.

Extracting Key Candidates. When the truncated differentials are described
by truncated trails (with a set of intermediate differences at each step), the
parameters 	 and κ can often be deduced directly from the trail. We assume
that E0 starts with the addition of a subkey K0, followed by an S-Box layer SB,
and we denote the set of differences after the S-Box layer by D0

mid:

E0 = Ẽ0 ◦ SB ◦ AKK0 D0
in

p0−→
SB

D0
mid D0

mid
p1−−→̃
E0

D0
out

We also assume that D0
in is a vector subspace aligned with the S-Box layer (each

S-Box is either inactive, or active with all possible differences). D0
mid is a subset

of D0
in; typically it is constructed so that some parts of the state have fixed

differences after the linear layer. For instance, in the AES trail of Fig. 1, D0
mid

corresponds to differences δ such that MixColumns(ShiftRows(δ)) is active only
on the first cell, with |D0

mid| = 28 and �p0 = 2−24. In general, we have:

�p0 = |D0
mid|/|D0

in| �p = �p0 × �p1 (14)

We consider a pair (P, P ′), and assume that it follows the truncated trail, i.e.
SB(P + K0) + SB(P ′ + K0) ∈ D0

mid. This constrains the partial subkey K0|D0
in

corresponding to the active S-Boxes in SB. More precisely, for each difference δ
in D0

mid, we expect on average 0.5 unordered pairs {X,X ′} such that X + X ′ =
P +P ′ and SB(X)+SB(X ′) = δ (restricted to the active bytes D0

mid). This pair
can be recovered efficiently after pre-computing the DDT of the S-Box, and we
deduce two possible keys X + P and X + P ′. Therefore, we have the following
parameters when extracting key candidates from a pair (P, P ′):

	0 = |D0
mid| κ0 = log2(|D0

in|) T 0
C = 	0 = |D0

mid|
Starting from a candidate quartet, we have two different pairs (P, P ′) and

(P , P
′
) assumed to follow the upper differential. Therefore, we expect only

|D0
mid|2/|D0

in| key candidates compatible with both pairs. We apply the same
reasoning to the lower trail (using ciphertext pairs), and deduce the parameters
	 and κ for a quartet in the general case:

	 = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 κ = log2(|D0
in| · |D1

out|) (15)

Using the probability �p0 for the first round and �q0 for the last round, we have

	 · 2−κ = �p0
2 · �q0

2 (16)

For the lower trail, we only have to process a fraction |D0
mid|2/|D0

in| of the can-
didate quartets (with a key compatible with both pairs). In particular, when
|D0

mid|2 � |D0
in|, the time complexity is dominated by the first extraction step:

TC = |D0
mid|.
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Application to 6-Round AES. This attack can directly be applied to AES,
using the same 3-round trails as in the previous section (see Fig. 3):

|D0
in| = |D0

out| = 232 |D0
mid| = 28 �p = 2−24 �p = 2−24

|D1
in| = |D1

out| = 232 |D1
mid| = 28 �q = 2−24 �q = 2−24

Using the parameters of the key extraction, our analysis results in

	 = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 = 2−32 κ = log2(|D0
in| · |D1

out|) = 64

pb = �p · �p · �q2 × |D1
in|−1 = 2−128

pw = |D0
in| × 2−n × 	 × 2−κ = 2−192 σ̃ = 264

Since σ̃ � 1, we only need a few right quartets; with μ = 4 we obtain

Q = μ × p−1
b = 2130 D = 267

Time Complexity. With these parameters, the attack complexity is dominated
by the oracle queries. We use 8 structures of 264 elements; in each structure we
detect 264 × 263 × p$ = 231 pairs with P + P

′ ∈ D0
in, resulting in 8 × 231 = 234

candidate quartets in total. Each quartet suggests on average 2−32 candidates
for 64 bits of key (for most of the quartets, there is no key compatible with both
sides of the quartet). Finally, we expect 22 suggestions of wrong keys (each key
is suggested 2−62 times on average), and μ = 4 suggestions for the correct key.
With high probability, the key with the most suggestions is the correct one.

We implemented the attack on a reduced AES with 4-bit S-Boxes, and it
behaves as expected [7].

4 Optimized Boomerang Attacks on 6-Round AES

As shown by Biryukov [10], boomerang attacks on AES can be optimized using
multiple trails. We now present improved versions of our attacks using this
technique, including a 6-round key-recovery attack with complexity 261. The
improvement compared to the attack of Biryukov with complexity 271 is due to
the use of structures on the ciphertext side.

4.1 Optimized Distinguisher

Instead of only considering the trail of Fig. 1 with fixed positions for all the
active bytes, we consider a collection of four different trails for upper part:{

, , ,

}

The collection can be considered as a truncated differential D0
in

p−−→
E0

D0
out with

�p = 2−22 �p = 2−24 |D0
in| = 232 |D0

out| = 234
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Similarly, we consider four trails for the lower part:{
, , ,

}

Again, this can be considered as a truncated differential D1
in

q−−→
E1

D1
out with

�q = 2−24 �q = 2−22 |D1
in| = 234 |D1

out| = 232

The analysis of the previous sections can be applied as-is with these trails. We
obtain a better attack because we increase �p and �q by a factor 4, even though |D1

in|
increases by a factor 4; we obtain pb = 2−124 instead of 2−128. The distinguisher
is exactly the same because D0

in and D1
out are the same, but this improved analysis

shows that the complexity of the distinguisher can be reduced to T = D = 291

(with c = 4, σ = 2−28 and Q = 2154).

Larger Set D1
out. We further improve the distinguisher using a collection of 16

trails with the following input and output sets for the lower trail:{
, , ,

}
→

{
, , ,

}

This collection can be considered as a truncated differential D1
in

q−−→
E1

D1
out with

�q = 2−22 �q = 2−22 |D1
in| = 234 |D1

out| = 234

This does not affect the probability pb, but generates larger structures; the com-
plexity is reduced to T = D = 289 with Q = 2154.

Different Set D0

in for Returning Pairs.
Following Biryukov [10], we use a higher probability differential for the returning
pair (P , P ′), different from for the initial pair (P, P ′), and with a larger set
D0

in. We consider the same collection of 16 trails as above, corresponding to a
truncated differential D0

in
p̄−−→

E0
D0

out with

�̄p = 2−22 �p̄ = 2−22 |D0

in| = 234 |D0
out| = 234

This corresponds to keeping quartets with a single active diagonal in P + P ′,
but not necessarily the main one. We adapt our analysis to account for the two
distinct upper differentials and we obtain

pb = �p · �p̄ · �q2 × |D1
in|−1 = 2−122 σ = 2−28

p$ = |D0

in|/2n = 2−94 Q = 2152

Finally, we obtain a distinguisher with complexity T = D = 287 (with c = 4).
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4.2 Optimized Key-Recovery Attack

For a key-recovery attack, we can use the trails above to obtain an attack with
complexity T = D = 262.5. We keep the set D1

out active only in the first column
(|D1

out| = 232) in order to extract information on the same key for each quartet.
More details are given in the full version [6].

In order to further reduce the complexity of this attack, we use truncated
boomerang characteristics with lower signal-to-noise ratios, taking advantage of
the additional filter provided by the key extraction. Following [10], we modify
the truncated trail on the returning side (P , P

′
) to allow any combination of two

active diagonals in input, leading to the following parameters:

D0

in =
{

, , , , ,

}

�p = 2−22 �p = 2−24 |D0
in| = 232 |D0

out| = 234 |D0
mid| = 210

�̄p = 2−46 �p̄ = 6 × 2−16 = 2−13.4 |D0

in| = 6 × 264 |D0
out| = 234

�q = 2−24 �q = 2−22 |D1
in| = 234 |D1

out| = 232 |D1
mid| = 210

When extracting the key, we recover information about the main diagonal of
k0 from (P, P ′), and information about the first anti-diagonal of k6 from (C,C)
and (C ′, C

′
) (note that (P , P

′
) is not necessarily active in the main diagonal).

Moreover, the key suggested by (C,C) and (C ′, C
′
) must lead to the same active

byte in z4, so that

	0 = 210 κ0 = 32 	1 = 2−14 κ1 = 32 	 = 2−4 κ = 64

Using the previous analysis, we obtain

pb = �p · �p̄ · �q2 × |D1
in|−1 = 2−113.4

pw = |D0

in|2−n × 	 × 2−κ = 2−129.4 σ̃ = 216

Since σ̃ � 1, a few right quartets are sufficient for the success of this attack;
we use μ = 8, this corresponds to Q = 2116.4 and we use a partial structure of
D = 258.7 elements.

Success Probability. We assume that the attacker keeps key candidates with
counter values of at least 5. With σ̃ � 1, we approximate the wrong key counters
by Poisson distributions with λ = Q× pw = 2−13, each of which equal 5 or more
with probability 1− e−λ(1+λ+λ2/2+λ3/6+λ4/24) ≈ 2−71.9; we don’t expect
to keep any wrong keys. On the other hand, the counter for the right key follows
a Poisson distribution with λ = μ = 8. It reaches a value of 5 or more with
probability ≈ 0.9.
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Time Complexity. After recovering a candidate for 64 bits of key (32 bits of k0
and 32 bits of k6), we repeat the attack with D0

in in a different diagonal and
use the partial knowledge of k6 to increase the probability �q. This step has a
negligible complexity.

The time complexity is balanced between oracle queries and extracting key
candidates. Indeed, we filter 258.7 × 257.7 × |D0

in| × 2−n = 255 candidates with
P + P

′ ∈ D0

in using 6 hash tables indexed by each combination of two active
columns. The complexity TC to generate key candidates for a given quartet is
essentially 4 × 210 accesses to a small table; we approximate it as TC ≈ 25.4TE

(since one encryption has 6 × 16 S-Boxes). Finally, the time complexity is

T = 258.7TE + 255TC ≈ 260.8TE

4.3 Key-Recovery with Secret S-Boxes

The techniques described in Subsect. 3.2 assume that the S-Box and MDS matrix
are known to the attacker in order to extract key information. However, it is
also possible to extract key information with an unknown S-Box under some
conditions. Following [23], we assume that all S-Boxes in a column are identical,
and that the MDS matrix has two identical coefficients in each row.

As a concrete example, we consider the AES MixColumns matrix

MC =
[
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]

We consider a pair (C,C) following the truncated trail of Fig. 3. According to
the trail, the difference before the last round (w4) is in a set of 28 differences; in
particular, the difference in cell 1 is equal to the difference in cell 2:

w4 + w4 ∈
{[

2δ 0 0 0
δ 0 0 0
δ 0 0 0
3δ 0 0 0

]
: δ ∈ {0, 1}8

}
=

{
MC ·

[
δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
: δ ∈ {0, 1}8

}

Moreover, we assume that the differences in cells 13 and 10 of the ciphertext are
equal (they are moved to cell 1 and 2 by ShiftRows)

C + C =

[
α 0 0 0
0 0 0 β
0 0 β 0
0 γ 0 0

]

In this case, S-Boxes 1 and 2 in the last round follow the same transition δ → β.
With high probability, this implies that the unordered pairs of input/output are
equal; in particular {C[13] + k6[13], C[13] + k6[13]} = {C[10] + k6[10], C[10] +
k6[10]}. This suggests two key candidates:

k6[13] + k6[10] ∈ {
C[13] + C[10], C[13] + C[10]

}
In order to use this property in a truncated boomerang attack, we use the

multiple upper trails of Subsect. 4.1, and a single lower trail with a restricted
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D1
out of size 224 to ensure that C + C and C ′ + C

′
have the required properties

for all quartets considered:

D1
out =

{[
a 0 0 0
0 0 0 b
0 0 b 0
0 c 0 0

]
: a, b, c ∈ {0, 1}8

}

The corresponding parameters are:

�p = 2−22 �p = 2−24 |D0
in| = 232 |D0

out| = 234

�̄p = 2−22 �p̄ = 2−22 |D0

in| = 234 |D0
out| = 234

�q = 2−32 �q = 2−24 |D1
in| = 232 |D1

out| = 224

For each quartet, the pair (C,C) suggests two values for k6[13] + k6[10], and
C ′, C ′ also suggests two values. Therefore a quartet suggests on average 	 = 2−6

values for κ = 8 bits of key. Using the analysis of Subsect. 3.2, we obtain:

pb = �p · �p̄ · �q2 × |D1
in|−1 = 2−124 σ̃ = 2−16

pw = |D0

in| × 2−n × 	 · 2−κ = 2−108 Q = O(2140)

To obtain a high probability of success we use Q = 2145, i.e. D = 290. Since
σ̃ � 1, the counter distribution of the right key can be approximated to the
normal distribution N (237+221, 237) while wrong key counters distributions can
be approximated to N (237, 237). We expect the correct key to be ranked first
with very high probability (PS > 0.99 using the formula from [35]).

The time complexity is dominated by the oracle queries: for each structure
of 256 plaintexts/ciphertexts, we filter 256 × 255 × |D0

in| × 2−n = 217 candidate
quartets with P + P

′ ∈ D0

in, and the time to extract the key candidates is
negligible. We can repeat the attack to recover up to 16 key bytes in different
positions, with a complexity of D = T = 294 (but only 12 recovered bytes are
linearly independent).

5 Application to 8-Round Kiasu-BC

Kiasu-BC [26] is an instance of the TWEAKEY framework [27], reusing the
AES round function in a tweakable block cipher. The 6-round boomerang attack
on the AES can be extended to 8-round Kiasu-BC by taking advantage of the
tweak input to cancel state differences in order to have one inactive round in
the upper and lower trails. Indeed, the best known attack on Kiasu-BC is an
8-round attack with complexity 2103 in data and time [18] following this idea.
Following our framework, we improve this attack with a better use of structures.

Truncated Boomerang. Since we use a tweak difference Δtw, we slightly gen-
eralize our truncated differential framework to allow a set of tweak differences
Dtw. We start from a 4-round truncated trail (Din,Dtw)

p−→
E

Dout with probability
2−32, similar to the 3-round trail of previous sections:
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Dtw is the set of differences active in the first cell of the tweak; following the
tweakey schedule of Kiasu-BC, this results in a tweakey difference in Dtw at each
round. We obtain an 8-round boomerang with two 4-round differentials:

�p = 2−32 �p = 2−32 |D0
in| = 232 |D0

out| = 232 |D0
tw| = 28

�q = 2−32 �q = 2−32 |D1
in| = 232 |D1

out| = 232 |D1
tw| = 28

Following the analysis of the AES attack in Subsect. 3.2, we deduce on average
	 = 2−32 candidates of κ = 64 key bits per quartet. Therefore, we obtain

pb = �p · �p · �q2 × |D1
in|−1 = 2−160

pw = |D0
in|/2n × 	 × 2−κ = 2−192 σ̃ = 232

Since σ̃ � 1, we only need a few right quartets. Taking μ = 4, we obtain an attack
with Q = 2162 quartets. We take advantage of the tweak to build larger structures
(iterating over the tweak and data inputs), of size |D0

in|·|D0
tw|·|D1

out|·|D1
tw| = 280.

Thus we only need 8 structures, with data complexity D = 283. In each structure
of 280 elements, we expect 263 quartets with P + P

′ ∈ D0
in, therefore the time

complexity for the key recovery is negligible, and T = D = 283.

Success Probability. There are 266 quartets with P + P
′ ∈ D0

in, suggesting on
average 2−32 key candidates each; hence a total of 234 candidates for 64 bits of
key. We keep key candidates whose counter reaches 2 or more. Modeling counters
for wrong keys with a Poisson distribution with λ = 2−30, the probability for a
specific wrong key counter to be at least 2 is 1−e−λ(1+λ) ≈ 2−61; therefore we
expect to keep 8 wrong keys. On the other hand, the counter for the right key
follows a Poisson distribution with λ = 4. It reaches a value of 2 or more with
probability ≈ 0.9.

As in the AES attacks, we recover the full key by repeating the attack with
D0

in in a different diagonal. Taking advantage of the recovered values of the last
round key, this adds a negligible complexity.

6 Application to TNT-AES

TNT-AES is a tweakable block cipher reusing the AES round function published
at Eurocrypt 2020 [1]. It is part of the Tweak-aNd-Tweak framework, building
a tweakable block cipher Ẽ from a block cipher E:

ẼK0,K1,K2 : P, T → C = EK2

(
T + EK1

(
T + EK0(P )

))
In order to improve its efficiency, TNT-AES uses a 6-round AES as building
block E. The designers of TNT proved its security up to 22n/3 queries, and
conjectured a higher security bound. Later work [25] proved the bound to be at
least Ω(23n/4) queries, and exhibited a distinguisher with O(

√
n · 23n/4) queries.
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Truncated Boomerang. Our attack focuses on the middle cipher EK1 , between
both tweak additions. In order to skip the initial and final ciphers EK0 and EK2 ,
we introduce differences in the tweak, instead of introducing them in the plain-
text and ciphertext. We fix a plaintext P , and consider four tweaks T, T ′, T , T

′

to create quartets as follows:

1. Query C = Ẽ(P, T ) and C ′ = Ẽ(P, T ′)
2. Query P = Ẽ−1(C, T ) and P

′
= Ẽ−1(C ′, T

′
)

3. Detect when P = P
′

We denote the inputs and outputs of EK1 as X and Y , with Y = EK1(X):

X = EK0(P ) + T X ′ = EK0(P ) + T ′ X = EK0(P ) + T X
′
= EK0(P

′
) + T

′

Y = E−1
K2

(C) + T Y ′ = E−1
K2

(C ′) + T ′ Y = E−1
K2

(C) + T Y
′
= E−1

K2
(C ′) + T

′

When P = P
′
, we have a boomerang quartet for EK1 with differences

X + X ′ = T + T ′ = Δin X + X
′
= T + T

′
= Δ′

in

Y + Y = T + T = ∇out Y ′ + Y
′
= T ′ + T

′
= ∇′

out

When using a truncated boomerang trail (with a fixed P and a set of tweaks),
there are two important limitations compared to the previous attacks:

– We only detect when the difference X +X
′
matches exactly T +T

′
, instead of

detecting a set of differences D0
in. The boomerang trail probability decreases.

– We necessarily have Δin+Δ′
in = ∇out+∇′

out. For the 6-round AES truncated
boomerang trail of Fig. 3, this implies Δin = Δ′

in and ∇out = ∇′
out. Therefore,

we cannot take advantage of structures on the ciphertext side.

Nonetheless, truncated boomerangs can be used with structures of tweaks on the
plaintext side, and the analysis of the middle rounds as truncated differentials
significantly reduces the complexity compared to the analysis of [1].

Upper Differential. We use the same collection of 4 upper trails as in our opti-
mized attack on AES:{

, , ,

}

We have the following parameters

�p = 2−22 �p = 2−24 |D0
in| = 232 |D0

out| = 234

For the return trail, we must hit a fixed T + T ′ = Δ0
in:

�̄p = 2−22 �p̄ = 2−56 |D0

in| = 20 |D0
out| = 234
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Lower Differential. Since we cannot use structures on the ciphertext side, we
use a fixed value Δ1

out to maximize the probability of the trail. We observe that
in an AES column, the transition δ → (∗, 0, 0, 0) through a layer of inverse
S-Boxes followed by inverse MixColumns happens with probability 2272/232 ≈
2−20.85 with δ = (L(β/2), L(β), L(β), L(β/3)), with L the linear transform inside
the AES S-Box (see the full version [6] for more details). We choose Δ1

out =
MixColumns(ShiftRows(δ)):

�q = 2−52.85 �q = 2−20.85 |D1
in| = 232 |D1

out| = 20

Boomerang Trail Probability. We obtain:

pb = �p · �p̄ · �q2 × |D1
in|−1 = 2−151.7 p$ = |D0

in|/2n = 2−128

As shown in the full version, we obtain a slightly better probability pb by carefully
analyzing the boomerang, and correlation between the sides:

pb = 2−151.4

It is not possible to recover actual key material with this attack because X
is unknown. However, we can use EK0(P ) + K1 as an equivalent subkey if all
queries are made with the same P . Using the pair (X,X ′) we extract 	 = 210

candidates for κ = 32 key bits. Unfortunately, we cannot use the pairs (Y, Y )
for filtering on the ciphertext side since the unknown value Y is different in each
quartet. Similarly, the pair (X, X

′
) is unusable for key extraction. Therefore,

pb = 2−151.4 pw = p$ × 	 × 2−κ = 2−150 σ̃ = 2−1.4

With σ̃ < 1, we need Q = c · σ̃−1 · p−1
b with a small constant c; we take c = 64,

Q = 2158.8. Since we have structures of size 232, this corresponds to D = 2127.8.

Distinguisher. With 2127.8 queries we obtain a distinguisher between TNT-
AES (using 6-round AES as the building block) and a PRP (or TNT using a
PRP). This obviously does not threaten the security of TNT-AES, but we believe
that it is an interesting use case showing that a 6-round boomerang distinguisher
can be extended to a larger scheme, even if the attack is marginal.

In order to minimize the number of queries, we use the 255 possible values of
Δ1

out = (L(β/2), L(β), L(β), L(β/3)) with β ∈ F256\{0}, so that each encryption
query is amortized: we obtain 2158.8 quartets with 2127.8/255 encryption queries
and 2127.8 decryption queries. After collecting the quartets, we expect that the
counter corresponding to the right key follows the distribution N (28.8+27.4, 28.8)
while counters for the wrong keys follow the distribution N (28.8, 28.8) (the dis-
tance between the expected values is 8 times the standard deviation).

We obtain a distinguisher by observing whether the maximum counter is
higher than a threshold t = 28.8 + 7 × 24.4. The probability that all counters for
wrong keys are lower than t is Φ(7)2

32 ≈ 0.995, therefore the probability of false
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positive is 0.005. The probability that the counter for the right key is higher
than t is Φ(1) = 0.84 so the probability of false negative is 0.16.

Finally, we can increase the success rate by running three attacks in parallel
using three input sets D0

in, D′0
in, D′′0

in on three different diagonals. Using super-
structures of 296 values, we run all three attacks with the same queries, and
generate counters for three sets of 232 equivalent keys. Using a threshold of
t = 28.8 +7.1×24.4, we keep the probability of false positive below 1%, while the
probability that at least one of the three counters corresponding to right keys is
higher than the threshold increases to 99%.

TNT with 5-Round AES. A reduced version of TNT-AES with 5 AES rounds
can be attacked more efficiently, using a probability-one truncated differential
for one half of the cipher. In the full version [6] we give a distinguisher with 276

queries, and a key-recovery with complexity 287.

7 Modeling the Framework Using MILP

MILP modelling encodes a cryptographic problem as a Mixed Integer Linear
Programming problem, and uses an available solver to find optimal solutions.
This method was applied to the search of boomerang distinguisher on Deoxys by
Cid et al. [12]. Their MILP model encodes the activity of each state byte with a
binary variable that equals 1 if its corresponding byte is active and 0 if not, and
that is constrained depending on the activity pattern of Deoxys operations. In
order to build a boomerang trail, their model includes two separate differential
trails with two overlapping rounds in the middle (in order to account for the
ladder switch and the BCT analysis). The objective function to minimize is
roughly the number of active S-Boxes, i.e. the sum of all variables representing
the activity of S-Box input (or output) bytes.

After generating the optimal boomerang template, they instantiate active
bytes with concrete differences that maximize S-Box transition probabilities. An
important contribution of their work is an analysis of the degrees of freedom of
the tweakey differences. Their MILP model counts the number of linear relations
between the tweakey differences and ensures that at least one degree of freedom
remains in the final trail, otherwise it is unlikely to find concrete differences for
the tweakey.

In 2019, Zhao et al. [42,43] improved this MILP model by adding two extra
rounds at the end of the lower trail, containing truncated differences.

Our MILP Model. Previous works [12,34,43] showed that the best attack is
not always obtained with the best distinguisher. Therefore we follow the same
high-level approach as in [31]: our main objective is to cover the full boomerang
attack with the MILP model. We give an overview of the model in the full
version [6], and for more details the full code is available [7]. Our model is based
on [12]; the main improvement is to allow 4 possible states for each byte of the
trail, instead of only 2 (active or inactive):
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– inactive, with a zero difference, denoted as ;
– active with a fixed non-zero difference, denoted as ;
– active with an unknown (truncated) difference, denoted as .
– active with an equal (but unknown) difference for both pairs, denoted as ∗ .

From these possible states, we can deduce the parameters of the attacks,
including the structure size, which allows us to ask the MILP solver to minimize
the formula for the data complexity of the attack given in Subsect. 3.2.

Bytes with equal differences encode relations between the two different pairs
that follow the same trail, rather than properties of a trail by itself. This allows
the MILP model to capture trails like the 6-round AES boomerang of Fig. 3.
The model does not encode linear relations between active bytes (e.g. the set of
differences for w2 of Fig. 3 is active on all bytes but has size 232), but using this
type of constraint is sufficient in many cases because it is propagated through
the linear layer.

Our model generates boomerang trails without instanciating the differences.
In order to derive concrete attacks from the trail, we instantiate the trail with
differences that optimize the different S-Box transitions.

Limitations of the MILP Model. Our model handles only fixed differences in
the tweakey. More importantly, although our model takes into account the ladder
switch to compute the boomerang connection probability, it does not accurately
compute the connection probability. Some boomerang trails given in a previous
version of this paper were even found incompatible by Song et al. [41]. More
generally, some boomerang trails returned by the MILP are not instantiable.
When that happens in practice, we modify the boomerang trail squeleton or we
generate a different trail using the MILP solver.

To instantiate boomerang trails generated by the MILP, we use the tables
DDT, BCT [13], UBCT, LBCT and EBCT, introduced in [16,36,40]. In order
to ensure that the trails are not incompatible, we verified experimentally the
probability of the middle rounds [7]. For each trail, we indicate the rounds that
have been checked, with the theoretical probability pth for the middle rounds,
and the experimental value observed pexp. In some attacks, the experimental
probability slightly differs from the theoretical one; we deduce an adjusted trail
probability p̃b that is used to calculate the complexity of the attack.

7.1 Results on AES-128 and Kiasu-BC

We use the MILP model to search for attacks on AES-128 and Kiasu-BC and
compare them with the results of the previous sections.

On AES-128, the model returns a trail corresponding to Fig. 3 with a full
equal state in w2. This confirms the optimality of our truncated trail within our
framework. However, the model does not handle multiple trails, so that it cannot
suggest the improved attack of Sect. 4.
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On Kiasu-BC, the model cannot find the attack of Sect. 5, because it does
not handle truncated differences in the tweak. With fixed difference in the tweak,
the best trail found by the solver is unfortunately not instantiable, because of
incompatibilities in the middle rounds. The solver nevertheless ensures that no
attack with complexity less than 280 exist in that framework.

8 Application to Deoxys-BC

Deoxys-BC [28] is a tweakable block cipher of the TWEAKEY framework [27]
based the AES round function, on which the best known attacks are based on
boomerangs [12,34,42,43]. Due to the large choice of tweakey differences, finding
the best truncated boomerang trails manually is a tedious work. Instead, we use
our MILP model of Sect. 7.

In the single tweakey model, the analysis is exactly that of the AES, and the
best known boomerang attack is given in Sect. 4.

In the related tweakey model, the attacker can insert differences in some of
the tweakey words TKi. Depending on the tweak size and differences used, this
can be either a single-key attack with chosen tweaks, or a related-key attack. We
denote as RTKr a model with differences in r 128-bit states, corresponding to:

– RTK1: single-key attacks on any variant with at least 128 bits of tweak.
– RTK2: single-key attacks on Deoxys-BC-384 with 256 bits of tweak, or

related-key attacks on Deoxys-BC-256.
– RTK3: related-key attacks on Deoxys-BC-384.

For 13-round Deoxys-BC in the RTK3 model, we selected a non-optimal
trail in terms of data complexity, which was better in time complexity. For 8-
round and 9-round Deoxys-BC in the RKT1 model and 10-round Deoxys-BC
in the RTK2 model, we modified the squeleton of the trail returned by the
MILP because the original one was not instantiable. During other difference
instantiations, we sometimes applied slight manual improvements. For instance,
for minor gains, we introduced state changing bytes: fixed on the forward trail
but truncated on the return trail.

Description of the Attacks. In the related-tweakey model, the attacker
queries two sets of |D0

in| plaintexts (under tweaks T and T ′), and each cipher-
text is shifted |D1

out| times with a new tweak (T and T
′
respectively). In total

a structure of size S = |D0
in| × |D1

out| requires 2S decryption queries (or 4S if
|D1

out| = 1) and generates S2 quartets.
The values of 	 and κ mentioned on the figures are the one used in our

attacks, corresponding either to a 1-round or to a 2-round key-recovery. Each
attack recovers a partial key, aiming for a success rate of 1/2, comparable to



28 A. Bariant and G. Leurent

previous analysis; we assume that the rest of the key can be recovered efficiently
afterwards. When σ̃ � 1, the number μ of right quartets required varies from 1
to 4. In particular, if pb � 	 · p$, we expect no wrong quartet and μ = 1 suffices,
else several right quartets are needed to get the correct key ranked first.

10-Round Deoxys-BC in the RTK2 Model (Fig. 4). Query one partial
structure of 293.2 ciphertexts, so that on average, μ = 293.2+93.2 · p̃b = 2 quartets
follow the trail. For each element of the structure, deduce on average 1 candi-
date for 30 bits of key on the plaintext side: 1 candidate for tk0[4, 9, 14] and 1
representant of the 4 possible candidates each for tk0[3]1. In total, there are on
average 293.2+93.2−56−30 = 2100.4 candidate quartets matching on the ciphertext
bytes with a known difference and on the key candidate.

For each quartet, retrieve 2−8 candidates for tk10[9] with 2 table accesses.
This costs 2101.4 table accesses, and since an encryption makes 10 × 16 =
27.3 S-Box calls, this step costs 294.1 equivalent encryptions. For each of the
2100.4−8 = 292.4 remaining quartets, retrieve on average 2−32 candidates of
tk10[0, 1, 2, 3, 4, 5, 6, 7]. Finally, recover 2−16 candidates for tkeq

9 [1, 6]. There
remains 292.4−32−16 = 244.4 quartets with a 118-bit key candidate. The only
candidate suggested twice is expected to be the right candidate. The time com-
plexity is 294.2 + 294.1 ≈ 295.2, thus (D,T,M) = (294.2, 295.2, 294.2).

11-Round Deoxys-BC in the RTK2 Model. The MILP solver did not return
a pertinent trail for this key setting. Instead, we use the 10-round trail and
append a round at the beginning. First, query the full encryption codebook
with T , T

′
and store it. Then, guess the full tk0. Perform the 10-round attack,

by using the same ciphertext structure for each guess of tk0 and simulating
encryption queries with fetches in the codebook. We chose μ = 4 and for each
key guess, the 10-round attack with partial structures of 293.7 elements gives
245.4 candidates for 118 bits, for a time complexity of 295.1. If we suppose that
a fetch to the codebook costs an encryption in time complexity, we end up with
T = 2128(294.7 + 295.1) = 2223.9. The probability that one of the counters is at
least 4 is 2−295+116+128 = 2−51, so in average, the correct key is ranked first.
This gives (D,T,M) = (2129, 2223.9, 2129).

13-Round Deoxys-BC in the RTK3 Model (Fig. 5). Query a partial struc-
ture of 2125.65 plaintexts. On average, μ = 2125.65 · 2125.65 · p̃b = 4 quartets follow
the trail.

1. For each element of the structure, retrieve the representant k of the 26 possible
key values of tk13[13, 14, 15] that satisfy the transition y12 → x12. k defines
18 key bits.

1 S-Box 3 on the plaintext side has two pairs (x, x + δ), (x′, x′ + δ) following the
transition fixed by the trail. Instead of listing four key candidates, we identify one
of the 26 cosets of 〈δ, x + x′〉.
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2. Guess the value of the tweakey material tk0[2, 7, 8, 13]. Set δ = 0x7e42c465
and δin = 0x00007a00, and look for collisions between:

v = y0[2, 7, 8, 13] ‖ y0[2, 7, 8, 13] ‖ P [0, 5, 10, 15] ‖ k

v′ = y′
0[2, 7, 8, 13] + δ ‖ y′

0[2, 7, 8, 13] + δ ‖ P ′[0, 5, 10, 15] + δin ‖ k′

This step costs 232 · 2 · 2125.65 = 2158.65 in time complexity. On average,
2125.65 · 2125.65 · 2−114 = 2137.3 quartets remain for each tk0[2, 7, 8, 13] (2169.3

in total).
3. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[3, 4, 9, 14] such that

the difference in w0[4] is compatible with the S-Box transition in the next
round. In order to minimize the complexity, first deduce the 27+7−8 = 26

pairs of column differences compatible with a key candidate for tk0[3], by
only checking the first S-Box. Then, deduce the 26−8 = 2−2 pairs of columns
compatible with a key candidate for tk0[4] with the second S-Box. Finally
deduce tk0[9, 14].
This step requires 28 + 27 = 28.6 table accesses per quartet, therefore a total
of 28.6+169.3 = 2177.9 accesses; and 232+137.3−18 = 2151.3 quartets remain.

4. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[1, 6, 11, 12] and
224+24−32 = 216 key candidates for tk13[8, 9, 10, 11]. Recover x12[8, 9, 10, 11]
and the difference in y11[2, 7, 8]. Retrieve 2−24 candidates for tkeq

12[2, 7, 8].
2151.3−18+16−24 = 2125.3 quartets remain.

5. For each quartet, recover the difference in x1[4, 14] and the value of w0[4, 14]
from the known key bytes of tk0. Retrieve 2 · 2 · 2−8 = 2−6 values of tk1[4]
and 2−6 values for tk1[14] (2 candidates are deduced per pair because the
differences are already compatible). 2125.3 · 2−12 = 2113.3 quartets remain.

6. Eventually, each of the 2113.3 quartets determines in average 1 candidate of
18 + 32 + 32 + 32 + 32 + 24 + 16 = 186 bits. We model a wrong counter
with a poisson distribution with λ = 2−72.7. The probability that any wrong
counter is at least 3 is (1 − e−λ(1 + λ + λ2/2)) · 2184 ≈ 2−34.7. The correct
counter follows the poisson distribution with λ = 4 and it is at least 3 with
probability 0.76. Therefore, the success probability of this attack is 0.76.

Complexity analysis. The time complexity is dominated by the 2177.9 table
accesses of step 3. An encryption of 13-round Deoxys-BC has 16 × 13 S-Boxes,
so the time complexity is equivalent to 2177.9/208 = 2170.2 encryptions. Thus
(D,T,M) = (2126.7, 2170.2, 2126.7).

Other Variants. Due to space constraints, the attacks found on other variants
of Deoxys-BC are detailed in the full version of this paper [6].
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Fig. 4. Truncated boomerang attack on 10-round Deoxys-BC in the RTK2 model,
starting from the ciphertext side. This attack succeeds with probability 1/2. Middle
rounds are analyzed with UBCT, LBCT and EBCT (probabilities on the trail).
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Fig. 5. Truncated boomerang attacks on 13-round Deoxys-BC in the RTK3 model,
starting from the plaintext side. This attack succeeds with probability 0.76. Middle
rounds are analyzed with the ladder switch and single BCT (probability r).
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9 Conclusion

In this paper, we develop a framework for truncated boomerang attacks. Instead
of extending a distinguisher with additional key-recovery rounds, we integrate
them inside the distinguisher. This results in a simple and generic formula for
the data complexity of the attack, while the classical approach to add rounds
strongly depends on the shape of input/output differences of the distinguisher.
In particular, the formula can be integrated in a MILP model, leading to better
results than a separate search for distinguishers and attacks.
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Abstract. Differential attacks are among the most important families
of cryptanalysis against symmetric primitives. Since their introduction in
1990, several improvements to the basic technique as well as many ded-
icated attacks against symmetric primitives have been proposed. Most
of the proposed improvements concern the key-recovery part. However,
when designing a new primitive, the security analysis regarding differ-
ential attacks is often limited to finding the best trails over a limited
number of rounds with branch and bound techniques, and a poor heuris-
tic is then applied to deduce the total number of rounds a differential
attack could reach. In this work we analyze the security of the SPEEDY
family of block ciphers against differential cryptanalysis and show how
to optimize many of the steps of the key-recovery procedure for this type
of attacks. For this, we implemented a search for finding optimal trails
for this cipher and their associated multiple probabilities under some
constraints and applied non-trivial techniques to obtain optimal data
and key-sieving. This permitted us to fully break SPEEDY-7-192, the 7-
round variant of SPEEDY supposed to provide 192-bit security. Our work
demonstrates among others the need to better understand the subtleties
of differential cryptanalysis in order to get meaningful estimates on the
security offered by a cipher against these attacks.

Keywords: differential cryptanalysis · block ciphers · SPEEDY ·
security claim · key recovery

1 Introduction

Differential cryptanalysis is a very powerful technique to analyse block ciphers.
It was introduced in 1990 by Biham and Shamir who used this method to break
the Data Encryption Standard (DES). The idea of this technique applied to
block ciphers is to exploit input differences that propagate through the cipher to
output differences with a probability higher than what is expected for a random
permutation.
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Differential cryptanalysis is arguably the most well-known and studied tech-
nique in symmetric cryptography. Indeed, in the last 30 years, differential attacks
have been applied to analyze a high number of primitives: [4,6–9,14,20,23], to
cite only a few. In parallel, several refinements and generalizations of the basic
technique were introduced together with some new dedicated methods. One can
for example mention the technique of truncated differentials [18], the use of
structures to reduce data complexity (a technique already introduced in [8]),
the technique of probabilistic neutral bits [16] or the conditional differential
attacks [17]. However, applying differential cryptanalysis on a new cipher is in
general a laborious, complex and potentially error-prone procedure. Indeed, com-
bining together the different improvements and techniques for mounting interest-
ing differential attacks is highly non-trivial. This is the reason why the designers
of a new primitive provide most of the time only basic arguments on the security
of their design against differential attacks. This is done for example by apply-
ing the branch-and-bound algorithm to determine the highest number of rounds
covered by a single differential trail. Based on this, and without getting into
too many details, designers then provide an estimate on the number of rounds
that the key recovery steps could reach on top of the differential distinguisher.
This estimation is used to state security claims, sometimes conservative, some-
times not, depending on the target application scenario. Examples of such kind
of claims exist for almost all modern symmetric designs [1–3,10,13].

In this work we analyze SPEEDY against differential attacks. SPEEDY is a new
ultra-low latency family of block ciphers [19], designed by Leander, Moos, Moradi
and Rasoolzadeh. The authors provided in [19] a preliminary analysis that sug-
gested that all versions of this cipher should be immune against this type of
attack. However, we demonstrate here that SPEEDY-7-192 can be fully broken
with differential cryptanalysis. Our attack that uses improved techniques for
the key-recovery part, demonstrates in practice that a more in-depth analysis
of a primitive against differential cryptanalysis is necessary in order to provide
precise estimates of its security margin.

1.1 Our Contribution

We analyzed SPEEDY, a new ultra-low latency family of block ciphers [19] against
differential attacks. More precisely, we managed to break the full version of
SPEEDY-7-192, one of the three main variants of this family. This variant iterates
over 7 rounds and its designers claimed 192-bit time and data security. Our attack
has a time of 2187.84 and data complexity of 2187.28, and is thus more than 24

times faster than exhaustive search, contradicting therefore the security claim.
We shared our results with the designers, that have agreed and acknowledged
our attack. This attack is based on a 5.5-round distinguisher and is extended to
7 rounds, therefore it contradicts another claim of the designers: “the attacker
cannot add more than one round to extend a distinguisher”. Our attack is non-
trivial and is based on improved techniques for the key-recovery part. We believe
that most of these ideas could be generalized to be applied to differential attacks
against other ciphers and we hope that this work can be seen as a step towards
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a general framework that could help in the future designers precisely estimate
the security margin of their design against differential cryptanalysis.

Finally, we provide a brief summary of our differential attacks on the r = 5
and r = 6-round variants of SPEEDY-r-192 even if the attacks on the other
variants do not contradict the designers’ security claims, but they provide the
best known attacks on these variants up to date. A summary of all our attacks
together with other third-party cryptanalysis results on SPEEDY is given in
Table 1.

Table 1. Summary of SPEEDY cryptanalysis

Algorithm # rounds Ref. Data Time Memory Security claim
attacked (in CE) (T ,D)

SPEEDY-5-192 3 [22] 217.6 252.5 225.5 (2128, 264)

SPEEDY-5-192 5 this work 2101.65 2107.8 242 (2128, 264)

SPEEDY-6-192 5.5 this work 2121.65 2127.8 242 (2128, 2128)

SPEEDY-6-192 6 this work 2121.65 2151.67 242 (2128, 2128)

SPEEDY-7-192 7 this work 2187.28 2187.84 242 (2192, 2192)

The rest of the paper is organized as follows. In Sect. 2, we summarize the
classical framework for differential attacks and deduce generic complexity for-
mulas. In Sect. 3, we present the SPEEDY family of block ciphers and describe our
methodology for finding good differential trails. Our attack on SPEEDY-7-192 is
given in Sect. 4. Finally, our results on the other main variants of the SPEEDY
family are briefly presented in Sect. 5. This section also discusses open problems
and directions.

2 Differential Cryptanalysis

Differential attacks are a very popular chosen-plaintext cryptanalysis technique
against symmetric primitives [5]. The invention of this technique in 1990 was
devastating for the ciphers of the time, as demonstrated by the breaks of both
full FEAL and full DES [6,8] among others. Similarly to the majority of attacks
against block ciphers, differential attacks are built around a distinguisher. A
differential distinguisher exploits as a distinguishing property the existence of a
pair of differences (a, b) ∈ Fn

2 , where n is the block size, such that the input dif-
ference a propagates through some rounds of the cipher to the output difference
b with a probability significantly higher than 2−n. This distinguisher can then
be extended a few rounds in both directions by adding some rounds that will
serve as the key recovery part. In this part, an attacker will guess a reduced part
of the key, and using this knowledge will be able to compute the first and/or the
last state of the distinguisher in order to check if some plaintext or ciphertext
pair follows the differential.
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The goal of this section is to provide a global overview of a differential key
recovery attack that extends a fixed differential in both directions together with
generic formulas representing its time, data and memory complexity.

Fig. 1. Differential cryptanalysis context.

We start by considering a differential Δ = (δin, δout) of probability P = 2−p

covering rΔ rounds. The difference δin (resp. δout) then maps to a truncated
difference in Din, rin rounds before (resp. Dout and rout) with probability 1. We
denote by din (resp. dout) the log2 of the size of the input (resp. output) difference
such that |Din| = 2din (resp. |Dout| = 2dout). Note that the attack can be done
in both directions (encryption or decryption) and the most interesting direction
is determined by the concrete parameters. Without any further improvements,
the data and time complexities should be the same in both directions, while
the memory complexity is given by the size of one structure (2din or 2dout).
Similarly to our attack on SPEEDY-7-192, we will present a procedure in which we
make calls to the decryption oracle (i.e. by generating ciphertexts). However, the
general description of the attack remains unchanged regardless of the direction.
To obtain the description of a chosen plaintext attack, it suffices to replace in
what follows “ciphertexts”, Dout and dout by “plaintexts”, Din and din.

Data Complexity. In order to have enough data to expect that one pair sat-
isfies the differential, we will use structures, as it is often done in differential
attacks. A structure is a set of ciphertexts that have a fixed value in the non-
active bits, and that take all possible values in the remaining dout bits. This
approach permits us to build (22dout−1) pairs inside a structure. The probability
to start from a difference in Dout and to fall back to a difference δout is usually
2−dout . This means that to have one pair that satisfies the differential trail, we
need a total of 2p+dout pairs that we will obtain by using 2s structures where s
is such that 2s+2dout−1 = 2p+dout , that is s = p− dout +1. Therefore, we need to
generate 2dout+s = 2p+1 ciphertexts and thus the data complexity is D = 2p+1.

Pair Sieving. Since performing the key recovery phase with all the 2p+dout

pairs is too costly in general, the attacker will very probably need to perform
a sieving step which will permit her to discard pairs that cannot follow the
differential trail. This can be done efficiently by just looking at the plaintext
corresponding to each ciphertext inside a structure: the attacker will only keep
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those ciphertext pairs, for which the difference of the corresponding plaintext
pairs belongs to Din, i.e. only those pairs that have the same value on the n−din

non-active bits in the plaintext. This can be efficiently done by ordering the list
of structures of size 2dout with respect to the values of the non-active bits in the
plaintext, or even with a hash table, in order to avoid the logarithmic factor of
sorting and sieving the table. The total number of pairs that will get through
this sieve will be 2s+2dout−1−n+din = 2p−n+din+dout . It is also possible to add
an extra sieving step by looking at the concrete differences of active S-boxes.
Indeed, by looking at the difference distribution table (DDT) of the primitive’s
S-box and by taking into account the activity pattern of each one of the active
S-boxes, it is possible to further sieve the remaining pairs by removing all those
that have an impossible difference on the concerned words. This approach was
for example used in [12]. We denote by CS the average cost of sieving a pair.
This cost is in general quite small as it might simply correspond to a table
lookup. However this is not always the case, as we will see in the attack of
Sect. 4. Indeed, in our case, this cost will be a little higher than what it would
have been with a straightforward approach, as we will consider simultaneously
several configurations for the sieving filter.

Key Recovery. Although all of the pairs that were kept after the sieving
step are candidates for having followed the differential, we now want to keep
only those such that there exists an associated key that actually leads to the
differential. By considering the first and last rounds, and performing partial key
guesses that we will merge thanks to efficient list merging algorithms like the
ones presented in [21], we can obtain quite low additional factors. In particular,
we will denote by CKR, the average cost to perform the key recovery steps per
pair. The optimal way of doing this will depend on the round function structure
of the analyzed cipher. However this is a step that can typically be done with a
small factor. Its goal is to generate a final number of triplets formed by plaintext
(or ciphertext) pairs and candidate associated keys that we expect smaller than
the original number of pairs (and of the exhaustive search cost), and the cost of
finding the secret key given these triplets is not expected to be the complexity
bottleneck. In Sect. 4.4 we show some improved techniques to reduce this cost,
and provide an example of such an accelerated key search in the context of
SPEEDY.

Total Time and Memory Complexity. We denote by CE the cost of one
encryption. Taking into account the data generation, the data sieve and the key
recovery steps described above, the time complexity T 1 is given by

T =
(
2p+1 + 2p+1 CS

CE
+ 2s+2dout−1−n+din

CKR

CE

)
CE .

1 If k is the size of the secret key, for the attack to be valid, the time complexity T
should be smaller than 2kCE .
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We present in the next two sections an application of the techniques intro-
duced in Sect. 2 against the SPEEDY family of block ciphers. Section 3 is dedi-
cated to the distinguisher part, while Sect. 4 describes the key recovery part for
SPEEDY-7-192.

3 Finding Good Differentials on SPEEDY

We start by briefly presenting the specifications of the SPEEDY family of ciphers.

3.1 Specifications of the SPEEDY Family of Block Ciphers

The SPEEDY family of ciphers is a family of lightweight block ciphers introduced
by Leander, Moos, Moradi and Rasoolzadeh at CHES 2021 [19]. The main design
goal of these primitives was to be fast in CMOS hardware by achieving extremely
low latency. This goal was notably reached thanks to the design of a dedicated
6-bit bijective S-box.

There are different SPEEDY variants that differ in block size, key size and
number of rounds. More precisely, the block cipher SPEEDY-r-6� has a block
and key size of 6� bits and is iterated over r rounds. The internal state is viewed
as a � × 6 rectangle-array of bits. Following the notation of [19], we will denote
by x[i,j], 0 ≤ i < �, 0 ≤ j < 6, the bit located at row i and column j of the state
x. Note that all indices start from zero and the zero-th bit or word is always
considered to be the most significant one. Furthermore, if there is an addition
or a subtraction in the indices of the state, this is done modulo � for the first
(row) index and in modulo 6 for the second (column) index.

The default block and key size for SPEEDY is 192 bits and this instance
is denoted by SPEEDY-r-192. It is suggested to iterate this instance over 5,6
or 7 rounds. Next, we provide the specifications of the round function for
SPEEDY-r-192. Note that for this variant, the state is seen as (�×6)-bit rectangle,
with � = 32.

Round Function of SPEEDY-r-192. The internal state is first initialized with
the 192-bit plaintext. Then, a round function Rr is applied to the state r times,
where r is typically 5, 6 or 7. The round function is composed of four operations:
First, AddRoundKey (Akr

) XORs the round subkey kr to the state. Then, the
SubBox (SB) operation applies a 6-bit S-box to each row of the state. Follows
the ShiftColumns (SC) operation that rotates each column of the state by
a different offset. These two operations (SB and SC) are repeated twice in an
alternating manner. After this, the MixColumns (MC) operation multiplies each
column of the state by a binary matrix. Finally, a constant cr is XORed to the
state by the AddRoundConstant (AC) operation. Note that, for the last round,
the last ShiftColumns as well as the MixColumns and the AddRoundConstant
operations are omitted, while a post-whitening key is XORed to the state. The
round function Rr for the rounds 0 ≤ r < r − 1 while also for the round r − 1
are depicted in Fig. 2.
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Fig. 2. The round function of SPEEDY-r-192 for the first r − 1 rounds (left) and the
last round (right).

Table 2. Table representation of the 6-bit S-box S

In the rest of our paper, we assume that the input (resp. output) to each of
the described operations is a vector x (resp. y) ∈ F32×6

2 .

• AddRoundKey (Akr
): The 192-bit round key kr is XORed to the internal state.

Hence,
y[i,j] = x[i,j] ⊕ kr[i,j].

• SubBox (SB): A 6-bit S-box S is applied to each row of the state. More
precisely, for each row i, 0 ≤ i < 32, SB operates as follows:

(y[i,0], y[i,1], y[i,2], y[i,3], y[i,4], y[i,5]) = S(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]).

The table representation of the S-box S is given in Table 2.
• ShiftColumns (SC): This operation rotates the j-th column of the state,
0 ≤ j < 6, upside by j bits:

y[i,j] = y[i+j,j].

• MixColumns (MC): The MC operation of SPEEDY applies column-wise and is
based on a cyclic binary matrix α = (α1, α2, α3, α4, α5, α6) whose values
depend on the number of rows �:

y[i,j] = x[i,j] ⊕ x[i+α1,j] ⊕ x[i+α2,j] ⊕ x[i+α3,j] ⊕ x[i+α4,j] ⊕ x[i+α5,j] ⊕ x[i+α6,j].

Recall that the additions i + α∗ are considered mod �.
For � = 32, α = (1, 5, 9, 15, 21, 26).
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• AddRoundConstant (Acr ): The 192-bit round constant cr is XORed to the
internal state. Hence,

y[i,j] = x[i,j] ⊕ cr[i,j]

As this operation is not relevant to our analysis we omit the description of
the constant values.

Key Schedule. The 192-bit master key of SPEEDY-r-192 is loaded to the state
of the first round key k0. To obtain the next round key, the key schedule consists
in simply applying a bit-permutation PB. Hence,

kr+1 = PB(kr), with kr+1[i′,j′] = kr[i,j],

Table 3. The bit-permutation P for SPEEDY-r-192 with β = 7 and γ = 1.
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such that

(i′, j′) := P (i, j) with (6i′ + j′) ≡ (β · (6i + j) + γ) mod 6�,

where β and γ are parameters depending on the block length of the cipher and
that satisfy the condition that gcd(β, 6�) = 1. For SPEEDY-r-192, the parameters
β = 7 and γ = 1 are suggested, leading to the permutation P described in
Table 3.

Security Claims. The authors made security claims for the three main ver-
sions of SPEEDY-r-192. For the 5-round version the authors expect no attack
with complexity better than 2128 in time when data complexity is limited to
264. On the other hand, SPEEDY-6-192 should achieve 128-bit security, while
SPEEDY-7-192 is expected to provide full 192-bit security.

3.2 Differential Properties of SPEEDY

We describe in this section the differential properties of the non-linear and linear
layer of SPEEDY.

Differential Properties of the S-Box. The SPEEDY family of cipher employs a
6-bit S-box S whose differential uniformity is δS = 8. This means that the highest
probability of a differential transition through S is 2−3. One particularity of this
S-box that we exploit in our attacks is that almost all 1-bit to 1-bit differential
transitions are possible. Moreover, these minimal weight transitions often have
a relatively high probability. Table 4 summarizes all these transitions, together
with their corresponding probability. The full DDT is given in [11].

Table 4. Summary of all the 1-bit input differences α to 1-bit output differences β.
The corresponding probability can be obtained by multiplying the coefficients of the
table by 2−5. The symbol - means that the corresponding transition is impossible.

α/β 1 2 4 8 16 32

1 2 - 4 2 4 2

2 1 2 4 4 2 2

4 - 3 2 - 3 1

8 1 1 3 3 1 1

16 - - 4 4 3 4

32 1 1 2 3 1 -
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Another particularity is that 1-bit to 1-bit differential transitions can be
chained within one round through the SB ◦ SC ◦ SB operation. All of them are
possible and three of them achieve the maximum probability of 2−6.
Differential Properties of the MixColumns Operation. The branch number
of the MC operation is 8, which is the maximum possible value for the vector α
chosen. As the maximum differential probability over 1 round is 2−6, this means
that an upper bound on the probability of any differential transition over two
rounds is (2−6)8 = 2−48. The inverse MixColumns operation is defined with the
vector

α−1 = (4, 5, 6, 7, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28).

This means in particular, that a column with a single active bit, will lead after
the inverse of the MixColumns operation to 19 active bits, while a column with
two active bits will be transformed after the inverse MixColumns to a column
with at least 12 active bits.

3.3 Searching for Good Differential Trails

We describe in this section the methodology we followed to find the trails used
in our attacks. Our idea was to precompute at first all good one-round trails and
then chain them to create longer trails with high probability.

Searching for Good One-Round Trails. Let M be the matrix used in the
MixColumns operation. In order to find good one-round trails, we first computed
and stored all ordered pairs of columns (x,M(x)) ∈ F32

2 × F32
2 such that both

columns x and M(x) have at most 7 active bits each. This led to a total of 5248
pairs (x,M(x)) ∈ F32

2 × F32
2 . However, these 5248 pairs can be divided into 164

equivalence classes, each equivalence class corresponding to the 32 rotations of
a different activity pattern inside a column. We then stored in a table T one
representative per equivalence class and used these pairs to precompute and
store all 1-round trails satisfying some particular criteria. To describe this phase
we need to introduce the following notation. Let st[0] be the initial state for
our computation. We denote by st[1] the resulting state after applying MC to
st[0], st[2] the state after applying SB to st[1], st[3] the state after applying
SC to st[2], st[4] the state after applying SB to st[3], st[5] the state after
applying SC to st[4] and finally st[6] the state after applying MC to st[5]:

st[0] MC−→ st[1] SB−→ st[2] SC−→ st[3] SB−→ st[4] SC−→ st[5] MC−→ st[6].



46 C. Boura et al.

We computed all such propagations (st[0], st[6]) satisfying the following
conditions:

• st[0] has a single active column c0 such that (c0,M(c0)) ∈ T,
• st[5] has a single active column c5 such that (c5,M(c5)) ∈ T,
• st[2] has at most two active bits per row,
• the probability of the trail (st[0], st[6]) is strictly higher than 2−49.

For all trails satisfying the above conditions, we stored in a table the states
(st[0], st[5]) together with the probability of the corresponding trail. We
obtained a total number of 48923 one-round trails, which we stored. Note that
each trail can be shifted column-wise to form 32 other valid one-round trails.
Thus, in total, there are 1565536 one-round trails which satisfy our criteria.

We now justify the criteria used for computing these 1-round trails. Our main
constraint was computing time, as considering all 1-round trails is computation-
ally infeasible. Furthermore, as we wanted to store the trails and reuse them,
memory needed to be reasonable as well. Limiting the computation to states
with a single active column before and after each MixColumns computation is
a reasonable assumption, as states with more active columns would lead by the
inverse ShiftColumns operation to many active rows. Furthermore, by doing ini-
tial experiments for computing long trails, we noticed that all good trails found
never had more than 7 active bits in a column. This can be explained by the fact
that more active rows naturally lead to lower probability transitions through
the SubBox operation. We then limited the transition through the first SubBox
operation to only transitions from rows with Hamming weight one to rows with
Hamming weight at most two. While transitions activating in the output more
bits per row can still lead to good trails respecting the other criteria, only a
small proportion of these transitions does so, while the computational gain for
not considering them is huge. Finally, we limited the probability of the trails to
2−49 in order not to have to store too many trails for the second phase. This
particular bound came from our initial experiments, were we noticed that the
probability of all 1-round trails that were part of the longer trails we found, had
probability strictly higher than this bound.

We claim by no means that the chosen criteria lead to all the one-round trails
that could be part of optimal longer trails, however we believe that our strategy
is a reasonable trade-off between optimality and efficiency.

Searching for Longer Trails. In a second step we used the precomputed
1-round trails to create longer ones. To do so, we started by chaining our pre-
computed one-round trails in order to obtain r-round trails.
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To begin, we exhaustively ran through all the precomputed one-round trails
and searched for the ones that can be chained. Recall here that the starting state
and ending state of each round trail are the states just before the MixColumns
application. The chaining condition is very simple and consists in simply verify-
ing that the final state of a one-round trail is the same as a column-wise rotation
of the starting state of the following one by an integer 0 ≤ ι < 32. Note that
when ι �= 0, the full one-round trail concerned is also rotated column-wise. Also
note that doing so, we only obtain an element of an equivalence class modulo
the column-wise rotation. In order to make our search efficient, we first sorted
the states by Hamming weight and active column coordinate of their initial and
final state. Following this procedure, we found 1476978 2-round trails, each of
them giving by rotation another 32 valid 2-round trails. We followed a similar
procedure to obtain 46471749 3-round trails which can also be rotated column-
wise to obtain 32 times more valid 3-round trails. To compute the 4-round trails
we use in our attack on the 7-round version, we chained the 2-round trails with
themselves rather than using the 3-round trails in order for the search to be
more efficient. We stored the most interesting 4-round trails we found based on
criteria of low probability and adaptability to the key recovery step as described
in the next section.

From now on, for each r-round trail, we use the following notations. Let
ststart[k] (resp. stend[k]) be the starting state (resp. the ending state) of each
one-round trail composing the r-round trail, for 0 ≤ k < r. Denote also by cstart
the active column of ststart[0] and by cend the active column of stend[r − 1]. Let
w0 be the Hamming weight of cstart (i.e. the number of active bits in cstart)
and let w1 be the Hamming weight of M(cend), where M is the matrix used in
MixColumns. Finally denote by Pk, the probability of the round k, for 0 ≤ k < r.
The probability of the r-round trail, that we will call from now on core trail, is
then given by P0 × P1 × · · · × Pr−1.

Extending the Core Trail. To build our attack, we need to choose an r-round
trail that will be extended one round backwards and half a round forwards as
shown in Fig. 3. In this section, we describe the criteria that we used to select an
r-round trail that is likely to result in a good (r+1.5)-round trail. The resulting
(r + 1.5)-round trail must have good probability, but also needs to be adapted
to our key recovery step. In particular, as we will argue in detail in Sect. 4,
it is important to have differentials that will allow for efficient sieving in the
plaintext. In particular, it is desirable that the (r+1.5)-round trail we construct
has a sufficient number of inactive rows on the plaintext.

First, as described above, we need to make sure that the r-round trail
selected leads to a (r + 1.5)-round trail with good probability. For a r-round
trail, the probability of the resulting (r+1.5)-round trail can be upper-bounded
by 2−(w0+1)×3 × P0 × P1 × · · · × Pr−1 × 2−w1×3. Indeed, if w0 is the Hamming



48 C. Boura et al.

weight of cstart, then by computing backwards one round there will be at least
w0 + 1 active S-boxes. As the highest probability transition through an S-box
has probability 2−3, the highest possible probability of this prepended round will
be 2−(w0+1)×3. In the same way, if w1 is the Hamming weight of M(cend), then
there will be exactly w1 active S-boxes through the first S-box layer of the next
round. Thus, the probability of the appended half round will be at most 2−w1×3.
We generated all possible r-round core trails following the procedure described
above and kept the ones providing high estimated probabilities.

Fig. 3. Generating (r + 1.5)-round trails from core r-round trails and extending them
to mount (r + 3)-round attacks on SPEEDY.

Second, we want the r-round trail selected to lead to a (r + 1.5)-round trail
that has a significant number of inactive rows on the plaintext in order for the
sieving step to be efficient. First, consider the initial state of the r-round trail.
The rows that are active in this state are exactly the rows that will be active
in the state that follows the first SC operation in round 0 of the (r + 1.5)-round
trail. To achieve better sieving, we want the transition from this state through
SC−1◦ SB−1 to lead to an initial state of the (r + 1.5)-round trail that has low
Hamming weight. To achieve this, not only the number of active rows but also
the way those are distributed inside this state play a role for the efficiency of
the sieving procedure. Let L be the size of a block of consecutive rows, where
all rows are non-active except for l out of them. An example of such a state is
shown below with L = 15 and l = 3.

Large values of L combined with small values of l naturally lead to better
complexities. Indeed, we can carefully control the l active rows with some prob-
ability at a given cost. By doing so, we can generate a number of inactive rows
in the plaintext as high as L − 5 − l, thus leading to a sieving of 2−[(L−5−l)]×6.
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Using the above criteria, we selected an r-round trail, which we then extended
in two ways, starting first by appending a round backwards. This led to an (r+1)-
round trail. Then, to further improve the probability of our trail (r + 1)-round
trail, we relied on the technique of multiple differentials.

3.4 Multiple Differentials

The technique of multiple differentials consists in considering multiple (r + 1)-
round differential trails that all have the same input and output difference. To
make the description of our technique simpler, we will describe how we built our
multiple differentials in the case of our 7-round attack. In this case, r = 4. For our
7-round attack, the chosen 4-round core trail is the one displayed in red in Fig. 4.
This trail has probability 2−161.15. As shown in Fig. 4, we extended it by one
round backwards and obtained a 5-round trail of probability pmain = 2−170.56.
We call this trail the main trail. Note that it is possible to extend the 4-round core
trail backwards with probability 2−6 for one round. However, this propagation,
due to the diffusion properties of the inverse MixColumns transformation would
lead to a column with 19 active bits (see Sect. 3.2). Such a scenario would have
complicated the key-recovery phase and was not retained.

We limited our search to trails with probability smaller or equal to pmax =
pmain × 2−25. Our new trails must thus verify that

• their input difference is such that the bits of coordinate

(i, j) ∈ {2, 3, 4, 7, 8, 10, 12, 14, 16, 17, 18, 25, 27, 29} × {1}

are active, whilst the other bits are inactive in the first state of Fig. 4;
• their output difference is such the bits of coordinate

(i, j) ∈ {1, 15, 16, 19, 21, 25, 31} × {3}

are active, whilst the other bits are inactive in the second state surrounded
by red in Fig. 4.

To build our new trails, we rely on an algorithm that operates round by
round.

Initial Round. We start by building a list of potential initial one-round trails.
We denote the initial state by st[0], the state after the application of MC by
st[1], and so on so forth as we did when constructing our one-round trails.
We construct our initial one-round trails in a similar fashion to the way we
constructed the one-round trails used to build our main trail. More precisely, we
want our potential initial one-round trails to satisfy the following conditions:

• st[0] verifies the input condition;
• st[5] has a single active column c5 such that (c5,M(c5)) ∈ T;
• st[2] has at most two active bits per row.
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In order to make the search more efficient, we added constraints on these
initial round trails’ probability and Hamming weight, using the fact that
(st[0], st[6]) must belong to a larger 5-round trail such that the probability
of this larger trail is at most pmax. We will not describe these constraints in
detail as they are very similar to previous techniques we used to build trails of
reasonable probability. We obtained 6 potential initial round trails. Because of
the second condition above, these new trails can be chained to our previously
computed one-round trails. This property will be used to build our multiples.

Chaining the Initial Round. In order to find trails that satisfy our truncated
differential constraints, we must now chain the potential initial round trails to
the previously computed one-round trails. We do so in two steps in order for the
chaining to be computationally feasible.

1. We chain the 2-round trails pre-computed to the potential initial one-round
trails to form potential initial three-round trails. We get 8049 such 3-round
trails.

2. We chain these potential initial 3-round trails to the previously computed
2-round trails to obtain 5-round trails.

We found 409 5-round trails that matched all our criteria. By adding their cor-
responding probabilities, we found a final probability of 2−169.95. As one can
notice, using multiple differentials allows to improve the probability of the r-
round differential, but this improvement is not as important as one would have
expected by the number of found trails. This is due to the fact that all of the
additional trails found had unfortunately quite bad probabilities compared to
the main one.

5.5-Round Differential Trail. We describe now the 5.5-round differential trail
we used to attack SPEEDY-7-192 in the following section. This trail is depicted
in Fig. 4.

As stated before, the 5-round trail has probability 2−170.56, which is improved
to 2−169.95 by using multiple trails. We then extended this differential 0.5 round
forwards. For this step we followed a particular approach. To go through the
last S-box layer of the distinguisher part (see the before last state of Fig. 4) an
attacker has several choices. One extreme would be to fix to some concrete output
value the transitions through all active S-boxes. This comes at a cost of a certain
probability, but if we choose the transitions carefully we can guarantee very few
active rows on the ciphertext. The other extreme is to consider truncated output
differences for all the active S-boxes of this state. Thus the transition through
the SubBox layer happens with probability 1, but almost all rows will be active in
the output leading to very large structures of ciphertexts. What we decided to do
is a trade-off between these two scenarios. More precisely, we decided to fix the
transition 0x4 → 0x10 for the active S-boxes of rows 5, 11 and 19 and to allow
more transitions for the S-boxes of rows 0 and 28. The choice of these two rows
comes from the fact that after the SC operation, these two S-boxes activate some
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common rows. Our goal was to activate at most 7 rows after the SC operation
(last state of Fig. 4) and for this we computed the highest probability to have at
most 4 rows active between rows 23 and 31 and also row 0 after SC. We exhausted
all possible configurations and we found the best one to be the one having the
rows 24, 27, 28 and 31 active after SC. One possibility for this was to force the
output difference of the S-box of row 0 to be of the form (0,*,0,0,*,0) and the
output difference of the S-box of row 28 to be of the form (*,*,0,0,*,0), where
* means that the corresponding bit is potentially active. The probability then
to start from any difference of the above form in rows 0 and 28 and to activate
at most the rows 24, 27, 28 and 31 after the SC is 2−3.41. This fact, together with
the probability of 2−3.41 for the transition 0x4 → 0x10 for the other three active
rows, gives a total probability of 2−13.64.

To summarize, as can be seen from Fig. 4, our 5.5-round trail has then a total
probability of

2−169.95 × 2−13.64 = 2−183.59.

4 Attack on SPEEDY-7-192

SPEEDY-7-192 is the variant of the SPEEDY family suggested for applications
where a security of 192 bits is needed. We show in this section, by using the
techniques and ideas introduced earlier, how to recover the secret key of this
version with less than 2192 encryptions. In addition, we will propose two ideas
that will allow us to optimize the complexity of the attack: one, already used for
instance in [12], is to not consider the rounds as blocks regarding their treatment
with respect to the differential distinguisher or the truncated part, but include
some row transitions in the differential and let the rest go as truncated in the
same round which we will apply in the input and output of the attack; the other
is to consider the detailed equations over two rounds with merging techniques
that will allow us to optimize the complexity of the key guessing part.

Our attack has a data complexity of 2187.28, a time complexity of 2187.84 and
a memory complexity of 242 and contradicts thus the designers’ security claim for
this variant, as has been acknowledged by them. More importantly, this crypt-
analysis highlights that the security margin for this variant was overestimated.
Our attack uses the differential found with the ideas from Sect. 2 and the imple-
mented method described in Sect. 3.3. As described before, the main differential
trail depicted in Fig. 4 covers 5.5 rounds and its probability, when taken together
with its associated multiple trails described in Sect. 3.4, is 2183.59. The trail of
Fig. 4 can then be extended one round backwards and half a round forwards
as shown in Fig. 5, to finally cover 7 rounds. This fact contradicts a particular
statement of the designers that wrote that a one-round security margin for the
key-recovery part should be sufficient.

4.1 Trade-Off Between Differential Probability and Efficient Sieving

Our attack is performed in the decryption direction. The first step is to generate
a number of relevant ciphertexts to implement the attack. If we impose no extra
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Fig. 4. 5.5-round differential trail used to attack SPEEDY-7-192. The red part corre-
sponds to the 4-round core trail, while the blue part corresponds to the 1.5-round
extension. Grey bits are bits with unknown difference. The two states surrounded in
red are the starting and final states of the multiple differentials considered. (Color
figure online)

condition on the extension of the distinguisher to the plaintexts (δin → Din as
denoted in Fig. 1) then Din will have all but one rows active (see Fig. 4). This
would lead to a very limited sieving and would thus leave us with too many
potential pairs on which to perform the key recovery. For this reason, we pro-
pose a first improvement. This improvement consists in restricting the permitted
transitions through the second S-box layer of Round 0. More precisely, the con-
dition is that the three active bits in rows 26, 28 and 30 after the second S-box
only generate a maximum of three active rows in the plaintext state (among
rows 26 to 31 and among rows 0 to 2). This condition allows to have 7 inac-
tive rows (instead of 1 before) in the plaintext state at the cost of decreasing
the overall differential probability. We denote by Pin the probability that it is
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Fig. 5. Key recovery part of the 7-round attack against SPEEDY-7-192

verified. As we show next, since this probability is relatively high, the impact on
the overall differential probability is limited Fig. 6.

Fig. 6. Transition of rows 26, 28 and 30 through the inverse of the second SB of round 0.

To compute Pin, we start with the state Z, corresponding to the state after
the second S-box application of Round 0, where the rows 26, 28 and 30 all have
an active difference of 010000. Therefore, on the state Y, we consider differences
δ1, δ2, δ3 that propagate to 010000 through the S-box layer with probability
P(δ1),P(δ2),P(δ3) respectively. Propagating backwards through SC, we obtain
Xδ1,δ2,δ3 = SC−1(Yδ1,δ2,δ3). We are interested in states Xδ1,δ2,δ3 that have at
most three nonzero rows among rows 26 to 31 and among rows 0 to 2. We define
the function 13 as follows:

13(Xδ1,δ2,δ3) =
{
0 if Xδ1,δ2,δ3has more than 3 nonzero rows
1 else.

The overall probability for the transition is given by the formula

Pin =
∫

δ1,δ2,δ3

13(Xδ1,δ2,δ3)P(δ1)P(δ2)P(δ3) .
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The obtained probability is Pin = 2−2.69. We take this probability into
account as part of the overall probability of the differential distinguisher, which
now becomes 2p∗

= 2−(183.59+2.69) = 2−186.28. Note that only 78 (instead of(
9
3

)
= 84) difference patterns are possible in the plaintext.

4.2 Data Generation

We build the data required for our attack in the decryption direction. Since there
are 7 active rows on the ciphertexts, the size of each structure is 27×6 = 242.
By following now the notations introduced in Sect. 2, we build 2s structures
of size 242 each, such that 2s+42 equals 2186.28+1. This implies that there are
2s = 2145.28 structures and 2145.28+2·42−1 = 2228.28 potential pairs. The cost of
the data generation is 2187.28CE , where CE is the cost of one encryption and can
be estimated as 6 ∗ (1 + 6 + 6 + 6) + 1 + 6 + 6 = 128 bit-operations. Indeed, MC,
SB are 6 bit-operations, the cost of AK is 1, and all these transformations can be
applied in parallel.

4.3 Sieving of the Pairs

Performing the key-recovery step on all 2228.28 pairs would exceed the complexity
of the exhaustive search. Therefore, we will start with a sieving step to eliminate
pairs that cannot have followed the differential. This sieving is done by looking at
the differences in the plaintext. As can be seen from Fig. 5, the ‘good’ plaintext
pairs have a zero-difference in row 25 as well as 6 inactive rows among rows 26
to 31 and 0 to 2. The sieving will be performed on both the inactive and the
active rows.

Inactive Rows. Each inactive row represents a 6-bit filter. We consider each of
the 78 possible difference pattern in the plaintext. For each pattern, since there
are 7 inactive rows at the input, the sieving obtained from these rows is 2−42.

Active Rows [3 − 24]. We can proceed to a sieving on each of these 22 active
rows by taking into account the first S-box layer of Round 0. To make this step
clear, we start by explaining the sieve on row 6. As can be seen from Fig. 5, to
follow the differential, a plaintext pair should generate after the application of
the S-box a truncated difference of the form (0,*,*,*,0,0). By looking at the
DDT of SPEEDY’s S-box, we see that the input differences 0x16, 0x2d and 0x3c
never propagate to an output difference of the form (0,*,*,*,0,0). Thus, any
pair with one of those three plaintext differences at row 0 can be sieved out.
This gives us a filter of log2(61/64) = 0.07, as shown in Table 5. The filters for
the other active rows are computed similarly and are reported in Table 5.

Considering the 78 Different Patterns in the Rows [26-31] and [0-2]. Recall
that there are in total 78 possible patterns pat, and each one corresponds to a
subset of exactly 3 active rows among rows 26 to 31 and 0 to 2 in the plaintext.
We start from the difference (0,1,0,0,0,0) on the rows 26, 28 and 30 after the
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Table 5. Sieving in the active rows [3− 24] of the plaintext.

row filter row filter row filter row filter

3 0.42 9 0.02 15 0.09 21 0.07

4 0.48 10 0.05 16 0.07 22 0.17

5 0.07 11 0.07 17 0.09 23 0.51

6 0.07 12 0.12 18 0 24 1.42

7 0.07 13 0.02 19 0.02

8 0 14 0.07 20 0

total filter 3.9

second S-box of Round 0. Then we propagate this difference backwards through
the two S-box layers of Round 0 and discard all the differences that do not follow
the pattern considered. The number of possible differences on the plaintext allows
us to filter 2−fpat = #Possible differences

23·6 (see [11] for the 78 possible values of fpat).

Summarizing the Sieving Step. For a pattern pat, the sieving corresponding to
the inactive rows is 2−42 while the one on the active rows is 2−3.9 · 2−fpat . Thus,
the total number of potential pairs for the key recovery step is

∑

pat

2228.28−45.9−fpat = 2182.38
∑

pat

2−fpat = 2186.42 .

This sieving step is the reason why we decided to perform the attack in the
decryption direction. Indeed, using the 78 patterns in initial structures would
have further increased the complexity.

4.4 Recovering the Key

In this section, we describe our improved key recovery step. The key recovery
algorithm is performed for each pair on the fly. As explained in the last section,
the total number of pairs we will try in this step is 2186.42. For each pair, we
check whether there exists a key that allows the pair to follow the differential.
If not, the pair is discarded. Otherwise, as we will show, we obtain a partial key
on which all bits are determined but a small number nl which is equal to 8 on
average. For each of the remaining pairs and associated partial key, we then try
exhaustively all possible 2nl keys. For each pair, the key recovery is divided into
three stages which can be summarized as follows. First, we determine bits of
the last subkey k7 using the fact that if the pair follows the trail, then it must
belong to δout before the last SB application. Since the key schedule of SPEEDY
consists simply in a permutation of the key bits, this in turn constrains the bits
of k0. Second, we determine more bits of k0 using the fact that the pair must
belong to δin. Lastly, we determine a few extra key bits using the penultimate
S-box application (first S-box application of the last round).
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Stage 1 - Last Subkey Addition (k7). For each pair, we start by determining
several bits of k7. As can be seen from Fig. 5, the ciphertext pairs are active on
the rows [4,10,18,24,27,28,31]. For the rows [4,10,18,27,31] (respectively
row 24), we want the partial key to be such that these rows satisfy the differential
(0,1,0,0,0,0) (respectively (0,0,0,0,1,0)) before the last SB application. For
each pair, this determines 6 × 6 = 36 key bits on average. The case of row 28
is only slightly different. If active, there are 26 possibilities for the six key bits,
but 4 different patterns are possible before SB. A correct pattern is thus reached
with probability 2−4. The row 28 can thus determine 6 additional key bits at
the cost of 22 guesses on average. This stage thus allows us to determine up to
42 key bits at the cost of 22 guesses. In Table 6, we detail which key bits of the
master key are fixed after determining the value of k7 on the rows corresponding
to one of the 7 active rows in the ciphertext.

Table 6. Guessed master key bits from the subkey k7. Each row corresponds to one
of the 7 active rows of the ciphertexts.

About the Potentially Active Ciphertext Rows. For the sake of simplicity, we
consider in this analysis that the four ciphertext rows [24,27,28,31] are active,
as it simplifies the key guessing procedure. In fact, we could just discard the
pairs that do not verify this, leaving us with 224+24−1 − 247−6 ≈ 246.91 pairs for
the partial structure on 4 lines instead of 247, but with a higher probability of
reaching a good difference before the penultimate SB. In practice, there is no
need to discard this data. It can also be treated with similar methods to the one
presented here. Although these methods are slightly more expensive than the one
presented here as a few more key bits might have to be partially guessed, they
are used to handle a very small proportion of data. Thus, the difference in the
cost will be negligible. We thus limit our explanations to the predominant case,
with all the rows active. We allow rows [4,10,18] to be non active. For each of
these rows, this gives on average a probability of 2−6 of having a difference that
can match the required one (including the 0 difference). Thus, on average, only
one 6-bit key word leads to the desired difference.

Stage 2 - First Subkey Addition (k0). We now focus on the addition of the
first subkey k0. This key recovery stage is performed row by row, and the order
in which each row is treated is important in order to keep our time complexity as
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low as possible. For each row, we will use available information from both SubBox
layers of Round 0 to determine more triplets of possible pairs and associated key.
Table 7 helps us understand how to exploit the first S-box of Round 0 for rows
[3,...,24]. Recall that these rows are active rows in the plaintext and that
they allowed us to perform a specific sieving given in Sect. 4.3. For each row,
Table 7 provides the following information:

– Key determined gives the number of key bits already determined during
Stage 1 (i.e. with subkey k7).

– Key left gives the number of key bits that remain to be determined for this
row (note that the sum of Key determined and Key left is always 6).

– Differential Filter gives the value of the filter that was applied during
the sieving step to each pair.

– Fixed bits gives the amount of inactive bits after the first SubBox layer.
– First S-box Cost gives the overall cost in bits for a given row to check the

propagation through the first SubBox. Since one can precompute the valid
pairs of values and associated partial keys for each row, this cost is equal to
(Key left + Differential filter - Fixed bits) rather than Key left.
For each row and for each key, the probability that they satisfy the differential
is 2Differential filter−Fixed bits. In particular, for rows where the value of First
S-box Cost is negative, then for each pair, there exists a key that satisfies the
differential with probability < 1. Such rows allow us to discard more pairs.

Since row 25 is inactive, it does not provide any information about k0 through
the first SB. For the sake of simplicity, we do not analyze how to exploit the rows
0 to 2 and 26 to 31. This could have been done by looking at the case of each
specific pattern, but it wouldn’t have significantly improved the attack whilst
considerably lengthening the description of the key recovery step.

To perform the key recovery, we will also look into the propagation through
the second S-box. More precisely, we will use the conditions set on the rows
[3,4,5,8,9,11,13,15,17,18,19] after the application of the second S-box to
sieve the pairs. At the output of the second S-box, these rows must have the
exact difference (0,1,0,0,0,0). This provides us with a 2−6 filter, but it is not
straightforward how to exploit it. Indeed, because of the SC step, each row at
the output of the second S-box layer depends on 6 rows at the output of the
first S-box layer. It thus seems that in order to get a 2−6 filter, one first has
to guess 6 rows of k7, which is very costly. However, we use several improved
techniques in order to get filters without having to guess too many rows before
the first S-box step. We describe these techniques through an example which can
be found in the paragraph dedicated to the rows [18,19,22,21,23] below. We
now describe in detail the first three steps of Stage 2. Table 8 sums up the rest
of Stage 2.

Rows [4]. We start by considering row 4. This row allows us to perform a filter
of −0.52 at the first S-box level of Round 0.
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Table 7. This table represents the information used for efficiently solving the key-
recovery part of the attack. Each line in the table is associated to the same row in
the state. The column Key determined indicates how many bits are already known
from Stage 1 (those bits are depicted in red), and Key left is the number of bits that
remains to be known. Fixed bits represents the number of inactive bits after the first
SB of Round 0 and that therefore can be used to perform a sieving on the candidate
keys. The cost is the difference between the previous values, and the second filter
denotes the active rows in the second SB, as they will provide an additional filtering to
produce the fixed output difference.

row Key
determined

Key
left

Differential
Filter

Fixed
bits

First
S-box Cost

0 0 1 2 3 4 5 2 4 * * *

1 6 7 8 9 10 11 1 5 * * *

2 12 13 14 15 16 17 1 5 * * *

3 18 19 20 21 22 23 1 5 0.42 4 1.42

4 24 25 26 27 28 29 3 3 0.48 4 -0.52

5 30 31 32 33 34 35 1 5 0.07 3 2.07

6 36 37 38 39 40 41 2 4 0.07 3 1.07

7 42 43 44 45 46 47 0 6 0.07 3 3.07

8 48 49 50 51 52 53 2 4 0 2 2

9 54 55 56 57 58 59 3 3 0.02 2 1.02

10 60 61 62 63 64 65 1 5 0.05 3 2.05

11 66 67 68 69 70 71 1 5 0.07 3 2.07

12 72 73 74 75 76 77 1 5 0.12 3 2.12

13 78 79 80 81 82 83 2 4 0.02 2 2.02

14 84 85 86 87 88 89 2 4 0.07 3 1.07

15 90 91 92 93 94 95 0 6 0.09 3 3.09

16 96 97 98 99 100 101 1 5 0.07 3 2.07

17 102 103 104 105 106 107 0 6 0.09 3 3.09

18 108 109 110 111 112 113 3 3 0 2 1

19 114 115 116 117 118 119 2 4 0.02 2 2.02

20 120 121 122 123 124 125 1 5 0 2 3

21 126 127 128 129 130 131 1 5 0.07 3 2.07

22 132 133 134 135 136 137 1 5 0.17 3 2.17

23 138 139 140 141 142 143 2 4 0.51 4 0.51

24 144 145 146 147 148 149 1 5 1.42 5 1.42

25 150 151 152 153 154 155 0 6 * * *

26 156 157 158 159 160 161 1 5 * * *

27 162 163 164 165 166 167 2 4 * * *

28 168 169 170 171 172 173 1 5 * * *

29 174 175 176 177 178 179 1 5 * * *

30 180 181 182 183 184 185 1 5 * * *

31 186 187 188 189 190 191 1 5 * * *
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Rows [18,19,20,21,23]. We next consider the rows 18,19,20,21 and 23. To
understand why these rows are the next ones we consider, one must take into
account the second S-box transition. Indeed, consider the rows [17,18,19] after
the second S-box transition. These three rows are active, and must thus have the
exact difference (0,1,0,0,0,0). Since these rows are positioned next to each
other, one does not need to guess 3×6 = 18 rows at the input of the first S-box,
but only 8, namely the rows [17,18,...,24]. Further, we show that to get a
filter, one does not need to guess all of the 8 rows on which the rows [17,18,19]
after the second S-box transition depend. We start by precomputing all the pairs
of values that are in the codomain of the function

a, b, c, d, e, f �→
(
S−1(a, b, c, d, e, f), S−1(a, b, c, d, e ⊕ 1, f)

)

and store them in a table of size 26. We can thus build precomputed table of size
218 which contains all possible valid values of rows [17,18,19] at the entry the
second S-box layer. We guess the rows [18,19,20,21,23] at the entry of the
first S-box. In total, 13 bits of the rows [18,19,22,21,23] later impact the rows
[17,18,19] at the entry of the second S-box. There are thus 226 possible pairs
of values for these bits, whilst in total, the table contains 218 possible pairs that
verify the condition at the output of the S-box on the rows [17,18,19]. This
thus results in a 2−8 filter. More precisely each pair matches a pre-computed
valid pair in the table of size 218 with probability 2−8. In particular, when-
ever a pair is not discarded, the rows [17,18,19] before the second S-box are
completely determined. This will allow us to filter more pairs as we guess more
rows in the plaintext which impact the value of the rows [17,18,19] before the
second S-box. The guess of rows 18,19,21 and 23 can be done with merging
techniques developed in [15] resulting in a reduction of the guessing cost from
22.02+2.07+1+0.51+2.17 = 27.77 to 24.09 + 23.68 + 27.77−8 = 24.94, or else can be
more efficiently performed with small precomputations regarding these partial
transitions with a cost for each step given by the number of remaining solutions,
so 27.77−8 = 2−0.23 in this example.

Row 24. The next step consists in guessing row 24. As we have described previ-
ously, for the pairs that have not been discarded yet, the three rows [17,18,19]
before the second S-box are fixed. Two bits of row 24 later impact the value of
these rows. Thus, we obtain an extra 2−2 filter. Therefore, as can be seen from
Table 7 we obtain a partial guessing cost of 21.42 and a partial data cost of 2−0.58.

The next steps of the key recovery are described in Table 8. This table must
to be read from top to bottom. Its columns provide the following informations:

– Row guessed at the input. This column displays the coordinate of the row
guessed. The column considered first is at the top and the last one is at the
bottom.

– Partial guessing cost. This column displays the cost of guessing each row
and checking that the first S-box transition is valid (See Table 7).
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– Partial data filter. For each row, this column displays the log of the
probability that a valid partial key exists for each pair, taking into account
the filter provided by the constraints after the second S-box. This column
provides information on the evolution of the data after guessing each row (or
group of rows). For a (group of) row(s), if the entry on this column is −x,
then the number of pairs remaining after handling this (these) column(s) is
multiplied by 2−x.

– Row determined at second S-box. This column displays the second S-box
rows that are fully determined after a given guess.

Table 8. Description of Stage 2 of the key recovery.

Row guessed
at the input

Partial guessing
cost

Partial data
filter

Row determined
at second S-box

4 -0.52 -0.52

18,19,22,21,23 4.9 -0.23 17,18,19

24 1.42 -0.58

20 3 -3 15

17 3.09 -0.91

16 2.07 0.07 13

15 3.09 -0.91

14 1.07 -0.93 11

13 2.02 -1.98

11 2.07 0.07 9

12 2.12 -1.88 8

9 1 -3

10 2.05 -1.95

8 2 0 5

6 1.07 -0.93 3

5 2.07 -1.93

7 3.07 -0.93

3 1.42 -0.58

The complexity of the key recovery so far is given by the formula
[
2186.42+22−0.52(24.94 + 2−0.23(21.42 + 2−0.58(23 + 2−3(· · · (21.42 + 20.58)))))

]
2−7CE

= 2186.15CE

and there are 2168.3 remaining pairs.

Stage 3 - Back to k7 Using the Penultimate S-Box. For the remaining key
bits, we will go back to k7 and study the penultimate S-box. A similar approach
to the second S-box is applied here: instead of using the second S-box transition
to perform a guess and filter approach, the penultimate S-box is used. For each
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row of k7, Table 9 shows which bits of the master key still need to be guessed
(the bits in black). For each pair, we wish to find partial keys such that they
lead to the difference 000100 before the first S-box of the last round on rows
[0,5,11,19,31]. For each of these rows, Table 10 displays which rows of k7 need
to be guessed in order to check the transition to 000100 before the first S-box
of the last round. More precisely, it provides the following information.

– Row considered. This column displays the coordinate of the row before the
first S-box of the last round which will be used to filter the right key guesses.

– Involved rows of k7. This column displays which rows of k7 must be guessed
in order to check the condition on the row considered before the first S-box
of the last round.

– Number of missing bits. This columns displays the number of bits in the
involved rows of k7 that have not yet been determined.

For each remaining pair and for each of these five transitions, we recover the
key bits that allow this transition and put them in tabs. By merging them, we
then recover the pairs and associated partial keys that allow the whole state tran-
sition. After this step, only the key bits [15,16,152,153,159,180,187,188] are
left to determine. This is done by guessing them. The complexity associated to
this step is

2168.3(28 + 28 + 29 + 210 + 210 + 211(1 + 28)) = 2180.31CE .

Table 9. In red, the master key bits that have already been determined. In black, the
bits that still need to be determined.

row Key row Key

left left

0 169 32 87 142 5 60 2 16 73 128 183 46 101 156 2

1 115 170 33 88 143 6 2 17 19 74 129 184 47 102 1

2 61 116 171 34 89 144 1 18 157 20 75 130 185 48 0

3 7 62 117 172 35 90 2 19 103 158 21 76 131 186 2

4 145 8 63 118 173 36 0 20 49 104 159 22 77 132 1

5 91 146 9 64 119 174 2 21 187 50 105 160 23 78 1

6 37 92 147 10 65 120 1 22 133 188 51 106 161 24 1

7 175 38 93 148 11 66 2 23 79 134 189 52 107 162 2

8 121 176 39 94 149 12 2 24 25 80 135 190 53 108 0

9 67 122 177 40 95 150 2 25 163 26 81 136 191 54 2

10 13 68 123 178 41 96 0 26 109 164 27 82 137 0 2

11 151 14 69 124 179 42 3 27 55 110 165 28 83 138 0

12 97 152 15 70 125 180 3 28 1 56 111 166 29 84 2

13 43 98 153 16 71 126 2 29 139 2 57 112 167 30 2

14 181 44 99 154 17 72 3 30 85 140 3 58 113 168 2

15 127 182 45 100 155 18 2 31 31 86 141 4 59 114 0



62 C. Boura et al.

Table 10. Description of Stage 3 of the key recovery.

Fig. 7. 3.5-round differential trail used to attack SPEEDY-5-192. The red part corre-
sponds to the 2-round core trail, while the blue part corresponds to the 1.5-round
extension (Color figure online).

Complexity Summary. The final time complexity of our attack is

T = 2187.28CE + 2179.42CE + 2186.15CE + 2180.31CE = 2187.84CE
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Fig. 8. 4.5-round differential trail used to attack SPEEDY-6-192. The red part corre-
sponds to the 3-round core trail, while the blue part to the 1.5-round extension (Color
figure online).

5 Discussion and Conclusion

We presented in this work an attack on SPEEDY-7-192 that fully breaks this
variant of the SPEEDY family of ciphers. In parallel, we could also build attacks
on other variants, even if our attacks on these smaller-round versions do not
contradict the corresponding security claims. For completeness we provide a
summary of these attacks, that are at the best of our knowledge the best known
attacks on these versions.
SPEEDY-5-192. Following the trail depicted in Fig. 7 and its associated multiple
differential probability of 2104.02, computed as explained in Sect. 3.4, we can
build a differential attack on 5 rounds, very similar to the 7-round one. We just
need to take into account the new parameters. Note that the complexity for the
key recovery is extrapolated from the 7 round version, since the first round is the
same and we have the same amount of key bits, we expect similar complexity
for the first part of the key recovery. Regarding 5 rounds the new complexity is
given by (with CE = 26.47 here):

T = 2107.71CE + 2100.38CE + 2105.38CE + 286.85CE ≈ 2107.98CE ,

a data complexity of 2107.71 and a memory complexity of 242. The authors stated
that this version should achieve 128-bit security when data complexity is limited
to 264. Therefore, due to the data limitation, our attack does not contradict the
security claim of the designers but still represents the best known attack against
SPEEDY-5-192.
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SPEEDY-6-192. For 5.5 and 6 rounds we can use the trail depicted in Fig. 7 with
multiple differential probability of 2125.41 and 2149.28 respectively. We take into
account the new parameters and the complexities are (with C5.5

E = 26.67 and
C6

E = 26.75):

T6 = 2152.97CE + 2145.36CE + 2150.36CE + 2132.36 ≈ 2153.19CE ,

and data complexity given by the first term and still a memory complexity of
242. We can do similar computations for 5.5 rounds to obtain T5.5 = 2129.34CE

with the same memory complexity and a data of 2129.1.

Open Problems. We believe, as a future research, that it would be interesting to
develop different algorithmic methods in order to search for higher-probability
trails for SPEEDY. In parallel, different theoretical but also programming tech-
niques should permit to improve our approach for finding multiple differentials.
Being able to find more trails of good probability would greatly increase the
complexities of the attacks. In parallel, new tools that would permit to compute
propagations through two rows at once with no constraint in the middle part
would potentially permit to find better differentials Fig. 8. Finally, it would be
interesting to develop an automatic tool for differential cryptanalysis that could
give an approximate of the best attack complexity for certain types of ciphers.
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Meet-in-the-Middle Cryptanalysis
of SKINNY

Danping Shi1,2 , Siwei Sun3(B) , Ling Song4 , Lei Hu1,2 ,
and Qianqian Yang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{shidanping,hulei,yangqianqian}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China

sunsiwei@ucas.ac.cn
4 Jinan University, Guangzhou, China

Abstract. The Demirci-Selçuk meet-in-the-middle (DS-MITM) attack
is a sophisticated variant of differential attacks. Due to its sophistica-
tion, it is hard to efficiently find the best DS-MITM attacks on most
ciphers except for AES. Moreover, the current automatic tools only cap-
ture the most basic version of DS-MITM attacks, and the critical tech-
niques developed for enhancing the attacks (e.g., differential enumeration
and key-dependent-sieve) still rely on manual work. In this paper, we
develop a full-fledged automatic framework integrating all known tech-
niques (differential enumeration, key-dependent-sieve, and key bridging,
etc.) for the DS-MITM attack that can produce key-recovery attacks
directly rather than only search for distinguishers. Moreover, we develop
a new technique that is able to exploit partial key additions to generate
more linear relations beneficial to the attacks. We apply the framework
to the SKINNY family of block ciphers and significantly improved results
are obtained. In particular, all known DS-MITM attacks on the respec-
tive versions of SKINNY are improved by at least 2 rounds, and the
data, memory, or time complexities of some attacks are reduced even
compared to previous best attacks penetrating less rounds.

Keywords: Demirci-Selçuk MITM Attacks · Differential
Enumeration · Key-dependent Sieve · SKINNY

1 Introduction

DS-MITM attack was introduced by Demirci and Selçuk [6] to attack AES in
FSE 2008. Let {P 0, P 1, . . . , P 255} be a set of 28 plaintexts for 4-round AES
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such that the i-th (0 ≤ i < 16) byte of these plaintexts traversing F
8
2 and all

other bytes of them are fixed to some constant. Basically, Demirci and Selçuk
in [6] showed that the value of the sequence C0[j]||C1[j]|| . . . ||C255[j] formed by
concatenating the jth byte of the corresponding ciphertexts {C0, C1, . . . , C255}
of {P 0, P 1, . . . , P 255} can be fully determined by 25 8-bit parameters. More-
over, it is observed in [7] that the value of the sequence C0[j] ⊕ C1[j]||C0 ⊕
C2[j]|| . . . , C0 ⊕ C255[j] can be fully determined by 24 8-bit parameters. There-
fore, C0[j]⊕C1[j]||C0⊕C2[j]|| . . . , C0⊕C255[j] can take at most (28)24 different
values, while for a random 255-byte sequence, it has (28)255 possibilities. Obvi-
ously, this behavior forms a distinguisher. In this work, we say that the degree
of freedom of the output sequence is 24 bytes.

Since then, many improvement techniques have been proposed to enhance
the attack [8–10,13,16], and DS-MITM produces the best cryptanalytic results
on AES in the single-key model [10,16,17]. In 2010, Dunkelman et al. introduced
the so-called differential enumeration technique to reduce the degree of freedom
of the output sequence, where the input plaintext set is constructed such that
it contains one message conforming to a given truncated differential [13]. The
differential enumeration technique was further improved in [8]. Also, Dunkelman
et al. exploited the algebraic relations (named as key bridges) to reduce the
space of the candidate keys [13]. Another improvement is to consider a multiset,
i.e. an unordered set with multiplicity, other than an ordered sequence, which
reduces the possibilities by a factor 4 [13]. The key-dependent-sieve technique
was introduced in [16] to further reduce the degree of freedom of the output
sequence by considering the relations induced by the key-schedule algorithm on
the parameters that fully determine the value of the output sequence.

In order to find DS-MITM attack efficiently, some tools have been proposed
in the literature. In [8,9], a dedicated search algorithm for DS-MITM attacks
implemented in C/C++ was presented by Derbez and Fouque. Shi et al. proposed
a constraint programming (CP) based approach for automatizing the search of
DS-MITM distinguishers, whose most important advantage is the decoupling
of the modeling and resolution processes of the cryptanalytic technique [20].
However, the CP-based model presented in [20] only capture the most basic
version of the DS-MITM attack, and those critical techniques developed for
enhancing the attacks (e.g., differential enumeration and key-dependent-sieve)
still rely on manual work.

Our Contributions. We develop a full-fledged automatic framework for DS-
MITM attacks on tweakable block ciphers that integrates all known techniques,
including but not limited to differential enumeration, key-dependent-sieve, and
key bridging techniques. This tool makes full use of the ability of choosing tweaks
when the target cipher is a tweakable block cipher, and our tool is able to
output a configuration of a DS-MITM key-recovery attack directly, and thus
avoid trapping into the situation where an optimal distinguisher may lead to
a sub-optimal key-recovery attack. Note that the automation of the differential
enumeration technique is highly nontrivial, and it is enabled by a thorough
analysis on how to synthesize the objective function from the variables involved
in the model.
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Moreover, we propose a method for describing the dependencies between the
variables linked by a linear transformation and a non-full key addition based on
the rank of a matrix derived from the linear transformation. With this method,
the dependencies within the rounds of an iterative block cipher due to non-
full key additions can be fully exploited to reduce the degree of freedom of the
output sequence. Note that this technique alone can improve the previous best
DS-MITM attack on SKINNY-128-384 by 1 round in the single-key and single-
tweak setting as shown in Section G.

We apply the framework to the SKINNY family of block ciphers and the
results are summarized in Table 1, from which we can see that all known DS-
MITM attacks on the respective versions of SKINNY are improved by at least 2
rounds, and the data, memory, or time complexities of some attacks are reduced
even compared to previous best attacks penetrating less rounds. We note that
most of the key-recovery attacks listed in Table 1 are not extended from the best
distinguishers we can find by changing the objective of the model to identify the
optimal distinguishers instead of the best key-recovery attacks.

Organization. In Sect. 2, we give a brief description of DS-MITM attack and
SKINNY block cipher. Then in Sect. 3, we present the generalized new non-
full key-addition technique. In Sect. 4, we present a unified full-fledged auto-
matic framework integrating all known techniques (e.g. differential enumera-
tion, key-dependent-sieve, tweak-difference cancellation, non-full key-addition)
for the DS-MITM attack and apply it to SKINNY. Section 5 presents the results
of SKINNY. Finally, we propose some discussions in Sect. 6. Please refer to the
full version [21] for more details. Relevant source codes can be found via https://
github.com/shidanping/DS-MITM.

2 Primarily

2.1 Notations

The following notations will be used in this paper.

– The input state of rth round is denoted by Sr and jth cell of n-cell state
Sr is represented by Sr[j]. Let P k represent kth plaintext and Ck represent
associated ciphertext. The parameter of P k in the internal cell Sr[j] is denoted
by P k[Sr[j]]. Let P ⊕ P ′[Sr[j]] represent P [Sr[j]] ⊕ P ′[Sr[j]].

– Assume B = [Sr[j0],Sr[j1], . . . ,Sr[jt]] is a sequence of positions. Then the
concatenation P [Sr[j0]]||P [Sr[j1]] . . . ||P [Sr[jt]] of P (P ⊕ P ′ respectively) in
positions specified by B is denoted by P [B] (P ⊕ P ′[B] respectively). The set
of {P [Sr[j0]], P [Sr[j1]], . . . , P [Sr[jt]]} is also represented by {P [j] : j ∈ B}.

– Let E1 and Er be 1-round and r-round function of an iterative block cipher
respectively. E1 maps input state Sr to output state Sr+1 = E1(Sr).

– | ∗ | represents the size of a set or table ∗.

A δ-set was first proposed by Daemen and Rijmen [5], which is a structure
of 256 plaintexts by traversing one byte while sharing same value in other bytes.
Lin et al. extended the definition of δ-set to multiple active bytes [19].

https://github.com/shidanping/DS-MITM
https://github.com/shidanping/DS-MITM
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Table 1. Summary results of SKINNY in the single-key setting, where ID, ZC, Int
and MITM denote the impossible differential, zero correlation, integral and classic
meet-in-the-middle attack respectively

Version Approach Rattack Time Data Memory CT Ref.

SKINNY-128-128

ID 17 2120.8 2118.5 297.5 [23]

ID 17 2116.51 2116.37 280 [15]

DS-MITM 17 2122.06 296 2118.91

�

Sect. L, Fig. 35

SKINNY-128-256

ID 19 2119.8 262 2110 [23]

ID 19 2219.23 2117.86 2208 [15]

DS-MITM 19 2238.26 296 2210.99 [14]

DS-MITM 19 2235.05 296 2207.7 Sect. I, Fig. 29

DS-MITM 20 2254.28 296 2250.99

�

Sect. H, Fig. 27

DS-MITM 21 2234.84 296 2183.52 Sect. A, Fig. 13(8-bit tweak)

DS-MITM 21 2234.99 264 2231.86 Sect. C, Fig. 17(8-bit tweak)

Int 22 2216 2113.58 2216

�

[15]

SKINNY-128-384

ID 22 2373.48 292.22 2147.22 [22]

ID 21 2347.35 2122.89 2336 [15]

MITM 23 2368 2120 216 [2]

DS-MITM 22 2366.28 296 2370.99 [4]

DS-MITM 23 2372 296 2352.46

�

Sect. G, Fig. 25

DS-MITM 25 2363.83 296 2336.39 Sect. 5.2, Fig. 11(8-bit tweak)

Int 26 2344 2121 2340 �
[15]

SKINNY-64-128

ID 18 2116 260 2112 [12]

ID 19 2119.8 260 2112 [23]

ID 19 2110.34 260.86 2104 [15]

DS-MITM 18 2126.32 232 261.91 [14]

DS-MITM 19 2123.43 252 2126.95

�

Sect. N, Fig. 39

DS-MITM 21 2119.32 260 2114.81 Sect. D, Fig. 19(8-bit tweak)

ZC/Integral 20 297.5 268.4 282 [1]

Int 22 2110 257.58 2108

�

[15]

SKINNY-64-192

ID 22 2183.97 247.84 274.84 [22]

ID 21 2174.42 262.43 2168 [15]

MITM 23 2188 252 24 [11]

MITM 23 2188 228 24 [2]

MITM 23 2184 260 28 [2]

DS-MITM 21 2186.63 260 2133.99 [14]

DS-MITM 21 2180.01 244 2191.55

�

Sect. K, Fig. 33

DS-MITM 23 2179.9 232 2183.49 Sect. F, Fig. 23(8-bit tweak)

DS-MITM 23 2174.9 256 2179.46 Sect. E, Fig. 21(16-bit tweak)

ZC/Integral 23 2155.6 273.2 2138 [1]

Int 26 2172 261 2172

�

[15]

SKINNY-64-64

ID 17 261.8 259.5 249.6 [23]

ID 17 259 258.79 240 [15]

DS-MITM 17 262.06 248 261.91

�

Sect. O, Fig. 41

1 � represents chosen-tweak model (CT).
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Definition 1 (δ(A)-set). A set of messages {P 0, P 1, . . . , PN} that are all dif-
ferent in positions specified by A (P 0 ⊕ P k[A] = k) and all equal in other posi-
tions, where A = [Sr[j0],Sr[j1], . . . ,Sr[js]] is a sequence of positions.

An ordered difference sequence of the associated δ(A)-set expressed in Defi-
nition 2 will be utilized in DS-MITM attack.

Definition 2 (ΔEr(δ(A))[B]-sequence). An ordered sequence P 0[B] ⊕ P 1[B]||
P 0[B] ⊕ P 2[B]|| . . . ||P 0[B] ⊕ PN [B] in positions specified by B of the associated
δ(A)-set by encrypting the δ(A)-set {P 0, P 1, . . . , PN} by function Er, where A =
[Sr0 [j0],Sr0 [j1], . . . ,Sr0 [js]] and B = [Sr1 [i0], . . . ,Sr1 [it]] represent two sequences
of positions.

2.2 Basic DS-MITM Attack

In this section, we present a brief overview of the previous DS-MITM attack.
A cipher is usually split into three consecutive parts of r0, r1, and r2 rounds,
respectively. The DS-MITM attack consists of a precomputation phase and an
online phase.

Precomputation Phase. The precomputation phase is to construct a distin-
guisher on the second part of r1 rounds. Constructing a distinguisher is to find a
pair of (A,B) to construct a δ(A)-set satisfying that the size of the space of the
values that the output sequence ΔEr1(δ(A))[B] may take is less than that for
a random sequence. For a reduced block cipher Er1 , ΔEr1(δ(A))[B] sequence is
usually uniquely determined by several internal parameters. Then the size of the
space of the values that ΔEr1(δ(A))[B] may take is portrayed by the size of all
possible values space of these internal parameters. A lookup table will be built
to save all possible values that ΔEr1(δ(A))[B] may take for all possible values of
these internal parameters, which will be represented by TabΔEr1 (δ(A))[B] below.

A basic distinguisher on toy cipher is described by Proposition 1. We will give
concrete examples of the following concepts on a 3-round toy SPN block cipher
with a 4-byte block size (Fig. 1). The round function of the toy block cipher con-
sists of a Substitution layer SB (substitute each cell by a Sbox), a linear layer L
(update state by left-multiplying a binary matrix [[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1],
[1, 1, 1, 0]]) and a key addition layer AK (update the state by XORing the round
keys). To make the description clearer for the SPN block cipher, let Si represent
the input state of ith round and SSB

i be the output state of the Substitution
layer below.

Proposition 1. Let A = [S0[3]],B = [S3[1]]. Construct a δ(A)-set {P 0, P 1, . . . ,
P 255} satisfying that P 0 ⊕ P i[A] = i, i ∈ {1, . . . , 255}, the output difference
sequence ΔE3(δ(A))[B] = P 0 ⊕ P 1[S3[1]]|| . . . ||P 0 ⊕ P 255[S3[1]] can be uniquely
determined by 7 internal parameters:

P 0[S0[3]], {P 0[S1[j]] : j ∈ [0, 1, 2]}, {P 0[S2[j]] : j ∈ [0, 2, 3]}.
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Fig. 1. A 3-round toy SPN block cipher

Proof. For each plaintext P i, i ∈ {1, . . . , 255}, P 0 ⊕ P i[S0[j]] = 0,∀j ∈ [0, 1, 2]
and P 0 ⊕P i[S0[3]] = i from δ(A)-set definition. So only the difference in S0[3] is
non-zero. Thus with the knowledge of P 0[S0[3]], P 0⊕P i[SSB

0 [3]] can be deduced,
while ∀j ∈ [0, 1, 2], P 0 ⊕ P i[SSB

0 [j]] = 0. {P ⊕ P i[S1[j]] : ∀j ∈ [0, . . . , 3]} can
be deduced and P 0 ⊕ P i[S1[3]] = 0. Iterate this process, ΔE3(δ(A))[B] can be
uniquely determined by the above 7 internal parameters. Thus ΔE3(δ(A))[B]
can take at most (28)7 possible values, while it has (28)255 possibilities for a
random 255-byte sequence. A distinguisher is constructed and a lookup table
TabΔEr1 (δ(A))[B] is built to save all possible values of ΔE3(δ(A))[B].

Online Phase. The online phase is to guess round-keys involved in r0 rounds
to identify a δ(A)-set for the distinguisher. Then guess round-keys involved in
r2 rounds to compute the value of ΔEr1(δ(A))[B] by partially decrypting the
associated δ(A)-set through r2 rounds. Check whether the sequence in the lookup
table TabΔEr1 (δ(A))[B], obtain the candidate of guessed round-keys involved in
r0, r2 rounds that pass the test.

2.3 Techniques for Enhancing the DS-MITM Attack

Several improvement techniques are introduced to further reduce the time or
memory complexity in the precomputation phase and online phase.

Differential Enumeration Technique. The main bottleneck technique is the dif-
ferential enumeration technique introduced by Dunkelman et al. in Asiacrypt
2010 [13]. Try many pairs of messages to find one pair of (P, P ′) conforming to a
truncated differential characteristic and construct a δ(A)-set from P (P ∈ δ(A)),
which leads to a reduction of the possible values space of the internal parameters.
In [8], Derbez et al. introduced the improved differential enumeration technique
by finding that many values of the internal parameters are not reached if the
δ(A)-set constructed from a message conforming to a specified truncated differ-
ential characteristic.

Property 1 (Differential property of S-box). Given an input and output differ-
ence pair of (Δin,Δout) of an Sbox, the equation Sbox(x)⊕Sbox(x⊕Δin) = Δout

has one solution on average.

For example in Proposition 1, assume (P 0, P ′) conforms to the truncated
differential trail shown in Fig. 2 and P 0 ∈ δ(A)-set. Then 6 parameters of
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{P 0[S0[3]]} ∪ {P 0[S1[j]], j ∈ [0, 1, 2]} ∪ {P 0 ⊕ P ′[SSB
0 [3]]} ∪ {P 0 ⊕ P ′[S3[1]]}

can determine the output sequence in Proposition 1. Because three parameters
of P 0[S2[j]](j ∈ [0, 2, 3]) can be deduced from P 0⊕P ′[S2[j]] and P 0⊕P ′[SSB

2 [j]])
according to Property 1, while it is obvious that P 0⊕P ′[S2[j]] and P 0⊕P ′[SSB

2 [j]]
can be deduced from the above 6 internal parameters. Then ΔE3(δ(A))[B] can
take at most (28)6 possible values, and the size of the precomputation table
TabΔE3(δ(A))[B] is reduced by 1 byte.

Fig. 2. A truncated differential trail on toy cipher

Key-Dependent-Sieve Technique. In [16], Li et al. introduced this technique to
reduce the possibilities of the values that the internal parameters may reach,
which is achieved by utilizing the relations on round keys deduced from these
internal parameters.

Tweak-Difference Cancellation Technique. In [18], the difference in tweak is uti-
lized to cancel a difference in the state, called tweak-difference cancellation in
this paper. Then differences of a δ(A)-set at more cells will be zero, which leads
to fewer internal parameters that determine the output sequence.

Key-Bridging Technique. The technique utilizes the dependent relations on keys
involved in the key-recovery phase to reduce the guessed keys space [13], which
is a general method used in most key-recovery attacks.

2.4 Brief Description of SKINNY Block Cipher

SKINNY is a family of tweakable block cipher [3]. SKINNY-64 and SKINNY-128
have 64-bit and 128-bit block size respectively. In both versions, the states are
arranged as 4 × 4-array, where the size of each cell is 4-bit in SKINNY-64 case
and 8-bit in SKINNY-128 case. The input state of rth round is denoted by

Sr =

⎛
⎜⎜⎝

Sr[0] Sr[1] Sr[2] Sr[3]
Sr[4] Sr[5] Sr[6] Sr[7]
Sr[8] Sr[9] Sr[10] Sr[11]
Sr[12] Sr[13] Sr[14] Sr[15]

⎞
⎟⎟⎠ .

For each block size n, SKINNY-n can take three tweakey size t = n, t =
2n, and, t = 3n. SKINNY-n-t denotes the version with block size n and tweakey
size t. t-bit tweakey can be arranged as t/n 4 × 4-array TKz, z ∈ {1, . . . , t/n}.
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Each tweakey is first updated by a permutation PT (TKz[j] ← TKz[PT [j]], z ∈
{1, 2, 3}) for each round. Then every cell of the first and second rows of TK2 and
TK3 is individually updated with an LFSR (The details of LFSR can be found
in [3]).

PT = (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7).

The round function is composed of 5 operations: SubCells (SB), AddConstants
(AC), AddRoundTweakey (AK), ShiftRows (SR) and MixColumns (MC).
In the following, let SSB

r , SAK
r and SSR

r denote the output state of SubCells,
AddRoundTweakey and ShiftRows respectively (Fig. 10). The sum of updated
t/n tweakey arrays is denoted by RKr, which is the round-key of rth round.

SubCells is to substitute each cell by a 4-bit (n = 64) or 8-bit (n = 128) Sbox.
AddConstants is to update the state by XORing constants, which is omitted
because constants have no effect on this attack. AddRoundTweakey is to update
the state by XORing the first two rows of state with t/n tweakey arrays, i.e.
SAK

r [j] = SSB
r [j] ⊕ RKr[j], 0 ≤ j ≤ 7. ShiftRows is to rotate i-th row to the right

by i cells. MixColumns is to multiply each column by the binary matrix MC:

MC =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ .

3 The Non-full Key-Addition Technique

A new general improvement technique, referred to as non-full key-addition tech-
nique, is introduced for block ciphers where partial states are updated by
the round keys. The previous best DS-MITM attack on SKINNY-128–384 can
directly be improved by one round by utilizing the technique alone (in Sect. G).
When partial states are updated by round keys, states between two consecutive
rounds are not totally independent. Many dependencies within internal parame-
ters are ignored in previous attacks, which are effective for further reducing the
space of the values that internal parameters may take.

Assume only the first two bytes are updated by XORing the round-
keys RKr in the key addition layer of the toy cipher. Then Sr+1 =
L(SSB

r ) ⊕ (RKr[0], RKr[1], 0, 0). Then variables in {Sr[0],Sr[1],Sr[2],
Sr[3],Sr+1[2],Sr+1[3]} are not independent and linked by Sbox and linear
layer without round-key knowledge. For example, the degree of freedom of
{S1[0],S1[1],S1[2],S2[2], S2[3]} is 4. This dependency will lead to that 5 param-
eters of {P 0[S1[j]] : j ∈ [0, 1, 2]} ∪ {P 0[S2[j]] : j ∈ [2, 3]} in Proposition 1
can take at most (28)4 possible values. So the space of values that the output
sequence may take is further reduced by 1 byte. This example can be seen as
taking g1 = (1, 1, 1, 0, 1, 1) defined in the below Property 2.

This article will describe the non-full key-addition technique in Property 2
from a more general and comprehensive perspective. For simplicity, we will intro-
duce this technique on a regular round function. Note that the technique for
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other round functions can be considered in a similar way. The constant addition
is omitted in this description as it has no effect on the property.

Property 2. Assume Sr+1 = L(SSB
r ) ⊕ (RKr[0], . . . , RKr[s − 1], 0, . . . ),SSB

r =
(Sbox(Sr[0]), . . . ,Sbox(Sr[n − 1])), where s partial cells are updated by the
round-key RKr and L is the linear transformation matrix. Introduce a vector
gr = (gr[0], gr[1], . . . , gr[2n− s− 1]) ∈ F

2n−s
2 corresponding to (Sr[0], . . . ,Sr[n−

1],Sr+1[s], . . . , Sr+1[n − 1]). For each possible value of gr, compute the rank
βgr

of the matrix consisting of {−→ej : gr[j] = 1, j ∈ [0, . . . , n − 1]} and
{Lj : gr[n+j−s] = 1, j ∈ [s, . . . , n−1]}, where −→ej is the n-dimensional unit vector
with jth bit 1 and Lj is the jth row of the linear transformation matrix. For any
plaintext P , parameters of {P [Sr[j]] : gr[j] = 1, j ∈ [0, . . . , n−1]}∪{P [Sr+1[j]] :
gr[n + (j − s)] = 1, j ∈ [s, . . . , n − 1]} can take at most (2c)βgr possible values,
where c is the size of each cell. We also say that the possible values space of

these internal parameters is reduced by
2n−1−s∑

j=0

gr[j] − βgr
cells.

As each SSB
r [j] can be expressed by Sbox(Sr[j]). Thus the relations on SSB

r [j]
can be converted to that on Sr[j] directly. Note that all possible values of

(gr[0], . . . , gr[2n − 1 − s],
2n−1−s∑

j=0

gr[j] − βgr
) can be built directly from L. This

way of description makes the technique easy to be modeled in the full-fledged
search framework in Sect. 4.5.

4 Full-Fledged Framework with New Improvement
Techniques

4.1 A High Level Overview

Before stating our new framework of modelling DS-MITM attack with four addi-
tional new techniques that have not been included in the basic model in Asi-
acrypt 2018 [20], we would like to give a high-level description of the unified
framework which supports a full package of techniques. In particular, we high-
light the variables that will be introduced for realizing these functions.

Basic DS-MITM distinguisher. Impose constraints over three types (typeX,
typeY, typeZ) of 0–1 variables to describe the basic distinguisher [20].

Differential enumeration. Note that the automation of the differential enu-
meration technique is highly nontrivial and the key point is to synthesize inter-
nal parameters that will uniquely determine the output sequence from the
combination of the basic model and truncated differential trail. It is enabled
by introducing an important proposition (Proposition 3). To modelling the
differential enumeration technique, a new type, i.e., typeT, of 0–1 variables
for each cell are first introduced to describe the traditional truncated differ-
ential trail. Two new types (typeGT, typeGZ) of 0–1 variables for each cell
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are introduced to synthesize the internal parameters that determine the out-
put sequence, where typeGT variables describe the internal parameters whose
values will be bounded by truncated differential trail and typeGZ variables
describe the remaining internal parameters.

Key-dependent sieve. To modelling the key-dependent-sieve technique, the
internal parameters that determine the output sequence described by typeGT
and typeGZ variables are unified by a new type, i.e., typeV, of 0–1 variables,
and a new type typeK of 0–1 variables are introduced to describe the round-
keys deduced from these internal parameters.

Non-full key-addition. To modelling the non-full key-addition technique,
introduce integer variables for each round to describe the reduced cells with
typeV variables introduced for the key-dependent-sieve technique.

Tweak-difference cancellation. Note that the tweak values input to each
round are known to the attackers, which can be treated as constants in the
computation of the output difference. But we need to consider the injected
tweak-difference by tweak addition operation when imposing constraints over
typeX variables following the forward differential propagation rule. We will
introduce typeX variables for each tweak cell and describe forward differential
trail propagation for both tweak addition and tweak schedule.

Key-recovery phase. The methods for modelling the phase of deducing the
guessed round-keys to construct δ(A)-set and obtain ΔEr1(δ(A))[B] sequence
by partially decrypting the associated δ(A)-set can refer to Shi et al.’s
work [20], which are achieved by introducing typeM variables involved in first
r0 rounds and typeW type variables involved in last r2 rounds and impose
constraints over typeM variables to form a backward differential trail and
constraints over typeW variables to form a forward determination trail. To
consider the differential enumeration in this paper, we also need to model
the phase of obtaining a pair conforming to the truncated differential trail of
the distinguisher. We will introduce new type, i.e., typeE, of 0–1 variables for
each cell involved in r0 and r2 rounds, and impose constraints over typeE to
form a backward differential trail through the first r0 rounds and a forward
differential trail through the last r2 rounds. And typeE-Sr0 should be equal
to typeT-Sr0 , while typeE-Sr0+r1 should be equal to typeT-Sr0+r1 .

4.2 Modelling the Basic DS-MITM Distinguisher

In [20], Shi et al. proposed a modelling method for the basic DS-MITM attack
based on constraints programming (CP). In this section, we review and describe
Shi et al.’s modelling method for finding DS-MITM distinguisher in a more
unified way. We encourage the readers to go through this section since new
terminologies are introduced and will be used to enhance the expressiveness of
our framework.

As defined in [20], three types (typeX, typeY, typeZ) of 0–1 variables for
each cell are introduced. Let typeX-∗, typeY-∗ and typeZ-∗ denote the type
variables in a cell or a state ∗ respectively below. Constraints over typeX
variables follows the so-called forward differential propagation rule. Constraints



Exploiting Non-full Key Additions 77

over typeY variables follows so-called backward determination propagation rule.
Assume the distinguisher is constructed on the second part of r1 rounds
(r0, r0 + 1, . . . , r0 + r1 − 1).

typeX Variables

– Generalized propagation rule for typeX variables is presented in Definition 3,
and typeX variables form a so-called forward differential trail.

Definition 3 (forward differential trail). Let Si+1 = f(Si) for 0 ≤ i ≤
r − 1, where f is the round function of an iterative block cipher and Si =
(Si[0],Si[1], . . . ,Si[n − 1]) is the n-cell input state of the ith round. Introduce
typeX variables for each cell: typeX-Si = (typeX-Si[0], typeX-Si[1], . . . , typeX-
Si[n − 1]) ∈ {0, 1}n, 0 ≤ i ≤ r. Define Ai = [Si[j] : typeX-Si[j] = 0, j ∈
[0, . . . , n−1]]. We call (typeX-S0

f−→ typeX-S1
f−→ · · · f−→ typeX-Sr) a valid for-

ward differential trail if for each pair of (P, P ′) satisfying P ⊕P ′[j] = 0,∀j ∈ Ai,
obtain

P ⊕ P ′[j] = 0,∀j ∈ Ai+1.

– typeX variables are defined with the following implications.

typeX-∗ =
{

0( )
1( )

– Informally, constraints over typeX variables follow the differential propagation
rule with probability 1. And typeX-Si+1[j] = 0 indicates that Si+1[j] is always
a in-active cell (internal difference at Si+1[j] is always 0) for any pair of
(P, P ′) satisfying P ⊕ P ′[S0[j]] = 0,∀j ∈ A0. A valid forward differential
trail on the toy cipher is shown in Fig. 3. In the figure, A0 = [S0[j] : j ∈
[0, 1, 2]],A1 = [S1[3]], and typeX-S0 = (0, 0, 0, 1) −→ typeX-S1 = (1, 1, 1, 0)
is valid. Because output difference P ⊕ P ′[S1[3]], for any pair of (P, P ′) in-
active at positions specified by [S0[j] : j ∈ [0, 1, 2]], is always 0. Imposed
constraints over typeX variables following this propagation rule through all
specific operations (S-box, MC, . . . ) please refer to [20].

Fig. 3. A valid forward differential trail on toy cipher

An opposite direction backward differential trail is also presented in Defini-
tion 4 and a backward differential trail on toy cipher is shown in Fig. 4.
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Definition 4 (backward differential trail). Let Si+1 = f(Si) for 0 ≤ i ≤
r − 1, where f is the round function of an iterative block cipher and Si =
(Si[0],Si[1], . . . ,Si[n − 1]) is the n-cell input state of ith round. Introduce typeX
variables for each cell: typeX-Si = (typeX-Si[0], typeX-Si[1], . . . , typeX-Si[n −
1]) ∈ {0, 1}n, 0 ≤ i ≤ r. Define Ai = {Si[j] : typeX-Si[j] = 0, j ∈ [0, . . . , n − 1]}.

We call (typeX-S0
f−1

←− typeX-S1
f−1

←− · · · f−1

←− typeX-Sr) a valid backward dif-
ferential trail if for any pair of (P, P ′) satisfying P ⊕ P ′[j] = 0,∀j ∈ Ai+1,
obtain

P ⊕ P ′[j] = 0,∀j ∈ Ai.

Fig. 4. A valid backward differential trail on toy cipher

typeY Variables

– Generalized propagation rule for typeY variables is proposed in Definition 5,
and typeY variables form the so-called backward determination trail.

Definition 5 (backward determination trail). Let Si+1 = f(Si) for 0 ≤
i ≤ r − 1, where f is the round function of an iterative block cipher and
Si = (Si[0],Si[1], . . . ,Si[n − 1]) is the n-cell input state of ith round. Introduce
typeY variables for each cell: typeY-Si = (typeY-Si[0], . . . , typeY-Si[n − 1]) ∈
{0, 1}n, 0 ≤ i ≤ r. Define Bi = {Si[j] : typeY-Si[j] = 1, j ∈ [0, . . . , n − 1]}. We

call (typeY-S0
f−→ typeY-S1

f−→ · · · f−→ typeY-Sr) a valid backward determina-
tion trail if for any pair of (P, P ′), each difference among

{P ⊕ P ′[j] : j ∈ Bi+1}

can be uniquely determined by

{P ⊕ P ′[j], P [j] : j ∈ Bi}.

– This variable is defined with the following implications.

typeY-∗ =
{

0( )
1( )

– Informally, typeY-Si[j] = 0 indicates that difference in each cell in Bi+1

is independent of the knowledge of Si[j]. A valid backward determination
trail on the toy cipher is shown in Fig. 5. In the figure, B2 = [S2[j] :
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j ∈ [0, 2, 3]],B3 = [S3[1]], and typeY-S2 = (1, 0, 1, 1) −→ typeY-S3 =
(0, 1, 0, 0) is valid, because P ⊕ P ′[S3[1]] can be uniquely determined by
{P ⊕ P ′[S2[j]], P [S2[j]] : j ∈ [0, 2, 3]}. Imposed constraints over typeY vari-
ables following the propagation rule through all specific operations please
refer to [20].

Fig. 5. A valid backward determination on toy cipher

An opposite direction forward determination trail is also defined in [20].

Remark 1. In the backward determination trail definition, the {P [Si[j]], j ∈ Bi}
can be omitted in case of f is a linear operation.

typeZ Variables

– This variable is imposed for each cell satisfying the rule that typeZ-∗ ( )
equals 1 if and only if typeX-* = 1 ( ) and typeY-* = 1 ( ).

Objective Function

Proposition 2 ([20]). Assume (typeX-Sr0

f−→ typeX-Sr0+1
f−→ · · · f−→ typeX-

Sr0+r1) is a forward differential trail and (typeY-Sr0

f−→ typeY-Sr0+1
f−→

· · · f−→ typeY-Sr0+r1) is a backward determination trail. Impose constraints
over (typeX-Si[j], typeY-Si[j],typeZ-Si[j]) for each cell following the rule that
typeZ-Si[j] = 1 if and only if typeX-Si[j] = 1 and typeY-Si[j] = 1. Let
A = Ar0 = [Sr0 [j] : typeX-Sr0 [j] = 1, j ∈ [0, . . . , n]],B = Br0+r1 = [Sr0+r1 [j] :
typeY-Sr0+r1 [j] = 1, j ∈ [0, . . . , n]]. For any constructed δ(A)-set {P 0, P 1, . . . ,
PN−1}, the output difference sequence ΔEr1(δ(A))[B] can be uniquely determined
by the following internal parameters:

{P 0[Si[j]] : typeZ-Si[j] = 1, r0 ≤ i ≤ r0 + r1 − 1, j ∈ [0, . . . , n]}.

In the basic model, the objective function can be obtained from Proposi-
tion 2. The example in Proposition 1 can be obtained directly from this Propo-
sition 2, which is also illustrated in Fig. 6. The lookup table TabΔEr(δ(A))[B]

will be built to save all values of ΔEr1(δ(A))[B] for all possible values of
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Fig. 6. A valid typeZ trail on toy cipher

{P 0[Si[j]] : typeZ-Si[j] = 1, r0 ≤ i ≤ r0 + r1 − 1, j ∈ [0, . . . , n]}. And
the smaller the size of the table is, the better the distinguisher is. Thus in
the basic model, the objective function of the distinguisher is constrained to

Minimize (
r0+r1−1∑

i=r0

n−1∑
j=0

typeZ-Si[j]).

Remark 2. Sometimes multiset is considered instead of the output difference
sequence, i.e. an unordered set with multiplicity. The model for searching the
ordered sequence and unordered multiset are almost the same. For simplicity, the
objective function is defined for the ordered sequence below, while the exper-
iments for SKINNY are both done by considering the ordered sequence and
unordered multiset.

4.3 Modelling the Differential Enumeration Technique

The basic idea of the differential enumeration technique is to try many pairs of
messages to find one pair of (P, P ′) conforming to a specified truncated differen-
tial characteristic and construct a δ(A)-set from P . The space of the values that
the output sequence may take is reduced because of fewer internal parameters
that determine the sequence.

It is highly nontrivial to synthesize objective function, which is enabled by an
important Proposition 3. Three types (typeT, typeGT, typeGZ) of 0–1 variables
for each cell are introduced. Constraints over typeT variables will follow a valid
truncated differential propagation rule. In order to automatically synthesize the
internal parameters from the combination of the basic distinguisher and trun-
cated differential trail. Two new types (typeGT, typeGZ) of 0–1 variables for
each cell are introduced to describe the internal parameters that determine the
output sequence. And the parameters whose values are bounded by the trun-
cated differential trail are represented by typeGT variables while the remaining
internal parameters are described by typeGZ variables.

typeT Variables

– Constraints over typeT variables follow the traditional valid truncated differ-
ential propagation rule in the encryption direction. typeT variable is defined
with the following implications.

typeT-∗ =
{

0( ) : if the cell is in-active in the truncated differential trail,
1( ) : if the cell is active in the truncated differential trail.
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– (typeT-S0
f−→ typeT-S1

f−→ · · · f−→ typeT-Sr) represents a valid truncated
differential trail through the encryption round function f . A valid truncated
differential trail on the toy cipher is shown in Fig. 7.

Fig. 7. A truncated differential trail on the toy cipher

typeGT Variables

– Generalized propagation rule for typeGT variables is proposed in Definition 6
and typeGT variables form a so-called typeT-based backward determination
trail.

Definition 6 (typeT-based backward determination trail). Let Si+1 =
f(Si) for 0 ≤ i ≤ r − 1, where f is the round function of an iterative
block cipher, Si = (Si[0],Si[1], . . . ,Si[n − 1]) is the n-cell input state of ith

round, and (typeT-S0
f−→ typeT-S1

f−→ · · · f−→ typeT-Sr) is a valid trun-
cated differential trail. Introduce typeGT variables for each cell: typeGT-Si =
(typeGT-Si[0], . . . , typeGT-Si[n − 1]) ∈ {0, 1}n, 0 ≤ i ≤ r. Define Gi = [Si[j] :

typeGT-Si[j] = 1, j ∈ [0, . . . , n − 1]]. We call (typeGT-S0
f−→ typeGT-S1

f−→
· · · f−→ typeGT-Sr) a typeT-based backward determination trail if for each pair of
(P, P ′) conforming to the truncated differential trail defined by typeT variables,
obtain each difference in

{P ⊕ P ′[j] : j ∈ Gi+1}
can be uniquely determined by

{P ⊕ P ′[j], P [j] : j ∈ Gi}.

– typeGT variable for each cell is defined with the following implications.

typeGT-∗ =
{

0( )
1( ) (1)

– Informally, typeGT-Si[j] = 0 indicates whether the difference in each cell in
Gi+1 is independent of knowledge of Si[j] or Si[j] is in-active in the trun-
cated differential trail (typeT-Si[j] = 0), which is different from backward
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dewtermination definition 5. A valid typeT-based backward determination
trail on the toy cipher is shown in Fig. 8. In the figure, G0 = [S0[0]],G1 =
[S1[j] : j ∈ [1, 2, 3]], and typeGT-S0 = (1, 0, 0, 0) → typeGT-S1 = (0, 1, 1, 1)
is valid. {P ⊕ P ′[S1[j]] : j ∈ [1, 2, 3]} can be uniquely determined by
{P ⊕ P ′[S0[0]], P [S0[0]]} because ∀j ∈ [1, 2, 3], P ⊕ P ′[S0[j]] = 0 if (P, P ′)
conforms to the truncated differential trail defined by . From the compar-
ison between Fig. 5 and Fig. 8, typeT-based backward determination trail is
different from the previous backward determination trail. This will lead to a
reduction of the internal parameters that determine the output sequence by
combining the truncated differential with the basic DS-MITM distinguisher.

– Constraints over typeGT variables following the propagation rule through
all operations can be imposed in two steps. Firstly, introduce dummy 0–
1 variables for each cell: Dm-Si = (Dm-Si[0], . . . ,Dm-Si[n − 1]) ∈ {0, 1}n,
and impose constraints over (Dm-Si, typeGT-Si+1) following backward deter-
mination propagation rule (Definition 5). Secondly, impose constraints over
(Dm-Si[j], typeT-Si[j], typeGT-Si[j]) following the rule that typeGT-Si[j] =
1 if and only if Dm-Si[j] = typeT-Si[j] = 1, which can be easily generated
by using convex hull computation method.

Fig. 8. A typeT-based backward determination trail on toy cipher

A typeT-based forward determination trail is also presented in Definition 7.

Definition 7 (typeT-based forward determination trail). Let Si+1 =
f(Si) for 0 ≤ i ≤ r − 1, where f is the round function of an iterative
block cipher, Si = (Si[0],Si[1], . . . ,Si[n − 1]) is the n-cell input state of ith
round, and (typeT-S0 → typeT-S1 → · · · → typeT-Sr) is a valid trun-
cated differential trail. Introduce typeGT variables for each cell: typeGT-Si =
(typeGT-Si[0], . . . , typeGT- Si[n − 1]) ∈ {0, 1}n, 0 ≤ i ≤ r. Define Gi = {Si[j] :

typeGT-Si[j] = 1, j ∈ [0, . . . , n − 1]}. We call (typeGT-S0
f−1

←− typeGT-S1
f−1

←−
· · · f−1

←− typeY-Sr) a typeT-based forward determination differential trail if for
each pair of (P, P ′) conforming to the truncated differential propagation trail
defined by typeT variables, obtain each difference in

{P ⊕ P ′[j] : j ∈ Gi}
can be uniquely determined by

{P ⊕ P ′[j] : j ∈ Gi+1}, {P [j] : j ∈ Gi}.
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Fig. 9. A typeT-based forward determination trail on toy cipher

typeGZ Variables

– This variable is imposed following the rule of Eq. (2).

typeGZ-∗ =
{

1( ) : if typeZ-∗ = 1 and typeGT-∗ = 0,
0( ) : otherwise. (2)

– These variables are utilized to consider the remaining internal parameters that
determine the output difference except those covered by typeGT variables
(typeGT-* = 1). Constraints over these variables following the rule can be
easily generated by the convex hull computation method.

Objective Function Based on Differential Enumeration Technique. An
important Proposition 3 is proposed based on the six types variables (typeX,
typeY, typeZ, typeT, typeGT, typeGZ). Then this proposition is applied to
automatically synthesize the objective function for the distinguisher based on
the differential enumeration technique.

The following description is based on the assumption that Sbox has differ-
ential Property 1, which is usually true. And the differential Property 1 will
be utilized where typeT-backward determination trail and typeT-based forward
determination trail meet. Denote RM be the round where two trails meet. Let
SRM

and SSB

RM
represent the input and output state of the SB-layer of round RM ,

respectively. To combine the basic DS-MITM distinguisher and the differential
enumeration technique, typeGT variables in RM should be initialized by typeZ
and typeT variables as shown in Eq. (3) and Eq. (4) for two reasons. Firstly,
the differential Property 1 can be utilized in the active Sbox of the truncated
differential trail. Secondly, we only care about internal parameters that deter-
mine the output difference (typeZ-* = 1). For a complete search of r1 rounds
distinguisher, all possible RM should be tried. The following description of the
proposition is for an individual model with a fixed (r1, RM ).

typeGT-SRM
[j] =

{
1, if typeT-SRM

[j] = 1 and typeZ-SRM
[j] = 1,

0, otherwise. (3)

typeGT-SSB

RM
[j] =

{
1, if typeT-SSB

RM
[j] = 1 and typeZ-SSB

RM
[j] = 1,

0, otherwise. (4)
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The constraints over (typeGT-SRM
[j], typeT-SRM

[j], typeZ-SRM
[j]) follow-

ing the rules can be easily generated by convex hull computation method.

Proposition 3 (New Objective Function). Impose constraints over three
types (typeX,typeY,typeZ) of 0–1 variables on r1 rounds (r0, r0+1, . . . , r0+r1−1).
typeX variables and typeY variables form a forward differential trail and a
backward determination trail respectively. Impose constraints over (typeX-Si[j],
typeY-Si[j],typeZ-Si[j]) for each cell following the rule that typeZ-Si[j] = 1 if and
only if typeX-Si[j] = 1 and typeY-Si[j] = 1. (typeGT-Sr0

E1−→ typeGT-Sr0+1
E1−→

· · · E1−→ typeGT-SRM
) and (typeGT-SSB

RM

E−1
1←− typeGT-SRM+1

E−1
1←− · · · E−1

1←−
typeGT-Sr0+r1) form a typeT-based backward determination trail (Definition
6) and a typeT-based forward determination trail (Definition 7) respectively.
typeGT- SRM

and typeGT- SSB

RM
are initialized by Eq. (3) and Eq. (4).

Define A = [Sr0 [j] : typeX-Sr0 [j] = 1, j ∈ [0, . . . , n − 1]],B = [Sr0+r1 [j] :
typeY-Sr0+r1 [j] = 1, j ∈ [0, . . . , n − 1]]. Assume (P 0, P ′) conforms to
the truncated differential trail defined by typeT variables. For any δ(A)-set
{P 0, P 1, . . . , PN−1} constructed from the message P 0 (P 0 ∈ δ(A)), the output
difference sequence ΔEr1(δ(A))[B] can be uniquely determined by the following
internal parameters:

{P 0 ⊕ P ′[Sr0 [j]] : typeGT-Sr0 [j] = 1, j ∈ [0, . . . , n − 1]},

{P 0 ⊕ P ′[Sr0+r1 [j]] : typeGT-Sr0+r1 [j] = 1, j ∈ [0, . . . , n − 1]},

{P 0[Si[j]] : typeGT-Si[j] = 1, r0 ≤ i ≤ r0 + r1 − 1, i 
= RM , j ∈ [0, . . . , n − 1]},

{P 0[Si[j]] : typeGZ-Si[j] = 1, r0 ≤ i ≤ r0 + r1 − 1, j ∈ [0, . . . , n − 1]}.

(5)

Proof. According to Proposition 2, the output sequence can be uniquely deter-
mined by {P 0[Sr[j]] : typeZ-Sr[j] = 1, r0 ≤ r ≤ r0 + r1 −1, j ∈ [0, . . . , n−1]}, in
which all except {P 0[SRM

[j]] : typeZ-SRM
[j] = 1, j ∈ [0, . . . , n − 1]} have been

included by {P 0[Sr[j]] : typeGT-Sr[j] = 1 or typeGZ-Sr[j] = 1, r 
= RM , j ∈
[0, . . . , n − 1]} from the definition of typeGZ variables shown in Eq. (2). If we
can prove that {P 0[SRM

[j]] : typeZ-SRM
[j] = 1, j ∈ [0, . . . , n − 1]} can be

uniquely determined by above internal parameters, the proof is complete.
Firstly, if (P 0, P ′) conforms to the truncated differential described by typeT

variables and (typeGT-Sr−1
E1−→ typeGT-Sr) forms a typeT-based backward

determination trail, then {P 0 ⊕ P ′[Sr[j]] : typeGT-Sr[j] = 1, j ∈ [0, . . . , n − 1]}
can be uniquely determined by {P 0 ⊕ P ′[Sr−1[j]] : typeGT-Sr−1[j] = 1, j ∈
[0, . . . , n − 1]} and {P 0[Sr−1[j]] : typeGT-Sr−1[j] = 1, j ∈ [0, . . . , n − 1]} (Def-
inition 6). Thus iterate the process on r to obtain that {P 0 ⊕ P ′[SRM

[j]] :
typeGT-SRM

[j] = 1, j ∈ [0, . . . , n − 1]} can be uniquely determined by
{P 0[Sr[j]] : typeGT-Sr[j] = 1, r0 ≤ r ≤ RM − 1, j ∈ [0, . . . , n − 1]} ∪ {P 0 ⊕
P ′[Sr0 [j]] : typeGT-Sr0 [j] = 1, j ∈ [0, . . . , n − 1]}.

Secondly, if (P 0, P ′) conforms to the truncated differential trail described

by typeT variables and (typeGT-Sr
E−1
1←− typeGT-Sr+1) forms a typeT-based
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forward determination trail (Definition 7). Then {P 0 ⊕ P ′[Sr] : typeGT-Sr[j] =
1, j ∈ [0, . . . , n − 1]} can be uniquely determined by {P 0 ⊕ P ′[Sr+1[j]] :
typeGT-Sr+1[j] = 1, j ∈ [0, . . . , n − 1]} and {P 0[Sr[j]] : typeGT- Sr[j] = 1, j ∈
[0, . . . , n − 1]}. Iterate this process on r to obtain that {P 0 ⊕ P ′[SSB

RM
[j]] :

typeGT-SSB

RM
[j] = 1, j ∈ [0, . . . , n − 1]} can be uniquely determined by

{P 0[Sr[j]] : typeGT-Sr[j] = 1, RM + 1 ≤ r ≤ r0 + r1 − 1, j ∈ [0, . . . , n −
1]} ∪ {P 0 ⊕ P ′[Sr0+r1 [j]] : typeGT-Sr0+r1 [j] = 1, j ∈ [0, . . . , n − 1]}.

Apply differential Property 1 on (P 0⊕P ′[SRM
[j]], P 0⊕P ′[SSB

RM
[j]]) to deduce

{P 0[SRM [j]] : typeGT-SRM
[j] = 1, j ∈ [0, . . . , n − 1]}. Thus {P 0[SRM

[j]] :
typeZ-SRM

[j] = 1, j ∈ [0, . . . , n−1]} are uniquely determined with the remaining
parameters of {P 0[SRM

[j]] : typeGZ-SRM
[j] = 1, j ∈ [0, . . . , n − 1]}.

The objective function is constrained to Minimize OBJ , where

OBJ =
i=r0+r1−1∑

i=r0

j=n−1∑
j=0

typeGZ-Si[j] +
i=r0+r1−1∑
i=r0,i �=RM

j=n−1∑
j=0

typeGT-Si[j]

+
∑

i∈{r0,r0+r1}

j=n−1∑
j=0

typeGT-Si[j].

(6)

Remark 3. The above objective function is a unified expression for the gener-
alized model with the differential enumeration technique. The actual objective
function OBJDis of the distinguisher is OBJ minus the reduced space by the key-
dependent-sieve or non-full key-addition techniques et al. Details of the attack
phase on SKINNY will be given in Proposition 4 as an example of the proof,
which can be automatically deduced by Proposition 3.

4.4 Modelling Key-Dependent-Sieve Technique

Some round keys can be deduced from the internal parameters that determine
the output difference sequence. The key-dependent-sieve technique is to utilize
the dependent relations on these round keys to reduce the possible values space
of the internal parameters, which is an important technique and has not been
included in the previous automatic search model in [20].

One type typeV of 0–1 variable for each state cell and one type typeK of
0–1 variable for each round-key cell will be introduced to describe whether the
round-key cell can be deduced from the internal parameters listed in Eq. (5) that
determine the output difference sequence. We will give a description of modelling
the technique on a regular round function. Assume Sr+1 = L(SSB

r )⊕RKr, where
L is a linear transformation matrix and RKr is the round-key.

typeV Variables

– This variable is imposed following the rule listed in Eq. (7).

typeV-∗ =

{
1 : if typeGZ-∗ = 1 or typeGT-∗ = 1,

0 : otherwise.
(7)
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According to Proposition 3, the internal parameter satisfying typeGZ-∗ = 1 or
typeGT-∗ = 1 is needed to determine the output sequence, which is unified by
typeV-∗ = 1.

typeK Variables

– Describe RKr[j] as Sr+1[j] ⊕ L(SSB
r [j0],SSB

r [j1], . . . ,SSB
r [js]]). A new type

typeK of 0–1 variables are introduced for each round-key cell following the
rule listed in Eq. (8).

typeK-RKr[j] =
{

1( ) : if typeV-Sr+1[j] = 1, typeV-SSB
r [ji] = 1,∀i,

0( ) : otherwise. (8)

The possible values space of the internal parameters can be reduced by the
number of relations on these deduced round-key cells satisfying typeK-RKr[j] =
1. And the various relations for specified cipher can be included in the model
dynamically.

Model of Key-Dependent-Sieve for SKINNY. For SKINNY described
in Sect. 2.4, each round-key cell RKr[j] is related to only one position of
each master tweakey array TKz. RKr[j] can be uniquely determined by
{TKz[PT r[j]] : z ∈ {1, . . . , t/n}}. PT r (PT−r respectively) represents the com-
posite permutation of PT ◦ · · · ◦ PT (PT−1 ◦ · · · ◦ PT−1 respectively). For each
j ∈ {0, 1, . . . , 15}, {RKr[PT−r[j]] : r ∈ {r0, . . . , r0 + r1 − 1}} are uniquely
determined by {TKz[j] : z ∈ {1, . . . , t/n}}. In attack figures, j will be listed
in each round-cell RKr[PT−r[j]]. Assume Nj cells in {RKr[PT−r[j]] : r ∈
{r0, . . . , r0+r1−1}} will be deduced from the internal parameters that determine

the output sequence. Then Nj =
r0+r1−1∑

r=r0

typeK-RKr[PT−r[j]]. Each relation on

these Nj round-key cells can be converted to a relation on those internal param-
eters. As {RKr[PT−r[j]] : r ∈ {r0, . . . , r0 + r1 − 1}} are uniquely determined
by {TKz[j] : z ∈ {1, . . . , t/n}}, the possible values space of internal parameters
can be reduced by Nj − t/n cells from Nj − t/n independent relations on these
Nj round-keys if Nj > t/n.

Introduce an integer variable Cutkeysievej
for each position j to represent

the reduced cells. Constraints over {Cutkeysievej
,
r0+r1−1∑

r=r0

typeK-RKr[PT−r[j]]}

are imposed satisfying Cutkeysievej
= Max (0,

r0+r1−1∑
r=r0

typeK-RKr[PT−r[j]] −
t/n). Then the overall reduced cells by key-dependent-sieve technique are
15∑

j=0

Cutkeysievej
and denoted by Cutkeysieve listed in attack figures.

4.5 Modelling the Non-full Key-Addition Technique

The non-full key-addition exploits the relations on the parameters that deter-
mine the output difference sequence and Proposition 3 shows that these
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internal parameters satisfy typeGT-* = 1 or typeGZ-* =1. And typeGT-* =
1 or typeGZ-* =1 has been unified by typeV-∗ = 1 in Sect. 4.4. Property 2
shows how to exploit all possible dependencies within parameters. Introduce
an integer variable Cutr for each round to represent the reduced cells, restrict
(typeV-Sr[0], . . . , typeV-Sr[n − 1], typeV-Sr+1[s] . . . , typeV-Sr+1[n − 1], Cutr)
to take values in the subset of all possible values of (gr[0], . . . , gr[2n − 1 −
s],

2n−1−s∑
j=0

gr[j] − βgr
) shown in Property 2. Constraints over these variables can

be imposed by a system of linear inequalities by using the convex hull compu-
tation method.

Model of Non-full Key-Addition for SKINNY. The round function of
SKINNY is a little different from that defined in Property 2. The technique
can be also considered in a similar way. For SKINNY, the first two rows of
state before the ShiftRows will be updated by XORing the round-keys. We
will model the technique for each column of SKINNY, and the property for all
columns are the same. Thus each column of SKINNY can be simply described
by (y0, y1, y2, y3) = L(x0 ⊕ rk0, x1 ⊕ rk1, x2, x3), where L = MC ◦ SR is the
composite linear transformation matrix. For example, yi = Sr+1[4 · i] and
xi = SSB

r [4 · i + (−i)%4] for 0th column. In SKINNY case, introduce vector
g = (g[0], . . . , g[5]) ∈ F

6
2 corresponding to (x2, x3, y0, y1, y2, y3). For each pos-

sible value of g, obtain the rank βg of matrix consisting of {L−1
j : g[j − 2] =

1, j ∈ [2, 3]} and {−→ej : g[j + 2] = 1, j ∈ [0, . . . , 3]}. Introduce an integer Cut1
for each column to describe the reduced cells. According to Property 2, restrict
(typeV-x2, typeV-x3, typeV-y0, . . . , typeV-y3, Cut1) to take values in the subset

of all possible values of (g[0], . . . , g[5],
5∑

j=0

g[j] − βg). The reduced cells in each

column of SKINNY by this technique are listed below of MC in attack figures
of SKINNY. The overall reduction number by utilizing the technique is denoted
by Cutnonfull in attack figures.

4.6 Modelling the Tweak-Difference Cancellation Technique

For tweakable block cipher, the attack considers the output sequence
of the associated δ(A)-set by encrypting a plaintext-tweak combination
{(P 0, TW 0), . . . , (PN , TWN )}, where TWN represents the selected tweak for
P i. The tweak differences can be controlled to cancel the state difference in one
round, then differences of the δ(A)-set at more internal cells will be zero, which
leads to fewer internal parameters that determine the output sequence. The
tweak-difference is proved to be an effective technique for attacks of SKINNY
and has not been included in the previous automatic search model in [20].

Assume the tweak difference will be injected to the state by tweak addi-
tion. The tweak addition operation and tweak schedule should be considered
when imposing constraints over typeX variables following the forward differen-
tial propagation rule (informally differential propagation with probability 1). We
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need to introduce typeX variables for each tweak cell, and impose the constraints
over typeX variables through each tweak addition following forward differential
propagation rule in Definition 3 except for the round with tweak-difference can-
cellation. For the round with tweak-difference cancellation, the tweak materials
are controlled to cancel state difference. Assume the tweak addition operation is
expressed by y = x ⊕ rT , where rT represents the tweak material input to the
internal state cell.

The propagation rules for the round with tweak-difference cancellation is

typeX-y =

⎧⎨
⎩

0 : typeX-x = typeX-rT = 0,
1 : typeX-x ⊕ typeX-rT = 1,
0 or 1 : typeX-x = typeX-rT = 1,

(9)

while the propagation rule for other rounds is the forward differential prop-
agation rule presented in Definition 3:

typeX-y =
{

0 : typeX-x = typeX-rT = 0,
1 : others. (10)

The constraints over (typeX-x, typeX-rT, typeX-y) following the rules of
Eq. (9) or Eq. (10) can be imposed by using the convex hull computation method.
Note that tweak differences are known to attackers and can be treated as con-
stants except in the description of forward differential trail. In order to inject
fewer differences from the tweak, the tweak differences are usually controlled to
cancel the state difference in the first round of the distinguisher.

Model of Tweak-Difference Cancellation for SKINNY. We will intro-
duce typeX variables for each round-key cell RKr[j]. If one of {TKz[j] : z ∈
{1, . . . , t/n}} is loaded with tweak material, the tweak difference will propa-
gate to round-key RKr[PT−r[j]]. If typeX-RKr[j] = 1 ( ), at least one of
{TKz[PT r[j]] : z ∈ {1, . . . , t/n}} is loaded with tweak material. Tweak dif-
ference introduced in one position is more controllable and sufficient to cancel
state difference in the first round of distinguisher. For simplicity, we will give the
description of attacks by loading tweak material on the positions of TK1. For
example in Fig. 10 and Fig. 11, tweak materials will be loaded in TK1[1] and are
controlled to cancel state difference in 4th round.

4.7 Modelling the Key-Recovery Phase

Firstly, the key-recovery phase is to find a pair of plaintext (P, P ′) conforming to
the truncated differential trail. Secondly, guess round-keys involved in r0 rounds
to construct a δ(A)-set from P for the distinguisher. Finally, guess round-keys
involved in last r2 rounds (r0 + r1, r0 + r1 +1, . . . , r0 + r1 + r2 − 1) to obtain the
value of ΔEncr1(δ(A))[B] sequence by partially decrypting the associated δ(A)-
set. The methods for modelling the last two phases please refer to Shi et al.’s
work [20], which are achieved by introducing two new type variables following a
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backward differential propagation rule through the first r0 rounds and a forward
determination propagation rule through the last r2 rounds. And a key-bridging
technique is performed for SKINNY [4].

Here we also need to model the phase of constructing a plaintext struc-
ture to find a pair of (P, P ′) conforming to the truncated differential trail of
the distinguisher. In order to construct plaintext structure and observe cipher-
text difference for each pair of plaintexts in the structure, we should propagate
the input difference of the distinguisher with probability 1 from round r0 to
plaintext and propagate the output difference of the distinguisher with prob-
ability 1 from round r0 + r1 to ciphertext. Introduce typeE type variables for
each state involved in first r0 rounds and last r2 rounds. Impose constrains over

typeE variables satisfying that (typeE-S0
E−1
1←− · · · E−1

1←− typeE-Sr0) form a back-
ward differential trail and (typeE−Sr0+r1

E1−→ · · · E1−→ typeE-Srr0+r1+r2
) form

a forward differential trail. Besides, typeE-Sr0 [j] = typeT-Sr0 [j] and typeE-
Sr0+r1 [j] = typeT-Sr0+r1 [j],∀j ∈ {0, . . . , n − 1} will be imposed. According to
the definition of forward and backward differential trails, we have the following
observation. The plaintext structure to find a pair conforming to the truncated
differential can be constructed by a δ(AT )-set of {P 0, P i, . . . , PN} satisfying that
P 0 ⊕P i[j] = 0,∀j /∈ AT , where AT = [S0[j] : typeE-S0[j] = 1, j ∈ [0, . . . , n−1]].
It is fairly straightforward to see the online phase of attacks on SKINNY in
Sect. 2.4 and Fig. 11.

5 Results of SKINNY Block Cipher

All of the known improvement techniques (differential enumeration, key-
dependent-sieve, non-full key-addition, tweak-difference cancellation, key-
bridging) are integrated into the automatic search for the best DS-MITM attack
on SKINNY. This full-fledged automatic model for SKINNY makes full use of the
ability to choose tweaks and output the DS-MITM key-recovery attack directly.

The results are summarized in Table 1. All known DS-MITM attacks on the
respective versions of SKINNY are improved, and the data, memory, or time
complexities of some attacks are reduced even compared to previous best attacks
penetrating less rounds. The previous best 10.5-round distinguisher for SKINNY-
128-384 is also improved by 2.5 rounds by changing the objective of the model
to identify the best distinguishers, which is presented in Sections P.

5.1 Brief Illustration of Figures and Complexity Computation

The attack phase can be easily verified from all figures, and so does the attack
complexities. We would give a brief illustration of attack figures on the SKINNY
family and the unified attack complexities computation methods. We will only
give one detailed attack phase on SKINNY-128-384 (Fig. 10 and Fig. 11) to help
readers understand and check the model.
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Figure illustration in distinguisher figures

– and form a forward differential trail (Definition 3) and a backward
determination trail (Definition 5) respectively.

– cells represent the internal parameters that determine the output difference
according to Proposition 2.

– The reduced cells by applying the non-full key-addition technique on cells of
each column are listed below of the operation MC. The total reduced number
is represented by CutNonFull.

– cells denote the round-keys deduced from these cells. The CutKeysieve

represents the reduced number by utilizing the key-dependent-sieve technique
on these deduced round-keys.

– The number j listed in the round-key cell represents that this round-key cell
can be uniquely determined by {TKz[j] : z ∈ {1. . . . , t/n}}. If is drawn in
this round-key cell, then TK1[j] is loaded by tweak material.

Complexity in precomputation phase. The time complexity for construct-
ing a lookup table to save all possibilities is N · 2c·OBJDis · ρ, where N is the size
of the δ(A)-set (N = |δ(A)|), c is the length of each cell, ρ is typically computed
by the number of active S-box ( ) divided by total number of S-box in attacked
rounds of SKINNY, and OBJDis is the objective function of the distinguisher
defined in remark 3. And the memory complexity is (N − 1) · (|B| · c) · 2OBJDis·c,
where |B · c| is the length of each output sequence ΔEr(δ(A))[B].

Figure illustration in the online key-recovery phase

– cells form a backward differential trail (Definition 4).
– cells denote the round-keys involved to construct a plaintext structure to

identify a δ(A)-set and obtain the output sequence by partially decrypting
the associated δ(A)-set. The key-bridging technique can be utilized in these
round-keys, which is also presented in the following attack on SKINNY-128-
384.

Complexity in the online phase. The time complexity in the online phase is
N · 2OBJKC ·c · ρ1, where N is the size of the δ(A)-set, c is the length of the cell,
ρ1 is typically computed by number of active Sbox ( ) divided by total number
of S-box, and OBJKC represents objective function of the key-recovery attack
defined by the number of guessed round-keys. The data complexity is 2Ndata·c,
where Ndata is the number of at Round 0.

5.2 25 Rounds Attack on SKINNY-128-384 (376-Bit Key, 8-Bit
Tweak)

Load the 8-bit tweak material in TK1[1], which will propagate to round-keys
RKr[PT−r[j]]: {RK0[1], RK1[9], RK2[0] . . . }.
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Precomputation phase

Proposition 4 (11-round distinguisher on SKINNY-128-384 (Fig. 10)).
Define A = [S4[2]],B = [S15[10]]. Construct a δ(A)-set of {P 0, P 1, . . . , PN−1}

and a tweak material set of {TW 0, TW 1, . . . , TWN} satisfying that P i[S4[2]] ⊕
P 0[S4[2]] = i and TW i[RK4[2]] = P i[SSB

4 [2]]⊕P 0[SSB
4 [2]],∀i ∈ {0, 1, . . . , N −1}.

Then ΔE11(δ(A))[B] sequence can only take at most (28)41 values.

Proof. After the tweak-difference cancellation, P i⊕P 0[S6[j]] = 0, j ∈ [0, . . . , 15],
∀i ∈ {1, . . . , N − 1}. Then P i ⊕ P 0[S7[9]] = TW i ⊕ TW 0[RK6[4]], so
{P 0, P 1, . . . , PN} also identify a δ(A′)-set for A′ = [S7[9]]. It is trivial from
Proposition 2 that the output difference sequence ΔE11(δ(A))[B] can be uniquely
determined by following 46-cell internal parameters ( ):

P 0[S7[9]], {P 0[S8[j]] : j ∈ [3, 11, 15]}, {P 0[S9[j]] : j ∈ [1, 2, 3, 7, 9, 11, 13, 15]}
{P 0[S10[j]] : j /∈ [4, 10, 12, 13]}, {P 0[S11[j]] : j /∈ [0, 4, 5, 13, 15]}
{P 0[S12[j]] : j ∈ [1, 3, 5, 8, 11, 14]}, {P 0[S13[j]] : j ∈ [1, 7, 10]}, {P 0[S14] : j ∈ [5, 8]}.

Non-full key-addition technique. According to Property 2, the possible values
space of the internal parameters can be reduced by 5 bytes from following rela-
tions on internal parameters in the 9th round, 10th round, 11th round:

– 1 in {P 0[S9[15]], P 0[S10[2]], P 0[S10[14]]} as P 0[S9[15]] = P 0[S10[2]] ⊕
P 0[S10[14]],

– 1 in {P 0[S9[9]], P 0[S10[7]], P 0[S10[15]]} as P 0[S9[9]] = P 0[S10[7]]⊕P 0[S10[15]],
– 2 in {P 0[S10[8]], P 0[S10[15]], P 0[S11[2]], P 0[S11[6]], P 0[S11[14]]} as P 0

[S10[8]] = P 0[S11[6]] ⊕ P 0[S11[14]], P 0[S10[15]] = P 0[S11[2]] ⊕ P 0[S11[14]],
– 1 in {P 0[S11[11]], P 0[S11[14]], P 0[S12[1]], P 0[S12[5]]} as P 0[S11[11]] ⊕

P 0[S11[14]] = P 0[S12[1]] ⊕ P 0[S12[5]].

Thus ΔE11(δ(A))[B] sequence can be uniquely determined by 41-cell internal
bytes. N = |δ(A)| = 43 is enough to construct the distinguish for SKINNY,
because there are 28·42 possibilities for a random 42-byte sequence. Build a
lookup table TabΔE11(δ(A))[B] to save all of the 28·41 possibilities.

Complexity. The time complexity to construct a hash table in the precom-
putation phase to save all possibilities is 43 · 241·8 · 47

16·25 ≈ 2330.31. And the
memory complexity is 42 · 8 · 241·8 ≈ 2336.39.

Online Phase.
The 25-round attack on SKINNY-128-384 can be extended by adding 4

rounds at the start and 10 rounds at the end (Fig. 11). cells represent involved
guessed round-keys in the online phase.

– Query an arbitrate plaintext-tweak combination of P 0 and TW 0 such that
TW 0[RK4[2]] = 0 to obtain the corresponding ciphertext C0.

– For each possible value of these active round-keys ( ):
step 1 Deduce internal parameters of P 0 in active cells ( ): P 0[S4[2]],

P 0[S3[15]], {P 0[S2[j]] : j ∈ [0, 6, 9, 12]}, {P 0[S1[j]] : j ∈ [2, 4, 5, 7, 8,
10, 13]}.
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Fig. 10. 11-round Distinguisher of SKINNY-128-384

A = [S4[2]],B = [S15[10]]. Load tweak material in TK1[1]. The output
difference can be uniquely determined by 46-cells internal parameters ( ). 5
bytes are reduced by the non-full key-addition technique, which are listed below
of each MC. |δ(A)| = 43 is enough to construct distinguish. As the output
sequence of SKINNY-128-384 can take at most 28·41 possible values, while there
are 28·42 possibilities for a random 42-byte sequence. Each number j listed in
round-key cell represents that these round-key cells can be uniquely determined
by {TKz[j] : z ∈ {1, . . . , t/n}}. on the round-key cell represents that the tweak
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Fig. 11. 25-round attack on SKINNY-128-384

material loaded in TK1[j] will propagate to this cell, where tweak-difference may
be injected.

describe a backward differential trail to determine the plaintext structure
that will identify a δ(A)-set for the distinguisher. All internal parameters of P
in cells of Si, 1 ≤ i ≤ 4 can be deduced from plaintext by guessing values



94 D. Shi et al.

of involved round-keys. The output sequence can deduced from the cipher-
text difference by guessing values of the involved round-keys. Two guesses for
{TKz[12], TKz[15] : z ∈ {1, 2, 3}} are saved.

step 2 A structure of plaintext-tweak combinations {(P i, TW i) : i = 0, . . . , N −
1} satisfying that {P 0, . . . , PN−1} is a δ(A)-set (A = [S4[2]]) with
P i[S4[2]] ⊕ P 0[S4[2]] = i and TW i[RK4[2]] = P i[SSB

4 [2]] ⊕ P 0[SSB
4 [2]]

can be constructed from above internal parameters in following ways.
Firstly, deduce TW i[RK4[2]], which is P i ⊕ P 0[SSB

4 [2]] deduced from
P i⊕P 0[S4[2]] = i and P 0[S4[2]], then TW i loaded in TK[1] is determined
by the tweakey schedule. Secondly, {P i ⊕ P 0[SSR

3 [j]] : j ∈ [0, . . . , 15]} can
be deduced from {P i ⊕ P 0[S4[j]] : j ∈ [0, . . . , 15]} as MC is a linear
transformation, and P i ⊕ P 0[SSR

3 [j]] = 0,∀j 
= 14. Then P i[S3] ⊕ P 0[S3]
can be uniquely determined from parameter P 0[S3[15]] in the active cell
(deduced in step 1) through the inverse of ShiftRows. Iterate the process,
P i ⊕ P 0 can be uniquely determined by these internal parameters ( )
deduced in step 1.

step 3 Obtain the ciphertext {C0, . . . , CN−1} by querying the plaintext-tweak
combinations.

step 4 The output difference P i ⊕ P 0 at S15[10]] can be obtained by partially
decrypting the ciphertext difference by values of active round-keys ( ).

step 5 Check whether the output sequence in the lookup table TabΔE11(δ(A))[B]

constructed in precomputation phase, obtain the candidate of guessed
round-keys that past the text.

– Key-bridging technique. The key-bridging technique can be utilized to reduce
the guessed number of involved round-keys. If more than t/n cells in
these round-key cells that can be uniquely determined by {TKz[j] : z ∈
{1, . . . , t/n}}, guess the values of the master keys {TKz[j] : z ∈ {1, . . . , t/n}}
directly. Otherwise, guess the values of round-key cells directly. Thus in this
attack, guessing values of the master keys {TKz[1] : z ∈ {2, 3}} ∪ {TKz[j] :
z ∈ {1, 2, 3}, j /∈ [1, 12, 15]}, two round-key cells {RK21[3], RK23[7]} updated
from {TKz[12] : z ∈ {1, 2, 3}}, and two round-key cells {RK21[2], RK23[4]}
updated from {TKz[15] : z ∈ {1, 2, 3}} is sufficient to obtain all values of
involved round keys ( ). We also say that two cell guesses for {TKz[j] : z ∈
{1, 2, 3}, j ∈ [12, 15]} are saved in the full key space.

Complexity. The time complexity is N ·2OBJKC ·c ·ρ1, where c is the length
of the cell, ρ1 is typically computed by number of active S-box ( ) divided by
total number of S-box, which is 43 · 245·8 · 132

16·25 ≈ 2363.83. The data complexity
is 28·12 = 296.

6 Discussions

– We also apply our method to AES. Our tool can recover the previous best
DS-MITM attacks. However no better result is obtained.
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– Different results in the single-key chosen-tweak setting and single-tweak are
listed in Table 2 and Table 3 respectively, which illustrate that most of key-
recovery attacks are not extended from the best distinguishers.

– What is more, the best key-recovery attacks on SKINNY are produced with-
out utilizing the differential enumeration technique that has been included
in the model, while the best distinguishers are produced by utilizing this
technique. The best 13-round distinguisher of SKINNY-128-384 (Fig. 42) in
the single-key single-tweak setting is presented in Sect. P, which improves
the previous best 10.5-round distinguisher by 2.5 rounds, and can not be
extended to the best attack. We guess the reason is the design of the linear
layer. The backward differential and backward determination trails through
the linear layer of SKINNY from the same input are different, while they are
the same through the linear layer of AES. Then the involved round-keys for
finding a pair of plaintexts conforming to a truncated differential trail and
for constructing a δ(A)-set are different.

– Interestingly, the time of searching for the best attack is less than that of
searching for the best distinguisher sometimes. For example, the best 25-
round key-recovery attack on SKINNY-128-384 in the single-key chosen-tweak
setting is produced in 331 s, while the best 13-round distinguisher in the
single-key single-tweak setting is produced in 1012 s.
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Abstract. A central problem in cryptanalysis is to find all the signifi-
cant deviations from randomness in a given n-bit cryptographic primi-
tive. When n is small (e.g., an 8-bit S-box), this is easy to do, but for
large n, the only practical way to find such statistical properties was to
exploit the internal structure of the primitive and to speed up the search
with a variety of heuristic rules of thumb. However, such bottom-up tech-
niques can miss many properties, especially in cryptosystems which are
designed to have hidden trapdoors.

In this paper we consider the top-down version of the problem in
which the cryptographic primitive is given as a structureless black box,
and reduce the complexity of the best known techniques for finding all
its significant differential and linear properties by a large factor of 2n/2.
Our main new tool is the idea of using surrogate differentiation. In the
context of finding differential properties, it enables us to simultaneously
find information about all the differentials of the form f(x) ⊕ f(x ⊕ α)
in all possible directions α by differentiating f in a single randomly
chosen direction γ (which is unrelated to the α’s). In the context of
finding linear properties, surrogate differentiation can be combined in a
highly effective way with the Fast Fourier Transform. For 64-bit cryp-
tographic primitives, this technique makes it possible to automatically
find in about 264 time all their differentials with probability p ≥ 2−32

and all their linear approximations with bias |p| ≥ 2−16 (using 264 mem-
ory); previous algorithms for these problems required at least 296 time.
Similar techniques can be used to significantly improve the best known
time complexities of finding related key differentials, second-order dif-
ferentials, and boomerangs. In addition, we show how to run variants
of these algorithms which require no memory, and how to detect such
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statistical properties even in trapdoored cryptosystems whose designers
specifically try to evade our techniques.

1 Introduction

Most cryptanalytic techniques against block ciphers exploit the existence of some
statistical property which happens with a higher than expected probability. It
is thus essential to find all such anomalies (or to demonstrate that none exists)
whenever we are designing a new cryptosystem or attacking an existing cryp-
tosystem developed by others. Note that such a search has to be carried out only
once for each cryptosystem, and if it is successful, its results can be used to find
an unlimited number of actual keys. Consequently, even a lengthy computational
effort to find such properties can be justified.

Due to the centrality of this topic, many papers had been published about
it over the last 30 years. Almost all of them had taken a bottom-up approach,
in which the attacker first finds the statistical properties of small local elements
(such as S-boxes), and then tries to ‘glue’ them together into a high probability
global property. The analysis of a small n-bit S-box (e.g., with n = 8) is easy:
For example, all its differential properties (which can be grouped together in
the form of a difference distribution table, denoted by DDT) and all its linear
properties (which can be grouped together in the form of a linear approxima-
tion table, denoted by LAT) can be found exhaustively in time 22n. However,
the process of constructing the global properties is usually guided by various
heuristics (such as testing only low Hamming weight differences, or using only
the highest probability local properties), and thus it can miss many properties.
In fact, knowledge of these heuristic restrictions can be exploited by the design-
ers of trapdoored ciphers to evade attacks. For example, it is easy to attach
a keyed decorrelation module [37] at the beginning and the end of a cipher in
order to force any high probability differential characteristic to have high Ham-
ming weight input and output differences. Other constructions of trapdoored
cryptosystems can be found in [35] (with a planted high probability differential
characteristic) and [36] (with a planted high probability linear approximation).

Even in standard (non-trapdoored) cryptosystems, such bottom-up tech-
niques can be error-prone: There are many known cases in which the global
probability differs significantly from the product of the local probabilities due to
subtle correlations (as demonstrated in [12,18,33]), and where a high probability
property results from the accumulation of many low probability properties along
many differential characteristics or within the linear hull (which was a crucial
element in the attacks described in [25,27]). Finally, it is difficult to apply such
bottom-up techniques to designs in which the basic operations are block-wide
(see, for example, [9]), are defined in terms of large primitives (e.g., 32-bit S-
boxes), are available only in the form of a hardware token (with no description
of its internal structure), or are provided in an obfuscated form (as done in many
whitebox cryptosystems such as [14]).
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Developing efficient top-down techniques for finding all the usable statistical
properties of functions f : {0, 1}n → {0, 1}n with a large n seems to be a hard
problem, which had been solved so far only in some special cases. For example,
the differential properties of a moderately large cryptographic primitive which
uses only additions, rotations, and XOR’s (an ARX design) were studied in [8–
10], and were used to mount differential attacks on Simon, Speck, Ascon, LEA,
and other ciphers. The related problem of finding linear biases in the same special
case of ARX ciphers was studied in [30,31,39], whose results were used to mount
linear attacks on Speck and SM4. Another special case discussed in [1,11,13],
is when the adversary uses heuristics to guess the most likely input differences,
and wants to simultaneously find all the corresponding output differences in high
probability differentials. The related problem of finding all high probability linear
biases when the most likely input or output mask is guessed using heuristics
was studied in [20]. Notice that without such heuristics, any algorithm of this
type has a high complexity of Ω(2n). A different type of top-down algorithm
is described in [15], which deals with general black box functions f , but can
find only iterative differential characteristics (in which the input difference is
equal to the output difference). Finally, in the quantum setting (which is not the
computation model we use in this paper) there are several papers (e.g., [29,38])
which show how to find in polynomial time differential properties in a general
f , but only when their probabilities p are extremely close to 1.

When we try to apply a top-down analysis to a large black box function f
(e.g., a full cryptosystem with n = 64), finding all the 22n entries in its DDT and
LAT becomes both infeasible and unnecessary, since almost all the known attacks
use only their highest entries. If we are only interested in differentials α → β
which happen with probability that exceeds p, the best previously available
technique (described in Sect. 2) is to try all the possible input differences α,
and to compute for each α the output differences f(x) ⊕ f(x ⊕ α) for O(p−1)
randomly chosen values of x. This reduces the time complexity of finding all the
significant entries in the DDT from 22n to 2np−1. The corresponding algorithm
for finding all the significant entries in the LAT requires 2np−2 time (see [20]).

In this paper we introduce a new type of top-down technique which can
reduce these two complexities by a major factor of 2n/2. The main new tech-
nique we use is surrogate differentiation, in which we obtain information on f by
examining its derivative in an arbitrary direction which is not directly related
to the statistical properties we want to find. For example, when we search for a
differential property in which some input difference α is mapped to some output
difference β with high probability p, we want to differentiate the function f in a
particular direction α by considering pairs of inputs of the form (x, x⊕α) and fol-
lowing the evolution of f(x) ⊕ f(x ⊕ α). This differentiation of f simultaneously
achieves two very different purposes: It eliminates certain constants from the
expression (for example, an unknown key which was XOR’ed to the input), and
it makes it possible to exploit a sequence of high-probability differential events
in order to successfully predict the output difference. However, when we try to
find all the high probability properties in a new cryptosystem, we do not know
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a-priori the actual directions α with respect to which we want to differentiate f .
Our novel idea is that if we replace the real but unknown α by an unrelated but
known surrogate value1 γ, we can still benefit from the elimination of unknown
constants, and we can save a lot of time by using the same arbitrarily chosen
surrogate value γ �= 0 to simultaneously analyze all the possible values of α via
a single unified computation.

The new idea of surrogate differentiation yields a plethora of algorithms with
significantly improved complexities for detecting a large variety of statistical
properties in general black box functions. In the case of differentials with prob-
ability p, our new algorithm (described in Sect. 2) requires O(2n/2p−1) time,
compared to the best previous time complexity of O(2np−1). This new com-
plexity is almost optimal, as an information-theoretic argument shows that any
algorithm for this problem requires Ω(2n/2p−1/2) evaluations of the black-box
function f .

A worst-case variant of this algorithm can deal with backdoored functions:
This variant requires O(2n/2p−3/2) time, and detects a hidden differential with
probability p even in trapdoored cryptosystems in which the locations of the right
pairs with respect to the characteristic were chosen adversarially. In addition,
we present a memoryless variant of this algorithm whose time complexity is
O(max(2n/2p−2, p−3)). At the end of the section, we describe an experimental
verification of our worst-case algorithm which finds all the high-probability 5-
round and 6-round differentials of the NSA-designed cryptosystem Speck, and
compares our top-down results to the bottom-up analysis presented in [10].

Our next algorithm (described in Sect. 3) can detect all linear biases of at
least p in time O(2n/2p−2). Note that in terms of complexity, the results on
differential and linear properties are comparable, since to sense a bias of p we
need O(p−2) data, whereas to sense a differential with probability p we need
only O(p−1) data.

These improvements make it possible to apply a top-down analysis to full size
cryptosystems with n = 64, and to find in about 264 time all their differentials
with probabilities p ≥ 2−32 and all their linear biases |p| ≥ 2−16. Previously,
these tasks had required at least 296 time.

In Sect. 4 and we report improved algorithms for boomerangs, related-key
differentials, and second-order differentials. The full attacks are given in the full
version of the paper at [16]. Here, one cannot hope to obtain an algorithm as good
as for differential and linear properties, as information-theoretic arguments yield
lower bounds of Ω(23n/4p−1/4) for second-order differentials and boomerangs and
Ω(2np−1/2) for related-key differentials. Our new algorithms have complexities
of at most O(2np−2) for all three types of properties, thus making it possible
to detect such properties for 32-bit and sometimes 48-bit constructions in a
practical amount of time.

A summary of our main results can be found in Table 1.

1 According to Wikipedia, a surrogate marker in clinical trials is a known measure
which may correlate with the unknown clinical markers we would like to follow, but
does not necessarily have a guaranteed relationship.
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Table 1. Our main results for probabilities p ≥ 2−n/2 and biases |p| ≥ 2−n/4

Property Time Data Memory Section

Differentials (fundamental alg) O(2n/2p−1) O(2n/2p−1) O(2n/2p−1) Sect. 2.2

Differentials (memory-efficient) Õ(2n/2p−1) Õ(2n/2p−1) Õ(p−2) App. 2.4

Differentials (memoryless) O(2n/2p−2) O(2n/2p−2) O(1) Sect. 2.3

Differentials (worst-case) O(2n/2p−3/2) O(2n/2p−3/2) O(2n/2p−1/2) Sect. 2.5

Linear approximations O(2n/2p−2) O(2n/2p−2) O(2n/2p−2) Sect. 3

Boomerangs O(2np−1) O(2n) O(2np−1) Full version [16]

Second-order differentials O(2np−2) O(2n) O(2np−2) Full version [16]

Related-Key differentials O(2np−2) O(2np−1) O(2np−1) Full Version [16]

n — block size and key size.

Our research leads to many interesting open problems, some of which are
listed in the concluding Sect. 5. In particular, in spite of the significant improve-
ments over previous results, our upper bounds still do not match the best known
lower bounds, and there are additional statistical properties to which we do not
know how to apply our new techniques.

2 Efficient Algorithms for Detecting High-Probability
Differentials

Differential cryptanalysis [6] is a central cryptanalytic technique, based on trac-
ing the development of differences during the encryption process of a pair of
plaintexts. The central notion in differential cryptanalysis is a differential. We
say that the differential α → β for the function f : {0, 1}n → {0, 1}n holds with
probability p, if Pr[f(x) ⊕ f(x ⊕ α) = β] = p, where x ∈ {0, 1}n is chosen uni-
formly at random. The pairs (x, x⊕α) that satisfy f(x)⊕f(x⊕α) = β are called
right pairs with respect to the differential. As differential attacks exploit high-
probability differentials, a central goal in differential cryptanalysis is to detect
high-probability differentials efficiently.

