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Abstract. The internet of things (IoT) is a complex network system
with applications in all walks of life. However, there are various risks in
the process of information transmission between IoT devices and servers.
Recently, research on the security of authenticated key agreement (AKA)
protocols in the IoT environment has gradually increased. Iqbal et al.
proposed an AKA protocol between IoT and cloud servers and proved
that it was secure under the eCK model. This paper shows that the Iqbal
et al.’s protocol has two security flaws, which are resisting ephemeral key
leakage attack and key compromise impersonation attack, and proposes
a new AKA protocol in the IoT environment. Through the security proof
and formal analysis, it is proved that the new protocol is secure under the
eCK model. Comparing the protocol proposed in this paper with other
similar protocols, it is found that the protocol in this paper achieves a
balance between security performance and communication consumption.
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1 Introduction

1.1 Related Work

The internet of things (IoT) is a network that can realize the interconnection of
any object anytime, anywhere. With the popularization of IoT smart devices,
IoT plays an increasingly important role in life [1]. The IoT has a wide range
of applications in infrastructure fields such as smart cities, smart malls, smart
transportation, smart medical care, and smart logistics [2–4]. However, there may
be attacks by malicious adversaries in the process of transmitting information
between the devices and the servers [5]. Therefore, one of the foundations for
building security services is authentication and session key agreement between
IoT devices and servers. Many protocols for securing communication between
IoT devices and cloud servers have been proposed.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

Q. Jiang et al. (Eds.): SPNCE 2022, LNICST 496, pp. 15–31, 2023.

https://doi.org/10.1007/978-3-031-30623-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30623-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-30623-5_2


16 Y. Ma et al.

Khelf et al. [6] proposed an IoT-oriented AKA micro-protocol to solve the
security problem in wireless sensors, which could resist various types of attacks
while reducing the computational cost. Qi et al. [7] proposed a two-factor AKA
protocol based on elliptic curve cryptography for wireless sensor networks in the
context IoT, and through heuristic security analysis showed that the protocol
could resist various known attacks. Peng et al. [8] proposed an efficient proto-
col for IoT devices, which avoided the pairing operation of the client through
an unbalanced computation method and proved the security of the protocol.
Recently, Rostampour et al. [9] proposed an AKA protocol between IoT edge
devices and cloud servers based on elliptic curve cryptography. Iqbal et al. [10]
proved that the protocol proposed by Rostampour et al. was insecure under
the eCK model, then they proposed a new AKA protocol called ITGR proto-
col below, at the same time, they used Scyther tool and BAN logic to prove
that the protocol was secure under the eCK model. However, in this paper, we
prove that the ITGR protocol cannot resist the ephemeral key leakage attack
and key compromise impersonation attack, then we propose a new AKA proto-
col between IoT devices and cloud servers based on the ITGR protocol, called
eITGR protocol. Finally, we prove that our protocol is secure under the eCK
model.

1.2 Contribution

The contribution of this paper consists of the following four parts:

(i) This paper analyzes the ITGR protocol between IoT devices and cloud
servers based on elliptic curve cryptography, and points out that it cannot
resist ephemeral key leakage attack and key compromise impersonation
attack.

(ii) A new AKA protocol between IoT devices and cloud servers is proposed,
which makes up for the security defects of the ITGR protocol.

(iii) Use the security proof to prove that the eITGR protocol is secure under
the eCK model, and confirm it through the Scyther tool.

(iv) By comparing the security properties and communication consumption of
eITGR and similar protocols, the advantages of the eITGR protocol in
terms of security and communication efficiency are shown.

1.3 Organization

The content of this paper is arranged as follows. Section 1 introduces the devel-
opment status of the IoT, the research status of AKA protocol at home and
abroad, and briefly introduces the research content and structure of this paper.
Section 2 presents the basics of mathematics and cryptography applied during
protocol design and analysis. A review of the ITGR protocol and analysis of
security flaws are in Sect. 3. Section 4 proposes a new AKA protocol in the IoT
environment, and its formal security proof, security analysis using Scyther tool
and security properties analysis are shown in Sect. 5. The security properties,
computation and communication cost of the protocol proposed in this paper and
other similar protocols are compared in Sect. 6. Conclusion is given in Sect. 7.
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2 Preliminaries and Security Model

The notations used in the paper are shown in Table 1.

Table 1. Notations used in the paper.

