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Preface

The 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Eurocrypt 2023, was held in Lyon, France between April
23–27 under the auspices of the International Association for Cryptologic Research. The
conference had a record number of 415 submissions, out of which 109 were accepted.

Preparation for the academic aspects of the conference started in earnest well over a
year ago, with the selection of a program committee, consisting of 79 regular members
and six area chairs. The area chairs played an important part in enabling a high-quality
reviewprocess; their rolewas expanded considerably from last year and, for the first time,
properly formalized. Each area chair was in charge of moderating the discussions of the
papers assigned under their area, guiding PCmembers and reviewers to consensus where
possible, and helping us in making final decisions. We created six areas and assigned
the following area chairs: Ran Canetti for Theoretical Foundations; Rosario Gennaro
for Public Key Primitives with Advanced Functionalities; Tibor Jager for Classic Public
Key Cryptography; Marc Joye for Secure and Efficient Implementation, Cryptographic
Engineering, andReal-WorldCryptography;GregorLeander for SymmetricCryptology;
and finally Arpita Patra for Multi-party Computation and Zero-Knowledge.

Prior to the submission deadline, PC members were introduced to the reviewing
process; for this purpose we created a slide deck that explained what we expected from
everyone involved in the process and how PC members could use the reviewing system
(HotCRP) used by us. An important aspect of the reviewing process is the reviewing
form, which we modified based on the Crypto’22 form as designed by Yevgeniy Dodis
and Tom Shrimpton. As is customary for IACR general conferences, the reviewing
process was two-sided anonymous.

Out of the 415 submissions, four were desk rejected due to violations of the Call
for Papers (non-anonymous submission or significant deviations from the submission
format). For the remaining submissions, the review process proceeded in two stages. In
the first stage, every paper was reviewed by at least three reviewers. For 109 papers a
clear, negative consensus emerged and an early reject decision was reached and commu-
nicated to the authors on the 8th of December 2022. This initial phase of early rejections
allowed the program committee to concentrate on the delicate task of selecting a program
amongst the more promising submissions, while simultaneously offering the authors of
the rejected papers the opportunity to take advantage of the early, full feedback to improve
their work for a future occasion.

The remaining 302 papers progressed to an interactive discussion phase, which was
open for two weeks (ending slightly before the Christmas break). During this period, the
authors had access to their reviews (apart from some PC only fields) and were asked to
address questions and requests for clarifications explicitly formulated in the reviews. It
gave authors and reviewers the opportunity to communicate directly (yet anonymously)
with each other during several rounds of interaction. For some papers, the multiple
rounds helped in clarifying both the reviewers’ questions and the authors’ responses.
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For a smaller subset of papers, a second interactive discussion phase took place in the
beginning of January allowing authors to respond to new, relevant insights by the PC.
Eventually, 109 papers were selected for the program.

The best paper award was granted to the paper “An Efficient Key Recovery Attack
on SIDH” by Wouter Castryck and Thomas Decru for presenting the first efficient key
recovery attack against the Supersingular Isogeny Diffie-Hellman (SIDH) problem. Two
further, related papers were invited to the Journal of Cryptology: “Breaking SIDH in
Polynomial Time” by Damien Robert and “A Direct Key Recovery Attack on SIDH”
by Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski.

Accepted papers written exclusively by researchers who were within four years
of PhD graduation at the time of submission were eligible for the Early Career Best
Paper Award. There were a number of strong candidates and the paper “Worst-Case
Subexponential Attacks on PRGs of Constant Degree or Constant Locality” by Akın
Ünal was awarded this honor.

The program further included two invited talks: Guy Rothblum opened the pro-
gram with his talk on “Indistinguishable Predictions and Multi-group Fair Learning”
(an extended abstract of his talk appears in these proceedings) and later during the con-
ference Vadim Lyubashevsky gave a talk on “Lattice Cryptography: What Happened
and What’s Next”.

First and foremost, we would like to thank Kevin McCurley and Kay McKelly for
their tireless efforts in the background, making the whole process so much smoother for
us to run. Thanks also to our previous co-chairs Orr Dunkelman, Stefan Dziembowski,
Yevgeniy Dodis, Thomas Shrimpton, Shweta Agrawal and Dongdai Lin for sharing the
lessons they learned and allowing us to build on their foundations. We thank Guy and
Vadim for accepting to give two excellent invited talks. Of course, no program can be
selected without submissions, so we thank both the authors of accepted papers, as well
as those whose papers did not make it (we sincerely hope that, notwithstanding the dis-
appointing outcome, you found the reviews and interaction constructive). The reviewing
was led by our PC members, who often engaged expert subreviewers to write high-
quality, insightful reviews and engage directly in the discussions, and we are grateful to
both our PC members and the subreviewers. As the IACR’s general conferences grow
from year to year, a very special thank you to our area chairs, our job would frankly
not have been possible without Ran, Rosario, Tibor, Marc, Gregor, and Arpita’s tireless
efforts leading the individual papers’ discussions. And, last but not least, we would like
to thank the general chairs: Damien Stehlé, Alain Passelègue, and BenjaminWesolowski
who worked very hard to make this conference happen.

April 2023 Carmit Hazay
Martijn Stam
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Differential Privacy



A Theory of Composition for Differential
Obliviousness

Mingxun Zhou1(B), Elaine Shi1, T.-H. Hubert Chan2, and Shir Maimon3

1 Carnegie Mellon University, Pittsburgh, USA
mingxunz@andrew.cmu.edu, runting@cs.cmu.edu

2 The University of Hong Kong, Pokfulam, Hong Kong
hubert@cs.hku.hk

3 Cornell University, Ithaca, USA
shir@cs.cornell.edu

Abstract. Differential obliviousness (DO) is a privacy notion which
guarantees that the access patterns of a program satisfies differential
privacy. Differential obliviousness was studied in a sequence of recent
works as a relaxation of full obliviousness. Earlier works showed that
DO not only allows us to circumvent the logarithmic-overhead barrier
of fully oblivious algorithms, in many cases, it also allows us to achieve
polynomial speedup over full obliviousness, since it avoids “padding to
the worst-case” behavior of fully oblivious algorithms.

Despite the promises of differential obliviousness (DO), a significant
barrier that hinders its broad application is the lack of composability. In
particular, when we apply one DO algorithm to the output of another
DO algorithm, the composed algorithm may no longer be DO (with rea-
sonable parameters). Specifically, the outputs of the first DO algorithm
on two neighboring inputs may no longer be neighboring, and thus we
cannot directly benefit from the DO guarantee of the second algorithm.