In this section we present an algorithm that allows detecting all differentials
of f : {0, 1}n → {0, 1}n that hold with probability ≥ p, with complexity of
O(2n/2p−1). This algorithm is almost optimal, as by an information-theoretic
lower bound presented below, any generic algorithm for this task has complexity
of Ω(2n/2p−1/2). We also present three variants of the algorithm: a worst-case
algorithm that allows detecting with a high probability also high-probability
differentials that are adversarially hidden, a memoryless algorithm with only
a slightly higher time complexity, and a memory-efficient algorithm that allows
reducing the memory complexity to O(p−2) without increasing the data and time
complexities. We then experimentally verify our algorithm, by using it to detect
all high-probability differentials of 5-round and 6-round variants of SPECK [2].

Throughout this paper (and especially when we estimate running times and
the probability of false alarms) we assume that the black-box function behaves in
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a sufficiently random way. Any gross deviation (such as the discovery of a huge
multicollision in a supposedly random function, which can slow our algorithms)
is likely to cast serious doubts about the soundness of the cryptosystem’s design,
even if no high probability differential or linear properties are actually found. In
addition, for the sake of clarity we ignore poly-logarithmic factors (i.e., factors
that are polynomial in n) in all our probability and complexity estimates.

We also note that all our algorithms are probabilistic in nature and rely on
some randomness assumptions which are addressed later on. Furthermore, we
present those algorithms for a specific (random) key, i.e., we directly analyze a
given permutation. First, in most practical applications, the effect of the key on
probabilities of statistical properties is minor, and thus, computing the proba-
bilities for a random fixed key gives a good approximation for the actual prob-
abilities. Second, our main algorithms can incorporate multiple keys in order to
reduce the dependency on a single fixed key, either by running it multiple times
for different keys, or in some of the algorithms, incorporating the different keys
into the algorithm.

For the sake of simplicity, we first analyze the algorithms in the scenario
where f has only one differential α → β that holds with probability p, while all
other differentials have significantly lower probabilities. We then show that the
algorithms can be easily generalized to finding all ≥ p-probability differentials,
with no increase in the complexity. In addition, we first present the algorithms
under the natural assumption that p ≥ 2−n/2, and afterwards explain the adjust-
ments required for smaller values of p.

2.1 Previous Algorithms and a Lower Bound

Previous Algorithms. Algorithms for detecting high-probability differentials are
abundant in the literature. However, almost all of them operate in a bottom-up
fashion, that is, construct a ‘long’ differential characteristic2 by concatenating
‘short’ differential characteristics, and use the probability of the differential char-
acteristic as a lower bound on the probability of the differential. In such algo-
rithms, the short differential characteristics can be found easily and the challenge
is to find characteristics that can be ‘glued together’.

Top-down algorithms for finding high-probability differentials were consid-
ered in several special cases: In [9], Biryukov and Velichkov initiated the study
of algorithms detecting all high-probability differentials of the addition operation
in ARX ciphers – a problem they coined ‘constructing the partial DDT (pDDT)’
of the operation. Several follow-up papers (e.g., [8,10]) further studied the pDDT
and used it in attacks on the ciphers SIMON, SPECK, Ascon, and LEA. In [1],
Albrecht and Leander initiated the study of the case where the adversary had
guessed the input difference of a differential using some heuristic, and is inter-
ested in finding all output differences to which it leads with a high probability.

2 We remind the reader that a differential characteristic predicts all the intermediate
differences, whereas a differential is concerned only with the input difference and the
output difference.
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Essentially the same problem was studied in several other works (e.g., [11,13]),
under the name of multiple differential cryptanalysis, and its algorithms for solv-
ing it were used in attacks on SPECK (see [3,21]). In [15], Dinur et al. studied
the problem of finding all high-probability iterative differentials of general func-
tions, and used their results in attacks on the cipher Simon and on the iterated
Even-Mansour construction. In [29], Li and Yang showed that in the quantum
setting, differentials with probability very close to 1 can be detected in poly-
nomial time (in n), using the Bernstein-Vazirani algorithm [4]. The follow-up
paper [38] further enhanced the technique and used it to attack several block
cipher constructions. While these works obtained significant advancements in
special cases, neither of them applies in general.

A natural top-down algorithm for detecting all differentials of a function
f : {0, 1}n → {0, 1}n that hold with probability ≥ p is the following adaptation of
the classical algorithm for constructing the Difference Distribution Table (DDT):

1. For all α ∈ {0, 1}n, do:
(a) Choose 4/p random values x1, x2, . . . , x4/p ∈ {0, 1}n.
(b) For each 1 ≤ i ≤ 4/p, compute f(xi)⊕ f(xi ⊕α) and insert it into a hash

table.
(c) Output all values β that appear in the table at least 2 times.

The data and time complexity of the algorithm is O(2np−1) and its memory
complexity is O(p−1). The probability of a differential with probability ≥ p
to be detected is more than 90% (according to standard approximation by a
Poisson distribution), and the probability of a differential with probability � p
to be detected by mistake is small.

Lower Bound. A simple information-theoretic argument yields a lower bound of
Ω(2n/2p−1/2) for the task of generically detecting a differential α → β that holds
with probability p. Indeed, in order to detect such a differential, the adversary
must observe at least one pair with input difference α and output difference
β. Assuming that those pairs are distributed randomly, this means that the
adversary must observe Ω(1/p) pairs with input difference α for all α values, i.e.,
a total of O(2n · p−1) pairs is needed. This number of pairs cannot be generated
(even to cover most values of α) unless the plaintext set is of size Ω(2n/2p−1/2).
Thus, the complexity of any algorithm for our problem is Ω(2n/2p−1/2).

2.2 The Fundamental Algorithm

In this subsection we present a probabilistic algorithm which almost matches the
lower bound, and under some randomness assumptions finds any probability-p
differential (with overwhelming probability) α → β with data, memory, and time
complexity of Õ(max(2n/2p−1, p−2)). We also note that the memory complexity
of the algorithm can be improved to O(p−2) without affecting the data and time
complexities, as will be shown in the memory-efficient algorithm of Appendix 2.4.
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Main Idea. The main observation behind the algorithm is that the output differ-
ence β can be cancelled by differentiating with a completely unrelated surrogate
difference γ, and searching for right pairs (x, x⊕α) for which (x⊕γ, x⊕γ ⊕α) is
also a right pair. The search for two “companion” right pairs instead of a single
pair has some price, and is the reason of the complexity being higher than the
lower bound by a factor of p−1/2.

Detailed Description. We choose an arbitrary nonzero value γ ∈ {0, 1}n, and
consider the function gγ : {0, 1}n → {0, 1}n defined by gγ(x) = f(x) ⊕ f(x ⊕ γ).
We examine the collisions in the function gγ(x). Observe that if both (x, x ⊕ α)
and (x⊕γ, x⊕γ ⊕α) are right pairs with respect to the differential α → β, then

gγ(x) ⊕ gγ(x ⊕ α) =
(
f(x) ⊕ f(x ⊕ γ)

)
⊕

(
f(x ⊕ α) ⊕ f(x ⊕ α ⊕ γ)

)

=
(
f(x) ⊕ f(x ⊕ α)

)
⊕

(
f(x ⊕ γ) ⊕ f(x ⊕ α ⊕ γ)

)
= β ⊕ β = 0

and thus, the pair (x, x ⊕ α) yields a collision in gγ , as depicted in Fig. 1. We
call quartets (x, x ⊕ α, x ⊕ γ, x ⊕ α ⊕ γ) for which this is satisfied right quartets
for gγ .

The fundamental algorithm is detailed in Algorithm 1. In the detection phase,
we find collisions in gγ for random inputs. From each collision, we calculate the
corresponding (input difference, output difference) pair, denoted by (α, β), and
increase its counter by one. Than, in the verification phase, we go over all such
(α, β) pairs that were suggested sufficiently many times (i.e., with high counters).
For each such (α, β) pair, we verify that indeed the probability of the differential
α → β is larger than p. We do that by taking O(p−1) random pairs with input
difference α, and test that sufficiently many of them have an output difference
β.

Fig. 1. A Right Quartet for the Fundamental Algorithm
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Algorithm 1: The Fundamental Algorithm
Initialize an empty list L of counter tuples (α, β, cnt) and an empty hash table
H.

Choose M =
√

n · 2n/2p−1 distinct random values x1, x2, . . . , xM ∈ {0, 1}n.
Pick at random an n-bit non-zero value γ.
for all 1 ≤ i ≤ M do

Compute gγ(xi) and insert it into a hash table H.

//Detection phase
for all collisions gγ(xi) = gγ(xj) in the hash table do

Compute the suggested (input difference, output difference) pair
(α = xi ⊕ xj , β = f(xi) ⊕ f(xj)).

if (α, β, ∗) /∈ L then
add (α, β, 1) to L.

else
Increment the counter of the tuple (α, β, cnt) to (α, β, cnt + 1).

//Verification phase
for each (α, β, cnt) ∈ L s.t. cnt ≥ n/4 do

Pick n/p distinct random values χ1, χ2, . . . , χn/p ∈ {0, 1}n.
Count how many times f(χi) ⊕ f(χi ⊕ α) = β.
If the counter is greater than n/2, output (α, β).

Randomness Assumptions. The correctness of the fundamental algorithm relies
on the following randomness assumptions. We assume that for any γ the event
that the pair (x ⊕ γ, x ⊕ γ ⊕ α) is a right pair is independent of the event that
the pair (x, x ⊕ α) is a right pair (which is similar to some of the randomness
assumptions of the boomerang attack). Under this assumption, the probability
of the quartet to be a right quartet for a random x ∈ {0, 1}n is p2, and thus, the
expected number of collisions (each corresponding to a quartet) of this form is
p22n−1 (the division by 2 is since each pair is counted twice).

In the presence of multiple differentials with probability p (or close to p)
we also need to assume (for the claim that the algorithm finds almost all dif-
ferentials), that the distribution of right quartets for a given differential is not
affected by the existence of other quartets (for a different differential).

Both assumptions are reasonable with respect to cryptographic primitives,
and were used, in different contexts in previous works on cryptanalysis [7,24]. We
show in Sect. 2.5 a worst-case algorithm which does not rely on these assump-
tions. Furthermore, the algorithm of Sect. 2.5 can find such high probability
differentials even when the designer constructed the scheme to withstand the
fundamental algorithm.

Success Analysis. Assume that the function f has a differential α → β with
probability p. Our following analysis suggests that (under the above randomness
assumptions) this differential is going to be detected with probability higher than
99%. Furthermore, we show that the probability of a differential with probability
much lower than p, e.g., p/10, to be proposed by our algorithm is negligible.
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The data contains M =
√

n · 2n/2/p inputs, that can be combined into n/2 ·
2n/p2 pairs (of gγ() outputs). Each such pair (of gγ() outputs) determines an
α value, and thus, for each α value we expect about n/2 · 1/p2 pairs (x, x ⊕ α)
and (x ⊕ γ, x ⊕ γ ⊕ α). As per our randomness assumption, each of these two
pairs is right w.r.t. the differential α → β with probability p. Hence, out of the
n/(2 · p2) pairs (of pairs), we expect n/2 cases where both pairs (x, x ⊕ α) and
(x ⊕ γ, x ⊕ γ ⊕ α) are right ones. When these pairs are right pairs, they suggest
a collision in the output of gγ(). Hence, we expect n/2 collisions in H for the
(input difference, output difference) pair (α, β).

Assuming that the number of actual collisions follows the Poisson distribution
with a mean value n/2 (which is the approximation of the binomial distribution
in this case) with a very high probability, the counter of (α, β) is advanced at
least n/4 times. We list this probability for common values of n in Table 2 and
will offer the full analysis in the full version of the paper. Thus, the differential
α → β is detected with probability of over 99%. This holds for all differentials
with probability at least p.

We note that the verification step at the end of the algorithm verifies that the
candidate (α, β) offers a differential. The probability of an (α, β) with probability
p (or higher) to fail the verification step is negligible (again under the assumption
that the number of right pairs follows the Poisson distribution with a mean value
of n/2).

Table 2. Probability that a high (low) probability differential is detected by the fun-
damental algorithm leading to a true (false) positive result

Detection Probability\Block Size n = 32 n = 64 n = 128 n = 256 n = 512

High prob. differential (true positive) 0.99 0.999 0.999996 1 − 2−32.7 1 − 2−61.4

Low prob. differential (false positive) 2−36.6 2−71.0 2−139.1 2−275.0 2−546.2

We now turn our attention to the probability that a “wrong” differential
is detected (i.e., a differential with probability less than p/10). We start the
discussion with the detection phase (what is the chance that such a differential
is suggested). Table 2 contains the probability of a low probability differential
(i.e., with probability at most p/10) to be offered more than n/4 times in n/(2·p2)
quartets. While the full analysis will be given in the full version of the paper, it is
easy to see that the probability of such a differential to be detected is lower than
2−n. Hence, as there are at most 10 ·2n/p differentials with probability p/10, we
expect at most O(1/p) such differentials to be analyzed in the verification step.

We note that the probability of a differential to pass the verification step is
equal to the probability of the detection phase. This follows the fact that we
picked the number of pairs and the threshold to be the same as in the detec-
tion phase. As the number of right pairs following a differential is distributed
according to the Poisson distribution is the same, we conclude that these are the
same passing probabilities. We note that if one can reduce the complexity of the
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verification step in exchange for possibly higher number of “wrong” differentials
which pass the verification step.

Of course, the probability of those differentials to pass the verification step
is negligible.

Complexity Analysis. We first note that if there are no differentials with prob-
ability even close to p (e.g., all other differentials happen with probability close
to 2−n), the probability of a collision in gγ() is 2−n. Hence, the data is expected
to contain M2/2 · 2−n = (

√
n2n/2/p)2/2 · 2−n = n · p−2 “random” collisions, for

which the proposed (input difference, output difference) values are distributed
randomly over the 22n possible values. Hence, the probability that some random
(input difference, output difference) phase is suggested n/4 times is negligible.

As discussed above, the probability that a differential α′ → β′ with probabil-
ity at most p/10 is suggested in the detection phase is less than 2−n (see Table 2).
Hence, at most 10/p such differentials are expected to pass the detection phase.

The time complexity of the data collection phase is 2 · M =
√

n2−n/2+1/p
calls to f(·) (in addition to M XORs and M memory accesses).

If there is a single high probability differential, and not too many “wrong” dif-
ferentials, we expect besides the collisions related to it to have another O(n/p2)
random collisions. Each such collision is expected to be suggesting a single value3

for (α′, β′). As stated above, we expect to have about O(n/p2) collisions, and
they are expected to be distributed uniformly (even for the high probability
differential). Hence, we expect only a few increments to take place.

If there are many “wrong” differentials (i.e., with probability lower than
p/10, but not negligible), we expect many collisions — we expect about n/200
collisions for each such differential. While the chances of any such differential
to pass into the verification step is negligible (and there are at most O(n/p)
of those), they can still incur a very high computational load — there are at
most 10 · 2n/p such differentials, and if each of them leads to n/200 collisions,
we expect about O(n · 2n/p) collisions. However, when there are many of those,
we can identify that the function which is studied is far from being a “random”
function, which would suggest it is not suitable for cryptographic uses.4

The verification step takes O(n/p) for each differential that passed the detec-
tion phase. When there is a single right differential and only very low probability
differentials, then this step costs 2n/p calls to f(·). When there are multiple
“wrong” differentials, as noted before, we expect to have 2n/p calls to f(·) for
each of them, i.e., about 20n/p2 calls for f(·) in total.

Hence, the time complexity of the verification step is expected to be O(n/p)
when there are not many “wrong” differentials. When there are many of those
(an event which is detected in the detection step), the complexity is O(n/p2).

3 If there are more than two values colliding, then each pair of collisions suggests a
value for α′ and β′.

4 In other words, one can easily define a statistical test based on the fundamental
algorithm, and reject that function as a random function (or a random permutation)
if the number of collisions exceeds O(n/p2).
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The memory complexity of the algorithm is determined by the hash table size
and the size of the list L. The size of the hash table is O(M) = O(

√
n2n/2/p)

words of memory. The size of the list L depends on the number of collisions. As
mentioned above, when there are only differentials with negligible probability
(besides the right differential), this list is going to contain O(n/p2) values (each
corresponding to a random collision) and about n ones for the real differential.
When there are many “wrong” differentials, the size of this list is going to grow
(and this would be a good indication that the function f(·) is not a “good”
pseudo-random function).

To conclude, the time complexity of the algorithm is O(n · 2n/2/p) calls to
f(·) and similar memory complexity. This holds as long as there are not too
many “wrong” differentials which exist in the scheme (i.e., there are not too
many differentials with probability below p/10 that are detected). The existence
of many of those may suggest that the function is not suitable for cryptographic
uses, and while the fundamental algorithm succeeds in finding the high proba-
bility differential (and discarding all “wrong” differentials), its complexity may
be higher.
The case p ≤ 2−n/2. The algorithm can be applied in this case as well, how-
ever the number of plaintexts pairs of gγ it examines – O(2np−2) – is larger than
22n−1, which is the total number of plaintext pairs of gγ . In order to obtain more
than 22n−1 plaintext pairs, we can consider functions gγi

for different values of
the ‘surrogate’ difference γi. (This trick is similar to the use of ‘flavors’ in Hell-
man’s classical time/memory tradeoff attack [23]). Note however that collisions
are meaningful only within the same function gγ and not between two functions
gγi

and gγj
. Thus, in order to obtain O(2np−2) pairs, we have to consider the

entire codebook of 2n inputs for O(2−np−2) functions gγi
.

Thus, the data complexity of the algorithm in this case is 2n (the entire code-
book), and the time and memory complexity is O(p−2), which is the expected
total number of collisions in the functions gγi

. Recall that the simple algorithm
described above allows detecting a probability-p differential in time O(2np−1).
Our algorithm outperforms this algorithm for all values of p.

Unifying the two ranges of p values, the data complexity of the algo-
rithm is O(min(2n/2p−1, 2n)) and its time and memory complexity is
O(max(2n/2p−1, p−2)).

Detecting All High-Probability Differentials. If there are k differentials with prob-
ability p, the algorithm will simply detect all of them, with no additional cost.
(The only case in which some additional cost is incurred is when there are lots
of high-probability differentials: If k > max(2n/2p−1, p−2), then the complexity
is O(k), as the function gγ is expected to have O(k) collisions.)

We note that for the above complexity analysis we assume that there are not
too many differentials which are suggested in the detection phase. When this
happens, the time complexity of the algorithm may not be correct. Specifically,
if there are more than 2n/2 differentials with probability higher than p, we expect
the verification step to be more expensive than the detection phase. We note that
the existence of many high probability differentials (which can be detected by
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observing there are many candidates for the verification step), may suggest that
the studied primitive is far from being a secure one.

2.3 A Memoryless Variant of the Algorithm

We now present a memoryless variant of the algorithm, with query complexity5

of O(2n/2p−2) and time complexity of O(max(2n/2p−2, p−3)). In other words,
the cost for using only a constant-sized memory is increasing the data and time
complexity by a factor of 1/p, compared to the fundamental algorithm presented
above. This variant outperforms all previously known algorithms for this task
for all p ≥ 2−n/2. Moreover, it is trivially parallelizable.

The Algorithm. A memoryless variant of the fundamental algorithm presented
above is given in Algorithm 2. Note that the collision finding steps for each value
of i are completely independent. This allows for a simple parallelization of the
algorithm.

Algorithm 2: The Memoryless Algorithm
while (α, β) were not identified do

Pick at random an n-bit non-zero value γ.
//Collision finding phase
Find a collision gγ(x) = gγ(y) in the function gγ using Pollard Rho’s
algorithm.

Denote α = x ⊕ y, β = f(x) ⊕ f(y).
Choose c/p random values y1, y2, . . . , yc/p ∈ {0, 1}n. (c depends on the
success rate)

//Verification phase
for j = 1, 2, . . . , c/p do

Check whether f(yi) ⊕ f(yi ⊕ α) = β.
If equality is obtained at least c/2 times, output (α, β) and break.

Analysis. By the analysis presented above, assuming that there are not too many
“wrong” differentials, collisions suggested by right pairs form a fraction of about
p2 of the collisions of gγ . This follows the fact that out of the O(1/p2) collisions
found by the fundemental algorithm and thus, after 1/p2 collisions found by the
Pollard Rho algorithm, we expect such a special collision. In such a case, the
values of (α, β) it suggests will be verified in the last steps with a high probability.
On the other hand, input differences suggested by ‘random’ collisions will not
be approved in these steps. We note that the value of c depends on the success

5 We alert the reader that as we discuss a memoryless algorithm, the algorithm cannot
store previous values. Instead, we discuss “query” complexity to refer to the number
of evaluations of the function f(·), which may be higher than 2n.
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rate. If we wish to make sure that there are no false positive left, we need to
pick c such that the probability that the O(1/p2) proposed differentials (each
collision suggests a differential) are filtered. Hence, c can be picked accordingly
(see for example Table 2).

The data complexity of the algorithm is O(2n/2p−2) queries (as each appli-
cation of Pollard’s Rho requires O(2n/2) adaptively chosen inputs). Note that
in order to avoid obtaining the same collisions many times, we use different
functions gγi

, which comes at no additional cost as each collision is searched
separately. As for the time complexity – if p ≥ 2−n/2, then the time complexity
of the verification phase (which is p−3) is smaller than the time complexity of
the Pollard Rho phase, and thus, the overall time complexity is O(2n/2p−2). If
p < 2−n/2 then the verification phase is dominant, and thus, the overall time
complexity is O(p−3). Therefore, the overall time complexity of the algorithm
(for any p, unifying the two regions) is O(max(2n/2p−2, p−3)).

Detecting All High-Probability Differentials. If there are k differential character-
istics with probability p, the algorithm will simply detect all of them, by being
called k · ln(k) more times (due to the Coupon collector’s nature of the problem
— each collision suggests a different (α, β) pair, but those may repeat). Again,
as before, if there is a huge number of such high probability differentials, the
complexity of the algorithm may “explode”.

Comparison with Previous Algorithms. The complexity of our algorithm should
not be compared against the adaptation of the DDT computation (with com-
plexity O(2np−1)) presented above, as this adaptation does not apply in the
memoryless setting. In fact, the natural adaptation of the DDT computation to
memoryless detection of probability-p differentials has complexity of O(22np−1),
as one has to check each candidate differential α → β separately, and each such
check requires O(1/p) time. Therefore, our algorithm is significantly faster.

However, for values of p < 2−n/2 our algorithm is outperformed by an adap-
tation of the NestedRho algorithm [17]. The NestedRho algorithm considers a
function h : {0, 1}n → {0, 1}n and detects – in a memoryless manner – all values
y ∈ {0, 1}n such that Pr[h(x) = y] ≥ p, when x ∈ {0, 1}n is chosen uniformly at
random. In our case (i.e., search for differentials), for each fixed input α, one can
consider the function hα(x) = f(x) ⊕ f(x ⊕ α), and apply to it the NestedRho
algorithm to detect all values β such Pr[h(x) = β] ≥ p, which are exactly all
values of β such that the differential α → β holds with probability ≥ p. This
yields an algorithm with time complexity 2n · T , where T is the the complexity
of the NestedRho algorithm for the corresponding value of p. Substituting the
results from [17], one obtains complexity of 2np−1 for p > 2−n/2, 2n/2p−2 for
2−3n/4 < p < 2−n/2, 2−np−4 for 2−7n/8 < p < 2−3n/4, etc.

Our algorithm is faster than this variant of NestedRho for p ≥ 2−n/2, as
2n/2p−2 < 2np−1 in this range. For p < 2−n/2, the adaptation of NestedRho is
faster.
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Algorithm 3: Algorithm for Detecting High-Probability Boomerangs
Initialize an empty array of 2n-bit counters and an empty hash table H.
Choose S = 32/p random values γ1, γ2, . . . , γS .
Pick at random an n-bit non-zero value γ.
for all 1 ≤ i ≤ S do

for all x ∈ {0, 1}n do
Compute gγi(x) and insert it into a hash table H.

for all collisions gγi(xi) = gγi(xj) in the hash table do
Increment the counter that corresponds to the (input,output) pair
(xi ⊕ xj , f(xi) ⊕ f(xi ⊕ γi)).

Output each (input, output) pair (α, β) whose counter was advanced at least 8
times.

2.4 A Fixed Amount of Available Memory Variant
of the High-Probability Differentials Detection Algorithm

Recall that the fundamental algorithm has time and memory complexities of
O(max(2n/2p−1, p−2)), while the memoryless variant has time complexity of
O(max(2n/2p−2, p−3)) (but is suboptimal for p < 2−n/2).

We show how to exploit a fixed amount of available memory to obtain trade-
offs between these two algorithms. In fact (assuming p ≥ 2−n/2), we describe
an algorithm with time complexity of Õ(2n/2p−1), similarly to the fundamen-
tal algorithm. Yet, this algorithm has reduced memory complexity of Õ(p−2),
and can therefore be considered as a strict improvement over the fundamental
algorithm.

In particular, we describe two different tradeoff algorithms, where the first
is an extension of the memoryless algorithm and is preferable for small values
S of memory (compared to 1/p). The second algorithm is an extension of the
fundamental algorithm and performs better for larger values of S.

Both of the tradeoff algorithms use the classical Parallel Collision Search
(PCS) algorithm [34], which finds C collision pairs in a random function f :
{0, 1}n → {0, 1}n with memory of S = Õ(C) bits in time complexity T such
that T = Õ(C · 2n/2S−1/2).

Tradeoff Algorithm 1. Recall that we need to find C = O(p−2) collisions in the
function gγ (which we assume to behave as a random function for the sake of the
analysis). Given memory S = Õ(C) = Õ(p−2), this is done in time complexity
of T = Õ(p−22n/2S−1/2) using the PCS algorithm.

The first tradeoff algorithm tests all these Õ(p−2) collisions (as in the memo-
ryless algorithm), requiring additional time complexity of Õ(p−3). Consequently,
the overall time complexity becomes

Õ(max(2n/2p−2S−1/2, p−3))

(assuming S = Õ(p−2)). Thus, the complexity of the testing phase is negligible
in case p ≥ S1/2 · 2−n/2.
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Tradeoff Algorithm 2. For larger values of S (and assuming S = Õ(2n)), the
second tradeoff algorithm eliminates the testing phase by finding more collisions
(similarly to the fundamental algorithm). Specifically, an internal loop of the
PCS algorithm finds a batch of (about) S collisions in gγ in time 2n/2S1/2.
We repeat this loop (using different flavors) until we find two collisions that
suggest the same input-output difference. The probability of this event is about
(S · p2)2 = S2p4, and hence the total time complexity is

Õ(2n/2S1/2S−2p−4) = Õ(2n/2p−4S−3/2).

This complexity is better than that of the first tradeoff algorithm in the case
2n/2p−4S−3/2 < p−3, or p > 2n/2S−3/2 (i.e., S > 2n/3p−2/3).

In particular, for S = Õ(p−2) (assuming p ≥ 2−n/2), the time complexity
of the algorithm is Õ(2n/2p−1), which is an improvement over the fundamental
algorithm as claimed above.

We note that as for the memoryless algorithm, variants of the NestedRho
algorithm become faster than the algorithms described above for small values of
p and S.

2.5 A Worst-Case Variant of the Algorithm

While the fundamental algorithm presented above succeeds with a high probabil-
ity when the right pairs with respect to the differentials are distributed randomly,
it can be easily fooled by a trapdoor designer capable of planting the right pairs
adversarially. For example, if the t = p2n−1 right pairs with respect to the differ-
ential characteristic α → β form a linear subspace, then only for 2t values of γ
(which reside in this subspace) there exists some x such that both (x, x⊕α) and
(x ⊕ γ, x ⊕ γ ⊕ α) are right pairs. As for all other values of γ, the fundamental
algorithm fails almost surely, its success probability is at most 2t/2n = p, which
might be very small.

In this section we present a worst-case algorithm which receives a function
f : {0, 1}n → {0, 1}n that may be designed adversarially, and allows detecting
a hidden differential characteristic that holds with probability p or distinguish-
ing f from a random function. The memory complexity of the algorithm is
Õ(2n/2p−1/2) and its data and time complexity are Õ(2n/2p−3/2). Note that
the time complexity is higher than that of the fundamental algorithm by only a
factor of Õ(p−1/2).

The Algorithm. The worst-case algorithm is given in Algorithm 4. We note that
for p > 2−n/3 one can simplify the algorithm (as explained later).

Analysis. We first analyze the success probability of the algorithm in finding the
differentials with probability at least p.

Lemma 1. For 1 ≤ i ≤ S, consider iteration i of the algorithm. Then,

1. For 0 < ε < 1, the counter for every differential whose probability is at most
p · ε is incremented with probability at most 16 · p · ε2.
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Algorithm 4: Worst-Case Algorithm
Initialize an empty list L of counter tuples (α, β, cnt).
Choose S = 200n/p random non-zero values γ1, γ2, . . . , γS .
for all 1 ≤ i ≤ S do

Choose M = 4 · 2n/2p−1/2 random values x1, x2, . . . , xM ∈ {0, 1}n.
Initialize an empty list Ltmp of differential tuples (α, β) and an empty hash
table H.

for all 1 ≤ j ≤ M do
Compute gγi(xj) and insert it into a hash table H.

for all collisions gγi(xj) = gγi(xj′) in the hash table do
Compute the suggested (input difference, output difference) pair
(α = xi ⊕ xj , β = f(xi) ⊕ f(xj)).

if (α, β) /∈ Ltmp then
add (α, β) to Ltmp.

for each tuple (α, β) ∈ Ltmp do
if (α, β, ∗) /∈ L then

add (α, β, 1) to L.

else
Increment the counter of the tuple (α, β, cnt) to (α, β, cnt + 1)

For each (α, β, cnt) ∈ L such that cnt ≥ 0.28S · p = 56n output the (input
difference, output difference) pair (α, β).

2. Assume that n > 1 and p · 2n ≥ 4. Then, the counter for every differential
whose probability is at least p is incremented with probability at least 2p

5 .

Proof. Let 0 ≤ q ≤ 1 and fix a differential (α, β) whose probability is q.
Consider x1, x2, . . . , xM ∈ {0, 1}n picked at iteration i. For a value of γi, we

call a pair (xj , xj′) γi-surrogate-right if both (xj , xj′) and (xj ⊕ γi, xj′ ⊕ γi) are
right pairs.

Assume that (xj , xj′) is a right pair. Note that (xj ⊕ γi) ⊕ (xj′ ⊕ γi) =
xj ⊕ xj′ = α, and since γi is uniform, (xj ⊕ γi, xj′ ⊕ γi) is uniformly distributed
among all pairs with difference α. Consequently,

Pr
γi

[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] =
q · 2n − 2
2n − 2

. (1)

Let Ej,j′ be an indicator for the event that (xj , xj′) is a right pair. Note that
for any j �= j′,

Pr[Ej,j′ ] = 2−nq,

and denote q′ = 2−nq.
Let G count the number of unordered γi-surrogate-right pairs. Note that the

counter for (α, β) is incremented in iteration i if and only if G > 0. Therefore,
we analyze Pr[G > 0] under the assumptions of each part of the lemma.
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Part 1. We prove part 1 of the lemma (assuming q ≤ pε)
For any γi and j �= j′, let Gj,j′ be an indicator for the event that (xj , xj′) is

a γi-surrogate-right pair. We have

E[Gj,j′ ] = Pr[Gj,j′ = 1] = Pr[(xj , xj′) is γi-surrogate-right] =
Pr[(xj , xj′) is right] · Prγi

[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] =
q′ · q·2n−2

2n−2 ≤ q′ · q.

Therefore,

E[G] =
∑
j<j′

E[Gj,j′ ] = 1/2 · M(M − 1) · q′ · q ≤

M2 · 2−nq · q = 16 · 2np−12−nq2 ≤ 16 · p · ε2.

(2)

By Markov’s inequality, Pr[G > 0] = Pr[G ≥ 1] ≤ 16 · p · ε2, concluding the first
part of the lemma.

Part 2. We prove part 2 of the lemma (assuming q ≥ p).
Let E count the number of unordered right pairs in x1, x2, . . . , xM . We begin

by lower bounding Pr[E > 0]. We have

E[E ] =
∑
j<j′

Ej,j′ = 1/2 · M(M − 1)q′,

and

E[E2] = E[(
∑

j1<j2
Ej1,j2)

2] ≤
1/2 · M(M − 1)E[E2

j1,j2
]+

M2(M − 1) · ∑
{j1,j2,j3} distinct E[Ej1,j2Ej1,j3 ]+

1/4 · M2(M − 1)2
∑

{j1,j2,j3,j4} distinct E[Ej1,j2Ej3,j4 ] ≤
1/2 · M(M − 1)q′ + 0 + 1/4 · M2(M − 1)2(q′)2 =

1/4 · M(M − 1)q′ · (2 + M(M − 1)q′),

where the last inequality uses the fact that Pr[Ej1,j2Ej1,j3 = 1] = 0, while the
random variables Ej1,j2 and Ej3,j4 are negatively correlated.

Hence, by the second moment method,

Pr[E > 0] ≥ (E[E])2
E[E2] ≥

1/4·M2(M−1)2(q′)2

1/4·M(M−1)q′·(2+M(M−1)q′) = M(M−1)q′

2+M(M−1)q′ .

Recall that M = 4 · 2n/2p−1/2, and since n > 1, then M − 1 ≥ M/2. Therefore,
M(M − 1)q′ ≥ 1/2 · M22−nq ≥ M22−np = 8, and

Pr[E > 0] ≥ 8
10

=
4
5
.

Combining this with (1) we obtain

Pr[G > 0] ≥
Pr[E > 0] · Prγi

[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] ≥ 4
5 · q·2n−2

2n−2 ≥ 2p
5 ,
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where the last inequality uses the assumption that q·2n ≥ p·2n ≥ 4 (and therefore
p·2n−2
2n−2 ≥ p

2 ). This concludes the proof of the second part of the lemma. �
Lemma 2 (Correctness of Algorithm 4). Assume that n > 1 and p ·2n ≥ 4.
Then, with probability at least 1 − 2−0.4n:

1. No differential with probability at most p/10 is output by the algorithm, and
2. All differentials with probability at least p are output by the algorithm.

Note that the lemma does not guarantee anything about differentials with prob-
ability in the range (p/10, p). This has to be taken into account when setting the
value of p.

Proof. Fix a differential (α, β) and assume that it is output in an iteration with
probability q. Let C be the value of the counter for this differential at the end of
the algorithm. We have

E[C] = S · q.

Since the iterations are independent we will use a standard Chernoff bound,
which states that for any 0 < c < 1,

Pr[|C − E[C]| ≥ c · E[C]] ≤ e− c2·E[C]
3 .

Recall that the differential is output if its counter value is at least 0.28S · p.

Case 1. If the probability of the differential is at most p/10, by the first part of
Lemma 1 (invoked with ε = 1/10), E[C] ≤ 1/6 · S · p. By the Chernoff bound,

Pr[C ≥ 0.28S · p] ≤ Pr[|C − E[C]| ≥ 0.1 · S · p] =
Pr[|C − E[C]| ≥ 0.1·S·p

E[C] · E[C]] ≤
e− (0.1·S·p)2

3·E[C] ≤ e−S·p
50 ≤ e−4n < 2−2.4n,

as S = 200n/p. Taking a union bound over 22n values of (α, β) values gives the
first part of the lemma.

Case 2. By the second part of Lemma 1, if the probability of the differential is
at least p, then E[C] ≥ 2/5 · S · p. By the Chernoff bound,

Pr[C ≤ 0.28S · p] ≤ Pr[|C − E[C]| ≥ E[C] − 0.28 · S · p] ≤
Pr[|C − E[C]| ≥ 0.3E[C]] ≤

e− 0.09·E[C]
3 ≤ e−S·p

100 ≤ e−2n < 2−2.4n,

as S = 200n/p. Taking a union bound over 22n (α, β) values gives the second
part of the lemma. �
Lemma 3 (Time Complexity of Algorithm 4). Let qα,β denote the proba-
bility of the differential (α, β) in f . Then, the expected time complexity of Algo-
rithm 4 is

Õ
⎛
⎝2n/2p−3/2 + p−2 ·

∑
(α,β)|α�=0

q2α,β

⎞
⎠ .
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We note that for a random function, we have qα,β = Õ(2−n) for all (α, β) with
very high probability, implying that

∑
(α,β)|α�=0 q2α,β = Õ(1). In this case, the

second term in the complexity formula is Õ(p−2) � Õ(2n/2p−3/2) (assuming
p 
 2−n), and therefore can be neglected. For an arbitrary function, the term∑

(α,β)|α�=0 q2α,β may become dominant. This happens when the DDT of f has
many unusually large entries. The analysis below implies that we can still detect
this property in time complexity Õ(2n/2p−3/2), as it results in an unusually high
number of collisions in the hash table H (even though we may not be able to
find the largest entry whose probability is p).

Proof. Ignoring collisions in the hash table, the expected time complexity is
Õ(S · M) = Õ(2n/2p−3/2). We show that the expected number of collisions in
each one of the S iterations is Õ(p−1

∑
(α,β)|α�=0 q2α,β), which completes the proof.

Fix some iteration i and a differential (α, β) with probability qα,β . Recall
from the proof of Lemma 1 that the number of collisions in the hash table
resulting from (α, β) is equal to the number γi-surrogate-right pairs. By (2),
E[G] ≤ 16 ·p−1q2α,β . Summing this expression over all (α, β) concludes the proof.

�

The case of p > 2−n/3. We note that the analysis suggests that for a given γi

value we expect O(1/p) collisions, and we can test each of those using the veri-
fication procedure of the fundamental algorithm in time O(1/p). Hence, instead
of storing Ltmp and collecting those, we can just take any (α, β) difference
suggested, and test them. Hence, when 1/p2 < 2n/2p−1/2 (i.e., which implies
p > 2−n/3), we do not need the counters (as we essentially wait for the first time
(α, β) is suggested). The analysis above is of course still valid (up to the fact
that the memory complexity can be reduced).

2.6 Experimental Verification

We implemented and experimentally verified the worst-case variant of the algo-
rithm described in Sect. 2.5 (which was designed to find even planted differ-
ential properties whose right pairs were adversarially chosen in order to evade
the fundamental algorithm). We used our algorithm to search for all the high-
probability 5-round and 6-round differentials of the NSA-designed SPECK [2].
Our top-down algorithm automatically found all the state-of-the-art differential
properties which were constructed by the bottom-up analysis presented in [10].
In particular, the best 5-round differential we found was

(0x0211, 0x0a04) → (0x8000, 0x840a) with p ≈ 2−9

and the best 6-round differential we found was

(0x0211, 0x0a04) → (0x850a, 0x9520) with p ≈ 2−13.
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3 Efficient Algorithms for Detecting High-Probability
Linear Approximations

Linear cryptanalysis [32] is a central cryptanalytic technique, based on exploiting
probabilistic relations between the parities of a subset of the plaintext bits and a
subset of the ciphertext bits. The central notion in linear cryptanalysis is a linear
approximation. We say that the linear approximation α → β for the function
f : {0, 1}n → {0, 1}n holds with bias p, if Pr[β · f(x) = α · x] = 1

2 + p, where
x ∈ {0, 1}n is chosen uniformly at random and ‘·’ denotes a scalar product over
GF (2n). The values x that satisfy β · f(x) = α · x are called right values with
respect to the approximation. As linear attacks exploit approximations with a
high bias (in absolute value), a central goal in linear cryptanalysis is to detect
high-bias approximations efficiently.

In this section we present an algorithm that allows detecting all linear approx-
imations of f : {0, 1}n → {0, 1}n with bias ≥ p in absolute value with complexity
of O(2n/2p−2), provided p ≥ 2−n/4.

For the sake of simplicity, we omit the words ‘in absolute value’ in the sequel,
but throughout this section, all ‘high-bias’ approximations detected by the algo-
rithms include those with a strong negative bias.

3.1 Previous Algorithms and a Lower Bound

Previous Algorithms. Algorithms for detecting high-bias linear approximations
are abundant in the literature. However, as was described in the introduction,
almost all of them operate in a bottom-up fashion, that is, construct a ‘long’
linear approximation by concatenating ‘short’ linear approximations. In such
algorithms, the short approximations can be found easily and the challenge is
to find approximations that can be ‘glued together’. Top-down algorithms for
finding high-bias linear approximations were considered in several papers, under
the name partial linear approximation table (pLAT), and were applied to attack
the ciphers Speck and SM4 [30,31,39]. However, all these papers considered the
special case of the addition operation in ARX ciphers, and not the general case.

A linear approximation with bias of ±1/2 can be found in polynomial time
in n, by solving a system of 2n linear bit equations in the variables α, β. For
somewhat smaller biases, algorithms for the Learning Parity with Noise (LPN)
problem (see, e.g., [19] and the references therein) can be used to detect (α, β)
in time faster than 2n. However, the amount of noise increases rapidly as the
bias is reduced, so that these algorithms are not effective even for moderately
small biases like 1/4.

A natural top-down algorithm for detecting all linear approximations of a
function f : {0, 1}n → {0, 1}n that hold with bias ≥ p is the following adapta-
tion of the classical algorithm for constructing the Linear Approximation Table
(LAT), which also uses the classical Goldreich-Levin algorithm [22]:

1. For all β ∈ {0, 1}n, do:
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(a) Define an auxiliary Boolean function fβ : {0, 1}n → {0, 1} by fβ(x) =
β · f(x).

(b) Use the Goldreich-Levin algorithm to find all Fourier coefficients f̂β(α)
that are larger than p in absolute value.

(c) For each such α, output the pair (α, β) as the (input,output) mask of a
high-bias linear approximation.

The time complexity of the algorithm is Õ(2np−6), as the Goldreich-Levin algo-
rithm (whose complexity is Õ(p−6)) is applied 2n times. Refined variants of the
algorithm (see [20] and the references therein) allow reducing the complexity
to Õ(2np−2). By the analysis of the Goldreich-Levin algorithm, with a high
probability all linear approximations with bias ≥ p are detected, and no linear
approximation with bias � p is detected by mistake.

Lower Bound. Unlike the case of differentials, the information-theoretic lower
bound for finding high-bias linear approximations is rather low. Indeed, O(p−2)
samples are sufficient for detecting any linear approximation that holds with bias
≥ p with a high probability. Given this amount of samples, all linear approxima-
tions can be detected by an exhaustive search over all possible values of (α, β),
reusing the same data set.

3.2 A New Efficient Algorithm

In this subsection we present an algorithm which detects a ‘hidden’ linear approx-
imation α → β that holds with a bias of p, with data, memory, and time com-
plexity of O(2n/2p−2). In fact, it detects all linear approximations that hold with
a bias of ≥ p with the same complexity (unless the number of such approxima-
tions is extremely large, in which case the complexity is approximately equal to
the number of approximations). The algorithm uses surrogate differentiation, as
well as a shrinking step and application of the Fast Fourier Transform (or more
precisely, the Walsh-Hadamard transform).

Main Idea. The basic observation behind the algorithm is that the input mask α
of the linear approximation can be ‘cancelled’ by using surrogate differentiation
– that is, by considering the function gγ(x) = f(x) ⊕ f(x ⊕ γ) for an arbitrary
nonzero value γ and examining its linear approximations of the form 0 → β.
Indeed, note that for any fixed γ, we have

β ·gγ(x) = β ·(f(x)⊕f(x⊕γ)) = (β ·f(x)⊕α ·x)⊕(β ·f(x⊕γ)⊕α ·(x⊕γ))⊕α ·γ.

As α · γ is a constant that does not depend on x, it affects only the sign of the
bias of the approximation 0 → β via gγ but not its absolute value. Hence, we
can assume that α · γ = 0 and neglect it, remembering that the sign of the bias
may be reversed. After neglecting this term, we see that β · gγ(x) = 0 if and
only if either both x, x ⊕ γ are ‘right values’ with respect to the approximation
α → β for f , or neither of them is. Therefore, the linear approximation 0 → β
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Fig. 2. The relation between the linear approximation α → β for f and the linear
approximation 0 → β for gγ .

for gγ holds with bias of ±2p2 (as a concatenation of two linear approximations
with bias β). The relation between the approximation α → β for f and the
approximation 0 → β for gγ is demonstrated in Fig. 2.

While the bias of approximations of this form (i.e., 2p2) is significantly lower
than the bias of the original approximation of f , they do not contain the param-
eter α, which will allow us to detect them more efficiently. We note that in this
technique we create a linear relation between two outputs of f , using two linear
approximations that connect these outputs of f to the corresponding inputs and
an unknown but fixed relation between the inputs. Similar ideas were used in
differential-linear cryptanalysis [26], e.g., in the differential-linear attack on the
cipher COCONUT98 [5], where a decorrelation module applied in the middle of
the cipher makes the output difference of the differential (which is the difference
between the inputs to the linear approximation) unknown, but leaves it fixed.

Detailed Description. As written above, we choose an arbitrary nonzero value
γ ∈ {0, 1}n, and consider the function gγ : {0, 1}n → {0, 1}n defined by gγ(x) =
f(x) ⊕ f(x ⊕ γ). We want to find all linear approximations of gγ of the form
0 → β that hold with bias ≥ 2p2. In other words, we want to find all high values
in the row of the LAT of gγ that corresponds to input mask 0. Note that this
task is different from the usual way of computing the LAT, which works column-
wise (i.e., by fixing the output mask β, as was described above). Usually, these
tasks are equivalent, as the rows in the LAT of a permutation correspond to
columns in the LAT of the inverse permutation. However, in our case, we do not
have access to the inverse of gγ (which is not even well defined since gγ is not a
permutation), and so a somewhat more complex procedure is needed.

A standard way to achieve this goal is to define an auxiliary function hγ :
{0, 1}n → Z≥0 by hγ(y) = |{x ∈ {0, 1}n : gγ(x) = y}|. Note that for each mask
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β, the bias of the linear approximation 0 → β for gγ is

1
2

(|{x : gγ(x) · β = 0}| − |{x : gγ(x) · β = 1}|) =
1
2
ĥγ(β).

Hence, the values of β we search for consist of the set {β ∈ {0, 1}n : |ĥγ(β)| ≥
4p2}. Using the aforementioned enhanced variants of the Goldreich-Levin algo-
rithm, all these values can be found in time Õ(p−2), once all inputs of hγ are
known. However, computing all these inputs requires 2n time, and we aim at a
significantly faster algorithm.

Instead, we first apply a shrinking transformation, in a way that resembles
the LF1 algorithm [28] for the LPN problem. Specifically, we shrink the output
size of gγ to n/2 + �log(p−2) bits by looking only at values x such that the
last �n/2 − log(p−2)� bits of gγ(x) are zeros.6 (The choice of the range’s size is
explained below). Note that for any β, the contribution of each of these values
of x to the linear approximation 0 → β of gγ is equal to its contribution to the
linear approximation 0 → β̄ of the restriction of gγ to the first n/2 + �log(p−2)
output bits, where β̄ is the restriction of β to the same bits. Hence, we can find β̄
by examining the restricted function ḡγ whose range is {0, 1}n/2+�log(p−2)�, and
find the rest of β by repeating the procedure with restriction to the last bits.

Once the shrinking is applied, we find all linear approximations of the form
0 → β̄ of the function ḡγ by defining the corresponding auxiliary function
h̄γ : {0, 1}n/2+�log(p−2)� → Z≥0 and computing its Walsh-Hadamard transform.
The values β̄ such that |ˆ̄hγ(β̄)| ≥ 4p2 are those which correspond to the high-
bias approximations we search for, as was explained above. The fundamental
algorithm is detailed in Algorithm 5. In the first part of the algorithm, for a
vector y ∈ {0, 1}m, we denote by yupper (resp., ylower) the truncation of y to the
n/2 + �log(p−2) upper (resp., lower) bits. In the second part of the algorithm,
we denote by yupper′ (resp., ylower′) the truncation of y to the n/2 + �log(p−1)
upper (resp., lower) bits.

Randomness Assumptions. The correctness of the fundamental algorithm relies
on the following randomness assumptions. We assume that for any γ, the event
that x satisfies the linear approximation is independent of the event that x + γ
satisfies the approximation (which is similar to some of the randomness assump-
tions of differential-linear attacks). Under this assumption, the probability that
either both x, x + γ or neither of them satisfy the approximation is 1/2 ± 2p2.

In the presence of multiple linear approximations with bias p (or close to p)
we also need to assume that the distribution of values which satisfy one linear
approximation is not affected by the distribution of values that satisfy the other
high-bias approximations.

Success Analysis. Assume that the function f has a linear approximation α → β
with bias p. Our following analysis suggests that (under the above randomness
6 We note that one can choose any constant as the “target”, as long as it is consistent

with the constant used in the second part of algorithm mentioned later.
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Algorithm 5: Efficient Algorithm for Detecting Linear Approximations
Initialize the following empty lists: L1, L2 of counter tuples (y′, cnt), where y′ is
n/2 + 	log(p−2)
 bits long; L̄1, L̄2 of n/2 + 	log(p−1)
-bit values; L3, L4, L̄3, L̄4

of n/2 + 	log(p−1)
-bit values; and L5 of n-bit values.
Choose M = n · 2n/2p−2 random distinct values x1, x2, . . . , xM ∈ {0, 1}n.
Pick at random an n-bit non-zero value γ.
for all 1 ≤ i ≤ M do

Compute gγ(xi).
if the last n/2 − �log(p−2)� bits of gγ(x) are zeros then

if (gγ(x)upper, ∗) /∈ L1 then
add (gγ(x)upper, 1) to L1.

else
Increment the counter of (gγ(x)upper, cnt) to (gγ(x)upper, cnt + 1)

if the first n/2 − �log(p−2)� bits of gγ(x) are zeros then
if (gγ(x)lower, ∗) /∈ L2 then

add (gγ(x)lower, 1) to L2.

else
Increment the counter of (gγ(x)lower, cnt) to (gγ(x)lower, cnt + 1)

//First Walsh-Hadamard Transform (WHT) phase – Finding β
for i=1,2 do

Define h̄γ,i : {0, 1}n/2+�log(p−2)� → Z≥0 = cnt (for (y′, cnt) ∈ Li).

Apply the fast WHT to h̄γ,i to find all values β̄ such that |ˆ̄hγ,i(β̄)| ≥ 2p2.
Store these values in the list L̄i.

Add to L5 all values β ∈ {0, 1}n such that βupper ∈ L̄1 and βlower ∈ L̄2.
for all 1 ≤ i ≤ n · 2n/2p−1 do

if the last n/2 − �log(p−1)� bits of xi are zeros then
Insert (xi)upper′ to L3.

if the first n/2 − �log(p−1)� bits of xi are zeros then
Insert (xi)lower′ to L4.

for all β ∈ L5 do

Define the function fβ(x) : {0, 1}n → {0, 1} by fβ(x) = (−1)β·f(x).
//Second Walsh-Hadamard Transform phase – Finding α

Define the function h̄β,3 : {0, 1}n/2+�log(p−1)� → {−1, 0, 1} by
h̄β,3(x) = fβ(x) if xupper′ ∈ L3 and h̄β,3(x) = 0 otherwise.

Define the function h̄β,4 : {0, 1}n/2+�log(p−1)� → {−1, 0, 1} by
h̄β,4(x) = fβ(x) if xlower′ ∈ L4 and h̄β,4(x) = 0 otherwise.

for i=3,4 do

Apply the fast WHT to h̄β,i to find all values ᾱ such that |ˆ̄hβ,i(ᾱ)| ≥ p.
Store these values in the list L̄i.

Output (α, β) for all α ∈ {0, 1}n such that αupper′ ∈ L̄3 and αlower′ ∈ L̄4.
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assumptions) this approximation is going to be detected with an overwhelming
probability. Furthermore, we show that the probability of a linear approximation
with bias much lower than p, e.g., p/10, to be proposed by our algorithm is
negligible.

The data contains M = n·2n/2/p2 inputs. After the first shrinking phase, the
sum of the counters in each of the lists L1, L2 is expected to be between n/2p4

and n/p4 (depending on p, due to the rounding), and with an overwhelming
probability is at least n/4p4. (The high probability comes from the multiplication
of the amount of data by a factor of n.) This size of the lists guarantees that
for any β s.t. there exists a linear approximation α → β with bias ≥ p, we have
|ˆ̄hγ,1(βupper)| ≥ 2p2 and |ˆ̄hγ,2(βlower)| ≥ 2p2 with an overwhelming probability,
and hence, β is going to be suggested at the first stage of the algorithm. On the
other hand, for any β s.t. for any α, the bias of the linear approximation α → β

is less than p/10, we have |ˆ̄hγ,1(βupper)| < 2p2 and |ˆ̄hγ,2(βlower)| < 2p2 with an
overwhelming probability, and hence, β is not going to be suggested at the first
stage of the algorithm.

At the second stage of the algorithm (which is performed for any value of
β that was suggested at the first stage), the expected size of the lists L3, L4 is
between n/2p2 and n/p2 (depending on p, due to the rounding), and with an
overwhelming probability is at least n/4p2. (The high probability comes from
the multiplication of the amount of data by a factor of n.) This size of the lists
guarantees that for any α s.t. α → β with bias ≥ p, we have |ˆ̄hβ,3(αupper′)| ≥ p

and |ˆ̄hβ,2(αlower′)| ≥ p with an overwhelming probability, and hence, α is going
to be suggested at the second stage of the algorithm. On the other hand, for
any α s.t. the bias of the linear approximation α → β is less than p/10, we have
|ˆ̄hβ,3(αupper′)| < p and |ˆ̄hβ,4(αlower′)| < p with an overwhelming probability,
and hence, α is not going to be suggested at the second stage of the algorithm.

We note that unlike the case of differential characteristics, an additional
verification step is not needed, since the Walsh-Hadamard steps filter out all
linear approximations with bias of < p/10 with an overwhelming probability. A
full analysis will be presented in the full version of the paper.

Complexity Analysis. The first shrinking step of the algorithm has complexity of
O(n2n/2p−2). As the filtering step checks the equality of n/2−�log(p−2)� output
bits to zeros, the sum of the counters in each of the lists L1, L2 is expected to be
O(np−4). The functions h̄γ,i are on n/2+�log(p−2) bits, and hence, applying the
Walsh-Hadamard transform to each of them requires about O(n22n/2p−2). As
explained above, after this step for each value β s.t. there exists a linear approxi-
mation α → β with bias ≥ p, the values βupper and βlower will be suggested with
an overwhelming probability. The suggestions for β can be reconstructed from
the suggested values of βupper and βlower efficiently, by going over the possible
values of the 2�log(p−2) common bits of βupper and βlower, finding collisions
and completing the value of β for the colliding values. Thus, the complexity of
this stage is negligible w.r.t. the complexity of the previous stages.
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The second phase of the algorithm is performed for all values of β suggested
in the first part. For each such value of β, the complexity of the shrinking phase
is O(n2n/2p−1) and the sizes of the lists L3, L4 constructed in it is expected to
be O(np−2). The functions h̄β,i are on n/2+�log(p−1) bits, and hence, applying
the Walsh-Hadamard transform to each of them requires about O(n22n/2p−1)
steps. As was explained above, after this step for each value α s.t. the bias of
the linear approximation α → β is ≥ p, the values αupper′ and αlower′ will
be suggested with an overwhelming probability. The suggestions for α can be
reconstructed from the suggested values of αupper′ and αlower′ efficiently, like in
the first phase of the algorithm.

Hence, the time complexity of the algorithm is O(n22n/2p−2 + tn22n/2p−1),
where t is the number of values of β suggested in the first phase of the algorithm.
Therefore, if the number of values of β s.t. there exists α for which the linear
approximation α → β holds with a bias of ≥ p is O(p−1) then the time complex-
ity of the algorithm is O(n22n/2p−2 = Õ(2n/2p−2) and the algorithm outputs
all linear approximations with a bias of ≥ p. If the number of such values of β
is 
 p−1, then the algorithm still outputs all of the high-bias approximations,
but its time complexity is increased, proportionally to the number of β values.

The data complexity of the algorithm is O(n2n/2p−2) and the memory com-
plexity is O(n2n/2p−2) (which is dominated by storing the data and applying
the fast Walsh-Hadamard transform in the first phase of the algorithm. We note
that the output size of the shrinking was chosen in order to balance the complex-
ities of the first shrinking and the first Walsh-Hadamard transform steps (while
the complexity of the following steps is significantly lower, unless the algorithm
suggests many values of β, as was explained above).

4 Detecting Other High-Probability Statistical Properties

Finally, we use surrogate differentiation to devise algorithms for detecting
three other types of statistical properties commonly used in cryptanalysis:
boomerangs, second-order differentials, and related-key differentials. As men-
tioned in the introduction, here we cannot hope for complexity as low as
O(2n/2), as in all three cases, the information-theoretic lower bound is at least
Ω(23n/4p−1/4). We present algorithms for all three cases with complexity of at
most O(2np−2), which improves over the previously known results by a factor
of at least 2n/2. Our algorithms allow, for the first time, to detect all high-
probability boomerangs, second-order differentials and related-key differentials
in 48-bit ciphers. The algorithms for Boomerangs, second-order differentials, and
related-key differentials can be found in the full version of the paper [16].

5 Summary and Open Problems

In this paper we presented major complexity improvements in the best known
techniques for detecting a wide variety of statistical properties of cryptographic
primitives which deviate from random behavior in a significant way. The new
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algorithms can be applied to any black-box function, and in particular they are
fast enough to be directly used to analyze 64-bit cryptosystems.

Besides the obvious question of whether our techniques can be further
improved, here are some of the problems left open by our research:

1. Can we use similar techniques to speed up the search for other cryptanalytic
properties?

2. Can we close the small gap of
√

p−1 between the upper and lower bounds on
the time needed to find the significant differentials of a function f?

3. Can surrogate differentiation could be used to solve other problems in cryp-
tography and complexity theory?
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Abstract. Impossible differential (ID), zero-correlation (ZC), and inte-
gral attacks are a family of important attacks on block ciphers. For exam-
ple, the impossible differential attack was the first cryptanalytic attack on
7 rounds of AES. Evaluating the security of block ciphers against these
attacks is very important but also challenging: Finding these attacks
usually implies a combinatorial optimization problem involving many
parameters and constraints that is very hard to solve using manual
approaches. Automated solvers, such as Constraint Programming (CP)
solvers, can help the cryptanalyst to find suitable attacks. However, pre-
vious CP-based methods focus on finding only the ID, ZC, and integral
distinguishers, often only in a limited search space. Notably, none can
be extended to a unified optimization problem for finding full attacks,
including efficient key-recovery steps.

In this paper, we present a new CP-based method to search for ID, ZC,
and integral distinguishers and extend it to a unified constraint optimiza-
tion problem for finding full ID, ZC, and integral attacks. To show the
effectiveness and usefulness of our method, we applied it to several block
ciphers, including SKINNY, CRAFT, SKINNYe-v2, and SKINNYee. For the
ISO standard block cipher SKINNY, we significantly improve all exist-
ing ID, ZC, and integral attacks. In particular, we improve the integral
attacks on SKINNY-n-3n and SKINNY-n-2n by 3 and 2 rounds, respec-
tively, obtaining the best cryptanalytic results on these variants in the
single-key setting. We improve the ZC attack on SKINNY-n-n (SKINNY-
n-2n) by 2 (resp. 1) rounds. We also improve the ID attacks on all vari-
ants of SKINNY. Particularly, we improve the time complexity of the best
previous single-tweakey (related-tweakey) ID attack on SKINNY-128-256
(resp. SKINNY-128-384) by a factor of 222.57 (resp. 215.39). On CRAFT,
we propose a 21-round (20-round) ID (resp. ZC) attack, which improves
the best previous single-tweakey attack by 2 (resp. 1) rounds. Using our
new model, we also provide several practical integral distinguishers for
reduced-round SKINNY, CRAFT, and Deoxys-BC. Our method is generic
and applicable to other strongly aligned block ciphers.
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1 Introduction

The impossible differential (ID) attack, independently introduced by Biham et
al. [5] and Knudsen [25], is one of the most important attacks on block ciphers.
For example, the ID attack is the first attack breaking 7 rounds of AES-128 [28].
The ID attack exploits an impossible differential in a block cipher, which usually
originates from slow diffusion, to retrieve the master key. The zero-correlation
(ZC) attack, first introduced by Bogdanov and Rijmen [8], is the dual method of
the ID attack in the context of linear analysis, which exploits an unbiased linear
approximation to retrieve the master key.

The integral attack is another important attack on block ciphers which was
first introduced as a theoretical generalization of differential analysis by Lai
[26] and as a practical attack by Daemen et al. [13]. The core idea of integral
attacks is finding a set of inputs such that the sum of the resulting outputs
is key-independent in some positions. At ASIACRYPT 2012, Bogdanov et al.
established a link between the (multidimensional) ZC approximation and integral
distinguishers [7]. Sun et al. at CRYPTO 2015 [41] developed further the links
among the ID, ZC, and integral attacks. Thanks to this link, we can use search
techniques for ZC distinguishers to find integral distinguishers. Ankele et al.
studied the influence of the tweakey schedule in ZC analysis of tweakable block
ciphers at ToSC 2019 [1] and showed that taking the tweakey schedule into
account can result in a longer ZC distinguisher.

The search for ID, ZC, and integral attacks on a block cipher contains two
main phases: finding a distinguisher and mounting a key recovery based on the
discovered distinguisher. One of the main techniques to find ID and ZC dis-
tinguishers is the miss-in-the-middle technique [5,7]. The idea is to find two
differences (linear masks) that propagate halfway through the cipher forward
and backward with certainty but contradict each other in the middle. However,
applying this technique requires tracing the propagation of differences (resp. lin-
ear masks) at the word- or bit-level of block ciphers, which is a time-consuming
and potentially error-prone process using a manual approach. When it comes to
the key recovery, we should extend the distinguisher at both sides and trace the
propagation of more cryptographic properties taking many critical parameters
into account. In general, finding an optimum complete ID, ZC, or integral attack
usually implies a combinatorial optimization problem which is very hard to solve
using a manual approach, especially when the block size is large and there are
many possible solutions. Therefore, developing automatic tools is important to
evaluate the security of block ciphers against these attacks, mainly, in designing
and analyzing lightweight cryptographic primitives, where a higher precision in
security analysis lets us minimize security margins.

One approach to solving the optimization problems stemming from cryptana-
lytic attacks is developing dedicated algorithms. For instance, in CRYPTO 2016,
Derbez and Fouque proposed a dedicated algorithm [14] to find DS-MITM and
ID attacks. However, developing and implementing efficient algorithms is diffi-
cult and implies a hard programming task. In addition, other researchers may
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want to adapt these algorithms to other problems with some common features
and some differences. This may, again, be very difficult and time-consuming.

Another approach is converting the cryptanalytic problem into a constraint
satisfaction problem (CSP) or a constraint optimization problem (COP) and
then solving it with off-the-shelf constraint programming (CP) solvers. Recently,
many CP-based approaches have been introduced to solve challenging symmet-
ric cryptanalysis problems, which outperform the previous manual or dedicated
methods in terms of accuracy and efficiency [20,30,37,39,46]. For example, at
EUROCRYPT 2017, Sasaki and Todo proposed a new automatic tool based on
mixed integer linear programming (MILP) solvers to find ID distinguishers [37].
Cui et al. proposed a similar approach to find ID and ZC distinguishers [12].
Sun et al. recently proposed a new CP-based method to search for ID and ZC
distinguishers at ToSC 2020 [42].

Although the automatic methods to search for ID, ZC, and integral attacks
had significant advances over the past years, they still have some basic limita-
tions:

– The CP models for finding ID/ZC distinguishers proposed in [12,37,43] rely
on the unsatisfiability of the models where the input/output difference/mask
is fixed. This is also the case in all existing CP models to search for inte-
gral distinguishers based on division property [15,44] or monomial prediction
[19,23]. However, finding an optimal key recovery attack is an optimization
problem, which is based on satisfiability. Hence, the previous CP models for
finding the ID, ZC, and integral distinguishers can not be extended to a
unified optimization model for finding a complete attack. The previous CP
models for finding ID, ZC, and integral distinguishers also require checking
each input/output property individually. As a result, it is computationally
hard to find all possible distinguishers when the block size is large enough.

– The CP model proposed in [42] employs the miss-in-the-middle technique
to find ID/ZC distinguishers. This approach does not fix the input/output
differences/masks. However, the compatibility between the two parts of the
distinguisher is checked outside of the CP model by iterating over a loop
where the activeness pattern of a state cell at the meeting point should be
fixed in each iteration.

– All previous CP models regarding ID, ZC, and integral attacks only focus
on finding the longest distinguishers. However, many other important factors
affect the final complexity of these attacks, which we can not take into account
by only modeling the distinguisher part. For example, the position and the
number of active cells in the input/output of the distinguisher, the number of
filters in verifying the desired properties at the input/output of distinguishers,
and the number of involved key bits in the key recovery are only a few critical
parameters that affect the final complexity of the attack but can be considered
only by modeling the key recovery part. We show that the best attack does
not necessarily require the longest distinguisher. Hence, it is important to
unify the key recovery and distinguishing phases for finding better ID, ZC,
and integral attacks.
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– The tool introduced by Derbez and Fouque [14] is the only tool to find full ID
attacks. However, this tool is based on a dedicated algorithm implemented in
C/C++ and is not as generic as the CP-based methods. In addition, this tool
can not take all critical parameters of ID attacks into account to minimize the
final complexity. As other limitations, this tool can not find related-(twea)key
ID attacks and is not applicable for ZC and integral attacks.

– None of the previous automatic tools takes the relationship between ZC and
integral attacks into account to find ZC distinguishers suitable for integral
key recovery. Particularly, there is no automatic tool to take the meet-in-the-
middle technique into account for ZC-based integral attacks.

Our Contributions. We propose a new generic, CP-based, and easy-to-use
automatic method to find full ID, ZC, and integral attacks, addressing the above
limitations. Unlike all previous CP models for these distinguishers, which are
based on unsatisfiability, our CP model relies on satisfiability for finding dis-
tinguishers. This way, each solution of our CP models corresponds to an ID,
ZC, or integral distinguisher. This key feature enables us to extend our distin-
guisher models to a unified model for finding an optimal key-recovery attack.
Furthermore, our unified CP model takes advantage of key-bridging and meet-
in-the-middle techniques. To show the usefulness of our method, we apply it to
SKINNY[3], CRAFT [4], SKINNYe-v2 [31], and SKINNYee [32] and significantly
improve the ZC, ID, and integral attacks on these ciphers. Table 1 summarizes
our results.

– We improve the integral attacks on SKINNY-n-2n and SKINNY-n-3n by 2 and
3 rounds, respectively. To the best of our knowledge, our integral attacks are
the best single-key attacks on these variants of SKINNY.

– We improve the ZC attacks on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1)
rounds. We also propose the first 21-round ZC attack on SKINNY-n-3n. Our
ZC attacks are the best attacks on SKINNY in a known-plaintext setting.

– On CRAFT, we provide a 21-round (20-round) single-tweakey ID (resp. ZC)
attack that is 2 (resp. 1) rounds longer than the best previous single-tweakey
attack proposed on this cipher at ASIACRYPT 2022 [40].

– We improve all previous single-tweakey ID attacks on all variants of SKINNY.
We reduce the time complexity of the ID attack on SKINNY-128-256 by a fac-
tor of 222.57. Our ID attacks are the best single-tweakey attacks on SKINNY-
128-128, and all variants of SKINNY-64. We also improved the related-tweakey
ID attack on SKINNY-n-3n.

– We provide the first third-party analysis of SKINNYee by proposing 26-round
integral and 27-round ID attacks.

– We propose several practical integral distinguishers for reduced round of
Deoxys-BC, SKINNY, CRAFT, and SKINNYe-v2/ee (see Table 3).

– Our tool identified several flaws in previous cryptanalytic results on SKINNY
(see Table 2). Our tool is efficient and can find all reported results in a few
seconds when running on a regular laptop. Its source code is publicly available
at the following link: https://github.com/hadipourh/zero

https://github.com/hadipourh/zero
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Table 1. Summary of our cryptanalytic results. ID/ZC/Int = impossible differential,
zero-correlation, integral. STK/RTK = single/related-tweakey. SK = single-key with
given keysize, CP/KP = chosen/known plaintext, CT = chosen tweak. †: attack has
minor issues.

Cipher #R Time Data Mem. Attack Setting/Model Ref.

SKINNY-64-192 21 2185.83 262.63 249 ZC STK/KP [21, G.3]

21 2180.50 262 2170 ID STK/CP [47]

21 2174.42 262.43 2168 ID STK/CP [21, F.3]

23† 2155.60 273.20 2138 Int † 180,SK/CP,CT [1]

26 2172 261 2172 Int 180,SK/CP,CT [21, H.2]

27 2189 263.53 2184 ID RTK/CP [27]

27 2183.26 263.64 2172 ID RTK/CP [21, F.4]

SKINNY-128-384 21 2372.82 2122.81 298 ZC STK/KP [21, G.3]

21 2353.60 2123 2341 ID STK/CP [47]

21 2347.35 2122.89 2336 ID STK/CP [21, F.3]

26 2344 2121 2340 Int 360,SK/CP,CT [21, H.2]

27 2378 2126.03 2368 ID RTK/CP [27]

27 2362.61 2124.99 2344 ID RTK/CP [21, F.4]

SKINNY-64-128 18 2126 262.68 264 ZC STK /KP [36]

19 2119.12 262.89 249 ZC STK/KP [21, G.2]

19 2119.80 262 2110 ID STK/CP [47]

19 2110.34 260.86 2104 ID STK/CP [21, F.2]

20† 297.50 268.40 282 Int † 120,SK/CP,CT [1]

22 2110 257.58 2108 Int 120,SK/CP,CT [21, H.1]

SKINNY-128-256 19 2240.07 2122.90 298 ZC STK/KP [21, G.2]

19 2241.80 2123 2221 ID STK/CP [47]

19 2219.23 2117.86 2208 ID STK/CP [21, F.2]

22 2216 2113.58 2216 Int 240,SK/CP,CT [21, H.1]

SKINNY-64-64 14 262 262.58 264 ZC STK/KP [36]

16 262.71 261.35 237.80 ZC STK/KP [21, G.1]

17 261.80 259.50 249.60 ID STK/CP [47]

17 259 258.79 240 ID STK/CP [21, F.1]

SKINNY-128-128 16 2122.79 2122.30 274.80 ZC STK/KP [21, G.1]

17 2120.80 2118.50 297.50 ID STK/CP [47]

17 2116.51 2116.37 280 ID STK/CP [21, F.1]

CRAFT 20 2120.43 262.89 249 ZC STK/KP [21, K.2]

21 2106.53 260.99 2100 ID STK/CP [21, K.3]

SKINNYee 26 2113 266 2108 Int SK/CP,CT [21, I.3]

27 2123.04 262.79 2108 ID RTK/CP [21, I.2]

SKINNYe-v2 30 2232 265 2228 Int 240,SK/CP,CT [21, H.3]
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Outline. We recall the background on ID and ZC attacks and review the link
between ZC and integral attacks in Sect. 2. In Sect. 3, we show how to convert the
problem of searching for ID and ZC distinguishers to a CSP problem. In Sect. 4,
we show how to extend our distinguisher models to create a unified model for
finding optimum ID attacks. We discuss the extension of our models for ZC and
integral attacks in Sect. 5, and finally conclude in Sect. 6. For detailed attack
procedures of all analyzed ciphers, we refer to the full version of our paper [21].

Table 2. Attacks with a serious flaw (invalid attacks).

Cipher Attack #R Setting/Model Ref. Flaw

SKINNY-n-n ID 18 STK/CP [45] Sect. 4.2

SKINNY-n-2n ID 20 STK/CP [45] Sect. 4.2

ZC/Int † 22 SK/CP, CT [48] Sect. 3

SKINNY-n-3n ID 22 STK/CP [45] Sect. 4.2

ZC/Int † 26 SK/CP, CT [48] Sect. 3

† [48] was published after publishing the first version of our paper.

2 Background

Here, we recall the basics of ID and ZC attacks and briefly review the link
between the ZC and integral attacks. We also introduce the notations we use in
the rest of this paper. We refer to the full version of our paper for the specification
of SKINNY and SKINNYe [21, C], CRAFT [21, K.1], and SKINNYee [21, I.1].

2.1 Impossible Differential Attack

The impossible differential attack was independently introduced by Biham et al.
[5] and Knudsen [25]. The core idea of an impossible differential attack is exploit-
ing an impossible differential in a cipher to retrieve the key by discarding all key
candidates leading to such an impossible differential. The first requirement of the
ID attack is an ID distinguisher, i.e., an input difference that can never prop-
agate to a particular output difference. Then, we extend the ID distinguisher
by some rounds backward and forward. A candidate for the key that partially
encrypts/decrypts a given pair to the impossible differential is certainly not
valid. The goal is to discard as many wrong keys as possible. Lastly, we uniquely
retrieve the key by exhaustively searching the remaining candidates.

We recall the complexity analysis of the ID attack based on [10,11]. Let E
be a block cipher with n-bit block size and k-bit key. As illustrated in Fig. 1,
assume that there is an impossible differential Δu � Δl for rd rounds of E
denoted by Ed. Suppose that Δu (Δl) propagates backward (resp. forward)
with probability 1 through E−1

b (resp. Ef) to Δb (Δf), and |Δb| (|Δf|) denotes
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Fig. 1. Main parameters of the ID attack using an rd-round impossible differential
distinguisher Δu �→ Δl. The distinguisher is extended with truncated differential prop-
agation to sets Δu → Δb over rb rounds backwards and Δl → Δf over rf rounds
forward. The inverse differentials Δb → Δu and Δf → Δl involve kb, kf key bits and
have weight cb, cf, respectively.

the dimension of vector space Δb (resp. Δf). Let cb (cf) be the number of
bit-conditions that should be satisfied for Δb → Δu (resp. Δl ← Δf), i.e.,
Pr (Δb → Δu) = 2−cb (resp. Pr (Δl ← Δf) = 2−cf). Moreover, assume that kb
(kf) denotes the key information, typically subkey bits, involved in Eb (resp.
Ef). With these assumptions we can divide the ID attacks into three steps:

– Step 1: Pair Generation. Given access to the encryption oracle (and possibly
the decryption oracle), we generate N pairs (x, y) ∈ {0, 1}2n such that x⊕y ∈
Δb and E(x)⊕E(y) ∈ Δf and store them. This is a limited birthday problem,
and according to [11] the complexity of this step is:

T0 = max
{

min
Δ∈{Δb,Δf}

{√
N2n+1−|Δ|

}
, N2n+1−|Δb|−|Δf|

}
(1)

– Step 2: Guess-and-Filter. The goal of this step is to discard all subkeys in
kb ∪ kf which are invalidated by at least one of the generated pairs. Rather
than guessing all subkeys kb ∪ kf at once and testing them with all pairs,
we can optimize this step by using the early abort technique [29]: We divide
kb ∪ kf into smaller subsets, typically the round keys, and guess them step
by step. At each step, we reduce the remaining pairs by checking if they
satisfy the conditions of the truncated differential trail through Eb and Ef.
The minimum number of partial encryptions/decryptions in this step is [10]:

T1 + T2 = N + 2|kb∪kf| N

2cb+cf
(2)

– Step 3: Exhaustive Search. The probability that a wrong key survives through
the guess-and-filter step is P =

(
1 − 2−(cb+cf)

)N
. Therefore, the number of

candidates after performing the guess-and-filter is P · 2|kb∪kf| on average. On
the other hand, the guess-and-filter step does not involve k − |kb ∪ kf| bits
of key information. As a result, to uniquely determine the key, we should
exhaustively search a space of size T3 = 2k−|kb∪kf| · P · 2|kb∪kf| = 2k · P .
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Then, the total time complexity of the ID attack is:

Ttot = (T0 + (T1 + T2) CE′ + T3) CE , (3)

where CE denotes the cost of one full encryption, and CE′ represents the ratio
of the cost for one partial encryption to the full encryption.

To keep the data complexity less than the full codebook, we require T0 < 2n.
In addition, to retrieve at least one bit of key information in the guess-and-filter
step, P < 1

2 should hold. Note that Eq. 2 is the average time complexity of
the guess-and-filter step; for each ID attack, we must evaluate its complexity
accurately to ensure we meet this bound in practice. To see the complexity
analysis of the ID attack in the related-(twea)key setting, refer to [21, A].

2.2 Multidimensional Zero-Correlation Attack

Zero-correlation attacks, firstly introduced by Bogdanov and Rijmen [8], are the
dual of the ID attack in the context of linear analysis and exploit a linear approx-
imation with zero correlation. The major limitation of the basic ZC attack is its
enormous data complexity, equal to the full codebook. To reduce the data com-
plexity of the ZC attack, Bogdanov and Wang proposed the multiple ZC attack
at FSE 2012 [9], which utilizes multiple ZC linear approximations. However, the
multiple ZC attack relies on the assumption that all involved ZC approximations
are independent, which limits its applications. To overcome this assumption of,
Bogdanov et al. introduced the multidimensional ZC attack at ASIACRYPT
2012 [7]. We briefly recall the basics of multidimensional ZC attack.

Let Ed represent the reduced-round block cipher E with a block size of
n bits. Assume that the correlation of m independent linear approximations
〈ui, x〉 + 〈wi, Ed(x)〉 and all their nonzero linear combinations are zero, where
ui, wi, x ∈ F

n
2 , for i = 0, . . . ,m − 1. We denote by l = 2m the number of ZC

linear approximations. In addition, assume we are given N input/output pairs
(x, y = Ed(x)). Then, we can construct a function from F

n
2 to F

m
2 which maps x

to z(x) = (z0, . . . , zm−1), where zi := 〈ui, x〉 + 〈wi, Ed(x)〉 for all i. The idea of
the multidimensional ZC distinguisher is that the output of this function follows
the multivariate hypergeometric distribution, whereas the m-tuples of bits drawn
at random from a uniform distribution on F

m
2 follow a multinomial distribution

[7]. For sufficiently large N , we distinguish Ed from a random permutation as
follows.

We initialize 2m counters V [z] to zero, z ∈ F
m
2 . Then, for each of the N pairs

(x, y), we compute zi = 〈ui, x〉 + 〈wi, y〉 for all i = 0, . . . , 2m − 1, and increment
V [z] where z = (z0, . . . , zm−1). Finally, we compute the following statistic:

T =
N · 2m

1 − 2−m

2m−1∑
z=0

(
V [z]
N

− 1
2m

)2

. (4)

For the pairs (x, y) derived from Ed, i.e., y = Ed(x), the statistic T follows a
χ2-distribution with mean μ0 = (l−1) 2

n−N
2n−1 and variance σ2

0 = 2(l−1)(2
n−N
2n−1 )2.
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However, it follows a χ2-distribution with mean μ1 = (l − 1) and variance σ2
1 =

2(l − 1) for a random permutation [7]. By defining a decision threshold τ =
μ0 + σ0Z1−α = μ1 − σ1Z1−β , the output of test is ‘cipher’, i.e., the pairs are
derived from Ed, if T ≤ τ . Otherwise, the output of the test is ‘random’.

This test may wrongfully classify Ed as a random permutation (type-I error)
or may wrongfully accept a random permutation as Ed (type-II error). Let the
probability of the type-I and type-II errors be α and β. Then, the number of
required pairs N to successfully distinguish Ed from a random permutation is
[7]:

N =
2n(Z1−α + Z1−β)√

l/2 − Z1−β

, (5)

where Z1−α, and Z1−β are respective quantiles of the standard normal distribu-
tion. Thus, the data complexity of the multidimensional ZC attack depends on
the number of ZC approximations, l = 2m, and the error probabilities α and β.

To mount a key recovery based on a multidimensional ZC distinguisher for
Ed, we extend Ed by a few rounds at both ends, E = Ef ◦ Ed ◦ Eb. Given N
plaintext/ciphertext pairs (p, c = E(p)), we can recover the key in two steps:

– Step 1: Guess-and-filter. We guess the value of involved key bits in Eb (Ef)
and partially encrypt (decrypt) the plaintexts (ciphertexts) to derive N pairs
(x, y) for the input x = Eb(p) and output y = E−1

f (c) of Ed. Assuming that
wrong keys yield pairs (x, y) randomly chosen from F

2n
2 , we use the statistic

T to discard all keys for which T ≤ τ .
– Step 2: Exhaustive Search. Finally, we exhaustively search the remaining key

candidates to find the correct key.

The time complexity of the guess-and-filter step depends on the number of
pairs N and the size of involved key bits in Eb and Ef. Given that typically a
subset of internal variables is involved in the partial encryptions/decryptions,
we can take advantage of the partial sum technique [16] to reduce the time
complexity of the guess-and-filter step. Moreover, by adjusting the value of α
and β, we can make a trade-off between the time and data complexities as α and
β affect the data, and β influences the time complexity of the exhaustive search.

2.3 Relation Between the Zero-Correlation and Integral Attacks

Bogdanov et al. [7] showed that an integral distinguisher1 always implies a ZC
distinguisher, but its converse is true only if the input and output linear masks
of the ZC distinguisher are independent. Later, Sun et al. [41] proposed the
following theorem that the conditions for deriving an integral distinguisher from
a ZC linear hull in [7] can be removed.

Theorem 1 (Sun et al. [41]). Let F : F
n
2 → F

n
2 be a vectorial Boolean func-

tion. Assume A is a subspace of F
n
2 and β ∈ F

n
2 \ {0} such that (α, β) is a ZC

1 Under the definition that integral property is a balanced vectorial Boolean function.
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approximation for any α ∈ A. Then, for any λ ∈ F
n
2 , 〈β, F (x + λ)〉 is balanced

over the set
A⊥ = {x ∈ F

n
2 | ∀ α ∈ A : 〈α, x〉 = 0}.

According to Theorem 1, the data complexity of the resulting integral distin-
guisher is 2n−m, where n is the block size and m is the dimension of the linear
space spanned by the input linear masks in the corresponding ZC linear hull.

At ToSC 2019, Ankele et al. [1] considered the effect of the tweakey on ZC
distinguishers of tweakable block ciphers (TBCs). They showed that taking the
tweakey schedule into account can lead to a longer ZC distinguisher and thus
a longer integral distinguisher. They proposed Theorem 2, which provides an
algorithm to find ZC linear hulls for TBCs following the super-position tweakey
(STK) construction of the tweakey framework [24] (see Fig. 2).

Theorem 2 (Ankele et al. [1]). Let EK(T, P ) : F
t×n
2 → F

n
2 be a TBC follow-

ing the STK construction. Assume that the tweakey schedule of EK has z parallel
paths and applies a permutation h on the tweakey cells in each path. Let (Γ0, Γr)
be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents a pos-
sible sequence for the intermediate linear masks. If there is a cell position i such
that any possible sequence Γ0[i], Γ1[h−1(i)], Γ2[h−2(i)], . . . Γr[h−r(i)] has at most
z linearly active cells, then (Γ0, Γr) yields a ZC linear hull for r rounds of E.

Fig. 2. The STK construction of the tweakey framework.

Ankele et al. used Theorem 2 to manually find ZC linear hulls for several
twekable block ciphers including SKINNY, QARMA [2], and MANTIS[3]. Later,
Hadipour et al. [22] proposed a bitwise automatic method based on SAT to search
for ZC linear hulls of tweakable block ciphers. This automatic method was then
reused by Niu et al. [34] to revisit the ZC linear hulls of SKINNY-64-{128,192}.

2.4 Constraint Satisfaction and Constraint Optimization Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. More formally,
a CSP is a triple (X ,D, C), where X = {X0,X1, . . . , Xn−1} is a set of variables;
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D = {D0,D1, . . . ,Dn−1} is the set of domains such that Xi ∈ Di, 0 ≤ i ≤ n − 1;
and C = {C0, C1, . . . , Cn−1} is a set of constraints. Each constraint Cj ∈ C is a
tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1} ⊆ X and Rj is a relation on the
corresponding domains, i.e., Rj ⊆ Di0 × · · · × Dik−1 .

Any value assignment of the variables satisfying all constraints of a CSP
problem is a feasible solution. The constraint optimization problem extends the
CSP problem by including an objective function to be minimized (or maximized).
Searching for the solution of a CSP or COP problem is referred to as constraint
programming (CP), and the solvers performing the search are called CP solvers.

In this paper, we use MiniZinc [33] to model and solve the CSP and COP
problems over integer and real numbers. MiniZinc allows modeling the CSP and
COP problems in a high-level and solver-independent way. It compiles the model
into FlatZinc, a standard language supported by a wide range of CP solvers.
For CSP/COP problems over integer numbers, we use Or-Tools [35], and for
CSP/COP problems over real numbers, we employ Gurobi [17] as the solver.

2.5 Encoding Deterministic Truncated Trails

Here, we recall the method proposed in [42] to encode deterministic truncated
differential trails. Thanks to the duality relation between differential and linear
analysis, one can adjust this method for deterministic truncated linear trails;
thus, we omit the details for the linear trails. We define two types of variables
to encode the deterministic truncated differential trails. Assume that ΔX =
(ΔX[0], . . . ,ΔX[m − 1]) represents the difference of the internal state X in an
n-bit block cipher E, where n = m · c, and ΔX[i] ∈ F

c
2 for all i = 0, . . . ,m − 1.

We use an integer variable AX[i] to encode the activeness pattern of ΔX[i] and
another integer variable DX[i] to encode the actual c-bit difference value of ΔX[i]:

AX[i] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ΔX[i] = 0

1 ΔX[i] is nonzero and fixed

2 ΔX[i] can be any nonzero value

3 ΔX[i] can take any value

DX[i] ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} AX[i] = 0

{1, . . . , 2c−1} AX[i] = 1

{−1} AX[i] = 2

{−2} AX[i] = 3

Then, we link AX[i] and DX[i] for all i = 0, . . . , m − 1 as follows:

Link(AX[i], DX[i]) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if AX[i] = 0 then DX[i] = 0

elseif AX[i] = 1 then DX[i] > 0

elseif AX[i] = 2 then DX[i] = −1

else DX[i] = −2 endif

MiniZinc supports conditional expression ‘if-then-else-endif ’, so we do not need
to convert to integer inequalities. Next, we briefly explain the propagation rules of
deterministic truncated differential trails.

Proposition 1 (Branching). For F : F
c
2 → F

2c
2 , F (X) = (Y, Z) where Z = Y = X,

the valid transitions for deterministic truncated differential trails satisfy

Branch(AX, DX, AY, DY, AZ, DZ) := (AZ = AX ∧ DZ = DX ∧ AY = AX ∧ DY = DX)
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Proposition 2 (XOR). For F : F
2c
2 → F

c
2, F (X, Y ) = Z where Z = X ⊕ Y , the

valid transitions for deterministic truncated differential trails satisfy

XOR(AX, DX, AY, DY, AZ, DZ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if AX + AY > 2 then AZ = 3 ∧ DZ = −2

elseif AX + AY = 1 then AZ = 1 ∧ DZ = DX + DY

elseif AX = AY = 0 then AZ = 0 ∧ DZ = 0

elseif DX + DY < 0 then AZ = 2 ∧ DZ = −1

elseif DX = DY then AZ = 0 ∧ DZ = 0

else AZ = 1 ∧ DZ = DX ⊕ DY endif

Proposition 3 (S-box). Assume that S : F
c
2 → F

c
2 is a c-bit S-box and Y = S(X).

The valid transitions for deterministic truncated differential trails satisfy

S-box(AX, AY) :=(AY �= 1 ∧ AX + AY ∈ {0, 3, 4, 6} ∧ AY ≥ AX ∧ AY − AX ≤ 1)

For encoding the MDS matrices, see [21, B]. To encode non-MDS matrices, such as
the matrix employed in SKINNY, as described in [21, D], we can use the rules of XOR
and branching to encode the propagation.

3 Modeling the Distinguishers

Although the key recovery of ZC and ID attacks are different, the construction of
ZC and ID distinguishers relies on the same approach, which is the miss-in-the-middle
technique [5,6]. The idea is to find two differences (linear masks) that propagate halfway
through the cipher forward and backward with certainty but contradict each other in
the middle. The incompatibility between these propagations results in an impossible
differential (resp. unbiased linear hull).

Suppose we are looking for an ID or ZC distinguisher for Ed, which represents rd
rounds of a block cipher E. Moreover, we assume that the block size of E is n bits,
where n = m · c with c being the cell size and m being the number of cells. We convert
the miss-in-the-middle technique to a CSP problem to automatically find ID and ZC
distinguishers. We first divide Ed into two parts, as illustrated in Fig. 3: An upper part
Eu covering ru rounds and a lower part El of rl rounds. Hereafter, we refer to the trails
discovered for Eu (El) as the upper (lower) trail. We denote the internal state of Eu

(El) after r rounds by XUr (XLr). The state XUru (or XL0) at the intersection of Eu

and El is called the meeting point.
Let AXUr and AXLr denote the activeness pattern of the state variables XUr

and XLr, as shown in Fig. 3. Let DXUr and DXLr denote the actual difference val-
ues in round r of Eu and El. We encode the deterministic truncated differen-
tial trail propagation through Eu and El in opposite directions as two indepen-
dent CSP problems using the rules described in Sect. 2.5. We exclude trivial solu-
tions by adding the constraints

∑m−1
i=0 AXU0[i] �= 0 and

∑m−1
i=0 AXLrl �= 0. Let

CSPu(AXU0, DXU0, . . . , AXUru , DXUru) be the model for propagation of deterministic trun-
cated trails over Eu and CSPl(AXL0, DXL0, . . . , AXLrl , DXLrl) for E−1

l .
The last internal state in Eu and the first internal state of El overlap at the meet-

ing point as they correspond to the same internals state. We define some additional
constraints to ensure the incompatibility between the deterministic differential trails
of Eu and El at the position of the meeting point:
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Fig. 3. Modeling the miss-in-the-middle technique as a CSP problem

CSPM (AXUrl , DXUrl , AXL0, DXL0) :=

m−1∨

i=0

⎛

⎜
⎝

(AXUru [i] + AXL0[i] > 0) ∧
(AXUru [i] + AXL0[i] < 3) ∧
AXUru [i] �= AXL0[i]

⎞

⎟
⎠ ∨

m−1∨

i=0

⎛

⎜
⎝

AXUru [i] = 1 ∧
AXL0[i] = 1 ∧
DXUru [i] �= DXL0[i]

⎞

⎟
⎠ = True

(6)

The constraints included in CSPM guarantee the incompatibility between the upper
and lower deterministic trails in at least one cell at the meeting point. Lastly, we define
CSPd := CSPu ∧ CSPl ∧ CSPM , which is the union of all three CSPs. As a result, any
feasible solution of CSPd corresponds to an impossible differential. We can follow the
same approach to find ZC distinguishers.

Although we encode the deterministic truncated trails in the same way as [42],
our method to search for distinguishers has some important differences. Sun et al. [42]
solves CSPu and CSPl separately through a loop where the activeness pattern of a cell at
the meeting point is fixed in each iteration. The main advantage of our model is that
any solutions of CSPd corresponds to an ID (or ZC) distinguisher. In addition, we do
not constrain the value of our model at the input/output or at meeting point. These
key feature enables us to extend our model for the key recovery and build a unified
COP for finding the nearly optimum ID and ZC attacks in the next sections.

We showed how to encode and detect the contradiction in the meeting point. How-
ever, the contradiction may occur in other positions, such as in the tweakey schedule
(see Theorem 2), leading to longer distinguishers. Next, we show how to generalize
this approach to detect the contradiction in the tweakey schedule while searching for
ZC-integral distinguishers according to Theorem 2.

Consider a block cipher E that follows the STK construction with z parallel inde-
pendent paths in the tweakey schedule. Assume that E applies the permutation h to
shuffle the position of cells in each path of tweakey schedule. Let STKr[i] be the ith
cell of subtweakey after r rounds. For all i = 0, . . . , m−1, we define the integer variable
ASTKr[i] ∈ {0, 1, 2, 3}, to indicate the activeness pattern of STKr[i]. Then we define the
following constraints to ensure that there is a contradiction in the tweakey schedule
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and the condition of Theorem 2 holds:

CSPTK(ASTK0, . . . , ASTKrd−1) :=

m−1∨

i=0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

rd−1∑

r=0

bool2int
(
ASTKr[h

−r(i)] �= 0
) ≤ z

∧
rd−1∨

r=0

(
ASTKr[h

−r(i)] = 1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∨
(

rd−1∧

r=0

ASTKr[h
−r(i)] = 0

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(7)

Equation 7 guarantees that at least one path of the tweakey schedule has at most
z active cells, or it is totally inactive. Finally, we create the CSP problem CSPd :=
CSPu ∧ CSPl ∧ CSPTK to find ZC distinguishers of tweakable block ciphers taking the
tweakey schedule into account. According to Eq. 7, if the sequence of linear masks in the
involved tweakey lane has z non-zero values, i.e., {1, 2}, then at least one of the taken
non-zero values should be 1. We also practically verified on reduced-round examples
that this condition is indeed necessary to obtain valid ZC-integral distinguishers. This
essential condition is ignored in [48]; unfortunately, their claimed distinguishers (and
hence their attacks) are invalid. We contacted the authors of [48], and they confirmed
our claim.

In our model for distinguisher, we assume that the round keys are independent.
Thus, our method regards even those differential or linear propagations over multiple
rounds that cannot occur due to the global dependency between the round keys as
possible propagations. We also consider the S-box as a black box and do not exploit its
internal structure. As a result, regardless of the (twea)key schedule and the choice of
S-box, the ID/ZC/Integral distinguishers discovered by our method are always valid.

Before extending our models for key recovery, we first show some of the interesting
features of our new model for distinguishers. We can optimize the desired property by
adding an objective function to our CSP models for finding distinguishers. According
to Theorem 1, maximizing the number of active cells at the input of the ZC linear
hull is equivalent to minimizing the data complexity of the corresponding integral dis-
tinguisher. Therefore, we maximize the integer addition of the activeness pattern at
the input of the ZC-Integral distinguisher. Thanks to this feature, we discovered many
practical integral distinguishers for reduced-round Deoxys-BC, SKINNY, SKINNYe-v2,
SKINNYee, and CRAFT. Table 3 briefly describes the specification of our integral dis-
tinguishers for five ciphers. We note that finding integral distinguishers with minimum
data complexity is a challenging task using division property [15,44] or monomial pre-
diction [19,23], especially when the block cipher employs large S-boxes. However, our
tool can find integral distinguishers with low data complexity by only one iteration
that takes a few seconds on a regular laptop. For a more detailed comparison between
our method and monomial prediction or division property, see [21, M].

4 Modeling the Key Recovery for Impossible Differentials

In this section, we present a generic framework which receives four integer numbers
(rb, ru, rl, rf) specifying the lengths of each part in Fig. 1, and outputs an optimized
full ID attack for r = rb + ru + rl + rf rounds of the targeted block cipher. To this
end, we extend the CSP model for ID distinguishers in Sect. 3 to make a unified COP
model for finding an optimized full ID attack taking all critical parameters affecting
the final complexity into account.
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Table 3. Summary of integral distinguishers for some ciphers, cell size c ∈ {4, 8}.

Cipher #Rounds Data complexity Ref

SKINNY-n-n 10/11/12 25·c/28·c/213·c [21, J]

SKINNY-n-2n 12/13/14 26·c/29·c/214·c [21, J]

SKINNY-n-3n 14/15/16 27·c/210·c/215·c [21, J]

SKINNYe-v2/SKINNYee 16/17/18 232/244/264 [21, J]

CRAFT 12/13/14/15 228/244/256/264 [21, K.4]

Deoxys-BC-256 5/6 224/256 [21, L]

Deoxys-BC-384 6/7 232/264 [21, L]

Before discussing our framework, we first reformulate the complexity analysis of
the ID attack to make it compatible with our COP model. Suppose that the block size
is n bits and the key size is k bits. Let N be the number of pairs generated in the
pair generation phase, and P represents the probability that a wrong key survives the
guess-and-filter step. According to Sect. 2.1, P = (1−2−(cb+cf))N . Let g be the number
of key bits we can retrieve through the guess-and-filter step, i.e., P = 2−g. Since P < 1

2
,

we have 1 < g ≤ |kb ∪ kf|. Assuming that (1 − 2−(cb+cf))N ≈ e−N·2−(cb+cf)
, we have

N = 2cb+cf+log2(g)−0.53. Moreover, suppose that LG(g) = log2(g) − 0.53. Therefore, we
can reformulate the complexity analysis of the ID attack as follows:

T0 = max

⎧
⎨

⎩

min
Δ∈{Δb,Δf}

{2
cb+cf+n+1−|Δ|+LG(g)

2 },

2cb+cf+n+1−|Δb|−|Δf|+LG(g)

⎫
⎬

⎭
, T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2) CE′ + T3) CE , Ttot < 2k,

Mtot = min
{
2cb+cf+LG(g), 2|kb∪kf|}, Mtot < 2k.

(8)

When searching for an optimal full ID attack, we aim to minimize the total time
complexity while keeping the memory and data complexities under the threshold values.
As can be seen in Eq. 8, cb, cf, |Δb|, |Δf|, and |kb∪kf|, are the critical parameters which
directly affect the final complexity of the ID attack. To determine (cb, |Δb|), we need to
model the propagation of truncated differential trails through Eb, taking the probability
of all differential cancellations into account. To determine kb, we need to detect the
state cells whose difference or data values are needed through the partial encryption
over Eb. The same applies for partial decryption over E−1

f to determine cf, |Δf|, kf.
Moreover, to determine the actual size of kb∪kf, we should take the (twea)key schedule
and key-bridging technique into account.

4.1 Overview of the COP Model

Our model includes several components:

– Model the distinguisher as in Sect. 3. Unlike the previous methods, our model
imposes no constraints on the input/output of the distinguisher.
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– Model the difference propagation in outer parts for truncated trails Δb
E−1

b←−−−
Δu and Δl

Ef−−→ Δf with probability one. Unlike our model for the distinguisher part,
where we use integer variables with domain {0, . . . , 3}, here, we only use binary vari-
ables to encode active/inactive cells. We also model the number of filters cb and cf

using new binary variables and constraints to encode the probability of Δb
Eb−−→ Δu

and Δl
E−1

f←−−− Δf.
– Model the guess-and-determine in outer parts. In this component, we model

the determination relationships over Eb and Ef to detect the state cells whose
difference or data values must be known for verifying the differences Δu, and Δl.
Moreover, we model the relation between round (twea)keys and the internal state to
detect the (twea)key cells whose values should be guessed during the determination
of data values over Eb, and Ef.

– Model the key bridging. In this component, we model the (twea)key schedule
to determine the number of involved sub-(twea)keys in the key recovery. For this,
we can use the general CP-based model for key-bridging proposed by Hadipour
and Eichlseder in [18], or cipher-dedicated models.

– Model the complexity formulas. In this component, we model the complexity
formulas in Eq. 8 with the following constraints:

D[0] :=minΔ∈{Δb,Δf}{ 1
2
(cb + cf + n + 1 − |Δ| + LG(g))},

D[1] :=cb + cf + n + 1 − |Δb| − |Δf| + LG(g),

T[0] :=max {D[0], D[1]} , T[0] < n,

T[1] :=cb + cf + LG(g), T[2] := |kb ∪ kf| + LG(g), T[3] :=k − g,

T :=max{T[0], T[1], T[2], T[3]}, T < k.

(9)

Lastly, we set the objective function to Minimize T.

All variables in our model are binary or integer variables with a limited domain
except for D and T[i] for i ∈ {0, 1, 2, 3} in Eq. 9, which are real numbers. MiniZinc
and many MILP solvers such as Gurobi support max, and min operators. We also
precompute the values of LG(g) with 3 floating point precision for all g ∈ {2, . . . , k},
and use the table feature of MiniZinc to model LG(g). As a result, our COP model
considers all the critical parameters of the ID attacks. We recall that the only inputs
of our tool are four integer numbers to specify the lengths of Eb, Eu, El, and Ef. So,
one can try different lengths for these four parts to find a nearly optimal attack. We
can also modify the objective function of our model to minimize the data or memory
complexities where time or any other parameter is constrained. One can extend this
single-tweakey model for the related-tweakey setting, as we will show next.

4.2 Detailed Model for SKINNY

Next, we show in more detail how to perform each step. To this end, we build the COP
model for finding full related-tweakey ID attacks on SKINNY as an example. We choose
the largest variant of SKINNY, i.e., SKINNY-n-3n with cell size c ∈ {4, 8} to explain
our model (see [21, C] for the cipher specification). In what follows, given four integer
numbers rb, ru, rl, rf, we model the full ID attack on r = rb + ru + rl + rf rounds of
SKINNY, where rd = ru + rl is the length of the distinguisher and rb, and rf are the
lengths of extended parts in backward and forward directions, respectively.
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Model the Distinguisher. We first model the difference propagation through the
tweakey schedule of SKINNY. For the tweakey schedule of SKINNY, we can either use
the word-wise model proposed in [3] or a bit-wise model (see Algorithm 1). Here, we
explain the bit-wise model. The tweakey path of TK1 only shuffles the position of
tweakey cells in each round. Thus, for tweakey path TK1, we only define the integer
variable DTK1[i] to encode the c-bit difference in the ith cell of TK1. For tweakey path
TKm, where m ∈ {2, 3}, we define the integer variables DTKmr[i] to encode the c-bit
difference value in the ith cell of TKmr, where 0 ≤ i ≤ 15. We also define the integer
variables ASTKr[i] and DSTKr[i] to encode the activeness pattern as well as the c-bit
difference value in the ith cell of STKr. Our CSP model for the tweakey schedule
of SKINNY is a bit-wise model. We use the table feature of MiniZinc to encode the
LFSRs. To this end, we first precompute the LFSR as a lookup table and then constrain
the variables at the input/output of LFSR to satisfy the precomputed lookup table.
This approach is applicable for encoding any function that can be represented as an
integer lookup table, such as DDT/LAT of S-boxes. We tested word-wise and bit-wise
models and found the word-wise model more efficient.

Algorithm 1: CSP model for the tweakey schedule of SKINNY

Input: Four integer numbers (rb, ru, rl, rf)
Output: CSPDTK

1 R ← rb + ru + rl + rf − 1;
2 Declare an empty CSP model M;
3 M.var ← {DTK1[i] ∈ {0, . . . , 2c − 1} : 0 ≤ i ≤ 15};
4 M.var ← {DTK2r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
5 M.var ← {DTK3r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
6 M.var ← {ASTKr[i] ∈ {0, 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
7 M.var ← {DSTKr[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
8 for r = 0, . . . , R; i = 0, . . . , 7 do
9 M.con ← Link(ASTKr[i], DSTKr[i]);

10 for r = 1, . . . , R; i = 0, . . . 15 do
11 if i ≤ 7 then
12 M.con ← table([DTK2r−1[h(i)], DTK2r[i]], lfsr2);
13 M.con ← table([DTK3r−1[h(i)], DTK3r[i]], lfsr3);

14 else
15 M.con ← DTK2r[i] = DTK2r−1[h(i)];
16 M.con ← DTK3r[i] = DTK3r−1[h(i)];

17 for r = 0, . . . , R; i = 0, . . . 7 do
18 M.con ← DSTKr[i] = DTK1[hr(i)] ⊕ DTK2r[i] ⊕ DTK3r[i];

19 return M;

In the data path of SKINNY, SubCells, AddRoundTweakey, and MixColumns can
change the activeness pattern of the state while propagating the deterministic differ-
ences. Thus, for the internal state before and after these basic operations, we define
two types of variables to encode the activeness pattern and difference value in each
state cell. Next, as described in Algorithm 2 and [21, algorithm 6], we build CSPu
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and CSPl. We also build the CSPM according to Eq. 6. The combined CSP model is
CSPd := CSPu ∧CSPl ∧CSPM ∧CSPDTK . Hence, any feasible solution of CSPd corresponds
to a related-tweakey ID distinguisher for SKINNY-n-3n. By setting DTK30 in Algorithm
1 to zero, we can find related-tweakey ID distinguishers for SKINNY-n-2n. We can also
set DTK1, DTK20, DTK30 in Algorithm 1 to zero to find single-tweakey ID distinguishers
of SKINNY.

Algorithm 2: CSPu for upper trail in distinguisher of SKINNY

Input: CSPDTK .var and the integer numbers rb, ru
Output: CSPu

1 roff ← rb;
2 Declare an empty CSP model M;
3 M.var ← CSPDTK .var;
4 M.var ← {AXUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
5 M.var ← {DXUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
6 M.var ← {AYUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
7 M.var ← {DYUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
8 M.var ← {AZUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
9 M.var ← {DZUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};

10 M.con ← ∑15
i=0 AXU0[i] +

∑15
i=0 DTK1[i] +

∑15
i=0 DTK20 +

∑15
i=0 DTK30[i] ≥ 1;

11 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
12 M.con ←Link(AXUr[i],DXUr[i]) ∧ Link(AYUr[i],DYUr[i]) ∧ Link(AZUr[i],DZUr[i]);

13 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
14 M.con ← S-box(AXUr[i], AYUr[i]);

15 for r = 0, . . . , ru − 1, i = 0, . . . , 7 do
16 M.con ← XOR(AXUr[i], DXUr[i], ASTKroff+r[i], DSTKroff+r[i], AZUr[i], DZUr[i]);
17 M.con ← (AZUr[i + 8] = AYUr[i + 8]) ∧ (DZUr[i + 8] = DYUr[i + 8]);

18 for r = 0, . . . , ru − 1, i = 0, . . . , 3 do
19 I1 ← [AZUr[P [i]], AZUr[P [i + 4]], AZUr[P [i + 8]], AZUr[P [i + 12]]];
20 I2 ← [DZUr[P [i]], DZUr[P [i + 4]], DZUr[P [i + 8]], DZUr[P [i + 12]]];
21 O1 ← [AXUr+1[i], AXUr+1[i + 4], AXUr+1[i + 8], AXUr+1[i + 12]];
22 O2 ← [DXUr+1[i], DXUr+1[i + 4], DXUr+1[i + 8], DXUr+1[i + 12]];
23 M.con ← Mdiff (I1, I2, O1, O2);

24 return M;

The first operation in the round function of SKINNY is SubCells. However, we
can consider the first SubCells layer as a part of Eb and start the distinguisher
after it. This way, our model takes advantage of the differential cancellation over the
AddRoundTweakey and MixColumns layers to derive longer distinguishers. It happens if
the input differences in the internal state (or tweakey paths) are fixed and can cancel
out each other through AddRoundTweakey or MixColumns. In this case, we skip the
constraints in line 14 of Algorithm 2 for the first round, r = 0.

Model the Difference Propagation in Outer Parts. To model the deter-

ministic difference propagations Δb
E−1

b←−−− Δu, and Δl
Ef−−→ Δf, we define a binary
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variable for each state cell to indicate whether its difference value is zero. Since the
SubCells layer does not change the status of state cells in terms of having zero/nonzero
differences, we ignore it in this model.

To model the probability of difference propagations Δb
Eb−−→ Δu, and Δl

E−1
f←−−− Δf,

note that there are two types of probabilistic transitions. The first type is differential
cancellation through an XOR operation. The second type is any differential transi-

tion (truncated
S−→ fixed) for S-boxes; this is only considered at the distinguisher’s

boundary, at the first S-box layer of Ef or the last of Eb.
Let Z = X ⊕ Y , where X, Y, Z ∈ F

c
2. Let AX, AY, AZ ∈ {0, 1} indicate whether the

difference of X, Y, Z are zero. We define the new constraint XOR1 to model the difference
propagation with probability one through XOR:

XOR1(AX, AY, AZ) := (AZ ≥ AX) ∧ (AZ ≥ AY) ∧ (AZ ≤ AX + AY) (10)

We define a binary variable CBr[i] (CFr[i]) for each XOR operation in the rth round
of Eb (resp. Ef) to indicate whether there is a difference cancellation over the corre-
sponding XOR, where 0 ≤ i ≤ 19. We also define the following constraint to encode
the differential cancellation for each XOR operation:

XORp(AX, AY, AZ, CB) := if (AX + AY = 2 ∧ AZ = 0) then CB = 1 else CB = 0 (11)

Algorithm 3 and [21, algorithm 7] describe our model for difference propagation over
Eb and Ef. We combine CSP

dp
b and CSP

dp
f into CSPDP := CSP

dp
b ∧ CSP

dp
f to model the

difference propagation through the outer parts.

Model the Guess-and-Determine in Outer Parts. We now detect the state
cells whose difference or value is needed for the filters in Δb → Δu and Δl ← Δf.

We first discuss detecting the state cells whose difference values are needed. The
difference value in a state cell is needed if the corresponding state cell contributes to a
filter, i.e., a differential cancellation. We know that AddRoundTweakey and MixColumns
are the only places where a differential cancellation may occur. We thus define the
binary variables KDXBr[i] and KDZBr[i] to indicate whether the difference value of Xr[i]
and Zr[i] over Eb should be known. We recall that the difference cancellation through
each XOR over Eb is already encoded by CBr[i]. If CBr[i] = 1, then the difference value
in the state cells contributing to this differential cancellation is needed. For instance,
if CBr[i] = 1, then KDZBr[P [i + 4]] = 1 and KDZBr[P [i + 4]] = 1, where 0 ≤ i ≤ 3 and
0 ≤ r ≤ ru −1. Besides detecting the new state cells whose difference values are needed
in each round, we encode the propagation of this property from the previous rounds,
as in lines 14–17 of Algorithm 4. We also define new constraint (line 11) to link the
beginning of Eu to the end of Eb. For Ef, we also define new binary variables KDXFr[i]
and KDZFr[i] to indicate whether the difference values of Xr[i] and Zr[i] are needed.
Then, we follow a similar approach to model the determination of difference values.

When modeling the determination of data values, SubCells comes into effect. We
explain modeling the determination of data values over S-boxes in Eb; a similar model
can be used for Ef. Suppose that Yr[i] = S(Xr[i]), and the value of ΔXr is known. If
we want to determine the value of ΔYr[i], e.g., to check a filter, we need to know the
value of Xr[i]. Accordingly, we need the value of Xr[i] if either we want to determine
Yr[i], or we want to determine ΔYr[i]. On the other hand, if neither data nor difference
values after the S-box is needed, we do not need to know the data value before the
S-box. Therefore, we define binary variables KXBr[i] and KYBr[i] to indicate whether the
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Algorithm 3: CSPdp
b difference propagation through Eb for SKINNY

Input: CSPDTK .var, CSPu.var and the integer number rb
Output: CSPdp

b

1 Declare an empty CSP model M;
2 M.var ← CSPDTK .var;
3 M.var ← {AXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var ← {AZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var ← {CBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 19};
6 for i = 0, . . . , 15 do
7 M.con ← if AXU0[i] ≥ 1 then AXBrb [i] = 1 else AXBrb [i] = 0;

8 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

9 M.con ← Minvdiff1

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

AXBr+1[i]
AXBr+1[i + 4]
AXBr+1[i + 8]
AXBr+1[i + 12]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

AZBr[P [i]]
AZBr[P [i + 4]]
AZBr[P [i + 8]]
AZBr[P [i + 12]]

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠;

10 M.con ← XORp(AZBr[P [i + 4]], AZBr[P [i + 8]], AXBr+1[i + 8], CBr[i]);
11 M.con ← XORp(AZBr[P [i]], AZBr[P [i + 8]], AXBr+1[i + 12], CBr[i + 4]);
12 M.con ← XORp(AXBr+1[i + 12], AZBr[P [i + 12]], AXBr+1[i], CBr[i + 8]);

13 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
14 M.con ← XOR1(AZBr[i], ASTKr[i], AXBr[i]);
15 M.con ← XORp(AXBr[i], ASTKr[i], AZBr[i], CBr[i + 12]);
16 M.con ← (AXBr[i + 8] = AZBr[i + 8]);

17 return M;

values of Xr[i] and Yr[i] are needed. Then, we model the determination flow over the
S-boxes as follows:

S-boxgd(KXBr[i], KYBr[i], KDXBr[i]) :=

{
(KYBr[i] ≥ KXBr[i]) ∧ (KYBr[i] ≥ KDXBr[i])∧
(KYBr[i] ≤ KXBr[i] + KDXBr[i])

We also model MixColumns according to [21, Equation 16] when encoding the determi-
nation of data values over Eb and Ef.

We now explain how to detect the subtweakey cells that are involved in the deter-
mination of data values. Let IKBr[i] be a binary variable that indicates whether the
ith cell of subtweakey in the rth round of Eb is involved, where 0 ≤ r ≤ rb − 1 and
0 ≤ i ≤ 15. One can see that IKBr[i] = 1 if and only if i ≤ 7 and KYBr[i] = 1. Otherwise
IKBr[i] = 0. We define binary variables IKFr[i] to encode the involved subtweakey in
Ef similarly. Algorithm 4 and [21, algorithm 8] describe our CSP models for the guess-
and-determine through Eb and Ef. We refer to CSPGD := CSP

gd
b ∧ CSP

gd
f as our CSP

model for the guess-and-determine through the outer parts.

Model the Key Bridging. Although the subtweakeys involved in Eb and Ef are
separated by rd rounds, they may have some relations due to the tweakey schedule.
Guessing the values of some involved key cells may determine the value of others.
Key-bridging uses the relations between subwteakeys to reduce the number of actual
guessed key variables. We can integrate the generic CSP model for key-bridging over
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Algorithm 4: CSPgd
b guess-and-determine through Eb for SKINNY

Input: CSPu.var, CSP
dp
b and the integer number rb

Output: CSPgd
b

1 Declare an empty CSP model M;

2 M.var ← CSPu.var ∪ CSP
dp
b .var;

3 M.var ← {KDXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.con ← {KDXBr[i] ≤ AXBr[i] : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
5 M.var ← {KDZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
6 M.con ← {KDZBr[i] ≤ AZBr[i] : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
7 M.var ← {KXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
8 M.var ← {KYBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
9 M.var ← {IKBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};

10 for i = 0, . . . , 15 do
11 M.con ← if AXU0[i] = 1 then KDXBrb [i] = 1 else KDXBrb [i] = 0;
12 M.con ← if AYU0[i] = 1 then KXBrb [i] = 1 else KXBrb [i] = 0;

13 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

14 M.con ← if KDXBr+1[i] = 1 then

⎛

⎜
⎝

KDZBr[P [i]] = AZBr[P [i]]∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]∧
KDZBr[P [i + 12]] = AZBr[P [i + 12]]

⎞

⎟
⎠;

15 M.con ← if KDXBr+1[i + 4] = 1 then KDZBr[P [i]] = AZBr[P [i]];

16 M.con ← if KDXBr+1[i + 8] = 1 then

(
KDZBr[P [i + 4]] = AZBr[P [i + 4]]∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]

)

;

17 M.con ← if KDXBr+1[i + 12] = 1 then

(
KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]]

)

;

18 M.con ← if CBr[i] = 1 then (KDZBr[P [i + 4]] = 1 ∧ KDZBr[P [i + 8]] = 1);
19 M.con ← if CBr[i + 4] = 1 then (KDZBr[P [i]] = 1 ∧ KDZBr[P [i + 8]] = 1);

20 M.con ← if CBr[i + 8] = 1 then

⎛

⎜
⎝

KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i + 8]] = AZBr[P [i + 8]] ∧
KDZBr[P [i + 12]] = 1

⎞

⎟
⎠;

21 M.con ← Minvdata

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

KXBr+1[i]
KXBr+1[i + 4]
KXBr+1[i + 8]
KXBr+1[i + 12]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

KYBr[P [i]]
KYBr[P [i + 4]]
KYBr[P [i + 8]]
KYBr[P [i + 12]]

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠;

22 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
23 M.con ← KDXBr[i] ≥ KDZBr[i];
24 M.con ← KDXBr[i + 8] = KDZBr[i + 8];
25 M.con ← if CBr[i + 12] = 1 then KDXBr[i] = 1;
26 M.con ← (IKBr[i] = KYBr[i] ∧ IKBr[i + 8] = 0);

27 for r = 0, . . . , rb − 1, i = 0, . . . , 15 do
28 M.con ← S-boxgd(KYBr[i], KXBr[i], KDXBr[i]);

29 return M;
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arbitrary tweakey schedules introduced in [18] into our model. However, the tweakey
schedule of SKINNY is linear, and we provide a more straightforward method to model
the key-bridging of SKINNY. We explain our model for SKINNY-n-3n; it can easily be
adapted for the smaller variants.

For the ith cell of subtweakey after r rounds, we have STKr[i] = TK1[hr(i)] ⊕
LFSRr

2(TK1[hr(i)]) ⊕ LFSRr
3(TK3[hr(i)]). Accordingly, knowing STKr[h

−r(i)] in
3 rounds yields 3 independent equations in variables TK1[i],TK2[i],TK3[i], which
uniquely determine the master tweakey cells TK1[i],TK2[i], and TK3[i]. Hence, we
do not need to guess STKr[h

−r(i)] for more than 3 different rs. To take this fact into
account, we first define new integer variables IK ∈ {0, . . . , rb + rf − 1}, KE ∈ {0, 1, 2, 3},
and KS ∈ {0, . . . , 48}. Then, assuming that roff = rb + ru + rl and z = 3, we use the
following constraints to model the key-bridging:

CSPKB :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

IK[i] =

rb−1∑

r=0

IKBr[h
−r(i)] +

rf−1∑

r=0

IKFr[h
−(roff+r)(i)] for 0 ≤ i ≤ 15,

if IK[i] ≥ z then KE[i] = z else KE[i] = IK[i] for 0 ≤ i ≤ 15,

KS =
15∑

i=0

KE[i]

(12)

Model the Complexity Formulas. We now show how to combine all CSP models
and model the complexity formulas. The variable KS in Eq. 12 determines the number
of involved key cells, corresponding to |kb ∪ kf| = c · KS involved key bits for cell size c.
We can model the other critical parameters of the ID attack as shown in Algorithm 5.
We combine all CSP problems into a unified model and define an objective function to
minimize the time complexity of the ID attack.

Results. We applied our method to find full ID attacks on all variants of SKINNY in
both single and related-tweakey settings. Our model includes integer and real variables,
so we used Gurobi to solve the resulting COP problems. Table 1 shows our results. Our
ID attacks’ time, date, and memory complexity are much smaller than the best previous
ID attacks. Notably, the time complexity of our 19-round single-tweakey ID attack on
SKINNY-128-256 ([21, Figure 8], details in [21, F.2]) is smaller by a factor of 222.57

compared to the best previous one [47]. As another example, we improved the time
complexity of the related-tweakey ID attack on SKINNY-128-384 by a factor of 215.39

[21, Figure 10], with smaller data and memory complexity than the best previous one
[27]. Our tool can discover the longest ID distinguishers for SKINNY so far in both
single and related-tweakey settings. However, we noticed that the best ID attacks do
not necessarily rely on the longest distinguishers. For instance, our single-tweakey ID
attacks on SKINNY use 11-round distinguishers, whereas our tool also finds 12-round
distinguishers.

We also applied our tool to CRAFT and SKINNYee. On CRAFT, we found a 21-
round ID attack which is 2 rounds longer than the best previous single-tweakey attack
presented at ASIACRYPT 2022 [40]. For SKINNYee, we found a 27-round related-
tweakey ID attack. Our tool can produce all the reported results on a laptop in a few
seconds. Besides improving the security evaluation against ID attacks, our tool can
significantly reduce human effort and error.
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We also used our tool to check the validity of the previous results. To do so, we
fix the activeness pattern in our model to that at the input/output of the claimed
distinguisher. Moreover, we constrain the time, memory, and data complexities to the
claimed bounds. An infeasible model indicates potential issues with the claimed attack.
We manually check the attack to find the possible issue in this case. If the model is
feasible, we match the claimed critical parameters with the output of our tool. In case
of any mismatch, we manually check the corresponding parameter in the claimed attack
to ensure it is calculated correctly.

We followed this approach to check the validity of the ID attacks on SKINNY
proposed in [45]. For example, our tool returns ‘unsatisfiable’ when we limit it to find
a 22-round ID attack on SKINNY-n-3n with the claimed parameters in [45]. To figure
out the issue, we relax the time/memory/data complexity bounds and only fix the
activeness pattern according to the claimed distinguisher. This way, our tool returns
different attack parameters compared to the claimed ones. According to [45, Sec. 6],
cb + cf is supposed to be 18c for 22-round ID attack on SKINNY-n-3n with cell size c.
However, our tool returns cb = 6c and cf = 15c, and thus cb + cf = 21c. Accordingly,

Algorithm 5: COP model for the full ID attack on SKINNY

Input: Four integer numbers rb, ru, rl, rf
Output: COP

1 Declare an empty COP model M;
2 M ← CSPd ∧ CSPDP ∧ CSPGD ∧ CSPKB;
3 M.var ← g ∈ {1, . . . , z · 16 · c} ; /* Corresponding to parameter g */

4 M.var ← Cb ∈ {0, . . . , 20 · rb + 16} ; /* Corresponding to cb */

5 M.var ← Cf ∈ {0, . . . , 20 · rf + 16} ; /* Corresponding to cf */

6 M.var ← Wb ∈ {0, . . . , 16} ; /* Corresponding to |Δb| */

7 M.var ← Wf ∈ {0, . . . , 16} ; /* Corresponding to |Δf| */

8 M.var ← {D[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For data complexity */

9 M.var ← {T[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For time complexity */

10 M.var ← Tmax ∈ [0, z · 16 · c];
11 M.var ← Cb =

∑rb−1
r=1

∑19
i=0 CBr[i] +

∑15
i=0 KXBrb [i];

12 M.var ← Cf =
∑rf−2

r=0

∑19
i=0 CFr[i] +

∑7
i=0 CFrf−1[i] +

∑15
i=0 KXF0[i];

13 M.var ← Wb =
∑15

i=0 AXB1[i];

14 M.var ← Wf =
∑15

i=0 AXFrf−1[i];
15 M.con ← D[0] = 0.5 · (c(Cb + Cf) + n − c · Wb + LG(g) + 2);
16 M.con ← D[1] = 0.5 · (c(Cb + Cf) + n − c · Wf + LG(g) + 2);
17 M.con ← D[2] = min(D[0], D[1]);
18 M.con ← D[3] = c · (Cb + Cf) + n + 1 − c · (Wb + Wf) + LG(g);
19 M.con ← T[0] = max(D[2], D[3]);
20 M.con ← T[1] = c · (Cb + Cf) + LG(g);
21 M.con ← T[2] = c · KS ; /* Corresponding to |kb ∪ kf| */

22 M.con ← T[3] = k − g;
23 M.con ← g ≤ T [2];
24 M.con ← Tmax = max(T [0], T [1], T [2], T [3]);
25 M.con ← (T[0] < n ∧ Tmax < k);
26 M.obj ← Minimize Tmax;
27 return M;
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Fig. 4. ID attack on 19 rounds of SKINNY [n-2n], |kb ∪kf| = 26 ·c, cb = 6 ·c, cf = 15 ·c,
Δb = 7 · c, Δf = 16 · c

the actual probability that a wrong tweakey is discarded with one pair is about 2−21c.
So, the 22-round ID attack on SKINNY-n-3n in [45] requires more data and thus time
by a factor of 23c. The time complexity of the 22-round ID attack on SKINNY-64-
192 (SKINNY-128-384) in [45] is 2183.97 (resp. 2373.48). As a result, the corrected attack
requires more time than the exhaustive search. We also checked the 20-round ID attacks
on SKINNY-n-2n in [45]. We noticed that a similar issue makes the corrected attack
require more data than the full codebook or more time than the exhaustive search. We
contacted the authors of [45], and they confirmed our claim.
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5 Modeling the Key Recovery of ZC and Integral Attacks

Similar to our approach for ID attacks, we can extend our models for the ZC and
integral distinguishers to make a unified model for finding full ZC and ZC-based integral
attacks. One of the critical parameters in the key recovery of ZC and integral attacks is
the number of involved key cells in the outer parts. Another effective parameter is the
number of involved state cells through the outer parts. Thus, we should consider these
parameters when modeling the key recovery of the ZC and integral attacks. Moreover,
the meet-in-the-middle and partial-sum techniques are essential to reduce the time
complexity of integral attacks. Therefore, taking these techniques into account, we
provide a generic CP model for key recovery of ZC and ZC-based integral attacks as
follows:

– Model the distinguisher as described in Sect. 3.
– Model the guess-and-determine part by modeling the value paths in the outer

part and detecting the state/key cells whose values are needed in key recovery.
– Model the key bridging for the key recovery.
– Model the meet-in-the-middle technique for the key recovery of integral

attacks.
– Set the objective function to minimize the final time complexity, keeping the

data and memory complexities under the thresholds.

We only describe modeling the meet-in-the-middle technique. Other modules can be
constructed similarly to our models for ID attacks. Given that there is no restriction for
the output of ZC-integral distinguishers in our model, some ZC-integral distinguishers
might have more than one balanced output cell. With more than one balanced cell, we
might be able to use the meet-in-the-middle (MitM) technique [38] to reduce the time
complexity. For example, we can use MitM if the ZC-integral distinguisher of SKINNY
has two active output cells in one column, indicating that the sum of these cells is
balanced. Then, we can recover the integral sums of these two cells for any keyguess
separately and merge compatible key guesses that yield the same sum, i.e., that sum
to zero overall.

To consider the MitM technique, we model the path values for each output cell
of the distinguisher separately in an independent CP submodel. We also define a new
integer variable to capture the number of involved key cells in each path. For example,
our CP model for integral attacks on SKINNY splits into 16 submodels for the appended
rounds after the distinguisher. Each submodel aims at encoding the involved cells in
retrieving a certain output cell of the distinguisher. We note that these submodels,
together with our CP model for distinguisher, are all combined into one large unified
CP model. This way, we can encode and then minimize the complexity of the most
critical path, which requires the maximum number of guessed keys in the guess-and-
filter step. Similarly to our CP model for ID attacks, our model for ZC and integral
attack receives only four integer numbers as input and returns the full ZC or ZC-based
integral attack.

We solve our CP models for integral attacks in two steps with two different objective
functions:

– We first solve a CP model to minimize the number of involved key cells.
– Next, we limit the number of involved key cells to the output of the previous step

and solve the CP model with the objective of maximizing the number of active
cells at the input of ZC-integral distinguisher.
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As a result, besides reducing the time complexity, we can reduce the data complexity
of the resulting integral attacks. To compute the exact final complexity, we introduce
an additional helper tool, AutoPSy, which automates the partial-sum technique [16],
and apply it as a post-processing step to the CP output. AutoPSy optimizes the column
order in each round of partial-sum key recovery.

We applied our unified framework for finding full ZC and integral attacks to CRAFT,
SKINNYe-v2, SKINNYee, and all variants of SKINNY and obtained a series of substan-
tially improved results. Table 1 briefly describes our results. More details on our ZC
and integral attacks can be found in [21, G, H, I.3]. As can be seen in [21, Figures 14,
15, 19], the inputs of the corresponding ZC distinguishers have 4 active cells, and the
outputs have 2 active cells. The previous tools which fix the input/output linear masks
to vectors with at most one active cell can not find such a distinguisher.

Our CP models for ZC and integral attacks include only integer variables. Thus,
we can take advantage of all integer programming (IP) solvers. We used Or-Tools in
this application, and running on a regular laptop, our tool can find all the reported
results in a few seconds.

When reproducing the best previous results on SKINNY with our automatic tool,
we again noticed some issues in previous works. The previous ZC-integral attacks on
SKINNY proposed by Ankele et al. at ToSC 2019 [1] have some minor issues where the
propagation in the key recovery part is incorrect. For example, in the 20-round TK2
attack in [1, Figure 20] between X18, Y18, the last row is not shifted; in the 23-round
TK3 attack in [1, Figure 22], the mixing between Y20, Z20 is not correct. In both cases,
this impacts the correctness of all following rounds. However, the attacks can be fixed
to obtain similar complexities as claimed.

The comparison with those attacks highlights three advantages of our automated
approach: (1) Our approach is much less prone to such small hard-to-spot errors; (2)
Our approach can find distinguishers with many active input cells (rather than just
one as classical approaches), which is particularly helpful in ZC-integral attacks where
a higher input weight implies a lower data complexity; (3) Our approach optimizes
the key recovery together with the distinguisher, which together with (2) allows us to
attach more key-recovery rounds (7 vs. 5 for TK2 in [1], 9 vs. 7 for TK3 in [1]).

6 Conclusion and Future Works

In this paper, we presented a unified CP model to find full ID, ZC, and ZC-based
integral attacks for the first time. Our frameworks are generic and can be applied to
word-oriented block ciphers. To show the effectiveness and usefulness of our approach,
we applied it to CRAFT, SKINNYe-v2, SKINNYee, and all members of the SKINNY
family of block ciphers. In all cases, we obtained a series of substantially improved
results compared to the best previous ID, ZC, and integral attacks on these ciphers.
Our tool can help the cryptanalysts and the designers of block ciphers to evaluate the
security of block ciphers against three important attacks, i.e., ID, ZC, and ZC-based
integral attacks, more accurately and efficiently. While we focused on the application
to SPN block ciphers, it is also applicable to Feistel ciphers. Applying our approach to
other block ciphers such as AES or Feistel ciphers is an interesting direction for future
work.

Our improved results show the advantage of our method. However, it also has some
limitations. Our CP model for the distinguisher part detects the contradictions in the
level of words and does not exploit the internal structure of S-boxes (i.e., DDT/LAT)
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to consider bit-level contradictions. Thus, one interesting future work is to provide a
unified model considering bit-level contradictions. We note that our CP framework for
ID, ZC, and integral attacks is modular. The key-recovery part of our CP model can
be combined with other CP-based methods for finding distinguishers. For example,
regardless of the distinguisher part, one can feed our CP model for the key-recovery
part by a set of input/output activeness patterns for the distinguisher part to find
the activeness pattern yielding the best key-recovery attack. Next, one can use a more
fine-grained CP model that detects bit-level contradictions to check if the selected
activeness pattern yields an ID or ZC distinguisher. We recall that in CP models,
we can specify a set of input/output activeness patterns by a set of constraints, and
we do not have to enumerate all possible input/output activeness patterns. Currently,
our tool automatically applies the partial-sum technique as a post-processing step in
integral attacks for a refined complexity analysis. Thus, another interesting future work
is integrating the partial-sum technique into our CP model for integral attacks. This
way, one may be able to improve the integral attacks further.
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Abstract. The Meet-in-the-Middle (MitM) attack has been widely
applied to preimage attacks on Merkle-Damg̊ard (MD) hashing. In this
paper, we introduce a generic framework of the MitM attack on sponge-
based hashing. We find certain bit conditions can significantly reduce the
diffusion of the unknown bits and lead to longer MitM characteristics.
To find good or optimal configurations of MitM attacks, e.g., the bit
conditions, the neutral sets, and the matching points, we introduce the
bit-level MILP-based automatic tools on Keccak, Ascon and Xoodyak. To
reduce the scale of bit-level models and make them solvable in reason-
able time, a series of properties of the targeted hashing are considered
in the modelling, such as the linear structure and CP-kernel for Keccak,
the Boolean expression of Sbox for Ascon. Finally, we give an improved
4-round preimage attack on Keccak-512/SHA3, and break a nearly 10
years’ cryptanalysis record. We also give the first preimage attacks on
3-/4-round Ascon-XOF and 3-round Xoodyak-XOF.
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1 Introduction

The Meet-in-the-Middle (MitM) attack proposed by Diffie and Hellman in 1977
[22] is a generic technique for cryptanalysis of symmetric-key primitives. The
essence of the MitM attack is actually an efficient way to exhaustively search a
space for the right candidate based on the birthday attack, i.e., dividing the
whole space into two independent subsets (also known as neutral sets) and
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then finding matches from the two subsets. Suppose EK(·) to be a block cipher
whose size is n-bit such that C = EK(P ) = FK2(FK1(P )), where K = K1‖K2

has n bits, and K1 and K2 are independent key materials of n/2 bits. For a
given plaintext-ciphertext pair (P,C), a naive exhaust search attack needs a
time complexity 2n to find the key. However, the birthday-paradox based MitM
attack computes independently FK1(P ) and F−1

K2
(C) with independent guesses

of K1 and K2, and searches collision between FK1(P ) and F−1
K2

(C) to find the
K with a time complexity about 2n/2. In the past decades, the MitM attack
has been widely applied to the cryptanalysis on block ciphers [12,30,40,50] and
hash functions [2,34,59]. In the meantime, various techniques have been intro-
duced to improve the framework of MitM attack, such as internal state guessing
[30], splice-and-cut [2], initial structure [59], bicliques [11], 3-subset MitM [12],
indirect-partial matching [2,59], sieve-in-the-middle [15], match-box [32], dissec-
tion [24], differential-aided MitM [14,31,41], nonlinear constrained neutral words
[28], etc. Till now, the MitM attack and its variants have broken MD4 [34,44],
MD5 [59], KeeLoq [39], HAVAL [4,60], GOST [40], GEA-1/2 [1,7], etc.

At CRYPTO 2011 and 2016, several ad-hoc automatic tools [13,19] were pro-
posed for MitM attacks. At IWSEC 2018, Sasaki [57] introduced MILP-based
MitM attacks on GIFT block cipher. At EUROCRYPT 2021, Bao et al. [5] intro-
duced the MILP-based automatic search framework for MitM preimage attacks
on AES-like hashing, whose compression function is built from AES-like block
cipher or permutations. At CRYPTO 2021, Dong et al. [28] further extended
Bao et al.’s model into key-recovery and collision attacks. At CRYPTO 2022,
Schrottenloher and Stevens [61] simplified the language of the automatic model
and applied it in both classic and quantum settings. Bao et al. [6] considered the
MitM attack in a view of the superposition states.

When applying to hash functions, most of the MitM attacks targeted on
Merkle-Damg̊ard [17,51] domain extender, whose compression function is usu-
ally built from a block cipher and PGV hashing modes [54], such as Davies-Meyer
(DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP). The goal of
the MitM attack is to find a sequence of internal states which satisfy a closed
computational path: there is a relation between the value before the first round
and the value after the last round in previous applications of MitM attacks. For
example, when attacking block-cipher based hashing modes (DM, MMO, MP,
etc.), the closed computation path is computed across the first and last rounds
via the feed-forward mechanism of the hashing modes. While when attacking
block ciphers, the closed computation path is linked via an encryption/decryp-
tion oracle. As shown in Fig. 1, one starts by separating the path in two chunks
(splice-and-cut): the backward chunk and the forward chunk depending on dif-
ferent neutral sets. Both chunks form independent computation paths. One then
finds a partial match between them at certain round.

When considering the new hashing mode, i.e., sponge-based hashing, there
is no feed-forward mechanism anymore, e.g. Keccak. We have to try novel ways
to build the so-called closed computational path for MitM attack. Most preim-
age attacks on sponge-based hashing focus on the analysis on Keccak/SHA-3
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Fig. 1. The closed computation path of the MitM attack

with linearization technique. At ASIACRYPT 2016, Guo et al. [35] introduced
the linear structure technique to linearise several rounds of Keccak and derived
upto 4-round preimage attacks. Later, Guo et al.’s attacks were improved by the
cross-linear structure [46] at ToSC 2017 and allocating approach [45] at EURO-
CRYPT 2019. Further improvements in this line were proposed in [37,47,48,56].
At EUROCRYPT 2021, Dinur [23] gave the preimage attacks on Keccak by
solving multivariate equation systems. Additionally, theoretical preimage attacks
marginally better than exhaustive attacks were studied in [8,52].

At INDOCRYPT 2011, an MitM attack on 2-round Keccak is given by Naya-
Plasencia et al. [53]. However, their MitM attack is different from what we are
considering. In [53], after computing the inverse of one round Keccak from the
target, partial internal states are known. Then, Naya-Plasencia et al. divide the
message block into many independent parts and compute forward independently
for each part until the known internal states, and filter the messages. Naya-
Plasencia et al.’s attack is more like a divide-and-conquer and the birthday
attack is not used.

Our Contributions
We apply the birthday-paradox based MitM attack1, which has been widely
used to attack Merkle-Damg̊ard [17,51] hashing with PGV modes as well as
block ciphers, to the sponge-based hash functions. Additionally, by applying bit
conditions, the diffusion of the two neutral sets can be controlled and reduced,
and therefore lead to longer MitM characteristics. Finally, we propose a generic
MitM framework with conditions for sponge-based hash functions.

To apply our framework to Keccak, Ascon-XOF and Xoodyak-XOF, we have to
search sound configurations for MitM attack, including the choice of the two neu-
tral sets, the bit conditions, the matching points etc. As Keccak, Ascon are bit-
level hashing, we introduce the bit-level MILP-based automatic tools to detect
those configurations. Different from the previous byte-level MitM MILP models
[5,28,61], the bit-level modelling usually leads to huge scale MILP models and
makes it hard to solve in reasonable time. Therefore, we explore detailed prop-
erties of dedicated ciphers to reduce the models. For Keccak, we apply the linear
structures in starting states and CP-kernel properties in matching phase. For
Ascon, the Boolean expressions of the Sbox are explored in the starting states

1 The Demirci-Selçuk MitM attacks [10,18,20,21,29] are not considered in this paper,
which is a quite different technique.
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and matching points. In previous modellings [5,28], cells depending on both two
neutral sets are always regarded as useless and unknown in the MitM attack. The
unknown cells can significantly reduce the number of known cells when propa-
gating (somewhat like polluting), since any known cells will become unknown
by operating with the unknown cells. Inspired by the indirect-partial matching
technique [2,59], the cells depending on the additions of the two neutral sets
are also useful and should not be regarded as unknown in the automatic search-
ing models. Therefore, we introduce new constraints for those kinds of cells and
reduce the polluting speed of the unknown cells.

At last, we derive a better 4-round preimage attack on Keccak/SHA3-512
than Morawiecki et al.’s rotational cryptanalysis [52] at FSE 2013, that breaks
their nearly 10 years’ record. While previous preimage attack on Keccak-512
with linear structure techniques [35] (including improvements with various tech-
niques [36,48,56]) only reaches 3 rounds. For Ascon-XOF, the first 3-round and
4-round preimage attacks are given. For Xoodyak-XOF, the first 3-round preimage
attack is given. A summary of the related results are given in Table 1.

Table 1. A Summary of the Attacks. Lin. Stru.: Linear Structure. MitM: MitM Attack.
Diff.: Differential. †: this attack ignores the padding bits.

Target Attacks Methods Rounds Time Memory Ref.

Keccak-512 Preimage Lin.Stru. 2 2384 - [35]

Lin.Stru. 2 2321 - [56]

Lin.Stru. 2 2270 - [48]

Lin.Stru. 2 2252 - [36]

Lin.Stru. 3 2482 - [35]

Lin.Stru. 3 2475 - [56]

Lin.Stru. 3 2452 - [48]

Lin.Stru. 3 2426 - [36]

Rotational 4 2506 - [52]

MitM 4 2504.58 2108 Sect. 4.3

Collision Diff. 2 Practical - [53]

Diff. 3 Practical - [25]

Xoodyak-XOF Preimage Neural 1 - - [49]

MitM 3 2125.06 297 Sect. 5.2

Ascon-XOF Preimage Cube-like 2 2103 - [27]

MitM 3 2120.58 239 Full Ver. [55]

MitM 4 2124.67 254 Sect. 6.2

Algebraic† 6 2127.3 - [27]

Collision Diff. 2 2103 - [33]
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Comparison to Schrottenloher and Stevens’s MitM attack. At CRYPTO
2022, Schrottenloher and Stevens [61] introduced preimage attacks on
SPHINCS+-Haraka [3], which is sponge-based hashing with permutation Haraka
[43]. Their MitM attack computes from the two ends, i.e., the known inner
part and the target, to the middle matching part. Combining with the guess-
and-determine technique, they derived a 3.5-round (out of 5 rounds) quantum
preimage attack on SPHINCS+-Haraka. As stated in [61, Section 3.1], their frame-
works do not lead to interesting results on Ascon [27]. The reason may be that
for Keccak or Ascon the inverse of one round is not as easy as Haraka. Our
framework mainly uses the forward computation, and leads to novel results on
both Keccak and Ascon.

2 Preliminaries

In the section, we give some brief descriptions of the Meet-in-the-Middle attack,
the sponge-based hash function, the Keccak-f permutation, Ascon-Hash and
Ascon-XOF, Xoodyak and Xoodoo permutation.

2.1 The Meet-in-the-Middle Attack

Since the pioneering works on preimage attacks on Merkle-Damg̊ard hashing, e.g.
MD4, MD5, and HAVAL [2,34,44,59], techniques such as splice-and-cut [2], initial
structure [59] and indirect-partial matching have been invented to significantly
improve the MitM approach. As shown in Fig. 1, in the MitM attack, the com-
pression function is divided at certain intermediate rounds (initial structure)
into two chunks. One chunk is computed forward (named as forward chunk),
and the other is computed backward (named as backward chunk). One of them
is computed across the first and last rounds via the feed-forward mechanism
of the hashing mode, and they end at a common intermediate round (partial
matching point) and form a closed computation path of the MitM attack. In
each of the chunks, the computation involves at least one distinct message word
(or a few bits of it), such that they can be computed over all possible values of
the involved message word(s) independently from the message word(s) involved
in the other chunk (the distinct words are called neutral words). In the initial
structure, the two chunks overlapped and the neutral words for both chunks
appear simultaneously, but still, the computations of the two chunks on the neu-
tral words are independent. The highlevel framework is in Fig. 1, which can be
divided into three configurations:

1. The chunk separation – the positions of initial structure and matching points.
2. The neutral sets – the selection on the two neutral sets (denoted as or

sets), which determines the degree of freedom (DoF) for each chunk.
3. The matching – the deterministic relation used for matching, which deter-

mines the filtering ability (degree of matching, DoM).

After setting up the configurations, the basic attack procedure goes as follows.
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1. Choose constants for the initial structure.
2. For all 2d1 values of neutral set, compute backward from the initial structure

to the matching points to generate a table L1, whose indices are the values
for matching, and the elements are the values of neutral set.

3. Similarly, build L2 for 2d2 values of neutral set with forward computation.
4. Check whether there is an m-bit match on indices between L1 and L2.
5. For the pairs surviving the partial match, check for a full-state match. Steps

1–5 will be repeated until we find a full match.

The attack complexity. Denote the size of the target by h, and the number of
bits for the match by m. An MitM episode is performed with time 2max(d1,d2) +
2d1+d2−m and the total time complexity of the attack is:

2h−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) � 2h−min(d1,d2,m). (1)

To illustrate how the MitM attack works, we detail the 7-round attack on AES-
hashing of Sasaki [58] in the Supplementary Material A in our full version
paper [55] as an example.

2.2 The Sponge-Based Hash Function

The sponge construction [9] shown in Fig. 2 takes a variable-length message as
input and produces a digest of any desired length. The b-bit internal state is
composed of an outer part of r bits and an inner part of c bits, where r is the
rate and c is the capacity. To evaluate the sponge function, one proceeds in three
phases with an inner permutation f :

1. Initialization: Initialize the b-bit state with the given value (all 0’s for
Keccak) before proceeding the message blocks.

2. Absorbing: The message is padded and split into blocks of r bits. Absorb
each r-bit block Mi by XORing into the internal state.

3. Squeezing: Produce the digest.

We named the hash functions with sponge construction as the sponge-based hash
functions, e.g. Keccak [9], Ascon [27], Xoodyak [16], to name a few.

Fig. 2. The sponge construction Fig. 3. The Keccak state
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2.3 The Keccak-f Permutations

The Keccak hash function family [9] specifies 7 Keccak permutations, denoted
Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of the per-
mutation. In this paper, we focus on Keccak-f [1600], where the state A is
arranged as 5 × 5 64-bit lanes as depicted in Fig. 3. Let A

(r)
{x,y,z} denote the

bit located at the x-th column, y-th row and z-th lane in the round r (r ≥ 0),
where 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63. For Keccak in the rest of this paper, all
the coordinates are considered modulo 5 for x and y and modulo 64 for z. The
function Keccak-f [1600] consists of 24 rounds which consists of five operations
ι ◦ χ ◦ π ◦ ρ ◦ θ. Denote the internal states of round r as

A(r) θ−→ θ(r)
ρ−→ ρ(r)

π−→ π(r) χ−→ χ(r) ι−→ A(r+1).

Operations in each round are:

θ : θ
(r)

{x,y,z} = A
(r)

{x,y,z} ⊕
∑4

y′=0
(A

(r)

{x−1,y′,z} ⊕ A
(r)

{x+1,y′,z−1}),

ρ : ρ
(r)

{x,y,z} = θ
(r)

{x,y,z−γ[x,y]},

π : π
(r)

{y,2x+3y,z} = ρ
(r)

{x,y,z},

χ : χ
(r)

{x,y,z} = π
(r)

{x,y,z} ⊕ (π
(r)

{x+1,y,z} ⊕ 1) · π
(r)

{x+2,y,z},

ι : A(r+1) = χ(r) ⊕ RCr,

(2)

where γ[x, y]’s are constants given in the Supplementary Material B in our full
version paper [55], RCr is round-dependent constant.

The Keccak and SHA3 Hash Function. The Keccak hash function follows the
sponge construction. For Keccak[r, c, d], the capacity is c, the bitrate is r and the
diversifier is d. NIST standardized four SHA3-l versions (l ∈ 224, 256, 384, 512),
where c = 2l and r = 1600 − 2l. The only difference of Keccak and SHA3 is the
padding rule. The padding rule for Keccak is padding the message with ‘10∗1’,
which is a single bit 1 followed by the minimum number of 0 bits followed by a
single bit 1, to make the whole length to a multiple of (1600 − 2l). For SHA3,
the message is padded with ‘0110∗1’. However, the padding rule does not affect
the final time complexity of our attack.

2.4 Ascon-Hash and Ascon-XOF

The Ascon family [27] includes the hash functions Ascon-Hash and Ascon-Hasha
as well as the extendable output functions Ascon-XOF and Ascon-XOFa with
sponge-based modes of operations.
Ascon Permutation. The inner permutation applies 12 round functions to a
320-bit state. The state A is split into five 64-bit words, and denote A

(r)
{x,y}

to be the x-th (column) bit of the y-th (row) 64-bit word, where 0 ≤ y ≤ 4,
0 ≤ x ≤ 63. The round function consists of three operations pC , pS and pL.
Denote the internal states of round r as A(r) pS◦pC−−−−→ S(r) pL−−→ A(r+1).
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– Addition of Constants pC : A
(r)
{∗,2} = A

(r)
{∗,2} ⊕ RCr.

– Substitution Layer pS : For each x, this step updates the columns A
(r)
{x,∗}

using the 5-bit Sbox. Assume the S-box maps (a0, a1, a2, a3, a4) ∈ F
5
2 to

(b0, b1, b2, b3, b4) ∈ F
5
2, where a0 is the most significant bit. The algebraic

normal form (ANF) of the Sbox is as follows:

b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0,

b1 = a4 + a3a2 + a3a1 + a3 + a2a1 + a2 + a1 + a0,

b2 = a4a3 + a4 + a2 + a1 + 1,

b3 = a4a0 + a4 + a3a0 + a3 + a2 + a1 + a0,

b4 = a4a1 + a4 + a3 + a1a0 + a1.

(3)

– Linear Diffusion Layer pL:

A
(r+1)

{∗,0} ← S
(r)

{∗,0} ⊕ (S
(r)

{∗,0} ≫ 19) ⊕ (S
(r)

{∗,0} ≫ 28),

A
(r+1)

{∗,1} ← S
(r)

{∗,1} ⊕ (S
(r)

{∗,1} ≫ 61) ⊕ (S
(r)

{∗,1} ≫ 39),

A
(r+1)

{∗,2} ← S
(r)

{∗,2} ⊕ (S
(r)

{∗,2} ≫ 1) ⊕ (S
(r)

{∗,2} ≫ 6),

A
(r+1)

{∗,3} ← S
(r)

{∗,3} ⊕ (S
(r)

{∗,3} ≫ 10) ⊕ (S
(r)

{∗,3} ≫ 17),

A
(r+1)

{∗,4} ← S
(r)

{∗,4} ⊕ (S
(r)

{∗,4} ≫ 7) ⊕ (S
(r)

{∗,4} ≫ 41).

Ascon -Hash and Ascon-XOF. The state A is composed of the outer part with 64
bits A{∗,0} and the inner part 256 bits A{∗,i} (i = 1, 2, 3, 4). For Ascon-Hash, the
output size is 256 bits, and the security claim is 2128. For Ascon-XOF, the output
can have arbitrary length and the security claim against preimage attack is
min(2128, 2l), where l is the output length. In this paper, we target on Ascon-XOF
with a 128-bit hash value and a 128-bit security claim against preimage attack.

2.5 Xoodyak and Xoodoo Permutation

Fig. 4. Toy version of the Xoodoo state. The order in y is opposite to Keccak

Internally, Xoodyak makes use of the Xoodoo permutation [16], whose state
(shown in Fig. 4) bit denoted by A

(r)
{x,y,z} is located at the x-th column, y-th

row and z-th lane in the round r, where 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 31. For
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Xoodoo, all the coordinates are considered modulo 4 for x, modulo 3 for y and
modulo 32 for z. The permutation consists of the iteration of a round function
R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. The number of rounds is a parameter, which is 12 in
Xoodyak. Denote the internal states of the round r as

A(r) θ−→ θ(r)
ρwest−−−→ ρ(r)

ι−→ ι(r)
χ−→ χ(r) ρeast−−−→ A(r+1).

θ : θ
(r)

{x,y,z} = A
(r)

{x,y,z} ⊕
∑2

y′=0
(A

(r)

{x−1,y′,z−5} ⊕ A
(r)

{x−1,y′,z−14}),

ρwest : ρ
(r)

{x,0,z} = θ
(r)

{x,0,z}, ρ
(r)

{x,1,z} = θ
(r)

{x−1,1,z}, ρ
(r)

{x,2,z} = θ
(r)

{x,2,z−11},

ι : ι
(r)

{0,0,z} = ρ
(r)

{0,0,z} ⊕ RCr, where RCr is round-dependent constant,

χ : χ
(r)

{x,y,z} = ι
(r)

{x,y,z} ⊕ (ι
(r)

{x,y+1,z} ⊕ 1) · ι
(r)

{x,y+2,z},

ρeast : A
(r+1)

{x,0,z} = χ
(r)

{x,0,z}, A
(r+1)

{x,1,z} = χ
(r)

{x,1,z−1}, A
(r+1)

{x,2,z} = χ
(r)

{x−2,2,z−8}.

(4)

Xoodyak can serve as a XOF, i.e. Xoodyak-XOF, which offers arbitrary output
length l. The preimage resistance is min(2128, 2l). We target on Xoodyak-XOF
with output of 128-bit hash value and 128-bit absorbed message block.

3 Meet-in-the-Middle Attack on Sponge-Based Hashing

Fig. 5. Differences in MitM attack on PGV and sponge hash functions (Color figure
online)

The essence of the Meet-in-the-Middle attack is actually an efficient way to
exhaustively search a space for the right one based on the birthday attack. Taken
the MitM attack on DM construction (Fig. 5(a)) as an example, suppose the size
of the internal state is n, the size of the output is h (n ≥ h). In the perspective of
exhaust search attack, one chooses a random internal state to verify if it leads to
the given h-bit target. After searching a space of 2h internal states, one will find
the preimage. In the MitM attacks, as shown in Fig. 5(a), the attacker starts from
the internal state in the middle, which is divided into two independent forward
and backward chunks (marked in red and blue, respectively). One computes the
two chunks independently until the matching point to filter the wrong internal
states. The details are given in Sect. 2.1.

When considering the sponge-based hashing, if we start from some similar
internal states in the middle (as shown in Fig. 5(b)) to search preimage with
the given target, the internal state has to satisfy not only the target in forward
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computation, but also the c-bit inner part in backward computation. In other
words, we have to search a space with 2(h+c) internal states to meet the target
and the inner part. Taking the complexity of exhaustive search (i.e., 2h) into
consideration, it may be not a good idea to search a (h + c)-bit space even with
MitM. For sponge-based hashing, we do not follow the conventional start-from-
the-middle way to drive the MitM attack. We try to search a more compact
space to find the preimage. In fact, we choose to search the r-bit outer part.
With the known c-bit inner part, a search of h-bit subspace of the outer part
(if r > h) with MitM method is enough to find the preimage. The highlevel
framework of the MitM approach is shown in Fig. 6 and highlighted in the green
box. Since we start from the outer part and try to satisfy the h-bit target,
only forward computations are involved. Like the MitM attack in Sect. 2.1, we
need to specify the configurations: the two neutral sets of the outer part, the
two independent forward computation chunks, the matching points. We may
partially solve the inverse of the permutation from the h-bit target to get some
internal bits. Thereafter, by forward computing the two independent chunks
until those internal bits, the deterministic relations on the two neutral sets were
established, which act as the matching point.

3.1 The Conditions in the MitM Attack

The key point of the MitM is to extend the number of rounds of the independent
computation path for blue or red neutral words. For Keccak, we have χ : bi =
ai ⊕ (ai+1 ⊕ 1) · ai+2. Supposing ai+1 is blue neutral word and ai is red neutral
word, then bi depends on both blue and red neutral words if ai+2 = 1, otherwise
bi only depends on the red neutral words ai. That is what we called “conditions”.

Setting conditions to control the characteristic can trace back to Wang et al.’s
collision attacks with message modification techniques [62,63]. Then, conditions
are applied to enhance the probability of the differentials, i.e., the conditional
differential cryptanalysis [42]. Later, conditions are used to reduce the diffusion
of the cube variables in dynamic cube attack [26] and conditional cube attacks
[38]. In MitM attack, the conditions were used to build MitM attacks [2,59]
on MD/SHA hashing with ARX structure. For modular addition X + Y = Z
(X,Y,Z ∈ F

32
2 ), particularly the computation of i-th and (i + 1)-th bits, assume

that the carry from (i − 1)-th bit to i-th bit is 0. Then, the (i + 1)-th bit of Z is
computed as Z{i+1} = X{i+1} ⊕Y{i+1} ⊕X{i} ·Y{i}. When X{i+1} is blue neutral
word and Y{i} is red neutral word, the idea of making X{i} = 0 as a condition
so that Z{i+1} is only affected by blue neutral word.

In this paper, we try to apply conditions to reduce the diffusion of the
red/blue neutral words, and expect to find longer MitM characteristics. In our
MitM attack on sponge-based hashing, the conditions usually depend on bits
from both inner part (capacity) and outer part (rate). In order to modify cer-
tain conditions, we have to modify bits from the inner part. Therefore, as shown
in Fig. 6, we place the MitM attack in the processing of the last message block
and modify the conditions determined by inner part by randomly changing the
first several message blocks (e.g. M1 in Fig. 6). Suppose there are μ conditions
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only determined by the inner part2, the probability to find one right M1 satis-
fying all the conditions is about 2−μ.

Fig. 6. Framework of the MitM attack on sponge-based hashing

Once we find one right M1, we assign arbitrary values to all bits except those
neutral bits for M2. Then, an MitM episode is performed:

1. Suppose the two neutral sets of the outer part are of 2d1 and 2d2 values,
respectively, which are marked by the and color. For each of 2d1 values,
compute forward to the matching points.

2. For each of 2d2 values, compute forward to the matching points.
3. Compute backward with the known h-bit target to the matching points to

derive an m-bit matching.
4. Filter states.

The complexity of the MitM episode is 2max(d1,d2)+2d1+d2−m, which actually
checks 2d1+d2 M2. In order to find a preimage of h, we have to repeat the
episode for 2h−(d1+d2) times. After the conditions in inner part are satisfied,
suppose there are 2η non-neutral bits in M2 that provide 2η MitM episodes. If
η+d1+d2 < h, we have to find 2h−(η+d1+d2) M1, which all satisfy the conditions
in the inner part of the last permutation. The total time complexity is

2h−(η+d1+d2) · 2μ + 2h−(d1+d2) · (2max(d1,d2) + 2d1+d2−m). (5)

4 MitM Preimage Attack on Keccak

This section first gives some techniques and properties in previous preimage
attacks on Keccak. Then we propose our MILP model for the MitM attack on
Keccak. As an application, we mount a 4-round preimage attack on Keccak-512.

2 Note that, if the conditions are determined by both outer part and inner part, then
for given inner part, it is possible to change the message block (i.e., M2 in Fig. 6) to
modify the conditions.
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4.1 Preliminaries on Keccak

Most previous preimage attacks on Keccak/SHA3 are with the linearization tech-
nique. The linear structure technique allows to linearize the underlying permuta-
tion of Keccak for several rounds. In our attack, we also apply the linear structure
technique proposed by Guo et al. [35] to linearize one round of Keccak, in order
to speed up the search.

Linear Structure. We give an example to explain the linear structure tech-
nique. As shown in Fig. 7, the variables v0,z and v1,z (0 ≤ z ≤ 63) are allocated as
A

(0)
{0,0,z} = v0,z, A

(0)
{0,1,z} = v0,z ⊕c0,z, A

(0)
{2,0,z} = v1,z, A

(0)
{2,1,z} = v1,z ⊕c1,z, where

c0,z and c1,z (0 ≤ z ≤ 63) are constants. After the θ operation, the variables will
not diffuse. After the π operation, any two variables are not adjacent in a row,
and all outputs of A(1) are linear. To further reduce the diffusion of the variables
in χ operation, one can add restricted constraints to the value of constant bits.
For example, for the row π

(0)
{∗,0,z}, setting two bit conditions π

(0)
{1,0,z} = 0 and

π
(0)
{4,0,z} = 1, the other bits except A

(1)
{0,0,z} in A

(1)
{∗,0,z} will be constants. Those

conditions can be satisfied by modifying the message block and inner part.

Fig. 7. The linear structure of 1-round Keccak-512

Properties of the Sbox χ. Guo et al. proposed several properties of the Sbox
χ, which help to mount preimage attacks on Keccak [35]. Those properties can be
also applied in our MitM attack, so we give a brief introduction in the following.
Assume χ : F5

2 → F
5
2 maps (a0, a1, a2, a3, a4) to (b0, b1, b2, b3, b4) as

bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, (6)

where all indices are modulo 5. The inverse operation χ−1 is

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4). (7)

Property 1. [35] When there are three known consecutive output bits, two linear
equations of the input bits can be constructed. E.g., assuming that (b0, b1, b2)
are known, two linear equations on (a0, a1, a2, a3) are constructed as

b0 = a0 ⊕ (b1 ⊕ 1) · a2, b1 = a1 ⊕ (b2 ⊕ 1) · a3. (8)

4.2 MILP Model of the MitM Preimage Attack on Keccak

In previous MILP models [5,28] of the MitM attack, each bit can take one of the
four colors ( , , , and ). Generally, the bits depending on both and ,
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are unknown and useless in the MitM attack. In our model, bits whose Boolean
expression depending on the addition of and (not multiplied) can also be used
in our MitM attack, which is known as the indirect-partial matching technique
[2,59] and ignored by previous automatic models [5,28]. Therefore, we introduce
another color, i.e., . In our MILP models, there are five colors ( , , , , and
). We first introduce a new efficient encoding scheme of those colors. Applying

the linear structure technique, we can skip the first round and construct the
model from the second round. Then we model the attribute propagation of the
five colors over the five operations in each round of Keccak. We also model the
matching phase with the CP-kernel for Keccak. With all above works, we build
an automatic MILP model for the MitM preimage attack on Keccak.

Encoding Scheme. Since there are 5 colors to encode in the MILP model,
the previous 2-bit encoding method [5,28] is not suitable and we introduce a
new 3-bit encoding scheme, i.e., each bit is represented by three 0–1 variables
(ω0, ω1, ω2):

– Gray : (1, 1, 1), global constant bits,
– Red : (0, 1, 1), bits determined by bits and bits of starting state,
– Blue : (1, 1, 0), bits determined by bits and bits of starting state,
– Green : (0, 1, 0), bits determined by bits, bits and bits, but the

expression does not contain the product of and bits,
– White : (0, 0, 0), bits dependent on the product of and bits.

We set ω1 to 0 for and to 1 for any other color ( , , , ). So bit can be
quickly detected by the value of ω1. Then we set ω0 to 1 for ( , ) and to 0 for
other color ( , , ). Similarly for ω2.

Modelling the Starting State with the Linear Structure Technique.
In the starting state, each of the 1600 bits takes one color of , and . We
allocate variables α{x,y,z} and β{x,y,z} for the bit with index {x, y, z}, where
α{x,y,z} = 1 if and only if the bit is and β{x,y,z} = 1 if and only if the bit is .
Therefore, we can compute the initial DoF by λB =

∑
α{x,y,z}, λR =

∑
β{x,y,z}.

For Keccak, we apply the 1-round restricted linear structure as the example
given in Sect. 4.1. Denote the starting state after XORing message block by
A(0). The bits in A

(0)
{0,0,z}, A

(0)
{0,1,z}, A

(0)
{2,0,z} and A

(0)
{2,1,z} can be colored as

or . And the remaining bits of A(0) need to be . In order to control the
diffusion of θ operation, A

(0)
{0,0,z} and A

(0)
{0,1,z} should be the same color and the

A
(0)
{0,0,z} ⊕ A

(0)
{0,1,z} should be constant, which consumes one degree of freedom.

Similarly for A
(0)
{2,0,z} and A

(0)
{2,1,z}. Thereafter, the coloring pattern keeps the

same over the first θ operation. Then with the conditions set in π(0) as introduced
in Sect. 4.1, we can omit the first χ operation and construct the model from A(1)

only considering the linear operation π ◦ ρ from A(0).
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Modelling the Attribute Propagation. The round function of Keccak con-
sists of five operations θ, ρ, π, χ and ι. The linear operations ρ and π only change
the position of each bit of the state. The operation ι can be ignored because it
will not change the coloring pattern.

Modelling the θ operation. At first, we give the rule of XOR with an arbitrary num-
ber of inputs under the new coloring scheme. We name the rule of by XOR-RULE,
which involves five rules:

1. XOR-RULE-1: If the inputs have (0,0,0) bit, the output is .
2. XOR-RULE-2: If the inputs are all (1,1,1) bits, the output is .
3. XOR-RULE-3: If the inputs have (1,1,0) (≥ 1) and (≥ 0) bits, the output

will be without consuming DoF, or by consuming one DoF of .
4. XOR-RULE-4: If the inputs have (0,1,1) (≥ 1) and (≥ 0) bits, the output

will be without consuming DoF, or by consuming one DoF of .
5. XOR-RULE-5: If the inputs have (0,1,0) bits, or have at least two kinds of ,

and bits:
(a) the output can be without consuming DoF.
(b) the output can be (or ) by consuming one DoF of (or ).
(c) the output can be by consuming one DoF of and one DoF of .

Fig. 8. 5-XOR-RULE (“*” represents the bit can be any color)

We give some valid coloring patterns of 5 inputs of XOR, which are named by
5-XOR-RULE, as shown in Fig. 8. Similar to previous MitM attacks [5], we can
use some new variables to identify which rule is applied in different cases. We
define three 0–1 variables νi (i ∈ {0, 1, 2}), where ν0 = 1 if and only if all the
ω0’s of the 5 input bits are 1, similar to the cases i = 1, 2. The above five rules
can be represented by (ν0, ν1, ν2):

1. (ν0, ν1, ν2) = (∗, 0, ∗), XOR-RULE-1 is applied.
2. (ν0, ν1, ν2) = (1, 1, 1), XOR-RULE-2 is applied.
3. (ν0, ν1, ν2) = (1, 1, 0), XOR-RULE-3 is applied.
4. (ν0, ν1, ν2) = (0, 1, 1), XOR-RULE-4 is applied.
5. (ν0, ν1, ν2) = (0, 1, 0), XOR-RULE-5 is applied.

Taking (ν0, ν1, ν2) = (1, 1, 0) as an example. ν1 = 1 means that all the ω1’s of
the input bits are 1 and there is no bit. ν0 = 1 means that there only may
have the or . ν2 = 1 means that there must have or or . Based on the
above analysis, we can deduce that when (ν0, ν1, ν2) = (1, 1, 0), there only have

and and the number of is greater than or equal to one, where XOR-RULE-3
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is applied. Denote the output bit as (ωO
0 , ωO

1 , ωO
2 ) and the consumed DoF of

bits and bits are (δR, δB), we can derive
⎧
⎪⎪⎨

⎪⎪⎩

ωO
0 − ν0 ≥ 0, − ωO

0 + ν1 ≥ 0,

ωO
1 − ν1 = 0,

ωO
2 − ν2 ≥ 0, − ωO

2 + ν1 ≥ 0,

⎧
⎨

⎩
δR − ωO

0 + ν0 = 0,

δB − ωO
2 + ν2 = 0.

(9)

In the θ operation, the expression of the output bit is XORing 11 input bits.
If we directly compute the XORing value of the 11 input bits, we may double
counting the consumption of DoF. For example, given (x, z), we compute θ

(r)
{x,0,z}

and θ
(r)
{x,1,z} by θ

(r)
{x,y,z} = A

(r)
{x,y,z} ⊕ ∑4

y′=0 (A(r)
{x−1,y′,z} ⊕ A

(r)
{x+1,y′,z−1}). If bits

in the common formula
∑4

y′=0 (A(r)
{x−1,y′,z} ⊕ A

(r)
{x+1,y′,z−1}) are only determined

by bits, and A
(r)
{x,0,z}, A

(r)
{x,1,z} are bits, we can let the summation bit of

∑4
y′=0 (A(r)

{x−1,y′,z} ⊕ A
(r)
{x+1,y′,z−1}) be by consuming only one DoF of . There-

after, the two output bits θ
(r)
{x,0,z}, θ

(r)
{x,1,z} will be . However, if we directly set

the two output bits θ
(r)
{x,0,z}, θ

(r)
{x,1,z} to be by the XOR-RULE individually, we

have to consume 2 DoF of . To solve this problem, we depose the θ operation
to three steps in our model, as described in the following expressions:

C
(r)
{x,z} = A

(r)
{x,0,z} ⊕ A

(r)
{x,1,z} ⊕ A

(r)
{x,2,z} ⊕ A

(r)
{x,3,z} ⊕ A

(r)
{x,4,z},

D
(r)
{x,z} = C

(r)
{x−1,z} ⊕ C

(r)
{x+1,z−1},

θ
(r)
{x,y,z} = A

(r)
{x,y,z} ⊕ D

(r)
{x,z}.

At first, we compute the coloring pattern of C
(r)
{x,z}. Then, we compute the col-

oring pattern of D
(r)
{x,z} and compute θ

(r)
{x,y,z} at last.

Modelling the χ operation. For the χ operation in the round 0, we add conditions
to control the diffusion of the or and the first χ is omitted. For the χ operation
from round 1, we build the SBOX-RULE. The χ operation maps (a0, a1, a2, a3, a4)
to (b0, b1, b2, b3, b4). According to Eq. (6), bi = ai ⊕ (ai+1 ⊕ 1) · ai+2. Hence, for
each output bit bi, we determine its color by (ai, ai+1, ai+2):

1. If there are bits in (ai, ai+1, ai+2), the output is .
2. If there are all bits, the output is .
3. If there are only (≥ 1) and (≥ 0) bits, the output will be .
4. If there are only (≥ 1) and (≥ 0) bits, the output will be .
5. If there are , or more than two kinds of , and bits in (ai, ai+1, ai+2):

(a) if ai+1 and ai+2 are all (or ), the output is .
(b) if ai+1 or ai+2 is , the output is .
(c) if ai+1 and ai+2 are of arbitrarily two kinds of , , , the output is .

The rules SBOX-RULE restrict the coloring pattern of (ai, ai+1, ai+2, bi) to the
subset of F12

2 , which is described by the linear inequalities by using the convex
hull computation. Some valid coloring patterns are shown in Fig. 9.
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Fig. 9. SBOX-RULE for Keccak (“*” represents the bit can be any color)

Modelling the Matching Phase. Suppose the first 512 bits of A(r+1) are the
hash value. In order to attack more rounds, we try to compute certain bits or
relations in A(r) by the hash value in A(r+1), to act as the matching points.

Leaked linear relations of A(r). From the 512-bit hash, we know A
(r+1)
{∗,0,∗} and the

first 3 lanes of A
(r+1)
{∗,1,∗}. From A

(r+1)
{∗,0,∗}, we deduce π

(r)
{∗,0,∗} from Eq. (7). Applying

the inverse of the operations ρ and π to π
(r)
{∗,0,∗}, we can deduce

θ
(r)

{x,x,z} = π
(r)

{x,0,z+γ[x,x]}, ∀ 0 ≤ x ≤ 4, 0 ≤ z ≤ 63. (10)

In addition, according to Eq. (8), two linear equations can be deduced from the
first three bits of each row of A

(r+1)
{∗,1,∗}, which are given as

A
(r+1)

{0,1,z} = π
(r)

{0,1,z} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · π
(r)

{2,1,z},

A
(r+1)

{1,1,z} = π
(r)

{1,1,z} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · π
(r)

{3,1,z}.

Then applying the inverse of ρ and π, the linear equations are transformed to

A
(r+1)

{0,1,z} = θ
(r)

{3,0,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · θ
(r)

{0,2,z−γ[0,2]},

A
(r+1)

{1,1,z} = θ
(r)

{4,1,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · θ
(r)

{1,3,z−γ[1,3]}.
(11)

With the known value θ
(r)
{x,x,z} (0 ≤ x ≤ 4, 0 ≤ z ≤ 63) by (10), we add the same

known values (underlined) to both sides of (11), which are

A
(r+1)

{0,1,z} ⊕ θ
(r)

{3,3,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · θ
(r)

{0,0,z−γ[0,2]}

= θ
(r)

{3,0,z−γ[3,0]} ⊕ θ
(r)

{3,3,z−γ[3,0]} ⊕ (A
(r+1)

{1,1,z} ⊕ 1) · (θ
(r)

{0,2,z−γ[0,2]} ⊕ θ
(r)

{0,0,z−γ[0,2]})

A
(r+1)

{1,1,z} ⊕ θ
(r)

{4,4,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · θ
(r)

{1,1,z−γ[1,3]}

= θ
(r)

{4,1,z−γ[4,1]} ⊕ θ
(r)

{4,4,z−γ[4,1]} ⊕ (A
(r+1)

{2,1,z} ⊕ 1) · (θ
(r)

{1,3,z−γ[1,3]} ⊕ θ
(r)

{1,1,z−γ[1,3]}).

(12)
According to the CP-kernel property [9] of operation θ, we deduce

θ
(r)

{3,0,z−γ[3,0]} ⊕ θ
(r)

{3,3,z−γ[3,0]} = A
(r)

{3,0,z−γ[3,0]} ⊕ A
(r)

{3,3,z−γ[3,0]},

θ
(r)

{0,2,z−γ[0,2]} ⊕ θ
(r)

{0,0,z−γ[0,2]} = A
(r)

{0,2,z−γ[0,2]} ⊕ A
(r)

{0,0,z−γ[0,2]},

θ
(r)

{4,1,z−γ[4,1]} ⊕ θ
(r)

{4,4,z−γ[4,1]} = A
(r)

{4,1,z−γ[4,1]} ⊕ A
(r)

{4,4,z−γ[4,1]},

θ
(r)

{1,3,z−γ[1,3]} ⊕ θ
(r)

{1,1,z−γ[1,3]} = A
(r)

{1,3,z−γ[1,3]} ⊕ A
(r)

{1,1,z−γ[1,3]}.

(13)
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Combining (12) and (13), there are linear relations on bits in A(r) with the
known hash value of A(r+1), which will be used in our matching points:

A
(r)

{3,0,z−γ[3,0]}⊕A
(r)

{3,3,z−γ[3,0]}⊕(A
(r+1)

{1,1,z} ⊕ 1)·(A(r)

{0,2,z−γ[0,2]}⊕A
(r)

{0,0,z−γ[0,2]})

=A
(r+1)

{0,1,z}⊕θ
(r)

{3,3,z−γ[3,0]}⊕(A
(r+1)

{1,1,z} ⊕ 1)·θ(r)

{0,0,z−γ[0,2]},
(14)

A
(r)

{4,1,z−γ[4,1]}⊕A
(r)

{4,4,z−γ[4,1]}⊕(A
(r+1)

{2,1,z}⊕1)·(A(r)

{1,3,z−γ[1,3]}⊕A
(r)

{1,1,z−γ[1,3]})

=A
(r+1)

{1,1,z}⊕θ
(r)

{4,4,z−γ[4,1]}⊕(A
(r+1)

{2,1,z} ⊕ 1)·θ(r)

{1,1,z−γ[1,3]}.
(15)

Observation 1 (Conditions in Matching Points of Keccak ). In (14), if four

bits (A
(r)

{3,0,z−γ[3,0]}, A
(r)

{3,3,z−γ[3,0]}, A
(r)

{0,2,z−γ[0,2]}, A
(r)

{0,0,z−γ[0,2]}) in A(r) satisfy the
following two conditions, there is a 1-bit filter:

(1) There has no in (A
(r)

{3,0,z−γ[3,0]}, A
(r)

{3,3,z−γ[3,0]}, A
(r)

{0,2,z−γ[0,2]}, A
(r)

{0,0,z−γ[0,2]}).

(2) (A
(r)

{3,0,z−γ[3,0]}, A
(r)

{3,3,z−γ[3,0]}) is of ( , ), ( , ), ( , ), ( , ), or ( , ), or oppo-
site order .

We introduce a binary variable δM to represent whether there is a filtering. Similarly
to the XOR-RULE, we add three 0–1 variables νi (i ∈ {0, 1, 2}), where νi = 1 (i = 0, 2)

if and only if all ωi’s of (A
(r)

{3,0,z−γ[3,0]}, A
(r)

{3,3,z−γ[3,0]}) are 1, and ν1 = 1 if and only if

all ω1’s of (A
(r)

{3,0,z−γ[3,0]}, A
(r)

{3,3,z−γ[3,0]}, A
(r)

{0,2,z−γ[0,2]}, A
(r)

{0,0,z−γ[0,2]}) are 1. We can
derive {

ν1 − δM ≥ 0, − ν0 − δM + 1 ≥ 0, − ν2 − δM + 1 ≥ 0,

ν0 − ν1 + ν2 + δM ≥ 0.

The Objective Function. Let lR, and lB be the accumulated consumption of
DoF of and , i.e., lR =

∑
δR and lB =

∑
δB. Therefore, we can get DoFR = λR −

lR, DoFB = λB − lB. We also have DoM =
∑

δM. According to the time complexity
given by Eq. (1), we need to maximize the value of min{DoFR, DoFB, DoM} to find
the optimal attacks. We introduce an auxiliary variable vobj , impose the following
constraints, and maximize vobj ,

{vobj ≤ DoFR, vobj ≤ DoFB, vobj ≤ DoM}. (16)

4.3 MitM Preimage Attack on 4-Round Keccak-512

We follow the framework in Fig. 6 to perform the attack with (M1, M2) and place the
MitM attack at M2. We construct an MILP model for Keccak-512 following Sect. 4.2.
The code is in https://github.com/qly14/MITM-Preimage-Attack.git. By solving with
our MILP model, we mount a 4-round MitM preimage attack on Keccak-512, as in
Fig. 10 and figures in the Supplementary Material B in our full version paper [55],
which contains 3 additional symbols:

– , : there consumes one degree of freedom of to let the bit be or .
– : there consumes one degree of freedom of to let the bit be .
– m : bits used for matching.

https://github.com/qly14/MITM-Preimage-Attack.git
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Conditions in the Linear Structure. State A(0) contains 16 bits and 216
bits. We take the similar strategy with [48] to get 1-round linear structure of Keccak.
We introduce 116 binary variables v = {v0, v1, · · · , v115} and 116 binary variables
c = {c0, c1, · · · , c115}. Those variables vi’s and ci’s are placed at the 16 + 216 = 232

and bits in A(0) as in Fig. 10. For example, we set A
(0)

{0,0,0} = v0 and A
(0)

{0,1,0} = v0⊕c0.