Notations Description

U User

S Server

IDu Identity of U

tu Ephemeral private key of U

ts Ephemeral private key of S

xs Long-term private key of S

k The security parameter

G The cyclic additive group

p, q The large prime

P A generator of G

T The timestamp

Hi(i = 1, 2, 3) The hash functions

2.1 Computationally Difficult Problems

(i) Elliptic Curve Discrete Logarithm Problem (ECDL): Let E be an elliptic
curve on a finite field F . G is a cyclic subgroup of E with order q, and P
is a generator of G. If the P,Q ∈ G are known, it is hard to find a ∈ Z∗

q

satisfying aP = Q.
(ii) Elliptic Curve Computational Diffie-Hellman Problem (ECCDH): Let the

generator of prime order cyclic group G be P , and for a1, a2 ∈ Z∗
q , when

P, a1P, a2P are known, it is hard to calculate a1a2P ∈ G.

2.2 Security Model

In 2007, LaMacchia et al. [11] proposed a new security model, which gave the
adversary stronger attack capabilities based on the CK model [12], referred
to as the eCK model. Let {P1, P2, · · · , Pn} denote the set of all participants,
sid = (Pi, Pj ,m1,m2, · · · ,ml) is the symbol of the session, where participant Pi

is the initiator of the session, and participant Pj is the responder of the session,
m1,m2, · · · ,ml representing the message sent between the participants of the
session. Let

∏sid
i,j be the sid session between participant Pi and Pj . The adver-

sary’s attack capabilities such as eavesdropping, tampering, and replay in the
eCK model are reflected through the following query methods:

(i) StaticKeyReveal(Pi) query: The adversary can obtain the long-term private
key of the participant Pi through this query.
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(ii) EphemeralKeyReveal(Pi, sid) query: The adversary can obtain the
ephemeral key of participant Pi in session sid through this query.

(iii) SessionKeyReveal(sid) query: The adversary obtains the session key gen-
erated in session sid through the query.

(iv) Send(sid,m) query: Through this query, the adversary can send message m
to the session identified as sid, and get the corresponding reply according
to the provisions of the protocol.

(v) Test(sid) query: The adversary can only interrogate the fresh session sid,
which simulates a random coin tossing algorithm and makes corresponding
answers according to the coin toss results. If the coin toss results b = 1, the
oracle returns the real session key; if the coin toss results b = 0, the oracle
returns a random value with the same distribution as the session key.

Definition 1. If both sessions
∏sid

i,j and
∏sid∗

i,j are run successfully, the gener-
ated session keys are equal, and the session identifiers sid and sid∗ are the same,
then the two sessions are called matching sessions.

Definition 2. Let the session run by users Pi and Pj be
∏sid

i,j , and the session
is called fresh if none of the following conditions hold:

(i) The adversary has interrogated session
∏sid

i,j or matching session
∏sid

j,i (if
exists) for SessionKeyReveal(sid) query;

(ii) If the matching session
∏sid

j,i of session
∏sid

i,j exists, the adversary has
performed EphemeralKeyReveal(Pi, sid) and StaticKeyReveal(Pi) queries
at the same time, or performed both EphemeralKeyReveal(Pj , sid) and
StaticKeyReveal(Pj) queries;

(iii) If there is no matching session for session
∏sid

i,j , the adversary has per-
formed EphemeralKeyReveal(Pi, sid) and StaticKeyReveal(Pi) queries at
the same time, or performed a StaticKeyReveal(Pj) query.

Definition 3. Let k be a security parameter, if the probability of the adversary
A winning the game is Pr, then the adversary’s winning advantage can be defined
as:

Adv(k) = |Pr − 1
2
|. (1)

If two honest participants complete the matching session and calculate the
same key, and there is no adversary to win the security game with a non-
negligible advantage, then the AKA protocol is secure under the eCK model.

3 Review and Security Analysis of ITGR Protocol

In this section, we review the ITGR protocol [10] and analyze the security prop-
erties of the protocol.
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3.1 Review of ITGR Protocol

There are two types of participants in the ITGR protocol [10], namely IoT
device U and server S. At the same time, the protocol consists of the following
two phases: registration phase, and login and authentication phase.

Registration Phase. The registration steps are given as follows:

(i) Device U selects random number xu ∈ Z∗
q and its identity IDu. Then U

computes Ru = xu · IDu · P and sends it to the server.
(ii) Server S receives the Ru and splits its private key xs into two unequal parts

x1
s, x

2
s such as x1

s �= x2
s, then server calculates Y 1

u = Rux
1
s, Y

2
u = Rux

2
s. The

server sends {Y 1
u , Y

2
u } to U and stores (Ru, Y

1
u , Y

2
u ) in its database.