In this work, we are the first to explore a theory of composition for
differentially oblivious algorithms. We propose a refinement of the DO
notion called (ε, δ)-neighbor-preserving-DO, or (ε, δ)-NPDO for short,
and we prove that our new notion indeed provides nice compositional
guarantees. In this way, the algorithm designer can easily track the pri-
vacy loss when composing multiple DO algorithms.

We give several example applications to showcase the power and
expressiveness of our new NPDO notion. One of these examples is a result
of independent interest: we use the compositional framework to prove
an optimal privacy amplification theorem for the differentially oblivious
shuffle model. In other words, we show that for a class of distributed
differentially private mechanisms in the shuffle-model, one can replace
the perfectly secure shuffler with a DO shuffler, and nonetheless enjoy
almost the same privacy amplification enabled by a shuffler.

Randomized order. This paper subsumes part of the results in an unpublished
manuscript [73] written by a subset of the authors. Full version of this paper: [74].

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-30620-4 1.
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1 Introduction

It is well-known that access patterns to even encrypted or secret-shared data can
leak sensitive information [15,46,47,50,52,60]. Initiated by Goldreich and Ostro-
vsky [42,43], oblivious algorithms is a line of work that aims to provably obfuscate
a program’s access patterns without incurring too much slowdown. In particular,
obliviousness (also referred to as full obliviousness) requires that a program’s
access patterns be indistinguishable for any two inputs. It is well-known that
oblivious algorithms have broad applications, including in multi-party compu-
tation [44,55], secure processors [54,57,59,63,69], secure outsourcing [67,72],
databases [6,28,35], blockchains [16], and so on. In the past decade, our commu-
nity have significantly improved the efficiency of oblivious algorithms [65,68,70],
leading to large-scale real-world adoption such as Signal’s private contact dis-
covery [25]. However, as we discuss below, in some applications, the overhead of
full obliviousness may still be unacceptable.

Differential Obliviousness (DO), defined by Chan, Chung, Maggs, and
Shi [17], is relaxed notion of access pattern privacy. DO requires that the pro-
gram’s access patterns satisfy only differential privacy (DP) [30], as opposed to
a simulation-based notion like in full obliviousness [42,43,65]. Recent works [10,
12,17,24,45] explored DO and showed how DO can allow us to circumvent fun-
damental performance barriers pertaining to full obliviousness:

– Chan et al. [17] showed a fundamental separation in terms of efficiency
between DO and full obliviousness. Specifically, for a class of common tasks
such as compaction, merging, and range query data structures, while full
obliviousness is inherently subject to at least Ω(log N) multiplicative over-
head [3,36,51,53] (in comparison with the insecure baseline), using DO allows
us to reduce the overhead to only O(log log N) where N denotes the data size.

– Not only does DO allow us to overcome the logarithmic barrier for fully
oblivious algorithms, another important aspect that is sometime overlooked
is that DO allows us to overcome the “worst-case barrier” of fully oblivious
algorithms [24], which leads to polynomial speedup over full obliviousness in
many applications. Specifically, to achieve full obliviousness, we must pad the
running time and output length to the worst case over all possible inputs (of
some fixed length), whereas DO algorithms may reveal the noisy running time
or output length. In many real-world scenarios such as database joins [24],
the common case enjoys much shorter runtime and output length than the
worst case. For exactly this reason, there is an entire line of work that focuses
on designing algorithms optimized for the common rather than the worst
case [64]. In such cases, prior works showed that DO can achieve polynomial
speedup over any fully oblivious algorithm [17,24]!

Basic DO does NOT Lend to Composition. Given the promises of DO,
we would like to apply DO to more applications. Unfortunately, the status quo
of DO hinders its broad applicability due to the lack of compositional guaran-
tees. When designing algorithms, it is customary to compose several algorithmic
building blocks together. In such cases, it would be nice to say that the composed
algorithm also satisfies DO with reasonable parameters as long as the underlying
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algorithmic building blocks also satisfy DO. Similarly, in some applications, we
may need to apply a DO algorithm to the outcome of another (e.g., the SQL
database application below). In such cases, we also want to be able to track the
privacy loss over time. While the original full obliviousness notion indeed allows
such composition, unfortunately, the standard DO notion [17] does not!

As an explicit example of composition, imagine that we want to build a
differentially oblivious database supporting SQL queries. Consider the following
natural SQL query where we want to select entries from a table which in itself
is the result of a previous Select operation1:

Select (id, position) from

(Select (id, dept, position) from Employees where salary > 200K)

where dept = "CS"

To support this query in a differentially oblivious manner, the most natural
idea is to use the DO stable compaction algorithm of Chan et al. [17] to realize
each Select operator. In stable compaction, we obtain an input array where
each element is either a real element or a filler, and we want to output an array
containing all the real elements of the input and preserving the order they appear
in the input. Unfortunately, this approach completely fails since Chan et al. [17]’s
DO compaction algorithm does NOT compose.

To understand why, we will introduce some basic notation. Let M : X → Y
denote an algorithm, which takes in an input x ∈ X , and produces an output y ∈
Y. Consider some neighboring notion ∼X defined over the input domain X . For
example, let x, x′ ∈ X be two input arrays/tables where each entry corresponds
to an individual user. One example is Hamming-distance neighboring: we say
that x ∼X x′ iff the Hamming distance of x and x′ is at most 1—this is also the
neighboring notion adopted by the DO compaction algorithm of Chan et al. [17].
The standard DO notion requires the following.

Definition 1.1 (Basic differential obliviousness [17]). We say that an algo-
rithm M satisfies (ε, δ)-DO w.r.t. some symmetric relation ∼X iff for any
x, x′ ∈ X such that x ∼X x′, for any subset S,

Pr[ViewM(x) ∈ S] ≤ eε · Pr[ViewM(x′) ∈ S] + δ, (1)

where ViewM(x) is a random variable denoting the the memory access patterns
observed when running the algorithm M over the input x.

Now, imagine that we have two DO mechanisms M1 : X1 → X2 and
M2 : X2 → Y (e.g., think of M1 and M2 as Chan et al.’s DO compaction algo-
rithm). We want to apply M2 to the output of M1, and hope that the composed
mechanism M2 ◦ M1(·) satisfies DO. By the DO definition, we know that M2

offers indistinguishability for two neighboring inputs from X2. Now, consider two
neighboring inputs x ∼X1 x′ from X1, and consider running the mechanism M1

1 Here we write the two Select statements in a single query for convenience, In prac-
tice, it could be that the first Select query is interactively issued and its result stored
as a temporary table, and then the second Select query is interactively issued.
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over x and x′, respectively. Unfortunately, the basic DO notion (of M1) does not
guarantee that the outputs M1(x) and M1(x′) are also neighboring. Therefore,
we may not be able to benefit from the DO property of M2!