When we choose c ∈ F
116
2 to be arbitrary constant, the θ operation will act as identity

with regard to the and bits in A(0). To reduce the diffusion of χ in round 0, we
need to set some bits conditions in π(0) to be constants. According to (6), if ai+1 is
or , we need to set ai+2 = 0 and ai = 1. So there are totally 232 × 2 = 464 conditions
on π(0). After the inverse of ρ ◦ π, we determine the positions of bit conditions in θ(0).
Taking the state θ

(0)

{∗,∗,1} as an example, there are six bit conditions as

θ
(0)

{1,0,1} = 1, θ
(0)

{1,2,1} = 0, θ
(0)

{1,4,1} = 1, θ
(0)

{3,1,1} = 0, θ
(0)

{3,2,1} = 0, θ
(0)

{4,4,1} = 1. (17)

Above conditions can be converted to those on A(0). The bits in A(0) can be divided into
two parts: the bits determined by the outer part (i.e., they can be modified by directly
changing the absorbed M2), and the bits determined by inner part. The equations in
Eq. (17) can be transformed to

A
(0)
{1,0,1}⊕c2⊕A

(0)
{0,2,1} ⊕A

(0)
{0,3,1} ⊕A

(0)
{0,4,1} ⊕c1⊕A

(0)
{2,2,0} ⊕A

(0)
{2,3,0} ⊕A

(0)
{2,4,0} =1,

A
(0)
{1,2,1} ⊕c2⊕A

(0)
{0,2,1} ⊕A

(0)
{0,3,1} ⊕A

(0)
{0,4,1} ⊕c1⊕A

(0)
{2,2,0} ⊕A

(0)
{2,3,0} ⊕A

(0)
{2,4,0} =0,

A
(0)
{1,4,1} ⊕c2⊕A

(0)
{0,2,1} ⊕A

(0)
{0,3,1} ⊕A

(0)
{0,4,1} ⊕c1⊕A

(0)
{2,2,0} ⊕A

(0)
{2,3,0} ⊕A

(0)
{2,4,0} =1,

A
(0)
{3,1,1}⊕c3⊕A

(0)
{2,2,1} ⊕A

(0)
{2,3,1} ⊕A

(0)
{2,4,1} ⊕A

(0)
{4,0,0}⊕A

(0)
{4,1,0} ⊕A

(0)
{4,2,0} ⊕A

(0)
{4,3,0} ⊕A

(0)
{4,4,0} =0,

A
(0)
{3,2,1} ⊕c3⊕A

(0)
{2,2,1} ⊕A

(0)
{2,3,1} ⊕A

(0)
{2,4,1} ⊕A

(0)
{4,0,0}⊕A

(0)
{4,1,0} ⊕A

(0)
{4,2,0} ⊕A

(0)
{4,3,0} ⊕A

(0)
{4,4,0} =0,

A
(0)
{4,4,1} ⊕A

(0)
{3,0,1}⊕A

(0)
{3,1,1}⊕A

(0)
{3,2,1} ⊕A

(0)
{3,3,1} ⊕A

(0)
{3,4,1} ⊕c0⊕A

(0)
{0,2,0} ⊕A

(0)
{0,3,0} ⊕A

(0)
{0,4,0} =1,

(18)
where c0 =A

(0)
{0,0,0}⊕A

(0)
{0,1,0}, c1 =A

(0)
{2,0,0}⊕A

(0)
{2,1,0}, c2 =A

(0)
{0,0,1}⊕A

(0)
{0,1,1}, c3 =

A
(0)
{2,0,1} ⊕A

(0)
{2,1,1}. Given an inner part, the 464 conditions on state A(0) will be a

linear system of the 576−116 = 460 variables of M2 (marked by bold). We compute the
rank of the coefficient matrix of the linear system is 250. In other words, through some
linear transformations, there are 214 equations out of the total 464 only determined by
the bits of inner part. For example, combining the 2nd and 3rd equations in Eq. (18),

we can deduce an equation between two inner part bits A
(0)

{1,2,1} ⊕ A
(0)

{1,4,1} = 1. We

have to randomly test 2214 M1 to compute the inner part satisfying the 214 equations.
Then for a right inner part, there are 2460−250 = 2210 solutions of M2, which make all
the 464 equations hold. For each solution of M2, the and c ∈ F

116
2 in the outer part

will be fixed. Then with the fixed inner part, we can conduct the MitM episodes to
filter states.

Consumed Degrees of Freedom. As shown in Fig. 10, after adding 464 condi-
tions and consuming 108 and 8 degrees of freedom in round 0, we can derive the
coloring pattern in A(1). The remaining degrees of freedom for and are 108 and 8,
respectively. We give two examples to explain the consumption of degrees of freedom
in the computation from A(1) to A(3).
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Fig. 10. The MitM preimage attack on 4-round Keccak-512 (part I)

1. For θ
(1)

{0,0,12} marked by in Fig. 11 (part of Fig. 10), we set an equation of to

a constant, which means consuming one DoF of to let θ
(1)

{0,0,12} be , as listed
below:

A
(1)

{0,0,12}⊕A
(1)

{4,0,12} ⊕ A
(1)

{4,1,12} ⊕ A
(1)

{4,2,12} ⊕ A
(1)

{4,3,12} ⊕ A
(1)

{4,4,12}

⊕A
(1)

{1,0,11} ⊕ A
(1)

{1,1,11} ⊕ A
(1)

{1,2,11} ⊕ A
(1)

{1,3,11} ⊕ A
(1)

{1,4,11} = const.,
(19)

where the bits marked by red are and others marked by black are .
2. For θ

(2)

{1,3,5} marked by in Fig. 12, we set an equation of to a constant, which

means consuming one DoF of to let θ
(2)

{1,3,5} be . Since there have

θ
(2)

{1,3,5} =A
(2)

{1,3,5} ⊕ D
(2)

{1,5} = A
(2)

{1,3,5} ⊕ C
(2)

{0,5} ⊕ C
(2)

{2,4},

C
(2)

{0,5} =A
(2)

{0,0,5} ⊕ A
(2)

{0,1,5} ⊕ A
(2)

{0,2,5} ⊕ A
(2)

{0,3,5} ⊕ A
(2)

{0,4,5},

C
(2)

{2,4} =A
(2)

{2,0,4} ⊕ A
(2)

{2,1,4} ⊕ A
(2)

{2,2,4} ⊕ A
(2)

{2,3,4} ⊕ A
(2)

{2,4,4}.
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We can set all the involved to be constant:

A
(2)

{1,3,5} ⊕ A
(2)

{0,0,5} ⊕ A
(2)

{0,1,5} ⊕ A
(2)

{0,3,5} ⊕ A
(2)

{0,4,5}

A
(2)

{2,0,4} ⊕ A
(2)

{2,1,4} ⊕ A
(2)

{2,2,4} ⊕ A
(2)

{2,3,4} ⊕ A
(2)

{2,4,4} = const.
(20)

Then, we have θ
(2)

{1,3,5} = A
(2)

{0,2,5} ⊕ const.

Fig. 11. Example (1) of consumed DoF Fig. 12. Example (2) of consumed DoF

There are totally 100 and in internal states between A(1) and θ(2), which
means that the accumulated consumed degree of freedom of is 100. Denote the 100-
bit constants (i.e. constants such as (19) and (20)) as cR ∈ F

100
2 . At last, the numbers

of remaining degrees of freedom for and are both 8 bits.

Matching Strategy with Green Bits. According to Observation 1, we can use
A(3) to count the number of matching equations, i.e. m = 8. We give an example
matching Eq. (21) (marked by m in A(3) with z = 2 and z = 41 in Fig. 10) according
to Eq. (15), which satisfies the matching conditions of Observation 1:

A
(3)

{4,1,2} ⊕ A
(3)

{4,4,2} ⊕ (A
(4)

{2,1,22} ⊕ 1) · (A
(3)

{1,3,41} ⊕ A
(3)

{1,1,41})

⊕ A
(4)

{1,1,22} ⊕ θ
(3)

{4,4,2} ⊕ (A
(4)

{2,1,22} ⊕ 1) · θ
(3)

{1,1,41} = 0.
(21)

With known bits in A(4) and θ(3), the left part of Eq. (21) can be written as Boolean
expression (denoted as fM) on , and bits of the starting state. Therefore, denote
fM = fR ⊕ fB ⊕ fG , where fR only contains monomials on / bits, fB contains
monomials on / bits, and fG contains monomials on bits and constants. With the
given bits, we can compute the value fR ⊕ fG = f ′

M with forward computing Keccak

permutation by setting all the bits as 0. Similarly, we get fB ⊕ fG = f ′′
M by setting

bits as 0. By setting all and bits as 0, we get fG = f ′′′
M. Therefore, we compute

fR = f ′
M ⊕ f ′′′

M and fB = f ′′
M ⊕ f ′′′

M. Then, we can derive the matching equation from
Eq. (21) as fR = fB ⊕ fG .

MitM Attack on 4-Round Keccak-512. In our attack Algorithm 1, we first pre-
compute inversely from A(4) to A(3), and derive 128 Boolean equations similar with
Eq. (21). Among them, 8 equations act as the matching points in the MitM phase, and
the other 120 equations are used to further filter the partial matched states.
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Algorithm 1: Preimage Attack on 4-round Keccak-512

1 Precompute inversely from the target to A(3), and derive 128 Boolean equations
of similar form with Eq. (21)

2 /* Among them, 8 Boolean equations act as the matching points in the

MitM phase. The other 120 Boolean equations are used to further

filter the partial matched states. */

3 for 2x values of M1 do
4 Compute the inner part of the 2nd block and solve the system of 464 linear

equations
5 if the equations have solutions /* with probability of 2−214 */

6 then
7 for each of the 2210 solutions of M2 do
8 /* With x = 400, there are 2400−214+210 = 2396 iterations */

9 Compute the bits in A(1)

10 Traversing the 2108 values of in A(1) while fixing as 0, compute
forward to determine 100-bit / bits (denoted as cR ∈ F

100
2 ), and

the 8-bit matching point, e.g., in (21), i.e., compute eight
f ′

M = fR ⊕ fG . Build the table U and store the 108-bit bits of
A(1) as well as the 8-bit matching point in U [cR].

11 /* This method to solve the nonlinear constrained neutral

words is borrowed from Dong et al. [28]. */

12 for cR ∈ F
100
2 do

13 Randomly pick a 108-bit e ∈ U [cR], and set in A(1) as 0,
compute to the matching point to get eight f ′′′

M = fG +Const(e)
14 for 28 values in U [cR] do

15 Restore the values of of A(1) and the corresponding
matching point (i.e., eight fR ⊕ fG = f ′

M) in a list L1

(indexed by matching point)
16 end
17 for 28 values of do

18 Set the 108-bit in A(1) as e. Compute to the matching
point to get eight f ′′

M = fB + fG + Const(e). Together with
f ′′′

M, compute fB = f ′′
M + f ′′′

M and store in L2 indexed by
matching point.

19 end
20 for values matched between L1 and L2 do

21 Compute A(3) from the matched and bits

22 if A(3) satisfy the 120 precomputed Boolean
equations /* Probability of 2−120 */

23 then
24 if it leads to the given hash value then
25 Output the preimage
26 end

27 end

28 end

29 end

30 end

31 end

32 end
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Following the framework in Fig. 6, we use two message blocks (M1, M2) to build
the attack as Algorithm 1. In Line 5, once we find solutions of M2, we can perform 2100

MitM episodes in Line 14 to 25 for each of the 2210 solutions. For each MitM episode,
28 ×28 internal states are exhausted. Suppose there needs 2x possible values of M1. To
find a 512-bit target preimage, we need 2x−214+210+100+16 = 2512, i.e., x = 400. The
steps of Alg. 1 are analyzed below:

– In Line 4, the time complexity is 2400 4-round Keccak and 2400×4643 bit operations
to solve the linear system (the time to solve a system of n linear equations is about
O(n3)).

– In Line 9, the time complexity is 2400−214+210 × 1
4

= 2394 4-round Keccak.
– We describe the way to use Eq. (21) as the matching point. In the concrete Keccak

attack, we can not set the 108 bits to be 0 when computing fB + fG = f ′′
M and

fG = f ′′′
M. This is because, the actual size of the and neutral sets is both 28,

not 2108. The 100 consumed DoF of bits of A(1) are used to make 100 internal
bits (denoted as cR ∈ F

100
2 ) to be / , so the remaining set of size 28 can be

computed independently to the set.
We detail the method to derive similar matching equation like “fR = fB ⊕ fG” or
“fB = fR ⊕ fG” for the two 28 / sets. With fixed bits in A(1) and cR ∈ F

100
2 ,

there are 28 bits stored in U [cR], which is derived in Line 10 of Algorithm
1 following Dong et al.’s method [28]. Setting in A(1) as 0, for each element
of U [cR], compute forward to the 8 matching equations (e.g. Eq. (21)) to get 8
f ′

M = fR ⊕ fG . Randomly pick an element e of U [cR] and set in A(1) as 0,
to compute the 8 matching equations f ′′′

M = fG + Const(e), where Const(e) is
determined by e. That is, for each of the 28 , compute f ′′

M = fB + fG + Const(e)
by setting the 108 A(1) bits as e. Therefore, we get f ′′

M+f ′′′
M = fB = fR⊕fG = f ′

M
as filter. To dive into details, we refer the readers to Line 10 to Line 25. In Line 10,
the time complexity is 2396+108 × 2

4
= 2503 4-round Keccak, since only two rounds

from A(1) to A(3) are needed to compute to derive the / bits and the matching
points.

– In Line 13, the time complexity is 2396+100 × 2
4

= 2495 4-round Keccak.
– In Line 15, this step is just to retrieve U [cR] to restore it in L1 with matching point

as index. Suppose one access to the table is equivalent to one Sbox application.
The time complexity is 2396+100+8 × 1

4×320
= 2493.36 4-round Keccak, since there

are 4 × 320 Sboxes for 4-round Keccak.
– In Line 18, the time complexity is 2396+100+8 × 2

4
= 2503 4-round Keccak.

– In Line 21, the time is 2396+100+8+8−8 × 2
4

= 2503 4-round Keccak.

– In Line 22, A(3) is checked against the 120 Boolean equations precomputed in Line
1, which acts as a filter of 2−120. After the filter, the time of the final check against
the target h is 2396+100+8−120 = 2384 4-round Keccak.
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The total complexity is 2400+2400×4643+2394+2503+2495+2493.36+2503+2503+2384 ≈
2504.58 4-round Keccak. The memory to store U is 2108. We also give an experiment of
3-round Keccak-512 in the Supplementary Material C in our full version paper [55].

Remark on padding rule. The last message block has at least 2-bit padding (i.e., ‘11’)
for Keccak and 4-bit padding (i.e., ‘0111’) for SHA3. Therefore, we have x = 402 for
Keccak-512 and x = 404 for SHA3-512. However, it only increases the negligible part
2400 × 4643 in Line 4 to 2402 × 4643 for Keccak-512 and 2404 × 4643 for SHA3-512.
Therefore the final time complexity is still 2504.58 4-round Keccak-512 or SHA3-512
considering the padding. The memory is 2108.

5 MitM Preimage Attack on Xoodyak-XOF

In this section, we list the differences in the MILP model with the model for Keccak

in Sect. 4.2, and give an MitM preimage attack on 3-round Xoodyak-XOF.

5.1 MILP Model of the MitM Preimage Attack on Xoodyak-XOF

For Xoodyak, without the help of the linear structure technique, the situations of adding
conditions to the state before the Sbox χ are more complex. We give the details of the
condition rules and the matching rule for Xoodyak in the following.

Modelling the χ operation with conditions in Round 0. The Sbox χ of Xoodyak
is different from that of Keccak at the sizes of inputs and outputs, which acts on a
column A

(r)

{x,∗,z}. Assume χ operation maps (a0, a1, a2) ∈ F
3
2 in to (b0, b1, b2) ∈ F

3
2 as

bi = ai ⊕ (ai+1 ⊕ 1) · ai+2. In round 0, all the operations between the starting state
A(0) and χ are linear, thus the inputs only have , , and . We can add conditions
on bits to control the diffusion. The different rules from the SBOX-RULE for Keccak

are listed below:

1. If there are two bits and one / / bit in (a0, a1, a2), we can add one or two
conditions to make one or two outputs to be . Without losing generality, suppose
ai is or or and both ai+1 and ai+2 are bits:
(a) the color of bi is always same with ai.
(b) ai+2 =1, bi+1 will be ; otherwise, the color of bi+1 will be same with ai.
(c) ai+1 =0, bi+2 will be ; otherwise, the color of bi+2 will be same with ai.

2. If there is only one bit and the other two are among ( , )/( , )/( , ), we
add conditions to reduce the number of in the output. If ai is :
(a) bi is always be .
(b) ai =0, the color of bi+1 will be same with ai+1 and bi+2 will be .
(c) ai =1, bi+1 will be and the color of bi+2 will be same with ai+2.
(d) without conditions on ai, both bi+1 and bi+2 will be .
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The rules can be described by a system of linear inequalities by using the convex hull
computation. Some valid coloring patterns are shown in Fig. 13.

Fig. 13. Some valid coloring patterns with conditions for χ

Modelling the Matching Phase. Suppose the 128 bits in the top plane A
(r+1)

{∗,2,∗}
of A(r+1) is the hash value. We can easily compute the top plane of state χ

(r)

{∗,2,∗} by

the inverse of ρeast. Each bit of χ
(r)

{∗,2,∗} is computed by b2 = a2 ⊕ (a0 ⊕ 1) · a1, where

(a0, a1, a2) comes from the input column of each Sbox in ι(r). Hence, we deduce the
deterministic relations of ι(r) to count the DoMs.

Observation 2 (Conditions in Matching Points of Xoodyak ). If (a0, a1, a2)
satisfy the following conditions, we say there is a 1-bit matching:

1. There is no bit in (a0, a1, a2).
2. There is no the product of and , concretely, (a0, a1) should not be ( , ) or

( , ) or ( , ) or ( , ), or opposite order.
3. In fact, (a0, a1, a2) should be ( , ∗, ) or (∗, , ) or ( , , ) or ( , , ) or ( , , )

or ( , , ), where ‘∗’ is or or or . We exclude several cases such as ( , , ),
since it is a filter if = 1, but not for = 0.

5.2 MitM Preimage Attack on 3-Round Xoodyak-XOF

We also follow the framework in Fig. 6 and perform the attack with two message blocks
(M1, M2), where M2 has two padding bits ‘10’. The MitM attack is placed in the 2nd
block. Solving with our MILP model for Xoodyak, we get a 3-round MitM preimage
attack, shown in the Supplementary Material D in our full version paper [55]. The
starting state A(0) contains 4 bits and 97 bits. There are totally 53 conditions
on bits of ι(0) (see Supplementary Material D in our full version paper [55]). In the
computation from A(0) to ι(2), the accumulated consumed degree of freedom of is
93 and there is no DoF of consumed. Therefore, DoFB = 4, DoFR = 97 − 93 = 4.
The degree of matching is counted by the deterministic relations of ι(2) according to
Observation 2, we get DoM = 4, where

χ
(2)

{2,2,4} = ι
(2)

{2,2,4}⊕(ι
(2)

{2,0,4}⊕1)·ι(2){2,1,4}, χ
(2)

{1,2,10} = ι
(2)

{1,2,10}⊕(ι
(2)

{1,0,10}⊕1)·ι(2){1,1,10},

χ
(2)

{1,2,19} = ι
(2)

{1,2,19}⊕(ι
(2)

{1,0,19}⊕1) ·ι(2){1,1,19}, χ
(2)

{2,2,22} = ι
(2)

{2,2,22}⊕(ι
(2)

{2,0,22}⊕1)·ι(2){2,1,22}.
(22)
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In the starting state A(0), there are 25 bits which can be modified by changing M2.
The 53 conditions can form a linear system taking the 25 bits of M2 as variables and the
256 bits inner part as constants. The rank of the coefficient matrix is 13. Therefore, we
have to randomly test 2(53−13) = 240 M1 to satisfy the 40 equations only determined by
the inner part. Then for a right inner part, there are 225−13 = 212 solutions of M2, which
make all the 53 equations hold. The attack algorithm is similar to the attack on Keccak

(see Supplementary Material D in our full version paper [55]). The total complexity is
2125.06 3-round Xoodyak-XOF, and the memory to store U is 297.

6 MitM Preimage Attack on Ascon-XOF

In this section, we list the details of the MILP model for Ascon-XOF different from that
for Keccak, and give an MitM preimage attack on 4-round Ascon-XOF.

6.1 MILP Model of the MitM Preimage Attack on Ascon-XOF

The Sbox of Ascon is much more complex than Keccak. In round 0, we add the condi-
tions to the starting state to control the diffusion over the pS operation.

Modelling the Starting State with Conditions. In the starting state A(0),
the 64-bit outer part can be or bits, while the last 256-bit inner part is of . Assume
pS maps (a0, a1, a2, a3, a4) to (b0, b1, b2, b3, b4), where the a0 is in the outer part and
(a1, a2, a3, a4) are in the inner part. When a0 is and others are , all the output bits
excluding b2 should be according to Equ. (3) (case 1 in Fig. 14). However, if we add
some conditions on (a1, a2, a3, a4), for example a1 = 1 and a3 + a4 = 1, then according
to Eq. (3), b0 and b3 can also be (case 2 in Fig. 14). We add conditions on the bits
in the inner part of A(0) to control the diffusion of and over pS . We name the rule
by CondSBOX-RULE:

1. Condition on a1: when a1 = 1, b0 is and the color of b4 is the same with a0;
when a1 = 0, b4 is and the color of b0 is the same with a0.

2. Condition on a3 + a4: when a3 + a4 = 1, b3 is ; when a3 + a4 = 0, the color b3 is
the same with a0.

Some valid coloring patterns of CondSBOX-RULE are shown in Fig. 14.

Fig. 14. Some valid red coloring patterns of CondSBOX-RULE (Color figure online) (Sim-
ilar to blue bits)

Modelling the Sbox of Ascon. We also build the Sbox operation without condi-
tions, which is applied from round 1. According to Eq. (3), for each output bit bi, we
determine its color by all the five inputs (a0, a1, a2, a3, a4) and build the constraints
independently. Taking b0 as an example, b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0,
we determine its color according to the following rules:
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1. If there are bits in (a0, a1, a2, a3, a4), b0 is .
2. If there are all bits, b0 is .
3. If there are only (≥ 1) and (≥ 0) bits, b0 will be .
4. If there are only (≥ 1) and (≥ 0) bits, b0 will be .
5. If there are , or more than two kinds of , and bits in (a0, a1, a2, a3, a4):

(a) if (a0, a1, a2, a4) are only and (or and ), b0 is .
(b) if a1 is or (a0, a2, a4) are , b0 is .
(c) if one of the three pairs (a1, a4), (a1, a2) and (a0, a1) is ( , ) or ( , ) or ( , )

or ( , ), or opposite order, b0 is .

Those rules for b0 can be described by linear inequalities using the convex hull compu-
tation. The rules for b1, b2, b3 and b4 can be constructed by the same way.

Modelling the Matching Phase. We target on Ascon-XOF with a 128-bit hash

value, which needs two output blocks. Suppose the 64-bit word A
(r+1)

{∗,0} of A(r+1) is the
first 64-bit hash value of the first output block. We can easily compute the first 64 bits
of state S(r) from the hash value by the inverse of pL. Each bit of the first 64 bits of
S(r) is computed by b0 = a4a1 + a3 + a2a1 + a2 + a1a0 + a1 + a0 by Eq. (3), where
(a0, a1, a2, a3, a4) comes from the inputs of each Sbox in A(r). Hence, we deduce the
deterministic relations of A(r) to count the degree of freedom of matching.

Observation 3 (Conditions in Matching Points of Ascon ). If (a0, a1, a2, a3, a4)
satisfy the following conditions, we say there is a 1-bit matching:

1. There is no bit in (a0, a1, a2, a3, a4).
2. There have and bits, or bit in (a0, a1, a2, a3, a4).
3. There is no product of and , concretely, (a1, a4) should not be ( , ) or ( , )

or ( , ) or ( , ), or opposite order, and same to (a1, a2) and (a0, a1).

6.2 MitM Preimage Attack on 4-Round Ascon-XOF

Applying the MILP model, we find a 4-round MitM preimage attack (see Supplemen-

tary Material E in our full version paper [55]). The starting state A(0) contains 4 bits

and 54 bits. There are totally 44 conditions on of A(0) (see Supplementary Material

E in our full version paper [55]). In the computation from A(0) to A(3), the accumulated
consumed degrees of freedom of is 50 and there is no DoF of consumed. Therefore,
DoFB = 4, DoFR = 54 − 50 = 4. The four matching bit equations (DoM = 4) are

derived by A(3) with Observation 3, which are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(3)
{15,4} ·A(3)

{15,1}+A
(3)
{15,3}+A

(3)
{15,2} ·A(3)

{15,1}+A
(3)
{15,2}+A

(3)
{15,1} ·A(3)

{15,0}+A
(3)
{15,1}+A

(3)
{15,0} =S

(3)
{15,0},

A
(3)
{25,4} ·A(3)

{25,1}+A
(3)
{25,3}+A

(3)
{25,2} ·A(3)

{25,1}+A
(3)
{25,2}+A

(3)
{25,1} ·A(3)

{25,0}+A
(3)
{25,1}+A

(3)
{25,0} =S

(3)
{25,0},

A
(3)
{47,4} ·A(3)

{47,1}+A
(3)
{47,3}+A

(3)
{47,2} ·A(3)

{47,1}+A
(3)
{47,2}+A

(3)
{47,1} ·A(3)

{47,0}+A
(3)
{47,1}+A

(3)
{47,0} =S

(3)
{47,0},

A
(3)
{57,4} ·A(3)

{57,1}+A
(3)
{57,3}+A

(3)
{57,2} ·A(3)

{57,1}+A
(3)
{57,2}+A

(3)
{57,1} ·A(3)

{57,0}+A
(3)
{57,1}+A

(3)
{57,0} =S

(3)
{57,0}.

(23)
Following the framework in Fig. 6, we choose (M1, M2) to make the 44 conditions hold,
and perform the MitM attack on M3. The attack algorithm is given in Supplementary
Material E in our full version paper [55]. The time is 2124.67 4-round Ascon and the
memory is 254. In addition, we give a 3-round MitM preimage attack on Ascon-XOF

with time of 2120.58 3-round Ascon and memory of 239 (see Supplementary Material E
in [55]). An experiment on the MitM episode is given in Supplementary Material F in
our full version paper [55].
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7 Conclusion and Discussion

In this paper, we give the framework of the MitM attack on sponge-based hashing.
To find good attacks, we build bit-level MILP based automatic tools for MitM attacks
on Keccak-512, Ascon-XOF, and Xoodyak-XOF. Although the birthday-paradox MitM
attack has been widely applied to block ciphers or MD-based hash functions since 1977,
this is the first attempt to apply it to Keccak, etc. Our attacks lead to improved or
first preimage attacks on reduced-round Keccak-512, Ascon-XOF, and Xoodyak-XOF.

Similar to previous preimage attacks [35,45], our attack on Keccak also uses the
linearization-based techniques. In previous linearization-based preimage attacks [35,
45], all the variables should not be multiplied with each other. In our MitM attack,
the variables can be multiplied with each other within each set. For Keccak, to attack
more rounds, we use a one-round linear structure to skip the MILP programming of
the first round and accelerate the MILP model. It should be noted that the linear
structure used in this paper is just a technique to accelerate the search. Moreover, by
using the linear structure, the search only covers a small fraction of the whole space of
the solutions, which may be not the optimal MitM attack at all. For other instances of
Keccak, it is open problem to apply one or two-round linear structures in the search
for MitM attacks.
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authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.
org/10.1007/s00145-021-09398-9

28. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks
revisited: key-recovery, collision, and preimage attacks. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 278–308. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84252-9 10

29. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 10

30. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks
on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 8

31. Espitau, T., Fouque, P.-A., Karpman, P.: Higher-order differential meet-in-the-
middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 683–701. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 33

32. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 61–81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 4
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Abstract. The hash function RIPEMD-160 is an ISO/IEC standard and
is being used to generate the bitcoin address together with SHA-256.
Despite the fact that many hash functions in the MD-SHA hash fam-
ily have been broken, RIPEMD-160 remains secure and the best collision
attack could only reach up to 34 out of 80 rounds, which was published
at CRYPTO 2019. In this paper, we propose a new collision attack on
RIPEMD-160 that can reach up to 36 rounds with time complexity 264.5.
This new attack is facilitated by a new strategy to choose the message
differences and new techniques to simultaneously handle the differential
conditions on both branches. Moreover, different from all the previous
work on RIPEMD-160, we utilize a MILP-based method to search for
differential characteristics, where we construct a model to accurately
describe the signed difference transitions through its round function. As
far as we know, this is the first model targeting the signed difference
transitions for the MD-SHA hash family. Indeed, we are more motivated
to design this model by the fact that many automatic tools to search
for such differential characteristics are not publicly available and imple-
menting them from scratch is too time-consuming and difficult. Hence,
we expect that this can be an alternative easy tool for future research,
which only requires to write down some simple linear inequalities.

Keywords: RIPEMD-160 · collision attack · signed difference ·
modular difference · MILP

1 Introduction

Background. The most powerful technique to mount collision attacks on the
MD-SHA hash family is to carefully trace the evolutions of the signed difference
c© International Association for Cryptologic Research 2023
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through the round functions [29–32]. The feature of the signed difference is that
it can capture how a bit is changed, i.e. from 1 to 0 or from 0 to 1. This makes
it interact well with the modular difference because each specified signed dif-
ference can uniquely determine the corresponding modular difference and XOR
difference. It is thus clear that the signed difference carries the information of
both the XOR difference and modular difference.

Based on the above crucial observations, in Wang et al.’s seminal work [29–
32], they deduced all the collision-generating differential characteristics by hand
for a series of famous hash functions, including MD4, MD5, SHA-0 and SHA-1.
However, such hand-crafted work is too technical and time-consuming. There-
fore, several automatic tools [2,6,14–18,23–25] to search for these differential
characteristics have been developed and they have even been applied to much
more complex hash functions like SHA-2 [5,6,15,17] and RIPEMD-160 [14,18].
However, most of these tools [2,6,14–18] are not made publicly available. As far
as we know, only the tools [23–25] developed by Stevens are open-source. A sim-
ilar tool developed by Leurent for the ARX cipher Skein is also open-source [9].
However, the tools developed by Stevens are only for MD5 and SHA-1. Tweaking
Stevens’s tools for different hash functions is not easy because it requires deep
understanding of their implementations and there are a few structured docu-
ments for the codes. Especially for RIPEMD-160 and SHA-2, their round func-
tions are more complex than those of MD5 and SHA-1, which further increases
the difficulty.

On RIPEMD-160 . The hash function RIPEMD-160 [4] was proposed at FSE 1996,
whose overall structure can be viewed as two parallel MD5-like instances. Such a
double-branch structure makes it well resist against Wang et al.’s powerful tech-
niques for the MD-SHA hash family. The main difficulty is to construct suitable
collision-generating differential characteristics and to perform the message mod-
ification to fulfill the differential conditions on both branches simultaneously.

Due to the increasing difficulty of analyzing the double-branch structure, the
progress in analyzing the security of RIPEMD-160 is slow, as can be seen in
Table 1. For example, the first practical collision attacks on 30 and 31 rounds of
RIPEMD-160 were demonstrated in 2019 and the best collision attack with the
same technique could only reach up to 34 rounds [10]. For the semi-free-start
(SFS) collision attack, the best attack could only reach up to 40 rounds [11],
which was published also in 2019.

As RIPEMD-160 is an ISO/IEC standard and is being used in bitcoin, we
believe further understanding its (second-)preimage and collision resistance is
of practical interest. In this work, we target the collision resistance, which is
generally more meaningful than the SFS collision resistance.

Our Contributions. The contributions of this work are fourfold. Specifically,
we propose:

1. A new strategy to choose the message differences which allows to mount a
collision attack on 36-round RIPEMD-160.
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Fig. 1. The comparison between different models (left: [12],middle: [19,24], right: this
paper)

2. A state-of-the-art method to efficiently perform the message modification
on both branches simultaneously by carefully exploiting the feature of the
differential characteristic.

3. A new methodology to search for differential characteristics for RIPEMD-160
that relies on off-the-shelf solvers. This is achieved by constructing a model
to describe the signed difference transitions through the round function of
RIPEMD-160. As far as we know, it is the first time to use the MILP-based
method to search for a pure signed differential characteristic

4. A new method to automatically detect the contradictions in the search for
signed differential characteristics. Specifically, we propose to use monitoring
variables representing the values of the internal states to monitor the incon-
sistency appearing in the signed difference transitions over different rounds.
This should be distinguished from Liu et al.’s technique [12] where both the
value transitions and difference transitions are involved in a model to avoid
the inconsistency, i.e. we do not care about the value transitions because they
are costly. This should also be distinguished from the techniques [19,24] where
only a model to simply describe two parallel value transitions is used, which
is inefficient as no feature of the signed difference propagations is exploited in
such a model. The comparison between different methods is shown in Fig. 1.

The source code to search for signed differential characteristics is available
at https://github.com/LFKOKAMI/Find RIPEMD Trail.git.

Outline of the Paper. In Sect. 2, we introduce the notations and some pre-
liminary works. In Sect. 3, the MILP model to describe the signed difference
transitions through RIPEMD-160’s round function is detailed. Then, we show
the 36-round collision attack in Sect. 4. Finally, we end this paper with some
discussions on our techniques in Sect. 5.

2 Preliminaries

2.1 Notation

The following notations are used throughout this paper. � and � represent the
modular addition and substraction modulo 232, respectively. x[i] denotes the i-th
bit of x and x[0] is the least significant bit. Δx denotes the XOR difference of
x′ and x, i.e. Δx = x′ ⊕ x. δx denotes the modular difference, i.e. δx = x′ � x.

https://github.com/LFKOKAMI/Find_RIPEMD_Trail.git
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Table 1. Summary of preimage and (SFS) collision attack on RIPEMD-160

Attack Type Rounds Time Memory Reference Year

Preimage 31a 2155 unknown [21] 2010

34 2158.91 unknown [27] 2014

35a 2159.38 unknown [22] 2018

SFS collision 36a practical [14] 2012

42a 275.5 264 [18] 2013

48a 276.4 264 [28] 2017

36 270.4 264 [18] 2013

36 255.1 232 [13] 2017

36/37 practical [11] 2019

40 274.6 negligible [11] 2019

collision 30/31 practical [10] 2019

34 274.3 232 [10] 2019

36 264.5 224 this work 2022
a An attack starting at an intermediate round.

∇x denotes the signed difference between x′ and x, i.e. ∇x[i] = [=] if x′[i] = x[i],
∇x[i] = [0] if x′[i] = x[i] = 0, ∇x[i] = [1] if x′[i] = x[i] = 1, ∇x[i] = [n]
if (x′[i] = 1, x[i] = 0), ∇x[i] = [u] if (x′[i] = 0, x[i] = 1). [a, b] denotes the
set {i|a ≤ i ≤ b}. x denotes the bitwise NOT operation on x. Moreover, xT

denotes a column vector and we simply use xT [i] to represent the i-th element
of xT . Especially, xT ≥ yT iff xT [i] ≥ yT [i] for all i, e.g. (1, 2, 3)T ≥ (0, 2, 1)T as
(1 ≥ 0, 2 ≥ 2, 3 ≥ 1).

Definition 1. The signed difference ∇x is said to be an expansion of the mod-
ular difference δx only when ∇x corresponds to the modular difference δx.

Definition 2. The hamming weight of the signed difference ∇x is denoted by
H(∇x) and H(∇x) is the number of indices i such that ∇x[i] ∈ {n, u}.

For example, let

∇x0 = [=n== ==== ==== ==== ==== ==== ==== ====],
∇x1 = [nu== ==== ==== ==== ==== ==== ==== ====].

Then, both ∇x0 and ∇x1 are the expansions of δx = 230. Moreover, we have
H(∇x0) = 1 and H(∇x1) = 2.

As each signed difference corresponds to a unique modular difference, for
convenience, when computing δx � δy for a given (∇x,∇y), we also simply
denote δx � δy by ∇x � ∇y. For the above example, we have ∇x0 � ∇x1 = 231.

2.2 Description of RIPEMD-160

RIPEMD-160 [4] was proposed at FSE 1996 by Dobbertin et al. and it is built on
the Merkle-Damg̊ard structure. To compress an arbitrary-length message with
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RIPEMD-160, the message will be first padded and then divided into several
message blocks and each block is of size 512 bits. Supposing there are γ + 1
message blocks and they are denoted by M0,M1, . . . , Mγ , the 80-bit hash value
h = (h0, h1, h2, h3, h4) is computed as follows:

IV j+1 = H(IV j ,M j) for j ∈ [0, γ],
h = IV γ+1,

where H(IV j ,M j) is the compression function of RIPEMD-160, IV j is a 160-bit
chaining variable and IV 0 is a predetermined constant value.

In our collision attack, we aim to find (M0,M1) and (M0,M1′) such that

H(H(IV0,M
0),M1) = H(H(IV0,M

0),M1′)

where the number of rounds of H is reduced. In this way, a colliding message
pair for the round-reduced RIPEMD-160 can be easily derived.

Let M = (m0,m1, . . . , m15) be the 16 message words of size 32 bits each
and IV 0 = (IV 0

0 , IV 0
1 , . . . , IV 0

4 ). The specification of the compression function
H(IV 0,M) is described below:

X−5 = Y−5 = IV 0
0 ≫ 10,X−4 = Y−4 = IV 0

4 ≫ 10,X−3 = Y−3 = IV 0
3 ≫ 10,

X−2 = Y−2 = IV 0
2 ,X−1 = Y−1 = IV 0

1 ,

Ql
i = Xi−5 ≪ 10 � φl

j(Xi−1,Xi−2,Xi−3 ≪ 10) � mπl(i) � Kl
j ,

Xi = Xi−4 ≪ 10 � Ql
i ≪ sl

i,

Qr
i = Yi−5 ≪ 10 � φr

j(Yi−1, Yi−2, Yi−3 ≪ 10) � mπr(i) � Kr
j ,

Yi = Yi−4 ≪ 10 � Qr
i ≪ sr

i ,

where i ∈ [0, 79] and j = � i
16�. Due to the page limit, the specification of

φl
j , φ

r
j ,K

l
j ,K

r
j can be found in Table 2. πl(i), πr(i), sl

i, s
r
i can be referred to [4].

Table 2. Boolean functions and round constants in RIPEMD-160

j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x, y, z) x ⊕ y ⊕ z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x, y, z) (x ∧ y) ⊕ (x ∧ z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x, y, z) (x ∧ z) ⊕ (y ∧ z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x, y, z) x ⊕ (y ∨ z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x, y, z) (x ∨ y) ⊕ z

After 80 rounds of update, the output of H(IV 0,M) denoted by IV 1 =
(IV 1

0 , IV 1
1 , . . . , IV 1

4 ) ∈ F
5
232 is computed as follows:

IV 1
0 = IV 0

1 � X78 � Y77 ≪ 10, IV 1
1 = IV 0

2 � X77 ≪ 10 � Y76 ≪ 10,

IV 1
2 = IV 0

3 � X76 ≪ 10 � Y75 ≪ 10, IV 1
3 = IV 0

4 � X75 ≪ 10 � Y79,

IV 1
4 = IV 0

0 � X79 � Y78.
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2.3 The Differential Conditions for RIPEMD-160

Given a specified signed differential characteristic of RIPEMD-160, it has been
shown in [13] that there should also be additional conditions on the modular
difference. Specifically, apart from the bit conditions imposed by the differential
characteristic, there will also be implicit conditions on each Ql

i and Qr
k, which are

intermediate values during the round update of RIPEMD-160 as stated above.
These implicit conditions are of the following forms:

(Ql
i � αl

i) ≪ sl
i = Ql

i ≪ sl
i � βl

i,

(Qr
k � αr

k) ≪ sl
k = Ql

k ≪ sl
k � βr

k,

where (αl
i, α

r
k, βl

i, β
r
k) are constants and they can be easily derived from the spec-

ified differential characteristic. For convenience, we call these implicit conditions
and the bit conditions the differential conditions for a differential char-
acteristic.

It is possible that the conditions on these (Ql
i, Q

r
k) contradict with the bit

conditions, especially for the dense parts where many bits of the internal states
(Xi,Xi−4) or (Yk, Yk−4) are fixed by the differential characteristic due to Ql

i =
(Xi � Xi−4 ≪ 10) ≫ sl

i and Qr
k = (Yk � Yk−4 ≪ 10) ≫ sr

k. Therefore, we
should take this into account when searching for a valid differential characteristic.
We note that many valid differential characteristics used for the (SFS) collision
attacks on round-reduced RIPEMD-160 have been found with Mendel et al.’s
tool [10,11,13,14,18]. However, it is unclear how this problem is handled in
their tool as the implementation is not publicly available and only a few details
of the tool are given in the corresponding papers.

2.4 Previous Methods to Search for Differential Characteristics

In the automatic tools [2,6,14–18,23,25] and Wang et al.’s hand-crafted work, it
is common to first linearly propagate the message differences through the internal
states backward and forward for several rounds, which can be easily finished
either by hand or in a simple automatic way. Then, the signed differences for
many internal states are fixed, while there are still some internal states whose
signed differences are unknown.

For example, (∇Xi0 ,∇Xi0+1, . . . ,∇Xi0+i1) and (∇Xk0 ,∇Xk0+1, . . . ,∇
Xk0+k1) are determined at the linear propagation phase where k0 > i0 + i1. Then,
the aim is to find a valid solution of (∇Xi0+i1+1,∇Xi0+i1+2, . . . ,∇Xk0−1) to con-
nect (∇Xi0 ,∇Xi0+1, . . . ,∇Xi0+i1) and (∇Xk0 ,∇Xk0+1, . . . ,∇Xk0+k1). Achiev-
ing the connection is the most technical component in these automatic tools. Its
efficiency directly affects the overall performance. The main difficulty to achieve
the connection is that many differential conditions are suddenly forced, which
makes invalid solutions easily occur.

The most commonly used method for this connection problem is the guess-
and-determine technique combined with some heuristic early-stop strategies [2,
6,9,14–18,23,25]. However, the implementation for RIPEMD-160 is not publicly
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available. There are also some tools [19,24] relying on off-the-shelf solvers for this
problem. However, in these tools, the idea is to construct a model to describe
two parallel instances of the value transitions. Specifically, does there exist a
solution of (Xi0+i1+1,Xi0+i1+2, . . . , Xk0−1) and (X ′

i0+i1+1,X
′
i0+i1+2, . . . , X

′
k0−1)

such that the predetermined signed differences (∇Xi0 ,∇Xi0+1, . . . ,∇Xi0+i1)
and (∇Xk0 ,∇Xk0+1, . . . ,∇Xk0+k1) can be connected? This can be easily con-
verted into a SAT problem by modelling the value transitions. We tried this
method but we could not find desired differential characteristics in practical
time. We believe this is mainly because the information of the signed difference
propagations cannot be efficiently encoded in such a model.

2.5 On MILP/SAT-Based Automatic Methods

It has become popular to utilize some off-the-shelf solvers to reduce the work-
load of cryptanalysis in the symmetric-key community. Depending on the used
solvers, different languages are required to describe a target problem. Among
these automatic methods, the SAT-based and MILP-based methods are mostly
used [7,20,26]. For SAT-based methods, it is required to describe the target
problem in the Conjunctive Normal Form (CNF) such that the solvers can han-
dle them. For MILP-based methods, it is then required to describe the problem
with linear inequalities.

With the software LogicFriday1, by importing a truth table for some vari-
ables, one can easily obtain the minimized CNF in terms of these variables and
then convert it into linear inequalities [1]. For example, suppose (x0, x1, x2, x3)
can only take 3 values {(0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 1, 1)}. With LogicFriday, we
can obtain the following equivalent minimized CNF to describe this constraint:

x2 ∧ (x0 ∨ x1) ∧ (x1 ∨ x3) ∧ (x0 ∨ x3) ∧ (x0 ∨ x1 ∨ x3),

i.e. only the above 3 possible values of (x0, x1, x2, x3) can make the above boolean
expression output 1 (true), while the remaining 13 values will make it output
0 (false). The above CNF can be converted into the following linear inequality
system:

x2 ≥ 1, x0 + (1 − x1) ≥ 1, (1 − x1) + x3 ≥ 1,

x0 + x3 ≥ 1, (1 − x0) + x1 + (1 − x3) ≥ 1.

For convenience, we also describe this system with the help of a matrix, as
shown below:

H · (x0, x1, x2, x3)T ≥ (1, 0, 0, 1,−1)T ,

where

H =

⎡
⎢⎢⎢⎢⎣

0 0 1 0
1 −1 0 0
0 −1 0 1
1 0 0 1

−1 1 0 −1

⎤
⎥⎥⎥⎥⎦

.

1 You can easily download it from https://download.cnet.com/.

https://download.cnet.com/
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3 Finding Signed Differential Characteristics with MILP

In this work, we consider the MILP-based methods to search for signed differen-
tial characteristics for RIPEMD-160. To achieve this, the first step is to formulate
the problem and the second step is to model the problem with linear inequali-
ties. We emphasize that we tried several different modelling methods before we
eventually identified the method described in the paper. Due to the page limit,
we only describe the most successful and efficient modelling method.

Formulating the problem is easy. Take the left branch of RIPEMD-160 as
an example and it also can be applied to the right branch due to the similar-
ity. Specifically, given (∇Xi,∇Xi+1, . . . ,∇Xi+4,∇mπl(i)), how to describe the
possible values of ∇Xi+5 with linear inequalities? In other words, how do the
signed differences propagate through the round function and how to describe
it with linear inequalities? Once this problem is solved, searching for collision-
generating differential characteristics with some chosen message differences is
easy as the signed difference transitions through the round function are known
and one only needs to add some extra simple constraints to obtain a desired
differential characteristic.

3.1 Modelling Signed Difference Transitions

The round function of RIPEMD-160 is of the following form:

di+5 = (di+1 ≪ 10) � (F (di+4, di+3, di+2 ≪ 10) � (di ≪ 10) � m � c) ≪ s.

When considering the signed differences, the operation ≪ 10 only affects the
order of variables. From this perspective, to study the signed difference propaga-
tion (∇di,∇di+1,∇di+2,∇di+3,∇di+4,∇m) → ∇di+5, we indeed only need to
study the signed difference propagation (∇a0,∇a1,∇a2,∇a3,∇a4,∇m) → ∇a5,
where

a5 = a1 � (F (a4, a3, a2) � a0 � m � c) ≪ s. (1)

With some intermediate variables (b0, b1, b2, b3, b4, b5), Eq. 1 can be decomposed
as

b0 = m � c, b1 = F (a4, a3, a2), b2 = b0 � b1,

b3 = b2 � a0, b4 = b3 ≪ s, b5 = a1 � b4, a5 = b5.

As (b0, b1, b2, b3) are all intermediate state values and m is a free variable that
can be controlled by attackers, we only care about their modular differences. In
other words, we can arbitrarily choose only one expansion of δbi (0 ≤ i ≤ 3)
when constructing the model because one expansion is sufficient to describe the
corresponding modular difference. For example, to describe δbi = 0x1, we can
constrain that ∇bi only takes [==== ==== ==== ==== ==== ==== ==== ===n]
even though ∇bi indeed can take many possible values. This is because one
possible ∇bi is sufficient to describe the modular difference 0x1. This is critical
to improve the whole efficiency as invalid modular differences can be filtered in
a much faster way. Our basic idea to construct the model is as follows:
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1. Deterministically compute the signed difference transitions for b0 = m � c,
b2 = b0 � b1 and b3 = b2 � a0. Specifically, for each given (∇x,∇y), uniquely
compute one ∇z such that δz = δx � δy, even though there are many such
possible ∇z.

2. Compute the signed difference transitions for b1 = F (a4, a3, a2), where F is
a boolean function.

3. Handle the signed difference transitions for b4 = b3 ≪ s, b5 = a1 � b4 and
a5 = b5 according to different situations.

3.2 Describing Signed Differences

To construct the model, we first need to properly describe the signed difference.
Different from the XOR difference which can be trivially described with a binary
variable, there are 3 important statuses for the signed difference, namely {=, n, u}
and we cannot simply describe them with a binary variable. One may think that
it can be described with a variable taking the value from {−1, 0, 1}, which is also
supported by Gurobi. However, such a method is unfriendly to model the signed
difference transitions through the boolean functions and the whole performance
is bad even if we try some other strategies to make it work.

Finally, we choose to use two binary variables (v, d) to describe a 1-bit signed
difference. Moreover, we restrict that (v, d) can only take 3 possible values2,
i.e. (v, d) ∈ {(0, 1), (1, 1), (0, 0)}. Specifically, (v, d) = (0, 1) corresponds to n,
(v, d) = (1, 1) corresponds to u, and (v, d) = (0, 0) corresponds to =. Note that
we do not allow (v, d) = (1, 0) because this is redundant and will affect the
overall performance. This trick is important to improve the performance.

For convenience, when describing the signed difference of a binary variable κ,
we simply use (κv, κd) ∈ {(0, 1), (1, 1), (0, 0)} to represent the signed difference
∇κ. In many of the following algorithms, we also say such a variable ∇κ is a
signed difference variable and it should be viewed as a structure ∇κ = (κv, κd).

3.3 Modelling the Modular Addition

We consider the signed difference transition through z = x � y bit by bit. More-
over, as stated above, we are interested in only one ∇z for a given (∇x,∇y). To
achieve this purpose, we introduce an additional variable ∇c of size 33 to repre-
sent the signed differences of the carry bits when computing ∇x�∇y. Then, we
use deterministic propagation rules for (∇x[i],∇y[i],∇c[i]) → (∇z[i],∇c[i + 1]),
i.e. each (∇x[i],∇y[i],∇c[i]) corresponds to a unique (∇z[i],∇c[i+1]), as shown
in Table 3. In this way, ∇z is uniquely determined for each given (∇x,∇y) and it
corresponds to the modular difference δz = δx�δy, which can be easily observed
from the propagation rules.

2 Here, it can be found that d = 1 means there is a difference and v is the initial value
to be changed. Hence, (v, d) = (0, 1) means 0 is changed to 1 and (v, d) = (1, 1)
means 1 is changed to 0. We exclude (v, d) = (1, 0) because (v, d) = (0, 0) can carry
the same information as (v, d) = (1, 0), i.e. both mean there is no difference.



198 F. Liu et al.

Let us take [nnu → n=] and [u=u → =u] as examples. For [nnu → n=], it means
2i � 2i � 2i = 2i. For [u=u → =u], it means �2i � 2i = �2i+1. It is then clear
that the modular difference δx � δy is correctly recorded by the computed ∇z.

Table 3. The propagation rules for (∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1])

[=== → ==], [==n → n=], [==u → u=], [=n= → n=],

[=u= → u=], [=nn → =n], [=un → ==], [=nu → ==],

[=uu → =u], [n== → n=], [u== → u=], [n=n → =n],

[u=n → ==], [n=u → ==], [u=u → =u], [nn= → =n],

[nu= → ==], [un= → ==], [uu= → =u], [nnn → nn],

[nun → n=], [unn → n=], [nnu → n=], [uun → u=],

[unu → u=], [nuu → u=], [uuu → uu]

According to our way to describe {n, u, =}, we can convert the above 27
propagation rules in Table 3 into 27 possible values of

VADD = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1]).

For example, [n=u → ==] corresponds to the possible value (0, 1, 0, 0, 1, 1,
0, 0, 0, 0). With LogicFriday, we can obtain the corresponding linear inequality
system:

HADD · V T
ADD ≥ CADD.

Algorithm 1 describes how to model the deterministic modular addition. Note
that we do not make ∇c[0] = [=] in Algorithm1 to increase its flexibility and
hence before calling it, the value of ∇c[0] should be clearly specified.

Algorithm 1. Model δz = δx � δy

1: procedure MODADD MODEL(∇x, ∇y, ∇c, ∇z)
2: for i = 0 to 32 do
3: VADD = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
4: add constraints HADD · V T

ADD ≥ CADD.

3.4 Modelling the Expansions of the Modular Difference

Given an arbitrary δz, there are many expansions of δz. For example, there are
3 possible expansions of δz = 230 as shown below:

=n== ==== ==== ==== ==== ==== ==== ====,

nu== ==== ==== ==== ==== ==== ==== ====,

uu== ==== ==== ==== ==== ==== ==== ====.
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Due to our deterministic way to compute the signed difference transitions
through the modular addition z = x � y, we lose many possible ∇z. When it is
necessary to compute all possible forms of ∇z, we need to tackle the problem of
how to model all the possible ∇ξ from a given ∇z such that δξ = δz.

To achieve this, we again introduce an additional variable ∇c with ∇c[0] =
[=]. Based on the basic fact that 2i = 2i+1 � 2i, �2i = �2i+1 + 2i, 0 = 0,
2i+1 = 2i+1 and �2i+1 = �2i+1, we can use the following propagation rules in
Table 4 to compute all possible ∇ξ from ∇z.

Table 4. The propagation rules for (∇z[i], ∇c[i]) → (∇ξ[i], ∇c[i + 1])

[nn → =n], [uu → =u], [nu → ==], [un → ==],

[n= → (n=, un)], [u= → (u=, nu)],

[=n → (n=, un)], [=u → (u=, nu)],

[== → ==]

Similarly, the propagation rules in Table 4 can be converted into 13 possible
values of

VEXP = (zv[i], zd[i], cv[i], cd[i], ξv[i], ξd[i], cv[i + 1], cd[i + 1]),

Note that [n= → (n=, un)] corresponds to two possible transitions [n= → n=] and
[n= → un]. Similar representations will be used throughout this paper. Then,
we can obtain the linear inequality system HEXP · V T

EXP ≥ CEXP to describe Table 4
with LogicFriday.

A Slightly Different Problem. In the procedure to search for signed differen-
tial characteristics for the MD-SHA family, it is common to first fix the signed
differences of some internal states in advance. In other words, we now consider
how to efficiently determine whether a computed ∇z satisfies δξ � δz = 0 when
∇ξ is known and fixed. This is indeed the same with the problem to model the
expansions of the modular difference, but we prefer a different method because
it does not rely only on a tree structure, i.e. there is no branch.

The following propagation rules for (∇ξ[i],∇z[i],∇c[i]) → (∇c[i + 1]) are
sufficient to constrain δξ � δz = 0, where ∇c is the signed difference of the carry
bits when computing ∇ξ � ∇z and ∇c[0] = [=].

[=== → =],
[=un → n], [=nn → =], [=uu → =], [=nu → u],
[u=n → =], [n=n → n], [u=u → u], [n=u → =],
[nu= → n], [nn= → =], [uu= → =], [un= → u].

These 13 propagations rules can be converted into 13 possible values of

VZERO = (ξv[i], ξd[i], zv[i], zd[i], cv[i], cd[i], cv[i + 1], cd[i + 1]).
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With LogicFriday, we can obtain the corresponding HZERO · V T
ZERO ≥ CZERO.

Algorithm 2 describes how to model the expansion of the modular difference.
The input isK is a binary variable and is used to provide an option to choose
different models.

Algorithm 2. Expansion: derive ∇ξ from ∇z

1: procedure EXPAND MODEL(∇z, ∇ξ, isK)
2: Claim a signed difference vector ∇c of size 33
3: ∇c[0] = [=]
4: for i = 0 to 32 do
5: if isK = 1 then
6: VZERO = (ξv[i], ξd[i], zv[i], zd[i], cv[i], cd[i], cv[i + 1], cd[i + 1])
7: HZERO · V T

ZERO ≥ CZERO

8: else
9: VEXP = (zv[i], zd[i], cv[i], cd[i], ξv[i], ξd[i], cv[i + 1], cd[i + 1])

10: add constraints HEXP · V T
EXP ≥ CEXP

3.5 Modelling Boolean Functions

Using some simple boolean functions in the round function is a basic operation
in the MD-SHA hash family. For RIPEMD-160, the used boolean functions are
shown in Table 2: XOR, ONX, IFZ, IFX and ONZ. Especially, we have

w = IFX(x, y, z) = IFZ(y, z, x), w = ONZ(x, y, z) = ONX(z, x, y).

The strategies to handle these boolean functions are the same. Due to the space
limit, we only explain the difference transitions through w = ONX(x, y, z).

Table 5. The valid values of (∇x[i], ∇y[i], ∇z[i], ∇w[i])

[====],

[==u=], [==uu], [==un], [==n=], [==nn], [==nu],

[=n==], [=n=n], [=n=u], [=u==], [=u=u], [=u=n],

[n==u], [n==n], [u==n], [u==u],

[=nn=], [=uu=], [=nun], [=nuu], [=unn], [=unu],

[nn=u], [nn==], [nu=u], [nu==], [uu=n], [uu==], [un=n], [un==],

[n=nu], [n=n=], [n=uu], [n=u=], [u=nn], [u=n=], [u=un], [u=u=],

[nnnu], [nnu=], [nun=], [unnn], [uun=], [unu=], [nuuu], [uuun].

The Fast Filtering Model. First, we list all possible (∇x[i],∇y[i],∇z[i],∇w[i]),
as shown in Table 5. Similarly, we can obtain the corresponding inequality system

HONX · V T
DF ≥ CONX, (2)

VDF = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i]).
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The Full Model. In the fast filtering model, we only consider signed
difference transitions and ignore the implicit conditions. For example, for
w = ONX(x, y, z), when (∇x[i],∇y[i],∇z[i],∇w[i]) = [=n==], there is an
implicit condition z[i] = 1. Ignoring such implicit conditions will cause
invalid differential characteristics because each internal state is used three
times in such boolean functions to update different internal states at 3 con-
secutive rounds. To capture such implicit conditions, a full list of possible
(∇x[i],∇y[i],∇z[i],∇w[i], x[i], y[i], z[i]) is provided in Table 6. For convenience,
we call (x[i], y[i], z[i]) monitoring variables as they are used to store the
implicit conditions and hence to monitor the contradictions.

Table 6. The valid values of (∇x[i], ∇y[i], ∇z[i], ∇w[i], x[i], y[i], z[i]), where * repre-
sents that the bit value can take either 0 or 1.

[====,*,*,*],

[==u=,*,1,*], [==uu,1,0,*], [==un,0,0,*], [==n=,*,1,*], [==nn,1,0,*], [==nu,0,0,*],

[=n==,*,*,0], [=n=n,0,*,1], [=n=u,1,*,1], [=u==,*,*,0], [=u=u,0,*,1], [=u=n,1,*,1],

[n==u,*,1,*], [n==u,*,0,0], [n==n,*,0,1], [u==n,*,1,*], [u==n,*,0,0], [u==u,*,0,1],

[=nn=,*,*,*], [=uu=,*,*,*], [=nun,0,*,*], [=nuu,1,*,*], [=unn,1,*,*], [=unu,0,*,*],

[nn=u,*,*,0], [nn==,*,*,1], [nu=u,*,*,0], [nu==,*,*,1], [uu=n,*,*,0], [uu==,*,*,1],

[un=n,*,*,0], [un==,*,*,1],

[n=nu,*,1,*], [n=n=,*,0,*], [n=uu,*,1,*], [n=u=,*,0,*], [u=nn,*,1,*], [u=n=,*,0,*],

[u=un,*,1,*], [u=u=,*,0,*],

[nnnu,*,*,*], [nnu=,*,*,*], [nun=,*,*,*], [unnn,*,*,*], [uun=,*,*,*], [unu=,*,*,*],

[nuuu,*,*,*], [uuun,*,*,*].

Similarly, based on Table 6, we can obtain the corresponding

HONXFull · V T
DFC ≥ CONXFull, (3)

VDFC = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i], x[i], y[i], z[i]).

Note that in Table 6, * means it can take either 0 or 1, e.g. [==u=,*,1,*] corre-
sponds to 4 possible values: (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1),
(0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0) and (0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1).

It is found that some inequalities appear in both Eq. 2 and Eq. 3. This is
indeed as expected since the information of Table 5 is fully encoded in Table 6.
Therefore, to filter invalid signed difference transitions in a faster way, we will
actually use the following linear inequality system

{
HONX · V T

DF ≥ CONX

HONXCut · V T
DFC ≥ CONXCut

(4)

to describe Table 6. Specifically, (HONXCut, CONXCut) is obtained by removing the
inequalities appearing in Eq. 2 from Eq. 3. Specifically, we check the inequalities
specified by (HONXFull, CONXFull) one by one. If it does not appear in (HONX, CONX),
add it to (HONXCut, CONXCut).
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In this way, we can equivalently say that (HONXCut, CONXCut) is purely utilized
to describe the implicit conditions as (HONX, CONX) can fully describe valid signed
difference transitions. This is very important to increase the flexibility of the
model as we can add HONXCut ·V T

DFC ≥ CONXCut to the model depending on different
situations while HONX ·V T

DF ≥ CONX is always added. Moreover, the lazy constraint3

can be applied to HONXCut ·V T
ONXCut ≥ CONXCut to improve the performance for some

problems. For simplicity, Eq. 2 is called the fast filtering model, while Eq. 4 is
called the full model.

Modelling Other Boolean Functions. The above procedure is rather general
and we can apply it to other boolean functions.

For w = XOR(x, y, z), the full model can be described with HXOR ·V T
DF ≥ CXOR

and HXORCut · V T
DFC ≥ CXORCut, where the fast filtering model is HXOR · V T

DF ≥ CXOR.
For w = IFZ(x, y, z), the full model can be described with: HIFZ ·V T

DF ≥ CIFZ

and HIFZCut · V T
DFC ≥ CIFZCut, where the fast filtering model is HIFZ · V T

DF ≥ CIFZ.
Algorithm 3 describes how to model the signed difference signed difference

transitions through Boolean functions.

Algorithm 3. Model the signed difference transitions through Boolean functions
1: procedure BOOLFAST MODEL(fNa,∇x, ∇y, ∇z, ∇w)
2: for i = 0 to 32 do
3: VDF = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i])
4: if fNa = “ONX” then
5: add constraints HONX · V T

DF ≥ CONX

6: else if fNa = “XOR” then
7: add constraints HXOR · V T

DF ≥ CXOR

8: else if fNa = “IFZ” then
9: add constraints HIFZ · V T

DF ≥ CIFZ

10: procedure BOOLFULL MODEL(funName,∇x, ∇y, ∇z, ∇w, x, y, z)
11: for i = 0 to 32 do
12: VDFC = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i], x[i], y[i], z[i])
13: if funName=“ONX” then
14: add constraints HONXCut · V T

DFC ≥ CONXCut

15: else if funName=“XOR” then
16: add constraints HXORCut · V T

DFC ≥ CXORCut

17: else if funName=“IFZ” then
18: add constraints HIFZCut · V T

DFC ≥ CIFZCut

3.6 Modelling a5 = a1 � b3 ≪ s

This is the special operation in RIPEMD-160 and is another place where contra-
dictions easily occur especially when there are many bit conditions on (a1, a5).
3 In Gurobi, the lazy constraint means the constraints that are checked only after a

solution is found.
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We also note that we will sometimes decompose this computation as

b4 = b3 ≪ s, b5 = a1 � b4, a5 = b5.

Due to our deterministic way to compute ∇b3, many possible ∇b3 are lost.
One idea is to first compute all possible expansions of δb3 from ∇b3. Then, the
bitwise rotation only affects the order of variables and we immediately obtain all
possible ∇b4. However, what we need is all possible ∇a5 where a5 = a1 � b4. If
we compute ∇b5 = ∇a1 �∇b4 for each ∇b4 with the deterministic model for the
modular addition and then compute all possible ∇a5 from ∇b5 with the model
for the expansion, the expansion is used twice and it is too costly because there
are too many combinations. However, in some extreme cases, we will use this
idea to avoid the contradictions, i.e. the second strategy stated below.

Indeed, it has been studied in [3,13] that δb4 = ((b3 � δb3) ≪ s) � (b3 ≪ s)
has at most four possible values for a given δb3. Therefore, ∇b4 can be divided
into four classes and each class corresponds to different δb4.

The First Strategy. We always choose some δb4 that hold with a high prob-
ability. Then, for each of them, randomly pick one of its expansions ∇b4. Next,
according to (∇a1,∇b4), uniquely determine ∇b5 with the model for the modu-
lar addition. Finally, compute all possible ∇a5 from ∇b5 with the model for the
expansion. Describing the strategy in words is easy, but how to encode it with
linear inequalities?

The most important step is to use linear inequalities to describe how to
pick some ∇b4 holding with a high probability. According to [13], the branch
is mainly caused by the carries from the 31st bit and the (31 − s)-th bit when
computing b3 � δb3. Therefore, we introduce two variables (∇ch,∇cm) to denote
the signed difference of these two carry bits, respectively. Although the two carry
bits depend on many bits, we restrict ourselves to only (∇b3[31],∇b3[30]) and
(∇b3[31 − s],∇b3[30 − s]). Then, we fix the propagation rules for

(∇b3[31],∇b3[30]) → (∇b4[31 + s],∇b4[30 + s],∇ch),
(∇b3[31 − s],∇b3[30 − s]) → (∇b4[31],∇b4[30],∇cm),

where the indices are within modulo 32. As the propagation rules are the same
for both cases and they are of the same form (∇u, ∇t) → (∇μ,∇τ,∇ι), for
simplicity, these rules are specified in Table 7. With LogicFriday, Table 7 can be

Table 7. The propagation rules for (∇u, ∇t) → (∇μ, ∇τ, ∇ι)

[== → ===],

[n= → (n==, u=n)], [u= → (u==, n=u)],

[un → =u=], [nu → =n=],[=u → =u=], [=n → =n=],

[nn → =un], [uu → =nu].
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equivalently described with:

HROT · V T
ROT ≥ CROT,

VROT = (uv, ud, tv, td, μv, μd, τv, τd, ιv, ιd).

For the remaining ∇b4[i], they are uniquely determined with

∇b4[i] = ∇b3[i − s] for i /∈ {31, 30, 31 + s, 30 + s}.

An algorithmic description of the first strategy can be referred to Algo-
rithm4. Later, we need to use ∇q[0 : s] where δq = δa5 � δa1 = δb4 to help
detect contradictions (ref. Sect. 3.7). Therefore, we also take ∇q as an input to
ROTATE DIFF FIRST and whether we compute it depends on the variable isV.

The Second Strategy. For the second strategy, we will allow some low-
probability propagations δb3 → δb4. This is because when there are many bit
conditions on (a1, a5), it is possible that such a propagation δb3 → δb4 indeed
holds with probability close to 1 under these conditions.

Still we consider ∇z = ∇x�∇y and use the variable ∇c to denote the signed
differences of the carry bits where ∇c[0] = [=]. The new propagation rules for
(∇x[i],∇y[i],∇c[i]) → (∇z[i],∇c[i+ 1]) are listed in Table 8. In these new rules,
the previous rules for the modular addition and the rules for the expansion are
combined in a way, i.e. we will consider branches for the modular addition this
time because a5 is no more an intermediate variable but the final output of the
round function. As a result, the new model for the modular addition will become
much heavier.

Table 8. The new propagation rules for (∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1])

[=== → ==], [(==n, =n=, n==) → (n=, un)], [(==u, =u=, u==) → (u=, nu)],

[(=un, un=, u=n, =nu, nu=, n=u) → ==], [(=uu, uu=, u=u) → =u],

[(=nn, nn=, n=n) → =n], [nnn → nn], [uuu → uu],

[(nnu, unn, nun) → un], [(uun, nuu, unu) → nu].

With LogicFriday, Table 8 can be equivalently described with

HEXPAdd · V T
EXPAdd ≥ CEXPAdd

VEXPAdd = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1]).

The model for the signed difference transitions through a5 = a1 � (b3 ≪ s) with
the second strategy is also described in Algorithm 4.

3.7 Detecting More Contradictions

It has been stated in Sect. 2.3 that there are additional implicit conditions.
Specifically, for

b4 = b3 ≪ s, b5 = a1 � b4, a5 = b5,
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Algorithm 4. Model a5 = a1 � (b3 ≪ s)
1: procedure ROTATE DIFF FIRST(s, ∇b3, ∇a1, ∇a5, ∇q, isV, isK)
2: Claim two signed difference vectors ∇b4, ∇b5 of size 32
3: for i = 0 to 30 − s do
4: ∇b4[i + s mod 32] = ∇b3[i]

5: for i = 32 − s to 30 do
6: ∇b4[i + s mod 32] = ∇b3[i]

7: Claim a signed difference vector ∇c0 of size 33
8: Claim a signed difference vector ∇ch
9: ROTATE MODEL(∇b3[31 − s], ∇b3[30 − s], ∇b4[31], ∇b4[30], ∇c0[0])

10: ROTATE MODEL(∇b3[31], ∇b3[30], ∇b4[31 + s], ∇b4[30 + s], ∇ch)
11: MODADD MODEL(∇a1, ∇b4, ∇c0, ∇b5)// ∇c0[0] is no longer always [=]
12: EXPAND MODEL(∇b5, ∇a5, isK)
13: if isV = 1 then
14: Claim a signed difference vector ∇c1 of size s + 2
15: ∇c1[0] = [=]
16: SIGNED Q MODEL(∇b4, ∇c0[0], ∇c1, ∇q, s)//∇q[0 : s] = (∇b4 � ∇c0[0])[0 : s]

17: procedure ROTATE MODEL(∇u, ∇t, ∇μ, ∇τ, ∇ι)
18: VROT = (uv, ud, tv, td, μv, μd, τv, τd, ιv, ιd)
19: add constraints HROT · V T

ROT ≥ CROT

20: procedure SIGNED Q MODEL(∇x, ∇y, ∇c, ∇z, s)
21: VADD = (xv[0], xd[0], yv, yd, cv[0], cd[0], zv[0], zd[0], cv[1], cd[1])
22: add constraint HADD · V T

ADD ≥ CADD

23: for i = 1 to s + 1 do
24: VADD = (xv[i], xd[i], 0, 0, cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
25: add constraint HADD · V T

ADD ≥ CADD

26:
27: procedure ROTATE DIFF SECOND(s, ∇b3, ∇a1, ∇a5, ∇q, isV)
28: Claim a signed difference vector ∇b4 of size 32
29: EXPAND MODEL(∇b4, ∇b3, 0)
30: ADDEXP MODEL(∇a1, ∇b4 ≪ s, ∇a5) //∇b4 ≪ s only changes the order of ∇b4
31: if isV = 1 then
32: for i = 0 to s + 1 do
33: ∇q[i] = ∇b4[i − s]

34: procedure ADDEXP MODEL(∇x, ∇y, ∇z)
35: Claim a signed difference vector ∇c of size 33
36: ∇c[0] = [=]
37: for i = 0 to 32 do
38: VEXPAdd = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
39: add constraints HEXPAdd · V T

EXPAdd ≥ CEXPAdd.
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due to the probabilistic propagation δb3 → δb4, there will be conditions on
q = a5 � a1 = b3 ≪ s, i.e. there should exist a solution of q to the following
equations

q = a5 � a1, δq = δa5 � δa1, δb3 � q ≫ s = (δq � q) ≫ s,

where (δb3, δa5, δa1) are fixed according to their specified signed differences
(∇b3,∇a5, δa1).

Algorithm 5. Detect more contradictions in a5 = a1 � (b3 ≪ s)
1: procedure ROTATE DIFF FILTER(s, ∇a5, ∇a1, ∇b3, ∇q, a5, a1)
2: Claim a binary vector q of size 32
3: COMPUTE Q(∇a5, ∇a1, a5, a1, q) //compute q
4: Claim a binary vector v0 of size s + 1
5: VAL DIFF ADD MODEL(∇q, q, v0, s + 1)//compute v0 = (δq � q)[0 : s]
6: Claim a binary vector v1 of size 33 − s
7: VAL DIFF ADD MODEL(∇b3, q ≫ s, v1, 33 − s)//compute v1
8: add constraint v0[0] = v1[32 − s]
9: add constraint v0[s] = v1[0]

10: procedure COMPUTE Q(∇z, ∇x, z, x, q)
11: for i = 0 to 32 do
12: DERIVE COND(x[i], ∇x[i])//derive conditions on x from ∇x
13: DERIVE COND(z[i], ∇z[i])//derive conditions on z from ∇z

14: VAL ADD MODEL(x, q, z, 32)//x � q = z

15: procedure DERIVE COND(x, ∇x)
16: //x = 0 if (∇x = n); x = 1 if (∇x = u); x is free if (∇x = =)
17: add constraint −xv + x ≥ 0
18: add constraint xv − xd − x ≥ −1

19: procedure VAL DIFF ADD MODEL(∇a, b, v, l)//compute v = (δa � b)[0 : l − 1]
20: Claim a signed difference vector ∇c of size l
21: ∇c[0] = [=]
22: for i = 0 to l do
23: add constraint 2(cd[i+1]−2cv[i+1])+ v[i] = (ad[i]−2av[i])+ b[i]+ (cd[i]−

2cv[i])
24: add constraint cd[i + 1] ≥ cv[i + 1]

25: procedure VAL ADD MODEL(a, b, v, l)//compute v = (a � b)[0 : l − 1]
26: Claim a binary vector c of size l
27: c[0] = 0
28: for i = 0 to l do
29: add constraint 2c[i + 1] + v[i] = a[i] + b[i] + c[i]

In our model, the constraints have ensured that δb4 is one of the 4 possible
values computed from δb3. Since δb4 = δa5 � δa1, there are always solutions to

δb3 � q ≫ s = (δq � q) ≫ s. (5)
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The problem exists in the additional constraint q = a5 � a1. When there are
many bit conditions on (a5, a1), the number of possible values of q is significantly
reduced and it is possible that none of them can make Eq. 5 hold.

As δb3 → δb4 is a possible propagation, taking the careful analysis in [13]
into account, we only need to add the following constraints to make the model
automatically detect such contradictions:

q = a5 � a1,

(δq � q)[0] = (δb3 � q ≫ s)[32 − s],
(δq � q)[s] = (δb3 � q ≫ s)[0].

In ROTATE DIFF FIRST and ROTATE DIFF SECOND, we have provided an option
to compute ∇q[0 : s] according to the binary variable isV and therefore it can be
viewed as known. Modelling δq�q and q = a5 �a1 is trivial, the details of which
can be found from the algorithmic description to detect more contradictions, as
shown in Algorithm5.

Algorithm 6 . Model the signed difference transitions for a5 = a1 � (F (a4,
a3, a2) � a0 � m � c) ≪ s.
1: procedure R(fNa,isC,isF,isV,isK, s, ∇m, ∇a0, ∇a1, ∇a2, ∇a3, ∇a4,) ∇a5, a4, a3,

a2, a5, a1

2: Claim signed difference vectors ∇b0, ∇b1, ∇b2, ∇b3 of size 32
3: Claim signed difference vectors ∇c2, ∇c3 of size 33.
4: Claim a signed difference vector ∇q of size s + 1.
5: ∇b0 = ∇m
6: BOOLFAST MODEL(fNa,∇a4, ∇a3, ∇a2, ∇b1)
7: if isC = 1 then //involve conditions into the model
8: BOOLCOND MODEL(fNa,∇a4, ∇a3, ∇a2, ∇b1, a4, a3, a2)

9: ∇c2[0] = [=], ∇c3[0] = [=]//no carry for the least significant bit
10: MODADD MODEL(∇b0, ∇b1, ∇c2, ∇b2)//δb2 = δb0 � δb1
11: MODADD MODEL(∇b2, ∇a0, ∇c3, ∇b3)//δb3 = δa0 � δb2
12: if isF = 1 then//use the first strategy
13: ROTATE DIFF FIRST(s, ∇b3, ∇a1, ∇a5, ∇q, isV,isK)
14: else//the second strategy
15: ROTATE DIFF SECOND(s, ∇b3, ∇a1, ∇a5, ∇q, isV)

16: if isV = 1 then//further detect contradictions
17: ROTATE DIFF FILTER(s, ∇a5, ∇a1, ∇b3, ∇q, a5, a1)

3.8 The Full Model for RIPEMD-160

With the model for all operations known, it is straightforward to combine them
to describe the propagation

(∇a0,∇a1,∇a2,∇a3,∇a4,∇m) → ∇a5,
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as shown in Algorithm 6. In the input parameters, fNa is the name of the boolean
function, isC is the option to involve the implicit conditions for the boolean
functions, isF is the option to use the first or the second strategy to compute
∇b4, isV is the option to perform the further detection of contradictions, and isK
is the option to use different models for the expansions of the modular difference.
In other words, depending on the target parts of the differential characteristics,
one can flexibly choose different values for these options.

4 Collision Attacks on 36-Round RIPEMD-160

In our new collision attacks on round-reduced RIPEMD-160, we choose to inject
differences in (m0,m6,m9) because this choice can allow a 36-round collision
attack. The pattern of the differential characteristic under such message differ-
ences is shown in Fig. 2.

Fig. 2. The pattern of the 36-round differential characteristic

Although we found (m0,m6,m9) according to our experience to analyze the
MD-SHA hash family and it is not related to our MILP model, this model is par-
ticularly useful when determining their actual modular differences. Specifically,
we first considered the message differences of the following form:

δm0 = 2i, δm6 = 0 � 2i+25, δm9 = 2i+12,

where the addition in the exponents is modulo 32. However, the obtained differ-
ential characteristics are quite unfriendly to the message modification and the
probability of the uncontrolled parts is too low. In many cases, the model even
outputs that there is no solution for the left branch.

Then, we choose to inject differences in 2 bits of m0, m6 and m9, respectively.
For each possible choice, we use the model to minimize

∑24
i=16 H(∇Yi). It is found

that among all possible choices, the minimal value of
∑24

i=16 H(∇Yi) is 12 and
we eventually identified the following message differences

δm0 = 23 � 222, δm6 = 0 � 215 � 228, δm9 = 22 � 215.

In addition, with the above message differences, we can also find a suitable
solution for the left branch.

In general, with the above message differences, we search for the correspond-
ing collision-generating differential characteristic as follows:
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Step 1: Find a valid solution of ∇Xi (0 ≤ i ≤ 4) and check the differential
conditions. If the number of conditions is not that large, just use this
solution of ∇Xi (0 ≤ i ≤ 4) for left branch.

Step 2: Find a valid solution of ∇Yi (16 ≤ i ≤ 24) with the MILP model such
that ΔYi = 0 for 25 ≤ i ≤ 35 and we minimize

∑24
i=16 H(∇Yi).

Step 3: Find a valid solution of ∇Yi (11 ≤ i ≤ 15) with the MILP model
such that it can propagate to ∇Yi (16 ≤ i ≤ 24) and we minimize∑15

i=11 H(∇Yi).
Step 4: Choose a sparse differential characteristic manually for ∇Yi (3 ≤ i ≤ 5)

and fix it.
Step 5: Find a solution of ∇Yi (6 ≤ i ≤ 10) with the MILP model such that

(∇Y1,∇Y2,∇Y3,∇Y4,∇Y5) and (∇Y11,∇Y12,∇Y13, Y14,∇Y15) can be
connected, i.e. the differential characteristic for the right branch is valid.

The found 36-round differential characteristic is displayed in Table 9.

4.1 Fulfilling Differential Conditions

Fulfilling the differential conditions for the 36-round differential characteristic in
Table 9 requires nontrivial efforts. Different from the collision attacks on round-
reduced RIPEMD-160 [10,11] where the attackers only need to perform the mes-
sage modification for one branch, we now need to handle the conditions in both
branches simultaneously [8] and the differential characteristic is very dense at
the first few rounds for both branches.

The general procedure to fulfill the differential conditions is summarized as
follows. As in most collision attacks on MD-SHA hash functions, some minor
details for the message modification are omitted here because they are trivial.

Step 1: Exhaust all possible solutions of (Y4, Y5, Y6, Y7, Y8, Y9) and compute the
corresponding m6. Store these m6s in a table denoted by TAB M6 and
store the tuples (Y4, Y5, Y6, Y7, Y8, Y9,m6) in a sorted table denoted by
TAB Y M6, which is sorted according to m6.

Step 2: Exhaust all possible solutions of (X1,X2,X3,X4,X5,X6) and compute
the corresponding m6. If the obtained m6 is in TAB M6 F, store X1 in a
table denote by TAB X1.

Step 3: Exhaust all possible solutions of (ONX(Y11, Y10, Y9 ≪ 10), Y7, Y8, Y12)
and compute the corresponding m1. Store these m1s in a table denoted
by TAB M1.

Step 4: Find a valid M0 such that the conditions on the newly-obtained chain-
ing variable (X−5,X−4,X−3,X−2,X−1) = H(CV0,M

0) can hold.
Step 5: For the obtained (X−5,X−4, . . . , X−1), exhaust all possible solutions of

(X0,X1) and compute the corresponding (m0,m1). If m1 is in TAB M1
and X1 is in TAB X1, move to Step 6. Otherwise, try another (X0,X1).
If all possible values of (X0,X1) are traversed, return to Step 4.

Step 6: Exhaust all possible solutions of (X2,X3,X4,X5,X6) and compute the
corresponding (m2,m3,m4,m5,m6). For each obtained m6, if it is in
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Table 9. The 36-round differential characteristic, where δm0 = 23 � 222, δm6 = 0 �
215 � 228 and δm9 = 22 � 215.

i ∇Xi πl(i) i ∇Yi πr(i)

-5 ================================ -5 ================================

-4 ================================ -4 ================================

-3 ================================ -3 ================================

-2 ================================ -2 ================================

-1 ================================ -1 ================================

0 nuuuuuuuuuuuuuuuuu=nuuuuuuuuuuu= 0 0 ================================ 5

1 n===u=u==n=un====uuu=u=nn===u=uu 1 1 ================================ 14

2 =nun=u=n==n==nn==u==uun==nnu=un= 2 2 ========0=====1============1==== 7

3 ====nu===========nu============= 3 3 ====0=========1==n=========0==n1 0

4 nnnnnnnn===unnnnnnnnnnnnnnnunnnn 4 4 =10=n==0=======1=n1=101===1=0010 9

5 ================================ 5 5 =10=10=0010001=101000n0001110010 2

6 ================================ 6 6 10001nuunnnnnnnnnnnnnn=un1101110 11

7 ================================ 7 7 0u0n1uun00n10nu01nnun=nuuuuuuuuu 4

8 ================================ 8 8 n1un0nuuuu1=0u0un0unnnn1nn0nunuu 13

9 ================================ 9 9 =1=010u1000n00u01uu010n101=n100n 6

10 ================================ 10 10 u1=0u0110uu=u011=0=1=0=u1=1=0111 15

11 ================================ 11 11 111n==0=1=1=0n===11==10100n00==0 8

12 ================================ 12 12 ==00==0=0===10==1=01=n0=1100===1 1

13 ================================ 13 13 ==00=0==u==11===0n=1===1u===u01= 10

14 ================================ 14 14 ==u==0===n===n==1========n===01= 3

15 ================================ 15 15 ======u========1=0=uu====1=n==10 12

16 ================================ 7 16 ===============n=1=============1 6

17 ================================ 4 17 ==0====u=========1==1=========== 11

18 ================================ 13 18 ==1==========00=====1=========== 3

19 ================================ 1 19 ==========n==11=========n======= 7

20 ================================ 10 20 ===nu=========================0= 0

21 =======u==================u===== 6 21 ==========0===========01=0====1= 13

22 =======0==================0===== 15 22 ====1=====1======0==u=11=1====== 5

23 ================1============1== 3 23 n===1=======nu===1============== 10

24 ================================ 12 24 =======u==============0===u===== 14

25 ================================ 0 25 ======================1======0== 15

26 ================================ 9 26 =============================1== 8

27 ================================ 5 27 ================================ 12

28 ================================ 2 28 ================================ 4

29 ================================ 14 29 ================================ 9

30 ================================ 11 30 ================================ 1

31 ================================ 8 31 ================================ 2

32 ================================ 3 32 ================================ 15

33 ================================ 10 33 ================================ 5

34 ================================ 14 34 ================================ 1

35 ================================ 4 35 ================================ 3
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TAB M6, move to Step 7. Otherwise, try another (X2,X3,X4,X5,X6).
If all possible (X2,X3,X4,X5,X6) are traversed, return to Step 5.

Step 7: Compute Y0 using (Y−5, Y−4, Y−3, Y−2, Y−1) = (X−5,X−4,X−3,
X−2,X−1) and m5.

Step 8: Retrieve from TAB Y M6 the corresponding (Y4, Y5, Y6, Y7, Y8, Y9) accord-
ing to m6. For each possible value, move to Step 9. If all possible values
are traversed, return to Step 6.

Step 9: Determine (Y1, Y2, Y3) to connect Yi (−5 ≤ i ≤ 0) and Yj (4 ≤ j ≤ 8)
by using the degrees of freedom provided by (m14,m7,m9,m11,m13),
the details of which will be explained later. If there exists no solution
of (Y1, Y2, Y3), return to Step 8.

Step 10: Traverse all possible values of (Y10, Y11) and compute Y12 using

(Y7, Y8, Y9, Y10, Y11,m1).

Check the conditions4 on (Y12, Q
l
8) and if they hold, move to Step 11.

Step 11: Traverse all possible values of Y13 and compute Y14 using

(Y9, Y10, Y11, Y12, Y13,m3).

Check the conditions on Y14 and if they hold, move to Step 12.
Step 12: Traverse all possible values of Y15 and compute the corresponding m12.

Then, Yi (−5 ≤ i ≤ 15) are all fixed and therefore all mj (0 ≤ i ≤ 15)
are fixed. Hence, the remaining internal states Xi (i ≥ 7) and Yj (j ≥
16) can be computed and we check whether the differential conditions on
them hold. If they hold, a collision for 36-round RIPEMD-160 is found.

More Details About the Connection (Step 9). Given Yi (−5 ≤ i ≤ 0), Yj

(4 ≤ j ≤ 8) and (m0,m2,m4), we aim to find a solution of (Y1, Y2, Y3) such that
the computed value of (m0,m2,m4) based on Yi (−5 ≤ i ≤ 8) is consistent with
its given value. This is achieved by using the degrees of freedom provided by
(m14,m7,m9,m11,m13). The procedure is described as follows.

Step 9.1. Exhaust all possible valid Y3. For each valid Y3, compute Y2 using
(Y3, Y4, Y5, Y6, Y7,m4). If the conditions on (Qr

7, Y2, Q
r
6) hold, move to

Step 9.2. Otherwise, try another Y3 until all possible Y3 are traversed.
Step 9.2. Note that

Qr
3 = ONX(Y2, Y1, Y0 ≪ 10) � Y−2 ≪ 10 � Kr

0 � m0,

Y3 = Y−1 ≪ 10 � Qr
3 ≪ sr

3. (6)

In the above equation, only Y1 is not yet determined. As

ONX(x, y, z) = x ⊕ (y ∧ z),

4 After computing Y11, m8 can be computed using Yi (6 ≤ i ≤ 11). Then, X8 and Ql
8

can be computed using Xi (3 ≤ i ≤ 7) and m8.
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we can uniquely determine Y1 ∧ Y0 ≪ 10 according to

Qr
3 = (Y3 � Y−1 ≪ 10) ≫ sr

3,

ONX(Y2, Y1, Y0 ≪ 10) = Qr
3 � (Y−2 ≪ 10 � Kr

0 � m0),
Y1 ∧ Y0 ≪ 10 = ONX(Y2, Y1, Y0 ≪ 10) ⊕ Y2.

However, as Y0 has already been determined, the computed Y1 ∧
Y0 ≪ 10 may contradict with Y0. Specifically, if Y0[i] = 0 and
(Y1 ∧ Y0 ≪ 10)[(i + 10) mod 32] = 1, the current Y3 is invalid and
we need to try another Y3. Otherwise, the current Y3 is correct and
we can simply move to Step 9.3 to enumerate valid Y1 to ensure Eq. 6
holds. Specifically, if there are n0 different indices {i1, i2, . . . , in0} such
that

Y0[ij ] = 0, (Y1 ∧ Y0 ≪ 10)[(ij + 10) mod 32] = 0 for 1 ≤ j ≤ n0,

there will be 2n0 possible Y1 and they can be simply enumerated.
Step 9.3. Enumerate all valid Y1 as explained above. For each Y1, check the

condition on it, i.e. the condition on Qr
5 = (Y5 � Y1 ≪ 10) ≫ sr

5. If
it holds, compute a new value of m2 using (Y0, Y1, Y2, Y3, Y4, Y5) and
check whether this computed m2 is consistent with the predetermined
m2. If it is, compute(m14,m7,m9,m11,m13) using

(Y−4, Y−3, Y−2, Y−1, Y0, Y1), (Y−3, Y−2, Y−1, Y0, Y1, Y2),
(Y−1, Y0, Y1, Y2, Y3, Y4), (Y1, Y2, Y3, Y4, Y5, Y6), (Y3, Y4, Y5, Y6, Y7, Y8),

respectively. Then, compute X7 and check the conditions on Ql
7. If the

conditions on Ql
7 holds, the connection succeeds and move to Step 10.

Otherwise, try another Y1 until all Y1 are traversed.

4.2 Complexity Evaluations and Simulations

Let us highlight what we can benefit from our message modification technique.
First, we aim to find a valid solution for

(X−5,X−4, . . . , X6), (Y−5, Y−4, . . . , Y9),

which corresponds to Step 1 to Step 9. For convenience, we call its solution a
starting point in our collision attacks. Then, the remaining work is to make
the exhaustive search over (Y10, Y11), Y13 and Y15 in a sequential manner, which
is to utilize the degrees of freedom provided by these internal states to fulfill the
remaining differential conditions.

On the Exhaustive Search over (Y10, Y11, Y13, Y15). Based on the number of
bit conditions, there are in total 220, 218 and 220 possible values of (Y10, Y11), Y13

and Y15, respectively. Suppose there are on average 2n1 possible (Y10, Y11) that
can pass Step 10. Moreover, for each valid solution (Y10, Y11, Y12), suppose there
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are on average 2n2 possible Y13 that can pass Step 11. Then, the time complexity
to exhaust all possible (Y10, Y11, . . . , Y15) is 220+218+n1+220+n1+n2 ≈ 220+n1+n2 .

Experimental results suggest that n1 + n2 ≈ 16.5 where we performed
the exhaustive search over (Y10, Y11, Y13) as stated above for 110 valid starting
points. We should note that for some starting points, there is no valid solution of
(Y10, Y11, Y13) and the probability that there are valid solutions of them is about
0.36.

From the above analysis, we can equivalently say that for each starting point
where (m0,m1,m2,m3,m4,m5,m6,m7,m9,m11,m13,m14) are fixed, there are
about 220+16.5 = 236.5 valid values for (m15,m8,m10,m12). More importantly,
these 236.5 values can be efficiently enumerated by performing the exhaustive
search over (Y10, Y11, Y13, Y15) as stated above with time complexity 236.5, i.e.
our exhaustive search strategy is optimal.

On the Required Number of Starting Points. If the differential conditions
on the uncontrolled internal states Yi (i ≥ 16) and Xj (j ≥ 9) hold with prob-
ability 2−p, we will need to generate 2p−36.5 starting points to find a collision.
According to the calculation, p = 8+55+1.5 = 64.5 where there are 8 bit condi-
tions on (X19,X20, . . . , X23), 55 bit conditions on (Y16, Y17, . . . , Y26) and about
1.5 bit conditions on (Ql

21, Q
l
25) and (Qr

16, Q
l
17, . . . , Q

l
28). Hence, it is required

to generate about 264.5−36.5 = 228 starting points.

On the Complexity of the Connection. At Step 9, we will need to exhaust
226 possible values of Y3 as there are 6 bit conditions on it. Then, we need to
check the conditions on (Qr

7, Y2, Q
r
6, Q

r
5) which hold with probability of about

2−4. Finally, we need to check the consistency in m2 which holds with probability
2−32 and check the condition on Ql

7 holding with probability close to 1.
Moreover, even if the conditions on (Qr

7, Y2, Q
r
6) hold, Y3 is still likely to be

invalid due to the contradiction between Y0 and Y0 ∧ Y1 ≪ 10. However, this
happens only when there exists i such that Y0[i] = 0 and (Y0 ∧ Y1 ≪ 10)[i] = 1.
On the other hand, if Y0[i] = 0 and (Y0 ∧ Y1 ≪ 10)[i] = 0, we then obtain one
free bit in Y1 and the free bit will be exhausted. Therefore, it is equivalent to
stating that there are on average 226 possible (Y1, Y3) and they can be exhausted
in time 226.

For each trial of (Y3, Y1), the success probability is 2−4−32 = 2−36. Therefore,
to generate 228 starting points, we need to try 228+36 = 264 times. Hence, the
total time complexity of Step 9 is 228+36 = 264 .

On the Complexity of Step 8. As there are on average 226 possible valid
values for (Y1, Y3), the time complexity of Step 8 is 264−26 = 238.

On the Complexity to Exhaust (X2,X3, . . . , X6). We now evaluate the cost
of Step 6–7 where we need to exhaust all possible values of (X2,X3, . . . , X6)
for a valid (X−5,X−4, . . . , X1) obtained at Step 5. By counting the bit con-
ditions, we find that there are in total 28 free bits in (X2,X3, . . . , X6) for
a fixed (X−5,X−4, . . . , X1). Hence, the time complexity of this phase is 228.
For each possible value of (X2,X3, . . . , X6), m6 will be computed and checked
against TAB M6. Since the size of TAB M6 is 0x23a000 ≈ 221.15, without con-
sidering the conditions on Ql

i (2 ≤ i ≤ 6), the matching probability is about
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2−32+21.15 ≈ 2−10.9. Therefore, we can expect to obtain 228−10.9 = 217.1 valid
solutions of (X−5,X−4, . . . , X6) after the exhaustive search. Experiments sug-
gest that there are about 216 such valid solutions. For each such valid value, we
need to move to Step 8.

At Step 8, since each m6 in TAB M6 corresponds to on average 7 different
values of (Y4, Y5, . . . , Y9) in TAB Y M6, Step 8 can also provide about 2.8 free bits.
Hence, the total time complexity of Step 6− 7 is 238−2.8−16+28 = 247.2.

On the Complexity to Find (X−5,X−4, . . . , X1). We now evaluate the cost
of Step 4−5. First, according to the bit conditions on (X−2,X−1,X0,X1), for
each (X−5,X−4, . . . , X−1) computed from M0, all state bits of (X1,X0) will be
directly fixed to fulfill their bit conditions. Hence, we are left to verify whether
the computed (X0,X1) is valid. First, we need to check whether X1 is in TAB X1
and check whether the corresponding m1 is in TAB M1. As the size of TAB X1 is
7800 ≈ 214.9 and the size of TAB M1 is 0x1676000 ≈ 224.5, the probability it can
pass this test is 2−17+14.9 × 2−32+24.5 = 2−9.6. Second, we need to check the
conditions on (Ql

0, Q
l
1) which hold with probability of about 2−1.5. Therefore,

for each computed (X0,X1), it is valid with probability 2−11.1.
Finally, we need to verify the conditions on (X−2,X−1) computed from each

M0 which hold with probability 2−30. Hence, finding a valid (X−5,X−4, . . . , X1)
requires to try about 230+11.1 = 241.1 random M0. As we need 238−2.8−16 =
219.2 such valid solutions, it is required to try 219.2+41.1 = 260.3 different M0.
Consequently, the total time complexity of Step 4−5 is 260.3.

On the Complexity of Step 1−3. We only need to perform Step 1−3 once
and we have finished Step 1–3 in practical time. Hence, the total cost of Step
1−3 is negligible.

The Total Complexity. According to the above analysis, the time complexity
and memory complexity of about collision attacks on 36 rounds of RIPEMD-160
are 264.5 and 221.15+2.8 ≈ 224, respectively.

Simulations. To verify our theoretical analysis and the correctness of our mes-
sage modification technique, we perform the experiments in the following way.
First, we randomly generate (X−5,X−4, . . . , X−1) by always making the condi-
tions on (X−2,X−1) hold because finding their valid values from random M0

is costly. Then, we compute (X0,X1) and check the conditions until we obtain
a valid (X0,X1). Experimental results match our theoretical analysis for Step
4−5. Next, for each valid (X−5,X−4, . . . , X1), we move to Step 6 and try to
find valid solutions for (X2,X3, . . . , X6) and experiments also confirmed our
analysis of the time complexity. Then, we move to Step 7−9 to achieve the con-
nection. We find that the success probability of connection is about 2−36 and
it matches well with our analysis. In this way, we succeed in generating many
valid starting points. At last, for each of the obtained starting points, we per-
form the exhaustive search over (Y10, Y11, Y13, Y15) in our way and aim to find
a solution for (Y10, Y11, . . . , Y22). The expected time complexity to find a valid
(Y10, Y11, . . . , Y22) is about 240 as the conditions on (Y16, Y17, . . . , Y22) hold with
probability of about 2−40. Experiments have confirmed this value and we provide
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Table 10. A partial solution for the 36-round differential characteristic

i ∇Xi πl(i) i ∇Yi πr(i)

-5 10100101010010101101011111001000 -5 10100101010010101101011111001000

-4 11101110001000000011110110000011 -4 11101110001000000011110110000011

-3 11111010101100010100111101100010 -3 11111010101100010100111101100010

-2 00011100010010000100111100010010 -2 00011100010010000100111100010010

-1 00111011110101101010010000011111 -1 00111011110101101010010000011111

0 nuuuuuuuuuuuuuuuuu1nuuuuuuuuuuu1 0 0 10111000110000010010000010111011 5

1 n010u0u11n1un0100uuu1u1nn000u1uu 1 1 11111101010011101100101101100001 14

2 1nun1u0n10n00nn10u10uun01nnu1un1 2 2 01101001000000101010110011010110 7

3 1011nu11111110010nu1110011100011 3 3 00100111110111101n001101000010n1 0

4 nnnnnnnn000unnnnnnnnnnnnnnnunnnn 4 4 0101n000010010011n10101010110010 9

5 11111110100000100000101011100010 5 5 010010100100011101000n0001110010 2

6 00110001111011101111011010111010 6 6 10001nuunnnnnnnnnnnnnn0un1101110 11

7 01101000000111101011001111000001 7 7 0u0n1uun00n10nu01nnun0nuuuuuuuuu 4

8 10011000010111000010010111111011 8 8 n1un0nuuuu110u0un0unnnn1nn0nunuu 13

9 01111100011111000110101010010100 9 9 110010u1000n00u01uu010n1010n100n 6

10 10000100100000000111100110011011 10 10 u100u0110uu0u0111001101u10100111 15

11 00000110100010001011100111011111 11 11 111n110011110n000110110100n00010 8

12 10100111100100110101011100111110 12 12 000001010010101110010n0111001111 1

13 10011000000000010001000010001011 13 13 10001011u11111010n010001u011u010 10

14 00011010101011010110100101110110 14 14 01u000011n010n01111001101n010010 3

15 00100001000111110011110010111100 15 15 101110u110100001101uu110010n0010 12

16 ================================ 7 16 110100101100111n0101101000001011 6

17 ================================ 4 17 0001101u110111011110111101011110 11

18 ================================ 13 18 10100001110000011100110111111110 3

19 ================================ 1 19 0111011100n1111001010011n0111111 7

20 ================================ 10 20 010nu010011000010100110010100101 0

21 =======u==================u===== 6 21 00001110010001011100110110011010 13

22 =======0==================0===== 15 22 00011011111010011010u11101001000 5

23 ================1============1== 3 23 n===1=======nu===1============== 10

24 ================================ 12 24 =======u==============0===u===== 14

25 ================================ 0 25 ======================1======0== 15

26 ================================ 9 26 =============================1== 8

27 ================================ 5 27 ================================ 12

28 ================================ 2 28 ================================ 4

29 ================================ 14 29 ================================ 9

30 ================================ 11 30 ================================ 1

31 ================================ 8 31 ================================ 2

32 ================================ 3 32 ================================ 15

33 ================================ 10 33 ================================ 5

34 ================================ 14 34 ================================ 1

35 ================================ 4 35 ================================ 3

m0 1111101nuu111101010111011100n000 m8 10001000100110111010111000011100

m1 11100010100010101000011010001010 m9 011010010011101nu110001110001n01

m2 01110100001111011001110110000001 m10 10011100001110000100101111001101

m3 01100101011111001001111010101101 m11 00100100001110000011000100111110

m4 01011010111100011001011001010001 m12 10000110011010100101011001001110

m5 10000010000110010100000110001110 m13 00100011101101110011111000101001

m6 00un101111111110u011100000100101 m14 10100010111011001101010111011101

m7 11011100001000100110001010001000 m15 11010001001001110100011001001011
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a solution of (m0,m1, . . . , m15) and (X−5,X−4, . . . , X−1) = (Y−5, Y−4, . . . , Y−1)
which can make the conditions on Xi (0 ≤ i ≤ 8) and Yj (0 ≤ j ≤ 22) hold, as
shown in Table 10.

5 Further Works and Discussions

As the round functions of the MD-SHA hash family are very similar, we expect
that some of our techniques to model the signed difference transitions can be
applied to other hash functions that have not yet been broken. The most impor-
tant target should be SHA-2. However, there are several obstacles to directly
apply our techniques to SHA-2. Specifically, in our model, we implicitly rely on
the fact that each 32-bit message word is used to update one 32-bit internal state.
When it comes to SHA-2, each message word of 32 (resp. 64) bits will be used
to update two different internal states of 32 (resp. 64) bits at the same round.
In this case, contradictions will much more easily occur and our techniques to
detect the inconsistency are insufficient. How to adapt our techniques to SHA-2
is an interesting and meaningful work.

We also notice that in the paper [6] to improve the automatic tool for SHA-2,
it is mentioned that relying on off-the-shelf solvers to search for such differen-
tial characteristics is inefficient because the information of the signed difference
propagations cannot be well exploited. We believe they referred to the models
where two parallel instances of value transitions are considered. Obviously, in
our model, we have efficiently encoded the information of the signed difference
propagations and we believe this is the first important step towards this problem,
i.e. how to efficiently rely on off-the-shelf solvers to find such signed differential
characteristics.

For RIPEMD-160, we further made some progress by improving the best
collision attack by 2 rounds and we believe this work advances the understanding
of RIPEMD-160 further.
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18. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 484–503. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42045-0 25

19. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 13

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

21. Ohtahara, C., Sasaki, Yu., Shimoyama, T.: Preimage attacks on step-reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 169–186. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21518-6 13

22. Shen, Y., Wang, G.: Improved preimage attacks on RIPEMD-160 and HAS-160.
KSII Trans. Internet Inf. Syst. 12(2), 727–746 (2018). https://doi.org/10.3837/tiis.
2018.02.011

23. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 245–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 15

24. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

25. Stevens, M., et al.: Short chosen-prefix collisions for MD5 and the creation of a
rogue CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
55–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 4

26. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/978-3-662-45611-8_9


Analysis of RIPEMD-160 219

27. Wang, G., Shen, Y.: (Pseudo-) preimage attacks on step-reduced HAS-160 and
RIPEMD-160. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC
2014. LNCS, vol. 8783, pp. 90–103. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13257-0 6

28. Wang, G., Shen, Y., Liu, F.: Cryptanalysis of 48-step RIPEMD-160. IACR
Trans. Symmetric Cryptol. 2017(2), 177–202 (2017). https://doi.org/10.13154/
tosc.v2017.i2.177-202

29. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 1

30. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

31. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

32. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 1

https://doi.org/10.1007/978-3-319-13257-0_6
https://doi.org/10.1007/978-3-319-13257-0_6
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.1007/11426639_1
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11535218_1


Collision Attacks on Round-Reduced
SHA-3 Using Conditional Internal

Differentials

Zhongyi Zhang1,2 , Chengan Hou1,2 , and Meicheng Liu1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China

{zhangzhongyi0714,houchengan,liumeicheng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

People’s Republic of China
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1 Introduction

The KECCAK hash function [4], designed by Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche [5], was selected as the winner of
the SHA-3 competition by the National Institute of Standards and Tech-
nology of the USA. In 2015, it was published as the new SHA-3 standard
by NIST [11]. The SHA-3 family has four instances with fixed digest sizes,
namely SHA3-224, SHA3-256, SHA3-384 and SHA3-512, which correspond to
KECCAK[c] � KECCAK[r = 1600 − c, c], where c ∈ {448, 512, 768, 1024}. There
are two eXtendable-Output Functions (XOFs) named SHAKE128 and SHAKE256 of
the SHA-3 family, which can generate digests with any expected length. In Post-
Quantum Cryptography competition (PQC), the two XOFs are applied to all
candidate algorithms (CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON,
SPHINCS+) identified by NIST for standardization and all the fourth round
candidate KEM algorithms (BIKE, Classic McEliece, HQC, SIKE) [1]. Among
them, SPHINCS+ [3] is a stateless hash-based signature scheme including three
different versions. One of them is obtained by instantiating the SPHINCS+ con-
struction with SHAKE256.

KECCAK uses a sponge construction, which ensures that messages of any
length can be taken as inputs of the hash function. The message is padded and
divided into some message blocks with the same length. The size of message
block depends on the expected number of output bits. The 1600-bit initial state
of KECCAK is XORed the first message block. Then, the state is updated by
applying 24-round permutation KECCAK-f to it and XORing another message
block, until all blocks are absorbed. In the end, the state is updated again by
using 24-round KECCAK-f , and some bits of the state are output as the digest.

Since its publication in 2008, KECCAK has become one of the most important
hash functions and received extensive security analysis [2,6,9,10,12–14,16,20].
There are two important security criteria for cryptographic hash functions
namely, preimage resistance and collision resistance.

The main focus of this paper is on the security of SHA-3 family against col-
lision attacks. The purpose of a collision attack is to find a pair of different mes-
sages such that their digests are the same. In the matter of collision attacks on
round-reduced SHA-3 (KECCAK), Dinur, Dunkelman and Shamir [8] presented
practical attacks on 4-round KECCAK[448]/KECCAK[512] in 2012, where the
authors developed the target difference algorithm to link a 1-round connector to a
3-round high probability difference characteristic. Following the basic framework
of [8], Qiao et al. completed the connection of 2-round connectors and 3-round
difference characteristics using the linearizaion technique and obtained actual
collisions for 5-round SHAKE128 [19]. In [12,20], the connectors were improved to
3-round connectors by non-full linearization technique. As a result, the practi-
cal collision attacks on 5-round SHA3-224/SHA3-256 were implemented respec-
tively. Almost at the same time as this paper, Huang et al. [15] developed new
techniques to try to solve the problem of insufficient degrees of freedom, and
proposed a collision attack on SHA3-384 with time complexity of 259.64. In [13],
with the SAT-based automatic search tool and improved connector construction
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algorithms, Guo et al. presented the first quantum collision attacks on SHA-3
instances. More specifically, they extended the classical attacks on SHAKE128 to
6-round and proposed 6-round quantum attacks on SHA3-224 and SHA3-256. For
internal differentials, Dinur, Dunkelman and Shamir [9] completed practical col-
lision attacks on 3-round KECCAK[768]/KECCAK[1024] and proposed theoretical
attacks on 4-round KECCAK[768] and 5-round KECCAK[512] by using generalized
internal differentials. In addition to differential and internal differential, Dinur [7]
devised a polynomial method-based algorithm for solving multivariate equation
systems and formulated the problem of finding a collision as a non-linear equa-
tion system. With the help of this technique, the author obtain a theoretical
collision attack on 4-round SHA3-512, where the complexity (2263) is 64 times
faster than the birthday attack (2269) considering the bit operations.

Our Contribution. Following the framework of Dinur, Dunkelman and Shamir
[9], we improve the generalized internal differentials and present theoretical
attacks on all the six SHA-3 variants up to 5 rounds. In detail, the attacks on
4-round SHA3-512 and 5-round SHAKE256 are the best attack results at present
as far as we know. Our results and comparison with the related previous work
are listed in Table 1. The main contributions with respect to techniques are
summarized as follows.

1. A variant of birthday attack Since an internal difference produces
distinct output internal differences after non-linear operation, collision search is
actually carried out in several disjoint subsets. We abstract it as a variant of
birthday attack. On one hand, it is more convenient for parallel computation.
On the other hand, the size of each subset is much smaller than the number of
messages, which greatly saves the space of the hash table using in the attack.

2. Improved generalized internal differentials We introduce the tran-
sition condition number to estimate the transition probability of internal differ-
ential more accurately. We can construct conditional internal differential char-
acteristics for collision attacks on up to 5 rounds of SHA-3 by adding differen-
tial transition conditions to the initial message spaces and their corresponding
internal states. This further reduces the time complexity of internal differential
cryptanalysis.

3. Improved target internal difference algorithm We link an internal
differential characteristic starting from the second round to the initial state of
SHA-3 by solving a linear equation system. With the use of 2-block messages,
we change the value of the first block instead of changing an affine subspaces of
input internal differences to make the system consistent. And since any affine
subspace of the input difference can be selected, in the improved TIDA, we can
select a specific set of affine subspaces to obtain internal difference characteristics
with high probability.

Conditional Internal Differential Attacks. The technique of internal dif-
ferential cryptanalysis was developed by Peyrin [18] in the cryptanalysis of the
Grøstl hash function and generalized by Dinur et al. [9] in collision attacks on
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Table 1. Comparison of the best collision attacks against the SHA-3 family

Target Rounds Complexity Attack method Reference

SHA3-224 5 2105 Internal differential Sect. 6.3

5 Practical Differential [20]

SHA3-256 5 2115 Internal differential [9]

5 2105 Internal differential Sect. 6.3

5 Practical Differential [12]

SHA3-384 3 Practical Internal differential [9]

4 2147 Internal differential [9]

4 276 Internal differential Sect. 6.1

4 259.64 Differential [15]

SHA3-512 3 Practical Internal differential [9]

4 2237 Internal differential Sect. 6.2

4 2263a Solving polynomial systems [7]

SHAKE128 5 2105 Internal differential Sect. 6.3

5 Practical Differential [19]

6 2123.5 Differential [13]

SHAKE256 4 276 Internal differential Sect. 6.1

5 2185 Internal differential Sect. 6.3
a The complexity is calculated by bit operations.

SHA-3. This technique resembles standard differential attacks but it uses internal
differentials, which consider differences between different parts of a state and fol-
low their statistical evolution, rather than a difference between two states. In [9],
Dinur et al. proposed the definitions of the weight of internal differences, which
can be used to estimate the transition probability of the internal differences with
low weight, and obtained internal differential characteristic with probability 1
for the first round by using algebraic methods.

In this paper, we develop an improved variant of internal differential crypt-
analysis to launch collision attacks on SHA-3. We introduce several new tech-
niques such as differential transition conditions of the KECCAK Sbox, which
allow us to estimate the transition probability of internal differences more accu-
rately and use conditional internal differentials to reduce more complexity. And
since the non-zero internal difference input to χ produces several output internal
differences, we can launch a variant of birthday attack. Namely, one or multiple
output internal differences will result in a collision subset, so that we can search
for collision in each subset.

Improved Target Internal Difference Algorithm. The target internal dif-
ference algorithm [9] is a generalization of the target difference algorithm [8],
which enables internal differentials to be used to launch collision attacks on 5-
round SHA-3. In [9], the output of TIDA is a subspace of the initial messages
whose dimension is not enough to produce a collision. Therefore, in the attack
on SHA3-256, the TIDA is run multiple times to output enough messages.

The TIDA has two phases, where in the first phase (called the difference
phase) it solves a system E composed of linear equations about capacity and all
Sboxes to fix the initial internal difference, and in the second phase (called the
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value phase) it outputs the affine subspace of the initial message by solving a lin-
ear system. If 1-block messages are used as the initial messages, in the difference
phase, the algorithm will change affine subspaces of the input differences until
E is consistent. In our attacks on 5-round SHAKE256, we input 2-block messages
into the sponge function as the initial messages. Thus, we just need to change
the value of the first block to make E consistent. Since the affine subspaces
corresponding to the input differences of Sboxes will lead to distinct transition
probabilities of internal differences, after introducing 2-block messages, we select
a specific set of affine subspaces which maximize the expected transition prob-
ability so that the number of characteristics to launch collision attacks could
be reduced. We combine the two phases in the improved TIDA, and reduce the
number of iterations for the second phase by using the partial solutions of E.
By using the internal differentials with our techniques, we can launch collision
attacks on all variants of SHA-3. Our attacks on each variant can reach the most
number of rounds at present, except for SHAKE128, though in some cases other
attacks reaching the same number of rounds are faster. Specially, the complexity
of our attack on 4-round SHA3-512 is 2237, and it is the best result at present.
For 4-round SHA3-384, the complexity of our attack is 276, which is much lower
than the result of 2147 using the same type of cryptanalysis in [9]. The collision
attack on SHAKE256 reaches to 5 rounds for the first time.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
describe the SHA-3 hash function. In Sect. 3, some notations used in this paper
are given, followed by the overview of our collision attacks and a variant of
birthday attack. In Sect. 4, we give the basic concepts of internal differentials
and some new concepts. Section 5 presents the framework of attacks and detailed
explanations over our techniques. In Sect. 6, the details and results of our attack
are given. We conclude the paper in Sect. 7. The internal difference characteristics
are postponed to Appendix.

2 Description of SHA-3

In this section, we give a brief description of the sponge construction and the
SHA-3 hash function, i.e., the KECCAK hash function. The sponge construction
proceeds in two phases: absorbing phase and squeezing phase, as shown in Fig. 1.
The message is firstly padded by appending a bit string of 10*1, where 0* repre-
sents a shortest string of 0’s so that the length of padded message is multiple of
r, and cut into r-bit blocks. The b-bit internal state is initialized to be all zeros.
In absorbing phase, each message block is XORed into the first r bits of the
current state, and then it is applied a fixed permutation to the entire b-bit state.
The sponge construction switches to the squeezing phase after all message blocks
are processed. In this phase, the first r bits of the state are returned as output
and the permutation is applied in each iteration. This process is repeated until
all d digest bits are produced. The four instances of SHA-3 family named SHA3-d
are defined from KECCAK[c] by appending a two-bit suffix ‘01’ to the message,
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Fig. 1. The sponge construction

where b = 1600, c = 2d and d ∈ {224, 256, 384, 512}. After that, the padding of
KECCAK is applied. SHAKE128 and SHAKE256 are two instances with the capacity
c = 256 or 512 and any output length d, and the original message M is appended
with an additional 4-bit suffix ‘1111’ before applying the padding rule, for any
output length. The suffixes “128” and “256” indicate the security strengths that
these two functions can generally support. We summarize security strengths of
the SHA-3 functions in Table 2.

Table 2. Security strengths of SHA-3 functions

Function Output Size Security Strengths in Bits

Collision Preimage 2nd Preimage

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256

SHA3-384 384 192 384 384

SHA3-512 512 256 512 512

SHAKE128 d min(d/2, 128) ≥ min(d, 128) min(d, 128)

SHAKE256 d min(d/2, 256) ≥ min(d, 256) min(d, 256)

The KECCAK permutation has 24 rounds, which operates on the 1600-bit
state s that can be viewed as a 3-dimensional array of bits. One bit of the state
at position (x, y, z) is noted as A[x][y][z], where 0 ≤ x, y < 5 and 0 ≤ z < 64.
The mapping between the bits of s and those of A is s[64(5y+x)+z] = A[x][y][z].
Defined by the designers, A[·][y][z] is a row, A[x][·][z] is a column, and A[x][y][·]
is a lane; A[x][·][·] is a sheet, A[·][y][·] is a plane, and A[·][·][z] is a slice.

There are five mappings in each round of the permutation:

θ :A[x][y][z] ← A[x][y][z] +
4∑

y′=0

A[x − 1][y′][z] +
4∑

y′=0

A[x + 1][y′][z − 1].

ρ :A[x][y][z] ← A[x][y][z + T (x, y)],where T (x, y) is a predefined constant.

π :A[x][y][z] ← A[x′][y′][z],where
(

x
y

)
=

(
0 1
2 3

)
·
(

x′

y′

)
.

χ :A[x][y][z] ← A[x][y][z] + (¬(A[x + 1][y][z])) ∧ A[x + 2][y][z].
ι :A ← A + RC[nr],where RC[nr] is the round constants.
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Table 3. The Major Notations in Our Attack

Notation Description

c Capacity of a sponge function

r Rate of a sponge function

b Width of a KECCAK permutation in bits, b = r + c

d Length of the digest in bits

p Number of fixed bits in the initial state due to padding

i Period of a symmetric state or an internal difference

θ, ρ, π, χ, ι The five mappings that comprise a round

L Composition of θ, ρ, π and its inverse denoted by L−1

Rj(·) KECCAK permutation reduced to the first j rounds

S(·) 5-bit Sbox operating on each row of KECCAK state

δin, δout 5-bit input and output differences of an Sbox

M Padded message of M . Note that M is the last block in our attack

M0||M1 Concatenation of strings M0 and M1

α
(j−1)
i Input internal difference of the j-th round function with period i

β
(j−1)
i Input internal difference of χ in the j-th round with period i

A(j−1)
i Bit value vector before θ in the j-th round with period i

B(j−1)
i Bit value vector before χ in the j-th round with period i

Δ(·) Internal difference of one state

v(j−1) Canonical representative state of the internal difference in the j-th round

The addition and multiplication are in GF (2). Since we analyse round-
reduced variant with at most 5 rounds, we only give the first five round constants:
0000000000000001, 0000000000008082, 800000000000808a, 8000000080008000,
000000000000808b (given in hexadecimal using the little-endian format).

3 Overview of the Attack

3.1 Notations

We summarize the major notations to be used in this paper in Table 3. In this
paper, the addition operation of KECCAK’s state is performed on GF (2) or the
linear space over GF (2).

3.2 Overview of the Attack

In this section, we give an overview of our collision attacks. Based on the frame-
work of Dinur et al. [9] and a variant of birthday attack, our collision attack
consists of two parts, i.e., a high probability internal differential characteristic
and several collision subsets generated by the characteristic for finding collisions.

Given an (nr − 1.5)-round internal differential characteristic, there are three
stages in our nr-round collision attacks:
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• Stage 1—Selecting messages stage: Obtain linear conditions from the 2-round
internal differential characteristic and get several subspaces of messages pass-
ing the first 2 rounds.

• Stage 2—Collecting messages stage: Compute the outputs after (nr − 1.5)
rounds functions from the subspaces found in Stage 1, and store these outputs
into different sets.

• Stage 3—Brust-force searching stage: By brust force, find a collision from the
outputs after target round of each set in Stage 2.

The collecting messages stage and the brute-force searching stage are simple,
although they take up the main time complexity. Therefore, the core step of our
attack is selecting messages to reduce the complexity of the collision searching
stage. In [9], Dinur et al. use an algebraic method to reduce the workload of
finding messages conforming to the first χ transition. In Sect. 5, we show a new
method to select messages passing the first two rounds functions, which saves
even more time complexity.

3.3 A Variant of Birthday Attack

When searching for collisions among the outputs of a hash function H, the
birthday attack is the simple technique of selecting distinct inputs xj for j =
1, 2, . . . randomly and checking for a collision among the H(xj) values. The
probability that no collision is found after 2t inputs is

(1 − 1/2n)(1 − 2/2n) · · · (1 − (2t − 1)/2n) ≈ e−2t(2t−1)/2n+1
(1)

where 2n is the cardinality of the range of H [17]. A collision can be found with
high probability for t = n/2. If t is much smaller than n/2, the probability of a
collision being found is close to zero. But by repeating the process of selecting 2t

inputs randomly many times, we can also find a collision with high probability.
This is a variant of birthday attack, which is reformulated as follows. Assume
that the hash function H maps 2k input subsets S1, . . . , S2k into output subsets
D1, . . . , D2k (called collision subsets) and is a random function when it is con-
fined to any set Sj , where Sj (j = 1, . . . , 2k) and Dj (j = 1, . . . , 2k) are both
pairwise disjoint respectively, |Sj | = 2l, |Dj | = 2m (m > 2l). If a collision is
found with a probability P for t = n/2 in Eq. (1), the expected number of the
collision subsets to be searched is 2w (w ≤ k) with the same success probability
P . The relationship between l,m and w is shown as follows:

1 − P ≈ (e−2l(2l−1)/2m+1
)
2w

(2)

= e−2l+w(2l−1)/2m+1
(3)

then
2l + w = m. (4)

For the randomly selected input x in the union of all Sj (denoted as S′), assume
that we can determine which output subset H(x) belongs to, but cannot deter-
mine the input subset corresponding to x. So the probability of H(x) in subset
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Dj is 2−k for any j ∈ {1, . . . , 2k}. In order to ensure that each collision subset
has at least two values on average, the number of randomly selected inputs is at
least 2k+1. Therefore, the total number N of inputs we need can be expressed
as

N =

{
2(m+w)/2 k < m,

2k+1 k ≥ m.
(5)

In the attack on 3-round SHA3-512, we use the internal differential character-
istic (k = 20,m = 40) given in [4] for finding collisions. With 233 random input
messages, we can calculate l = 33 − 20 = 13, w = 40 − 2 · 13 = 14. This means
that we need to search 214 collision subsets to find a collision with probability
(1 − P ) ≈ 0.4. When w = 15, we can find a collision with a probability close to
1 according to Eq. (2). In this experiment, about 25 collision subsets produced
collisions, which means that we will get one collision for every 215 collision sub-
sets searched. It can be seen that the experimental value of the collision subset
number (w) is very close to the theoretical value.

Assume that H maps a set S of possible inputs into a set D of possible
outputs and S′ =

⋃2k

j=1 Sj , D′ =
⋃2k

j=1 Dj . In our attack, take 4-round SHA3-512

as an example (Fig. 2). |S| = 21600, |D| = 2512, |S′| = 2252, |Dj | = 2320. There
are 2156 output subsets Dj , and the size of their union D′ is 2156+320 = 2476.
By using conditional internal differentials, the probability of transition from S′

to D′ is 1. We construct the hash table based on the size of Dj instead of D
for collision search, and the search can be performed simultaneously in multiple
collision subsets. The expected number of inputs to find a collision is 2238.

Fig. 2. A variant of birthday attack
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4 Description of Internal Difference

In this section we first review the concepts proposed by Dinur et al. [9] in their
generalization of internal differential, and then define a new metric that can
be used to calculate the transition probability of the internal differential more
accurately.

4.1 Internal Difference Sets and Representatives

An important property of KECCAK is that if one state has period i in the z-axis
(i.e., satisfies A[x][y][z] = A[x][y][(z + i) mod 64], for all (x, y, z)), then applying
to it any of the θ, ρ, π, χ operations, still maintains the period. This state is called
a symmetric state. Since the fundamental period corresponding to i is gcd (i, 64),
we can redefine i ∈ {1, 2, 4, 8, 16, 32}. For i = 16, a symmetric state A[x][y][z]
is composed of four repetitions of slices 0–15. Each such sequence of slices (0–
15, 16–31, 32–47, 48–63) is called a consecutive slice set or CSS in short. This
definition can extend naturally to any i ∈ {1, 2, 4, 8, 16, 32}.

Note that the ι operation disturbs the symmetry because all round constants
are not periodic. Namely, the round constants are not the same among the CSS.

In an internal differential characteristic, unlike standard differential analysis,
the round constant affects the characteristic by introducing a difference between
all CSS’s. This difference then propagates through the other operations, and
its development has to be further studied and controlled. To characterize the
difference between general states and symmetric states, the internal difference is
defined as follows. Given a period i, the set {v + u|u is symmetric} obtained by
adding all symmetric states with period i to a single state v is called the internal
difference, recorded as [i, v]. The zero internal difference [i,0] is exactly the set
of all symmetric states, and other internal differences [i, v] are cosets of [i,0]
(satisfies [i, v] = [i,0] + v). The state v is called the representative state, and
all of [i, v] can be regarded as the representative state. In this paper, we choose
v satisfying v[x][y][z] = 0 (z ∈ {64 − i, . . . , 63}) as the canonical representative
state (exists uniquely in each internal difference). Since the internal difference is
an affine space on GF (2), the action of linear mappings on [i, v] is determined
by their action on the representative state. Namely, θ([i, v]) = [i, θ(v)], ρ([i, v]) =
[i, ρ(v)], π([i, v]) = [i, π(v)], ι([i, v]) = [i, ι(v)].

4.2 Transition Probability of Internal Difference

As in standard differential cryptanalysis, the output difference of the internal
difference applying χ depends on the actual input, only if the input difference
is zero internal difference, the output difference is unique and also a zero inter-
nal difference. In other words, we randomly select several states from the same
internal difference as the inputs of χ, and the outputs may belong to different
internal differences. As in standard differential analysis, when an internal differ-
ence is identified as an input to χ, we need to calculate its all possible output
internal differences and the transition probability to a possible output internal
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difference. For this purpose, we propose the concept of differential transition
conditions in combination with the properties of the KECCAK Sbox.

Property 1. Given the input difference δin = (δ0, . . . , δ4)
T of the 5-bit

KECCAK Sbox, the output difference δout is determined by q (2 ≤ q ≤ 4) lin-
ear conditions with respect to the actual input x = (x0, . . . , x4)

T . The q linear
conditions {lt(x)}q−1

t=0 (without constant terms) are called differential transition
conditions. Equivalently, δout = S(x) ⊕ S(x ⊕ δin) = C · x ⊕ η, where C ∈ F

5×5
2 is

a matrix (rank(C) ∈ {2, 3, 4}) and η ∈ F
5
2 is a constant vector. It can be easily

verified that C and η can be represented by δin as

C =

⎛

⎜⎜⎜⎜⎝

δ2 δ1
δ3 δ2

δ4 δ3
δ4 δ0
δ1 δ0

⎞

⎟⎟⎟⎟⎠
, η = S(δin) =

⎛

⎜⎜⎜⎜⎝

δ0 ⊕ (δ1 ⊕ 1)δ2
δ1 ⊕ (δ2 ⊕ 1)δ3
δ2 ⊕ (δ3 ⊕ 1)δ4
δ3 ⊕ (δ4 ⊕ 1)δ0
δ4 ⊕ (δ0 ⊕ 1)δ1

⎞

⎟⎟⎟⎟⎠
.

Remark 1. Property 1 holds for the KECCAK Sbox due to its algebraic degree of
2, and a similar property applies to any Sbox with algebraic degree of 2.

Take δin = 0x3 as an example, the output difference is

δout =

⎛

⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

⎞

⎟⎟⎟⎟⎠
⊕

⎛

⎜⎜⎜⎜⎝

1
1
0
1
0

⎞

⎟⎟⎟⎟⎠
.

The differential transition conditions are {l0 = x4, l1 = x2, l2 = x0 + x1}, and
their corresponding output differences are recorded in Table 4. We call the table
containing differential transition conditions difference conditions table (DCT) of
the Sbox. The new table constructed by assigning the differential transition
conditions in DCT and recording their resulting output differentials is called values
of difference conditions table (VDCT).

Table 4. The differential transition conditions of δin = 0x03

δout 0x0b 0x1b 0x0a 0x1a 0x03 0x13 0x02 0x12

(l0, l1, l2) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

In internal differential cryptanalysis, we call the set E composed of all differ-
ential transition conditions obtained from the canonical representative state of a
internal difference as the differential transition conditions of the internal differ-
ence. The rank of E is called the transition condition number, and the transition
condition number of the i-th round is denoted as ki. If the transition condition
number of [i, v] is k, there are 2k possible output internal differences and the
upper bound of transition probability is 2−k. In Procedure IDTC , we show the
details of calculating transition condition number.
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Procedure IDTC(A,A′, i,DCT, V DCT,E)
Input: The input internal difference A before χ, the output internal difference

A′ of A, period i, DCT, VDCT, a linear equation system E.
Output: The updated linear equation system E.

1 for each integer j ∈ [0, 320) do
2 Obtain the input difference δin of the j-th Sbox from A.
3 Obtain the output difference δout of the j-th Sbox from A′.
4 if δin �= 0 then

5 Obtain differential transition conditions E0 = {lj(W )}q−1
j=0 from DCT[δin],

where W is a 25i-bit variable vector.
6 Obtain value of conditions (ε0, . . . , εq−1) from VDCT[δin][δout].

7 Update E0 = {lj(W ) = εj}q−1
j=0 .

8 E = E ∪ E0.

9 end

10 end
11 return E

5 The Framework and Basic Techniques

In this section, we first present the basic framework of collision attacks on the
SHA-3 hash functions with reduced rounds. Then we show the details of tech-
niques and some optimizations for improving our attack.

5.1 The Framework of the Attack

Following the variant of birthday attack, we adopt the strategy of first collecting
messages and storing them in different sets, and then performing collision search
in each set in turn. Figures 3 and 4 show the basic framework of our attack.

In Stage 1, the probability of the first two rounds in Fig. 3 can be increased
to 1 by algebraic methods (as described in next section), while losing exactly
(k1+k2) degrees of freedom. In the collecting messages stage, the messages after
two round functions and linear operations of the third round (i.e., the first 2.5
rounds) are stored in different sets according to certain rules for the third stage.
In Stage 3, the internal difference after 2.5 rounds results in 2k3 different internal
differences after the χ operation, and the set generated by the j-th internal
difference after another round function is denoted as D(j). Since the probability
of collision in the same D(j) is much higher than between different sets, we search
for collisions in each D(j) in sequence. But in most cases, we conduct collision
search on subsets one by one before χ operation of the last round. In this case,
the subsets can be regarded as collision subsets and are pairwise disjoint. Note
that all the messages selected in Stage 1 enter a certain collision subset in Stage
3, so we establish an internal differential with probability 1.

In the framework of collision attack on 5-round SHA-3, we select 2-block mes-
sages as inputs and use improved target internal difference algorithm (TIDA).
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Fig. 3. The framework of 4-round collision attack

Fig. 4. The framework of 5-round collision attack

The internal differential characteristic used in the attack is given in Character-
istic 3 in Appendix A, which covers 2.5 rounds starting from the second round.
TIDA is used to find the initial internal difference and the first messages to con-
struct a complete internal differential characteristic with high probability. The
full details and analysis of the attack are given in Sect. 5.5.

5.2 Finding Messages Conforming 2-Round Internal Differential
Characteristic

In this section, we present an algorithm for finding messages conforming to
the first two χ transitions as depicted in Algorithm 1. For a known internal
differential characteristic, as shown in Fig. 3, let the states with period i in the
internal difference be expressed as follows:

u(0) = v(0) + A(0)
i , u(0.5) = v(0.5) + B(0)

i , u(1) = v(1) + A(1)
i , u(1.5) = v(1.5) + B(1)

i ,

where u(j+0.5) and v(j+0.5) are the state and the internal difference before the
(j + 1)-th χ transition respectively, A(0)

i ,B(0)
i ,A(1)

i ,B(1)
i are all symmetric state

with period i and they have the following vector form (determined by their CSS):

A(t)
i = (a(t)

0 , . . . , a
(t)
25·i−1),B(t)

i = (b(t)0 , . . . , b
(t)
25·i−1),

where (a(t)
j·i , . . . , a

(t)
j·i+i−1) are the first i bits of the j-th lane of A(t), and A(0)

i

satisfies the padding rule and equals to 0 in the capacity part. In order to pass
the χ operations of the first two rounds with probability 1, we should find A(0)

i

such that B(0)
i and B(1)

i satisfy the respective differential transition conditions
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Algorithm 1: Finding Messages Passing 2-round Internal Differential
Input: An internal differential characteristic, and a period i.
Output: Initial messages conforming 2-round internal differential

1 Ej = ∅, j ∈ {0, 1, 2, 3, 4, 5}
2 Set A(0)

i , B(0)
i , A(1)

i , B(1)
i to being 25i-variable vectors.

3 Add constraints on A(0)
i such that the symmetric state generated by A(0)

i

satisfies the padding rule and equal to 0 in the capacity part.
4 Obtain the input internal difference v(1.5) and the output internal difference

v(2) + Δ(RC[2]) of the second χ from the given characteristic.
5 IDTC(v(1.5), v(2) + Δ(RC[2]), i, DCT, VDCT, E1).

6 Transform E1(b
(1)
0 , . . . , b

(1)
25·i−1) to E1(a

(1)
0 , . . . , a

(1)
25·i−1).

7 for each a
(1)
j appearing in E1(A(1)) do

8 E2 = E2 ∪ {b
(0)

�j/5i�·5i+[(j+i) mod 5i] = xt}.

9 t = t + 1.

10 end

11 Obtain the input internal difference v(0.5) and the output internal difference

v(1) + Δ(RC[1]) of the first χ from the given characteristic.
12 IDTC(v(0.5), v(1) + Δ(RC[1]), i, DCT, VDCT, E0).
13 E4 = E0 ∪ E2.

14 Transform E4(b
(0)
0 , . . . , b

(0)
25·i−1) to E4(a

(0)
0 , . . . , a

(0)
25·i−1).

15 Reduce E4.
16 do

17 Randomly assign values to the free variables in {xj}t−1
j=0.

18 Obtain E3 by subsituting E2 into E1.

19 Transform E3(b
(0)
0 , . . . , b

(0)
25·i−1) to E3(a

(0)
0 , . . . , a

(0)
25·i−1).

20 E5 = E3 ∪ E4.

21 while E5 is not consistent ;
22 Solve E5 and obtain the initial messages.
23 return initial messages

(denoted as E0(B(0)
i ) and E1(B(1)

i ) appearing in Algorithm 1). E0(B(0)
i ) and

E1(B(1)
i ) can be transformed into E0(A(0)

i ) and E1(A(1)
i ) by the linear operation

(L(A(0)
i ) = B(0)

i , L(A(1)
i ) = B(1)

i ). Since A(1)
i = χ(B(0)

i ), a
(1)
j = b

(0)
j ⊕ (b(0)j+i ⊕ 1) ·

b
(0)
j+2i, we regard b

(0)
j+i as a variable x, then

a
(1)
j =

{
b
(0)
j ⊕ b

(0)
j+2i, x = 0,

b
(0)
j , x = 1.

In general, all bits b
(0)
j+i corresponding to the bits a

(1)
j appearing in E1(A(1)

i ) are
set as intermediate variables {xt}t∈I (I is index set), and the system composed
of b

(0)
j+i = xt is E2. Noting that each xt is the value of a bit b

(0)
j , it is actually

a linear equation about A(0)
i . So {xt}t∈I may be linearly independent. We call
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the variables in the maximal linearly independent system of {xt}t∈I are the
free variables (short for free intermediate variables). After assigning a value to
{xt}t∈I , E1 can be expressed as a linear system of B(0)

i , which is also a linear
system of A(0)

i , denoted as E3. For the convenience of calculation, we combine
the transition conditions of the first round and assignment conditions (E0 ∪E2).
Then, by solving the linear system E0 ∪E2 ∪E3 and XORing each solution with
v(0), the message M conforming 2-round internal differential characteristic is
obtained. In fact, all messages M satisfying the first two χ transitions can be
found in this way, because we can traverse all possible values of {x}t∈I . Therefore,
we lose (k1 + k2) degrees of freedom in total. We need to remove linear related
conditions in the linear system and {xt}t∈I , the details of algorithm are shown
in Algorithm 1. As a simple example, in Fig. 5, we set k1 = 3, k2 = 2, and the
number of free variables is t = 3. If the total number of initial messages is 2n,
the differential transition conditions of the first round divides the message spaces
into eight subspaces, one of which (named S1) conforms the first χ transition.
Each assignment of the free variables divides the space S into 2k3 = 8 subspaces,
and also divides S1 into 2t = 8 parts (named S2). The second round differential
transition conditions divide each S2 into 2k2 = 4 subspaces, one of which (named
S3, as shown by the shadow) conforming the second χ transition. The expected
size of S3 is 2n−8. After all possible values of the free variables are retrieved,
about 2n−5 messages will conform the first two χ transitions.

Fig. 5. Message subspaces S and S1

5.3 Collecting Messages Belonging to Different Internal Difference

We give the details of Stage 2, which collect and store messages into different
sets to determine which internal difference the state belongs to after the last
linear operation.

For 4-round collision attacks, the values of differential transition conditions

of the third round are denoted as E(B(2)
i ) = {lt(B(2)

i )}k3−1

t=0 , where B(2)
i =

R(2.5)(M) ⊕ v(2.5) (M is the message output by Algorithm 1). Then M is stored
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in D(index) with index =
∑k3−1

t=0 lt ·2t, where D(j) corresponds to the j-th output
internal difference. In 5-round collision attacks, we calculate the corresponding
data for the 4-th round instead. The details of this step for 4-round collision
attacks are shown in Algorithm 2. In order to apply the variant of birthday
attack and reduce complexity, in most cases, we will search collisions before the
last χ operation, where D(j) is the internal difference of (nr − 0.5) rounds for
nr-round collision attacks.

Algorithm 2: Store Messages into Set D(i)

Input: Message M output from Algorithm 1, subset family

D = {D(0), . . . , D(2k3−1)}, 2.5-round internal differential characteristic.

Output: Subset family D = {D(0), . . . , D(2k3−1)}.

1 Compute B(2)
i = R(2.5)(M) ⊕ Δ(R(2.5)(M)) and set E = ∅.

2 for each integer j ∈ [0, 320) do

3 Get the input difference δin of the j-th Sbox from Δ(R(3.5)(M)).
4 if δin �= 0 then
5 Get differential ransition conditions E1 from DCT[δin].
6 E = E ∪ E1.

7 end

8 end
9 Reduce E = {l0, . . . , lk3−1}.

10 Compute (η0, . . . , ηk3−1) = (l0(B(2)
i ), . . . , lk3−1(B(2)

i )).

11 index =
k3−1∑

j=0

ηj · 2j .

12 D(index) = D(index) ∪ {M}.
13 return D

5.4 Bounding the Size of Collision Subset

In the variant of birthday attack, the size of the collision subset determines the
time complexity. We use the method in [9] to bound the size of the collision
subset.

The collision subset is essentially the output of ι◦χ, and the subset of internal
difference is the input of χ. Obviously, operation ι can be ignored since it does
not affect the size of the collision subset. A property of χ is that it is applied
independently on each plane of the state and in particular, maps each plane to
itself. When the output is the first d bits of the final state, we bound the number
of its possible values by computing the size of which the internal difference is
projected onto its first 320�n/320� bits. For d = 384 and d = 448, the size
of collision subset can be bounded more accurately: each output bit A[x][y][z]
of χ depends on the 3 input bits A[x][y][z], A[x + 1][y][z] and A[x + 2][y][z].
Therefore, each output lane A[x][y][·] of χ only depends on the 3 input lanes
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A[x][y][·], A[x + 1][y][·] and A[x + 2][y][·]. In the case of d = 384, the first 5
lanes are mapped to themselves by χ, and the remaining lane depends on only
3 consecutive lanes. For d = 448, the 7 output lanes depend on 9 input lanes.

For d-bit collision subset, given that it depends only on the first d′ bits
before the χ mapping. As the period is i, each lane can assume at most 2i

values. Thus, for 256 ≤ d ≤ 320 (d′ = 320) we obtain a basic bound of 25i and
for 512 ≤ d ≤ 640 (d′ = 640) we obtain a basic bound of 210i. For d = 384
(d′ = 512) and d = 448 (d′ = 576), the computation can be divided into two
parts: the first 5 lanes of the output can assume at most 25i values, and the
remaining bits can assume at most min(264, 23i) and min(2128, 24i) values. From
the previous analysis, we obtain a bound of 25i · min(264, 23i) for d = 384 and a
bound of 29i for d = 448. Clearly, the bound only depends on i and d′ (which
determined by d).

5.5 The Target Internal Difference Algorithm

Dinur et al. [8] explored the target difference algorithm (TDA) to link a dif-
ferential characteristic to the initial state of the KECCAK permutation. In [9],
they generalized this method as a variant for internal differential cryptanalysis,
which is called target internal difference algorithm (TIDA). Analogously, the
TIDA is used to link an internal differential characteristic to the initial state,
using one permutation round. The initial internal difference of the internal dif-
ferential characteristic is called the target internal difference, denoted by ΔT ∗ .
The outputs of the algorithm are single-block messages whose internal difference
after one permutation round is ΔT ∗ .

In this section, we focus on ΔT = ΔT ∗ ⊕ Δ(RC[1]) and set it as the target
internal difference. We modify the output of the algorithm to 2-block messages
and apply it to our 5-round collision attack. Namely, given a target internal
difference ΔT , we use TIDA (Algorithm 3) to find 2-block messages (M0||M1)
such that

Δ[χ ◦ L(R5(M0||0c) ⊕ (M1||0c))] = ΔT . (6)

The first step in constructing the algorithm is to choose period i = 32 (and
all operations of internal difference are performed on the state that the length of
each lane is 32) so that the equations in the algorithm will have enough degrees
of freedom. Then, according to a property of χ provided in [8] (as shown in
Property 2), the input internal differences corresponding to ΔT span several
affine subspaces.

Property 2 ([8]). For a non-zero 5-bit output difference δout to a KECCAK Sbox,
the set of possible input differences, {δin|DDT (δin, δout) > 0}, contains at least
5 (and up to 17) 2-dimensional affine subspaces.

We select an 800-dimension subspace (named W ) and map it to the initial
internal difference Δ�

I = L−1(W ). The first block M0 is randomly selected until
it satisfies that there is a internal difference ΔI in L−1(W ) equal to the internal
difference of R5(M0||0c) on the padding and capacity bits. Note that the internal
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Algorithm 3: Target Internal Difference Algorithm (TIDA)
Input: Target internal difference ΔT , target transition condition number kT ,

and target number of rounds nr.
Output: 2-block message (M0, M1), initial internal difference ΔI , k1 of L(ΔI)

1 Set EΔ = ∅ and Δ�
I = L−1(W ) with a variable vector W = (w0, . . . , w799).

2 for each non-active Sbox of ΔT do
3 EΔ = EΔ ∪ {w5j = 0, . . . , w5j+4 = 0}, for the j-th Sbox.
4 end
5 for each active Sbox of ΔT do
6 Select one 2-dim affine subspace from δin according to ΔT .
7 Add 3 affine equations to EΔ according to the 2-dim affine subspace.

8 end
9 do

10 Randomly select M0 and compute Δ(Rnr (M0)).

11 Ec = {Δ�
I [j] = Δ(Rnr (M0))[j]}799

j=800−p−c/2

// Δ�
T [j] is the j-th bit of Δ�

T , the same in Δ(Rnr (M0))

12 while EΔ ∪ Ec is not consistent ;
13 Randomly select a solution ΔI of EΔ ∪ Ec.
14 Calculate k1 corresponding to ΔI .
15 if k1 < kT then
16 Set E0 = ∅.
17 IDTC(L(ΔI), ΔT , 32, DCT, VDCT, E0).
18 if E0 is consistent then
19 Break.
20 end

21 end
22 M1 = Rnr (M0) ⊕ ΔI ⊕ sym, where sym is a random symmetric state satisfying

padding rule and equals to 0 in the capacity part.
23 return (M0, M1), ΔI , k1

difference ΔI is obtained after the first block M0 is determined, we can calculate
the transition condition number k1 of L(ΔI). In order to obtain smaller k1, we
select more M1 to get several ΔI and choose the best input internal difference.
The remaining bits of ΔI can be satisfied by modifying the value of the second
block M1. However, due to the insufficient degrees of freedom of the second
block, Eq. (1) may not have a solution. In other words, if the transition condition
number of L(ΔI) is k1, it results in 2k1 different output internal differences. But
the degree of freedom of M1 is less than 800, not all Sboxes have enough inputs
to generate all possible outputs. The number of actual output internal differences
may be less than 2k1 , and ΔT may not be among them. When this occurs, we
need to redefine the first block M0. The details are given in Algorithm 3, and
the above process is equivalent to solving equation systems.
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6 Results and Complexity Analysis

In this section, we present the details and experimental results of our collision
attack on different versions of SHA-3. Given an internal differential characteristic
spanning (nr − 1.5) rounds of the KECCAK permutation, a collision attack on
nr-round SHA-3 consists of the following steps:

1. Construct linear equation systems according to the differential transition con-
ditions of the first two rounds and solve them to get enough initial messages.

2. Pick an arbitrary message obtained in Step 1 and calculate its internal dif-
ference after (nr − 1.5) rounds. If the internal differential characteristic is
satisfied, store the message into the corresponding subset. Otherwise, discard
the message and go back to Step 2 until collect enough states.

3. Choose an unselected subset.
(a) Pick a state and store its output after the nr-th round in a hash table

(along with its initial message) and check for a collision.
(b) If a collision is found, stop and output it. Else if all states are chosen and

there is no collision, go back to Step 3. Otherwise, go back to (a).

6.1 Collision Attacks on 4-Round SHA3-384 and SHAKE256

For 4-round SHA3-384 and SHAKE256, we use the same 2.5-round characteristic
(Characteristic 1 in Appendix A). We choose i = 8 and use the techniques of
Sects. 5.1, 5.2 and 5.3. The transition condition numbers of the characteristic are
(k1, k2, k3) = (11, 8, 78). The size of {xt}t∈I is 80. There are 59 free variables in
SHA3-384 and 72 free variables in SHAKE256. Therefore, in Stage 1, the number
of assignments to {xt}t∈I will not exceed 272.

For SHA3-384 and SHAKE256 (d ≤ 448), the size of each collision subset is
less than k3. In order to launch collision attack, we need to ensure that there are
at least two messages in each collision subset on average. So in the first stage we
select 279 messages conforming to the first two χ transitions. For d = 448, we
can find a collision with good probability by searching 271 collision subsets, and
we need fewer collision subsets for smaller d. So the complexity is mainly caused
by the first two stages, and it can be reduced by placing eight messages in each
state. More specifically, if the initial state can be expressed as u(0) = A(0) +v(0),
where A(0) is a fully symmetric state with period i = 8 and v(0) is the initial
internal difference in Characteristic 1. Rewrite A(0) as follows:

A(0) = (A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ),

where A(0)
8 is a CSS of A(0), and A = (A1, . . . ,Aj) means each lane of the state

A is the concatenation of the lane corresponding to Ak (k = 1, . . . , j). The linear
operation L acting on the (5 × 5 × 8)-bit state is denoted by L[8]. Due to the
property of KECCAK mentioned in Sect. 4.1, L(A(0)) has the following expression:

L(A(0)) = (L[8](A(0)
8 ), . . . , L[8](A(0)

8 )).
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In Characteristic 1, the canonical representative states of the first two rounds
are fixed-points of θ. Namely, the states are in the CP-kernel. As a result, The
first 2.5 rounds of operation of the messages u(0) selected in Stage 1 can be
simplified:

L(u(0)) = L(A(0)) + L(v(0)) = (L[8](A(0)
8 ), . . . , L[8](A(0)

8 )) + L(v(0))

u(0.5) = B(0) + v(0.5) = (B(0)
8 , . . . ,B(0)

8 ) + v(0.5)

ι ◦ χ(u(0.5)) = χ(B(0) + v(0.5)) + RC ′[1] = (A(1)
8 , . . . ,A(1)

8 ) + v(1).

Since the last 8 bits in each lane of the canonical representative states are zero,
the last CSS of B(0) + v(0.5) is B(0)

8 which means A(1)
8 = χ(B(0)

8 ). In the second
round:

L(u(1)) = L(A(1)) + L(v(1)) = (L[8](A(1)
8 ), . . . , L[8](A(1)

8 )) + L(v(1))

u(1.5) = B(1) + v(1.5) = (B(1)
8 , . . . ,B(1)

8 ) + v(1.5)

ι ◦ χ(u(1.5)) = χ(B(1) + v(1.5)) + RC ′[2] = (A(2)
8 , . . . ,A(2)

8 ) + v(2),

where A(2)
8 = χ(B(1)

8 ), RC ′[j] = Δ(RC[j]), j ∈ {1, 2}. And in the third round,
B(2)
8 = L[8](A(2)

8 ). Therefore, in the collecting messages stage, we can simul-
taneously calculate eight messages u

(0)
0 , . . . , u

(0)
7 and calculate their transition

conditions of the third round in the following way:

L ◦ χ ◦ L ◦ χ ◦ L(A(0)
8,0, . . . ,A(0)

8,7)

= (L[8] ◦ χ ◦ L[8] ◦ χ ◦ L[8](A(0)
8,0), . . . , L[8] ◦ χ ◦ L[8] ◦ χ ◦ L[8](A(0)

8,7))

= (B(2)
8,0,B(2)

8,1,B(2)
8,2,B(2)

8,3,B(2)
8,4,B(2)

8,5,B(2)
8,6,B(2)

8,7),

where A(0)
8,j is a CSS of the symmetric state of u

(0)
j . From each B(2)

8,j we can obtain
the transition conditions and calculate the index wj of its internal difference, then
store it into the set D(wj) (the wj-th output internal difference after the third χ).

After collecting messages stage, we compute the outputs of each set after L◦χ
(the state also can be divided into eight parts to simultaneously calculate eight
symmetric states) and find a collision. According to the analysis in Sect. 5.4,
in order to produce the final collision, the location of the collision needs to be
determined. For 256 ≤ d ≤ 320, we have to find collisions on the first 5 lanes
before the last χ. For d = 384, the collision location is the first 8 lanes. And
for d = 448 and 512 ≤ d ≤ 640, the number is 9 and 10. Taking d = 320
as an example, if there is a collision (B(3)

8,p,B(3)
8,q) on the first 5 lanes, then for

any internal difference Δ = (Δ0, . . . ,Δ7), ι ◦ χ(B(3)
8,p + Δ0, . . . ,B(3)

8,p + Δ7) and

ι◦χ(B(3)
8,q +Δ0, . . . ,B(3)

8,q +Δ7) will be equivalent on the first 320 bits. Therefore,

we can calculate their initial symmetric states A(1)
8,p and A(1)

8,q, and get the initial
messages Mp and Mq by XORing with the initial internal difference. After the
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previous analysis, we can find a collision R4(Mp) and R4(Mq) on the first 320 bits.
Note that this technique can be extended naturally to any i ∈ {1, 2, 4, 8, 16, 32}.
And for d > 448, we also need 279 messages to launch attack from the Eq. (1).
In all cases, the expected complexity is 279−3 = 276. This is 271 times faster than
the internal differential attack by Dinur et al. [9] for 4-round SHA3-384.

6.2 A Collision Attack on 4-Round SHA3-512

For 4-round SHA3-512, we choose i = 32 and used the 2.5-round internal differ-
ence characteristic given in Characteristic 2 in Appendix A. The transition condi-
tion numbers of the characteristic are (k1, k2, k3) = (16, 16, 170). For k3 = 170,
there are 2170 different internal differences after the χ mapping of the third
round. These internal differences actually compose a 170-dimensional affine space
(denoted as U) over GF (2). The projection of the affine space L◦ι(U) on the first
10 lanes consists of internal differences which are projected to the first 10 lanes,
and its dimension is 156. For d = 512, we collect the messages with the same
internal difference in the first 10 lanes into a set. Then we need fewer messages
for generating collisions.

In selecting messages stage, the size of the variable set {xt}t∈I is 172,
and there are 138 free variables. Therefore, we obtain 2284−(138+16+16) = 2114

expected messages after the variables of {xt}t∈I are assigned each time. Since
the size of collision subset is 210·32 = 2320, we need to choose 2(320+156)/2 = 2238

messages, which conforming the first two rounds internal differential character-
istic, in order to find a collision with high probability. In order to obtain enough
messages, we make 2238−114 = 2124 different assignments to {xt}t∈I .

In the next stage, we compute the outputs after 3.5 rounds functions from
the subspaces found in Stage 1. Then collect the outputs with the same internal
difference in the first 10 lanes into a set.

In searching stage, the sets obtained from the previous step are considered
as collision subsets, and we search for collisions on the first 10 lanes in each
collision subset in turn. If there is a collision (B(3)

32,0,B(3)
32,1) in a collision subset

with Δ (projection of the canonical representative state on the first 10 lanes), it
will result in a collision χ(B̃(3)

32,0, B̃(3)
32,0 ⊕ Δ) = χ(B̃(3)

32,1, B̃(3)
32,1 ⊕ Δ) after 4-round,

where B̃(3)
32,j is the projection of B(3)

32,j on the first 10 lanes for j = 0, 1. In fact,
the value of this internal difference does not need to be calculated. We can use
the inverse operation to obtain the initial messages corresponding to B(3)

32,0 and

B(3)
32,1, and then calculate the outputs after 4-round function, following Sect. 6.1.

Since period i = 32 is half the lane size, we can put the first CSS of two
completely symmetric states in each state to represent the corresponding message
for calculation (as in Sect. 6.1). The expected time complexity of calculating the
output of all messages after 4-round permutation is bounded by 2238−1 = 2237,
and the complexity caused by assignment to {xt}t∈I can be ignored. This is 219

times faster than the general birthday attack.
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6.3 A Collision Attack on 5-Round SHAKE256

In this section, we present a collision attack on 5-round SHAKE256. Our attack
uses internal differential characteristic given in Characteristic 3 in Appendix A,
which covers 2.5 rounds satrting from the second round. The transition condition
numbers of the characteristic are (k2, k3, k4) = (21, 18, 16). For [32, ι−1(v(1))],
there 129 active Sboxes and 31 non-active Sboxes. Each active Sbox provides 3
linear equations, each non-active Sbox provides 5 linear equations, and the first
message block provides 262 linear equations. The size of the linear system used to
solve the input internal difference L(ΔI) is 804, and the rank is 779. Therefore,
we can obtain a consistent linear system EΔ ∪Ec by randomly select 225 the first
blocks on average. Since the number of variables in the linear system is 800 and
the rank is 779, each consistent linear system EΔ ∪ Ec has 221 solutions (ΔI).
For i = 32, the internal differential transition conditions number is the sum of
the transition condition numbers of all Sboxes of the canonical representative
state. Let k(Sj) be the transition condition number of the j-th Sbox for ΔT ,
then we can calculate the expectation of k1:

E(k1) =
159∑

j=0

E(k(Sj)). (7)

Assume that δ
(j)
out is the output difference of Sj and the 2-dimension affine sub-

space of its possible input differences we choose is {δ0, δ1, δ2, δ3}. For input dif-
ference δ

(j)
in , its transition condition number is the rank of the subspace formed

by all possible output differences. So the expectation of k(Sj) is expressed as:

E(k(Sj)) =
1
4

3∑

j=0

(5 − log2 DDT(δ
(j)
in , δ

(j)
out)). (8)

The expected transition condition number of ΔI is 410.5, so we can easily obtain
massive characteristics with k1 < 400 to get enough messages. The smallest k1
we have found is 375. We also use the technique in Sect. 6.1 to put two messages
in the same state when performing the attack, which reduces the complexity
on average by half. In selecting messages stage, the size of {xt}t∈I is 224 and
there are 93 free variables for the characteristic. In collecting messages stage,
we store the states after 3.5 rounds in different subsets, which are the output
internal differences of states after the fourth χ operation. In searching stage, for
d = 384, the collision subsets are the outputs after 5-th round of subsets in Stage
2. In this case, the size of each collision subset is bounded by 232·5+64 = 2224

and the collision subsets are pairwise disjoint. Actually, due to χ acting on the
first 5 lanes is bijection, the projection of any collision subset and its internal
difference before the last χ is one to one on the first 320 bits. It can be seen
from Characteristic 3 that there are 2k3 = 216 different internal differences, and
their projections on the first 5 lanes can be verified to be different from each
other. When conducting collision search, we need to calculate the complete state.
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So the time complexity in total is 218+(224+16)/2 = 2138. If we take the internal
difference of 4.5-round as the collision subset, in order to produce a collision after
5-round, we need to find a collision of the first 8 lanes before the last χ. The size
of each collision subset is 28·32 = 2256, which will lead to more time complexity
218+(256+16)/2 = 2154. For other d, we still search collisions before the last χ and
use the techniques in Sect. 6.1 to reduce time complexity. In addition, since p = 6
and c = 512 in SHAKE256, we can obtain full-bit (1600-bit) collisions by searching
for the last (p + c)-bit collisions. Assume that the outputs N and N ′ of 2-block
messages (M0||M1) and (M ′

0||M ′
1) are equal in the last 518 bits. We can introduce

the third block messages M2 and M ′
2 satisfying N ⊕ (M2||0c) = N ′ ⊕ (M ′

2||0c)
to obtain the full-bit collision R5(N ⊕ (M2||0c)) = R5(N ′ ⊕ (M ′

2||0c)). And the
complexity of searching for full-bit collisions is the same as the case of d ≤ 640.

The number of messages for collision attack and attack complexity are listed
in Table 5 for different d. Note that the same internal differential characteristic
is also applicable to the collision attacks on SHA3-224, SHA3-256 and SHAKE128,
where attack complexities are both the complexity corresponding to d = 256.

Table 5. The parameters of characteristics and complexity

d Number of characteristics Complexity (log2)

256 ∼ 320 1 106 − 1 = 105

384 1 138

448 263 170 − 1 = 169

≥512 279 186 − 1 = 185

6.4 Summary of Collision Attacks

We summarize different versions of collision attacks in Table 6. For 4-round
SHA-3, the first two canonical representative states of Characteristics we used
is in CP-kernel. Since ι brings about extra internal differences, we do not find
the characteristics where the canonical representative states of the first three
rounds are all in CP-kernel. For 5-round SHA-3, we first determine the internal
difference of the third round and then search for the appropriate target internal
difference. Too few active Sboxes of the target internal difference will make it
difficult to find the first block message M0, and too many will make the differen-
tial transition probability of the first round too small, which will consume many
degrees of freedom. Therefore, the number of active Sboxes for target internal
difference is preferably between 128 and 135.
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Table 6. The parameters of characteristics and complexities

Target nr i DFa k1 k2 k3 k4 Complexity (log2)

SHA3-384 4 8 104 − 4 = 100 11 8 78 - 79 − 3 = 76

SHA3-512 4 32 288 − 4 = 284 16 16 170 - 238 − 1 = 237

SHAKE256 4 8 136 − 6 = 130 16 8 78 - 79 − 3 = 76

SHA3-224/SHA3-256/SHAKE128 5 32 ≥540 - 21 18 16 106 − 1 = 105

SHAKE256 5 32 544 − 6 = 538 - 21 18 16 ≤185
a Degree of freedom of the initial message space.

7 Conclusions

In this paper, we presented collision attacks on up to 5 rounds of all the six SHA-3
functions by developing conditional internal differential cryptanalysis. We intro-
duced the differential transition conditions to describe the evolution of internal
differences and estimate the transition probability more accurately. By solv-
ing the linear systems constructed with the difference transition conditions of
two rounds, we obtained the messages that conform 2-round internal differential
characteristic. According to the linear conditions on their middle states, these
messages were divided into different subsets. We described a variant of birthday
attack and applied it to these subsets for getting the collisions.

Compared with differential cryptanalysis, searching for internal differential
characteristics in CP-kernel might be more difficult because ι cannot be ignored
in internal differential cryptanalysis, while the length of internal differential char-
acteristic used in the collision attack is shorter. It seems that standard differential
cryptanalysis is more effective for reduced versions of SHA-3 with a low security
strength and a large rate, while internal differential has advantages for higher
security strengths since the collision is easier produced for a longer digest. In spite
of this, our collision attack on each variant of SHA-3 expect SHAKE128 can reach
the most rounds at present. For 4-round SHA3-512, our collision attack outper-
forms the best known attacks, and the collision attack on 5-round SHAKE256 is
presented for the first time.

We stress that our attack does not threaten the security of the full SHA-3.

A Internal Differential Characteristics for the Attacks

The internal difference [i, v] is represented by its canonical representative state
defined in Sect. 4.1. Each state is given as a matrix of 5×5 lanes of 64 bits, order
from left to right, where each lane is given in hexadecimal using the little-endian
format. The symbol ‘-’ is used in order to denote a zero 4-bit value.
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|---------------1|----------------|----------------|------8---------|----------------|
|----------------|----------------|---------1------|------8---------|----------------|
|---------------1|----------------|---------1------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------1|----------------|---------------8|----------------|----------------|
|---------------8|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|---------------1|----------------|---------------8|----------------|----------------|
|----------------|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|----------------|----------------|---------------8|----------------|----------------|
|----------------|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|------------8-82|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|-------1----8482|-----8-8-828-8-8|--1-------------|--6-2-2-2-2-2-2-|----4---4-4-----|
|--2-2-2-2-2-2-3-|------1-1-------|-------8----2---|----1-1-1-5-1-1-|--------------4-|
|-----4-----1-1--|------------8---|---4-4-4-4-4-4-6|---------1-1----|---4----1--8----|
|-----8-8--------|----4---------1-|---8-----2-a----|--8------1------|-------1-2------|
|--------------8-|--------81------|--8-8-----------|---8---------2--|-----8-----2-2--|

L

χ (p = 2−11)

ι

L

χ (p = 2−8)

ι

L

R0

R1

R2

R2.5

The characteristic has a period of i = 8 for the 4-round attack on SHA3-384
and SHAKE256, as described in Section 6.1.

Characteristic 1: The 2.5-round internal differential characteristic with
probability 2−19 and (k1, k2, k3) = (11, 8, 78).
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|----------------|----------1---1-|----------------|---------2---2--|----------------|
|----------------|----------1---1-|----------------|---------2---2--|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|----------------|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|---------------1|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|----------------|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|------------8-82|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|---------4-48486|--------2828--2-|----------1---1-|--------21--21--|--------4-41----|
|--------8-1-8-1-|--------1-----5-|--------2-3-2-3-|--------5-1-----|----------4---4-|
|---------4-5-5--|--------c---c---|--------1--21--2|---------5-1----|--------1-1-1-1-|
|------------28-8|--------4-4-4-4-|---------a-a---8|---------1---1--|---------8-1-8-1|
|----------8---8-|--------84--84--|---------28-8---|---------8-8-8-8|---------8-a-a--|

L

χ (p = 2−16)

ι

L

χ (p = 2−16)

ι

L

R0

R1

R2

R2.5

The characteristic has a period of i = 32 for the 4-round attack on
SHA3-512, as described in Section 6.2.

Characteristic 2: The 2.5-round internal differential characteristic with
probability 2−32 and (k1, k2, k3) = (16, 16, 170).
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|--------746a-114|--------b8e2-1a-|--------624---5a|--------6d58-4fd|--------858c-255|
|--------f46a-116|--------b8f2-1e-|--------6642--5a|--------6d58-4f5|--------858c-255|
|--------f46a-116|--------b8e2-1e-|--------6242--5a|--------6d58-4f5|--------858c-255|
|--------f46a-156|--------b8e2-1e-|--------6242--5a|--------6d58--f5|--------858c-255|
|--------f46a-116|--------b8e2-1e-|--------6246--5a|--------6d58-4f5|--------858e-257|

|--------8------2|---------------1|----------------|--------8-------|--------8---8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|------------8---|----------------|

|--------8------2|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|---------------2|
|-------------4--|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|------------8---|----------------|----------------|----------------|
|----------------|----------------|--------------1-|-----------1----|----------------|
|----------------|-----------1----|----------------|----------------|----------------|
|----------------|--------------8-|----------------|---------2------|----------------|
|----------------|----------------|----------------|----------------|----------------|

L

χ (p = 2−21)

ι

L

χ (p = 2−18)

ι

L

R1

R2

R3

R3.5

The characteristic has a period of i = 32 for the 5-round attack on
SHA3-224,SHA3-256,SHAKE128 and SHAKE256, as described in Section 6.3.

Characteristic 3: The 1-3.5 round internal differential characteristic with
probability 2−39 and (k2, k3, k4) = (21, 18, 16).

B Appendix: Difference Conditions Table of KECCAK Sbox

Here we list the differential transition conditions of non-zero input differences
(Table 7).
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Table 7. Difference Conditions Table of KECCAK Sbox

δout Differential transition conditions

01 l0 = x4, l1 = x1

02 l0 = x0, l1 = x2

03 l0 = x4, l1 = x2, l2 = x0 + x1

04 l0 = x1, l1 = x3

05 l0 = x4, l1 = x3, l2 = x1

06 l0 = x0, l1 = x3, l2 = x1 + x2

07 l0 = x4, l1 = x3, l2 = x1 + x2, l3 = x0 + x1

08 l0 = x2, l1 = x4

09 l0 = x2, l1 = x1, l2 = x4

0a l0 = x0, l1 = x4, l2 = x2

0b l0 = x4, l1 = x2, l2 = x0 + x1

0c l0 = x1, l1 = x4, l2 = x2 + x3

0d l0 = x1, l1 = x4, l2 = x2 + x3

0e l0 = x0, l1 = x4, l2 = x2 + x3, l3 = x1 + x2

0f l0 = x4, l1 = x2 + x3, l2 = x1 + x2, l3 = x0 + x1

10 l0 = x3, l1 = x0

11 l0 = x3, l1 = x1, l2 = x4 + x0

12 l0 = x3, l1 = x2, l2 = x0

13 l0 = x3, l1 = x2, l2 = x0 + x1, l3 = x4 + x0

14 l0 = x1, l1 = x0, l2 = x3

15 l0 = x3, l1 = x1, l2 = x4 + x0

16 l0 = x0, l1 = x3, l2 = x1 + x2

17 l0 = x3, l1 = x1 + x2, l2 = x0 + x1, l3 = x4 + x0

18 l0 = x2, l1 = x0, l2 = x3 + x4

19 l0 = x2, l1 = x1, l2 = x4 + x0, l3 = x3 + x4

1a l0 = x2, l1 = x0, l2 = x3 + x4

1b l0 = x2, l1 = x0 + x1, l2 = x4 + x0, l3 = x3 + x4

1c l0 = x1, l1 = x0, l2 = x3 + x4, l3 = x2 + x3

1d l0 = x1, l1 = x4 + x0, l2 = x3 + x4, l3 = x2 + x3

1e l0 = x0, l1 = x3 + x4, l2 = x2 + x3, l3 = x1 + x2

1f l0 = x3 + x4, l1 = x2 + x3, l2 = x1 + x2, l3 = x0 + x1
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C Appendix: Values of Difference Conditions Table
of KECCAK Sbox

Here we list the values of differential transition conditions of some input differ-
ences, and the other input differences and their differential transition conditions’
values can be obtained through cyclic shifting of existing input differences and
conditions (Table 8).

Table 8. Values of Difference Conditions Table of KECCAK Sbox

01(<<< j) 09 19 01 11

l0 0 0 1 1

l1 0 1 0 1

03(<<< j) 0b 1b 0a 1a 03 13 02 12

l0 0 0 0 0 1 1 1 1

l1 0 0 1 1 0 0 1 1

l2 0 1 0 1 0 1 0 1

05(<<< j) 0c 1d 0e 1f 04 15 06 17

l0 0 0 0 0 1 1 1 1

l1 0 0 1 1 0 0 1 1

l2 0 1 0 1 0 1 0 1

0b(<<< j) 01 11 02 12 0d 1d 0e 1e

l0 0 0 0 0 1 1 1 1

l1 0 0 1 1 0 0 1 1

l2 0 1 0 1 0 1 0 1

07(<<< j) 0f 1f 0e 1e 0d 1d 0c 1c 07 17 06 16 05 15 04 14

l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0f(<<< j) 07 17 06 16 05 15 04 14 0b 1b 0a 1a 09 19 08 18

l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1f 1f 07 16 0e 15 0d 1c 04 13 0b 1a 02 19 01 10 08

l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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D Appendix: 2D Affine Subspaces of KECCAK Sbox

Here we give the 2-dimensional affine subspaces and affine equations to the
output differences of Sbox using in TIDA (Table 9).

Table 9. 2D Affine Subspaces of KECCAK Sbox

δout 2D affine subspaces Corresponding linear equations

01 {01,11,09,19} x0 = 1, x2 = 0, x3 = 0

02 {02,12,03,13} x1 = 1, x2 = 0, x3 = 0

03 {02,12,09,19} x2 = 0, x0 + x3 = 0, x1 + x3 = 1

04 {04,06,05,07} x2 = 1, x3 = 0, x4 = 0

05 {04,06,19,1b} x0 + x2 = 1, x0 + x3 = 0, x0 + x4 = 0

06 {04,12,05,13} x3 = 0, x1 + x2 = 1, x1 + x4 = 0

07 {04,12,19,0f} x0 + x3 = 0, x2 + x4 = 1, x0 + x1 + x2 = 1

08 {08,0c,0a,0e} x0 = 0, x3 = 1, x4 = 0

09 {01,11,0e,1e} x0 + x1 = 1, x0 + x2 = 1, x0 + x3 = 1

0a {08,0c,13,17} x0 + x1 = 0, x0 + x3 = 1, x0 + x4 = 0

0b {0c,0a,19,1f} x3 = 1, x0 + x4 = 0, x0 + x1 + x2 = 1

0c {08,0c,0a,0e} x0 = 0, x3 = 1, x4 = 0

0d {0c,09,0b,0e} x3 = 1, x4 = 0, x0 + x2 = 1

0e {08,0c,1b,1f} x3 = 1, x0 + x1 = 0, x0 + x4 = 0

0f {0c,0a,15,13} x0 + x3 = 1, x0 + x4 = 0, x1 + x2 = 1

10 {10,18,14,1c} x0 = 0, x1 = 0, x4 = 1

11 {01,14,09,1c} x1 = 0, x0 + x2 = 1, x0 + x4 = 1

12 {02,03,1c,1d} x1 + x2 = 1, x1 + x3 = 1, x1 + x4 = 1

13 {02,09,1c,17} x1 + x3 = 1, x2 + x4 = 0, x0 + x1 + x2 = 1

14 {10,18,07,0f} x0 + x1 = 0, x0 + x2 = 0, x0 + x4 = 1

15 {06,05,1c,1f} x2 = 1, x3 + x4 = 0, x0 + x1 + x3 = 1

16 {18,14,13,1f} x4 = 1, x0 + x1 = 0, x0 + x2 + x3 = 1

17 {14,05,0d,1c} x1 = 0, x2 = 1, x0 + x4 = 1

18 {10,0a,15,0f} x0 + x2 = 0, x1 + x3 = 0, x1 + x4 = 1

19 {01,14,0e,1b} x0 + x2 = 1, x1 + x3 = 0, x0 + x1 + x4 = 1

1a {18,12,16,1c} x0 = 0, x4 = 1, x1 + x3 = 1

1b {12,0a,16,0e} x0 = 0, x1 = 1, x3 + x4 = 1

1c {10,18,17,1f} x4 = 1, x0 + x1 = 0, x0 + x2 = 0

1d {16,11,1b,1c} x4 = 1, x0 + x2 = 1, x0 + x1 + x3 = 1

1e {18,0b,0e,1d} x3 = 1, x1 + x4 = 1, x0 + x1 + x2 = 0

1f {14,05,0e,1f} x2 = 1, x1 + x3 = 0, x0 + x1 + x4 = 1
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Abstract. The area of multi-party computation (MPC) has recently
increased in popularity and number of use cases. At the current state
of the art, Ciminion, a Farfalle-like cryptographic function, achieves the
best performance in MPC applications involving symmetric primitives.
However, it has a critical weakness. Its security highly relies on the
independence of its subkeys, which is achieved by using an expensive
key schedule. Many MPC use cases involving symmetric pseudo-random
functions (PRFs) rely on secretly shared symmetric keys, and hence the
expensive key schedule must also be computed in MPC. As a result,
Ciminion’s performance is significantly reduced in these use cases.

In this paper we solve this problem. Following the approach intro-
duced by Ciminion’s designers, we present a novel primitive in symmetric
cryptography called Megafono. Megafono is a keyed extendable PRF,
expanding a fixed-length input to an arbitrary-length output. Similar to
Farfalle, an initial keyed permutation is applied to the input, followed by
an expansion layer, involving the parallel application of keyed ciphers.
The main novelty regards the expansion of the intermediate/internal
state for “free”, by appending the sum of the internal states of the first
permutation to its output. The combination of this and other modifica-
tions, together with the impossibility for the attacker to have access to
the input state of the expansion layer, make Megafono very efficient in
the target application.

As a concrete example, we present the PRF Hydra, an instance of
Megafono based on the Hades strategy and on generalized versions
of the Lai–Massey scheme. Based on an extensive security analysis, we
implement Hydra in an MPC framework. The results show that it out-
performs all MPC-friendly schemes currently published in the literature.
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1 Introduction

Secure multi-party computation (MPC) allows several parties to jointly and
securely compute a function on their combined private inputs. The correct output
is computed and given to all parties (or a subset) while hiding the private inputs
from other parties. In this work we focus on secret-sharing based MPC schemes,
such as the popular SPDZ protocol [23,24] or protocols based on Shamir’s secret
sharing [47]. In these protocols private data is shared among all parties, such that
each party receives a share which by itself does not contain any information about
the initial data. When combined, however, the parties are able to reproduce the
shared value. Further, the parties can use these shares to compute complex
functions on the data which in turn produce shares of the output.

MPC has been applied to many use cases, including privacy-preserving
machine learning [46], private set intersection [40], truthful auctions [13], and
revocation in credential systems [38]. In the literature describing these use cases,
data is often directly entered from and delivered to the respective parties. How-
ever, in practice this data often has to be transferred securely from/to third par-
ties before it can be used in the MPC protocol. Moreover, in some applications,
intermediate results of an MPC computation may need to be stored securely in
a database. As described in [35], one can use MPC-friendly pseudo-random func-
tions (PRFs), i.e., PRFs designed to be efficient in MPC, to efficiently realize
this secure data storage and data transfer by directly encrypting the data using
a secret-shared symmetric key.

Besides being used to securely transmit data in given MPC computations,
these MPC-friendly PRFs can also be used as a building block to speed up
many MPC applications, such as secure database join via an MPC evaluation of
a PRF [44], distributed data storage [35], virtual hardware security modules1,
MPC-in-the-head based zero-knowledge proofs [39] and signatures [16], oblivious
TLS [1], and many more. In all these use cases, the symmetric encryption key is
shared among all participating parties. Consequently, if one has to apply a key
schedule for a given PRF, one has to compute this key schedule at least once in
MPC for every fresh symmetric key.

To be MPC-friendly, a PRF should minimize the number of multiplications
in the native field of the MPC protocol. At the current state of the art, Cimin-
ion [26] is one of the most competitive schemes for PRF applications. Proposed
at Eurocrypt’21, it is based on the Farfalle mode of operation [10]. However,
as we are going to discuss in detail, Ciminion has a serious drawback: Its secu-
rity heavily relies on the assumption that the subkeys are independent. For this
requirement, the subkeys are generated via a sponge hash function [11] instanti-
ated via an expensive permutation. As a result, in all (common) cases where the
key is shared among the parties, the key schedule cannot be computed locally
and needs to be evaluated in MPC. This leads to a significant increase in the
multiplicative complexity of Ciminion. In this paper, we approach this problem
in two steps. First, we propose Megafono, a new mode of operation inspired by

1 https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf.

https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf
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Fig. 1. Farfalle and Ciminion (notation adapted to the one used in this paper).

Farfalle and Ciminion.2 It is designed to be competitive in all MPC applications.
Secondly, we show how to instantiate it in an efficient way. The obtained PRF
Hydra is currently the most competitive MPC-friendly PRF in the literature.

1.1 Related Works: Ciminion and the MPC Protocols

Traditional PRFs (e.g., AES, Keccak) are not efficient in MPC settings. First,
MPC applications usually work over a prime field Fp for a large p (e.g., p ≈
2128), while traditional cryptographic schemes are usually bit-/byte-oriented.
Hence, a conversion between F2n and Fp must take place, which can impact the
performance. Secondly, traditional schemes are designed to minimize their plain
implementation cost, and therefore no particular focus is laid on minimizing
specifically the number of nonlinear operations (e.g., AND gates).

For these reasons, several MPC-friendly schemes over F
t
q for q = ps and

t ≥ 1 have been proposed in the literature, including LowMC [4], MiMC [3],
GMiMC [2], HadesMiMC [32], and Rescue [5]. All those schemes are block
ciphers – hence, invertible – and they are often used in counter (CTR) mode.
However, invertibility is not required in MPC applications, and a lower multi-
plicative complexity may be achieved by working with non-invertible functions,
as recently shown by in [26]. In the following, we briefly discuss the Farfalle
construction and the MPC-friendly primitive Ciminion based on it.

Farfalle. Farfalle [10] is an efficiently parallelizable permutation-based construc-
tion of arbitrary input and output length, taking as input a key. As shown in
Fig. 1a and recalled in Sect. 3, the Farfalle construction consists of a compression
layer followed by an expansion layer. The compression layer produces a single
2 “Megafono” is the Italian word for “megaphone”, a cone-shaped horn used to amplify

a sound and direct it towards a given direction. Our strategy resembles this goal.
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accumulator value from the input data. A permutation is potentially applied
to the obtained state. Then, the expansion layer transforms it into a tuple of
(truncated) output blocks. Both the compression and expansion layers involve
the secret key, and they are instantiated via a set of permutations (namely,
P(c),P,P(e)) and rolling functions (R(c)

i ,R(e)
i ).

Ciminion. As shown with Ciminion in [26], a modified version of Farfalle based
on a Feistel scheme can be competitive for MPC protocols, an application which
Farfalle’s designers did not consider. Following Fig. 1b and Sect. 3,

(1) compared to Farfalle, the compression phase is missing, a final truncation is
applied, and the key addition is performed before P(e) is applied, and

(2) in contrast to MPC-friendly block ciphers, Ciminion is a non-invertible PRF.
For encryption it is used as a stream cipher, where the input is defined as the
concatenation of the secret key and a nonce.

The main reason why Ciminion is currently the most competitive scheme in
MPC protocols is related to one crucial feature of Farfalle, namely the possi-
bility to instantiate its internal permutations with a smaller number of rounds
compared to other design strategies. This is possible since the attacker does not
have access to the internal states of the Farfalle construction. Hence, while the
permutation P(c) is designed in order to behave like a pseudo-random permu-
tation (PRP), the number of rounds of the permutation P(e) can be minimized
and kept significantly lower for both security and good performance.

Besides minimizing the number of nonlinear operations, Ciminion’s designers
paid particular attention to the number of linear operations. Indeed, even though
the main cost in MPC applications depends on the number of multiplications,
other factors (e.g., the number of linear operations) affect efficiency as well.

1.2 The MEGAFONO Design Strategy

The main drawback of Ciminion is the expensive key schedule to generate sub-
keys that can be considered independent. This implies that Ciminion only excels
in MPC applications where the key schedule can be precomputed for a given
shared key, or in the (non-common) scenarios where the key is not shared among
the parties. However, in the latter case, the party knowing the key can also com-
pute Ciminion’s keystream directly in plain (i.e., without MPC) if the nonce and
IV are public in a given use case (which is also true for any stream cipher).