(iii) The device receives {Y 1
u , Y

2
u } from server and stores (Ru, Y

1
u , Y

2
u ) as its

long-term private key securely.

Login and Authentication Phase. The steps of the login and authentication
process between device U and server S are given as follows:

(i) Device U chooses its ephemeral key tu ∈ Z∗
q and computes Xu = (Y 1

u +
Y 2
u ) · tu ·H(Ru), Tu = (Y 1

u + Y 2
u ) · tu, then U sends {Xu, Tu} to the server.

(ii) Server S receives {Xu, Tu} and checks whether Tu
?= Xu[H(Ru)]−1 to

authenticate U. If true, the device U passes the identity authentication
of server; else, login request from U is rejected.

(iii) The server S selects ts ∈ Z∗
q and computes Xs = Xuts, Ts = (Y 1

u +Y 2
u ) · ts,

then S calculates its session key with U as SKsu = Tuts and sends {Xs, Ts}
to the device U.

(iv) The device U receives {Xs, Ts} from server S and checks whether Ts
?=

Xs[H(Ru)]−1t−1
u to authenticate S. If true, the server S passes the identity

authentication of device; else, login response from S is rejected.
(v) The device U calculates its session key with S as SKus = Tstu, then

encrypts ESKus
[H(SKus)] and sends it to the server S.

(vi) The server S receives ESKus
[H(SKus)] and checks whether H(SKsu) ?=

DSKsu
[ESKus

[H(SKus)]] to authenticate U and approve login request. If
true, the session key exchange between U and S is over; else, the session
key is invalid.

3.2 Security Analysis of ITGR Protocol

In this subsection, we prove that the ITGR protocol is susceptible to ephemeral
key leakage attack and key compromise impersonation attack, and give specific
attack methods.
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Ephemeral Key Leakage Attack. If the ephemeral private key ts of the server
or the ephemeral private key tu of the device is obtained by the adversary, then
the adversary can calculate the session key by using the monitored transmission
information. The specific steps are described as below:

If the adversary obtains the ephemeral private key ts of the server S, and
obtains Tu by monitoring the communication between the device and the server
in public channel, then the adversary calculates SKsu = Tuts, and verify the
session key by judging H(SKsu) ?= DSKsu

[ESKus
[H(SKus)]].

If the adversary obtains the ephemeral private key tu of the device U, and
obtains Ts by monitoring the communication between the device and the server
in public channel, then the adversary calculate SKus = Tstu, and verify the
session key by judgment H(SKus)

?= DSKus
[ESKus

[H(SKus)]].

Key Compromise Impersonation Attack. The registration information of
each device is stored in the server, and the server is at risk of being attacked by
an adversary, so (Ru, Y

1
u , Y

2
u ) may be obtained by an adversary. If the adversary

obtains the secret (Ru, Y
1
u , Y

2
u ) of the device U, then the adversary can deceive

the device by pretending to be a legitimate server in front of the device, and
generate the session key with device through the AKA process. The specific
attack steps are described as below:

(i) The adversary A receives {Xu, Tu} from device U and checks whether Tu
?=

Xu[H(Ru)]−1 to authenticate U. If true, the device U passes the identity
authentication of adversary A; else, login request from U is rejected.

(ii) The adversary A selects t′s ∈ Z∗
q and computes X ′

s = Xut
′
s, T

′
s = (Y 1

u +
Y 2
u ) · t′s, then A calculates its session key with U as SK ′

su = Tut
′
s and sends

{X ′
s, T

′
s} to the device U.

(iii) The device U receives {X ′
s, T

′
s} from adversary A and checks whether

T ′
s

?= X ′
s ·[H(Ru)]−1t−1

u . If true, the adversary A passes the identity authen-
tication of device U; else, login response from A is rejected.

(iv) The device U calculates its session key as SK ′
us = T ′

stu, then encrypts
ESK′

us
[H(SK ′

us)] and sends it to the adversary A.
(v) The adversary A receives ESK′

us
[H(SK ′

us)] from U and checks whether

H(SK ′
su) ?= DSK′

su
[ESK′

us
[H(SK ′

us)]] to authenticate U and approve login
request. If true, the session key negotiation between U and A is over; else,
the session key is invalid.