We stress that this is not just a deficiency of the basic DO definition. Natural
designs of DO algorithms often do not guarantee that the outputs obtained
from two neighboring inputs must be neighboring too. For example, consider
the stable compaction algorithm of Chan et al. [17]. Given two input arrays x =
(1, 2,⊥, 3, 4) and x′ = (⊥, 2,⊥, 3, 4) with Hamming distance 1 where ⊥ denotes
a filler, the compacted outputs will be (1, 2, 3, 4) and (2, 3, 4), respectively. The
outputs have Hamming distance more than 1. While the outputs have large
Hamming distance, the edit distance is only one—unfortunately, Chan et al.’s
compaction algorithm provides privacy only for Hamming-distance neighboring
and the guarantees do not generalize to edit-distance neighboring.

DP Composition Theorems do not Work for DO. Since DO is essentially
DP applied to the memory access patterns, a natural question is: can we simply
use DP composition theorems to reason about the composition DO mechanisms?
The answer is no because DP composition and composition of DO mechanisms are
of different nature. In DP composition, we have multiple mechanisms M1, . . . ,Mk

where Mi satisfies (εi, δi)-DP. The basic DP composition theorem says that the
composed mechanism M(x) := (M1(x), . . . ,Mk(x)) satisfies (

∑k
i=1 εi,

∑k
i=1 δi)-

DP.Here, all thesemechanisms are applied to the same inputx. InDOcomposition,
we want to apply M2 to the output of of M1 instead. More generally, if there are k
DO mechanisms M1, . . . ,Mk, we want to know whether the composed mechanism
Mk ◦ Mk−1 ◦ . . . , ◦M1(x) = Mk(Mk−1(. . .M1(x))) is also DO.

Given the status quo, we ask the following natural question:

Can we have suitable and useful refinements of differential obliviousness (DO)
that lend to composition?

1.1 Main Contribution: A Theory of Composition for Differential
Obliviousness

We are the first to initiate a formal exploration of the composability of differential
obliviousness. In this sense, we make an important conceptual contribution: by
laying the groundwork for the composition of DO algorithms. We hope that our
work can allow DO to have wider applicability.

A New, Composable DO Notion. Our first contribution is to introduce a
new, composable DO notion called Neighbor-Preserving Differential Oblivious-
ness (NPDO) that can be viewed as a strengthening of the basic DO by Chan
et al. [17]. Our NPDO notion is composition friendly in the following senses:

C1. If M1 satisfies (ε1, δ1)-NPDO, and M2 satisfies (ε2, δ2)-DO (the basic ver-
sion), then the composed mechanism M2 ◦M1 satisfies (ε1 + ε2, δ1 + δ2)-DO.

C2. If M1 satisfies (ε1, δ1)-NPDO, and M2 satisfies (ε2, δ2)-NPDO, then the com-
posed mechanism M2 ◦ M1 satisfies (ε1 + ε2, δ1 + δ2)-NPDO.

In the above, the first property allows us to apply any basic-DO algorithm M2

to the output of an NPDO algorithm M1, and the composed algorithm M2 ◦M1
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would satisfy basic DO. The second property allows us to perform composition
repeatedly. In particular, if both M1 and M2 are NPDO, then the composed
algorithm M2 ◦ M1 also satisfies NPDO, i.e., it can be further composed with
other DO or NPDO algorithms.

Finding the right notion turned out to be non-trivial. We want to capture
the intuition that “the algorithm should produce neighboring outputs for neigh-
boring inputs”. However, it is not obvious how to formally capture this idea
of “neighbor-preserving” especially when the outputs of the DO algorithm may
be randomized. Indeed, näıve ways to define “neighbor-preserving” turned out
to be too stringent and preclude many natural and interesting algorithms (see
Sect. 3.1). We instead suggest a more general version that allows us to capture a
probabilistic notion of neighbor-preserving. More specifically, our NPDO notion
requires that when one applies the algorithm M on two neighboring inputs x
and x′, the joint distribution of the adversary’s view and the output must be
distributionally close in some technical sense, where closeness is parametrized by
some output neighboring relation. The formal definition is presented below:

Definition 1.2 ((ε, δ)-NPDO). We say that an algorithm M : X → Y with
view space V satisfies (ε, δ)-NPDO w.r.t. input relation ∼X and output relation
∼Y , if for any x, x′ ∈ X such that x ∼X x′, for any subset S ⊆ V × Y,

Pr[ExecM(x) ∈ S] ≤ eε · Pr[ExecM(x′) ∈ N (S)] + δ.

In the above, ExecM(x) samples a random execution of M on the input x, and
returns the view (i.e., access patterns) as well as the algorithm’s output. Further,
the notation N (S), i.e., the neighboring set of S, is defined as follows:

N (S) = {(v, y)|∃(v, y′) ∈ S s.t. y ∼Y y′}
Expressiveness of Our Notion. We give various natural examples to demon-
strate the expressiveness and power of our notion. We believe that our NPDO
notion is indeed the right notion, given the simplicity in form and its broad appli-
cability. Besides the motivating SQL database example mentioned earlier in this
section, other notable examples include the design of a differentially oblivious
subsampling algorithm, a stable compaction algorithm that is DO w.r.t. edit
distance, and finally, proving an optimal privacy amplification theorem in the
differentially oblivious shuffle model. Since the last application is of indepen-
dent interest even as a standalone result, we will discuss the context and the
implifications of this result separately in Sect. 1.2.

Proof of Composition Theorem. Our second contribution is to prove the
composition theorem:

Theorem 1.3 (Composition theorem). The aforementioned compositional
properties C1 and C2 hold, as long as the algorithm M1’s view space and output
space are finite or countably infinite.

The proof of the composition theorem is rather non-trivial. A key step in
the proof is to show the following equivalence (see Lemma 4.1). An algorithm
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M : X → Y (with at most countably infinite view space V and output space
Y) satisfies (ε, δ)-NPDO w.r.t. ∼X and ∼Y , if and only if for any neighbor-
ing inputs x ∼X x′, there exists an (ε, δ)-matching between the the probability
spaces of the random variables ExecM(x) ∈ V × Y and ExecM(x′) ∈ V × Y. In
an (ε, δ)-matching, imagine that we have a (possibly countably infinitely large)
bipartite graph where one side has the sources, and the other side has the des-
tinations. Both sources and destinations come from the space V × Y. If there
is an edge of weight w between some source and some destination, we may
imagine that the source wants to send w amount of commodity to the desti-
nation. Now, each source (v, y) ∈ V × Y produces an amount of commodity
equal to Pr

[
ExecM(x) = (v, y)

]
, and each destination (v, y′) can receive at most

eε · Pr
[
ExecM(x′) = (v, y′)

]
amount of commodity. Furthermore, a source (v, y)

can be matched with a desitination (v′, y′) only if they are neighboring, i.e.,
v = v′ and y ∼Y y′. We want to find a matching such that all but δ amount
of commodity is delivered to the destinations. To prove this key equivalence
lemma, we are inspired by techniques used to prove the Hall’s marriage theo-
rem [48,49]. Once we prove the key equivalence lemma, we then rely on it to
prove the composition theorem.

