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Abstract. Traditional mobile phone authentication systems are based
on knowledge or biological information. This paper shows an authentica-
tion system based on human vibration characteristics and implement it
on smartphone. This kind of inspiration comes from signal transmitted
based on solid conduction and is applied to the link between vibration
motor and accelerometer. Therefore, we designed a system to extract
user biometric features by active vibration. However, there is a great
challenge for smartphone systems with low sampling rate and requir-
ing real-time response. Therefore, we would realize the system through
multiple signal processing stages rather than choose a high-performance
neural network. Our system solves the problem of low sampling rate
of mobile phone sensors through supersampling reconstruction method.
Besides, we select appropriate statistical features and MFCC-based fea-
tures through PCA algorithm, and finally complete the training through
Gradient Boosting Tree. In order to avoid the threshold division problem
of the multi-level classifier, we train each sample in two classifications
at the time of registration, and store the parameters in the user profile.
When the system performs user authentication, the user data is divided
into five sections for testing, so as to increase the robustness of the sys-
tem. Our approach could achieve short-time identity authentication, with
an average accuracy rate of 85.3%.
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1 Introduction

The convenience of mobile devices such as smartphones and smartwatches has
greatly stimulated the development of the mobile industry in recent years. How-
ever, although users can enjoy the great convenience brought by mobile devices,
the widespread use of mobile devices and mobile applications has caused major
security problems [1]. For example, most applications need to obtain permissions
such as user location and phone information. Therefore, identification and veri-
fication before using mobile devices has become the first barrier to protect data
security.
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Nowadays, the identity authentication process of smart phones mainly
involves some traditional solutions, including PIN, fingerprint identification, face
recognition, etc. In the U.S. consumer payment study, 66% of users set PINs
and passwords as the first choice in smartphone authentication. Although PINs
based authentication methods are easy to use and widely deployed, they also
have the problem of password leakage. For example, people have been able to
crack it through shoulder-surfing [2]. Besides, many studies show that attack-
ers can infer your mobile phone’s PIN through wifi signals [3]. Although the
decryption cost of attackers will increase with the increase of PIN’s complexity,
it increases the burden of users’ memory.

In addition, attackers can forge users’ physiological and biometric informa-
tion (such as fingerprints and faces) to deceive the system. If the user loses such
information, authentication based on physiological biometrics will be perma-
nently insecure. For example, researchers found that fingerprint based authen-
tication security may suffer from smudge attacks [4] and the attacker can spoof
face recognition by 3D masks using micro-texture analysis [5,6]. Therefore, we
need to design a new biometric-based identity authentication method.

Moreover, high accuracy means expensive sensor costs. For most smartphone
manufacturers, the hardware cost of smartphones is also an important fact to
be considered. High performance sensors not only increase the cost of mobile
phones, but also take up a lot of internal space of mobile phones. For example,
the iris reader [7] of Samsung smartphones and the depth camera [8] of iPhone
are expensive and vulnerable, so it is particularly critical to find an alternative
authentication method.

Based on the existing research results, this paper focuses on the biological
characteristics of the human body stimulated by vibration signals, and completes
the training of the identity verification system by filtering and feature extraction
of vibration signals. The main contributions of this work are summarized as
follows: (1) Exploring the feasibility of smart phone authentication through the
accelerometer and the vibration motor. (2) We analyze the signals with different
vibration frequencies, study their influence on feature selection, and provide
solutions to meet the needs of most existing mobile phone hardware devices. (3)
For different environmental conditions, we propose an optimization algorithm to
reduce the interference of noise to the system, so as to improve the stability of
the system.

2 Background

We think that the vibration motor and accelerometer of the mobile phone work
together as a system. The vibration wave generated by the vibration motor prop-
agates through the surface of the mobile phone and is received by the accelerom-
eter [9]. When propagating, when the vibration wave meets two different media
boundaries, the vibration wave will form energy attenuation and multipath inter-
ference. Figure 1 shows reflection and diffraction of a vibration signal propagating
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on a solid surface. Since the transmitted vibration signal reaches the accelerom-
eter through reflection and diffraction, the accelerometer will have unique vibra-
tion characteristics (such as wave attenuation and multipath interference), so it
can be used to identify intelligent devices [10].

Fig. 1. Vibration signal propagation.