Clearly, the easiest solution is the removal of the nonlinear key schedule.
However, by e.g. defining the subkey as an affine function of the master key, the
security analysis of Ciminion does not hold anymore. As we discuss in detail in
Sect. 4, this is a direct consequence of the Farfalle construction itself. Even if the
attacker does not have any information about the internal states of Farfalle, they
can exploit the fact that its outputs are generated from the same unknown input
(namely, the output of P(c) and/or P). Given these outputs and by exploiting
the relations of the corresponding unknown inputs (which are related to the
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definition of the rolling function), the attacker can potentially find the key and
break the scheme. For example, this strategy is exploited in the attacks on the
Farfalle schemes Kravatte and Xoofff [15,19]. In Ciminion, this problem is
solved by including additions with independent secret subkeys in the application
of the rolling function. In this way, the mentioned relation is unknown due to the
presence of the key, and P(e) can be instantiated via an efficient permutation.

We make the following three crucial changes in the Farfalle design strategy.

1. First, we replace the permutation P(e) with a keyed permutation Ck.
2. Secondly, we expand the input of this keyed permutation. The second change

aims to frustrate algebraic attacks, whose cost is related to both the degree
and the number of variables of the nonlinear equation system representing
the attacked scheme. In order to create new independent variables for “free”
(i.e., without increasing the overall multiplicative complexity), we reuse the
computations needed to evaluate P. That is, we define the new variable as
the sum of all the internal state of P, and we conjecture that it is sufficiently
independent of its output (details are provided in the following).

3. Finally, we replace the truncation in Ciminion with a feed-forward operation,
for avoiding to discard any randomness without any impact on the security.

Our result is a new design strategy which we call Megafono.

1.3 The PRF HYDRA

Given the mode of operation, we instantiate it with two distinct permutations,
one for the initial phase and one for the expansion phase. As in Ciminion, assum-
ing the first keyed permutation behaves like a PRP and since the attacker does
not know the internal states of Megafono, we choose a second permutation
that is cheaper to evaluate in the MPC setting. In particular, while the first per-
mutation is evaluated only once, the number of calls to the second permutation
(and so the overall cost) is proportional to the output size.

For minimizing the multiplicative complexity, we instantiate the round func-
tions of the keyed permutations Ck in the expansion part with quadratic func-
tions. However, since no quadratic function is invertible over Fp, we use them in
a mode of operation that guarantees invertibility. We opted for the generalized
Lai–Massey constructions similar to the ones recently proposed in [33]. Moreover,
we show that the approach of using of high-degree power maps with low-degree
inverses proposed in Rescue does not have any benefits in this scenario.

We instantiate the first permutation P via the Hades strategy [32], which
mixes rounds with full S-box layers and rounds with partial S-box layers. Similar
to Neptune [33], we use two different round functions, one for the internal part
and one for the external one. We decided to instantiate the internal rounds with
a Lai–Massey scheme, and the external ones with invertible power maps.
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The obtained PRF scheme called Hydra is presented in Sect. 5 and Sect. 6,
and its security analysis is proposed in Sect. 7.

Fig. 2. Number of MPC multiplications of several designs over F
t
p, with p ≈ 2128 and

t ≥ 2 (security level of 128 bits).

1.4 MPC Performance and Comparison

The performance of any MPC calculation scales with the number of nonlinear
operations. In Fig. 2 we compare the number of multiplications required to evalu-
ate different PRFs for various plaintext sizes t using secret shared keys. One can
observe that Hydra requires the smallest number of multiplications, with the
difference growing further for larger sizes. The only PRF that is competitive to
Hydra is Ciminion, but only if the key schedule does not have to be computed,
which happens if shared round keys can be reused from a previous computa-
tion. However, this implies that the key schedule was already computed once in
MPC, requiring a significant amount of multiplications. Hydra, on the other
hand, does not require the computation of an expensive key schedule and also
requires fewer multiplications than Ciminion without a key schedule for larger
state sizes.

In Sect. 8, we implement and compare the different PRFs in the MP-
SPDZ [41] library and confirm the results expected from Fig. 2. Indeed,

(1) taking key schedules into account, Hydra is five times faster than Ciminion
for t = 8, which grows to a factor of 21 for t = 128,

(2) without key schedules, Ciminion is only slightly faster than Hydra for
smaller t, until it gets surpassed by Hydra for t > 16, showing that Hydra
is also competitive, even if the round keys are already present.
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Compared to all other benchmarked PRFs, Hydra is significantly faster for any
state size t. Furthermore, Hydra requires the least amount of communication
between the parties due to its small number of multiplications, giving it an
advantage in low-bandwidth networks. As a result, we suggest to replace each of
the benchmarked PRFs with Hydra in all their use cases, especially if a large
number of words need to be encrypted.

1.5 Notation

Throughout the paper, we work over a finite field Fq, where q = ps for an odd
prime number p and an integer s ≥ 1 (when needed, we will also assume a fixed
vector space isomorphism Fps ∼= F

s
p). We use F

n
q , for n ≥ 1, to denote the n-

dimensional vector space over Fq, and we use the notation F
�
q to denote Fq strings

of arbitrary length. The · || · operator denotes the concatenation of two elements.
An element x ∈ F

t
q is represented as x = (x0, x1, . . . , xt−1), where xi denotes its

i-th entry. Given a matrix M ∈ F
t×s
q , we denote its entry in row r and column c

either as Mr,c or M [r, c]. We use the Fraktur font notation to denote a subspace
of Fr

q, while we sometimes use the calligraphic notation to emphasize functions.
Given integers a ≥ b ≥ 1, we define the truncation function Ta,b : Fa

q → F
b
q as

Ta,b(x0, . . . , xa−1) = (x0, . . . , xb−1). Finally, for MPC, we describe that the value
x ∈ Fp is secret shared among all parties by [x].

2 Symmetric Primitives for MPC Applications

Here we elaborate on why expensive key schedules are not desirable in many
MPC use cases, and we discuss the cost metric in MPC protocols in more details.

2.1 MPC Use Cases and Key Schedules

To highlight that expensive key schedules are not suitable for many scenarios, we
describe the use cases discussed in [26] and [35] in greater detail. Concretely, we
discuss the data transfer into and out of the MPC protocol, as well as using sym-
metric PRFs to securely store intermediate results during an MPC evaluation.
In the latter case, the setting is the following: The parties want to suspend the
MPC evaluation and continue at a later point. As discussed in [35], the trivial
solution for this problem is that each party encrypts its share of the data with
a symmetric key and stores the encrypted share, e.g., at a cloud provider. The
total storage overhead of this approach is a factor n for n MPC parties, since
each party stores its encrypted shares of the data. Additionally, each party needs
to memorize its symmetric key. The solution to reduce the storage overhead is
to use a secret shared symmetric key (i.e., each party knows only a share of the
key and the real symmetric key remains hidden), which can directly be sampled
as part of the MPC protocol, and encrypt the data using MPC. The resulting
ciphertexts cannot be decrypted by any party since no one knows the symmetric
key, but can be used inside the MPC protocols at a later point to again create the
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shares of the data. This approach avoids the storage overhead of the data, and
each party only has to memorize its share of the symmetric key which has the
same size as the symmetric key itself. However, if the used PRF involves a key
schedule, one also has to compute it in MPC for this use case. Other solutions
either involve precomputing the round keys, or directly sampling random round
keys in MPC instead of sampling a random symmetric key. These approaches
require no storage overhead for the encrypted data, but each party needs to
memorize its shares of the round keys. In Ciminion, the size of the round keys
is equivalent to the size of the encrypted data (when using the same nonce for
encrypting the full dataset), hence the whole protocol would be more efficient
if each party would just memorize its shares of the dataset instead. Providing
fewer round keys and using multiple nonces instead requires the recomputation
of Ciminion’s initial permutation in MPC, decreasing its performance.

Similar considerations also apply if the MPC parties are different from the
actual data providers or if the output of the computation needs to be securely
transferred to an external party. The solutions to both problems involve storing
the dataset encrypted at some public place (e.g., in a cloud) alongside a public-
key encryption of the shares of the symmetric key, such that only the intended
recipient can get the shares. If the parties want to avoid expensive key sched-
ules in MPC, they either have to provide shares of the round keys (which have
the same size as the encrypted data in Ciminion), or provide fewer round keys
alongside multiple nonces, decreasing the performance in MPC.

Remark 1. In this paper, we focus on comparing MPC-friendly PRFs which are
optimized for similar use cases as the ones discussed in this section, i.e., use cases
which require fast MPC en-/decryption of large amounts of data. Hence, we do
not focus on PRFs not defined over Fp which are optimized for, e.g., Picnic-style
signatures, such as LowMC [4], Rain [27], or weakPRF [25].

2.2 Cost Metric for MPC Applications

Modern MPC protocols such as SPDZ [23,24] are usually split into a data-
independent offline phase and a data-dependent online phase. In the offline
phase, a bundle of shared correlated randomness is generated, most notably
Beaver triples [9] of the form ([a], [b], [a · b]). This bundle is then used in the
online phase to perform the actual computation on the private data.

Roughly speaking, the performance scales with the number of nonlinear oper-
ations necessary to evaluate the symmetric primitives in the MPC protocol
(sometimes we use the term “multiplication” to refer to the nonlinear opera-
tion). This is motivated by the fact that each multiplication requires one Beaver
triple, which is computed in the offline phase, as well as one round of communica-
tion during the online phase (see [34, Appendix D]. In contrast, linear operations
do not require any offline computations and can directly be applied to the shares
without communication. Consequently, the number of multiplications is a decent
first estimation of the cost metric in MPC, and MPC-friendly PRFs usually try
to minimize this number. Whereas each multiplication requires communication
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between the parties, the depth directly defines the required number of communi-
cation rounds, since parallel multiplications can be processed in the same round.
Thus, the depth should be low in high-latency networks. To summarize,

– the cost of the offline phase of the MPC protocols directly scales with the
number of required Beaver triples (i.e., multiplications), and

– the cost of the online phase scales with both the number of multiplications
and the multiplicative depth.

As a concrete example, in many MPC-friendly PRFs, such as HadesMiMC,
MiMC, GMiMC, and Rescue, the nonlinear layer is instantiated with a power
map R(x) = xd for d ≥ 2 over Fq. Then, the cost per evaluation is

#triples = costd := hw(d) + �log2(d)� − 1 , depthonline = costd . (1)

Several algorithms to reduce the number of multiplications and communication
rounds were developed in the literature. Here we discuss those relevant for our
goals. They require random pairs [r], [r2], and [r], [r−1], which can be generated
from Beaver triples in the offline phase (see [34, Appendix D]).

Decreasing the Number of Online Communication Rounds. In the pre-
ferred case of d = 3, the cost is two Beaver triples and a depth of two. However,
in [35] the authors propose a method to reduce the multiplicative depth by del-
egating the cubing operation to a random value in the offline phase. Hence, all
cubings can be performed in parallel reducing the depth. This algorithm (see [34,
Appendix D]) requires two triples, but only one online communication round.
Special Case: R(x) = x1/d. Optimizations can also be applied for the case
R(x) = xd with very large d. In [5], the authors propose two different algorithms
to evaluate R (see [34, Appendix D]), in which the cost of evaluating R(x) = xd

can be reduced to the cost of evaluating R(x) = x1/d (plus an additional multi-
plication in the online phase) which requires significantly fewer multiplications
if 1/d is smaller than d. This is, for example, relevant when evaluating Rescue
with its high-degree power maps in MPC. The algorithm works by delegating
the 1/d power map evaluation to the offline phase, and evaluating the costly d
power map on a random value in plain. Furthermore, since the main MPC work
(i.e., 1/d) is evaluated in the input-independent offline phase, all communica-
tion rounds can be parallelized, significantly reducing the multiplicative depth.
Using these algorithms and costd from Eq. 1, the cost of evaluating xd in MPC
is modified to the following, with a significantly smaller multiplicative depth and
a smaller number of multiplications for large d:

#triples = 2 + min
{
costd, cost1/d

}
, depthonline = 2.

3 Starting Points of MEGAFONO: Farfalle and Ciminion

Here we recall Farfalle and Ciminion, which are starting points for Megafono.
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Farfalle and 1/2×Farfalle. Farfalle is a keyed PRF proposed in [10] with inputs
and outputs of arbitrary length. As shown in Fig. 1a, it has a compression layer
and an expansion layer, each involving the parallel application of a permutation.
For our goal, we focus only on the expansion phase, and introduce the term
1/2×Farfalle for a modified version of Farfalle that lacks the initial compression
phase and only accepts input messages of a fixed size n.

Let K ∈ F
κ
q be the secret key for κ ≥ 1. 1/2×Farfalle uses a key schedule

K : F
κ
q → (Fn

q )� for the subkeys used in the expansion phase, two unkeyed
permutations P,P(e) : F

n
q → F

n
q , and a rolling function R : F

n
q → F

n
q .3 We

define Ri as Ri(y) = ρi + R ◦ Ri−1(y) for each i ≥ 1 and ρi ∈ F
n
q , where we

assume R0 to be the identity function, i.e., R0(y) = y. Given an input x ∈ Fq,
1/2×Farfalle : Fn

q → (Fn
q )� operates as 1/2×Farfalle(x) = y0 || y1 || y2 || · · · || yj ||

· · · , where ∀i ≥ 0 : yi := ki+1 + P(e) (Ri (P(x + k0))) .

From 1/2×Farfalle to Ciminion. Ciminion [26] is based on a modified version
of 1/2×Farfalle over F

n
q for a certain n ≥ 2. As shown in Fig. 1b, the main

difference with respect to 1/2×Farfalle is the definition of the function k + P(e).
In Farfalle/1/2×Farfalle, the key addition is the last operation. In Ciminion, k +
P(e)(x) is replaced by F (e)(x+k) for a non-invertible function F (e) instantiated
via a truncated permutation, i.e., F (e)(x + k) := Tn,n′ ◦ P(e)(x + k) for a certain
1 ≤ n′ < n. Moving the key inside the scheme prevents its cancellation when
using the difference of two outputs.

In Ciminion, the key schedule K : Fκ
q → (Fn

q )� uses a sponge function [11]
instantiated via the permutation P. We refer to [26, Section 2] for more details.

4 The MEGAFONO Strategy for HYDRA

Generating the subkeys of Ciminion via a sponge function and a strong permu-
tation is expensive in terms of multiplications. This makes it inefficient in cases
where the secret keys are shared among the parties, as discussed in Sect. 2.1.
Another weakness of Ciminion is the final truncation. While it prevents an
attacker from computing the inverse of the final permutations P(e), it is waste-
ful as it lowers the output of each iteration. To fix these issues, here we pro-
pose the Megafono strategy, based on the design strategy of Ciminion (and
1/2×Farfalle), but with some crucial modifications.

Definition of Megafono. Let n ≥ 1 be an integer and let Fq be a field, where
q = ps for a prime integer p ≥ 2 and a positive integer s ≥ 1. Let K ∈ F

κ
q be the

secret key for n ≥ κ ≥ 1. The ingredients of Megafono are

(1) a key schedule K : Fκ
q → (Fn

q )� for generating the subkeys, that is, K(K) =
(k0, k1, . . . , ki, . . .) where ki ∈ F

n
q for each i ≥ 0,

3 We mention that in [10], authors use the terms “masks” and “(compressing) rolling
function” instead of “subkeys” and “key schedule”. In Farfalle, the same subkey is
used in the expansion phase, that is, k1 = k2 = · · · = ki. Here, we consider the most
generic case in which the subkeys are not assumed to be equal.
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(2) an iterated unkeyed permutation P : Fn
q → F

n
q defined as

P(x) = Pr−1 ◦ . . . ◦ P1 ◦ P0(x) (2)

for round permutations P0,P1, . . . ,Pr−1 over F
n
q ,

(3) a (sum) function S : Fn
q → F

n
q defined as

S(x) :=
r−1∑

i=0

Pi ◦ . . . ◦ P1 ◦ P0(x), (3)

(4) a function Fk : F2n
q → F

2n
q defined as

Fk(x) := Ck(x) + x,

where Ck : F2n
q → F

2n
q is a block cipher for a secret key k ∈ F

2n
q , and

(5) a rolling function R : F2n
q → F

2n
q . For y, z ∈ F

n, we further define

Ri(y, z) := ϕi + R ◦ Ri−1(y, z)

for i ≥ 1, where ϕi ∈ F
2n
q and R0(y, z) = (y, z).

MegafonoK : Fn
q → (Fn

q )� is a PRF that takes as input an element of Fn
q and

returns an output of a desired length, defined as

MegafonoK(x) := Fk2(y, z) || Fk3(R1(y, z)) || · · · || Fki+2(Ri(y, z)) || · · ·

for i ∈ N, where y, z ∈ F
n
q are defined as

y := k1 + P(x + k0) and z := S(x + k0) .

Remark 2. The main goal of Megafono is a secure variant of Ciminion without
a heavy key schedule and without relying on independent subkeys (k0, k1, . . . ).
For this reason, we only consider the case k = n and K(K) = (K, . . . , K, . . . ) in
the following. Nevertheless, there may be applications in which a key schedule
is acceptable, and hence we propose Megafono in its more general form.

Remark 3. The function Fk is meant to play the role of P(e) (in the notation we
have used to describe Farfalle and Ciminion). We use this notation to emphasize
that the function is keyed and that we no longer require it to be a permutation.

4.1 Rationale of MEGAFONO

Following its structure, Megafono shares several characteristics with Ciminion
and 1/2×Farfalle. Indeed, many attacks on Farfalle (and Ciminion, 1/2×Farfalle)
discussed in [10, Sect. 5] also apply to Megafono. Here we focus on the differ-
ences, by explaining and motivating the criteria for designing Megafono.
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Expansion Phase. We emphasize the following point which is crucial for under-
standing the design rationale of Megafono. As in 1/2×Farfalle and Ciminion,
the attacker has access to outputs wi = Fk (Ri(y, z)) for i ≥ 0 that depend on
a single common unknown input (y, z) (in addition to the key). By exploiting
the relation among several inputs of Fk and the knowledge of the corresponding
outputs, the attacker can break the entire scheme. Examples of such attacks can
be found in [15,19]. In this scenario, one attack consists of solving the system of
equations {wi − Fk (Ri(y, z)) = 0}i≥0 with Gröbner bases. We provide details
in Sect. 7.4 and point out that the cost depends on several factors, including
(i) the number of variables, (ii) the number of equations, (iii) the degree of the
equations, and (iv) the considered representative of the system of equations.

Even–Mansour Construction. In Ciminion, the keyed permutation P is cho-
sen in order to resemble a PRP. Indeed, since P is computed only once, it has
little impact on the overall cost. Further, if P resembles a PRP, it is unlikely
that an attacker can create texts with a special structure at the input of P(e).
This allows for a simplified security analysis of the expansion phase, as it rules
out attacks that require control of the inputs of P(e).

By performing a key addition before the expansion phase, the first part of
the scheme becomes an Even–Mansour construction [29] of the form x �→ K +
P(x + K). As proven in [20,28], an Even–Mansour scheme is indistinguishable
from a random permutation up to qn/2 queries for K ∈ F

n
q , assuming both the

facts that (i) the unkeyed permutation P behaves as a pseudo-random public
permutation, and that (ii) the attacker knows both the inputs and outputs of
the construction. Since n/2 · log2(q) is higher than our security level, this allows
us to make a security claim on a subcomponent of the entire scheme, and so to
further simplify the overall security analysis.

Keyed Permutation in the Expansion Phase. In Farfalle, the final key
addition is crucial against attacks inverting the final permutation P(e). However,
an attacker can cancel the influence of the key by using the differences of two
outputs if the key schedule is linear. For example, assume that the key schedule
for the expansion phase is the identity map (as in Farfalle), and let x be the input
of the expansion phase. Let yj = K + P(e)(Rj(x)) and yh = K + P(e)(Rh(x)) be
two outputs of the expansion phase. Any difference of the form

yj − yh = P(e)(Rj(x)) − P(e)(Rh(x)) (4)

results in a system of equations that is independent of the key or, equivalently,
that depends only on the intermediate unknown state. This is an advantage
when trying to solve the associated polynomial system with Gröbner bases.

The key in Ciminion has been moved from the end of P(e) to the beginning,
with the goal of preventing its cancellation by considering differences of the
outputs. Inverting P(e) is instead prevented by introducing a final truncation,
which has the side effect of reducing the output size and thus the throughput.
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Recently, in [8] the authors showed that moving the key inside of P(e) is
actually not sufficient by itself for preventing the construction of a system of
equations – similar to (Eq. 4) – which is independent of the secret key. For this
reason, instead of working with a permutation-based non-invertible function, we
propose to instantiate the last permutation with a block cipher Ck, defined as an
iterated permutation with a key addition in each round. In this way, we achieve
the advantages of both 1/2×Farfalle and Ciminion. First, the output size of Ck is
equal to the input size and it is not possible to invert Ck without guessing the key
(as in 1/2×Farfalle). Secondly, a carefully chosen Ck will prevent the possibility
to set up a system of equations for the expansion part that is independent of the
key by considering differences of outputs (as in Ciminion).

Feed-Forward in Expansion Phase and Nonlinear Rolling Function.
The proposed changes in Megafono may allow new potential problems. Let
vj = Ck (Rj(y, z)) and vl = Ck (Rl(y, z)) be two outputs of the expansion phase
for a shared input (y, z) and let R′

j−l denote the function satisfying R′
j−l◦Rl(·) =

Rj(·) for j > l. Since Ck(·) is invertible for each fixed k, we have that

∀j > l : Ck ◦ R′
j−l ◦ C−1

k (vl) = vj =⇒ R′
j−l ◦ C−1

k (vl) = C−1
k (vj) .

That is, it is possible to set up a system of equations that depend on the keys
only (equivalently, that do not depend on the internal unknown state (y, z)). We
therefore apply the feed-forward technique on the expansion phase, i.e., we work
with (y, z) �→ Fk(y, z) := Ck(y, z) + (y, z), which prevents this problem.

Assume moreover that the functions Ri, i ≥ 1 are linear. Given two outputs
wj = Fk (Rj(y, z)) and wl = Fk (Rl(y, z)),

R′
j−l(wl) − wj = R′

j−l (Fk (Rl(y, z))) − Fk (Rj(y, z))

= R′
j−l (Rl(y, z) + Ck (Rl(y, z))) − Rj(y, z) − Ck (Rj(y, z))

= R′
j−l (Rl(y, z)) + R′

j−l (Ck (Rl(y, z))) − Rj(y, z) − Ck (Rj(y, z))

= R′
j−l (Ck (Rl(y, z))) − Ck (Rj(y, z))

for each j, l with j > l. Similar equations can be derived for affine Ri. Even if we
are not aware of any attack that exploits such an equality, we suggest to work
with a nonlinear rolling function. We point out that using a nonlinear function
is also suggested by Farfalle’s designers in order to frustrate meet-in-the-middle
attacks in the expansion phase (see [10, Sect. 5] for more details).

Creating New Variables to Replace a Heavy Key Schedule. Due to the
structure of 1/2×Farfalle and Ciminion, and under the assumption that P behaves
like a PRP, an attacker cannot control the inputs and outputs of the expansion
phase. However, (meet-in-the-middle) attacks that require only the knowledge
of the outputs of such an expansion phase are possible, because multiple outputs
are created via a single common (unknown) input. The cost of such an attack
depends on the number of involved variables and on the degree of the equations.
We start by examining how Farfalle and Ciminion prevent such an attack.
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Farfalle has been proposed for achieving the best performances in software
and/or hardware implementations. For this reason, the field considered in appli-
cations is typically F

n
2 , where n is large (at least equal to the security level k).

This implies that a large number of variables is needed to model the scheme
as a polynomial system, which prevents the attack previously described, even
when working with a low-degree permutation P(e). Depending on the details of
the permutation, the number of variables could be minimized by working over
an equivalent field F

m
2l where n = m · l, without crucially affecting the overall

degree of the equations that describe the scheme. For instance, 16 variables, as
opposed to 128, are sufficient for describing AES, since all its internal opera-
tions (namely, the S-box, ShiftRows, and MixColumns) are naturally defined
over F

16
28 . This is not the case for SHA-3/Keccak, for which only the nonlinear

layer (defined as the concatenation of χ functions) admits a natural description
over F

5·l
25 . In general, this scenario can easily be prevented when working with

weak-arranged SPN schemes [17] and/or unaligned SPN schemes [14], for which
this equivalent representation that minimizes the number of variables comes at
the price of huge/prohibitive degrees of the corresponding functions.

Ciminion has, on the other hand, been proposed for minimizing the mul-
tiplicative complexity in the natural representation of the scheme over F

n
q for

large/huge q and small n, namely, the opposite of Farfalle. Hence, in order to
work with low-degree permutations P(e), it is necessary to “artificially” increase
the number of variables to prevent attacks. By using a heavy key schedule, one
can guarantee that the algebraic relation between the keys k0, k1, k2, . . . is non-
trivial, i.e., described by dense algebraic functions of high degree. Such a complex
relation could not be exploited in an algebraic attack, and the attacker is then
forced to treat the subkeys as independent variables. To summarize,

– in Farfalle, the (MitM) attack on the expansion phase is prevented by working
over a field F

n
p for a small prime p and a large integer n, and

– in Ciminon, it is prevented by “artificially” increasing the number of variables,
working with a heavy key schedule.

None of the two approaches is suitable for our goal, since we mainly target appli-
cations over a field F

n
p for a huge prime p in which a heavy key schedule cannot

be computed efficiently. For this reason, we propose to increase the number of
variables “for free” by reusing the computation needed to evaluate P. Since P is
instantiated as an iterated permutation in practical use cases, we can fabricate
a new F

n
q element by considering the sum of all internal states of P. This corre-

sponds to the definition of the function S in Eq. 3. In this way, we can double
the size of the internal state (and so, the number of variables) for free.

In more detail, for a given input x ∈ F
n
q , let y ∈ F

n
q be the output K+P(x+K),

and let z ∈ F
n
q be the output S(x + K). Then y and z are not independent, since

z = S(P−1(y−K)).4 However, for proper choices of P and S, the relation between
the two variables is too complex to be exploited in practice, exactly as in the

4 Note that it is not possible to define y as a function of z, since there is no way to
uniquely recover x given z.
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case of the keys k0, k1, k2, . . . in Ciminion. As a result, the attacker is forced to
consider both y and z as two independent variables, which is exactly our goal.

Similar Techniques in the Literature. For completeness, we mention that the
idea of reusing internal states of an iterated function is not new in the literature.
E.g., let E

(r)
k be an iterated cipher of r ≥ 1 rounds. In [45], the authors set up

a PRF F as the sum of the output of the iterated cipher after r rounds and the
output after s rounds for s �= r, that is, F (x) = E

(r)
k (x) + E

(s)
k (x). Later on, a

similar approach has been exploited in the Fork design strategy [6], which is an
expanding invertible function defined as x �→ E

(r0)

k̂
(E(s)

k (x))‖E
(r1)

k̃
(E(s)

k (x)).

4.2 Modes of Use of MEGAFONO

As in the case of Farfalle and Ciminion, Megafono can be used for key deriva-
tion and key-stream generation. It allows amortizing the computation of the key
among different computations with the same initial master key K. Besides that,
other possible use cases of Megafono are a wide block cipher, in which Mega-
fono is used to instantiate the round function of a contracting Feistel scheme,
and a (session-supporting) authenticated encryption scheme. Since these appli-
cations were also proposed for Farfalle, we do not describe them here, but refer
to [10, Sect. 4] for further details.

We conclude by pointing out the following. Megafono is designed to be
competitive for applications that require a natural description over Fn

q , where q is
a large prime of order at least 264. However, this does not mean that Megafono
cannot be efficiently used in other applications, e.g., for designing schemes that
aim to be competitive in software or hardware. From this point of view, the
main difference with respect to Farfalle and Ciminion is the fact that Megafono
requires two permutations with different domains, namely, Fn

q and F
2n
q . However,

this is not a problem when e.g. considering the family of the SHA-3/Keccak
permutations [12], defined over F

n
2 for n = 25 · 2l for l ∈ {0, 1, . . . , 6}. In this

case it is possible to instantiate P and Ck with two unkeyed/keyed permutations
defined over domains whose size differs by a factor of two. The resulting PRF
based on Megafono would be similar to the PRF Kravatte based on Farfalle
proposed in [10, Sect. 7]. (Proposing concrete round numbers for this version is
beyond the scope of this paper. Rather, we leave the open problem to evaluate
and compare the performances of the two PRFs for future work.)

5 Specification of HYDRA

5.1 The PRF HYDRA

Let p > 263 (i.e., �log2(p)� ≥ 64) and let t ≥ 4 be the size of the output. The
security level is denoted by κ, where 280 ≤ 2κ ≤ min{p2, 2256}, and K ∈ F

4
p is
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Fig. 3. The Hydra PRF (where r := RI − 1 for aesthetic reasons).

the master key. We assume that the data available to an attacker is limited to
240 ≤ 2κ/2 ≤ min{p, 2128}. For a plaintext P ∈ F

t
p, the ciphertext is defined by

C = Hydra([N || IV]) + P,

where Hydra : F4
p → F

t
p is the Hydra PRF, IV ∈ F

3
p is a fixed initial value and

N ∈ Fp is a nonce (e.g., a counter).

HYDRA. An overview of Hydra5 is given in Fig. 3, where

(1) y := K+ B([N || IV] + K) ∈ F
4
p for a certain permutation B : F4

p → F
4
p defined

in the following,
(2) z ∈ F

4
p defined as z =: SK([N‖IV]) for the non-invertible function SK : F4

p → F
4
p

which corresponds to the sum of the internal states of K + B([N‖IV] + K),
(3) HK : F8

p → F
8
p is a keyed permutation defined in Sect. 5.4, and

(4) the functions Ri :
(
F
4
p

)2 → F
8
p are defined as

∀i ≥ 1 : Ri(y, z) := ϕi + R ◦ Ri−1(y, z) , (5)

where R0(y, z) = (y, z), and where R :
(
F
4
p

)2 → F
8
p is the rolling function

defined in Sect. 5.3, and ϕi ∈ F
8
p are random constants.

We give an algorithmic description of Hydra in [34, Appendix E].
5 The (Lernaean) Hydra is a mythological serpentine water monster with many heads.

In our case, we can see B as the body of the Hydra, and the multiple parallel
permutations HK as its multiple heads.
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5.2 The Body of the HYDRA: The Permutation B
The permutation B : F4

p → F
4
p is defined as

B(x) = E5 ◦ · · · ◦ E2︸ ︷︷ ︸
4 times

◦ IRI−1 ◦ · · · ◦ I0︸ ︷︷ ︸
RI times

◦ E1 ◦ E0︸ ︷︷ ︸
2 times

(ME × x), (6)

where the external and internal rounds Ei, Ij : F4
p → F

4
p are defined as

Ei(·) = ϕ(E,i) + ME × SE(·), Ij(·) = ϕ(I,j) + MI × SI(·)

for i ∈ {0, 1, . . . , 5} and each j ∈ {0, 1, . . . , RI − 1}, where ϕ(E,i), ϕ(I,j) ∈ F
4
p are

randomly chosen round constants (we refer to [34, Appendix E] for details on
how we generate the pseudo-random constants).

The Round Function E . Let d ≥ 3 be the smallest odd integer such that
gcd(d, p − 1) = 1. The nonlinear layer SE : F4

p → F
4
p is defined as

SE(x0, x1, x2, x3) = (xd
0, x

d
1, x

d
2, x

d
3) .

We require ME ∈ F
4×4
p to be an MDS matrix and recommend an AES-like matrix

such as circ(2, 3, 1, 1) or circ(3, 2, 1, 1).

The Round Function I. The nonlinear layer SI : F
4
p → F

4
p is defined as

SI(x0, x1, x2, x3) = (y0, y1, y2, y3) where

yl = xl +

((
3∑

j=0

(−1)j · xj

)2

+

(
3∑

j=0

(−1)�j/2� · xj

))2

for 0 ≤ l ≤ 3 . (7)

Note that the two vectors λ(0) := (1,−1, 1,−1), λ(1) := (1, 1,−1,−1) ∈ F
4
p, that

define the coefficients in the sums of (7), are linearly independent and their
entries sum to zero. This latter condition is needed to guarantee invertibility
by Proposition 1. MI ∈ F

4×4
p is an invertible matrix that satisfies the following

conditions (which are justified in [34, Appendix G.2]):

(a) for each i ∈ {0, 1}:
∑3

j=0 λ
(i)
j ·

(∑3
l=0 MI [j, l]

)
�= 0,

(b) for each i ∈ {0, 1} and each j ∈ {0, 1, . . . , 3} :
∑3

l=0 λ
(i)
l · MI [l, j] �= 0, and

(c) its minimal polynomial is of maximum degree and irreducible (for preventing
infinitely long subspace trails – see [34, Appendix H] for details).

In particular, we suggest using an invertible matrix of the form

MI =

⎛

⎜
⎜
⎜
⎝

μ
(I)
0,0 1 1 1

μ
(I)
1,0 μ

(I)
1,1 1 1

μ
(I)
2,0 1 μ

(I)
2,2 1

μ
(I)
3,0 1 1 μ

(I)
3,3

⎞

⎟
⎟
⎟
⎠

, (8)

for which the conditions (a), (b), and (c) are satisfied (we suggest to use the tool
given in [34, Appendix H.1] in order to check that the condition (c) is satisfied).
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5.3 The Rolling Function

The rolling function R :
(
F
4
p

)2 → F
8
p is defined as R(y, z) = MR × SR(y, z),

where a round constant is included in the definition of Ri (Eq. (5)) and the
nonlinear layer SR is defined as

SR(y0, y1, y2, y3, z0, z1, z2, z3) = (y0 + v, . . . , y3 + v, z0 + w, . . . , z3 + w),

with v, w ∈ Fp defined as

v =

(
3∑

i=0

(−1)i · yi

)
·
(

3∑
i=0

(−1)� i
2� · zi

)
, w =

(
3∑

i=0

(−1)i · zi

)
·
(

3∑
i=0

(−1)� i
2� · yi

)
,

(9)
and the linear layer MR ∈ F

8×8
p is defined as

MR = diag(MI , MI) =

(
MI 04×4

04×4 MI

)
,

where MI ∈ F
4×4
p is the matrix just defined for the body’s internal rounds.

5.4 The Heads of the HYDRA: The Permutation HK

The keyed permutation HK : F8
p → F

8
p is defined as

HK(y, z) = K′ + JRH−1 ◦ (K′ + JRH−2) ◦ . . . ◦ (K′ + J1) ◦ (K′ + J0)︸ ︷︷ ︸
RH times

(y, z),

where K′ = K || (ME × K) ∈ F
8
p, and Jj : F8

p → F
8
p is defined as

Ji(·) = ϕi + MJ × SJ (·),

where ϕi ∈ F
8
p are random round constants for each i ∈ {0, 1, . . . , RH − 1}. The

nonlinear layer SJ (x0, x1, . . . , x7) = (y0, . . . , y7) is defined by

yl = xl +

(
7∑

h=0

(−1)�h
4 � · xh

)2

for 0 ≤ l ≤ 7 .

As in (7), we note that the coefficients in the sum, (1, 1, 1, 1,−1,−1,−1,−1),
sums to zero. MJ ∈ F

8×8
p is an invertible matrix that fulfills similar conditions to

(a), (b), and (c) described in Sect. 5.2, i.e., (a)
∑7

h=0(−1)h·
(∑7

l=0 MJ [h, l]
)

�= 0,

(b)
∑7

l=0(−1)l ·MJ [l, h] �= 0, for h ∈ {0, . . . , 7}, and (c) the minimal polynomial
of MJ is of maximum degree and irreducible (as detailed in [34, Appendix H]).
We recommend that MJ has a similar form to the matrix in Eq. 8 for eight rows
and columns.
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5.5 Number of Rounds

In order to provide κ bits of security and assuming a data limit of 2κ/2, the
number of rounds for the functions B and HK must be at least

RI =
⌈
1.125 ·

⌈
max

{κ

4
− log2(d) + 6, R̂I

}⌉⌉
, RH = �1.25 · max {24, 2 + R∗

H}� ,

where R̂I and R∗
H are the minimum positive integers that satisfy [34,

Appendix G.2] and Eq. 12, respectively. Note that we have added a security
margin of 12.5% for B and 25% for HK. In [34, Appendix A], we provide a script
that returns the number of rounds RI and RH for given p and κ. For instance,
with κ = 128, we get RI = 42 and RH = 39. A concrete instantiation of Hydra’s
matrices for p = 2127 + 45 is given in in [34, Appendix C].

About Related-Key Attacks. We do not claim security against related-key
attacks, since the keys are randomly sampled in each computation, without any
input or influence of a potential attacker. Thus, an attacker cannot know or
choose any occurring relations between different keys. Indeed, since we focus on
MPC protocols in a malicious setting with either honest or dishonest majority
(e.g., SPDZ [23,24]), any difference added to one shared key would be immedi-
ately detected by the other parties in the protocol. We also emphasize that the
same assumption has been made in previous related works [26,32].

6 Design Rationale of B, Ri and HK

6.1 The Body B
The HADES Design Strategy. For B, we aim to retain the advantages of
Hades [32], in particular the security arguments against statistical attacks and
the efficiency of the partial middle rounds. The Hades strategy is a way to design
SPN schemes over F

t
q in which rounds with full S-box layers are mixed with

rounds with partial S-box layers. The external rounds with full S-box layers (t S-
boxes in each nonlinear layer) at the beginning and at the end of the construction
provide security against statistical attacks. The rounds with partial S-box layers
(t′ < t S-boxes and t−t′ identity functions) in the middle of the construction are
more efficient in settings such as MPC and help to prevent algebraic attacks. In
all rounds, the linear layer is defined via the multiplication of an MDS matrix.

This strategy has recently been pushed to its limit in Neptune [33], a mod-
ified version of the sponge hash function Poseidon [31]. In such a case, instead
of using the same matrix and the same S-box both for the external and the
internal rounds, Neptune’s designers propose to use two different S-boxes and
two different matrices for the external and internal rounds.

The External Rounds of B. As in Hades, Poseidon, and Neptune, we use
the external rounds to provide security against statistical attacks. In the case of
Hades and Poseidon, this is achieved by instantiating the external full rounds
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with power maps x �→ xd for each of the t words. We recall that this nonlinear
layer requires t · (hw(d)+ �log2(d)�− 1) multiplications (see e.g. [33] for details).

We adopt this approach for B, using 2 external rounds at the beginning and
2 + 2 = 4 external rounds at the end, where 2 rounds are included as a security
margin against statistical attacks (see [34, Appendix G.1] for more details). With
respect to Hades and Poseidon, we do not impose that the number of external
rounds at the beginning is equal to the number of external rounds at the end
(even if we try to have a balance between them). Instead, we choose the number
of external rounds to be even at each side in order to maximize the minimum
number of active S-boxes from the wide-trail design strategy [22] (the minimum
number of active S-boxes over two consecutive rounds is related to the branch
number of the matrix that defines the linear layer).

The Internal Rounds of B. To minimize our primary cost metric (the number
of multiplications over Fp), we opt for using maps with degree 2l ≥ 2 which cost
l ≥ 1 multiplications in the internal rounds. Indeed, let us compare the cost in
terms of Fp multiplications in order to reach a certain degree Δ when using a
round instantiated with the quadratic map x �→ x2, with one instantiated via
an invertible power map x �→ xd with d ≥ 3, for odd d. Comparing the overall
number of Fp multiplications, the first option is the most competitive, since

�log2(Δ)� = �logd(Δ) · log2(d)�
︸ ︷︷ ︸

using x�→x2

≤ �logd(Δ)� · (�log2(d)� + hw(d) − 1)
︸ ︷︷ ︸

using x�→xd

,

where �logd(Δ) · log2(d)� ≤ �logd(Δ)� · �log2(d)� and �log2(d)� + hw(d) − 1 ≥
�log2(d)�+1 = �log2(d)�. For example, consider d = 3,Δ = 2128. With quadratic
maps we need 128 Fp multiplications to reach degree Δ. In the second case, 162
Fp multiplications are needed, requiring 27% more multiplications in total.

Nonlinear Layer. However, x �→ x2 is not invertible, which may affect the secu-
rity. Therefore, we use the quadratic map in a mode that preserves the invert-
ibility, as in a Feistel or Lai–Massey construction [43]. The latter over F

2
q is

defined as (x, y) �→ (x + F (x − y), y + F (x − y)), where F : Fq → Fq. Gen-
eralizations over F

n
p have recently been proposed [33], including one defined as

(x0, x1, . . . , xn−1) �→ (y0, y1, . . . , yn−1), where yi = xi + F
(∑n−1

j=0 (−1)j · xj

)
for

i ∈ {0, 1, . . . , n − 1} and even n ≥ 3. This can be further generalized as follows.

Proposition 1. Let q = ps, where p ≥ 3 is a prime and s is a positive integer,
and let n ≥ 2. Given 1 ≤ l ≤ n − 1, let λ

(i)
0 , λ

(i)
1 , . . . , λ

(i)
n−1 ∈ Fq be such that

∑n−1
j=0 λ

(i)
j = 0 for i ∈ {0, 1, . . . , l−1}. Let F : Fl

q → Fq. The Lai-Massey function
F : Fn

q → F
n
q defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible when

yh = xh +F

⎛

⎝
n−1∑

j=0

λ
(0)
j · xj ,

n−1∑

j=0

λ
(1)
j · xj , . . . ,

n−1∑

j=0

λ
(l−1)
j · xj

⎞

⎠ , for 0 ≤ h ≤ n−1 .
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We provide the proof in [34, Appendix F.1]. No conditions are imposed on F .
Even if not strictly necessary, we choose {λ

(0)
j }n−1

j=0 , . . . , {λ
(l−1)
j }n−1

j=0 such that

they are linearly independent. Since we require
∑n−1

j=0 λ
(i)
j = 0 for i ∈ {0, . . . , l −

1}, there can be at most l = n − 1 linearly independent {λ
(i)
j }-vectors.

To reduce the number of rounds and matrix multiplications, we chose a gener-
alized Lai–Massey construction instantiated with a nonlinear function of degree
4 that can be computed with 2 multiplications only.

Linear Layer. The Lai–Massey construction allows for invariant subspaces [48].
Hence, it is crucial to choose the matrix MI in order to break them. For this
goal, in [34, Appendix H], we show how to adapt the analysis/tool proposed
in [36,37] for breaking arbitrarily long subspace trails for P-SPN schemes to the
case of the generalized Lai–Massey constructions. In particular, based on [36,
Proposition 13], we show that this result can be always achieved by choosing a
matrix for which the minimal polynomial is of maximum degree and irreducible.

Moreover, the interpolation polynomial must be dense. Therefore, we require

(a) for i ∈ {0, 1, . . . , l − 1} :
∑n−1

j=0 λ
(i)
j ·

(∑n−1
k=0 MI [j, k]

)
�= 0,

(b) for i ∈ {0, 1, . . . , l − 1} and j ∈ {0, 1, . . . , n − 1} :
∑n−1

k=0 λ
(i)
k · MI [k, j] �= 0.

We give further details on these two conditions in [34, Appendix G.2].

6.2 The Heads HK

As in Farfalle and Ciminion, the attacker knows the outputs of the expansion
phase of Megafono, but cannot choose them (to e.g. set up a chosen-ciphertext
attack). By designing B in order to resemble a PRP, the attacker cannot know
or choose the inputs of HK (i.e., the output of B). Further, it is not possible to
choose inputs of B which result in specific statistical/algebraic properties at the
inputs of HK. This severely limits the range of attacks that may work at the
expansion phase of Megafono, and so of Hydra.

As a result, we find that the possible attacks are largely algebraic in nature,
such as using Gröbner bases. The idea of this attack is to construct a system
of equations that links the inputs and the outputs of HK in order to find the
intermediate variables and the key. In our case, this corresponds to 12 variables:
eight to represent the input and four variables related to the key. With this
number of variables over such a large field (relative to the security level), we
will see in Sect. 7.4 that it will not be necessary for HK to reach its maximal
degree. Since HK is an iterated permutation, it is also possible to introduce new
variables at the outputs of each round Ji in order to reduce the overall cost
of the Gröbner basis attack. In such a case, the cost of the attack depends on
min{deg(J −1),deg(J )}. Indeed, since we can work at round level, each round
function y = J (x) can be rewritten as J −1(y) = x, and the cost of the attack
depends on the minimum degree among these equivalent representations.
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Therefore, we instantiate the round function of HK with a low-degree func-
tion, in particular a generalized Lai–Massey construction of degree 2 (where the
matrix that defines the linear layer satisfies analogous condition to the ones given
for MI). An alternative approach (used e.g. in Rescue) applies both high-degree
and low-degree nonlinear power maps (recalled in Sect. 2.2). It is efficient in the
MPC setting, and would prompt HK to quickly reach its maximal degree. How-
ever, since reaching the maximal degree will not be a primary concern of ours
(due to the high number of variables), we opt for the former choice of round
functions, which allows Hydra to be fast in the plain setting as well.

6.3 The Rolling Functions Ri

Finally, we consider a nonlinear rolling function, as already done in Xoofff [21]
and Ciminion. This has multiple advantages, such as frustrating the meet-in-
the-middle attacks on the expansion phase described in [15,19] and previously
recalled in Sect. 4.1, and destroying possible relation between consecutive outputs
due to the feed-forward operation (see Sect. 4.1 for details).

We work with a rolling function that is different from what is used in the
heads, in order to break symmetry. The following (generalized) result ensures
the invertibility of the chosen rolling function.

Proposition 2. Let n = 2 · n′ ≥ 4, with n′ ≥ 2, and {λi, λ
′
i, ϕi, ϕ

′
i}0≤i≤n′−1 be

a set of constants in Fp \ {0} satisfying
∑n′−1

i=0 λi =
∑n′−1

i=0 λ′
i =

∑n′−1
i=0 ϕ′

i = 0.
Let furthermore G,H : Fp → Fp be any Fp functions. Then the function F over
F

n
p defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible for

yi :=

⎧
⎨

⎩

xi +
(∑n−1

j=n′ ϕj−n′ · xj

)
· G

(∑n′−1
j=0 λj · xj

)
if i ∈ {0, . . . , n′ − 1},

xi +
(∑n′−1

j=0 ϕ′
j · xj

)
· H

(∑n−1
j=n′ λ′

j−n′ · xj

)
if i ∈ {n′, . . . , n − 1}.

The proof is given in [34, Appendix F.2]. We impose that (λ0, . . . , λn′−1),
(ϕ′

0, . . . , ϕ
′
n′−1) ∈ F

n′
p and (ϕ0, . . . , ϕn′−1), (λ′

0, . . . , λ
′
n′−1) ∈ F

n′
p are pairwise

linearly independent, in order to guarantee that the variables v and w in Eq. 9
are independent (i.e., there is no ω ∈ Fp such that v = ω · w) with high proba-
bility.

As before, the matrix MR is chosen in order to break infinitely long invariant
subspace trails. Since the constants that defined the (generalized) Lai-Massey
functions (namely, (1,−1, 1,−1) and (1, 1,−1,−1) ∈ F

4
p) are the same for the

rolling function and for the body’s internal rounds, we defined MR via MI .

7 Security Analysis

Inspired by Ciminion, we choose the number of rounds such that x �→ K+B(x+K)
behaves like a PRP (where an attacker is free to choose its inputs and outputs)
and no attack works on the expansion phase of Hydra. In the following, we
motivate this choice and justify the number of rounds given in Sect. 5.5.
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7.1 Overview

Attacks on the Body. Attacks taking into account the relations between the
inputs and the outputs of Hydra are in general harder than the attacks taking
into account the relations between the inputs and the outputs of B. Hence, if an
attacker is not able to break x �→ K + B(x + K) if they have full control over the
inputs and outputs, they cannot break Hydra by exploiting the relation of its
inputs and outputs. Based on this fact, the chosen number of rounds guarantees
that x �→ K + B(x + K) resembles a PRP against attacks with a computational
complexity of at most 2κ and with a data complexity of at most 2κ/2.

We point out that this approach results in a very conservative choice for
the number of rounds of B. Indeed, in a realistic attack scenario the outputs of
x �→ K+ B(x + K) are hidden by HK, and the overall design will still be secure if
B is instantiated with a smaller number of rounds. However, B is computed only
once, and the overall cost grows linearly with the number of computed heads HK.
Hence, we find that the benefits of allowing us to simplify the security analysis
of the heads outweighs this modest increase in computational cost.

Attacks on the Heads. In order to be competitive in MPC, we design HK such
that Hydra is secure under the assumption that K+B(x+K) behaves like a PRP.
In particular, the attacker only knows the outputs of the HK calls, and cannot
choose any inputs with particular statistical or algebraic properties. Hence, the
only possibility is to exploit the relations among the outputs of consecutive HK

calls, which originate from the same (unknown) input y, z ∈ F
4
p. This can be

used when constructing systems of polynomial equations from HK. Indeed, we
will later see that the most competitive attacks are Gröbner basis ones.

7.2 Security Analysis of B
Since B is heavily based on the Hades construction, its security analysis is also
similar. In particular, the external rounds of a Hades design provide security
against statistical attacks. Since this part of B is the same as in HadesMiMC,
the security analysis proposed in [32, Sect. 4.1 – 5.1] also applies here. The inter-
nal rounds of B are instantiated with a Lai–Massey scheme, while the internal
rounds of HadesMiMC are instantiated with a partial SPN scheme. However,
the security argument proposed for HadesMiMC in [32, Sect. 4.2 – 5.2] regarding
algebraic attacks can be easily adapted to the case of B.

We refer to [34, Appendix G] for more details. We point out that x �→ K +
B(x+K) is an Even–Mansour construction in which B is independent of the key,
while a key addition takes place among every round in HadesMiMC. This fact
is taken care of in the analysis proposed in [34, Appendix G], keeping in mind
that the Even–Mansour construction cannot guarantee more than 2 · log2(p) ≥ κ
bits of security [20,28] (this value is reached when B resembles a PRP).

Finally, in [34, Appendix H] we show how to choose the matrix that defines
the linear layer of the internal rounds of B in order to break the invariant sub-
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space trails of the Lai–Massey scheme, by modifying the strategy proposed in [36]
for the case of partial SPN schemes.

7.3 Statistical and Invariant Subspace Attacks on HK

It is infeasible for the attacker to choose inputs {xj}j for B such that the cor-
responding outputs {yj}j satisfy certain statistical/algebraic properties, which
makes it hard to mount statistical attacks on the heads HK. However, it is still
desirable that HK has good statistical properties.

To this end, the matrix MJ ∈ F
8×8
p is chosen such that no (invariant) sub-

space trail and probability-1 truncated differential can cover more than 7 rounds
(see [34, Appendix H]). Hence, the probability of each differential characteristic
over RH rounds is at most p−�RH/8�, since the maximum differential probability
of SJ is p−1 (see [34, Appendix I.1]) and at least one SJ function is active every
8 rounds. By choosing RH ≥ 24, the probability of each differential characteristic
is at most p−3 ≤ 2−1.5κ, which we conjecture to be sufficient for preventing dif-
ferential and, more generally, other statistical attacks in the considered scenario.

7.4 Algebraic and Gröbner Basis Attacks on HK

It is not possible to mount an interpolation attack, since the input y, z is unknown
and the polynomials associated with the various heads differ for each i. Thus,
the remainder of this section will be devoted to Gröbner basis attacks.

Note that the variables y and z are clearly not independent, as they both
depend on x. Moreover, z can be written as a function of y (the converse does not
hold, since the function that outputs z is, in general, not invertible). However,
these functions would be dense and reach maximum degree, which implies that
the cost of an attack making use of them would be prohibitively expensive.
Hence, we will treat y and z as independent variables in the following.

Preliminaries: Gröbner Basis Attacks. The most efficient methods for solv-
ing multivariate systems over large finite fields involve computing a Gröbner basis
associated with the system. We refer to [18] for details on the underlying theory.

Computing a Gröbner basis (in the grevlex order) is, in general, only one
of the steps involved in solving a system of polynomials. In our setting, an
attacker is able to set up an overdetermined polynomial system where a unique
solution can be expected. In this case it is often possible to read the solution
directly from the grevlex Gröbner basis, which is why we will solely focus on the
step of computing said basis. There are no general complexity estimates for the
running time of state-of-the-art Gröbner basis algorithms such as F4 [30]. There
is, however, an important class of polynomial systems, known as semi-regular
(see [7] for a definition), that is well understood. For a semi-regular system the
degree of the polynomials encountered in F4 is expected to reach the degree
of regularity Dreg, which in this case can be defined as the index of the first



From Farfalle to Megafono via Ciminion 279

non-positive coefficient in the series

H(z) =
∏ne

i=1(1 − zdi)
(1 − z)nv

, (10)

for ne polynomials in nv variables, where di is the degree of the i-th equation.
The estimated complexity of computing a grevlex Gröbner basis is then

O
((

Dreg + nv

nv

)ω)
, (11)

where 2 ≤ ω ≤ 3 is the linear algebra constant representing the cost of matrix
multiplication and Dreg the associated degree of regularity [7].

Gröbner Basis Attacks on HK. There are many possible ways to represent
a cryptographic construction as a system of multivariate polynomials, and this
choice impacts the performance of the Gröbner basis algorithm. Note that the
degree of HK(Ri(y, z)) increases with i, and it is therefore not possible to col-
lect enough polynomials for solving by direct linearization at a relatively small
degree, as discussed in [34, Appendix G.2]. Instead, we find that the most effi-
cient attack includes only HK(y, z) and HK(R1(y, z)) in a representation that
introduces new variables and equations for each round. While this increases the
number of variables, it keeps the degree low, and allows exploitation of the small
number of multiplications in each round. We outline our findings in the following,
and we refer to [34, Appendix I.2] for more details on the underlying arguments.

The most promising intermediate modeling can be reduced to a system of
2RH + 2 quadratic equations in 2RH − 2 variables, where RH is the number of
rounds in HK. Further analysis shows that the tested systems are semi-regular,
and in particular that the degrees encountered in the F4 algorithm are well-
estimated by the series H(z) in Eq. 10. Solving times are also comparable to that
of solving randomly generated semi-regular systems with the same parameters.
Still, the systems from HK are sparser than what can be expected from randomly
generated systems. To ensure that this cannot be exploited, we add 2 extra
rounds on top of this baseline. Hence, for a security level κ we follow Eq. 11 and
define R∗

H = R∗
H(κ) to be the minimum positive integer such that

(
2R∗

H − 2 + Dreg

2R∗
H − 2

)2

≥ 2κ , (12)

where Dreg is computed from Eq. 10 using ne = 2R∗
H +2 and nv = 2R∗

H − 2. We
claim that R∗

H(κ) + 2 is sufficient to provide κ-bit security against this attack.

Concrete Example for κ = 128. In this case we get R∗
H(128) = 29, which in

turn yields ne = 60 quadratic equations in nv = 56 variables. By expanding the
resulting series in Eq. 10, we get Dreg = 23 for this system, and the security
estimate

(
56+23

56

)2 ≈ 2130.8 follows. Thus, we claim that R∗
H(128) + 2 = 31 is

sufficient to provide 128-bit security against Gröbner basis attacks.
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Table 1. Online and offline phase performance in MPC for several constructions with
state sizes t using a secret shared key. Prec is the number of precomputed elements
(multiplication triples, squares, inverses). Depth describes the number of online com-
munication rounds. The runtime is averaged over 200 runs.

Offline Online Combined

t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8 Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87

Ciminion 90, 14 867 227.47 19.55 735 21.81 28.02 249.29 19.58

HadesMiMC 6, 71 238 52.66 5.37 79 17.58 5.99 70.24 5.38

Rescue 10 960 254.80 21.65 33 12.65 23.32 267.45 21.68

32 Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64

Ciminion 90, 14 3207 910.11 72.30 2895 84.37 103.29 994.47 72.41

HadesMiMC 6, 71 526 137.49 11.87 79 225.86 13.29 363.35 11.88

Rescue 10 3840 1253.76 86.60 33 109.80 92.82 1363.56 86.70

64 Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35

Ciminion 90, 14 6327 2262.55 142.64 5775 178.66 203.64 2441.21 142.84

HadesMiMC 6, 71 910 251.44 20.53 79 899.55 23.02 1150.99 20.55

Rescue 10 7680 2851.56 173.20 33 402.34 185.50 3253.90 173.39

128 Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75

Ciminion 90, 14 12567 4854.43 283.32 11535 328.79 404.34 5183.22 283.72

HadesMiMC 6, 71 1678 463.59 37.85 79 4371.02 42.47 4834.61 37.89

Rescue 10 15360 5934.39 346.40 33 1549.16 370.84 7483.55 346.77

8 HYDRA in MPC Applications

In this section, we evaluate the performance of Hydra compared to other PRFs
in MPC use cases which assume a secret shared key. We implemented Hydra
and its competitors using the MP-SPDZ library [41]6 (version 0.2.8, files can
be found in [34, Appendix A]) and benchmark it using SPDZ [23,24] with the
MASCOT [42] offline phase protocol. Concretely, we benchmark a two-party
setting in a simulated LAN network (1 Gbit/s and � 1ms average round-trip
time) using a Xeon E5-2669v4 CPU (2.6 GHz), where each party is assigned
only 1 core. SPDZ, and therefore all the PRFs, is instantiated using a 128-bit
prime p, with gcd(3, p − 1) = 1, thus ensuring that x �→ x3 is a permutation, as
required by HadesMiMC, Rescue, MiMC, GMiMC, and Hydra. All PRFs are
instantiated with κ = 128. Hydra requires 4 · RE · (hw(d) + �log2(d)� − 1) + 2 ·
RI + (RH + 2) ·

⌈
t
8

⌉
− 2 multiplications, hence 130 + 41 ·

⌈
t
8

⌉
in this setting.

We implemented all x3 evaluations using the technique from [35], which
requires one precomputed Beaver triple, one precomputed shared random square,
and one online communication round. Furthermore, we implemented x1/3 (as
used in Rescue) using the technique described in [5]. MP-SPDZ allows to precom-
pute squares and inverses from Beaver triples in an additional communication
round in the offline phase (see Sect. 2).
6 https://github.com/data61/MP-SPDZ/.

https://github.com/data61/MP-SPDZ/
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In Table 1, we compare the performance of Hydra to some competitors when
encrypting t plaintext words,7 for a comparison with more PRFs we refer to [34,
Appendix J]. We give concrete runtimes, as well as the amount of data transmit-
ted by each party during the evaluation of the offline and online phases. Further,
we give the combined number of triples, squares, and inverses which need to be
created during the offline phase, as well as the total number of communication
rounds (i.e., the depth of the PRF) in the online phase. In the offline phase only
the required number of triples, squares, and inverses is precomputed.

Table 1 shows that the offline phase dominates both the overall runtime and
the total communication between the parties. Hydra always requires less pre-
computation than Ciminion, HadesMiMC, and Rescue, hence, it has a signifi-
cantly more efficient offline phase with the advantage growing with t. Looking at
the online phase, Hydra is faster and requires less communication than its com-
petitors, which is due to the smaller number of multiplications and the better
plain performance. While Ciminion is slow due to the expensive key schedule,
HadesMiMC requires many expensive MDS matrix multiplications (see [34,
Appendix K]) and Rescue requires expensive x1/d evaluations.

Table 2. Online and offline phase performance in MPC for several constructions with
state sizes t using a secret shared key. Prec is the number of precomputed elements
(multiplication triples, squares, inverses). Depth describes the number of online com-
munication rounds. The runtime is averaged over 200 runs.

Offline Online Combined

t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8 Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87

Ciminion (No KS)a 90, 14 148 35.64 3.34 107 3.98 5.02 39.62 3.35

Rescue (No KS)a 10 480 129.47 10.83 33 6.95 11.80 136.42 10.84

32 Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64

Ciminion (No KS)a 90, 14 328 80.79 7.40 119 5.42 11.16 86.21 7.41

Rescue (No KS)a 10 1920 538.19 43.30 33 47.35 46.74 585.54 43.35

64 Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35

Ciminion (No KS)a 90, 14 568 154.38 12.81 135 8.05 19.35 162.42 12.83

Rescue (No KS)a 10 3840 1226.39 86.60 33 144.14 93.34 1370.53 86.70

128 Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75

Ciminion (No KS)a 90, 14 1048 274.90 23.63 167 10.70 35.74 285.60 23.67

Rescue (No KS)a 10 7680 2943.21 173.20 33 737.84 186.52 3681.05 173.39
a Assumes round keys are present, i.e., no key schedule computation in MPC.

For the sake of completeness, in Table 2 we also compare the performance
of Hydra to Ciminion and Rescue in the case in which the round keys are
already present. Comparing Hydra to Ciminion without a key schedule, one

7 The use cases discussed in this paper basically boil down to encrypting many plain-
text words using a secret-shared key. Hence, this benchmark is also representative
for the use cases from Sect. 2.1.
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can observe that Ciminion’s online phase is always faster. However, Hydra’s
number of multiplications scales significantly better than Ciminion’s, hence, for
larger state sizes (t ≥ 32) Hydra has a faster offline phase performance, as well
as less communication in the online phase.

To summarize, our experiments show that Hydra is the most efficient PRF in
both phases of the MPC protocols. Only if we discard the key schedules, Ciminion
is competitive for small state sizes t < 32. Thus, using Hydra leads to a signifi-
cant performance improvement in MPC use cases, especially in high-throughput
conditions. In applications, where the offline phase plays a minor role, e.g., when
triples are continuously precomputed and rarely consumed, Hydra still leads
to an performance advantage due to requiring less communication between the
parties, however, the advantage will be smaller.

The Effect of the Network. The performance of MPC applications depends
on the network speed. A lower bandwidth leads to a larger effect of the com-
munication between the parties on the overall performance. Moreover, a longer
round-trip time leads to larger contributions of the number of communication
rounds. In the offline phase only shared correlated randomness is created, thus
the network performance affects all PRFs in the same way. Consequently, if a
PRF has a faster offline phase in the LAN setting, it is also faster in a slower net-
work environment. The situation is different in the online phase: In fast networks,
the online phase performance is mostly determined by the plain runtime. In a
slower network, more time is spent waiting for the network to deliver packages.
Hydra has a small number of multiplications, hence a preferable offline phase
in all networks. Further, it requires little communication in the online phase,
making it suitable for low-bandwidth networks. However, it has a larger depth
compared to HadesMiMC and Rescue, leading to worse runtimes in high-delay
networks where runtime is dominated by round trip time× depth. Ciminion’s
key schedule has a large depth and requires lots of communication between the
parties (compare Data column in Table 1 and Table 2). Thus, Ciminion is only
competitive in slow networks if the key schedule does not need to be computed.
Overall, Hydra has a good balance between a small number of multiplications,
little communication, decent plain performance, and a reasonable depth, making
it the preferred PRF for MPC applications in most network environments.
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17. Cid, C., Grassi, L., Gunsing, A., Lüftenegger, R., Rechberger, C., Schofnegger,
M.: Influence of the linear layer on the algebraic degree in sp-networks. IACR
Trans. Symmetric Cryptol. 2022(1), 110–137 (2022). https://doi.org/10.46586/
tosc.v2022.i1.110-137

18. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: an introduction
to computational algebraic geometry and commutative algebra. Springer Science
& Business Media (2013)

19. Cui, T., Grassi, L.: Algebraic key-recovery attacks on reduced-round Xoofff. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 171–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 7

20. Daemen, J.: Limitations of the even-mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

21. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.
13154/tosc.v2018.i4.1-38

22. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

23. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

24. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

25. Dinur, I., et al.: MPC-friendly symmetric cryptography from alternating moduli:
candidates, protocols, and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12828, pp. 517–547. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-84259-8 18

26. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on toffoli-gates over large finite fields. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6 1

27. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key cryptom pp. 843–857
(Nov 2022). https://doi.org/10.1145/3548606.3559353

28. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 21

https://doi.org/10.13154/tosc.v2018.i1.5-28
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.46586/tosc.v2022.i1.110-137
https://doi.org/10.46586/tosc.v2022.i1.110-137
https://doi.org/10.1007/978-3-030-81652-0_7
https://doi.org/10.1007/978-3-030-81652-0_7
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-030-84259-8_18
https://doi.org/10.1007/978-3-030-84259-8_18
https://doi.org/10.1007/978-3-030-77886-6_1
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-642-29011-4_21


From Farfalle to Megafono via Ciminion 285

29. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17
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Abstract. We propose an efficient technique called coefficient group-
ing to evaluate the algebraic degree of the FHE-friendly cipher Chaghri,
which has been accepted for ACM CCS 2022. It is found that the alge-
braic degree increases linearly rather than exponentially. As a conse-
quence, we can construct a 13-round distinguisher with time and data
complexity of 263 and mount a 13.5-round key-recovery attack. In par-
ticular, a higher-order differential attack on 8 rounds of Chaghri can be
achieved with time and data complexity of 238. Hence, it indicates that
the full 8 rounds are far from being secure. Furthermore, we also demon-
strate the application of our coefficient grouping technique to the design
of secure cryptographic components. As a result, a countermeasure is
found for Chaghri and it has little overhead compared with the original
design. Since more and more symmetric primitives defined over a large
finite field are emerging, we believe our new technique can have more
applications in the future research.

Keywords: Chaghri · degree evaluation · coefficient grouping ·
optimization problem · finite field

1 Introduction

In recent years, there is a new trend to design symmetric-key primitives for
advanced protocols like secure multi-party computation (MPC), fully homomor-
phic encryption (FHE) and zero-knowledge proof systems (ZK) [2–5,10,12,15–
17,20,21,23,29]. This is mainly motivated by the fact that traditional symmetric-
key primitives like AES and SHA-2/SHA-3 are not efficient in these protocols.
Therefore, when designing new symmetric-key primitives for them, designers
need to be aware of the features of the target MPC/FHE/ZK schemes, e.g.
which operations are cost-free and which are costly. For example, for many FHE
schemes, a symmetric-key primitive with low multiplicative depth in decryption
is desired.
c© International Association for Cryptologic Research 2023
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It has been noticed by Canteaut et al. [10] that stream ciphers are a practical
solution for efficient homomorphic ciphertext compression and many such stream
ciphers have been proposed since then, like Kreyvrium [10], FLIP [29], Rasta [15],
Dasta [23], Fasta [12], Masta [21] and Pasta [17]. Among them, Kreyvrium, FLIP,
Rasta, Dasta, Fasta are designed over F2 while Masta and Pasta are designed over
Fp where p is a large prime number. At ACM CCS 2022, an FHE-friendly block
cipher called Chaghri [6] defined over F263 was proposed and it can outperform
AES by about 65%.

Along with the new proposals, new cryptanalytic techniques have also been
developed. There are some practical examples that several such primitives are
broken with new cryptanalytic techniques. Specifically, the variant of MiMC
designed over F2n is vulnerable against the higher-order differential attack [19].
Jarvis and Friday designed over a large finite field can be broken by Gröbner
basis attacks [1]. The first version of FLIP can be practically broken by guess-
and-determine attacks [18]. Some important parameters of LowMC and Agrasta
are also shown to be insecure against algebraic attacks [14,25–27,30].

Due to the above design-and-break game, cryptographers have started to
realize the importance to enrich the pool of cryptanalytic techniques for these
new designs. Especially, as many such primitives are defined over a large finite
field, it has become urgent to fill the shortcomings of the corresponding crypt-
analytic techniques. At CRYPTO 2020, a major breakthrough was made where
the higher-order differential attack was extended to finite fields of any character-
istics [7]. At the same time, a more refined higher-order differential attack over
F2n was discovered at ASIACRYPT 2020 [19]. These higher-order differential
attacks rely on the degree evaluation. However, in both [7] and [19], the degree
is computed in a rather straightforward way and they mainly exploit the low
degree of the S-box, i.e. the S-box x �→ x3. Although there are some follow-up
works [9,11], the corresponding general results still have some limitations and
the degree evaluation still seems somewhat straightforward.

Some Related Works. Let us consider a MiMC-like construction defined over
F2n with an S-box x �→ xd where d = 2j + 1. Then, the general results in [9,11]
show that the algebraic degree after r rounds is upper bounded by �rlog2d� −
j + 1 ≈ (r − 1)j + 1. This is obviously ineffective when j is large and n is small
as n < �rlog2d� − j + 1 needs to hold to construct a meaningful higher-order
differential distinguisher. However, as (n, d) = (129, 3) is one parameter of MiMC,
this is indeed quite effective and it implies that the algebraic degree increases
linearly. Note that this was first observed in [19] and later generalized in [11].

In [11], the authors considered the SPN ciphers over F2n . Although Chaghri
is also based on the SPN structure, we emphasize that our method is still quite
different from [11] and this will be very clear later. This is because we use a
much more refined method to evaluate the algebraic degree for any such (n, d)
while [9,11] still rely on a very similar bound as in [19] which cannot be effective
for large d and small n. Since in Chaghri (n, d) = (63, 232 +1), we cannot obtain
efficient attacks by simply using the bound given in [9,11].
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Another related work seems to be the bit-based division property [31], which
is a powerful method for the degree evaluation. Recently, the field-based division
property [13] has been proposed and used to analyze MiMC. Here, we emphasize
that our method is in nature very different from the concept of division property,
which should be clear after understanding our method. Moreover, we will give
some discussions on the differences on page 13.

Our Contributions. We mainly focus on the higher-order differential attacks
on Chaghri. As mentioned above, due to the usage of (n, d) = (63, 232 + 1) in
Chaghri, existing methods to bound the algebraic degree become ineffective and
we almost cannot violate the designers’ claim that the algebraic degree of Chaghri
increases exponentially with them. Hence, new techniques are required to break
Chaghri. The contributions of this paper are summarized below.

1. A novel and efficient technique called coefficient grouping is proposed for the
degree evaluation of Chaghri. The efficiency comes from an efficient repre-
sentation of the polynomial of any rounds of Chaghri in terms of the input.
Specifically, this representation can be determined by a single vector of inte-
gers that can be computed in linear time. Furthermore, with this vector of
integers, upper bounding the degree is reduced to some well-structured opti-
mization problems that can be efficiently solved, e.g. some can be solved in
linear time.

2. For SPN-based ciphers over F2n , i.e. Chaghri, we demonstrate that it is nec-
essary to first study the increase of the algebraic degree in the univariate
case and then study it in the multivariate case. With this strategy and our
method to evaluate the algebraic degree, we can break the full 8 rounds of
Chaghri with a low data and time complexity of 238. Moreover, the attack can
reach up to 13.5 rounds and this reveals that the original design of Chaghri
is flawed. Our results are summarized in Table 1.

3. It is found that the vulnerability of Chaghri exists in the usage of a sparse
affine transform (an F2-linearized affine polynomial), i.e. B(x) = c1x

23 + c2,
where c1, c2 ∈ F263 are constants. This can be well explained by our coefficient
grouping technique and further shows the advantage of our technique. Hence,
we are motivated to design a slightly denser affine transform and further
motivated to generalize our coefficient grouping technique to a more complex
design. Based on it, we succeed in finding a new affine transform to achieve an
almost exponential increase of the algebraic degree. The new affine transform
is B′(x) = c′

1x + c′
2x

22 + c′
3x

28 + c′
4. By replacing B(x) with B′(x), we can

keep the number of rounds of Chaghri unchanged and this has little overhead
compared with the original design1.

Based on the above results, we believe our coefficient technique is useful for both
cryptanalysis and design and worth further investigation.

1 The designers of Chaghri have revised their design based on our countermeasures.
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Organization. In Sect. 2, we describe the used notations, the block cipher
Chaghri and some basic knowledge related to this work. In Sect. 3, the coeffi-
cient grouping technique for Chaghri is described. Then, in Sect. 4, we give more
details of our attacks on Chaghri in both the univariate and multivariate set-
tings. In Sect. 5, the coefficient grouping technique is further generalized to a
more complex design and we describe how to search for a secure affine transform
with it. Finally, we conclude the paper in Sect. 6.

Table 1. Summary of our attacks on Chaghri

Attack Type Rounds Time Data Reference

Distinguisher 8 (full) 238 238 Sect. 4
13 263 263 Sect. 4
13.5 2123 2123 Sect. 4.3

Key recovery 13.5 296.6 263 Sect. 4.1

2 Preliminaries

2.1 Notation

The following notations will be used throughout this paper.

1. |S| denotes the size of the set S.
2. a%b represents a mod b.
3. a|b denotes that a divides b.
4. [a, b] is a set of integers i satisfying a ≤ i ≤ b.
5. H(a) is the hamming weight of a.
6. The function Mn(x) (x ∈ N) is defined as follows:

Mn(x) =

{
2n − 1 if 2n − 1|x, x ≥ 2n − 1,

%(2n − 1) otherwise.

By the definition of Mn(x), we have Mn(x1 + x2) = Mn(Mn(x1) + Mn(x2)),
Mn(2i) = 2i%n and Mn(2ix) = Mn(2i%nMn(x)) for i ≥ 0.

2.2 On the Finite Field Fpn

For a prime number p and a positive integer n, the finite field Fpn can be repre-
sented as a set of numbers of size pn. Let α be a primitive element of Fpn . Then
each element x in the finite field Fpn can be written as

x =
n−1∑
i=0

βiα
i,
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where βi ∈ [0, p−1]. Moreover, the set {1, α, . . . , αn−1} is said to be a polynomial
basis of Fpn .

For the element x ∈ Fpn , it is well-known that{
xpn

= x ∀x ∈ Fpn ,

xpn−1 = 1 ∀x ∈ Fpn and x �= 0.

Hence, for two monomials Xa and Xb in the polynomial ring F2n [X], there is
Xa · Xb = XMn(a+b), which is the main reason to define the function Mn(x).

Moreover, it is also well-known that

(x + y)p
i

= xpi

+ ypi

for ∀x, y ∈ Fpn and i ≥ 0.

The Higher-Order Differential Attack Over F2n . Throughout this paper,
we mainly utilize the idea described in [19] to analyze Chaghri. Specifically, for a
given function F : F2n → F2n , there always exists a vectorial Boolean function
G : Fn

2 → F
n
2 such that

σ :
n−1∑
i=0

βiα
i �→ (β0, β1, . . . , βn−1) ∈ F

n
2 ,

σ(F(x)) = G(σ(x)) ∀x ∈ F2n ,

where {1, α, . . . , αn−1} is a polynomial basis of F2n .
Let deg(G) be the algebraic degree of G. For the higher-order differential

attack, given any affine vector subspace V of dimension deg(G) + 1 from F
n
2 ,

there is
∑

v∈V G(v) = 0, which implies

∑
(β0,β1,...,βn−1)∈V

F(
n−1∑
i=0

βiα
i) = 0.

It is well-known that deg(G) is related to the univariate representation of F , as
stated below:

Definition 1 (Univariate degree and algebraic degree). Let F and G be
as above. The univariate representation of F is

F =
2n−1∑
i=0

uiX
i,

where ui ∈ F2n for i ∈ [0, 2n − 1]. The univariate degree of F denoted by Du
F is

defined as:

Du
F = max{i : i ∈ [0, 2n − 1], ui �= 0}.
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Then, deg(G) can be computed as follows:

deg(G) = max{H(i) : i ∈ [0, 2n − 1], ui �= 0}.

max{H(i) : i ∈ [0, 2n −1], ui �= 0} is also called the algebraic degree of F denoted
by Da

F .

The Multivariate Case. The above higher-order differential attack can also
be extended to the multivariate case. Specifically, let F(X1,X2, . . . , Xt) : Ft

2n →
F2n be a multivariate function in variables (X1,X2, . . . , Xt). Then, its multivari-
ate representation is

F =
2n−1∑
i1=0

2n−1∑
i2=0

· · ·
2n−1∑
it=0

ui1,i2,...,it
Xi1

1 Xi2
2 · · · Xit

t .

The algebraic degree is then defined as

Da
F = max{

t∑
j=1

H(ij) : ij ∈ [0, 2n − 1], ui1,i2,...,it
�= 0}.

Let

Xi =
n−1∑
j=0

βi,jα
j , βi = (βi,0, βi,1, . . . , βi,n−1) ∈ F

n
2 where i ∈ [1, t].

By choosing an affine subspace V of dimension dim(V ) = Da
F + 1 from F

n×t
2 ,

there will be ∑
(β1,β2,...,βt)∈V

F(X1, . . . , Xt) = 0,

which is trivial extension of the univariate case. Specifically, for any monomial
Xρ1

1 Xρ2
2 · · · Xρt

t , there is
∑t

i=1 H(ρi) ≤ Da
F by definition. For any such affine

subspace V , we can denote the corresponding affine subspace of βi by Vi (1 ≤
i ≤ t) and denote the dimension of Vi by dim(Vi). Then, there is

∑t
i=1 dim(Vi) =

Da
F + 1 ≥ 1 +

∑t
i=1 H(ρi). Therefore, there must exist an index i such that

dim(Vi) ≥ H(ρi) + 1, which implies∑
β1∈V1

∑
β2∈V2

· · ·
∑

βi∈Vi

· · ·
∑

βt∈Vt

Xρ1
1 Xρ2

2 · · · Xρi

i · · · Xρt

t = 0.

2.3 Description of Chaghri

The FHE-friendly block cipher Chaghri [6] is defined over a large finite field.
There are in total 8 rounds and each round is composed of two steps. Denote
the state of Chaghri by a = (a1, a2, a3) ∈ F

3
263 . The round function R(a) of its

decryption is described in Algorithm 1. Note that throughout this paper, we are
considering the decryption of Chaghri because the designers choose the secure
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Algorithm 1. The round function of Chaghri at the (j + 1)th round where
0 ≤ j ≤ 7
1: procedure R(a)
2: ai = G(ai) for i ∈ {1, 2, 3}
3: ai = B(ai) for i ∈ {1, 2, 3}
4: a = M · (a1, a2, a3)

T

5: ai = ai + RK[2j + 1]i for i ∈ {1, 2, 3}
6: ai = G(ai) for i ∈ {1, 2, 3}
7: ai = B(ai) for i ∈ {1, 2, 3}
8: a = M · (a1, a2, a3)

T

9: ai = ai + RK[2j + 2]i for i ∈ {1, 2, 3}

number of rounds for Chaghri by mainly analyzing the security of decryption and
low multiplicative depth in decryption is desired in FHE schemes. For encryption,
the algebraic degree of the S-box is very high and the affine layer is very dense.
Hence, our attacks cannot be applied to the encryption of Chaghri.

In Algorithm1, the round key RK[j] = (RK[j]1, RK[j]2, RK[j]3) ∈ F
3
263 is

generated from a master key K = (K1,K2,K3) ∈ F
3
263 . The whitening key is

RK[0] = (RK[0]1, RK[0]2, RK[0]3). We omit the key schedule function as it is
not relevant to our attacks. In the following, we explain each component used in
the round function, namely G, B and M .

The Nonlinear Function G(x) : F263 → F263 . G(x) is defined as G(x) =
x232+1.

The Affine Transform B(x) : F263 → F263 . B(x) is defined as B(x) = c1x
23 +

c2 where c1, c2 ∈ F263 are constants.

The Linear Transform M : F3
263 → F

3
263 . M is a 3 × 3 MDS matrix. The

designers do not specify a concrete choice for M and they claim any MDS matrix
is suitable. We note here that our attacks apply to any choice of M .

Definition of One Step. According to the round function described in Algo-
rithm1, the round function is R(a) = AK ◦ M ◦ B ◦ G ◦ AK ◦ M ◦ B ◦ G(a).
Similar to [6], one step of Chaghri is defined as AK ◦ M ◦ B ◦ G(a) and we call
it the step function of Chaghri.

Notation for the Internal State. We denote the internal state after i steps
by (zi,1, zi,2, zi,3). For example, the input state is (z0,1, z0,2, z0,3), the internal
state after 1 step is (z1,1, z1,2, z1,3), and the internal state after 1 round is
(z2,1, z2,2, z2,3). In this paper, we consider R steps of Chaghri.
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3 The Coefficient Grouping Technique

We give the intuitive explanation of our new technique with its application to
Chaghri. For better understanding, we first only focus on its application to the
univariate polynomial and then we discuss how it can be extended to the mul-
tivariate case.

Without loss of generality, we consider a general form of G(x) and B(x), as
shown below:

G(x) = x2k0+2k1
, B(x) = c1x

2k2 + c2.

Moreover, we consider the finite field F2n , i.e. the internal state a = (a1, a2, a3)
of Chaghri satisfies ai ∈ F2n for i ∈ [1, 3]. It should be emphasized that there are
constraints on (k0, k1, n) to ensure that G(x) is a permutation. Here we only care
about its general form of algebraic degree 2. For Chaghri, (k0, k1, k2) = (32, 0, 3)
and n = 63.

The Main Idea of Our Attacks. We consider an input state which can be
represented as univariate polynomials in the variable X ∈ F2n , as shown below:

z0,1 = A0,1X + B0,1, z0,2 = A0,2X + B0,2, z0,3 = A0,3X + B0,3, (1)

where A0,i, B0,i ∈ F2n (1 ≤ i ≤ 3) are randomly chosen constants. In this way,
after an arbitrary number of steps, each state word can always be represented as
a univariate polynomial in X. Our aim is to compute the upper bound Dr,i for
the algebraic degree of the univariate polynomial Pr,i(X) where zr,i = Pr,i(X)
(1 ≤ i ≤ 3). We say the upper bound for the algebraic degree2 of r-step Chaghri
is Dr where Dr = max{Dr,1,Dr,2,Dr,3}. Hence, if Dr < n, there exists a higher-
order differential attack on r steps of Chaghri with time and data complexity
2Dr+1.

Remark 1. In particular, this attack can be trivially extended for 1 more step
by using 2n data. Specifically, we can consider an input state of the following
form:

z0,1 = X1, z0,2 = A2, z0,3 = A3,

where A2, A3 ∈ F2n are randomly chosen constants and X is the variable. Then,
by making X = B ◦ G(X1 + RK[0]1), the state (z1,1, z1,2, z1,3) will be of the
same form as in Eq. 1. For such a state (z1,1, z1,2, z1,3), after r more steps, the
algebraic degree of the univariate polynomials in X is upper bounded by Dr.
Since Dr < n and X will traverse all the 2n possible values when X1 takes all
the 2n possible values, the higher-order differential attack indeed can reach r+1
steps with time and data complexity of 2n.
2 From the perspective of attackers, Dr can be defined as min{Dr,1, Dr,2, Dr,3}

to reduce the time complexity of the attacks. However, due to the strong diffu-
sion of the MDS matrix, using Dr = max{Dr,1, Dr,2, Dr,3} is reasonable and can
greatly simplify the attack. This can also be observed from our later analysis of
the evolution of the polynomials through the step function of Chaghri, i.e. using
Dr = max{Dr,1, Dr,2, Dr,3} is indeed tight according to the experiments.
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3.1 Tracing the Form of the Univariate Polynomial

With the input form shown in Eq. 1, the state words (zr,1, zr,2, zr,3) can always
be represented as univariate polynomials of the following form:

zr,1 =
|wr|∑
i=1

Ar,iX
wr,i , zr,2 =

|wr|∑
i=1

Br,iX
wr,i , zr,3 =

|wr|∑
i=1

Cr,iX
wr,i

where Ar,i, Br,i, Cr,i ∈ F2n are key-dependent coefficients and we call the set

wr = {wr,1, wr,2, . . . , wr,|wr|} ⊆ N

the set of all possible exponents for the univariate polynomials after r steps.
Note that 0 ∈ wr since it represents the constant term. It should be mentioned
that for r = 0, we have

w0 = {0, 1}, (2)

which corresponds to the input form specified in Eq. 1.
According to the definition of the algebraic degree of a univariate polynomial,

we have

Dr ≤ max{H(wr,i) : 1 ≤ i ≤ |wr|}. (3)

Analyzing the Evolution of the Polynomial Representations. We are
interested in the univariate polynomials to represent (zr+1,1, zr+1,2, zr+1,3), i.e.
how the polynomials evolve through the step function of Chaghri. The detailed
analysis is shown below.

G(zr,1) = (

|wr|∑

i=1

Ar,iX
wr,i)2

k0+2k1

= (

|wr|∑

i=1

Ar,iX
wr,i)2

k0
(

|wr|∑

j=1

Ar,jX
wr,j )2

k1
=

|wr|∑

i=1

|wr|∑

j=1

Ar,i,jX
Mn(2k0wr,i+2k1wr,j),

where Ar,i,j ∈ F2n are key-dependent coefficients.

B ◦ G(zr,1) = c1

( |wr|∑
i=1

|wr|∑
j=1

Ar,i,jX
Mn(2k0wr,i+2k1wr,j)

)2k2

+ c2

=
|wr|∑
i=1

|wr|∑
j=1

A′
r,i,jX

Mn(2k0+k2wr,i+2k1+k2wr,j),

where A′
r,i,j ∈ F263 are key-dependent coefficients. c2 is removed due to 0 ∈ wr.
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Similarly, it can be found that

B ◦ G(zr,2) =
|wr|∑
i=1

|wr|∑
j=1

B′
r,i,jX

Mn(2k0+k2wr,i+2k1+k2wr,j),

B ◦ G(zr,3) =
|wr|∑
i=1

|wr|∑
j=1

C ′
r,i,jX

Mn(2k0+k2wr,i+2k1+k2wr,j),

where B′
r,i,j , C

′
r,i,j ∈ F2n are key-dependent coefficients.

Therefore, we can obtain

zr+1,1 =
|wr|∑
i=1

|wr|∑
j=1

Ar+1,i,jX
Mn(2k0+k2wr,i+2k1+k2wr,j),

zr+1,2 =
|wr|∑
i=1

|wr|∑
j=1

Br+1,i,jX
Mn(2k0+k2wr,i+2k1+k2wr,j),

zr+1,3 =
|wr|∑
i=1

|wr|∑
j=1

Cr+1,i,jX
Mn(2k0+k2wr,i+2k1+k2wr,j),

where Ar+1,i,j , Br+1,i,j , Cr+1,i,j ∈ F263 are key-dependent coefficients.
Hence, we obtain a relation between the sets wr and wr+1, as shown below:

wr+1 = {e|e = Mn(2k0+k2wr,i + 2k1+k2wr,j), 1 ≤ i, j ≤ |wr|},
In this way, for each element e ∈ wr+2, there must exist (i, j, s, t) where

1 ≤ i, j, s, t ≤ |wr| such that

e = Mn

(
2k0+k2(2k0+k2wr,i + 2k1+k2wr,j) + 2k1+k2(2k0+k2wr,s + 2k1+k2wr,t)

)
.

In other words,

wr+2 = {e|e = Mn(22k0+2k2wr,i + 2k0+k1+2k2(wr,j + wr,s) + 22k1+2k2wr,t),
1 ≤ i, j, s, t ≤ |wr|}.

For the concrete parameters of Chaghri, we have

wr+1 = {e|e = M63(235wr,i + 23wr,j), 1 ≤ i, j ≤ |wr|},
wr+2 = {e|e = M63

(
27wr,i + 238(wr,j + wr,s) + 26wr,t

)
, 1 ≤ i, j, s, t ≤ |wr|}.

Another Representation of the Set wr+�. Based on the above discussions,
it is now clear that there exists another general representation of the set wr+�.
Specifically, it must be of the following form:

wr+� = {e|e = Mn(

Nn−1∑

i=1

2n−1wr,di,n−1 +

Nn−2∑

i=1

2n−2wr,di,n−2 + . . . +

N0∑

i=1

20wr,di,0),

where 1 ≤ di,j ≤ |wr| for 0 ≤ j ≤ n − 1}
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Proof. Proving this form is simple. Specifically, by induction, we only need to
prove wr+�+1 is also of this form when wr+� is as above. This is because w0 is
of this form, i.e. for w0 = {w0,1, w0,2} = {0, 1} = {e|e = 20w0,i, 1 ≤ i ≤ 2},
there is

N0 = 1, Ni = 0 (1 ≤ i ≤ n − 1). (4)

Considering the relation between wr+� and wr+�+1, we have

wr+�+1 = {e|e = Mn(2k0+k2wr+�,i + 2k1+k2wr+�,j), 1 ≤ i, j ≤ |wr+�|}.
Hence, we have

wr+�+1 = {e|e = Mn(

N′
n−1∑

i=1

2n−1wr,d′
i,n−1

+

N′
n−2∑

i=1

2n−2wr,d′
i,n−2

+ . . . +

N′
0∑

i=1

20wr,d′
i,0

),

where 1 ≤ d′
i,j ≤ |wr| for 0 ≤ j ≤ n − 1},

where

N ′
i = N(i−k1−k2)%n + N(i−k0−k2)%n for 0 ≤ i ≤ n − 1. (5)

��
In other words, each set wr can be fully described with a vector of integers

(Nr
n−1, N

r
n−2, . . . , N

r
0 ). For w0, this vector is

N0
0 = 1, N0

i = 0 (1 ≤ i ≤ n − 1).

Then, based on the recursive relation specified in Eq. 5, i.e.

Nr+1
i = Nr

(i−k1−k2)%n + Nr
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 0, (6)

for any wr, the corresponding vector of integers (Nr
n−1, N

r
n−2, . . . , N

r
0 ) can be

computed in linear time, i.e. with rn times of simple integer additions. Then,
the set wr can be described as follows:

wr = {e|e = Mn(
Nr

n−1∑
i=1

2n−1w0,di,n−1 +
Nr

n−2∑
i=1

2n−2w0,di,n−2 + . . . +
Nr

0∑
i=1

20w0,di,0),

where 1 ≤ di,j ≤ |w0| for 0 ≤ j ≤ n − 1}. (7)

Application to the Chaghri Parameters. For the concrete parameters of
Chaghri, the corresponding (N1

62, N
1
61, . . . , N

1
0 ) for w1 is

N1
3 = 1, N1

35 = 1, N1
i = 0 (i /∈ {3, 35}, 0 ≤ i ≤ 62).

While for w2, the corresponding (N2
62, N

2
61, . . . , N

2
0 ) is

N2
6 = 1, N2

7 = 1, N2
38 = 2, N2

i = 0 (i /∈ {6, 7, 38}, 0 ≤ i ≤ 62).

For any wr, we can compute the corresponding (Nr
62, N

r
61, . . . , N

r
0 ) in linear time.
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3.2 A Natural Optimization Problem

The last problem we need to deal with is how to compute Dr after giving the
vector of integers (Nr

n−1, N
r
n−2, . . . , N

r
0 ). For our representation of wr, it can be

equivalently interpreted in the way that there are in total Nr
n−1+Nr

n−2+. . .+Nr
0

possible variables that can independently take values from w0 = {0, 1}. Hence,
the problem to bound Dr becomes a natural optimization problem, as shown
below:

maximize H

(
Mn(

n−1∑
i=0

2iγi)
)

,

subject to 0 ≤ γi ≤ Nr
i for i ∈ [0, n − 1].

More specifically, due to w0 = {0, 1}, wr specified in Eq. 7 is equivalent to

wr = {Mn(
n−1∑
i=0

2iγi)|0 ≤ γi ≤ Nr
i for i ∈ [0, n − 1]}.

After computing Nr
i for i ∈ [0, n − 1], which can be finished in linear time,

this problem3 can be easily encoded as an MILP problem. Specifically, for each
integer m ∈ [0, 2n − 1], we can assign a bit vector (mn−1,mn−2, . . . ,m0) for m,
i.e. m =

∑n−1
i=0 2imi. Then, Mn(2j · m) just makes m become(

m(n−1−j)%n,m(n−2−j)%n, . . . ,m(0−j)%n

)
,

i.e. a change of the order of variables.
The addition is trivial. Specifically, for the addition Mn(x + y) = q where

x = (xn−1, xn−2, . . . , x0), y = (yn−1, yn−2, . . . , y0) and q = (qn−1, qn−2, . . . , q0),
by introducing two (n + 1)-bit vectors g = (gn, gn−1, . . . , g0) and g′ =
(g′

n, g′
n−1, . . . , g

′
0) as well as an n-bit vector q′ = (q′

n−1, q
′
n−2, . . . , q

′
0) to represent

the intermediate value, we have{
g0 = 0, 2gi+1 + q′

i = xi + yi + gi for i ∈ [0, n − 1],
g′
0 = gn, 2g′

i+1 + qi = q′
i + g′

i for i ∈ [0, n − 1].

For the comparison m ≤ b where b = (bn−1, bn−2, . . . , b0) ∈ F
n
2 is a known

integer, it can also be simply described with linear inequalities. Specifically, sup-
posing bi = 1 for any i ∈ {i1, i2, . . . , il−1, il} and 0 ≤ i1 < i2 < . . . < il ≤ n − 1.

3 Motivated by this work, an ad-hoc algorithm [28] has been developed to solve the
above optimization problem in time O(n). However, in this following, there still
remain some other optimization problems which cannot be handled by that O(n)
algorithm [28]. Hence, we only consider the general-purpose solvers for the optimiza-
tion problems in this paper.
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Then m ≤ b can be described with the following n − l linear (in)equalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mj = 0 for il < j ≤ n − 1,
(1 − mil

) − mj ≥ 0 for il−1 < j < il,

l∑
s=l−1

(1 − mis
) − mj ≥ 0 for il−2 < j < il−1,

· · ·
l∑

s=1

(1 − mis
) − mj ≥ 0 for 0 ≤ j < i1.

To maximize H(m), we simply write

maximize m0 + m1 + . . . + mn−1.

In this way, a simple MILP model can be constructed and the solution of the
model is exactly Dr according to Eq. 3.

A Useful Theorem. In the following, we present a useful theorem for the case
when the maximal degree is reached.

Theorem 1. For a given vector of integers (Nn−1, Nn−2, . . . , N0), if the solution
to the following optimization problem called Problem 1 is h × n:

maximize
h∑

j=1

H

(
Mn(

n−1∑
i=0

2iγj,i)
)

,

subject to C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1),

the solution to the following optimization problem called Problem 2 must also
be h × n:

maximize
h∑

j=1

H

(
Mn(

n−1∑
i=0

2iνjγj,i)
)

,

subject to C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1),

where νj ∈ N
+ for j ∈ [1, h] and C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1)

denotes the set of constraints.

Proof. Since the solution to Problem 1 is h×n, for each j ∈ [1, h], there exists
an assignment to (γj,n−1, γj,n−2, . . . , γj,0) denoted by ( ˆγj,n−1, ˆγj,n−2, . . . , ˆγj,0)
such that

Mn(
n−1∑
i=0

2i ˆγj,i) = 2n − 1.
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Hence, for each j ∈ [1, h], we have

Mn(
n−1∑
i=0

2iνj ˆγj,i) = Mn

(
νj × Mn(

n−1∑
i=0

2i ˆγj,i)
)

= 2n − 1.

As the upper bound for the solution to Problem 2 is h × n and we find an
assignment to make its solution be h × n, the solution to Problem 2 is h × n.

��
Generalization to an Arbitrary Power Function. In the above, we mainly
analyze a power function x �→ x2k0+2k1 with algebraic degree 2. It is easy to
observe that a similar procedure can be applied to any power function x �→
x

∑ρ
i=1 2φi over F2n with algebraic degree ρ. This is due to the following simple

relation:

(

|wr|∑

j=1

AjX
wr,j )

∑ρ
i=1 2φi

=

|wr|∑

j1=1

|wr|∑

j2=1

· · ·
|wr|∑

jρ=1

Aj1,j2,...,jρX2φ1wr,j1+2φ2wr,j2+···+2φρ wr,jρ .

By using the same B(x) = c1x
2k2 + c2, we still can simply use a vector of

integers to represent the set of possible exponents. In addition, the recursive
relation between the vectors (Nr+1

n−1, N
r+1
n−2, . . . , N

r+1
0 ) and (Nr

n−1, N
r
n−2, . . . , N

r
0 )

can be described as below:

Nr+1
j =

ρ∑
i=1

Nr
(j−φi−k2)%n for j ∈ [0, n − 1],

which implies that these vectors can be computed in linear time. With these
vectors, bounding the algebraic degree is then reduced to the same optimiza-
tion problem. This obviously shows the effectiveness of our coefficient grouping
technique.

Comparison with the Literature. First, compared with the well-known
degree evaluation technique developed for Keccak [8], our technique does not
require to compute the upper bound of the degree at round i before computing
the upper bound at round i + 1. This is mainly because we find an efficient
representation of the polynomial of any rounds of Chaghri in terms of the input,
which can be determined by a vector of integers and this vector can be computed
in linear time. Second, different from the division property that has been well
studied in recent years [13,22,24,32], there is no need to use a heavy model to
describe the monomial transitions through the round function for each round
because they can be simply captured by an efficient recursive relation in our
technique. At last, compared with more related works in [9,11,19], when the
affine layer is simply B(x) = c1x

2k2 + c2 and G(x) is any power map over F2n ,
tighter bounds can be derived with our technique because our way to describe
the polynomial representation after any rounds is more accurate, i.e. we can
exclude many redundant monomials that will never appear with our technique
while they are treated as possible to appear in these techniques [9,11,19].
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4 Cryptanalysis of Full-Round Chaghri

With the above model, the upper bounds for Dr are obtained in seconds, as
listed in Table 2.

Table 2. The upper bounds for Dr

r 0 2 4 6 8 10 12 14 16 18 20 22 24 25 26

Dr 1 3 7 12 17 22 27 32 37 42 47 52 58 60 63

Consequently, we can mount a higher-order differential attack on full 8 rounds
of Chaghri with data and time complexity of 238. It also suggests that there is a
higher-order differential distinguisher for 12.5 rounds of Chaghri with time and
data complexity of 261. Furthermore, according to Remark 1, we can extend one
more step (0.5 round) and construct a higher-order differential distinguisher for
13 rounds of Chaghri with time and data complexity of 263.

4.1 The Key-Recovery Attack on 13.5 Rounds of Chaghri

We have constructed a 13-round distinguisher with data and time complexity of
263. Then, we can append 0.5 round for the key recovery. To recover the round
key RK[27], an equivalent round key RK[27]′ = (RK[27]′1, RK[27]′2, RK[27]′3)
is considered, where

(RK[27]′1, RK[27]′2, RK[27]′3)
T = M−1 × (RK[27]1, RK[27]2, RK[27]3)T .

Since the operations B−1 and G−1 work on the internal state in a parallel way,
the naive method is to independently guess RK[27]′i (1 ≤ i ≤ 3) and compute
the corresponding z26,i and check the sum of z26,i. If the sum is zero, the guess
is correct. Hence, the time complexity of this key-recovery attack is about 3 ×
263 × 263 < 2128. Note that after recovering RK[27]′, we can compute RK[27]
and deduce the master key according to the key schedule function.

Indeed, the key-recovery attack can be more efficient by treating
B−1(RK[27]′i) (1 ≤ i ≤ 3) as a variable Yi. Note that B(x) is an affine trans-
form over F263 and hence B−1(x) is also an affine transform. Then, we can
construct a univariate polynomial Pi(Yi) in terms of Yi using the condition
that the sum of z26,i is 0. The degree of Pi denoted by D is the degree of
the inverse of G and we have D = 232 − 1. Hence, we can estimate the time to
construct Pi(Yi) as about 2H(D) × 263 = 232+63 = 295 field operations. Then,
similar to the idea in [19], recovering Yi is reduced to finding the roots of the
univariate polynomial Pi, the time complexity of which can be estimated as
O(D × log(D)× loglog(D)× log(D)× log(263D)) field operations. Hence, we esti-
mate the time complexity to find the roots as 251. Hence, the time complexity
and data complexity of our key-recovery attack on 13.5 rounds of Chaghri are
3 × (251 + 295) = 296.6 and 263, respectively.
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4.2 Further Refining the Upper Bounds

In this section, we show that before reaching the maximal algebraic degree n, it
is possible to refine Dr with more careful analysis. Consider the input state of
the following form

z0,1 = X1, z0,2 = A2, z0,3 = A3, (8)

where A2, A3 ∈ F2n are randomly chosen constants and X1 is the variable. Let
X = X1 + RK[0]1. In this way, for any number of steps, each state word of
Chaghri can be represented as a univariate polynomial in X. For (z1,1, z1,2, z1,3),
we have

z1,1 = A1,1X
Mn(2k0+k2+2k1+k2 ) + B1,1,

z1,2 = A1,2X
Mn(2k0+k2+2k1+k2 ) + B1,2,

z1,3 = A1,3X
Mn(2k0+k2+2k1+k2 ) + B1,3,

where A1,i, B1,i (i ∈ [1, 3]) are constants depending on the key.
Hence, for w1, we have

w1 = {Mn(2k0+k2 + 2k1+k2), 0}.

Then, we have

wr = {e|e = Mn(
Nr

n−1∑
i=1

2n−1w1,di,n−1 +
Nr

n−2∑
i=1

2n−2w1,di,n−2 + . . . +
Nr

0∑
i=1

20w1,di,0),

where 1 ≤ di,j ≤ 2 for 0 ≤ j ≤ n − 1}.

By making N1
0 = 1 and N1

i = 0 for i ∈ [1, n − 1], we can compute the corre-
sponding (Nr

n−1, N
r
n−2, . . . , N

r
0 ) for r ≥ 1 with the recursive relation specified in

Eq. 6. Computing Dr is then equivalent to the following optimization problem:

maximize H

(
Mn

( n−1∑
i=0

2i(2k0+k2γi + 2k1+k2γi)
) )

,

subject to 0 ≤ γi ≤ Nr
i for i ∈ [0, n − 1].

Table 3. The refined upper bounds for Dr in the univariate case

r 0 2 4 6 8 10 12 14 16 18 20 22 24 26 27

Dr 1 3 7 11 16 21 26 32 37 42 47 52 57 62 63
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Refined or Unrefined? This refined model is only slightly slower and all the
results can still be obtained in seconds as well. The refined upper bounds are
shown in Table 3. We have practically verified our attacks on Chaghri for up to 7
rounds. It is found that our refined bounds are correct and tight. It can be found
that although the upper bound is slightly better for r ≤ 12, the complexity to
break 8 rounds of Chaghri remains the same. Moreover, the longest higher-order
differential distinguisher still only covers 26 steps, which is indeed a direct result
of Theorem 1, i.e. the constraints at step r in the unrefined model are the same
with those at step r + 1 in the refined model and we reach the maximal degree
at step 26 in the unrefined model. Due to the high efficiency of the unrefined
model, to detect how long a higher-order differential distinguisher can reach, we
prefer the unrefined model.

4.3 On the Multivariate Case

After understanding our attack in the univariate case, it is natural to ask whether
the distinguisher can be further extended for more steps with a larger set of
inputs, e.g. a set of 22n different inputs. Specifically, with the following input
form

z0,1 = X1, Z0,2 = X2, Z0,3 = A3,

where A3 ∈ F2n is a randomly chosen constant and X1,X2 are variables, whether
the attack can be extended for more steps?

Let X = B ◦ G(X1 + RK[0]0) and Y = B ◦ G(X2 + RK[0]1). The state
(z1,1, z1,2, z1,3) can be represented as multivariate polynomials in (X,Y ) as
below:

z1,1 = A1,1X + B1,1Y + C1,1, z1,2 = A1,2X + B1,2Y + C1,2,

z1,3 = A1,3X + B1,3Y + C1,3.

Note that in the following, we will not repeat emphasizing which are constants
in the polynomial representation. Instead, we only say which are variables.

To construct the longest higher-order differential distinguisher with at most
22n data, it suffices to compute the maximal number of steps r where the max-
imal algebraic degree 2n is first reached for the following input state

z0,1 = A0,1X + B0,1Y + C0,1, z0,2 = A0,2X + B0,2Y + C0,2,

z0,3 = A0,3X + B0,3Y + C0,3, (9)

where X,Y are variables. As in the univariate case, 1 more step can always be
appended before this distinguisher by using 22n data. This will result in an r-step
distinguisher with data and time complexity of 22n.

For the input form in Eq. 9, the general form of (zr,1, zr,2, zr,3) can be written
down, as shown below:

zr,1 =
|Wr|∑
i=1

Ar,iX
wr,iY ur,i , zr,2 =

|Wr|∑
i=1

Br,iX
wr,iY ur,i , zr,3 =

|Wr|∑
i=1

Cr,iX
wr,iY ur,i ,
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where

Wr = {(wr,1, ur,1), (wr,2, ur,2), . . . , (wr,|Wr|, ur,|Wr|)}.

For W0, we have

W0 = {(1, 0), (0, 1), (0, 0)},

which corresponds to the input state specified in Eq. 9.
With similar analysis to trace the evolution of the polynomials through G

and B, we have

Wr+1 = {(e0, e1)|
e0 = Mn(2k0+k2wr,i + 2k1+k2wr,j), e1 = Mn(2k0+k2ur,i + 2k1+k2ur,j),
1 ≤ i, j ≤ |Wr|}.

Specifically, we have

B ◦ G(zr,1) = c1(

|Wr|∑

i=1

Ar,iX
wr,iY ur,i)Mn(2k0+k2+2k1+k2 ) + c2

=

|Wr|∑

i=1

|Wr|∑

j=1

Ar+1,i,jX
Mn(2k0+k2wr,i+2k0+k2wr,j)Y Mn(2k0+k2ur,i+2k0+k2ur,j).

With the similar deduction as in the univariate case, the set Wr can also be
represented using a vector of integers (Nr

n−1, N
r
n−1, . . . , N

r
0 ), as shown below:

Wr = {(e0, e1)|

e0 = Mn(
Nr

n−1∑
i=1

2n−1w0,di,n−1 +
Nr

n−2∑
i=1

2n−2w0,di,n−2 + . . . +
Nr

0∑
i=1

20w0,di,0 ,

e1 = Mn(
Nr

n−1∑
i=1

2n−1u0,di,n−1 +
Nr

n−2∑
i=1

2n−2u0,di,n−2 + . . . +
Nr

0∑
i=1

20u0,di,0 ,

where 1 ≤ di,j ≤ |W0| = 3 for 0 ≤ j ≤ n − 1},

where {
N0

0 = 1, N0
i = 0 for i ∈ [1, n − 1],

Nr
i = Nr−1

(i−k1−k2)%n + Nr−1
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 1.

Since

W0 = {(1, 0), (0, 1), (0, 0)},

i.e. (w0
i , u0

i ) �= (1, 1) for i ∈ [1, 3], computing the upper bound of the algebraic
degree for the multivariate case is also a natural optimization problem4, as shown
4 Indeed, this problem can also be solved in O(n) time with the algorithm in [28].
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below:

maximize H

(
Mn(

n−1∑
i=0

2iγi)
)
+ H

(
Mn(

n−1∑
i=0

2iλi)
)

,

subject to 0 ≤ γi + λi ≤ Nr
i for i ∈ [0, n − 1].

Why 0 ≤ γi + λi ≤ Nr
i should hold is due to (w0

di,j
, u0

di,j
) �= (1, 1) for any index

di,j ∈ [1, 3].
It is easy to observe that this model is almost the same as that for the uni-

variate case. Applying it to the Chaghri parameters (k0, k1, k2, n) = (32, 0, 3, 63),
we obtain the following upper bound for the algebraic degree Dr after r steps,
as shown in Table 4. Note that we still use Dr to denote the upper bound for the
algebraic degree for r-step Chaghri in the multivariate case. This indicates that
the higher-order differential distinguisher can reach at most 26 + 1 = 27 steps
(i.e. 13.5 rounds) using 2126 data.

Table 4. The upper bounds for Dr in the multivariate case

r 0 2 4 6 8 10 12 14 16 18 20 22 24 26 27

Dr 1 4 10 20 30 40 50 60 70 80 90 100 111 121 126

The Refined Upper Bounds. Similar to the refined upper bounds for the
univariate case, we are interested whether the data complexity of the 13.5-round
higher-order differential attack can be further optimized. Specifically, we re-
evaluate the upper bound for the algebraic degree by considering the following
input form:

z0,1 = X1, z0,2 = X2, z0,3 = A3. (10)

where only X1,X2 are variables. Moreover, we consider the case when X1 tra-
verses all the 2n possible values because only in this case will we need to
consider the multivariate polynomials to attack more steps. In this case, let
X = B ◦ G(X1 +RK[0]1) and Y = X2 +RK[0]2. Hence, X will traverse all the
2n possible values. In this way, we have

z1,1 = A1,1X + B1,1Y
Mn(2k0+k2+2k1+k2 ) + C1,1,

z1,2 = A1,2X + B1,2Y
Mn(2k0+k2+2k1+k2 ) + C1,2,

z1,3 = A1,3X + B1,3Y
Mn(2k0+k2+2k1+k2 ) + C1,3,

where only X,Y are variables. Hence, we have

W1 = {(0, 0), (1, 0), (0,Mn(2k0+k2 + 2k1+k2))}.
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Moreover, we have

Wr = {(e0, e1)|

e0 = Mn

(Nr
n−1∑

i=1

2n−1w1,di,n−1 +
Nr

n−2∑
i=1

2n−2w1,di,n−2 + . . . +
Nr

0∑
i=1

20w1,di,0

)
,

e1 = Mn

(Nr
n−1∑

i=1

2n−1u1,di,n−1 +
Nr

n−2∑
i=1

2n−2u1,di,n−2 + . . . +
Nr

0∑
i=1

20u1,di,0

)
,

where 1 ≤ di,j ≤ |W1| = 3 for 0 ≤ j ≤ n − 1},

where {
N1

0 = 1, N1
i = 0 for i ∈ [1, n − 1],

Nr
i = Nr−1

(i−k1−k2)%n + Nr−1
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 2.

In this way, computing Dr is equivalent to solving the following optimization
problem:

maximize H

(
Mn(

n−1∑
i=0

2iγi)
)
+ H

(
Mn

( n−1∑
i=0

2i(2k0+k2λi + 2k1+k2λi)
) )

,

subject to H

(
Mn(

n−1∑
i=0

2iγi)
)

= n, 0 ≤ γi + λi ≤ Nr
i for i ∈ [0, n − 1].

Note that γi represents that we assign nonzero values to γi variables w1,dj,i

and λi represents that we assign nonzero values to λi variables u1,dj,i
. Since

(w1,dj,i
, u1,dj,i

) cannot be assigned to nonzero values at the same time due to
W1 = {(0, 0), (1, 0), (0,Mn(2k0+k2 + 2k1+k2))}, we have the constraint 0 ≤ γi +
λi ≤ Nr

i . Moreover, since X will take all the 2n possible values, we only are
interested in the monomials of the form Xρ1Y ρ2 where H(ρ1) ≥ n, i.e. H(ρ1) =
n. This is because for the monomial Xρ1Y ρ2 where H(ρ1) < n, when X takes
all the 2n possible values, the corresponding sum of Xρ1Y ρ2 is always 0. Hence,
we add the constraint H(Mn(

∑n−1
i=0 2iγi)) = n.

With this model for Chaghri, we obtain in seconds that

D27 = 122, D28 = 126,

which are indeed consistent with Theorem 1, i.e. we cannot increase the length of
the distinguisher with the refined model. However, D27 = 122 indicates that the
data and time complexity of the 13.5-round distinguisher are both 2123, which
improves the results obtained from the unrefined model by a factor of 23.

5 Achieving an Almost Exponential Degree Increase

Based on our degree evaluation, it can be observed that the algebraic degree of
Chaghri increases linearly in both the univariate case and multivariate case, which
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contradicts the designers’ expectation that it increases exponentially. Therefore,
it is natural to ask what countermeasures can be used to achieve an exponential
increase of the algebraic degree. In this section, we focus on this problem.

For FHE-friendly ciphers, reducing the multiplicative depth is of great impor-
tance. Hence, we still keep the S-box of the form G(x) = x2k0+2k1 , which has
algebraic degree 2. For the affine transform B(x), as it is linear over F2n and
it is almost cost-free for FHE protocols, we are interested whether choosing a
different B(x) can achieve an exponential increase of the algebraic degree.

5.1 Searching for Secure Affine Transforms B(x)

We consider a general form of B(x) where we omit the constant part, i.e.

B(x) =
|L|∑
i=1

c′
ix

2ϕi
,

where (c′
1, c

′
2, . . . , c

′
|L|) are constants in F263 such that B(x) is a permutation and

L = {ϕ1, ϕ2, . . . , ϕ|L|}. For the S-box, we keep using G(x) = x232+1.
To utilize our coefficient grouping technique for the above general B(x), we

need to adjust the general polynomial representation of (zr,1, zr,2, zr,3). First,
consider the univariate case and the form of (zr,1, zr,2, zr,3) can be written as
follows where only X is the variable:

zr,1 =
|Er,1|∑
i=1

A1,iX
ωr,1,i +

|Er,2|∑
i=1

A2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

A3,iX
ωr,lr,i ,

zr,2 =
|Er,1|∑
i=1

B1,iX
ωr,1,i +

|Er,2|∑
i=1

B2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

B3,iX
ωr,lr,i ,

zr,3 =
|Er,1|∑
i=1

C1,iX
ωr,1,i +

|Er,2|∑
i=1

C2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

C3,iX
ωr,lr,i ,

where

Er,j = {ωr,j,1, ωr,j,2, . . . , ωr,j,|Er,j |} for 1 ≤ j ≤ lr.

In this way, the set of all possible exponents for (zr,1, zr,2, zr,3) denoted by
Er can be written as

Er =
lr⋃

i=1

Er,i.

For the initial input (z0,1, z0,2, z0,3), we use the same form as specified in
Eq. 1. In this way, we have

E0 = w0 = {0, 1} = {w0,1, w0,2}.
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Next, we study how the new general polynomial representation evolves
through 1 step of Chaghri. First,

G(zr,i) = (
lr∑

i=1

|Er,i|∑
j=1

Ai,jX
ωr,i,j )2

32+1

=
lr∑

i=1

|Er,i|∑
j=1

lr∑
s=1

|Er,s|∑
t=1

Ai,j,s,tX
M63(2

32ωr,i,j+ωr,s,t),

B ◦ G(zr,1) =
lr∑

i=1

|Er,i|∑
j=1

lr∑
s=1

|Er,s|∑
t=1

|L|∑
u=1

Ai,j,s,t,uXM63(2
32+ϕuωr,i,j+2ϕuωr,s,t).

Hence,

Er+1 = {e|e = M63(232+ϕuωr,i,j + 2ϕuωr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|, 1 ≤ u ≤ |L|}.

Based on the above recursive relation between Er and Er+1, with the coeffi-
cient grouping technique, Er can be represented as follows:

Er =
lr⋃

j=1

Er,j ,

Er,j = {e|e = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

where 1 ≤ di,i0 ≤ |w0| for 0 ≤ i0 ≤ 62}.

Proof. For E0, there are

E0 = E0,1 = w0 = {0, 1} = {w0,1, w0,2},

E0,1 = {e|e = M63(20w0,i), 1 ≤ i ≤ |w0|}.
Hence, it holds for r = 0. Supposing the above new representation of Er holds,
we now prove by induction that it also holds for Er+1. In particular, a similar
useful recursive relation can be derived.

Since

Er+1 = {e|e = M63(232+ϕuωr,i,j + 2ϕuωr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|, 1 ≤ u ≤ |L|},

we have

Er+1 =

lr⋃

i=1

lr⋃

s=1

|L|⋃

u=1

Er+1,i,s,u,

Er+1,i,s,u = {e|e = M63(2
32+ϕuωr,i,j + 2ϕuωr,s,t), 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|}.
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Since

Er,j = {e|e = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

where 1 ≤ di,i0 ≤ |w0| for 0 ≤ i0 ≤ 62},

we have

Er+1,i,s,u = {e|e = M63(
Nr+1,i,s,u

62∑
j=1

262w0,dj,62 + . . . +
Nr+1,i,s,u

0∑
j=1

20w0,dj,0),

where 1 ≤ dj,j0 ≤ |w0| for 0 ≤ j0 ≤ 62},

where

Nr+1,i,s,u
t = Nr,i

(t−32−ϕu)%63 + Nr,s
(t−ϕu)%63 for t ∈ [0, 62]. (11)

��
With the above critical observation, we can always decompose Er as a

union of sets, each of which can be solely described with a vector of inte-
gers (N62, N61, . . . , N0). Moreover, since E0 = w0, a single vector of integers
(N0,1

62 , N0,1
61 , . . . , N0,1

61 ) is sufficient to describe E0 where

N0,1
0 = 1, N0,1

i = 0 for i ∈ [1, 62].

Then, based on the recursive relation specified in Eq. 11, for each Er (r ≥ 1), we
can compute the corresponding sets of vectors of integers to represent Er. The
algorithm is shown in Algorithm2, where Nr and Nr+1 are the sets of possible
vectors of integers describing Er and Er+1, respectively.

In Algorithm2, there is a function named REDUCE. This is used to remove
the redundant vectors based on the fact that when there are two vectors
(N62, N61, . . . , N0) and (N ′

62, N
′
61, . . . , N

′
0) such that Ni ≥ N ′

i for each i ∈ [0, 62],
the set described with (N ′

62, N
′
61, . . . , N

′
0) is just a subset of the set described

with (N62, N61, . . . , N0).

The Main Idea to Search for a Good Affine Transform. With Algo-
rithm2, it is now possible to describe how to search for a better affine transform.
Specifically, for each Er, there exist lr vectors of integers (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) to
describe Er,i for i ∈ [1, lr]. Moreover, if there exists a vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 )
where there are D nonzero elements, it implies the upper bound for the alge-
braic degree after r steps is larger than D. This is because it implies that there
exists an element e ∈ Er such that H(e) = D. Hence, to achieve an exponential
increase for the first r (1 ≤ r ≤ 5) steps, we need to ensure that there exists
at least one vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) where there are 2r nonzero elements.
For r = 6, we can slightly relax the constraint and expect that after 7 steps,
the maximal degree 63 is reached, i.e. there exists a vector (N7,i

62 , N7,i
61 , . . . , N7,i

0 )
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Algorithm 2. Enumerating vectors to represent Er+1

1: procedure ENU(Nr,Nr+1, L)
2: clear Nr+1

3: for i in range (Nr.size()) do
4: (N0

62, N
0
61, . . . , N

0
0 ) ← Nr[i]

5: for s in range (Nr.size()) do
6: (N1

62, N
1
61, . . . , N

1
0 ) ← Nr[s]

7: for u ∈ [1, |L|]) do
8: for t ∈ [0, 62] do
9: Nt = N0

(t−32−ϕu)%63 + N1
(t−ϕu)%63

10: if REDUCE(N62, N61, . . . , N0,Nr+1)=1 then
11: add (N62, N61, . . . , N0) to Nr+1

12: procedure REDUCE(N62, N61, . . . , N0,N)
13: for i in range (N.size()) do
14: (N ′

62, N
′
61, . . . , N

′
0) ← N[i]

15: if Nj ≥ N ′
j for all j ∈ [0, 62] then

16: N[i] = (N62, N61, . . . , N0)
17: return 0
18: else if N ′

j ≥ Nj for all j ∈ [0, 62] then
19: return 0
20: return 1

where all the elements are nonzero or there exists a vector (N7,i
62 , N7,i

61 , . . . , N7,i
0 )

such that the solution to the following optimization problem is 63:

maximize H

(
M63(

62∑
j=0

2jγj)
)

,

subject to 0 ≤ γj ≤ N7,i
j for j ∈ [0, 62].

Searching with Heuristic Strategies. For r = 0, there are

l0 = 1, N0 = {(0, 0, . . . , 0, 1)}.

Then, based on Algorithm 2, for any r ≥ 1, we can always compute Nr for any
given L. However, the time complexity to compute Nr becomes exponential in
r when |L| > 1 due to the fast diffusion of the monomials. Even for small r,
e.g. r = 5, if we aim to compute the full set of vectors, it cannot be finished
in practical time. However, since we are only interested in vectors where there
are a desired number of nonzero elements, we can use some heuristic strategies
when computing Nr.

Specifically, for the first r steps (1 ≤ r ≤ 5), we only add the vectors where
there are 2r nonzero elements to Nr when running Algorithm 2. The underlying
reason is that to generate a monomial whose exponent is of hamming weight
2r at step r, it is required to have two monomials (Xe0 ,Xe1) where H(e0) =
H(e1) = 2r−1 at step r − 1. When there exists an empty set Nr for 1 ≤ r ≤ 5,
we abandon the current L and try another L since it implies we cannot reach
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the algebraic degree 2r with the current L. Based on this strategy, we find no
candidates for L when |L| = 2.

Hence, |L| = 3 is taken into account. For 1 ≤ r ≤ 5, we still use the above
strategies. However, the size of Nr will increase exponentially. Hence, we further
restrict that when the size of Nr is larger than 213, exit Algorithm2 and compute
Nr+1. For r = 6, we only add the vectors where there are at least 55 nonzero
elements to N6. For r = 7, when computing N7 with Algorithm2, we test
whether there is one (N7,i

62 , N7,i
61 , . . . , N7,i

0 ) which can lead to the maximal degree
63. If there is, exit and treat the current L as a good affine transform. It is found
that L = {0, 2, 8} is such a candidate.

With L = {0, 2, 8}, for the input of the form specified in Eq. 1, the algebraic
degree can reach 63 after 7 steps. Therefore, for the input of the form specified in
Eq. 8, the algebraic degree can reach 63 after 8 steps, which is a direct application
of Theorem 1. In this way, an almost exponential increase of the algebraic degree
is achieved in the univariate setting.

5.2 Evaluating the Algebraic Degree for the Multivariate Case

After obtaining a good affine transform B(x) which can ensure an almost expo-
nential increase of the algebraic degree in the univariate setting, we study how
the algebraic degree increases in the multivariate setting. In general, after we
reach the maximal algebraic degree in the univariate case, due to the strong
diffusion of the MDS matrix and the affine transform, the maximal algebraic
degree in the multivariate case can be reached in a few more steps. For Chaghri,
we only care about the distinguisher with data complexity and time complex-
ity below 2128 since Chaghri only provides 128-bit security. Hence, we only care
about when the algebraic degree 128 is reached.

On Two Variables. We first consider the input of the form specified in Eq. 9.
Then, similar to the above analysis, the general polynomial representation of
(zr,1, zr,2, zr,3) can be written as follows:

zr,1 =
lr∑

i=1

|Ur,i|∑
j=1

Ai,jX
ωr,i,j Y μr,i,j , zr,2 =

lr∑
i=1

|Ur,i|∑
j=1

Bi,jX
ωr,i,j Y μr,i,j ,

zr,3 =
lr∑

i=1

|Ur,i|∑
j=1

Ci,jX
ωr,i,j Y μr,i,j ,

where

Ur,i = {(ωr,i,1, μr,i,1), (ωr,i,2, μr,i,2), . . . , (ωr,i,|Ur,i|, μr,i,|Ur,i|)} for i ∈ [1, lr]

and Ur =
⋃lr

i=1 Ur,i is the set of all possible exponents for (zr,1, zr,2, zr,3).
For the input form specified in Eq. 9, we have

l0 = 1, U0 = U0,1 = W0,

W0 = {(0, 1), (1, 0), (0, 0)} = {(w0,1, u0,1), (w0,2, u0,2), (w0,3, u0,3)}.
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Then, by tracing the evolution of the polynomials through 1 step of Chaghri,
we can similarly derive

Ur+1 = {(e0, e1)|
e0 = M63(232+ϕuωr,i,j + 2ϕuωr,s,t), e1 = M63(232+ϕuμr,i,j + 2ϕuμr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Ur,i|, 1 ≤ t ≤ |Ur,s|, 1 ≤ u ≤ |L|}.

With the coefficient grouping technique, similarly, Ur,j (1 ≤ j ≤ lr) can be
represented as

Ur,j = {(e0, e1)|

e0 = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

e1 = M63(
Nr,j

62∑
i=1

262u0,di,62 +
Nr,j

61∑
i=1

261u0,di,61 + . . . +
Nr,j

0∑
i=1

20u0,di,0),

1 ≤ di,i0 ≤ |W0|, 0 ≤ i0 ≤ 62},

where W0 = {(w0,1, u0,1), (w0,2, u0,2), (w0,3, u0,3)} = {(0, 1), (1, 0), (0, 0)}. More-
over, the recursive relation remains the same as in the univariate case, i.e. Eq. 11.
In other words, it is sufficient to describe Ur with a set of vectors of integers and
we still denote the set by Nr to avoid the abuse of notation. Then,

N0 = {(0, 0, . . . , 0, 1)}

and Algorithm2 can be directly used to compute Nr for r ≥ 1.
Supposing there exists a vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) in Nr such that the
solution to the following optimization problem is 126, we reach the maximal
degree for the input of the form in Eq. 9 after r steps.

maximize H

(
M63(

62∑
j=0

2jγj)
)
+ H

(
M63(

62∑
j=0

2jλj)
)

,

subject to 0 ≤ γj + λj ≤ Nr,i
j for j ∈ [0, 62].

Moreover, for the input of the form specified in Eq. 10, the degree 126 can be
reached after r + 1 steps by applying Theorem 1.

For L = {0, 2, 8}, the maximal degree 126 can be reached at r = 9 for the
input specified in Eq. 10. This implies that 9 steps are secure against the higher-
order differential distinguishing attack with complexity below 2126. Compared
with the univariate case, only at most 1 more step can be reached. This is indeed
as expected due to the strong diffusion effect of the affine transform and MDS
matrix.
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On Three Variables. Since the algebraic degree will reach 126 after 9 steps
when there are 2 variables, we can argue that the algebraic degree will be much
larger than 128 after 9 or 10 steps when considering 3 variables. For completeness,
we also consider the case when there are 3 variables.

Consider the following input of the form:

z0,1 = A0,1X + B0,1Y + C0,1Z,

z0,2 = A0,2X + B0,2Y + C0,2Z,

z0,3 = A0,3X + B0,3Y + C0,3Z,

where X,Y,Z are variables.
Then, we will have an initial set U0 of all possible exponents where

U0 = W0 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.

To avoid the abuse of notation, we use the same notation as in the case for 2
variables. Then, it can be similarly derived that Ur can be fully described with
a set of vectors of integers denoted by Nr where N0 = {(0, 0, . . . , 0, 1)} and Nr

(r ≥ 1) can be computed with Algorithm 2. With Nr (r ≥ 1), it is possible
to give a lower bound for the algebraic degree after r steps for the above input
polynomials in (X,Y,Z). Specifically, if there exists a vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 )
in Nr such that the solution to the following optimization problem is SOL, the
lower bound is SOL:

maximize H

(
M63(

62∑
j=0

2jγj)
)
+ H

(
M63(

62∑
j=0

2jλj)
)
+ H

(
M63(

62∑
j=0

2jχj)
)

,

subject to 0 ≤ γj + λj + χj ≤ Nr,i
j for j ∈ [0, 62].

As Chaghri only provides 128-bit security, we only need to ensure SOL ≥ 128. It is
found that SOL ≥ 187 when r = 8 and SOL = 189 when r = 9, which imply that
9 steps are secure against our higher-order differential distinguishing attack.

5.3 New Parameters for Chaghri

According to [6], the total number of rounds T is chosen with the formula T =
1.5×max{5, η}, where η is the maximal number of rounds that can be attacked
with time complexity below 2128. With L = {0, 2, 8}, we have η = 4 and hence
the total number of rounds T can be kept unchanged, i.e. T = 8. In the following,
we give an optional assignment to (c′

1, c
′
2, c

′
3, c

′
4) such that B(x) = c′

1x + c′
2x

4 +
c′
3x

256 + c′
4 is a permutation.
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c′
1 = α60 + α57 + α54 + α53 + α49 + α48 + α45 + α42 + α40 + α38

+α35 + α33 + α27 + α26 + α25 + α24 + α23 + α21 + α19 + α18

+α16 + α14 + α13 + α12 + α9 + α8 + α6 + α4,

c′
2 = α61 + α60 + α59 + α58 + α57 + α55 + α51 + α50 + α49 + α48

+α46 + α45 + α44 + α41 + α38 + α35 + α30 + α29 + α27 + α26

+α14 + α12 + α10 + α9 + α8 + α7 + α5 + α,

c′
3 = α62 + α61 + α57 + α53 + α52 + α50 + α48 + α47 + α46 + α45

+α44 + α43 + α38 + α36 + α35 + α34 + α32 + α30 + α27 + α26

+α24 + α19 + α18 + α16 + α14 + α12 + α11 + α8 + α7 + α5 + α2 + α,

c′
4 = α62 + α55 + α54 + α52 + α50 + α49 + α43 + α40 + α39 + α38 + α37

+α36 + α35 + α34 + α32 + α31 + α29 + α26 + α25 + α24 + α23 + α22

+α21 + α18 + α15 + α12 + α11 + α10 + α5 + α2 + α.

6 Conclusion

We perform an in-depth study on the increase of the algebraic degree of Chaghri
by proposing a novel efficient technique called coefficient grouping. In its core, it
is an efficient way to represent the polynomial of any rounds of Chaghri in terms
of the input. Especially, such an efficient representation can be determined by
a single vector of integers that can be computed in linear time. Benefiting from
this representation, upper bounding the algebraic degree is reduced to some
well-structured optimization problems that can be efficiently solved by either an
O(n) algorithm [28] or the general-purpose solvers.

One important feature of this technique is to use efficient recursive relations
to equivalently describe the heavy monomial transitions through the round func-
tion. However, in the well-known technique called division property, this has to
be modelled round by round and the corresponding cost is high. Especially, with
our technique applied to Chaghri, we can compute relatively tight upper bounds
of the algebraic degree in linear time, which obviously distinguish it from other
techniques.

With this technique, we can break the full 8 rounds of Chaghri with low
complexity and can even break up to 13.5 rounds. This is in a way indicates that
the lack of techniques to analyze such primitives defined over a large field is still
a major issue. With the coefficient grouping technique, we further make a step
towards this important question. Specifically, we not only attack a cipher with
it, but also describe how to use it to search for secure cryptographic components.

Finally, we mention a few open questions:

– How to find a relatively sparse affine layer that can help achieve the expo-
nential degree increase in a more efficient way?
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– Is there a more refined (or even analytical) method to explain how much
dense the affine layer should be to achieve an exponential degree increase?

– How to give tight upper bounds of the algebraic degree when the affine layer
is dense?
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Abstract. In this paper we, for the first time, study the question under
which circumstances decomposing a round function of a Substitution-
Permutation Network is possible uniquely . More precisely, we provide
necessary and sufficient criteria for the non-linear layer on when a decom-
position is unique. Our results in particular imply that, when crypto-
graphically strong S-boxes are used, the decomposition is indeed unique.
We then apply our findings to the notion of alignment, pointing out that
the previous definition allows for primitives that are both aligned and
unaligned simultaneously.

As a second result, we present experimental data that shows that
alignment might only have limited impact. For this, we compare aligned
and unaligned versions of the cipher PRESENT.

Keywords: Supstitution-Permutation Network · Alignment ·
PRESENT

1 Introduction

Most of the security analysis of symmetric primitives is actually based on their
representation and not on the primitive itself: When arguing about the resistance
of ciphers or cryptographic permutations, our arguments are in most cases based
on a given decomposition of the cipher, in many cases into a linear layer and
a set of mappings that are applied in parallel, i.e. S-boxes. While this is very
helpful in many cases, it can lead to wrong results in others, see e.g. [3].

Using those ingredients when designing efficient and secure ciphers or cryp-
tographic permutations has a long standing history. It can be seen as having its
roots already in Shannon’s seminal ideas on confusion and diffusion [25]. While
many alternative design strategies exist, the use of S-boxes and linear layers is
arguably dominating today’s designs and include AES, SHA-3, and many of the
primitives for the final round of the NIST lightweight crypto competition.1

In this paper we touch upon a very fundamental aspect of this decomposition:
its uniqueness.
1 https://csrc.nist.gov/Projects/lightweight-cryptography/finalists.
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Decomposing a Round Function. Let us turn the view away from designing
a cipher or being given a description of a Substitution-Permutation Network
(SPN) but rather to a given round function (or maybe even the composition
of several round functions). We can imagine having oracle access to the round
function only. Here two natural questions arise. First, how to detect if a given
round function is actually an SPN round function, and in a second step, how
to find the corresponding decomposition. Those questions have been intensively
studied since the last 30 years, starting with the seminal SASAS and ASASA
cryptanalysis papers [6,22]. Indeed, there are algorithms that can efficiently find
a decomposition into an S-box and a linear layer. In particular, those algorithms
answer the existence of a decomposition. Moreover, a natural extension of the
decomposition of a round function is the representation of a given block cipher,
and having multiple representations of the same cipher can have not only a theo-
retical impact (some properties might be easier to study using one representation
rather than another), but also a practical one, see for example [1,24] where using
a different representation to implement the ciphers PRESENT and GIFT can
lead to an increase in performances.

However, and this is very surprising for us, while the existence of a decompo-
sition has been studied extensively since almost 30 years, the uniqueness of such
a decomposition was, to the best of our knowledge, never studied but always
given for granted.

To be very clear, there are obvious, and well known, limitations to a unique
decomposition already discussed in [6]. In particular, the order of the S-boxes and
their choice up to affine equivalence, i.e. up to composing with affine bijections is
clearly not unique. What we are interested in, and what has not been questioned
so far, is uniqueness up to those equivalent representations.

Crucially, some security arguments, like counting the number of active S-
boxes to bound the probability/absolute correlation of a differential/linear trail,
could give different results depending on the decomposition. As we will discuss
below, without additional requirements on the S-boxes, a unique decomposition
is not guaranteed in general.2 While this is interesting as a fundamental property
of round functions, it also impacts very recent work on alignment.

Alignment - intuitively. Alignment of symmetric primitives is a property that
has been initially coined during the SHA-3 competition by the Keccak-team
in [5] but actually is an idea that dates back to the wide-trail strategy and
the use of super-boxes (or code-concatenation) in order to argue about resis-
tance of block ciphers against differential and linear attacks. Interestingly, while
already mentioned more than 10 years ago and since then been used in numerous
papers [9,11,13,20], the term was never precisely defined. In all the papers men-
tioned above the term is used in connection with SPNs and we restrict to those
designs here as well.

2 Thankfully, for the case of counting S-boxes those requirements lead to trivial bounds
for the probability/absolute correlation of a differential/linear trail, no matter the
decomposition.
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Intuitively, and this is common in all those papers, alignment is used when
the linear layer of an SPN manipulates the state in words, i.e. is word-oriented,
and those words are either identical to S-box inputs or consist of multiple S-box
inputs (or outputs). However, there are several flavors of this common intuition.
For example, several papers mention strong and weak alignment. In [20] the
authors mention that no good bounds on the probabilities of differential trails
are known for Keccak as it is weakly aligned. Reciprocally, it is argued e.g. in [13]
that strong alignment allows proving strong bounds.

The importance of the property, along with its positive and negative conno-
tations, is reflected in several second-round candidates of the NIST lightweight
project. For Subterranean the designers state in [11] as a feature that “In a way,
the Subterranean round function is the nec plus ultra of weak alignment”, while
the authors of Saturnin [9] advertise their design “the strongly-aligned version
of the wide-trail strategy”.

So while many researches might have one (or several) more (or less) pre-
cise ideas what alignment with respect to designing a substitution permutation
network might mean, a formal definition was not given.

Alignment – defined. This only changed very recently with the work of Bordes
et al. [8] at CRYPTO 2021 where a definition of alignment was given and its
impact on several cryptographically relevant criteria was studied.

Even so it is not stated exactly this way, a round function, with a given
decomposition into an S-box layer and a linear layer, is aligned, according to [8],
if and only if the primitive has a super-box structure. A super-box structure
means that two rounds of the primitive decompose (up to linear changes of
input and output) into a set of two or more parallel applications of mappings.
Those parallel mappings are then refereed to as super-boxes.

Unfortunately, this definition has shortcomings as discussed below.
The first problem is based on the fact that alignment is defined for a round

function with a given description as a fixed S-box and linear layer. Ideally, one
would hope that alignment, i.e. the existence of super-boxes, is a property that
is inherent to the round function and not to its description only.

The second shortcoming of alignment is its impact on security. In [8] several
aligned and unaligned ciphers were compared with respect to e.g. the number of
linear and differential characteristics of high probability. Within this selection,
ciphers being aligned suffered more from clustering effects. However, the exact
impact of alignment on those properties remained unclear. The main reason for
this is that the ciphers that are used in the comparisons are very different and
it is far from clear whether the difference in the observed behaviours is (mainly)
due to alignment or (mainly) due to other properties that separate the ciphers.

Our Contribution

We first present our main result on the uniqueness of decomposition, Theorem
1, in Sect. 2, which states that a decomposition is not unique if and only if
(at least) one S-box has maximal differential uniformity and another one has
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maximal linearity. For better readability, we first present the results and shift
the proofs and several more technical insights to Sect. 5.

With respect to alignment, we show in Sect. 3, based on the non-uniqueness
of maximal decomposition in general, that there exist round functions that have
both an aligned and an unaligned description. We also give a non-artificial exam-
ple, namely the cipher DEFAULT [2], which is aligned and unaligned at the same
time.

Furthermore, in Sect. 4 we present experimental data showing that the impact
of alignment with respect to the security criteria studied in [8] may be almost
non-existent if we consider alignment as an isolated property. We show this
by comparing variants of the same cipher instead of different ciphers. For
this we choose the cipher PRESENT. Here, by changing only the original bit-
permutation one can nicely create versions that are aligned or unaligned. As
we detail, those variants behave very similarly in all aspects, in contrast to the
results of [8], see e.g. Fig. 3.

2 Main Results on the Uniqueness of Decompositions

It is easy to see that every round function that is un-keyed (or in which a simple
key addition takes place at the end of the round) can be seen as an SPN by simply
choosing the non-linear layer to be the round function itself (without the addition
of the key in the keyed case) and the linear layer to be the identity. Obviously,
this representation of a round function is not very useful. But it already shows
that without further restrictions, a decomposition of a round function into non-
linear and linear layer cannot be unique. Hence, it is not clear if the properties
one infers from one possible decomposition are the same for a different one.

In other words, if we want to infer properties of a round function based
on its linear and non-linear layer, we should make sure that it is actually well
defined, i. e. it only depends on the round function and not on the choice of
decomposition. To give just one example, the arguments made in [3] for the
resistance against invariant attacks are only valid for one given decomposition
and can be shown to be invalid for another.3

Before presenting our results, let us first fix some notations and definitions.

2.1 Preliminaries

Basic Notation. We will denote by F2 the Galois field with 2 elements and with
+ the addition in this field, which can be seen as an exclusive or. With F

n
2 we

will denote the n dimensional vector space over this field, with xT the transpose
of a (column) vector x ∈ F

n
2 and with xT · y the (canonical) inner product of

x, y ∈ F
n
2 . Furthermore, we will denote by ⊕ the direct sum of vector spaces,

i. e. U ⊕ V = W if and only if W = U + V := {u + v | u ∈ U, v ∈ V } and
3 The arguments are mainly based on the rational canonical form of the linear layer

and this form might change when using linear equivalent S-boxes and modifying the
linear layer accordingly.
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U ∩ V = {0} for vector spaces U, V ⊂ W . Given a direct sum
⊕

i Ui = W we
will denote by πU

i : W → Ui the projection onto Ui along
⊕

l �=i Ul, i. e. πU
i has

kernel
⊕

l �=i Ul, image Ui and is the identity if restricted to Ui.4 We will also
consider the direct sum

(⊕
i∈I Ui

) ⊕ (⊕
i/∈I Ui

)
and will write UI :=

⊕
i∈I Ui

as well as πU
I :=

∑
i∈I πU

i for the projection onto
⊕

i∈I Ui along
⊕

i/∈I Ui or
simply Ui�=l and πU

i�=l if I = {i|i �= l}. Also, we will denote by F|U the restriction
of a function F to the subset U of its domain.

General Definitions. Let us give some general definitions that we will use
throughout this paper.

Definition 1 (Linear/Affine Equivalence). We call two functions F,G :
F

n
2 → F

n
2 affine equivalent if there exist a, b ∈ F

n
2 as well as invertible matrices

A,B ∈ F
n×n
2 such that F (x) = b + B · G (A · x + a) for all x ∈ F

n
2 . If a = 0 = b

we also call F,G linear equivalent.

Definition 2 (Differential Uniformity (cf. [23])). Let F : U → V for sub-
spaces U, V ⊂ F

n
2 . Then we call maxα∈U\{0},β∈V |{x ∈ U |F (x) + F (x + α) = β}|

the differential uniformity of F and say that it is maximal if it is equal to |U |.
Definition 3 (Linearity, (see [10] for an in-depth discussion)). Let F :
U → V for subspaces U, V ⊂ F

n
2 . Then we call maxα∈Fn

2 \V ⊥,β∈Fn
2 ,c∈F2 |{x ∈

U |αT · F (x) = βT · x + c}| the linearity of F , where V ⊥ := {x ∈ F
n
2 |xT · y =

0 ∀y ∈ V }, and say that it is maximal if it is equal to |U |.

2.2 Defining a (Maximal) Decomposition

Given a (round) function we would like to be able to find a unique decomposi-
tion into non-linear and linear layer(s). Similarly to [8], we require the number
of S-boxes in the non-linear layer to be maximal. While in general such a decom-
position is not unique, we show conditions under which it is. Hence, under these
conditions it is possible to infer properties of the round function (such as align-
ment [8]) based on the linear and non-linear layer(s) of the corresponding unique
decomposition.

A Natural Definition. Let us start with formally defining what we understand
by a decomposition. Since a non-linear layer typically consists of independent
S-boxes (i. e. functions that don’t share input and output bits), one can see the
S-box layer as the sum of independent functions. For example, the non-linear
layer N : Fn1

2 × F
n2
2 → F

n1
2 × F

n2
2 with

N

(
x1

x2

)

=
(

S1(x1)
S2(x2)

)

4 In other words, the direct sum enables us to express every element x ∈ W as
∑

i xi

for unique xi ∈ Ui. Hence, πU
j is the mapping defined by x =

∑
i xi �→ xj .
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and S1 : Fn1
2 → F

n1
2 as well as S2 : Fn2

2 → F
n2
2 can be seen as

N

(
x1

x2

)

=
(

S1(x1)
0

)

+
(

0
S2(x2)

)

where the input/output spaces of those two functions are F
n1
2 × 0n2 resp. 0n1 ×

F
n2
2 . Note that Fn1

2 ×0n2 ⊕ 0n1 ×F
n2
2 = F

n1
2 ×F

n2
2 . A linear layer now only changes

the input/output spaces of those functions. Hence, we will define a decomposition
of a (round) function by the sum of functions defined on subspaces of the input
and output spaces.

Definition 4 (Decomposition). Let F : Fn
2 → F

n
2 be bijective. Furthermore,

let U1, ..., Ud and V1, ..., Vd be non-trivial 5 subspaces of Fn
2 with

⊕
i Ui = F

n
2 =⊕

i Vi, as well as Fi : Ui → Vi with

F (x) = F

(
∑

i

πU
i (x)

)

=
∑

i

Fi ◦ πU
i (x).

We call {(Ui, Vi, Fi) | 1 ≤ i ≤ d} a decomposition of F . If d > 1 we call the
decomposition non-trivial.

Note that the reason we need to restrict the definition to non-trivial subspaces
is that it is always possible to extend the decomposition by F̂ : {0} → {0}, which
does not give any additional information about the (round) function. Moreover,
as the order of the functions does not matter, we only consider a set of tuples.

We would like to point out that we actually allow two linear layers, i. e. we
are decomposing into L2 ◦ N ◦ L1 where L1 and L2 are linear layers and N is
a non-linear layer. But note that the r round iteration (L2 ◦ N ◦ L1)r is linear
equivalent to (L1 · L2 ◦ N)r, meaning that both (round) functions, L2 ◦ N ◦ L1

and L1 · L2 ◦ N , lead to the same cryptographic properties. With that, allowing
two linear layers seems actually more natural than restricting to one linear layer
only.

Refining Decompositions. It is easy to see that given a (non-trivial) decomposi-
tion {(Ui, Vi, Fi) | 1 ≤ i ≤ d} it is always possible to find another decomposition
by combining two (or more) of the Fi, i. e. {(

⊕
i∈Il

Ui,
⊕

i∈Il
Vi,

∑
i∈Il

Fi ◦πU
i ) |

1 ≤ l ≤ m} is also a decomposition for every partition of the index space
I1, ..., Im ⊂ {1, ..., d}.

Hence, in order for a decomposition to be unique it is clear that one at least
has to maximize the number of S-boxes. To this end, we will now define in which
case one decomposition is a refinement of another decomposition, which reminds
of [8] while technically being different as [8] focuses on the linear layer only.

Definition 5 (Refinement). Let F : F
n
2 → F

n
2 be bijective. Let further

D = {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and E = {(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two
decompositions of F . We call E a refinement of D if e > d and for all i there
exists a value of j such that Wi ⊂ Uj.
5 More precisely, we allow the subspaces to be equal to F

n
2 but not to be {0}.
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The intuition behind this is that we further decompose each of the individual
S-Boxes. Based on this, we can now define a maximal decomposition.

Definition 6 (Maximal Decomposition). We call a decomposition D max-
imal if there exists no refinement of D.

In other words, a decomposition is maximal if we cannot decompose the
individual S-boxes any further. It is an interesting question, which we leave open
for now, whether two maximal decompositions have to have the same number of
S-boxes, or even more, the same size spectrum (see Definition 10 below).

2.3 A Sufficient and Necessary Condition for Unique
Decompositions

Knowing the definition of a maximal decomposition, we can now state our main
result in context of decompositions.

Theorem 1. Let F : Fn
2 → F

n
2 be bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d}

be a maximal decomposition of F . Then D is unique if and only if there exists
no pair (i, k) with i �= k such that Fi has maximal differential uniformity and
Fk has maximal linearity.

We will prove this in detail in Sect. 5.
Since one of the S-boxes having maximal differential uniformity (resp. maxi-

mal linearity) means that the same has to be true for the whole (round) function,
we can relax the condition and receive a sufficient, but not necessary, condition.

Corollary 1. Let F : Fn
2 → F

n
2 be bijective. If F does not have maximal differen-

tial uniformity or maximal linearity then F has a unique maximal decomposition.

Since differential uniformity and linearity are properties that should already
be known for most (if not all) cryptographic primitives, this makes it easy to
argue about the uniqueness of their maximal decomposition.

Some Intuition on the Functions without a Unique Maximal Decomposition.
Given Theorem 1 it is actually not hard to show (details are given in the full
version [17]) that the functions without a unique maximal decomposition are
exactly those that are affine equivalent to ones of the form

R

⎛

⎜
⎜
⎝

x1

x2

x3

x4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

f(x1)
g(x1) + x2

x3

h

(
x3

x4

)

⎞

⎟
⎟
⎟
⎟
⎠

}

S-box(es)
⎫
⎬

⎭
S-box(es)

,

where x1 ∈ F
n
2 , x4 ∈ F

m
2 for integers n,m and x2, x3 ∈ F2, as well as f : Fn

2 → F
n
2 ,

g : Fn
2 → F2 and h : F2 × F

m
2 → F

m
2 . The reason is that such functions allow

us to “mix” S-boxes without changing it, as we can add x3 (from the second
S-box) to x2 (from the first S-box) before the non-linear layer, but also revert
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this linear transformation after the non-linear layer by just changing the original
linear layer (more details are given in Example 2 of the full version [17]).

Given that one typically tries to minimize the differential uniformity and
linearity, it may seem like functions without a unique maximal decomposition
are not of interest to cryptographers, but there exists at least one widely-used
type of round function that actually has no unique maximal decomposition,
namely the one of a generalized Feistel network.

In total, we are able to show that whenever cryptographically strong S-boxes
are used the representation of its round function can indeed be used for arguing
about its properties, while the same is not always true in the opposing case, as
we will see next.

3 Re-aligning Alignment

To give just one example of why the uniqueness of a maximal decomposition can
be important, let us take a look at the concept of alignment by Bordes et al. [8].
While the intuition should be that a round function is aligned if the primitive
has a superbox structure, i. e. the iteration of two rounds exhibits a non-trivial
decomposition, the original definition is a bit more involved. Therefore, let us
quickly recall the definition of alignment from [8]. For this, we assume that the
round function consists of the parallel application of m equally-sized S-boxes, a
bijective linear transformation and the addition of a key (resp. constant), i. e.
we can write the round function as L ◦ N + c, where L ∈ F

n×n
2 is a bijective

linear mapping,

N =

⎛

⎜
⎝

S1

...
Sm

⎞

⎟
⎠

is the non-linear layer, with Si : Fn/m
2 → F

n/m
2 bijective, and c ∈ F

n
2 is a constant

(resp. key). For simplicity, we will use a slightly different but equivalent version
of the definition from [8].

Definition 7 (Alignment [8], sub-optimal). Let Ui := 0(i−1)·n/m × F
n/m
2 ×

0(m−i)·n/m for i = 1, . . . ,m. A round function L ◦ N + c (as above) is called
aligned if L can be written as T ◦ M such that

– it exists a permutation τ : {1, . . . , m} → {1, . . . , m} with T (Ui) = Uτ(i) and
– it exists J ⊂ {1, . . . , m} (non-trivial) such that M

(⊕
i∈J Ui

)
=

⊕
i∈J Ui and

M
(⊕

i/∈J Ui

)
=

⊕
i/∈J Ui,

where the split between the linear and nonlinear layer is chosen so as to maximize
the number of S-boxes in N .6

6 This version is equivalent to the one from [8] since T (Ui) = Uτ(i) means that T is the
composition of a ΠN -Shuffle and a ΠN aligned linear function. As the composition
of a ΠN′ aligned and a ΠN aligned function is obviously ΠN′ aligned if ΠN ≤
ΠN′ , it is then enough to check that M is ΠN′ aligned, with ΠN′ being non-trivial.
Since it is only important that ΠN′ is non-trivial, this can be done by checking if
M

(⊕
i∈J Ui

)
=

⊕
i∈J Ui and M

(⊕
i/∈J Ui

)
=

⊕
i/∈J Ui for some J ⊂ {1, . . . , m},

i. e. checking for all possible ΠN′ with two boxes.
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The problem with this definition is that it is not invariant under affine (or
even linear) equivalence (of the round function iterated two times), while the
existence of a superbox structure is. One non-artificial example where this is
indeed a problem is the cipher DEFAULT [2], which is aligned, but a linear
equivalent version would not be aligned.

Before we explain the problem in more detail, let us give an alternative
definition that is exactly equivalent to the existence of a superbox structure.

Definition 8 (Alignment). We call a round function R aligned if there exists
a non-trivial decomposition of R ◦ R. In the keyed case we require a non-trivial
decomposition for every key.

Note that whenever a round function is aligned according to the original
definition it is indeed aligned, since it implies a non-trivial decomposition of
R ◦ R with in- and output spaces of a certain form, while a round function that
is not aligned according to the original definition could actually be aligned, but
the in- and output spaces may not be of the form required in Definition 7.

On the Need of Decomposability for all Keys. On the first glance, requiring
decomposibility for all possible key choices may seem as a downside. But note
that the original definition does the same (even in the un-keyed case), as it
implies a non-trivial decomposition of R ◦ R for all possible key/constant addi-
tions. Also, there does not seem to be a way around this as the existence of a
superbox structure can be key dependent. For instance, let F be self inverse and
let R = F + k be the round function for a round key k. Then R ◦ R is affine
equivalent to F (F + k), which is the identity for k = 0 and therefore clearly
decomposable, while the same is not necessarily true for k �= 0.

A real world example of a key dependent decomposition is the block cipher
CRAFT [4], for which Leander et al. show in [19] that there exist some Tweak-
keys for which the round function is now very similar to a Feistel network, while
originally being an SPN.

That said, it seems to be more in line with [8] to require the existence of
a superbox structure for all possible key choices, while clearly a more refined
definition would be possible. But, since we show in Sect. 4 that the impact of
alignment may be hugely overestimated, we will settle with a definition most
true to the original one for now.

Alignment and Generalized Feistel Networks. While there exist non-artificial
examples, like the cipher DEFAULT [2], that are aligned according to the defini-
tion from [8], but a linear equivalent cipher is not, showing this for DEFAULT is
a bit more involved, but does not give further insights into the problem. Hence,
we refer to the full version [17] for this and use a more suitable example at
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Fig. 1. Example of a round function that is aligned, while a linear equivalent two
round composition would not be according to [8]. The colors indicate the alignment
resp. superbox structure and the dotted lines the individual S-boxes.

Fig. 2. Linear layer of a (linear) self-equivalent version of the round function from
Fig. 1. The colors indicate the initial alignment resp. superbox structure.

this point. Let us have a look at the generalized Feistel network depicted in
Fig. 1. Obviously, we can see the permutation of the output as a linear layer
and the non-linear transformation of each Feistel branch as an S-box (indicated
by the dotted box in the figure). As can be seen, two rounds of this construc-
tion result in two independent parts, which shows the existence of a superbox
structure. A quick check with the definition from [8] shows that this structure
is indeed aligned. But the problem is that the same does not hold true for a
linear equivalent version of this two round structure. To see this, note that the
linear transformation that adds x3 to x2 commutes with the S-box layer. Hence,
we can look at a linear equivalent version where we replace the second permu-
tation/linear layer by this linear transformation. Since it commutes with the
S-box layer, we end up with the linear layer depicted in Fig. 2 between the two
S-box layers. Here we can see that the addition of y′

3 to y′
2 mixes the two colors,

and a quick look at the definition from [8] reveals that this version would not
be aligned anymore, while the superbox structure is obviously still present. For
more details on this, we refer to the full version [17].

4 Aligned and Unaligned Versions of PRESENT

We are interested in looking at how alignment affects the cryptographic prop-
erties of very similar primitives, and to do so we chose to look at variants of
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the block cipher PRESENT where we keep the same S-box but change the per-
mutation. Given the link to central digraphs and the fact that those are fully
classified in dimension 16, makes PRESENT a very suitable candidate for our
purpose as one can essentially investigate the full spectra of bit permutations
and their impact on alignment.

Especially, we will show that alignment can have a very minor effect in how
it influences linear and differential trails.7

4.1 Digraphs and PRESENT

One round of PRESENT consists of 16 parallel applications of the same 4-bit S-
box followed by a bit permutation of the 64-bit state. The permutation is chosen
in such a way that full dependency is reached after two rounds, or more precisely
3 applications of the S-box layer interleaved with two permutation layers. In [16]
it was shown how any such permutation leads to what is called a central digraph.

Definition 9. Let G = (V,E) be a directed graph with vertices V and edges E.
G is a central digraph if for every pair of nodes u, v ∈ V it exists a unique w ∈ V
such that (u,w) ∈ E and (w, v) ∈ E. That is for every pair of vertices there exist
a unique path of length 2 between them.

A PRESENT-like bit permutation P operating on {0, . . . , 63} gives rise to a
central digraph by identifying the 16 S-boxes with 16 vertices and adding an
edge from vertex i to vertex j if there exists an output bit of the i-th S-box that
is mapped to the j-th S-box in the next round. Note that when restricting to
permutations with full dependency after two rounds (thus leading to a central
digraph), there are no duplicate edges on this digraph as, for a given S-box, each
of its four output bits needs to be sent to a different S-box on the next round.

All Central Digraphs of Order 16 up to isomorphism. There are exactly 3492 cen-
tral digraphs of order 16 up to graph isomorphism, see [16]. Graph isomorphism,
translated to the PRESENT-like structure, correspond to permuting the order of
S-boxes. Moreover, many PRESENT-like permutations will end up in the same
digraph as the order of input and output bits within each S-box is neglected in
the graph representation, but relevant for the cipher. As such, not all properties
of the cipher can be deduced from the digraph directly. For example, as shown
in [18] the number of (linear) trails might well differ for two permutations that
correspond to the same digraph. While some properties cannot be deduced from
the digraph only, others – in particular alignment – can.

Aligned and Non-aligned Central Digraphs. As mentioned above there are
exactly 3492 central digraphs leading to full diffusion after 2 rounds. We can
further group them into several sets using the following definition.

7 The code we used to make these experiments is available at: https://doi.org/10.
5281/zenodo.7660387.

https://doi.org/10.5281/zenodo.7660387
https://doi.org/10.5281/zenodo.7660387
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Definition 10 (Size spectrum of a decomposition). Let F : Fn
2 → F

n
2 be

bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d} be a decomposition of F . We call
the multiset SD = {dim(Ui)|1 ≤ i ≤ d} the size spectrum of D.

Moreover, we will say that a digraph G is aligned (resp. unaligned) if the per-
mutations induced from G result in an aligned (resp. unaligned) round function.
Recalling the previous sections and in particular Corollary 1, this makes sense
as the PRESENT S-box neither has trivial linearity nor differential uniformity
and thus its maximal decomposition is unique.

Over all the 3492 central digraphs, their alignment is distributed as follows:

– One single digraph is aligned with a maximal decomposition of size spectrum
{4, 4, 4, 4}. Especially, the original permutation in PRESENT belongs to this
class; that is two rounds of PRESENT can be rewritten as consisting of 4
super-boxes of 16 bits each.

– 37 digraphs lead to a maximal decomposition of size spectrum {4, 4, 8};
– 1207 digraphs lead to a maximal decomposition of size spectrum {4, 12};
– 220 digraphs lead to a maximal decomposition of size spectrum {8, 8};
– 2027 digraphs lead to a maximal decomposition of size spectrum {16}, i.e. all

these digraphs are unaligned.

Since our goal is to compare aligned and unaligned versions of PRESENT, we will
focus on the two corresponding cases to generate permutations: the (single) case
where the maximal decomposition is of size spectrum {4, 4, 4, 4}, corresponding
to the digraph of the original permutation, and the case where the digraph is
unaligned. As in [8], we will focus on the linear and differential properties of the
resulting variants of PRESENT.

4.2 Linear Cryptanalysis

The idea is to focus only on linear trails with one active S-box per round. This
has two advantages. First, it covers the bulk of the correlation used in most of
the attacks on PRESENT, cf. [14]. Second, it simplifies the analysis and we can
nicely use graph theory and efficient algorithms therein to control the effect of
unaligning the original PRESENT permutation.

A linear trail with a single active S-box per round implies for a bit-permutation
that has full dependency in two rounds, that only one-to-one bit linear approxima-
tions have to be considered through the S-box. There are only 8 possible one-to-one
bit transitions with non-zero correlation within the PRESENT S-box, see [7]. For
us, the only important point here is that there is no 1-1 transition involving the
LSB neither at the input nor at the output of the S-box.

As such, if one were to change the permutation by only modifying the values
in the permutation that are affecting the LSB (both at the input and output) of
the S-boxes, one would get a new permutation that has the same number of linear
trails built from 1-1 transitions. That is, two bit-permutations that only differ
in those bits, lead to ciphers with a very similar behaviour with respect to linear
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attacks. More specifically, this means that an alternative permutation should be
built from the following partial permutation, where � is an undetermined value

p� = (�, �, �, �, �, 17, 33, 49, �, 18, 34, 50, �, 19, 35, 51, �, �, �, �, �, 21, 37, 53, �, 22,

38, 54, �, 23, 39, 55, �, �, �, �, �, 25, 41, 57, �, 26, 42, 58, �, 27, 43, 59, �, �, �, �,

�, 29, 45, 61, �, 30, 46, 62, �, 31, 47, 63).

Extending the Partial Permutation in an Unaligned Way. To build the
entire permutation, we want it to both have the above structure (i.e. fits the
partial permutation) as well as lead to one of the central digraphs that has the
alignment we want to study. Luckily, this can nicely be done with graph theory.
The idea is that the partial permutation has to correspond to a sub-graph in
one of the central digraphs we aim for.

More explicitly, from the partial permutation p�, one can deduce a digraph
H�. H� contains an edge from vertex i to vertex j if there exists an output bit
of index a with p�(a) �= � in the i-th S-box that is mapped to an input bit of
index b with p�(b) �= � in the j-th S-box in the next round. Then there exists a
permutation that both fits the partial permutation and leads to one of the 2027
unaligned digraphs G if and only if H� is subgraph isomorphic to G.

Such a permutation would then be unaligned while still preserving the linear
trails built from 1-1 transitions. We used the subgraph isomorphism solver by
McCreesh et al. [21] to find all possible subgraph isomorphisms between H� and
the unaligned digraphs, and over the 2027 unaligned digraphs, there are 346 that
lead to at least one subgraph isomorphism.

Thus, to build alternative permutations, we first choose one of these 346
(unaligned) subgraphs, choose one of the subgraph isomorphism and complete
the partial permutation according to this isomorphism to obtain a full permu-
tation. Note that several permutations can be built from a given digraph and
subgraph isomorphism, however the exact number is rather hard to evaluate.

By building alternative permutations like this, we can deduce the following
proposition that takes care of the most prominent linear trails.

Proposition 1. For any (aligned or unaligned) permutation generated as
described above, the number of linear trails in PRESENT built with only 1-1
transitions is exactly the same as when using the original permutation, and all
those trails have an absolute bias of 2−3r over r rounds.

4.3 Differential Cryptanalysis

Once we obtain a permutation, we can then evaluate different metrics for differ-
ential cryptanalysis, and as an echo to [8] we chose to evaluate the number of
trails, number of core patterns and number of differentials (i.e. considering the
clustering effect of differential trails), which are defined in the following section.
We can then repeat the procedure by generating another permutation, possibly
also choosing another digraph and/or subgraph isomorphism.
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Table 1. Largest deviations observed on the number of differential trails.

1 permutation per graph All permutations in the same class

Rounds Original Alternative Weight Min. Alt. Max. Alt. Weight

2 248.35 248.21 24 211.11 211.15 6

3 246.29 243.05 32 28.93 29.15 8

4 28.19 26.32 12 27.09 27.52 12

Differential Trails. We made experiments to observe how having an unaligned
permutation affects the distribution of differential trails (for a formal definition
of differential trails, we refer to Definition 13 of the full version [17]), more specif-
ically the number of trails of a given weight (i.e. the − log2 of the probability).

We computed the number of trails up to a given weight over 2, 3 and 4 rounds
for both the original permutation as well as for several permutations generated
as described in the previous section. The computation was done as an exhaustive
search using a standard Branch & Bound algorithm as well as the convolution
technique showed in [8] for the first and last round. For 3 rounds, we adapted the
algorithm in Appendix A.3 of [8], with some simplifications and optimizations
since the linear layer is only a permutation in our case. For 4 rounds, the same
algorithm as for 3 rounds is used to generate trails over 3 rounds, which are then
manually extended by adding one round at the end.

We give the detailed results in the full version [17], comparing the original
permutation to a batch of variant permutations generated in 2 ways: either
one random permutation is generated from one random isomorphism for each
digraph (thus 346 variants considered), or 346 permutations are generated from
one isomorphism and one single graph, to showcase that the number of trails
remains rather stable within the same class of permutation. We also give a short
summary of the largest deviations in Table 1. Each row starts by the number of
rounds, followed by 3 entries giving the number of trails for the original (resp.
alternative) permutations with the largest gap and for which weight this gap
happens, when the alternative permutations are generated as one permutation
for one isomorphism for each graph. The remaining 3 entries of the row showcase
the largest gap between any of the alternative permutations, which are generated
within the same class, showing that in this case the results are rather stable.

Overall, while the (unaligned) alternative permutations tend to lead to lower
numbers of trails than the (aligned) original permutation (but not always, e.g.
over 4 rounds, there are ∼ 217.31 trails of weight 15 for the original permutation
while one alternative permutation leads to ∼ 217.40 trails of the same weight),
the gap between the original and alternative permutations is rather small and
the distribution seems to remain very similar.

Core Patterns. In [8], Bordes et al. look at the influence of alignment for trun-
cated differentials (where one only considers whether or not a given S-box has a
non-zero difference) over a few block ciphers. However due to PRESENT’s linear



332 B. Lambin et al.

Table 2. Largest deviations observed on the number of core patterns. No deviation
for 2 rounds when permutations are in the same class.

1 permutation per graph All permutations in the same class

Rounds Original Alternative Active S-boxes Min. Alt. Max. Alt. Active S-boxes

2 231.48 231.34 12 – – –

3 234.18 231.32 17 227.99 228.05 15

4 233.70 231.02 18 231.81 231.92 18

layer being a bit-permutation, truncated differentials are not really meaningful
to study. Instead, we will consider core patterns, which are essentially differen-
tial trails without considering the first and last S-box layer. More precisely, core
patterns are defined as follows.

Definition 11. Let (α1, β1, α2, . . . , αr, βr) be a differential trail over r rounds
with

α1
S−→ β1

p−→ α2
S−→ . . .

p−→ αr
S−→ βr

Then (β1, α2, . . . , αr) is called a core pattern.

While core patterns are still influenced by valid differentials of the S-box for 3
rounds and more, considering them allows us to ignore the effect of the first and
last S-box layer that “inflate” the number of trails.

As for differential trails, we computed the number of core patterns for up to
a given number of active S-boxes over 2, 3 and 4 rounds, both for the original
permutation as well as for a batch of alternative permutations, which are given
in details in the full version [17], with a short summary for the largest deviations
given in Table 2, structured in the same way as the previous table for differential
trails. The algorithm to obtain these results is very similar as for differential
trails, except that the bounding step in the Branch & Bound is done over the
number of active S-boxes, ignoring the weight of the trails as well as ignoring
the first and last S-box layer.

Clustering of Differential Trails. While differential trails are what is usu-
ally used to mount differential attacks, it has been shown multiple times
(e.g. [12,15,26]) that the actual probability of the underlying differential can
deviate quite significantly from the probability of a differential trail because of
the clustering effect. In short, the probability of a differential (α1, αr) is the
sum of the probability of all differential trails starting (resp. ending) with α1

(resp. αr), see Proposition 2 of the full version [17]. Usually, the dominant trail
hypothesis is used to argue that the highest probability of any trail fitting a
given differential dominates over all other trails, that is, the probability of the
differential is about the same as the probability of the trail. However several
examples in the literature show that this is not always the case, and as such it
is useful to evaluate the actual probability of differentials over a given cipher.
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Table 3. Largest deviations observed on the number of differentials.

1 permutation per graph All permutations in the same class

Rounds Original Alternative Weight Min. Alt. Max. Alt. Weight

2 225.63 225.08 12.9556 215.99 216.02 8.97763

3 230.15 228.69 20.8301 29.07 29.20 8

Adapting the algorithm used to compute differential trails, we were able to
also compute the probabilities of differentials over 2 and 3 rounds for both the
original permutation as well as for several alternative permutations. Again, we
give a short summary of the largest observed deviations in Table 3, while the
detailed results are given in the full version [17]. As we can see, the distribution
for alternative (unaligned) permutations seems quite close to the distribution
from the original (aligned) permutation. As an example, in Fig. 3a, we give the
cumulative histogram of the number of differential of a given weight over 2
rounds, where the red line represents the cumulative histogram for the original
permutation, while each alternative permutation is represented by a blue line.
Since all the alternative permutations give very close results, their respective
lines are all clumped together, which still highlights what we want to show here.
Note that while for 2 rounds, the alternative permutations give a very similar
curve, for 3 rounds there seems to be a divergence starting around weight 15,
while still remaining quite close (we refer to the full version [17] for more details).

To compare this to [8], we give in Fig. 3b the cumulative histogram the
authors gave from their analysis of Saturnin, Spongent and Xoodoo, the first
two being aligned while the latter being unaligned. Here, the largest gap between
Spongent (aligned) and Xoodoo (unaligned) is several orders of magnitude larger
than for PRESENT (about 220 near weight 21), and the distributions are very
different. Thus, we now have examples of aligned and unaligned ciphers that
behave very similar (the PRESENT variants) and very different (Spongent and
Xoodoo). Those examples jointly raise doubt about the impact of alignment on
its own.

Moreover, the minimal weight for which there is at least one differential is
different, while in our experiments when comparing variants of the same cipher,
the same minimal weight is achieved both for the (aligned) original permutation
as well as for the (unaligned) variants.

While these experiments show that we can find unaligned permutations that
are technically better than the original PRESENT permutation, the margin
between the two is rather small and the distributions seem to be very close to
each other. Overall, the distributions also seem to diverge mostly toward “larger”
weights, while low weight trails/differentials are probably the most important
ones to focus on, and it’s worth recalling that all of these alternative permuta-
tions have the exact same linear trails built from 1-1 transitions as the original
permutation. At the very least, these experiments clearly show that when com-
paring aligned vs. unaligned round function of a very similar design, the answer
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Fig. 3. Cumulative histogram of the number of differentials of a given weight over 2
rounds.

to whether one is clearly better than the other is a lot less clear cut than what
was stated in [8].

5 An in Depth Analysis of the Uniqueness
of Decompositions

In this section, we will explain the results from Sect. 2 in greater depth. More
precisely, we will give more details on decompositions, how one can (possibly)
find refinements based on two decompositions, and finally, prove Theorem 1.

Reconstructing a Decomposition Based on the Input Spaces. While the Fi, which
can be interpreted as linear transformed S-boxes, are useful for motivating our
definition, they are strictly speaking not needed as long as the actual function
F is known. To see this, we first note that they can be recovered by projecting
onto the corresponding output space.

Corollary 2. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be

a decomposition of F . Then we have that πV
i ◦ F = Fi ◦ πU

i .

Proof. Since F =
∑

j Fj ◦πU
j and πV

j ◦Fi is the same as Fi in the case that i = j
and zero otherwise, the claim follows from

πV
i ◦ F = πV

i ◦
⎛

⎝
∑

j

Fj ◦ πU
j

⎞

⎠ =
∑

j

πV
i ◦ Fj ◦ πU

j = Fi ◦ πU
i .

�
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Now, we show that the Fi provide no additional information, since the restric-
tion of F to Ui is identical to Fi plus some constant that can be recovered by
projecting F (0) onto

⊕
l �=i Vl.

Corollary 3. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be

a decomposition of F . Then we have that Fi = F|Ui
+ πV

l �=i ◦ F (0) and we can
write F =

∑
l F ◦ πU

l + (d + 1 mod 2) · F (0).

Proof. We know that F =
∑

l Fl ◦ πU
l by definition. Hence, we have that

F ◦ πU
i =

∑

l

Fl ◦ πU
l ◦ πU

i = Fi ◦ πU
i +

∑

l �=i

Fl(0) = Fi ◦ πU
i +

∑

l �=i

πV
l ◦ F (0).

Therefore, we get that

F =
∑

l

Fl ◦ πU
l =

∑

l

⎛

⎝F ◦ πU
l +

∑

i�=l

πV
i ◦ F (0)

⎞

⎠

=
∑

l

F ◦ πU
l +

∑

l

(
F (0) + πV

l ◦ F (0)
)

=
∑

l

F ◦ πU
l + (d + 1 mod 2) · F (0).

�
Looking at the S-box layer, we quickly see why this is the case. Assume that

N

(
x1

x2

)

=
(

S1(x1)
S2(x2)

)

.

To isolate S1, we would fix x2 = 0. But in order to get the second component to
be zero for the output space to be a subspace, we have to add S2(0) to it.

In addition to not having to know the Fi, we also do not need to know the
output spaces Vi. But note that it is still important that the output sets are
subspaces that are in direct sum.

Corollary 4. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be

a decomposition of F . Then we have that Vi = F (Ui) + F (0).

Proof. We already know that Vi = Fi(Ui) = F (Ui)+πV
l �=i ◦F (0). The claim now

follows from the fact that πV
i ◦ F (0) = Fi(0) ∈ Vi. �

Hence, the only thing we need to know for constructing a decomposition
are the input spaces. Therefore, if we are able to construct a decomposition
of F based on the input spaces Ui by first recovering the output spaces Vi =
F (Ui) + F (0), verifying that the Vi are indeed subspaces and in direct sum, and
then constructing the Fi as F|Ui

+ πV
l �=i ◦ F (0), validating that F =

∑
i Fi ◦ πU

i

holds, then we say that the input spaces Ui induce a decomposition of F .
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Lemma 1 (Induction of Decomposition). Let F : F
n
2 → F

n
2 be bijective.

Let further U1, ..., Ud be non-trivial subspaces of Fn
2 with

⊕
i Ui = F

n
2 and let us

define Vi := F (Ui) + F (0). If the Vi are subspaces with
⊕

i Vi = F
n
2 and if

F =
∑

i

F ◦ πU
i + (d + 1 mod 2) · F (0)

then D = {(Ui, Vi, Fi) | 1 ≤ i ≤ d} with Fi := F|Ui
+ πV

l �=i ◦ F (0) is a decompo-
sition of F . In this case, we say that {Ui | 1 ≤ i ≤ d} induces the decomposition
D.

Proof. This follows from the observations above and by definition of the Fi, as
∑

i

Fi ◦ πU
i =

∑

i

(
F|Ui

◦ πU
i + πV

l �=i ◦ F (0)
)

=
∑

i

F ◦ πU
i + (d + 1 mod 2) · F (0).

�
Note that we could have used this as the definition of decomposition. While

this does not need the redundant information of the Fi and Vi, it is way less
intuitive. Also, when working with decompositions it can be quite useful to have
both the Fi and the Vi at hand, too.

Decompositions of Affine Equivalent Functions. We will now show a one-to-
one relationship between the decompositions of two affine equivalent functions,
which means that the existence of a unique maximal decomposition is actually
invariant under affine equivalence.

Lemma 2. Let F,G : Fn
2 → F

n
2 be bijective and affine equivalent, i. e. F = A ◦

G (B + b)+a for invertible matrices A,B ∈ F
n×n
2 and constants a, b ∈ F

n
2 . Then

{Ui|1 ≤ i ≤ d} induces a decomposition of F if and only if {B · Ui|1 ≤ i ≤ d}
induces a decomposition of G.

Proof. Let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be the decomposition of F induced by
{Ui|1 ≤ i ≤ d}. It obviously holds that

⊕
i B · Ui = F

n
2 , as B is invertible. In

addition, if we denote by I the identity mapping, we get that

A ◦ G (B + b) + a = F =
∑

i

F ◦ πU
i + (d + 1 mod 2) · F (0)

=
∑

i

(
F ◦ πU

i + F ◦ πU
l �=i ◦ B−1(b) + F ◦ πU

i ◦ B−1(b) + F ◦ B−1(b) + F (0)
)

+ (d + 1 mod 2) · F (0),
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since we can decompose F ◦B−1(b) into F ◦πU
l �=i◦B−1(b)+F ◦πU

i ◦B−1(b)+F (0).
But, as

∑
i F ◦πU

i ◦B−1(b) = F ◦B−1(b)+ (d+1 mod 2) ·F (0), this is equal to
∑

i

(
F ◦ πU

i + F ◦ πU
l �=i ◦ B−1(b) + F (0)

)
+ (d + 1 mod 2) · F ◦ B−1(b)

=
∑

i

F
(
πU

i + πU
l �=i ◦ B−1(b)

)
+ (d + 1 mod 2) · F ◦ B−1(b)

=
∑

i

F
(
πU

i

(
I + B−1(b)

)
+ B−1(b)

)
+ (d + 1 mod 2) · F ◦ B−1(b)

=
∑

i

(
A ◦ G

(
B ◦ πU

i

(
I + B−1(b)

)
+ B · B−1(b) + b

)
+ a

)

+ (d + 1 mod 2) · (A ◦ G
(
B ◦ B−1(b) + b

)
+ a

)

=A

(
∑

i

G
(
B ◦ πU

i

(
I + B−1(b)

))
+ (d + 1 mod 2) · G(0)

)

+ a.

In other words, we have that

G =
∑

i

G
(
B ◦ πU

i ◦ B−1
)

+ (d + 1 mod 2) · G(0),

where B ◦ πU
i ◦ B−1 are the projections onto B · Ui. In addition, we get that

A (G(B · Ui) + G(0)) =F (Ui + B−1 · b) + F (B−1 · b)

=
∑

l

F ◦ πU
l (Ui + B−1 · b) + (d + 1 mod 2) · F (0)

+
∑

l

F ◦ πU
l (B−1 · b) + (d + 1 mod 2) · F (0)

=F ◦ πU
i (Ui) + F ◦ πU

i (B−1 · b)

=Fi ◦ πU
i (Ui) + πV

l �=iF (0) + Fi ◦ πU
i (B−1 · b) + πV

l �=iF (0)

=Vi + Fi ◦ πU
i (B−1 · b) = Vi.

As
⊕

i A−1 · Vi = F
n
2 , it now follows from Lemma 1 that {B · Ui|1 ≤ i ≤ d}

induces a decomposition of G. The reverse direction follows from switching the
roles of F and G, as both affine mappings are bijective. �

This especially shows that a decomposition is invariant (up to changing the
Fi) under the addition of constants (e. g. a key), both at the beginning or the
end of the round function. Hence, we can ignore such additions.

While the lemma above also enables us to study an affine equivalent version
of a function such that one decomposition has a preferable form, e. g. Ui =
0mi × F

dim(Ui)
2 × 0m′

i , other decompositions are not necessarily of such a form.