Since the session key calculated by adversary A and device U is equal, the
session key negotiation is completed.

4 Proposed Scheme

The ITGR protocol cannot resist key compromise impersonation attack and
ephemeral key leakage attack, so this paper proposes a new AKA protocol called
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eITGR protocol which makes up for the defects of ITGR protocol. The proposed
protocol consists of three phases: system establishment phase, registration phase,
and login and authentication phase.

4.1 System Establishment Phase

The server S establishes an elliptic curve E(a, b) : y2 = x3 + ax + b on the
finite field F , where G is a cyclic subgroup of E with order q, and P is a
generator of G. Then the S selects three hash functions H1 : {0, 1}∗ × G → Z∗

q ,
H2 : {0, 1}∗ × G × G × {0, 1}∗ → G, H3 : {0, 1}∗ × Z∗

q → Z∗
q .

4.2 Registration Phase

The registration phase is when the IoT device registers on the server in the secure
communication environment, and generates a private key for communication
between the two parties. The registration steps between device U and server S
are as follows:

(i) Device U selects random number xu ∈ Z∗
q and its identity IDu. Then U

computes Xu = xuP,Ru = H1(IDu‖Xu) · P and sends {IDu, Ru} to the
server.

(ii) Server S receives the {IDu, Ru} from U and splits its private key xs into
two unequal parts x1

s, x
2
s such as x1

s �= x2
s, then server S calculates yu =

x1
s + x2

s · H1(IDu‖Ru), Yu = yuP . The server S sends Yu to U and stores
(IDu, Ru, yu) in its database.

(iii) The device receives Yu from server and stores (xu, Ru, Yu) as its long-term
private key securely.

4.3 Login and Authentication Phase

The login and authentication process between device U and server S is as follows:

(i) The device U chooses its ephemeral key tu ∈ Z∗
q and timestamp T , computes

Tu = tuP , Hu = H2(IDu‖Ru‖Tu‖T ), then U sends {IDu,Hu, Tu, T} to the
server S.

(ii) After receiving the message {IDu,Hu, Tu, T}, the server S first verifies the
freshness of the timestamp T , then uses IDu to find the corresponding
entry (IDu, Ru, yu) in its database, After this server S uses the stored data
to calculate Hs = H2(IDu‖Ru‖Tu‖T ), Xu = Hu − Hs and checks whether
Ru

?= H1(IDu‖Xu) · P to authenticate U. If true, the device U passes the
identity authentication of server; else, login request from U is rejected.

(iii) The server S selects ts ∈ Z∗
q and computes Ts = tsP , then S calculates

Ks = (ts + yu + H1(IDu‖Xu))(Tu + Xu) and its session key with U as
SKsu = H1(IDu‖Ks), Qs = H3(IDu‖SKsu), and sends {Ts, Qs} to the
device U.
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(iv) The device U receives {Ts, Qs} from S, calculates Ku = (tu + xu)(Ts +
Yu + Ru) and its session key with S as SKus = H1(IDu‖Ku), then checks
whether Qs

?= H3(IDu‖SKus) to authenticate S. If true, the server S passes
the identity authentication of device and the session key exchange between
U and S is over; else, the session key is invalid.

The login and authentication phase is given in Fig. 1.

Fig. 1. Login and authentication phase of eITGR.

5 Security Analysis of eITGR Protocol

In this section, we present two proof methods for the eITGR protocol. First, we
prove that the eITGR protocol is secure under the eCK model, then we use the
Scyther tool to verify the security of the protocol.

5.1 Security Proof Under the eCK Model

We will prove that the protocol is secure under the eCK model [11] below.
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Theorem 1. The eITGR protocol satisfies eCK security if the ECCDH assump-
tion holds on group G and H1,H2,H3 are modeled by independent random ora-
cles.

Proof. Let the adversary A activates at most n(k) honest parties and s(k) ses-
sions. The session key generated by the protocol is SK = H1(IDu‖K) and H1 is
simulated as a random oracle, so the adversary has only three ways to distinguish
the session key from the random value:

(i) Guessing attack: The adversary guesses the session key correctly.
(ii) Session key replication attack: The adversary establishes a session that does

not match the test session but has the same session key. The adversary
obtains the session key of the test session by querying the session key of
the established session.

(iii) Forgery attack: The adversary A queries random oracle H1 with the same
secret value as that used to generate the test session key, and obtains the
session key.