Figure 1 shows the force condition of the mobile phone screen when the vibra-
tion motor is working. When the user touches the mobile phone with his hand,
a downforce shock wave is generated on the mobile phone screen, which affects
the propagation path of the vibration signal. Where ks is the effective spring
constant and kd is the damping coefficient. If the vertical displacement of the
surface is x, we have

Ft = Kd

(
d

dt

)
x + Ksx + M

(
d

dt

)2

x (1)

This indicates that the finger touching force could be captured by analyzing the
received vibration signals and utilized as a biometric-associated feature in our
system.

In addition, some experiment demonstrate that the vibration energy
absorbed into the human finger-hand-arm system is different under different
vibration frequencies [11]. Therefore, we will explore the impact of vibration
frequency on the authentication system in the following sections.

3 System Overview

In this section, we introduce a verification method based on human biological
characteristics corresponding to vibration. As shown in Fig. 2, our system solves
the problem of low sampling rate of mobile phone sensors through supersampling
reconstruction method. Besides, we select appropriate statistical features and
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MFCC-based features through PCA algorithm, and finally complete the training
through Gradient Boosting Tree. In order to avoid the threshold division problem
of the multi-level classifier, we train each sample in two classifications at the
time of registration, and store the parameters in the user profile. When the
system performs user authentication, the user data is divided into five sections
for testing, so as to increase the robustness of the system.

Fig. 2. System Overview.

3.1 Data Sampling and Preprocessing

Supersampling Reconstruction Method. According to the Nyquist Sam-
pling Law, the low sampling rate results in the distortion of vibration waveform in
the time-domain. Because we need to use the amplitude peak value as the signal
characteristic in the subsequent work, this will lead to the increase of measure-
ment error. The accelerometer in iPhone 7 supports the maximum sampling rate
100 Hz, which is much less than the frequency of vibro-motor at 167 Hz [12]. So
we have to adopt the sampling rate up 400 Hz.

Due to realize this supersampling reconstruction method(SSR), the signal
needs to have sufficient stability. For example, as shown in Fig. 3, put two sig-
nals with different resolutions on the same time axis, and find the sum of the
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minimized variances of the corresponding points. After calculation, the sum of
the minimized variables of the corresponding points is extremely small. This
means that we can obtain 400 Hz signal through the supersampling construction
method

Fig. 3. Comparison of different frequency signals.

The specific method is that we can sample the same value instead of recording
all signals for the current signal with too low sampling rate [13]. For example, if
different sampling points are sampled in each cycle and timestamps are recorded,
there will be a large number of labeled sampling points after several cycles. Next,
we will combine them into a complete cycle and sort them.

But the more complicated problem is the determination of the sampling
interval. It can be seen from the Fourier transform formula that,

X
(
ejω

)
=

N∑
n=1

x [tn] e−jωtn (2)

When tn is replaced by an arbitrary random number, the discrete fourier trans-
form will introduce random noise in the frequency domain. Here we assume that
the time tn follows a uniform distribution, and the expectation of the spectrum
can be obtained as follows:

E
[
X

(
ejω

)]
=

1
Tmax

N∑
n=1

∫ Tmax

0

x [tn] e−jωtndtn

=
N

Tmax
X(jω)
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In our system, we set the cycle composition of 0.5 s active vibration and tgap to
5 ms to apply SRR for four cycle reconstruction.

Standardization and Filtering. When the smartphone’s motor vibrates, the
accelerometer generates a specific feedback signal. In the data collection part, we
need to preprocess the accx, accy and accz data obtained from the accelerome-
ter, aiming at removing high-frequency noise, and normalizing and aligning the
signals to ensure the system robustness under different postures.

Coordinate system modification. In general, when a user authenticates a
smartphone, there is no guarantee that the user can maintain the absolute level of
the smartphone. Therefore, the built-in accelerometer of the smartphone makes
a huge difference in each verification process. In order to ensure that our equip-
ment can operate stably in various environments, we need to correct some data of
the coordinate system. We subtract the gravitational acceleration from the pro-
jection of the accelerometer on the three coordinate axes, and pass the low-pass
filter [14].

s̃i = (1 − β) (si − gi) , i = {x, y, z} (4)

β =
dT

t + dT
(5)

where gi and si are the projection of the gravitational acceleration and raw
acceleration captured by the accelerometer along the i-th axis, respectively; s̃i is
the associated acceleration after such an alignment; β is a filter factor determined
by filter’s time constant t and event delivery rate dT . In this work, we empirically
choose β to be 0.2.