In the main body, we primarily focus on proving the composition theorem
for statistical notions of DO. In Appendix A of the full version [74], we further
extend our composition theorem to support suitable, computational notions of
differential obliviousness as well.

Finally, in our composition theorem, we assume that the view and output
spaces of M1 are at most countably infinitely large. This assumption is reasonable
given that we primarily focus on the standard word-RAM model of execution. It
is indeed an interesting open question whether we can remove this restriction and
prove the composition theorem for uncountably large view and output spaces—
this is useful if we consider RAM machines that can handle real arithmetic.
In Appendix C of the full version [74], we discuss the additional technicalities
that one might encounter if we wish to remove the countable restriction.

1.2 Additional Result: Optimal Privacy Amplification
in the DO-Shuffle Model

As an application of our composition framework, we use it to prove an optimal
privacy amplification theorem in the differentially oblivious shuffle (DO-shuffle)
model. Since this result can be of independent interest on its own, we explain
the motivation and context below.

Background: Privacy Amplification in the Shuffle Model. To understand
the DO-shuffle model, let us first review some background on the so-called shuffle
model. Imagine that a set of clients each hold some private data, and an untrusted
server wants to perform some analytics over the union of the clients’ data, while
preserving each individual client’s privacy. Specifically, we want to guarantee
that for two neighboring input configurations of the clients denoted x and x′

respectively, the distributions of the server’s view are “close”.



A Theory of Composition for Differential Obliviousness 9

The shuffle model, first proposed by Bittau et al. [11] in an empirical work,
has become a popular model for implementing distributed differentially private
mechanisms. The model assumes the existence of a trusted shuffler that takes
the union of all clients’ messages, randomly permutes them, and presents the
shuffled result to the server. The server then performs some computation and
outputs the analytics result. The trusted shuffler guarantees that the server can
only see the union of all messages, without knowing the source of an individual
message. Numerous earlier works [8,22,23,39,40] have shown that the shuffle
model often enables differentially private mechanisms whose utility approximates
the best known algorithms in the central model (where the server is trusted and
we only need privacy on the outcome of the analytics). Moreover, several works
have shown that the trusted shuffler can be efficiently implemented either using
trusted hardware [11] or using cryptographic protocols [1,2,9,14,20,21,26,27,
29,34,38,61,62,66,75]. This makes the shuffle model a compelling approach not
just in theory, but also in practical applications such as federated learning [41].

A particular useful type of theorem in the shuffle model is called a privacy
amplification theorem, which we explain below. Henceforth, let R(xi) be some
differentially private mechanism each client i applies to randomize its own private
input xi (often called a locally differentially private (LDP) randomizer). Roughly
speaking, a privacy amplification theorem makes a statement of the following
nature where S(·) denotes the shuffler that outputs a random permutation of
the inputs: if each client’s LDP mechanism R consumes ε0 privacy budget, then
shuffler’s outcome S(R(x1), . . . ,R(xn)) satisfies (ε, δ)-DP for ε = ε(ε0, δ) 

ε0, i.e., privacy is amplified for the overall shuffle-model mechanism. A line of
work [8,23,33] focused on proving privacy amplification theorems for the shuffle
model, culminating in the recent work by Feldman et al. [37], who proved a
privacy amplification theorem for any LDP mechanism with optimal parameters.

Connection Between the Shuffle Model and Our DO Composition
Framework. We realize that the shuffle model can be expressed with our DO
composition framework. Consider a composed mechanism S◦M1. M1 : X n → Yn

is a local randomization mechanism that takes n clients’ inputs (x1, . . . , xn) and
outputs the message sequence (y1, . . . , yn) where yi = R(xi). S : Yn → Yn is
a shuffling mechanism that takes a message sequence (y1, . . . , yn) and outputs
a random permutation of the sequence. All computation in M1 are done by the
clients locally, so we define ViewM1 := ∅. We define the view in S as exactly
its output: the random permutation. Then, the view of the server in the shuffle
model is exactly the same as the view of the adversary in S ◦ M1. Thus, (ε, δ)-
shuffle-DP guarantee can be expressed by S ◦M1 being (ε, δ)-DO w.r.t the input
neighboring notion ∼X where x ∼X x′ iff the Hamming distance is at most 1.

Can We Replace the Shuffler with a DO-shuffler? A couple very recent
works [5,13,45] have suggested a relaxed shuffler model called the differentially
oblivious shuffle model (or DO-shuffle model for short). Unlike the traditional
shuffle model which provides full anonymity on the clients’ messages, the DO-
shuffle model permutes the clients’ messages but possibly allowing some differ-
entially private leakage. More concretely, a DO-shuffle protocol guarantees that
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for two neighboring input vectors xH and x′
H corresponding to the set of honest

parties, the adversary’s views in the protocol execution are computationally or
statistically close. The recent works by Gordon et al. [45] and Bünz et al. [13]
both show that the relaxed DO-shuffle can be asymptotically more efficient to
cryptographically realize than a fully anonymous shuffle. It would therefore be
desirable to use a DO-shuffler as a drop-in replacement of the perfectly secure
shuffle. This raises a couple very natural questions:

– If we were to replace the shuffler in shuffle-model differentially private mecha-
nisms with a DO-shuffler, can we still get comparable privacy-utility tradeoff?

– More specifically, can we prove an optimal privacy amplification theorem for
the DO-shuffle model, matching the parameters of Feldman et al. [37]?

The pioneering work of Gordon et al. [45] was the first to explore how to use
a DO shuffler to design distributed differentially private mechanisms. Gordon et
al. [45] showed two novel results. First, they prove an optimal privacy amplifica-
tion theorem for the randomized response mechanism in the DO-shuffle model,
with parameters that tightly match the shuffle-model counterpart. Next, they
generalize their first result, and prove a privacy amplification theorem for any
local differentially private (LDP) mechanism—however, this more general result
is non-optimal, since they rely on the non-optimal shuffle-model amplification
theorem from Balle et al. [8].