Since H1 is a random oracle that obeys a uniform distribution, the probability
O(1/2k) of the adversary guessing the correct key can be ignored. The two
unmatched sessions cannot have the same session participant and ephemeral
key, So the success probability of the session key replication attack is equivalent
to find a collision of H1, and the probability that two random oracles collide
is O(s(k)2/2k). Therefore, guessing attacks and session key replication attacks
can be ignored, and only forgery attacks are considered below. Next, we show
that if the adversary A wins the game by a non-negligible advantage, then the
algorithm S can be constructed to solve the ECCDH problem with non-negligible
probability. The algorithm S selects A,B ∈ G where A = aP , B = bP , a, b ∈ Z∗

q ,
and sends the parameters (G, q, P,H1,H2,H3) to A. Then, algorithm S guesses
that the adversary selects the session marked with sid as the test session, Sa and
Ub are the owners of the test session and its matching session respectively with
at least 1/n(k)2s(k) probability. Consider the following two cases according to
the definition of session freshness:

(1) Case 1: The matching session of the test session exists, and the owner of
the matching session is an honest participant;

(2) Case 2:No honest party owns a matching session for the test session.

Case 1 can be divided into the following four sub-cases:

(1) Case 1.1: The adversary performs the StaticKeyReveal(C) query on the
test session and its matching session. Algorithm S sets A and B as the
ephemeral public keys for participants Sa and Ub, and algorithm S assigns
the long-time public-private key pair normally. Since algorithm S knows the
long-term private keys of all participants, when queried by an adversary,
algorithm S can answer truthfully according to the query ability in the
model. When the adversary queries information about participants Sa and
Ub, the algorithm S replies to the adversary as follows:
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(i) StaticKeyReveal(C) query: The algorithm S provides the adversary
with the long-term private key of participant C generated in the above
simulation.

(ii) EphemeralKeyReveal(C, sid) query: If C is participant Sa or Ub, then
algorithm S abandons the simulation, otherwise algorithm S returns
the ephemeral key for party C in session sid.

(iii) Test(sid) query: If sid is not the test session, the simulation fails, oth-
erwise, algorithm S returns a random value with the same distribution
as the session key.

(iv) SessionKeyReveal(sid) query: If sid is a test session or its match-
ing session, the simulation fails, otherwise set the session as sid =
(IDs, IDu,Hu, Tu, Ts, Qs, T ), then calculate the session key as SK =
H1(IDu‖K), where the input of K is as follows

K = ECCDH(Tu + Xu, Ts + Yu + Ru). (2)

Algorithm S queries whether the random oracle H1 has been queried. If it
has been queried, it outputs the correct session key; otherwise, it outputs a
random value with the same distribution as the session key. Therefore, the
algorithm S successfully simulates the environment in which the adversary
A runs the protocol. If the adversary wins the forgery attack, then it must
obtain the session key by querying, and the algorithm S must be able to
solve the problem of ECCDH(A,B). In addition to, the only consideration
is that the adversary solves the ECDL problem in time t while setting its
advantage to be AdvECDL

G (k, t). Let p1 be the probability that the Case
1.1 occurs and the adversary succeeds through the forgery attack, so the
advantages of simulating algorithm S to solve the ECCDH problem are as
follows

AdvECCDH
G (k, t) ≥ p1

n(k)2s(k)
− AdvECDL

G (k, t). (3)

(2) Case 1.2: The adversary performs the StaticKeyReveal(C) query on the
test session and EphemeralKeyReveal(C, sid) query on its matching ses-
sion. Algorithm S sets A as the ephemeral public key of participant Sa,
replaces Xu with B for participant Ub, and assigns a public-private key
pair normally for the remaining participants. Then the algorithm S sim-
ulates the operating environment of the protocol, which is the same as in
Case 1.1 except for the following query:
(i) StaticKeyReveal(C) query: If C is participant Ub, then algorithm S

abandons the simulation; otherwise, algorithm S provides the adver-
sary with the long-term private key of party C generated in the above
simulation.