Finding Refinements. In order to judge if a decomposition is maximal we need
to know if there exists a refinement. For this, let us try to find a refinement given
two decompositions.
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Corollary 5. Let F : F
n
2 → F

n
2 be bijective and let {Ui | 1 ≤ i ≤ d} and

{Wi | 1 ≤ i ≤ e} both induce decompositions of F . Then we have that

F + (d · e + 1 mod 2) · F (0) =
∑

i,j

F ◦ πU
i ◦ πW

j =
∑

i,j

F ◦ πW
j ◦ πU

i .

Proof. We know that we can write F =
∑

i F ◦ πU
i + (d + 1 mod 2) · F (0) resp.

F =
∑

j F ◦ πW
j + (e + 1 mod 2) · F (0). This means that

F ◦ πW
j =

∑

i

F ◦ πU
i ◦ πW

j + (d + 1 mod 2) · F (0),

which in turn means that

F =
∑

j

F ◦ πW
j + (e + 1 mod 2) · F (0)

=
∑

j

(
∑

i

F ◦ πU
i ◦ πW

j + (d + 1 mod 2) · F (0)

)

+ (e + 1 mod 2) · F (0)

=
∑

i,j

F ◦ πU
i ◦ πW

j + (d · e + 1 mod 2) · F (0).

�
As we will see, if Im(πU

i ◦ πW
j ) ∩ Im(πU

l ◦ πW
k ) = {0} holds for all i �= l and

j �= k then we have found a refinement. But as soon as there exists a non-trivial
intersection, there exist multiple maximal decompositions. To see that the case
of a non-trivial intersection is even possible, let us look at the following example.

Example 1. Let R be as in Sect. 2, i. e.

R

⎛

⎜
⎜
⎝

x1

x2

x3

x4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

f(x1)
g(x1) + x2

x3

h

(
x3

x4

)

⎞

⎟
⎟
⎟
⎟
⎠

}

S-box
⎫
⎬

⎭
S-box

,

where x1 ∈ F
n
2 , x4 ∈ F

m
2 for integers n,m and x2, x3 ∈ F2, as well as f : Fn

2 → F
n
2 ,

g : Fn
2 → F2 and h : F2 × F

m
2 → F

m
2 . Because of Lemma 2 we can ignore a linear

layer that would usually mix the output of the two S-boxes.
Let us consider the following subspaces

U1 := F
n
2 × F2 × 0 × 0m, U2 := 0n × 0 × F2 × F

n
2 ,

W1 := U1, W2 := {(0, a, a, b)T | a ∈ F2, b ∈ F
m
2 }.

It is not too hard to see that both {U1, U2} and {W1,W2} induce decompositions
(we refer to the full version [17] for more details) while they are obviously not
identical, nor is one the refinement of the other. But

Im(πU
1 ◦πW

1 ) ∩ Im(πU
1 ◦πW

2 ) = U1 ∩ 0n ×F2 ×0×0m = 0n ×F2 ×0×0m �= {0}.
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5.1 The Case of Trivial Intersections

Based on Corollary 5, one may hope that the set {Im(πU
i ◦πW

j )|i, j}\{0} induces
a decomposition that is a refinement of both initial decompositions. While it is
clear that in case of only trivial intersections of those images they form a direct
sum, the same is not directly clear for the corresponding output spaces Im(πV

i ◦
πX

j ◦F ) = Im(πV
i ◦πX

j ). Obviously, the intersection can only be non-trivial if i = l

as otherwise Im(πU
i ) ∩ Im(πU

l ) = {0} already holds, which reduces our analysis
to the spaces Im(πU

i ◦ πW
j ) ∩ Im(πU

i ◦ πW
k ) resp. Im(πV

i ◦ πX
j ) ∩ Im(πV

i ◦ πX
k ).

As the next corollary shows, the input spaces are in direct sum if and only if the
output spaces are in direct sum.

Corollary 6. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d}

and {(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then for all i, j, k,
it holds that

Im(πU
i ◦ πW

j ) ∩ Im(πU
i ◦ πW

k ) = {0} ⇔ Im(πV
i ◦ πX

j ) ∩ Im(πV
i ◦ πX

k ) = {0}.

Proof. From Corollaries 2 and 3 we know that F ◦ πU
i = Fi ◦ πU

i + πV
l �=i ◦ F (0) =

πV
i ◦ F + πV

l �=iF (0), which means that

F ◦ πU
i ◦ πW

j = πV
i ◦ F ◦ πW

j + F (0) + πV
i ◦ F (0)

= πV
i

(
πX

j ◦ F + F (0) + πX
j ◦ F (0)

)
+ F (0) + πV

i ◦ F (0)

= πV
i ◦ πX

j ◦ F + F (0) + πV
i ◦ πX

j ◦ F (0)

= πV
i ◦ πX

j (F + F (0)) + F (0).

Let x ∈ Im(πU
i ◦ πW

j ) ∩ Im(πU
i ◦ πW

k ), i. e. there exist a, b ∈ F
n
2 such that

πU
i ◦ πW

j (a) = x = πU
i ◦ πW

k (b). This means that

F (x) + F (0) = F ◦ πU
i ◦ πW

j (a) + F (0) = πV
i ◦ πX

j (F (a) + F (0))

and similarly F (x)+F (0) = πV
i ◦πX

k (F (b) + F (0)), i. e. there exists c = F (a)+
F (0) and d = F (b) + F (0) such that πV

i ◦ πX
j (c) = F (x) + F (0) = πV

i ◦ πX
k (d).

As F is a bijection, implying that F (x) + F (0) = 0 if and only if x = 0 and that
the mappings a �→ c and b �→ d are also bijections, the claim follows. �

Next, we want to show that if Im(πU
i ◦πW

j ) ∩ Im(πU
i ◦πW

k ) = {0} holds for all
i and j �= k, we either get a refinement or the two decompositions are identical.
To do so, we first take a deeper look at compositions of the projections.

Corollary 7. Let U1, ..., Ud and W1, ...,We be subspaces of Fn
2 such that

⊕
i Ui =

F
n
2 =

⊕
i Vi. Then Im(πU

i ◦ πW
j ) ∩ Im(πU

i ◦ πW
k ) = {0} hold for all i and j �= k

if and only if πU
i ◦ πW

j = πW
j ◦ πU

i for all i, j.

Proof. Let us assume that Im(πU
i ◦ πW

j ) ∩ Im(πU
i ◦ πW

k ) = {0} holds for all i

and j �= k. Hence, we know that
⊕

i,j Im(πU
i ◦ πW

j ) = F
n
2 , and we have to show
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that πU
i ◦ πW

j = πW
j ◦ πU

i for all i, j. Since both
∑

l,k πU
l ◦ πW

k and
∑

k πW
k are

the identity, it holds that

0 = πU
i + πU

i =
∑

l,k

πU
l ◦ πW

k ◦ πU
i +

∑

k

πU
i ◦ πW

k ◦ πU
i =

∑

l �=i,k

πU
l ◦ πW

k ◦ πU
i .

As 0 ∈ Im(πU
l ◦ πW

k ) for all l, k, and those images are in direct sum, we know
that πU

l ◦ πW
k ◦ πU

i = 0 has to hold for all l �= i and all k. This shows that
πW

j ◦ πU
i = πU

i ◦ πW
j , since

πW
j ◦ πU

i =
∑

l

πU
l ◦ πW

j ◦ πU
i = πU

i ◦ πW
j ◦ πU

i ,

but also
πU

i ◦ πW
j =

∑

l

πU
i ◦ πW

j ◦ πU
l = πU

i ◦ πW
j ◦ πU

i .

Now, let us assume that πU
i ◦ πW

j = πW
j ◦ πU

i for all i, j, which means that

πU
i ◦πW

j ◦πU
i ◦πW

j = πU
i ◦πW

j ◦πW
j ◦πU

i = πU
i ◦πW

j ◦πU
i = πU

i ◦πU
i ◦πW

j = πU
i ◦πW

j ,

i. e. the πU
i ◦ πW

j are projections. If k �= j then we have that

πU
i ◦ πW

j ◦ πU
l ◦ πW

k = πU
i ◦ πW

j ◦ πW
k ◦ πU

l = 0.

But also, since Im(πU
i ◦ πW

j ) ∩ Im(πU
l ◦ πW

k ) ⊂ Im(πU
i ◦ πW

j ) and πU
i ◦ πW

j is a
projection, it has to hold that

{0} ⊂ Im(πU
i ◦ πW

j ) ∩ Im(πU
l ◦ πW

k ) = πU
i ◦ πW

j

(
Im(πU

i ◦ πW
j ) ∩ Im(πU

l ◦ πW
k )

)

⊂ πU
i ◦ πW

j

(
Im(πU

l ◦ πW
k )

)
= {0}.

�
In other words, if all the intersections are trivial, we not only know that we

can find a refinement based on the two decompositions, but also that the order in
which we do, first decomposing according to the Ui and then refining according to
the Wj or the other way around, does not matter since the resulting projections
and therefore the subspaces are identical. This leads us to the following lemma.

Lemma 3. Let F : Fn
2 → F

n
2 be bijective and let {Ui | 1 ≤ i ≤ d} and {Wi |

1 ≤ i ≤ e} induce the decompositions D and E of F . If for every i and j �= k
it holds that Im(πU

i ◦ πW
j ) ∩ Im(πU

i ◦ πW
k ) = {0} then we can either construct a

refinement of D or E induced by the set of input spaces {Ui ∩ Wj |1 ≤ i ≤ d, 1 ≤
j ≤ e} \ {{0}} or D = E.

Proof. By our reasoning above, we already know that if Im(πU
i ◦ πW

j ) ∩ Im(πU
i ◦

πW
k ) = {0} holds for every i and j �= k the images Im(πU

i ◦πW
j ) form a direct sum,

as do the images Im(πV
i ◦πX

j ). Note that Corollary 7 shows that πU
i ◦πW

j = πW
j ◦πU

i
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are the corresponding projections. Therefore, Ui ⊃ Im(πU
i ◦πW

j ) = Im(πW
j ◦πU

i ) ⊂
Wj , but also Ui ∩ Wj ⊂ Im(πW

j ) and Ui ∩ Wj ⊂ Im(πU
i ), which means that

Ui ∩ Wj ⊂ Im(πU
i ◦ πW

j ) ⊂ Ui ∩ Wj .

Hence, Im(πU
i ◦ πW

j ) = Ui ∩ Wj and if we remove the trivial subspaces then
Corollary 5 shows that the set of input spaces {Ui ∩ Wj |1 ≤ i ≤ d, 1 ≤ j ≤
e} \ {{0}} induces a decomposition. Also, it obviously holds that Wj ∩ Ui ⊂ Wj

and Ui ∩ Wj ⊂ Ui, which means that we either got a refinement of D or E, or
D is identical to E. �

5.2 The Case of Non-trivial Intersections

Now, let us look at the case in which at least one intersection of the images
is non-trivial. As we will see, this means that (at least) one S-Box has to have
maximal differential uniformity and another one has to have maximal linearity.
In order to show that, we need the following lemma.

Lemma 4. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and

{(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then we have that

F

⎛

⎝
∑

j

πU
i ◦ πW

j

⎞

⎠ =
∑

j

F ◦ πU
i ◦ πW

j + (e + 1 mod 2) · F (0).

Proof. The claim follows from

F

(
∑

j

πU
i ◦ πW

j

)

= F ◦ πU
i

(
∑

j

πW
j

)

= F ◦ πU
i = πV

i ◦ F + πV
l�=i ◦ F (0)

= πV
i

(
∑

j

F ◦ πW
j + (e + 1 mod 2) · F (0)

)

+ πV
l�=i ◦ F (0)

=
∑

j

πV
i ◦ F ◦ πW

j + (e + 1 mod 2) · πV
i ◦ F (0) + πV

l�=i ◦ F (0)

=
∑

j

(
F ◦ πU

i ◦ πW
j + πV

l�=i ◦ F (0)
)

+ (e + 1 mod 2) · πV
i ◦ F (0) + πV

l�=i ◦ F (0)

=
∑

j

F ◦ πU
i ◦ πW

j + (e + 1 mod 2) · F (0).

�
Since the inputs to the F ◦ πU

i ◦ πW
j can be seen as independent as the Wj

are in direct sum, this already shows that there has to be some kind of linearity.

Behaviour on the Intersections. Next, we will show that each Fi (resp. the
corresponding S-box) has to be affine on each of the subspaces Im(πU

i ◦ πV
j ) ∩

Im(πU
i ◦ πV

k ), which is trivial in the case that those subspaces are {0}, but gives
us more information in the case of a non-trivial intersection. For this, we will
first take a deeper look at such intersections.
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Corollary 8. Let U1, ..., Ud,W1, ...,We ⊂ F
n
2 be subspaces with

⊕
i Ui = F

n
2 =⊕

i Wi. Also, let P be a composition of alternating projections πU
i , πW

j . Then it
holds that

Im(P ◦ πW
j ) ∩ Im(P ◦ πW

k �=j) = Im(P ◦ πW
j ◦ πU

l �=i) = Im(P ◦ πW
k �=j ◦ πU

l �=i).

Proof. Note that as πW
i ◦ πW

k �=j = 0, we can assume that P is either of the form
p ◦ ... ◦ πU

i ◦ πW
j ◦ πU

i with p ∈ {πU
i ◦ πW

j , πW
j ◦ πU

i } or P ◦ πW
k �=j is zero. As in

the second case the claim is obviously true, let us assume that P is of the form
p ◦ ... ◦ πU

i ◦ πW
j ◦ πU

i . It holds that

Im(P ◦ πW
j ) ∩ Im(P ◦ πW

k �=j)

= {P (x)|x ∈ Wj} ∩ {P (x′)|x′ ∈ Wk �=j}
= {y|P (x) = y = P (x′), x ∈ Wj , x

′ ∈ Wk �=j}
= {P ◦ πW

j (x + x′)|P (x) + P (x′) = 0, x ∈ Wj , x
′ ∈ Wk �=j}

= {P ◦ πW
j (x̂)|x̂ ∈ ker(P )}

⊃ Im(P ◦ πW
j ◦ πU

l �=i)

as Ul �=i = ker(πU
i ) ⊂ ker(P ). In addition, we have that

{P ◦ πW
j (x̂)|x̂ ∈ ker(P )} = {P ◦ πW

j (x̂) + p ◦ P (x̂)|x̂ ∈ ker(P )}
= {P

(
πW

j (x̂) + πW
j ◦ πU

i (x̂)
) |x̂ ∈ ker(P )}

= {P ◦ πW
j ◦ πU

l �=i(x̂)|x̂ ∈ ker(P )}
⊂ Im(P ◦ πW

j ◦ πU
l �=i),

which, together with πU
i ◦ πW

j ◦ πU
l �=i = πU

i ◦ (
I + πW

j

) ◦ πU
l �=i = πU

i ◦ πW
k �=j ◦ πU

l �=i,
where I denotes the identity, completes the proof. �

In other words, if we set P = πU
i , the intersections Im(πU

i ◦ πV
j ) ∩ Im(πU

i ◦
πV

k �=j) are actually the images of πU
i ◦ πW

j ◦ πU
l �=i = πU

i ◦ πW
k �=j ◦ πU

l �=i. With this
and the lemma above, we can now show that the function has to be affine on
those intersection resp. images.

Lemma 5. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and

{(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then we have that F is
affine on Im(πU

i ◦ πW
j ◦ πU

l �=i) for every i, j.

Proof. Let x, y ∈ Im(πU
i ◦ πW

j ◦ πU
l �=i) = Im(πU

i ◦ πW
k �=j ◦ πU

l �=i), i. e. there exist
a, b ∈ F

n
2 such that x = πU

i ◦ πW
j ◦ πU

l �=i(a) and y = πU
i ◦ πW

k �=j ◦ πU
l �=i(b). Also,

let us define Ŵ1 := Wj and Ŵ2 := Wk �=j . Note that {Ŵ1, Ŵ2} also induces a



Pitfalls and Shortcomings for Decompositions and Alignment 343

decomposition, which, combined with the above lemma, leads to

F (x + y) =F
(
πU

i ◦ πW
j ◦ πU

l �=i(a) + πU
i ◦ πW

k �=j ◦ πU
l �=i(b)

)

=F

(
∑

r=1,2

πU
i ◦ πŴ

r

(
πW

j ◦ πU
l �=i(a) + πW

k �=j ◦ πU
l �=i(b)

)
)

=F ◦ πU
i ◦ πW

j ◦ πU
l �=i(a) + F ◦ πU

i ◦ πW
k �=j ◦ πU

l �=i(b) + F (0)

=F (x) + F (y) + F (0).

�
A direct consequence of this is that F ◦πU

i ◦πW
j ◦πU

l �=i is affine, or equivalent
that F ◦ πU

i ◦ πW
j ◦ πU

l �=i + F (0) is linear.8 But as we can iteratively represent F
composed with a projection onto an input space as the projection of F onto the
corresponding output space (plus a constant), this gives us the following.

Corollary 9. Let F : Fn
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and

{(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . If πU
i ◦ πW

j ◦ πU
l �=i �= 0

then there exists an k �= i such that Fk has maximal linearity.

Proof. We know that F ◦ πU
i ◦ πW

j ◦ πU
l �=i + F (0) is linear. But this means that

F ◦ πU
i ◦ πW

j ◦ πU
l �=i + F (0) = πV

i

(
F ◦ πW

j ◦ πU
l �=i + F (0)

)

= ... = πV
i ◦ πX

j ◦ πV
l �=i (F + F (0))

=
∑

l �=i

πV
i ◦ πX

j ◦ πV
l

(
Fl ◦ πU

l + Fl(0)
)

is also linear. Since the inputs to the Fl are independent, this shows that πV
i ◦πX

j ◦
πV

l

(
Fl ◦ πU

l + Fl(0)
)

is linear for every l �= i. As πU
i ◦πW

j ◦πU
l �=i �= 0, we also know

thatπV
i ◦πX

j ◦πV
l �=i �= 0, and therefore there exists ak �= i such thatπV

i ◦πX
j ◦πV

k �= 0,
which in turn means that πV

i ◦ πX
j ◦ πV

k (Fk + Fk(0)) �= 0. Hence, we can simply
select αT as a non-zero component of πV

i ◦πX
j ◦πV

k and get that αT ·Fk +αT ·Fk(0)
is linear and non-trivial, i. e. Fk has maximal linearity. �

In other words, a non-trivial intersection implies a (non-trivial) affine com-
ponent of one of the S-boxes. But it even implies more.

Non-Trivial Intersections Imply Maximal Differential Uniformity. Knowing that
F is affine on these intersections, we are now able to show that this implies
maximal differential uniformity of the corresponding Fi.

Lemma 6. Let F : F
n
2 → F

n
2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d}

and {(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . If it holds that
Im(πU

i ◦πW
j ) ∩ Im(πU

i ◦πW
k �=j) �= {0} for some i, j then Fi has maximal differential

uniformity.
8 Note that in the case of trivial intersections, we have that πU

i ◦ πW
j ◦ πU

l�=i = πW
j ◦

πU
i ◦ πU

l�=i = 0, which means that F ◦ πU
i ◦ πW

j ◦ πU
l�=i + F (0) = 0.
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Proof. Let α ∈ Im(πU
i ◦ πW

j ) ∩ Im(πU
i ◦ πW

k �=j) = Im(πU
i ◦ πW

j ◦ πU
l �=i) and x ∈

Ui = Im(πU
i ◦ πW

j ◦ πU
i ) + Im(πU

i ◦ πW
k �=j ◦ πU

i ), i. e. we can write x = x1 + x2

for x1 ∈ Im(πU
i ◦ πW

j ◦ πU
i ) and x2 ∈ Im(πU

i ◦ πW
k �=j ◦ πU

i ). Furthermore, we
can find a, b1, b2 such that α = πU

i ◦ πW
j ◦ πU

l �=i(a), x1 = πU
i ◦ πW

j ◦ πU
i (b1) and

x2 = πU
i ◦ πW

k �=j ◦ πU
i (b2), which, together with Lemma 4, gives us

F (x + α) = F (x1 + x2 + α)

=F
(
πU

i ◦ πW
j

(
πU

l �=i(a) + πU
i (b1)

)
+ πU

i ◦ πW
k �=j ◦ πU

i (b2)
)

=F ◦ πU
i ◦ πW

j

(
πU

l �=i(a) + πU
i (b1)

)
+ F ◦ πU

i ◦ πW
k �=j ◦ πU

i (b2) + F (0),

where for the last step we use the fact that πW
j (â) = πW

j

(
πW

j (â) + πW
k �=j(b̂)

)

and πW
k �=j(b̂) = πW

k �=j

(
πW

j (â) + πW
k �=j(b̂)

)
. In addition, it is easy to see that that

F ◦ πU
i ◦ πW

j

(
πU

l �=i(a) + πU
i (b1)

)

= πV
i ◦ πX

j ◦ F
(
πU

l �=i(a) + πU
i (b1)

)
+ F (0) + πV

i ◦ πX
j ◦ F (0)

= πV
i ◦ πX

j

(
F ◦ πU

l �=i(a) + F ◦ πU
i (b1) + F (0)

)
+ F (0) + πV

i ◦ πX
j ◦ F (0)

= F ◦ πU
i ◦ πW

j ◦ πU
i (b1) + F ◦ πU

i ◦ πW
j ◦ πU

l �=i(a) + F (0).

If we combine those observations and apply Lemma 4 once more, we get that

F (x + α)

=F ◦ πU
i ◦ πW

j ◦ πU
i (b1) + F ◦ πU

i ◦ πW
j ◦ πU

l �=i(a) + F (0)

+ F ◦ πU
i ◦ πW

k �=j ◦ πU
i (b2) + F (0)

=F ◦ πU
i

(
πW

j ◦ πU
i (b1) + πW

k �=j ◦ πU
i (b2)

)
+ F ◦ πU

i ◦ πW
j ◦ πU

l �=i(a) + F (0)

=F (x) + F (α) + F (0).

In other words, F (x) + F (x + α) = F (α) + F (0) holds for every x ∈ Ui, which
means that F|Ui

and therefore Fi has maximal differential uniformity. �
Obviously, if one of the Fi has maximal differential uniformity, the same has

to be true for the whole (round) function.

Maximal Differential Uniformity Together with Maximal Linearity Implies Non-
Unique Maximal Decomposition. Next, we will show that one S-box having max-
imal differential uniformity and another one having maximal linearity implies
that there exists no unique maximal decomposition.

Lemma 7. Let F : Fn
2 → F

n
2 be bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d}

be a maximal decomposition of F . If there exist i �= k such that Fi has maximal
differential uniformity and Fk has maximal linearity then D is not unique.

Proof. Let us assume that there exists i �= k such that Fi has maximal differential
uniformity, i. e. we can find an a ∈ Ui such that Fi(x)+Fi(x+a) is constant for



Pitfalls and Shortcomings for Decompositions and Alignment 345

all x ∈ Ui, and therefore the same as Fi(a)+Fi(0), and Fk has maximal linearity,
i. e. there exists an α ∈ F

n
2 \V ⊥

k and β ∈ F
n
2 such that βT ·x+αT ·Fk(x) is constant

for all x ∈ Uk, and hence the same as αT · Fk(0). Let us define L : Fn
2 → Ui

by L · x := a · βT · πU
k (x) for all x ∈ F

n
2 . Then both πU

i + L and πU
k + L are

projections, as πU
i ◦L = L = L◦πU

k , L◦πU
i = 0 = πU

k ◦L and L2 = 0. In addition,
their sum is obviously πU

i + πU
k , which means that their images together with

Ul for l /∈ {i, k} form a direct sum of Fn
2 . Also, as Im

(
πU

i + L
)

= Ui + a = Ui

we have that F (Im(πU
i + L)) + F (0) = F (Ui) + F (0) = Vi is, by definition, a

subspace. To show that F (Im(πU
k + L)) + F (0) is also a subspace, let us define

the projection P := πV
k + Fi ◦ L ◦ F−1

k ◦ πV
k + Fi(0). Note that P is linear, as

Fi(x + a) = Fi(x) + Fi(a) + Fi(0) for all x ∈ Ui. Furthermore, P is indeed a
projection, since πV

k

(
πV

k + Fi ◦ L ◦ F−1
k ◦ πV

k + Fi(0)
)

= πV
k and therefore P 2 =

P . We now get that

F (Im(πU
k + L)) + F (0) = {F

(
πU

k (x) + L · x
)

+ F (0)|x ∈ F
n
2}

=

{
∑

l

(
Fl ◦ πU

l

(
πU

k (x) + L · x
)

+ Fl(0)
) |x ∈ Uk

}

= {Fk ◦ πU
k (x) + Fk(0) + Fi ◦ L · x + Fi(0)|x ∈ Uk}

= {y + Fi ◦ L · F−1
k (y + Fk(0)) + Fi(0)|y ∈ Vk}

= Im(P ),

which means that F (Im(πU
k + L)) + F (0) is also a subspace. At last, since

F
(
πU

i + L
)

+ F
(
πU

k + L
)

=
∑

l

Fl ◦ πU
l

(
πU

i + L
)

+
∑

l

Fl ◦ πU
l

(
πU

k + L
)

=Fi

(
πU

i + L
)

+ Fk(0) + Fi ◦ L + Fk ◦ πU
k

=Fi ◦ πU
i + Fi ◦ L + Fi(0) + Fi ◦ L + Fk(0) + Fk ◦ πU

k

=F ◦ πU
i + F ◦ πU

k ,

we get that
∑

l/∈{i,k} F ◦πU
l +F

(
πU

i + L
)
+F

(
πU

k + L
)
+(d+1 mod 2)·F (0) = F .

Therefore, {Ul|l �= k}∪Im
(
πU

k + L
)

induces a decomposition of F , different than
D but with the same number of S-boxes, which means that D is not unique. �

If we combine all the observations above, we can finally prove Theorem 1.

Proof of Theorem 1. First, let {(Ui, Vi, Fi)|1 ≤ i ≤ d} be a maximal decomposi-
tion of F and assume that there exist i �= k such that Fi has maximal differential
uniformity and Fk has maximal linearity. Then we know from Lemma 7 that this
maximal decomposition is not unique.

Now, let {(Ui, Vi, Fi)|1 ≤ i ≤ d} and {(Wi,Xi, Gi) | 1 ≤ i ≤ e} be two
different maximal decompositions. We know from Lemma 3 that if all the inter-
sections Im(πU

i ◦πW
j ) ∩ Im(πU

i ◦πW
k ) were trivial, we could either refine one of the

decompositions or they are identical. But since they are both maximal and not
identical, we know that some of those intersection have to be non-trivial. Hence,
we can follow from Corollary 9 and Lemma 6 that there exists a pair i �= k such
that Fi has maximal differential uniformity and Fk has maximal linearity. �
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6 Conclusion

In this paper we discussed the uniqueness of decompositions, as well as the
impact of alignment. With respect to the uniqueness of decomposition, we have
seen that this very natural and simple question required quite some technical
backup to be finally settled. In our opinion, it is of interest to further explore
the possible impact of such non-unique decompositions not only on security and
security arguments, but also on implementation aspects.

With respect to the impact of alignment, we show, based on the example of
aligned and unaligned versions of PRESENT, that the impact of alignment on
its own may only be limited. We therefore encourage further work to either find
conditions under which alignment has a meaningful impact, or to show that the
impact of plain alignment is insignificant in general. Especially, we would like
to advocate for further case studies to try to only change the property under
scrutiny, as this produces more convincing results. Another future direction is
to develop more fine grained notions that do capture the structural alignment
in a non-binary manner.

Finally, and this can be seen as the broader scope, we encourage research that
investigates the use of representations of a cipher in arguments for its security.
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Abstract. Duplex-based authenticated encryption modes with a suffi-
ciently large key length are proven to be secure up to the birthday bound
2

c
2 , where c is the capacity.However this bound is not known to be tight and

the complexity of the best known generic attack, which is based on mul-
ticollisions, is much larger: it reaches 2c

α
where α represents a small secu-

rity loss factor. There is thus an uncertainty on the true extent of security
beyond the bound 2

c
2 provided by such constructions. In this paper, we

describe a new generic attack against several duplex-based AEAD modes.
Our attack leverages random functions statistics and produces a forgery
in time complexity O(2

3c
4 ) using negligible memory and no encryption

queries. Furthermore, for some duplex-based modes, our attack recovers
the secret key with a negligible amount of additional computations. Most
notably, our attack breaks a security claim made by the designers of the
NIST lightweight competition candidate Xoodyak. This attack is a step
further towards determining the exact security provided by duplex-based
constructions.

Keywords: Cryptanalysis · Symmetric cryptography · AEAD ·
Duplex-based constructions · NIST lightweight competition · Xoodyak ·
Random functions

1 Introduction

Authenticated Encryption (AE), which allows to encrypt and authenticate a
plaintext message in a combined way, is one of the main workhorses of symmet-
ric cryptography. AE often offers the option to authenticate, in addition to the
plaintext message, some extra data which, unlike the plaintext, are transmitted
unencrypted. AE is then renamed Authenticated Encryption with Associated
Data (AEAD). A considerable research effort was devoted during the last years
to the design and analysis of efficient and secure AEAD algorithms. Examples
of AEAD mechanisms largely deployed over the Internet are AES-GCM and
Chacha20-Poly1305. In 2014–2019, the three-round process of the CAESAR com-
petition for authenticated encryption resulted in the selection of a portfolio of six
AEAD mechanisms chosen to address the needs of the three following use cases:
lightweight applications, high-performance applications and provision of defense-
in-depth features, e.g. nonce misuse resistance. Another symmetric algorithms
c© International Association for Cryptologic Research 2023
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selection initiative, the ongoing NIST lightweight cryptography standardization
process, aims at selecting (families of) algorithms suitable for use in constrained
environment that comprise at least an AEAD mechanism and optionally a cryp-
tographic hashing mechanism. The process was launched in 2018 and has now
reached its third round, where ten finalists are still being evaluated.

Most existing AEAD algorithms are either block cipher-based or permutation-
based. In the first case, they result from the application of a suitable mode of oper-
ation to a block cipher or a tweakable block cipher. In the second case, they con-
sist in the instantiation of a keyed mode of operation with a public permutation.
In this paper, we focus on so-called duplex-based keyed modes. Seminal examples
of such modes are SpongeWrap and MonkeyDuplex, both introduced by Bertoni,
Daemen, Peeters and Van Assche [7,10]. Duplex-based modes can be viewed as
an adaptation to the AEAD context of the Sponge construction for hash functions
introduced by the same authors in [6,8]. After an initialization phase allowing to
derive a b-bit state from a key and an IV value, they essentially iterate calls to
a key-less public permutation P of the state space {0, 1}b in alternance with an
injection and/or extraction of data blocks on/from a dedicated r-bit part (r < b)
of the current state value in order to absorb additional data, encrypt and absorb
the plaintext, and produce an authentication tag.1 The sizes r and c = b − r bits
of the state parts affected (resp. unaffected) by data injections or extractions are
named the rate and the capacity. The corresponding state parts are referred to as
the outer and the inner state.

The Security of Duplex-Based Constructions has been extensively studied
during the last decade. Let us denote the total time complexity of an attack by
T = σe+σd+qP + textra−op, where σe and σd respectively represent the number
of online calls to P caused by the adversary’s encryption requests and forgery
attempts and qP represents the number of offline queries to P or its inverse. The
last term textra−op represents the extra computations not taken into account
in σe + σd + qP , e.g. computations of primitives involved in the initialization
and finalization, basic read/write operations in memory, random samplings. It
is measured as an equivalent number of P computations.2 Let us further denote
by qd the number of forgery attempts of the adversary. The initial security argu-
ments for duplex constructions, which leveraged the indifferentiability of the
sponge construction for hash functions, only allowed to guarantee the security
of the duplex constructions as long as T � min{2 c

2 , 2κ} and qd � 2τ , where κ
and τ represent the key length and the tag length. In [27,28], Jovanovic et al.
showed that in the nonce-respecting setting, the security of a series of duplex
constructions can be ensured beyond the birthday bound 2

c
2 , namely as long as

1 The name “duplex”, that conveys the idea of a bidirectional process, reflects the fact
that in such constructions both a data block injection and a data block extraction
to/from the current state can potentially take place between two consecutive invoca-
tions of P .

2 Note that in the attack considered in the sequel, textra−op will in practice be negli-
gible compared to σe + σd + qP .
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T � min{2 b
2 ,

2c

α
, 2κ} and qd � 2τ , (1)

where α represents a small constant upper bounded by r in [27] and a tighter,
substantially smaller constant in [28]. The detail of the security proofs sections
of [27,28] indicates however that the bounds (1) are only valid under the assump-
tion that σd is strongly limited: if one wants to avoid implicit assumptions about
σd, the bounding conditions (1) must be replaced by the more complete (though
still simplified) conditions:

T � min{2 b
2 ,

2c

α
,
2c

σd
, 2κ} and qd � 2τ . (2)

Unlike the conditions (1), the complete bounding conditions (2) can hardly
be considered as ‘beyond-birthday bounds’. For σd ≥ 2

c
2 , the condition T � 2c

σd

of (2) indeed implies T � 2
c
2 . Thus, the security of the considered duplex-based

constructions without assumptions on σd can only be guaranteed as long as the
birthday condition T � 2

c
2 is met.

The bounding conditions (1) were used for dimensioning the family of duplex
AEADs NORX, and led since 2014 to several other AEAD design proposals based
on duplex-like constructions with a claimed security level strictly larger than
c
2 . Similar bounds were shown to still hold when instead of limiting the size of
injected and extracted data blocks to r bits, one only limits the size of extracted
data blocks to r bits but full-state data injections are permitted [30]. This leads
to AEAD proposals where the efficiency of the associated data absorption phase
is increased. A generalisation of the full-state keyed duplex of [30] with multi-user
support, accompanied by a refined security analysis, was published in [20].

Generic Attacks on Duplex-Based Constructions. The best currently
known generic attacks on duplex-based constructions are based on multicolli-
sions. These attacks match the security bound 2c

α where α represents a small
security loss factor as stated before. They are presented in detail in [28] and can
be roughly outlined as follows. First, the adversary submits sufficiently many
calls to an encryption oracle in order to find a multicollision among the outer
state values of a number ρ of states. Once this has been achieved, an exhaustive
search for a c-bit value matching the inner state value of one of these ρ states is
likely to succeed after about 2c

ρ trials.

Our Contribution. The end of the former discussion on the security of duplex-
based constructions showed that in situations where the possibility of forgery
attempts of non-negligible data complexity σd is not precluded, the complete
bounding conditions (2) only prevent the existence of generic attacks of total
complexity T � 2

c
2 . It is therefore an open question whether there exists a
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generic attack of total complexity T strictly comprised between 2
c
2 and the com-

plexity 2c

α of multicollision-based attacks.3 In this paper, we provide a positive
answer to the former open question by exhibiting a generic attack against a large
family of duplex-based constructions of total time complexity T in O(2

3c
4 ). We

rely on the analysis of random function statistics to design a two-phase forgery
attack with a precomputation phase of time complexity O(2

3c
4 ) essentially equal

to qP and an actual forgery phase of time complexity O(2
3c
4 ) essentially equal

to σd. The value σd can also be viewed as the data complexity of the attack
measured in ciphertext blocks. The attack requires no encryption queries, i.e.
σe = 0, and textra−op is negligible compared to qP and σd. For some of these
constructions, our attack recovers the secret key.

Our attack takes advantage of the following property shared by several
authenticated encryption modes based on the duplex construction: for a cipher-
text built by concatenating a fixed block multiple times, the decryption of a mes-
sage consists in the iteration of a public function with domain and co-domain F

c
2.

This public function is fully determined by the value of the ciphertext block. We
are therefore able to precompute some of its parameters offline. Forgery strate-
gies that just assume a “near to average” behaviour of the iterated function, e.g.
a cycle length of the path generated by a random point of {0, 1}c close to the
expected value

√
π2c/8, do not seem to lead to forgery attack complexities bet-

ter than O(2c). We show that however, the following two-phase attack strategy
allows an adversary to produce an existential forgery with a success probability
close to 1 and a total (online and offline) computation time T = O(2

3c
4 ).

1) In an offline phase, a significant amount O(2
3c
4 ) of precomputation is dedi-

cated to the detection of a c-bit to c-bit function that possesses exceptional
characteristics that exponentially deviate from an average behaviour, thus
rendering its use in a forgery attack more efficient.

2) In an online phase, the iteration of the function identified in the offline phase
is used to produce forgery attempts whose success probability is exceptionally
high.

In slightly more detail, the offline phase aims at selecting a ciphertext block
that determines a function whose graph possesses a large component in which all
paths are terminated by the same exceptionally small cycle, of length at most a
small predefined multiple of 2

c
4 . This is shown to imply that for long ciphertexts

obtained by repeating the selected ciphertext block, the tag is the image of one
of the values of the former small cycle by a known function with a probability
close to 1. This in turn allows to mount a forgery attack of offline, online and
total time complexity O(2

3c
4 ).

The precomputation phase needs to be run only once to break the same
construction with as many different keys as desired. Further, we can adjust the
trade-off between the precomputation phase and the online phase in order to
3 In other words, the questions whether the “birthday term” 2c

σd
is an artifact of the

proofs and whether the capacity value c can be safely dimensioned well below 2s,
where s denotes the targeted security level remain open.
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bring the complexity of the latter closer to O(2
c
2 ) at the expense of significantly

increasing the complexity of the former.
Previously published generic attacks against hash-based MACs or hash func-

tions also rely on the statistics of random functions [4,29,32,33]. Such attacks
also model, as the AEAD attack introduced here, one function that the con-
sidered construction allows to iterate as a random function. Yet, while previous
attacks generally assume and exploit a “near to average” behaviour of a func-
tion selected at random, an essential feature of the attack presented here is that
it selects and leverages instances of a function whose behaviour exceptionally
deviates from average.

Our attack is applicable to several duplex-based modes such as monkeyWrap,
monkeyDuplex or Motorist. Most notably, our attack is applicable to Cyclist, the
mode of the Lightweight Cryptography NIST competition finalist Xoodyak [18].
With a key recovery attack of complexity 2148 applications of the state update
function Xoodoo, we break the claim of achieving 184-bit security against plain-
text recovery and forgery attacks made by the designers in [18, Corollary 2, p.
72]. Note that this does not threaten the 112-bit security level required by the
NIST. Our results are detailed in Sect. 5 and displayed in Table 4.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces definitions and results related to the statistics of random functions that
are relevant for our attack and defines a ‘vanilla’ duplex-based AEAD mode that
only captures those features of duplex-based constructions that are essential to
understand our attack. Section 3 presents our attack and analyses its perfor-
mance using the vanilla mode of Sect. 2 as the target in order to simplify its
presentation. Section 4 presents experimental validations of essential features of
the attack based on small scale implementations. Section 5 shows that the attack
of Sect. 3 is applicable to several real-life duplex modes with minor adaptations.
Section 5 also discusses variations encountered in AEADs such as Beetle [16] or
Ascon [22] that, on the other hand, prevent the attack.

2 Preliminaries

In this section, we start by introducing key definitions and results related to
the statistics of random functions. Next, we describe a simplified duplex-based
authenticated encryption mode on which we will rely to describe our attack.
This is followed by a short subsection on the security model on which we rely.

2.1 Preliminaries on Random Functions

Let Fn be the set of all functions which map a finite set of size n ∈ N
∗ to itself.

Without loss of generality, we consider the set {1, . . . , n}. Each function f in Fn

determines a directed graph G(f) in which a vertex goes from node i to node j,
i, j ∈ {1, . . . , n}, if and only if f(i) = j [24,31]. In the following, for simplicity
reasons, we say that a node belongs to the graph of a function when it belongs
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to the set of nodes of this graph. We use the term “random function in Fn” to
refer to a function selected uniformly at random in the set Fn.

For any f in Fn and any node x in G(f), we can iterate f and consider the
set of successors of x

S(x) = {f i(x) | 0 ≤ i ≤ n − 1} .

We denote by s(x) the size of this set. Since the graph has a finite number
of nodes, the sequence {f i(x)}i≥0 is eventually periodic. Graphically, it thus
corresponds to a path linked to a cycle defined as

C(x) = {f i(x) | ∃j > 0, f i(x) = f i+j(x)} .

We denote by μ(x) = #C(x) the length of this cycle or cycle length and by
λ(x) = s(x) − #C(x) the length of this path or tail length. The tail length λ(x)
is the smallest integer i such that f i(x) ∈ C(x). The set of all nodes y ∈ G(f)
such that C(y) = C(x) forms a connected component. Since all nodes in the
same connected component have the same cycle, the cycle of a component is
well-defined.

Our cryptanalysis relies on the attacker’s ability to find functions which have
a large component with a small cycle. We formally characterize what should be
understood by “large component with a small cycle” later on. To do so, we will
need the two following definitions.

Definition 1 (ν-component). Let 0 < ν < 1
2 . A ν-component is a component

that has a cycle of size at most n
1
2−ν .

Definition 2 ((s,ν)-component). Let 0 < ν < 1
2 , 0 < s < 1. A (s, ν)-

component is a ν-component whose size is greater or equal to ns.

In order to estimate the complexity and success probability of our attack, we
rely on the statistical analysis of random functions. Such an analysis has been
extensively conducted in combinatorics [21,23–25,31]. In this paper, we will need
the three following results.

Expectancy of Cycle Length and Tail Length for a Random Point [23].
For a random node x in the graph of a random function f ∈ Fn, Flajolet and
Odlyzko have computed the asymptotic form of the expectancy of the cycle
length μ(x) and tail length λ(x) using generating functions. They obtained an
expectancy of

√
πn
8 for both.

Probability for a Random Point to Belong to a ν-Component [25]. For
a random node x belonging to the graph of a random function f ∈ Fn, Harris
shows that the probability that μ(x) is smaller than n

1
2−ν is asymptotically

pν = 1 − e− 1
2n2ν +

√
2π

nν

[
1 − φ(n−ν)

]

=
√
2π

2nν
+ O

(
1

n2ν

)
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where φ(y) =
∫ y

−∞(2π)−
1
2 e− 1

2x2
dx. This corresponds to the probability for a

random node x of the graph of a random function to belong to a ν-component.
For example, for ν = 1

4 and c a positive integer such that n = 2c, pν =
√
2π
2 ×2− c

4 .

Probability for a Random Function to Have a (s, ν)-Component [21].
For a random f ∈ Fn, the probability ps,ν that G(f) has a (s, ν)-component has
been estimated by DeLaurentis in a paper published at Crypto 1987 [21]. It is
shown to be

ps,ν =

√
2(1 − s)

πs
n−ν [1 + O (rn(s))]

where rn(s) = s−2n− 1
2−3ν + s

−1
2 n−ν + n− 1

3 . Thus, ps,ν ≈
√

2(1−s)
πs n−ν . For

example, if we take ν = 1
4 , s = 0.65 as in Sect. 3.6, and c a positive integer such

that n = 2c, ps,ν 	 0.6 × 2− c
4 .

Probability for a Random Point to Belong to its Component’s Cycle
After l − 1 Applications of f . Let x be a random point of a random function.
Harris [25] gives the asymptotic density function of the number of successors
s(x). More precisely, he provides the asymptotic density function f1 of s√

n
for

x > 0

f1(x) = xe− x2
2 .

For l a positive integer, let pl be the probability that f l−1(x) is in the cycle, that
is, the probability that λ(x) ≤ l − 1. Since the number of successors is greater
than the tail length, pl is greater or equal to the probability for x to have strictly
less than l successors. Thus, we have

pl ≥ 1 − e− l2
2n .

Notational Conventions. For simplicity and readability reasons, when it
comes to estimates resulting from statistics on random functions, we will use
the sign “≤” where it would be more rigorous to use the smaller or equivalent
sign “�” in the rest of the paper.

2.2 Description of a Vanilla Duplex-Based AEAD Mode

The duplex construction was designed by the Keccak team as a tool to build
authenticated encryption modes [7,9]. The first proposal of such a mode is
SpongeWrap [7], published in 2011. Today, many modes are based on this
construction. In this paper, we define the simplified authenticated encryption
mode DuplexAEAD. DuplexAEAD shares its structure with the modes of
several duplex-based AEAD schemes. This mode is not meant to be used in
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practice. It is defined for readability reasons: its sole purpose is to make the
description of our attack simpler. We show in Sect. 5 how our attack can be
adapted to several real-life duplex-based modes.

DuplexAEAD is instantiated with a permutation P which operates on a
b-bit state S divided into two parts. The first r bits of the state form the outer
state S, whilst the next c = b − r bits form the inner state Ŝ. The state can
thus be written as S = S||Ŝ. As stated in Sect. 1, the parameter r is called the
rate and the parameter c is called the capacity. DuplexAEAD also involves two
other public functions, namely, an initialisation function Pinit and a finalisation
function Pfinal. The encryption algorithm E takes as input a κ-bit key K, a η-bit
nonce N , a plaintext M and associated data A of variable length and returns
a ciphertext C and a τ -bit tag T . The decryption algorithm D takes as input
(K,N,A,C, T ) and returns the plaintext M if the tag is valid. Otherwise, it
returns ⊥.

We assume for simplicity reasons that the length in bits of the plaintexts
processed by DuplexAEAD is always divisible by r.4 Thus, any plaintext M
can be split into r-bit blocks, M = M0|| · · · ||Ml−1, where l is the plaintext length
in number of r-bit blocks. The ciphertext’s length is equal to the plaintext’s
length, and can thus also be written C = C0|| · · · ||Cl−1.

The mode works as follows (see Fig. 1):

initial phase

(K, N)

A

Pinit

r

c

plaintext processing

P

M0 C0

P

M1 C1

. . .

. . .

final phase

Pfinal

Ml−1 Cl−1
T

Fig. 1. DuplexAEAD in encryption mode.

4 In practice, our cryptanalysis can be easily adapted to attack modes which can
process plaintexts of arbitrary length, but this requires a short case-by-case analysis
which we provide in Sect. 5. Note that the resulting adjustments have a negligible
impact on the complexity of our attack and do not impact its success probability.
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Initial Phase. The encryption and decryption algorithms start by an initial
phase. The key, the nonce and the associated data are processed by the initiali-
sation function Pinit. The state is set to the output of Pinit.

Plaintext Processing. In encryption mode, DuplexAEAD then processes
the plaintext and generates the ciphertext block by block as follows:

1. The ciphertext block Ci is generated by XORing the outer state to the plain-
text block Mi. That is, Ci ← S ⊕ Mi.

2. The outer state is set to the just computed ciphertext block. That is, S ← Ci.
3. The permutation P is applied to the state. That is, S ← P (S).

Ciphertext Processing. In decryption mode, DuplexAEAD then processes
the ciphertext. The plaintext M is constructed as the ciphertext is processed
but will only be outputted at the end of the final phase if the tag is valid. This
phase works as follows:

1. A plaintext block Mi is generated by XORing the outer state to the ciphertext
block Ci. That is, Mi ← S ⊕ Ci.

2. The outer state is set to the value of the ciphertext block. That is, S ← Ci.
3. The permutation P is applied to the state. That is, S ← P (S).

Final Phase. During encryption (resp. decryption), plaintext (resp. ciphertext)
processing is followed by a final phase in which the finalisation function Pfinal

takes as input the state and computes a τ -bit tag. The encryption algorithm
returns a ciphertext and the corresponding tag. The decryption algorithm checks
whether the tag is valid. If so, it returns the plaintext M . Otherwise, it returns
⊥.

Domain Separation. Actual duplex-based AE modes generally rely on domain
separation for their security. In the case of DuplexAEAD, we assume that the
way Pinit and Pfinal are constructed from P ensures domain separation between
the processing of (K,N), the processing of A, the processing of M and the
computation of T . This can be done for example by XORing distinct constants
to the inner state before P invocations in each phase.

2.3 Security Model

For authenticated encryption, two security notions are involved, namely privacy
and integrity. Since our attack aims at breaking integrity, we leave privacy aside.
We do not fully formalise the security model but give some simplified reminders
to the reader.5 In the integrity setting, we have an adversary A who has access
to the following oracles:
5 For more details see for example [27].
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– A primitive oracle OP that allows to call the public permutation P or its
inverse P−1. It takes as input a value v ∈ F

b
2 and outputs P (v) ∈ F

b
2 (resp.

P−1(v) ∈ F
b
2) for a call made to P (resp. P−1).

– An encryption oracle Oenc that takes as inputs a nonce N , associated data
A and a plaintext M and returns a ciphertext C and a tag T computed with
a secret key K which is randomly sampled once for all (the same key is used
by the decryption oracle).6 It implements the encryption algorithm of the
analysed AEAD scheme based on P .

– A decryption oracle Odec that takes as input a nonce N , associated data A,
a ciphertext C and a tag T and, using the key K, returns the corresponding
plaintext if the verification is correct, ⊥ otherwise. Similarly to the previous
oracle, it implements the decryption algorithm of the analysed AEAD scheme.

We assume that the adversary A is nonce-respecting. Her goal is to provide
a forgery, that is, an input (N,A,C, T ) such that Odec(N,A,C, T ) =⊥ where
(C, T ) was not outputted by the encryption oracle Oenc on an input (N,A, ·)
(for any plaintext). The probability to provide a forgery has to be negligible.

As already mentioned in Sect. 1, we denote by qe, qd and qP the number
of queries done to respectively the encryption oracle, the decryption oracle and
the primitive oracle. We denote by σe the total number of plaintext blocks pro-
cessed by the encryption oracle and by σd the total number of ciphertext blocks
processed by the decryption oracle.

In this paper, we construct a generic forgery attack against several duplex-
based authenticated encryption modes. Our attack is generic in the sense that
we do not exploit the properties of the permutation P but only properties of
the mode itself [9]. It does not rely on nonce misuse or the release of unveri-
fied plaintext. For some modes, our attack also recovers the secret key with a
negligible amount of extra computation.

3 Description of the Attack

In this section, we present a generic forgery attack against duplex-based authen-
ticated encryption modes. For the sake of clarity, we first describe how the attack
works on the simplified mode DuplexAEAD defined in Sect. 2.2. We show how
to apply our attack to other authenticated encryption modes in Sect. 5.

3.1 Observation on Duplex-Based AEAD Modes

We describe a simple property of DuplexAEAD that is shared with many other
duplex-based AE modes: for a ciphertext built by concatenating a fixed block
multiple times, the decryption of a plaintext consists in the iteration of a known
function with domain and co-domain F

c
2. This property is at the core of our

attack. It is depicted in Fig. 2.

6 Each parameter space is well defined according to the analysed AEAD scheme.
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Let � ∈ N
∗ and β ∈ F

r
2. Let β	 be the ciphertext equal to the concatenation

of � r-bit blocks of constant value β, that is

β	 = β|| · · · ||β
︸ ︷︷ ︸

	

.

During the ciphertext decryption, the value of the outer state at the input of
the state update function P is equal to the current ciphertext block. Thus, the
decryption of β	 corresponds to the iteration of the function Pβ defined as

Pβ : F
c
2 −→ F

c
2

x �−→ P̂ (β||x) .

Indeed, let x0 ∈ F
c
2 be the value of the inner state obtained at the end of the

initial phase from the key, the nonce and the associated data. After processing the
first plaintext block, the value of the outer state is equal to the first ciphertext
block β. Thus, the input of the state update function is exactly β||x0. As a
consequence, the value of the inner state going into the second application of P
is β||x1 where x1 = Pβ(x0). In turn, the third one is β||x2 where x2 = Pβ(x1) =
P 2

β (x0). When the last plaintext block is constructed, right before the final phase,
the state is thus of the form

β||P 	−1
β (x0) = β||x	−1 .

Since the outer part of the state is equal to β, it is known to the attacker. In
particular, to recover the value of the state before the final phase, an attacker
only needs to determine the value of x	−1. Since T = Pfinal (β||x	−1), it is suffi-
cient for the attacker to recover the value of x	−1 to find a forgery (N,A,C, T ).
As we will show more rigorously later on, our cryptanalysis relies on the fact
that without knowing x0, an attacker is able to select β and � such that she is
able to both restrict and predict the space of all possible x	−1 = P 	−1

β (x0) with
good probability.

3.2 High Level Description of the Attack

Our attack aims at recovering the value of x	−1. It was devised relying on the
random functions statistics introduced in Sect. 2.1. Indeed, let n = 2c. P is a
random permutation on F

b
2 and c = b−r is significantly smaller than b. Thus, for

any β randomly drawn from F
r
2, we expect Pβ to behave as a function randomly

drawn from Fn.
The attack consists of two phases.

Precomputation Phase. First, in a precomputation phase, an offline algorithm
finds a value β such that G(Pβ) has a large component with a small cycle, that
is, a (s, ν)-component with great s and ν.
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initial phase

(K, N)

A

Pinit

ciphertext processing

β

x0

P

β

x1

P

. . .

. . .

final phase

β

x�−1

Pfinal

T

Fig. 2. Decrypting β�.

Online Phase. Second, in an online phase, (N,A,C, T ) queries are submitted to
a decryption oracle, where the ciphertext is C = β	 with � sufficiently large and
β is the output of the precomputation algorithm. Recall that β is chosen such
that G(Pβ) has a large component with a small cycle. Since this component is
large, it contains the unknown node x0 with good probability. In that case, for
a great enough value of �, x	−1 belongs to the cycle of this component, which
is small. Thus, the number of all possible values for x	−1 is reduced and can be
efficiently exhausted by submitting (N,A, β	, T ) queries to the decryption oracle
where

1. tags are produced by applying Pfinal to a state such that S = β and such
that the inner state Ŝ belongs to the small cycle of Pβ ’s large component;

2. nonces are either randomly sampled or arbitrary distinct values;7
3. the associated data is set to the empty string ε.8

Our final attack, which balances the computational cost of the offline and
online phases, provides a forgery in time O(2

3c
4 ) with a negligible amount of

memory. In the rest of this section, we provide a detailed description together
with an analysis of the complexity and success probability of our full attack.

In our complexity and success probability analysis, significant efforts were put
towards limiting the use of heuristic assumptions. This is illustrated for example
by the use of the probability ps,ν [21] that a random function has a (s, ν)-
component rather than a heuristic estimation of this value from the probability

7 In decryption queries, nonces can be repeated even in a nonce-respecting setting.
For the purpose of our attack, x0 needs to behave as a point randomly sampled in
the graph of Pβ . Thus, we can either require nonces to be randomly sampled or to
be arbitrary distinct values.

8 For modes other than the full-state duplex, we could set the associated data to
any value. In the case of the full-state duplex, the associated data must be chosen
carefully (typically, the attack applies when the AD is set to the empty string).
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pν that it has a ν-component. Although we did not manage to get entirely rid
of all heuristic assumptions, we intended to back each assumption with heuristic
reasoning and/or small scale experiments.

3.3 Precomputation Phase

In this section, we show how to construct an offline algorithm which outputs β
such that G(Pβ) has a large component with a small cycle. By ‘having a large
component with a small cycle’, we mean having a (s, ν)-component as defined
in Sect. 2.1. We will set the parameters s and ν to their final values later in the
paper. The offline algorithm also outputs the length μ of the (s, ν)-component’s
cycle, as well as an element e of this cycle.

Our algorithm samples random values β from F
r
2 and random values x in

F
c
2 and investigates whether or not the component on which x is located is a

(s, ν)-component of G(Pβ).
When a random β and a random x are generated, we start by investigating

the cycle length of the component on which x is located, that is, whether or
not it is a ν-component. Cycle-finding algorithms such as Floyd’s or Brent’s
algorithm provide a straightforward way to determine the component’s cycle
length. These algorithms are typically used to find collisions on functions with
a negligible amount of memory. In fact, the collisions found by these algorithms
are located within the functions’ cycles. Thus, given a random β ∈ F

r
2, which

selects a random Pβ ∈ Fn, and a random x ∈ F
c
2, cycle-finding algorithms can

be used to construct an algorithm which outputs both μ(x), the cycle length of
the connected component on which x is located, and the value of a node in the
cycle [26]. We call such an algorithm cycle. The algorithm cycle allows the
attacker to determine whether or not the component on which x is located is a
ν-component, i.e. a component with a cycle of the desired length μ(x) ≤ n

1
2−ν .

To construct our final precomputation algorithm, two main issues remain to
be solved.

Issue 1. If the random β and the random x investigated are such that the
component on which x is located is not a (s, ν)-component, it does not necessarily
mean that G(Pβ) does not have a (s, ν)-component. There could be an x′ = x
such that x′ belongs to a different component that has the desired cycle length
and size. In particular, we must determine whether or not it is worth trying a
different x′ = x when cycle returns a cycle length value that is greater than
n

1
2−ν (x’s component is not a ν-component). There are two imaginable strategies.

The first strategy consists in trying a single random x for each β, and, whenever
x has a component with a cycle size smaller than n

1
2−ν , investigate whether or

not the component has size greater or equal than sn. The second strategy would
be to try several x’s for each β. We stick to the first strategy. The following
argument indeed suggests that the second strategy would be more costly. When
conditioned by the failure of the first drawn x, the probability that a second x′

succeeds with the same β is at most ps,ν(1−s)
1−ps,ν

whilst for a new random (β′, x′), the
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probability of success is at least ps,νs. Thus, the first strategy is better whenever
s > 1

2−ps,ν
which is always true for our values of s (which are always greater

than 0.5) and ν.

Issue 2. Although cycle allows to detect ν-components, it does not provide
a way to detect (s, ν)-components. Being fully certain that a ν-component has
the desired size would be prohibitingly costly. A strategy allowing to estimate
that a ν-component is a (s, ν)-component with a sufficiently large probability
has to be devised.9 The algorithm is_big implements this strategy. Note that
in this algorithm, the notation ‘(., z)’ in Step 4 means that the first output
(corresponding to the cycle length) is ignored. Each time the algorithm detects
a small cycle, it checks whether or not ω other random nodes belong to the same
component. It then computes the proportion sobs of these new randomly chosen
points which belong to the desired component. If this number is above a threshold
value s+ δ strictly larger than s, it decides that x is likely to belong to a (s, ν)-
component and returns β and the values of the cycle. We show that for δ = 2.33

2
√

ω
,

a selected component has size greater than s with great probability. Suppose that
we have drawn a value β such that β has a ν-component of unknown size sβn.
In that case, the random variable sobs is the mean of ω Bernoulli variables which
are equal to 1 with probability sβ and 0 with probability 1− sβ . By the Central
Limit Theorem (CLT), we have that for all ε ∈ R,

p

[

sobs − sβ ≤ ε

√
sβ(1 − sβ)

ω

]

= p (Y ≤ ε)

where Y � N (0, 1). Thus, since δ = 2.33
√

1
4ω and since for sβ < 1, sβ(1−sβ) ≤

1
4 , we have that

sobs − sβ ≤ δ

with probability pδ ≥ p
(
Y ≤ 2.33

)
> 0.99. Suppose that for a random β with a

ν-component, we obtain a proportion sobs of random x’s in this component such
that sobs ≥ s+ δ as required in Step 10 of the algorithm is_big. We know that
with probability pδ ≥ 0.99:

sβ ≥ sobs − δ ≥ s + δ − δ = s .

As a conclusion, when our final offline algorithm offline_search returns a
β, then it is such that G(Pβ) has a ν-component with probability 1, and the
component considered has at least the desired size with probability pδ ≥ 0.99.

9 Given a point of the graph x, the introduction of an algorithm which estimates x’s
component’s size is going to significantly complicate our attack’s complexity analysis.
We believe that we could have designed an attack without this extra algorithm by
relying on the fact that a random component is large with great probability. However,
unless increasing the complexity of the online phase, we would have then obtained
lower success probabilities (roughly around 0.5 rather than close to 1).
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Algo. offline_search(ω, s, ν)

1 : while true do

2 : β
$←− F

r
2; x

$←− F
c
2

3 : (μ, e) ← cycle(β, x)

4 : if μ ≤ n
1
2 −ν then

5 : if is_big(ω, s, β, μ, e)

6 : return (β, μ, e)

Algo. is_big(ω, s, β, μ, e)

1 : δ ← 2.33

2
√

ω
; j ← 0

2 : for i = 1..ω do

3 : k ← 0; inside_big ← false ; y
$←− F

c
2

4 : (., z) ← cycle(β, y)

5 : while inside_big = false and k < μ do

6 : if z = e then inside_big ← true

7 : z ← Pβ(z)

8 : k ← k + 1

9 : if inside_big then j ← j + 1

10 : if
j

ω
≥ s + δ return true

11 : return false

3.4 Analysis of the Offline Algorithm

In this section, we analyse the success probability and complexity of the offline
algorithm. As stated in Sect. 2.3, the complexity is expressed as a number of calls
to P . This algorithm is at the core of our attack. It only needs to be executed
once. Indeed, once it has succeeded in finding β such that G(Pβ) has a (s, ν)-
component, a duplex-based mode with any key using the permutation P can be
attacked.

Complexity of the Cycle-Finding Algorithm. We start by investigating
the average complexity of the algorithm cycle. To construct this algorithm,
we use Brent’s cycle-detection algorithm as a tool [14]. For a random β ∈ F

r
2

and a random x ∈ F
c
2, Brent’s algorithm recovers the cycle length μ(x) and a

node of the cycle e ∈ C(x) after at most 2max(μ(x), λ(x)) + μ(x) applications
of Pβ . For a random x, the cycle length μ(x) and the tail length λ(x) have the
same expectation of

√
πn
8 [24] (See Sect. 2.1). Thus, we estimate the average

complexity of cycle in number of calls to P to be upper bounded by

Tcycle = 3
√

πn

8
.

Complexity of the Offline Algorithm. We wish to compute the complexity
of the offline algorithm offline_search. First, the memory complexity is negli-
gible. As for the time complexity, we compute the average number of applications
of P after which the algorithm returns a block β ∈ F

r
2.

First, we upper bound the average complexity of is_big. This algorithm is
executed when a pair (β, x) such that x is located on a ν-component of G(Pβ)
has been selected. It takes as input β, μ = μ(x) ≤ n

1
2−ν , an element e of the
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cycle of x’s component, s and an integer ω. It performs ω times a computation
that essentially consists in the generation of a random point of G(Pβ), one com-
putation of the cycle algorithm, and at most μ point comparisons and μ − 1 Pβ

invocations. The average complexity of is_big is thus upper bounded by
(
Tcycle + n

1
2−ν

)
ω .

The following estimation is heuristic, and implicitly relies on the assumption that
the average complexity of cycle for a random point of a random function does
not significantly differ from the average complexity of cycle for a random point
of a fixed random function that has a ν-component. We provide a reasoning
to justify why it seems very unlikely that this assumption would significantly
distort the complexity at the end of the section.

We now compute the complexity of offline_search. First, we compute the
complexity of one single iteration of a Step 1 loop of offline_search. Recall
that pν is the probability for a random node x ∈ F

c
2 of a random function to

belong to a ν-component. Each time a pair (β, x) is generated, the algorithm
cycle is executed. Then, the algorithm executes is_big when a pair is such
that x belongs to a ν-component of G(Pβ), which happens with probability pν .
Finally, we need to compute after how many Step 1 iterations the algorithm
returns a block β on average. At each iteration, the probability to generate a
random β ∈ F

r
2 such that G(Pβ) has a (s, ν)-component is ps,ν . Given such β,

the probability that the randomly drawn x ∈ F
c
2 also belongs to this component

is greater than s. Thus, on average, we select a node x in a (s, ν)-component
after less than 1

ps,νs iterations. Heuristically, one can thus expect the overall
complexity of our algorithm to be of the following form:

1
ps,νs

[
Tcycle + pν

(
Tcycle + n

1
2−ν

)
ω
]

.

Yet, we need to adjust this expression. Recall that a (s, ν)-component is a ν-
component of size greater or equal to sn. However, drawing a node in a ν-
component of size exactly sn10 is not enough to make the algorithm stop. Indeed,
if a randomly drawn β ∈ F

r
2 is such that G(Pβ) has a ν-component of size exactly

sn, the probability that sobs is greater than s + δ is smaller than 1% (here, we
use the central limit theorem again). We thus need to adjust our computation.
To do so, we lower bound the probability that a random pair (β, x) is selected
by the probability that it satisfies the two following conditions:

(a) G(Pβ) has a (s+, ν)-component with s+ ≥ s + 2δ (recall that δ = 2.33
2
√

ω
).

(b) x belongs to the (s+, ν)-component, so that the algorithm offline_search
randomly draws ω other values in F

c
2 and computes sobs.

Indeed, we show that satisfying these two conditions implies that sobs ≥ s + δ
with great probability, which is exactly the condition that needs to be satisfied
for the algorithm to return β.
10 or greater than sn, but too close to sn to make the algorithm stop.
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Assume that the algorithm randomly draws β ∈ F
r
2 and x ∈ F

c
2 such that

conditions (a) and (b) are satisfied. Then by the central limit theorem, we have
that for any ε ∈ R,

p

[

sobs − s+ ≥ ε

√
s+(1 − s+)

ω

]

= p (Y ≥ ε)

where Y � N (0, 1). For ε = −2.33, we thus have that with probability pδ ≥ 0.99,

sobs ≥ s+ − δ ≥ s + δ .

Thus, the probability that a randomly chosen β is selected is lower bounded by
ps+,νs+pδ. It comes that the average complexity of the offline phase satisfies

Toffline ≤ 1
ps+,νs+pδ

[
Tcycle + pν

(
Tcycle + n

1
2−ν

)
ω
]

=
Tcycle

0.99

[√
π

2(1 − s+)s+
nν

] [

1 + pνω

(

1 +
n

1
2−ν

Tcycle

)]

≤ n
1
2+ν

√
2π

(1 − s+)s+
[
1 + pνω

(
1 + O(n−ν

)]

= n
1
2+ν

√
2π

(1 − s+)s+

[

1 +
√
2πω

2nν
+ O

(
1

n2ν

)]

=

[
1

√
(1 − s+)s+

] [
n

1
2+ν

√
2π + n

1
2 ωπ + O

(
n

1
2−ν

)]
.

For s+ = 0.73, ν = 1
4 , the last expression is equivalent to

√
2π

(1−s+)s+ n
3
4 < 6n

3
4 .

The previously mentioned heuristic assumption on the similarity of the aver-
age tail length of a random point of a random function that has a ν-component
and the average tail length of a random point of a random function only under-
lies the second appearance of Tcycle in the first bound on Toffline above. Even
if these two statistics differed non-negligibly, this would not significantly distort
the complexity. Since is_big is executed only when a ν-component is detected,
Tcycle in its second occurence is multiplied by pνω � 1 whilst it appears other-
wise on its own.

Success Probability of the Offline Algorithm. We consider that the algo-
rithm is successful if the value β outputted by the offline algorithm is such that
Pβ has a (s, ν)-component. We have seen in Sect. 3.3 that when a β is selected
(that is, sobs ≥ s + δ), the central limit theorem guarantees that the real size of
the ν-component investigated is greater than sn with probability pδ. It comes
that the success probability of the offline algorithm poffline is equal to pδ ≥ 0.99.
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3.5 Online Phase

In this section, we describe and analyse the online algorithm online_algo. The
online phase consists in submitting (N,A,C, T ) queries to the decryption oracle
Odec with C = β	 where β has been outputted by the offline algorithm. In the
following, we describe how the tags are constructed and how we choose the value
of �.

Algo. online_algo(β, e, μ, �, m)

1 : for i = 1..m do

2 : N
$←− F

η
2 ; y ← e

3 : for j = 1..μ do

4 : T ← Pfinal(β||y)
5 : if Odec(N, ε, β�, T ) �= ⊥
6 : return (N, ε, β�, T )

7 : else y ← Pβ(y)

8 : return false

Recall that we denote by x0 the inner state at the end of the decryption’s
initial phase, and that when the ciphertext C is equal to β	, the state before
the final phase is equal to β||P 	−1

β (x0). Recall that β, which has been outputted
by the offline algorithm, is such that G(Pβ) has a large component with a small
cycle of this large component’s cycle. Since this component is large, x0 belongs to
it with great probability. In that case, one can choose � large enough for P 	

β(x0)
to be likely to reach the small cycle of G(Pβ)’s large component. The number of
candidates for the state before the final phase, and thus for the possible tags, is
thereby reduced.

More formally, assume that the offline algorithm has been successful, that is,
it has outputted β, μ and e such that G(Pβ) has a (s, ν)-component with a cycle
of length μ and such that e is an element of this cycle. If G(Pβ) has a (s, ν)-
component, x0 belongs to this component with probability greater than or equal
to s. If x0 belongs to the (s, ν)-component, P 	−1

β (x0) reaches the cycle with the
probability p	 introduced in Sect. 2.1. It comes that with probability at least p	s,
P 	−1

β (x0) belongs to the cycle. Here, we implicitly rely on the assumption that
the random variable tail length of a random point of a random function such
that this random point belongs to a (s, ν)-component has the same distribution
as the tail length of a random point of a random function. Although we do
not believe this assumption to be true in the sense that the distributions are
not strictly equal, we believe that they are close enough for it not to impact our
attack significantly. Small scale experiments described in Sect. 4 corroborate this
assumption.



366 H. Gilbert et al.

We now analyse Algorithm online_algo. For a nonce N ∈ F
η
2 , this online

phase consists in submitting the following (N,A,C, T ) queries to the decryption
oracle:

(
N, ε, β	, Pfinal(β||P i

β(e))
)

for i = 0, . . . , μ − 1 .

Time Complexity. For each nonce, the attacker submits μ decryption queries
with a ciphertext of � blocks, and for each decryption query, she must also apply
Pfinal to the current state β||y where y is the current cycle element and apply
Pβ to y in order to try exhaustively all the cycle elements. Since � = O(n

1
2 ),

the time complexity incurred by the above invocations of Pβ and Pfinal at each
decryption query is negligible compared to the time complexity of a decryption
query with C = β	, that can be approximated by � applications of P . The
time complexity for each nonce is thus well approximated by μ� and thus upper
bounded by

n
1
2−ν� .

Thus, for m nonces, the average complexity of the online phase in number of
calls to P verifies

Tonline ≤ n
1
2−νm� .

Probability of success. For each nonce, the probability of success is exactly the
probability that P 	−1

β (x0) belongs to the cycle which we showed to be at least
p	s. If we repeat this experiment with m nonces, the probability of success is
thus at least

ponline = 1 − (1 − p	s)m .

3.6 Complexity and Success Probability of the Attack

The complexity of the attack is the sum of the complexities of the online algo-
rithm and the offline algorithm. Note that in practice, the attacker only needs
to run the precomputation offline algorithm once in order to be able to execute
the online phase to attack the same duplex-based mode with any secret key. The
average complexity Tonline + Toffline of the attack can be upper bounded by

n
1
2−νm� +

[
1

√
(1 − s+)s+

] [
n

1
2+ν

√
2π + n

1
2 ωπ

]
+ O

(
n

1
2−ν

)
.

Similarly, the overall success probability of the attack is of the form

psuccess = pofflineponline ≥ pδ [1 − (1 − p	s)m]

≥ 0.99(1 − e−mp�s) (since ∀x ∈ R, e−x > 1 − x) .

In order to have an overall probability of success psuccess greater than 0.95, we
want 1−e−mp�s to be greater than 0.96. Recall from Sect. 2.1 that p	 ≥ 1−e

−l2
2n .

We set � = 3
√

n so that p	 ≥ 0.988. We also set the following values:
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• ω = 210; thus 2δ = 2.33√
ω

< 0.08;
• s+ = 0.73; thus s = s+ − 2δ = 0.65.

Since p	 ≥ 0.988 and s = 0.65, ponline is greater than 0.96 for m ≥ 5. We thus
set m = 5. Thus, the complexity has the form

15n1−ν + 6n
1
2+ν +

4π210√
3

n
1
2 + O

(
n

1
2−ν

)
.

To balance the above expression, we set ν = 1
4 , we get an attack of complexity

at most 21n
3
4 + O(

√
n) = 21 × 2

3c
4 + O(

√
n) in number of calls to P .11

Note that the complexity of the online phase is at most 15n1−ν . In particular,
given β such that G(Pβ) has a component of size greater than ns with a cycle
length close to 1, the online complexity can be brought close to 2

c
2+4.

3.7 Key-Recovery

For modes such that Pinit is reversible for known nonce and associated data, our
forgery attack also recovers the secret key with � = O(

√
n) extra applications of

P , which is negligible compared to the complexity of the forgery. Indeed, if the
decryption oracle receives a forgery (N,A,C, T ), it returns the corresponding
plaintext. This allows the attacker to recover the state at the end of the initial
phase with � = O(

√
n) extra applications of P−1.12 As a consequence, if the

function Pinit is reversible for known nonce and associated data, the attacker
recovers the secret key.

4 Small Scale Experiments

Our attack relies on the assumption that the Pβ ’s derived from a public per-
mutation P defined on F

b
2 behave as random functions on F

c
2. To statistically

verify this assumption, we implemented some experiments using the permutation
Xoodoo[12] as P . The main reason behind this choice is its use in the final-
ist of the NIST lightweight cryptography competition Xoodyak, but another
permutation used in practice with a reasonably large value of b would have
done just as well. We took toy values compared to Xoodyak for the capacity
(c ≤ 40) in order for computer experiments to remain easy to achieve. Since
our attack relies mainly on the random function statistics results introduced in
Sect. 2.1, we designed a test for each of these results. We also implemented the
algorithm offline_search for small values of c.

11 Note that ν = 1
4

is not the fully optimal choice in general. Rather, the optimal choice

for ν is ν = 1
2

(
1
2

− logn

(√
2π/(

√
s+(1 − s+)15)

))
. For example, for n = 2128, the

optimal choice is approximately 0.256.
12 The plaintext also allows to verify that the recovered state before the final phase

is correct, making the key recovery possible with only a negligible amount of extra
computations regardless of the tag length.



368 H. Gilbert et al.

Algo. cycle_expectancy(Ω)

1 : tot ← 0

2 : for i = 1..Ω do

3 : β
$←− F

r
2; x

$←− F
c
2

4 : (μ, e) ← cycle(β, x)

5 : tot ← tot + μ

6 : return tot/Ω

Algo. nu_components(Ω, ν)

1 : ctr ← 0

2 : for i = 1..Ω do

3 : β
$←− F

r
2; x

$←− F
c
2

4 : (μ, e) ← cycle(β, x)

5 : if μ ≤ n
1
2 −ν then ctr ← ctr + 1

6 : return ctr/Ω

Expectancy of Cycle/Tail Length. We wish to verify that for a random
β ∈ F

r
2 and for a random node x ∈ G(Pβ), the expectancy of the cycle

length μ(x) and tail length λ(x) are both equal to
√

πn
8 , with n = 2c. Note

that the variance of the cycle length and tail length for a random node of
a random function is equal to σ2

μ = n
[
2
3 − 2π

16

]
[25]. Regarding the cycle

length, we use the algorithm cycle_expectancy. After Ω tries, by the Cen-
tral Limit Theorem, the observed average cycle length mean outputted by the
algorithm cycle_expectancy is such that with probability about 0.99:

mean ∈
[√

πn

8
− 2.58σμ√

Ω
;
√

πn

8
+

2.58σμ√
Ω

]
.

Setting Ω = 14000, we verify whether mean is in this interval in our tests (see
Table 1). We use a similar algorithm and reasoning for the tail length.13 As
shown in Table 1, all our experimental results match the theory.

Table 1. Expectancy of cycle length and tail length

c 28 32 36 40

Expectancy 10267 41068 164274 657098

Confidence interval [10080, 10454] [40321, 41817] [161283, 167266] [645130, 669065]

tail mean 10323 40971 163732 654775

cycle mean 10255 41620 164445 650156

Probability for a Random Point to Belong to a ν-Component. We
wish to verify that for a random β ∈ F

r
2 and for a random node x ∈ G(Pβ),

the probability that x belongs to a ν-component is pν . To do so, we use the
algorithm nu_components and focus in practice on experiments where ν = 1

4 as
it is the value used in our attack. Drawing Ω random (x, β) pairs and computing
13 Here, we make the assumption that the standard deviation for the tail length is the

same as the cycle length’s. This assumption does not affect our attack, it only affects
how to interpret our test results.
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the proportion of such pairs such that x belongs to a ν-component of Pβ amounts
to computing the mean of Ω Bernoulli variables equal to 1 with probability pν

and 0 with probability 1−pν . By the Central Limit Theorem, since the standard
variation of the above variables is σν =

√
pν(1 − pν), we have that

proportion ∈
[
pν − 2.58σν√

Ω
; pν +

2.58σν√
Ω

]

with probability ≥ 0.99. We verify in our experiments that proportion is indeed
in this confidence interval for various values of c and Ω. Our results, which match
the theory, are displayed in Table 2.

Table 2. Probability for a random node in the graph of a random function to belong
to a ν-component and experimental verification of (the detection of) the occurence of
(s, ν)-components.

c 28 32 36 40

Ω 71344 142688 285376 570752
ν-component Expectancy 0.009792 0.004896 0.002448 0.0012

Conf. interval [0.0088, 0.0110] [0.0044, 0.0054] [0.0022, 0.0027] [0.0011, 0.0013]

proportion 0.010162 0.004787 0.002400 0.001242
(s, ν)-component ps+,νs+pδ 0.002740 0.001370 0.000685 0.000342

ps,νs 0.002973 0.001487 0.000743 0.000372
frequency 0.003714 0.001647 0.000880 0.000517

Probability for a Random Function to Have a (s, ν)-Component. Verify-
ing that for a random β ∈ F

r
2, the probability that G(Pβ) has a (s, ν)-component

is ps,ν is hard in practice as it is too costly to determine with probability 1
whether or not G(Pβ) has a (s, ν)-component. Instead, we make an indirect ver-
ification. We draw Ω random (x, β) pairs and compute the proportion frequency
of such pairs such that:

– Pβ has a ν-component (the component to which x belongs);
– the estimated size sobs of this component (given by the proportion, among

ω = 1000, of newly chosen random points that belong to this component) is
at least s + δ with δ = 2.33

2
√

ω
, so that the actual size of the component is very

likely to be at least sn.14

14 To reduce the execution time of the implementation, to detect whether or not two
points x, x′ are in the same component, we checked whether μ(x) = μ(x′) instead of
doing the exhaustive verification made in is_big.
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We compare the found frequency values with two values:

– the lower bound ps,νs on the probability that Pβ has a (s, ν)-component and
x belongs to it;

– the conservative lower bound ps+,νs+pδ on the average value of frequency
used in the complexity estimate of the offline algorithm of Sect. 3.4, where
s+ = s + 2δ.

This algorithm is easy to derive from the algorithm offline_search introduced
in Sect. 3.3. We make this experiment for various values of Ω and c and with
s = 0.65, s+ = 0.73, as they are the values used in our attack. Our results
match the theory and are displayed in Table 2. The difference (in favour of the
adversary) between theoretical bounds and experimental values for frequency
in Table 2 can be at least partially explained as follows. The value ps,ν is the
probability that a component is a ν-component of size greater or equal to s. The
probability that a random point belongs to a (s, ν)-component is thus strictly
greater than ps,νs as the proportion of the points belonging to a component of
size greater than s is greater than s.

Table 3. We provide a few examples of obtained β values such that Pβ has a (s, ν)-
component with μ � 2

c
4 . Although we only provide one for each c, several values of β

are available for each c.

c β (b − c bits) μ

28 1473b86a 2607d6e5 5234df22 4c111c51 122e188f 37586e28 10
5b74f306 40ac1d69 2bb9c59f 6e8479b7 3d6ec314 7

32 67b9632a 032ec1a3 1f3b4f8c 7c641f59 39e3cab6 3aaa4444 4
73bf377d 7f1f6b35 6412ffb2 523d5180 54465a4f

36 59189691 3e3769f2 293b1b6f 0cc0af85 7d96b0a4 0e1c201b 122
137523e8 11f61a60 6c06c85f 762716b7 276c730

40 7b2fb641 7874c3d6 171abbc2 231ebf22 4e6e1ad3 2d6df079 18
7e6457aa 7816dd2a 011fe0f3 1de6ee24 56f1ed

Some Values of β. Lastly, we implemented the algorithm offline_search
for small values of c and for s = 0.65. A few examples of obtained β values are
displayed in Table 3.
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Probability for a Random Point to Belong to its Component’s Cycle
After � − 1 Applications of the Random Function. In order to verify the
applicability of Harris’ result on the number of successors provided in Sect. 2.1
to points randomly drawn in a (s, ν)-component, a fortiori when the function is
randomly sampled from the set of all Pβ ’s rather than randomly sampled in Fn,
we also conducted the following experiment. For all β values displayed in Table 3,
we checked whether the points that were found to be in the (s, ν)-component
had a tail length smaller than � = 3

√
n. For all these β, 100% of the points found

to be in the (s, ν)-component have a tail length smaller than �. This gives us
reasonable confidence in the fact that this assumption is realistic and does not
lead to a significant overestimation of the success probability of the attack.

5 Application to Concrete Duplex-Based Modes

In this section, we apply the attack previously described on the simplified
DuplexAEAD mode to concrete AEAD duplex-based modes. Whilst our attack
can be easily adapted to many of them as summarized in Table 4, others frus-
trate our attack. For all the modes presented in Table 4, our attack enables key
recovery.

5.1 Highlights

For the attack to succeed, we identify two requirements:

1. In decryption mode, the ciphertext blocks must overwrite the outer state at
least in part;

2. The tag must be determined by the state before the final phase, in such a
way that a correct guess on this state gives us the correct tag.

As a consequence, we will show that in all modes for which the attack is
applicable, the padding rule applied to the message does not matter, even though
when the padding rule is made block by block the complexity of our attack can
be slightly greater.

As a main concrete implication, we provide an attack on Xoodyak that
breaks the claim of achieving 184-bit security against plaintext recovery and
forgery attacks made by the designers in [18, Corollary 2, p. 72] but does not
threaten the 112-bit security level required by NIST for the lightweight compe-
tition. The attack also breaks the penultimate NORX version NORX v2 [1] but not
the more recent version NORX v3 [2].

Secondly we highlight two reasons that prevent our attack from applying to
modes such as Beetle [16], Ascon [22] or NORX v3 [2] in Sect. 5.3. We mainly
identify two reasons:
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Table 4. Summary of our results. Our attack is the best known generic attack against
the modes displayed in blue;(1)r′ is the length of the outer state part that is overwritten
by ciphertext blocks taking into a account a potential block by block padding such
as in monkeyDuplex;(2)Claimed plaintext integrity security level for a key and tag
of sufficient, potentially maximal, length;(3)Note that a more efficient (although not
generic) attack has been devised in [15].

Mode monkeyWrap/monkeyDuplex Cyclist Motorist

Scheme NORX v2(3) Ketje KNOT Xoodyak Keyak

Instance N-32 N-64 Jr Sr Mi Ma KNOT-AEAD Xoodyak River Lake
b 512 1024 200 400 800 1600 256 384 384 512 384 800 1600
r 384 768 16 32 128 256 64 192 96 128 192 544 1344
r′ (1) 382 766 14 30 126 254 64 192 96 128 192 544 1344
c 128 256 184 368 672 1344 192 192 288 384 192 256 256
Sec. level(2) 128 256 96 128 128 128 125 128 189 253 184 128 128
T 2102 2198 2144 2282 2506 21014 2148 2148 2220 2292 2148 2196 2196

– the use of a linear application that prevents outer state overwriting such as
the feedback function proposed in the Beetle mode [16] (requirement 1 is not
fulfilled);15

– the use of the secret key in the final phase to produce the tag such as in Ascon
and NORX v3 [2,22]. Indeed, in that case, a correct guess on the state before
the final phase does not determine the tag (requirement 2 is not fulfilled).

5.2 Schemes to Which the Attack Can Be Applied

The attack is applicable to the following duplex-based constructions: the Cyclist,
monkeyDuplex and Motorist modes. Therefore, the attack is applicable to
Xoodyak, Ketje, KNOT, NORX v2 and Keyak. This section is made to help
the reader check attack details for all AEAD algorithms on which the attack is
applicable.

15 Although the first mode that uses a feedback function is COFB [17], this mode is
out of scope as it is not duplex-based (in fact, it is not even permutation-based but
block-cipher based).
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Cyclist Mode. A well known representative of the family of duplex-based
ciphers is Xoodyak [18], a finalist of the NIST lightweight cryptography com-
petition.16 Xoodyak uses the permutation Xoodoo as its state update function.

As explained in Sect. 3.5, the specification of the initial phase does not influ-
ence the applicability of the attack. Hence, we only focus on the ciphertext
processing and the final phase. After the initial phase, a byte is set to ‘80‘ and
is XORed into the state, but this is only the case for the first block. Thus, we
consider that the processing of the first ciphertext block belongs to the initial
phase. Moreover, each time a ciphertext block overwrites the outer state, a byte
set to ‘01‘ is XORed into the state at the bit positions r + 1, . . . , r + 817, where
r = 24 bytes = 192 bits [18, p. 68]. Thus, the permutation P on which we need
to apply offline_search is

P : F
384
2 −→ F

384
2

s �−→ Xoodoo[12](s ⊕ 0192||07||1||0184) .

If one considers the padding rule 10∗ together with the interface provided by the
Xoodyak authors, one can notice that all those transformations are determinis-
tic in the value of the inner state just before processing the last ciphertext block.
Hence, we can guess the last state value, and apply the final phase (consider-
ing the padding for the last block inside this transformation) to the last block
and apply the attack. This means that for any tag length, our attack strategy
provides a forgery with a complexity of 2148.4.

When a valid decryption query is provided to the decryption oracle, the
corresponding plaintext is returned. The plaintext allows the attacker to check
that her guess on the state before the final phase is correct as she can invert the
whole process. Doing so, she can also recover the state just after processing the
key. As long as the key is smaller than 44 bytes, it is copied entirely in the state
and then A, N and M are processed. Thus, Pinit is reversible for known N and
A. As described in Sect. 3.7 the attack can thus be turned into a key recovery
for Xoodyak.

For a t-byte tag and a κ-bit secret key with κ ≤ 192, the authors claim that
Xoodyak has a security strength level in bits of min(184, κ, 8t) in computation
where the data is limited to 96+κ/2. Our attack breaks this claim for κ ≥ 152 and
t ≥ 19. Our attack not only produces a forgery but also recovers the secret key.
Typically, for κ = 192 and t = 24, there should be no attack with a complexity
under 2184 in time and 2192 in data. Yet, our attack has a complexity of 2148.4.

MonkeyDuplex: Ketje, KNOT and NORX v2. Ketje [12], KNOT-AEAD
[34] and NORX v2 [1] use the mode monkeyDuplex defined originally in 2014 for

16 For more details on Xoodyak’s specification, we refer to [18] at page 62 for the
keyed mode together with pages 67 and 68 for the full description of what is relevant
for our analysis. https://csrc.nist.gov/Projects/lightweight-cryptography/.

17 Note that the rate called r in this paper is denoted by n in Xoodyak’s specification.

https://csrc.nist.gov/Projects/lightweight-cryptography/
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Ketje [11]. However, those algorithms differ in the padding rule applied to the
message.

– In KNOT-AEAD, the padding is made by ‘appending a single 1 and the
smallest number of 0’s to the bit string such that the length of the padded
bit string is a multiple of r bits’. Thus, the technique used for Xoodyak can
be applied.

– In Ketje and in NORX, the padding is made block by block [12, 1.3, p. 4]
and [1, p. 9-10] with the rule pad10∗1[r](|M |) which is the multi-rate padding
as defined in [7]. Both ciphers allow to process bit strings of length smaller
or equal18 to r′ = r − 2. To deal with this padding rule, we consider that
every plaintext block is of length exactly r′, meaning that the padding rule
is just the concatenation of 11 to each block. By doing the same technique
together with the domain separation as for Xoodyak, that is considering
that the position corresponding to those two bits are in fact inside the inner
state and that the XOR of 11 is part of the Ketje inner permutation P (or
part of the NORX inner permutation), we can apply our attack, by considering
the effective rate to be r′ = r − 2 instead of r.

For these three constructions, the final phase is deterministic in the inner
state after processing the plaintext or the ciphertext so our attack can be applied.
Both ciphers come with 4 different instances and our attack leads to the com-
plexities listed in Table 4. Moreover, when the decryption oracle sends back the
plaintext, a key recovery is possible as the state is directly initialized with key
and nonce without applying any transformation.

Motorist: Keyak. Keyak [13] is a family of authenticated encryption schemes
which is a third-round candidate of the CAESAR competition. The features of
the Motorist mode that are of interest for our attack are:

– Decryption overwrites the outer state with ciphertext blocks values and in
between there are applications of P where P is a Keccak-p permutation.

– An encoding (in byte) of the size of the processed message blocks is XORed
into the state at the Ra + 1 byte position, where Ra is the absorbing rate in
bytes (Ra = r

8 ).
– For the tag generation, given a (public) tag length, the tag is determined by

the state before the final phase.

Thus, the attack can also be applied on Keyak instances by just changing the
function that is iterated and considering the XOR of the bytes that encode the
length of ciphertext and associated data to be part of the decryption function.

However, Keyak comes with instances that can work independently (Pis-
tons), in order to highly parallelize encryption and decryption of large amount
of data. To do so, the authors of Keyak propose to do several initialization in
parallel, process independently 4, 8 or more strings and then mix everything
together at the end. However, if one would like to guess the tag, one would have

18 This value is called ρmax in [7, p. 335].
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to guess independently every inner state in all parallel instances as they are all
initialized differently. So, our attack on Keyak is also applicable on all instances
but make sense only for the non-parallelized instances, that is River Keyak
and Lake Keyak. For these instances, the key can also be recovered.

5.3 Modes that Frustrate Our Attack

In this section, we will look into authenticated encryption modes to which the
attack cannot be applied. Two main features frustrate our cryptanalysis. The
first one consists of a final key addition just at the beginning of the final phase
and the second one is the use of a feedback function as proposed in the mode
Beetle [16].

Key-dependent Final Phase. Our attack allows to reduce the space of all
possible values of the final state before the final phase. For the modes to which the
attack applies, a correct guess on this state can be transformed into a forgery,
and, under certain conditions, into a key recovery. However, some proposals
such as Ascon [22] or the third version of NORX [2] for the CAESAR competition
slightly change the final phase by making it not only dependent on the state after
processing the plaintext or ciphertext, but also key dependent. As explained at
the beginning of this section, the final tag must be fully determined by the state
just before the final phase. When the key is involved in the final phase, even if
the correct state value is guessed, an attacker does not know a priori the secret
key and so the state recovery does not lead to a forgery attack.

Absence of Outer State Overwriting. In another line of research,
Chakraborti et al. proposed in 2018 a family of AEAD constructions named
Beetle [16]. Beetle is not strictly speaking a duplex-based construction as the
use of a feedback function between two consecutive invocations of the permu-
tation P avoids, when both a data injection and a data extraction take place,
that the r-bit outer state value after the data injection be equal to the extracted
data block as in traditional duplexing, and allows to render both values almost
independent. Thus, the use of a feedback function prevents the attack by making
the outer state overwriting impossible. Unlike duplex-based constructions which
do not use a feedback function twist, the Beetle construction is claimed to pro-
vide a security level min{ b

2 , c − log(r), r} without any restriction on decryption
queries [3,16]. The Beetle construction is used in the Beetle and SPARKLE [5]
finalists of the NIST lightweight cryptography standardization process.

The same effect also occurs in Subterranean 2.0 [19] which is a second round
candidate of the NIST-lightweight competition and a duplex-like proposal. In
order to generate the ciphertext blocks, two bits of the state are XORed to serve
as a keystream. It prevents the attack in the same way that the feedback function
of the Beetle mode does, as the attacker can not predict the value of the outer
state before the next application of the update function.
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6 Conclusion

In this paper, we provided a generic attack against several duplex-based AEAD
modes. Constructed as a forgery attack, our cryptanalysis can be transformed
into a key recovery for most modes to which it applies. It has a complexity equiv-
alent to O(2

3c
4 ) applications of the state update function and thus represents an

improvement from previous generic attacks against duplex-based modes. It is
also memory-less. Further, the complexity of the online phase can be brought
close to 2

c
2 at the cost of increasing the time complexity of the pre-computation

phase (which needs to be run only once) above O(2
3c
4 ).
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Abstract. A line of recent work has highlighted the importance of
context commitment security, which asks that authenticated encryp-
tion with associated data (AEAD) schemes will not decrypt the same
adversarially-chosen ciphertext under two different, adversarially-chosen
contexts (secret key, associated data, and nonce). Despite a spate of
recent attacks, many open questions remain around context commit-
ment; most obviously nothing is known about the commitment security
of important schemes such as CCM, EAX, and SIV.

We resolve these open questions, and more. Our approach is to, first,
introduce a new framework that helps us more granularly define context
commitment security in terms of what portions of a context are adver-
sarially controlled. We go on to formulate a new security notion, called
context discoverability, which can be viewed as analogous to preimage
resistance from the hashing literature. We show that unrestricted con-
text commitment security (the adversary controls all of the two contexts)
implies context discoverability security for a class of schemes encompass-
ing most schemes used in practice. Then, we show new context discovery
attacks against a wide set of AEAD schemes, including CCM, EAX, SIV,
GCM, and OCB3, and, by our general result, this gives new unrestricted
context commitment attacks against them.

Finally, we explore the case of restricted context commitment secu-
rity for the original SIV mode, for which no prior attack techniques work
(including our context discovery based ones). We are nevertheless able
to give a novel O(2n/3) attack using Wagner’s k-tree algorithm for the
generalized birthday problem.

Keywords: Secret-key cryptography · AEAD · Committing
encryption

1 Introduction

Designers of authenticated encryption with associated data (AEAD) have tradi-
tionally targeted security in the sense of confidentiality and ciphertext integrity,
first in the context of randomized authenticated encryption [6], and then nonce-
based [32] and misuse-resistant AEAD [33].
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But in recent years researchers and practitioners have begun realizing that
confidentiality and integrity as previously formalized prove insufficient in a vari-
ety of contexts. In particular, the community is beginning to appreciate the
danger of schemes that are not key committing, meaning that an attacker can
compute a ciphertext such that it can successfully decrypt under two (or more)
keys. Non-key-committing AEAD was first shown to be a problem in the con-
text of moderation in encrypted messaging [16,24], and later in password-based
encryption [29], password-based key exchange [29], key rotation schemes [2], and
symmetric hybrid (or envelope) encryption [2].

Even more recently, new definitions have been proposed [5] that target com-
mitting to the key, associated data, and nonce. And while there have been propos-
als for new schemes [2,5] that meet these varying definitions, questions still remain
about which current AEAD schemes are committing and in which ways. Moreover,
there have been no commitment results shown for a number of important practi-
cal AEAD schemes, such as CCM [17], EAX [11], and SIV [33]. Implementing (and
standardizing) new AEAD schemes takes time and so understanding which stan-
dard AEAD schemes can be securely used in which settings is a pressing issue.

This work makes four main contributions. First, we provide a new, more
granular framework for commitment security, which expands on prior ones to
better capture practical attack settings. Second, we show the first key com-
mitment attack against the original SIV mode, which was previously an open
question. Third, we introduce a new kind of commitment security notion for
AEAD—what we call context discoverability—which is analogous to preimage
resistance for cryptographic hash functions. Fourth, we give context discovery
attacks against a range of schemes which, by a general implication, also yield
new commitment attacks against those schemes. A summary of our new attacks,
including comparison with prior ones, when relevant, is given in Fig. 1.

Granular Commitment Notions. Recall that a nonce-based AEAD encryp-
tion algorithm Enc takes as input a key K , nonce N , associated data A, and
a message M . It outputs a ciphertext C . Decryption Dec likewise takes in a
(K ,N ,A) triple, which we call the decryption context, along with a ciphertext
C , and outputs either a message M or special error symbol ⊥.

While most prior work has focused on key commitment security, which
requires commitment to only one part (the key) of the decryption context, Bel-
lare and Hoang (BH) [5] suggest a more expansive sequence of commitment
notions for nonce-based AEAD. For the first, CMT-1, an adversary wins if it effi-
ciently computes a ciphertext C and two decryption contexts (K1,N1,A1) and
(K2,N2,A2) such that decryption of C under either context works (does not out-
put ⊥) and K1 �= K2. CMT-1 is often called key commitment.1 CMT-3 relaxes
the latter winning condition to allow a win should the decryption contexts differ
in any way. We therefore refer to CMT-3 as context commitment and schemes
that meet CMT-3 as context committing. These notions form a strict hierarchy,
with CMT-3 being the strongest. Despite this, most prior attacks [2,16,24,29]
have focused solely on key commitment (CMT-1).
1 BH refer to this as CMTD-1, but for tidy AEAD schemes, CMT-1 and CMTD-1 are

equivalent, so we prefer the compact term.
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Our first contribution is to refine further the definitional landscape for nonce-
based AEAD schemes in a way that is particularly useful for exploring context
commitment attacks. In practice, attackers will often face application-specific
restrictions preventing full control over the decryption context. For example,
in the Dodis, Grubbs, Ristenpart, and Woodage (DGRW) [16] attacks against
Facebook’s message franking scheme, the adversary had to build a ciphertext
that decrypts under two contexts with equivalent nonces. Their (in BH’s ter-
minology) CMT-1 attack takes on a special form, and we would like to be able
to formally distinguish between attacks that achieve additional adversarial goals
(e.g., different keys but equivalent nonces) and those that may not.

We therefore introduce a new, parameterized security notion that generalizes
the BH notions. Our CMT[Σ] notion specifies what we call a setting Σ = (ts,S,P)
that includes a target specifier ts, a context selector S, and a predicate P. The
parameters ts and S specify which parts of the context are attacker-controlled
versus chosen by the game, and which of the latter are revealed to the attacker.
Furthermore, the predicate P takes as input the two decryption contexts and
decrypted messages, and outputs whether the pair of tuples satisfy a winning
condition. An adversary wins if it outputs a ciphertext and two contexts satisfy-
ing the condition that each decrypt the ciphertext without error. The resulting
family of commitment notions includes both CMT-1 and CMT-3 but also covers
a landscape of further notions.

We highlight two sets of notions. The first set is composed of CMTk,CMTn,
and CMTa, which use predicates (K1 �= K2), (N1 �= N2), and (A1 �= A2), respec-
tively. The first notion is equivalent to CMT-1; the latter two are new. All of
them are orthogonal to each other and a scheme that meets all three simul-
taneously achieves CMT-3. We say these notions are permissive because the
predicates used do not make any demands on other components of the con-
text. In contrast, restrictive variants, which we denote via CMT∗

k ,CMT∗
n,CMT∗

a ,
require equality for other context components. For example the first uses predi-
cate (K1 �= K2) ∧ ((N1,A1) = (N2,A2)). These capture the types of restrictions
faced in real attacks mentioned above.

Breaking the Original SIV. While prior work has shown (in our terminology)
CMT∗

k attacks for GCM [16,24], GCM-SIV [29,35], ChaCha20/Poly1305 [24,
29], XChaCha20/Poly1305 [29], and OCB3 [2], an open question of practical
interest [36] is whether there also exists a CMT∗

k attack against Synthetic IV
(SIV) mode [33]. We resolve this open question, showing an attack that works
in time about 253. It requires new techniques compared to prior attacks.

SIV combines a PRF F with CTR mode encryption, encrypting by first
computing a tag T = FK(N ,A,M ) and then applying CTR mode encryption
to M , using T as the (synthetic) IV and a second key K ′. The tag and CTR mode
output are, together, the ciphertext. Decryption recovers the message and then
recomputes the tag, rejecting the ciphertext if it does not match. Schmieg [35]
and Len, Grubbs, and Ristenpart (LGR) [29] showed that when F is a universal
hash-based PRF, in particular GHASH for AES-GCM-SIV, one can achieve a
fast CMT∗

k attack.
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Scheme CDY∗
a CDY∗

n CMT∗
a CMT∗

k CMTk CMT − 3

GCM [19] �� §4 �� §4 �� §E �� [16,
24]

�� [16,
24]

�� [16,
24]

SIV [34] �� §4 �� §5 �� � �� �
CCM [17] �� §4 �� � �� �
EAX [11] �� §4 �� §4 �� � �� �
OCB3 [28] �� §4 �� [2] �� [2] �� [2]
PaddingZeros �� � �� � �� §E �� [2] �� [5] �� �
KeyHashing �� � �� � �� §E �� [2] �� [2] �� �
CAU-C1 [5] �� � �� � �� [5] �� [5] �� �

Fig. 1. Summary of context discovery and commitment attacks against a variety of
popular AEAD schemes. Symbol � indicates a proof that any attack will take at least
264 time, while symbol � indicates the existence of an attack that takes less than 264

time; symbol � indicates results new to this paper and � indicates prior work (citation
given). CMTk and CMT − 3 are from Bellare and Hoang [5], where CMTk was called
CMT-1. The notions CDY∗

a , CDY∗
n , CMT∗

a and CMT∗
k are introduced in this paper,

and are implied by CMTk. Symbol � indicates that the result is implied from one of
the other columns by a reduction shown in this paper. §E indicates Appendix E in
the full version.

Their attack does not extend to other versions of SIV, perhaps most notably
the original version that uses for F the S2V[CMAC] PRF [33]. This version has
been standardized [25] and is available in popular libraries like Tink [3]. For
brevity here we describe the simpler case where F is just CMAC; the body
will expand on the details. At first it might seem that CMAC’s well-known
lack of collision resistance (for adversarially-chosen keys), should extend to
allow a simple CMT∗

k attack: find K1,K2 such that T = CMACK1(N ,A,M ) =
CMACK2(N ,A,M ′) for M �= M ′. But the problem is that we need M ,M ′ to also
satisfy that

M ⊕ CTRK ′
1
(T ) = M ′ ⊕ CTRK ′

2
(T ) (1)

where CTRK (T ) denotes running counter mode with initialization vector T and
block cipher key K . When using a GHASH-based PRF, the second equality
condition “plays well” with the algebraic structure of the first condition, making
it computationally easy to satisfy both simultaneously. But, here that does not
work.

The core enabler for our attack is that we can recast the primary collision
finding goal as a generalized birthday bound attack. For block-aligned messages,
we show how the two constraints above can be rewritten as a single equation
that is the xor-sum of four terms, each taking values over {0, 1}n. Were the terms
independently and uniformly random, one would immediately have an instance
of a 4-sum problem, which can be solved using Wagner’s k-tree algorithm [38]
in time O(2n/3). But our terms are neither independent nor uniformly random.
Nevertheless, our main technical lemma shows that, in the ideal cipher model,
the underlying block cipher and the structure of the terms (which are dictated by
the details of CMAC-SIV) allows us to analyze the distribution of these terms
and show that we can still apply the k-tree algorithm and achieve the same
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running time. This technique of applying the k-tree algorithm to biased values
may be of independent interest.

Putting it all together we achieve a CMT∗
k attack against S2V[CMAC]-SIV

that works in time about 253, making it practical and sufficiently damaging to
rule out SIV as suitable for contexts where context commitment matters.

Context Discoverability. Next we introduce a new type of security notion for
AEAD. The cryptographic hashing community has long realized the significance
of definitions for both collision resistance and preimage resistance [13], the lat-
ter of which, roughly speaking, refers to the ability of an attacker to find some
input that maps to a target output. In analyzing CMTk security for schemes,
we realized that in many cases we can give very strong attacks that, given any
ciphertext, can find a context that decrypts it—a sort of preimage attack against
AEAD. To avoid confusion, we refer to this new security goal for AEAD as con-
text discoverability (CDY), as the adversary is tasked with efficiently computing
(“discovering”) a suitable context for some target ciphertext.

While we have not seen real attacks that exploit context discoverability, since
CDY is to CMT what preimage resistance is to collision resistance, we believe
that they are inevitable. We therefore view it beneficial to get ahead of the curve
and analyze the CDY security before concrete attacks surface.

We formalize a family of CDY definitions similarly to our treatment for CMT.
Our CDY[Σ] notion is parameterized by a setting Σ = (ts,S) that specifies a
target specifier ts and a context selector S. Like for CMT[Σ], ts and S specify
the parts of the context that the attacker can choose and which parts are chosen
by the game and either hidden or revealed to the attacker. Unlike CMT, however,
the attacker is always given a target ciphertext and needs to only produce one
valid decrypting context.

Similar to CMT∗
k ,CMT∗

n,CMT∗
a , we define the notions CDY∗

k ,CDY∗
n,CDY∗

a .
The notion CDY∗

k captures the setting where an adversary is given arbitrary
ciphertext C , nonce N , and associated data A, and must produce a key K such
that C decrypts under (K ,N ,A). Similarly, CDY∗

n and CDY∗
a require the adver-

sary to provide a nonce and associated data, respectively, given the other com-
ponents chosen arbitrarily. These model restricted attack settings where parts
of the context are not in the adversary’s control.

We also define CDY∗[ts] which generalizes this intuition to any target speci-
fier ts. For example, in CDY∗[ts = {n}] the adversary is given arbitrary cipher-
text and nonce N , and must produce a key K and associated data A such that
the ciphertext decrypts under (K ,N ,A).

We next analyze the relations between these sets of notions. In particular,
we show that if an AEAD scheme is “context compressing”—ciphertexts are
decryptable under more than one context—then CMT-3 security implies CDY∗.
This is analogous to collision resistance implying preimage resistance, though the
details are different. Further, we observe that almost all deployed AEAD schemes
are context compressing since they “compress” the nonce and associated data
into a shorter tag. This allows us to focus on finding CDY∗[Σ] attacks for AEAD
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Fig. 2. (Top) Selected relationships between permissive CMT notions and restrictive
CDY notions. Solid arrows represent implications. (Bottom) Selected relationships
between CMT-3 and the notions we introduce in this paper. Solid arrows represent
implications. The dotted arrow from CMT-3 to CDY∗ holds assuming “context com-
pression” as defined in Theorem 1.

schemes to show that these schemes also do not meet CMT[Σ] security. Selected
relationships are shown in Fig. 2.

This opens up a new landscape of analysis, which we explore. We characterize
a large class of AEAD schemes that use non-preimage resistant MACs and,
based on this weakness, we can develop fast CDY∗

a attacks. The set includes
CCM, EAX, SIV, GCM, and OCB3. For EAX and CCM, this represents the
first attacks of any kind for committing security. For EAX and GCM, we are
also able to give CDY∗

n attacks, which is perhaps even more surprising a priori,
given that an adversary in this case only controls the nonce.

All this sheds light on the deficiencies of several popular design paradigms for
AEAD, when viewed from the perspective of context commitment security. These
definitions also allow us to precisely communicate attacks and threat models. For
example, CDY might suffice for some applications while others might want the
more computationally expensive CMT security.

Revisiting Commitment-Enhancing Mechanisms. Finally, in Appendix E
in the full version we use this new framework to analyze proposed mechanisms
for commitment security. First, we look at the folklore padding zeros transform
which prefixes zeroes to a message before encrypting and verifies the existence
of these zeroes at decryption. This transform was recommended in an early
OPAQUE draft specification [27, §3.1.1] and was shown by Albertini et al. [2,
§5.3] to achieve FROB security and by Bellare and Hoang [5] to achieve CMT-1
security. We show that this transform does not achieve our CMT∗

a notion (and
thus CMT-3) for all AEAD schemes, ruling it out as a candidate commitment
security transform. We then make similar observations about the CommitKey
transform which appends to the ciphertext a hash commitment to the key and
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the nonce. Finally, we conclude by considering the practical key commitment
security of the recent CAU-C1 scheme from BH [5]. While a naive adaptation
of DGRW’s [16] “invisible salamanders” attack to this scheme takes about 281

time, we show a more optimized attack which takes a little more than 264 time,
showing that 64-bit key-committing security does not preclude practical attacks.

Next Steps and Open Problems. Our results resolve a number of open
problems about AEAD commitment security, and overall highlight the value
of new definitional frameworks that surface different avenues for attack. That
said, we leave several open problems, such as whether different flavors of context
discovery or commitment attacks can be found against popular schemes—the
blank entries in Fig. 1. Our attack techniques do not seem to work against these
schemes, but whether positive security results can be shown is unclear.

2 Background

Notation. We refer to elements of {0, 1}∗ as bitstrings, denote the length of a
bitstring x by |x| and the left-most (i.e., “most-significant”) bit by msb(x). Given
two bitstrings x and y, we denote their concatenation by x ‖ y, their bitwise xor
by x ⊕ y, and their bitwise and by x&y. Given a number n, we denote its m-bit
encoding as encodem(n). For a finite set X, we use x ←$ X to denote sampling
a uniform, random element from X and assigning it to x.

Sometimes, we operate in the finite field GF(2n) with 2n elements. This
field is defined using an irreducible polynomial f(α) in GF(2)[α] of degree n.
The elements of the field are polynomials x0 + x1α + x2α

2 + · · · + xn−1α
n−1

of degree n − 1 with binary coefficients xi ∈ GF(2). These polynomials can be
represented by the n-bit string x0x1 · · · xn−1 of their coefficients. Both addition
and subtraction of two n-bit strings, denoted x+y and x−y, respectively, is their
bitwise xor x⊕y. Multiplication of two n-bit strings, denoted x·y, corresponds to
the multiplication of the corresponding polynomials x and y followed by modular
reduction with the irreducible polynomial f(α).

Probability. An n-bit random variable X is one whose value is probabilistically
assigned, defined by probability mass function pX(x) := Pr[X = x]. The n-bit
uniform random variable U is the random variable with the probability mass
function pU (x) = 1

2n for all x ∈ {0, 1}n. Given two n-bit random variables X
and Y , we define the total variation distance between them as

Δ(X,Y ) := max
i ∈ {0,1}n

∣
∣ Pr(X = i) − Pr(Y = i)

∣
∣ .

A random function F from n-bit strings to m-bit strings is a collection {Xi : i ∈
{0, 1}n} of m-bit random variables Xi, one for each n-bit input, such that for all
i ∈ {0, 1}n, F (i) := Xi. A random function F from n-bit strings to m-bit strings
is uniformly random if, for all i ∈ {0, 1}n, F (i) is the m-bit uniform random
variable. We say that two random functions F1 and F2 from n-bit strings to
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m-bit strings are independent if, for all i ∈ {0, 1}n and for all j ∈ {0, 1}n, F1(i)
and F2(j) are independent m-bit random variables.

Code-Based Games. To formalize security experiments, we use the code-based
games framework of Bellare and Rogaway [10]; with refinements from Risten-
part, Shacham, and Shrimpton [31]. A procedure P is a sequence of code-like
statements that accepts some input and produces some output. We use super-
scripts like PQ to denote that procedure P calls procedure Q. We use (G ⇒ x)
to denote the event that the procedure G outputs x, over the random coins
of the procedure. Finally, given a game G and an adversary A, we denote the
advantage of A at G by AdvG(A) := Pr[G(A) ⇒ true] .

Cost of Attacks. We represent cryptanalytic attacks by procedures and com-
pute their cost using a unit-cost RAM model. Specifically, following [31], we use
the convention that each pseudocode statement of a procedure runs in unit time.
This lets us write the running time of a procedure as the maximum number of
statements executed, with the maximum taken over all inputs of a given size.
Similarly, we define the number of queries as the maximum number of queries
executed over inputs of a given size. We recognize that this is a simplification of
the real-world (e.g., see Wiener [39]), but for the attacks discussed in this paper,
we nevertheless believe that it provides a good estimate.

Pseudorandom Functions. A pseudorandom function (PRF) is a function
F : K×M → Y defined over a key space K ⊆ {0, 1}∗, message space M ⊆ {0, 1}∗,
and output space Y ⊆ {0, 1}∗, that is indistinguishable from a uniform random
function. More formally, we define the PRF advantage of an adversary A as

Advprf
F (A) :=

∣
∣Pr[K ←$ K : A(F(K , ·))] − Pr[R ←$ Func : A(R)]

∣
∣ ,

and say that F is a PRF if this advantage is small for all adversaries A that run
in a feasible amount of time.

Hash Functions. A hash function is a function H : K×M → Y, defined over a
key space K ⊆ {0, 1}∗, message space M ⊆ {0, 1}∗, and hash space Y ⊆ {0, 1}∗.
We define the collision-resistance advantage of adversary A for H as

Advcoll
H (A) := Pr

[

K ←$ K, (M1,M2) ←$ A(K ) :

(M1 �= M2) and (H(K ,M1) = H(K ,M2))
]

.

Block Ciphers and the Ideal Cipher Model. An n-bit block cipher, or a
block cipher with block length n bits, is a function E : {0, 1}n×{0, 1}n → {0, 1}n,
where for each key k ∈ {0, 1}n, E(k, ·) is a permutation on {0, 1}n. Since it is a
permutation, it has an inverse which we denote by E−1(k, ·). To simplify nota-
tion, we sometimes use the shorthands Ek(·) := E(k, ·) and E−1

k (·) := E−1(k, ·).
An n-bit ideal block cipher [26] is a random map E : {0, 1}n × {0, 1}n →

{0, 1}n, such that for each key k ∈ {0, 1}n, Ek(·) is a permutation on {0, 1}n.
Alternatively, we can think of an ideal block cipher as one where for each key
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k ∈ {0, 1}n, Ek(·) is uniformly, randomly sampled from the set of permutations
on n-bits.

Authenticated Encryption Schemes. An AEAD scheme is a triple of algo-
rithms AEAD = (Kg,Enc,Dec), defined over a key space K ⊆ {0, 1}∗, nonce space
N ⊆ {0, 1}∗, associated data space A ⊆ {0, 1}∗, message space M ⊆ {0, 1}∗, and
ciphertext space C ⊆ {0, 1}∗.

1. Kg : ∅ → K is a randomized algorithm that takes no input and returns a
fresh secret key K .

2. Enc : (K×N×A×M) → (C∪ {⊥}) is a deterministic algorithm that takes a
4-tuple of a key K , nonce N , associated data A, and message M and returns
a ciphertext C or an error (denoted by ⊥).

3. Dec : (K×N×A×C) → (M∪ {⊥}) is a deterministic algorithm that takes a
4-tuple of a key K , nonce N , associated data A, and ciphertext C and returns
a plaintext M or an error (denoted by ⊥).

We call the non-message inputs to Enc—the key, nonce, and associated data—
the encryption context and the non-ciphertext inputs to Dec—the key, nonce,
and associated data—the decryption context. And, for a given message, say that
an encryption context is valid if Enc succeeds (i.e., does not output ⊥). Similarly,
for a given ciphertext, say that a decryption context is valid if Dec succeeds (i.e.,
does not output ⊥).

For traditional AEAD correctness, we need Enc to be the inverse of Dec. In
other words, for any 4-tuple (K ,N ,A,M ) ∈ K × N × A × M, it holds that

Dec(K ,N ,A,Enc(K ,N ,A,M )) = M .

In addition, we impose tidyness [30], ciphertext validity, and length uniformity
assumptions. Tidyness requires that for any 4-tuple (K ,N ,A,C ) ∈ K×N×A×C,
it holds that

Dec(K ,N ,A,C ) = M �= ⊥ =⇒ Enc(K ,N ,A,M ) = C .

Ciphertext validity requires that for every ciphertext C ∈ C there exists at least
one valid decryption context (K ,N ,A) ∈ K×N×A; that is Dec(K ,N ,A,C ) �=
⊥. Length uniformity requires that the length of a ciphertext depends only on
the length of the message and length of the associated data.

Finally, for AEAD security, we use the traditional privacy and authenticity
definitions [32, §3].

Committing Authenticated Encryption. A number of prior notions for com-
mitting AEAD have been proposed. In Fig. 3 we provide the CMT-1 and CMT-3
games from Bellare and Hoang [5]. The FROB game from Farshim, Orlandi, and
Rosie [22] adapted to the AEAD setting by Grubbs, Lu, and Ristenpart [24], is
the same except that the final highlighted predicate is changed to “K1 = K2 or
N1 �= N2”. The FROB game asks the adversary to produce a ciphertext that
decrypts under two different keys with the same nonce. The CMT-1 game is more
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CMT − 1(A):

((K1,N1,A1), (K2,N2,A2), C) ←$ A
M1 ← AEAD.Dec(K1,N1,A1, C)

M2 ← AEAD.Dec(K2,N2,A2, C)

// decryption success

If M1 = ⊥ or M2 = ⊥
Return false

// commitment condition

If K1 = K2

Return false

Return true

CMT − 3(A):

((K1,N1,A1), (K2,N2,A2), C) ←$ A
M1 ← AEAD.Dec(K1,N1,A1, C)

M2 ← AEAD.Dec(K2,N2,A2, C)

// decryption success

If M1 = ⊥ or M2 = ⊥
Return false

// commitment condition

If (K1,N1,A1) = (K2,N2,A2)

Return false

Return true

Fig. 3. (Left) The CMT-1 game [5]. (Right) The CMT-3 game [5]. The differences
are highlighted.

permissive and removes the condition that the nonce be the same. The CMT-3
game is even more permissive and relaxes the different key condition to different
keys, nonces, or associated data. Bellare and Hoang [5] show that CMT-3 implies
CMT-1, which implies FROB. We will expand on these definitions with a more
general framework next.

3 Granular Committing Encryption Definitions

We provide a more general framework for defining commitment security for
encryption. As motivation, we observe that while the CMT-1 and the stronger
CMT-3 notions provide good security goals for constructions, they do not pre-
cisely capture the way in which attacks violate security—which parts of the
decryption context does the attacker need to control, which parts have been
pre-selected by some other party, and which parts are known to the attacker.

These considerations are crucial for determining the exploitability of com-
mitment vulnerabilities in practice. For instance, the vulnerability in Facebook
attachment franking [20] exploited by Dodis et al. [16, §3] only works if the nonces
are the same; and the key rotation attack described by Albertini et al. [2] only
works with keys previously imported to the key management service. And, look-
ing ahead, we propose a variant of the Subscribe with Google attack described
by Albertini et al. [2] in which a malicious publisher provides a full decryption
context only knowing the honestly published ciphertext.

We provide a more general framework for commitment security notions that
more precisely captures attack settings. As we will see in subsequent sections,
our definitions provide a clearer explanatory framework for vulnerabilities.

Committing Security Framework. We find it useful to expand the set of
security notions to more granularly capture the ways in which the two decryp-
tion contexts are selected that generalizes context commitment security. In Fig. 4
we detail the CMT[Σ] game, parameterized by a setting Σ = (ts,S,P) that spec-
ifies a target specifier ts, a context selector S, and a predicate P (to be defined
next.) The adversary helps compute a ciphertext and two decryption contexts
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CMT[ts, S,P](A):

catc ←$ S

cata ←$ A(Revealts(catc))

cat ← Mergets(catc, cata)

If cat = ⊥:

Return false

(C, (K1,N1,A1), (K2,N2,A2)) ← cat

M1 ← AEAD.Dec(K1,N1,A1, C)

M2 ← AEAD.Dec(K2,N2,A2, C)

If M1 = ⊥ or M2 = ⊥:

Return false

Return P((K1,N1,A1), (K2,N2,A2))

Notion Predicate P

CMTk (K1 �= K2)

CMTn (N1 �= N2)

CMTa (A1 �= A2)

CMT∗
k (K1 �= K2) ∧ (N1,A1) = (N2,A2)

CMT∗
n (N1 �= N2) ∧ (K1,A1) = (K2,A2)

CMT∗
a (A1 �= A2) ∧ (K1,N1) = (K2,N2)

Fig. 4. (Left) The CMT[Σ] commitment security game, parameterized by Σ =
(ts, S,P), a target selector ts, context selector S, and predicate P. (Right) Predicates
for the permissive notions CMTk, CMTn, CMTa and restrictive notions CMT∗

k , CMT∗
n ,

CMT∗
a , where ts = ∅.

(C, (K1,N1,A1), (K2,N2,A2)), what we call a commitment attack instance (cat).
The adversary wins if C decrypts under both decryption contexts, and the
two decryption contexts satisfy the predicate P. The parameterization allows
attack settings in terms of which portions of the commitment attack instance
are attacker controlled versus chosen in some other way, and which of the latter
are revealed to the attacker.

We now provide more details. A commitment attack instance is a tuple
(C, (K1,N1,A1), (K2,N2,A2)) consisting of a ciphertext C ∈ C; two keys
K1,K2 ∈ K; two nonces N1,N2 ∈ N; and two associated data A1,A2 ∈ A.
A target specifier ts is a subset of labels {C, k1, n1, a1, k2, n2, a2} × {·, ·̂}. The left
set labels the components of a commitment attack instance, called component
labels, and the right set denotes whether the specified component is revealed to
the adversary (no hat means revealed and hat means not revealed.) For example,
ts = {k1, k̂2} indicates the K1 and K2 in the context, and that K1 is revealed to
the attacker.

A context selector S is a randomized algorithm that takes no input and pro-
duces the challenger-defined elements of a commitment attack instance, denoted
catc, as specified by the target specifier ts. The reveal function Revealts param-
eterized by ts, takes a subset of a commitment attack instance and reveals the
components that ts tells it to reveal; i.e., the specified components with no hat.
The merge function Mergets(catc, cata) parameterized by the target specifier ts,
takes two subsets of commitment attack instances catc (challenger-defined ele-
ments) and cata (adversary-defined elements) and works as follows. First, it
checks for every component specified by ts that catc has a corresponding value.
Second, it checks that for every component specified by ts, if cata has a value,
that it matches the value in catc. If either of these checks fail, it outputs ⊥.
Otherwise, it returns their union catc ∪ cata. Finally, the predicate P takes two
decryption contexts output by Mergets(catc, cata), and outputs true if they sat-
isfy some criteria (e.g., that K1 �= K2), and false otherwise.
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We associate to a setting Σ = (ts,S,P), AEAD Π, and adversary A the CMT
advantage defined as

AdvCMT[Σ]
Π (A) := Pr [ CMT[Σ](A) ⇒ true ] .

Taking a concrete security approach, we will track the running time used by
A and provide explicit advantage functions. Adapting our notions to support
asymptotic definitions of security is straightforward: in our discussions we will
often say a scheme is CMT[Σ] secure as informal shorthand that no adversary
can win the CMT[Σ] game with “good” probability using “reasonable” running
time.

Capturing CMT-1, CMT-3, and More via Predicates. To understand
our definitional framework further, we can start by seeing how to instantiate it
to coincide with prior notions. Let ts = ∅ indicate the empty target selector,
meaning that A chooses the ciphertext and two decryption contexts fully. Then
the set of Σ settings that use the empty target selector defines a family of
security goals, indexed solely by predicates, which we denote by CMT[P]. This
family includes CMT-1 by setting P := (K1 �= K2) and CMT-3 by setting P :=
(K1,N1,A1) �= (K2,N2,A2). Not all instances in this family are interesting:
consider, for example, when P always outputs true or false. Nevertheless, the
flexibility here allows for more granular specification of adversarial ability. For
instance, the predicate that requires (K1 �= K2) ∧ (N1 = N2) captures a setting
like that of the Dodis et al. [16] attack against Facebook’s message franking,
which requires that both decryption contexts have the same nonce.

Three games of particular interest are those with predicates that focus on
inequality of the three individual context components: (K1 �= K2), (N1 �= N2),
and (A1 �= A2). For notational brevity, we let game CMTk := CMT[P = (K1 �=
K2)] and similarly CMTn := CMT[P = (N1 �= N2)] and CMTa := CMT[P =
(A1 �= A2)]. Then CMTk corresponds to CMT-1, but CMTn and CMTa are new.
They are also orthogonal to CMT-1, in the sense that we can give schemes that
achieve CMT-1 but not CMTa nor CMTn security (see Theorem 9 in the full
version.) All three are, however, implied by being CMT-3 secure, and a scheme
that simultaneously meets CMTk, CMTn, and CMTa also enjoys CMT-3 security
(see Lemmas 7 and 8 in the full version.)

Note that CMTk, CMTn, and CMTa are permissive: as long as the rele-
vant component is distinct across the two contexts, it does not matter whether
the other components are distinct. Also, of interest are restrictive versions; for
example, we can consider CMT∗

k := CMT[(K1 �= K2) ∧ (N1,A1) = (N2,A2)]
which requires that the nonces and associated data are the same. Similarly, we
can define restrictive notions CMT∗

n and CMT∗
a . Restrictive versions are useful as

they correspond to attacks that have limited control over the decryption context.
Interestingly, these restrictive notions are not equivalent to the corresponding
permissive notions, nor does a scheme that simultaneously meets CMT∗

k , CMT∗
n,

and CMT∗
a achieve CMT-3 security (see Theorem 10 in the full version.)
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Targeted Attacks. Returning to settings with target specifier ts �= ∅, we can
further increase the family of notions considered to capture situations where a
portion of the context is pre-selected. For instance, in the key rotation example
of Albertini et al. [2] mentioned earlier, we would have ts = {k1, k2} and S =
{K1 ←$ K;K2 ←$ K; Return (K1,K2)} to indicate that the malicious sender has
to use the two randomly generated keys.

However, not all targeted attack settings are interesting. For some target
specifiers ts, we can specify a context selector S such that no adversary can
achieve non-zero advantage. In particular, if we have ts = {C, k1, n1, a1} and have
S pick ciphertext C and context (K1,N1,A1) such that AEAD.Dec(K1,N1,A1, C)
returns ⊥, then no adversary can win the game, making the associated security
notion trivial (all schemes achieve it.)

Hiding Target Components. Finally, our game considers target specifiers ts
that indicate that some values chosen by S should remain hidden from A. For
example, the Subscribe with Google attack described by Albertini et al. [2] can
be reframed as a meddler-in-the-middle attack as follows. A publisher creates
premium content M1 and encrypts it using a context (K1,N1,A1) to get a cipher-
text C . The ciphertext C is published, but the context (K1,N1,A1) is hidden. A
malicious third-party, only looking at the ciphertext C , tries to construct a valid
decryption context (K2,N2,A2) and uses that to sell fake paywall bypasses. We
can formalize this setting by having the target specifier ts = {C, k̂1, n̂1, â1}, with
the context selector S as

K1 ←$ K; N1 ←$ N; A1 ←$ A; M1 ←$ M;
Return (AEAD.Enc(K1,N1,A1,M1),K1,N1,A1)

and with Revealts(C,K1,N1,A1) outputting C .

Context Discoverability Security. Dodis et al [16, §5] and Albertini et al. [2,
§3.3] have pointed out that traditional CMT games are analogous to collision-
resistance for hash functions, in the sense that the goal is to find two different
encryption contexts (K1,N1,A1,M1) and (K2,N2,A2,M2) such that they pro-
duce the same ciphertext C . Under this lens, CMT with targeting (and no hid-
ing) is like second preimage resistance, and CMT with targeting and hiding is
like preimage resistance. But, the analogy to preimage resistance is not perfect,
since we are not asking for any preimage but rather one that is not the same as
the original. Further, this restriction is unnecessary. Going back to the meddler-
in-the-middle example above, it suffices for an on-path attacker to produce any
valid context. Thus, we find it useful to define a new preimage resistance-inspired
notion of commitment security.

In Fig. 5 we define the game CDY[ts,S], parameterized by a setting Σ = (ts,S)
that specifies a target specifier ts and a context selector S. In more detail, a
discoverability attack instance (dat) is a ciphertext and a decryption context
(C , (K ,N ,A)). Here, a target specifier ts is a subset of {k, n, a} × {·, ·̂} and a
context selector S is a randomized algorithm that takes no input and produces a
ciphertext and the elements of a decryption context specified by the target spec-
ifier ts. The reveal function Revealts and the merge function Mergets(datc,data)
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CDY[ts, S](A):

datc ←$ S

data ←$ A(Revealts(t))

dat ← Mergets(datc, data)

If dat = ⊥:

Return false

(C , (K ,N ,A)) ← dat

M ← AEAD.Dec(K ,N ,A,C )

If M = ⊥:

Return false

Return true

CDY[{k, n}, S](A):

(C ,K ,N ) ←$ S

A ←$ A(C ,K ,N )

M ← AEAD.Dec(K ,N ,A,C )

If M = ⊥:

Return false

Return true

CDY[{k, a}, S](A):

(C ,K ,A) ←$ S

N ←$ A(C ,K ,A)

M ← AEAD.Dec(K ,N ,A,C )

If M = ⊥:

Return false

Return true

Fig. 5. (Left) The CDY[ts, S] commitment security game, parameterized by a target
specifier ts and a context selector S. (Middle) The variant of CDY[Σ] used in the
definition of CDY∗

a . (Right) The variant of CDY[Σ] used in the definition of CDY∗
n .

work similarly to their CMT counterparts. Finally, the goal of the adversary is
to produce one valid decryption context for the target ciphertext.

We associate to a setting Σ = (ts,S), AEAD scheme Π, and adversary A the
CDY advantage defined as

AdvCDY[Σ]
Π (A) = Pr [ CDY[Σ](A) ⇒ true ] .

Restricted CDY and Its Variants. To more accurately capture attack set-
tings and to prove relations, we find it useful to define restricted variants of the
CDY[Σ] game. A class of games of particular interest are ones that allow target-
ing under any context selector; we call this class restricted CDY. For a target
specifier ts, let CDY∗[ts] be the game where the adversary is given a cipher-
text and elements of a decryption context specified by ts, all selected arbitrarily,
and needs to produce the remaining elements of a decryption context such that
AEAD.Dec(K ,N ,A,C ) �= ⊥. Formally, for an AEAD scheme Π and adversary
A, we define the CDY∗ advantage as

AdvCDY∗[ts]
Π (A) = Pr [ for all S,CDY[ts,S](A) ⇒ true ] .

In addition, we find it useful to define three specific variants of CDY∗

that allow targeting two-of-three components of a decryption context. Let
CDY∗

a be the game where the adversary is given an arbitrary ciphertext
C , key K , and nonce N , and has to produce associated data A such that
AEAD.Dec(K ,N ,A,C ) �= ⊥. Formally, for an AEAD scheme Π and adversary
A, we define the CDY∗

a advantage as

AdvCDY∗
a

Π (A) = Pr [ for all S,CDY[{k, n},S](A) ⇒ true ] .

The CDY∗
k and CDY∗

n games are defined similarly where the adversary has to
produce a valid key and nonce respectively such that decryption succeeds when
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the remaining inputs to decryption are pre-selected. Formally, for an AEAD
scheme Π and adversary A, we define the CDY∗

k and CDY∗
n advantage as

AdvCDY∗
k

Π (A) = Pr [ for all S,CDY[{n, a},S](A) ⇒ true ] ,

AdvCDY∗
n

Π (A) = Pr [ for all S,CDY[{k, a},S](A) ⇒ true ] .

Note that the context selector can only select valid ciphertexts, which
sidesteps issues with formatting. Without this constraint, a context selector
could select a ciphertext that has invalid padding for a scheme that requires
valid padding, thereby making the notion trivial (all schemes achieve it.)

Furthermore, specific variants like CDY∗
a may be trivial even with this con-

straint. For instance, if the ciphertext embeds the nonce, then one can pick some
key K , some ciphertext C embedding some nonce N1, some other nonce N2, then
no CDY∗

a adversary can pick associated data A such that C decrypts correctly
under (K ,N2,A). However, in the context of this restricted CDY notion, we
think this is desired behavior and delegate capturing nuances like this to the
unrestricted CDY notion (which can capture this by restricting to context selec-
tors which ensure that the nonce embedded is the same as the nonce provided.)

With Context Compression, CMT-3 Implies Restricted CDY. A
CDY[Σ] attack does not always imply a CMT[Σ] attack. Consider, for exam-
ple, the “identity” AEAD that has Enc(K ,N ,A,M ) ⇒ k ‖ n ‖ a ‖ m which has
an immediate CDY[Σ] attack but is CMT[Σ] secure since a ciphertext can only
be decrypted under one context.2 However, continuing with the hash function
analogy, we wonder if a “compression” assumption could make this implication
hold. In Theorem1 we show this statement for CDY∗[ts = ∅] and CMT − 3.
And note that this generalizes to CDY∗[ts] for any ts with an appropriate com-
pression assumption. Notably, it holds for CDY∗

a if we assume compression over
associated data rather than the full context.

Theorem 1. Fix some AEAD Π. Then for any adversary A that wins the
CDY∗[ts = ∅] game, we can give an adversary B such that

AdvCDY∗[ts=∅]
Π (A) ≤ 2 · AdvCMT−3

Π (B) + ProbBadCtxΠ , (2)

where ProbBadCtxΠ is the probability that a random decryption context, when
used for encrypting a random message, is the only valid decryption context for
the resulting ciphertext.

Proof. This proof is adapted from Bellare and Rogaway [9, p.147], where they
prove a similar theorem for hash functions. We construct an adversary B that
randomly samples a context (K1,N1,A1), encrypts a random message to get a
ciphertext C , then asks the CDY adversary A to produce a decryption context
for C to get (K2,N2,A2). This ciphertext generation can be viewed as a valid

2 While the “identity” AEAD is not secure in the sense of privacy [32, §3], one can
construct a secure counterexample by using a wide pseudorandom permutation [7].



394 S. Menda et al.

B:

K1 ←$ K; N1 ←$ N; A1 ←$ A

M1 ←$ M

ctx1 ← (K1,N1,A1)

C ← Π.Enc(K1,N1,A1,M1)

ctx2 ←$ A(C )

If ctx2 = ⊥:

Return ⊥
(K1,N2,A2) ← ctx2

If (K1,N1,A1) = (K2,N2,A2)

Return ⊥
Return (C, (K1,N1,A1), (K2,N2,A2))

S:

K1 ←$ K; N1 ←$ N; A1 ←$ A

M1 ←$ M

C ← Π.Enc(K1,N1,A1,M1)

Return C

Fig. 6. Pseudocode for the CMT − 3 adversary B and CDY∗ context selector S, used
in proof of Theorem 1.

CDY context selector S so B wins if the returned context is different from the
one it sampled; i.e., (K1,N1,A1) �= (K2,N2,A2). The pseudocode for B and S is
given in Fig. 6 and the success probability is analyzed below.

Per the above discussion the advantage of B is

AdvCMT−3
Π (B) = Pr[(A(C ) �= ⊥) ∧ (ctx1 �= ctx2)] , (3)

where without loss of generality, we are assuming that A always produces a
valid context or fails and produces ⊥. But, before simplifying this equation, we
need to define some terminology. First, let us define the set of valid decryption
contexts for a ciphertext as

Γ(C ) := {(K ,N ,A) : (Π.Dec(K ,N ,A,C ) �= ⊥)} .

Now, for a given message M , let us also define the set of “bad” decryption
contexts which when used for encrypting M , remain the only valid decryption
context for the resulting ciphertext

BadCtxs(M ) := {(K ,N ,A) : |Γ(Π.Enc(K ,N ,A,M ))| = 1} .

Finally, let us define the probability that a random decryption context is bad

ProbBadCtxΠ := Pr [(K ,N ,A) ∈ BadCtxs(M )] ,

over the choice (K ,N ,A,M ) ←$ (K × N × A × M). Using this notation we can
rewrite Eq. 3, where the probabilities are over the choice (K ,N ,A,M ) ←$ (K ×
N × A × M), as

AdvCMT−3
Π (B) = Pr[(A(C ) �= ⊥) ∧ (ctx1 �= ctx2)]

≥ Pr[(A(C ) �= ⊥) ∧ (ctx1 �= ctx2) ∧ (ctx1 �∈ BadCtxs(M ))] .

Using conditional probability, we can rewrite this term as

Pr[ctx1 �= ctx2 | (A(C ) �= ⊥) ∧ (ctx1 �∈ BadCtxs(m))]
·Pr[(A(C ) �= ⊥) ∧ (ctx1 �∈ BadCtxs(m))] .
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B:

K1 ←$ K; N1 ←$ N; A1 ←$ A

M1 ←$ M

C ← Π.Enc(K1,N1,A1,M1)

K2 ← K1 + 1; N2 ← N1 + 1

A2 ←$ A(C ,K2,N2)

If A2 = ⊥
Return ⊥

Return (C, (K1,N1,A1), (K2,N2,A2))

S:

K1 ←$ K; N1 ←$ N; A1 ←$ A

M1 ←$ M

C ← Π.Enc(K1,N1,A1,M1)

K2 ← K1 + 1; N2 ← N1 + 1

Return (C ,K2,N2)

Fig. 7. Pseudocode for the CMT − 3 adversary B and CDY∗
a context selector S, used

in proof of Theorem 2.

Recall that if ctx1 �∈ BadCtxs(m), then the adversary must choose one of at least
two valid contexts, each of which are equally likely to be ctx1 (even conditioned
on C ). Thus the probably that it picks ctx1 is at most 1/2, and so

AdvCMT−3
Π (B) ≥ 1

2
· Pr[(A(C ) �= ⊥) ∧ (ctx1 �∈ BadCtxs(m))]

≥ 1
2

· (Pr[A(C ) �= ⊥] − Pr[ctx1 ∈ BadCtxs(m)]) .

Putting it all together, we get that

AdvCMT−3
Π (B) ≥ 1

2
·
(

AdvCDY∗[ts=∅]
Π (A) − ProbBadCtxΠ

)

,

and finally rearranging gives the desired result. ��

CMT-3 Implies Restricted Variants of CDY. We now show that if an
attack against any of CDY∗

k , CDY∗
n, or CDY∗

a implies an attack against CMT − 3.
The following theorem shows this for CDY∗

a , but it readily generalizes to CDY∗
k

and CDY∗
n.

Theorem 2. Fix some AEAD Π with key space |K| ≥ 2 and nonce space |N| ≥
2. Then for any adversary A that wins the CDY∗

a game, we can give an adversary
B such that

AdvCDY∗
a

Π (A) = AdvCMT−3
Π (B) ,

and the runtime of B is that of A.

Proof. We prove this by constructing B such that it succeeds whenever A suc-
ceeds. The adversary B randomly samples a context (K1,N1,A1), encrypts a
random message to get a ciphertext C , selects some other key K2 and nonce N2

and asks the CDY∗
a adversary A to produce an associated data A2 such that

(K2,N2,A2) can decrypt C . This ciphertext and partial context construction
can be viewed as a valid context selector S. The pseudocode for the adversary B
and the context selector S are given in Fig. 7. And, notice that by construction,
B wins whenever A succeeds. ��
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K N A C tag

MAC

�=

⊥

NoFailDecrypt

M

Fig. 8. Decryption structure of AEAD schemes which delegate their authenticity to a
MAC. Should the MAC tag comparison fail, the routine outputs an error (⊥), otherwise
a message is always output by NoFailDecrypt.

This approach of constructing B readily generalizes to CDY∗
n and CDY∗

k . Fur-
ther, notice that the B constructed in Fig. 7 wins CMTk and CMTn; and similar
relations hold for adversaries B constructed from CDY∗

n and CDY∗
k adversaries.

The following corollary captures these implications.

Corollary 3. Fix some AEAD Π with key space |K| ≥ 2, nonce space |N| ≥ 2,
and associated data space |A| ≥ 2. Then the following three statements hold.
First, for any adversary A1 that wins the CDY∗

a game, we can give an adversary
B1 such that

AdvCDY∗
a

Π (A1) = AdvCMTk

Π (B1) = AdvCMTn

Π (B1) .

Second, for any adversary A2 that wins the CDY∗
n game, we can give an adver-

sary B2 such that

AdvCDY∗
n

Π (A2) = AdvCMTk

Π (B2) = AdvCMTa

Π (B2) .

Third, for any adversary A3 that wins the CDY∗
k game, we can give an adversary

B3 such that

AdvCDY∗
k

Π (A3) = AdvCMTn

Π (B3) = AdvCMTa

Π (B3) .

And the runtimes of B1, B2, and B3 are that of A1, A2, and A3, respectively.

4 Context Discovery Attacks Against AEAD

We show context discovery attacks on many AEAD schemes which delegate
their authenticity to a non-preimage resistant MAC. Specifically, we show CDY∗

a

attacks on EAX [11], SIV [34], CCM [17], GCM [19], and OCB3 [28], and CDY∗
n

attacks on EAX [11] and GCM [19].
We say that an AEAD delegates its authenticity to a MAC if during decryp-

tion, a message is output whenever the MAC comparison succeeds. To formalize
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OMAC(K ,M ):

// Compute Constants

L ← EK (0128)

B ← 2 · L

// split into n-bit blocks

// & xor B to the last block

Let M1, . . . ,Mm ← M

Mm ← Mm ⊕ B

// CBC-MAC Evaluation

C0 ← 0128

For i = 1..m:

Ci ← EK (Ci−1⊕Mi)

Return Cm

EAX-Decrypt(K ,N ,A,C ):

// Separate the Tag

C ‖ tag ← C

// Compute and Check Tag

N ← OMAC(K , 0128 ‖ N )

H ← OMAC(K , 01271 ‖ A)

C ← OMAC(K , 012610 ‖ C )

If tag �= (N ⊕ H ⊕ C):

Return ⊥
// CTR Decryption

r ← |C |/16 // num blocks

For i = 0..(r − 1):

Mi ← Ci ⊕ EK (N + i)

Return M

A(C ,K ,N ):

C ‖ tag ← C

// Compute ξ

ξ ← tag

ξ ← ξ ⊕ OMACK (0128 ‖ N )

ξ ← ξ ⊕ OMACK (012610 ‖ C )

// Reconstruct A and Return

A ← E−1
K (ξ)

A ← A⊕EK (01271)⊕(2·EK (0128))

Return (K ,N ,A)

Fig. 9. (Left) Pseudocode for OMAC [11, Fig 1], used in EAX, with block-aligned
inputs. (Middle) Pseudocode for EAX Mode [11] decryption with 128-bit tag, 128-bit
nonce, and block-aligned messages and associated data. (Right) Pseudocode for an
CDY∗

a attack on EAX.

this, we define NoFailDecrypt as a class of decryption algorithms that never fail.
In other words, given a key, nonce, associated data, and ciphertext, they always
produce a message. For example, ECB and CTR decryption are NoFailDecrypt
algorithms.

With this terminology, we say that an AEAD delegates its authenticity to
a MAC if it can be written as a combination of a MAC and a NoFailDecrypt
algorithm such that if the MAC check fails, decryption fails; if instead the MAC
check passes, then decryption outputs the result of NoFailDecrypt (which never
fails). This structure is illustrated in Fig. 8. As a concrete example, for EAX [11]
(described in Fig. 9), the MAC corresponds to checking the OMAC tag, and the
NoFailDecrypt corresponds to the CTR decryption. In this section, we are par-
ticularly interested in schemes that compose this structure with a non-preimage
resistant MAC like CMAC [18], GMAC [19, §6.4], or OMAC [11, Fig 1].

The CDY∗
a attacks we show on these schemes have the following outline.

Following the definition of the game, the challenger provides the adversary with
a ciphertext C ‖tag, a target key K , and a target nonce N , and asks it to find an
associated data A such that Decrypt(K ,N ,A,C ‖ tag) �= ⊥. Then, the adversary
exploits the lack of preimage resistance to find an associated data A such that
MAC(K ,N ,A,C ) = tag and returns A. Since, in these schemes, the tag check
passing guarantees decryption success, we get that decryption succeeds.

For EAX [11] and GCM [19], we also show CDY∗
n attacks. They proceed in

a similar fashion to the CDY∗
a attacks but now the adversary finds a nonce N

such that MAC(K ,N ,A,C ) = tag. But, when the nonce length is shorter than a
block (which is always true with GCM, and may be true with EAX), the CDY∗

n

attacks are slower than the CDY∗
a attacks.

The remainder of the section details the attacks on EAX. The attacks on
SIV, CCM, GCM, and OCB3 are in Appendix B of the full version.
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CDY∗
a and CDY∗

n Attacks on EAX. We consider EAX over a 128-bit block
cipher as defined in Bellare, Rogaway, and Wagner [11]. For simplicity, we restrict
to 128-bit tag, 128-bit nonce,3 and block-aligned messages and associated data.
We note however that this is only to make the exposition simpler and is not
necessary for the attack. Pseudocode for the scheme with these parameter choices
is given in Fig. 9.

Let’s start by contextualizing the CDY∗
a game. The challenger provides us

with an m-block ciphertext C = C1 · · ·Cm ‖ tag, a 128-bit target key K , and a
96-bit target nonce N . And the goal is to find a 1-block associated data A such
that EAX-Decrypt(K ,N ,A,C ) �= ⊥. Notice from Fig. 9 that decryption passing
reduces to the tag check passing. In other words, we can rewrite the goal as
finding an associated data A such that

tag = OMACK (0128 ‖ N ) ⊕ OMACK (012610 ‖ C) ⊕ OMACK (01271 ‖ A) . (4)

We can rearrange terms to get

OMACK (01271 ‖ A) = tag ⊕ OMACK (0128 ‖ N ) ⊕ OMACK (012610 ‖ C ) .

Notice that the right-hand side is composed entirely of known terms, thus we
can evaluate it to some constant ξ. Using the assumption that A is 1-block, we
can expand OMACK to get

EK (EK (01271) ⊕ A ⊕ (2 · EK (0128))) = ξ .

Decrypting both sides under K , and solving for A gives

A = E−1
K (ξ) ⊕ EK (01271) ⊕ (2 · EK (0128)) .

The full pseudocode for this attack is given in Fig. 9.
This attack generalizes to other parameter choices. It works as is against

an arbitrary-length message, an arbitrary-length tag, and an arbitrary-length
nonce. In addition, this attack can also be adapted as a CDY∗

n attack. We start
by rewriting Eq. 4 as

OMACK (0128 ‖ N ) = tag ⊕ OMACK (012610 ‖ C ) ⊕ OMACK (01271 ‖ C ) ,

and solving for N as we did for A above. Since N is 1 block (128 bits), the
reduction is similar, and the success probability remains one. If the nonce length
was shorter, then assuming an idealized model like the ideal cipher model, the
success probability reduces by a multiplicative factor of 2−f ·128 where f is the
fraction of bytes we do not have control over. For example, if we only had control
over 14 of the 16 bytes in an encoded block, then the success probability would
reduce by 2−16.

This attack can also be adapted to provide partial control over the output
plaintext. Notice that the output plaintext is a CTR decryption under the chosen
3 EAX [11, Figure 4] supports an arbitrary length nonce; 128 bits (16 bytes) is the

default in the popular Tink library [3], see [4].
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SIV-1b-Decrypt(K , C):

c ← 1n−6401310131

C1 ‖ tag ← C

I ← tag

K1 ‖ K2 ← K

// CTR Decryption

ctr ← I & c

M ← C1 ⊕ EK2 (ctr)

// IV Check

I′ ← CMAC∗(K1,M )

If I �= I′:
Return ⊥

Return M

CMAC∗(K ,M ):

S ← CMAC(K , 0n)

Return CMAC(K , S ⊕M )

CMAC(K , X):

Ks ← 2 · EK (0n)

Return EK (Ks ⊕ X)

Fig. 10. (Left) Pseudocode for SIV Mode [34] decryption with an n-bit message and
no associated data. (Right) Pseudocode for CMAC* [34] and CMAC [18] with an
n-bit input.

key with the OMAC of the nonce as IV. Assuming an idealized model where the
block cipher is an ideal cipher and OMAC is a random function, for every new
choice of key and nonce, we get a random output plaintext. So, by trying 2m

key and nonce pairs, we can expect to control m bits of the output plaintext.

5 Restrictive Commitment Attacks via k-Sum Problems

The previous section’s CDY∗
a and CDY∗

n attacks against GCM, EAX, OCB3,
SIV, and CCM immediately give rise to permissive CMTk attacks against each
scheme. This follows from our general result showing that CMTk security implies
CDY∗

a and CDY∗
n (Corollary 3). But this does not imply the ability to build

restrictive CMT∗
k , CMT∗

n, or CMT∗
a attacks that require the non-adversarially

controlled parts of the two decryption contexts to be identical (see Theorem 10
in the full version.)

Prior work has provided (in our terminology) CMT∗
k attacks for GCM [16,

24], AES-GCM-SIV [29,35], ChaCha20/Poly1305 [24,29], XChaCha20/Poly1305
[29], and OCB3 [2]. An open question of practical interest [36] is whether there
is a CMT∗

k attack against SIV. We resolve this open question, showing an attack
that works in time about 2n/3. It requires new techniques related to the fast
solution of k-sum problems, as we explain below.

Attack on 1-Block SIV. We consider SIV over an n-bit block cipher (for
n ≥ 64) as defined in the draft NIST specification [34]. For ease of exposition,
we restrict to the case of an n-bit message and no associated data, and describe
how to generalize this to the multi-block case in Appendix D in the full version.
Pseudocode for the scheme with these parameter choices is given in Fig. 10.

Here, the CMT∗
k adversary seeks to produce a ciphertext C = C1 ‖ tag and

two 2n-bit keys K = K1 ‖ K2 and K ′ = K ′
1 ‖ K ′

2 such that SIV-Decrypt(K , C) �=
⊥ and SIV-Decrypt(K ′, C) �= ⊥. Notice from Fig. 10 that this reduces to two
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simultaneous IV checks passing which can be written as

tag = CMAC∗(K1, C1 ⊕ EK2(tag & c)) = CMAC∗(K ′
1, C1 ⊕ EK ′

2
(tag & c))

where c = 1n−6401310131 is a constant specified by the SIV standard. Our attack
strategy will be to choose tag arbitrarily, so we can treat this as a constant value.
Towards solving for the remaining variable C1, we can substitute in the definition
of CMAC∗ to get

tag = EK1((2 · EK1(0
n)) ⊕ EK1(2 · EK1(0

n)) ⊕ C1 ⊕ EK2(tag & c))
= EK ′

1
((2 · EK ′

1
(0n)) ⊕ EK ′

1
(2 · EK ′

1
(0n)) ⊕ C1 ⊕ EK ′

2
(tag & c)) ,

which we can rearrange the two equalities by solving for the variable C1, giving
us the following:

C1 = E−1
K1

(tag) ⊕ (2 · EK1(0
n)) ⊕ EK1(2 · EK1(0

n)) ⊕ EK2(tag & c)

= E−1
K ′

1
(tag) ⊕ (2 · EK ′

1
(0n)) ⊕ EK ′

1
(2 · EK ′

1
(0n)) ⊕ EK ′

2
(tag & c) . (5)

The above implies that it suffices now to find K1,K2,K ′
1,K

′
2 that satisfy Eq. 5.

To ease notation, we define four helper functions, one for each term:

F1(K1) := E−1
K1

(tag) ⊕ 2 · EK1(0
n) ⊕ EK1(2 · EK1(0

n)) ,

F2(K2) := EK2(tag & c) ,

F3(K1) := E−1
K ′

1
(tag) ⊕ 2 · EK ′

1
(0n) ⊕ EK ′

1
(2 · EK1(0

n)) ,

F4(K ′
2) := EK ′

2
(tag & c) ,

and recast Eq. 5 as a 4-sum problem

F1(K1) ⊕ F2(K2) ⊕ F3(K ′
1) ⊕ F4(K ′

2) = 0 .

If these were independent random functions, then we could directly apply Wag-
ner’s k-tree algorithm [38] for finding a 4-way collision (also referred to as the
generalized birthday problem). But even modeling E as an ideal cipher, the func-
tions are neither random nor independent. For example, F1(x) = F3(x) always.

Towards resolving this, we first ensure that the keys K1, K2, K ′
1, and K ′

2 are
domain separated. This can be easily arranged: see Fig. 11 for the pseudocode
of our CMT∗

k adversary A against SIV. We now turn to lower bounding A’s
advantage, which consists of two primary steps.

The first is that we argue that, in CMT∗
k when running our adversary against

SIV, the helper-function outputs are statistically close to uniform. Then, we show
that Wagner’s approach works for not-too-biased values.

We observe that F2 and F4 trivially behave as independent random functions
in the ideal cipher model for E. The analysis for F1 and F3 is more involved. We
use the following lemma, which bounds the distinguishing advantage between a
uniform n-bit string and the output of a single query to either F1 or F3.
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A():

c ← 1n−6401310131

// Arbitrarily pick a tag

tag ←$ {0, 1}n \ {0n}
// Define helper functions

Def F1(K1) ← E−1
K1

(tag) ⊕ 2 · EK1 (0n) ⊕ EK1 (2 · EK1 (0n))

Def F2(K2) ← EK2 (tag & c)

Def F3(K1) ← E−1
K ′
1
(tag) ⊕ 2 · EK ′

1
(0n) ⊕ EK ′

1
(2 · EK1 (0n))

Def F4(K
′
2) ← EK ′

2
(tag & c)

// Generate lists

For i = 1, ..., q:

x ← encode128−2(i)

// Domain separate the keys

K1 ← 00 ‖ x; K2 ← 01 ‖ x; K ′
1 ← 10 ‖ x; K ′

2 ← 11 ‖ x

// Query a row

L1[i] ← F1(K1); L2[i] ← F2(K2); L3[i] ← F3(K
′
1); L4[i] ← F4(K

′
2)

// Find an 4-way collision using Wagner’s k-tree algorithm [38]

res ← A.fourWayCollision(L1, L2, L3, L4)

If res = ∅:

Return ⊥
// Repackage the collision into ciphertext and keys

(x1, x2, x3, x4) ← res

C1 ← F1(x1) ⊕ F2(x2)

K1 ← 00 ‖ x1; K2 ← 01 ‖ x2; K ′
1 ← 10 ‖ x3; K ′

2 ← 11 ‖ x4

Return C1 ‖ tag,K1 ‖ K2,K ′
1 ‖ K ′

2

Fig. 11. Pseudocode for CMT∗
k attack on SIV-1b. The fourWayCollision subroutine is

defined in Appendix C in the full version.

Lemma 4. Let tag ∈ {0, 1}n \{0n} and σ be an n-bit random permutation with
inverse σ−1 and U be the uniform random variable over n bit strings. Define
n-bit random variables (over the choice of σ)

A := σ−1(tag) , B := 2 · σ(0n) , C := σ(2 · σ(0n)) ,

where · denotes multiplication in GF(2n). Then no adversary that makes one
query to a procedure P can distinguish between P �→ (U,U,U) and P �→ (A,B,C)
with probability greater than 6 · 2−n.

The proof proceeds by constructing identical-until-bad games and applying
the fundamental lemma of game playing [10] to discern the distinguishing advan-
tage. The proof appears in Appendix C in the full version.

We combine this with the following technical statement about applying Wag-
ner’s k-tree algorithm [38] to almost-random lists.

Theorem 5. Let L be a list of � 4-tuples x = (x1, x2, x3, x4), where each entry x
is distinguishable from an 4-tuple of independent uniformly random values with
probability at most ξ. Let L1, L2, L3, and L4 be lists of 1-index (x1), 2-index
(x2), 3-index (x3), and 4-index (x4) elements of L respectively. Then Wagner’s
k-tree algorithm [38] finds a solution (y1, y2, y3, y4) ∈ L1 × L2 × L3 × L4 such
that
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y1 ⊕ y2 ⊕ y3 ⊕ y4 = 0 ,

with probability at least

(1 − � · ξ)
(

1 − exp
(

−�2 · 2−n/3

8

))(

1 − exp
(

1 − �4 · 2−4n/3

8
− 2

�4 · 2−4n/3

))

,

and time at most

20� + 4�2 · 2−n/3 + 4Sort(�) + 2Sort((1/2)�2 · 2−n/3) ,

where Sort(k) denotes the time to sort a list of k items.

The proof proceeds by analyzing the algorithm step-by-step and at each
step applying Chernoff bounds [23] to compute a lower bound on the success
probability. The proof appears in Appendix C in the full version.

With Lemma 4 and Theorem 5, we can now prove a lower bound on the
advantage of the CMT∗

k adversary in Fig. 11.

Theorem 6. Let A be the CMT∗
k adversary against SIV over an n-bit ideal

cipher E, detailed in Fig. 11. It makes 10q queries to E and takes at most

35q + 4q2 · 2−n/3 + 4Sort(q) + 2Sort((1/2)q2 · 2−n/3) + 11 ,

time, where Sort(k) is the cost of sorting a list of k items. Then the advantage

AdvCMT∗
k

SIV (A) ≥ (

1 − 8q · 2−n
)
(

1 − exp
(

−q2 · 2−n/3

8

))

(

1 − exp
(

1 − q4 · 2−4n/3

8
− 2

q4 · 2−4n/3

))

. (6)

Proof. By construction, the adversary A (Fig. 11) wins whenever it finds a colli-
sion, so it suffices to lower bound this probability. First, the domain separation
over the keys ensures that the two helper functions never query the ideal cipher
with the same key. This, by the properties of the ideal cipher, ensures indepen-
dence of the outputs. Second, F2 and F4 call the ideal cipher only once on a fixed
output under a new key each invocation, so their outputs are indistinguishable
from an n-bit uniform random value. Third, F1 and F3 call the ideal cipher
three times under the same key each invocation. However, applying Lemma 4
gives us that their outputs are distinguishable from an n-bit uniform random
value with probability at most 6 · 2−n. So, by the union bound, a row of outputs
(F1(K1), F2(K2), F3(K ′

1), F4(K ′
2)) is distinguishable from four independent, uni-

formly random outputs with probability at most 8·2−n. Then, Theorem 5 tells us
that the function fourWayCollision called by A finds a collision with probability
at least that of Eq. 6.

It remains to analyze the cost of the adversary A. First, it costs 2 operations
to initialize c and tag. Second, since each loop iteration costs 15 operations, the
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loop costs 15q operations. Third, from Theorem5, finding a 4-way collision on
four lists of size q using Wagner’s k-tree algorithm [38] costs at most

20q + 4q2 · 2−n/3 + 4Sort(q) + 2Sort((1/2)q2 · 2−n/3)

operations. Fourth, repackaging the collision and returning costs 9 operations.
So, the runtime is at most

35q + 4q2 · 2−n/3 + 4Sort(q) + 2Sort((1/2)q2 · 2−n/3) + 11 .

Finally, since each loop iteration makes 10 ideal cipher queries, the algorithm
makes 10q queries. ��

In the following corollary, we show that when the adversary makes approxi-
mately 2n/3 queries, it can win CMT∗

k against SIV with high probability, taking
time approximately 2n/3.

Corollary 7. Let A be the CMT∗
k adversary against SIV over an n-bit ideal

cipher E, detailed in Fig. 11 with q = 10 · 2n/3. It makes 100 · 2n/3 queries to E
and takes at most

750 · 2n/3 + 4Sort(10 · 2n/3) + 2Sort(50 · 2n/3) + 11 ,

time, where Sort(n) is the cost of sorting a list of n items. Then

AdvCMT∗
k

SIV (A) ≥
(

1 − 80 · 2−2n/3
) (

1 − exp
(

−12.5 · 2n/3
))

(1 − exp (−1249)) .

6 Related Work

Key commitment for authenticated encryption was introduced in Farshim,
Orlandi, and Rosie [22] through full robustness (FROB), which in turn was
inspired by key robustness notions in the public key setting by Abdalla, Bellare,
and Neven [1] and refined by Farshim et al. [21]. The FROB game asks that
a ciphertext only be able to decrypt under a single key. However, the FROB
game was defined for randomized authenticated encryption. Grubbs, Lu, and
Ristenpart [24] adapted the FROB game to work with associated data, where
they ask that a ciphertext only be able to decrypt under a single key (with no
constraints on the associated data.) This notion was further generalized by Bel-
lare and Hoang [5] to the nonce-based setting, with their committing security
1 (CMT-1) definition. The CMT-1 game asks that a ciphertext only be able to
decrypt under a single key (with no constraints on the nonce nor the associated
data.)

The real-world security implications of key commitment were first highlighted
by Dodis et al. [16] where they exploited the lack of key commitment when
encrypting attachments in Facebook Messenger’s message franking protocol [20]
to send abusive images that cannot be reported. Albertini et al. [2] generalized
this attack from images to other file formats and called attention to more settings
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where lack of key commitment can be exploited to defeat integrity. While both
these attacks targeted integrity, Len, Grubbs, and Ristenpart [29] introduced
partitioning oracle attacks and showed how to use them for password guessing
attacks by exploiting lack of key commitment to obtain large speedups over
standard dictionary attacks, endangering confidentiality.

Proposals for constructing key committing ciphers also started in the
Farshim, Orlandi, and Rosie paper [22] where they showed that single-key
Encrypt-then-MAC, Encrypt-and-MAC, and MAC-then-Encrypt constructions
produce key committing ciphers, when the MAC is collision-resistant. Grubbs,
Lu, and Ristenpart [24] showed that the Encode-then-Encipher construction [8]
was key committing. Dodis et al. [16] proposed a faster compression function-
based key committing AEAD construction termed encryptment, and also dis-
cussed the closely related Duplex construction [12], which is also key committing.
Albertini et al. [2] formally analyzed the folklore padding zeroes and key hashing
transforms and showed that they produce key committing AEAD at a lower per-
formance cost than prior constructions. Bellare and Hoang [5] constructed key
committing variants of GCM and GCM-SIV termed CAU-C1 and CAU-SIV-C1,
and generic transforms UtC and RtC that can be used to turn unique-nonce
secure and nonce-reuse secure AEAD schemes respectively into key committing
AEAD schemes.

The potential risk of delegating authenticity of an AEAD entirely to a
non-collision-resistant MAC is folklore. Farshim, Orlandi, and Rosie [22] who
introduced the notion of committing AEAD also cautioned against using non-
collision-resistant MACs and CBC-MAC in particular.

On February 7, 2023, NIST announced the selection of the Ascon family for
lightweight cryptography standardization [37]. The finalist version of Ascon [15]
specifies two AEAD parameter sets Ascon-128 and Ascon-128a. Both param-
eter sets specify a 128 bit tag, which by the birthday bound, upper bounds the
committing security at 64 bits. But, since the underlying algorithm is a variant
of the Duplex construction with a 320-bit permutation, and the same specifica-
tion specifies parameters a hash function with 128-bit collision resistance, one
can specify an AEAD with 128-bit committing security by tweaking parameters.

Concurrent Work. In independent and concurrent work made public very
recently, Chan and Rogaway [14] introduced a new definitional framework for
committing AE. Their goal is to capture multiple different types of commitment
attacks—what they call misattributions, or an adversary being able to construct
distinct pairs (K ,N ,A,M ) and (K ′,N ′,A′,M ′) that both “explain” a single
ciphertext C—in a unified way. Their main definition only captures commitment
to an entire (K ,N ,A,M ) tuple; but in [14, Appendix A], they briefly describe
an extension to only require commitments to a subset of the values.

The extended version of their framework is similar to our CMT[Σ] defini-
tion. While both frameworks aim to capture granular win conditions beyond
CMT-3, they are orthogonal. Their framework models the multi-key setting
with many randomly chosen unknown-to-the-adversary, known-to-the-adversary,
and chosen-by-the-adversary keys. While our CMT[Σ] captures the distinction
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between permissive and restrictive notions, and settings that impose restric-
tions on the nonce and associated data. We also introduce the notion of context
discoverability and describe its relation to CMT[Σ].

Chan and Rogaway [14] also independently observed that AEAD with non-
preimage resistant MACs are vulnerable to commitment attacks and show
attacks on GCM and OCB3 similar to the ones we give in Sect. 4.
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Abstract. Virtually all modern blockciphers are iterated. In this paper,
we ask: to construct a secure iterated blockcipher “non-trivially”, how
many calls to random functions and permutations are necessary?

When security means indistinguishability from a random permutation,
optimality is achieved by the Even-Mansour scheme using 1 call to a
public permutation. We seek for the arguably strongest security indif-
ferentiability from an ideal cipher, a notion introduced by Maurer et al.
(TCC 2004) and popularized by Coron et al. (JoC, 2014).

We provide the first generic negative result/lower bounds: when the
key is not too short, no iterated blockcipher making 3 calls is (statisti-
cally) indifferentiable. This proves optimality for a 4-call positive result
of Guo et al. (Eprint 2016). Furthermore, using 1 or 2 calls, even indiffer-
entiable iterated blockciphers with polynomial keyspace are impossible.

To prove this, we develop an abstraction of idealized iterated blockci-
phers and establish various basic properties, and apply Extremal Graph
Theory results to prove the existence of certain (generalized) non-random
properties such as the boomerang and yoyo.

1 Introduction

Iterated Blockciphers. Virtually all modern blockciphers, e.g., DES, AES,
PRESENT, Skinny, are designed via iteration [2]. These even include theoreti-
cal constructions such as the Luby-Rackoff [40], Iterated Even-Mansour (IEM)
ciphers [1,11,23,30] and others [21,29]. In fact, the initialization algorithms of
some stream ciphers [50] also follow the iteration paradigm.

The idea of iteration dates back to Shannon [47] or even earlier practice of
product ciphers. In general, an iterated structure creates a (usually weak) keyed
permutation, typically called its round, in a “non-trivial” manner, and then com-
poses such rounds till gaining enough security. By “non-trivial”, the round has
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to employ smart ideas to resolve non-invertibility of functions [40] or combine
keys with keyless permutations [1,11,23]. Such constructs also constitute nat-
ural transformations between (pseudo)random functions and (pseudo)random
permutations [1,16,21,23,40], which are fundamental in modern cryptography.

While provably secure blockciphers remain out of reach, there is a definite
belief that with sufficient iterations, the iterated paradigm does yield enough
security. The primary security notion for a blockcipher is indistinguishability
from a random permutation, i.e., no adversary with bounded oracle queries and
black-box access to a permutation can distinguish whether it is interacting with
the blockcipher under a random key or a perfectly random permutation. This
has probably been the most widely used security assumption for blockciphers.
In fact, with certain idealized assumptions and sufficient iterations, the afore-
mentioned Luby-Rackoff [40], IEM [11,23,30] and Swap-Or-Not [29] have been
proven indistinguishable (and bounds usually increase with rounds).

The Ideal Cipher Model. Albeit the de-facto standard, indistinguishability
is insufficient for a number of important blockcipher-based cryptosystems. For
example, some real-world protocols such as f8 and f9 [33] crucially rely on the
stronger related-key security of blockciphers [6]. Even worse, in blockcipher-based
hash functions [9,10], the adversary can control both the message and the key of
the blockcipher and exploit “known-key” or “chosen-key” attacks [8,37] to break
collision- or preimage-resistance of the hash. In fact, a mere PRP cannot yield
black-box construction of collision resistant hash [48].

Hence, cryptographers have modeled a reliable (κ, n)-blockcipher (i.e., a
blockcipher with κ-bit keys and n-bit blocks) as an ideal cipher (IC), i.e., a
family of 2κ independent n-bit random permutations that is public to all enti-
ties. This is known as the ideal cipher model (ICM), and it turned out crucial for
proving security for blockcipher-based schemes when the PRP assumption is not
enough [9,10,35]. While remaining a heuristic approach [12,41], a proof in the
ideal cipher model is typically considered a good indication of security from the
point of view of practice. Meanwhile, “being close to ideal” becomes a new stan-
dard for blockcipher design and evaluations—much like “being close to a random
oracle” for hash functions [7,15]. In fact, distinguishing blockcipher algorithms
from “ideal” has been recognized as an important attack vector [8,37].

Indifferentiability. While ICs are unachievable in the standard model [12,41],
it remains an interesting problem to build ICs from other public ideal functions.
This class of problem shall be addressed with indifferentiability introduced by
Maurer et al. [41] and popularized by Coron et al. [15]. Indifferentiability is a
simulation-based framework that helps assess whether a construction of a target
primitive AB from a lower-level ideal primitive B is “structurally close” to C, the
ideal version of AB (e.g., the case where A is the IEM cipher, B is the random
permutation P and C is an IC was considered in [1]). AB is indifferentiable from
C, if for any differentiator D there exists an efficient simulator SC querying
B such that the two systems (AB,B) and (C, SC) are indistinguishable in the
view of D. Indifferentiability comes equipped with a composition theorem [41]
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which implies that a large class of protocols (see [20,43] for restrictions) are
provably secure in the ideal-B model if and only if they are provably secure in
the ideal-C model. Since stronger notions are unachievable in general [20,43],
indifferentiability is arguably the strongest security notion for cryptosystems.
Due to this and due to the importance of composition, indifferentiability has been
applied to various cryptosystems, including iterated hash [7,15], blockciphers [1,
16,21], authenticated encryption [5] and public-key schemes [51].

Therefore, it has been an important direction to evaluate indifferentiability
of popular blockcipher constructions [1,16]. The first feasibility was the key-
prepended Feistel cipher of Coron et al. [16], which iterates ΨF(K,xL‖xR) :=
xR ⊕ F(K‖xL)‖xL with xL, xR ∈ {0, 1}n/2 and F a public random function.
Coron et al. proved indifferentiability with 14 rounds [16] and established equiv-
alence of ideal models. This was later improved to 10 [17] and 8 rounds [19].

Another line of work established indifferentiability for the mentioned IEM
ciphers. Concretely, a t-round IEM cipher employs t n-bit random permutations
P1, . . . ,Pt and t + 1 key derivation functions kd0, ..., kdt : {0, 1}κ → {0, 1}n,
and is defined by iterating EMP

� (K,x) := kd�(K) ⊕ P�(kd�−1(K) ⊕ x). When
kd0 = ... = kdt = F for a random function F : {0, 1}κ → {0, 1}n, positive results
were first proven at 5 rounds [1] and later tightened to 3 rounds [27]. When
kd0, ..., kdt are the identity function id, positive results were first proven at 12
rounds [39] and later tightened to 5 rounds [18].

Lower Bounds? We seek for understanding the complexity and ask: to have a
“non-trivial”, provably secure iterated (κ, n)-blockcipher, how many calls to the
primitives are necessary? Such results may shed lights on limits on efficiency of
widely used paradigms as well as boundary of blockcipher designs.

By “non-trivial”, we mean the construction must use some ideas. E.g., if an
oracle O already contains an exponential number of independent n-bit random
permutations, then EO can trivially instantiate an indifferentiable blockcipher.
With this in mind, we introduce an oracle P that “provides all but the goal”.

In detail, P = (P1,P2, ...,P|I|) is a family of independent random permuta-
tions indexed by i ∈ I, where Pi : {0, 1}M(i) → {0, 1}m(i) for an integer function
m : I → poly(n). The set I is partitioned into I≤n and I>n, such that i ∈ I≤n if
and only if m(i) ≤ n. To avoid trivial results, we require |I≤n| = O(poly(n)), so
that P cannot offer exponentially many n-bit permutations. For i ∈ I>n, it can
be m(i) � n, and an indifferentiable random function/injection can be built by
calling such a wide permutation once [5,14]. Thus, such an oracle P essentially
offers the “maximal” power to the constructions. As will be detailed in Sect. 5.1,
existing constructions [1,16,39] can be seen as defined upon P.

The status, of course, depends on the security notion. W.r.t. indistinguisha-
bility, a single permutation-call is already sufficient using the Even-Mansour
scheme [23]. We seek for bounds w.r.t. indifferentiability. Specific lower bounds
have been shown: Feistel ciphers [16,19] consume at least 6 random function
calls, while IEM ciphers need 4 random function/permutation calls [1,18,27].
Despite this and the fruitful positive results mentioned before, no general lower
bounds are publicly known (except that a polynomial-length random string is
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insufficient [41]) due to its challenging nature: the adversarial goal is not as clear
as [3,9,44] (which simply finds collisions or pre-images), and one has to pin-
point “non-random” properties that are exploitable within polynomial-queries
(unlike [3,44]) in various cases, and further prove that interactions with ideal
ciphers and all possible simulators are unlikely to admit such properties.

Our Results. We prove the first general lower bound: no iterated blockcipher
making 3 or less calls to the oracle Pis statistically indifferentiable from ideal
ciphers. This proves optimality for the mentioned 4-call positive result [27].

Model and Settings. We consider iterated blockciphers that can be written as the
composition of rounds using keys or derived subkeys. Every round is essentially
a simpler “1-call” blockcipher making exactly 1 call to P, and the total number
of P-calls made by the rounds and the key derivation function is a constant.

More concretely, to model rounds/1-call ciphers, we define E1P(K,x) :=
ϕout

(
K,P(ϕin(K,x)), x

)
with keyspace K and domain {0, 1}n. The input func-

tion ϕin maps (K,x) ∈ K × {0, 1}n into a query (i, δ, z) to P, where δ ∈ {+,−}
indicates the direction, i ∈ I indexes the queried permutation and z ∈ {0, 1}M(i)

is the concrete query. The output function ϕout maps the key K, the P response
z′ = P(ϕin(K,x)) and the plaintext x to the ciphertext y.

E1P must admit efficient inversion within 1 P-call as well. Thus, it is defined
(E1−1)P(K, y) := γout

(
K,P(γin(K, y)), y

)
for two other input and output func-

tions γin and γout. Arguably, this covers all blockciphers using a single oracle
call (which resembles [9]). See Fig. 1 for illustration.

Fig. 1. The general blockcipher E1P making a single call to its oracle P for enciphering
(up) and deciphering (bottom). ϕin, ϕout, γin and γout are arbitrary (e.g., can be highly
non-linear) deterministic and oracle-independent functions, and are computable by
the differentiator (as indicated). P = (P1,P2, ...) is the mentioned family of random
permutations, and it only offers oracle access to the differentiator.

Then, for our model of a t-call iterated blockcipher EtP : K × {0, 1}n →
{0, 1}n, the keyspace K is partitioned into disjoint sets K(0),K(1), ...K(t−1), such
that for all K ∈ K(�), it has

EtP(K,x) = ΠP
j�,t−�

(
K‖s, ...ΠP

j�,2

(
K‖s,ΠP

j�,1
(K‖s, x)

)
...

)
, (1)
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where:

(i) s = kdP(K) is a subkey and kdP makes � calls to P, and
(ii) For each � ∈ {0, ..., t − 1} and each α ∈ {1, ..., t − �}, j�,α = �(� − 1)/2 + α

(so that EtP is defined upon �(� + 1)/2 distinct rounds Π1, ...,Π�(�+1)/2),
and the round ΠP

j�,α
is a 1-call cipher.

See Fig. 2 for illustration of E2P and Figs. 11 and 12 for pseudocode of E2P

and E3P . This unifies virtually all existing blockcipher constructions. While the
same oracle P is used everywhere in EtP , our subsequent attacks never utilize
this oracle reusing, and are applicable even if multiple P1,P2, ... are used.

Fig. 2. Encipherment of 2-call iterated blockciphers. (Top) Using one P-call for a key
derivation kdP(K) = P(f(K)). The function f is deterministic and oracle-independent;
(Bottom) Using two P-calls for two rounds, without idealized key derivations.

Our reasoning relies on four Fundamental Properties that stem from the
notions of blockciphers and of t-call oracle procedures. Namely, a blockcipher ora-
cle procedure EP should be efficiently invertible, deterministic, and enjoy
an oracle-independent description. Moreover, it should be non-degenerate
(i.e., EP cannot be “simplified” in terms of P calls). We refer to Sect. 3.1 or 4 for
details. Our setting may find broader applications in symmetric cryptography.
As a side remark, our crucial use of invertibility solves an open problem of [5].

Differentiability of E1, E2 and E3. With the above models, we prove our
main result by characterizing E1P and extending to E2P and E3P .

In detail, for 1-call ciphers E1P , we fully characterize its properties, solely
based on the Fundamental Properties. In summary, as long as the keyspace has
|K| ≥ 2|I≤n| + 1 = O(poly(n)) (thus, even polynomial keyspace is unachiev-
able!),1 we can find either Ω(poly(n)) “inverse-free” encipherments that col-
lide on the P-call and use an entropy-based differentiating approach [41], or
find two “non-inverse-free” encipherments E1P(K,x) and E1P(K ′, x′) with
ϕin(K,x) = ϕin(K ′, x′) and use a special regularity property of ϕin and γin

to distinguish. We refer to Sect. 3.2 or Theorem 1 for details.
For 2-call iterated cipher E2P , if K(1) is large enough, i.e., E2P invokes key

derivation for sufficiently many keys, then our differentiators derives O(poly(n))
keys to “collapse” the cipher to a 1-call instance, which has been attacked.

1 Though, trivial constructions with |K| ≤ |I≤n| exist since P may offer |I≤n| inde-
pendent n-bit RPs.
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On the other hand, if K(0) dominates, i.e., E2P is a general 2-round blockcipher
for most keys, then as long as K(0) is large enough |K(0)| ≥ (

6
(
3|I≤n|)

1
n +

5
)|I≤n|+1 = O(poly(n)), we can exhibit a general yoyo distinguisher and breaks

its correlation intractability (a weaker security notion than indifferentiability).
We refer to Sect. 3.3 or Theorem 2 for details.

For 3-call iterated ciphers E3P , if K(2) or K(1) is large enough then we again
“collapse” it to 1- or 2-call ciphers by deriving poly(n) keys. If E3P is a general 3-
round cipher for most keys K(0) ⊆ {0, 1}κ with κ ≥ 2mmax log2 |I≤n|+2mmaxn+
6mmax + 4 = Θ(poly(n)), mmax := maxi∈I m(i), we exhibit a universal differen-
tiator that (interestingly) has attack advantage either at least 1/poly(n)−negl(n)
or at least 1 − negl(n), where the concrete polynomial and negligible functions
depend on the input functions in the three rounds. We refer to Sect. 3.4 or Theo-
rem 3 for details.

A crucial step is to show the existence of certain non-random properties,
which is non-obvious in the general 2- and 3-call ciphers. To this end, we apply
Extremal Graph Theory [24,32,38], which bound the maximal number of edges
in (bipartite) graphs that do not contain certain structures (a.k.a. Zarankiewicz
numbers [24]). We refer to Sect. 3 for more detailed overview.