Our Results. We prove a privacy amplification theorem for any LDP mecha-
nism that achieves optimal parameters, tightly matching Feldman et al. [37]’s
privacy amplification parameters for the shuffle model. This result improves work
of Gordon et al. [45] in the following senses: 1) we asymptotically improve their
privacy amplification theorem for any general LDP mechanism; and 2) their
privacy amplification theorem for the specific randomized response mechanism
can be viewed as a special case of our general theorem. More interestingly, we
can prove our result fully under our DO composition framework. The curx of the
proof is to show that the local randomization mechanism M1 is (ε, δ)-NPDO w.r.t
the output neighboring notion being exactly the DO-shuffler’s input neighbor-
ing notion. Then, when M1 composes with an (ε1, δ1)-DO shuffler, the composed
mechanism will be (ε + ε1, δ + δ1)-DO.

Below, we give a more formal statement of our result. Let Φ denote a
DO-shuffling protocol. Given an LDP-randomizer R(·), we use the notation
Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) to denote the composed protocol where
each of the n parties first applies the local randomizer R(·) to its own private
data, and then invokes an instance of the DO-shuffling protocol Φ on the outcome
R(xi).

Theorem 1.4 (Optimal privacy amplification for any LDP mechanism

in the DO-shuffle model). Suppose ε0 ≤ log
(

n
16 log(2/δ)

)
. Given n copies of

an ε0-LDP randomizer R and an (ε1, δ1)-DO shuffler Φ resilient to t corrupted
parties, the composed protocol Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) is (ε +
ε1, δ + δ1)-DO against up to t corrupted parties where
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ε = O

(
(1 − eε0)eε0/2

√
log(1/δ)√

n − t

)

.

Furthermore, if the DO-shuffler satisfies computational (or statistical, resp.) DO,
then the composed protocol satisfies computation (or statistical, resp.) DO.

Further, if the underlying DO-shuffle protocol satisfies semi-honest secu-
rity [5,45], then the composed protocol is also secure in a semi-honest corruption
model. Similarly, if the underlying DO-shuffle satisfies malicious security (e.g.,
[5,13]), then the composed protocol is also secure in a malicious model.

2 Model and Preliminaries

2.1 Model of Computation

We consider a standard Random Access Machine (RAM) model of computation.
We use the standard word-RAM model where the word size is logarithmic in the
space. We assume that addition, multiplication, and boolean operations on words
can be done in constant time. We also assume that sampling from truncated
geometric distributions can be done in constant time2. We assume that the
adversary can observe the memory access patterns of the algorithm, including
which locations are read or written and in which time steps. The adversary
cannot see the contents of the memory tape themselves, which also means that
the adversary cannot see the contents of the input and output.

Format of Input and Output Tape. We explain the format of the input
and output tape—the modeling technicalities are without loss of generality, and
matter if we want to mask the true input and output lengths.

In the most general model, the algorithm may or may not be able to observe
the input and output length, depending on the algorithm. More specifically, we
may assume that the input is written on an input tape—the input tape itself
has unbounded length and the actual length of the input is written on some
dedicated location, e.g., address 0, of the input tape. The algorithm can read
address 0 to learn the actual input length. During the execution, the algorithm
may read a random number of extraneous locations on the input tape, such that
the adversary may not be able to observe the exact input length. We assume
that every extraneous location on the input tape stores a filler symbol ⊥.

2 Based on Appendix B of [24], we can obliviously sample a truncated geometric vari-
able in expected time of O( 1

ε
log 1

δ
). Further, we can sample M truncated geometric

variables in time O((M/ε) log(1/δ)) with probability 1 − negl(M). Our algorithms
described in Sect. 5 only need to sample εL

(log2 L log(1/δ))
+ O(1) truncated geomet-

rics. Therefore, all our runtime bounds(i.e., Theorem 5.2 and Theorem 5.6) hold in
expectation and with high probability without assuming sampling in constant time.
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The algorithm must write the output on an output tape. Again, the algo-
rithm, may write a random number of extraneous locations on the output tape.
For example, if the actual output length is m, the algorithm may actually write
m′ > m locations on the output tape where m′ is a random variable, to mask
the true output length. To indicate the actual output length, the algorithm can
write the actual output length m on some dedicated location of the output tape.
By doing so, the adversary may not be able to observe the exact output length.

2.2 Preliminaries

Mathematical Tools. We introduce some basic mathematical tools.

Definition 2.1 (Symmetric geometric distribution). Let α > 1. The sym-
metric geometric distribution Geom(α) takes integer values such that the proba-
bility mass function at k is α−1

α+1 · α−|k|.

In designing DO algorithms, we often pad the true output length with random
fillers such that the adversary observes a randomized output length. Below, we
define a shifted and truncated geometric distribution which is often used to
sample the number of fillers used for padding. In particular, this distribution
always gives non-negative and bounded random variables.

Definition 2.2 (Shifted and truncated geometric distribution). Let ε >
0 and δ ∈ (0, 1) and Δ ≥ 1. Let k0 be the smallest positive integer such that
Pr[|Geom(e

ε
Δ )| ≥ k0] ≤ δ, where k0 = Δ

ε ln 2
δ + O(1). The shifted and truncated

geometric distribution G(ε, δ,Δ) has support [0, 2(k0 +Δ−1)], and is defined as:

min{max{0, k0 + Δ − 1 + Geom(eε)}, 2(k0 + Δ − 1)}
For the special case Δ = 1, we write G(ε, δ) := G(ε, δ, 1).

Common Distance Notions. We will also use a couple common distance
notions in our examples, including Hamming distance and edit distance.

Definition 2.3 (Hamming distance neighboring ∼H). We say that two
arrays x, x′ are neighboring by the Hamming distance iff 1) they have the same
length; and 2) they differ in at most one position.

Definition 2.4 (Edit distance neighboring ∼E). We say that two arrays
x, x′ are neighboring by the edit distance iff x′ can be obtained from x through
either one insertion, one deletion, or one substitution. Note that x and x′ need
not have the same length.

Notations for Randomized Execution. Given randomized mechanisms M1 :
X → Y and M2 : Y × Z, the composed mechanism M2 ◦ M1 : X → Z works as
follows: for input x ∈ X , we first apply M1(x) to produce an intermediate y ∈ Y,
and then we apply M2(y).

Henceforth, given an algorithm M : X → Y, and an input x ∈ X , we often
use the following random variables:
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– The random variable ViewM(x) : X → V denotes the memory access patterns
(also called the view) observed by the adversary when M receives the input
x, where V is the view space for M.

– The notation ExecM(x) : X → V × Y is a random variable that outputs the
view and the output over a random execution of M(x).