(ii) EphemeralKeyReveal(C, sid) query: If C is participant Sa, then algo-
rithm S abandons the simulation; otherwise, algorithm S provides the
adversary with the ephemeral key of participant C generated in the
above simulation.
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Let p2 be the probability that the case 1.2 occurs and the adversary succeeds
through the forgery attack, so the advantages of simulating algorithm S to
solve the ECCDH problem are as follows

AdvECCDH
G (k, t) ≥ p2

n(k)2s(k)
− AdvECDL

G (k, t). (4)

(3) Case 1.3: The adversary performs the EphemeralKeyReveal(C, sid) query
on the test session and StaticKeyReveal(C) query on its matching session.
Algorithm S sets B as the ephemeral public key of participant Ub, replaces
Yu with A for participant Sa. Swap Sa and Ub, the rest is the same as
case 1.2. Let p3 be the probability that the case 1.3 occurs and the adver-
sary succeeds through the forgery attack, so the advantages of simulating
algorithm S to solve the ECCDH problem are as follows

AdvECCDH
G (k, t) ≥ p3

n(k)2s(k)
− AdvECDL

G (k, t). (5)

(4) Case 1.4: The adversary performs the EphemeralKeyReveal(C, sid) query
on the test session and its matching session. Algorithm S replaces Xu with A
and Yu with B for participants Sa and Ub, computes Ru = H1(IDu‖Xu) ·P
and for the remaining n(k)−2 participants, algorithm S assigns the public-
private key pair normally. Then the algorithm S simulates the operating
environment of the protocol, which is the same as in case 1.1 except for the
following query:
(i) StaticKeyReveal(C) query: If C is participant Sa or Ub, then algorithm

S abandons the simulation; otherwise, algorithm S returns the long-
term private key for party C in session sid.

(ii) EphemeralKeyReveal(C, sid) query: The algorithm S provides the
adversary with the ephemeral key of participant C generated in the
above simulation.

Let p4 be the probability that the case 1.4 occurs and the adversary succeeds
through the forgery attack, so the advantages of simulating algorithm S to
solve the ECCDH problem are as follows

AdvECCDH
G (k, t) ≥ p4

n(k)2s(k)
− AdvECDL

G (k, t). (6)

Case 2 can be divided into the following two sub-cases:

(1) Case 2.1: The adversary performs the EphemeralKeyReveal(C, sid) query
on the test session. Since no honest participant participates in the matching
session of the test session, it is equivalent that the adversary also obtains
the ephemeral key of the intended communicating party, so it is similar
with case 1.4.

(2) Case 2.2: The adversary performs the StaticKeyReveal(C) query on the
test. Since no honest participant participates in the matching session of the
test session, it is equivalent to the adversary also obtaining the ephemeral
key of the intended communicating party, so it is similar with case 1.2.
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In summary, if the adversary successfully distinguishes the session key from
the random value with a non-negligible advantage, there is an algorithm S that
solves the ECCDH problem with a non-negligible probability, which contradicts
the ECCDH assumption. Therefore, the eITGR protocol given in this paper
satisfies the security properties under the eCK model. ��

5.2 Security Analysis Using Scyther Tool

Cremers and his team [13] developed the Scyther tool in 2006 for formal anal-
ysis of protocols. This paper uses Scyther tool to formally analyze the eITGR
protocol, and the setting used is presented in Fig. 2 to achieve highly strong secu-
rity, including perfect forward security and resistance to ephemeral key leakage
attack. According to the analysis result in Fig. 3, we point out that the eITGR
protocol is secure under the eCK model, which is consistent with the security
proof result in Sect. 5.1.

6 Comparison with Other Protocols

In this section, we compare the security properties, computation cost, and com-
munication overhead of the eITGR protocol with several similar protocols. The
protocols involved in the comparison include Rostampour et al.’s protocol [9],
ITGR [10], Hassan et al.’s protocol [14], Zhang et al.’s protocol [15] and Zhou
et al.’s protocol [16].

6.1 Comparison of Security Properties

Table 2. Comparison of security properties.

Scheme SP1 SP2 SP3 SP4 SP5

Rostampour et al. [9] Y Y N N N

ITGR [10] Y Y N Y N

Hassan et al. [14] Y Y Y N N

Zhang et al. [15] Y N N Y Y

Zhou et al. [16] Y Y Y N N

eITGR Y Y Y Y Y

The security properties of several recently proposed protocols are shown in
Table 2, where SP1 refers to known key security, SP2 refers to forward security,
SP3 represents resistance to key compromise impersonation attack, SP4 repre-
sents resistance to ephemeral key compromise impersonation attack, and SP5
represents resistance to ephemeral key leakage attack, respectively. Simultane-
ously, Y refers to the scheme achieves this security property and N refers to
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Fig. 2. The setting of Scyther.

the scheme does not achieve this security property. According to Table 2, the
above-mentioned comparison protocols all have some security flaws. However,
the protocol presented in this paper satisfies the above five security properties
and is secure under the eCK model.