Discussion: Blockcipher Designs. A recent trend is to revisit blockcipher
structures and squeeze efficiency for MPC and ZKP settings: see [26] and the
references therein. We hope that our work could be a step towards unifying
relevant theoretical discussions and shed lights on the “boundary” of designs.
We summarize some of our conclusions as follows.

(i) Expense of overcoming non-invertibility: if a round/1-call cipher E1P(K,x)
want to be inverse-free for some (K,x) (e.g., when using non-invertible
primitives), then E1P(K, ·) must admit severe weakness, regardless of its
design.

(ii) Unhelpfulness of wide permutations: wide permutations with width> n are
not “more helpful” in constructing n-bit blockciphers, even if exponentially
many are available. This might be another explanation on the difficulty in
designing format-preserving encryption schemes (see e.g., [22]).

(iii) Optimality of popular structures (e.g., the IEM ciphers [18,27]), in the sense
that no other choice can be better. This provides the first “excluding-type”
theoretical support for practical paradigms.

Besides, since an indifferentiable iterated cipher needs at least 4 calls, our result
may be viewed as a theoretical evidence of the advantage (in terms of effi-
ciency) of permutation-based cryptography. Though, we remark that the usual
caveats regarding the ideal model apply to this paper: as we consider information-
theoretic adversaries, our results do not imply security upper bounds on real-
world, computationally bounded adversaries.

Lower Bounds: Functionality Transformations vs. Small-to-Big. Cryp-
tographic constructs consist of two categories: functionality transformations and
small-to-big transformations. The former achieves “non-trivial” new function-
ality (e.g., our case), while the latter achieve domain or range extension (e.g.,
PRGs extend range, while hashes extend domain).
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A number of existing efficiency lower bounds concerned with small-to-big
transformations, including hash functions [5,9,25,36,44], PRGs [25,31], signa-
tures [3,25], encryption [25] and injections [5]. A core idea typically employed
by these proofs is to apply the pigeonhole principle to force the scheme making
the same sequence of primitive calls for exponentially many inputs. This results
in either attacks [5,9,44] or unconditional cryptography [3,25,36].

Despite exciting black-box separations [4,34,46], efficiency lower bounds on
functionality transformations are relatively rare. Our problem is functionality
transforming: we allow to use wide permutations on ≥ κ + n � n bits, and the
domain of our target E : {0, 1}κ × {0, 1}n → {0, 1}n is thus not larger. This
difference is crucial, as pigeonhole principle cannot ensure collisions and we have
to rely on other properties such as non-degeneracy (see Lemma 3).

Notably, with our oracle P, relevant impossibility results become possible:

(i) A compression function with enough collision or even indifferentiability secu-
rity can be built using just 1 call to P via truncation [14];

(ii) An indifferentiable injection (or authenticated encryption) can be built using
just 1 call to P via Encode-then-Encipher [5].

Still, indifferentiable iterated blockciphers cannot be built within 3 calls. These
sharp contrasts emphasize the differences between our setting and [5,9].

In a more restricted setting termed Linicrypt [13], i.e., cryptosystems are
built from random block functions and linear diffusion functions, impossibility
results regarding encryption [13,42] and circuit garbling [13] exist.

Future Directions. Indeed, blockciphers are not necessarily iterated: we serve
examples in full version [28]. Intuitively, such designs are weaker than iterated
ones with the same number of calls. Though, it is difficult to have a rigorous and
clean argument, especially for ciphers with 3 calls. The most intriguing direction
is thus to address fully general 2- and 3-call blockciphers, which may shed more
lights on iterations. Another intriguing question is whether there are smart ideas
to unify the complicated cases in E3 analysis. Influences of other aspects such
as memory restrictions on adversaries and simulators are also of interest.

On the constructive side, it is intriguing to study the achievability of compu-
tational indifferentiability with 3 calls: hardness assumptions on graph problems
or key derivation functions might be helpful.

Unlike most practice in symmetric cryptography, our Theorem 3 is asymp-
totic. The key issue is that our differentiator has to “know” the simulator lim-
itations for its case decision. Classically, simulator (query) complexity is only
polynomially bounded and seems incompatible with concrete treatments. Fully
concrete characterizations may need a new paradigm and are left for future work.

Roadmap. We serve notations and definitions in Sect. 2. Then, as mentioned,
we provide a technical overview in Sect. 3.

For the main elaborations, we first formalize the Fundamental Properties in
Sect. 4. We then give detailed elaborations and characterizations for our 1-call
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cipher E1 as well as its main result in Sect. 5. Our main results on E2 and E3
are then given in Sect. 6 and 7 respectively. Due to space constraints, detailed
proofs are mostly deferred to the full version [28].

2 Preliminaries

Fix n as the security parameter, and write poly(n) and negl(n) for arbitrary
polynomial and negligible functions respectively. Denote by ⊥ the empty string.
Given x ∈ {0, 1}n and a ≤ n, denote by lefta(x) (resp., righta(x)) the a leftmost
(resp., rightmost) bits of x. When two sets A and B are disjoint, we denote A�B
their (disjoint) union. For any domain, denote by id the identity function.

An m-bit random permutation is a permutation that is uniformly selected
from Perm(m), the set of all (2m)! possible m-bit permutations. Throughout the
remaining, we denote by IC : {0, 1}κ × {0, 1}n → {0, 1}n an ideal cipher (which
is randomly picked from all (κ, n)-blockciphers) with κ = poly(n).

Permutation Family P. As briefed in the Introduction, we consider construct-
ing an n-bit blockcipher from a permutation family oracle P that “provides all
but the goal”. In detail, P = (P1,P2, ...,P|I|) provides independent random
permutations indexed by i ∈ I, where Pi ∈ Perm(m(i)) for a fixed function
m : I → poly(n) (viewed as parameters of P). It can be m(i) � n for some i ∈ I.
The index set is thus partitioned as I = I≤n � I>n, where i ∈ I≤n if and only if
m(i) ≤ n. We require |I≤n| = O(poly(n)), while I>n can be exponentially large.
We call permutations with width> n wide. Denote by mmax := maxi∈I m(i) and
mmin := minI∈I m(i) the size of largest, resp. smallest permutation in P.

Oracle P accepts queries of the form (i, δ, z), where i ∈ I is the index,
δ ∈ {+,−} indicates if forward Pi or backward P−1

i is queried, and z ∈ {0, 1}m(i)

is the actual m(i)-bit input. For δ ∈ {+,−}, we denote δ the opposite of δ.

Indifferentiability. Let EP be a cryptographic construction that internally
queries P, IC be the ideal crypto object of EP , and SIC be a simulator that
queries IC and provides the same interfaces as P. Then, for any distinguisher
D, the indifferentiability advantage of D against EP is

Advindif
EP ,IC,S

(D) =
∣
∣Pr

[
DEP ,P = 1

] − Pr
[
DIC,SIC

= 1
]∣∣.

EP is indifferentiable (in the asymptotic sense), as long as for any polynomial-
query D: (a) the advantage Advindif

EP ,IC,S
(D) is negl(n) w.r.t. the security param-

eter n for any D, and (b) the number of queries made by S to IC is poly(n).

Notations for Differentiators. Consider blockciphers E1P , E2P and E3P

built upon the oracle P. By the above, to break indifferentiability, we shall
exhibit a differentiator D that “fools” any query-efficient simulator SIC with
non-negligible probability. Notice, D has access to two oracles (E,P) where E ∈
{E1P , E2P , E3P , IC} and P ∈ {P, SIC}. To describe the interaction between
DE,P and its oracles E,P, we use the expressions P(i, δ, z) → z′ to mean that D
queries P on (i, δ, z) and P answers with z′, and E(K,x) → y to mean that E is
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queried on (K,x) and returns y. Note that in the latter case, the query may be
made by S. The notation E−1(K, y) → x is similar.

As convention, our differentiators always output 1 when it guesses the “real
world”, and output 0 when it guesses the “ideal” or “simulated world”.

Tools from Extremal Graph Theory. Consider a bipartite graph G =
(VL,VR, E). Intuitively, if |E| is sufficiently large, then G must have short cycles
(since long cycles will be truncated). This was proven by Hoory [32], and will
help establishing the existence of certain structures. To ease applying, we restate
Hoory’s result [32, Eqs. (1) and (2)] as follows.

Proposition 1. Let G = (VL,VR, E) be a bipartite graph such that:

(i) |VL| and |VR| have a common upper bound, i.e., there exists an integer
M > 0 such that |VL| ≤ M , |VR| ≤ M ; and

(ii) |E| ≥ (
(M)

1
t−1 + 1

) × M for some positive integer t.

Then, G contains a cycle C2� with � ≤ t.

If |E| is large, then G contains a small complete bipartite graph (a.k.a. biclique).
This was proven by Kővári, Sós and Turán [38], and is restated as follows.

Proposition 2. Let G = (VL,VR, E) be a bipartite graph such that:

(i) There exist two integers M,N > 0 such that |VL| ≤ M and |VR| ≤ N ; and
(ii) |E| ≥ (b − 1)

1
a · MN1− 1

a + (a − 1)N .

Then, G contains the complete bipartite graph Ka,b as a sub-graph.

We refer to the full version [28] for how to concretely derive the two propositions.

3 Technical Overview

As mentioned, we characterize the 1-call model E1P and then extend the discus-
sion to 2- and 3-call iterated models E2P and E3P . Below in Sect. 3.1, we first
elaborate more on Fundamental Properties underlying our reasoning. We then
provide intuitions for E1P , E2P and E3P in Sect. 3.2, 3.3 and 3.4 in turn.

3.1 Fundamental Properties

As mentioned, our analyses rely on four properties that we believe fundamental
to blockcipher oracle procedures. First, the definition of the notion of blockci-
phers yield two properties for a blockcipher oracle procedure EP :

(i) Efficient invertibility: blockciphers should be efficiently invertible.
Namely, there is a corresponding oracle procedure (E−1)P computing its
inverse;

(ii) Deterministic: blockciphers should be deterministic. For EP , it means for a
fixed oracle P, evaluating EP(K,x) → y and the corresponding decipherment
(E−1)P(K, y) always yield the same transcript of P-queries and responses.
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Besides, since an oracle procedure EP shall have a fixed description that
is independent from P, sub-procedures in EP are oracle-independent. We
further assume that EP is non-degenerate and cannot be “simplified” in terms
of P calls, i.e., no encipherment EP(K,x) can be approximately computed using
less P calls than EP . Formal definitions will be given in Sect. 4.

3.2 Full Characterization of 1-Call Cipher E1

As per mentioned, E1P(K,x) := ϕout
(
K,P(ϕin(K,x))

)
and (E1−1)P(K, y) :=

γout
(
K,P(γin(K, y))

)
, where ϕin, ϕout, γin and γout can be arbitrary oracle-

independent functions. The Fundamental Properties already ensure a number of
non-trivial properties (on oracle procedures of blockciphers).

Inv-Freeness and Its Oracle-Independence. Our first observation is about
inverse-freeness of E1P . An encipherment E1P(K,x) is inverse-free (inv-free for
short), if E1P(K,x) → y and its corresponding decipherment (E1−1)P(K, y) →
x call P(i, δ, �) on the same direction δ; otherwise, E1P(K,x) is non-inverse-
free (non-inv-free). In common designs (Feistel, Misty, IEM, etc.), encipherments
under a fixed key are either all inv-free or non-inv-free for all plaintext. However,
in general, the inv-freeness of E1P(K,x) may depend on x, admitting data-
dependent inv-freeness. We serve an example in Fig. 3.

Our observation is that in E1P , inv-freeness cannot depend on the oracle P,
i.e., one can decide if an encipherment E1P(K,x) is inv-free without querying P.
Intuitively, it is because the query directions of encipherment and decipherment
are determined by the input functions ϕin and γin, which are oracle-independent.
The formal presentation will be given in Lemma 1. As will be seen, exploitable
weakness in an encipherment E1P(K,x) depends on its inv-freeness, the oracle-
independence of which turns out crucial in our attacks.

Fig. 3. A 1-call cipher/round that has data-dependent inverse-freeness. (Left) when
the leftmost bit of x = 0‖x[1]‖x[2] is 0 (a permutation-based Feistel round); (Right)
when the leftmost bit of x = 1‖x[1]‖x[2] is 1 (a Misty-like round).

Properties of Inv-Free E1P(K, x). For intuitions, consider the key-prepended
Feistel round y = ΨF(K,x) :=

(
rightn/2(x) ⊕ F(K‖leftn/2(x))

)‖leftn/2(x).
This round is inv-free: an encipherment ΨF(K,x) and its corresponding decipher-
ment (Ψ−1)F(K, y) make the same “forward” call to F(z), z = K‖leftn/2(x) =
K‖rightn/2(y). This means some information of x is kept in the ciphertext y
without “protection”. The same property is shared by various Feistel variants
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[2, Chapter 1.3.1] (including the Lai-Massey scheme [2, Chapter 1.5]). Casting
it into our general model E1P , it means inv-free E1P(K,x) → y must have
ϕin(K,x) = γin(K, y).

As a less obvious fact in ΨF, there necessarily exist many distinct enci-
pherments that make the same F-call. I.e., ΨF(K,x) calls F(z) as long as
rightn/2(x) = rightn/2(z), and there are 2n/2 possible x for every z. Simi-
larly for other inv-free designs. It turns out that: with the non-degeneracy
assumption on E1, if there is one inv-free E1P(K,x) then there are Ω(poly(n))
distinct inv-free E1P(K,x1), E1P(K,x2), ... that collide on the P-call, i.e.,
ϕin(K,x1) = ϕin(K,x2) = ... = ϕin(K,x). This further implies that under
each key K, all inv-free E1P(K,x) give rise to o

(
2n

poly(n)

)
distinct P-calls (even

if they can query exponentially many permutations with width> n).
We refer to Lemmas 2–4 in Sect. 5.2 for formal elaborations.

Properties of Non-inv-free E1P(K, x). For intuitions, consider the IEM
round y = EMP(K,x) := K ⊕ P(K ⊕ x), which is non-inv-free since (EM−1)P

always calls P−1. EMP is more secure than ΨF. In fact, attacks against EMP

have to exploit at least 2 keys K,K ′ [1, Sect. 3.1, full version] and seek for
encipherments EMP(K,x) and EMP(K ′, x′) that collide on the P-call, i.e., with
K ⊕x = K ′ ⊕x′. Such collided encipherments do exist, because EMP cannot use
wide P. Concretely, to invoke a wide P, EMP must pad x ∈ {0, 1}n with some
“non-trivial” information (e.g., P(x‖0), or P(x‖K)); but then, by invoking P−1,
decipherments are unlikely to “recover” correctly padded P-inputs. In fact, this
irrecoverability is the core idea of Encode-then-Encipher [5].

It turns out that this irrecoverability stems from oracle-independence. In
detail, assuming oracle-independence of ϕin and γin, non-inv-free encipherments
E1P(K,x) can only query permutations with width≤ n. Thus, non-inv-free give
rise to at most |I≤n|2N+1 distinct P-calls. We refer to Lemma 5 in Sect. 5.2 for
formal elaborations.

Attack E1P . With the above properties, we are able to bump into our differ-
entiator D1 on E1P . In detail, the cipher E1P : K × {0, 1}n → {0, 1}n may fall
into two cases.

Case 1: there exists at least 1 inv-free encipherment E1P(K,x). As discussed,
this means we can find t = Ω(poly(n)) distinct inv-free E1P(K,x1), ..., E1P

(K,xt) that make the same P-call P(i, δ, z), (i, δ, z) = ϕin(K,x1) = ... =
ϕin(K,xt). Thus, the restriction of E1P(K, ·) to {x1, ..., xt} is a bijection defined
upon a polynomial-length random string z′ = P(i, δ, z), and we can apply an
entropy-based differentiating approach [41].

Case 2: E1P(K,x) is non-inv-free for all (K,x) ∈ K × {0, 1}n. Then, E1P

(K,x) can only invoke the permutations in P with width≤ n (as discussed).
Therefore, the number of possible images of ϕin is at most |I≤n|2N+1. As
long as |K|2n ≥ |I≤n|2N+1, i.e., the keyspace has |K| ≥ 2|I≤n| + 1 (which
is O(poly(n)), though), the pigeonhole principle guarantees the existence of
(K,x), (K ′, x′) ∈ K × {0, 1}n with collision ϕin(K,x) = ϕin(K ′, x′). D1
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thus finds such a pair of collided (K,x), (K ′, x′) and attacks by checking if
γin(K,E(K,x)) = γin(K ′,E(K ′, x′)).

The formal proof, deferred to the full version [28], is more technical and relies
on a sort of “regularity” of the input functions ϕin and γin (Lemma 6).

3.3 Attack 2-Call Iterated Cipher E2

Built upon our above results on E1P , we further consider our 2-call model E2P .
Recall that the keyspace K of E2P can be partitioned K = K(0) � K(1), such
that E2P(K,x) = ΠP

3 (K‖kdP(K), x) for all K ∈ K(1), whereas E2P(K,x) =
ΠP

2

(
K,ΠP

1 (K,x)
)

for all K ∈ K(0). The sub-procedures kdP has kdP(K) =
P(f(K)) for another oracle-independent function f . In addition, for j = 1, 2, 3,
ΠP

j is a 1-call cipher with input and output functions ϕin
j , ϕout

j , γin
j and γout

j .
We refer to Fig. 2 for illustration and Fig. 11 for a pseudocode description.

This model E2P may fall into two cases.

Case 1: E2P invokes kd for sufficiently many keys. Formally, if the key sets
have |K(1)| ≥ 2|I≤n| + 1, we simply pick λ = 2|I≤n| + 1 keys K1, ...,Kλ ∈ K(1)

and derive subkeys s1 = kdP(K1), ..., sλ = kdP(Kλ). This consumes at most
λ = O(poly(n)) P-queries. We then view the round ΠP

3 as a 1-call cipher with
keyspace {K1‖s1, ...,Kλ‖sλ} and apply our differentiator D1. (It is thus crucial
that D1 can break E1 with polynomial-keyspace.)

Case 2: E2P is 2-iteration for sufficiently many keys. The concrete con-
dition is |K(0)| ≥ (

6
(
3|I≤n|)

1
n + 3

)|I≤n| = O(poly(n)). Our idea (non-trivially)
generalizes existing specific attacks, which is elaborated as follows.

Outset: Boomerang Property. Our initial intuition lies in a chosen-key
boomerang differentiator against the 2-round IEM cipher y = K ⊕ P2(K ⊕
P1(K ⊕ x)), K ∈ {0, 1}n (which is motivated by Andreeva et al.’s [1, Sect. 3.2,
full version]). Briefly, for any x, let u = P1(K ⊕ x). The attack begins by com-
puting four distinct pairs (K1, u1), (K2, u2), (K3, u3), (K4, u4) with u1 = u2,
u3 = u4; K1 ⊕ u1 = K3 ⊕ u3 and K2 ⊕ u2 = K4 ⊕ u4. I.e., they induce
two collided inputs to P−1

1 and two collide inputs to P2. Once such four pairs
are derived, the differentiator can computes a 4-tuple of cipher inputs/outputs(
(K1, x1, y1), ..., (K4, x4, y4)

)
that has K1 ⊕ x1 = K2 ⊕ x2, K3 ⊕ x3 = K4 ⊕ x4;

K1 ⊕ y1 = K3 ⊕ y3, K2 ⊕ y2 = K4 ⊕ y4; as shown in Fig. 4 (left). Such a 4-tuple
satisfies an evasive relation [39] and is hard to found in the ideal world. Actually
the involved structure is the basis of the boomerang attack developed in [49].

A similar boomerang can be exhibited in the 2-round Feistel. Motivated
by these, our differentiator against the general 2-iteration cipher tries to find
pairs (K1, u1), (K2, u2), (K3, u3), (K4, u4) ∈ K(0) × {0, 1}n that induce simi-
lar collided P-calls, i.e., γin

1 (K1, u1) = γin
1 (K2, u2), γin

1 (K3, u3) = γin
1 (K4, u4);

ϕin
2 (K1, u1) = ϕin

2 (K3, u3) and ϕin
2 (K2, u2) = ϕin

2 (K4, u4), as shown in Fig. 4
(right). This is a general boomerang property. Unlike Fig. 4 (left), the four enci-
pherments may not be non-inv-free in two rounds: actually, Fig. 4 (right) serves
an example where the 1st round of E2P(K3, x3) and E2P(K4, x4) are inv-free.
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Fig. 4. (Top) Boomerang distinguisher in 2-round IEM. Circles indicate values in
domain and range of P1 and P2 (in particular, u1 and u2 are marked), and lines
indicate encipherment flows. To simplify, for lines between P1 and P2 the pair (Kj , uj)
is simplified as j. (Bottom) An example of boomerang distinguisher in 2-round general
E2. Circles indicate values in domain and range of P, and lines indicate encipherment
flows. When a line “crosses” a pair of circles, it means the encipherment is non-inv-free
in that round, and the two circles (naturally) indicate the P inputs and outputs; when
a line “crosses” a single circle, it means the encipherment is non-inv-free in that round
(so that rightward and leftward evaluations reach the same P input). Thus, the four
encipherments are all non-inv-free in the 2nd round; in the 1st round, E2P(K1, x1) and
E2P(K2, x2) are non-inv-free, while E2P(K3, x3) and E2P(K4, x4) are inv-free.

From Boomerang to Yoyo. But does such a 4-tuple ever exist? Unlike “concrete”
ciphers such as IEM and Feistel, this is unclear in E2. To solve this, we apply
Hoory’s [32] result on girth (i.e., maximal length of cycles in a graph). Briefly, if
we view the possible inputs to P as shores and the pairs (K,u) ∈ K(0) × {0, 1}n

as edges, then we can build a bipartite graph G, and the above 4-tuple becomes
a 4-cycle C4 (i.e., cycle of length 4) in G. By Hoory [32] (which is restated in
Sect. 2, Proposition 1), as long as the number of edges is large enough, such a
4-cycle or 4-tuple is guaranteed to exist.

However, as will be clear in the analysis (available in [28]), the above requires
K(0) to be of exponential size, which would prohibit its application in our later
attack against E3. To remedy, we consider longer cycles C2λ, λ ≤ n+1. I.e., our
differentiator seeks for a 2λ-tuple

(
(K1, u1), ..., (K2λ, u2λ)

)
that has

ϕin
2 (K1, u1) = ϕin

2 (K2, u2), γin
1 (K2, u2) = γin

1 (K3, u3),

ϕin
2 (K3, u3) = ϕin

2 (K4, u4), γin
1 (K4, u4) = γin

1 (K5, u5), ...

ϕin
2 (K2λ−1, u2λ−1) = ϕin

2 (K2λ, u2λ), γin
1 (K2λ, u2λ) = γin

1 (K1, u1). (2)

Once such a 2λ-tuple is found, our differentiator can computes a 2λ-tuple of
E2 inputs/outputs

(
(K1, x1, y1), ..., (K2λ, x2λ, y2λ)

)
that has a “cycle of colli-

sions”. I.e., γin
2 (K1, y1) = γin

2 (K2, y2), ϕin
1 (K2, x2) = ϕin

1 (K3, x3), ..., γin
2 (K2λ−1,

y2λ−1) = γin
2 (K2λ, y2λ), ϕin

1 (K2λ, x2λ) = ϕin
1 (K1, x1). An example with λ = 4 is

shown in Fig. 5. This is actually a general version of the yoyo distinguisher [45]. By

Hoory [32], |K(0)| ≥ (
6
(
3|I≤n|)

1
n + 3

)|I≤n| = O(poly(n)) already suffices for the
existence of

(
(K1, u1), ..., (K2λ, u2λ)

)
. Note that Hoory does not apply when G is

a multigraph, but this implies existence of C2. These solve our first problem.

Non-degenerate Input Functions. Subtleties remain. To argue that no polynomial-
query simulator can work out a similar 2λ-tuple of ideal cipher inputs/outputs(
IC(K1, x1) = y1, ..., IC(K2λ, x2λ) = y2λ

)
, the input functions ϕin

1 and γin
2
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Fig. 5. An example of general yoyo distinguisher with λ = 4 in E2. Meanings of the
objects follow Fig. 4.

must be somewhat “non-degenerate”. Roughly, Pr[x $←− {0, 1}n : ϕin
1 (K,x) =

(i, δ, z)] = negl(n) and Pr[y $←− {0, 1}n : γin
2 (K, y) = (i, δ, z)] = negl(n) for any K

and any (i, δ, z).
Wlog consider ϕ1. Indeed, due to the aforementioned “regularity” (Lemma

6), it can be proven Prx[ϕin
1 (K,x) = (i, δ, z) | ΠP

1 (K,x) non-inv-free] = negl(n).
But ϕin

1 (K, ·) may lead Ω(2n/poly(n)) distinct inv-free ΠP
1 (K,x) to the same

call P(i, δ, z) (i.e., being highly biased), which enables the simulator to cheat.
A complete case-study thus has to consider whether ϕin

1 and γin
2 are “non-

degenerate”. However, input functions in virtually all blockciphers are indeed
“non-degenerate”: otherwise, the round is ridiculously weak. Meanwhile, com-
plete case-study would take us quite far afield. We thereby decide to simplify
and introduce non-degenerate input functions as an additional assumption for
E2P and E3P , i.e., Prx[ϕin

1 (K,x) = (i, δ, z) | ΠP
1 (K,x) inv-free] = negl(n) and

Pry[γin
2 (K, y) = (i, δ, z) | (Π−1

2 )P(K, y) inv-free] = negl(n). We refer to Sect. 6
for more details. With this additional restriction, we prove that no polynomial-
query simulator can work out the aforementioned 2λ-tuple. In fact, Eq. (2)
defines a novel evasive relation in 2-round general ciphers, which is stronger
than differentiability. See Sect. 6 for formal result and [28] for detailed analysis.

It is crucial to restrict our discussion to iterated blockciphers: since the set of
valid intermediate values u between the rounds is simply {0, 1}n, an attacker can
pick such a u and compute forward or backward. Indeed, this middle-to-sides
approach is common in known- and chosen-key attacks [37].

3.4 Attack 3-Call Iterated Cipher E3

We further consider our 3-call model E3P . Recall that E3P : {0, 1}κ ×{0, 1}n →
{0, 1}n has κ = Θ(poly(n)), and its keyspace can be partitioned {0, 1}κ = K(0)�
K(1) � K(2), such that:

(i) E3P(K,x) = ΠP
6 (K‖kdP

1 (K), x) for all K ∈ K(2);
(ii) E3P(K,x) = ΠP

5

(
K‖kdP

2 (K),ΠP
4 (K‖kdP

2 (K), x)
)

for all K ∈ K(1);
(iii) E3P(K,x) = ΠP

3

(
K,ΠP

2

(
K,ΠP

1 (K,x)
))

for all K ∈ K(0).

The sub-procedures kdP
1 (K) and kdP

2 (K) derive corresponding subkeys via two
and one calls to P respectively. In addition, for j = 1, 2, ..., 6, ΠP

j is a 1-call cipher
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with input and output functions ϕin
j , ϕout

j , γin
j and γout

j . We refer to Fig. 12 for
pseudocode of E3P .

When E3P invokes kd1 or kd2 for sufficiently many keys K ∈ {0, 1}κ, we again
derive poly(n) subkeys to reduce E3P to E1 or E2 instances with polynomial
keyspace, and apply our previous differentiators (thanks to that our differentia-
tors break E1 and E2 with polynomial keyspace).

The crux is the case where E3P(K,x) = ΠP
3

(
K,ΠP

2

(
K,ΠP

1 (K,x)
))

for vir-
tually all 2κ keys K. Depending on whether the Θ(2κ+n) encipherments are
“mostly” inv-free or not in the 3 rounds, exploitable non-random properties sig-
nificantly vary in the 23 = 8 cases and cannot be unified. We thereby have to
appeal for a (lengthy) case-study.

Furthermore, note that inv-freeness can be data-dependent, which causes a
subtle technical challenge. Namely, without querying P, one cannot fully decide
if a certain encipherment is inv-free in the 3 rounds.2 But querying P would
trigger simulator actions in the ideal world, and the simulated P may be defined
to change the inv-freeness of the encipherments in question. This turns out a
technical challenge, and we call it decisional inv-free problem. Our solution is two-
fold. First, we identified relevant conditions that are decidable without querying
P, so that our differentiator could invoke the right subroutine for case-study
without attracting simulator’s attention. Meanwhile, to compute (intermediate)
values of the encipherments in question, our differentiator (tries the best to)
query the enciphering oracle E instead of P to avoid “waking” the simulator.
Our case conditions ensure that the ideal cipher responses (in the ideal world)
will satisfy our expectations on inv-freeness. We will elaborate more later.

Below we denote by x ∈ {0, 1}n the plaintext, u = ΠP
1 (K,x) the 1st round

output, w = ΠP
2 (K,u) the 2nd round output and y = ΠP

3 (K,w) the ciphertext.

Case 1: there are Θ(2κ) keys K s.t.only o(2n/poly(n)) ΠP
1 (K, x)

are non-inv-free, and only o(2n/poly(n)) (Π−1
3 )P(K, y) are non-inv-

free. Roughly, this means most of the Θ(2κ+n) encipherments E3P(K,x)
are inv-free in 1st and 3rd rounds. A famous example is the 3-round Feistel
Feistel3(K,x) := ΨF3

(
K,ΨF2

(
K,ΨF1(K,x)

))
. Since the 2nd round could be

arbitrary, the “hybrid” cipher Hyb(K,x) := ΨF3
(
K,K ⊕ P

(
K ⊕ ΨF1(K,x)

))

is another example. A fact shared by the two examples is that there are many
encipherments that collide on F- or P-calls in the 2nd round. Concretely,

– In Feistel3, let u = ΨF1(K,x). Then, for any z ∈ {0, 1}n/2, all the 2n/2

encipherments with key K and 1st round output u = �‖z call F2(K‖z);
– In Hyb1, let u = ΨF1(K,x). Then, for any z ∈ {0, 1}n, all the 2n encipher-

ments with (K,u), K ⊕ u = z, call P(z).

It turns out that this can be proven in the general 3-round cipher
(in this case): there exist t = Ω(poly(n)) distinct intermediate values
2 E.g., given K and a 1st round output u ∈ {0, 1}n, one can decide the inv-freeness

of the corresponding encipherment in the 1st and 2nd rounds, since ΠP
1 (K, u) and

(Π−1
2 )P(K, u) can be decided. But without querying P, one cannot derive w =

ΠP
2 (K, u), and thus cannot decide if the process is inv-free in the 3rd round.
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(K1, u1), ..., (Kt, ut) that collide on 2nd round P-call, i.e., ϕin
2 (K1, u1) = ... =

ϕin
2 (Kt, ut) = (i2, δ2, z2), as shown in Fig. 6 (left).

With such a “star” structure, we issue the “central” query P(i2, δ2, z2) → z′
2.

In the real world, the response z′
2 is consistent with Ω(poly(n)) encipherments.

Namely, for all j ∈ {1, ..., t}, suppose we evaluate wj ← ϕout
2 (Kj , z

′
2, uj),

xj ← (Π−1
1 )P(Kj , uj) and E(Kj , xj) → yj . In the real world, if ΠP

3 (Kj , wj) is
inv-free then it holds ϕin

3 (Kj , wj) = γin
3 (Kj , yj). In the ideal world, S (roughly)

has to find ideal cipher inputs/outputs IC(Kj , xj) = yj that have both inputs
and outputs involved in certain collisions, i.e., ϕin

1 (Kj , xj) = γin
1 (Kj , uj) and

ϕin
3 (Kj , wj) = γin

3 (Kj , yj), the probability of which can be proven negligible.
This slightly oversimplifies, and we refer to [28] for details.

The question is: how the decisional inv-free problem affects in this case? The
point is that: the above strategy only works for encipherments that are inv-free
in both 1st and 3rd rounds. When we query P(i2, δ2, z2) → z′

2, S may define
z′
2 such that many of the involved ΠP

3 (Kj , wj) become non-inv-free. It seems
cumbersome to argue that there remain many (useful) inv-free ΠP

3 (Kj , wj).
Such simulator strategies are prohibited by our case condition. In detail, if

S want to define z′
2 such that ΠP

3 (Kj , wj) is non-inv-free for some j, S must
find an ideal cipher input/output IC(Kj , xj) = yj such that (Π−1

3 )P(Kj , yj) is
non-inv-free (otherwise, there appears inconsistency). Though,

– Since it must satisfy ϕin
1 (Kj , xj) = γin

1 (Kj , uj) (Π1(Kj , xj) is also inv-free),
it cannot be due to a backward query IC−1(Kj , yj) → xj ;

– Since only o(2n/poly(n)) (Π−1
3 )P(Kj , y) are non-inv-free for the involved key

Kj , it cannot be due to a forward query IC(Kj , xj) → yj either.

Thus, our attack strategy will reach (Π−1
3 )P(Kj , yj) non-inv-free and succeed.

In our formal elaborations, this case is actually Subcase 3.1. We refer to the
full version [28, Sect. 9.1] for details.

Fig. 6. Query structures used in attacking 3-round general ciphers. (Left) Structures
for Case 1. The dashed lines show two examples of “stars”: the top “star” centers
around an inv-free 2nd round encipherment, while the bottom “star” centers around a
non-inv-free 2nd round. (Right) Structures for Case 2. The dashes lines show a simple
example of biclique K3,5 (we certainly cannot draw “exponential-size”). The bold lines
indicate the encipherments sampled by our attack, the arrows indicate the direction of
our attack’s evaluations, and the ? indicates where our attack checks equalities.
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For the remaining, we first focus on the case that there are Θ(2κ) keys K s.t.
Ω(2n/poly(n)) ΠP

1 (K,x) are non-inv-free, and that Ω(2n/poly(n)) (Π−1
3 )P(K, y)

are non-inv-free. Depending on whether the Ω(2n/poly(n)) 1st round outputs u
have ΠP

2 (K,u) non-inv-free or not, we further distinguish Case 2 and 3.

Case 2: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K, u)

non-inv-free and ΠP
2 (K, u) non-inv-free, and Ω

(
2n

poly(n)

)
(Π−1

3 )P(K, y)
are non-inv-free. A crucial example is the 3-round IEM cipher IEM3(K,x) :=
K⊕P3

(
K⊕P2

(
K⊕P1(K⊕x)

))
. Let u = P1(K⊕x) in IEM3. Let’s see an attack

for intuition. We begin with three intermediate values (K1, u1), (K2, u2), (K3, u3)
that have K1 ⊕ u1 = K2 ⊕ u2 = K3 ⊕ u3, and then query P−1

1 , compute the
plaintexts x1 ← K1⊕P−1

1 (u1), x2 ← K2⊕P−1
1 (u2) and x3 ← K3⊕P−1

1 (u3), and
acquire the ciphertexts E(K1, x1) → y1, E(K2, x2) → y2 and E(K3, x3) → y3.
With these, if we query P−1

3 (K1 ⊕ y1) → w and P−1
3 (K2 ⊕ y2) → w′, then

the simulator S shall define them such that w ⊕ K1 = w′ ⊕ K2; if we query
P−1

3 (K1⊕y1) → w and P−1
3 (K3⊕y3) → w′, then S shall define w⊕K1 = w′⊕K3.

S cannot know our choice and thus won’t be prepared correctly.
To translate this attack to the general 3-round model, we need to grasp its

core idea. It turns out to be a structure of exponential size: if we view the range of
P1 and the domain of P2 as two shores and the pairs (K,u) as edges, then we can
build a biclique K3,2n . Due to this, given the P−1

1 and P−1
3 queries, there remain

exponential possibilities for the three relevant encipherments (K1, x1), (K2, x2)
and (K3, x3), and S cannot pinpoint them. Furthermore, S does not know our
choice of P−1

3 -queries either. These ideas were also used by Andreeva et al.’s
attack on IEM3 [1, Sect. 3.3, full version] (though details slightly deviate).

In the general 3-round cipher, we should view possible inputs to P as shores
and intermediate pairs (K,u) as edges to build a bipartite graph G (which resem-
bles our previous treatments of 2-iteration), as shown in Fig. 6 (right). Again we
need to prove that there indeed exists a biclique K3,2n as a sub-graph in G, and
we resort to Zarankiewicz numbers [24]. Concretely, by Kővári, Sós and Turán
(KST) [38] (restated in Sect. 2, Proposition 2), as long as κ is large enough
(though still Θ(n)), the number of edges is large enough and K3,2n is guaran-
teed to exist. This enables finding and exploiting the three encipherments.

Regarding the decisional inv-free problem, the setting is simpler than Case 1.
In detail, it can be proven that we can sample encipherments (K1, x1), (K2, x2)
and (K3, x3) that were unlikely queried by the simulator S. By this and by the
case condition, we reach (Π−1

3 )P(K1, y1), (Π−1
3 )P(K2, y2) and (Π−1

3 )P(K3, y3)
with non-negligible probability Ω(1/poly(n)) after querying E(K1, x1) → y1,
E(K2, x2) → y2 and E(K3, x3) → y3. This fits into our expectations.

There remain subtleties: similarly to the 2-round case (Sect. 3.3), KST’s
result [38] only applies to simple graphs. When G is a multigraph with high
multiplicity, we have to resort to a dedicated treatment. Interestingly, using the
fact that there can be many edges between a single pair of vertexes, we are able
to find three encipherments (K1, u1), (K2, u2) and (K3, u3) that are similar to
the above “simple” case. The involved structure is given in Fig. 7 (left).

We refer to the full version [28, Sect. 9.2 and 9.3] (Subcase 3.2) for details.



Impossibility of Indifferentiable Iterated Blockciphers 425

Fig. 7. Query structures used in attacking 3-round general ciphers, when the involved
graphs contain heavy multi-edges. (Left) Structures for Case 2. The idea is adapted
from Fig. 6 (right). The dashed arcs indicate that there are many (superpolynomial)
distinct encipherments “crossing” the same pair of inputs in 1st and 2nd rounds. The
dashed lines show that the number of possible encipherments “crossing” the two rele-
vant P-inputs are exponential. (Right) Structures for Case 4. The idea is adapted from
Fig. 8 (right): we can find λ useful encipherments within a single pair of P-inputs (in
the 1st and 2nd rounds). The use of bold lines, arrows and ? follows Fig. 6.

Case 3: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K, u)

non-inv-free and ΠP
2 (K, u) inv-free, and Ω

(
2n

poly(n)

)
(Π−1

3 )P(K, y) are
non-inv-free. Our attack in this case reuses already discussed ideas. In detail,
(roughly) we sample a pair (K,u) from the Ω(2κ+n/poly(n)) pairs that have
1st round non-inv-free while 2nd round inv-free. We then evaluate backward
to x ← (Π−1

1 )P(K,u), “wrap” by querying E(K,x) → y and further w ←
(Π−1

3 )P(K, y). Since Ω(2n/poly(n)) (Π−1
3 )P(K, y) are non-inv-free, we reach

(Π−1
3 )P(K, y) non-inv-free with a non-negligible probability and overcome the

decisional inv-free problem, as shown in Fig. 8 (left). Since Π2(K,u) is inv-free,
if we are interacting with the general 3-round cipher then it holds ϕin

2 (K,u) =
γin
2 (K,w) (as discussed in Sect. 3.2). On the other hand, if we are interacting with

the ideal world (IC, SIC), the simulator S only gains two P-calls P(γin
1 (K,u))

and P(γin
3 (K, y)). As discussed in Case 2, they won’t enable S to pinpoint the

encipherment (K,x). Consequently, S is unable to define simulated P and enforce
the equality ϕin

2 (K,u) = γin
2 (K,w).

In our formal elaborations [28, Sect. 9.4] (which use pigeonhole principle and
non-degeneracy of ϕin

2 ), this corresponds to Subcase 3.3.
We then focus on the case that there are Θ(2κ) keys K s.t.

Ω(2n/poly(n)) ΠP
1 (K,x) are non-inv-free, and that o(2n/poly(n)) (Π−1

3 )P(K, y)
are non-inv-free. Similarly to Case 2 and 3, we further distinguish Case 4 and 5.

Case 4: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K, u)

non-inv-free and ΠP
2 (K, u) non-inv-free, and o

(
2n

poly(n)

)
(Π−1

3 )P(K, y)
are non-inv-free. In this case, we reuse the query structures found in Case 2.
We also reuse the idea that the inv-free 3rd round allows checking consistency.

In detail, consider the bipartite graph G built between the 1st and 2nd
round (which resembles Case 2). When G is (roughly) simple, we can find a
biclique Kλ,2n with λ = mmax, which resembles Case 2. We then sample one
vertex (i2, δ2, z2) from the right shore of Kλ,2n , pinpointing λ encipherments
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Fig. 8. Query structures used in attacking 3-round general ciphers. (Left) Structures for
Case 3. The dashed lines show that the number of possible encipherments “crossing”
the two relevant P-inputs are exponential (though, they may not overlap). (Right)
Structures for Case 4. The figure shows a simple example with λ = 4. The use of bold
lines, arrows and ? follows Fig. 6.

(K1, u1), ..., (Kλ, uλ) that invoke P(i2, δ2, z2) in the 2nd round. See Fig. 8 (left).
We then evaluate backward x1 ← (Π−1

1 )P(K1, u1), ..., xλ ← (Π−1
1 )P(Kλ, uλ),

“wrap” E(K1, x1) → y1, ...,E(Kλ, xλ) → yλ. As only o
(

2n

poly(n)

)
(Π−1

3 )P(K, y)
are non-inv-free, we likely reach (Π−1

3 )P(K1, y1), ..., (Π−1
3 )P(Kλ, yλ) inv-free and

overcome the decisional inv-free problem, as shown in Fig. 8 (right).
In the real world, the 2nd round outputs (K1, w1), ..., (Kλ, wλ) of these enci-

pherments are derivable from (K1, w1), ..., (Kλ, wλ) using a fixed z′
2 ∈ {0, 1}m(i2).

Meanwhile, they have ϕin
3 (K1, w1) = γin

3 (K1, y1), ..., ϕin
3 (Kλ, wλ) = γin

3 (Kλ, yλ).
To simulate consistently, the simulator S in the ideal world has to find a corre-
sponding z′

2 ∈ {0, 1}m(i2) satisfying the λ equalities for the ideal cipher responses
y1, ..., yλ. Since λ = mmax, this can be proven infeasible.

When G is a multigraph with high multiplicity, a single pair of vertexes
already suffices to pinpoint λ encipherments (K1, u1), ..., (Kλ, uλ) that invoke
the same P(i2, δ2, z2) in the 2nd round, as shown in Fig. 7 (right). Our above
idea thus remains applicable.

In our formal elaborations [28, Sect. 9.5], this corresponds to Subcase 3.4.

Fig. 9. Query structures used in attacking 3-round general ciphers, Case 5. (Left) When
the graph contains heavy multi-edges, we can find λ useful encipherments within a
single pair of P-inputs (in the 1st and 2nd rounds). The figure shows a simple example
with λ = 4. (Right) When the graph does not contain too many multi-edges (and the
biclique Kλ,2 exists).
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Case 5: there are Θ(2κ) keys K s.t. Ω
(

2n

poly(n)

)
u have (Π−1

1 )P(K, u)

non-inv-free and ΠP
2 (K, u) inv-free, and o

(
2n

poly(n)

)
(Π−1

3 )P(K, y) are
non-inv-free. Again, consider the bipartite graph G built between the 1st and
2nd round (which resembles Cases 2 and 4). When G is a multigraph with high
multiplicity, we reuse the idea of Case 4 and exploit the structure shown in
Fig. 9 (left). The case that G is (roughly) simple turns out to be the most com-
plicated, and many of our earlier attempts failed. Our eventual idea is built
upon a polynomial-size boomerang structure in the 1st and 2nd rounds, which
is depicted in Fig. 9 (right).

In detail, we seek for a biclique Kλ,2, λ = O(mmax), in G, as shown in Fig. 9
(right). Again by KST [38], such bicliques exist as long as κ is large enough
(though still Θ(mmaxn) = Θ(poly(n))).

The biclique Kλ,2 pinpoints two groups of encipherments, with each group
colliding on a 2nd round P-call, as shown in Fig. 9. Therefore, in the real world,
there are two P-outputs that are consistent with all the 2λ encipherments. Mean-
while, every encipherment in one group is paired with an encipherment in the
other group, such that the two encipherments collide on the 1st round P-call. By
these, in the ideal world, the simulator S has to seek for 2λ ideal cipher queries
that have both inputs and outputs involved in certain collisions. Namely, the 2λ
ideal cipher queries can be arranged in a 2 × λ matrix, such that:

– For every pair of ideal cipher queries in every column, the corresponding
simulated encipherments collide on the 1st round P-call; and

– For each group of λ ideal cipher queries in each row, there exists a response
z′
2 that satisfy certain relation with their λ ciphertexts.

When λ = O(mmax), this can be proven infeasible.
In our formal elaborations [28, Sect. 9.6], this corresponds to Subcase 3.5.

Some of our earlier failed attempts are also available there.

Other cases: there are Θ(2κ) keys K s.t. o
(

2n

poly(n)

)
ΠP

1 (K, x) are non-

inv-free and Ω
(

2n

poly(n)

)
(Π−1

3 )P(K, y) are non-inv-free. Then, if most w =

(Π−1
3 )P(K, y) are inv-free w.r.t. Π2, it follows the above Case 4 by symmetry;

if most w = (Π−1
3 )P(K, y) are non-inv-free w.r.t. Π2, it follows the above Case

5 by symmetry. We thereby complete the case-study.
Again, we refer to [28, Sect. 9] for the complicated details.

4 Fundamental Properties

By the notion of blockciphers, a blockcipher shall be deterministic and efficiently
invertible. The latter has been reflected in Fig. 10 (and Figs. 11 and 12 as well).
Below we formalize the former for blockcipher oracle procedures.

Definition 1 (Deterministicness). An oracle procedure EP : K × {0, 1}n →
{0, 1}n instantiating a blockcipher must be deterministic, meaning that for
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any (K,x) ∈ K × {0, 1}n, let y = EP(K,x). Then, the transcripts of P-
queries and responses obtained during encipherment EP(K,x) and decipherment
(E−1)P(K, y) are always identical. (E.g., if EP(K,x) queries P(i, δ, z) → z′ at
some stage, then (E−1)P(K, y) queries either P(i, δ, z) → z′ or P(i, δ, z′) → z
at some stage.)

Two more properties/assumptions that we rely on are oracle-independence
of sub-procedures and non-degeneracy of EP .

Oracle-independence means sub-procedures in EP must be oracle-
independent. Since the oracle procedure EP (or black-box cryptographic con-
struction) has a fixed description, this seems obvious (and indeed common in
black-box constructions [25] and impossibility proofs [9,44]). Though, we high-
light it for clarity. Interestingly, ad hoc blockciphers also strive for such indepen-
dence (probably to avoid unexpected internal dependency). For example, in AES,
the ShiftRows and MixColumns steps are rather independent from SubBytes.

Non-degeneracy means no encipherment EP(K,x) can be approximately
computed using less P calls than EP , i.e., EP cannot be “simplified”. Formally,

Definition 2 ((Everywhere) Non-degenerate Oracle Procedure). An
oracle procedure EP is (everywhere) εde(E)-non-degenerate, if

maxE′,K,x

{
PrP

[
(E′)P(K,x) = EP(K,x)

]} ≤ εde(E) = negl(n). (3)

where the maximum is taken over all (K,x) ∈ {0, 1}κ × {0, 1}n and all ora-
cle procedures (E′)P such that the number of P-calls made during computing
(E′)P(K,x) is less than EP(K,x).

Why non-degenerate? If E1P is 1/poly(n)-non-degenerate, then there is an
obvious differentiator with advantage 1/poly(n)−2−n. More importantly, a t-call
blockcipher “uses” all of its t P-calls “effectively” only if it is non-degenerate.

5 General 1-Call Blockciphers

We first elaborate on our 1-call cipher model E1P in Sect. 5.1. Then, we charac-
terize the properties of E1P in Sect. 5.2. Our formal conclusion on E1 insecurity
is given in Sect. 5.3.

5.1 General Model of 1-Call Blockciphers/Rounds

We consider any blockcipher oracle procedure E1P : K × {0, 1}n → {0, 1}n that
is built from the permutation family P in the following way. Let ϕin and ϕout be
two arbitrary deterministic functions that are computable by the computational
class of the differentiator(s). Then, E1P(K,x) := ϕout

(
K,P(

ϕin(K,x)
)
, x

)
.

Since blockciphers are efficiently invertible by definitions, E1P is accom-
plished by (E1−1)P(K, y) := γout

(
K,P(

γin(K, y)
)
, y

)
using two other determin-

istic functions γin and γout. We stress that to ensure (E1−1)P(
K,E1P(K,x)

) ≡
x, γin and γout are strongly correlated with ϕin and ϕout, and this will be crucial
for our attack. A formal description using pseudocode is given in Fig. 10.
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Algorithm E1P(K, x) // (K, x) ∈ K × {0, 1}n

(i, δ, z) ← ϕin(K, x)
z′ ← P(i, δ, z)
y ← ϕout(K, z′, x)
return y

Algorithm (E1−1)P(K, x)

(i, δ, z) ← γin(K, y)
z′ ← P(i, δ, z)
x ← γout(K, z′, y)
return x

Fig. 10. Definition of the 1-call blockcipher E1P . ϕin, ϕout, γin, and γout are all deter-
ministic and oracle-independent.

Examples to Facilitate Understanding. First, the key-prepended Feistel
round [16] uses F : {0, 1}κ+n/2 → {0, 1}n/2 and defines ΨF(K,x) := rightn/2(x)⊕
F(K‖leftn/2(x))‖leftn/2(x). It is an E1 instance with

ϕin(K,x) :=
(
i,+,K‖rightn/2(x)‖[0]n/2

)
,

ϕout(K, z′, x) := rightn/2(x) ⊕ rightn/2(z
′)‖leftn/2(x) (4)

using an index i with m(i) = κ + n (and truncated permutation [14]).
Second, the IEM round [23] defines EMP(K,x) := K ⊕ P(K ⊕ x) for P ∈

Perm(n). It is an E1 instance with

ϕin(K,x) := (i,+,K ⊕ x), ϕout(K, z′, x) := K ⊕ z′ (5)

using an index i with m(i) = n.
Finally, a “key-alternating” Misty-R cipher round [2, Chapter 3.18.8] defines

Misty-RP(K,x) := P
(
K ⊕ rightn/2(x)

)∥∥(
leftn/2(x) ⊕ P

(
K ⊕ rightn/2(x)

))
for

P ∈ Perm(n/2). It is an E1 instance with

ϕin(K,x) :=
(
i,+,K ⊕ rightn/2(x)

)
, ϕout(K, z′, x) := z′∥∥(

leftn/2(x) ⊕ z′) (6)

using an index i with m(i) = n/2.
It is easy to see unbalanced Feistel [2, Chapter 1.3.1], Lai-Massey [2, Chapter

1.5] and keyed Feistel rounds are instances of E1 as well. Though, E1 does not
cover multi-line generalized Feistel [2, Chapter 1.3.1] (which makes multiple P
calls per round) and Swap-Or-Not [29] (which uses small-range functions).

5.2 Properties of 1-Call Blockciphers/Rounds

We first introduce several helper sets. We then discuss properties of data-
dependent encipherments, inverse-free and non-inverse-free encipherments in
turn.
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Notations. For any 1-call cipher E1P : K × {0, 1}n → {0, 1}n and any K in its
keyspace K, define

Domif(E1, K) :=
{

x ∈ {0, 1}n : δ = δ′, where (i, δ, z) = ϕin(K, x),

(i, δ′, z′) = γin(K, y), y = E1P(K, x)
}

,

Rngif(E1, K) :=
{

y ∈ {0, 1}n : δ = δ′, where (i, δ, z) = γin(K, y),

(i, δ′, z′) = ϕin(K, x), x = (E1−1)P(K, y)
}

,

Domni(E1, K) := {0, 1}n\Domif(E1, K), Rngni(E1, K) := {0, 1}n\Rngif(E1, K). (7)

For x ∈ Domif(E1,K), the encipherment E1P(K,x) and the corresponding
decipherment (E1−1)P(K, y) call P on the same direction. Therefore, E1P(K,x)
is inverse-free (inv-free for short), as reflected by the subscript if. Otherwise,
E1P(K,x) is non-inverse-free (non-inv-free), as reflected by ni. We remark that
E1P(K,x) = E′(P(f(K)), x) is also inv-free, although it may not match classical
understandings.

For tag ∈ {ni, if}, define sets for plaintexts/ciphertexts in Domtag/Rngtag that
are mapped to a certain P input (i, δ, z):

Domtag(E1,K, i, δ, z) :=
{
x ∈ Domtag(E1,K) : ϕin(K,x) = (i, δ, z)

}
,

Rngtag(E1,K, i, δ, z) :=
{
y ∈ Rngtag(E1,K) : γin(K, y) = (i, δ, z)

}
. (8)

Domtag(E1,K, i, δ) := ∪z∈{0,1}m(i)Domtag(E1,K, i, δ, z),

Rngtag(E1,K, i, δ) := ∪z∈{0,1}m(i)Rngtag(E1,K, i, δ, z). (9)

We slightly abuse the notation Rng	 to denote the actual ranges of the input
functions ϕin and γin. In detail, for tag ∈ {ni, if}, define

Rngtag(ϕ
in, K) :=

{
(i, δ, z) : (i, δ, z) = ϕin(K, x) for some x ∈ Domtag(E1, K)

}
,

Rngtag(γ
in, K) :=

{
(i, δ, z) : (i, δ, z) = γin(K, y) for some y ∈ Rngtag(E1, K)

}
.

Rngtag(ϕ
in) := ∪K∈KRngtag(ϕ

in, K), Rngtag(γ
in) := ∪K∈KRngtag(γ

in, K). (10)

On Data-Dependence. As indicated by the partition {0, 1}n =
Domif(E1,K) � Domni(E1,K), the inv-freeness of E1P(K,x) can be data-
dependent. Though, as mentioned in Sect. 3.1, (surprisingly) one can decide
whether an encipherment E1P(K,x) is inv-free without querying P. This turns
out crucial in our attacks.

Lemma 1 (Inv-freeness is oracle-independent). Consider the blockcipher
E1P : K ×{0, 1}n → {0, 1}n in Fig. 10. Then, for any pair (K,x) ∈ K ×{0, 1}n,
resp. (K, y) ∈ K × {0, 1}n, whether x ∈ Domif(E1,K), resp. y ∈ Rngif(E1,K),
can be determined without querying P.
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Proof. Assume otherwise, and let (K,x) be the input such that whether x ∈
Domif(E1,K) depends on P. Let (i, δ, z) = ϕin(K,x) and y = E1P(K,x). Since
E1P(K,x) only makes one query P(i, δ, z) to P, E1P(K,x) is inv-free if and only
if P(i, δ, z) is in a certain subset of {0, 1}m(i). Namely, there exists a partition
{0, 1}m(i) = Zδ ∪ Zδ such that x ∈ Domif(E1,K) if and only if P(i, δ, z) ∈ Zδ.

However, let (i, δ′, z′) = γin(K, y), then y ∈ Rngif(E1,K) if and only if δ′ = δ.
This means it always holds P(i, δ, z) ∈ Zδ′ , where δ′ is fixed by the definition of
the function γin. This violates our assumption that γin is oracle-independent.

Therefore, one can decide if x ∈ Domif(E1,K) solely by computations. The
argument for y ∈ Rngif(E1,K) is similar by symmetry. ��

Properties of Inv-Free Encipherments. We now formalize the intuitive
weaknesses of inv-free encipherments discussed in Sect. 3.1.

Lemma 2 (Inv-freeness preserves partial inputs). Consider the 1-call
blockcipher E1P in Fig. 10. Then, for any pair (K,x), x ∈ Domif(E1,K), it holds
γin(K, y) = ϕin(K,x) for y = E1P(K,x). It further implies |Domif(E1, i, δ, z)| =
|Rngif(E1, i, δ, z)| for any i ∈ I, δ ∈ {+,−} and z ∈ {0, 1}m(i). Proof: this is
a straightforward implication of Fig. 10 and Definition 1.

The second observation follows by non-degeneracy: if there exists one inv-free
encipherment E1P(K,x), then there must exist superpolynomially many.

Lemma 3 (Inv-freeness can’t be unique). Consider the 1-call blockcipher
E1P in Fig. 10. If E1P is εde(E1)-non-degenerate in the sense of Definition 2,
then for any (K, i, δ, z) such that Domif(E1,K, i, δ, z) = ∅, it holds

∣
∣Domif(E1,K, i, δ, z)

∣
∣ > 1/εde(E1) = Ω(poly(n)). (11)

Proof. Assume otherwise, i.e., |Domif(E1,K, i, δ, z)| ≤ ε−1
de(E1) for some

(K, i, δ, z). By Lemma 2, for any x ∈ Domif(E1,K, i, δ, z), the corresponding
ciphertext y = E1P(K,x) must have y ∈ Rngif(E1,K, i, δ, z). By Lemma 2,
|Rngif(E1,K, i, δ, z)| = |Domif(E1,K, i, δ, z)| ≤ 1/εde(E1). By these, for any

x ∈ Domif(E1,K, i, δ, z), one can uniformly pick y
$←− Rngif(E1,K, i, δ, z) to

encipher (K,x) without querying P at all, and the success probability is at least
εde(E1). This contradicts the assumption that E1P is εde(E1)-non-degenerate as
Eq. (3). ��

An implication of Lemma 3 is that the ranges of ϕin and γin cannot be too
large. Due to page limits, the proof is deferred to the full version [28].

Lemma 4 (Functions in inv-free encipherments). Consider the 1-call
blockcipher E1P in Fig. 10. If E1P is εde(E1)-non-degenerate (see Definition
2), then it holds

∣
∣Rngif(ϕin,K)

∣
∣ =

∣
∣Rngif(γin,K)

∣
∣ ≤ |Domif(E1,K)| · εde(E1) ≤

2n · εde(E1).
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Properties of Non-inv-free Encipherment. For E1P(x), x ∈ Domni(E1,K),
our first observation is that E1P(x) cannot query wide random permutations
(as discussed in Sect. 3.2). We now elaborate on the “regularity” of ϕin and
γin. For example, in the IEM round (see Eq. (5)), for every K ∈ {0, 1}n

we have |Domni(E1,K, i,+)| = 2n = 2m(i), and for every z ∈ {0, 1}n we
have |Domni(E1,K, i,+, z)| = 1 = |Domni(E1,K, i,+)|/2m(i). In the “key-
alternating” Misty-R round (see Eq. (5)), we have |Domni(E1,K, i,+)| = 2n

for K ∈ {0, 1}n/2 and |Domni(E1,K, i,+, z)| = 2n = |Domni(E1,K, i,+)|/2m(i)

with m(i) = n/2 for every z ∈ {0, 1}n/2.
Below we formalize the above first idea and show that the actual ranges of

the functions ϕin and γin must be somewhat limited.

Lemma 5 (Non-inv-free encipherments cannot query wide P). Con-
sider the 1-call blockcipher E1P in Fig. 10. Then:

– For any key K ∈ K and any x ∈ Domni(E1,K), let (i, δ, z) = ϕin(K,x), then
it holds i ∈ I≤n;

– Similarly, for any key K ∈ K and any y ∈ Rngni(E1,K), let (i, δ, z) =
γin(K, y), then it holds i ∈ I≤n.

Consequently,
∣
∣Rngni(ϕin)

∣
∣ ≤ |I≤n|2N+1,

∣
∣Rngni(γin)

∣
∣ ≤ |I≤n|2N+1.

Proof. Assume otherwise, then there exists (K,x) such that x ∈ Domni(E1,K),
and (i, δ, z) = ϕin(K,x) has i ∈ I>n. This means |z| = m(i) > n.

Furthermore, the oracle response P(ϕin(K,x)) = z′ must be that there exists
y ∈ Rngni(E1,K) such that γin(K, y) = (i, δ, z′). Since x ∈ Domni(E1,K) ⊆
{0, 1}n and y ∈ Rngni(E1,K) ⊆ {0, 1}n, the number t of z and z′ related by such
relation is at most 2n, meaning that P(i, ·, ·) must map a set of t ≤ 2n possible
z values (that are determined by ϕin) to a set of t ≤ 2n possible z′ values (that
are determined by γin). This violates the oracle-independence assumption on ϕin

and γin. Therefore, for any (K,x), x ∈ Domni(E1,K), let (i, δ, z) = ϕin(K,x),
then it holds i ∈ I≤n, i.e., m(i) ≤ n. It thus follows

∣
∣Rngni(ϕin)

∣
∣ ≤ ∣

∣{+,−}∣∣ ×
|I≤n| × 2n ≤ |I≤n|2N+1 and

∣
∣Rngni(γin)

∣
∣ ≤ |I≤n|2N+1. ��

We then formalize the above (somewhat surprising) “regularity” idea (the
proof is deferred to [28] due to page limits).

Lemma 6 (Regularity in non-inv-free encipherments). Consider the 1-
call blockcipher E1P in Fig. 10. Then, for any K ∈ K and any (i, δ) ∈ I≤n ×
{+,−}, the restriction of ϕin to Domni(E1,K, i, δ) (resp., the restriction of γin

to Rngni(E1,K, i, δ)) is regular. I.e., the following holds for any z, z′ ∈ {0, 1}m(i)

∣
∣Domni(E1,K, i, δ, z)

∣
∣ =

∣
∣Rngni(E1,K, i, δ, z′)

∣
∣ =

∣
∣Domni(E1,K, i, δ)

∣
∣

2m(i)
.

This also means
∣
∣Domni(E1,K, i, δ)

∣
∣ must be divisible by 2m(i).

By Lemma 5, we can derive the collision probability among images of ϕin

and γin as follows (the proof is deferred to [28]).
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Corollary 1 (Probability of collisions). For any (i, δ, z) and any set S ⊆
{0, 1}n with |S| = poly(n), when n is sufficiently large it holds

Pr
[
y

$←− {0, 1}n\S : γin(K, y) = (i, δ, z)
∣
∣ y ∈ Rngni(E1,K)

] ≤ 2
2mmin

, (12)

Pr
[
x

$←− {0, 1}n\S : ϕin(K,x) = (i, δ, z)
∣
∣ x ∈ Domni(E1,K)

] ≤ 2
2mmin

. (13)

5.3 Attack 1-Call Blockciphers

After the preparations in Sect. 5.2, we are able to establish insecurity of 1-call
ciphers E1P : K × {0, 1}n → {0, 1}n of Fig. 10.

Theorem 1 (Differentiability of E1P). Let E1P : K × {0, 1}n → {0, 1}n be
a blockcipher defined by Fig. 10. Assume that E1P is deterministic and εde(E1)-
non-degenerate in the sense of Definition 2, and its keyspace has |K| ≥ 2|I≤n|+
1 = O(poly(n)). Then, when n is sufficiently large, there exists a differentiator
D1E,P making at most �mmax/n� + 2 queries and has an advantage at least
1 − mmax

2

2n − 2
2mmin

= 1 − negl(n).

It is crucial to restrict |K| > |I≤n|: otherwise, P may already offer |K|
independent n-bit random permutations. There are two purposes to consider
|K| = poly(n). First, it strengthens the negative result (i.e., even indifferentiable
cipher of logarithmic key length is impossible). Second, such D1 can function as
subroutines of D2 and D3 in Sect. 6 and 7.

The full proof is available in [28].

6 Attack 2-Call Iterated Blockciphers

For 2- and 3-call ciphers, we restrict to iterated blockciphers that are built from
key derivation functions and rounds. For a 2-call cipher E2P , this means enci-
pherment E2P(K,x) must proceed with either of the following flows:

– Type-I: E2P(K,x) = ΠP
3

(
K‖kdP(K), x

)
for a 1-call function kdP :

{0, 1}κ → {0, 1}mmax and a 1-call cipher ΠP
3 : {0, 1}κ+mmax × {0, 1}n →

{0, 1}n, or
– Type-II: E2P(K,x) = ΠP

2

(
K,ΠP

1 (K,x)
)

for two 1-call ciphers/rounds
ΠP

1 ,ΠP
2 : {0, 1}κ × {0, 1}n → {0, 1}n.

The keyspace is partitioned K = K(0)�K(1), such that E2P(K, ·) follows Type-I
encipherment if and only if K ∈ K(1). Formally, we consider the cipher E2P

defined in Fig. 11. As mentioned in the Introduction, there is no need to use
multiple P1,P2, ..., since P already provides multiple independent permutations.

As discussed the overview (Sect. 3.3), we make an additional non-degenerate
assumption on the input functions ϕin. Formally,
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Definition 3 (Non-degenerate Keyed Function). A keyed function
ϕin(·, ·) is εde(ϕin)-non-degenerate, if the following two upper bounds hold (recall
from Lemma 1 that the set Domif(E1,K) is fully determined by ϕin):

max
K,(i,δ,z)

{
Pr

[
x

$←− {0, 1}n : ϕin(K, x) = (i, δ, z)
∣∣ x ∈ Domif(E1, K)

]} ≤ εde(ϕin).

max
x,(i,δ,z)

{
Pr

[
K

$←− {0, 1}κ : ϕin(K, x) = (i, δ, z)
∣∣ x ∈ Domif(E1, K)

]} ≤ εde(ϕin).

By default, we assume εde(ϕin) = negl(n) is negligible.

Input functions in common inv-free blockciphers are indeed non-degenerate:
e.g., key-prepended Feistel round has ϕin(K,x) =

(
i,+,K‖rightn/2(x)‖[0]n/2

)

(see Eq. (4)) and εde(ϕin) = max{1/2n, 1/2κ}.

Theorem 2 (Differentiability of E2P). Let E2P be a blockcipher defined

by Fig. 10 with keyspace |K| ≥ (
6
(
3|I≤n|)

1
n + 5

)|I≤n| + 1 = O(poly(n)).
Assume that: (i) for all j ∈ {0, 1, 2}, the round ΠP

j is deterministic and
εde(Πj)-non-degenerate, and (ii) ϕin

1 and ϕin
2 are εde(ϕin

1 )- and εde(ϕin
2 )-non-

degenerate respectively (see Definition 3). Then, when n is sufficiently large,
there exists a differentiator D2E,P making poly(n) queries and has advantage at
least 1 − mmax

2/2n − 2q2εde(ϕin
1 ) − 2q2εde(ϕin

2 ) − 6q2/2mmin = 1 − negl(n), where
q is the number of IC-queries made by D2 and S in total.

We refer to [28] for its proof and Sect. 3.3 for the overview.

Algorithm E2P(K, x)

if K ∈ K(1) then
return ΠP

3

(
K‖kdP(K), x

)

else // K ∈ K(0)

u ← ΠP
1 (K, x)

return ΠP
2

(
K, u

)

end if

Algorithm ΠP
j (K, x) // j ∈ {0, 1, ..., 5}

(ij , δj , zj) ← ϕin
j (K, x)

z′
j ← P(ij , δj , zj)

y ← ϕout
j (K, z′

j , x)
return y

Algorithm kdP(K)
(i, δ, z) ← f(K)
z′ ← P(i, δ, z)
return z′

Algorithm (E2−1)P(K, y)

if K ∈ K(1) then
return (Π−1

3 )P(
K‖kdP(K), y

)

else // K ∈ K(0)

u ← (Π−1
2 )P(K, y)

return (Π−1
1 )P(

K, u
)

end if

Algorithm (Π−1
j )

P
(K, y) //

j ∈ {0, 1, ..., 5}
(ij , δj , zj) ← γin

j (K, y)

z′
j ← P(ij , δj , zj)

x ← ϕout
j (K, z′

j , y)
return x

Fig. 11. Definition of the 2-call iterated blockcipher E2P .
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7 Attack 3-Call Iterated Blockciphers

For 3-call iterated ciphers, E3P(K,x) can take one of the following three flows:

– Type-I: E3P(K,x) = ΠP
6

(
K‖kdP

1 (K), x
)

for a 2-call KDF kdP
1 : {0, 1}κ →

{0, 1}2mmax and a 1-call cipher ΠP
6 : {0, 1}κ+2mmax × {0, 1}n → {0, 1}n, or

– Type-II: E3P(K,x) = ΠP
5

(
K‖kdP

2 (K),ΠP
4 (K‖kdP

2 (K), x)
)

for a 1-call KDF
kdP

2 : {0, 1}κ → {0, 1}mmax and two 1-call ciphers ΠP
4 ,ΠP

5 : {0, 1}κ+mmax ×
{0, 1}n → {0, 1}n, or

– Type-III: E3P(K,x) = ΠP
3

(
K,ΠP

2

(
K,ΠP

1 (K,x)
))

for three 1-call ciphers
ΠP

1 ,ΠP
2 ,ΠP

3 : {0, 1}κ × {0, 1}n → {0, 1}n.

The keyspace is partitioned K = K(0) � K(1) � K(2), such that E3P(K, ·) follows
Type-I, resp. Type-II encipherment if and only if K ∈ K(2), resp. K ∈ K(1).
Formally, E3P is defined in Fig. 12.

Theorem 3 (Differentiability of E3P). Let E3P be a blockcipher defined by
Fig. 12 with keyspace {0, 1}κ, κ ≥ 2mmax log2 |I≤n| + 2mmaxn + 6mmax + 4 =
Θ(poly(n)). Assume that for j = 1, 2, 3, 4, 5, 6, (i) the round ΠP

j is determin-
istic and εde(Πj)-non-degenerate, and (ii) ϕin

j is εde(ϕin
j )-non-degenerate (see

Definition 3). Then, when n is sufficiently large, there exists a differentia-
tor D3E,P making poly(n) queries to E and P and having advantage either
1/poly(n) − negl(n) or 1 − negl(n) for some poly(n) and negl(n) determined by
ϕin

j , j = 1, 2, 3, 4, 5, 6.

We refer to [28] for its proof and Sect. 3.4 for the overview.

Algorithm E3P(K, x)

if K ∈ K(2) then
return ΠP

6

(
K‖kdP

1 (K), x
)

else if K ∈ K(1) then
s ← kdP

2 (K)

return ΠP
5

(
K‖s, ΠP

4 (K‖s, x)
)

else // K ∈ K(0)

u ← ΠP
1 (K, x)

return ΠP
3

(
K, ΠP

2

(
K, u

))

end if

Algorithm kdP
1 (K)

(i1, δ1, z1) ← f1,1(K)
z′
1 ← P(i1, δ1, z1)

(i2, δ2, z2) ← f1,2(K, z′
1)

z′
2 ← P(i2, δ2, z2)

return z′
1‖z′

2

Algorithm (E3−1)P(K, y)

if K ∈ K(2) then
return (Π−1

6 )P(
K‖kdP

1 (K), y
)

else if K ∈ K(1) then
s ← kdP

2 (K)

return (Π−1
4 )P(

K‖s, (Π−1
5 )P(K‖s, y)

)

else // K ∈ K(0)

w ← (Π−1
3 )P(K, y)

return (Π−1
1 )P(

K, (Π−1
2 )P(

K, w
))

end if

Algorithm kdP
2 (K)

(i, δ, z) ← f2,1(K)
z′ ← P(i, δ, z)
return z′

// Definitions of ΠP
j (K, x) and

(Π−1
j )P(K, y) are the same as Fig. 11

Fig. 12. Definition of the 3-call iterated blockcipher E3P .
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Abstract. Cryptographic hash functions map data of arbitrary size to
a fixed size digest, and are one of the most commonly used cryptographic
objects. As it is infeasible to design an individual hash function for every
input size, variable-input length hash functions are built by designing
and bootstrapping a single fixed-input length function that looks suf-
ficiently random. To prevent trivial preprocessing attacks, applications
often require not just a single hash function but rather a family of keyed
hash functions.

The most well-known methods for designing variable-input length
hash function families from a fixed idealized function are the Merkle-
Damg̊ard and Sponge designs. The former underlies the SHA-1 and SHA-
2 constructions and the latter underlies SHA-3. Unfortunately, recent
works (Coretti et al. EUROCRYPT 2018, Coretti et al. CRYPTO 2018)
show non-trivial time-space tradeoff attacks for finding collisions for
both. Thus, this forces a parameter blowup (i.e., efficiency loss) for reach-
ing a certain desired level of security. We ask whether it is possible to
build families of keyed hash functions which are provably resistant to
any non-trivial time-space tradeoff attacks for finding collisions, without
incurring significant efficiency costs.

We present several new constructions of keyed hash functions that are
provably resistant to any non-trivial time-space tradeoff attacks for find-
ing collisions. Our constructions provide various tradeoffs between their
efficiency and the range of parameters where they achieve optimal secu-
rity for collision resistance. Our main technical contribution is proving
optimal security bounds for converting a hash function with a fixed-sized
input to a keyed hash function with (potentially larger) fixed-size input.
We then use this keyed function as the underlying primitive inside the
standard Merkle-Damg̊ard and Merkle tree constructions. We strongly
believe that this paradigm of using a keyed inner hash function in these
constructions is the right one, for which non-uniform security has not
been analyzed prior to this work.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14007, pp. 440–469, 2023.
https://doi.org/10.1007/978-3-031-30634-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30634-1_15&domain=pdf
http://orcid.org/0000-0002-6307-204X
http://orcid.org/0000-0003-2436-0230
http://orcid.org/0000-0002-1647-2112
https://doi.org/10.1007/978-3-031-30634-1_15


Optimal Security for Keyed Hash Functions 441

1 Introduction

A cryptographic hash function is a (deterministic) algorithm that takes arbi-
trary length input data and outputs a fixed length digest. It is one of the most
fundamental tools in modern applications of cryptography, underlying numerous
widely used applications. For example, it facilitates the hash-and-sign paradigm,
proofs-of-work for blockchains, and more. While it is empirically believed that
concrete cryptographic hash functions satisfy various useful security properties,
formalizing this seems to be currently out of reach. Thus, in the context of
provable security, cryptographic hash functions are usually modeled as random
oracles, i.e., completely random functions [6]. This allows us to analyze specific
properties and argue about the concrete security of systems that use them. In
this work, we focus on the property of a hash function being collision resis-
tant, i.e., the idea that although collisions exist in abundance in a compressing
function, it should be computationally hard to find them.

The task of finding collisions in a given compressing function is only inter-
esting if the adversary is uniform. That is, the adversary is “fixed” before the
hash function. Indeed, otherwise, a non-uniform attacker can simply have colli-
sions hardwired. However, the uniform model of security does not capture many
real-world adversaries, and therefore it is common to model adversaries as non-
uniform in theoretical cryptography. Specifically, non-uniform security captures
adversaries that have been designed to attack specific instances, adversaries that
have gone through an expensive preprocessing stage, or even protect against
(currently unknown) future attacks. Non-uniform security is also necessary for
composition within larger systems [18]. For all of these reasons, it is widely
believed by the theoretical community that modeling attackers as non-uniform
is the right thing to do, despite potentially being overly conservative and includ-
ing unrealistic attackers.

Dealing with non-uniform attackers in the context of hashing and collision
finding makes it necessary to consider a family of keyed hash functions, rather
than a single hash function. Collision finding is then defined via the following
two-stage game. First, a (keyed) family H of hash functions is fixed, and the
attacker can depend arbitrarily on H. Second, a random key key is sampled, and
the adversary needs to find a collision in H relative to key. Intuitively, in order
to attack the hash function (e.g., find a collision), a non-uniform attacker must
either (a) have some hard-coded information about key, or (b) can essentially be
treated as uniform.

For applications, we typically want each member of H to operate on
unbounded input lengths. That is, H : {0, 1}κ × {0, 1}∗ → {0, 1}n should be
viewed as a two-input function, operating on (key,m), where key ∈ {0, 1}κ is the
key and m ∈ {0, 1}∗ is an arbitrary length input. Since it is practically infeasi-
ble to design a different hash function for every input length, what happens is
that a single basic compressing function h : {0, 1}a → {0, 1}n for some a > n is
designed, and then it is iterated in some way to get a hash function that com-
presses arbitrarily. For instance, the well-known Merkle-Damg̊ard design [13,24]
iterates such a basic compressing function in order to get a variable-input-length
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hash function that can operate on arbitrary sized data up to some maximum
length (e.g., 264 bits).

AI-ROM. Since we consider non-uniform security in the random oracle model,
we model attackers using the auxiliary-input random oracle model (AI-ROM),
formally defined by Unruh [27] although implicitly used earlier, for example, by
Hellman [20], Yao [28], and Fiat and Naor [15]. In this model, we assume a hash
function h : {0, 1}a → {0, 1}n with a > n modeled as a completely random one,
i.e., a random oracle [6]. The AI-ROM models preprocessing adversaries as two-
stage algorithms (A1,A2) parameterized by S (for “space”) and T (for “time”).
We refer to such an attacker as an (S, T )-attacker. The first part A1 (i.e., the
offline phase) has unbounded access to h, and its goal is to compute an S-bit
“advice” σ for A2. The second part A2 (i.e., the online phase) gets the advice
σ, can make at most T queries to h, and attempts to accomplish some task
involving h. In our case, A2 gets a random key key ←$ {0, 1}κ as a challenge and
its goal is to come up with a collision in H(key, ·). Aside from the restrictions
that |σ| ≤ S and that A2 can make at most T queries to h, both A1 and A2 are
allowed to be computationally unbounded.

Building a Keyed Hash from a Single Hash Function. Observe that for
every keyed hash construction, there is an (S, T )-attacker that finds a collision
relative to a random key with probability1 Ω(S/2κ + T 2/2n) via the following
attack. First, the preprocessing adversary outputs Ω(S) collisions with respect
to arbitrary distinct keys. The online adversary receives a random key. If key is in
the remembered list from the preprocessing phase, it outputs the corresponding
collision. Otherwise, it performs a T -query birthday-style attack. The adversary
wins if either the challenge key appears in one of its preprocessed collisions (giving
the S/2κ term) or if the birthday attack succeeds (giving the T 2/2n term). We
refer to this attack as the naive attack, and say that a construction is optimally
secure if there is provably no better attack. This brings us to the main question
we consider in this work.

Can we build a keyed hash function (i.e., H : {0, 1}κ × {0, 1}∗ → {0, 1}n)
from non-keyed one (i.e., h : {0, 1}a → {0, 1}n) with optimal non-uniform
security?

If we could design an ha : {0, 1}a → {0, 1}n for every a ∈ N, then the above
task is easy. We can simply parse the input to the appropriate ha into two parts,
one for the key and the other for the input to H : {0, 1}κ×{0, 1}∗ → {0, 1}n. That
is, define H(key,m) = hκ+|m|(key‖m), where ‖ stands for string concatenation
and | · | stands for bit length. For this construction, Dodis, Guo and Katz [14]
showed that the best attack achieves advantage O(S/2κ +T 2/2n), matching the
advantage of the naive attack.

Unfortunately, it is infeasible to design a different hash function for every
input length as discussed above. The design of a new h is a delicate and lengthy

1 To simplify notation throughout the introduction, we suppress poly factors in n in
the asymptotic O(·) and Ω(·) notation.
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process that could take many years to test and standardize. Having a single hash
function is therefore more robust security-wise. Thus, the standard procedure is
to design a hash function h with fixed input size and then iterate it in some way
to get a hash function that supports arbitrary input lengths.

It may seem that standard domain extension techniques for hash functions
(like Merkle-Damg̊ard, Sponge, or Merkle trees) provide a solution for this prob-
lem. Indeed, their goal is to take a hash function on a small domain and turn it
into a hash function with arbitrary-size domain. But, as we point out next, the
standard constructions suffer from a significant security loss. A priori, it is not
even clear that this security loss is avoidable.

The Security of Existing Constructions. First, consider (a keyed variant
of) the Merkle-Damg̊ard (MD) construction [13,24], perhaps the most widely
popular design for getting a hash function on long inputs from one on fixed input
sizes. This design is not only extremely fundamental in cryptographic theory, but
it also underlies popular hash functions used in practice, most notably MD5,
SHA-1, and SHA-2. The MD : {0, 1}κ × {0, 1}∗ → {0, 1}n construction iterates
the basic hash function h : {0, 1}a → {0, 1}n by feeding in input blocks of size
s = a − max{κ, n} one by one. It first pads the message appropriately such that
it is a multiple of s bits. For key key ∈ {0, 1}κ and input m ∈ {0, 1}s, define
MD(key,m) = h(key‖m). Then, for a longer input m ∈ ({0, 1}s)�, viewed as �
blocks m1, . . . , m� each from {0, 1}s, recursively define MD(key, (m1, . . . , m�)) =
h(MD(key, (m1, . . . , m�−1)),m�). We note that in the standard MD construction
(studied, for example, in [1,2,11,17]), key is only explicitly included once when
processing the first message block.

Collision resistance of MD in the AI-ROM was first studied by Coretti, Dodis,
Guo, and Steinberger [11] and more recently by [1,2,17]. It is known that there
is an attack, loosely based on the idea of rainbow tables [20,25], which succeeds
in finding a collision with probability Ω(S/2κ + ST 2/2n). In typical settings of
parameters, the ST 2/2n term dominates the above expression and in this case
it is evident that MD suffers from a significant security loss.

Concretely, in the SHA-1 construction, a = 678 and κ = n = 160. If we
model the underlying primitive h : {0, 1}678 → {0, 1}160 as a perfectly random
function, an (S, T )-attacker with S = 253 and T = 250 will find a collision
with probability ≈ 2−7 (essentially completely breaking the scheme).2 On the
other hand, the best one could hope is a construction with maximal advantage
O(S/2κ + T 2/2n) ≈ 2−60 (obtained by the naive attack).

Another construction we mention is the Sponge [7,8] construction, an alter-
native to the Merkle-Damg̊ard design that underlies the modern SHA-3 hashing
standard. As opposed to MD, the Sponge construction relies on a random per-
mutation Π : {0, 1}n → {0, 1}n. Sponge iterates Π by feeding in blocks of size
r < n from the input one at a time in a certain way. It results with a keyed
hash function Sp : {0, 1}κ × {0, 1}∗ → {0, 1}r with κ + r = n. Coretti et al. [11]

2 These parameters roughly correspond to an attacker with ≈ 1000 terabytes of mem-
ory that uses optimized hardware that can compute 3 billion hashes per second for
a long weekend.
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(see also [16]) showed that there is a collision finding (S, T )-attack with advan-
tage Ω(ST 2/2κ +T 2/2r) against Sp relative to a random key. Again, we see that
there is a non-trivial security loss in this construction.

It is important to note that for every choice of S and T the above attacks
on Merkle-Damg̊ard and Sponge beat the naive attack. In particular, there is no
non-trivial choice of parameters where MD or Sp achieve the optimal security
bound.

Lastly, we mention two other popular (variable-input-length) hash function
designs: Merkle trees [23] and the BLAKE family [3,4]. The former (Merkle
trees) is a popular design that has important features like local opening and
can be easily parallelized. Although it is extremely popular both in theory and
in practice, we are not aware of a keyed variant that has been studied in the
non-uniform setting. The latter (BLAKE) is a runner-up in NIST’s competition
to create a new hashing standard (where Sponge ended up as the winner). This
design is based on the MD design, but they allow the inner hash function h to
be keyed at every invocation. We are not aware of a formal study of its security
in the non-uniform setting. Looking ahead, two of our main contributions are a
proposal and analysis of the non-uniform security of Merkle tree and the MD/
BLAKE design, where the inner hash function h is keyed in every invocation.
Concretely, we believe that this is the right notion to consider moving forward,
in terms of non-uniform security.

A Different Perspective. Above, we considered the scenario where
h : {0, 1}a → {0, 1}n is given, and we want to build an H : {0, 1}κ × {0, 1}∗ →
{0, 1}n which is as secure as possible for every (S, T )-attacker. A different per-
spective, slightly more target oriented, is to first fix a desired security level (say
2−50) and the power of adversaries (say S = T = 260) and then understand
which h is needed in order to get the desired H. If we use MD (for concreteness)
for H, we will need n ≥ 230, but if we had an optimally secure construction of
H, we would need only n ≥ 170. The latter could potentially be easier to design
and argue about.

1.1 Our Results

We provide several constructions of keyed hash functions from non-keyed ones
that do not suffer from any security loss (i.e., the naive attack that has advan-
tage Θ(S/2κ + T 2/2n) is provably optimal). Our constructions provide various
tradeoffs between their efficiency and the range of parameters (S and T ) where
they achieve optimal security.

Merkle-Damg̊ard and Merkle Trees with a Keyed Inner Hash. All of
our constructions can be viewed within a framework that builds on the Merkle-
Damg̊ard and Merkle tree constructions.

We start by discussing the MD-based approach. We consider an iterative
hashing design where a compression phase is performed in every step using an
“inner hash” function. The input for the compression phase is the current state
and the next input. At the end, the compression phase outputs the next state.
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Of course, the inner hash function in the compression phase can use h as a
subroutine. Abstractly, the compression phase for the MD-based construction is

y := compress(key, y,m),

where importantly the compress function takes key as input. See Fig. 1 for an
illustration. With this notation, the compression function of the standard MD
function (at least as studied in numerous recent works including [1,2,11,17]) is
simply compress(key, y,m) = h(y,m), and for the first step, y is initialized to
key. Notably key is not included in every compression phases.

Fig. 1. Our framework for building keyed hash functions based on the Merkle-Damg̊ard
construction with a keyed inner compression function.

We next consider a parallelizable hashing design that generalizes the Merkle
tree hash function. Here, each input is fed into a “leaf” of the Merkle tree, along
with the key value. The compression function is then used to recursively combine
outputs in previous levels until a final output is generated. Crucially, we always
include key in the compression function. See Fig. 2 for an illustration. This frame-
work provides an alternative to the generalized MD approach described above.
It requires at most a factor of two more calls to compress, but it is extremely
parallelizable. Further, it provides a local opening property, where someone can
prove that an individual message block mi was included in the hash, without
providing the full message.

Our constructions are obtained by different implementations of compress,
namely viewing compress as an inner keyed hash function used in the MD and
Merkle tree designs. Quantitatively, the MD and Merkle tree approaches give
similar results, so we focus our attention on instantiating compress in the case of
the MD-based framework. However, all of our main results extend to the setting
of the generalized Merkle tree framework, which we provide in the full version.

For simplicity of presentation of our results, we slightly simplify notation
and assume that κ (the key length) is equal to n (the output size of the hash
function).3 In our formal theorem statements in the technical sections, κ and n
are treated independently when relevant.

3 We note that there are constructions that use κ �= n by design (e.g., BLAKE hash [3,
4] uses κ = n/2).
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Fig. 2. Our framework for building keyed hash functions based on the Merkle tree
construction.

Efficiency: We measure efficiency of a given construction by the number of
calls to h needed to evaluate H at a single point. For example, in the standard
MD construction with an underlying hash that maps {0, 1}a to {0, 1}n, to hash
a b-bit input, the query complexity is b/(a − n) (ignoring rounding4). Indeed,
every application of h takes as input the previous output (n bits) and so it can
process a − n bits from the input each time.

Assuming a Large Inner Hash. Our first result shows that optimal security
loss is achievable. That is, we show that there is a way to take a random oracle
that operates on a fixed input length and get a keyed hash H that operates
on arbitrary-length inputs with the following security guarantee: for any S, T ,
any (S, T )-attacker has minimal possible advantage in finding a collision in H
relative to a random key. In words, the new construction is a variant of MD
where we also feed key as input in every block. We refer to this construction as
the MD construction with a keyed inner hash, in contrast to the standard MD
construction where key is only fed in the first block. At a high level, feeding the
key into every invocation of h allows us to reduce the probability of finding a long
collision in H to that of finding a collision in h, which achieves optimal security
O(S/2n +T 2/2n) [14]. Refer to Fig. 3 for an illustration of how the construction
works.5

4 To be more precise, MD requires �(b + n + 1)/(a − n)� calls to h after padding the
input with its length followed by a 1 and a sequence of 0s to fill the remaining current
block. However, for ease of presentation, we ignore rounding in the introduction. In
the formal theorem statements, we give exact efficiency bounds.

5 Essentially the same construction appears in Goldwasser-Bellare’s lecture notes [19,
§8.5] where it is shown that this construction is collision resistant in the uniform
setting. Our result shows that this holds in the non-uniform (AI-ROM) setting as
well.
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Theorem 1 (Informal; see Theorem 8). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > 2n. Then, there is an H1 : {0, 1}n ×
{0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N and any (S, T )-attacker, their advantage in finding a colli-
sion in H1(key, ·) relative to a random key ←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H1 on a given key and a b-bit message requires b/(a − 2n)
queries to h.

Fig. 3. The construction H1 underlying Theorem 1 given a hash function h : {0, 1}a →
{0, 1}n for a > 2n.

The above result is optimal in terms of security and is almost as efficient as
standard MD if a ≥ 2n+Ω(n). For example, if a = 3n, processing a b-bit input of
H1 requires querying h as many as b/(a − 2n) = b/n times. In the standard MD
construction, only b/(a − n) = b/(2n) queries are required, so our construction
is less efficient than MD by a small constant factor at most 2 when a = 3n.

However, H1 is significantly less efficient than MD if a is roughly 2n, i.e. h
compresses by a factor of 2. For example, if a = 2n + 1, then processing a b-bit
input of H1 requires invoking h as many as b times. However, MD requires only
b/(n + 1) queries. This is a significant difference. We emphasize that having an
efficient construction even when a ≈ 2n is not only a technicality but is rather
important: concretely, assuming that the basic compressing function shrinks by
a factor 2 is extremely common, both in theory and in practice. Thus, our next
results are focused on closing this gap.

Instantiating the Keyed Inner Hash with Standard MD. To this end, we
start by considering a construction H2 that works for any a > n and only incurs
a factor of 2 overhead in terms of efficiency relative to MD. While this may seem
too good to be true, we pay in terms of the assumptions we need to make to
claim optimal security for collision resistance. Namely, the scheme has “optimal
security,” meaning any (S, T )-attacker can find a collision with probability at
most O(S/2n + T 2/2n), only whenever S ≤ T and ST 2 ≤ 2n.

This main idea behind the construction H2 is to instantiate the compress
function in the MD-based framework of Fig. 1 with a standard MD hash function.
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We use key as the key for MD, and we treat yi−1‖mi as the message. If we use a
message block size |mi| = n, this results in only a factor of two overhead relative
to MD (essentially, half of the invocations of h incorporate bits of the message
mi, and half of the invocations incorporate bits of the previous output yi−1).
This construction is depicted in Fig. 4 and gives the following result.

Theorem 2 (Informal; see Theorem 10). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > n. Then, there is an H2 : {0, 1}κ×{0, 1}∗ →
{0, 1}n such that:

1. For any S, T ∈ N such that S ≤ T , ST 2 ≤ 2n, and any (S, T )-attacker,
their advantage in finding a collision in H2(key, ·) relative to a random
key ←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H2 on a given key and a b-bit input requires 2 · b/(a − n)
queries to h.

Fig. 4. The construction H2 underlying Theorem 2 given a hash function h : {0, 1}a →
{0, 1}n for a > n. The gray dotted boxes represent the compress function, instanti-
ated with the Merkle-Damg̊ard construction, that uses key ∈ {0, 1}n as the key and
yi−1‖mi ∈ {0, 1}2n as the message.

We note that the assumption that ST 2 ≤ 2n in the construction above comes
from the fact that best currently known time-space tradeoffs for the collision
resistance of standard MD (culminating in [2,17] following the works of [1,9,11])
require this assumption to get optimal bounds when analyzing the �-block MD
construction when � ∈ ω(1). In the special case where we only use a 2-block
variant of MD as the underlying compress function, [1] give tight bounds that
do not require that ST 2 ≤ 2n (and furthermore, [17] gave tight bounds for all
constants �). This motivates our next construction, H3, which uses the 2-block
MD construction for compress, but requires that the input size to h satisfies
a > 3n/2. See Fig. 5 for an illustration, and the corresponding result is given in
the following theorem.

Theorem 3 (Informal; see Corollary 1). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > 3n/2. Then, there is an H3 : {0, 1}κ ×
{0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that S ≤ T and any (S, T )-attacker, their advan-
tage in finding a collision in H3(key, ·) relative to a random key ←$ {0, 1}n is
O(S/2n + T 2/2n).
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2. One evaluation of H3 on a given key and a b-bit input requires 2 · b/(2a− 3n)
queries to h.

Fig. 5. The construction H3 underlying Theorem 3 given a hash function h : {0, 1}a →
{0, 1}n for a > 3n/2. The gray dotted boxes represent the compress function, instan-
tiated with a two-block Merkle-Damg̊ard construction, that uses key ∈ {0, 1}n as the
key and yi−1‖mi ∈ {0, 1}2a−2n as the message. The 2a − 2n bit message is split evenly
into the first and second call to h, indicated in the figure by a diamond.

Instantiating the Keyed Inner Hash with a 2-Level Merkle Tree. For
our final construction, we seek to build a hash function H4 that is both efficient
and optimally secure whenever a ≈ 2n (h is only compressing by a factor of
2), without assuming that S ≤ T . In particular, S 	 T makes sense in many
practical scenarios: the pre-processing attacker may have much more than time
T to generate its advice string of size S, the online attacker may have easy
random access to a structured advice string, or the online time T may be small
for applications that enforce a timeout with fixed-time communication session
(see [5] as an example of an attack on a TLS session that requires relatively
heavy computation in an offline phase). Lastly, we mention that the bounds we
obtain on H2 and H3 are tight—there is a non-trivial attack whenever S > T
that scales with advantage Ω(ST�/2n) for standard �-block MD [1,11].

For H4, we instantiate the compress function from the framework of Fig. 1
using a keyed variant of a Merkle tree construction (this has never been formally
defined or analyzed to the best of our knowledge). In our variant, we feed key
into all leaves of the Merkle tree. Concretely, in our construction, we use a 2-level
Merkle tree and feed key to both of them, corresponding to two distinct invoca-
tions of h, and we split the “message” yi−1‖mi into the remaining input bits for
the leaves. The second level of the Merkle tree combines the two outputs from
the first level, to produce a n bit output for compress. The full construction of H4

is illustrated in Fig. 6. We conjecture that this Merkle tree-based construction
is optimally secure for collision resistance (see Remark 1 for more details), but
analyzing its security turns out to be highly non-trivial. In particular, our cur-
rent analysis is only optimally secure when ST 2 ≤ 2n, as stated in the following
theorem.
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Theorem 4. Assume h : {0, 1}a → {0, 1}n is modeled as a random oracle with
a ≥ 2n. Then, there is an H4 : {0, 1}κ × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that ST 2 ≤ 2n and any (S, T )-attacker, their advan-
tage in finding a collision in H4(key, ·) relative to a random key ←$ {0, 1}κ is
O(S/2n + T 2/2n).

2. One evaluation of H4 on a given key and a b-bit input requires 3 · b/(2a− 3n)
queries to h.

Fig. 6. The construction H4 underlying Theorem 4 given a hash function h : {0, 1}a →
{0, 1}n for a ≥ 2n. The gray dotted boxes represent the compress function, instantiated
with a two-level Merkle tree, that uses key ∈ {0, 1}n in each leaf and yi−1‖mi ∈
{0, 1}2a−2n as the message. The 2a − 2n bit message is split evenly between the two
leaves of the Merkle tree, indicated by a diamond in the figure. We require a ≥ 2n so
that both outputs from the leaves can be fed into the next layer of the Merkle tree.

We summarize our results in Table 1.

Remark 1 (A conjecture on the security of keyed Merkle trees). The main build-
ing block in our construction of Theorem 4 is a Merkle tree where the key value
key is included only at the leaves. Concretely, we include a key key in each of
the leaves of a Merkle tree and then fill in the rest of the leaves with bits of
some message m ∈ {0, 1}∗, and then run the Merkle tree construction (with an
unkeyed hash) as normal to get an n-bit output. In this work, we analyze the
simplest case where the Merkle tree has depth 2 with only two leaves. However,
this naturally generalizes to any number of � leaves resulting in a tree of depth
O(log �).
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Table 1. A summary of our results as well as the standard MD construction for ref-
erence. The advantage of a construction is given in terms of the probability of (S, T )-
attackers to find collisions relative to a random key. The efficiency is measured in terms
of the number of calls to h that maps a-bit inputs to n when processing a b-bit input.
The assumptions column specifies conditions on various parameters.

Advantage Efficiency Input Size Assumptions

MD Θ(ST 2/2n) b/(a − n) a > n None

H1 (Thm. 1) Θ(S/2n + T 2/2n) b/(a − 2n) a > 2n None

H2 (Thm. 2) Θ(S/2n + T 2/2n) 2 · b/(a − n) a > n S ≤ T, ST 2 ≤ 2n

H3 (Thm. 3) Θ(S/2n + T 2/2n) 2 · b/(2a − 3n) a > 1.5n S ≤ T

H4 (Thm. 4) Θ(S/2n + T 2/2n) 3 · b/(2a − 3n) a ≥ 2n ST 2 ≤ 2n

We conjecture that this approach, where only the leaves are keyed, is as secure
as the Merkle tree approach of Fig. 2 where the inner hash function is keyed at
every invocation, including interior nodes. This latter approach requires a larger,
more complicated, inner hash function, so we would like to avoid this if at all
possible.

First, for the simple case of a depth two tree with keyed leaves, we conjec-
ture that the bound we show in this work is not tight (see Theorem 12 for the
exact bound we show). Namely, we believe that we should not need to assume
ST 2 ≤ 2n (or make any assumptions on S, T ) in order to get optimal secu-
rity. Second, we believe that this intuition should extend to the arbitrary depth
Merkle trees that are keyed at the leaves, and we conjecture that it should
also achieve optimal (S, T ) security without any assumptions on S, T . However,
even getting a bound in this case that is optimal in the setting ST 2 ≤ 2n we
believe would be very interesting. Additionally, handling deeper Merkle trees
could potentially allow for constructions that do not necessarily have even a
two-to-one structure, meaning that we could build a keyed hash function based
on Merkle trees without assuming the hash function h has input size a ≥ 2n.

1.2 Related Work

The motivation for this work comes from a recent line of results on the non-
uniform security loss of various hashing mechanisms.

For Merkle-Damg̊ard’s construction [13,24], this was first studied by Coretti
et al. [11] who showed how to find collisions with probability Ω(S/2κ +ST 2/2n).
The idea is reminiscent of the rainbow tables attack due to Oechslin [25] (in
turn building on Hellman [20]). The collisions they get are rather long (of length
proportional to T ). Akshima et al. [1] generalized the attack to get an �-block
collision with probability Ω(S/2κ + ST�/2n) and showed that this attack is
optimal for � = 2. Ghoshal and Komargodski [17] showed that this attack is
optimal for all constant values of � and Akshima, Guo, and Liu [2] almost proved
the tightness of the bound for all �s by showing that the best possible attack
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has advantage O(ST�/2n · (1 + ST 2/2n) + T 2/2n). For a single-block Merkle-
Damg̊ard (i.e., just a compressing random oracle), Dodis, Guo, and Katz [14]
showed that including a random key (optimally) defeats preprocessing attacks.

For Sponge [7,8], Coretti, Dodis, and Guo [10] stated a related attack with
advantage Ω(ST 2/2κ +T 2/2r) (with r being a “rate” parameter of the scheme).
Again, this attack resulted in very long collisions. The attack was formalized and
extended to �-block collisions with advantage Ω(ST�/2κ + T 2/2r) by Freitag,
Ghoshal and Komargodski [16]. Freitag et al. also proved several upper bounds
on the advantage of any attacker, but their bounds are not known to be tight.

Indifferentiability. Our work focuses on collision resistance, but there are other
security properties of interest (such as inversion, second preimage resistance,
pseudo-randomness, and unpredictability). In the uniform security setting there
is a well-known framework called indifferentiability (due to Maurer, Renner,
and Holenstein [22]) that is used to show that a (wide) class of security goals are
simultaneously met. This allows to modularly transition to a (simpler) hybrid
world where a complicated hash function construction is replaced with a mono-
lithic random oracle (see, for example, [12]). Such transitions are known to work
for all single-stage games but not for multi-stage games [26]. Our non-uniform
security model is fundamentally a two-stage model and therefore the indifferen-
tiability framework (as is) does not apply. It is an interesting open problem to
find an analogue in the non-uniform setting.

2 Technical Overview

In this section, we give a high level overview of our main techniques. Recall,
our goal is to construction a variable-input length, keyed, hash function
Hh : {0, 1}κ × {0, 1}∗ → {0, 1}n from an idealized, fixed-input length hash func-
tion h : {0, 1}a → {0, 1}n.

Non-uniform Security in the AI-ROM. We consider non-uniform (S, T )-
attackers A = (A1,A2) in the auxiliary-input random oracle model (AI-
ROM) [27] with the following structure. First, h is randomly sampled from
the space of all a-bit to n-bit functions. Then, in the preprocessing phase,
A1 has unbounded access to h and outputs an advice string σ such that
|σ| ≤ S. The online phase A2 receives auxiliary input σ and a random key
key ← {0, 1}κ as input, and then has to find two distinct messages msg,msg′

such that Hh(key,msg) = Hh(key,msg′) while making at most T queries to h.
Our goal is to give constructions Hh such that no (S, T )-attacker as above can
find a collision with better than O(S/2κ +T 2/2n) probability. This is “optimal”
in the sense that this matches a naive attack against a purely random H: the
preprocessing attacker stores collisions for Ω(S) keys, and the online attacker
either gets “lucky” and receives one of those keys as input or performs a standard
birthday-style attack.
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Merkle-Damg̊ard Framework with a Keyed Inner Hash. We consider a
general framework based on the Merkle-Damg̊ard (MD) transformation where we
instantiate the inner hash function with a keyed one. Let s ∈ N be the desired
message block size. Then, given a function g : {0, 1}κ+n+s → {0, 1}n, we can
build a function Hg where any attack on the collision resistance of Hg implies
an attack on g. The idea behind Hg is as follows. We first break our message
up into blocks m1, . . . , m� of size a − κ − n. We initialize the value y0 = 0n,
and for i = 1, 2, . . . , � we compute yi = g(key‖yi−1‖mi). Finally, we output y�.
It is known (e.g. see Sect. 8.5 of [19]) that if you can find a collision in the MD
construction Hg for a keyed g in the uniform setting, then this implies you can
find a collision in g. Indeed, this reasoning extends to the non-uniform setting
with (S, T )-attackers in the AI-ROM. Hence, this shows that Hg is as secure as
g. So, our new goal is to construct such a g with “optimal security” given an
idealized hash function h : {0, 1}a → {0, 1}n.

Our first observation is that if a ≥ κ + n + s, then we can simply use g = h.
Furthermore, h has optimal security O(S/2κ + T 2/2n) (first formalized by [14]
in the AI-ROM), so we are done! So our next goal is to try to use an h from
minimal assumptions. Namely, can we get a keyed hash function with arbitrary
length input from any h : {0, 1}a → {0, 1}n where a is much smaller, i.e. even
a = n + 1? This will allow us to focus on building as simple a primitive as
possible which we can bootstrap to a full variable-input length hash function
with optimal security.

Next, we note that for any a > max(κ, n), we can always do the standard
Merkle-Damg̊ard transformation using h to construct g, where key is not fed into
every invocation of h. For standard MD, it makes sense to set κ = n since we use
the key key as the initialization vector. Recall, theMDh construction sets y0 = key,
computes yi = h(yi−1‖mi) for i = 1, . . . , �, and outputs y�. This approach has a
major downside in that instantiating MD without inserting key into each invoca-
tion of h suffers non-trivial time-space tradeoffs. In general, there is an attack on
the general MDh construction with advantage Ω(ST 2/2n). This is strictly worse
than the optimal bound of O(S/2n + T 2/2n) for any setting of parameters with
S, T 	 1. However, this attack finds very large—roughly length T—collisions. In
our setting, we only care about using MDh to get a function g with inputs of size
2n + s. Thus, we leverage a recent line of work (see [1,2,9,11,17]) that shows that
if you only use MDh on �-block messages, then the best known attack has advan-
tage at most O(ST�/2n + T 2/2n) (and further this is provably tight for constant
� [1,17] and, when ST 2 ≤ 2n, is provably tight for all � [2]).

So, if we instantiate g in our framework with a fixed-length MDh construction
where we set κ and s to be equal to the output length n, we get a construction for
Hh where any (S, T )-attacker has advantage at most O(ST/2n + T 2/2n) (up to
poly(n) factors). This is only “optimal,” however, under the (strong) assumption
that S ≤ T .
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Our main technical contribution is instantiating g in the framework above
using a new keyed Merkle tree approach, which does not require the assumption
that S ≤ T .

2.1 Keyed Merkle Tree Analysis

For the rest of this technical overview, we focus on our analysis of the keyed
Merkle tree construction.

Construction. We start by defining the 2-level construction. We want a keyed
function g : {0, 1}κ × {0, 1}n+s → {0, 1}n from a hash function h : {0, 1}a →
{0, 1}n where a ≥ 2n. To do so, we split the (n+s)-bit input into two parts, call
them mL,mR, of size at most a−κ (hence we require here that a−κ ≥ (n+s)/2,
or a ≥ κ + n/2 + s/2). We concatenate each part with the key key and compute
yL ← h(key‖mL) and yR ← h(key‖mR). We then concatenate yL with yR and
feed the resulting string into h to get the output z ← h(yL‖yR) (we require here
that a ≥ 2n). For technical purposes, we “domain separate” each call to h, so
yL = h1(key‖mL), yR = h2(key‖mR), and z = h3(yL‖yR).

Analysis. We want to bound the probability that any (S, T )-attacker can find
a collision in this keyed Merkle tree construction of g. To simplify the analysis
here, we consider the case where κ and s are equal to n. Hence, each call to h
takes two n-bit inputs and has one n-bit output. We also assume from the start
that ST 2 ≤ 2n.

We start with the following observation. The probability that any (S, T )-
attacker finds a collision at the leaves, corresponding to the calls to h1, h2, is at
most O(S/2n +T 2/2n). Because these calls include the key key, if such an event
happened, we could reduce to finding a collision in h directly. So, the challenge
is to reason about the advantage of an (S, T )-attacker finding a collision at the
second level of the Merkle tree, which is only implicitly related to the key key
in the Merkle tree construction. We have to somehow characterize all possible
ways that an (S, T )-attack can encode information about h in its advice string
from the preprocessing phase.

One of the first tools one often turns to in such analysis is to use the presam-
pling technique from [11,27]. We note that if we were to use the presampling
technique, we would obtain a term of the form ST/2n in out bound, which is
optimally secure only in the range S ≤ T . Our main technical contribution is get-
ting an optimally secure protocol for the range S 	 T , which therefore requires
techniques other than presampling.

The AGL [2] Framework: Reducing to Multi-instance Games. To make
our lives significantly easier, we use the multi-instance framework of [2], previ-
ously used in somewhat different forms in [1,9,17,21]. At a very high level, this
framework gives a way to reason about (S, T )-attackers using an average-case
advice string rather than a worst-case one. In more detail, they show how to
bound the advantage that any (S, T )-attacker A finds a collision in gh by the
advantage of a (uniform) attacker B in the following game. First, a random func-
tion h is sampled. Then, B has to win the following game for all i = 1, . . . , S
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sequentially, where it is allowed to maintain arbitrary state (that it generates)
between each successive game. In each game i, the attacker B receives a random
key keyi, its state from the previous games, and has to come up with a pair
of messages msgi,msg′

i such that gh(keyi,msgi) = gh(keyi,msg′
i) using at most

T queries to h. [2,9] show that if the advantage of B is at most δS , then the
advantage of the (S, T )-attacker A is at most 2δ. The magic of this framework is
that we can analyze the advantage of B in each game i only given its state from
the previous games, instead of having to reason about arbitrary advice strings
as in the case of (S, T )-attackers. Namely, we can lazily sample h on any point
that B has not queried, in a way that is independent of B’s current state.

Note that it suffices to show that the advantage of B “in game i” is at
most δ given it has won all previous games. Let Wi be the event that B wins
game i and W<i be the event that B wins all games before i. This follows since
Pr[W1 ∧ . . . ∧ WS ] =

∏S
i=1 Pr[Wi|W<i] ≤ δS if Pr[Wi|W<i] ≤ δ for all i ∈ [S].

Hence, our goal is to show that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n), up to poly(n)
factors.

Knowledge Gaining Event: Bounding “Hitting” Queries. Now, to even
further simplify the analysis of Pr[Wi|W<i], we define a key “knowledge gaining
event” (based on the techniques of [2]) representing the kind of information that
B may have encoded into its state based on the queries it made to h before game
i has started. At a high level, this is an event that we show happens with very
small probability (technically at most 2−2i·n) for an average-case advice string
for B at the start of game i. Then, assuming this event does not occur, we can
more easily characterize the strategies of B.

To define this event, we introduce some notation to characterize B’s queries.
We refer to all (i − 1) · T queries B makes before the start of game i as “offline”
queries, and we refer to the T queries made in game i as “online” queries. An
offline query is said to be “hitting” if its output is equal to an output or either
of the two inputs to some prior query, i.e. it “hits” a previous query. We are now
ready to state our key knowledge gaining event.

– We say that Ei
hit holds if there are more than i ·poly(n) hitting queries among

the (i − 1) · T offline queries.

Briefly, we justify why Ei
hit holds with very small probability. The output for

each query is uniformly sampled, and there are at most 3 · (i − 1) · T values
to hit across inputs/outputs in the previous (i − 1) · T offline queries. So the
probability each offline query is a hitting query is at most 3iT/2n, meaning we
expect at most 3i2T 2/2n hitting queries accounting for all (i−1)·T offline queries.
Furthermore, we show using a Chernoff bound that there will not be more than
i · poly(n) · max(1, iT 2/2n) = O(i) hitting queries (assuming ST 2 ≤ 2n) with
high probability (recall that we ignore poly(n) terms).

A Case Analysis Based on Collision Queries. Now, assuming there are
at most i · poly(n) hitting queries, we are ready to show that Pr[Wi|W<i] ≤
O(S/2n + T 2/2n). To do so, we look at the following “collision” queries corre-
sponding to the valid collision msgi = (mL,mR) �= msg′

i = (m′
L,m′

R) that B
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outputs in game i (we assume that B makes all of these queries at some point
during or before game i).

– Q1, Q2, Q3 are the queries yL ← h1(keyi‖mL), yR ← h2(keyi‖mR), z ←
h3(yL‖yR), respectively.

– Q′
1, Q

′
2, Q

′
3 are the queries y′

L ← h1(keyi‖m′
L), y′

R ← h2(keyi‖m′
R), z ←

h3(y′
L‖y′

R), respectively.

Recall that we assumed the collision occurs among Q3, Q
′
3 (not at the leaves),

so it must be the case that (yL, yR) �= (y′
L, y′

R) and queries Q3, Q
′
3 are distinct.

If all of these collision queries are online (were first made during game i),
then clearly Pr[Wi|W<i] ≤ O(T 2/2n). Specifically, as Q3 and Q′

3 are online (and
distinct by assumption) and form a collision, this follows by a birthday bound
on at most T online—and hence lazily sampled—queries that B makes during
game i. The challenge comes when analyzing the cases where B may have made
some of these queries before game i, so it could have encoded information about
these queries in its state. To do so, we consider the following remaining cases,
which cover all possible strategies that B may employ.

As we already considered when both Q3, Q
′
3 are online queries, it must be

the case that one of Q3, Q
′
3 must be an offline query. Assume without loss of

generality that Q3 is offline. Then either (A) both Q1, Q2 are online, (B) exactly
one of Q1, Q2 are online, or Q1, Q2 are both offline. The latter case implies that
Q1, Q2, Q3 are all offline. Then either is the case that (C) Q′

3 is online, or Q′
3 is

also offline. If Q′
3 is also offline, then either we reduce to case (A) or (B) above

by symmetry, or it holds that (D) all Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are offline. So, it

suffices to show in cases (A-D) that Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at
least assuming ST 2 ≤ 2n. We proceed to give the main ideas behind each of
these cases.

(A) Q3 is offline but Q1, Q2 are online.
There are at most (i − 1) · T options for the offline query Q3. Both online
queries Q1 and Q2 have to hit such a query, which happens with at most
(i − 1) · T · (T/2n)2 = O(iT 3/22n) ≤ O(T/2n) when ST 2 ≤ 2n since i ≤ S.

(B) Q1, Q3 are offline but Q2 is online (symmetrically for Q1 online and Q2

offline).
In this case, we claim we can “associate” the key keyi in game i to the query
Q3 since both Q1 and Q3 are offline queries. If we can associate keyi to at
most k possible Q3 queries, then this implies the probability the output
of some online query hits an input of such an associated query is at most
k · T/2n. But how many Q3 queries can we associate to a key keyi?
In the worst case, keyi may be associated to (i − 1) · T many Q3 queries,
but this implies a suboptimal bound of O(iT 2/2n). But this cannot be true
for too many values of key simultaneously. In particular, if a Q3 query is
associated with more than k possible values of key, this means there are k
hitting queries, so each Q3 query can be associated with at most O(i) keys.
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This implies there are at most O(i2T ) pairs of associated key values with
potential Q3 queries, meaning a random keyi value will be associated with
at most O(i2T/2n) potential Q3 values on average. Plugging this average-
case bound into k above, this implies a bound of O(i2T 2/22n) ≤ O(S/2n)
assuming ST 2 ≤ 2n given i ≤ S.

(C) Q1, Q2, Q3 are offline but Q′
3 is online.

In this case, Q′
3 is a distinct query from Q3 by assumption, but again we can

“associate” Q3 with keyi as above. Then, since Q′
3 must share an output

with Q3, the same argument as above gives a bound of O(S/2n) in this
case.

(D) All collision queries Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are offline.

In this case, we show that every full collision structure with respect to
some key among the offline queries leads to a hitting query. Furthermore,
two collision structures cannot share the same hitting query. So if there are
at most O(i) hitting queries, the probability Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 are all

offline for a random keyi is at most O(i/2n) ≤ O(S/2n).

Thus, we showed that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n) no matter when
Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 were queried before or during game i. Further, recall the

last case where there is a collision at one of the leaves (corresponding to Q1, Q
′
1

or Q2, Q
′
2), which can happen with at most O(S/2n + T 2/2n) probability since

such a collision directly involves keyi. Thus, in all possible cases, we have shown
Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at least assuming ST 2 ≤ 2n. Finally, by
the framework of [2,9], this implies the same bound (up to a multiplicative factor
of 2) on the advantage of finding a collision for any (S, T )-attacker.

3 Preliminaries

We let N = {1, 2, 3, . . .} denote the natural numbers. The set of all functions
with domain D and range R is denoted by Fcs(D,R). We let ∗ denote a wildcard
element. For example (∗, z) ∈ L is true if there is an ordered pair in L where z
is the second element (the type of the wildcard element shall be clear from the
context). For a random variable X we use E [X] to denote its expected value.
We use x ←$ D to denote sampling x uniformly sampling from the elements of
D. All logarithms in this paper are for base 2 unless otherwise specified.

For a bit-string s, we use |s| to denote the number of bits in s. For two strings
s1, s2, we use s1‖s2 to denote the concatenation of two strings. We use standard
regular expression notation where s∗ denotes 0 or more copies of s, s+ denotes
one or more copies of s, and sk denotes k copies of s. Similarly, for a set S, we
use S∗, S+, and Sk to represent 0 or more, 1 or more, of k elements takes from
a set S. In particular, we use {0, 1}∗ to represent any arbitrary string of bits.
We use the notation {0, 1}≤k to represent a string of length at most k.

Chernoff Bound. We state a Chernoff bound which we use in the technical
part of the paper.
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Proposition 1. Let n ∈ N. Let X1,X2, . . . , Xn be independent 0-1 random vari-
ables. Let X =

∑n
i=1 Xi. Let μ′ be such that E [X] ≤ μ′. Then we have that

Pr [X ≥ (1 + δ)μ′] ≤ e− δμ′
3 .

Notice that this version is somewhat non-standard as it even works when we
know only an upper bound on the expectation (usually, in standard formulations
of Chernoff bound, we need to know the expectation exactly). We have a proof
of this Chernoff bound in the full version.

Auxiliary-Input Random Oracle Model (AI-ROM). The auxiliary-input
random oracle model, introduced by Unruh [27], captures the power of non-
uniform adversaries against random oracles. An attacker A = (A1,A2) in this
model is formalized as a two stage adversary. In its first stage, which is referred
to as the preprocessing phase, A1 has unbounded access to the random oracle
h, and outputs any arbitrary S-bit advice string or auxiliary input σ. In the
second stage, referred to as the online phase, gets σ as input, A2 can make at
most T queries to its oracle h. Its aim is to accomplish some task involving h,
e.g. find a collision in a construction based on h. We refer to such an adversary
A = (A1,A2) as an (S, T )-attacker.

Collision Resistance of gh in AI-ROM. We next formalize the keyed-
collision resistance of an iterated hash function construction g relative to a hash
function h : {0, 1}a → {0, 1}n in the AI-ROM. The construction g has a parame-
ter κ associated with it, where κ is the bit length of key used in g. It first samples a
random function h : {0, 1}a → {0, 1}n. The adversary A1 gets unbounded access
to h, and it outputs an advice string σ. At this time, A2 is given the auxiliary
input σ, a randomly sampled key from {0, 1}κ, as well as oracle access to h, and
it needs to find msg �= msg′ such that gh(key,msg) = gh(key,msg′). This game,
denoted Gai-cr

gh is formally defined in Fig. 7.

Definition 1 (AI-CR Advantage). The advantage of an adversary A against
the collision resistance of gh in the AI-ROM is

Advai-crgh (A) = Pr
[
Gai-cr

gh (A) = true
]
.

For parameters S, T ∈ N, we overload notation and denote

Advai-crgh (S, T ) = max
A

{
Advai-crgh (A)

}
,

where the maximum is over all (S, T )-attackers.

Throughout the paper, for any (S, T )-attacker A that outputs messages
msg,msg′ that causes Gai-cr

gh (A) to output true on a key key, we assume that
A has fully queried gh(key,msg) and gh(key,msg′). This is true without loss of
generality (up to constant factors in the advantage) as if there exists any (S, T )-
attacker A that does not, you can construct an (S, T +2�)-attacker B that does,
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Fig. 7. The collision resistance game Gai-cr
gh in AI-ROM for a function gh based on a

random oracle h : {0, 1}a → {0, 1}n. The construction gh has a parameter κ associated
with it, where κ is the bit length of key used in g.

where gh requires at most � invocations of h to compute either gh(key,msg)
or gh(key,msg′). As � ≤ T , the resulting attacker will have comparable advan-
tage up to constant factors in T . We note that this is a standard assumption in
existing related works in the AI-ROM.

On Padding. The variable-input length hash functions we consider of this work
all act on messages which have been parsed into many fixed size blocks of some
specified size s. We therefore need a padding function that takes arbitrary length
inputs and converts them to a sequence of fixed-size blocks. We need to ensure
that this padding function maintains certain properties like injectivity in order
to guarantee that if an adversary finds a collision on the padded versions of mes-
sages, then it implies a collision with respect to the underlying messages as well.
For the purpose of this paper, we define the following padding function, which
is a slightly simplified version of the padding function used by the SHA fam-
ily of hash functions (see [19, Section 8.5] for more discussion on MD-compliant
padding functions). The function pad we use takes in a message msg ∈ {0, 1}∗,
an integer s ∈ N representing the size of each block, and an integer n that
stipulates that |msg| ≤ 2n. The construction is formally defined as follows.

pad(msg, s, n):

1. Let k = s − ((|msg| + n) mod s + 1).
2. Interpret |msg| ∈ [2n] as an n-bit string.
3. Output (m1, . . . , m�) ∈ ({0, 1}s)� where m1‖ . . . ‖m� = msg‖|msg|‖1‖0k.

We formalize the guarantees we use for this padding function in the following
theorem.

Theorem 5 (Padding). Let s, n ∈ N. The function pad(msg, s, n) on messages
msg ∈ {0, 1}2n

satisfies the following properties:

1. |pad(msg, s, n)| ∈ ({0, 1}s)� for � = (|msg| + n + 1)/s�.
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Fig. 8. The keyed Merkle-Damg̊ard construction KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n

given any underlying function h : {0, 1}κ × {0, 1}n+s → {0, 1}n, where κ is the key
length, n is the output length, and s is the message block size.

2. There is a unique decoding procedure that outputs msg given pad(msg, s, n),
and outputs ⊥ on invalid padded messages.

3. If pad(msg, s, n) = pad(msg′, s, n), then msg = msg′.
4. If |msg| < |msg′|, then pad(msg, s, n) is not a suffix of pad(msg′, s, n).

We defer the proof of this theorem to the full version.

4 Merkle-Damg̊ard Framework with a Keyed Inner Hash

In this section, we lay out the general framework for our main results, based
on the Merkle-Damg̊ard transform using a keyed inner hash. We note that this
framework has been explicitly considered in the uniform setting in Sect. 8.5 of
the lecture notes of Goldwasser and Bellare [19].6 We extend this framework to
the preprocessing setting, modeled by the AI-ROM of Unruh [27], noting that
the high level ideas are similar.

For a key length κ, output length n, and message block size s, we assume an
underlying primitive h : {0, 1}κ×{0, 1}n+s → {0, 1}n. In other words, viewing the
primitive h as a function from {0, 1}a to {0, 1}n, this implies that a = κ+n+ s.

Given such a primitive h, we define the following keyed Merkle-Damg̊ard
hash function KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n. On input key key ∈ {0, 1}κ

and message msg ∈ {0, 1}∗ of length at most 2n, the function KMDh first pads
the message to split it into � = (b + n + 1)/s� message blocks of size s as
in Theorem 5. It then essentially computes the Merkle-Damg̊ard hash function
using the underlying hash function h, except that the key key is inserted into
every invocation of h. This is formalized in Fig. 8.

Since the key key is included in every call to the underlying primitive h, it
follows that any (S, T )-attacker that finds a collision in KMDh with respect to
a key key also finds a collision in h with respect to key. This is formalized via a
reduction, which gives the following theorem. Again, we note that the following

6 The existence of this variant of the Merkle-Damg̊ard transform has gone completely
unnoticed in recent works studying non-uniform security of this transformation [1,
2,11,17].
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theorem very closely follows the reduction given in [19, Section 8.5], but we give
the full details in the AI-ROM for completeness.

Theorem 6. Let κ, n, s ∈ N. Let h : {0, 1}κ × {0, 1}n+s → {0, 1}n be any func-
tion, and let KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n. Then, for every S, T ∈ N, it
holds that

Advai-crKMDh(S, T ) ≤ Advai-crh (S, T ).

The proof of this theorem is a straightforward reduction, and we defer it to
the full version.

Next, we recall that if h is a keyed function modeled as a random oracle (in
the AI-ROM of Unruh [27]), Dodis, Guo, and Katz [14] give the following bound
on the success probability that any (S, T )-attacker can find a collision in h with
respect to a random key.

Theorem 7 ([14]). Let h : {0, 1}κ × {0, 1}b → {0, 1}n be modeled as a random
oracle in the AI-ROM. Then, for any S, T ∈ N,

Advai-crh (S, T ) ≤ 2S + 2κ

2κ
+

50T 2

2n
.

Combining Theorems 6 and 7, we get the following result.

Theorem 8. Let a, κ, n ∈ N be such that a > κ + n. Let h : {0, 1}a → {0, 1}n

be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ ×
{0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤ 2S + 2κ

2κ
+

50T 2

2n
.

2. One evaluation of Hh on messages of length b requires (b+n+1)/s� queries
to h, where s = a − κ − n.

Proof. As a > κ+n, we define s = a−κ−n > 0. Then, we view h as a function
from {0, 1}κ ×{0, 1}n+s to {0, 1}n and use it in the construction KMDh of Fig. 8
to get the hash function Hh required by the theorem.

The bound on the advantage immediately follows as a corollary of Theorems 6
and 7. As for efficiency, we note that padding a message msg ∈ {0, 1}b via
Theorem 5 results in a message consisting of � blocks each of length s, where
� = (b + n + 1)/s�. Each block of the message requires a single invocation of h,
so evaluating KMDh on msg requires � = (b+n+1)/s� queries to h as required.

�
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Fig. 9. The standard Merkle-Damg̊ard construction with fixed input message length b
FMDh

b : {0, 1}n ×{0, 1}b → {0, 1}n given any underlying function h : {0, 1}n ×{0, 1}s →
{0, 1}n, where n is the key and output length, and s is the message block size.

5 Instantiating the Inner Hash: Standard MD

We next consider instantiating the Merkle-Damg̊ard framework of Sect. 4 when-
ever the underlying hash function h : {0, 1}a → {0, 1}n has input length a such
that n < a < κ + n + s, where κ is the key length, n is the output length,
and s is the desired message block size. Specifically, our goal is to use such
a primitive h : {0, 1}a × {0, 1}n to build a larger (fixed-length) hash function
gh : {0, 1}κ × {0, 1}n+s that can be plugged into the construction KMDgh

.
The first approach we consider is by simply building g from h using the

standard Merkle-Damg̊ard construction where h is not keyed in every invocation.
We emphasize that in the standard version of MD, a random initialization vector/
key is still included in the first invocation of h. However, it is not included in
the subsequent invocations of h, allowing h to take in smaller inputs overall.

Given an underlying hash function h : {0, 1}a → {0, 1}n where a > max(κ, n),
we define the standard Merkle-Damg̊ard hash function with fixed input message
length b FMDh

b : {0, 1}κ ×{0, 1}b → {0, 1}n as follows. For sake of simplicity and
due to the nature of the MD construction, we will assume that the key length κ
is equal to the output length n. Let s = a − n be the message block size we will
include in each invocation of the underlying h. On input a key key ∈ {0, 1}n and a
message msg ∈ {0, 1}b, the function FMDh

b splits the message msg into � = b/s�
message blocks of size s (adding 0s to the last block if needed). It initializes
y0 = key, and for i = 1, . . . , �, computes yi as the hash of yi−1 concatenated with
mi using h. The output of FMDh

b is then y�. This is formalized in Fig. 9.
If we instantiate gh := FMDh

b only on input messages of size at most b = n+s

as required to instantiate it inside KMDgh

, then we only need to worry about
�-block collisions for � = (n + s)/(a − n)�. Akshima, Guo, and Liu [2] currently
show the best known upper bound on the advantage of finding general �-block
collisions in MDh, given by the following theorem.

Theorem 9 ([2]). Let b, n, s ∈ N such that b > s, and set � = b/s�. Let
h : {0, 1}n × {0, 1}s → {0, 1}n be modeled as a random oracle in the AI-ROM.
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Then, for any S, T ∈ N,

Advai-crFMDh
b
(S, T ) ≤

⎧
⎨

⎩

200n·(ST+T 2)
2n if � = 2, and

34n·ST�
2n · max

(
1, ST 2

2n

)
+ 2·T 2

2n if � > 2.

We note that Ghoshal and Komargodski [17] give a bound of O(ST/2n +T 2/2n)
whenever � is a constant, which doesn’t require the assumption that ST 2 ≤ 2n.
However, their bound does not extend to super constant �.

Combined with Theorem 6, we get the following result.

Theorem 10. Let a, n, s ∈ N be such that a > n. Let � = (n + s)/(a − n)�.
Let h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then,
there is an Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤
⎧
⎨

⎩

200n·(ST+T 2)
2n if � = 2, and

34n·ST�
2n · max

(
1, ST 2

2n

)
+ 2·T 2

2n if � > 2.

2. One evaluation of Hh on messages of length b requires � · (b + n + 1)/s�
queries to h.

Proof. As a > n, we parse h : {0, 1}n × {0, 1}a−n → {0, 1}n and use it to
construct FMDh

n+s as defined in Fig. 9. We then use FMDh
n+s as the primitive

underlying our MD-based hash function of Fig. 8. So, we set

Hh := KMDFMDh
n+s .

The bound on the advantage follows as a corollary to Theorems 6 and 9,
where the message length required for the FMDh

n+s construction is only n + s.
Furthermore, this implies that FMDh

n+s requires � = (n + s)/(a − n)� invoca-

tions of h per invocation of FMDh
n+s, and KMDFMDh

n+s requires (b + n + 1)/s�
invocations of FMDh

n+s, giving the resulting efficiency bound. �

We emphasize that because our reduction in Theorem 6 is generic, any
improvement on the bound of [2,17] for finding an �-block collision in MD will
immediately imply an improved bound in Theorem 10.

We next state a corollary of Theorem 10 where we restrict to using � = 2
invocations of h in the underlying FMDh

n+s construction. For this setting, the
bound of [2] above is optimal (up to poly(n) factors), and we observe that the
resulting bound matches our desired bound of O(S/2n+T 2/2n) whenever S ≤ T .

Corollary 1. Let a, n, s ∈ N be such that a ≥ 3n/2 + s/2. Let h : {0, 1}a →
{0, 1}n be modeled as a random oracle in the AI-ROM. Then, there is an
Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:
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Fig. 10. The multi-instance game Gmi-cr
gh,S , where B is a uniform adversary with oracle

access to the function h.

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤ 200n · (ST + T 2)
2n

2. One evaluation of Hh on messages of length b requires 2 · (b + n + 1)/s�
queries to h.

Proof. Restricting to � = 2 in Theorem 10, we require that � = (n + s)/(a −
n)� ≤ 2. This holds as long as a ≥ 3n/2 + s/2, as required. �

6 Instantiating the Inner Hash: Two-Level Merkle Tree

In this section, we instantiate the Merkle-Damg̊ard framework of Sect. 4, that
uses a keyed inner hash, in the setting where the underlying hash function
h : {0, 1}a → {0, 1}n satisfies a ≥ max(2n + 2, κ + n/2� + 3).

The compression function in this instantiation of the MD-based framework,
is a Merkle tree with two leaves, where we additionally input the key into each
leaf. We describe next the framework introduced in [2] that we use to analyze
the collision-resistance of this construction in AI-ROM.

6.1 The AGL [2] Framework

In this section, we briefly introduce the framework given by [2] which is use-
ful in analyzing non-uniform security. An earlier version of this framework was
introduced by [1,9] inspired by techniques used in proving constructive Chernoff
bounds in [21] and later refined by [1,2,17] to upper bound Advai-crgh (S, T ). This
framework involves upper bounding the advantage of an (S, T )-attacker using
the advantage of a uniform adversary for a multi-instance game that has to find
collisions for S randomly chosen values of key.
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We define the “multi-instance” game Gmi-cr
gh,S (B) in Fig. 10. We refer an adver-

sary playing Gmi-cr
gh,S and making at most T queries for each key as a (S, T )-MI

adversary. For any (S, T )-MI adversary, define

Advmi-cr
gh (B) = Pr

[
Gmi-cr

gh,S (B) = true
]
.

Further,

Advmi-cr
gh (S, T ) = max

B
Advmi-cr

gh (B) ,

where the maximum is taken over all (S, T )-MI adversaries. The following key
lemma relates Advai-crgh (S, T ) to Advmi-cr

gh (S, T ), which is proven in [2].

Lemma 1 ([2]). Fix S, T ∈ N and 0 ≤ δ ≤ 1, if Advmi-cr
gh (S, T ) ≤ δS, then

Advai-crgh (S, T ) ≤ 2δ.

Offline and Online Queries. Since the adversary in the multi-instance game
is stateful, we can assume without loss of generality that it does not repeat
queries since they can simply remember the answers. Additionally, [2] formalized
the notion of “offline” and “online” queries during a particular instance of the
game. When running the adversary on keyi, the queries that were made while
the adversary was run on key1, . . . , keyi−1 are collectively known as the “offline”
queries, and the queries made while running on keyi are “online queries”.

6.2 Two-Level Merkle Tree

In this section, we present our construction of a keyed Merkle tree and analyze its
collision resistance in the AI-ROM using the framework in the previous section.
Specifically, given an underlying hash function h : {0, 1}a → {0, 1}n where a ≥
max(2n + 2, κ + n/2� + 3), we define a keyed, 2-level Merkle tree 2MTh

b for
message length b ≤ 2a − 2κ − 4.

Before we define 2MTh
b , we introduce notation that allows use to

“domain-separate” h into three separate functions. Given a fixed hash func-
tion h : {0, 1}a → {0, 1}n, we define three domain-separated functions
h1, h2, h3 : {0, 1}a−2 → {0, 1}n, where hi(x) outputs h(̂i‖x) where î ∈ {0, 1}2
is the 2-bit binary representation of i. Moreover, we refer to a query h(̂i‖∗) as a
query to the function hi (which is also clearly a query to h).

To construct 2MTh
b : {0, 1}κ × {0, 1}b → {0, 1}n, we use h1 and h2 above to

process the two leaves of the depth-2 Merkle tree, where we include key ∈ {0, 1}κ

in each leaf. We then feed those outputs as input to h3 to get the output of 2MTh
b .

This construction is formalized in Fig. 11.
Our main result of this section is the following theorem, which bounds the

probability that any (S, T )-attacker finds a collision in 2MTh
b .

Theorem 11. Let a, κ, n ∈ N be such that a ≥ max(κ + n/2� + 3, 2n + 2). Let
h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then, for
s = 2a − 2κ − n − 4, the construction 2MTh

n+s : {0, 1}κ × {0, 1}n+s → {0, 1}n of
Fig. 11 satisfies the following.
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Fig. 11. The two-level, keyed Merkle tree construction 2MTh
b : {0, 1}κ × {0, 1}b →

{0, 1}n with fixed input message length b given any underlying function h : {0, 1}a →
{0, 1}n, where a ≥ max(2n + 2, κ + 3) and b ≤ 2a − 2κ − 4. h1, h2, h3 are all domain-
separated using the first two bits of h to encode 1, 2, 3, respectively.

– For any S, T ∈ N,

Advai-crgh (S, T ) ≤
(

S

2κ
· (

14n + 42nγ + 42nγ2
)

+
T 2

2n
·
(

2 +
2γ

T
+

2
T 2

))

,

where γ = ST 2/2n.

We prove this theorem using the framework described in Sect. 6.1. So, by
Lemma 1, it suffices to prove the following lemma which bounds the advantage
of an (S, T )-MI adversary.

Lemma 2. Let S, T ∈ N. Then

Advmi-cr
gh (S, T ) ≤

(
S

2κ
· (

7n + 21n · γ + 21n · γ2
)

+
T 2

2n
·
(

1 +
γ

T
+

1
T 2

))S

,

where γ = ST 2/2n.

Proof. Following the techniques of [2], we reduce the task of bounding
Advmi-cr

gh (S, T ) to that of bounding any T -query adversaries advantage of suc-
ceeding in iteration i given that it has succeeded in all previous iterations. Fix
any (S, T )-MI attacker A. Let Wi be the indicator random variable that A wins
on keyi in Gmi-cr

gh,S . Define the random variable W<i := W1 ∧ . . . ∧ Wi−1. We
have that

Advmi-cr
gh (A) = Pr [W1 ∧ W2 ∧ . . . ∧ WS ] =

S∏

i=1

Pr [Wi|W<i] .

We prove in the full version that for every A and each i ∈ [S], Pr [W<i+1] ≤ (δS)i

where

δS =
T 2

2n
+ 7n · S

2κ
+ 21n · S2T 2

2n+κ
+

ST 3

22n
+ 21n · S3T 4

22n+κ
+

1
2n

.
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It follows that for any (S, T )-MI attacker A,

Advmi-cr
gh (A) = Pr [W<S+1] =

S∏

i=1

Pr [Wi|W<i] ≤ (δS)S .

As this holds for any such A, it follows that Advmi-cr
gh (S, T ) ≤ (δS)S , as required

by the lemma statement. This completes the proof of Lemma 2. �

6.3 Variable-Input Length Hash from Two-Level Merkle Trees

We combine the construction of Sect. 6.2 with the framework of Sect. 4 to get
a variable-input length hash function. This construction is optimally secure as
long as ST 2 ≤ 2n and requires an underlying function h : {0, 1}a → {0, 1}n

where a ≥ max(κ + n/2� + 3, 2n + 2). This results in the following theorem.
We note if we modify values of κ, n by additive constant factors, we can

get the same result as below with only O(1) multiplicative loss in security. In
this sense, we can achieve the theorem below assuming a function h : {0, 1}2n →
{0, 1}n, i.e. a = 2n so only compressing by a factor exactly two.

Theorem 12. Let a, κ, n ∈ N be such that a ≥ max(κ + n/2� + 3, 2n + 2). Let
h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then, there
is an Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤
(

S

2κ
· (

14n + 42nγ + 42nγ2
)

+
T 2

2n
·
(

2 +
2γ

T
+

2
T 2

))

,

where γ = ST 2/2n.
2. One evaluation of Hh on a message b bits long requires 3 · (b + n + 1)/s�

queries to h where s = 2a − 2κ − n − 4.

Proof. We define H := KMD2MTh
n+s where 2MTh

n+s is defined in Fig. 11. From
Theorem 6, we have that Advai-crHh (S, T ) is upper bounded by Advai-cr2MTh

n+s
(S, T ).

Therefore, the bound on the advantage of any (S, T )-attacker on Hh follows from
Theorem 11.

We have that 2MTh
n+s{0, 1}κ × {0, 1}n+s → {0, 1}n, for s = 2a − 2κ − n − 4.

A b bit message, after padding, will result in (b + n + 1)/s� message blocks
that are fed into 2MTh

n+s. For each call of 2MTh
n+s, we need 3 calls to h, which

implies the bound on the efficiency of Hh. �
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Abstract. In CRYPTO’03, Patarin conjectured a lower bound on the
number of distinct solutions (P1, . . . , Pq) ∈ ({0, 1}n)q satisfying a system
of equations of the form Xi ⊕Xj = λi,j such that P1, P2, . . ., Pq are pair-
wise distinct. This result is known as “Pi ⊕Pj Theorem for any ξmax” or
alternatively as Mirror Theory for general ξmax, which was later proved
by Patarin in ICISC’05. Mirror theory for general ξmax stands as a pow-
erful tool to provide a high-security guarantee for many blockcipher-(or
even ideal permutation-) based designs. Unfortunately, the proof of the
result contains gaps that are non-trivial to fix. In this work, we present
the first complete proof of the Pi ⊕ Pj theorem for a wide range of ξmax,
typically up to order O(2n/4/

√
n). Furthermore, our proof approach is

made simpler by using a new type of equation, dubbed link-deletion
equation, that roughly corresponds to half of the so-called orange equa-
tions from earlier works. As an illustration of our result, we also revisit
the security proofs of two optimally secure blockcipher-based pseudoran-
dom functions, and n-bit security proof for six round Feistel cipher, and
provide updated security bounds.

Keywords: Mirror Theory · system of affine equations · PRP · PRF ·
beyond-birthday-bound security

1 Introduction

Pseudorandom Function (PRF) and Pseudorandom Permutation (PRP) are two
fundamental cryptographic objects in symmetric key cryptography. Extensive
use of pseudorandom functions in designing cryptographic schemes e.g., authen-
tication protocols, encryption schemes, hash functions, etc. makes it a valuable
object from the cryptographic perspective. However, practical candidates for
PRF are very scarce. On the other hand, PRP or blockciphers are available in
plenty in practice. One can consider a blockcipher to be a pseudorandom func-
tion, but due to the PRP-PRF switching lemma, it comes at the cost of birthday-
bound security, i.e., if the block size of the blockcipher is n-bits, then one can
c© International Association for Cryptologic Research 2023
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consider the blockcipher to be a secure PRF until the number of queries reaches
2n/2. Such a bound is acceptable when n is moderately large, e.g., 128 bits. How-
ever, due to the ongoing trend of lightweight cryptography, several lightweight
blockciphers have been designed with smaller block size e.g., 64 bits. In such a
situation, a blockcipher is not considered to be a good PRF as birthday-bound
security is not adequate with 64 bit block size. Therefore, the natural question
arises:

Can we design a pseudorandom function out of lightweight blockciphers that
guarantees security beyond the birthday bound?

It turns out that over the past several years researchers have invested a
lot of effort in designing such pseudorandom functions [3,10,13,14,19,20,22,23,
34,45–47]. Out of several such designs, xor of two pseudorandom permutations,
XOR2(x) := Ek1(x)⊕Ek2(x)1, and its single-keyed variant XOR1(x) := Ek(0‖x)⊕
Ek(1‖x), are the most popular ones. In a series of papers [39,40,42], Patarin
claimed that XOR construction (i.e., both XOR1 and XOR2) is secure up to O(2n)
queries. Following Patarin’s analysis, XOR2 construction yields the following
system of bivariate affine equations:

Eλ = {P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ2, . . . , P2q−1 ⊕ P2q = λq},

where q ≥ 1 and λ := (λ1, . . . , λq) is a tuple of n-bit binary strings (similarly
the XOR1 construction yields the same system of equations with the additional
requirement that λ1, . . . , λq are non-zero n-bit binary strings). The entire secu-
rity analyses for both the constructions rely on finding a good lower bound on
the number of solutions (P1, . . . , P2q)2 to Eλ where (i) for XOR1 construction, we
require that Pi �= Pj for i �= j, while (ii) for XOR2 construction, we require that
Pi �= Pj for i �= j, such that i, j are either both odd or both even. During the
process of finding the solutions to Eλ, assigning values to a variable Pi in Eλ fixes
the value of exactly two variables (which are Pi and Pi+1 if i is odd and Pi−1,
Pi otherwise) in Eλ. However, for a generic bivariate system of affine equations,
assigning value to a single variable Pi can fix the values of k ≥ 2 variables in the
set of equations. Patarin [40] named this notion as block maximality in a system
of bivariate affine equations, denoted as ξmax. It is natural to see that the block
maximality of the system of equations Eλ is 2 and thus the security analysis of
the XOR construction is reduced to establishing the following result.

“For a given system of bivariate affine equations over a finite group with
non-equalities among the variables and ξmax = 2, the number of distinct
solutions is always greater than the average number of solutions.”

Patarin named this result as Theorem Pi ⊕ Pj for ξmax = 2 [37] (and later
in [40], named Mirror theory the study of sets of linear equations and linear non-
equations in finite groups). This result was stated as a conjecture in [35] and an
1 Here, Ek1 and Ek2 denote two n-bit independent pseudorandom permutations.
2 Abusing the notation, we use the same symbol to denote the variables and the

solution of a given system of equations.
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incomplete and at times unverifiable proof is given in [37]. The result has been
acknowledged in the community as a potentially strong approach to establish the
optimal security of XOR constructions (i.e., XOR1 and XOR2). Beside this result,
Patarin [37] also claimed that the number of distinct solutions to a system of q
bivariate affine equations with 2 < ξmax � 2n/2 and with non-equality among the
variables is always larger than the average number of solutions provided q � 2n.
Patarin named this result the Theorem Pi ⊕ Pj for any ξmax. This result was
stated as a conjecture [35, Conjecture 8.1] in the context of analysing the security
of the Feistel cipher. Only a couple of years later, this result was articulated in
many follow-up works for analysing the security of the xor of two permutations,
and it took a few articles [37,39,40,42] for his result and security argument
to evolve. Later, in 2017, this work culminated in a book [32] called Feistel
Ciphers: Security Proofs and Cryptanalysis by Nachef et al. Unfortunately, some
important results were either hard to verify, or stated without proof, which has
been reported in multiple works [7,11,15,25,29]. While this has led to some
innovations such as the development of the aforementioned χ2 technique, this
state of affairs is unsatisfactory as Mirror Theory is an essential tool for provable
security in symmetric cryptography.

1.1 Main Result and Our Contribution

In this paper, our goal is to give a complete and easily verifiable proof of the
Pi ⊕ Pj Theorem with any ξmax. From a high level, this amounts to lower-
bounding the number of solutions of a system of equations of the form Pi ⊕Pj =
λij , such that the Pi variables are pairwise distinct.

This result has seen several applications in proving the optimal security
bound for several blockcipher and tweakable blockcipher-based schemes such
as optimally-secure PRFs, XORP [21,22] and 2k-HtmB-p2 [7] [See Sect. 4]. This
result is also applied in the optimal security proof of the Feistel scheme [32,36,
41]. The significance of the last application is due to the wide-ranged use of this
scheme. Feistel scheme has been classically used to design many blockciphers
(like DES [1], Lucifer [44] etc.), which has the prime advantage over the alter-
native, substitution permutation networks, of being invertible even if the round
functions are not. The Feistel scheme has also been used in format preserving
encryption, an important example being the Thorp shuffle [4], which is but an
unbalanced Feistel cipher [43]. Along with giving a verifiable proof of the Pi ⊕Pj

Theorem with any ξmax, we also provide updated security bounds for these three
constructions using our main result, along with proof sketches, to illustrate the
impact of the Pi ⊕ Pj Theorem with any ξmax.

Notations. For integers a ≤ b, the set {a, a + 1, · · · , b} is denoted as [a..b] (or
simply [b], when a = 1). We write X ←$ S to mean that X is sampled uniformly
from S and independent of all random variables defined so far. Similarly, we
write X1, . . . ,Xs ←$ S to mean that X1, . . . ,Xs are uniformly and independently
distributed over S. We write Xq to denote a q-tuple (X1, . . . , Xq). For x ∈ S, we
write S \x to mean S \ {x}. We use A
B to denote the disjoint union of A and
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B (which implicitly means that A and B are disjoint). We consider the vector
space {0, 1}n over the field {0, 1}, endowed with the two binary operations, ⊕
(i.e., addition modulo 2) and multiplication modulo 2. We denote by N := 2n,
the number of elements in {0, 1}n. For a positive integer e ≤ N , we write Ne :=
N(N − 1) · · · (N − e + 1).

A multiset γ is a collection of elements that can repeat. In other words,
multiset is an unordered version of a tuple. For S ∈ γ, we write γ−S to denote
the multiset formed by removing S from γ. We similarly write γ+T to denote the
multiset formed by adding an element T to γ. For S ∈ γ, we also write γ−S+T

to denote the resulting multiset after deleting S and adding T to γ. We say that
γ is a set-system if it is a multiset of sets. When we want to emphasize an
ordering of the elements of γ, we also write the set-system as γ[α] = (γ1, . . . , γα),
which is an enumeration of the sets in γ. In this paper, we consider set-systems
γ of non-empty subsets of {0, 1}n.

System of Difference Equations. Consider a system of difference equations AX =
Λ over the vector space {0, 1}n, where A = (Aij)i∈[m],j∈[p] is a m×p matrix with
full row rank (and hence consistent), such that each row contains exactly two
1’s, and remaining zeros, X is a p× 1 vector of variables and Λ ∈ ({0, 1}n)m. As
the column sum is zero, we must have m < p3. Note that each equation in the
above system is of the form Xj ⊕ Xk = λi for some i, j, k with j �= k. A solution
Xp ∈ ({0, 1}n)p of the above system is called a pairwise distinct solution, or in
short a p.d. solution if Xj �= Xk for j �= k ∈ [p]. The number of solutions of
the system of equations is exactly Np−m which can quite easily be shown by
using elementary linear algebra. However, counting the number of p.d. solutions
to this system of equations is quite involved. The main aim of this paper is to
provide a good lower bound to the number of p.d. solutions.

Graph Theoretic Representation of the System. With every matrix A as
described above in the system of difference equations, we can associate a labeled
directed graph G = (V := [p], E, L) where the edge set E = {(j, k) ∈ V 2 | ∃i ∈
[m] such that Aij = Aik = 1} and L(j, k) = λi if Aij = Aik = 1. So, whenever
there is an edge between j and k, we have directed edges in both directions.
Thus, every connected component is strongly connected (there are edges in both
directions between two connected vertices). The full row rank of A also implies
that the graph G is acyclic and hence is a forest. If the graph G has q compo-
nents then we must have |E| = |V | − q, or m = p − q. Given a directed path
P from j to k, the equation Xj ⊕ Xk =

⊕
e∈P L(e) is a dependent equation

(i.e., it can be obtained by adding a set of equations from the system). So, one
can equivalently represent the system of difference equations AX = Λ such that
the corresponding graph has only star graphs as components. In other words,

3 This is because, the column sum is zero, which implies that the all-1 vector belongs
to the kernel of the matrix, implying that it is non-invertible, and since it is already
assumed to have full row rank, it cannot possibly have full column rank, hence
m = rank(A) < p.
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the system of equations corresponding to a component is of the form

Xj1 ⊕ Xjξ
= λi1 , . . . , Xjξ−1 ⊕ Xjξ

= λiξ−1 .

We call such a system of difference equations standard system of difference equa-
tions.

Definition 1. A system of difference equations AX = Λ is called p.d.-consistent
if λ′

i �= 0 for all i ∈ [m] and for all i �= i′ in the same component, λ′
i �= λ′

i′ , where
A′X = Λ′ := λ′m is a standard form for the system.

To have a p.d. solution, p.d.-consistency is a necessary condition. The fol-
lowing theorem provides a lower bound on the number of p.d. solutions for any
p.d.-consistent system of difference equations.

Theorem 1 (Main Result). Let G be the associated graph of a p.d.-consistent
system Am×pX = Λ, of equations over {0, 1}n. Suppose the number of vertices
in the largest component of G is ξmax. If p ≤ √

N or
√

N ≥ ξ2max log2 N + ξmax,
and 1 ≤ p ≤ N/12ξ2max, then the number of p.d. solutions of the system AX = Λ
is at least (N)p/Nm.

Remark 1. Note that, in most cryptographic applications (where N ≥ 264), ξmax

is either a small constant, or can be shown to be smaller than log2 N with over-
whelming probability. Typically, this is sufficient to prove that the cryptographic
scheme is secure as long as the number q of adversarial queries is upper bounded
by N/12ξ2max, as (log2 N)3 ≤ √

N for N ≥ 230.

1.2 Applications of Theorem Pi ⊕ Pj for Any ξmax

Over the years, the Theorem Pi⊕Pj for any ξmax has been proven to be a signifi-
cant result in the context of analysing security bounds of numerous cryptographic
designs. Apart from the stand-alone value of XOR2 or XOR1 constructions, they
are used as a major component in many important blockcipher and tweak-
able blockcipher-based designs that includes [13,14,18,21,23,24,27,28,33,34,45–
47]. However, the security proofs of most of these designs, done by application of
the H-Coefficient technique [38], involve fixing the outputs, which in turn deter-
mines the inputs, thus getting rid of the adaptive nature of the adversary, and
we cannot assume distinctness of these outputs of internal primitives because
that would lead to the sub-optimal birthday-bound, rendering the Pi ⊕Pj Theo-
rem for ξmax = 2, useless for these security proofs. Instead, these security proofs
require (by application of the H-Coefficient technique [38]) a good lower bound
on the number of distinct solutions to a system of bivariate affine equations with
a general ξmax and therein comes the role of the result “Theorem Pi ⊕ Pj for
any ξmax”. It has also been used in proving the beyond-birthday-bound security
of many nonce-based MACs including [5,15,16,18,31]. Mennink [30] showed the
optimal security bound of EWCDM using this result as the primary underlying
tool, and Iwata et al. [22] also used it to show the optimal security bound of
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CENC. Despite the debate in the community regarding the correctness of the
proof of “Theorem Pi ⊕ Pj for any ξmax” [37,40], several authors have used this
result to derive an optimal bound for some constructions such as [22,30,48].
This triggers the need for a correct and verifiable proof of these two results,
which will eventually help to correctly establish the security proof of the above
constructions and improve their security.

1.3 Related Work

Beside the applicability of the Theorem Pi ⊕ Pj for general ξmax, the more
restricted result of “Theorem Pi ⊕ Pj for ξmax = 2” has already been linked
to different cryptographic constructions. In particular, equations of the form
P2i−1 ⊕ P2i = λi, which correspond to a simple variant of the systems we con-
sider in this work, have been considered to prove the security of the XORP[2] con-
struction [9,17,32,37,40]. In [8,42] and [17], systems of the form ⊕k

j=1Pi,j = λi,
where the values (Pi,j)i have to be pairwise distinct for j = 1, . . . , k, have been
studied to prove the security of the sum of permutations. Recently, a similar
problem in the tweakable setting has been examined in [25], with an application
to the security of the CLRW2 construction4. Mirror Theory has also been consid-
ered for nonce-based MACs that rely on an underlying blockcipher or tweakable
blockciphers, such as in [15,16,18,26,31]. In that case, constraints also include
inequalities of the form Pi ⊕Pj �= λi,j , which also have to be taken into account.
Despite the extensive use of the result, its correctness was subject to debate [11].
In [26], Kim et al. have given a verifiable proof of the mirror theory when the
number of equations is below the bound 23n/4. Datta et al. [12] have extended
this result for a system of bivariate affine equations and non-equations. Recently,
Dutta et al. [17] and Cogliati and Patarin [9] have independently given a verifi-
able proof of the “Pi ⊕ Pj theorem” for ξmax = 2.

Organization. In Sect. 2, we prove an equivalent formulation of our main result
through a probability of an event involving disjointness of some random sets,
modulo a Proposition, proof of which is postponed to Sect. 3. We give an overview
of our proof strategy and a brief comparison with previous proofs in Sect. 3.2.
The proof of the Proposition requires a recursive inequality lemma, proof of
which is deferred in Sect. A.2. Then, Sect. 4 briefly revisits several proofs that
rely on the Pi ⊕ Pj Theorem with any ξmax, and provides the corresponding
updated security bounds. Finally, we outline possible extensions of our work in
Sect. 5.

4 CLRW2 or cascading LRW2 is a tweakable blockcipher, defined as
CLRW2((k1, k2, h1, h2), t, m) = LRW2((k2, h2), t, LRW2((k1, h1), t, m)), with
LRW2((k, h), t, m) = E(k, m ⊕ h(t)) ⊕ h(t), where E is a block cipher, k is the block
cipher key, and h is an XOR universal hash function.
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2 Probability of Disjointness: An Equivalent Formulation

In order to streamline the proof of Theorem1, we will operate two distinct
changes. First, note that, in order to have solutions, the system has to be p.d.
consistent, which corresponds to two distinct conditions: λ′

i �= 0 for all i ∈ [m],
and for all i �= i′ in the same component, λ′

i �= λ′
i′ . While easy to manipulate,

both conditions have to be handled in a different way, which complicates the
proof. The simplest fix is to introduce, for every component, an additional λ′

value that can be thought to be 0n. Second, in order to avoid powers of N
in our formulas, we prefer switching to a probabilistic formulation where, for
every component, we simply sample uniformly at random a value in {0, 1}n, and
consider a disjointness event that is derived from the system of equalities.

More formally, given a set-system γ = {γi : i ∈ [α]}, we define the following
event:5

Disj(γ) := γ1 ⊕ R1, . . . , γα ⊕ Rα are disjoint

along with the following probability:

P(γ) = Pr
Rα

(Disj(γ)),

where R1, . . . ,Rα ←$ {0, 1}n. In words, the event says that a random and inde-
pendent translation of sets from a collection are disjoint. We write ‖γ‖ :=∑α

i=1 |γi| and ‖γ‖max = maxi |γi|. It is easy to see that the probability of dis-
jointness is invariant under any translation of the sets, i.e., P(γ) = P(γ′) where
γ′

i = γi ⊕ ai for a1, . . . , aα ∈ {0, 1}n.
Theorem 1 can be rephrased in the following way.

Theorem 1’ (Equivalent Formulation). Let γ be a set-system of elements
of {0, 1}n such that ξmax = ‖γ‖max. If ‖γ‖ ≤ √

N or
√

N ≥ ξ2max log2 N + ξmax,
and 1 ≤ ‖γ‖ ≤ N/12ξ2max, then

P(γ) ≥ (N)‖γ‖

N‖γ‖ .

The equivalence between both statements is proven in Sect. 2.1. From a high
level, the proof of Theorem 1’ works in two steps:

1. if γ is small (‖γ‖ ≤ √
N), then simple calculations show that Theorem 1’

holds;
2. otherwise, we prove that, for a well-chosen a ∈ T ∈ γ, one has

P(γ) ≥
(

1 − ‖γ‖ − 1
N

)

P(γ′),

where γ′ is a set system containing exactly the same sets as γ, except that
the set T has been replaced with T \{a}; clearly, applying point 2 repeatedly
until ‖γ‖ ≤ √

N allows us to conclude the proof of Theorem 1’.
5 For a set A ⊆ {0, 1}n and a n-bit number x ∈ {0, 1}n, x ⊕ A := {x ⊕ a | a ∈ A}
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Intuitively, the element that we remove from γ is the one that appears, in the
associated system of equations, with maximum multiplicity.

More formally, given z ∈ {0, 1}n \ {0n}, and a set S, we define δS(z) as the
number of 2-subsets {a, b} of S with a ⊕ b = z. For a set-system γ, we define

δγ(z) :=
∑

S∈γ

δS(z), Δγ := max
z∈{0,1}n

δγ(z).

Clearly, for any set-system γ, Δγ ≥ 1. The underlying statement behind the
second point of our proof strategy is the following one.

Proposition 1. Let λ be a set-system with
√

N ≤ ‖λ‖ ≤ N/12ξ2max where
ξmax = ‖λ‖max satisfies the bound given in Theorem 1’, i.e.,

√
N ≥ ξ2max log2 N+

ξmax. Suppose the maximum Δλ is attained for a⊕ b with {a, b} ⊆ T ∈ λ. Then,

P(λ) ≥
(

1 − ‖λ‖ − 1
N

)

· P(λ−a|T )

where λ−a|T = λ−T+T\a (i.e. replacing the element T by T \ a).

The proof of Proposition 1 is given in Sect. 3, and we explain how to derive
Theorem 1’ from Proposition 1 in Sect. 2.2.

2.1 Proof of Equivalence

Here we prove why Theorem 1’ is an equivalent statement of our main theorem.
First, we establish a one-to-one relationship between the number of disjoint
favorable solutions rq with the number of p.d. solutions of systems of equations.

Let AX = Λ be a system of difference equations in standard form, and G be
its associated graph. For every component C, let LC be the set of all labels. By
definition of p.d.-consistency, all elements of LC are distinct (and hence it is a
set of size ξC −1, where ξC is the number of vertices in C) nonzero elements. Let
iC denote the center of the star component. Thus, for all other j ∈ C, we have
an equation of the form Xj ⊕XiC

= λk for some k. Now we consider a set-system
γ containing all sets of the form SC := LC ∪ {0}. Thus, ‖γ‖ =

∑
C |C| = e and

|γ| = q. Let C1, . . . , Cq, denote the components (written in some order) and let
ij := iCj

. Now consider a map f , mapping a p.d. solution xe of the system to
rq, where rj = xij

for all j ∈ [q]. It is easy to see that SCj
⊕ rj are disjoint sets

(as these represent all x values). Moreover, f is clearly injective as a solution is
uniquely determined by the tuple (xi1 , . . . , xiq

). So, f is an injective function.
Conversely, for any rq with disjoint SCj

⊕ rj ’s, we can define xe consisting of
all values from the set 
j(SCj

⊕ rj) in an appropriate order (with xij
= rj).

Clearly, this map is f−1 and so f is a bijective function. Hence, the number
of p.d. solutions for AX = Λ is same as the number of solutions of rq so that
Disj(γ) holds. Second, we note that Theorem 1’ can be simply restated as the
number of solutions r|γ| so that (γi ⊕ ri)’s are disjoint for all i ∈ [q] is at least

(N)‖γ‖

N‖γ‖−|γ| =
(N)e

Ne−q
,
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where p − q = m corresponds to the number of equations in the system AX =
Λ. This proves the equivalence between our main theorem and the equivalent
formulation.

2.2 Proof of Theorem 1’

We first prove the statement when ‖γ‖ ≤ √
N . In this case we remove elements

from γ one by one until we end up with a single element. We first note that

P(γ) = P(γ−S) ×
(

1 − ‖γ‖ − 1
N

)

if |S| = 1 (1)

P(γ) ≥ P(γ−S) ×
(

1 − |S| × ‖γ−S‖
N

)

if |S| ≥ 2 (2)

where S ∈ γ. The above relations are easy to verify (by looking at the restriction
imposed on R which translates the set S). Indeed, let us assume S = γ1. Then,
using the independence of the (Ri)i=1,...,|γ| random variables, once R2, . . . ,R|γ|
are chosen such that the equations from Disj(γ−S) are satisfied, Disj(γ) adds the
following restrictions on R1:

R1 ⊕ x �= Ri ⊕ y for all x ∈ S, i �= 1, y ∈ γi.

Hence, if |S| = 1, R1 has to be different from exactly ‖γ‖ − 1 values, while, if
|S| �= 1, it has to avoid at most |S| × ‖γ−S‖ group elements.

Let us write Wi := (1 − i
N ), so that

∏k−1
i=1 Wi = (N)k/Nk. Now we claim

that, for ‖γ‖ ≤ √
N ,

(

1 − |S| × ‖γ−S‖
N

)

≥
‖γ‖−1∏

i=‖γ−S‖
Wi (3)

and hence P(γ) ≥ P(γ−S)×∏‖γ‖−1
i=‖γ−S‖ Wi. After repeatedly removing an element

one by one, we have P(γ) ≥ ∏‖γ‖−1
i=1 Wi which proves the theorem. Now we prove

Eq. (3). It is sufficient to show that

1 − ar

N
≥

(
1 − a

N

)
· · ·

(

1 − a + r − 1
N

)

where a + r ≤ √
N . This can be easily shown by induction on r. For r = 1, it is

obvious. Now by applying induction hypothesis for r, we obtain

(
1 − a

N

)
· · ·

(

1 − a + r − 1
N

)(

1 − a + r

N

)

≤
(
1 − ar

N

)(

1 − a + r

N

)

≤ 1 − ar + a

N
− r

N

(

1 − a(a + r)
N

)

≤ 1 − ar + a

N
.
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For the last inequality we use the fact that a + r + 1 ≤ √
N .

For the next case, we assume that
√

N ≤ ‖γ‖ ≤ N/12ξ2max, i.e. ‖λ‖ is within
the required bounds for which Proposition 1 holds. We can create a sequence of
nested set-systems {γ(i)}σ

i=0, with

γ(0) := γ, ‖γ(i+1)‖ = ‖γ(i)‖ − 1, ∀i ∈ [σ − 1], ‖γ(σ)‖ ≤
√

N,

in the following manner: Let {xi, yi} ⊆ Si ∈ γ(i) such that xi ⊕ yi attains the
highest multiplicity in γ(i), Δγ(i) . We choose one arbitrarily if there exists more
than one choice. We define γ(i+1) := γ

(i)
−xi|Si

. Now for every i ∈ [σ−1], if |Si| = 1
we apply Eq. (1), and if |Si| ≥ 2, we apply Proposition 1, to obtain

P(γ) ≥ P(γ(σ))
σ∏

i=1

(

1 − ‖γ‖ − i

N

)

.

We already have shown the result for γ(σ) that P(γ(σ)) ≥ (N)‖γ(σ)‖/N‖γ(σ)‖,
which completes the proof.

3 Proof of Proposition 1

Notations and Conventions. In the Proposition statement, {a, b} ⊆ T ∈ λ and
Δλ =

∑
S∈λ δS(a ⊕ b). Let λ = {λi : i ∈ [q]} and we write |λi| = ξi, ξmax =

maxi ξi and σ :=
∑

i ξi. We also write Δ to denote Δλ. Throughout the section
we follow this notation. Moreover, we use the notation γ to denote a set-system
such that γ ⊆ λ (as a multiset).

3.1 Initial Condition

Note that, after applying Eq. (2) repeatedly (or by applying induction on |λ\γ|)
for γ ⊆ λ, we have

P(λ)
P(γ)

≥
(

1 − qξ2max

N

)|λ\γ|
. (4)

We call this an initial condition that would be used later to prove Proposition 1.

3.2 Link-Deletion Equation and Proof Overview

Link-Deletion Equation. Let x ∈ S ∈ γ ⊆ λ. Let us write

γ = {γ1, . . . , γα}
using an arbitrary ordering of the multiset γ, and let us assume S = γ1 and
x = γ1,1. Then, the event Disj(γ) corresponds to the fact that all the Ri ⊕ γi,j

values are pairwise distinct, and the event Disj(γ−x|S) corresponds to the same
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event, where the conditions involving R1 ⊕ γ1,1 are ignored. Hence, one has
Disj(γ) ⇒ Disj(γ−x|S). Suppose Disj(γ−x|S) ∧ ¬Disj(γ) holds. Then, there must
exist y ∈ S′ ∈ γ−γ1 such that S′ = γi for some integer i �= 1, and y⊕Ri = x⊕R1.
As (S \ x) ⊕R1 is disjoint from S′ ⊕Ri (same as S′ ⊕ (x ⊕ y ⊕R1)), S \ x should
be disjoint from S′ ⊕ x ⊕ y. Let

I := {(x ⊕ y, S′) : y ∈ S′ ∈ γ−S , S′ ⊕ (x ⊕ y) is disjoint with S \ x}.

Fig. 1. Graphical depiction of the link-deletion operation. Here, we have represented
graphs corresponding to the three types of terms appearing in the link-deletion equa-
tion, with x = sk, y = γi,j , δ = sk ⊕ γi,j , S = {s1, . . . , s�+1}, and S′ = γi. Central
vertices correspond to the R1, . . . ,Rα,R random variables.

Note that simultaneously R1 ⊕ x = Ri ⊕ y = Rj ⊕ y′ for some y′ ∈ γj ∈ γ−S

cannot hold. Since otherwise, the disjointness of γ−x|S cannot hold. Thus, we
have established a useful relation, called link-deletion equation.

P(γ) = P(γ−x|S) − 1
N

∑

(δ,S′)∈I

P(γδ,S′) (5)

where γδ,S′ = γ−S−S′+S1 and S1 = (δ ⊕ S′) 
 (S \ x). This is because, the
probability P (γ−x|S) can be divided in two disjoint events:

– either adding x as a link to the set S does not create any collision (this
happens with probability P(γ)), or
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– a collision is created; all those collision events are disjoint, and correspond to
a unique element from the set I. For every (δ, S′) ∈ I, the probability that
such a collision occurs (while keeping all the other disjointness conditions),
is exactly P(γδ,S′)/N , as this event corresponds to the event, Disj(γδ,S′) ∧
(R1 = Ri ⊕ δ), where the sub-event R1 = Ri ⊕ δ occurs with probability 1/N
independently of Disj(γδ,S′) (because γδ,S′ does not involve S′ and hence Ri).

Proof Strategy. In order to prove Proposition 1, we will prove that |P(γδ,S′) −
P(γ−x|S)| is small enough in front of P(γ−x|S), for all (δ, S′) ∈ I. This will be
done in the following steps.

1. Upper bound the size of the set I (in Sect. 3.3).
2. Establish a recursive inequality between the maximum difference between

terms of the form P(γ′
−x|S), and terms of the form P(γ′

δ,S′), with γ′
−S ⊂ λ,

and S an arbitrary set of some fixed size (in Sect.A.2). This will be done by
applying the link-deletion equation to the two probabilities that maximize
the difference term, thus introducing new difference terms and an error term.

3. After applying this inequality a logarithmic number of times along with sim-
ple bounds on the probability ratios, prove that remaining terms become
sufficiently small thanks to the geometric reduction offered by the recursive
inequality (Sects. 3.5 and A.2).

Comparison with Previous Proofs. The main difference with previous proof
strategies is centered around the link-deletion equation. Indeed, previous works
started with the introduction of the so-called orange equation, which can be seen
as two consecutive applications of the link-deletion equations. Hence, instead of
always merging a single set S′ ∈ γ with the final set S, this could be seen as
merging two distinct sets S′, S′′ ∈ γ, which leads to a more complicated analysis.

3.3 Size Lemma

We also write the above set I as Ix|S to emphasize that I depends on x, S.
Clearly, for all x ∈ S ∈ γ, |I| ≤ ‖γ‖. However, we establish an improved upper
bound for the size of Ia|T where a and T are described in the statement of the
Proposition.

Lemma 1 (size lemma). For a given a ∈ T ∈ λ as described in the Proposi-
tion statement, we have |Ia|T | ≤ ‖λ‖ − Δ − |T |/2.

Proof. Take any S ∈ λ−T . Note that there are δS(a⊕b) many 2-sets {w1, w2} ⊆ S
such that w1 ⊕ w2 = a ⊕ b and hence b = w2 ⊕ (a ⊕ w1) ∈ S ⊕ (a ⊕ w1). So,
(a ⊕ w1, S) �∈ Ia|T . So,

|Ia|T | ≤
∑

S∈λ\T

(|S| − δS(a ⊕ b)) = (‖λ‖−|T |)−Δλ+δT (a⊕b) ≤ ‖λ‖−Δλ−|T |/2,
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as δT (a ⊕ b) ≤ |T |/2. Indeed, for every element, x ∈ T , there exists at most one
element y in T such that x ⊕ y = a ⊕ b. In the case where it exists, then neither
x nor y can be part of a different 2-set. �


3.4 Recursive Inequality of D-Terms

In this section, we introduce D-terms, which correspond to the maximum dif-
ference between the two types of terms that can appear in the link-deletion
equation. Formally, one has the following definition.

Definition 2. τ = γ+U with γ ⊆ λ where |γ| = α and |U | = � + 1. For any
S ∈ γ disjoint with U , let τ ′ := γ−S+(S�U) (same as τ−S−U+S�U , i.e., we merge
two disjoint elements of τ). We define

D(α, �) = max
γ,U,S

∣
∣P(τ) − P(τ ′)

∣
∣, (6)

where the maximum is taken over all choices of γ ⊆ λ of size α, S ∈ γ and a set
U of size � + 1 disjoint with S. For all � < 0, we define D(α, �) = 0.

Now we state and prove the Recursive Inequality for D-terms:

Lemma 2 (Recursive Inequality of D-Terms). Let α ≤ q ≤ N
12ξ2

max
, � ≥ 0.

We write β := ξmax/N . Then,

D(α, �) ≤ D(α, � − 1) +
ξmax

N

q∑

i=1

D(α − 1, � + ξi − 1) +
2Δξmax · P(λ)

N (1 − qξ2max/N)q−α .

(7)

Note, for q ≤ ‖λ‖ ≤ N/12ξ2max,
ξmax

N(1−qξ2
max/N) ≤ (4ξeq)−1. Denoting β :=

ξmax/N , and ad,� = βd

2P(λ)D(q − d, �) we have,

ad,� ≤ ad,�−1 +
q∑

i=1

ad+1,�+�i
+ βΔ (4eξmaxq)

−d
,

where �i = ξi − 1.

The proof of this Lemma is postponed to AppendixA.1.

Remark 2. Note that the r.h.s. of the inequality contains three types of terms:

– D(α, � − 1) which will disappear after � − 1 applications of the recursive
inequality,

– terms of the form D(α− 1, �+ ξi − 1) which involve a smaller set-system, but
a larger U set; however, those terms are multiplied by ξmax

N , which will ensure
their geometric reduction,

– a parasite term that, as we will see, is small enough not to cause an issue
after a logarithmic number of iterations.
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Besides, in addition to the above recursive inequality, we also have the following
bound, which follows from Eq. (4):

D(α, �) = |P(τ) − P(τ ′)| ≤ 2P(λ)

(1 − q · ‖λ‖2max/N)|λ\γ|

and so

ad,� =
βd

2P(λ)
D(q − d, �) ≤

(
ξmax

N (1 − qξ2max/N)

)d

≤ 1/(4eξmaxq)d

3.5 Final Wrap up of Proof

We can conclude the proof of Proposition 1 using Lemmas 1, 2, along with the
following result that will be proven in AppendixA.2.

Lemma 3 (Recursive Inequality Lemma). Suppose ad,� ≥ 0 such that: (i)
ad,k := 0 for all k < 0, and (ii) for all 0 ≤ d ≤ ξn and 0 ≤ �i ≤ ξ − 1 for i ∈ [q],
we have

ad,� ≤ (4ξeq)−d (initial bound) (8)

ad,� ≤ ad,�−1 +
q∑

i=1

ad+1,�+�i
+ C · (4ξeq)−d (recursive inequality) (9)

for some C > 0. Then, for every � ∈ [ξ − 2],

a0,� ≤ 4
N

+ 4Cξ.

Let a, b, T, λ be as in the statement of Proposition 1, and let λ0 = λ−T . Note
that one has ξ2maxn ≤ √

N − ξmax ≤ ‖λ0‖ ≤ N/12ξ2max. Moreover, let q = |λ0|.
Similarly, one has ξmaxq ≥ ‖λ0‖ ≥ ξ2maxn, which means that q ≥ ξmaxn. We are
going to apply Lemma 3 to λ0 as follows.

Let us take, ξ = ξmax, C = βΔ = Δλξmax/N in the statement of the above
Lemma 3. From the definition of ad,� = βd

2P(λ0)
D(q − d, �), we must ensure that

q ≥ d in order to apply Lemma3. This can easily be seen to be true as q ≥ ξn
and d ≤ ξn. Then, for (δ, S) ∈ Ia|T , we have

|P(λδ,S) − P(λ−a|T )| ≤ D(q, |T | − 2) ≤2P(λ0)a0,|T |−2 ≤ 8P(λ0)
N

(Δξ2max + 1).

Note that one has

P(λ−a|T ) ≥ P(λ0)
(

1 − ‖λ0‖ξmax

N

)

≥ P(λ0)
(

1 − 1
12ξmax

)

≥ P(λ0)
23
24

.
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Thus, one has

P(λδ,S) ≤ 8P(λ0)

N
(Δξ2max + 1) + P(λ−a|T ) ≤

(
8P(λ0)(Δξ2max + 1)

N · P(λ−a|T )
+ 1

)
P(λ−a|T )

≤
(

24 · 8

23 · N
(Δξ2max + 1) + 1

)
P(λ−a|T ) ≤

(
C′Δ
N

+ 1

)
P(λ−a|T ),

where C ′ = 9(ξ2max + 1), as Δ ≥ 1. Using this bound in the appropriate link
deletion equation we have:

P(λ) = P(λ−a|T ) − 1
N

∑

(δ,S)∈Ia|T

P(λδ,S) (From Eq. (5))

≥ P(λ−a|T ) − 1
N

∑

(δ,S)∈Ia|T

P(λ−a|T )(1 + C ′Δ/N)

≥ P(λ−a|T )
(

1 − ‖λ‖ − Δ − |T |/2
N

(

1 +
C ′Δ
N

))

(From Lemma 1)

≥ P(λ−a|T )
(

1 − ‖λ‖ − 1
N

+
Δ

N

(

1 − C ′(‖λ‖ − Δ − 1)
N

))

≥ P(λ−a|T )
(

1 − ‖λ‖ − 1
N

)

.

The last inequality follows as C ′‖λ‖ ≤ N , for ‖λ‖ ≤ N/12ξ2max, which con-
cludes our proof of Proposition 1. �


Remark 3. Note that the initial bound ensures only that a0,� ≤ 1. However, the
presence of recursive inequality forces the value of a0,� to be very small.

4 Cryptographic Applications

In order to give an overview of how Mirror Theory can be used, and to illustrate
the importance of the “Pi ⊕Pj theorem” for any ξmax, we provide security proofs
for a diverse set of constructions. Note that we focus on the parts of the proof
that involve system of bivariate equations and omit the other parts, for which
we cite the relevant results in the literature. We felt the need to add this section
mainly to motivate the readers on the importance of the proof of this result.

4.1 The H Coefficients Technique

In this section, we consider one of the main applications of Theorem 1, which
is proving the security of a pseudorandom function (PRF) F , or a pseudoran-
dom permutation, P , based on a secret random primitive. Formally, for any
information-theoretical adversary A that is allowed at most q oracle queries,
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we define its advantage in distinguishing F from a truly uniformly random ora-
cle, denoted $, as follows:

Advprf
F (A) :=

∣
∣
∣Pr

(
AF = 1

) − Pr
(
A$ = 1

)∣
∣
∣ .

whereas, for any information-theoretical adversary A that is allowed at most q
forward and backward oracle queries, we define its advantage in distinguishing
P from a truly uniformly random permutation oracle, denoted $$, as follows:

Advsprp
P (A) :=

∣
∣
∣Pr

(
AP = 1

) − Pr
(
A$$ = 1

)∣
∣
∣ .

One way of upper-bounding the prf-advantage of A is to use the H coefficients
technique, which is tightly linked to Mirror Theory. To use this method, we
summarize the interaction of A with its oracle in what we refer to as a transcript

τ = {(X1, Y1), . . . , (Xq, Yq)},

where, for each pair (xi, yi), A made a query xi and received yi as an answer (or
made a query yi and received xi as an answer, in case of backward queries). We
also introduce two random variables Treal and Tideal which correspond to the
value of τ when A interacts respectively with the real world (the construction F
or P ) and the ideal world (resp., $ or $$). We say that a transcript τ is attainable
if it satisfies Pr (Tideal = τ) > 0. The set of all attainable transcripts is written
T. One has the following result.

Lemma 4 ([38]). Let Tgood ⊂ T be a subset of the set of all attainable tran-
scripts. Assume that, for every τ ∈ Tgood, one has

Pr (Treal = τ)
Pr (Tideal = τ)

≥ 1 − ε.

Then, one has
Advprf

F (A) ≤ Pr (Tideal ∈ T \ Tgood) + ε.