3 A Composition Framework for DO

In this section, we explore what kind of DO notions are composition-friendly. As
a warmup, we first suggest a simple notion called strongly neighbor-preserving
(or strongly NP for short), and show that any DO algorithm that is strongly NP
lends to composition. The strong NP notion, however, is too stringent. We then
propose a more general notion called (ε, δ)-neighbor-preserving differential obliv-
iousness or (ε, δ)-NPDO for short, which captures a probabilistically approximate
notion of neighbor-preserving. We then present our main composition theorem
which states that any algorithm that satisfies NPDO lends to composition. Along
the way, we give several simple motivating examples to demonstrate the useful-
ness our compositional framework.

3.1 Strongly Neighbor-Preserving

Definition and Composition Theorem. Earlier, in Sect. 1, we argued why
basic DO algorithms do not lend to composition, because neighboring inputs may
lead to very dissimilar outputs. One (somewhat imprecise) intuition is the fol-
lowing: if a DO mechanism is additionally neighbor-preserving, i.e., neighboring
inputs lead to neighboring outputs, then it should lend to composition.

We first define strongly neighbor-preserving that running the algorithm over
two neighboring inputs produces neighboring outputs with probability 1.

Definition 3.1 (Strongly neighbor-preserving). We say that a randomized
algorithm M : X → Y is strongly neighbor-preserving w.r.t. ∼X and ∼Y , iff for
any two inputs x, x′ ∈ X such that x ∼X x′,

Pr[y ← M(x), y′ ← M(x′) : y ∼Y y′] = 1.

We can prove that if an algorithm satisfies both DO and strongly neighbor-
preserving, then it is composable, formally stated below.

Theorem 3.2 (Strongly neighbor-preserving + DO gives composi-
tion). Suppose that M1 : X → Y is (ε1, δ1)-DO w.r.t. ∼X and strongly neighbor-
preserving w.r.t. ∼X and ∼Y , and moreover, suppose that M2 : Y → Z is (ε2, δ2)-
DO w.r.t. ∼Y , then M2 ◦ M1 satisfies (ε1 + ε2, δ1 + δ2)-DO w.r.t. ∼X .

Furthermore, if M2 is additionally strongly neighbor-preserving w.r.t. ∼Y and
∼Z , then M2 ◦ M1 is also strongly neighbor-preserving w.r.t. ∼X and ∼Z .

Proof. Later in Lemma 3.7 of Sect. 3.4, we will prove that (ε1, δ1)-DO plus
strongly neighbor-preserving is a special case of our more general notion (ε1, δ1)-
NPDO. In this sense, this composition theorem can be viewed as a special case
of our main composition theorem for NPDO (Theorem 3.6).
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Composition Examples

Example 1. Recall that in Sect. 1, we gave a natural SQL database example
that required applying one compaction algorithm on the output of another com-
paction algorithm. We pointed out that two sequential instances of Chan et al.’s
DO compaction algorithm [17] do not give (tight) composable guarantees. In
Example 1, we will see that if we replace the second instance with a modifi-
cation of the compaction algorithm such that it is DO w.r.t. edit distance (as
opposed to Hamming distance), the two instances would compose nicely.

Specifically, let M1 be Chan et al.’s DO compaction algorithm [17]. Recall
that the algorithm receives an input array where each element is either a real
element or a filler, and outputs an array containing all the real elements in
the input and preserving the order they appear in the input. M1 is (ε1, δ1)-DO
w.r.t. ∼H (i.e., Hamming distance). Now, suppose we can construct another
compaction algorithm denoted M2 that is (ε2, δ2)-DO w.r.t. to ∼E (i.e., edit
distance). How to construct such an M2 while preserving efficiency turns out to
be non-trivial, and we defer the construction to Sect. 5—interestingly, designing
M2 itself demonstrates the usefulness of our composition framework, too.

Observe that given a fixed input array x, the output of M1(x) must be an
ordered list of real elements contained in x plus an appropriate number of fillers,
and the total length of the output3 is the same as the input x. Thus, for any
neighboring inputs x ∼H x′, it must be that M1(x) ∼E M2(x′). Therefore,
we conclude that M1 is strongly neighbor-preserving w.r.t. the input relation
∼H and the output relation ∼E . Applying Theorem 3.2, we conclude that the
composed mechanism M2 ◦ M1 satisfies (ε1 + ε2, δ1 + δ2)-DO.

Example 2. Let M1 be an algorithm that merges two sorted input arrays
(x0, x1), where each element in the input array has a payload besides the sort-
key. Suppose that M1 satisfies (ε1, δ1) differential obliviousness w.r.t. 2∼E , i.e.,
two inputs (x0, x1) and (x′

0, x
′
1) are considered neighboring iff for b ∈ {0, 1},

|xb| = |x′
b|, and xb and x′

b have edit distance at most 2 (i.e., xb
2∼E x′

b). Such
an DO merge algorithm was proposed by Chan et al. [17], and moreover, their
algorithm always outputs an array whose length is the sum of the input arrays.
Notice that for neighboring inputs, M1 always produces outputs that have edit
distance at most 4.

Let M2 be a stable tight compaction algorithm that selects elements from
the input array whose payload string satisfies a certain predicate (e.g., entries
corresponding to students in the computer science department). Suppose that
M2 satisfies (ε2, δ2)-DO w.r.t. 4∼E , i.e., where neighboring inputs are those with
edit distance at most 4—such an M2 is described in Sect. 5.

By Theorem 3.2, we conclude that the composed mechanism M2◦M1 satisfies
(ε1 + ε2, δ1 + δ2)-DO w.r.t. 2∼E .

3 Even though the algorithm M1 itself is randomized, the output of M1 is deterministic
and unique given the input.
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Remark 3.3 (Capturing k-neighboring relations). Recall that our strongly
neighbor-preserving definition (i.e., Definition 3.1) is parametrized with the input
and output relations. Example 2 is used to illustrate the case when the these
input/output relations are parametrized with a k-neighboring notion (rather
than 1-neighboring)—this shows the generality of the approach. For example,
later in Sect. 5, we will construct an efficient stable compaction algorithm that
is (ε, δ)-DO w.r.t. to 1∼E neighboring. Applying the standard group privacy the-
orem of differential privacy [32], we can get a compaction algorithm that is
(4ε, 4e4εδ)-DO w.r.t. to 4∼E neighboring.

Limitations. The strong neighbor-preserving requirement (i.e., Definition 3.1)
is natural and directly captures our intuition that if a DO mechanism maps
neighboring inputs to neighboring outputs, then it is composable. The strongly
neighbor-preserving requirement is often suitable when the output computed by
the algorithm is deterministic (i.e., uniquely determined by the inputs), even
though the algorithm itself may be randomized, like Examples 1 and 2.

However, the strongly neighbor-preserving requirement may be too stringent
especially when the output of the algorithm may be randomized. For example,
consider the following DO subsampling algorithm.