6.2 Computation and Communication Overhead Comparison

Computation efficiency and transmission consumption are important indicators
to measure the communication performance of the protocol. In this section, we
use Tb to denote the computation time of the bilinear map, Tm to represent the
time of performing an scalar multiplication operation, Ta to represent the time
of performing a point addition in elliptic curve group, Ti to represent the time
of performing a multiplicative inverse operation and Th to represent the time of
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Fig. 3. Scyther verification results of the eITGR.

performing a hash function. Due to the relatively short operation time of XOR,
integer addition and multiplication, they are ignored in this paper. The device
computing cost and the total computing cost of each protocol are shown in the
Table 3. It can be seen from Table 3 that our proposed protocol requires less
computation on the device and greatly improves the computing efficiency on the
device.

Table 3. Comparison of computation and communication cost.

Scheme Device Computation cost Total Communication cost

Rostampour et al. [9] 7Tm + Ta 13Tm + 2Ta 6|G|
ITGR [10] 4Tm + Ta + Ti + 2Th 8Tm + 2Ta + 2Ti + 4Th 4|G| + |ESK [H(SK)]|
Hassan et al. [14] 4Tm + 4Th 2Tb + 8Tm + 2Ta + 8Th 2|G| + 2|Z∗

q | + |ID|
Zhang et al. [15] 4Tm + 3Ta + 3Th 10Tm + 6Ta + 6Th 6|G| + 3|Z∗

q |
Zhou et al. [16] Tb + 3Tm + 3Th 2Tb + 8Tm + Ta + 8Th 2|G| + 4|Z∗

q | + 2|T |
eITGR 2Tm + 3Ta + 3Th 5Tm + 5Ta + 7Th 3|G| + |Z∗

q | + |ID| + |T |

In order to avoid the difference of computing efficiency in different environ-
ments, this paper uses the Miracl function library in the C language environ-
ment [17]. According to the operation time in Table 4, the device running time
and the total running time of the above protocols in the login and authentication
phase are compared as shown in Fig. 4, where the abscissa is the protocol type,
and the ordinate represents the time in milliseconds. It can be seen from Fig. 4
that the computing time on the device and total computing time of the eITGR
protocol we propose is short, which greatly improves the practicability of the
protocol in the IoT environment.

Table 4. Running time of various operations.

Operation Tb Tm Ta Ti Th

Computation time(ms) 7.8351 2.7580 0.0168 0.0147 0.0126
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Fig. 4. Comparison of computation time.

The more data transmitted during the protocol operation, the more commu-
nication overhead. This paper compares the communication efficiency by com-
paring the amount of data that needs to be transmitted during the operation
of different protocols. Table 3 shows the communication transmission data dur-
ing the operation of each protocol. In order to compare the data transmission
efficiency intuitively during the operation of the protocol, we set the parameter
lengths as |ID| = 10 bytes, |Z∗

q | = 20 bytes, |G| = 40 bytes, timestamp |T | = 8
bytes and |ESK [H(SK)]| = 25 bytes. The comparison of the amount of data
transmitted by each protocol is shown in Fig. 5, where the abscissa represents
the type of protocol, and the ordinate represents the amount of transmitted data
in bytes.

Fig. 5. Comparison of communication time.

In summary, in the case of more perfect security performance, the computa-
tion and communication overhead of the eITGR protocol proposed in this paper
is relatively low, therefore, the eITGR protocol achieves a balance between secu-
rity and communication efficiency.

7 Conclusion

With the wide application of IoT technology in life, the security of data trans-
mission and identity authentication between devices and servers in the IoT has
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attracted much attention. This paper analyzes that the ITGR protocol is vulner-
able to ephemeral key leakage attack and key compromise impersonation attack,
so an AKA protocol suitable for the IoT environment is proposed. Our protocol
is proven to be secure under the eCK model based on the ECCDH assumption,
and then the security of the protocol is verified using Scyther tool. Finally, we
compare the proposed protocol with similar protocols in terms of security prop-
erties and communication cost in the same environment, the analysis results
show that our protocol is secure and efficient. In future work, we will consider
how to design a secure and efficient group authenticated key agreement protocol
for IoT and cloud server.
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