Mirror Theory is generally used when computing the lower bound of the ratio
Pr (Treal = τ) /Pr (Tideal = τ) by providing a lower bound for the number of
intermediate values for the underlying random primitive. We now illustrate this
technique by revisiting existing security proofs using Theorem1.

4.2 The XORP Construction

In [21], Iwata introduced CENC, a beyond-birthday-bound secure mode of oper-
ation which uses an underlying permutation-based PRF dubbed XORP which is
defined as follows:

XORP[w] : {0, 1}n−s −→ {0, 1}wn

x �−→ ‖w
i=1π (〈0〉s‖x) ⊕ π (〈i〉s‖x) ,
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where s = �log2(w +1)�, and π is a uniformly random secret n-bit permutation.
Later, Iwata, Mennink, and Vizár [22] made the link between XORP and Mirror
Theory explicit, and proved optimal security for the construction, using [40, The-
orem 6]. We revisit their proof by applying Theorem1 in order to demonstrate
the following result6.

Theorem 2. Let A be an adversary against the prf-security of XORP[w], which
is allowed at most q queries. If q ≤ 2n/12(w + 1)2, one has

Advprf
XORP[w](A) ≤ wq

2n
+

w2q

2n+1
.

Proof. We are going to rely on the H coefficients technique. Let us fix an adver-
sary A against the prf-security of XORP[w], which is allowed at most q queries.
We assume without loss of generality that A is deterministic (as it is time-
unbounded), never repeats queries, and always makes exactly q queries. The
transcript τ of the interaction of A with its oracle can be written as

τ = {(X1, Y1,1‖ . . . ‖Y1,w), . . . , (Xq, Yq,1‖ . . . ‖Yq,w)},

where, for i = 1, . . . , q and j = 1, . . . , w, one has |Yi,j | = n. We say that an
attainable transcript τ is bad if at least one of those conditions is satisfied:

– there exists (i, j) ∈ (q] × (w] such that Yi,j = 0n;
– there exists (i, j, j′) ∈ (q] × (w] × (w] such that j �= j′ and Yi,j = Yi,j′ .

The set Tgood consists in all attainable transcripts which are not bad. Since the
Yi,j values are uniformly random and independent in the ideal world, it is easy
to see that one has

Pr (Tideal ∈ T \ Tgood) ≤ wq

2n
+

w2q

2n+1
. (10)

Let us fix any good transcript τ . By taking X ′
i,j = π (〈j〉s‖Xi), the event Treal =

τ can easily be turned into the following system of bivariate affine equations:

X ′
1,0 ⊕ X ′

1,1 = Y1,1 X ′
1,0 ⊕ X ′

q,1 = Yq,1

... . . .
...

X ′
1,0 ⊕ X ′

1,w = Y1,w X ′
1,0 ⊕ X ′

q,w = Yq,w

Since τ is a good transcript, the corresponding graph clearly has q components,
of size w + 1, and the sum of labels of edges of any path in the graph is not 0n.
Let us denote N the number of pairwise distinct solutions of this system. Then
the probability that X ′

i,j = π (〈j〉s‖Xi) for all pairs (i, j) is exactly 1/(2n)(w+1)q.
Hence, one has

Pr (Treal = τ)
Pr (Tideal = τ)

≥ N
(2n)wq

(2n)(w+1)q
≥ 1, (11)

where the last inequality results from the application of Theorem1. Combining
Lemma 4 with Eqs. (10) and (11) ends the proof of Theorem 2.
6 We do not claim novelty for this Theorem, but we present its proof for illustration

purpose.
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4.3 Optimally Secure Variable-Input-Length PRFs

In [7], Cogliati, Jha and Nandi propose several constructions to build opti-
mally secure variable-input-length (VIL) PRFs from secret random permuta-
tions. Those schemes combine a diblock almost collision-free universal hash func-
tion with a finalization function based on the Benes construction [2]. The most
efficient variant, whose representation can be found in Fig. 2, relies on two inde-
pendent permutations, and its security proof [7, Theorem 7.3] involves the use
of Mirror Theory for a single permutation.

First, let us recall the necessary definition for keyed hash function. A
(K,X,Y)-keyed function H is said to be ε-almost universal (AU) hash function
if for any distinct X,X ′ ∈ X, we have

PrKK ←$K (HKK(X) = HKK(X ′)) ≤ ε. (12)

Let us fix a non-empty set X ⊂ {0, 1}∗, and let H be a (K,X,Y)-keyed function
that processes its inputs in n-bit blocks. H is said to be (q, σ, ε)-Almost θ-
Collision-free Universal (or ACUθ) if, for every Xq ∈ (X)q such that Xq contains
at most σ blocks, one has Pr[C ≥ θ] ≤ ε, where

C := |{(i, j) : 1 ≤ i < j ≤ q, HK(Xi) = HK(Xj)}|.

Finally, we say that a pair H = (H1,H2) of two (K,X,Y)-keyed hash functions
H1,H2 is (q, σ, ε2, ε1)-Diblock ACUq (or DbACUq) if H is (q, σ, ε2)-AU and H1,
H2 are (q, σ, ε1)-ACUq.

Fig. 2. Representation of the 2k-HtmB-p2[H] based on two uniformly random and
independent n-bit permutations π1, π2. An edge (u, v) with label g denotes the mapping
v = g(u). Unlabelled edges are identity mapping. The inputs to the functions πi(j‖·)
are first truncated before the application of πi.

Having defined the required security notion for the underlying hash function,
the following result holds.
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Theorem 3. For ε1, ε2, σ ≥ 0, q ≤ 2n/12n2, and (q, σ, ε2, ε1)-DbACUq hash
function H instantiated with key K ←$K, the prf-advantage of any distinguisher
A that makes at most q queries against 2k-HtmB-p2[H] is given by

Advprf
2k-HtmB-p2[H](A) ≤ 128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1.

The complete proof of this result is exactly the same as the one of [7, Theorem
7.3] where [40, Theorem 6] is replaced with Theorem 1.

Proof Sketch. Let us denote with Mi, for i = 1, . . . , q, the inputs from A.
We introduce several random variables: Li = H1(Mi), Ri = H2(Mi), Xi =
truncn−1(π1(0‖Li) ⊕ Ri) and Yi = truncn−1(π1(1‖Ri) ⊕ Li), so that

Si = π2(0‖Xi) ⊕ π2(1‖Yi).

Additionally, at the end of the interaction of A with its oracle, we release the
values of the Lis, Ris,Xis, and Yis. In the real world, we release the actual
values, while in the ideal world we simply draw uniformly random keys for H1

and H2, along with a lazily sampled uniformly random π1. Note that this can
only increase the advantage of an adversary, so this can be done without loss of
generality.

In order to apply Theorem 1, we need to make sure that the system (S)
consisting of the q equations

Si = π2(0‖Xi) ⊕ π2(1‖Yi)

satisfies the initial conditions. We recall that an alternating trail of length k is
a sequence (i1, . . . , ik+1) such that either Xij

= Xij+1 or Yij
= Yij+1 for j =

1, . . . , k, and consecutive equalities do not involve the same family of variables
(i.e. an equality in X should be followed with an equality in Y ). Moreover, an
alternating cycle is a special type of alternating trail of even length, such that
ik+1 = i1. We say that a transcript τ is bad if at least one of the following
conditions hold:

– τ contains an alternating cycle;
– τ contains an alternating trail (i1, . . . , ik+1) such that ⊕k+1

j=1Sij
= 0;

– the largest block of equalities contains at least n + 1 variables.7

In [7], the authors prove that

Pr (Tideal ∈ T \ Tgood) ≤ 128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1. (13)

Moreover, for any good transcript τ , one has

Pr (Treal = τ)
Pr (Tideal = τ)

=
s2nq

(2n)qX+qY
≥ 1, (14)

7 We say that two variables are in the same block of equalities if there exists an
alternating trail involving both variables.
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where s denotes the number of p.d. solutions to the system (S) of equations, and
qX (resp. qY ) the number of pairwise distinct Xi (resp. Yi) values, and the last
inequality results from the application of Theorem1. Combining Lemma 4 with
Eqs. (13) and (14) ends the proof of Theorem 3.

4.4 Feistel Schemes

In [41], Patarin introduced the study of beyond-birthday-bound security of bal-
anced and unbalanced Feistel schemes using Mirror Theory. Since our work has
improved upon the bounds of the ‘Pi⊕Pj Theorem for any ξmax’ used by Patarin,
we present here the proof sketch of security analysis of six-round balanced Feistel
scheme with our new improved bounds.

Definition of ψk. Suppose Funcn is the collection of all n-bit functions from
{0, 1}n to itself, and Perm2n be the collection of all permutations on {0, 1}2n.
Then for f ∈ Funcn and L,R ∈ {0, 1}n, ψ(f) ∈ Perm2n is defined as follows:

ψ(f)[L,R] := [R,L ⊕ f(R)]

In general, for f1, · · · , fk ∈ Funcn, ψk(f1, · · · , fk) ∈ Perm2n is defined as,

ψk(f1, · · · , fk) := ψ(fk) ◦ · · · ◦ ψ(f1).

The permutation ψk(f1, · · · , fk) is called a balanced Feistel scheme with k
rounds. When f1, · · · , fk are randomly and independently chosen in Funcn,
ψk(f1, · · · , fk) is called a random Feistel scheme with k rounds.

To analyse the PRP security of k-round Feistel scheme via the H-coefficient
technique, given a transcript containing q query-response pairs

τ := {([Li, Ri], [Si, Ti]) : Li, Ri, Si, Ti ∈ {0, 1}n, i ∈ [q]},

we would like to find out the probability of realizing this transcript in the real
world,

Pr(Treal = τ) = Pr
(f1,··· ,fk)

←$ Funck
n

(
ψk(f1, · · · , fk)[Li, Ri] = [Si, Ti] ∀i ∈ [q]

)
=

Hk(τ)
|Funcn|k

where,

Hk(τ) :=
∣
∣
∣{(f1, · · · , fk) ∈ Funck

n : ψk(f1, · · · , fk)[Li, Ri] = [Si, Ti] ∀i ∈ [q]}
∣
∣
∣

Note that, here, irrespective of whether the transcript was realized in the real
or the ideal world, we will have that [Li, Ri], i ∈ [q] are pairwise distinct, and
[Si, Ti], i ∈ [q] are pairwise distinct. There are no bad transcripts in the following
analysis.

In Fig. 3 we have denoted the outputs of the successive rounds as follows:

[Li, Ri]
ψ(f1)−→ [Ri, Xi]

ψ(f2)−→ [Xi, Yi]
ψ(f3)−→ [Yi, Zi]

ψ(f4)−→ [Zi, Ai]
ψ(f5)−→ [Ai, Si]

ψ(f6)−→ [Si, Ti]
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Fig. 3. Balanced Feistel scheme with 6 rounds

Viewing 6-round Feistel as ψ6(f1, · · · , f6) = ψ(f1) ◦ ψ4(f2, · · · , f5) ◦ ψ(f6),
we can write

H6(τ) =
∑

f1,f6∈Funcn

H4(τ ′) (15)

where

τ ′ = {([Ri,Xi], [Ai, Si]) : Xi := Li ⊕ f1(Ri), Ai := Ti ⊕ f6(Si), i ∈ [q]}

Frameworks for ψ4. To calculate H4(τ ′) we define a ‘framework’ as collec-
tion of equations of the form Yi = Yj or Zi = Zj . We will say that two
frameworks are equal if they imply exactly the same set of equalities in Y
and Z. Let F be a framework. We will denote by weight(F) the number of
(Yi, Zi) ∈ ({0, 1}n)2, i ∈ [q] that satisfy F. If we denote yF (resp., zF) the num-
ber of independent equalities of the form Yi = Yj (resp., of the form Zi = Zj) in
F, then obviously we have weight(F) = (N)q−yF · (N)q−zF

Note that, for a given framework F, Yi = Yj ∈ F =⇒ f3(Yi) = f3(Yj),
which is equivalent to saying Xi ⊕ Zi = Xj ⊕ Zj . Similarly, Zi = Zj ∈ F =⇒
Yi ⊕Ai = Yj ⊕Aj . Moreover, Xi = Xj =⇒ f2(Xi) = f2(Xj) which is equivalent
to saying Ri ⊕ Yi = Rj ⊕ Yj . Similarly, Ai = Aj =⇒ Zi ⊕ Si = Zj ⊕ Sj .

Let x be the number of independent equalities of the form Xi = Xj , i �= j
and a be the number of independent equalities of the form Ai = Aj , i �= j. Then
by simple algebraic manipulation we have the following result.

Lemma 5 (exact formula for H4(τ ′)).

H4(τ ′) = |Funcn|4
∑

F

[#Y q satisfying (C1)] · [#Zq satisfying (C2)]
N4q−x−yF−zF−a

(16)

where

(C1) :

⎧
⎨

⎩

Xi = Xj =⇒ Yi ⊕ Yj = Ri ⊕ Rj

Zi = Zj ∈ F =⇒ Yi ⊕ Yj = Ai ⊕ Aj

The only equations Yi = Yj , i < j, are exactly those implied by F

(C2) :

⎧
⎨

⎩

Ai = Aj =⇒ Zi ⊕ Zj = Si ⊕ Sj

Yi = Yj ∈ F =⇒ Zi ⊕ Zj = Xi ⊕ Xj

The only equations Zi = Zj , i < j, are exactly those implied by F

The summation on the r.h.s. of Eq. (16) is taken over all possible frameworks F.
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A we can see (C1) yields a system of difference equations in the variables Y q, and
(C2) a system of difference equations in Zq. To find the number of solutions to
these systems of equations using Theorem 1, we have to ensure: (1) the systems
are p.d.-consistent, (2) the conditions specified in the theorem, like the bound on
the maximum component size, and that on the number of variables, is satisfied
by the concerned systems.

Now the systems will be p.d. consistent if there is no cycle of non-zero label
sum. To be on the safe side, we eliminate the possibility of any cycle whatsoever.
Note that, there will be a cycle in the graph representing the system of difference
equations in (C1) (resp., (C2)) only if there is a ‘circle in X,ZF’ (resp., ‘circle
in A, YF’), by which we mean that, for some k ≥ 3, there is a cyclic tuple of
indices (i1, · · · , ik), with i1, · · · , ik−1 pairwise distinct and ik = i1, such that for
all j ∈ [k − 1], either we have Xij

= Xij+1 or we have Zij
= Zij+1 ∈ F. We

define a circle in A, YF similarly.
Following the same arguments there will be component of size ξ in the graph

representing the system of difference equations in (C1) (resp., (C2)) only if
there is a ‘line in X,ZF’ (resp., ‘line in A, YF’) of length ξ, by which we mean
that, there are ξ + 1 distinct indices i1, · · · , iξ+1 such that for all j ∈ [ξ], either
Xij

= Xij+1 or Zij
= Zij

∈ F. We define a line in A, YF similarly.

Good Framework. We call a framework for ψ4, F, a good framework, if it does
not result in any of the following:

1. a circle in X,ZF

2. a circle in A, YF

3. a line in X,ZF of length ≥ n
4. a line in A, YF of length ≥ n

From elaborate probability calculations done in Appendix C of [41] we have the
following result:

Lemma 6 ([41]). For a realizable transcript τ = {([Li, Ri], [Si, Ti]) : i ∈ [q]},
when f1, f6 ←$Funcn and F is randomly chosen (i.e., with probability propor-
tional to weight(F)), then

Pr[F is a good framework] ≥ 1 − 8q

N
.

If a good framework F is chosen, then the systems of difference equations in
(C1) and (C2) are p.d.-consistent and satisfy the conditions of Theorem1 with
ξmax ≤ n. Now the system of difference equations in (C1) (resp., C2) has x+ zF
equations in q−yF variables (resp., a+yF equations in q−zF variables) and hence
by Theorem 1 has at least (N)q−yF/Nx+zF solutions (resp., (N)q−zF/Na+yF

solutions) if q ≤ N/12(log2 N)2. Then from Eq. (15) and Eq. (16) we get that

H6(τ) ≥ |Funcn|4
N4q

∑

f1,f6∈Funcn

∑

good F

(N)q−yF · (N)q−zF

︸ ︷︷ ︸
weight(F)

(�)

≥ |Funcn|6
N2q

(

1 − 8q

N

)
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where (�) follows from Lemma 6 and the fact that
∑

F weight(F) = N2q. Thus,
we have a for a realizable transcript τ

Pr[Treal = τ ]
Pr[Tideal = τ ]

=
1

N2q

(
1 − 8q

N

)

1/(N2)q ≥ 1 − 8q

N
− q2

N2
.

Summarizing we have the following result.

Theorem 4. If q ≤ 2n

12n2 , then for every CPCA-2 adversary8 A with q adaptive
chosen plaintext or chosen ciphertext queries, we have

Advsprp
ψ6(f1,··· ,f6)

(A) ≤ 8q

2n
+

q2

22n
.

where f1, · · · , f6 ←$Funcn.

4.5 A Comparative Study of the Security Bounds

First we consider the security bounds attainable for the above constructions
without using Mirror Theory.

1. There exists another proof of optimal n-bit security for the XORP[w] construc-
tion [6], that does not rely on Mirror Theory. Instead, it uses the so-called χ2

technique [11].
2. In [7] Cogliati et al. proposes several VIL PRF constructions from secret ran-

dom permutations using the Hash-then-modified-Benes method. To obtain
optimal security without using Mirror Theory they proposed the candidate
2k-HtmB-p1[H], which requires 6 secret random permutations. In compari-
sion 2k-HtmB-p2[H] only needs 4 secret random permutations (obtained from
domain separating two random permutations) to attain n-bit security. How-
ever, the only existing security proof of the latter depends crucially on Mirror
Theory.

3. Six-round Feistel construction can only be shown to be birthday-bound secure
without using Mirror Theory, no better security proof is known.

Also, the optimal n-bit security bounds for the above three constructions,
are obtained in [7,22] and [41], respectively, by using the following conjectured
version of Mirror Theory [40, Theorem 6], whose proof is incomplete:

“Theorem Pi ⊕ Pj” for any ξmax. Let (A) be a set of a equation Pi ⊕ Pj = λk

with α variables such that:

1. We have no circle in P in the equations (A).
2. We have no more than ξmax indices in the same block.
3. By linearity from (A) we cannot generate an equation Pi = Pj with i �= j.

8 CPCA-2 adversary here means an adversary that adaptively queries Chosen Plain-
texts and Chosen Ciphertexts.
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Then: if ξ2maxα � 2n, we have Hα ≥ Jα. More precisely the fuzzy condition
ξ2maxα � 2n can be written with the explicit bound: (ξmax − 1)2α ≤ 2n/67.

In the above theorem conditions 1 and 3 correspond to the p.d.-consistency
condition of this paper, and condition 2 correspond to the condition that the
maximum component size of the corresponding graph is ξmax. α in the above
theorem is replaced by p in Theorem 1 of this paper. Also using the notation
of [40], Hα ≥ Jα translates to: the number of p.d. solutions of the system of
equations (A) is ≥ (2n)α/2nm = (N)α/Nm, which is exactly the bound obtained
in this paper. However we notice the following important differences:

1. The above theorem is for any ξmax, while Theorem 1 of this paper works for
ξmax of the order O(N1/4).

2. The bound on α or p in the above theorem is N/67(ξmax − 1)2, while the one
attained in Theorem1 of this paper is N/12ξ2max, which is slightly better.

5 Conclusion and Future Work

In this work, we present the first complete and verifiable proof of the Pi ⊕ Pj

Theorem with any ξmax. Our proof builds on the previous works on this subject
by reusing the overall strategy. However, our core novelty is the use of the link-
deletion equation, which allows a better proof by induction that introduces a
much smaller number of terms. This improvement leads to a shorter proof and a
slightly better bound, as long as ξmax is of the order O(N1/4). As an application,
we give proofs of n-bit security for the XORP and 2k-HtmB-p2 constructions, thus
confirming the results from [22] and [7]. Theorem 1 is also used to revisit the secu-
rity proofs of balanced Feistel schemes [32,41] and prove the optimal security of
six rounds Feistel scheme [32,41]. Moreover, using our result, one can also show
an asymptotically optimal security bound for DWCDM [15,16] construction.
In fact, the H coefficients technique can be used to transform many crypto-
graphic security proofs into Mirror Theory problems. However, these problems
may sometimes be more general than the one we target in this work. For exam-
ple, in this work we deal with pairwise distinctness of the solution to a system of
equations, which is same as finding solutions to the given system of equations,
along with a system of non-equations of the form Xj ⊕ Xk �= 0n for all j �= k.
However, when dealing with constructions like the Feistel cipher where the round
functions are permutations, we find that in addition to the conditions of the form
(C1) obtained in Lemma 5, we also get that Xi �= Xj =⇒ Yi ⊕Yj �= Ri ⊕Rj , i.e.
non-equations with non-zero labels. This indicates to the following more general
problem, that is yet to be solved:
Open Problem 1. Find the lower bound to the number of solutions to a system
of equations and a possibly non-homogeneous system of non-equations.

Studying variants of Theorem1, as the one mentioned above, would help to
improve security bounds for current and future cryptographic constructions:

Open Problem 2. Generalize Theorem 1 for groups of exponent �= 2. Then it
can be used for security proof of Feistel network whose operator is modular
addition, and not ⊕ (which is important for Format-Preserving Encryption).
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Open Problem 3. Generalize Theorem 1 for ξmax > O(2n/4/
√

n). This might
be used for optimal security proof of nonce misuse resistant MAC scheme
nEHtM. Note that the bound does not always hold when ξmax gets close to
2n/2. A counterexample can be found in [32, p. 225].

Open Problem 4. Generalize Theorem 1 for the case when the solutions
are chosen from a proper subset of {0, 1}n. This is applicable for ideal-
permutation-based keyed constructions. As an adversary can make direct
queries to the ideal permutation P , some inputs and outputs are fixed before-
hand.

Open Problem 5. Generalize for systems of equations having more than just
two variables, for example, say, X1 ⊕ X2 ⊕ X3 ⊕ X4 = 0. This will prove
optimal security for constructions like the ones mentioned in [8].

Also, there are two other conjectured Mirror-Theory-like results [32, Conjecture
14.1 & 14.2] about the number of permutations g and h such that g ∗ h is equal
to a given function f , for any commutative group law ∗.

Acknowledgements. Part of this work was carried out in the framework of the
French-German-Center for Cybersecurity, a collaboration of CISPA and LORIA, while
Benôıt Cogliati was employed at the CISPA Helmholtz Center for Information Security.

A Postponed Proofs

A.1 Proof of Lemma 2

We fix S ∈ γ ⊆ λ where |γ| = α and a set U with |U | = � + 1 disjoint with S.
Let τ := γ+U and τ ′ := γ−S+(S�U). In words, γ is a set-system that is included
in λ, U is any subset of G of size � + 1, and S is an element of γ. Then, τ
corresponds to the γ ∪ {U}, while τ ′ corresponds to τ after S and U have been
merged. Looking back at Fig. 1, τ and τ ′ would correspond respectively to the
second and third graphs. We assume that γ, U, S are chosen in such a manner
that |P(τ) − P(τ ′)| = D(α, �). Now we prove the inequality in two cases.

Case |U | = 1. In this case, let U = {x}. Then P(τ) = P(γ) · (1 − ‖γ‖/2n) from
Eq. (1). Also τ ′

−x|S�U = γ. Hence from link deletion equation, Eq. (5),

P(τ ′) = P(γ) − N−1
∑

(δ,S′)∈I

P(τ ′
δ,S′)

where I := Ix,S = {(δ, S′) : x ⊕ δ ∈ S′ ∈ γ−S , S′ ⊕ δ is disjoint with S}. For
z′ ∈ S′ ∈ γ−S , (x ⊕ z, S′) �∈ I if and only if there exists y ∈ S and w ∈ S′
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such that x ⊕ y = z ⊕ w. Thus |I| ≥ ∑
S′∈γ−S

(
|S′| − ∑

y∈S 2δS′(x ⊕ y)
)

=
‖γ‖ − |S| − ∑

y∈S 2δγ−S
(x ⊕ y) ≥ ‖γ‖ − ‖γ‖max · 2δγ . Hence

D(α, 0) = |P(τ) − P(τ ′)| =

∣
∣
∣
∣
∣
∣

‖γ‖
N

P(γ) − N−1
∑

(δ,S′)∈I

P(τ ′
δ,S′)

∣
∣
∣
∣
∣
∣

(�)

≤ N−1
∑

(δ,S′)∈I

|P(γ) − P(τ ′
δ,S′)| +

2Δγ‖γ‖max · P(λ)

N
(
1 − ‖λ\γ‖max×‖γ‖

N

)|λ\γ|

≤ ‖γ−S‖max

N

∑

S′∈γ\S

D(α − 1, |S′| − 1) +
2Δγ‖γ‖max · P(λ)

N
(
1 − ‖λ\γ‖max×‖γ‖

N

)|λ\γ| ,

where the last term in (�) is obtained from the initial condition Eq. (4).
Case |U | ≥ 2. Fix x ∈ U . By link-deletion equation, we have

P(τ) = P(τ−x|U ) − 1
N

∑

(δ,S′)∈I

P(τδ,S′)

P(τ ′) = P(τ ′
−x|S�U ) − 1

N

∑

(δ,S′)∈I′
P(τ ′

δ,S′),

where

I := Ix|U = {(δ, S′) : x ⊕ δ ∈ S′ ∈ γ, S′ ⊕ δ is disjoint with U \ x},

I ′ := Ix|S�U = {(δ, S′) : x ⊕ δ ∈ S′ ∈ γ−S , S′ ⊕ δ is disjoint with S 
 U \ x}.

It is easy to see that I ′ ⊆ I. If (δ, S′) ∈ I \ I ′, then,

– either S′ = S and δ = x ⊕ y for some y ∈ S, such that S ⊕ (x ⊕ y) is disjoint
with U \ x or

– S′ ∈ γ \ S and δ = x ⊕ z for some z ∈ S′, such that S′ ⊕ (x ⊕ z) is disjoint
with U \ x but not disjoint with S 
 (U \ x).

The first case can contribute at most |S|. The second case will happen if for
some z, w ∈ S′, and y ∈ S, z ⊕ w = x ⊕ y. Thus

|I \ I ′| ≤ |S| +
∑

y∈S

δγ−S
(x ⊕ y) ≤ ‖γ‖max · 2Δγ .
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Hence, we have the following:

D(α, �) = |P(τ) − P(τ ′)|
≤ ∣

∣P(τ−x) − P(τ ′
−x)

∣
∣ + N−1

∑

(δ,S′)∈I′

∣
∣P(τδ,S′ ) − P(τ ′

δ,S′ )
∣
∣ +

∑

(δ,S′)∈I\I′
P(τδ,S′ )/N

≤ D(α, � − 1) +
‖γ−S‖max

N

∑

S′∈γ−S

D(α − 1, � + |S′| − 1) +
2Δγ‖γ‖max · P(λ)

N
(

1 − ‖λ\γ‖max×‖γ‖
N

)|λ\γ| .

(17)

The last inequality follows from the observation that τδ,S′ and τ ′
δ,S′ are con-

sidered when we take maximum to compute D(α − 1, � + |S′| − 1). Moreover,
from our initial condition Eq. (4),

P(τδ,S′) ≤ P(γ) ≤ P(λ)/
(

1 − ‖λ \ γ‖max × ‖γ‖
N

)|λ\γ|

Now, taking upper bounds of the total size terms, and adding some positive
terms in the middle sum, and noting that Δγ ≤ Δλ

9, the inequality, Eq. (17)
can be easily modified to the theorem statement, Eq. (7).

A.2 Proof of Recursive Inequality Lemma

Let us denote by an ordered tuple of integers from [q], as ik := (i1, · · · , ik) ∈ [q]k.
Note that, for all positive integer j, ej ≥ jj

j! and so 1/j! ≤ (e/j)j , and we have

(
m

j

)

≤ mj

j!
≤ (em/j)j . (18)

This inequality will be frequently used for the proof of this lemma. We also use
the following fact extensively: for r < 1,

∑
j≥i rj ≤ ri

1−r .

We state the following claim, which follows from iterated applications of the
recursive inequality.

Claim 1. For any 0 ≤ d ≤ ξn, and 0 ≤ � < ξ − 1 we have

a0,� ≤
d∑

k=� d−�
ξ �

(
d

k

) ∑

ik∈[q]k

ak,k+
∑k

j=1 �ij
−d + C

d−1∑

i=0

i∑

j=� i−�
ξ �

(
i

j

)

(4ξe)−j . (19)

9 Since γ ⊆ λ, we have
∑

S∈γ δS(z) ≤ ∑
S′∈λ δS′(z) for every z ∈ {0, 1}n, since every

S ∈ γ is subset of some S′ ∈ λ. So taking maximum over all z ∈ {0, 1}n, on both
sides would give us Δγ ≤ Δλ.
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Proof of the Claim. We prove the claim by induction on d. The result holds
trivially for d = 1 (by applying d = � = 0 in Eq. (9)). Now we prove the
statement for d0 + 1, assuming it true for d0. Therefore, we have

a0,� ≤
d0∑

k=
⌈

d0−�
ξ

⌉

(
d0

k

) ∑
ik∈[q]k

ak,k+
∑k

j=1 �ij
−d0

+ C

d0−1∑
i=0

i∑
j=

⌈
i−�

ξ

⌉

(
i

j

)
(4ξe)−j

≤
d0∑

k=
⌈

d0−�
ξ

⌉

(
d0

k

) ∑
ik∈[q]k

⎛
⎝ ∑

ik+1∈[q]

a
k+1,k+1+

∑k+1
j=1 �ij

−(d0+1)
+ C · (4ξeq)−k

⎞
⎠

+

d0∑
k=

⌈
d0−�

ξ

⌉

(
d0

k

) ∑
ik∈[q]k

ak,k+
∑k

j=1 �ij
−(d0+1) + C

d0−1∑
i=0

i∑
j=

⌈
i−�

ξ

⌉

(
i

j

)
(4ξe)−j

≤
d0+1∑

k=
⌈

d0+1−�
ξ

⌉

(
d0

k − 1

) ∑
ik−1∈[q]k−1

∑
ik∈[q]

ak,k+
∑k

j=1 �ij
−(d0+1)

+

d0+1∑
k=

⌈
d0+1−�

ξ

⌉

(
d0

k

) ∑
ik∈[q]k

ak,k+
∑k

j=1 �ij
−(d0+1) + C

d0∑
i=0

i∑
j=

⌈
i−�

ξ

⌉

(
i

j

)
(4ξe)−j .

The range of the first and second summations has deliberately been taken to start
from �(d0 + 1 − �)/ξ� ≤ �(d0 − �)/ξ� + 1, because if k < �(d0 + 1 − �)/ξ�, then
k +

∑k
j=1 �ij

− (d0 + 1) ≤ kξ − (d0 + 1) < 0 and hence ak,k+
∑k

j=1 �ij
−(d0+1) = 0.

Now we can see that the coefficient of
∑

ik∈[q]k ak,k+
∑k

j=1 −(d0+1) in the above

summation is bounded by
(

d0
k−1

)
+

(
d0
k

)
=

(
d0+1

k

)
. This concludes the proof of the

claim. �

Proof of Lemma 3. Let us take d = ξn. In that case, Claim 1 becomes

a0,� ≤
ξn∑

k=� ξn−�
ξ �

(
ξn

k

) ∑

ik∈[q]k

ak,k+
∑k

j=1 �ij
−ξn + C

ξn−1∑

i=0

i∑

j=� i−�
ξ �

(
i

j

)

(4ξe)−j .

We are going to upper bound both terms of the sum in subsequent turns. For
the first term, note that one has k ≥ n − �

ξ > n − 1 since � < ξ − 1 by definition.
This implies that

(
ξn

k

)

≤
(

eξn

k

)k

≤
(

eξn

n − 1

)k

≤ (2eξ)k.

Hence, using the initial bound, one has

ξn∑

k=� ξn−�
ξ �

(
ξn

k

) ∑

ik∈[q]k

ak,k+
∑k

j=1 �ij
−ξn ≤

ξn∑

k=� ξn−�
ξ �

(2eξ)kqk(4ξeq)−k ≤ 4
2n

≤ 4
N
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As for the second term, we make the following observation: For ξk < i ≤ ξ(k+1),
k ∈ (n − 1], j ≥ � i−�

ξ � ≥ k, and hence

(
i

j

)

≤
(

ei

j

)j

≤
(

eξ(k + 1)
k

)j

≤ (2eξ)j .

For 0 ≤ i ≤ ξ and j ≥ 1,
(

i
j

) ≤
(

ei
j

)j

≤ (eξ)j . Thus, we are going to break the
sum into two parts:

ξn−1
∑

i=0

i∑

j=
⌈

i−�
ξ

⌉

(i

j

)

(4ξe)−j =

ξ
∑

i=0

i∑

j=
⌈

i−�
ξ

⌉

(i

j

)

(4ξe)−j +

ξn−1
∑

i=ξ+1

i∑

j=
⌈

i−�
ξ

⌉

(i

j

)

(4ξe)−j

≤ ξ + 1 +

ξ
∑

i=0

i∑

j=1

(eξ)j(4eξ)−j +

ξn−1
∑

i=ξ+1

i∑

j=�i/ξ�−1

(2eξ)j(4eξ)−j

≤ ξ + 1 +
ξ + 1

3
+ 4

ξn−1
∑

i=ξ+1

1

2�i/ξ�

(1)

≤ 4

3
(ξ + 1) + 2ξ

(2)

≤ 4ξ,

where the last inequality follows from the fact that ξ ≥ 2.
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Abstract. In this work we give the first non-adaptive construction of
universal one-way hash functions (UOWHFs) from arbitrary one-way
functions. Our construction uses O(n9) calls to the one-way function,
has a key of length O(n10), and can be implemented in NC1 assuming
the underlying one-way function is in NC1.

Prior to this work, the best UOWHF construction used O(n13) adap-
tive calls and a key of size O(n5) (Haitner, Holenstein, Reingold, Vad-
han and Wee [Eurocrypt ’10]). By the result of Applebaum, Ishai and
Kushilevitz [FOCS ’04], the above implies the existence of UOWHFs in
NC0, given the existence of one-way functions in NC1.

We also show that the PRG construction of Haitner, Reingold and
Vadhan (HRV, [STOC ’10]), with small modifications, yields a relaxed
notion of UOWHFs, which is a function family which can be (ineffi-
ciently) converted to UOWHF by changing the functions on a negligible
fraction of the inputs. In order to analyze this construction, we introduce
the notion of next-bit unreachable entropy, which replaces the next-bit
pseudoentropy notion used by HRV.

Keywords: universal one-way hash function · one-way function ·
non-adaptive

1 Introduction

A wide class of cryptographic primitives can be constructed from one-way
functions, which is the minimal assumption for cryptography. Two important
such primitives are pseudorandom generators (PRGs) [11,30] and universal
one-way hash functions (UOWHFs) also known as, target-collision resistant
(TCR) hash functions [26]. PRGs and UOWHFs are useful for constructing
even more powerful primitives such as encryption, digital signatures and com-
mitments. Yet, the optimal efficiency of black-box constructions of PRGs and
UOWHFs from one-way functions is not fully understood. In this paper, we
c© International Association for Cryptologic Research 2023
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focus on constructions of UOWHF, a relaxation of collision-resistant hash func-
tion (CRHF) introduced by Naor and Yung [26]. Informally, a keyed function
family F = {fk : {0, 1}n → {0, 1}m}k is a UOWHF if m < n, and, for every
poly-time algorithm A, and for every input x ∈ {0, 1}n, the following holds: with
high probability over the choice of a uniformly random key k, A(k, x) cannot
find a collision x′ �= x with fk(x) = fk(x′).

There are several important efficiency measures to account for when consid-
ering black-box constructions of UOWHFs and PRGs form one-way functions.
For PRG constructions, one aims to minimize the seed length and the number
of calls to the one-way function f . For UOWHF constructions, there is a need
to minimize the key length and the number of calls to f . Besides these two mea-
surements, another important parameter is the adaptivity of the calls. That is,
whether the invocations of the one-way function are independent of the output
of previous calls. A non-adaptive construction naturally gives rise to a, more effi-
cient, parallel algorithm. By contrast, if the calls are adaptive, one must make
them sequentially.

The first UOWHF construction from arbitrary one-way functions is due to
Rompel [27] (see [22] for a full proof of Rompel’s construction). The efficiency
was then improved by Haitner, Holenstein, Reingold, Vadhan and Wee (HHRVW
[15]), who give a construction of UOWHF using O(n13) adaptive calls, and with
a key of size O(n7), which can be improved easily to size O(n5 log n) (see Obser-
vation 1.3). Notably, prior to the work presented here, there was no non-adaptive
UOWHF construction.

The above construction of HHRVW [15] uses ideas similar to the ones used in
the constructions of PRGs. Still, the best PRG constructions from arbitrary one-
way functions are more efficient. Currently, the state-of-the-art construction of
PRGs uses O(n4 log n) bits of random seed and O(n3 log n) non-adaptive calls to
the one-way function, or alternatively seed of size O(n3 log2 n) with O(n3 log n)
adaptive calls [17,29]. Constructing a UOWHF using ˜O(n3) calls to the one-way
function is still an interesting open question.

These efficiency gaps between UOWHFs and PRGs constructions are even
more surprising in the light of the similarities between the constructions. Spe-
cially, for more structured one-way functions such as permutations or regular
functions, there is essentially no efficiency gap between PRG and UOWHF con-
structions.1 Moreover, the constructions are very similar to each other and use
similar techniques. For example, the method of randomized iterate is used for
the constructions of both primitives from unknown-regular one-way functions
[2,14,31]. Recently, Mazor and Zhang [25] introduced non-adaptive construc-
tions for both UOWHF and PRG from an unknown-regular one-way function.
Their constructions for both primitives have in common a similar structure and
are composed of the same building-block operations.

1 f is called regular if for every n and x, x′ with |x| = |x′| = n it holds that
∣
∣f−1(f(x))

∣
∣ =

∣
∣f−1(f(x′))

∣
∣. We say that the function is unknown-regular if the

regularity parameter,
∣
∣f−1(f(x))

∣
∣, may not be a computable function of n.
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Example 1.1 (Similarity between black-box construction of PRGs and UOWHFs,
known-regular [19,31]). For a concrete example, assume f : {0, 1}n → {0, 1}n is
a regular one-way function with regularity parameter r, such that no poly-time
algorithm can invert f with probability more than ε (for a negligible ε).

Then
G(h1, h2, x) = (h1, h2, h1(f(x)), h2(x))

is a PRG, where the functions h1 : {0, 1}n → {0, 1}n−r−Θ(log 1/ε) and h2 : {0, 1}n

→ {0, 1}r+Θ(log 1/ε)+log n are hash functions from appropriate hash families.
Similarly, C = {Ck = G(z ⊕ k)}k is a UOWHF when taking h2 : {0, 1}n →
{0, 1}r+Θ(log 1/ε)−log n, and using the same function G.

Example 1.2 (Similarity between black-box construction of PRGs and UOWHFs,
unknown regular [25]). Another example is the following. For an unknown-regular
one-way function f : {0, 1}n → {0, 1}n,

G(h, x1, . . . , xn) = h(f(x1), x2), h(f(x2), x3) . . . , h(xt−1, f(xn))

is a PRG for a hash function h : {0, 1}2n → {0, 1}n+log n from a suitable family.
The following similar function

C(h, x1, . . . , xn) = f(x1), h(f(x1), x2), h(f(x2), x3) . . . , h(xt−1, f(xn)), xn,

can be converted into a UOWHF by taking the family C = {Ck = C(z ⊕ k)}k,
when taking h : {0, 1}2n → {0, 1}n−log n.

Furthermore, the first constructions from (unstructured) arbitrary one-way
functions of PRGs, by Hastad, Impagliazzo, Levin and Luby [19], and the con-
structions of UOWHFs by Rompel [27] and HHRVW [15], shared a similar frame-
work. This framework includes first constructing a non-uniform version of the
desired primitive, and then eliminating the non-uniform (short) advice by enu-
merating over all possible advices, and combining the constructions together.
This enumeration and combining step has a significant efficiency cost for both
primitives.

By contrast, in their beautiful work, Haitner, Reingold and Vadhan (HRV
[17]) introduced a simpler and more efficient framework to construct PRGs
from arbitrary one-way functions. By introducing a notion called next-bit pseu-
doentropy, they give a very efficient and simple non-adaptive construction of
PRGs from one-way functions. This work starts by showing that the function
g(h, x) = (h, f(x), h(x)), where h is a hash function from some appropriate 2-
universal family, has non-trivial next-bit pseudoentropy. The work proceeds by
describing a procedure that extracts pseudorandomness from next-bit pseudoen-
tropy (see Fig. 1 for a sketch of the construction). As stated above, this construc-
tion has O(n4 log n) random seed size with O(n3 log n) calls, which is a significant
improvement over [19]. One main reason for this efficiency improvement is that
this framework no longer requires the non-uniformity elimination step. Unfor-
tunately, there is no analog to this construction for UOWHFs. Adapting the
framework of HRV [17] to improve the efficiency of UOWHF constructions is
still an interesting open question.
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1.1 Our Contribution

In this paper, we partially answer the last question above. Our first result is
(the first) non-adaptive construction of UOWHF from arbitrary one-way func-
tions. We achieve this by introducing a construction that does not have the non-
uniformity elimination step. By the result of Applebaum, Ishai and Kushilevitz
[4], the above implies the existence of UOWHFs in NC0, assuming the existence
of one-way functions in NC1.2 In addition, our construction reduces the call com-
plexity over HHRVW [15], and uses O(n9) calls to the one-way function instead
of O(n13). On the negative side, the key length of our construction is O(n10),
instead of O(n5).

Next, aiming to close the still remaining gap between PRG and UOWHF
constructions, we show that small modifications to the PRG construction of
HRV [17] yield a relaxed notion of UOWHF, which we call “almost-UOWHF”.
Informally, a function family is almost-UOWHF if by changing the functions on
a negligible fraction of the inputs, we can convert it into a (perfect) UOWHF.
To analyze the almost-UOWHF construction, we introduce the notion of next-bit
unreachable entropy, an analogue of next-bit pseudoentropy used in [17]. Similarly
to the PRG construction, our almost-UOWHF construction uses O(n3 log n) non-
adaptive calls to the one-way function and has a key of size O(n4 log n). More
details below.

Non-adaptive UOWHF from One-Way Functions. In their construction
of UOWHFs from one-way functions, HHRVW [15] define the notion of accessible
entropy.3 Informally, for a function g, the accessible entropy of g−1 is a bound on
the entropy of the output of every collision finder for g (i.e., of every poly-time
algorithm that, given an input x, always outputs a pre-image of g(x)).

HHRVW [15] show how a one-way function f : {0, 1}n → {0, 1}n can be used
to construct a function ρ : {0, 1}n5

→ {0, 1}n5

such that, for a uniformly chosen
input X ← {0, 1}n5

, there is a gap between the entropy of X given ρ(X), and the
accessible entropy of ρ−1. Namely, there exists some � ∈ N, such that for every
collision finder A for ρ, the following holds with all but a negligible probability:
the size of ρ−1(ρ(X)) is at least 2�+ω(log n), while for every input X, the support
size of the output of A(X) is at most 2�.4 When � is known, it is not hard to
convert such a function to UOWHF, but here the parameter � depends on f
and may be unknown. To overcome this obstacle, HHRVW construct UOWHF
candidates C1, .., Ct from ρ, one for each 1 ≤ � ≤ t = n2/ log n, out of which

2 The result of Applebaum, Ishai and Kushilevitz [4] implies that, using a method
called randomized encoding, the existence of UOWHF in NC1 implies the existence
of UOWHF in NC0.

3 We use the term accessible entropy to denote accessible entropy of functions. Some-
what different notions of accessible entropy are used in other contexts, for example
to construct statistically-hiding commitments from one-way functions [18].

4 The actual definition of inaccessible entropy ignores some events that have a negli-
gible probability.
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at least one is an UOWHF. Then, for each �, HHRVW feed the output of C�

into itself repeatedly and obtain a new function C ′
�(x) which is also an UOWHF,

but is additionally sufficiently compressing. Finally, the concatenation C(x) :=
C ′

1(x), .., C ′
t(x) is a UOWHF if at least one of the C� is. The transformation from

C� to C ′
� introduces adaptivity into the constructions by HHRVW and Rompel,

and the combination of parallel and sequential composition increases the number
of calls to f by a factor of n9 in HHRVW, and increases the key length by a
factor of log n.

Observation 1.3 (The key-length in HHRVW [15]). The described above
step of removing non-uniformity in HHRVW actually increases the size of the
key by a n2 factor: while the transformation from C� to C ′

� only increases the key
length by a factor of log n for each �, HHRVW use a different key for each such
candidate, and the key of the final construction is the concatenation of the t keys.
Our observation is that it is possible to use the same key for all the candidates.
This reduces the key-length from O(n7) to O(n5 log n).

By viewing � as an unknown regularity parameter of ρ, we replace the paral-
lel and sequential composition in HHRVW by applying the recent construction
of [25] of non-adaptive UOWHF from (unknown) regular one-way functions.
Namely, for m = n5 hash functions h1, . . . , hm : {0, 1}2m → {0, 1}m−log n from
a universal family H, and inputs z1, . . . , zm, let

C(h1, . . . , hm−1, z1, . . . , zm)
= h1, . . . , hm−1, ρ(z1), h1(z1, ρ(z2)), . . . , hm−1(zm−1, ρ(zm)), zm.

Following [25], we show that C is (length-decreasing) collision resistant on
random inputs, and can be easily be converted to UOWHF (see Sect. 2 for the
definition of collision resistant on random inputs and discussion). The above
gives rise to the following result.

Theorem 1.4 (Non-adaptive UOWHF from OWF, informal). There
exists a black-box construction of UOWHF from any one-way function that uses
O(n9) non-adaptive calls to the one-way function. Moreover, the construction
has key length and output length of O(n10), and is computable in NC1 using
oracle calls to f .

We note that, since ρ is not a regular function (indeed, there is a negligible
fraction of inputs for which ρ may have fewer collisions), the use of [25] is not
straightforward, and the security proof requires a new analysis. An overview of
the proof is given in Sect. 2.1.

Next, using the result of Applebaum, Ishai and Kushilevitz [4], who construct
a UOWHF in NC0 based on a UOWHF in NC1 and randomized encodings, we
get the following corollary.

Corollary 1.5 (UOWHF in NC0, informal). Assuming that one-way func-
tions exist in NC1, there exists a UOWHF in NC0.
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Efficient Almost-UOWHF from One-Way Functions. Our second con-
struction is inspired by the work of HRV [17] on PRG constructions from one-
way functions. We show that small modifications to the PRG of [17] yield an
almost-UOWHF. Informally, a shrinking, keyed function family

F = {fk : {0, 1}n → {0, 1}m}k

is an almost-UOWHF if, for every key k, there exists a negligible-sized set of
inputs Bk such that the following holds for every poly-time algorithm A, and
every input x ∈ {0, 1}n: With all but negligible probability over the choice of
a uniformly random key k, A(k, x) cannot find a collision x′ �= x with fk(x) =
fk(x′), unless x′ ∈ Bk (see Definition 5.1 for the formal definition).

We note that, similarly to the above definition of almost-UOWHF, we can
also define an “almost-PRG”. However, unlike UOWHF, it is easy to see that
an almost-PRG is a (standard) PRG. Hence, viewing the HRV construction as
an “almost-PRG”, we believe that the UOWHF analog of the HRV construction
is essentially our almost-UOWHF. While we do not know if an almost-UOWHF
can be converted efficiently into a UOWHF, in our non-adaptive construction
we are able to remove the negligible-sized set Bk (due to which the construction
is only almost-UOWHF) at the cost of more repetitions and calls to the one-way
function (see Sect. 2.1 for more details). Thus, the almost-UOWHF construction
emphasizes that this need of eliminating the negligible-sized set is the main effi-
ciency gap between the currently known constructions of PRGs and UOWHFs.

We get the following theorem.

Theorem 1.6 (Almost-UOWHF from OWF, informal). There exists a black-
box construction of an almost-UOWHF with key length O(n4 log n) from one-way
functions with input length n. The construction makes O(n3 log n) non-adaptive
calls to the underlying one-way function.

Next-Bit Unreachable Entropy. In their work, HRV [17] define the notion of
next-bit pseudoentropy. HRV first show how to construct a function with non-
trivial (i.e., larger than the input size) next-bit pseudoentropy. Then, using this
function, HRV construct an efficient and simple PRG. To replace the notion
of next-bit pseudoentropy in our construction, we define the notion of next-bit
unreachable entropy, a variant of inaccessible entropy, defined by HHRVW [15],
that allows us to achieve almost-UOWHF using a similar construction to the
above PRG. We discuss the definition and the motivation behind it in detail in
Sect. 2.2.

1.2 Additional Related Work

Next-Block Pseudoentropy and Inaccessible Entropy. A different variant of inac-
cessible entropy, for online generator, was defined and used by Haitner, Reingold,
Vadhan and Wee [18] to construct statistically hiding commitments. Chen Horel
and Vadhan [1] pointed out that the HRVW [18] notion of accessible entropy and
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next-block pseudoentropy are deeply related to each other. Recently, Haitner,
Mazor and Silbak [16] showed that incompressibility implies next-bit pseudoen-
tropy.

UOWHFs from Regular One-Way Functions. Constructions of UOWHF from
regular one-way functions are more efficient. Besides the mentioned above con-
structions from unknown-rgular one-way functions [2,14,25,31], Naor and Yung
[26] construct an UOWHF using 1 call to an 1-to-1 one-way functions, and
[31] give a construction from known-regular one-way functions, using ω(1) non-
adaptive calls.

Additionally, a few refinements of regularity were considered. Barhum and
Maurer [8] show an adaptive construction for UOWHF that uses O(ns6(n)) key-
length under the assumption that

∣

∣f−1(f(x))
∣

∣ is concentrated in an interval of
size 2s(n). Yu, Gu, Li and Weng [31] give adaptive constructions with key of
length O(n log n), for functions with polynomial fraction of inputs x such that
∣

∣f−1(f(x))
∣

∣ is maximal.

Lower Bounds. The lower bounds for black-box UOWHF and PRG constructions
from one-way functions are relatively far from the upper bounds. Gennero,
Gertner, Katz and Trevisan [12] prove that any black-box PRG construction
G : {0, 1}m → {0, 1}m+s from f must use Ω(s/ log n) calls to f . Similarly, any
black box UWOHF construction with input size m and output size m − s must
use Ω(s/ log n) calls. Holenstien and Sinha [20] prove that any black-box PRG
construction from a one-way function f must use Ω(n/ log n) calls to f , even
for 1-bit stretching. Barhum and Holenstein [7] give an analog lower bound of
Ω(n/ log n) calls 1-bit compressing UWOHF constructions. These lower bounds
hold even when the one-way function f is unknown-regular. In this case, these
bounds are known to be tight [2,14,25,31].

(Multi)-collision Resistant Hash Functions (CRHFs). UOWHF is a relaxation
of CRHF. In the latter, we require that for a random function from the family, no
adversary can find a collision (x, x′). Constructing a CRHF is a more challenging
task, and its complexity is still not clear. Asharov and Segev [6] prove that there
is no black-box construction of CRHFs even from indistinguishable obfuscation
(iO) additionally to a one-way permutation. Holmgren and Lombardi [21] show
how to construct CRHF from exponentially secure OWF, under an assump-
tion on the probability to invert two independent one-way function challenges.
Recent works also study a relaxation of CRHF, called Multi-Collision Resistant
hash functions (MCRH) [9,10,23]. Rothblum and Vasudevan [28] show a non-
constructive transformation from MCRH to CRHF for some range of parameters.

Low-Complexity Cryptography. As described above, Applebaum, Ishai and
Kushilevitz [4] develop a general method to construct cryptographic primitives in
NC0 based on primitives in higher complexity classes. HRV [17] use this method
in order to prove the existence of PRG in NC0, assuming one-way function in
NC1. Applebaum, Haramaty-Krasne, Ishai, Kushilevitz and Vaikuntanathan [3]
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show the existence of CRHF with low algebric degree and linear shrinkage based
on a specific assumption. Based on the assumption that random local function
is a one-way function (Goldreich [13]), Applebaum and Moses [5] construct a
UOWHF with constant locality and linear shrinkage.

1.3 Paper Organisation

Section 2 gives a high-level description of our constructions and proof technique.
Section 3 gives formal definitions. The non-adaptive UOWHF construction and
its security reduction to one-way functions are in Sect. 4. Finally, Sect. 5 pro-
vides the formal definition of almost-UOWHF and next-bit unreachable entropy,
as well as the almost-UOWHF construction. The security reduction from the
almost-UOWHF construction to one-way functions is in the full version of this
paper [24].

2 Our Technique

In this section, we provide a detailed description of our constructions and proof
technique. In both of the proofs, we first construct a function that is collision
resistant on random inputs, and then use known techniques to convert it into
a UOWHF. Informally, a function C is collision resistant on random input if,
given a random input x, no adversary can find x′ �= x with C(x′) = C(x).

Definition 2.1 (Collision resistance on random inputs). Let n be a secu-
rity parameter. A function f : {0, 1}m(n) → {0, 1}�(n) is collision resistant on
random inputs if for every probabilistic polynomial-time adversary A, the proba-
bility that A succeeds in the following game is negligible in n:

1. Choose x ← {0, 1}m(n).
2. Let x′ ← A(1n, x) ∈ {0, 1}m(n).
3. A succeeds if x �= x′ and f(x) = f(x′).

In contrast, the security requirement in the definition of UOWHF is called
target-collision resistance (see Definition 3.3), according to which the adversary
can choose x, but without knowing the randomly chosen key for the function.
It is well known that a collision resistant on random input function C that is
length-decreasing (i.e., � < m) can be converted into a UOWHF defined by

C =
{

Ck : {0, 1}m → {0, 1}�
}

k∈{0,1}m
,

for Ck(x) = C(k ⊕ x). The key length of the resulting UOWHF is the same
as the input length of C, and the complexity of the UOWHF is similar to the
complexity of C. It is not hard to see that the other direction also holds. That
is, by adding the key to the input and output of the function, a UOWHF can
be converted into a (shrinking) collision resistant on random input function. A
similar notion and transformation can be defined also for the case of almost-
UOWHFs. Below, we show how to construct collision resistant on random input
functions.
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2.1 Non-adaptive UOWHF

We start with a high-level description of the constructions of [15] and [25].

UOWHF from Unknown-Regular One-Way Functions. Mazor and
Zhang (MZ [25]) showed how to construct a non-adaptive UOWHF from an
unknown-regular one-way function f : {0, 1}n → {0, 1}n. For hash functions
h1, . . . , hn−1 : {0, 1}2n → {0, 1}n−log n from a hash family H, and n inputs
x1, . . . , xn ∈ {0, 1}n, MZ [25] show that, for the right choice of H, the func-
tion C : Hn × {0, 1}n2

→ Hn × {0, 1}2n+(n−1)(n−log n), defined by

C(h1, . . . , hn, x1, . . . , xn)
= h1, . . . , hn, f(x1), h1(x1, f(x2)), . . . , hn−1(xn−1, f(xn)), xn

is collision resistant on random inputs. Since this function is also shrinking, it
can be converted into an UOWHF easily by a standard construction.5

Intuitively, for a regular function f and i.i.d uniform random variables X1,
X2 over {0, 1}n, given any fixing of f(X1), the entropy of the pair X1, f(X2)
is exactly n. To see the above, recall that for a regular f with an (unknown)
regularity parameter Δ, it holds that there are exactly Δ possible values for X1

given f(X1), and exactly 2n/Δ possible values for f(X2). Thus, the regularity
parameter Δ “cancels out” when considering the number of possible values (given
f(X1)) of the pair X1, f(X2), as this number is Δ · 2n/Δ = 2n. It follows that
the compression of the pair X1, f(X2) does not create too many collisions. This
fact can be used in order to reduce the problem of inverting f , into finding a
collision for C.

Inaccessible Entropy from One-Way Functions. In order to construct
an UOWHF from an arbitrary one-way function, given a one-way function
f : {0, 1}n → {0, 1}n, HHRVW [15] first construct a function g, that takes as
input an index i ∈ [n], string x ∈ {0, 1}n and a description of a random hash func-
tion h from a 3-wise independent hash family H, and outputs h, together with the
i first bits of h(f(x)). That is, g(i, x, h) = (h, h(f(x))≤i). HHRVW [15] showed
that for every collision finder algorithm A, there are sets {Lw}w∈([n]×{0,1}n×H),
such that, for a random input W ← ([n] × {0, 1}n × H),

1. Pr [A(W ) /∈ LW ] = neg(n), and,
2. H(W | g(W )) − E [log(|LW |)] ≥ log n/n,

where H is the entropy function. The above log n/n is a gap between the entropy
of W given g(W ), to its accessible average max entropy.

HHRVW [15] then showed, using standard concentration bounds, that for ρ =
gn4

(i.e., ρ(w1, . . . , wn4) = g(w1), . . . , g(wn4), the concatenation of the outputs

5 MZ actually show it is enough to use a single hash function. The number of repeti-
tions n is necessary only to make the function shrinking.
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of n4 independent invocations of g), both the entropy and the accessible entropy
are highly concentrated around their means. That is, there exist some � ∈ N

and s = ω(log n) such that
∣

∣ρ−1(ρ(z))
∣

∣ ≥ 2�+s for all but negligible fraction of
z’s, and the following holds. For every collision finder A for ρ, there exist sets
{Lz}z∈Domain(ρ) such that (1) |{Lz}| ≤ 2� for all but negligible fraction of z’s,
and (2), Pr [A(z) /∈ Lz] = neg(n) for every collision finder A for ρ.

We now proceed to describing our construction. In the following we view ρ
as a function from {0, 1}m to {0, 1}k, for m, k = O(n5) (using a proper encoding
of the input).

Our Construction. Thinking of � as the regularity parameter of the function
ρ, we use the MZ construction of in order to build a non-adaptive UOWHF.
That is, for hash functions h1, . . . , hm−1 : {0, 1}m ×{0, 1}k → {0, 1}m−log n from
a universal family H, and inputs z1, . . . , zm, let

C(h1, . . . , hm−1, z1, . . . , zm)
= h1, . . . , hm−1, ρ(z1), h1(z1, ρ(z2)), . . . , hm−1(zm−1, ρ(zm)), zm.

We show that C is collision resistant on random inputs. Indeed, assume that
∣

∣ρ−1(ρ(z))
∣

∣ ≥ 2�+ω(log n) for every z ∈ {0, 1}m. Then the image size of ρ is at
most 2m · 2−�−ω(log n). Thus, for Z1, Z2 ← {0, 1}m and H1 ← H, any poly-time
algorithm cannot find a collision for ρ(Z1),H1(Z1, ρ(Z2)), since it only has

|LZ1 | · |Image(ρ)| ≤ 2� · (2m · 2−�−ω(log n)) = 2m−ω(log n)

possible values to choose from, and the probability for each such value to collide
with Z1, ρ(Z2) on H1 is 2−m+log n. Thus, by the union bound, the probability
that there is a collision for Z1, Z2 inside the set LZ1 × Image(ρ) is negligible. By
a similar argument, the analysis shows that it is impossible to find a collision for
the entire function C.

However, there is an issue with the above idea. Note that the condition
concerning the pre-image size of an image of ρ holds only with overwhelming
probability, which may pose a problem. Indeed, let

B =
{

z ∈ {0, 1}m :
∣

∣ρ−1(ρ(z))
∣

∣ < 2�+ω(log n)
}

be the set of all untypical inputs. The size of ρ(B) can be much larger than 2m ·
2−�−ω(log n), the number of “typical” images. Thus, by choosing X ′

2 from this set,
the adversary might be able to find a collision (Z ′

1, Z
′
2) for ρ(Z1),H1(Z1, ρ(Z2)).

Fortunately, it turns out that this issue can be resolved by a more careful analysis,
which yields the following key insight: for every collision (z′

1, . . . , z
′
m) for C found

by an efficient algorithm, it holds that if z′
i ∈ B for some i, it must hold that

z′
i+1 ∈ B as well. It follows from the above that in this case, z′

m is also in B. Since
C outputs its last input zm, and with all but a negligible probability zm /∈ B,
we have that (z′

1, . . . , z
′
m) is not a valid collision.
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Remark 2.2 (Using a more shrinking hashing). The actual gap s between the
accessible and real entropy of ρ−1 is s ≈ n3. Thus, the first part of the argument
above will work even if the hash functions will output only m − n3 + ω(log n)
bits. In this case, however, we will not be able to show that it is infeasible to
find a collision inside B. The above suggests the following construction of an
almost-UOWHF : let t ≈ n2, and for h1, . . . , ht−1, z1, . . . , zt, consider

C(h1, . . . , ht−1, z1, . . . , zt)
= h1, . . . , ht−1, ρ(z1), h1(z1, ρ(z2), . . . , ht−1(zt−1, ρ(zt)), zt,

for hi : {0, 1}m+k → {0, 1}m−n3/2.
For large enough t, the above function is shrinking. For a random input

(h1, . . . , ht−1, z1, . . . , zt) it is hard to find a collision (z′
1, . . . , z

′
t), such that z′

i /∈ B
for every i. The latter implies that all the collisions that can be found by an
efficient algorithm come from a negligible-sized set. Such a function can easily
be converted into an almost-UOWHF, which yields a construction with O(n6)
non-adaptive calls, and key length of O(n7) bits. It turns out, see next section,
that there are better approaches for constructing almost-UOWHFs.

2.2 Next-Bit Unreachable Entropy

As mention above, HRV [17] defined the notion of next-bit pseudoentropy.
Roughly, a function g : {0, 1}m → {0, 1}� has next-bit pseudoentropy k, if
for random X ← {0, 1}m and I ← [�] the bit g(X)I has pseudoentropy k/�
given g(X)<I .6 HRV [17] used a one-way function to construct a function
g : {0, 1}m → {0, 1}� with non-trivial (i.e., larger than m) next-bit pseudoen-
tropy. This function g is then used to construct an efficient and simple PRG (see
Sect. 2.3 for a high-lvel description of the construction).

To replace the notion of next-bit pseudoentropy in our construction, we define
the notion of next-bit unreachable entropy, a variant of inaccessible entropy,
defined by HHRVW [15], that allows us to achieve almost-UOWHF using a
similar construction to the above PRG.

Remark 2.3 (Motivating the definition). Before presenting our definition, we
start with some intuition. As in the case of next-bit pseudoentropy, we would
like to say that a function g has non trivial “next-bit inaccessible entropy” if,
for random X and I, the accessible entropy of g(X)I given g(X)<I is smaller
than its real entropy. That is, for any adversary that, given X and I, outputs
X ′ with g(X)<I = g(X ′)<I , it holds that the entropy of g(X ′)I is small (smaller
than H(g(X)I | g(X)<I)).

However, there is an issue with this definition: If for some fixing x, i of X, I,
the accessible entropy of g(X ′)I is noticeable, the adversary can make it to be

6 That is, g(X)I is indistinguishable from some random variable Z (jointly distributed
with X and I), such that H(Z | g(X)<I) ≥ k/�. Here, H(Z | g(X)<I) is the
conditional Shannon entropy of Z given g(X)<I (see Sect. 3.5).
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almost one. Indeed, assume that given i, x the adversary can find, with noticeable
probability, x̂ such that g(x̂)<i = g(x)<i and g(x̂) �= g(x). In this case, using
simple amplification, the adversary can set its output x′ to be equal to each
one of x or x̂ with probability 1/2. In this case, the entropy of g(X ′)I can be
arbitrarily close to 1. In particular, the entropy may be larger than the real
entropy

H(g(X)I | g(X)<I = g(x)<i)

(which is at most |g(X)I | = 1). For this reason, we only focus on inputs for
which the entropy of g(X ′)I is negligible (that is, no PPT adversary can find an
input X ′ such that g(X)<I = g(X ′)<I and g(X ′)I �= g(X)I).

Unfortunately, while the above gives a definition that is strong enough to
work with, we are not able to construct it from a one-way function. Thus, we
consider a weaker definition, in which we allow the above property to hold only
for a large fraction of the inputs. That is, we define the sets U = {Ui}i∈[�] of
inputs which are unreachable to the adversary in the following sense. First, we
require that it is hard for every adversary to get inside Ui. That is, for every
x /∈ Ui, it is hard to find x ∈ Ui with g(x)<i = g(x′)<i. Secondly, we require
that the next-bit inaccessible entropy property will hold inside U . That is, for
every x ∈ Ui it is hard to find x′ inside Ui such that g(x)<i = g(x′)<i and
g(x′)i �= g(x)i. While it may be easy to find such an x′ outside of Ui, if the
size of Ui is large enough, the above promises that every such collision will be a
member of a (respectively) small set and will look (somewhat) untypical. This
property will be useful in the construction. We give more examples below the
definition.

We now define the notion of next-bit unreachable entropy. The formal defi-
nition is given in Definition 5.3.

Definition 2.4 (Unreachable entropy, informal). A function g : {0, 1}m →
{0, 1}� has next-bit unreachable entropy v, if for every i ∈ [�] there exists a set
Ui ⊆ {0, 1}m, such that

1. Ui are large:

Pr
x←{0,1}m,i←[�]

[x /∈ Ui] ≤ (m − v)/�.

2. Hard to get inside Ui: For every ppt A,

Pr
x←{0,1}m,

i←[�],x′←A(x,i)

[((x′ ∈ Ui)) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui)] = neg(n).

That is, for x /∈ Ui, it is hard to find a collision for g(x)<i inside Ui.
3. The entropy inside Ui is unreachable: For every ppt A,

Pr
x←{0,1}m,

i←[�],x′←A(x,i)

[((x′ ∈ Ui)) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i �= g(x′)i)] = neg(n).

That is, even if x ∈ Ui, it is hard to flip the i-th bit of g while staying inside Ui.
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For example, for every permutation p : {0, 1}m → {0, 1}m, the function
g : {0, 1}m → {0, 1}� defined by g(x) = p(x)0�−m has (trivial) next-bit unreach-
able entropy 0, as can been seen by setting Ui = {0, 1}m for every i > m, or the
empty set for i ≤ m. Note also that, without assuming computational hardness,
the above sets Ui are the maximal that respect the definition of unreachable
entropy.

More generally, for every injective function g : {0, 1}m → {0, 1}�, we can
define Ui to be the set of all inputs x ∈ {0, 1}m, such that there is no x′ ∈ {0, 1}m

with g(x)<i = g(x′)<i while g(x)i �= g(x′)i.7 In this case, it is not hard to see
that the probability that a random x is outside of Ui (for any fixed i) is at least
the entropy of g(X)i given g(X)<i (i.e., H(g(X)i | g(X)<i)).8 Using the chain
rule of entropy, we get that for a random index I, the probability that X is
outside of UI is at least

1/� ·
∑

i∈�

H(g(X)i | g(X)<i) = 1/� · H(g(X)) = m/�.

By the above observations, it follows that a function g has v > 0 next-bit
unreachable entropy if the “reachable entropy” of g(X)I given g(X)<I is smaller
than its real entropy.9 In this sense, our definition is a dual version of the next-bit
pseudoentropy definition. We show that a very similar function to the function
g used by HRV [17] has non-trivial next-bit unreachable entropy. More details
on the constructions and the security proof are given below.

2.3 Almost-UOWHF

In this part, we show that small modifications to the PRG of HRV [17] yield an
almost-collision resistant on random inputs function.

Definition 2.5 (Almost collision resistance on random inputs). Let n

be a security parameter. A function f : {0, 1}m(n) → {0, 1}�(n) is almost colli-

sion resistant on random inputs if there exists a set Bn ⊆ {0, 1}m(n), such that
|Bn| /2m(n) = neg(n), and for every probabilistic polynomial-time adversary A,
the probability that A succeeds in the following game is negligible in n:

1. Choose x ← {0, 1}m(n).
2. Let x′ ← A(1n, x) ∈ {0, 1}m(n).
3. A succeeds if x′ /∈ Bn, x �= x′ and f(x) = f(x′).

7 If the function g is not injective, it is natural to consider g′(x) = (g(x), x). We use
a similar construction in Sect. 5.

8 Indeed, observe that H(g(X)i | g(X)<i = g(x)<i) is zero iff x ∈ Ui. Additionally,
H(g(X)i | g(X)<i = g(x)<i) ≤ 1 for every x. It follows that H(g(X)i | g(X)<i) =
Ex←{0,1}m [H(g(X)i | g(X)<i = g(x)<i)] ≤ Ex←{0,1}m [1x/∈Ui

] = Pr [X /∈ Ui].
9 We use the term “reachable entropy” to denote the difference between the real

entropy and the next-bit unreachable entropy of g(X).
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For a more formal definition, see Definition 2.5. As in the case of (perfect)
UOWHF, such a shrinking function can be converted into almost-UOWHF. We
start with a high-level description of the one-way function based pseudorandom
generator of HRV [17]. The main building block of the construction is a function
g : {0, 1}m → {0, 1}�, with k > m next-bit pseudoentropy. On a given input,
their PRG starts by using g to construct the following matrix-like structure (see
Fig. 1): the structure is composed of q ≈ m2 rows, where each row contains
t ≈ m independent copies of g(X), for X ← {0, 1}m, shifted by a random offset
between 0 to �. Every fully populated column is then hashed by a hash function
h : {0, 1}q → {0, 1}a, for a ≈ q · k/� > q · m/�. Finally, the output of the PRG
is the concatenation of the outputs of the hash function applied to every fully
populated column (the non-fully populated columns are not part of the output).

Fig. 1. The PRG construction of HRV [17], G : H × ({0, 1}m)t·q → H × ({0, 1}a)(t−1)�.
There are q ≈ m2 rows, each row has t ≈ m i.i.d copies of g(X), shifted by a random
offset. Every fully populated column, marked in grey, is hashed by h ∈ H. The almost-
UOWHF construction also outputs the columns that are not fully populated.

We prove that slightly tweaking the above construction, and using a different
function g, yields a function that is almost collision-resistant on random inputs.
Specifically, the output of our construction contains not only the hashed fully
populated columns, but also all the columns that are not fully populated (with-
out hashing). Additionally, we choose the parameter a to be smaller than q ·n/m,
in order to make the function length-decreasing. The function g we are using in
our construction, is defined by

g(h1, h2, x) = (h1, h2, h1(f(x)), h2(x)),

for hash functions h1, h2 : {0, 1}n → {0, 1}n from a 3-wise independent family.
We prove in Sect. 5.2 that if f is a one-way function, the above function g has
next-bit unreachable entropy log n.10

10 For the PRG construction, HRV [17] used g(h, x) = (h, f(x), h(x)) and Vadhan and
Zheng [29] used g(x) = (f(x), x). Observe that, since h1(f(x)) is also a one-way
function, our g can be used in the PRG construction.
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Remark 2.6 (Similarities between our constructions). We note that the func-
tion ρ, defined in Sect. 2.1, is composed of n4 independent repetitions of a sim-
pler function with random shifts. Thus, our first construction of non-adaptive
UOWHF can be modified to be an instantiation of the second (almost-UOWHF)
construction, described above, where we apply the hash function on blocks of m
columns, instead of hashing every single column (and by taking the number of
rows to be larger). This equivalent construction is illustrated in Fig. 2, and its
security can be proven using a similar proof to the one given in Sect. 4.

Fig. 2. An equivalent construction to our non-adaptive UOWHF, where g(h, x) =
(h, h(f(x))). There are q ≈ n4 rows, each row has t ≈ n5 i.i.d copies of (g(W ), W ),
shifted by a random offset. Every fully populated block of r = |(g(W ), W )| columns,
marked in grey, is hashed by h ∈ H. The UOWHF construction also outputs the
columns that are not fully populated.

In the rest of this section we give some details on the security proof. Consider
the function σ induced by taking the first hashed column in our almost-UOWHF
construction (Fig. 1) together with the columns to the left of it. That is,

σ(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq ), h(g(x1)i1 , . . . , g(xq)iq ),

for a hash function h : {0, 1}q → {0, 1}a from a universal family H.
Additionally, consider the function σ̂, defined similarly to σ, but without

applying the hash h on the column. That is,

σ̂(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq ), (g(x1)i1 , . . . , g(xq)iq ).

It turns out, see detail below, that the following holds for a right choice of the
parameter a and for some negligible-sized set of inputs B: for a random input,
every collision found by a collision finder to the function σ is either a collision
for σ̂, or it is inside the set B. That is, the function h does not make the task of
finding a collision (outside of B) easier.

To see that the above is enough to prove the security of the construction,
let C be the almost-UOWHF construction described above, and let ̂C be the
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function defined by the raw matrix-like structure (without applying the hash
function on every fully-populated column). Observe that since the function g is
(close to be) injective, the function ̂C is (not shrinking) collision-resistant on
random inputs. A simple hybrid argument yields that every collision finder that,
given an input w for C, is able to find a collision w′ �= w for C that is not a
collision for ̂C (namely, C(w) = C(w′) but ̂C(w) �= ̂C(w′)), can be used to find
a collision for σ which is not a collision for σ̂.11 Since the latter is hard to find,
and since ̂C is collision-resistant, the above concludes the proof.

σ is (almost) as hard as σ̂. It thus left to prove that it is hard to find a collision
for σ which is not a collision for σ̂, outside of the negligible sized set B. let A be a
collision finder for σ, and let w′ = (h, i1, . . . , iq, x

′
1 . . . , x′

q) be a collision found by
A(w), for some w = (h, i1, . . . , iq, x1 . . . , xq). We show that either σ̂(w) = σ̂(w′),
or w′ is a member of a small set B. To do so, we use the next-bit unreachable
entropy property of g.

Let {Ui}i∈[�] be the sets guaranteed by the next-bit unreachable entropy of g

(these sets are independent from the choice of A). By the definition of next-bit
unreachable entropy it holds that:

1. for every j such that xj /∈ Uij , no collision finder can find x′
j ∈ Uij such that

g(xj)<ij = g(x′
j)<ij , and thus it must hold that x′

j /∈ Uij .
2. Similarly, for every j with xj ∈ Uij , it holds that g(xj)ij = g(x′

j)ij , unless
x′

j /∈ Uij .

Let Jw be the set of indices for which xj is inside the set Uij . Formally,

Jw =
{

j ∈ [q] : xj ∈ Uij

}

.

By Item 1 above, it holds that Jw′ ⊆ Jw. Moreover, Item 2 implies that g(xj)ij =
g(x′

j)ij for every j ∈ Jw′ ∩Jw. The above yields the key observation of the proof:

Claim 2.7. For any collision w′ = (h, i1, . . . , iq, x
′
1 . . . , x′

q) found by a collision
finder A, unless |Jw′ | is smaller than |Jw|, there are |Jw| bits in g(x′

1)i1 , . . . ,
g(x′

q)iq that get the exact same value as in g(x1)i1 , . . . , g(xq)iq (namely, g(xj)ij =
g(x′

j)ij for every j ∈ Jw).

Observe that for large enough q, the size of Jw (for a random w) is con-
centrated around its mean. Since g has log n next-bit unreachable entropy,
its mean is at least q · (1 − m−log n

� ). In the following, assume for simplic-
ity that the size of Jw is equal to its mean, and that this mean is exactly
q · (1 − m−log n

� ). To conclude the proof, let B be the negligible-sized set of
all inputs w′ = (h, i1, . . . , iq, x

′
1 . . . , x′

q) for which |Jw′ | is (much) smaller than
q · (1 − m−log n

� ), and set the length of the output of the hash function h to be
a ≈ q · m−log n

� < q ·m/�. It follows that the output of every collision finder for σ is
either in B, or agrees with g(x1)i1 , . . . , g(xq)iq on (almost) all the indices in Jw.

11 Furthermore, the hybrid argument yields that w′ must be from a small set if the
collision for σ̂ is.
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However, with all but a negligible probability, there is no string y′ that agrees
with y = (g(x1)i1 , . . . , g(xq)iq ) on q · (1 − m−log n

� ) bits, for which h(y) = h(y′),
unless y = y′. In other words, any such collision for σ is also a collision for σ̂.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a
vector s ∈ {0, 1}n, let si denote its i-th entry, and s≤i denote its first i entries.
Define s<i, s>i and s≥i similarly.

The support of a distribution P over a finite set S is defined by Supp(P ) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D let d ← D denote that d was
sampled according to D. Similarly, for a set S, let s ← S denote that s is drawn
uniformly from S. For an event W , we use W to denote the complement event.
For a function f : {0, 1}n → {0, 1}n, let Im(f) := {f(x) : x ∈ {0, 1}n} be the
image of f .

Let poly denote the set of all polynomials, and let ppt stand for probabilistic
polynomial time. A function μ : N → [0, 1] is negligible, denoted μ(n) = neg(n), if
μ(n) < 1/p(n) for every p ∈ poly and large enough n. For a security parameter n,
a function f : {0, 1}m(n) → {0, 1}�(n) is efficiently computable if it is computable
in polynomial time in n.

3.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.

Definition 3.1 (One-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a one-way function if for every probabilistic poly-
nomial time algorithm A, there is a negligible function μ : N → [0, 1] such that
for every n ∈ N

Pr
x←{0,1}n

[

A(f(x)) ∈ f−1(f(x))
]

≤ μ(n)

For simplicity we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.

Immediately from the definition of a one-way function, we get the following
simple observation.

Claim 3.2. For every one-way function f : {0, 1}n → {0, 1}n there exists a
negligible function μ(n) such that for every input x ∈ {0, 1}n it holds that
∣

∣f−1(f(x))
∣

∣ ≤ 2n · μ(n).
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3.3 Universal One Way Hash Functions

We now formally define UOWHF.

Definition 3.3 (Universal one-way hash function). Let n be a security
parameter. A family of functions F =

{

fz : {0, 1}m(n) → {0, 1}�(n)
}

z∈{0,1}k(n)

is a family of universal one-way hash functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(n), fz(x) can be evaluated in
time poly(n).

2. Shrinking: �(n) < m(n).
3. Target Collision Resistance: For every probabilistic polynomial-time adversary

A, the probability that A succeeds in the following game is negligible in n:
(a) Let (x, state) ← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.
(b) Choose z ← {0, 1}k(n).
(c) Let x′ ← A(state, z) ∈ {0, 1}m(n).
(d) A succeeds if x �= x′ and fz(x) = fz(x′).

A relaxation of the target collision resistance property can be done by requir-
ing the function to be collision resistant only on random inputs (see Defini-
tion 2.1). The following lemma states that it is enough to construct a function
that is collision resistant on random inputs, in order to get UOWHF.

Lemma 3.4 (From random inputs to targets, folklore). Let n be a secu-
rity parameter. Let F : {0, 1}m(n) → {0, 1}�(n) be an efficiently computable
length-decreasing function. Suppose F is collision-resistant on random inputs.
Then

{

Fy : {0, 1}m(n) → {0, 1}�(n)
}

y∈{0,1}m(n)
, for Fy(x) := F (y ⊕ x), is an

UOWHF.

3.4 Hash Families

2-universal and t-wise independent hash families are an important ingredient in
our constructions. In this section, we formally define this notion, together with
some useful properties of such families.

Definition 3.5 (2-universal and t-wise independent families)

A family of functions F =
{

f : {0, 1}n → {0, 1}�
}

is 2-universal if for every x �=
x′ ∈ {0, 1}n it holds that Prf←F [f(x) = f(x′)] ≤ 2−�. F is t-wise independent
if for all x1 �= · · · �= xt ∈ {0, 1}n, the random variables F (x1), . . . , F (xt) for
F ← F are independent and uniformly distributed over {0, 1}�.

A family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n,
f(x) can be computed in polynomial time (in n, �). Such family is constructible if
it is explicit and there is a ppt algorithm that given x ∈ {0, 1}n and y ∈ {0, 1}�

outputs a uniform f ∈ F , such that f(x) = y.
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It is well-known that for every constant t, there are constructible families of
t-wise independent functions with description size O(t · (n + �)) in NC1. The
next lemma, proven in the full version of this paper [24], will be useful in the
proof.

Lemma 3.6. Let f : {0, 1}n → {0, 1}n be a function, and
H = {h : {0, 1}n → {0, 1}n} a two-wise independent family. For every x ∈
{0, 1}n and c ∈ N the following holds.

Pr
h←H

[

|{x′ : h(f(x′)) = h(f(x))}| ≥
∣

∣f−1(f(x))
∣

∣ + n2c
]

≤ 2/nc.

3.5 Entropy and Accessible Entropy

The Shannon entropy of a random variable X is defined by

H(X) = −
∑

x∈Supp(X)

Pr [X = x] · log(Pr [X = x]).

The conditional entropy of a random variable X given Y , is defined as H(X |
Y ) = Ey←Y [H(X|Y =y)]. For a number p ∈ [0, 1], we will use H(p) to denote
the entropy of a random variable distributed according to Bernoulli(p). That is
H(p) = −p log p − (1 − p) log(1 − p).

The min entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr [X = x]
,

and the max entropy of X is defined by H0(X) = log |Supp(X)|.
Lastly, for random variables X and Y , the sample entropy of x ∈

Supp(X) (with respect to X) is defined by HX(x) = − log Pr [X = x], and
the sample entropy of x given y ∈ Supp(Y ) is defined by HX|Y (x|y) =
− log Pr [X = x|Y = y] . The following equality is immediate from the defini-
tions above.

H(X | Y ) = E
x←X,y←Y

HX|Y (x | y) (1)

For a function g, we also use the following notation, defined in [15], for the
entropy of g−1.

Definition 3.7 (Real entropy). Let n be a security parameter and
g : {0, 1}n → {0, 1}m be a function.

We say that g−1 has real Shannon entropy k if H(X|g(X)) = k, where X is
uniformly distributed on {0, 1}n.

We say that g−1 has real min-entropy at least k if there is a negligible function
ε = ε(n) such that Prx←XHX|g(X)(x|g(x)) ≥ k ≥ 1 − ε(n).

We say that g−1 has real max-entropy at most k if there is a negligible
function ε = ε(n) such that Prx←XHX|g(X)(x|g(x)) ≤ k ≥ 1 − ε(n).
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[15] also introduced the notion of accessible max-entropy. A collision finder
for a function g is an algorithm that, given input x, always outputs x′ such that
g(x) = g(x′). g−1 has small accessible entropy, if the output of every collision
finder for g comes from a small set.

Definition 3.8 (Collision finder). For a function g : {0, 1}m(n) → {0, 1}�(n),
an algorithm A is a g-collision finder if for every x ∈ {0, 1}m(n) it holds that
Pr [g(A(1n, x)) = g(x)] = 1.

Definition 3.9 (accessible max-entropy). Let n be a security parameter and
g : {0, 1}m(n) → {0, 1}�(n) be a function. We say that g−1 has accessible max-
entropy at most k if for every ppt g-collision finder A and for every n ∈ N,
there exists a family of sets {L(x)}x∈{0,1}m(n) each of size at most 2k(n) such
that x ∈ L(x) for all x, and Prx←{0,1}m(n) [A(1n, x) ∈ L(x)] ≥ 1 − neg(n).

The next theorems are implicit in [15] and will be useful in our constructions.

Theorem 3.10 (Entropy gap, implicit in [15]). Let f : {0, 1}n → {0, 1}n be
a one-way function. Then there exists � = �(n), s = ω(log n) and an efficiently
computable function g : {0, 1}n5

→ {0, 1}n5

such that:

1. g−1 has real min-entropy at least � + s.
2. g−1 has accessible max-entropy at most �.
3. g is computable in NC1 using O(n4) non-adaptive oracle calls to the one-way

function.

Theorem 3.11 (Implied by Claim 4.9, [15]). Let f : {0, 1}n → {0, 1}n be
a one-way function and let H = {h : {0, 1}n → {0, 1}n} be a family of con-
structible, three-wise independent hash functions.12 Then, for every ppt A, every
constant c > 0 and every i ∈ [n], it holds that:

Pr
h←H,

x←{0,1}n,
x′←A(1n,h,x,i)

[

(f(x′) 
=f(x))∧(h(f(x))<i=h(f(x′))<i)

∧ i>n−(log|f−1(f(x′))|−c log n)

]

= neg(n).

3.6 Useful Facts

We will use the well known Chernoff bound in our proof.

Fact 3.12 (Chernoff bound). Let A1, ..., An be independent random variables
s.t. Ai ∈ {0, 1} and let ̂A = Σn

i=1Ai. For every ε ∈ [0, 1] It holds that:

Pr
[∣

∣

∣

̂A − E
[

̂A
]∣

∣

∣ ≥ ε · E
[

̂A
]]

≤ 2 · e−ε2·E[ ̂A]/3.

12 Actually, the proof in [15] only requires two-wise independence.
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4 Non-adaptive UOWHF from One-Way Functions

In this part we construct and prove the security of our non-adaptive UOWHF.
This is done by combining the construction of [15] with the non-adaptive con-
struction of UOWHF for unknown-regular one-way functions of [25].

We start with the construction. Let g : {0, 1}m(n) → {0, 1}k(n) be a func-
tion with a sufficient gap between the real min-entropy and the max acces-
sible entropy of g−1. Let Hn =

{

h : {0, 1}m(n)+k(n) → {0, 1}m(n)−log n
}

be

a 2-universal hash family. For every t ∈ N, define the function Ct : Ht−1
n ×

({0, 1}m(n))t → Ht−1
n × {0, 1}k(n) × ({0, 1}m(n)−log n)t−1 × {0, 1}m(n), by

Ct(h1, . . . , ht−1, x1, . . . , xt)
:= h1, . . . , ht−1, g(x1), h1(x1, g(x2)), . . . ht−1(xt−1, g(xt)), xt.

Note that the above function is length decreasing when (t−1) log n > k(n). The
next theorem states that, for the right choice of parameters, Ct is also collision
resistant.

Theorem 4.1. Let � = �(n), s = ω(log n) and let g : {0, 1}m(n) → {0, 1}k(n) be
a function. Assume that g−1 has real min-entropy at least � + s and accessible
max entropy at most �. Then the function Ct is collision resistant on random
inputs, for every t ∈ poly.

Corollary 4.2. There exists a black-box construction of UOWHF from any one-
way function that uses O(n9) non-adaptive calls to the one-way function. More-
over, the construction has key length and output length of O(n10), and is com-
putable in NC1 using oracle calls to f .

Proof. Let k = m = n5 and t = k/ log n + 2. By Theorem 3.10, there is a
efficiently computable (using O(n4) non-adaptive calls to the one-way function
f) function g : {0, 1}m → {0, 1}k such that g−1 has real min-entropy at least
� + s and accessible max-entropy at most �. The proof is now immediate from
Theorem 4.1 and Lemma 3.4, together with the fact that there is an explicit
2-universal family H =

{

h : {0, 1}m+k → {0, 1}m−log n
}

with description size
O(m + k) in NC1.

Using the general method of randomized encoding, Applebaum, Ishai and
Kushilevitz [4] showed how to compile CRHF in NC1 to a CRHF in NC0. By
observing their proof applies also for UOWHFs, we get the following corollary.

Corollary 4.3 Assuming that one-way functions exist in NC1, there exists a
UOWHF in NC0.

We now prove Theorem 4.1. Let m, k, �, g and t be as in Theorem 4.1. We
will need the following two claims. The first, which is straight-forward from the
definition of accessible entropy, states that every collision for Ct comes from a
small set. The proof, which is a simple reduction, is given in the full version of
this paper [24].
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Claim 4.4. For every collision-finder algorithm for Ct it holds that there exists
a family of sets {L(x)}x∈{0,1}m each of size at most 2� such that

Pr
h:=(h1,...,ht−1)←Ht−1

n ,

x:=(x1,...,xt)←({0,1}m(n))t(n)

(h,(x′
1,...,x′

t))←A(1n,h,x)

[∃i ∈ [t] s.t. g(x′
i) = g(xi) ∧ x′

i /∈ L(xi)] = neg(n).

For the second claim we will need the following definition. Let

Tn :=
{

x ∈ {0, 1}m(n) : HX|g(X)(x|g(x)) ≥ � + s
}

=
{

x ∈ {0, 1}m :
∣

∣g−1(g(x))
∣

∣ ≥ 2�+s
}

.

That is, Tn is the set of all “typical” inputs x for g, for which HX|g(X)(x|g(x))
is large.

The second claim considers the function Cd for every d ∈ poly. It states that
for typical inputs, i.e., x1, . . . , xd ∈ T , there is no collision x′

1, . . . , x
′
d for Cd such

that x′
1 is from a small set G.

Claim 4.5. For every d, n ∈ N, set G ⊆ {0, 1}m(n) of size at most 2�(n) and
x = (x1, . . . , xd) ∈ T d

n it holds that

Pr
h=(h1,...,hd−1)←Hd−1

n

[

∃x′=(x′
1,...,x′

d) s.t

x′
1∈G∧(x′

1,g(x′
2)) 
=(x1,g(x2))∧Cd(h,x)=Cd(h,x′)

]

≤ d · μ(n),

for some negligible function μ.

We prove Claim 4.5 below, but first we use them in order to prove Theo-
rem 4.1.

Proof (Proof of Theorem 4.1). Let A be a PPT collision-finder algorithm of Ct

such that

Pr
h=(h1,...,ht−1)←Ht−1

n ,

x=(x1,...,xt)←({0,1}m(n))t(n)

(h,x′)←A(1n,h,x)

[x �= x′ ∧ Ct(h, x) = Ct(h, x′)] = α(n). (2)

We will show that α must be negligible.
For n ∈ N, let {L(x)}x∈{0,1}m(n) be the family promised by Claim 4.4. Let

H = (H1, . . . , Ht−1) ← Ht−1
n and X = (X1, . . . , Xt) ← ({0, 1}m(n))t(n) be

random variables, and let (·,X ′) ← A(1n,H,X) be the output of A. Let Wn
1

be the event that A found a valid collision. By construction, this event can be
written as follows: There exists i ∈ [t(n)], such that,

1. (X ′
i, g(X ′

i+1)) �= (Xi, g(Xi+1)), and
2.

(g(Xi),Hi(Xi, g(Xi+1)), . . . , Ht−1(Xt−1, g(Xt)),Xt)
= (g(X ′

i),Hi(X ′
i, g(X ′

i+1)), . . . , Ht−1(X ′
t−1, g(X ′

t)),X
′
t).
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Observe that, by definition of the function C, the last condition is equivalent to
Ct−i+1(Hi,...,t−1,Xi,...,t) = Ct−i+1(Hi,...,t−1,X

′
i,...,t).

Additionally, we define the following two events. Let Wn
2 be the event that

exists i ∈ [t(n)] such that Xi /∈ Tn, and let Wn
3 be the event that there exists

i ∈ [t(n)] such that g(Xi) = g(X ′
i) and X ′

i /∈ L(Xi).
It holds that,

α ≤ Pr [Wn
2 ] + Pr [Wn

3 ] + Pr
[

Wn
1 ∧ Wn

2 ∧ Wn
3

]

.

Finally, observe that Pr [Wn
2 ] = neg(n) by the assumption that g−1 has min-

entropy at least �+ s and the union bound, and Pr [Wn
3 ] = neg(n) by Claim 4.4.

Additionally, Pr
[

Wn
1 ∧ Wn

2 ∧ Wn
3

]

= neg(n) by Claim 4.5 and the union bound
(choosing G = L(Xi)).

4.1 Proving Claim 4.5

Fix n, and omit it from the notation. Let T = Tn and B := {0, 1}m \ T . Recall
that, by Theorem 3.10 and the definition of real min-entropy, it holds that |B| =
ε(n) · 2m for some ε ∈ neg(n). Let g(T ) := {g(x) : x ∈ T }. The next claim is
the main part of the proof of Claim4.5. It states that for every small set G and
strings x1, x2, the following holds with overwhelming probability over h ∈ H.
For every x′

1, x
′
2 such that x′

1 ∈ G and h(x1, g(x2)) = h(x′
1, g(x′

2)) it holds that
x′
2 is non-typical (that is, x′

2 ∈ B). Moreover, the number of such collision is
small.

Claim 4.6. Let B := {0, 1}m \ T . Let x1, x2 ∈ {0, 1}m, and let G ⊆ {0, 1}m be
a set of size at most 2�. For h ∈ H, let

Gh = {x′
2 : ∃x′

1 ∈ G s.t. (x′
1, g(x′

2)) �= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′
1, g(x′

2))} .

Then, Prh←HGh ⊆ B ∧ |Gh| ≤ 2� ≥ 1 − n(ε(n) + 2−s(n)).

Proof (Proof of Claim 4.6). We start with showing that Prh←HGh ⊆ B ≥ 1−n ·
2−s(n). Indeed,

Pr
h←H

[Gh � B]

= Pr
h←H

[
∃(x′

1,x′
2)∈G×T s.t.

(x′
1,g(x′

2)) �=(x1,g(x2))∧h(x1,g(x2))=h(x′
1,g(x′

2))

]

= Pr
h←H

[
∃(x′

1, y
′) ∈ G × g(T ) s.t. (x′

1, y
′) �= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′

1, y
′)

]

≤ n · 2−m · |G| · |g(T )|
≤ n · 2−m · 2� · 2m/2�+s

= n · 2−s(n)

where the first inequality holds since Prh←Hh(x1, g(x2)) = h(x′
1, y

′) ≤ n·2−m for
every (x′

1, y
′) �= (x1, g(x2)) together with the union bound. The second inequality

holds since by definition of T it must hold that |g(T )| ≤ 2m/2�+s.
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We next show that Prh←H|Gh ∩ B| ≥ 2� ≤ n·ε(n), which concludes the proof.
We start with computing the expectation of |Gh ∩ B|:

E
h←H

|Gh ∩ B| ≤ n · 2−m · |G| · |B|

≤ n · 2−m · 2� · ε(n) · 2m

≤ n · ε(n) · 2�.

The claim now follows by Markov and the Union bound.

We are now ready to prove Claim 4.5 using Claim 4.6. Intuitively, Claim 4.6
shows that if x′

1 is from a small set, x′
2 is from a small set too. Thus, we can

continue by induction, to prove that also x′
d is from the set B. It follows that,

x′
d �= xd with overwhelming probability (as xd ∈ T ), which is enough since the

output of Cd includes xd.

Proof (Proof of Claim 4.5). Fix n ∈ N, x = (x1, . . . , xd) ∈ T d
n and a set G ⊆

{0, 1}m. For h = (h1, . . . , hd−1) ∈ Hd−1, let

COL(h, x) =
{

x′ = (x′
1, . . . , x

′
d) ∈ G × ({0, 1}m)d−1 : (x1,g(x2)) 
=(x′

1,g(x′
2))

∧Cd(h,x)=Cd(h,x′)

}

be the set containing all the possible collision of h, x with x′
1 ∈ G and

(x1, g(x2)) �= (x′
1, g(x′

2)). Similarly, for every i ∈ {0, . . . , d − 1}, let

COLi(h1, . . . , hi, x) =
{

x′ ∈ G × ({0, 1}m)d−1 :
(x1,g(x2)) �=(x′

1,g(x′
2))

∧∀j∈[i] hj(xj ,g(xj+1))=hj(x
′
j ,g(x′

j+1))

}

That is, all inputs with x′
1 ∈ G and (x1, g(x2)) �= (x′

1, g(x′
2)) that collide with i

blocks of Cd. It is clear that for every x and h,

COL(h, x) ⊆ COLd−1(h, x) ⊆ ... ⊆ COL0(x) (3)

We want to show that with high probability over the choice of h, it holds
that COL(h, x) is empty.

For every i ∈ [d − 1], let Wi be the event (over the choice of h1, . . . hi−1 ←
Hi−1) that there exists a set Gi of size at most 2�, such that for every x′ ∈
COLi−1(h1, . . . , hi−1, x), it holds that (x′

i, g(x′
i+1)) �= (xi, g(xi+1)) and x′

i ∈ Gi.
For i ∈ [d], let ̂Wi be the event that there exists a set Gi of size at most

2� such that for every x′ ∈ COLi−1(h1, . . . , hi−1, x), it holds that x′
i �= xi and

x′
i ∈ Gi.

Observe that Pr
[

Wi | ̂Wi

]

= 1. We will show that, for every 1 ≤ i < d, it
holds that

Pr
[

̂Wi+1 | W≤i

]

≥ 1 − n(ε(n) + 2−s(n)) (4)

Furthermore, Pr [W1] = 1. Indeed, let G1 = G. By assumption x1 ∈ G and
(x′

1, g(x′
2)) �= (x1, g(x2)) for every x′

1, x
′
2 ∈ COL0(x).

To see that Eq. (4) holds, fix 1 ≤ i < d. Let H ′ ← Hd−1|W≤i
, and observe

that H ′
i is uniformly distributed over H. By the definition of Wi, it holds that
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for every x′ ∈ COLi−1(H ′
<i, x) it holds that (x′

i, g(x′
i+1)) �= (xi, g(xi+1)) and

x′
i ∈ Gi for some set Gi of size at most 2�. Define

Gi+1 :=
{

x′
i+1 : ∃x′

i∈Gi s.t.

(x′
i,g(x

′
i+1)) 
=(xi,g(xi+1))∧H′

i(xi,g(xi+1))=H′
i(x

′
i,g(x

′
i+1))

}

.

By definition x′
i+1 ∈ Gi+1 for every x′ ∈ COLi(H ′

≤i, x). Applying Claim 4.6 we
get that with all but n(ε(n) + 2−s(n)) probability over the choice of H ′

i, it holds
that |Gi+1| ≤ 2�. Moreover, with the same probability Gi+1 ⊆ B, which implies
that x′

i+1 �= xi+1 (since by assumption, xi+1 ∈ Tn).
To conclude, we get that for every x′ ∈ COL(h, x) ⊆ COLd−1(h, x) it holds

that x′
d �= xd with probability at least

Pr
[

̂Wd

]

≥ Pr
[

̂Wd | W<d

]

·
∏

1<i≤d−1

Pr [Wi | W<i]

≥ Pr
[

̂Wd | W<d

]

·
∏

1<i≤d−1

Pr
[

Wi, ̂Wi | W<i

]

= Pr
[

̂Wd | W<d

]

·
∏

1<i≤d−1

(

Pr
[

Wi | ̂Wi,W<i

]

· Pr
[

̂Wi | W<i

]

)

≥ (1 − n(ε(n) + 2−s(n)))d

≥ 1 − d · n(ε(n) + 2−s(n))
= 1 − d · neg(n).

where the penultimate inequality holds by Eq. (4) and the fact that
Pr

[

Wi | ̂Wi,W<i

]

= 1. Recall that Cd outputs xd. Thus, the above implies
that Cd(h, x) �= Cd(h, x′), which implies that COL(h, x) = ∅ with the same
probability.

5 Almost-UOWHF from One-Way Functions

In this section we formally define almost-UOWHF and next-bit unreachable
entropy, and show how to construct them from one-way functions.

5.1 Almost-UOWHF

In this part we formally define almost-UOWHF. The definition of almost-
UOWHF is similar to the definition of almost collision resistance on random
input (Definition 2.5).

Definition 5.1 (Almost universal one-way hash function). Let n be a
security parameter. A family of functions

F =
{

fz : {0, 1}m(n) → {0, 1}�(n)
}

z∈{0,1}k(n)

is a family of almost universal one-way hash functions ( almost-UOWHF) if it
satisfies:
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1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(n), fz(x) can be evaluated in
time poly(n).

2. Shrinking: �(k) < m(k).
3. Almost Target Collision Resistance: There exist sets {Bz}z∈{0,1}k(n) such that

|Bz| /2m(n) = neg(n), and for every probabilistic polynomial-time adversary
A, the probability that A succeeds in the following game is negligible in n:
(a) Let (x, state) ← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.
(b) Choose z ← {0, 1}k(n).
(c) Let x′ ← A(state, z) ∈ {0, 1}m(k).
(d) A succeeds if x′ /∈ Bz, x �= x′ and fz(x) = fz(x′).

The proof of the next lemma is similar to the proof of Lemma3.4.

Lemma 5.2 (From random inputs to targets, almost version). Let n be a
security parameter. Let F : {0, 1}m(n) → {0, 1}�(n) be an efficiently computable
length-decreasing function. Suppose F is almost collision-resistant on random
inputs. Then

{

Fy : {0, 1}m(n) → {0, 1}�(n)
}

y∈{0,1}m(n)
, for Fy(x) := F (y ⊕ x),

is an almost-UOWHF.

5.2 Next-Bit Unreachable Entropy

In this section we present the notion of next-bit unreachable entropy, and con-
struct a function with next-bit unreachable entropy from one-way functions.
Intuitively, we say that a function g : {0, 1}m → {0, 1}� has next-bit unreach-
able entropy v if for every i ∈ [�], there is a set Ui ⊆ {0, 1}m, such that, on
the average over x, each x is a member of (� − m + v) such sets, and, given
x ∈ {0, 1}m, a poly-time algorithm cannot find x′ ∈ Ui with g(x)<i = g(x′)<i,
but g(x)i �= g(x′)i.

Definition 5.3. A function g : {0, 1}m(n) → {0, 1}�(n) has next-bit unreachable
entropy v, if the following holds. For every n ∈ N and i ∈ [�(n)] there exists a
set Ui,n ⊆ {0, 1}m(n), such that

1. Ui,n are large: For every n ∈ N,

Pr
x←{0,1}m(n),i←[�(n)]

[x /∈ Ui,n] ≤ (m(n) − v(n))/�(n).

2. Hard to get inside Ui,n: For every ppt A,

Pr
x←{0,1}m(n),

i←[�(n)],x′←A(1n,x,i)

[((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui,n)] = neg(n).

3. The entropy inside Ui,n is unreachable: For every ppt A,

Pr
x←{0,1}m(n),

i←[�(n)],
x′←A(1n,x,i)

[((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i �= g(x′)i)] = neg(n).
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We stress that for x /∈ Ui, Item 2 is stronger compared to Item 3. While Item
2 implies that it is hard to flip the i-th bit of g with inputs from Ui, Item 2
requires that it is hard to find (any) input from Ui that agrees with x on the
i − 1 firs bits.

The definition above is especially useful when the function g is close to be
injective. Formally,

Definition 5.4. A function g is almost-injective if

Pr
x←{0,1}m

∣

∣g−1(g(x))
∣

∣ > 1 = neg(n).

We use the above definition for the construction of almost-UOWHF in
Sect. 5.3. The following claim, proved in the full version of this paper [24], shows
how to construct a function with non-trivial next-bit unreachable entropy from
a one-way function.

Theorem 5.5. Let f : {0, 1}n → {0, 1}n be a one-way function and let H =
{h : {0, 1}n → {0, 1}n} be a family of constructable, three-wise independent hash
functions. Let g : H2 × {0, 1}n → H2 × {0, 1}2n be defined by g(h1, h2, x) =
(h1, h2, h1(f(x)), h2(x)). Then g is an almost-injective function with next-bit
unreachable entropy c log(n), for every constant c > 0.

Moreover, the input and output size of g are of length O(n).

5.3 Next-Bit Unreachable Entropy to Almost-UOWHF

The Construction. We now describe our main construction. We start with
some notations.

A position vector p ∈ [�]q is just a vector of indexes from [�]. For a function
g : {0, 1}m → {0, 1}�, input vector w = (x1, . . . xq) ∈ ({0, 1}m)q and a position
vector p = (i1, . . . , iq) ∈ [�]q, let gp(w) := g(x1)i1 , . . . , g(xq)iq . Similarly, define
g<p(w) := g(x1)<i1 , . . . , g(xq)<iq , and g≥p(w) analogously. For a number k ∈ N,
let p + k := (i1 + k, . . . , iq + k). For a number t, let gt : {0, 1}tm → {0, 1}t� be
the t-fold repetition of g, i.e., gt(x1, . . . , xt) = g(x1), . . . , g(xt).

We are now ready to present the construction (see Fig. 1).

Construction 5.6 (Almost-UOWHF). Let n be a security parameter, and
let q = q(n), t = t(n) and k = k(n) be parameters. Let g : {0, 1}m(n) → {0, 1}�(n)

be a function, and let Hn =
{

h : {0, 1}q(n) → {0, 1}k(n)
}

be a 2-universal hash

family. Define the function C : Hn × [�(n)]q(n) × ({0, 1}m(n)·t(n))q(n) → Hn ×
[�(n)]q(n) × {0, 1}�(n)·q(n)+(t(n)−1)�·k(n) by

C(h, p, z) := p, g′
<p(z), h(g′

p(z)), h(g′
p+1(z)), . . . , h(g′

p+(t−1)�−1(z)), g′
≥p+(t−1)�(z),

for g′ = gt.
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The main theorem of this part is stated below and proven in the full version of
this paper [24]. Informally, it states that when g is an almost-injective function
with non-trivial next-bit unreachable entropy, and for the right choice of param-
eters, the above construction is almost-collision resistant on random inputs.

Theorem 5.7. Let g : {0, 1}m(n) → {0, 1}�(n) be an efficient, almost-injective
function with next-bit unreachable entropy v(n) ∈ N. For every q ∈ poly and ε ∈
1/poly such that H(4ε(n)) ≤ 0.1v(n)/�(n), q = ω

(

log n · max
{

�, �
ε2(�−m−v)

})

and for k = q(m−v/3)/�, t = 3(�−m)/v+2 the function C as in Construction 5.6
is efficient, shrinking and almost collision resistant on random inputs.

This gives the following corollary.

Corollary 5.8. Let s = ω(1). Assuming that one-way functions exist, there
exists an almost-UOWHF with key length O(n4 · s). Moreover, the almost-
UOWHF construction makes O(n3 · s) non-adaptive calls to the underlying
one-way function.
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Abstract. We present a new block cipher mode of operation for authen-
ticated encryption (AE), dubbed XOCB, that has the following features:
(1) beyond-birthday-bound (BBB) security based on the standard pseu-
dorandom assumption of the internal block cipher if the maximum block
length is sufficiently smaller than the birthday bound, (2) rate-1 compu-
tation, and (3) supporting any block cipher with any key length. Namely,
XOCB has effectively the same efficiency as the seminal OCB while having
stronger quantitative security without any change in the security model
or the required primitive in OCB. Although numerous studies have been
conducted in the past, our XOCB is the first mode of operation to achieve
these multiple goals simultaneously.

Keywords: Authenticated encryption · Block cipher · OCB ·
Beyond-birthday-bound security

1 Introduction

Authenticated Encryption. Since the formalization of authenticated encryp-
tion (AE) [6,25,36], constructing an efficient and secure AE1 scheme has been
one of the central topics in symmetric-key cryptography for decades. OCB, first
proposed by Rogaway et al. at CCS 2001 [38], has been known to be a seminal
scheme for its efficiency and security. OCB operates at rate 1, i.e., each input
block needs only one block cipher call used inside2. In addition, it is paralleliz-
able. XOCB is much more efficient than the generic composition schemes that
1 We use the term AE to mean nonce-based AEAD [36] throughout the paper, unless

otherwise stated.
2 By convention, we ignore the constant number of block cipher calls per message.
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need at least two block cipher calls (thus rate ≤ 1/2) and its variant, most
notably GCM [1], which is specified by NIST SP800-38D and now quite widely
deployed. The security of OCB can be reduced to the standard computational
assumption on the block cipher used: namely, if the block cipher is a strong
pseudorandom permutation (SPRP), OCB is shown to be provably secure. OCB
has three versions [27,37,38], and the latest one (OCB3 [27]) is one of the win-
ners of CAESAR competition3 and is specified in RFC 7253. OCB34 has been
implemented by OpenSSL and many other cryptographic libraries.
Beyond OCB. The security guarantee of (any version of) OCB is up to the
birthday bound (upBB)5, that is, if the internal block cipher has n-bit block,
OCB is broken by attacks of data complexity O(2n/2). This significantly limits
the practical value of OCB with a small – most typically 64-bit – block cipher,
because the limit of 2n/2 data per each secret key can be too severe. A very
impactful exposition of such a risk is Sweet32 attack against TLS/SSL using
64-bit block ciphers [7]. Even if we use 128-bit block ciphers, such as AES, this
is not a threat to the distant future.

For example, NIST6 has recently been reviewing FIPS 197 (specifying AES),
and several comments received in conjunction with this review process, more
specifically from Microsoft and Amazon, warn that continued use of 128-bit
block ciphers with GCM will be a problem in the near future. In particular, it
is mentioned that exabyte (1018 ≈ 260) data is already in use and zettabyte
(1021 ≈ 270) in the near future.

Transitioning to a new (possibly wide-block) cipher would not be easy and
take time. If one wants to use AES (or, more generally, any n-bit block cipher
where n/2-bit security can be a concern), a promising approach is to employ a
beyond-birthday-bound (BBB) secure AE mode that resists attacks of complexity
O(2n/2). Moreover, the advancement of lightweight cryptography produces many
block ciphers having application/platform-specific advantage over AES, in terms
of various metrics, such as hardware size [4,10], energy [3], latency [11], and
software performance on low-end platforms [5]. To make it lightweight while
achieving security equivalent to AES-128, it is quite often that these ciphers
have key and block lengths at most 128 bits.

A BBB-secure AE mode has been extensively studied. Iwata proposed
CHM [21], and CIP [22] that combine CENC [21], a BBB-secure nonce-based
encryption mode, with a universal hash (UH) function using field multiplica-
tions. These schemes are provably secure under the standard pseudorandom
assumption and roughly have 2n/3-bit provable security. While the encryption
part (CENC) is efficient, the need for the UH function makes the total cost (both
for computation time and implementation memory) largely similar to GCM.

3 https://competitions.cr.yp.to/caesar.html.
4 We may simply write OCB to mean OCB3.
5 The second version OCB2 is flawed and allows devastating attacks, though a simple

fix is possible [20].
6 https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-38a.
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Another approach is to instantiate a tweakable block cipher (TBC) [28] using
a block cipher and adopt a BBB-secure AE mode of a TBC as a template. The
most popular template is ΘCB3, which has n-bit security using a TBC of n-bit
block and about 3n-bit tweak (required tweak length depends on the length of
nonce and a maximum of message length etc.). If we instantiate such a TBC
by an upBB-secure block cipher mode such as XEX, we obtain OCB3, and the
resulting AE is also upBB-secure at best. Instantiating a BBB-secure TBC will
break this barrier, however, is far from trivial. The cascaded LRW achieves BBB-
security, but it needs two or more block cipher calls plus UH functions. Naito’s
XKX [32] requires a block cipher of more than n-bit keys and rekeying per nonce
for BBB security. This allows us to use, say AES-256, but excludes a large number
of lightweight ciphers for its key size as described above; hence it is not a perfect
solution, and we cannot benefit from the state-of-the-art lightweight ciphers.
Other TBC constructions, such as Mennink’s F1 and F2 [29], or Jha et al.’s
XHX [24] are efficient and work with a block cipher of about n-bit key. However,
they need the ideal-cipher model for security reduction. Obtaining a standard
security reduction for these constructions is considered to be hard [30]. This
poses a non-trivial gap between GCM or OCB, which have been proved under
the standard model. That is, the previous BBB-secure AE modes require either
a significant increase in computation, making the rate close to 1/2, or a change
in the cryptographic primitive supported by OCB, that is, an n-bit SPRP of any
key length. The natural question here is if we can achieve a BBB-secure AE
maintaining the advantages of OCB as much as possible.
Our Contributions. In this paper, we present a solution that answers the
above question positively. Our proposal, dubbed XOCB, is an AE mode that
can be based on an n-bit block cipher, and achieves BBB, namely 2n/3-bit
security for a constant maximum input length, assuming that the block cipher
is an SPRP (for its use of both block cipher forward and inverse operations).
The rate is one. Unlike XKX, XOCB does not need a rekeying while operating,
making it possible to be instantiated with ciphers of k-bit keys for any k, and
k = n = 128 allows using AES-128. When the maximum input length is not a
constant, XOCB still maintains upBB security. Namely, it can securely encrypt
a message of � O(2n/2) blocks. In addition, XOCB is fully parallellizable as
OCB. Despite numerous previous works, XOCB is the first mode of operation
that achieves these goals7. See Table 1 for comparison.

The main innovation of XOCB is an encryption part that can be seen as an
amalgamation of CENC and OCB’s encryption part. We add one more output-
masking layer to (a variant of) OCB’s internal XEX mode throughout encryption
or decryption. This additional mask is computed once for each nonce. Hence
the rate is one. In more detail, for m-block message and a-block associated data
(AD), XOCB needs m+a plus 7 to 8 calls. The security depends on the maximum
input length l (in n-bit blocks) and ranges between n/2 to 2n/3 bits depending
on the maximum length of a message. In more detail, the concrete bound is

7 In concurrent to our work, Bhattacharjee, Bhaumik, and Nandi [8] presented an AE
scheme combining SPRP and PRF that has some structural similarity to XOCB.
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shown at Theorem 1, and its leading terms are lσ/2n + lσ3/22n ignoring the
constants, where σ denotes the total number of input blocks and l denotes the
maximum input length in n bits. At first glance, the security improvement of
XOCB over OCB appears limited because of the length factor. I.e., it is birthday-
secure concerning l. However, many practical communication protocols specify a
maximum packet length, also known as a Maximum transmission unit (MTU),
that is not large. For example, the Internet Protocol (IP) has an MTU of 65535
(= 215) bytes. With this limit, XOCB with AES-128 can encrypt at most around
280.3 bytes of input blocks, while OCB is limited to 268 bytes. For low-power
communication protocols, MTU is much smaller, such as 257 bytes for Bluetooth
(specifically BLE 4.2). We also point out that XKX includes l2q/2n [31,32] in its
bound for q queries, that is, a birthday term for l. We provide a numerical bound
comparison for practical message lengths at Table 1. This exhibits the stronger
security of XOCB for real-world use cases.

While the main routine of XOCB is structurally similar to CENC, we need
a quite different analysis. This is because (1) the block cipher inputs in CENC
are all determined by a single variable (nonce), while in our case, all inputs
are determined by message blocks, independently for each block, and (2) the
decryption of XOCB involves a block cipher inverse, which is absent in CENC.
Note that CENC implements a nonce-based additive encryption by a BBB-secure
expanding PRF. Hence the encryption and decryption are symmetric and do not
need the block cipher inverse. These differences require us to develop a dedicated
security analysis, which is much more involved than the case of CENC. We employ
the framework developed by Kim et al. [26] for analyzing DBHtS MAC [15] (that
is also based on the standard Coefficient-H) for proofs. This helps to reduce the
proof complexity and gains accessibility, but it remains a lot of involved bad
cases, which turns out to be a challenging task.

Finally, we stress that our security goal is the standard AE security under
nonce-respecting adversaries. Due to its online computation algorithm, the
nonce-misuse resistance security [39] is impossible to achieve by nature. Sim-
ilarly, we do not claim security under the release of unverified plaintext (RUP)
introduced by Andreeva et al. [2]. We consider classical single-user security, and
analyzing multi-user security is left open.
Implementations. We present implementations of XOCB’s AES instantiation
on both high-end CPUs and low-end microprocessors to show its practical rele-
vance. The implementation results show that on a modern 64-bit CPU (Intel’s
Tiger Lake family), AES-XOCB can encrypt and authenticate a 4096-byte mes-
sage plus a 16-byte AD at a speed of 0.5 cycles per byte (cpb), while AES-
ECB runs at 0.3 cpb at the same platform. Comparatively, AES-OCB and AES-
CIP with the same implementation of AES executed at a speed of 0.4 and 1.2
cpb, respectively. On an 8-bit AVR processor (AVR ATmega328P), AES-XOCB
requires 8556 bytes of ROM to support both encryption and decryption, and
processes a 128-byte message plus a 16-byte AD at a speed of 306 cpb; In con-
trast, an optimized implementation of AES-GCM requires 11012 bytes of ROM
and executes at a speed of 880 cpb.
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Table 1. Comparison of AE schemes that can use an n-bit block cipher of any key
length. MUL denotes a field multiplication over GF(2n). The cost of MUL depends on
the platform and implementation, and we simply assume it is equivalent to the block
cipher used. The “Security” column denotes the bit security ignoring the contribution
of the maximum input length. The “Lead Terms” column denotes the leading terms in
the nAE advantage (Refer to the main texts for more details).

Scheme Primitive Rate Security Lead Terms∗ Ref
OCB SPRP 1 n/2 σ2/2n + q/2n† [27]
GCM PRP, MUL 1/2 n/2 σ2/2n + q/2n [23,33]
CHM,CIP PRP, MUL 1/2 2n/3 σ3/22n + σ/2n [21,22]
XOCB SPRP 1 2n/3 lσ3/22n + lσ/2n This paper
∗ σ: total queried blocks in n-bit blocks, q: total number of queries,
and l: the maximum block length of a query. We assume O(1) AD
blocks
† Bhaumik and Nandi [9] improved the bound with respect to the
decryption queries

2 Preliminaries

Basic Notation. For a positive integer n, we write N = 2n and [n] = {1, . . . , n}.
For two nonnegative integers m and n such that m ≤ n, we write [m..n] =
{m,m + 1, . . . , n}. Given a nonempty set X , x ←$ X denotes that x is chosen
uniformly randomly from X . The set of all functions from X to Y is denoted
Func(X ,Y), and the set of all permutations on X is denoted Perm(X ). For
simplicity, Perm(n) denotes the set of all permutations on {0, 1}n. For integers
a and b such that 1 ≤ a ≤ b, we write (b)a = b(b− 1) . . . (b− a+1), and (b)0 = 1
by convention.

For a positive integer n, let {0, 1}n be the set of n-bit strings and {0, 1}≤n =⋃
i∈[0..n]{0, 1}i. Let 0n be the string of n zero bits. Note that 00 = ε. We write

{0, 1}∗ to denote the set of all arbitrary-length strings, including the empty
string, and let {0, 1}+ = {0, 1}∗ \ {ε}. The set {0, 1}n is sometimes regarded as
a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit string an−1 . . . a1a0 ∈
{0, 1}n to an integer 2n−1an−1+ · · ·+2a1+a0. An element x ∈ {0, 1, . . . , 2c − 1}
for some positive integer c may be denoted by 〈x〉c ∈ {0, 1}c following the above
(standard) encoding. We also identify {0, 1}n with a finite field GF(2n) with
2n elements, assuming that 2 cyclically generates all the nonzero elements of
GF(2n).

For X ∈ {0, 1}∗, let |X| be the bit length of X. For a positive integer n
and X ∈ {0, 1}+, let |X|n = 
|X| /n� where 
x� is the smallest integer y such
that y ≥ x and let |ε|n = 1. For a positive integer n and a string X ∈ {0, 1}∗,
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(X1,X2, . . . , Xm) n←− X denotes that X is partitioned into strings X1, . . . , Xm,
where m = |X|n, |X1| = · · · = |Xm−1| = n, and 0 < |Xm| ≤ n if X = ε, and
Xm = ε otherwise. For a positive integer n and X ∈ {0, 1}∗, let pad(X) = X ‖
1‖0n−(|X| mod n)−1. Note that pad is an injective function. For a positive integer
n and X ∈ {0, 1}∗, ozp(X) and X denote one-zero padding; ozp(X) = X = X
if |X| = 0 mod n, and ozp(X) = X = pad(X) if |X| = 0 mod n. For a positive
integer t ≤ n and X ∈ {0, 1}n, msbt(X) denotes a string of the most significant
t bits of X. For X,Y ∈ {0, 1}∗, let

X ⊕msb Y =

{
X ⊕ msb|X|(Y ) if |X| < |Y | .
msb|Y |(X) ⊕ Y if |X| ≥ |Y | .

Security Notions. Let E : K×{0, 1}n → {0, 1}n be a keyed permutation with
key space K, where E(K, ·) is a permutation for each K ∈ K. We will denote
EK(X) for E(K,X). A (q, t)-distinguisher against E is an algorithm D with
oracle access to an n-bit permutation and its inverse, making at most q oracle
queries, running in time at most t, and outputting a single bit. The advantage
of D in breaking the PRP-security of E, i.e., in distinguishing E from a uniform
random permutation π ←$ Perm(n), is defined as

AdvsprpE (D) =
∣
∣
∣Pr

[

K ←$ K : DEK ,E−1
K = 1

]

− Pr
[

π ←$ Perm(n) : Dπ,π−1
= 1

]∣
∣
∣ .

In our security proof, the underlying block cipher E will be replaced by a truly
random permutation up to the above adversarial distinguishing advantage.

Given key space K, nonce space N , associate data (AD) space A, message
space M, ciphertext space C, and tag space T , a nonce-based authenticated
encryption (nAE) scheme is defined by a tuple

Π = (K,N ,A,M, C,Enc,Dec),

where Enc and Dec denote encryption and decryption schemes, respectively. More
precisely,

Enc : K × N × A × M −→ C × T ,

Dec : K × N × A × C × T −→ M ∪ {⊥} ,

where for Enc(K,N,A,M) = (C, T ), we require |C| = |M | and

Dec(K,N,A,C, T ′) =

{
M if T = T ′,
⊥ otherwise.

We will write EncK(N,A,M) and DecK(N,A,C) to denote Enc(K,N,A,M) and
Dec(K,N,A,C), repectively. Throughout this paper, we will fix N = {0, 1}n−2,
A = M = C = {0, 1}∗ and T = {0, 1}n.
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Against the nonce-based authenticated encryption security of Π, an adver-
sary D aims at distinguishing the real world (EncK ,DecK) and the ideal world
(Rand,Rej), where Rand returns a random string of length |M | + n for every
encryption query EncK(N,A,M) and Rej always returns ⊥ for every decryption
query.

In this paper, we assume that D is nonce-respecting; it does not repeat nonces
in encryption queries. Furthermore, D is non-trivial, i.e., D never repeats the
same encryption/decryption query nor makes a decryption query (N,A,C, T )
once (C, T ) has been obtained by a previous encryption query EncK(N,A,M).
Then the advantage of D against the nonce-based authenticated encryption secu-
rity of Π is defined as

AdvnAE
Π (D) =

∣
∣Pr

[
K ←$ K : DEncK ,DecK = 1

]
− Pr

[
DRand,Rej = 1

]∣
∣ .

We say that D is a (qe, qd, σ, l, t)-adversary against the nonce-based AE secu-
rity of Π if D makes at most qe encryption queries and at most qd decryption
queries, and running in time at most t, where the length of each encryption/de-
cryption query (with a nonce and a tag excluded)8 is at most l blocks of n bits.
The total length of the encryption and decryption queries (with nonces and tags
excluded) is at most σ blocks of n bits. When considering information-theoretic
security, we will drop the parameter t.
Coefficient-H Technique. We will use Patarin’s coefficient-H technique. The
goal of this technique is to upper bound the adversarial distinguishing advan-
tage between a real construction and its ideal counterpart. In the real (resp.
ideal) world, an information-theoretic adversary D is allowed to make queries
to a oracle denoted Oreal (resp. Oideal). The interaction between D and the ora-
cle determines a transcript. It contains all the information obtained during the
interaction. We write that transcript τ is attainable if the probability of obtain-
ing τ in the ideal world is non-zero. We also write Tid and Tre to denote the
probability distribution of the transcript τ induced by the ideal world and the
real world, respectively. By extension, we use the same notation to denote a
random variable distributed according to each distribution.

We partition the set of attainable transcripts Γ into a set of “good” transcripts
Γgood, where the probability to obtain τ ∈ Γgood is close in the real world and
the ideal world, and a set of “bad” transcripts Γbad, where the probability of
obtaining τ ∈ Γbad is small in the ideal world. Then the coefficient-H technique
is summarized as the following lemma.

Lemma 1. Let Γ = Γgood�Γbad be a partition of the set of attainable transcripts,
where there exists a non-negative number ε1 such that for any τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − ε1,

8 More precisely, the block length of an encryption (resp. decryption) query is defined
as |A|n + |M |n (resp. |A|n + |C|n), while the length of the “empty” query is 1.
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and there exists a non-negative number ε2 such that Pr [Tid ∈ Γbad] ≤ ε2. Then
for any adversary D, one has

∣
∣Pr

[
DOreal = 1

]
− Pr

[
DOideal = 1

]∣
∣ ≤ ε1 + ε2,

where DOreal and DOideal denote the adversarial outputs in the real and the ideal
worlds, respectively.

We refer to [19] for the proof of Lemma 1.

Extended Mirror Theory. Patarin’s Mirror theory [34,35] is a very powerful
tool to estimate the number of solutions to a certain type of system of equations.
At the beginning, there were some uncertainties in the proof of Mirror theory,
but now there are several results on the full proof of Mirror theory up to n-bit
security [13,14,17]. In this paper, we will use the extended Mirror theory [16,18],
which is a variant of Mirror theory, and estimates the number of solutions to a
system of equations as well as non-equations.

We will represent a system of equations and non-equations by a graph. Each
vertex corresponds to an n-bit distinct unknown. We will assume that the num-
ber of vertices is at most 2n/4, and by abuse of notation, identify the vertices with
the values assigned to them. We distinguish two types of edges, namely, =-labeled
edges and =-labeled edges that correspond to equations and non-equations,
respectively. Each of the edges is additionally labeled by an element in {0, 1}n.
So, if two vertices P and Q are adjacent by an edge with label (λ,=) (resp. (λ, =))
for some λ ∈ {0, 1}n, then it would mean that P ⊕ Q = λ (resp. P ⊕ Q = λ).

Consider a graph G = (V, E= � E �=), where E= and E �= denote the set of
=-labeled edges and the set of =-labeled edges, respectively. Then G can be seen
as a superposition of two subgraphs G= =def (V, E=) and G �= =def (V, E �=). Let

P
λ
− Q denote a (λ,=)-labeled edge in G=. For 
 > 0 and a trail9

L : P0

λ1− P1

λ2− · · ·
λ�− P�

in G=, its label is defined as

λ(L) def= λ1 ⊕ λ2 ⊕ · · · ⊕ λ�.

In this work, we will focus on a graph G = (V, E= � E �=) with certain prop-
erties, as listed below.

1. G= contains no cycle.
2. λ(L) = 0 for any trail L in G=.
3. If P and Q are connected with a (λ, =)-labeled edge, then they are not con-

nected by a λ-labeled trail in G=.

9 A trail is a walk in which all edges are distinct.
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Any graph G satisfying the above properties will be called a nice graph. Given
a nice graph G = (V, E= � E �=), an assignment of distinct values to the vertices
in V satisfying all the equations in E= and all the non-equations in E �= is called
a solution to G. We remark that if we assign any value to a vertex P , then
=-labeled edges determine the values of all the other vertices in the component
containing P in G=, where the assignment is unique since G= contains no cycle.
The values in the same component are all distinct since λ(L) = 0 for any trail
L. Furthermore, any non-equation between two vertices in the same component
will be redundant due to the third property above.

In the following lemma, we partition the set of vertices V into two disjoint
sets, denoted Vkn and Vuk, respectively, and fix an assignment of distinct values
to the vertices in Vkn. Subject to this assignment, the number of possible assign-
ments of distinct values to the vertices in Vuk can be lower bounded (in a way
that the entire assignment becomes a solution to G).

Lemma 2. For a positive integer q and a nonnegative integer v, let G = (V, E=�
E �=) be a nice graph such that |E=| = q and |E �=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vkn and Vuk;
2. there is no =-labeled edge that is incident to a vertex in Vkn;
3. there is no =-labeled edge connecting two vertices in Vkn.

Suppose that G=
uk = (Vuk, E=) is decomposed into k components C1, . . . , Ck for

some k. Given a fixed assignment of distinct values to the vertices in Vkn, the
number of solutions to G, denoted h(G), satisfies

h(G)Nq

(N − |Vkn|)|Vuk|
≥ 1 − |V|2

N2

k∑

i=1

|Ci|2 − 2v
N

.

We refer to [12] for the proof of Lemma 2.

3 Description of XOCB

We define our proposed scheme XOCB. The algorithms are shown in Figs. 1 and 2,
and the figures are shown in Figs. 3 and 4. Below we describe the encryption of
XOCB. For the decryption, please refer to Figs. 1 and 2.

Given an n-bit block cipher E, the encryption routine of XOCB takes a triple
of nonce, associate data and message (N,A,M) ∈ {0, 1}n−2 × {0, 1}∗ × {0, 1}∗

by computing (C, T ) ∈ {0, 1}∗ × {0, 1}n as follows. Here, |C| = |M | holds for
any M .

1. Break the associated data A and the message M into n-bit blocks:

(A[1], . . . , A[a]) n←− pad(A),

(M [1], . . . , M [m]) n←− M.

Note that 0 ≤ |M [m]| ≤ n and |M [α]| = n for α ∈ [m − 1].
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2. Compute masking values:

Δ1 = EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈1〉2),
Δ2 = EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈2〉2),
Δ3 = EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈3〉2).

3. Compute the inputs and the outputs for block cipher calls:

(a) for α ∈ [0..m],

X[α] =

⎧
⎪⎨

⎪⎩

2αΔ1 ⊕ Δ2 if α = 0,
2αΔ1 ⊕ Δ2 ⊕ M [α] if α > 0, and |M [α]| = n,

2αΔ1 if α = m and |M [m]| < n,

Y [α] = EK(X[α]);

(b) for α ∈ [a], U [α] = 2αΔ2 ⊕ A[α], and V [α] = Ek(U [α]);
(c) for α ∈ {0, 1},

P [α] =

{
2mΔ1 ⊕ 2αΔ3 if α = 0,
2mΔ1 ⊕ 2αΔ3 ⊕

⊕
i∈[m] M [i]; if α = 1,

Q[α] = EK(P [α]).

4. Compute ciphertext C and tag T :

(a) for α ∈ [m],

C[α] =

{
Y [0] ⊕ Y [α] ⊕ (2α + 1)Δ1 if |M [α]| = n,

(Y [0] ⊕ Y [m] ⊕ (2m + 1)Δ1 ⊕ Δ2) ⊕msb M [m] otherwise;

(b) output (C, T ) where

C = C[1] ‖ . . . ‖ C[m],

T = Q[0] ⊕ Q[1] ⊕ 3Δ3 ⊕
⊕

α∈[a]

V [α].

XOCB and OCB. The major difference between XOCB from OCB is its additional
output masking. In more detail, in its message encryption, XOCB adds an extra
masking to the ciphertext blocks so that each ciphertext block can be viewed as
a sum of two XEX outputs:

C = E(M ⊕ Δ) ⊕ Δ ⊕ E(Δ′) ⊕ Δ′.

Since each ciphertext block is built from two block cipher calls, unlike OCB,
XOCB allows a single collision of input blocks between two queries. Instead,
ciphertext blocks in a single query share additional masking, so one can break
XOCB if there exists an input collision in a single query, and this is the fun-
damental reason why the security bound of XOCB is given as σl/2n instead of
σ2/2n for OCB.
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Algorithm XOCB.EEK
(N,A,M)

1. Σ ← 0n

2. (Δ1,Δ2,Δ3) ← InitEK
(N)

3. L ← XEXXEK
(0n,Δ1 ⊕ Δ2, 0n)

4. (M [1], . . . , M [m]) n←− M
5. for i = 1 to m − 1
6. Δ1 ← 2Δ1

7. C[i] ← XEXXEK
(M [i],Δ1 ⊕ Δ2, L)

8. Σ ← Σ ⊕ M [j]
9. end for

10. Δ1 ← 2Δ1

11. if |M [m]| = n then
12. C[i] ← XEXXEK

(M [i],Δ1 ⊕ Δ2, L)
13. else
14. Z ← XEXXEK

(0n,Δ1, L)
15. C[m] ← msb|M [m]|(Z) ⊕ M [m]
16. end if
17. Δ∗

1 ← Δ1 ⊕ Δ3

18. Δ∗
2 ← Δ1 ⊕ 2Δ3

19. Σ ← Σ ⊕ ozp(M [m])
20. C ← C[1] ‖ . . . ‖ C[m]
21. T ← XEXXEK

(0n,Δ∗
1, L) ⊕ XEXXEK

(Σ,Δ∗
2, L)

22. Γ ← PHASHEK
(A,Δ2)

23. T ← T ⊕ Γ
24. return (C, T )

Algorithm XOCB.DEK
(N,A,C, T )

1. Σ ← 0n

2. (Δ1,Δ2,Δ3) ← InitEK
(N)

3. L ← XEXXEK
(0n,Δ1 ⊕ Δ2, 0n)

4. (C[1], . . . , C[m]) n←− C
5. for i = 1 to m − 1
6. Δ1 ← 2Δ1

7. M [i] ← XEXX−1
EK

(C[i],Δ1 ⊕ Δ2, L)
8. Σ ← Σ ⊕ M [j]
9. end for

10. Δ1 ← 2Δ1

11. if |C[m]| = n then
12. M [i] ← XEXX−1

EK
(C[i],Δ1 ⊕ Δ2, L)

13. else
14. Z ← XEXXEK

(0n,Δ1, L)
15. M [m] ← msb|C[m]|(Z) ⊕ C[m]
16. end if
17. Δ∗

1 ← Δ1 ⊕ Δ3

18. Δ∗
2 ← Δ1 ⊕ 2Δ3

19. Σ ← Σ ⊕ ozp(M [m])
20. M ← M [1] ‖ . . . ‖ M [m]
21. T̂ ← XEXXEK

(0n,Δ∗
1, L) ⊕ XEXXEK

(Σ,Δ∗
2, L)

22. Γ ← PHASHEK
(A,Δ2)

23. T̂ ← T̂ ⊕ Γ
24. if T̂ = T then return M
25. else return ⊥

Fig. 1. Algorithms of XOCB. Subroutines are shown at Fig. 2.

Algorithm InitEK
(N)

1. Δ1 ← EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈1〉2)
2. Δ2 ← EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈2〉2)
3. Δ3 ← EK(N ‖ 〈0〉2) ⊕ EK(N ‖ 〈3〉2)
4. return (Δ1,Δ2,Δ3)

Algorithm XEXXEK
(X,S, V )

1. Y ← EK(X ⊕ S) ⊕ S ⊕ V
2. return Y

Algorithm XEXX−1
EK

(Y, S, V )

1. X ← E−1
K (Y ⊕ S ⊕ V ) ⊕ S

2. return X

Algorithm PHASHEK
(A,Δ)

1. Σ ← 0n

2. (A[1], . . . , A[a]) n←− A
3. for i = 1 to a
4. Δ ← 2Δ
5. Σ ← Σ ⊕ EK(ozp(A[i]) ⊕ Δ)
6. if |A[a]| = n
7. Δ ← 2Δ
8. Σ ← Σ ⊕ EK(10n−1 ⊕ Δ)
9. end if

10. return Σ

Fig. 2. Subroutines for XOCB.

4 Security of XOCB

Let XOCB[π] denote an idealized version of XOCB where the underlying n-bit
keyed block cipher EK is replaced by a random n-bit (secret) permutation π.
We can prove the security of XOCB[π] as follows. Deriving the standard model
security bound by using a block cipher E : K × {0, 1}n → {0, 1}n (for a certain
key space K) instead of π is standard, thus omitted here.
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Fig. 3. Generation of masking values for XOCB.

Fig. 4. Encryption of XOCB. (Top) Encryption of plaintext. (Bottom) Processing of
Associated data. For X ∈ {0, 1}≤n, X denotes the one-zero padding (see Sect. 2). The
computation of T involves redundant output mask values, which is omitted in the text
description of Sect. 3.
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Theorem 1. Let D be a (qe, qd, σ, l)-adversary against nAE-security of XOCB[π]
(see . Then we have

AdvnAEXOCB[π](D) ≤ 28q + 2σ + 1.5l(q + σ)
2n

+
4qσ2 + (30q2 + 10q)σ + 93q3 + 44q2

22n

+
(9σ3 + 8σ2q + 45σq2 + 6q3)l

22n+1
,

where q = qe + qd.

As defined in Sect. 2 (Security Notion), qe denotes the number of encryption
queries, qd denotes the number of decryption queries, l denotes the maximum
query length in n-bit blocks, and σ denotes the total queried blocks in n-bit
blocks.

The leading terms in the bound of Theorem 1 are l · σ/2n + l · σ3/22n, hence
XOCB achieves 2n/3-bit security if l = O(1). In general, it achieves BBB security
if l is sufficiently smaller than 2n/2. As mentioned earlier, the previous schemes
such as XKX have a similar limitation on input length. From the next subsection,
we provide the proof of Theorem 1.

Bound Comparison. To get an idea on how XOCB improves security in the
practical use cases, we show a quick comparison of bounds in Fig. 5 for the case
n = 128. We note that providing a precise and compact comparison is fairly
difficult as each scheme employs different parameters. To make it compact, we
apply our notations of l and σ to the bound of each mode, focusing on the
leading terms (shown in Table 1) and ignoring the constants. We assume no tag
truncation and O(1)-block AD. Furthermore, we assume qe = qd and that all the
messages are of the same length, thus lq = σ. As we mentioned in Introduction,
we observed a significant gain over GCM/OCB if l is not large (l = 28, about
4Kbyte). If l is large (l = 230, about 17 GBytes), the gain of XOCB is reduced
but still remains. CIP offers stronger security, in particular for the latter case.
However, it is costlier than XOCB for the use of a universal hash function.

In the full version, we also present graphs for the aforementioned settings
taking constants into consideration to see their effect on the bound. It turns out
that the bounds of OCB and XOCB do not change significantly.

4.1 Proof Setup

Let D be a (qe, qd, σ, l)-adversary against the nAE-security of XOCB[π]. We
assume that D does not make any redundant query and makes exactly qe encryp-
tion queries and qd decryption queries without loss of generality. Let

τe = (Ni, Ai,Mi, Ci, Ti)i∈[qe]

τd = (N ′
j , A

′
j , C

′
j , T

′
j , b

′
j)i∈[qd]
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Fig. 5. nAE bound comparison. (Left) l = 28 (Right) l = 230. The bound of GCM is
identical to that of OCB in our setting, hence omitted.

denote the list of encryption queries and decryption queries, respectively. Note
that D always has b′

j = ⊥ for j ∈ [qd] if D interacts with the ideal oracle. At the
end of the game, we assume that the real world oracle reveals all the inputs and
the outputs for π calls made during the query phase so the (extended) transcript
is of the form τ = (τe, τd,Π), where Π denotes the set of the permutation
input and output pairs on π. In the ideal world, the corresponding values should
be carefully sampled and revealed to the adversary. The sampling process is
described in Sect. 4.2.

For i ∈ [qe] (resp. j ∈ [qd]), let mi = |Mi|n (resp. m′
j = |M ′

j |n) be the number
of blocks in Mi (resp. M ′

j), and let ai = |pad(Ai)|n (resp. a′
j = |pad(A′

j)|n) be
the number of blocks in Ai (resp. A′

j). Let li = mi +ai and let l′j = m′
j +a′

j . For
i ∈ [qe], Ai, Mi and Ci are divided into n-bit blocks, written as follows.

(Ai[1], . . . , Ai[ai])
n←− pad(Ai),

(Mi[1], . . . , Mi[mi])
n←− Mi,

(Ci[1], . . . , Ci[mi])
n←− Ci.

Similarly, for i ∈ [qd], we write

(A′
i[1], . . . , A

′
i[a

′
i])

n←− pad(A′
i),

(C ′
i[1], . . . , C

′
i[m

′
i])

n←− C ′
i.

Let q = qe + qd. We define Ni, Ai, and ai for i ∈ [q] by letting Nj+qe
= N ′

j ,
Aj+qe

= A′
j , and aj+qe

= a′
j for j ∈ [qd]. With this extension, we can write

(Ai[1], . . . , Ai[ai])
n←− pad(Ai)

for i ∈ [q], where Aj+qe
[α] = A′

j [α] for j ∈ [qd], and α ∈ [a′
j ].

For π calls made in the i-th encryption query, we use the following notations:

– for α ∈ [mi], Xi[α] and Yi[α] denote the input and output of π, respectively,
corresponding to Mi[α];
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– for α ∈ [ai], Ui[α] and Vi[α] denote the input and output of π, respectively,
corresponding to Ai[α];

– (Pi[0], Pi[1]) and (Qi[0], Qi[1]) denote the pairs of inputs, and the pairs of
outputs corresponding to the two π calls for tag generation.

Similarly, for π calls made in the i-th decryption query, we use the following
notations:

– for α ∈ [m′
i], X ′

i[α] and Y ′
i [α] denote the input and output of π, respectively,

corresponding to C ′
i[α];

– for α ∈ [m′
i], M ′

i [α] denote the message block corresponding to C ′
i[α];

– for α ∈ [a′
i], U ′

i [α](= Ui+qe
[α]) and V ′

i [α](= Vi+qe
[α]) denote the input and

output of π, respectively, corresponding to A′
i[α];

– (P ′
i [0], P

′
i [1]) and (Q′

i[0], Q
′
i[1]) denote the pairs of inputs, and the pairs of

outputs corresponding to the two π calls for tag generation.

4.2 Simulating π in the Ideal World

In the ideal world, the underlying π is simulated at the end of the attack.
The π-evaluations are recorded in a set Π, initialized as the empty set. The
π-evaluations are sampled consistently with all the encryption and decryption
queries made during the attack. In other words, such evaluations will uniquely
determine all the queries. Whenever an evaluation π(X) = Y is fixed, (X,Y )
will be included in Π. In this way, Π grows. The set of inputs X (resp. outputs
Y ) of Π will be denoted dom(π) (resp. rng(π)). We now describe the sampling
process, which might abort if a certain bad event happens.

Step 1. For each i ∈ [qe], Δi,1, Δi,2, Δi,3 are sampled uniformly at random
from {0, 1}n. For each j ∈ [qd], (Δ′

j,1,Δ
′
j,2,Δ

′
j,3) is set to (Δi,1,Δi,2,Δi,3) if

Ni = N ′
j for some i ∈ [qe], and otherwise Δ′

j,1, Δ′
j,2, Δ′

j,3 are sampled uniformly
at random from {0, 1}n.

Let (Δi+qe,1,Δi+qe,2,Δi+qe,3) = (Δ′
i,2,Δ

′
i,3,Δ

′
i,3) for i ∈ [qd]. For i ∈ [q] and

α ∈ [0..3], we will write Ni,α = Ni ‖ 〈α〉2. Let

P def= {(i, α) : i ∈ [qe], α ∈ [0..mi]} ,

P$
def= {(i,mi) : i ∈ [qe], |Mi[mi]| < n} ,

P2
def= {(i, α, β) : (i, α), (i, β) ∈ P, α = β} ,

N def= {(i, α) : i ∈ [q], α ∈ [0..3]} ,

N2
def= {(i, α, β) : (i, α), (i, β) ∈ N , α = β} .
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For each (i,mi) ∈ P$, si is sampled uniformly at random from {0, 1}n−|Mi[mi]|.
For (i, α) ∈ P, set:

Xi[α] =

⎧
⎪⎨

⎪⎩

Δi,1 ⊕ Δi,2 if α = 0,
2αΔi,1 if (i, α) ∈ P$,

2αΔi,1 ⊕ Δi,2 ⊕ Mi[α] otherwise;

Zi[α] =

⎧
⎪⎨

⎪⎩

0 if α = 0,
(2α + 1)Δi,1 ⊕ Δi,2 ⊕ ((Ci[α] ⊕ Mi[α]) ‖ si) if (i, α) ∈ P$,

(2α + 1)Δi,1 ⊕ Ci[α] otherwise.

We now define a bad event as follows.

badA⇔ badA1 ∨ badA2 ∨ badA3 ∨ badA4 ∨ badA5,

where

– badA1 ⇔ there exists (i, α, β) ∈ P2 such that Xi[α] = Xi[β];
– badA2 ⇔ badA2a ∨ badA2b ∨ badA2c ∨ badA2d, where

• badA2a ⇔ there exist (i, α, β) ∈ P2, (j, α′), (k, β′) ∈ P such that Xi[α] =
Xj [α′] and Xi[β] = Xk[β′];

• badA2b ⇔ there exist (i, α, β) ∈ P2, (j, α′) ∈ P, (k, β′) ∈ N such that
Xi[α] = Xj [α′] and Xi[β] = Nk,β′ ;

• badA2c ⇔ there exist (i, α, β) ∈ P2, (j, α′), (k, β′) ∈ N such that Xi[α] =
Nj,α′ and Xi[β] = Nk,β′ ;

• badA2d ⇔ there exist (i, α, β) ∈ N2, (j, α′), (k, β′) ∈ P such that Ni,α =
Xj [α′] and Ni,β = Xk[β′];

– badA3 ⇔ badA3a ∨ badA3b, where
• badA3a ⇔ there exist three distinct (i, α), (j, β), (k, γ) ∈ P such that

Xi[α] = Xj [β] = Xk[γ];
• badA3b ⇔ there exist distinct (i, α), (j, β),∈ P and (k, γ) ∈ N such that

Xi[α] = Xj [β] = Nk,γ ;
– badA4 ⇔ badA4a ∨ badA4b, where

• badA4a ⇔ there exists (i, α, β) ∈ P2 such that Zi[α] = Zi[β];
• badA4b ⇔ there exist i ∈ [q], (α, β) ∈ [3]∗2 such that either Δi,α = 0 or

Δi,α = Δi,β ;
– badA5 ⇔ badA5a ∨ badA5b, where

• badA5a ⇔ there exist distinct (i, α, α′), (j, β, β′) ∈ P2 such that Xi[α] =
Xj [β] and Zi[α] ⊕ Zi[α′] = Zj [β] ⊕ Zj [β′];

• badA5b ⇔ there exist (i, α, α′) ∈ P2, (j, β, β′) ∈ N2 such that Xi[α] = Nj,β

and

Zi[α] ⊕ Zi[α′] =

⎧
⎪⎨

⎪⎩

Δj,β if β′ = 0,
Δj,β′ if β = 0,
Δj,β ⊕ Δj,β′ otherwise.
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If badA occurs, then the sampling process aborts.

Step 2. In this step, we construct a system of equations in Y -variables, repre-
senting the images of X-variables under π. For (i, α) ∈ P, let Yi[α] = π(Xi[α]).
It should be the case that

Yi[α] ⊕ Yi[0] = Zi[α]

for each α > 0. Let L denote a system of equations obtained by collecting all
these equations, as well as

π(Ni,0) ⊕ π(Ni,1) = Δi,1,

π(Ni,0) ⊕ π(Ni,2) = Δi,2,

π(Ni,0) ⊕ π(Ni,3) = Δi,3

for i ∈ [q]. A solution to L is sampled uniformly at random from the set of all
solutions to L, and the corresponding π-evaluations are included in Π. We will
show later that a solution to L does exist as long as badA does not happen.

Step 3. In this step, we handle the associated data. For i ∈ [q] and α ∈ [ai], set
Ui[α] = 2αΔi,2 ⊕ Ai[α] and

– Vi[α] = π(Ui[α]) if Ui[α] ∈ dom(π),
– Vi[α] ←$ {0, 1}n \ rng(π) otherwise, where π(Ui[α]) = Vi[α] is added to Π.

Step 4. In this step, we handle the decryption queries. Let

P ′ def= {(i, α) : i ∈ [qd], α ∈ [m]} ,

P ′
0

def= {(i, 0) : i ∈ [qd]} ,

P ′
$

def= {(i,m′
i) ∈ P ′ : i ∈ [qd], |C ′

i[m
′
i]| < n} .

For (i, α) ∈ P ′, set:

Z ′
i[α] =

⎧
⎪⎨

⎪⎩

0 if α = 0,
((2α + 1)Δ′

i,1 ⊕ Δ′
i,2) ⊕msb C ′

i[α] if (i, α) ∈ P ′
$,

(2α + 1)Δ′
i,1 ⊕ C ′

i[α] otherwise.
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For (i, α) ∈ P ′
$ ∪ P ′

0, set X ′
i[α] = Δ′

i[α] and

– Y ′
i [α] = π(X ′

i[α]) if X ′
i[α] ∈ dom(π),

– Y ′
i [α] ←$ {0, 1}n \ rng(π) otherwise, where π(X ′

i[α]) = Y ′
i [α] is added to Π.

Next, for (i, α) ∈ P ′ \ (P ′
$ ∪ P ′

0), set Y ′
i [α] = Y ′

i [0] ⊕ Z ′
i[α] and

– X ′
i[α] = π−1(Y ′

i [α]) if Y ′
i [α] ∈ rng(π),

– X ′
i[α] ←$ {0, 1}n \ dom(π) otherwise, where π(X ′

i[α]) = Y ′
i [α] is added to Π.

Finally, for (i, α) ∈ P ′, set

M ′
i [α] =

{
(Y ′

i [α] ⊕ Y ′
i [0]) ⊕msb Z ′

i[α] if (i, α) ∈ P ′
$,

X ′
i[α] ⊕ 2αΔ′

i,1 ⊕ Δ′
i,2 otherwise.

Step 5. In this step, we sample the π-evaluations needed for tag generation. For
each i ∈ [qe], set:

Pi[0] = 2miΔi,1 ⊕ Δi,3;

Pi[1] = 2miΔi,1 ⊕ 2Δi,3 ⊕
⊕

α∈[mi]

Mi[α];

Zi,∗ = Ti ⊕ 3Δi,3 ⊕
⊕

α∈[ai]

Vi[α].

For each j ∈ [qd], set:

P ′
i [0] = 2m′

iΔ′
i,1 ⊕ Δ′

i,3;

P ′
i [1] = 2m′

iΔ′
i,1 ⊕ 2Δ′

i,3 ⊕
⊕

α∈[m′
i]

M ′
i [α];

Z ′
i,∗ = T ′

i ⊕ 3Δ′
i,3 ⊕

⊕

α∈[a′
i]

V ′
i [α].

Let

P∗ def= {(i, α) : i ∈ [qe], α ∈ {0, 1}},

P∗
coll

def= {(i, α) ∈ P∗ : Pi[α] ∈ dom(π) or (j, β) ∈ P∗ \ {(i, α)}
such that Pi[α] = Pj [β]}.

We now define bad events badB and badC; let

badB⇔ badB1 ∨ badB2 ∨ badB3 ∨ badB4 ∨ badB5,

where

– badB1 ⇔ there exists i ∈ [qe] such that (i, 0), (i, 1) ∈ P∗
coll.

– badB2 ⇔ there exists i ∈ [qe] such that Zi,∗ = 0.
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– badB3 ⇔ there exists (i, α) ∈ P∗ such that Pi[α] ∈ dom(π) and π(Pi[α]) ⊕
Zi,∗ ∈ rng(π).

– badB4 ⇔ there exist three distinct (i, α), (j, β), (k, γ) ∈ P∗ such that

Pi[α] = Pj [β] = Pk[γ].

– badB5 ⇔ there exist (i, α), (j, β) ∈ P∗ such that i = j, Pi[α] = Pj [β], and
Zi,∗ = Zj,∗,

and let
badC⇔ badC1 ∨ badC2 ∨ badC3 ∨ badC4,

where

– badC1 ⇔ there exists i ∈ [qd] such that P ′
i [0] ∈ dom(π), P ′

i [1] ∈ dom(π) and
π(P ′

i [0]) ⊕ π(P ′
i [1]) = Z ′

i,∗.
– badC2 ⇔ there exist i ∈ [qd], α ∈ {0, 1}, and (j, β) ∈ P∗

coll such that P ′
i [α] ∈

dom(π), P ′
i [1 − α] = Pj [1 − β], and π(P ′

i [α]) ⊕ π(Pj [β]) = Z ′
i,∗ ⊕ Zj,∗.

– badC3 ⇔ there exist i ∈ [qd], and (j, α) ∈ P∗ such that P ′
i [0] = Pj [α], P ′

i [1] =
Pj [1 − α], and Z ′

i,∗ = Zj,∗.
– badC4 ⇔ there exist i ∈ [qd], (j, α), (k, β) ∈ P∗ such that j = k, P ′

i [0] = Pj [α],
P ′

i [1] = Pk[β], Pj [1 − α] = Pk[1 − β], and Z ′
i,∗ = Zj,∗ ⊕ Zk,∗.

Without badB, one can use Mirror theory in the ideal world, while the adversarial
forgery is prevented by excluding badC. Assuming ¬badB ∧ ¬badC, we establish
a system of equations in π(Pi[0]) and π(Pi[1]) and then sample one solution
uniformly at random from the set of all possible solutions. The corresponding π-
evaluations, namely Qi[α] = π(Pi[α]) and Q′

j [β] = π(P ′
j [α]) are includeded in Π

for i ∈ [qe] and j ∈ [qd]. Let L′ denote a system of equations and non-equations
in Q-variables constructed by the following rules: for each i ∈ [qe],

– if Pi[0] ∈ dom(π), add π(Pi[1]) = π(Pi[0]) ⊕ Zi,∗ to Π,
– if Pi[1] ∈ dom(π), add π(Pi[0]) = π(Pi[1]) ⊕ Zi,∗ to Π,
– otherwise, add an equation Qi[0] ⊕ Qi[1] = Zi,∗ to L′,

and for each i ∈ [qd],

– if P ′
i [0] ∈ dom(π) and P ′

i [1] /∈ dom(π), add Q′
i[1] = π(P ′

i [0]) ⊕ Z ′
i,∗ to L′,

– if P ′
i [1] ∈ dom(π) and P ′

i [0] /∈ dom(π), add Q′
i[0] = π(P ′

i [1]) ⊕ Z ′
i,∗ to L′,

– otherwise, add Q′
i[0] ⊕ Q′

i[1] = Z ′
i,∗ to L′.

Once L′ is established, one solution is sampled uniformly at random from the set
of solutions to L′ such that none of the values is contained in rng(π). There is at
least one such solution assuming ¬badB∧¬badC. For i ∈ [qe], j ∈ [qd], α ∈ {0, 1},
the following π-evaluatoins are added to Π:

π(Pi[α]) = Qi[α],
π(P ′

j [α]) = Q′
j [α].
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Once all the steps are finished without abortion, the following transcript is
returned:

τ =
{
(Ni, Ai,Mi, Ci, Ti)i∈[qe], (N

′
j , A

′
j , C

′
j , T

′
j , bj)j∈[qd],Π

}
.

4.3 Proof of Theorem 1

We are now ready to prove Theorem 1. The transcript τ will be called bad if
badA, badB, or badC occurs. Let Tbad be the set of all the bad transcripts. Then
the probability that a transcript is bad in the ideal world is upper bounded as
follows.

Lemma 3.

Pr [Tid ∈ Tbad] ≤ 25q + 2σ + 1.5l(q + σ)
2n

+
4qσ2 + (30q2 + 4q)σ + 93q3 + 44q2

22n

+
(σ3 + 8σ2q + 45σq2 + 6q3)l

22n+1
.

Lemma 3 holds since

Pr [Tid ∈ Tbad] ≤ Pr [badA] + Pr [badB] + Pr [badC]

and by the following lemmas.

Lemma 4.

Pr [badA] ≤ 1.5l(q + σ) + 14q
2n

+
(σ3 + 8σ2q + 45σq2 + 6q3)l

22n+1
.

Lemma 5.

Pr [badB] ≤ 3q + 2σ
2n

+
73q3 + 22q2σ + 4q2

22n
.

Lemma 6.

Pr [badC] ≤ 8q
2n

+
4qσ2 + 8q2σ + 20q3 + 4qσ + 40q2

22n
.

The proof of the above lemmas is given in the full version.
If a transcript is not bad, then such a transcript will be called good. The ratio

of probabilities of obtaining any good transcript in the ideal and the real worlds
is lower bounded as follows.

Lemma 7. For any transcript τ /∈ Tbad,

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − 4σ3l + 6σq

22n
− 3qd

2n
.
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Proof. Fix a transcript τ /∈ Tbad. Let B =
{
j ∈ [qd] : N ′

j = Ni for ∀i ∈ [qe]
}
. Let

L denote the number of input/output pairs given to the adversary. Since the
probability that D obtains bj = ⊥ is exactly 1 − 1

2n for each j ∈ [qd], we have

Pr [Tre = τ ] =
(2n − L)!
(2n)!

·
(

1 − 1
2n

)qd

≥ 1
(2n)L

·
(
1 − qd

2n

)
. (1)

For the set of π-evaluations obtained in the ideal world Π, let

L1 = {Xi[α] : (i, α) ∈ P, i ∈ [qe]} ∪ {Ni ‖ 〈α〉 : (i, α) ∈ N} ,

L2 = {Ui[α] : (i, α) ∈ [q] × [ai]} \ L1,

L3 =
{
X ′

j [α] : (j, α) ∈ P ′} \ (L1 ∪ L2) ,

L4 =
(
{Pi[α] : (i, α) ∈ [qe] × {0, 1}} ∪

{
P ′

j [α] : (j, α) ∈ [qd] × {0, 1}
})

\ (L1 ∪ L2 ∪ L3) .

Note that |L1|, |L2|, |L3|, |L4| are the number of π-evaluations determined by
step 2, step 3, step 4 and step 5, respectively, and hence |L1|+|L2|+|L3|+|L4| =
L. Then, we make the following observation.

1. Since si is sampled for each partial block (i,mi) ∈ P$, the probability that
D obtains (Ci[mi], si) is exactly 1

2n for (i, α) ∈ P$. Since ciphertexts and
tags are chosen uniformly and independently at random, the probability of D
obtaining them is at most

1
(2n)σe(2n)qe

where σe =
∑

i∈[qe]
mi.

2. At step 1, Δi,1, Δi,2, Δi,3 are sampled uniformly and independently at random
from {0, 1}n for each i ∈ [qe]. Also, Δ′

j,1, Δ′
j,2, Δ′

j,3 are sampled in the same
way. Therefore, the probability that D obtains the masking values (in the
transcript) is given as

1
(2n)3(qe+|B|) .

3. At step 2, we determine the π-evaluations used in the mask generations and
message encryptions. For i ∈ [qe], let

Vi,X = {π(Xi[α]) : (i, α) ∈ P} ,

Ei,X = {(π(Xi[0]), π(Xi[α])) : α ∈ [mi]} ,

Gi,X = (Vi,X, Ei,X)

where (π(Xi[0]), π(Xi[α])) ∈ Ei,X has label (Zi[α],=). For i ∈ [q], let

Vi,N = {π(Ni[α]) : α ∈ {0, 1, 2, 3}} ,

Ei,N = {(π(Ni,0), π(Ni,α)) : α ∈ [3]}
Gi,N = (Vi,N, Ei,N)
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where (π(Ni,0), π(Ni,α)) ∈ Ei,N has label (Δi,α,=). Note that Gi,X for i ∈ [qe]
and Gi,N for i ∈ [q] are all connected graphs, and we will call these graphs by
‘segments’. Now G be the union of all segments, i.e.,

G =

⎛

⎝
⋃

i∈[qe]

Gi,X

⎞

⎠ ∪

⎛

⎝
⋃

i∈[q]

Gi,N

⎞

⎠ .

Then, G has the following properties.
– No more than two segments are included in a single connected component

of G. Otherwise, either there exist three segments meeting in one vertex,
which implies badA3, or three segments meeting in two different vertices,
which implies badA2.

– G does not have any cycle. If there exists a cycle in a single segment, then
it implies badA1, and if there exists a cycle contained in two (connected)
segments, there should be at least two different collisions, which implies
badA2.

– Let u denote the number of components in G=, and let C1, . . . , Cu be the
components of G=. Then obviously

∑u
i=1 |Ci| = |L1| and |Ci| ≤ 4l for each

i = 1, . . . , u. Therefore we have

u∑

i=1

|Ci|2 ≤ 4l |L1| . (2)

– λ(L) = 0 for any trail L in G(= G=) since otherwise such a trail will
be included in a single segment or both the endpoints of the trails
are included in the two different segments respectively. The former case
implies badA4, and the latter case implies badA5. Recall that any three
segments are not included in a single component.

By Lemma 2, we can lower bound the number of the possible assignments
such that the evaluations sampled in step 2 are the same as the corresponding
part of the transcript. Let h(G) denote the possible assignments of distinct
values to the vertices of G. In step 2, one of the possible h(G′) assignments is
chosen uniformly at random. Note that |E=| = σe + 3qe + 3 |B|. By Lemma 2
and (2),

h(G) ≥
(N)|L1|

Nσe+3qe+3|B| ×
(

1 − |L1|2

N2

u∑

i=1

|Ci|2
)

≥
(N)|L1|

Nσe+3qe+3|B| ×
(

1 − 4l |L1|3

N2

)

.

4. At step 3, the oracle samples Vi[α]’s in the encryption queries and V ′
j [β]’s in

the decryption queries from {0, 1}n excluding |L1| numbers of the evaluations
determined in step 2. Therefore, the probability that D obtains Vi[α]’s (in the
transcript) is 1

(2n−|L1|)|L2|
.
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5. At step 4, the oracle samples the primitive calls for the message blocks in
the decryption queries. For i ∈ [qd], let X ′

i[0] = Δ′
i[0]. The oracle samples

Y ′
i [0] = π(X ′

i[0]) from {0, 1}n excluding |L1| + |L2| numbers of evaluations
determined in step 2 and step 3. Then Y ′

i [α]’s are determined by Z ′
i[α]⊕Y ′

i [0].
After that, X ′

i[α]’s are sampled uniformly at random from {0, 1}n. There-
fore, the probability that D obtains Y ′

i [0]’s and X ′
i[α]’s (in the transcript) is

1
(2n−|L1|−|L2|)|L3|

.
6. At step 5, we determine the π-evaluations used to generate tags. Note that

there is no successful forgery assuming ¬badC. Let

W = {π(Pi[α]) : (i, α) ∈ P∗, Pi[α] ∈ dom(π)}
∪

{
π(P ′

j [β]) : (j, β) ∈ [qd] × {0, 1} , P ′
j [β] ∈ dom(π)

}
,

V ′
e =

⋃

i∈[qe]

{π(Pi[0]), π(Pi[1])} \ W,

V ′
d =

⋃

i∈[qd]

{π(P ′
i [0]), π(P

′
i [1])} \ W,

V ′ = V ′
e ∪ V ′

d,

where the elements of V ′ are unknown. Define a graph G′ =(
V ′ � W, E ′= � E ′�=)

, where

E ′= = {(π(Pi[0]), π(Pi[1])) : i ∈ [qe]} ,

E ′�= = {(π(P ′
i [0]), π(P

′
i [1])) : i ∈ [qd]} ,

(Pi[0], Pi[1]) ∈ E ′= has label (Zi,∗,=), and (P ′
i [0], P

′
i [1]) ∈ E ′�= has label

(Z ′
i,∗, =). The graph G′ has the following properties.

– G′ contains no cycle since otherwise there should be two indices (i, 0) and
(i, 1) that are contained in P∗

coll, which implies badB1.
– No more than two edges are included in one component. Otherwise, either

three edges should meet in one vertex which implies badB4 or we have

(i, 0), (i, 1) ∈ P∗
coll,

which implies badB1.
– Let u′ denote the number of components in G′=, and let C′

1, C′
2, . . . , C′

u′

be the components of G′=. Then
∑u′

i=1 |C′
i| = |L4| and |C′

i| ≤ 3 for each
i = 1, . . . , u′. Therefore we have

u′
∑

i=1

|C′
i|
2 ≤ 3 |L4| . (3)

– For any trail L in G′= = (V ′ � W, E ′=), λ(L) = 0, since otherwise such
a trail L is a single zero-labeled edge or both endpoints of the trail are
included in the two different edges respectively. The former case implies
badB2, and the latter case implies badB5. Recall that any three edges
cannot be included in a single component.
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Similarly to the analysis for step 2, we use Lemma 2 to lower bound the
number of possible assignments such that the evaluations sampled in step 5
are the same as the corresponding part of the transcript. Let h(G′) denote
the possible assignments of distinct values to the vertices of G′. In step 5, one
of the possible h(G′) assignments is chosen uniformly at random. Note that
|E=| ≤ qe and

∣
∣E �=∣

∣ ≤ qd. By Lemma 2 and (3), we have

h(G′) ≥
(N − |L1| − |L2| − |L3|)|L4|

Nqe

(

1 − L

N2

k∑

i=1

|C′
i|
2 − 2qd

N

)

≥
(N − |L1| − |L2| − |L3|)|L4|

Nqe

(

1 − 3L |L4|
N2

− 2qd

N

)

.

By the above argument, we have

1
Pr [Tid = τ ]

= (2n)σe · (2n)qe · (2n)3(qe+|B|) · h(G) · (2n − |L1|)|L2|

× (2n − |L1| − |L2|)|L3| · h(G′)

≥ (2n)σe+qe · (2n)3(qe+|B|) · (2n − |L1|)|L2|+|L3|

×
(2n)|L1|

(2n)σe+3qe+3|B| ·
(

1 − 4l |L1|3

22n

)

×
(N − |L1| − |L2| − |L3|)|L4|

2nqe
·
(

1 − 3L |L4|
22n

− 2qd

2n

)

≥ (2n)3(qe+|B|)

(2n)3(qe+|B|) · (2n)L ·
(

1 − 4l |L1|3 + 3L |L4|
22n

− 2qd

2n

)

≥ (2n)L ·
(

1 − 4l |L1|3 + 3L |L4|
22n

− 2qd

2n

)

.

(4)

Therefore by (1) and (4), we have

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
(

1 − 4l |L1|3 + 3L |L4|
22n

− 2qd

2n

)

·
(
1 − qd

2n

)

≥ 1 − 4 |L1|3 l + 3L |L4|
22n

− 3qd

2n

≥ 1 − 4σ3l + 6σq

22n
− 3qd

2n

where the last inequality holds since L < σ and |L4| ≤ 2q. ��

5 On the Tightness of the Bound of XOCB

We show a brief analysis of the tightness of the bound in Theorem 1 by presenting
an authentication attack against XOCB. The attack tries to invoke the event
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corresponding to badA1. For a positive integer s ≥ 2, the attack requires l ≈ 2n/s,
qe ≈ 2(s−2)n/s, and σe = lqe ≈ 2(s−1)n/s. This is not tight for our claim of 2n/3-
bit security with l = O(1). However, if l is not constant, especially when s = 2,
the attack complexity is l ≈ 2n/2, qe = O(1), and σe ≈ 2n/2; thus, it is a
tight attack. When O(1) < l < 2n/2, the attack is not tight for our claim in
Theorem 1. For example, if s = 3, the attack complexity is l ≈ 2n/3, qe ≈ 2n/3,
and σe ≈ 22n/3. The gap from Theorem 1 increases as s increases.

The attack procedure is as follows:

1. The adversary queries (N,A,M) to the encryption oracle such that M =
M [1] ‖ M [2] ‖ · · · ‖ M [m] and |M [m]| = n − 1. Then it obtains (C, T ), where
C = C[1]‖C[2]‖· · ·‖C[m], and also obtains (n−1)-bit value Z = M [m]⊕C[m].

2. Assume that a collision M [i] ⊕ 2iΔ1 ⊕ Δ2 = M [j] ⊕ 2jΔ1 ⊕ Δ2 occurs for
i, j ∈ [m − 1] and i = j. Then, M [i] ⊕ M [j] = C[i] ⊕ C[j] holds; thus, the
adversary can detect the collision.

3. The adversary compute Δ1 = (2i ⊕ 2j)−1(M [i] ⊕ M [j]).
4. The adversary queries (N ′, A′, C ′, T ′) to the decryption oracle such that N ′ =

N , A′ = A, T ′ = T , C ′ = C ′[1]‖C ′[2]‖· · ·‖C ′[m], C ′[1] = 2Δ1, C ′[2] = 22Δ1,
C ′[i] = C[i] for i ∈ [3..m−1], |C ′[m]| = n−1, and C ′[m] = Z⊕msbn−1(2Δ1⊕
22Δ1 ⊕ M [1] ⊕ M [2]) ⊕ M [m].

The last decryption query is accepted with a high probability. For i ∈ [m], let
M ′[i] and Σ′ be a valid i-th decrypted plaintext block and a valid checksum of
the last decryption query (N ′, A′, C ′, T ′), respectively.

Σ′ =
⊕

i∈[m]

ozp(M ′[i]) = M ′[1] ⊕ M ′[2] ⊕ ozp(M ′[m]) ⊕
⊕

i∈[3..m−1]

M ′[i]

= E−1
K (Δ2 ⊕ L) ⊕ 2Δ1 ⊕ Δ2 ⊕ E−1

K (Δ2 ⊕ L) ⊕ 22Δ1 ⊕ Δ2

⊕ ozp(msbn−1(2Δ1 ⊕ 22Δ1 ⊕ M [1] ⊕ M [2]) ⊕ M [m]) ⊕
⊕

i∈[3..m−1]

M [i]

If the adversary has

ozp(msbn−1(2Δ1 ⊕ 22Δ1 ⊕ M [1] ⊕ M [2]) ⊕ M [m])

= 2Δ1 ⊕ 22Δ1 ⊕ M [1] ⊕ M [2] ⊕ ozp(M [m]),
(5)

it obtains Σ′ =
⊕m

i=1 ozp(M [i]) = Σ, and T becomes the valid tag for
(N ′, A′, C ′). The adversary can check whether (5) holds before the last decryp-
tion query; thus, if (5) does not hold, the adversary can make a successful forgery
by changing C ′ accordingly, for example, setting C ′[2] = 22Δ1, C ′[3] = 23Δ1,
C ′[i] = C[i] for i ∈ {1}∪{4, . . . ,m−1}, and C ′[m] = Z ⊕msbn−1(22Δ1⊕23Δ1⊕
M [2] ⊕ M [3]) ⊕ M [m], or changing the length of C ′[m] to smaller bits.

Next, we discuss the attack complexity. In step 2, the adversary requires
the collision M [i] ⊕ 2iΔ1 ⊕ Δ2 = M [j] ⊕ 2jΔ1 ⊕ Δ2 for i, j ∈ [m − 1] and
i = j. To obtain this collision with a high probability, the adversary needs to
query a sufficiently long plaintext M in step 1. Assuming that m ≈ 2n/s for a
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positive integer s, the collision probability is approximately m2/2n ≈ 2(2−s)n/s.
Repeating step 1 with m ≈ 2n/s qe ≈ 2(s−2)n/s times, the adversary obtains
the collision with a high probability. Thus, the attack requires l ≈ 2n/s, qe ≈
2(s−2)n/s, and σe = lqe ≈ 2(s−1)n/s when l is not a constant. If l = O(1), the
collision probability of step 2 is ≈ 1/2n and the attack complexity is qe ≈ σe ≈
2n, much larger than what the bound tells (22n/3). Further analysis is open.

6 Implementations of XOCB

This section presents the implementations for the instantiation of XOCB using
AES – AES-XOCB10.

On 64-Bit High-End Processors. Using the parallelizability of XOCB, our
implementation of AES-XOCB can take advantage of the pipelined execution of
AES-NI on high-end CPUs, resulting in an asymptotic speed of 0.5 cpb. This
performance is as expected since the fully pipelined AES-ECB runs at 0.3 cpb
and doubling in GF(2128) runs at 0.2 cpb using SIMD instructions in our timing
environment.

We compared the relative performance of AES-XOCB against AES-OCB and
AES-CIP using the same AES-NI-based AES implementation, SIMD-based dou-
bling in GF(2128), and PCLMULQDQ-based multiplication in GF(2128) supporting
pipelined execution on multiple blocks. Our testing included the time cost of the
entire procedure, including setting up keys, generating masks, and performing
encryption and authentication. We used plaintexts of various lengths for testing,
ranging from 16 to 4096 bytes (with a 16-byte AD).

Comparing the results, AES-XOCB has a slightly inferior performance com-
pared to AES-OCB but is still close. AES-XOCB’s initialization procedure uses
five AES calls for computing mask initial values, which slightly impacts perfor-
mance for short messages. However, for message lengths exceeding 512 bytes, the
difference narrows to 0.1∼0.2 cpb, which is the cost of a doubling. AES-XOCB
outperforms AES-CIP for both short and long messages. Figure 6 shows how the
performance of AES-XOCB changes with plaintext length, and how it compares
to AES-OCB and AES-CIP.

On 8-Bit Low-End Microprocessors. We demonstrate the practical rel-
evance of XOCB in constrained environments by implementing AES-XOCB on
an 8-bit AVR. The simulation result on ATmega328P shows that AES-XOCB
requires 8556 bytes of ROM and 672 bytes of RAM to support both encryp-
tion and decryption, including key setup and mask generation. Figure 7 shows
concrete execution time for the entire procedure, including key setup, mask gen-
eration, encryption, and authentication. For a 128-byte message and a 16-byte
AD, AES-XOCB processes at 306 cpb, while an optimized AES-GCM implemen-
tation requires 11012 bytes of ROM and runs at 880 cpb [40].

10 The source codes can be found via https://www.dropbox.com/sh/
k0y8h1boah072mn/AAAYPUr0j4MU9F3-w1k7U52Ha?dl=0.

https://www.dropbox.com/sh/k0y8h1boah072mn/AAAYPUr0j4MU9F3-w1k7U52Ha?dl=0
https://www.dropbox.com/sh/k0y8h1boah072mn/AAAYPUr0j4MU9F3-w1k7U52Ha?dl=0


558 Z. Bao et al.

Fig. 6. Speeds on an x86-64 CPU Fig. 7. Speeds on an 8-bit AVR

7 Conclusions

We have shown a new authenticated encryption mode XOCB. It has a quantita-
tively stronger security guarantee than the seminal OCB while inheriting most
of the efficiency advantages. In particular, it is exactly rate-one and has beyond-
birthday-bound security assuming SPRP for the underlying block cipher, if the
maximum input length is sufficiently smaller than the birthday bound. The block
cipher could be instantiated with an n-bit block cipher with a key of any length,
allowing us to use AES-128 for a typical example. There are numerous works on
BBB-secure AE modes, however, they rely on a stronger primitive (e.g. TBC) or
stronger assumption (e.g. ideal cipher model), and XOCB is the first scheme that
achieves the aforementioned goals without such a compromise. Several further
research topics, such as optimizing the scheme to reduce computational overhead
or reducing the length contribution to the bound, and a more comprehensive
benchmark, would be interesting directions.
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Abstract. Falcon is one of the three post-quantum signature schemes
selected for standardization by NIST. Due to its low bandwidth and high
efficiency, Falcon is seen as an attractive option for quantum-safe embed-
ded systems. In this work, we study Falcon’s side-channel resistance by
analysing its Gaussian samplers. Our results are mainly twofold.

The first result is an improved key recovery exploiting the leakage
within the base sampler investigated by Guerreau et al. (CHES 2022).
Instead of resorting to the fourth moment as in former parallelepiped-
learning attacks, we work with the second order statistics covariance and
use its spectral decomposition to recover the secret information. Our
approach substantially reduces the requirement for measurements and
computation resources: 220 000 traces is sufficient to recover the secret
key of Falcon-512 within half an hour with a probability of ≈ 25%. As
a comparison, even with 106 traces, the former attack still needs about
1000 h hours CPU time of lattice reduction for a full key recovery. In addi-
tion, our approach is robust to inaccurate leakage classification, which is
another advantage over parallelepiped-learning attacks.

Our second result is a practical power analysis targeting the integer
Gaussian sampler of Falcon. The analysis relies on the leakage of ran-
dom sign flip within the integer Gaussian sampling. This leakage was
exposed in 2018 by Kim and Hong, but it is not considered in Falcon’s
implementation and unexploited for side-channel analysis until now. We
identify the leakage within the reference implementation of Falcon on an
ARM Cortex-M4 STM32F407IGT6 microprocessor. We also show that
this single bit of leakage is in effect enough for practical key recovery:
with 170 000 traces one can fully recover the key of Falcon-512 within
half an hour. Furthermore, combining the sign leakage and the afore-
mentioned leakage, one can recover the key with only 45 000 signature
measurements in a short time.

As a by-product, we also extend our power analysis to Mitaka which
is a recent variant of Falcon. The same leakages exist within the integer
Gaussian samplers of Mitaka, and they can also be used to mount key
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recovery attacks. Nevertheless, the key recovery in Mitaka requires much
more traces than it does in Falcon, due to their different lattice Gaussian
samplers.

1 Introduction

Recently, NIST announced the first post-quantum cryptography algorithms to
be standardized. For digital signatures, two of the three selected algorithms
are lattice-based: Dilithium [25] and Falcon [33], the third one is a hash-based
signature scheme SPHINCS+ [19]. In comparison, Dilithium and Falcon have
better overall performance.

Dilithium and Falcon are constructed in two distinct frameworks. Dilithium
uses “Fiat-Shamir with aborts” paradigm, developed by Lyubashevsky [23,24]
and Falcon uses the hash-and-sign paradigm. Two schemes achieve acceptable
overall performance for many use cases and also have their own advantages:
Dilithium has a simpler implementation and more flexible parameter selections,
while Falcon has a greatly smaller public key and signature sizes. For this, each of
them would have potential applications in various situations and NIST eventually
selected both schemes for standardization.

For a real-world deployed scheme, implementation security is of great impor-
tance. For insecure implementations, sensitive information may leak through side
channels, e.g. execution time, power consumption, and electromagnetic ema-
nations. These leakages may be exploited to mount devastating attacks that
are the major threat to cryptographic embedded devices. The implementation
security of Dilithium is relatively well-studied. The reference implementation of
Dilithium is constant time, which eliminates side-channel vulnerabilities in for-
mer Fiat-Shamir lattice signatures [2,10,16,30,34]. Moreover, efficient masking
of Dilithium at any order is proposed in [27], which protects Dilithium against
stronger side-channel attacks.