Example 3. We consider the task of subsampling, which is widely used in private
data analytics [7,71]: given an input array x, we want to sample each entry with
probability p, and generate a new array with only the sampled elements. Consider
a subsampling algorithm where n denotes the length of the input array x:

1. Call M1(x) := InPlaceSample(x) which is defined as follows: Scan the input
array x. For each real element encountered, append it to the output tape with
probability p and append a filler element otherwise. For each filler element
encountered, just append a filler to the output tape.

2. Apply M2, a compaction algorithm that is (ε′, δ′)-DO w.r.t. ∼H to the output
of the above step.

We want to prove that the above algorithm satisfies DO w.r.t. ∼H through
composition—intuitively, this should be true. In particular, the first subroutine
M1 := InPlaceSample has deterministic access patterns. We explicitly denote
M1(·; ρ) to fix the random tape ρ consumed by M1. For any fixed random tape
ρ, and any neighboring inputs x ∼H x′, M1(x; ρ) and M1(x′; ρ) output two arrays
with Hamming distance 1. Therefore, intuitively, as long as the compaction
algorithm in the second step is (ε′, δ′)-DO w.r.t. Hamming distance, the entire
subsampling algorithm should be (ε′, δ′)-DO as well. Unfortunately, we cannot
directly use strong neighbor-preserving to prove this composition here, since a
random execution of M1(x) and a random execution of M1(x′) are not guaran-
teed to always output Hamming-distance-neighboring outputs—it depends on
which subset of elements are selected.

This motivates us to relax the strongly neighbor-preserving to make it more
general, such that our compositional framework can be more expressive. How-
ever, before we do so, we introduce another more general example, Example 4,
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which is a variation of Example 3. Specifically, in Example 3, although the out-
put of M1 := InPlaceSample is randomized, the view of M1 is deterministic. In
Example 4, both the view and the output of the first algorithm are randomized.

Example 4. The main difference between Examples 3 and 4 is that Example 4
aims to have a subsampling algorithm that is DO w.r.t. edit distance, whereas
Example 3 aims to be DO w.r.t. Hamming distance. To achieve this, in Example
4, we need to mask the true length of the input and output by reading/writing
a random number of extraneous locations on the input tape, Further, the com-
paction algorithm we call must now be DO w.r.t. edit distance too. The detailed
algorithm is described below. The key differences are highlighted by underlining.

1. Call M1(x) := InPlaceSampleε,δ(x) which is defined as follows:

– Sample r
$←G(ε, δ,Δ = 1), let n′ = n + r be the noisy input length.

– Scan n′ locations on the input tape. For each real element encountered,
append it to the output tape with probability p and append a filler ele-
ment otherwise. For each filler encountered, append a filler to the output
tape.

– The output array is defined to be the first n elements of the output tape.
Write down its length n at a fixed dedicated location on the output tape.

2. Apply M2, a compaction algorithm that is (ε′, δ′)-DO w.r.t. ∼E to the output
of the above step, i.e., the compaction algorithm treats the output tape of
M1 as its own input tape.

We later prove that Examples 3 and 4 satisfy DO with our new framework.

3.2 (ε, δ)-Neighbor-Preserving Differential Obliviousness (NPDO)

Recognizing the limitations of strongly neighbor-preserving (Definition 3.1), we
would like to make the compositional framework more general. In particular, the
above Examples 3 and 4 can serve as simple motivating examples.

Given a mechanism M whose view space is V and output space is Y, given
some symmetric relation ∼Y over the output space, and given a set S ⊆ V × Y,
we define the following notation for denoting neighbor sets:

N (S) := {(v, y′)|∃(v, y) ∈ S s.t. y′ ∼Y y}

Definition 3.4 ((ε, δ)-NPDO). Given a mechanism M : X → Y with view
space V, we say that it satisfies (ε, δ)-neighbor-preserving differential oblivious-
ness, or (ε, δ)-NPDO for short, w.r.t. symmetric relations ∼X and ∼Y , respec-
tively, iff for all x ∼X x′, for every S ⊆ V × Y,

Pr[ExecM(x) ∈ S] ≤ eε · Pr[ExecM(x′) ∈ N (S)] + δ. (2)

Our NPDO definition looks similar in form as the standard differential pri-
vacy notion, with some important observations: 1) the notion is defined over
the Cartesian product of the view and the output of the mechanism, which is
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important for composition to hold; 2) on the right-hand-side of Definition 2, we
consider the probability of M(x′) landing in the neighboring set N (S) on a neigh-
boring input x′ ∼X x—this is important for capturing a probabilistic notion of
neighbor-preserving.

It is not hard to see that if an algorithm satisfies (ε, δ)-NPDO, it must satisfy
(ε, δ)-DO, as stated in the following theorem.

Theorem 3.5. Suppose that M : X → Y satisfies (ε, δ)-NPDO w.r.t. X and Y.
Then, M satisfies (ε, δ)-DO w.r.t. X .

The proof is deferred to Appendix B.1 of the full version [74].

3.3 Main Composition Theorem

One main technical contribution of our paper is to prove a composition theorem
for our NPDO notion, as stated below.

Theorem 3.6 (Main composition theorem). Suppose that an algorithm
M1 : X → Y satisfies (ε1, δ1)-NPDO w.r.t. ∼X and ∼Y . Further, suppose that
the algorithm M1’s view space V and the output space Y are finite or countably
infinite. Then, the following composition statements hold:

1. Suppose that M2 : Y → Z satisfies (ε2, δ2)-DO w.r.t. ∼Y . Then, the composed
mechanism M2 ◦ M1 : X → Z satisfies (ε1 + ε2, δ1 + δ2)-DO.

2. Suppose that M2 : Y → Z satisfies (ε2, δ2)-NPDO w.r.t. ∼Y and ∼Z . Then,
the composed mechanism M2 ◦M1 : X → Z satisfies (ε1 + ε2, δ1 + δ2)-NPDO.

The proof of Theorem 3.6 is presented in Sect. 4. We can use Theorem 3.6 to
prove that the algorithms in the earlier Examples 1 to 4 satisfy DO. Before doing
so, let us first introduce some helpful tools for proving an algorithm NPDO.

3.4 Helpful Tools for Proving NPDO

To use our main composition theorem, we need to prove that some algorithm
satisfies NPDO. The following lemmas provide helpful tools for this purpose.