The accelerations and angular velocities collected by accelerometers and gyro-
scopes differ greatly among the three directions, even more among different
device models. To ensure the numerical comparability and analysis stability,
our system applies the Zscore standardization method [15] to the readings from
each axis as follows:

s∗
i =

s̃i − μi

δi
, i = {x, y, z} (6)

where s̃ is a single reading along the i-th axis after filtering, μi and δi are the
mean and standard deviation of all s̃ along the same axis respectively. After the
standardization, s∗

i is centered at 0 and scaled to have the standard deviation of
1. See Fig. 4 for the normalized signal.

For noise interference brought by the environment, such as music and thermal
noise, and interference, such as arm movement and shaking, we choose a low-pass
filter to reduce these effects. Through analysis, it can be found that the frequency
of the built-in vibration motor of existing smartphones is generally between 150–
250 Hz, while the motion frequency of humans is 10 Hz [16]. Therefore we develop
a Butterworth bandpass using the cutting-off frequencies 10 Hz 250 Hz to filter
the vibration noises and interferences outside this range. The filtered signal image
is shown in Fig. 4.
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Fig. 4. Comparison before and after standardization and filtering.

3.2 Feature Extraction

MFCC-based Feature Extraction. The Mel-frequency cepstral coefficient
(MFCC) is widely used to represent the short-term power spectrum of acoustic
or vibration signals [17] and can represent the dynamic features of the signals
with both linear and nonlinear properties. While the MFCCs are able to dis-
tinguish people’s sound differences in speech and voice recognition, we find that
they can also characterize the vibration signals transmitting via the medium
of a solid surface on which the user’s finger touches [18]. The MFCC feature
extraction process is shown in the Fig. 5, mainly including pre emphasis, fram-
ing, windowing, fast Fourier transform (FFT), Mel filter bank, discrete cosine
transform (DCT). Among them, FFT and Mel filter bank are the most impor-
tant.

mfcc(i, n) =
M∑

m=1

log[H(i,m)] · cos
[
π · n · (2m − 1)

2M

]
(7)

K(i) = 1 +
(

L

2

)
· sin

(
π · i
L

)
i = 1, 2, 3 . . . , 13 (8)

where M represents the number of Mel filters, i represents the data of the i-th
frame, and n represents the n-th column of the i-th frame (the value range of
n is 1–26). In our system, we calculate the MFCCs of each segment of signal.
We set 26 Mayer filters and calculate in each 50 ms the Hamming window to

Fig. 5. MFCC Flowchart.
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obtain 26 zero order MFCC eigenvalues. Because most of the signal data is
generally concentrated in the low-frequency region after conversion, only the
first 13 data are taken as MFCC based features for each frame. After MFCC
feature extraction of 5S vibration signal, we can get a 11 × 13 MFCC-based
feature matrix.

Statistical Features Extraction. Although MFCC-based feature has a good
classification effect in high-frequency signals, it is not good in low-frequency sig-
nals. This makes it particularly difficult to classify different users simply through
MFCC-based features. Therefore, we need to obtain more information of the
low-frequency part from the time-domain and frequency-domain of the signal,
considering of statistical features along with pairs of peak indicators and heights
in the frequency domain and in the correlation of time domain.

Table 1. The total of 32 features for each response signal.

Abbreviation Explaination

Var variance

MAV mean absolute value

RMS root mean square

Std standard deviation

IOR interquartile range

Energy Integral of square of signal amplitude

Entropy Shannon entropy of continuous time series

Correlation pairs of indices and heights of the highest five peaks

FFT pairs of indices and heights of the highest five peaks

DCT pairs of indices and heights of the highest five peaks

DWT pairs of indices and heights of the highest five peaks

PSD pairs of indices and heights of the highest five peaks

In the time domain, the statistical features are variance (Var); mean absolute
value (MAV); root mean square (RMS); standard deviation (Std); interquartile
range (IQR); energy; entropy; pairs of indices and heights of the highest five
peaks in the correlation. Also, in frequency domain, we extract pairs of indices
and heights of the highest five peaks after using fast fourier transform (FFT),
discrete cosine transform (DCT), discrete wavelet transform (DWT), and power
spectral density (PSD). A total of our features is shown in Table 1. We have a
total of 32 features for each response signal.

We tested 5 experimenters and analyzed the test data by principal com-
ponent analysis (PCA). The Fig. 6 indicated that at the sampling rate 400 Hz,
statistical features are associated but MFCC-base features are loosely associated.
Therefore, it is necessary to combine them as input features of classifier.
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Fig. 6. User classification based on MFCC features and statistical features.