In contrast, the implementation security of Falcon is intricate. Falcon fol-
lows the GPV framework [14] to prevent statistical attacks [7,9,28,37]. In the
GPV signature scheme, signing requires Gaussian sampling which is a notori-
ous target of side-channel attacks [10,13,16,21]. Furthermore, Falcon’s sampling
heavily relies on floating-point operations, which complicates the secure imple-
mentation. For the above reasons, while the implementation of Falcon is now
secure against timing attacks [18,31], countermeasures against stronger side-
channel attacks like power analysis remain a challenging open problem. The
lack of side-channel protections provides an avenue for side-channel attacks. The
first side-channel attack on Falcon is an electromagnetic attack presented by
Karabulut and Aysu [20] that targets the floating-point multiplications within
Falcon’s Fast Fourier Transform. The Karabulut-Aysu attack is substantially
improved later [17]: 5 000 power traces is sufficient for a full key recovery of
Falcon-512 on ChipWhisperer. Also in [17], Guerreau et al. proposed another
practical power analysis on Falcon based on a different side-channel leakage.
It exploits the power leakage within the base Gaussian sampler to filter signa-
tures in a secret-dependent region, and completes the key recovery by applying
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parallelepiped-learning attacks [7,28]. As the very first side-channel attack tar-
geting Falcon’s Gaussian sampling, this attack is rather expensive in terms of
computation resources and measurements: practical key recovery needs millions
of traces.

Our Contributions. In this work, we develop several power analysis attacks on
Falcon. Our contributions are mainly twofold.

We substantially improve the key recovery in the power analysis of Falcon’s
base sampler of [17]. The exploited leakage, called half Gaussian leakage, filters
signatures in the slice {v : |〈v,b〉| ≤ ‖b‖2} where b is the secret key. The key
recovery is in essence to learn b from this secret-dependent slice, which was
done by parallelepiped-learning attacks [7,28] in [17]. Our main idea stems from
the observation that the projection of filtered signatures tends to be unusually
short in the direction of the slice. We therefore proceed to learn the direction
and the width of the slice, i.e. b

‖b‖ and ‖b‖, through the spectral decomposition
of the covariance of filtered signatures. Compared with the fourth moment con-
sidered in previous parallelepiped-learning attacks, covariance, as a lower order
statistic, allows smaller measure errors and thus leads to a more accurate approx-
imation of b. As a result, our new key recovery algorithm significantly lowers
the requirement of measurements and computation resources: 220 000 traces is
sufficient for our algorithm to recover the secret key within half an hour with
a probability of ≈ 25%; by contrast, even with 106 traces, the key recovery
of [17] still requires around 1000 h CPU time of lattice reduction. Moreover, the
effectiveness of our key recovery relies on the condition number and the measure-
ment of the covariance of filtered signatures, thus our algorithm can even work
with inaccurate leakage classification, say with accuracy 55%. In comparison,
parallelepiped-learning attacks do not work well if the domain of filtered signa-
tures has no clear boundary, which makes previous analysis reliant on accurate
leakage classification. Therefore our result validates half Gaussian leakage to be
a threat more serious than previously imagined.

We also propose a new power analysis of Falcon’s integer sampler that is
at the layer1 above the base sampler investigated in [17]. To cope with variable
parameters, Falcon’s integer sampler first transforms a sample z+ from fixed half
integer Gaussian into a bimodal half Gaussian sample z = b + (2b − 1)z+ with
a random b ∈ {0, 1} and then accepts z with corresponding probability. The
random bit b can be retrieved via simple power analysis as shown in [21]. This
leakage, called sign leakage, filters signatures in the halfspace {v : 〈v,b〉 ≥ 0}.
The aforementioned statistical attack can be directly applied to the case of
halfspace in the same spirit, but the approximate direction, denoted u, of b
is less accurate. To refine the key recovery, we use the rough approximation u
to filter signatures in the slice {v : |〈v,b〉| ≤ b} with a well-chosen b. Applying
the former key recovery again, we can recover the key given 170 000 of traces.
Moreover, the sign leakage can be combined with the previous half Gaussian

1 There are 3 layers of Gaussian samplers in Falcon: lattice Gaussian sampler - integer
Gaussian sampler - base sampler.
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leakage and then filter a thinner slice. Focusing on the thinner slice, the statistical
attack can be even more effective: only 45 000 traces is sufficient for a direct
key recovery with a probability of ≈ 25%. Additionally, through simple power
analysis, we practically identify the sign leakage in the reference implementation
of Falcon. Furthermore, we also propose an efficient countermeasure to mitigate
this leakage, which (based on our settings of leakage acquisition) decreases the
sign classification accuracy to ≈ 52% from almost 100%.

As an additional contribution, we extend the power analysis on Falcon to
its recent variant Mitaka. Since Mitaka uses Falcon’s integer sampler, both half
Gaussian leakage and sign leakage exist within its reference implementation in
the same manner. Different from Falcon, Mitaka uses the hybrid sampler [32]
for lattice Gaussian sampling, in which the output is the sum of two samples
from two ellipsoid Gaussians. This makes the domain of filtered signatures the
ambient space rather than a slice or a half-space. Nevertheless, the distribution
of filtered signatures is still secret-dependent, thus our aforementioned approach
is able to recover the key with more traces.

Roadmap. We start in Sect. 2 with preliminary material. Section 3 introduces the
Gaussian samplers of Falcon that are the targets of our side-channel attacks. We
present in Sect. 4 an improved key recovery using the same side-channel leakage
studied in [17]. Section 5 exhibits a new power analysis attack targeting the
integer Gaussian sampling of Falcon and a countermeasure against this attack is
provided. We extend the above power analysis to Mitaka in Sect. 6 and conclude
in Sect. 7.

2 Preliminaries

We use bold lowercase (resp. uppercase) letters for vectors (resp. matrices). By
convention, vectors are in column form. For a distribution D, we write z ← D
when the random variable z sampled from D and denote by D(x) the probability
of z = x. We denote by z ∼ D a random variable distributed as D. Let E[z] be
the expectation of random variable z and var[z] be the variance. For a random
vector z = (z0, · · · , zn−1) ∈ R

n, its covariance is

Cov[z] =

⎛
⎜⎜⎜⎝

c0,0 c0,1 · · · c0,n−1

c1,0 c1,1 · · · c1,n−1

...
...

...
...

cn−1,0 cn−1,1 · · · cn−1,n−1

⎞
⎟⎟⎟⎠ where ci,j = E[zizj ] − E[zi]E[zj ].

For a real-valued function f and a countable set S, we write f(S) =
∑

x∈S f(x)
assuming this sum is absolutely convergent. Let N (μ, σ2) be the normal distri-
bution of the mean μ and the standard deviation σ.

2.1 Linear Algebra and Lattices

Let bi (resp. bi) denote the i-th coordinate (resp. column) of b (resp. B). Given
u,v ∈ R

n, their inner product is 〈u,v〉 = ∑n−1
i=0 uivi. When 〈u,v〉 = 0, we call u
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and v are orthogonal. Let ‖v‖ =
√〈v,v〉 be the �2-norm of v, ‖v‖1 =

∑
i |vi| be

the �1-norm and ‖v‖∞ = maxi{|vi|} be the �∞-norm. Let I denote the identity
matrix. For H ∈ R

n×m, we let span(H) be the linear span of the rows of H.
A symmetric matrix Σ ∈ R

n×n is positive definite, denoted Σ > 0, if xtΣx >
0 for all nonzero x ∈ R

n. The spectral decomposition of a positive definite matrix
Σ is Σ = QDQ−1 = QDQt where D = diag(λ1, · · · , λn) with λ1 ≤ · · · ≤ λn

being the eigenvalues of Σ and Q is an orthogonal matrix whose i-th column is
the eigenvector corresponding to λi.

Let B = (b0, · · · ,bn−1) ∈ R
m×n of rank n. The Gram-Schmidt Orthogonal-

ization (GSO) of B is the unique matrix B̃ =
(
b̃0, · · · , b̃n−1

)
∈ R

m×n such that

B = B̃U where b̃i’s are pairwise orthogonal and U is upper-triangular with 1
on its diagonal. Let ‖B‖GS = maxi ‖b̃i‖.

A lattice L is the set of all integer linear combinations of linearly inde-
pendent vectors b0, · · · ,bn−1 ∈ R

m, i.e. L =
{∑n−1

i=0 xibi | xi ∈ Z

}
. We call

B = (b0, · · · ,bn−1) a basis and n the dimension of L. Let L(B) denote the
lattice generated by a basis B.

2.2 Gaussian Distributions

Let ρσ,c(x) = exp
(
−‖x−c‖2

2σ2

)
be the Gaussian function with center c ∈ R

n and
standard deviation σ. The discrete Gaussian over a lattice L with center c and
standard deviation σ is defined by the probability function DL,σ,c(v) =

ρσ,c(v)
ρσ,c(L)

for any v ∈ L.
We call DZ,σ,c integer Gaussian that is of particular interest. It suffices to

study the case where c ∈ [0, 1), since DZ,σ,c = i + DZ,σ,c−i for any i ∈ Z.
By restricting DZ,σ,c over N, we get a half integer Gaussian D+

Z,σ,c satisfying
D+

Z,σ,c(v) =
ρσ,c(v)
ρσ,c(N)

for any v ∈ N.

2.3 NTRU

Typically, an NTRU-based scheme is defined over some polynomial ring R along
with a modulus q. In this work, R = Z[x]/(xn + 1) with n a power-of-2. Let
K = Q[x]/(xn + 1) and KR = R[x]/(xn + 1). The NTRU secret key consists
of two short polynomials f, g ∈ R where f is invertible modulo q, and the
public key is h = f−1g mod q. The NTRU module determined by h is LNTRU =
{(u, v) ∈ R2 | u + vh = 0 mod q}. From (f, g), by solving the NTRU equation

fG − gF = q, one can compute Bf,g =
(

g G
−f −F

)
a basis of LNTRU that is

called an NTRU trapdoor basis. When the context is clear, we simply denote
Bf,g as B. Elements in R are identified with their matrix of multiplication in a
certain basis, thus the NTRU module is seen as a lattice of dimension 2n that
is an NTRU lattice.



570 S. Zhang et al.

2.4 Falcon Signature Scheme

We now briefly describe the Falcon signature scheme. Some details that are
unnecessary for understanding this work are omitted, and we refer to [33] for a
complete description of Falcon.

Falcon is an instantiation of the GPV hash-and-sign framework [14] over
NTRU lattices. The secret key of Falcon is an NTRU trapdoor basis Bf,g and
the public key is h = f−1g mod q. The secret polynomials f and g are drawn
from DR,σ,0 with σ = 1.17

√
q
2n for nearly optimal parameters as per [6]. In

addition, Bf,g is required to have a bounded Gram-Schmidt norm: ‖Bf,g‖GS ≤
1.17

√
q. This work focuses on the parameters of Falcon-512 for NIST Level-I

where R = Z[x]/(xn + 1), n = 512 and q = 12289.
Following the GPV hash-and-sign framework, the signing procedure of Falcon

is in essence sampling a lattice point v from DL(B),σ,c with a relatively small
σ where c is the hashed message. The signature is s = v − c that is short:
‖s‖ ≈ σ

√
2n. To verify the signature, one just needs to compute the hashed

message c and then check if s + c ∈ L and if ‖s‖ is less than the acceptance
bound B. A simplified description of the signing and verification algorithms is
given as follows:

Sign(m, sk = B)
Compute c = hash(m) ∈ R;
Using sk, sample a short (s1, s2)
such that s1 + s2h = c mod q;
If ‖(s1, s2)‖ > B, restart
Return s = s2.

Verify(m, s, pk = h)
Compute c = hash(m) ∈ R;
Compute s1 = c − sh mod q;
If ‖(s1, s)‖ > B, reject.
Accept.

Falcon sets σ = 1.17
√

q · ηε(R2) where ηε(R2) is the smoothing parameter
with respect to R2 and a small ε > 0. The acceptance bound is B ≈ 1.1

√
2nσ.

3 Gaussian Samplers of Falcon

This section is dedicated to the presentation of the Gaussian samplers used in
the signing procedure of Falcon. Indeed these samplers are the target of our
side-channel attacks.

The signing procedure of Falcon relies on three layers of Gaussian sampling.
At the top layer, the used sampler is FFOSampler and the output distribution
is a lattice Gaussian DL(B),σ,c. At the intermediate layer, the sampler SamplerZ
samples from some integer Gaussian DZ,σ′,c where σ′ and c are variable. At
the bottom layer, the sampler BaseSampler samples from a fixed half integer
Gaussian D+

Z,σmax,0.

3.1 FFOSampler

The FFOSampler algorithm is a ring variant of the KGPV sampler [14,22] based
on fast Fourier nearest plane algorithm [8]. In FFOSampler, lattice Gaussian sam-
pling is reduced to a series of integer Gaussian samplings, which is the same as
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FFOSampler: v ← DL(B),σ,c

SamplerZ: z ← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

Fig. 1. Three layers of Gaussian samplers in Falcon signing algorithm.

Algorithm 1: The KGPV sampler

Input: a basis B = (b0, · · · ,bn−1), a center c and σ ≥ ‖B‖GS · ηε(Z)
Output: a lattice point v following a distribution close to DL(B),σ,c.

1 v ← 0, c′ ← c
2 for i = n − 1, · · · , 0 do
3 c′′

i = 〈c′, ˜bi〉/‖˜bi‖2, σi = σ/‖˜bi‖
4 zi ← SamplerZ(σi, c

′′
i − �c′′

i 	) + �c′′
i 	

5 c′ ← c′ − zibi,v ← v + zibi

6 end for
7 return v

the KGPV algorithm. Therefore we just describe the KGPV sampler in Algo-
rithm 1.

3.2 SamplerZ

The integer Gaussian samplings in FFOSampler have variable standard deviations
and centers, which complicates the implementation. To this end, SamplerZ uses
rejection sampling to obtain target samples from a fixed half integer Gaussian.
It first generates z+ ∼ D+

Z,σmax,0 by calling BaseSampler, then computes z ←
b+(2b−1)z+ with a random bit b, and finally outputs z with certain probability.
A detailed algorithmic description is given in Algorithm 2 where σmin = 1.2778
and σmax = 1.8205 for Falcon-512. Particularly, SamplerZ is provably resistant
against timing attacks [18].

3.3 BaseSampler

The BaseSampler algorithm for D+
Z,σmax,0 is implemented by table-based app-

roach as described in Algorithm 3. Specifically, BaseSampler uses the (scaled)
reverse cumulative distribution table (RCDT) of 18 items, which ensures the dis-
tribution sufficiently close to D+

Z,σmax,0. Also, the implementation of BaseSampler
is constant time.
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Algorithm 2: SamplerZ

Input: a center c ∈ [0, 1) and standard deviation σ′ ∈ [σmin, σmax]
Output: an integer z ∼ DZ,σ′,c

1 z+ ← BaseSampler()

2 b
$← {0, 1}

3 z ← b + (2b − 1)z+

4 x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

5 return z with probability σmin
σ′ · exp(x), otherwise restart;

Algorithm 3: BaseSampler

Output: an integer z+ ∼ D+
Z,σmax,0

1 u
$← {0, 1}72

2 z+ ← 0
3 for i = 0 · · · 17 do
4 z+ ← z+ + [[u < RCDT [i]]]
5 end for
6 return z+

4 Improved Key Recovery from Half Gaussian Leakage

While the distribution of Falcon signatures is statistically independent of the
secret key, the intermediate variables during Falcon’s Gaussian sampling are
sensitive, which poses a threat to the side-channel security. Recently, Guer-
reau et al. proposed a side-channel attack on Falcon exploiting power leakage
within BaseSampler [17]. This attack is quite demanding in terms of computation
resources and measurements: a direct key recovery for Falcon-512 needs ≈ 10
million of signature measurements, and with 1 million traces, the key recovery
has to resort to lattice reduction requiring around 1000 h hours CPU time.

In this section, we propose an improved key recovery exploiting the same side-
channel leakage exposed in [17]. With around 220 000 traces, our attack suffices
to recover the key within half an hour with a probability of ≈ 25%. If lattice
reduction is allowed, the number of required traces can be further reduced.

4.1 The Attack of [17]

Let us first recall the attack of [17] for better completeness and comparisons.

Half Gaussian Leakage. Falcon’s BaseSampler uses a table-based approach that
was shown to be vulnerable to simple power analysis in [21]. More precisely,
through the power consumption of the comparison [[u < RCDT [i]]] (line 4, Algo-
rithm 3), one can effectively determine the value of z+. The attack of [17] exploits
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this leakage to classify if z+ = 0 or not. When z+ = 0, the corresponding output
of SamplerZ belongs to {0, 1}. This allows to filter the signatures s =

∑2n−1
i=0 yi·b̃i

with y0 ∈ (−1, 1] where b̃0 = b0 = (g,−f) is the secret key. The region of fil-
tered signatures is a slice in the direction of b0 (see Fig. 2). In this paper, the
leakage used in [17] is called half Gaussian leakage.

Fig. 2. Simplified 2-dimensional representation of Falcon signatures. Signatures with
y0 ∈ (−1, 1] are in orange. (Color figure online)

The Key Recovery. The slice of filtered signatures can be seen as a deformed
parallelepiped of B. The authors of [17] thus propose to recover the secret key
using a variant of the parallelepiped-learning attack, developed in [7,28]. Since
only one direction of the parallelepiped of B is preserved in the slice, the key
recovery of [17] needs much more signatures to reconstruct B compared with the
previous attacks [7,28].

4.2 Our Key Recovery

Let us first formally define the Learning Slice Problem.

Definition 1 (LSPb,σ,N). Given b ∈ R
n, let Sb(b) = {v : |〈v,b〉| ≤ b}. Let

Ds be the conditional distribution of z ∼ (N (0, σ2))n given z ∈ Sb(b). Given N
independent samples drawn from Ds, find an approximation of ±b.

With half Gaussian leakage, we are able to identify signatures in Sb0(‖b0‖2).
Hence the key recovery now becomes to solve LSPb,σ,N . Our idea stems from
the geometric intuition that the projection of signatures in the slice on b0 tends
to be unusually short. Instead of resorting to the fourth moment (known as
kurtosis) as in parallelepiped-learning attacks, we discover that the covariance
of the samples in the slice, i.e. filtered signatures, suffices to reveal the secret b0.
Our LSP algorithm consists of two steps:

1. we learn the direction of b0;
2. we estimate ‖b0‖;
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Learning the slice direction. Let B = (b0,b1, · · · ,bn−1) of full-rank where b0

is the solution to the LSP instance. Let di = b̃i/‖b̃i‖, then D = (d0, · · · ,dn−1)
is orthogonal. For s ∼ (N (0, σ2))n, let s =

∑
i yidi, then the coefficients yi

independently follow N (0, σ2) and Cov[s] = σ2I. When s ∈ Sb0(b), we have
|y0| ≤ b

‖b0‖ and thus the variance of y0 is σ′2 < σ2. Then the covariance of s
given s ∈ Sb0(b) becomes

Cov[s|s ∈ Sb0(b)] = D ·
(

σ′2

σ2I

)
· Dt.

In the above covariance matrix, the smallest eigenvalue σ′ is unique and clearly
less than others. In addition, the eigenvector corresponding to the smallest eigen-
value is in the same direction as b0. Therefore, we can learn the direction of b0

through spectral decomposition.

Learning the norm of the secret. The covariance Cov[s|s ∈ Sb0(b)] also leaks the
information of ‖b0‖. Specifically, the coefficient y0 of samples in the slice follows
the truncated normal distribution N (0, σ2) over

[
− b

‖b0‖ , b
‖b0‖

]
. Its variance is

σ′2 =

∫ b′

−b′ x2 exp(− x2

2σ2 )dx
∫ b′

−b′ exp(− x2

2σ2 )dx
where b′ =

b

‖b0‖ . (1)

that can be also computed through spectral decomposition. Then ‖b0‖ can be
numerically estimated given σ′.

With the approximate direction and the norm of b0, we can immediately
construct a solution to the LSPb,σ,N instance. A theoretical justification for the
effectiveness of our LSP algorithm is provided in Appendix A.

Key recovery from approximate vectors. Up to now, we have shown that one is
able to get an approximate secret key b′

0 by solving the underlying LSP instance
given by half Gaussian leakage. By rounding the coefficients of b′

0, an integer
vector (g′,−f ′) ∈ R2 is recovered. As a certain number, denoted N0, of signature
measurements are performed, (g′,−f ′) is exactly the key with good probability,
that is set around 25% throughout the paper, in practice. Even with fewer traces,
the key can be fully recovered by combining exhaustive search or lattice reduction
and the cost depends on the size of e = (g−g′, f ′−f) ∈ R2. We further introduce
N1 and N1(x) as follows:

– N1 : when the number of traces ≥ N1, ‖e‖∞ ≤ 1 with good probability;
– N1(x) : when the number of traces ≥ N1(x), ‖e‖∞ ≤ 1 and ‖e‖1 ≤ x with

good probability.
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It is worth noting that when ‖e‖∞ ≤ 1 and ‖e‖1 ≤ x, either g − g′ or f − f ′

has hamming weight ≤ �x/2. In practice, it suffices to correct either g′ or f ′:
exploiting the NTRU public key h, it is easy to derive the other half and to check
if the guess is correct or not.

Remark 1. We particularly treat the case where e is ternary, as this allows a
practical key recovery by a simple exhaustive search. However, larger errors can
also be corrected by expensive lattice reduction. (see Sect. 4.3 for details).

4.3 Experimental Results of Key Recovery

The experiments focus on the key recovery, since our attack uses the same side-
channel leakage presented in [17]. In fact, [17] has shown that the leakage can
be correctly identified in practice with a fairly high probability: 94% for Chip-
Whisperer and 100% for ELMO. We did not repeat the measurements and just
assumed a 100% accurate classification as done in [17].

We tested our key recovery attack over 40 Falcon-512 instances and 400 000
traces per instance. The practicality of our new key recovery is well supported
by experimental results. More precisely, 360 000 traces suffices for our attack
to directly recover the key. As a comparison, the attack in [17] requires about
10 000 000 traces. The value of N1(7) is around 220 000, and in this region, a
certain proportion of keys can be recovered by combining a simple exhaustive
search within half an hour. For clarity, we highlight that the trace number counts
all signature measurements which is about twice the number of filtered signatures
in the slice. Detailed experimental results are shown in Fig. 3. We also tested
our attack on Falcon-1024 and Falcon-256, and experimental results are given in
Appendix B.

Furthermore, there is a tradeoff between measurement and computation. The
approximation obtained from fewer traces can be used by lattice reduction to
effectively reduce the cost of key recovery. Figure 4 shows the bit security esti-
mated by leaky LWE estimator [4] given a certain number of signature measure-
ments. Given 20 000 traces, the security of Falcon-512 would decrease from 133
bits to 85 bits.

In practice, the half Gaussian leakage is noisy, inducing errors in the classifi-
cation. The error can be further amplified in presence of side-channel protections.
In this respect, we conduct the attack by emulating the case that the classifi-
cation of z+ = 0 or not only has imperfect accuracy. The result is shown in
Fig. 5, where the required trace number increases with the classification accu-
racy. Notably, when the accuracy is 65%, an adversary is still able to practically
recover the key using our attack with 10 million traces. In comparison, the attack
in [17] cannot apply to inaccurate leakage classifications, because it requires that
the domain of filtered signatures has a clear boundary.
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Fig. 3. The approximate error size
‖e‖1 measured over 40 Falcon-512
instances. The vector e is ternary for
all 40 tested instances with 105 traces.

Fig. 4. The bit security estimated as
per the approximate error. We use the
Core-SVP model in classical setting,
i.e. 20.292β where β is the required BKZ
blocksize

Fig. 5. The required trace numbers for different classification accuracies using half
Gaussian leakage.

5 Power Analysis Using Sign Leakage

As outlined in Sect. 3.2, the integer Gaussian sampler SamplerZ requires trans-
forming a half Gaussian sample into a bimodal one via a uniformly random sign
flip and then accepting it with proper probability. While both the half Gaussian
sample and the random sign can be revealed through single trace analysis as
shown in [21], the sign leakage remains unexploited until now. Compared to the
half Gaussian leakage, the sign flip seems to offer less information, as it can only
help to filter signatures in a half-space instead of a slice.

In this section, we first identify the sign leakage in the reference implemen-
tation of Falcon. Then we show that sign leakage can indeed be used to mount
effective key recovery attacks: about 170 000 traces is enough to fully recover the
key. Perhaps counter-intuitively, the key recovery solely using sign leakage needs
even fewer signature measurements than the one solely using half Gaussian leak-
age. Moreover, combining sign leakage with half Gaussian leakage, we can further
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reduce the requirements of measurements and computations for key recovery: a
full key recovery needs only 45 000 signatures given two sources of leakage. At
last, we propose a practical countermeasure to mitigate the sign leakage.

5.1 Side-Channel Analysis

As the goal of the side-channel analysis is to classify the sign of z (which is
indicated by b), it is necessary to analyze its leakages. The most straightforward
leakage of the sign should be directly from the generation of variable b, including
the loading and storing process. We term this leakage type-1. Besides, the value
of b also affects the intermediate variables in the Gaussian sampling. By its
instruction, Falcon first performs half Gaussian sample to obtain the value z+

and maps it to z using the sign-flip function based on a bit b, i.e., [[z ← b +
(2b − 1)z+]] (line 3, Algorithm 2). Then, z is involved in the computation of x:
[[x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]] (line 4, Algorithm 2). We term the sign leakage from the
calculation of z and x type-2.

To better analyze the leakages of the above two types, we insert delay macros
(by using an empty loop) between the generation of b, the calculation of [[z ←
b+(2b−1)z+]] and [[x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]]. Thus, the power consumption before
the first delay only contains the type-1 leakage. Meanwhile, the algorithm after
the first delay comprises the loading of b and computation of z and x, thus
containing both type-1 and type-2 leakages.

We run the reference implementation of Falcon (with the delay macro
inserted) on an ARM Cortex-M4 STM32F407IGT6 microprocessor. The power
traces are collected by using a PicoScope 3206D oscilloscope at a sampling rate
of 1 GSa/s, equipped with a Mini-Circuits 1.9MHz low pass filter. We collect
50 000 traces with different random seeds, and compute the Signal-to-Noise Ratio
(SNR) with respect to the sign of z.

As shown in Fig. 6, we can identify the three regions, as well as the corre-
sponding leakages by peak clusters. Moreover, the SNRs of regions B and C
(containing type-1 and type-2 leakage) are much larger than those of region
A (only containing type-1 leakage), showing that the type-2 leakage is much
more significant than the type-1. It conveys that the calculations of z and x can
amplify the leakage of the sign (i.e., the value of b). We attribute the leakage
amplification to the following reasons.

– The first reason should be the power consumption of ((b � 1) − 1). Con-
cretely, the corresponding register is assigned to the value of b, then adds
itself and minus 1. The value in register turns into −1 (0xFFFFFFFF for
complement) when b = 0 and 1 (0× 00000001 for complement) when b = 1.
The Hamming distance of two results is 31, which is sufficiently large to dis-
tinguish the sign of the output z. It should be noted that this type of leakage
was detected in [21] and comprehensively analyzed in the very recent work
by Wisiol et al. [36].
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Fig. 6. Power traces and the corresponding SNR value.

– Another reason should be in [[x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]] (line 4, Algorithm 2).
In the calculation of z − c, z is an integer while c is a floating point number.
In most cases, z is first converted to the floating point number, and then
the subtraction is performed. The former is essentially a conversion between
complement and floating representations of z. If z is negative, the Hamming
distance of complement and floating representation is relatively large. This
eventually brings the sign leakage in the step of [[x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]].

To verify the vulnerabilities in practice, we conduct the Gaussian template
attack [3], where the number of profiling traces varies from 70 to 100, 000. After
the profiling, we repeat the single-trace attack 5, 000 times (with different attack-
ing traces) to calculate the success rate. We perform the evaluation with four
different configurations: 3 attacks targeting regions A, B, and C separately, and
1 attack targeting their combination. For each configuration, we apply the prin-
cipal component analysis (PCA) to the samples before profiling and attacking,
and then only target the points of the first 65 principal components.

Figure 7 presents the classification accuracy (as functions of the number of
profiling traces). The results show that the attacks using samples in regions B
and C (involving type-1 and type-2 leakages) are significantly better than those
using region A (only involving type-1 leakages). The leakages in region C have
led to an attack with an almost 1 classification accuracy, and using the leakages
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in region B can also achieve an accuracy ≈ 0.9. On the contrary, the classification
accuracy corresponding to region A is up to 0.52. At last, using the combination
of three regions leads to the best attack, which is slightly better than the attack
using region C.

Fig. 7. The classification accuracy targeting the three regions and combination thereof.

5.2 Key Recovery Using Sign Leakage

Using the sign leakage, one can determine whether a signature s is in the halfs-
pace H+ = {v : 〈v,b0〉 ≥ 0} or H− = {v : 〈v,b0〉 < 0} (see Fig. 8). It is worth
noting that one can transform a signature in H+ into one in H− by multiplying
−1. Therefore no waste of signature measurements occurs in this classification,
which is different from the case presented in Sect. 4.

To study the key recovery, we define the Learning Halfspace Problem.

Definition 2 (LHPσ,N). Given b ∈ R
n, let H+

b = {v : 〈v,b〉 ≥ 0}. Let Dh be
the conditional distribution of z ∼ (N (0, σ2))n given z ∈ H+

b . Given N indepen-
dent samples drawn from Dh, find an approximate direction of ±b.

Exploiting the sign leakage, signatures can be transformed into Gaussian samples
in H+

b0
. By solving LHPσ,N , we can get an approximate direction of b0.

The distribution of the given samples in the LHPσ,N instance is determined
by the secret b0. It is feasible to get a solution to LHPσ,N through the spectral
decomposition of Cov[s|s ∈ H+

b0
] as done in Sect. 4. However, the accuracy of the

solution is poor because the gap between the smallest eigenvalue and others is
reduced. To overcome this issue, we propose to use a rough LHP solution to filter
a slice and then apply the previous LSP algorithm to get an accurate solution.
This can be roughly viewed as the following reduction:

LHPσ,N → LSPb,σ,N ′ .
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Fig. 8. Simplified 2-dimensional representation of Falcon signatures. Signatures in H+

(resp. H−) are in orange (resp. blue). (Color figure online)

Specifically, our LHP algorithm proceeds as follows:

1. we learn a relatively rough direction, denoted v, of b0 from samples in H+
b0

;
2. we filter out those samples in Sv(b) using v;
3. we learn the direction of b0 from the filtered samples in Sv(b);

Learning a rough direction. By the same argument with Sect. 4, we have

Cov[s|s ∈ H+
b0
] = D ·

(
σ′2

σ2I

)
· Dt

where D = (d0, · · · ,dn−1) with di = b̃i/‖b̃i‖. The term σ′2 equals the variance
of half Gaussian, and a routine computation yields σ′2 = σ2(1 − 2

π ) < σ2.
Therefore the direction of b0 still corresponds to the eigenvector with respect to
eigenvalue σ′2.

Remark 2. The expectation of samples in H+
b0

is also the direction of b0. Nev-
ertheless, the use of the expectation does not improve the learning accuracy as
per our experimental results.

Filtering out a slice. To refine the learning accuracy, we attempt to amplify
the distinction between σ′ and σ. To do so, we use the above rough direction,
denoted v, to classify all samples into two sets S = {s | |〈s,v〉| ≤ b} and
C = {s | |〈s,v〉| > b} (see Fig. 9). The parameter b decides both the width of
the approximate slice and the proportion of filtered samples. For a tradeoff, our
key recovery sets b = 1.17

√
q that is around the expectation of the secret key

norm as per Falcon parameters. This actually corresponds to the case in Sect. 4.
It should be noted here that the covariance of filtered samples is

Cov[s|s ∈ H+
b0

∩ S] = D′ ·

⎛
⎜⎜⎜⎝

σ′2

σ2
1

. . .
σ2

n−1

⎞
⎟⎟⎟⎠ · D′t
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where D′ is slightly different from D due to the inaccuracy of v and σ1, · · · , σn−1

are no longer equal. Still, σ′ is clearly less than others. As a consequence, its
corresponding eigenvector is supposed to be in a very close direction of b0.
Applying the LSP algorithm in Sect. 4 on filtered samples, one can obtain an
approximate direction of b0 that is more accurate than v.

Fig. 9. Simplified 2-dimensional representation of Falcon signatures. Signatures in
H+

b0
∩ Sv(b) are in orange. (Color figure online)

Remark 3. Strictly speaking, the region H+
b0

∩ Sv(b) is not an exact slice as the
directions of b0 and v differ. But this region still maintains some information of
b0 from H+

b0
that is captured by the LSP algorithm to refine the direction.

Remark 4. We can also use this idea to reduce the width of the slice in Sec. 4,
but the effect is not good for our key recovery. The reason is that signatures
in S are distributed densely, the reduction of slice width would eliminate a big
number of signatures. In this section, the signature density in C is lower than
that in S. We therefore can reduce the slice width at the cost of fewer signatures.

Key recovery from an approximate direction. While ‖b0‖ cannot be learnt purely
from the sign information, we can still approximate ‖b0‖ with some alternatives
in {1.17√q, · · · , 1.17

√
q − 10}. This works well in practice: one can always get

one approximation well close to b0 using some alternatives to ‖b0‖. In later
experimental results, we shall present the best approximation for each tested
instance.

5.2.1 Experimental Results
We use the same 40 Falcon-512 instances as in Sect. 4. Figure 10 shows the
detailed experimental results. In the context of the key recovery in this sub-
section, N1(7) is around 170 000. This implies that one can recover the key from
the approximation within half an hour with a probability of ≈ 25% given a mod-
erate number of traces. Compared with the key recovery presented in Sect. 4, the
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attack exploiting sign leakage seems more powerful, as it requires fewer traces
to achieve the same size of the approximate error. A crucial reason for this is
that the sign information of each signature contributes to the key recovery, at
least to recover a rough direction, but in the attack in Sect. 4, about one half
measured signatures are directly discarded in the first place. We also exhibit the
tradeoff between measurements and the cost of key recovery combining lattice
reduction in Fig. 11: 20 000 signature measurements would reduce the security
of Falcon-512 by 50 bits.

Furthermore, we test our attack in the case of inaccurate sign classification.
As shown in Fig. 12, our attack is robust to inaccurate classification: for 65%
classification accuracy, 10 million traces are sufficient for key recovery in a short
time. One can also observe that the number of required traces grows sharply as
the accuracy gets below 65%.

Fig. 10. The approximate error size
‖e‖1 measured over 40 Falcon-512
instances solely using the sign leakage.

Fig. 11. The bit security estimated as
per the approximate error. We use the
Core-SVP model in classical setting,
i.e. 20.292β where β is the required BKZ
blocksize

Fig. 12. The required trace numbers for different classification accuracies using sign
leakage.
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5.3 Key Recovery Using both Sign and Half Gaussian Leakages

It is natural to work with both sign leakage and half Gaussian leakage (presented
in Sect. 4). Specifically, this allows filtering a slice that is only one half wide as
the one filtered solely by half Gaussian leakage. Through spectral decomposition
of the covariance, one can learn the secret key.

The combination of two leakages significantly improves the key recovery.
When 20 000 signature measurements are available, the approximate error
becomes ternary for all 40 tested instances. Detailed experimental results are
presented in Figs. 13 and 14. In particular, with only 45 000 traces, one can fully
recover the key with a probability of ≈ 25% within half an hour. With around
12 000 traces, the attacker may reduce the security of Falcon-512 by 60 bits.
Nevertheless, further tradeoff seems infeasible. As the number of traces is insuf-
ficient, the approximate error can enlarge quickly due to the measurement error,
which makes the approximation ineffective.

Fig. 13. The approximate error size
‖e‖1 measured over 40 Falcon-512
instances using both sign and half
Gaussian leakages.

Fig. 14. The bit security estimated as
per the approximate error. We use the
Core-SVP model in classical setting,
i.e. 20.292β where β is the required BKZ
blocksize

5.4 A Countermeasure Against the Sign Leakage

We present a countermeasure to mitigate the leakage of the sign in the Gaussian
sampling, which is made up of two components as follows.

The first component is for the direct leakage of the sign b. The leakage (e.g.,
power consumption) of a variable in software is largely related to its Hamming
weight [26]. Thus, to eliminate the difference in Hamming weight between differ-
ent values of b, the countermeasure encodes the sign by {1, 2} instead of {0, 1}.
Concretely, we first generate a 4-bit variable t by uniformly sampling a value in
{0, . . . , 15}, and map it to the variable b in {1, 2} by using a look-up table with
16 entries in {1, 2}.
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Algorithm 4: Protected SamplerZ

Input: a center c′′ and standard deviation σ′ ∈ [σmin, σmax]
Output: an integer z ∼ DZ,σ′,c′′

1 c ← c′′ − �c′′	
2 z+ ← BaseSampler()
3 (t̃[0], . . . , t̃[15]) ← (2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2)

4 t
$← {0, . . . , 15}

5 b ← t̃[t]
6 (c̃[0], c̃[1], c̃[2]) ← (0, c, 1 − c)
7 (z̃[0], z̃[1], z̃[2]) ← (0, �c′′	 − z+, �c′′	 + 1 + z+)

8 x ← − (z++c̃[b])2

2σ′2 + (z+)2

2σ2
max

9 return z̃[b] with probability σmin
σ′ · exp(x), otherwise restart;

The second component is for the leakage amplified from the computation of
z and x. By its instruction in Algorithms 1 and 2, the output of SamplerZ will
be added by �c′′. Thus, we can consider the output to be z + �c′′ instead of
z. We observe that, unlike the computation, the leakages of variables z + �c′′
and x are not quite related to the sign. It conveys that our goal should be to
mitigate the leakage during the computation. The main idea is that, for each
sign value (positive or negative), we directly compute the values of z + �c′′ and
x, and then choose the correct ones by using b ∈ {1, 2}. The sign leakage within
the calculation of x is from the calculation of (z − c)2, more precisely, z − c. We
note that (z − c)2 = (z+ + c̃[b])2 where c̃[b] = c for b = 1 and c̃[b] = 1 − c for
b = 2. Instead of computing two x’s for b ∈ {1, 2}, it suffices to compute two
c̃[b]’s and to perform the calculation of x using (z+, c̃[b]) only once.

The new SamplerZ equipped with the above components is provided in Algo-
rithm 4. Lines 3-5 present the generation of b ∈ {1, 2}, and Lines 6-9 present the
calculation of x and z + �c′′.

To verify the effectiveness of the countermeasure, we implement the protected
Gaussian sampling in C and collect the power traces using the same setup as in
Sect. 5.1. The SNR for the sign value is depicted in Fig. 15, which is much lower
than that of the unprotected algorithm (see Fig. 6). We conduct the template
attack with 5 000 traces to calculate the classification accuracy. As shown in
Fig. 16, with the increase of the number of profiling traces, the classification
accuracy is growing up to ≈ 0.52.
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Fig. 15. SNR for the sign value of the Algorithm 4.

Fig. 16. Classification accuracy of the template attack on Algorithm 4.

Remarks. Our countermeasure can mitigate, but cannot prevent the leakage
of the sign. As we can see from the experimental results, the accuracy of the
template attack for sign classification is still significant (up to ≈ 0.52), and it is
even possible to be higher if an adversary

1. adopts a more sophisticated setup for acquisition, or
2. exploits other targets than the direct leakage of b and the computation of x

and z.

In this respect, we position our countermeasure as a (quite) efficient method
to make the offline key recovery attack more difficult. As shown in Fig. 12, the
number of required traces grows dramatically when the accuracy of the sign
classification decreases. One can still conduct a successful attack if she can sign
a lot of times (it usually can be avoided in practice by setting a counter for
the maximum time of calls). A candidate of sufficiently secure countermeasures
might be masking, with inevitably high overhead. Thus, we deem an efficient
and provably secure countermeasure for Gaussian sampling as challenging and
promising further work.
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6 Attacks on Mitaka

Mitaka [11] is a recent variant of Falcon. Its base sampler and integer sampler are
almost the same as those in Falcon, hence both half Gaussian leakage and sign
leakage can be identified within Mitaka. Nevertheless, Mitaka performs lattice
Gaussian sampling in a different way from Falcon, which significantly changes
the distributions of the signatures filtered as per the leakages. It is therefore
unclear if and how previous attacks apply to Mitaka.

To this end, we test previous attacks on Mitaka. Experiments verify that half
Gaussian leakage and sign leakage can indeed lead to a key recovery in Mitaka,
but the key recovery requires much more traces compared to the case of Falcon.

6.1 Mitaka Signatures Filtered by Leakages

Mitaka uses the hybrid sampler [32] (Algorithm 5) as its lattice Gaussian sam-
pler.2 The hybrid sampler follows the framework of the KGPV sampler (Algo-
rithm 1) that is a randomized version of Babai’s nearest plane algorithm, but the
randomization is done at the ring level instead of the integer level. The ring-level
randomization (Algorithm 6) is accomplished by Peikert’s sampler [29] which is
a randomized version of Babai’s rounding-off algorithm. Specifically, to sample
from DR,σ,D, the randomization subroutine proceeds in two steps:

1. (perturbation sampling): it samples a perturbation U ← σp · NKR,1 where
σpσp = σσ − r2 and NKR,1 denotes the normal distribution over KR.

2. (rounding-off): it samples the output Z ← DR,r,D−U .

From Algorithms 5 and 6, it follows that the signature s can be written as
s = v − c =

∑1
i=0 b̃i(Zi − Di) =

∑1
i=0 b̃i(Yi + Ui) where Yi = Zi − D′

i ∈ KR

and Ui ∈ KR is the perturbation. Then the signature is identified with s =∑2n−1
i=0 (yi +ui)hi where (y0, · · · , y2n−1) (resp. (u0, · · · , u2n−1)) is the coefficient

vectors of (Y0, Y1) (resp. (U0, U1)) and hi’s correspond to B̃.
We target the integer Gaussian sampler called in the rounding-off step. Sim-

ilar to the case of Falcon, half Gaussian leakage allows filtering signatures with
y0 ∈ (−1, 1], while sign leakage allows distinguishing y0 > 0 or not. Exploiting
these leakages, one can actually distort the spherical Gaussian in the direction of
h0 (See Fig. 17). This makes our previous attacks feasible. Note that the domain
of filtered signatures is now the ambient space due to the perturbation u0, thus
parallelepiped-learning attacks do not seem to work.

2 We do not discuss the integer arithmetic friendly version of Mitaka that uses the
integral perturbation sampler [5,12] proceeding differently.
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Algorithm 5: Hybrid sampler

Input: a basis B = (b0,b1) ∈ R2×2 and its GSO (over K) ˜B = (˜b0, ˜b1), a
center c ∈ K2 and σ > 0

Output: a lattice point v following a distribution close to DL(B),σ,c.

1 v1 ← 0, c1 ← c

2 D1 ← 〈˜b1,c̃1〉
〈˜b1,˜b1〉 , σ1 ←

√

σ2

〈˜b1,˜b1〉
3 Z1 ← RingPeikert(D1, σ1)
4 v0 ← b1Z1, c0 ← c1 − b1Z1

5 D0 ← 〈˜b0,c̃0〉
〈˜b0,˜b0〉 , σ0 ←

√

σ2

〈˜b0,˜b0〉
6 Z0 ← RingPeikert(D0, σ0)
7 v ← v0 + b0Z0

8 return v

Algorithm 6: RingPeikert

Input: a center D ∈ K and σ ∈ KR.
Output: z ∈ R following a distribution close to DR,σ,D

1 Compute σp ∈ KR such that σpσp = σσ − r2 for some r > 0
2 U ← σp · NKR,1, D′ ← D + U
3 for i = 0 · · · n − 1 do
4 zi ← SamplerZ(r, d′

i − �d′
i	) + �d′

i	 /** D′ =
∑

i d′
ix

i ∈ KR **/
5 end for
6 return Z =

∑

i zix
i ∈ R

Fig. 17. Simplified 2-dimensional representation of Mitaka signatures. From left to
right, the first graph is for half Gaussian leakage: signatures with y0 ∈ (−1, 1] in orange;
the second graph is for sign leakage: signatures with y0 ∈ [0,+∞) in orange; the third
graph is for the combination of two leakages: signatures with y0 ∈ [0, 1] in orange; the
fourth graph is for the combination of two leakages: signatures with y0 ∈ (1,+∞) in
orange. (Color figure online)
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6.2 Experimental Results

Both half Gaussian leakage and sign leakage can be well detected as shown in [17]
and Sect. 5. We thus only present the experimental results for the key recovery
procedure.

6.2.1 Key Recovery Using Half Gaussian Leakage
We tested the attack in Sect. 4 and experimental results are shown in Fig. 18.
Experiments validate the effectiveness of the attack: one can get a good approx-
imation or a full recovery of the key with a certain number of Mitaka signatures.
However, compared to the attack on Falcon, the key recovery on Mitaka requires
much more signatures: the number of signatures required for a quick key recovery
gets close to 9 million. This is because the condition number of the covariance
of filtered signatures gets smaller due to the existence of the perturbation.

6.2.2 Key Recovery Using Sign Leakage
We can only partially apply the attack in Sect. 5.2 to Mitaka. Specifically, it
is feasible to learn a relatively rough direction, denoted h′, of h0 through the
covariance as in the first step. However, refining h′ via filtering out a slice does
not work, as the domain of filtered signatures does not have a clear boundary.
Hence we have to use h′ directly for key recovery. We also observed that for
Mitaka, using the expectation can give a better approximate direction than using
the covariance, which is different from the case in Remark 2. For this, our test
used the expectation to get h′ and then used h′ to recover the key. In this way, a
practically efficient key recovery needs about 2.25 million signatures. Figure 19
shows the detailed experimental results.

6.2.3 Key Recovery Using Two Leakages
As shown in the last two graphs of Fig. 17, combining two leakages allows fil-
tering signatures in two regions. For each region, we can obtain an approximate
direction using the approach in the last subsection based on either the expec-
tation or the covariance of filtered signatures. Extensive experiments suggested
that using the expectation of the signatures with y0 ∈ (1,+∞) gives the most
accurate approximate direction. Different from the case in Sect. 5.3, using two
leakages together does not reduce the number of required signatures so signifi-
cantly: it still requires about 1.8 million signatures to recover the key in a short
time. Detailed experimental results are shown in Fig. 20.
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Fig. 18. Experimental results for the attack solely using half Gaussian leakage. The left
figure shows the approximate error size ‖e‖2, and the right one shows the bit security
estimated as per ‖e‖2. Experiments ran over 40 Mitaka-512 instances.

Fig. 19. Experimental results for the attack solely using sign leakage. The left figure
shows the approximate error size ‖e‖2, and the right one shows the bit security esti-
mated as per ‖e‖2. Experiments ran over 40 Mitaka-512 instances.

Fig. 20. Experimental results for the attack using both half Gaussian leakage and sign
leakage. The left figure shows the approximate error size ‖e‖2, and the right one shows
the bit security estimated as per ‖e‖2. Experiments ran over 40 Mitaka-512 instances.
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7 Conclusion

In this work, we provide an improved power analysis for Falcon. Our first result
is a new key recovery using the half Gaussian leakage within the base sampler.
It turns out to be much more effective than the existing method [17] in terms
of both measurements and computations. Our second result is to show that the
sign leakage within the integer Gaussian sampler also can be well exploited to
recover the key. This is the very first side-channel analysis on Falcon taking
the sign leakage into account. We also extend our power analysis to the Mitaka
signature scheme.

Our attacks are practical and powerful: only tens of thousand traces are
enough to greatly weaken the security of Falcon; they can even work when leakage
classification is inaccurate. This suggests that two exploited leakages are more
dangerous than previously imagined. In addition, though we target the reference
implementation of Falcon, the attacks apply to many other implementations
including clean PQClean and pqm4 implementations.

With the standardization and deployment of Falcon underway, there is a
clear need for side-channel protections. While we have proposed some coun-
termeasure to mitigate the attacks, it cannot completely prevent the leakages.
Masking might be a reassuring countermeasure. Despite some efforts [1,11,15],
efficient masked implementation of integer Gaussian sampling, particularly for
variable and sensitive parameters, remains a challenging problem.
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A Theoretical Analysis for the LSP Algorithm

In this section, we will show that given a sufficiently large polynomial number of
samples, our LSP algorithm finds a solution with constant approximation errors
with some constant probability. This is formally described in Lemma 1.
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Lemma 1. Given an LSPb,σ,N instance with exact solution b, let b′ be the out-
put by our LSP algorithm. Let σ′2 = var

[
x ∼ N (0, σ2) | − b

‖b‖ ≤ x ≤ b
‖b‖

]
. Then

‖b − b′‖ ≤ Ce ·
(

σ2 +
σ2

σ2 − σ′2 · ‖b‖
) (√

n + u

N
+

n + u

N

)

with a probability ≥ 1 − 4e−u for some constant Ce.

To prove Lemma 1, we need the following theorems.

Theorem 1 (Weyl’s inequality). Let S,T ∈ R
n×n be symmetric matrices.

Then
max

i
|λi(S) − λi(T)| ≤ ‖S − T‖2.

Here ‖S‖2 denotes the spectral norm of S.

Theorem 2 (Davis-Kahan [35]). Let S,T ∈ R
n×n be two symmetric matrices.

Suppose that for some i, the i-th largest eigenvalue of S is well separated from
the rest of the spectrum:

min
j:j �=i

|λi(S) − λj(S)| = δ > 0.

Then the unit eigenvectors vi(S) and vi(T) satisfies:

∃θ ∈ {−1, 1} : ‖vi(S) − θvi(T)‖ ≤ 2
3
2 ‖S − T‖2

δ
.

Theorem 3 (Adapted from Theorem 4.7.1 [35]). Let X be a sub-
gaussian random vector in R

n and Σ = Cov[XXt]. For independent samples
X1, · · · ,XN , let ΣN = 1

N

∑N
i=0 XiXt

i. Then there exists a constant K (related
to X) and a universal constant C > 0 such that for any u ≥ 0,

‖ΣN − Σ‖2 ≤ CK2

(√
n + u

N
+

n + u

N

)
‖Σ‖2

with probability at least 1 − 2e−u

Proof of lemma 1. Let v = b
‖b‖ and v′ = b′

‖b′‖ . We have

e = b − b′ = ‖b‖ · (v − v′) + (‖b‖ − ‖b′‖) · v′

and then ‖e‖ ≤ ‖b‖ · ‖v − v′‖ + |‖b‖ − ‖b′‖|.
Let Σ = Cov[s|s ∈ Sb(b)] and ΣN be the covariance matrix measured over

N given samples. Then v and v′ are respectively the eigenvectors correspond-
ing to the smallest eigenvalue of Σ and ΣN . Since the smallest eigenvalue of Σ

is σ′2 and other eigenvalues are σ2, Theorem 2 shows ‖v − v′‖ ≤ 2
3
2 ‖Σ−ΣN ‖2

σ2−σ′2 .
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By Theorem 3, we have ‖v − v′‖ ≤ 2
3
2 CK2 σ2

σ2−σ′2 ·
(√

n+u
N + n+u

N

)
with prob-

ability at least 1 − 2e−u.
We next analyse the term |‖b‖ − ‖b′‖|. Let σ′2

N be the smallest eigen-
value of ΣN . By Theorems 1 and 3, we have |σ′2 − σ′2

N | ≤ ‖ΣN − Σ‖2 ≤
σ2CK2

(√
n+u
N + n+u

N

)
with probability at least 1 − 2e−u. Our LSP algorithm

uses the equation

σ′2 =

∫ b
‖b‖

− b
‖b‖

x2 exp(− x2

2σ2 )dx

∫ b
‖b‖

− b
‖b‖

exp(− x2

2σ2 )dx

to estimate ‖b‖, hence ‖b‖ = f(σ′2) for some continuous function f determined
by b, σ and σ′. Accordingly, ‖b′‖ = f(σ′2

N ). Therefore, there exists a constant

C ′ such that |‖b‖ − ‖b′‖| ≤ C ′|σ′2 − σ′2
N | ≤ σ2CC ′K2

(√
n+u
N + n+u

N

)
. So far,

we prove that ‖e‖ ≤ Ce

(
σ2 + σ2

σ2−σ′2 · ‖b‖
) (√

n+u
N + n+u

N

)
with probability at

least 1 − 4e−u where Ce = max{CC ′K2, 2
3
2 CK2}. ��

B Attacks on Other Falcon Parameters

Our attacks easily apply to other Falcon parameter sets. The base sampler and
the integer Gaussian sampler are exactly the same for different n, thus both
leakages can be measured in the same way. Table 1 shows the experimental data
for n = 256, 512, 1024, where N1(x) is the number of required traces to get an
approximate error of hamming weight ≤ x with probability ≈ 1

4 .

Table 1. Experimental data of N1(x) measured over 40 Falcon instances for each n.
The item “A/B/C” represents the values for n = 256/512/1024.

Half Gaussian leakage Sign leakage Two leakages

N1(0) × 10−3 270 / 360 / 400 210 / 230 / 280 60 / 70 / 75

N1(5) × 10−3 200 / 230 / 270 142.5 / 175 / 203 39 / 47 / 56

N1(7) × 10−3 182.5 / 217 / 255 132.5 /164 / 188 37 / 45 / 54

N1(9) × 10−3 175 / 201 / 240 127 / 155 / 184 35 / 43 / 50
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Abstract. Embedded devices used in security applications are natural
targets for physical attacks. Thus, enhancing their side-channel resistance
is an important research challenge. A standard solution for this purpose
is the use of Boolean masking schemes, as they are well adapted to cur-
rent block ciphers with efficient bitslice representations. Boolean masking
guarantees that the security of an implementation grows exponentially
in the number of shares under the assumption that leakages are suffi-
ciently noisy (and independent). Unfortunately, it has been shown that
this noise assumption is hardly met on low-end devices. In this paper,
we therefore investigate techniques to mask cryptographic algorithms in
such a way that their resistance can survive an almost complete lack of
noise. Building on seed theoretical results of Dziembowski et al., we put
forward that arithmetic encodings in prime fields can reach this goal. We
first exhibit the gains that such encodings lead to thanks to a simulated
information theoretic analysis of their leakage (with up to six shares). We
then provide figures showing that on platforms where optimized arith-
metic adders and multipliers are readily available (i.e., most MCUs and
FPGAs), performing masked operations in small to medium Mersenne-
prime fields as opposed to binary extension fields will not lead to notable
implementation overheads. We compile these observations into a new
AES-like block cipher, called AES-prime, which is well-suited to illustrate
the remarkable advantages of masking in prime fields. We also confirm
the practical relevance of our findings by evaluating concrete software
(ARM Cortex-M3) and hardware (Xilinx Spartan-6) implementations.
Our experimental results show that security gains over Boolean masking
(and, more generally, binary encodings) can reach orders of magnitude
despite the same amount of information being leaked per share.

1 Introduction

Research Question. Masking is an important countermeasure against side-
channel attacks. Introduced in [27,46], it has attracted significant attention
thanks to the strong security guarantees it can provide [36,37,53,76]. Since lead-
ing to efficient implementations in software [13,79], bitslice software [47,49] and
hardware [23,50], additive (Boolean) masking is for now the most investigated
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type of encoding. Concretely, assuming that the shares’ leakage is sufficiently
noisy and independent, Boolean masking can amplify the noise of an implemen-
tation (and therefore its security) exponentially in the number of shares.

Yet, and despite these strong theoretical guarantees, ensuring the noise and
independence conditions may not be easy in practice. The independence issue is a
well investigated one. Physical defaults such as glitches [61,62] or transitions [8,30]
can cause leakage about re-combined shares. Fortunately, these defaults can be cir-
cumvented (at some cost) thanks to well understood design techniques [24,44,72].
To the best of our knowledge, the noise issue is for now a less investigated one. Con-
crete results of so-called horizontal attacks such as [12,20] showed that a lack of
noise can lead to devastating attacks against Boolean masking. Improved security
against horizontal attacks has been captured with the notion of noise rate [5,25].
But gadgets with limited noise rate only reduce the number of manipulations of the
shares (in order to prevent reducing the noise by averaging). Therefore, they have
limited impact when the noise level of an implementation is already small with-
out averaging, as it is for example the case for small embedded devices (e.g., 32-bit
ARM Cortex or similar cores). Another class of attacks which has been shown to
threaten the security of Boolean masking by exploiting an insufficient noise level
is based on leveraging the static power consumption of devices as a side-channel.
In such attacks which, unlike horizontal attacks, are mostly a concern for hard-
ware implementations, the adversary obtains the leakage of a halted computation
state with almost arbitrarily low noise, which limits the effectiveness of Boolean
encodings [66–68,70,75].

As a result, the main objective of this paper is to initiate a study of encodings
and ciphers that can lead to secure and efficient low-noise implementations.
Precisely, we question the possibility that increasing the number of shares in a
masking scheme leads to security amplification without any noise.

Seed Results. Interestingly, the literature contains several hints that the
answer to this question might be positive if changing the Boolean encoding into
a more “complex” one. On the one hand, it has been observed that the Inner
Product (IP) masking introduced in [40] can lead to significantly better security
in low-noise settings than Boolean masking, for example in case of leakage func-
tions that are close to the Hamming weight one (see for example [7], Figure 3
for an illustration with two shares). Unfortunately, computing on IP encodings
generally leads to significant implementation overheads, and it remains an open
question whether its security vs. efficiency trade-off can compare positively with
the (simpler) multiplication algorithms of additive masking schemes.

On the other hand, Dziembowski et al. showed that the level of noise required
for masking to amplify security can be significantly reduced if the encodings are
defined in groups of prime orders [41]. Such an observation has the significant
advantage of being valid for simple (additive) masking schemes that have been
intensively studied in recent years and can benefit from increasingly efficient
automated verification tools [9,10,17,57]. However, the practical impact of these
seed investigations has not been studied yet, leaving open questions like:

– How do these theoretical guarantees translate into concrete security guaran-
tees for practically-relevant leakage functions and noise levels?
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– What is the impact of increasing the prime size in these practical cases?
– Can masking with prime encodings be used to improve the side-channel secu-

rity of block cipher implementations in software and hardware?
– What is the (software and hardware) cost of implementing masked block

cipher operations in prime fields instead of binary extension fields?

Contributions. Based on this state of the art, we pick up on the challenge of
better understanding masking in low-noise settings and propose encodings and
ciphers that allow secure and efficient implementations in this context. More
precisely, our contributions in this respect are in three parts:

First, we show in Sect. 2 that moving from Boolean encodings to arithmetic
encodings, first in binary fields, then in prime fields, leads to gradual side-channel
security improvements. We use the information theoretic framework put forward
in [84] for this purpose, and consider both the standard Hamming weight leakage
model and a (localized) model leaking the Least Significant Bit (LSB) of the
target intermediate computations in our evaluations. It allows us to confirm
Dziembowski et al.’s claimed gains in low-noise environments, but also to observe
that these gains can be maintained without any noise (for these non-injective
leakage functions) and are preserved as the noise increases. We additionally
explain the low-noise weakness of Boolean encodings formally and show that for
the practically-relevant Hamming weight leakage function, increasing the size of
the prime moduli improves the side-channel security of masked encodings.

Next, we consider the question of efficiency. In Sect. 3, we show that by select-
ing small Mersenne primes to operate our masked computations, it is possible to
implement them with performances that compare with binary fields, especially
in case optimized arithmetic adders and multipliers are available (e.g., on most
recent MCUs and FPGAs). Since standard symmetric designs are not directly
suitable for efficient masked implementations with non-binary encodings, we then
consider so-called prime ciphers in Sect. 4. A prime cipher is a cipher which per-
forms all operations in Fp with p a prime modulus. In order to illustrate our
results, we then consider AES-prime as a first example of such a prime cipher,
where the S-box is based on a small power in Fp and the MixColumns operation
is based on an MDS matrix in the same field.

Eventually, we move to the concrete evaluation of our designs in Sect. 5.
Since our simulated evaluations in Sect. 2 are based on the Hamming weight
and LSB leakage functions, and are limited to encodings, an important ques-
tion is whether the security guarantees of these examples are observed when
measuring concretely-relevant implementations with several exploitable target
sensitive operations that may not exactly leak as assumed in our simulations.
We answer this question positively by experimentally analyzing software (ARM
Cortex-M3) implementations, where the (worst-case) adversary is first given full
profiling access to the device to characterize its leakage behavior before perform-
ing the actual attack. Our results confirm that masking prime ciphers with prime
encodings can significantly improve the security compared to Boolean masked
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designs in a low-noise setting. We also conduct a hardware (FPGA) case study,
confirming the improved security provided for a naturally noisier target.

Cautionary Note: Why the AES-Prime? Initiating the investigation of new
encodings naturally raises the question of what is the best cipher for evaluating
them. As for example witnessed by the NIST Lightweight cryptography compe-
tition, the vast majority of the state-of-the-art ciphers designed for masking are
bitslice ones.1 Unfortunately, such ciphers cannot be easily turned into “prime
equivalents”. At the opposite side of the spectrum, the use of large prime mod-
uli has recently attracted a lot of attention for the design of ciphers tailored for
advanced cryptographic applications (e.g., multiparty computation, hybrid fully
homomorphic encryption or zero knowledge proofs). Examples include MiMC [2]
and its Feistel variant GMiMC [1], Rescue [4], HADESMiMC [48], CIMINION [34],
HERA [28] or PASTA [35]. In general, these ciphers are not directly adapted to
our goals either, since their proposed instances usually favor multiplications in
large fields (in order to reduce their overall number) while embedded implemen-
tations crucially require small and well-chosen primes for efficiency. As a result,
there is also little work on the secure implementation of such new ciphers. Given
this state of the art, we turn back to AES-like ciphers for which it is easy to
specify binary and prime versions. This allows us to leverage the wide body of
research on countermeasures and evaluation tools tailored for the AES (which,
we hope, can further stimulate external analyzes and follow up studies). It also
allows us to work with primes that are well suited to the software and hardware
implementations we target. We insist that the goal of the AES-prime cipher is
only to illustrate the potential of prime masking. Since illustrating this potential
requires mixing abstractions from different research fields, we admittedly do not
claim that its security analysis is as comprehensive as if the very design of the
AES-prime was our main contribution. So the security analysis we provide is
only aimed to show that a prime cipher with an AES-like structure can be secure
with a similar number of rounds as a binary cipher with an AES-like structure,
based on the (standard) cryptographic properties of its components. Overall, the
AES-prime may not be the best cipher for prime masking in the long run, but it
is a suitable starting point for a comparison, since AES and AES-prime are the
closest match between binary and prime cipher that we have at the moment.
We hope that the promising results it leads to can motivate the design of new
ciphers that are tailored for this specific application of prime-field masking and
can compete with bitslice ciphers from an efficiency point of view.

2 From Boolean to Prime Field Arithmetic Masking

In this first section, we revisit the theoretical investigations of Dziembowsi et al.
from a more practical viewpoint. Precisely, it is shown in [41] that masking with
encodings in prime fields can lead to effective noise amplification. We next ques-
tion the concrete security that can be observed for practically-relevant leakage

1 https://csrc.nist.gov/Projects/lightweight-cryptography.

https://csrc.nist.gov/Projects/lightweight-cryptography
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functions without any noise, and whether the gains of these prime encodings are
maintained in high noise regimes. We additionally show the positive impact of
increasing the size of the prime moduli and provide theoretical insights on our
results and their generalization to parallel implementations.

2.1 Methodology

As a usual starting point to analyze the worst-case security provided by a coun-
termeasure quantitatively, we use the information theoretic framework put for-
ward in [84]. Namely, we will compute the mutual information between a target
sensitive value X ∈ X and the leakage of its shares L, that is:

MI(X;L) = H(X) +
∑

x∈X
p(x) ·

∫

l∈Ld

f(l|x) · log2 p(x|l), (1)

with p(x) the shortcut notation for Pr(X = x). Assuming uniformly distributed
sensitive values, H(X) = log2(|X |) and p(x|l) is computed as f(l|x)∑

x∗∈X f(l|x∗) where
f(l|x) is the Probability Density Function (PDF) of the leakage samples. In the
case of a masked implementation with d shares, this PDF then takes the shape
of a mixture distribution defined as f(l|x) =

∑
r∈Xd−1 f(l|x, r) · p(r).

In the following, we will make the standard assumption that the leakage of
each component p(l|x, r) in the mixtures is a Gaussian distribution, so that the
leakage of each share can be written as L(Xi) = δ(Xi) + Ni, the full leakage
vector can be written as L = (L(X1), L(X2), . . . , L(Xd)) and the variance of the
noise σ2 is a security parameter. As for the deterministic part of the leakage
function δ, we will consider both the standard Hamming weight function and a
(more localized) bit leakage function leaking the LSB of Xi.

Note that directly computing the mutual information rapidly turns out to be
computationally intensive as the number of shares increases. This is for example
witnessed by the results of Fumaroli et al. [45, Fig. 2] and Standaert et al. [85,
Fig. 7] which were limited to d ≤ 3. We improve over these previous works by
leveraging the fact that computing the mixture PDF of a masked encoding can
be done without summing over all the terms of the mixture explicitly, because
the leakage of such masked encodings can be written as a convolution prod-
uct [63, Prop. 1]. Moreover, if several encodings of sensitive intermediate com-
putations leak, the latter observation can be generalized as a Soft Analytical
Side-Channel Attack (SASCA) without cycles [20,51], where the Belief Propa-
gation (BP) algorithm efficiently provides an exact solution [86]. Therefore, the
complexity of evaluating Eq. 1 actually scales in O(d · n · 2n), instead of O(

22n·d)

for a naive approach. Concretely, we use the SCALib library for this purpose.2 It
allows us to analyze the leakage of up to 13-bit targets with up to 6 shares.

2.2 Information Theoretic Evaluation Results

The results of our information theoretic investigations are depicted in Fig. 1.
Recall that the number of traces to perform a key recovery attack is inversely
2 https://scalib.readthedocs.io/en/latest/index.html.

https://scalib.readthedocs.io/en/latest/index.html
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Fig. 1. Information theoretic evaluation of different masked encodings for different
numbers of shares. Top: Hamming weight leakage function, bottom: LSB leakage func-
tion. Left: Boolean encoding, middle: arithmetic encoding in Z2n , right: arithmetic
masking in Fp. The X axis is the noise variance in log scale. The Y axis is the MI in
log scale. The different curves are for increasing numbers of shares (from 2 to 6). The
target sensitive variable is on 8 bits.

proportional to the MI [33]. So as expected in theory, all these curves have a slope
−d in the high noise regime [64]. The relevant observations for our investigations
are twofold. First, arithmetic masking significantly improves the situation in
low-noise regimes. This is reflected by the “stepped” regions of the curves. For
Boolean masking, the left (low noise) parts of the figure show no reduction of the
MI when increasing the number of shares. By contrast, arithmetic masking can
lead to (exponential) security improvements (i.e., equidistant steps) in the same
region. This only holds for the Hamming weight leakage function (on the top of
the figure) when considering arithmetic masking in Z2n (in the middle plots) and
it even holds for the LSB leakage function (on the bottom of the figure) when
considering arithmetic masking in Fp (in the right plots). We insist that this
exponential security amplification without noise of prime masking theoretically
holds for any non-injective leakage function [41]. Our evaluations amplify this
fact with the reassuring observation that its concrete impact is especially strong
with leakage functions that are commonly considered to be suitable abstractions
of real device behavior. Second, the gains that are obtained with low noise are
maintained when increasing the noise, which was not studied by Dziembowski
et al. So these results confirm that there is an interest to use prime encodings
for better dealing with noise-free leakages, and put forward that such encodings
can also lead to significant security improvements when leakages become noisy.
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2.3 Theoretical Explanation

We now argue why increasing the number of Boolean shares without noise is
useless in presence of Hamming weight leakage. For this purpose, we use a spec-
tral analysis of the conditional Probability Mass Functions (PMFs) spanned by
the noise-free Hamming weight leakage model. We said in Subsect. 2.2 that such
distributions can be computed through discrete convolutions [63, Prop. 1]. So
according to the convolution theorem, each PMF p(X|L) can be computed in
a transformed domain as the element-wise product of the d PMFs—expressed
themselves in the same transformed domain—associated to each of the corre-
sponding shares p(Xi|Li). For Boolean masking, this transformed domain is
described by the Walsh-Hadamard transform over the input domain F

n
2 , which

can be seen as an n-dimensional Fourier transform over F2 . Therefore, the ω-th
coefficient of the Walsh-Hadamard transform is computed as:

WHT(p, ω) =
∑

x∈Fn
2

(−1)〈ω,x〉p(x|l), (2)

where 〈ω, x〉 is the inner product between ω and x. Figure 2 below depicts it
when computed for Hamming weight leakages corresponding to a 4-bit target
variable. It can be observed that for l = 0 or l = n (i.e., the dotted gray curves
in Fig. 2), the absolute value of the Walsh-Hadamard coefficients is a constant
1. This corresponds to values for which the leakage model is injective (i.e., the
conditional probability distribution of the sensitive variable collapses to a single
Dirac). Let us first consider the unrealistic assumption that these leakages are
never observed – we will discuss the general case afterwards. For the remaining
leakages that an adversary may observe, only the first and last coefficient of the
Walsh-Hadamard transform are equal to 1 in absolute value. The first coefficient
being equal to 1 is due to p being a probability distribution (i.e., all probabilities
are summing to 1). For the last coefficient (i.e., for ω = 1n), the inner product
〈1n, x〉 coincides with the Hamming weight of x, i.e. HW(x) = 〈1n, x〉. Hence:

WHT(p, 1n) =
∑

x∈Fn
2

(−1)〈1n,x〉p(x|l) =
∑

x∈Fn
2

(−1)HW(x)1HW(x)=l(
n
l

) = (−1)l
. (3)

Fig. 2. Walsh-Hadamard transform of the conditional distribution p(X|L) for each
hypothetical value of the Hamming weight leakage function.
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As a consequence, any element-wise product between d Walsh-Hadamard trans-
forms among the ones observable in a Hamming weight leakage model can only
decrease all coefficients at an exponential rate, except the first and last ones. It
results that when d → ∞, the Walsh-Hadamard transform of the masked leakage
distribution tends towards (1, 0, . . . , 0,±1). Such asymptotic Walsh-Hadamard
transforms correspond to uniform distributions over two non-overlapping sup-
ports of equal size 2n−1, both leading to a conditional entropy of n − 1 bits.

Finally, we discuss our assumption that the adversary did not observe any
sample such that l = 0 or l = n. As a consequence, d in our previous reasoning
is replaced by the number of samples in the leakage that are neither null nor
equal to n. Let us denote this number by the random variable T . Hereupon, we
may notice that the marginal distribution of the leakage is such that T follows
a binomial law of parameter B(d, 1

2n−1 ). Such a law is known to concentrate
exponentially fast towards its mean d

2n−1 . As a result, the probability to observe
a number of null or full (equal to n) leakages becomes negligible when d → ∞.

2.4 Intuitive Explanation

The theoretical explanation confirms our observations from the information the-
oretic analysis formally. To gain a more intuitive understanding of why the secu-
rity level stagnates for binary masking (Boolean and arithmetic) when increasing
the number of shares without noise we can also point to concrete properties of
the considered leakage functions. If an adversary receives noise-free Hamming
weight observations HW(x1), ..., HW(xn) of the Boolean shares x1, ..., xn of
a secret variable x with x1 ⊕ ... ⊕ xn = x, then the parity-bit b ≡ HW(x1) +
... + HW(xn) mod 2 is also the parity of the Hamming weight of x. Likewise,
the parity of noise-free LSB observations of all shares is also the LSB of the
secret, since LSB(x) ≡ LSB(x1) + ... + LSB(xn) mod 2. The latter equation
holds for both Boolean masking and arithmetic encodings in binary fields. In
all described cases the information learned about the secret variable is indepen-
dent of the number of shares and the statistical security order. The order of the
masking only becomes relevant when increasing the noise level. By contrast, for
arithmetic encodings in prime fields no such relationships exist and an exponen-
tial decrease of the MI can be observed even in the no-noise scenario. This is
true for any non-injective leakage model (i.e., in any case where not all shares
and intermediates are already known to the adversary with probability 1).

2.5 Impact of the Prime Size

The results in Sect. 2.2 are for 8-bit targets. A natural further question is whether
increasing the size of the prime modulus has any (positive or detrimental) effect
on security. This investigation is especially interesting since the field size is a
source of potential non-tightness in masking security proofs [54,64].

Using the same information theoretic approach as in Sect. 2.2, we can observe
in Fig. 3 (especially in the bottom parts of the figure) that increasing the prime



604 L. Masure et al.

size significantly improves the security of the masked encodings for the Ham-
ming weight leakage function, while it has no impact for the LSB leakage func-
tion.3 Again, this is a quite positive outcome since the Hamming weight leakage
function is commonly considered as a reasonable simplification of many leakage
functions observed in practice. It also recalls that side-channel security against
very localized leakage functions (e.g., the LSB one that corresponds to a prob-
ing attack) is very challenging to obtain. But as observed in [58], such models
generally exploit significantly more powerful (and expensive) sources of leakage
than the power consumption or electromagnetic radiation.

Fig. 3. Information theoretic evaluation of masked encodings with prime moduli p =
2n −1 of increasing sizes. Top: Hamming weight leakage function. Middle: LSB leakage
function. The bottom figures are for the no-noise regime only.

3 In fact, for the LSB leakage function and a fixed number of shares, it can even be
shown that the MI(X;L) is lower bounded when increasing the size of p. For 2 shares
the concrete lower bound is given by lim

p→∞
MI(X;L) = 0.2787.
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2.6 Parallel Leakage

By assuming that the adversary can observe the leakage of each share separately,
our previous evaluations naturally correspond to a serial (e.g., software) imple-
mentation. Yet, the problem that we observe with low physical noise leakages
actually holds even in the case of a parallel manipulation of the shares (more
reflective of a hardware implementation). We analyzed this scenario by simply
replacing the leakage vector L by the sum of its d elements. The resulting evalu-
ation is depicted in Fig. 4 (for 8-bit targets). As expected, we see that the curves
of the parallel implementation are always below (i.e., less informative) than the
ones of the serial implementation, which is explained by the accumulation of the
leakage of the shares processed in parallel, which leads to a loss of information
available to the observer. More interestingly for our following investigations, we
also see that the curves in Fig. 4b and Fig. 4d are stuck to the 1 bit threshold in
the low-noise regime, matching the observations in [82].

Fig. 4. Information theoretic evaluation of serial and parallel binary masking.

Here as well, our previous spectral analysis provides an explanation of
our observations. In the serial case, the adversary is given a leakage tuple
l = (l1, . . . , ld), so the PMF x 
→ p(X = x|l) is the convolution product
x 
→ (p(X1|l1) ∗ . . . ∗ p(Xd|ld)) (x), as previously discussed [63, Prop.1]. In the
parallel case, the adversary is only given the sum � =

∑
i li of the tuple l, also

denoted by S(l) hereafter. By applying the total probability formula over all
the tuples l verifying S(l) = �, and leveraging the mutual independence of the
variables L1, . . . , Ld, the conditional PMF Pr(X|S(L)) verifies:

Pr(X|S(L) = �) =
∑

l:S(l)=�

(p(X1|l1) ∗ . . . ∗ p(Xd|ld)) · Pr(L = l|S(l) = �) . (4)

In other words, the PMF becomes the averaged convolution product over all
possible tuples verifying the constraint. Nevertheless, we argue that when d →
∞, averaging does not affect the resulting PMF much. Indeed, for each tuple
verifying the constraint, the parity of the number of odd values remains constant:
if � is even, there is always an even number of odd values in the tuple l. Likewise,
if � is odd, there is always an odd number of odd values in the tuple l. This ensures
that all the convolution products that are averaged converge towards the same
uniform distribution over a subset of size 2n−1, as argued in Subsect. 2.3. Hence,
the resulting conditional entropy (of n − 1 bits) remains unaffected.
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2.7 Final Remark

While arithmetic masking in prime fields can be sufficient to deal with low-
noise leakages, we may wonder whether it is necessary to consider groups of
prime size, or if an odd modulus would suffice. This case has been discussed
by Dziembowski et al. who showed that for groups of composite order, there
exists some leakage models for which masking is ineffective [41, Prop. 1]. This
result is actually closely linked to a wide literature studying the convergence of
probability distributions through the iterative application of a self-convolution
product [3,56]. For example, consider the group Z15, where the inner law is the
addition modulo 15. Assuming that the target variable leaks such that L(x) = x
mod 3, the adversary will obtain log2(3) bits. It can be verified that masking
at any order keeps the conditional probability distribution of the target variable
unchanged, up to a permutation, which in turn keeps the mutual information
constant. Using prime orders avoids this theoretical possibility. As will be clear
in Sect. 4, it also makes the cryptanalytic treatment of prime ciphers easier.

3 Performance and Cost

The primary motivation to tailor block ciphers and masking schemes towards
binary fields is efficiency. From an implementation perspective the ability to
perform field addition/subtraction using a simple bit-wise Exclusive-OR (XOR)
operation is one of the core advantages of working in F2n compared to per-
forming the equivalent tasks in Fp. Field multiplication including the reduction
using an irreducible polynomial can be implemented quite efficiently for small
n as well. In hardware, XOR/AND sequences are used for this purpose, in soft-
ware log/alog tables are one of the most efficient options [32]. In this section we
argue that prime field arithmetic can be executed with similar (and sometimes
even better) efficiency as (than) binary arithmetic on many platforms, due to a
direct utilization of existing computation structures. In fact, devices like Micro-
Controller Units (MCUs) and Field-Programmable Gate Arrays (FPGAs) are
mostly developed with general purpose computing in mind. Hence, they often
provide regular arithmetic operations like addition, subtraction and multipli-
cation as dedicated and heavily-optimized hardware circuitry (for one specific
size of operands). Many 32-bit micro-controllers for example include single-
cycle arithmetic instructions for 32-bit operands. Yet, single-cycle multiplica-
tions sometimes produce only a 32-bit result, instead of a full 64-bit product
(e.g., ARM Cortex-M0/M3). FPGAs on the other hand offer DSP slices which
commonly include full 18 × 18-bit or 27 × 18-bit multipliers. Whenever such
a hardware support is available, the heavy lifting for implementing prime field
arithmetic is (at least for small primes) taken care of at the expense of occupying
the integrated arithmetic accelerators (temporarily). The remaining element that
might be a bottleneck in such implementations is the modular reduction. Yet,
the efficiency of reduction algorithms modulo a prime is a well-studied subject
in general and in Elliptic-Curve Cryptography (ECC) in particular.
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3.1 Small Mersenne Primes

It is commonly known that reduction modulo a Mersenne prime, i.e., a prime
of the form p = 2n − 1, can be performed very efficiently on a binary com-
puter. There are further categories of primes that emerged as particularly suit-
able choices for efficient modular reduction. These include generalized Mersenne
primes, pseudo-Mersenne primes and Montgomery-friendly primes [6,18,19,52].
Yet, these alternatives are mostly needed because large Mersenne primes are
sparsely distributed. In the range between 2127 − 1 and 2521 − 1 for exam-
ple, there exist none. For our purposes, however, we are primarily interested
in primes much smaller than that, namely with bit-lengths close to the size of
binary extension fields that popular symmetric block ciphers operate in, e.g.,
F28 for the AES [32]. The Mersenne prime exponents closest to 8 are n = 7 and
n = 13. In the following we extend this range a bit and compare the perfor-
mance and cost of masked multiplication algorithms in fields F2n and F2n−1 for
all Mersenne exponents n with 3 ≤ n ≤ 31. These sizes allow efficient imple-
mentation of field arithmetic both in software and hardware. Hence, they are
relevant targets for the construction of cryptographic building blocks. Besides,
Mersenne prime fields have the additional advantage that any multiplication of
a field element by a power of 2 is merely a rotation of the bits, which is cheap
in software and entirely free in hardware. As a result, also the Hamming weight
of a value is preserved when it is multiplied by a power of 2. Eventually, when
mapping messages into the desired prime field for encryption, Mersenne primes
cause the minimum amount of unused bit strings (i.e., only the all-ones string).

3.2 Masked Multiplication in Binary Fields vs. Prime Fields

When masking a cryptographic primitive like a block cipher, the linear opera-
tions can trivially be extended and applied to each share individually. Therefore,
the cost of masked linear operations grows linearly in the number of shares. The
implementation of non-linear elements is less straightforward and requires ded-
icated gadgets which optimally offer (robust) probing security and, if desired,
satisfy composability notions to enable their secure combination to construct
larger (robust) probing secure circuits [11,44]. It is a common abstraction to
estimate that the cost of masked non-linear operations grows quadratically in
the number of shares [47]. This is traditionally motivated by the number of
partial products required for executing the ISW multiplication algorithm [53].
Clearly, the main bottleneck for the efficiency of masked cipher implementations
is the realization of the non-linear operations, or as commonly abstracted, the
multiplications. In the following we therefore compare the performance and cost
of masked multiplication algorithms and circuits. These gadgets are well-suited
for a comparison as they not only consist of field multiplications but also require
field addition and subtraction (which are equivalent in binary fields).

Software. First, we concentrate on software platforms. For the comparison we
have chosen an STM32VLDISCOVERY board4 with an STM32F100RB ARM
4 https://www.st.com/en/evaluation-tools/stm32vldiscovery.html.

https://www.st.com/en/evaluation-tools/stm32vldiscovery.html
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Table 1. Cycle counts of the ISW multiplication algorithm on an ARM Cortex-M3
MCU (STM32F100RB on STM32VLDISCOVERY) for binary and prime fields with
small to medium Mersenne prime exponents 3 ≤ n ≤ 31.

Number of Shares

Field n 1 2 3 4 5 6

F2n 3 24 73 173 330 656 956

5 26 75 215 388 672 968

7 26 75 217 392 720 1032

13 162 629 1429 2581 3933 6014

17 210 821 1861 3349 5085 7758

19 234 917 2077 3733 5661 8630

31 378 1493 3373 6037 9117 13862

Number of Shares

Field n 1 2 3 4 5 6

F2n−1 3 5 20 39 104 230 382

5 5 20 39 104 230 382

7 5 20 39 104 230 382

13 5 20 39 104 230 382

17 17 82 224 468 804 960

19 17 82 224 468 804 960

31 19 86 230 476 820 1262

Cortex-M3 32-bit micro-controller. It provides single-cycle addition, subtraction
and multiplication instructions for 32-bit operands. However, the single-cycle
multiplication instruction (MUL) only produces 32-bit results and is therefore
effectively a 16 × 16-bit multiplier for our purposes. A multi-cycle 32 × 32-bit
multiplication instruction (UMULL) producing a 64-bit result exists, but it does
not execute in constant time and is therefore not considered in this work. All our
software implementations are written in C and have been compiled and analyzed
using Keil MDK for ARM (MDK-Lite Version 5.36.0.0). Table 1 compares the
number of cycles required to execute an ISW multiplication in constant time in
both binary and Mersenne-prime fields with up to six shares (providing fifth-
order security). Up to n = 7, the masked binary ISW multiplication is quite
efficient, as the partial products can be computed using log/alog tables [32]. The
remaining operations in the masked multiplication algorithm are XORs. For n =
13 and larger fields, log/alog tables are too big to be hard-coded as static tables
in the program and to be flashed onto the device. Thus, for 13×13-bit and larger
multiplications, the partial products are computed using a regular constant-time
Galois field multiplication based on shift, XOR and AND operations.5

The masked Mersenne-prime ISW multiplication is more efficient for any
number of shares on this target platform since, unlike the binary field operation,
it can leverage the arithmetic multiplication instructions. The subsequent mod-
ular reduction takes another 4 cycles for small n values. For n = 17 and larger
Mersenne primes, the multiplication result does not fit into a single 32-bit word,
implying the need for multi-precision arithmetic. Using the standard Karatsuba
algorithm, at most three calls to the constant-time 16-bit multiplication instruc-
tion (MUL) are needed for 17 ≤ n ≤ 31. Therefore, both the multiplication and
the subsequent reduction require more cycles for these sizes. Nevertheless, com-
pared to binary field multiplications of the same size they are still significantly
more efficient, by up to one order of magnitude (for n = 31).

This comparison obviously neglects the significant performance improve-
ments that can be achieved for binary field operations when making use of bit-
slicing (first introduced in [14] to speed up DES implementations). Unfortunately

5 It is possible to compute the tables on the device when they are needed. Yet, it
creates additional (memory) overheads and complicates the comparison.
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this technique can not be transferred to prime fields. By contrast, using medium-
sized (e.g., 31-bit) primes that leverage the data width of the target platform
optimally could serve as an alternative to build fast software implementations. A
more detailed comparison including such considerations falls outside the scope
of this work. Our point is anyway not that prime field operations are gener-
ally cheaper in software than binary field operations, but merely that Mersenne
prime field arithmetic can be implemented very efficiently on such platforms too,
mainly due to the existence of optimized arithmetic hardware support. Combin-
ing with their excellent side-channel security features, it makes them promising
candidates for effective and efficient masking in low noise conditions.

Hardware. For hardware implementations it is usually distinguished between
Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate
Arrays (FPGAs). In this work we mainly consider FPGAs as a suitable target
platform, since similar to MCUs they already come with optimized arithmetic
hardware multipliers and adders on-board. If such resources are not available,
the cost of building Mersenne-prime field multiplication from combinatorial logic
cells (provided by a standard cell library) is, according to our estimation, about
twice as high as for binary fields of the same size (this overhead shrinks for larger
n). For addition and subtraction the resource overhead is even 3–4. However,
when the FPGA includes DSP slices with multipliers and adders, the utilization
of soft logic (LUTs, FFs, Slices) can be significantly reduced for prime field
operations, at the cost of occupying the integrated arithmetic processors.

Table 2 shows the resource utilization of ISW multiplication circuits with
up to 6 shares on a Xilinx Spartan-6 FPGA (XC6SLX75-2CSG484C) for both
binary and Mersenne prime fields with exponents in the range 3 ≤ n ≤ 31. This
target FPGA offers 132 DSP48A1 slices with one 18×18-bit multiplier each. All
circuits have been implemented using Xilinx ISE Design Suite 14.7 with synthesis
parameters -keep hierarchy set to yes and -use dsp48 set to Auto. On average
the masked prime field multiplications require less soft logic than the binary field
equivalents, at the cost of using DSP48A1 slices. From the resource utilization
figures, it becomes clear that n = 5 and n = 19 are sub-optimal choices for this
target. For n = 5 the corresponding Mersenne prime p = 31 is still too small to
effectively leverage the 18-bit multipliers (the synthesis tool then opted to not
use a DSP slice), while its DSP-free implementation is already quite expensive.
For n = 19 the multiplication cannot fit into an 18 × 18-bit multiplier, but it is
also too small to effectively utilize a second instance for each multiplication, so
the multiplier is extended by expensive soft logic. However, for n = 7, n = 13
and n = 17 (and even n = 31), efficient masked multiplications are found.

3.3 Larger Prime Ciphers

It is well-known from ECC-related research that performing cryptographic oper-
ations in larger prime fields requires expensive multi-precision arithmetic. For
this reason, most existing prime-based block ciphers are not perfectly suited
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Table 2. Resource consumption of the ISW multiplication algorithm on a Xilinx
Spartan-6 FPGA (XC6SLX75-2CSG484C) for binary and prime fields with small to
medium Mersenne prime exponents 3 ≤ n ≤ 31. Note that 132 is the maximum number
of available DSP48A1 slices on this target FPGA (*).

Shares Field n LUTs Slices DSPs

1 F2n 3 3 3 0

5 12 6 0

7 26 9 0

13 81 35 0

17 132 56 0

19 166 71 0

31 407 180 0

F2n−1 3 3 3 0

5 34 13 0

7 16 6 1

13 27 12 1

17 35 15 1

19 116 36 1

31 63 24 4

Shares Field n LUTs Slices DSPs

2 F2n 3 22 16 0

5 64 41 0

7 114 62 0

13 382 157 0

17 590 249 0

19 742 322 0

31 1722 802 0

F2n−1 3 25 19 0

5 197 79 0

7 121 47 4

13 216 80 4

17 284 99 4

19 623 183 4

31 520 156 16

Shares Field n LUTs Slices DSPs

3 F2n 3 57 46 0

5 156 102 0

7 273 152 0

13 862 440 0

17 1352 545 0

19 1711 738 0

31 3957 1904 0

F2n−1 3 66 48 0

5 468 198 0

7 327 123 9

13 569 202 9

17 737 253 9

19 1512 444 9

31 1335 405 36

Shares Field n LUTs Slices DSPs

4 F2n 3 108 84 0

5 294 168 0

7 500 294 0

13 1623 610 0

17 2414 1319 0

19 3060 1410 0

31 7099 335 0

F2n−1 3 126 85 0

5 866 385 0

7 600 254 16

13 1082 386 16

17 1428 467 16

19 2792 816 16

31 2527 768 64

Shares Field n LUTs Slices DSPs

5 F2n 3 175 128 0

5 460 295 0

7 821 446 0

13 2473 1237 0

17 3761 1826 0

19 4808 2201 0

31 11217 5086 0

F2n−1 3 205 137 0

5 1369 575 0

7 984 381 25

13 1788 605 25

17 2284 769 25

19 4468 1301 25

31 4095 1295 100

Shares Field n LUTs Slices DSPs

6 F2n 3 258 200 0

5 672 432 0

7 1188 714 0

13 3657 1653 0

17 5469 2624 0

19 6933 3182 0

31 16237 7110 0

F2n−1 3 303 211 0

5 1966 884 0

7 1422 612 36

13 2625 891 36

17 3373 1131 36

19 6532 1894 36

31 9254 2369 132*
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to deliver the desired efficiency for low-end embedded devices. For instance, a
single unmasked 129×129-bit multiplication, as required 82 times in the MiMC-
129/129 block cipher [2], already costs multiple hundreds of clock cycles (without
modulo reduction) on devices where single-cycle 32-bit hardware multipliers are
available [38]. On a Spartan-6 FPGA a single 129 × 129-bit unmasked multipli-
cation without reduction is about as expensive as 16 31 × 31-bit multiplications
or 64 17 × 17-bit (or smaller) multiplications. Considering additionally that no
129-bit Mersenne prime exists, the overheads for the modulo reduction will be
even more significant. The same problems arise for all prime ciphers which are
either based on operations in too large fields or which require reduction modulo
an implementation-unfriendly prime (since integer division might be needed).
We conclude that the design space for small to medium Mersenne-prime ciphers,
dedicated to efficient masked implementations, is still mostly unexplored. We
next show the interest of this design space by exhibiting the advantages of a first
AES-prime cipher over its standard version for masked implementations.

4 AES-prime for Prime Encodings

Section 2 showed that prime encodings can improve the security of the masking
countermeasure in low-noise settings. Section 3 showed that the resulting oper-
ations can be implemented efficiently in hardware and software. The next step
in proving the utility of these encodings is to analyze concretely-relevant com-
putations. Yet, as mentioned in the introduction, applying prime encodings to
binary ciphers is expected to lead to large performance overheads. In general,
prime ciphers, for which the key addition is in Fp and the diffusion layer is linear
in this field, would be better suited to this goal. As a natural starting point, we
propose an AES variant operating in prime fields, denoted as AES-prime.

4.1 AES-prime Design for p = 27 − 1

The main design guideline of AES-prime consists in adapting the standard AES
design to Fp where p is a prime, using only additions and multiplications over
the chosen prime field. The main design components are the same: the key is a
vector of 16 elements of Fp and the state is considered as a table of 4 by 4 Fp

elements. The round architecture is the same with the following adaptation on
SubBytes, MixColumns and AddRoundKey. See [32] for details.

SubBytes. The non-linear substitution built upon the inverse function in F28

is replaced by a power function and the addition of a constant. The S-box is
defined as f(x) = xe + c where e is the first integer such that e and p − 1 are
co-prime, to ensure that the function mapping x ∈ Fp to xe is a bijection, and c
is the smallest positive integer such that f(x) has no fix points (as in the original
design). Then for p = 27 − 1 we have e = 5, c = 2 and f(x) = x5 + 2.

Note that contrarily to the original AES nonlinear function this power map
is not its own inverse. The main reason for this choice is that it allows reducing
the number of multiplications in the S-box, which is the most expensive oper-
ation to mask. Concretely, the considered x5 mapping can be performed with
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three multiplications. A counterpart of this choice is that the inverse will be less
efficient. For now we therefore assume that AES-prime will be preferably used
in an inverse-free mode of operation (e.g., CTR [59]), leaving the investigation of
S-boxes in prime fields with efficient inverses as an open problem.

MixColumns. This part of the affine layer is replaced by a 4 by 4 Maximum
Distance Separable (MDS) matrix over Fp. The reason is to guarantee a branch
number of 5 as in the original AES design (which is optimal for this size), for
diffusion properties. To choose the MDS matrix, we start from a Vandermonde
matrix and perform minor modifications to decrease the number of different
elements. It is beneficial to choose elements which are powers of 2 when p is a
Mersenne prime, since multiplication by such a value is merely a rotation of the
bits. For p = 27 − 1 it leads to the following choice:

M =

⎡

⎢⎢⎣

1 1 1 1
1 2 4 16
1 4 16 2
1 16 2 4

⎤

⎥⎥⎦ .

AddRoundKey. The bit-wise addition of the AES is replaced by the addition over
Fp between the 16 elements of the round key and the state.

For completeness, we finally mention that AES-prime uses the key schedul-
ing algorithm of the AES adapted with a prime S-box and additions modulo p.
Its round constants are computed as multiples of 3 modulo p, resulting in the
sequence 0x01, 0x03, 0x09, 0x1B, 0x74, 0x5E, 0x1C, 0x54 ...

4.2 Security Analysis

The proximity between the AES-prime and AES designs allows us to benefit from
two decades of cryptanalysis in order to determine the security of the AES-prime
to known attacks. For our choice of parameters, we can also lean on the security
analysis of the HADES design strategy [48] that recently studied generalizations
of SPN designs over prime fields. The main focus of [48] is on big prime sizes
(where log2(p) corresponds to the targeted security such as 128-bit) for MPC
applications, but its security analysis also considers smaller sizes. For example,
for log2(p) = 8 and a state of 16 words they advocate 14 rounds for a 128-
bit security (16 × log2(p) more precisely). The main attacks exhibited against
these prime designs are statistical attacks (mostly differential cryptanalysis),
and algebraic attacks based on interpolation and Gröbner bases.

AES-prime has two main differences with the HADES ciphers. First, all rounds
have a full S-box layer whereas HADES combines full S-box layers and partial
S-box layers in order to decrease the total number of products. Second, the
diffusion of AES-prime uses a 4 by 4 MDS matrix whereas HADES uses an MDS
matrix on the whole state (16 by 16 in our case). We argue these differences
have a limited impact on the security analyses, and a similar number of rounds
could be considered. For statistical attacks, the strategy of HADES relies on the
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differential and linear probabilities of an S-box and the number of active S-
boxes in the full layers. The S-box of AES-prime being a power function as
in HADES, we can bound the statistical probabilities using the same arguments,
and we can bound the number of active S-boxes from the diffusion properties
proven for the regular AES. For algebraic attacks, the strategy of HADES is based
on determining the degree of the polynomials obtained after r rounds, and the
number of coefficients of such polynomials. The same strategy can be applied to
AES-prime. We next give more details on these attacks on AES-prime.

Statistical Attacks. The most common attacks on block ciphers are linear [65]
and differential cryptanalyses [16] and their variants. They consist in following
how statistical biases from the S-boxes propagate along various rounds of the
cipher in order to determine the key. Following the Wide Trail Strategy [31],
we bound the linear and differential probability of the S-box function, and use
the branch number to bound the number of active S-boxes over various rounds,
in order to determine the minimal number of rounds preventing characteristics
with probability higher than 2−λ, where λ is the security parameter. As in [48]
we ensure that each characteristic has a probability smaller than 2−2λ in order
to avoid that a combination of various of them lead to an attack.

The differential probability of a 1-variable p-ary function f from a to b (both
in Fp) is defined as |{x : f(x + a) − f(x) = b}|/|Fp| and its linear probability
relatively to a, b as |{x : f(x) = ax+b}|/|Fp|.6 Since Fp is a field, any polynomial
of degree e has at most e roots, which gives the upper bound of (deg(f)−1)/p for
the differential probabilities and deg(f)/p for the linear ones. Since in AES-prime
ShiftRows is the one of the regular AES and MixColumns is based on an MDS
matrix as for AES too, the number of active S-boxes in a four-round differential
(or linear) trail is lower bounded by 25 (see [32], Theorem 9.5.1). Therefore, with
8 rounds the differential probabilities admit the upper bound:

p ≤
(

deg(f)
p

)50

, hence for p = 27 − 1 it gives p ≤
(

5
127

)50

≈ 2−233.

These probabilities are smaller than 2−2λ and, as in [48], we add two rounds
in order to guarantee that no differential attack can be set up by key guessing,
which leads to a minimum of 10 rounds to avoid these attacks.

Algebraic Attacks. As for the HADES framework, we consider that the main
algebraic attacks threatening AES-prime are the interpolation attack [55] and
attacks exploiting Gröbner bases. In both cases, the goal of the analyses are to
determine a minimum number of rounds such that the polynomial representa-
tions of the cipher that an adversary can build has a too high degree of too many
monomials. First, we note that for a fixed key the encryption could be studied as
a function (mapping each plaintext to a ciphertext) from Fp16 to Fp16 . Then, even
determining the polynomial corresponding to one full S-box layer is non-trivial.
Accordingly, the basis field we consider for the cryptanalyses is Fp, and poly-
nomials built by the adversary belong to Fp[z0, · · · , z15]/(zp

0 − 1, · · · , zp
15 − 1).

6 A n-variable p-ary function is a function from F
n
p to Fp.
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Since the degree in one variable is at most p − 1, the total degree is at most
16(p − 1) and there are p16 monomials. The S-box used in AES-prime being a
power function xe added to a constant, the total degree will therefore increase
as er for the first r rounds, until reaching the maximum of 16(p − 1). For the
number of monomials, most of the monomials will be present in each polynomial
after a few rounds (most since even for a random polynomial each monomial is
present with probability (p − 1)/p). Indeed, after loge(p)� rounds, all the uni-
variate monomials (zj

i ) are obtained. Two more rounds ensure to have sums with
each one of the 16 variables (at some power) as input of the S-box’ f function
(defined in Sect. 4.1). As a result, loge(p)� more rounds are sufficient to obtain
all monomials. Overall, we obtain dense polynomials after 2loge(p)�+2 rounds,
which corresponds to 10 rounds for the chosen p = 27 − 1.

For the interpolation attack, the attacker aims at interpolating a polynomial
from F

16
p to Fp corresponding to the encryption over all minus one rounds using

known plaintext/ciphertext pairs. If such a polynomial has a low degree or few
monomials, the adversary can guess the key of the final round, decrypt the
ciphertexts, interpolate the polynomial corresponding to all minus one rounds
and confirm it with an extra plaintext/ciphertext pair. The data cost is well
approximated by the number of plaintext/ciphertext pairs necessary to build
such a polynomial. Following the strategy of HADES, we consider that such an
attack cannot succeed when the number of monomials in the cipher polynomial
is equal to the full code book, since it corresponds to p16 ≈ 2λ monomials which
already meets the targeted security. Accordingly, we count 2loge(p)�+3 rounds
to rule out the interpolation attack, 11 for p = 27 − 1. Due to the proximity of
design between SHARK [78] and AES-prime, we also consider the analysis of the
first interpolation attack [55] on this block cipher. The principle of this attack
is that even if the S-box corresponds to a function of high degree (maximal in
the case of the inverse as in SHARK), it can be attacked more easily in another
representation (e.g., as a fraction of low-degree polynomials). In this case, the
complexity of the attack comes from the number of S-boxes rather than their
size or degree. The complexity of the best attack is then at least 2(tr−3)t, where
t is the number of S-boxes and r the number of rounds. For the AES-prime it
corresponds to 2 · 1616(r−3), hence at least 5 rounds for p = 27 − 1.

For Gröbner bases attacks, the attacker aims at solving a system of multi-
variate polynomials over Fp in the key elements obtained with sufficient plain-
text/ciphertext pairs. Determining the (tight) complexity of these attacks is
impossible. Hence the security of ciphers against these attacks is usually based
on the infeasibility of computing the Gröbner basis in degree reverse lexical order.
We follow this strategy also used in HADES. Since the design differences (e.g., MDS
matrix on partial or full state, full or partial S-boxes layers) have no influence on
the final complexity, we respect the bound of at least 2+loge(p)/2�+loge(16)�
rounds. For p = 27 − 1 it leads to a minimum of 6 rounds.

Number or Rounds. Based on the complexity of the different attacks consid-
ered, 11 rounds would be sufficient for the targeted security of �16 log(27 −1)� =
111 bits for this value of p, which is coherent with the number of rounds in
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the AES. Since various improvement of the considered attacks, or attacks of the
same families, are possible we take a more conservative approach and follow the
estimations of HADES. Accordingly, we advocate the use of 14 rounds.

Before moving to the experimental validation of our findings, we re-insist that
the proposed instance of the AES-prime cipher with p = 27 − 1 is only aimed
to confirm the interesting design space that prime ciphers open. In particular,
our following conclusions only require that AES-like ciphers operating in binary
and prime fields of similar sizes require similar number of rounds (i.e., differ
by factors that are covered by the physical security gains that the AES-prime
provides). Besides, we note that this design is scalable. For example, if 128 bits of
security or more are required, a 13-bit variant with p = 213−1 can be considered.
The S-box could then be based on f(x) = x11 + 3 while keeping the same MDS
matrix as the 7-bit instance for MixColumns, and the same number of rounds.

5 Experimental Validation

In this last section, we finally consider the practical impact of prime encodings
on the security of masked block cipher implementations in software and hard-
ware. For this purpose we implement masked field multiplications in F27−1 based
on the ISW multiplication algorithm [53] and construct probing secure imple-
mentations of the AES-prime S-box, i.e., x5+2. We refrain from any comparison
to masked versions of the standard AES S-box here, which is based on Galois
field inversion in F28 . The different bit lengths of inputs processed, the different
number and size of field multiplications required and the various known imple-
mentation strategies for the standard AES S-box are among the reasons why any
such comparison would depend a lot on the ad-hoc choices made along the way
and indeed feel like comparing apples to oranges. Thus, we chose to compare the
identical operations, i.e., multiplication and f(x) = x5 + 2, in the corresponding
fields F27−1 and F27 . We stress that the following results are not meant as an
efficiency comparison (which would favor binary fields for this choice of S-box
since the squaring operation is linear in F27), but merely as a comparison of
their side-channel leakage. For our software case study, we evaluate the security
of these implementations for an increasing number of shares (up to 6) against a
profiled SASCA attack (similar to the one considered in [20]). In this setting the
adversary is given full profiling access to the device to characterize its leakage
behavior and build optimal models for the attack. Furthermore, the chosen 32-
bit MCU (specified next) has shown a low natural noise level when measuring its
power consumption. As a second case study, we evaluate the leakage reduction
offered by prime field operations in hardware compared to the equivalent binary
field operations using a detection-based leakage assessment [81].

5.1 Target Devices and Experimental Setups

For the software-based investigations, we have targeted the same device as
already described in Sect. 3, namely an STM32VLDISCOVERY board with an
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embedded STM32F100RB ARM Cortex-M3 32-bit micro-controller. Both the
discovery board and the MCU are identical to the Cortex-M3 experiments pre-
sented in [20], where bitslice masked implementations have been analyzed. Also
similar to [20], we have conducted a standard modification of the board for
power measurements, namely carefully removing the decoupling capacitors in
the power grid of the target chip to obtain improved results. The Cortex-M3 has
been operated at 8 MHz throughout our experiments.

For the hardware-based investigation we have evaluated the masked imple-
mentations on a SAKURA-G FPGA board,7 which employs two Xilinx Spartan-6
FPGAs: one as a target and one as a control unit. The target FPGA is the exact
Spartan-6 device we have used for the estimation of the resource consumption
of masked field multiplications in Sect. 3. We have operated the target imple-
mentations at 6 MHz. Low frequencies were selected since we are interested in
conducting our comparisons at minimal noise levels.

In both cases, we have used the same measurement equipment and settings.
In detail, we have placed a CT-1 current probe from Tektronix with a band-
width up to 1 GHz in the power supply path of the target FPGA and acquired
the measurements with a PicoScope 5244D digital sampling oscilloscope. The
sampling rate was set to 250 MS/s and the vertical resolution was 12 bit.

5.2 Software Case Study

The goal of the software-based case study is to validate whether moving to encod-
ings and operations in prime fields actually leads to concrete security improve-
ments compared to standard Boolean masking in real-world experiments. To
answer this question, we mount horizontal attacks against the AES-prime S-box
for two different encodings and two implementation strategies realized on a small
32-bit micro-controller (known to provide limited natural noise).

Methodology. We implemented the S-box as a sequence of three ISW mul-
tiplications, as described in Sect. 4. It gives rise to intermediate computations
x, x2, x4, x5. We added refreshing gadgets according to the trivial composition
strategy of [26,47]. We follow the attack of Bronchain and Standaert from CHES
2021 [20] to efficiently leverage the horizontal leakages and extend it to opera-
tions in prime fields. Concretely, this analytical attack targets all the encodings
appearing in the multiplication chain, which has the significant advantage that
the resulting factor graph does not have cycles and is guaranteed to converge.8

The procedure of the attack is as follows. We assume that the adversary can
profile the leakage of the device while even knowing the random values used
during the profiling phase. This is a standard assumption when trying to evalu-
ate the security in the worst-case scenario for the designer by considering a very
7 http://satoh.cs.uec.ac.jp/SAKURA/index.html.
8 We also tested SASCA with the full factor graph, using the heuristic of running the

BP algorithm for a number of steps corresponding to twice the diameter of the factor
graph. This attack variant did not lead to significant improvements.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
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Table 3. Concrete cycle counts (left) and resource utilization figures (right) of the
software and hardware implementations measured in this section. All values are for
constant time implementations and exclude randomness generation.

Field Arith. log/alog

d F2n F2n−1 F2n F2n−1

2 1321 189 232 282

3 2902 334 448 535

4 5213 600 800 912

5 8255 1125 1340 1581

6 12038 1692 1988 2283

Binary Field F2n Prime Field F2n−1

d LUTs Slic. DSPs LUTs Slic. DSPs

2 26 15 0 20 11 1

3 126 77 0 131 70 4

4 285 161 0 348 160 9

5 539 293 0 710 306 16

6 848 486 0 1096 515 25

strong attacker model [20]. The adversary uses the profiles subsequently to target
each share and intermediate value separately and finally combines all acquired
information to determine the underlying secrets. For this purpose, we first select
representative Points-of-Interest (POIs) in the trace for each relevant intermedi-
ate value thanks to the standard Signal-to-Noise Ratio (SNR) metric [60]. The
leakage distribution of each target intermediate value is then profiled thanks to
a pooled template attack [29] after a dimensionality reduction step using Linear
Discriminant Analysis (LDA) [83]. As a result, we obtain leakage models for all
the target intermediate values of the factor graph and use them in place of the
a priori (Hamming weight and LSB) ones of Sect. 2. These multivariate models
can be superior to the previous HW and LSB models and may enable attacks
with very few traces. Since we are interested in the practical interest of prime
encodings, we also switch from (easier to estimate) information theoretic metrics
to a security metric, namely the Guessing Entropy (GE) [84] that captures the
average key rank and which we estimated based on 1, 000 different attacks.

ExperimentalResults. Wehave implemented themasked computation ofx5+2
in both fields F27 and F27−1 using two different implementation strategies. First,
using regular field arithmetic for the multiplication, which includes shift, XOR and
AND operations for the binary field and single-cycle multiplication and addition
instructions for the prime field. However, since these approaches show a vastly dif-
ferent leakage pattern, we have additionally realized a table-lookup based imple-
mentation using log/alog tables for both fields. The table-lookup based implemen-
tations are realized using very similar sequences of instructions and are therefore
perfectly suited for a fair comparison. It is important to mention that all imple-
mentations work in constant time. For the log/alog table implementations we have
only considered traces for the attack where the inputs to the lookup-based field
multiplication are non-zero. Despite the fact that all our implementations execute
in constant time (for any input), there is still an operation dependency in the case
that one or both multiplication inputs are zero (see [32] for a description of the
lookup function). This dependency, which is inherent to all log/alog table based
implementations, allows to trivially identify all zero-inputs with probability one
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Fig. 5. Illustrative Cortex-M3 sample traces of a first-order masked implementation
computing x5 + 2 in binary field (left) and prime field (right) using regular field arith-
metic operations (top) and log/alog tables (bottom).

in the traces. In order to avoid this special case in our comparison we have only
considered non-zero inputs for both binary and prime fields. For our purposes this
simple workaround was acceptable, for real implementations we recommend more
prudent strategies such as presented in [80]. Sample traces of the acquired mea-
surements from the Cortex-M3 for the four different implementations are shown
in Fig. 5 for the case of 2 shares. We have repeated those measurements for 3, 4, 5
and 6 shares for each of the four cases. For completeness, we provide the concrete
cycle counts and resource utilization figures of the analyzed implementations in
Table 3. As detailed before, the cycle counts required for performing three consecu-
tive masked multiplications are compared in the software case (which is clearly not
the most efficient manner to compute x5, especially in binary fields). Please note
that log/alog table based prime implementations require slightly more cycles than
the equivalent Boolean implementations, since only the partial multiplications are
performed via table lookup, while additions are still performed using regular arith-
metic (requiring a reduction in the prime case). Figure 6 for example shows the
Signal-to-Noise Ratio (SNR) for one input share per implementation. As expected,
the leakage patterns and magnitudes are different between binary and prime field
computation when considering the regular field arithmetic implementations. How-
ever, they are strikingly similar for the table-based implementations.

In order to perform the attacks we have built profiles using 50,000 traces each,
selected a maximum of 200 POIs per variable and set the number of dimensions
after LDA projection to 2. The results are depicted in Fig. 7. As expected for
a low-noise device, Boolean masking (in F27) with multiplication based on field
arithmetic (Fig. 7a) leads to trivial attacks in less than 10 traces against all
implementations with up to 6 shares using the profiled models. By contrast,
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Fig. 6. Signal-to-Noise Ratio (SNR) of input share 0 for the traces in Fig. 5.

the corresponding SASCA against the AES-prime S-box (Fig. 7b) requires sig-
nificantly more observations to succeed. Attacking the 6-share implementation
requires around 4, 000 traces. Yet, the differences between Fig. 7b and Fig. 7a
could potentially be influenced by the way the field multiplication is imple-
mented. Therefore, we repeated the attacks for the table-based implementa-
tions, where the leakage per share has been shown to be equivalent. The result
is depicted in Figs. 7c and 7d. It can be observed that the attacks require more
traces to succeed for both fields due to the lower SNR (c.f. Fig. 6). Yet, 50–60
traces still suffice to retrieve the key of the Boolean masked computation with
6 shares, while about 10, 000 traces are required for the equivalent prime field
masked S-box. These results confirm the interest of prime encodings. In particu-
lar, they show a significant security benefit when increasing the number of shares
for prime field masking even in this challenging low-noise software context, which
is a major advantage over Boolean masking.

5.3 Hardware Case Study

In order to investigate whether similarly impressive security improvements can
be achieved for the (naturally more noisy) case of parallel hardware implemen-
tations, we have conducted a second case study. In this experiment, we imple-
mented the ISW multiplication algorithm in hardware and, as for the previous
case study, compare the security provided by Boolean (in F27) and prime field
(in F27−1) masking. When implemented in two cycles (and synchronizing the
outputs with a register [69]), the ISW multiplication algorithm leads to a robust
probing secure and composable circuit gadget [44]. This is crucial to avoid a
reduction of the statistical security order due to the presence of physical defaults
in the hardware such as glitches. We implemented the ISW multiplication in both
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Fig. 7. Guessing Entropy of SASCA against a software implementation of the
AES-prime S-box (top) and a binary variant (bottom) for 2 to 6 shares.

considered fields for up to five shares in a fully pipelined manner. A compari-
son of their resource utilization on the Spartan-6 FPGA is given in Table 3.
As detailed in Sect. 3, the prime field multiplications are supported by DSP
slices instead of pure soft logic implementations. We only execute and measure
a single masked multiplication gadget to obtain relatively low noise levels (aside
from the parallelism inside the gadget itself). Then we perform a Test Vector
Leakage Assessment (TVLA)-based analysis [81] to verify the security order pro-
vided by the circuits and analyze the number of traces required to exceed the
detection threshold. We chose to perform this analysis using two fixed classes
(0× 00 · 0× 00 vs. 0× 7E · 0× 7E) to minimize the number of measurements
required to detect data-dependent information, as suggested in [39]. Our results
are depicted in Fig. 8. Table 4 lists the required amounts of traces to pass the
detection threshold (t > 4.5) in the respective TVLA procedures.

Table 4. Required numbers of traces to pass the detection threshold.

Field \d 1 2 3 4 5

F2n < 10 100 20, 300 198, 000 5, 870, 000

F2n−1 < 10 3, 700 128, 100 > 10, 000, 000 > 10, 000, 000
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Fig. 8. TVLA-based comparison of ISW multiplications. Left to right: sample trace,
TVLA over points, TVLA over traces.
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For the unmasked case, the difference is insignificant. However, when increas-
ing the number of shares, the amount of traces required to confidently detect
leakage grows much more quickly for the prime field multiplication than for
the binary field one. Concretely, the 4- and 5-share masked multiplications in
F27 still show confidently detectable leakage after approximately 198,000 and
5,870,000 traces respectively. The analysis of the corresponding F27−1 multipli-
cations on the other hand can not find enough input-dependent information in
10,000,000 traces to distinguish the two fixed classes with a confidence above the
threshold. For the 4-share case this means that even a 50 times larger number
of observations is insufficient to achieve the same detection result.

We note that in the 3-share case, the relative difference between the metrics
for binary and prime fields appears to be smaller. Yet, we believe that it does not
reflect a smaller relative difference between the practical security levels provided
by these two implementations, but is instead owed to known shortcomings of
the TVLA procedure [87]. Indeed, there are factors beyond the security of the
implementation that influence the magnitude of the statistic and also the number
of traces required to reach a certain magnitude in TVLA (e.g., we verified that
the relative gap in the 3-share case is larger for different choices of the input
classes). So as usual with leakage detection, these results should be used as first
hints towards the significantly improved security that prime field masking offers,
especially given the overwhelming differences in the higher order cases. But they
are not a directly suitable way to conclude about a security level expressed in
terms of number of traces to recover the key. We leave such an advanced analysis
of worst-case attacks as an interesting scope for further research.

6 Conclusions

The results in this paper show that masking with prime encodings can lead
to major security improvements in the practically-relevant case of devices with
low noise. Evaluations in software and hardware show security improvements by
orders of magnitude over Boolean masking (for targets of equivalent sizes). We
hope these results open the way to a better understanding of masking in this
challenging context. We also believe they lead to important open problems.

A first direction is to further improve security by decreasing the side-channel
signal. One option for this purpose is to work with larger p values, which will also
raise evaluation challenges, as it implies the need to profile larger intermediate
computations (which is expensive with current tools). Another one is to leverage
algorithmic noise, either by using random values that are larger than p in the
ISW multiplications, or by performing all the computations modulo p ·N (where
N would be an algorithmic noise parameter). A second direction is to further
study the physical cryptanalysis of prime encodings. For example, investigating
algebraic attacks could be relevant (although also raising challenges, as these
attacks generally have a limited noise tolerance that may not be adapted to
masking) [22,73,77]. As mentioned in the introduction, assessing the interest of
prime encodings in the context of static leakage is another interesting question.
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And of course, the design of ciphers that are even better suited to masking in
prime fields than the AES-prime, and their comparison with optimized bitslice
ciphers implemented with Boolean masking is an important long-term goal.
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Abstract. Arithmetic to Boolean masking (A2B) conversion is a cru-
cial technique in the masking of lattice-based post-quantum cryptogra-
phy. It is also a crucial part of building a masked comparison which is
one of the hardest to mask building blocks for active secure lattice-based
encryption. We first present a new method, called one-hot conversion,
to efficiently convert from higher-order arithmetic masking to Boolean
masking using a variant of the higher-order table-based conversion of
Coron et al. Secondly, we specialize our method to perform arithmetic
to 1-bit Boolean functions. Our one-hot function can be applied to mask-
ing lattice-based encryption building blocks such as masked comparison
or to determine the most significant bit of an arithmetically masked
variable. In our benchmarks on a Cortex M4 processor, a speedup of
15 times is achieved over state-of-the-art table-based A2B conversions,
bringing table-based A2B conversions within the performance range of
the Boolean circuit-based A2B conversions.

Keywords: Masking · A2B conversion · Side-Channel Protection ·
Post-Quantum Cryptography · Lattice-based Cryptography

1 Introduction

A majority of public key cryptographic algorithms are based on factoring or the
discrete logarithm problem. These algorithms are no longer secure in the presence
of a large-scale quantum computer. The field of Post-Quantum Cryptography
(PQC) researches alternative cryptographic algorithms that remain secure in the
presence of quantum computers. To replace the soon-to-be-insecure public-key
standards, the National Institute of Standards and Technology (NIST) launched
a standardization effort in 2016 [30]. In July 2022, NIST announced three lattice-
based schemes to be standardized: Kyber [37], Dilithium [28] and Falcon [32].

One of the challenges in replacing the current standards with post-quantum
standards is protecting their implementations against side-channel attacks.
Side-channel attacks are attacks on a cryptographic implementation that use
unwanted effects of computation leaking information, such as power usage,
electromagnetic radiation and timing. Several side-channel attacks on lattice-
based cryptographic implementations have been demonstrated, including tim-
ing attacks [19,25,38] or power consumption and electromagnetic radiation
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C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14007, pp. 628–657, 2023.
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attacks [2,3,33,34,39,42,43]. These works illustrate the importance of protec-
tion mechanisms against side-channel attacks, and in its latest report NIST has
emphasized the importance of these protection mechanisms [1], including them
as a major evaluation criterion in the standardization process.

Masking is a popular tool to protect against side-channel attacks. The idea
of masking is to split a sensitive variable into two or more shares, in such a
way that an adversary that is able to see all but one share still can not infer
any information about the sensitive value. The ideas behind masking were intro-
duced by Chari et al. [9] and later extended by Barthe et al. [5] to include
the notions of Non-Inference (NI) and Strong Non-Inference (SNI), which allow
easier composition of building blocks.

To give an example of masking, a sensitive value x can be split into x(1) and
x(2) so that x = x(1) � x(2) where � is a mathematical operation that depends
on the type of masking. For Boolean masking � is the XOR operation ⊕, while
arithmetic masking chooses � to be addition modulo a predefined integer q. In
first-order masking, the sensitive value is split into 2 shares (i.e., an adversary
can probe at most 1 share without compromised security), while higher-order
masking splits the sensitive variable into more shares. One observation is that
some efficient techniques have been developed specifically for first-order masking,
which do not scale to higher masking orders.

Several masked implementations of lattice-based cryptographic schemes have
been presented. For signature schemes, a masked implementation of the GLP
signature scheme was presented by Barthe [6], followed by a Dilithium imple-
mentation by Migliore et al. [29]. Passively secure lattice-based encryption was
first masked in [35], followed by an active secure scheme by Oder et al. [31] for
first-order and Bache et al. [4] for higher-order. Van Beirendonck et al. [40] pro-
vided a first-order masked implementation of the NIST PQC finalist Saber [18],
and Coron et al. [16], and later Kundu et al. [27] discussed a higher-order imple-
mentation. Kyber was implemented at arbitrary order by Bos et al. [8] and for
first-order by Heinz et al. [26]. Fritzmann et al. [22] looked at making masked
implementations of Saber and Kyber more effective using instruction set exten-
sions. A masked NTRU implementation was proposed by Coron et al. [12].

A2B Conversion. One recurring property of most masked implementations of
lattice-based cryptography is that both Boolean masking and arithmetic masking
are used. To integrate both masking domains, arithmetic to Boolean (A2B)
and Boolean to arithmetic (B2A) conversions are needed. In this paper, we are
specifically interested in arithmetic to Boolean conversion. The first secure A2B
conversion was proposed by Goubin [24], which was later extended by Coron
et al. [10]. Both methods are focused on first-order and are based on writing
the conversion as a Boolean circuit and implementing this Boolean circuit in a
secure fashion.

A different approach to first-order A2B conversion is table-based conversion,
where the Boolean result is stored in a table that is manipulated based on the
arithmetic input. Coron and Tchulkine [14] were the first to propose such a
conversion. Debraize [21] discovered a flaw in their algorithm and improved the
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overall efficiency of the Coron and Tchulkine approach. Later, Van Beirendonck
et al. [41] discovered a security problem in one of the conversions of Debraize,
and proposed two new A2B conversions to circumvent this problem.

Higher-order conversions were proposed in [10,11] for arithmetic masking
modulo a power-of-two q = 2k. These techniques were extended for arbitrary
modulus by Barthe et al [6], which was later refined in [36]. Similar to the
first A2B conversion algorithm by Goubin [24], the above techniques rely on a
Boolean circuit methodology to perform the conversion.

Coron et al. [16] adapted the first-order table-based approach for higher
orders both for A2B and B2A conversion. For large modulus q, the authors split
the inputs into different chunks which are converted individually using A2B
conversion, and the carries between the chunks are taken into account using
an additional arithmetic to arithmetic (A2A with different moduli) conversion.
While the B2A conversions in this work are generally efficient, the overall A2B
conversions are only efficient in specific applications.

The increased importance of these conversions due to the rise of lattice-based
cryptography is emphasized by the CHES 2021 Test of Time Award, which
was awarded to Goubin [24] for introducing the first A2B and B2A conversion
techniques.

Masked Comparison. One important application of A2B conversions is masked
comparison, which is a vital building block in actively secure implementations
of lattice-based cryptography. The goal of such a comparison is to validate an
input ciphertext by comparing it with a recomputed ciphertext as part of the
Fujisaki-Okamoto transformation [23].

For first-order masking, a hash-based approach was proposed by Oder et
al. [31]. The main idea of this approach is to check if a sensitive array is zero by
hashing both shares separately and checking the equality of the hash outputs.
For schemes that perform ciphertext compression, this comparison additionally
needs an arithmetic to arithmetic (A2A) conversion (i.e., a conversion between
two arithmetic masking domains with different modulus). Such an A2A conver-
sion can be implemented as a modified A2B conversion, where a table-based
conversion is most efficient for first-order. A problem in the security of the hash-
based method of [31] was discovered and fixed by Bhasin et al. [7].

Higher-order masked comparisons have to rely on different techniques, as
the hash-based method is limited to two shares. The state-of-the-art conversion
techniques to perform higher-order masked comparison first perform A2B con-
version and then do the comparison in the Boolean domain. The approaches
differ in pre- and postprocessing of the A2B conversion. Barthe et al. [6] per-
form a masked comparison by a simple approach: A2B conversion followed by
a masked bitwise comparison. Bache et al. [4] introduced a method based on
a random sum to reduce the number of coefficients. This method was broken
by Bhasin et al. [7], who introduced a variant random sum compression that is
secure but only applicable for cryptographic schemes without compression and
with prime order moduli.
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D’Anvers et al. [17] adapted the random sum method as a postprocessing
method to reduce the cost of the final Boolean circuit. Bos et al. [8] looked
at the preprocessing stage and proposed to decompress the input ciphertext
instead of compressing the masked recomputed ciphertext. This approach was
later adapted by Coron et al. [15] by combining the decompression idea, the
random sum method, and some extra masked gadget into a new comparison.
These methods were compared and improved in a later work by D’Anvers et
al. [20], which we refer to to get an overview of higher-order masked comparison
algorithms.

1.1 Our Contributions

In this paper, we introduce a new strategy to perform arithmetic to Boolean
conversion. Although it is not exactly table-based, our method falls in the table-
based category and is indebted to the higher-order table-based A2B conversions
of [16], and more specifically to the register-based optimized arithmetic to 1-
bit Boolean conversion. We start with introducing an arithmetic to Boolean
conversion, and later introduce optimizations to more efficiently perform specific
masked operations used in lattice-based cryptography.

Our method works on a register (which can be seen as a table with 1-bit
entries). In contrast to previous table-based methods, where the table is used to
encode the output values, our register is used as a one-hot encoding of the input
values, with which we mean that a value x is represented with a register where
the xþ bit is 1 and all others are 0. The first advantage of a one-hot encoding is
that the register/table size does not grow with the output length, which would
be the case in a table-based approach where all possible outputs are stored in the
table. Secondly, the input has to be processed only once, and the result can be
used to determine both a carry value (as a result of the arithmetic masking) and
a Boolean masked output value. Thirdly, we introduce an efficient method to
propagate carries by using the properties of the one-hot encoding. An intuitive
introduction to these ideas is given in Sect. 3.

In Sect. 4 we formalize our arithmetic to Boolean conversion, followed by a
generalization of our method and a security proof. In Sect. 5 we introduce an
arithmetic to 1-bit Boolean function calculation. This is a generalization of the
aforementioned register-based optimized arithmetic to 1-bit Boolean conversion
of [16] in two ways: we allow an arbitrarily large arithmetic masking modulus
(instead of 5 or 6 bits in previous works) and we allow multiple masked coef-
ficients to be the input of the function. One of the use-cases of this algorithm
is masked comparison, where multiple masked coefficients need to be compared
with publicly known reference values and only one bit is returned that indicates
whether all coefficients match their reference value(s).

Section 6 details how to obtain a more efficient implementation and how to
achieve parallelism in our inherently sequential design at low cost. The result-
ing A2B implementation is then compared to the state-of-the-art algorithms in
Sect. 7. Our measurements show a speedup of approximately a factor of 15 com-
pared to the state-of-the-art table-based A2B comparisons. This brings higher-
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order table-based conversion to the performance range of Boolean circuit-based
A2B conversions, in some cases outperforming the latter with a cycle count
reduction of 27%. The implementations of our algorithms for Cortex M4 are
made available at https://github.com/KULeuven-COSIC/One-hot-masking.

2 Preliminaries

2.1 Notation

Lists and matrices are denoted in bold text. These are indexed using a subscript,
where Xi indicates the iþ element of the list X and where Xi,j indicates the
element on the iþ row and jþ column of a matrix X. We write |X| to denote the
number of coefficients in the list X. We denote with �x� a flooring of a number x
to the nearest integer less or equal to x, with �x� ceiling x to the nearest integer
greater or equal to x, and with �x� rounding to the nearest integer with ties
rounded upwards. These operations are extended coefficient-wise to lists.

Positive integers are represented in unsigned binary representation unless
stated otherwise, with the most significant bit (MSB) at the leftmost position
and the least significant bit (LSB) at the rightmost position. x[i] indicates the
iþ bit of the binary representation of x starting from the least significant bit and
|R| indicates the number of bits in the representation of R.

The concatenation operator x1‖x0 concatenates the bitstrings x1 and x0.
This representation is extended for non-power-of-two p-ary numbers y1, y2 (i.e.,
numbers represented with an integer value between 0 and p − 1) as y = y1‖y0.
More precisely, the value of y equals y1 · p + y0. In its most generalized sense we
can concatenate numbers with different representations: for a p2-ary number y2,
a p1-ary number y1 and a p0-ary number y0, we write y = y2‖y1‖y0 to signify
y = y2 · (p0 · p1) + y1 · p0 + y0.

We denote with:
x1

︸︷︷︸

b1

‖ x0
︸︷︷︸

b0

← x, (1)

splitting the binary representation of x in parts x1 with bitsize b1 and x0 with
bitsize b0 so that x = x1‖x0. This is generalized for p-ary numbers as:

x1
︸︷︷︸

p1-ary

‖ x0
︸︷︷︸

p0-ary

← x, (2)

where x is split into a p0-ary symbol x0 and a p1-ary symbol x1 so that x = x1‖x0.
Note that this is a unique way of splitting a number x.

We denote with x 
 i a shift of the binary representation of x to the left
with i positions (which equals to x · 2i), and with x � i a shift to the right with
i positions (which equals to �x/2i�). A circular shift to the left with i positions

is written as x
|R|
≪ i, with |R| the number of bits involved in the shift. More

specifically, x
|R|
≪ i = (x 
 i)‖(x � (|R| − i)).

Sampling a random value x from a distribution χ is denoted x ← χ. Further-
more, U(S) denotes the uniform distribution over a set S.

https://github.com/KULeuven-COSIC/One-hot-masking
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2.2 Masking

In Boolean masking, a sensitive variable x is split into S shares x[0] to x[S−1], so
that the XOR of the shares results in the original variable x (i.e., x = ⊕S−1

i=0 x[i]).
We write x[i] to denote the value of the iþ share of a masked variable x, and x[·]

to denote the value of x while explicitly making clear that x is shared. As such,
the value x[·] will not be physically represented in a secure implementation and
is only implicitly present by combining the different shares.

One can perform Boolean operations on a Boolean masked variable: z[·] =
x[·]⊕y[·] is calculated by an XOR on the corresponding shares as z[i] = x[i]⊕y[i].
An AND with an unmasked variable z[·] = x[·] & m is calculated by applying m
to each share individually z[i] = x[i] & m. Similarly, shifts, rotations and con-
catenations on a Boolean masked variable are applied to each share individually.

Arithmetic masking splits a sensitive variable x in S shares x(0) to x(S−1)

so that the sum of the shares modulo a given integer q equals the sensitive
value (x(·) = x(0) + x(1) mod q). As before we denote with x(i) the iþ share of a
masked variable, and with x(·) the value of x while stressing that this value is
not physically present in the implementation.

Arithmetic masking allows easy computation of arithmetic operations, where
a sum z(·) = x(·) + y can be calculated by summing y to the zeroþ share of x(·)

(i.e., z(0) = x(0) + y and z(i) = x(i) for other shares). Multiplication with an
unmasked constant is performed on each share individually (i.e., z(·) = c · x(·)

can be calculated as z(i) = c · x(i)). Concatenation, flooring and rounding are
calculated on each share individually. It is important to note that for arithmetic
masking �x(·)� is not necessarily equal to �x� as the former is calculated on each
share individually, while the latter is calculated on the unmasked variable. This
is also true for rounding and concatenation.

3 Intuitive Introduction to One-Hot Conversion

The goal of our algorithm is to perform arithmetic to Boolean conversion. More
specifically, the input is an arithmetically masked number D(·), with masking
modulus q. The output is a Boolean masked number B[·] so that B[·] = D(·).
For the sake of simplicity, we will assume that the arithmetic masking modulus
is a power of two unless stated otherwise. It is trivial to extend our method for
different masking moduli and we will later show how to extend the method to
non-power-of-two moduli.

We will first give an intuitive explanation of the algorithm before explaining
the details in Sect. 4. The algorithm starts by preparing a Boolean masked reg-
ister R[·] with value 1, i.e., with a one in the zeroþ bit and zeros in all other bits.
The algorithm then iteratively processes parts of D(·), modifying the register
R[·] in two steps: in the first step, the register is converted to a one-hot encoding
of the input coefficient D(·)

i (i.e., the value of D(·)
i is encoded by setting the

register bit at position D(·)
i to 1, and all other bits to 0) and in the second step,

the relevant information is extracted from the register in a sharewise fashion.
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A Simple Example: q = |R|. First, imagine that the modulus q equals the number
of bits in the register |R|. The algorithm first rotates the register with

∑

k D(k)

positions using a variant of the secure rotation algorithm described in [16]. This
corresponds in practice to a rotation of the register with

∑

k D(k) mod |R| =
∑

k D(k) mod q = D(·) positions, where the mod|R| operation is present due to
the limited size of the register and the resulting wraparound. The output of this
step can be seen as a one-hot encoding of the input D(·) (i.e., the 1 in the register
can be found on the D(·)þ position).

After this operation we effectively associated each position in the register
with one value of D(·) (i.e., if the 1 is in the tþ position, then D(·) = t and
vice versa). We then process the shares of the register individually to obtain
the required result. For each share, we take the bit at position p (i.e., D(i)[t])
and multiply it with t. The results are all XOR’ed together into a share of the
output. The output is thus calculated as:

B[i] =
|R|−1
⊕

t=0

t · R[i][t]. (3)

Now remembering that R[·][t] = 1 at position t = D(·), but R[·][u] = 0 at all
other positions u �= t, we can see that:

B[·] =
S−1
⊕

i=0

B[i] (4)

=
S−1
⊕

i=0

⎛

⎝

|R|−1
⊕

t=0

t · R[i][t]

⎞

⎠ =
|R|−1
⊕

t=0

t ·
(

S−1
⊕

i=0

R[i][t]

)

(5)

=
|R|−1
⊕

t=0

t · R[·][t] (6)

= D(·). (7)

Thus confirming that the output is indeed B[·] = D(·) as required. In terms
of masking security, the first operation can be instantiated as a variant of the
secure rotation of [16], while the second operation is performed on each share
separately and is thus inherently secure in the masking framework.

This simple example is depicted in Fig. 1 where in the first step the register is
rotated with

∑

k D(k) mod |R| = 3 positions, and in the second step the output
is calculated following Eq. 3. Note that it is possible to implement the second
operation as given in Eq. 3 more efficiently as will be discussed in Sect. 6.

More Complicated: q > |R| The problem with the simple approach is that it is
typically not efficient to allow an arbitrarily large register size. Therefore, we
will adapt the previous algorithm to allow q to be bigger than the register size.
We will do this by chopping the input coefficients D(·) with bitlength log2(q) in
several smaller chunks with bitlength log2(p), with p < |R| < q. These smaller
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Fig. 1. Overview of the three steps in InnerLoop for D(·) = 3 and q = 16. In the first
step the register is rotated with D(·) = 3 positions using the SecureRotate algorithm.
In the second step, all elements of the register are multiplied with their position and
the results are XOR’ed together to produce the output.

chunks are then processed iteratively, starting with the least significant chunk
D0

(·). Note that these chunks are not independent as the arithmetic masking
entails that there are carries that need to be propagated from the less significant
chunks to the more significant chunks. We will have to take care of these carries
in our method.

First we choose the smaller power-of-two modulus p so that p · S < |R|,
with S the number of shares, and split the coefficients of D(·) in chunks D̂

(·)
j

of log2(p) bits. These chunks are then processed iteratively, starting with the
least significant chunk. A depiction of the processing of the first chunk is given
in Fig. 2.

To process a chunk D̂
(·)
j we perform the following three operations: first, we

rotate the register, then we compute the relevant output bits and finally we
prepare the carry for the next iteration.

In the first operation, the register is rotated with
∑

k D̂
(k)
j positions. Note

that in contrast to the previous method
∑

k D̂
(k)
j mod |R| �= D̂

(·)
j , more specifi-

cally, the modulo operation is no longer relevant and can be ignored as long as
we choose p to be small enough to avoid any possible wrap-around of the 1 in
the register.

The position of the one in the register can now be described in function
of two components: the value of the chunk, D̂

(·)
j =

∑

k D̂
(k)
j mod p, and the

carry cj = �∑k D̂
(k)
j /p� that needs to be propagated to the next chunk. These

two components are represented in the position as follows: the register can be
subdivided into multiple ‘carry parts’ of log2(p) bits as given in Fig. 2 with the
red lines. The carry is then encoded by the part containing the 1 (in Fig. 2,
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c = 2), while the chunk value is encoded as the relative position of the one in its
part (in Fig. 2, D̂

(·)
j = 1).

In the second operation, the relevant output bits corresponding to the chunk
D̂

(·)
j are calculated. Similar to the above technique, we perform a sharewise

calculation, but this time multiplying with the value (t mod p):

B̂
[i]
j =

|R|−1
⊕

t=0

(t mod p) · R[i][t], (8)

where analogous to before we can check our method for the first chunk as:

B̂
[·]
0 =

S−1
⊕

i=0

B̂
[i]
0 =

|R|−1
⊕

t=0

(t mod p) · R[·][t] (9)

= D̂
(·)
0 mod p, (10)

which means that the first log2(p) bits are converted correctly. However, for
subsequent iterations, we will have to take into account the carry cj that needs
to be propagated from chunk j to chunk j+1. This is done in the third operation.

The third operation propagates the carry and is again performed on each
share separately. At the end of the third operation, the register contains a one-
hot encoding of the carry cj that needs to be propagated. This register is then
used as the starting register in the next rotation. This means that the rotation
already has an initial rotation with cj , before the rotation with

∑

k D̂
(k)
j+1 is

applied. The total rotation is then cj +
∑

k D̂
(k)
j+1, thus effectively taking the

carry into account.
The method to obtain the one-hot encoding of the carry can be best under-

stood using Fig. 2. For each share of the register, we xor together all bits within
the same carry bin c, and place it at position c in the register. Or more specifi-
cally, for each possible carry value c and each share k we calculate:

R[k][c] =
p−1
⊕

m=0

Rtmp
[k][c · p + m] (11)

The last iteration is slightly different, as the last chunk to be processed does
not need to take into account further propagation of the carries. This case can
thus be performed analogous to the simple example above (see Fig. 1) and can
use any bitsize log2(pL) as long as pL ≤ |R| (assuming the register size is also a
power of two).

4 Arithmetic to Boolean Conversion

In this section, we will go into detail on the arithmetic to Boolean conversion
technique, as well as generalize the technique and formulate a security proof.
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Fig. 2. Overview of an iteration of the A2B conversion for D̂
(·)
j = 1, with modulus

p = 4, a carry value c = �∑k D̂
(k)
j /p� = 2 and S = 4 shares. Note that all registers are

masked during execution and that the values depicted are the corresponding unmasked
values which should never be revealed during the computation. In the first step the
register is rotated with

∑
k D̂

(k)
j = 9 positions. In the second step the partial output is

computed as in Fig. 1. In the third step the carry is propagated by XORing the values
per carry and putting them in the relevant position of the output register. The latter
step already gives an initial rotation of the register with 2, which is equal to the carry
value and as such effectively propagates the carry to the next block.

Algorithm 1 gives a generalized algorithm to perform A2B conversion using
the secure rotation method, which is given in Algorithm 2. Remember that
operations on R[·] are performed sharewise. A graphical overview of one iteration
of the loop is given in Fig. 2, while the last iteration only performs the operations
in Fig. 1.

For the parameter setting, we need to choose a register size |R|, which should
be an integer of size at least S2, with S the number of shares. For software imple-
mentations, one would typically choose |R| to be the bit width of the processor.
From |R|, we can derive the chunk modulus p as the largest power of two such
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that p · S ≤ |R|. The final chunk size pL can be computed as the largest power
of two under the conditions that pL ≤ |R| and log2(pL) = log2(q) − L · log2(p)
for L a positive integer. In this case, L + 1 will be the number of chunks into
which a coefficient is split.

We will first provide a t-SNI security proof of our method, and then explain
how to generalize our method to non-powers of two, or to calculate arbitrary
functions. Our security proof extends the table-based conversion proofs of [13,
16].

Algorithm 1: A2B(D(·))

// Setup

1 R[0] = 1; B[0] = 0

2 for i = 1, . . . , S − 1 do R[i] = 0; B[i] = 0

3 D̂
(·)
L︸︷︷︸

<log2 |R|

‖ . . . ‖ D̂
(·)
1︸︷︷︸

log2(p)

‖ D̂
(·)
0︸︷︷︸

log2(p)

← D(·)

// calculate

4 for j = 0, . . . , L − 1 do

5 Rtmp
[·] = SecureRotate(R[·], D̂(·)

j )

6 R[·] = 0
7 for c = 0 to S − 1 do

8 R[·][c] =
⊕p−1

m=0 Rtmp
[·][c · p + m]

9 Btmp
[·] =

⊕|R|−1
t=0 (t mod p) · R[·][t]

10 B[·] = Btmp
[·]‖B[·]

11 Rtmp
[·] = SecureRotate(R[·], D̂(·)

L )

12 Btmp
[·] =

⊕|R|−1
t=0 t · R[·][t]

13 B[·] = Btmp
[·]‖B[·]

14 return B[·]

Theorem 1 ((S−1)-SNI of Algorithm 1). For any set of tc < S intermediate
variables and for any subset O ∈ [1, n] where tc + |O| < S, we can perfectly
simulate the output variables R[O] and the tc intermediate values using the input
values D(i) for each i ∈ I, with |I| ≤ tc.

Proof. Within this proof we will refer to line x of Algorithm 1 with lx, and to
line x of Algorithm 2 with lrx. Before we delve into the details we choose which
input coefficients will be used to simulate the intermediate values. All operations
described in Algorithm 1 are performed sharewise, and so at most one share of
the registers R[·] and Rtmp

[·] is involved; and at most one share of D(·) and D̂
(·)
j

is involved. For each probe during these lines, we will add the share number
shR of the involved share of R[·] or Rtmp

[·] (if applicable) to the set SHR; and
similarly add the share number shD to the set SHD, if a share of D(·) or D̂

(·)
j
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Algorithm 2: SecureRotate(R[·], D̂(·))

// Rotate + remask

1 for shD = 0 to S − 1 do

2 R[0] = R[0]
|R|
≪ D̂(shD)

3 for shR = 1 to S − 1 do

4 R[shR] = R[shR]
|R|
≪ D̂(shD)

5 U ← U(2|R|)
6 R[shR] = R[shR] ⊕ U

7 R[0] = R[0] ⊕ U

is involved. For the intermediate values in the rotation (Algorithm 2) we make
the sets as described in Table 1.

Table 1. List of variables and their simulatability.

Variable: Action: add · · · Simulated by:

lr2/lr4: D̂(shD) shD to SHD Corresponding bits of: D(shD)

lr2: R[0] shD to SHD; 0 to SHR Rin
(0)

q·C
≪ D̂(shD)

lr4: R[shR] shD to SHD; shR to SHR Rin
(shR)

q·C
≪ D̂(shD)

lr5: UshD,shR shD to SHD; shR to SHR UshD,shR

lr6: R[shR] shD to SHD; shR to SHR (Rin
(shR)

q·C
≪ D̂(shD)) ⊕ UshD,shR

lr7: R[0] shD to SHD; 0 to SHR (Rin
(0)

q·C
≪ D̂(shD)) ⊕shR

k=1 UshR,k

After building the sets SHD and SHR we know that |SHD| ≤ tc and
|SHR| ≤ tc, as each intermediate probe adds at most one item to each set. We
then choose the input set to simulate all probed values as D(shD) for each share
shD ∈ SHD. The set SHD then acts as the input set I and as such we have
the asked condition |I| ≤ tc. Now rests to show that we can perfectly simulate
all probed values.

The general overview of our proof will proceed as follows: first, we will argue
that R[·] and all other variables are simulatable during the setup of the algo-
rithm, then we will argue that all asked intermediate values in the subblocks are
simulatable if the input R[·] is simulatable, and finally, we will show that R[·] at
the output of the block is simulatable if R[·] at the input of the block (further
denoted Rin

(·)) is simulatable.

Simulatability of Variables During the Setup of the Algorithm (l1 to l3): This
first step is easy, as R[·] is deterministic and can thus be easily simulated by the
adversary. The probed D̂

(shD)
i,j values can be simulated as shD ∈ SHD due to

our construction of SHD.
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Simulatability of Variables During SecureRotate: This part will perform induc-
tion on the outer loop shD in SecureRotate. We will show that if we can simulate
the values at the start of one loop iteration, we can also simulate the output vari-
ables of that loop iteration and all probed variables.

If shD /∈ SHD, then the adversary has no information on the UshD,shR
and

as such the output will look uniformly random, thus rendering R[·] simulatable
at the end of the iteration (i.e., it can be simulated by drawing from a uniformly
random distribution U({0, 1}|R|)).

If shD ∈ SHD, then we can simulate any probed intermediate variable as
given in Table 1, where Rin

[·] is the value at the start of that outer loop iteration.
For the latter two variables in the table, if the corresponding UshD,shR

is not
probed we can replace it with a uniformly random value.

We have shown that if we can simulate the intermediate values at the start
of the first loop iteration, then we can also simulate the intermediate values in
the following loop iterations and therefore also at the end of the SecureRotate
operation.

Simulatability of Variables After SecureRotate (l6–l10 and l12–13): Next we will
show that if the register Rtmp

[·] is simulatable at the end of the SecureRotate
then all variables at l6–l10 and l12–13 are simulatable. Note that the operations
on these lines only work on one share at a time and are perfectly deterministic
if the input Rtmp

[·] is known. As such, if Rtmp
[·] can be simulated, then any

intermediate variable in these lines can be simulated.
To conclude, we have shown that R[·] is simulatable at the start of the algo-

rithm, that it is simulatable at the end of each block if it is simulatable at the
start, and that all probed intermediate values can be simulated if R[·] is simu-
latable at the start of the block. This means that both the probed intermediate
values and the probed output variables are simulatable.

4.1 Generalization

The algorithm presented above can be generalized to have broader applicability.
Firstly, the algorithm is not bound by calculating the identity function (i.e.,
A(·) = B[·]). Instead one can replace the multiplications with the value (t mod p)
in Eq. 8, which calculates a unity function, with any function f() as:

B̂
[i]
j =

|R|−1
⊕

t=0

f(t mod p) · R[i][t], (12)

thus creating a more elaborate A2B conversion that allows calculating on the
data for free.

Secondly, the modulus does not need to be a power of two but can be any
positive integer q. In this case, we select different modulus p for each chunk. The
selection of the pi needs to fulfill the following conditions:



One-Hot Conversion: Towards Faster Table-Based A2B Conversion 641

L
∏

i=0

pi = q (13)

∀L
i=0 pi · S ≤ |R| (14)

Note that the latter condition can be relaxed for pL, as we don’t need to deter-
mine the carry location and can thus allow an overflow at positions that are a
multiple of pL. As such, a pL value is also valid if pL divides |R|.

Similar as before Di
(·) is split into chunks. However, this time we represent

D(·) as a series of pi-ary numbers:

D̂
(·)
L

︸︷︷︸

pL-ary

‖ . . . ‖ D̂
(·)
1

︸︷︷︸

p1-ary

‖ D̂
(·)
0

︸︷︷︸

p0-ary

← Di
(·) (15)

This representation immediately gives us the different chunks, as each symbol
corresponds to a chunk D̂

(·)
j , with D̂

(·)
0 the least significant symbol.

5 Arithmetic to 1-Bit Boolean

In this section, we will specialize our method toward calculating a function f()
that takes one or more arithmetically masked variables and outputs one Boolean
masked bit. Theoretically, our method can calculate any such function, however,
when the input modulo q is split into smaller chunks modulo p (i.e. L > 0), only
functions that can be described as:

f(D(·)) = fL(D̂(·)
L ) & . . . & f0(D̂

(·)
0 ), (16)

are implementable. However, as we will show in Subsect. 5.3, this restriction does
not pose a problem for typical applications in lattice-based encryption, such as
masked comparison or extraction of the MSB.

Our method is similar to the arithmetic to Boolean conversion described
above, where the calculation of B[·] is not performed. The main idea is that in
iteration i, if fi(D̂

(·)
i ) = 1, the register is propagated as before, while if fi(D̂

(·)
i ) =

0, a register with only zero is propagated. This can be achieved during a ‘compute
carry’ step, by only propagating positions t where:

fi(t mod p) = 1. (17)

This means that if the 1 in the register is at a location where fi(t mod p) = 0,
the 1 in the register is not propagated and the register will have only 0’s for the
rest of the algorithm. At the end of the algorithm, we can check if the one is
still present in the algorithm, which is the case if and only if f(D(·)) = 1. Note
that the register remains masked throughout the algorithm and thus it is not
revealed if and during which iteration the one is discarded.
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5.1 Method Description

More specifically, the input is a list of arithmetically masked numbers D(·), with
corresponding masking modulus q. The output is a boolean masked bit 1 if
∀i : f(D(·)

i ) = 1, and 0 otherwise. The parameter setting (i.e., setting |R|, p, L
and pL) proceeds identical to the procedure explained in Sect. 4.

The setup phase of the algorithm similarly consists of two steps: initializing
the Boolean masked register R[·] to the value 1 and dividing each coefficient of
D(·) into chunks of log2(p) bits (with exception of the most significant chunk,
which has log2(pL) bits).

The algorithm then iterates over all coefficients, and for each coefficient
over all chunks starting with the least significant chunk. For each chunk first
a secure rotation [16] is performed, as depicted in Algorithm 2. Then, instead of
propagating all positions as in the full A2B conversion, only positions t where
fi(t mod p) = 1, are propagated to the output register in a step we will refer to
as bit selection. More specifically, for each possible carry value c and each share
k we calculate:

R[k][c] =
⊕

t:f(t)=1

Rtmp
[k][c · p + t]. (18)

The bit selection operation performs two functions: first, for all values of
D̂(·)

i,j mod p where f(D̂(·)
i,j) = 1, the 1 in the register is passed to the next iteration

(othwerwise, the 1 is not passed to the next iteration). Secondly, the value of

the carry (i.e., c = �∑k D̂i,j
(k)

/p�) is represented in the fact that the 1, if still
present in the register, can be found at the cþ position of the output register.

In the final iteration of a coefficient Di,L
(·), the carry is no longer relevant.

We thus map all allowed positions to the zeroþ bit of R[·] without distinguishing
between the different carry values. Then the algorithm proceeds with the next
coefficient in the input array. At the end of the algorithm, the zeroþ bit of R[·]

contains a Boolean masking of the output.

Side-Channel Security. Our security proof proceeds similarly to the security
proof of the A2B conversion, as the secure-rotate function is still the only non-
sharewise component that needs special attention.

Theorem 2 ((S−1)-SNI of Algorithm 3). For any set of tc < S intermediate
variables and for any subset O ∈ [1, n] where tc + |O| < S, we can perfectly
simulate the output variables R[O] and the tc intermediate values using the input
values D(i) for each i ∈ I, with |I| ≤ tc.

Proof. The t-SNI security proof of the Arithmetic to 1-bit Boolean function
method is similar to the proof of the Arithmetic to Boolean conversion. The
difference in both algorithms is only in the sharewise parts (l8 to l10 and l12-
l13), which can be simulated deterministically using the knowledge on Rtmp

[·].
As such one can essentially reuse the security proof of Theorem 1.
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Algorithm 3: A → 1-bit B(D(·),M)

// Setup

1 R[0] = 1

2 for i = 1, . . . , S − 1 do R[i] = 0
3 for i = 1 to N − 1 do

4 D̂
(·)
i,L

︸ ︷︷ ︸
<log2 |R|

‖ . . . ‖ D̂
(·)
i,1

︸︷︷︸
log2(p)

‖ D̂
(·)
i,0

︸︷︷︸
log2(p)

← Di
(·)

// calculate

5 for i = 0, . . . , N − 1 do
6 for j = 0, . . . , L − 1 do

7 Rtmp
[·] = SecureRotate(R[·], D̂(·)

i,j)

8 R[·] = 0
9 for c = 0 to S − 1 do

10 R[·][c] =
⊕

∀t:fi(t)=1

Rtmp
[·][c · p + t]

11 Rtmp
[·] = SecureRotate(R[·], D̂(·)

i,L)

12 R[·] = 0

13 R[·][0] =
⊕

∀t:fi(t)=1
∀c∈[0,...,|R|/pL)

Rtmp
[·][c · pL + t]

14 return R[·]

5.2 Generalization

As with the arithmetic to Boolean conversion, our method can be generalized.
First, the masking modulus q is not required to be a power of two. This general-
ization is similar to the non-power-of-two modulus generalization in Subsect. 4.1
and we refer to this section for an explanation on how to achieve this.

Secondly, the masking modulus q does not have to be equal for all coefficients.
To allow different masking moduli qi associated with their respective coefficients
Di

(·), one performs the determination of the parameters p, L, pL for each coef-
ficient separately. The rest of the algorithm then proceeds as usual, with each
coefficient using its specific set of p, L, pL.

5.3 Applications to Lattice-Based Encryption

The method presented above can be used as a building block for the mask-
ing of lattice-based encryption. In this section we will specifically look into two
building blocks for lattice-based encryption: comparison of the (uncompressed)
recomputed ciphertext with the input ciphertext in the Fujisaki-Okamoto trans-
formation, and A2B for extraction of the most significant bit(s) during decryp-
tion. We will show how both these functionalities can be achieved using our
methodology by choosing the appropriate input parameters.
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Comparison. The comparison is an essential part of the Fujisaki-Okamoto
transformation. The goal of this comparison is to validate the input cipher-
text against a recomputed ciphertext. Several works have looked at optimizing
higher-order masked comparison [4,7,16,17,20]. We will consider a recomputed
ciphertext that has not been compressed, as the compression is generally expen-
sive and we can include the compression in our solution at almost no cost. This
is the same setup as used in previous works.

In previous works, the comparison is typically done in at least two steps
containing an A2B conversion and the comparison itself. In this work, the com-
parison itself is already performed in the A2B conversion. Moreover, the adap-
tation of the A2B conversion even makes the A2B conversion more efficient as
the Boolean output is not calculated.

The first input to the comparison is the input ciphertext, which consists of
two arrays (B,C), with coefficients modulo qb and qc respectively. The second
input is an uncompressed recomputed masked ciphertext (B∗(·),C∗(·)), both
with coefficients modulo q. The comparison then should return true if and only
if:

∀i : �qb/q · B∗
i
(·)� = Bi and ∀i : �qc/q · C∗

i
(·)� = Ci (19)

Power of Two q. For q, qb and qc powers of two, such a function can be instan-
tiated by calculating the list with coefficients Di

(·):

∀
i∈0,...,|B|−1

: Di
(0) = B∗

i
(0) +

q

2qb
− q

qb
· Bi ; ∀

i∈0,...,|B|−1
j>0

: Di
(j) = B∗

i
(j) ; (20)

∀
i∈0,...,|C|−1

: Di+|B|
(·) = C∗

i
(0)

+
q

2qc
− q

qc
· Ci and ∀

i∈0,...,|C|−1
j>0

: Di+|B|
(j) = C∗

i
(j)

, (21)

where the q
2qb

and q
2qc

terms are used to convert the rounding operation into
a flooring operation. Note that this is the same input preparation as step 0 of
Algorithm 7 in [17].

We furthermore prepare the functions f0, . . . , fL as:

fb,i(x) =
{

1 if: x ≤ ( q
qb

− 1)/pi

0 otherwise
and: fc,i(x) =

{

1 if: x ≤ ( q
qc

− 1)/pi

0 otherwise
,

(22)

for the coefficients of B and C respectively.

Prime q. For prime moduli conversion, we follow the approach of Fritzmann et
al. [22], where the compression is explicitly calculated for each share individually.
This would result in an infinitely long bitstring, but Fritzmann et al. showed
that it is sufficient to take into account a certain number of bits f > log2(S) +
log2

(

�q/2�
q − 0.5

)

, with S the number of shares. We end up with the following
inputs:
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∀
i∈0,...,|B|−1

: Di
(0) = � qb · 2f

q
B∗

i
(0)� + 2f

2
− 2f · Bi ; ∀

i∈0,...,|B|−1
j>0

: Di
(0) = � qb · 2f

q
B∗

i
(j)� ; (23)

∀
i∈0,...,|C|−1

: Di+|B|
(·)

= � qc · 2f
q

C
∗
i
(0)	 +

2f

2
− 2

f · Ci and ∀
i∈0,...,|C|−1

j>0

: Di+|B|
(0)

= � qc · 2f
q

C
∗
i
(j)	, (24)

and moduli qb · 2f and qc · 2f respectively. The functions are constructed as:

fb,i(x) =
{

1 if: x ≤ (2f − 1)/pi

0 otherwise and: fc,i(x) =
{

1 if: x ≤ (2f − 1)/pi

0 otherwise ,

(25)

Again note that this is the same input preparation as step 0 of Algorithm 7 in [17].

A2B Compression/MSB Extraction. Our arithmetic to 1-bit Boolean can
also be used to securely implement the A2B conversion in lattice-based encryp-
tion schemes. To be more precise, it can replace the A2B conversion where one
is only interested in the most significant bit, which is typically the case in the
decoding for schemes like Saber and Kyber. To find the most significant bit of a
number A(·) in case of a power of two moduli, one inputs D0

(·) = A(·) with the
modulus q equal to the arithmetic sharing modulus. The functions f0(), . . . , fL()
can be constructed as fi(x) = 1, with the exception of fL(), which equals:

fb,i(x) =
{

0 if: x < pL/2
1 otherwise (26)

Note that the input D(·) is in this case an array with only one coefficient.
Again, for prime moduli, we can perform a similar technique. The goal is to

calculate the modulus switching function � 2
qx� on a masked variable. To do this,

one also has the option to convert to power-of-two moduli using a trick similar
to D’Anvers et al. [20] inspired by the technique of Fritzmann et al. [22]. In this
case, we have:

D0
(·) = �2f+1

q
B(·) + S� (27)

with modulus 2f+1. The function is calculated similar to before as fi(x) = 1,
again with the exception of fL(), which equals:

fb,i(x) =
{

0 if: x < pL/2
1 otherwise (28)
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The reason for the multiplication with 2f+1 and addition of S is to preserve
correctness even in the presence of flooring errors. The division with q creates
an infinitely long fractional part, which the subsequent operation floors down.
This means that an error in (−1, 0] is introduced to all shares:

D0
(·) =

2f+1

q
B(·) + S · (1 + e) (29)

To prove that this operation always gives the correct result, we investigate
the border cases B(·) = 0 and B(·) = �q/2�, which should result in D0

(·) ∈ [0, 2f );
and B(·) = �q/2� and B(·) = q − 1, which should result in D0

(·) ∈ [2f , 2f+1). If
these conditions are fulfilled the top bit is correct and the value of D0

(·) will be
valid. Note that since q is uneven we have �q/2� = (q−1)/2 and �q/2� = (q+1)/2.

The cases of B(·) = 0 and B(·) = �q/2� can only go wrong in negative wrap
around, and so the worst-case scenario is e = −1. This results in:

D0
(·) = S · (1 − 1) ≥ 0 and D0

(·) = 2f
q + 1

q
+ S · (1 − 1) ≥ 2f (30)

which is always fulfilled.
The cases of B(·) = q − 1 and B(·) = �q/2� can only go wrong in positive

wrap around, and so the worst-case scenario is e = 0. This results in:

D0
(·) = 2f+1 q − 1

q
+ S < 2f+1 and D0

(·) = 2f
q − 1

q
+ S < 2f (31)

which results in conditions S < 2f+1

q and S < 2f

q , of which the latter is the most
restrictive. Therefore, as long as f > log2(S) + log2(q) we have a correct most
significant bit and thus a correct MSB extraction.

6 Implementation Aspects

The algorithms given above are not necessarily the most efficient way to imple-
ment one-hot conversions on a variety of computing platforms. In this section, we
detail methods to speed up these conversion algorithms. We first look at possible
tweaks in software implementations and then look at parallelization possibilities,
which are typically more useful in hardware.

6.1 Software Optimizations

The inner loop of our technique consists of two parts: secure rotation and bit
selection. The secure rotation itself consists of two main instructions: a rotation
and an XOR operation on the register. As such it is relatively easy to optimize
in both software and hardware. The bit selection warrants a more in-depth look,
and we will first look into the bit selection of the arithmetic to 1-bit Boolean
conversion, and then look into the A2B conversion.
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Bit Selection. In this paragraph we will specifically look at the bit selection of
R[·] (line 11, and line 14 in Algorithm 3). In a hardware implementation, one
can implement these operations using a simple Boolean hardware circuit.

For software implementations, as we are working within a register, an efficient
implementation is more challenging. To get a feel for the cost we will describe the
cost of algorithms in the number of XOR that needs to be performed, taking this
measure because it is the main operation in the innermost loop in the code. We
will specifically look at the power-of-two q case and a subfunction that considers
each bit individually, i.e. a function fi(x) that can be written as:

fi(x) = f∗
i,0(x[0]) AND f∗

i,1(x[1]) AND . . . AND f∗
i,|X|−1(x[|X| − 1]). (32)

This is the case that covers the typical applications from Subsect. 5.3.
A straightforward approach would be to perform the XORs one by one, which

would lead to S2 · (|fi| − 1) XOR operations, where |fi| denotes the number of
inputs to which the function fi returns 1. This can be brought back to less than
S2+S ·log2(|fi|) XOR operations using two tricks: exploiting inherent parallelism
and a divide-and-conquer combination approach.

Firstly, the inherent parallelism comes from the fact that the XOR for posi-
tions in different carry bits but with the relative position can be calculated at
the same time, by exploiting the fact that the different carry bins are exactly p
positions separated. As such, when performing the XOR operation on the full
register on line 11 and line 14, one is not only calculating the result for carry
c = 0, but also for all other carries c, the result of which can be found c · p
positions further in the register.

Secondly, one can speed up the calculations using a divide-and-conquer strat-
egy. There are three possible instantiations for f∗

i (x):

f∗
i (x) = x, f∗

i (x) = NOT (x), f∗
i (x) = 1 (33)

Note that f∗
i (x) = 0 is not an option, as this would mean that f(x) = 0 which

is a useless function to implement. The number of positions that needs to be
propagated during bit selection in loop l can be calculated as:

log2(p)−1
∏

i=0

|f∗
i (x[i])| (34)

For the functions f∗
i (x[i]) = x and f∗

i (x[i]) = NOT (x), |f∗
i (x[i])| is one and thus

the number of positions to be considered is not increased. However, for function
of the form f∗

i (x) = 1, the number of positions is doubled. More specifically, for
each position that is propagated, a position exactly 2i further is also propagated.

We address such an instance by shifting the register R[·] with 2i positions
and XORing it with the original register. This operation essentially combines the
scenario where x[i] = 0, with the scenario where x[i] = 1, and puts both options
at the position as if x[i] = 0. Thus, after this operation, the original function
f∗
i (x) = 1 needs to be replaced with f∗

i (x) = x to obtain the same result. Once
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all f∗
i (x) = 1 are replaced by f∗

i (x) = x, there is only one position left to be
considered, more specifically this is position F =

∑log2(p)−1
i=0 2i · f∗

i (0)
Algorithm 4 gives a faster implementation of the bit selection, where in

lines 1–6 the inherent parallelism and the divide-and-conquer combination are
exploited. Line 7 is a cleanup where the XORed value for each carry c is placed
at the c ·pþ position and all other positions are set to zero, after which lines 8–11
copy the carry bits to their final position c.

Postprocessing A2B The bit selection in the A2B conversion can be optimized in
the same ways as in the arithmetic to 1-bit Boolean conversion detailed above.
However, for the A2B conversion, there is an additional step to calculate Btmp

[·]

which can be optimized significantly. In this paragraph, we will discuss two
optimizations.

The first algorithm uses the same divide-and-conquer combination to combine
the different carry bins, after which the multiplication operation is calculated p
times. This algorithm is depicted in Algorithm 5 and is efficient as long as p is a
small value. It takes S ·(p−1) multiplications and S ·(S+p−2) XOR operations.

The second algorithm is aimed at a higher value p. For this, we take a step
back at the bits of Btmp

[·], which are calculated as:

Btmp
[·] =

p−1
⊕

t=0

t ·
⎛

⎝

|R|/p−1
⊕

c=0

Rtmp
[·][c · pL + t]

⎞

⎠ (35)

Note that the second term of the multiplication is a single bit with a value of 0
or 1. When looking at a specific bit of the output Btmp

[·][i], this equation can
be further simplified:

Btmp
[·][i] =

⊕

∀t=0,...,p−1:t[i]=1
c=0,...,|R|/pL−1

Rtmp
[·][c · p + t] (36)

= parity(R[·] & Fi) with: Fi =
⊕

∀t=0,...,p−1:t[i]=1
c=0,...,|R|/pL−1

2c·p+t. (37)

In essence, Fi is a mask that selects all terms involved in the XOR operation.
For example, for i = 0, Fi = 0101 . . . 01 and for i = 1, Fi = 00110011 . . . 0011.
The resulting algorithm is depicted in Algorithm 6.

The cost of this second algorithm heavily depends on the instruction set of the
processor. If a parity instruction (or Hamming weight instruction) is present, the
algorithm takes S · log2(p) parity instructions. If this instruction is not present,
one can compute the parity with a divide-and-conquer strategy which would cost
�log2(S · p)� operations.

6.2 Parallelization

Our algorithm is inherently serial, as the output R[·] of the previous chunk is
necessary to start the calculations on the next chunk. This might be a bottleneck
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Algorithm 4:

// Get valid positions

1 F = 0
2 for i = 0 to log2(p) − 1 do
3 if f∗

i (x) = 1 then

4 R[·] ⊕= R[·] � 2i

5 else if f∗
i (x) = NOT (x) then

6 F = F + 2i

7 R[·] = (R[·] � F ) &
∑S−1

i=0 2i·p

// Set carries

8 for i = 1 to log2(S − 1) do

9 R[·] ⊕= R[·] � (p − 1) · i
10 R[·] = R[·] & (2S − 1)

Algorithm 5:

1 for i = 1 to log2(S − 1) do

2 R[·] ⊕= R[·] � 2i · p
3 for i = 1 to p − 1 do

4 R[·] ⊕= i · R[·][i]

Algorithm 6:

1 for i = 0 to log2(p) − 1 do

2 B[·][i] = parity(R[·] & Fi)

for the masked comparison operation as used in lattice-based cryptography as
described in Subsect. 5.3. In such a scenario one has typically an input array
D(·) that has between 768 and 1280 coefficients that need to be validated. In
this section, we will show how to make a parallel implementation on n ‘cores’
with minimal overhead.

At the start, one divides the array D(·) in n arrays of approximately |D(·)|/n
elements. These sub-arrays are then validated separately on the n cores, which
results in n registers R0

[·] to Rn−1
[·]. The LSB of each of these registers is a

Boolean masked bit representing the result of the comparison of the correspond-
ing sub-array (i.e., Ri

[·][0] = 1 if the corresponding sub-array was valid, and 0 if
it was invalid).

To combine these registers, one can use the fact that one Boolean masked bit
is essentially an arithmetic masked bit modulo 2. To combine R0

[·] and R1
[·] we

perform another iteration of the arithmetic to 1-bit Boolean with these inputs:
∀kD(k) = R1

[k][0] with arithmetic masking modulus 2, R[·] = R0
[·] and f(x) =

NOT (x). The output of this iteration is a register R[·] that is 1 if both R0
[·] and

R1
[·] were 1, and 0 otherwise.
Taking a step back we can see that the above paragraph uses the arithmetic

to 1-bit Boolean technique to construct a masked AND gate on Boolean masked
bits. By applying this AND gate on all R0

[·] to Rn−1
[·] we end up with one

register denoting the result of the masked comparison.
In a serial implementation, given |D(·)| coefficients and L chunks for

each coefficient, the masked comparison takes L · |D(·)| iterations (we count
SecureRotate and the bit selection as one iteration). In the parallelized method
we additionally have to perform n − 1 iterations to combine the sub-array Ri

[·],
which increases the cost only slightly to L · |D(·)| + n − 1 iterations. For masked
comparison of Saber, where |D(·)| = 1024 and L = 4, performing the calculations
in parallel on 4 cores would increase the cost from 4096 to 4099 iterations.
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7 Validation

In this section, we compare the one-hot A2B conversion and masked compar-
ison to state-of-the-art alternatives. We benchmarked the algorithms on an
STM32F407 board with an ARM-Cortex M4F using arm-none-eabi-gcc ver-
sion 9.2.1 with -O3. The system clock was set to 24 Mhz and TRNG clock to 48
Mhz, following the popular benchmarking framework PQM4 [KRSS]. One impor-
tant factor in the benchmarking of these conversions is the limited throughput of
the TRNG available on our processor. Therefore, we provide both benchmarks
where the randomness cost is disregarded (i.e., it is sourced from a precomputed
array of random elements), and where the randomness is sampled from the on-
chip TRNG and its sampling cost is included in the cycle counts. Note that these
implementations are only for reference and are not side-channel secured, as such
implementations are outside the scope of this work but would be interesting for
future work.

7.1 A2B Conversion

In Table 2 and Table 3, our one-hot A2B algorithm is compared with the state-
of-the-art table-based conversion by Coron et al. [16], using their publicly avail-
able code. We also compare with the Boolean circuit-based A2B algorithm by
Coron et al. [11], and additionally with the optimized bitsliced implementation
of D’Anvers et al. [17]. The top results in the table give the cycle counts without
the waiting effect of the TRNG, while the bottom results include the TRNG
wait time.

Table 2. Cost to perform 32 A2B conversions on Cortex M4 in 1000 cycles. The top
results ignore randomness sampling using the on-chip TRNG generator, the bottom
results include the randomness sampling.

bits 8-bit 16-bit 32-bit

order 2 3 2 3 2 3

Bool. circ. [11] 228.7 402.4 442.6 767.1 862.5 1484.7

Bool. circ. (optimized bitsliced) [11,17] 37.3 55.1 72.3 108.2 142.6 214.6

Table-based [16] 427.2 916.2 847.2 1806.6 1647.8 3514,8

One-hot [ours] 27.3 51.2 54.3 109.6 103.3 206.4

When sampling the randomness from the on-chip TRNG generator:

Bool. circ. [11] 294.1 532.9 560.2 1002.0 1084.5 1928.6

Bool. circ. (optimized bitsliced) [11,17] 43.2 67.1 84.8 133.3 168.2 265.9

Table-based [16] 767.8 1617.4 1524.1 3213.0 3005,8 6338.3

One-hot [ours] 47.0 90.4 103.3 207.5 201.3 408.2
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Table 3. Randomness cost to perform 32 A2B conversions in bytes.

bits 8-bit 16-bit 32-bit

order 2 3 2 3 2 3

Bool. circ. [11] 5,120 10,240 9,216 18,432 17,408 34,816

Bool. circ. (opt. bitsliced) [11,17] 464 928 976 1,952 2,000 4,000

Table-based [16] 26,624 55,296 53,248 110,592 106,496 221,184

One-hot [ours] 1,536 3,072 3,840 7,680 7,680 15,360

We first compare our one-hot conversion to the state-of-the-art table-based
conversion, as they are in the same family. As you can see from Table 2, our new
conversion improves the state-of-the-art table-based conversion with approxi-
mately a factor of 15. Similarly, the randomness usage is also reduced with a
factor of 15 in the one-hot encoding. From this, we can conclude that the one-
hot conversion is an improved version of the table-based conversion of Coron [16]
in both cycle count (×15) and randomness usage (×15), and as such it is the
fastest table-based full A2B conversion algorithm available at the moment1.

A comparison to the Boolean circuit method is more complex. First one
can notice that the optimized and bitsliced method significantly outperforms
a straightforward implementation of the Boolean circuit method. Note that in
contrast to the optimized bitsliced implementation, the one-hot implementation
provided in this paper is a proof of concept and not a fully optimized implemen-
tation, which we leave for future work.

Compared to the one-hot encoding, while reducing the randomness cost of
table-based methods by around a factor of 15, the randomness required for the
one-hot encoding is still approximately 4 times higher compared to the optimized
bitsliced Boolean circuit implementation. Further reducing this randomness cost
can thus be identified as an interesting focus for future work. Regarding the cycle
count, the one-hot encoding is in most situations slightly faster (up to 27%) than
the Boolean circuit method if the limited throughput of the TRNG is ignored.
If using the on-chip TRNG, the Boolean circuit method becomes (up to 35%)
faster.

The bitsliced optimized Boolean circuit implementation makes very efficient
use of the processor instructions available through the use of the bitslicing. Sim-
ilar optimizations are not implemented for the one-hot encoding. One example
of an operation that could be optimized using the appropriate hardware support
would be the sharewise operations. These operations are essentially a Boolean
circuit with mostly (unmasked) XOR gates, which would be much more efficient
in hardware or with the appropriate hardware support (e.g., a parity count or

1 Note that the numbers given in [16] (Table 6) depict algorithmic operation counts
and not cycles in an actual implementation. As there is no one-to-one match between
the algorithmic operation count and the cycle count (e.g., memory accesses might
be more expensive than local operations) one should be careful in comparing these
numbers.
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hamming weight instruction as discussion in Sect. 6). It would be interesting for
future work to compare both techniques in a hardware implementation.

One advantage of the one-hot A2B over a Boolean circuit-based A2B is that
the security-critical non-linear part is fully contained in the small and elegant
SecureRotate function, as all other operations are linear and thus can be per-
formed share-wise. As such, implementors have a more clear view of the security-
critical parts of the algorithm, which should make side-channel secure implemen-
tations easier.

7.2 Masked Comparison

We compare our one-hot masked comparison with the state-of-the-art compari-
son techniques as identified in [20]. These implementations are optimized versions
of the comparison by Barthe et al. [6] optimized in [20] (simple optimized) and
Coron et al. [15] optimized in [20] (streamlined hybrid). Table 4 gives an overview
of the cycle and randomness cost of the various comparison algorithm for usage
in Saber and Kyber. For these techniques we use the optimized bitsliced A2B
implementation of [17]. The implementation of the one-hot comparison follows
the design of Algorithm 3 with the optimizations discussed in Sect. 6.

Table 4. Cycle and randomness cost of the state-of-the-art higher-order comparison
methods

Cycles w/o TRNG Cycles with TRNG Randomness

Order 2 3 2 3 2 3

simple optimized [6,20] Kyber 2.5M 4.1M 3.1M 5.3M 48K 100K

streamlined hybrid [15,20] Kyber 2.4M 3.4M 3.3M 4.4M 80K 95K

one-hot (ours) Kyber 2.3M 4.3M 4.6M 8.9M 184K 369K

simple optimized [6,20] Saber 1.3M 2.0M 1.6M 2.6M 26K 53K

one-hot (ours) Saber 1.0M 2.0M 2.2M 4.2M 92K 184K

Due to the improvements of the one-hot conversion, masked comparison based
on table-based A2B now performs with similar performance to Boolean circuit
A2B based solutions. However, the randomness consumption is still a factor 2 to 4
higher than the Boolean circuit A2B based conversions, which confirms the impor-
tance of future work on randomness reduction or reuse as stated above.

One difference between the techniques is the code complexity. The one-hot
comparison only consists of one main loop that loops over all chunks and for each
chunk performs a secure rotation and a bit selection. As such this technique
has a low implementation complexity even compared to the simple optimized
method. Moreover, the bit selection is performed share-wise and should therefore
be relatively easy to implement securely. Therefore, the critical part for secure
implementations is mainly contained in the secure rotation and as such limits the
scope of critical code parts that need to be addressed for a secure implementation.
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Additionally, the streamlined hybrid method is prone to a small collision
probability in which the comparison returns an incorrect result. This probabil-
ity can be made arbitrarily small at the cost of losing efficiency. The simple
optimized and one-hot comparisons are always correct and thus do not suffer
from collisions.

8 Conclusions and Future Work

In this paper, we introduced a new table-based arithmetic to Boolean conversion.
We also showed how to adapt our new method to efficiently perform masked com-
parison or extraction of the most significant bit, operations which are important
for the masking of lattice-based post-quantum schemes. Additionally, an interest-
ing property of our conversion is that one can perform a wide range of functions
on the masked data during the transformation at low to no cost, which could be
useful in future applications.

Our A2B method is 15 times faster than state-of-the-art table-based conver-
sions and reduces the randomness consumption by a factor of 15. The resulting
scheme still consumes approximately 4 times more randomness than the state-
of-the-art bitsliced optimized Boolean circuit based A2B, but can be (depending
on the throughput of the TRNG) up to 27% faster. Given that higher-order
A2B conversion algorithms using Boolean circuit-based A2B have been around
for longer and that they have undergone more optimizations both on an algo-
rithmic and implementation level, the relatively new higher-order table-based
A2B conversions might be able to bridge the remaining performance gap in the
future.

Future work could include looking at adaptations to make one-hot conver-
sions more efficient, or to apply them in different contexts and for different
types of conversions. Reduction of the randomness usage by the one-hot conver-
sion might be an interesting research topic. One could also look at algorithmic
or implementation optimizations. Note that possible optimizations to the algo-
rithm will be different on different platforms, for example in a microprocessor the
register size is typically fixed by the bitwidth of the processor, while hardware
implementation has more slack in choosing the size. For hardware implemen-
tations, the Boolean circuit nature of the sharewise operations might lead to
significant speedups. Implementing and lab verification of a practically secure
one-hot conversion might also be interesting future work.

Another point of interest could be specific first-order versions of the one-
hot conversion. In first-order table-based implementations, one can typically re-
use randomness over multiple encodings, and thus the randomness cost can be
reduced dramatically. As in this scenario the randomness is no longer a limiting
factor, this could possibly lead to very efficient designs for first-order.

In terms of extending the reach of the algorithm, one could look into applying
the one-hot conversion ideas to improve Boolean to arithmetic conversion or first-
order comparison methods. In the future, other more exotic functions might
be implementable using the technique (e.g., checking smallness of a vector). It
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would also be interesting to integrate the one-hot conversion algorithms in post-
quantum schemes such as Kyber, Dilithium and Falcon.
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