3.3 User Classification

We build a binary classifier for each user by using the Gradient Boosting Tree
(GBT). We choose GBT mainly because (1) GBT is famous for its robustness
to various types of features with different scales, which is the exact case in our
project (e.g., the energy of the vibration signal is around 5, and the coefficients
are the numbers fluctuated around 0 with value less than 1). Therefore, GBT
would eliminate the efforts to normalize or whiten the feature data before classi-
fication. (2) GBT classifier is robust to the collinearity of feature data. Because
our features are heterogeneous across different domains, it may result in unex-
pected correlation or unbalance ranges that possess the collinearity [19]. This
means that we do not need to analyze the correlation of features, thus reducing
the complexity of the algorithm.

Given N training samples (xi, yi), where xi and yi represent the feature vector
(including statistical features and MFCC-based features) and corresponding user
label (i.e., yi =1 or 0 represents whether xi is from corresponding user), GBT
seeks a function to iteratively select weak learners hj and their weight ωj to
minimise the loss function [20].

φ (xi) =
M∑

m=1

ωmhm (xi) (9)

We adopt the GBT implementation from the library of SQBlib, such as enough
shrinkage (i.e., 0.1) and number of iterations (i.e., M = 2000). The above param-
eters adopted in GBT are optimized in terms of the speed and accuracy based
on our empirical study.
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When we registering a new user registers, the system will extract features
from the segmented samples, and then input these features into GBT for training.
During the training, the target user is marked as 1, and other users are marked
as 0. After the training is completed, the parameters can be stored locally. In
the user verification link, we divided the user’s data within 2.5s into five parts,
and each part was tested separately. Each binary gradient classifier will output a
score for the testing feature set. Finally, we calculate the score for i-th classifier
through these five segmentations, and outputs the user ID corresponding to the
maximum value.

Scorei =
1
5

(S1 + S2 + S3 + S4 + S5) (10)

Output = max (Score1, Score2, Score3, Score4, ..., Scorei) (11)

4 Experimental Setup

4.1 Environment

To apply our vibration-based user authentication method, we use the iPhone 7,
which can represent the basic performance of most mobile phones at present.
The vibration frequency of vibro-motor was 167 Hz, and the accelerometer’s
sampling rate 100 Hz. The difference in waiting time was 50 ms, and we stopped
sampling after the motor restarts five times.

4.2 System Performance

Here, we utilize the false rejection rate (FRR) and false acceptance rate (FAR)
as metrics to evaluate the authentication accuracy of our system. FAR is the
fraction of other users’ data that are misclassified as the legitimate user’s. FRR
is the fraction of the legitimate user’s data that are misclassified as other users’
data. For security protection, a large FAR is more harmful than a large FRR.
However, a large FRR would degrade the usage convenience.

To verify t effectiveness of our proposed model and techniques, we first col-
lected 50 sets of data on a stationary desktop, and 50 sets of data during hand
lifting from 3 experimenters, and the data time of each group was 2.5 s, form-
ing a total of 800 samples. We utilized 10 fold cross validation for training and
testing, and obtained the results shown in the Table 2.

Table 2. The FRR,FAR and accuracy of system.

State FRR FAR Accuracy

Static 13.3% 8.5% 90.1%

Movement 17.5% 11.9% 85.3%
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To explore the relationship between sample length and accuracy, we tested
the changes of FRR and FAR under different sample lengths. The results are
shown in the Fig. 7.

We found that with the increase of the sample length, the accuracy of the
verification continued to rise. However, since the system needs to provide a better
user experience, we believe that when the sample length is greater than 2.5 s,
the small improvement in accuracy obtained by increasing the length is not
cost-effective. In addition, with the increasing sampling rate of mobile phone
sensors, the final accuracy of the system is also improving. This means that the
technology has a higher upper limit in the future.

Fig. 7. FRR and FAR under different sample lengths.

5 Conclusion

In this paper, we proposed a vibration-based user authentication method for
smartphone, which does not require user’s personal information or privacy.
We evaluated our method on a commercial smartphone, the iPhone 7, and
default vibration types officially provided, which means no additional devices
are required to authenticate users. In addition, our method produced a low EER
of 0.147 for short-term signals. We expect our method to be suitable for a wide
variety of smartphone on the market today.
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