Strongly NP + DO =⇒ NPDO. First, it is not hard to see that if an algorithm
satisfies the earlier strongly neighbor-preserving notion (Definition 3.1) as well
as DO, then it also satisfies NPDO as stated below:

Lemma 3.7 (Strongly NP and DO imply NPDO). Suppose that an algo-
rithm M : X → Y is strongly neighbor-preserving w.r.t. ∼X and ∼Y , as well as
(ε, δ)-DO w.r.t. ∼X . Then, M satisfies (ε, δ)-NPDO.

The proof is deferred to Appendix B.1 of the full version [74].

(ε, δ)-NP. Next, we define another notion that captures the idea of “proba-
bilistically approximate neighbor-preserving” called (ε, δ)-neighbor-preserving,
or (ε, δ)-NP for short. We show that if an algorithm satisfies (ε, δ)-NP as well as
(ε′, δ′)-DO, then it also satisfies (ε + ε′, δ + δ′)-NPDO.
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Definition 3.8 ((ε, δ)-NP). Given a mechanism M : X → Y whose view space
is V, we say that it satisfies (ε, δ)-neighbor-preserving, or (ε, δ)-NP for short,
w.r.t. ∼X and ∼Y , iff for all x ∼X x′, for every view v∗ ∈ V that happens with
non-zero probability in ExecM(x) as well as ExecM(x′), for every Y ⊆ Y,

Pr[(v, y) ← ExecM(x) : y ∈ Y |v = v∗]

≤ eε · Pr[(v′, y′) ← ExecM(x′) : y′ ∈ N (Y ) |v′ = v∗ ] + δ (3)

where N (Y ) contains all y′ such that y′ ∼Y y for all y ∈ Y .

Intuitively, (ε, δ)-NP requires that conditioned on any view, the algorithm, on
neighboring inputs, must output probabilistically approximately close outputs.

Lemma 3.9 ((ε, δ)-NP and DO imply NPDO). Suppose that an algorithm
M : X → Y is (ε1, δ1)-DO and (ε2, δ2)-neighbor-preserving w.r.t. ∼X and ∼Y .
Then, M satisfies (ε1 + ε2, δ1 + δ2)-NPDO w.r.t ∼X and ∼Y .

The proof is deferred to Appendix B.1 of the full version [74].

3.5 Our Composition Theorem in Action

Using the simple motivating examples introduced so far, we can see our compo-
sition theorems in action.

Examples 1 and 2. As mentioned earlier, the first algorithm M1 in either
Example 1 or Example 2 satisfies strongly neighbor-preserving as well as (ε1, δ1)-
DO. Therefore, they can be viewed as a special case of (ε, δ)-NPDO. Since M2

in Example 1 or 2 satisfies (ε2, δ2)-DO, by our main composition theorem, we
immediately reach the conclusion that the composed algorithm M2 ◦M1 satisfies
(ε1 + ε2, δ1 + δ2)-DO.

Example 3. We can use Theorem 3.6 to prove that the subsampling algorithm
of Example 3 satisfies (ε′, δ′)-DO w.r.t. ∼H . To accomplish this, it suffices to
show that the first algorithm, M1 := InPlaceSample, satisfies (0, 0)-NPDO w.r.t.
∼H and ∼H . Observe that in Example 3, two inputs are neighboring if their
Hamming distance is at most 1, which implies that neighboring inputs must have
the same length. Also, M1 always generates a deterministic view that depends
only on the length of the input. Therefore, to prove that M1(x) satisfies (0, 0)-
NPDO, it suffices to show that for any pair of neighboring inputs x ∼H x′, for
any subset of outputs Y ⊆ Y where Y is the output space of M1,

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x′) ∈ N (Y )], (4)

where N (Y ) denotes the set of all output arrays that are neighboring to some
array in Y . Observe also that for any possible output y of M1(x), let ρ be the
random coins used for subsampling that led to the result y, then, if the same
random coins ρ is encountered in an execution of M1(x′) on some neighboring
x′ ∼H x, the outcome must be neighboring to y. Therefore, Eq. (4) holds.
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Example 4. Similarly, we can use Theorem 3.6 to prove that the subsampling
algorithm of Example 4 satisfies (ε+ε′, δ+δ′)-DO w.r.t. ∼E . By Theorem 3.6, it
suffices to show that the M1 := InPlaceSampleε,δ algorithm in Example 4 satisfies
(ε, δ)-NPDO w.r.t. ∼E being both of the input and output neighboring notion.
Recall that M1 pads the input array with a random number of elements, such
that the noisy length is n′. Then, it simply scans through the n′ elements and
either writes down the element if it is a real element and has been sampled, or
writes down ⊥. To show that M1 satisfies (ε, δ)-NPDO, we will prove that M1

satisfies (0, 0)-NP and (ε, δ)-DO, respectively, and then the conclusion follows
from Lemma 3.9. It is easy to prove that M1 satisfies (ε, δ)-DO. To see this,
observe that the view depends only on the noisy input length where the noise is
sampled according to a truncated geometric distribution.

Therefore, we focus on showing that M1 satisfies (0, 0)-NP. Observe that in
M1, the random coins that determine the view and those that determine the
output are independent. Therefore, it suffices to show that for any x ∼E x′, for
any Y ⊆ Y where Y is the output space of M1,

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x′) ∈ N (Y )].

Since x ∼E x′, there can be at most one element in x that is not in x′ (e.g.,
the element that is added or modified in x), and vice versa. Henceforth, we use
Common(x, x′) to denote the list of common elements that appear both in x and
x′. Let G(Y ) be the event that there exists some y ∈ Y , such that the elements
in Common(x, x′) receive the same sampling decision as in y. We also say that
G(Y ) represents the event that Common(x, x′) receive coins compatible with Y .
Therefore, we have that

Pr[M1(x) ∈ Y ] ≤ Pr[M1(x) : G(Y )] ≤ Pr[M1(x′) ∈ N (Y )].

In the above, the second inequality holds since conditioned on Common(x, x′)
receiving coins compatible with Y in a random execution of M1(x′), the outcome
must be neighboring to some element in Y with probability 1.

Additional Applications. Later in Sect. 5, we use our composition framework
to design a differentially oblivious stable compaction algorithm w.r.t. the edit
distance—this building block was needed in Examples 1, 2, 4. Last but not the
least, in Sect. 6, we use our composition framework to prove an optimal privacy
amplification theorem for the DO-shuffle model.

4 Proof of Main Composition Theorem

In this section, we shall prove our main composition theorem, that is, Theorem
3.6. A key stepping stone is the following equivalence lemma.

Lemma 4.1 (Equivalence of (ε, δ)-NPDO and existence of an (ε, δ)-
matching). Assume the axiom of choice. Given a finite or countable infinite
sample space Ω and a symmetric relation ∼ on Ω, consider two random variables
A,B ∈ Ω. The following statements are equivalent:
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1. For every S ⊆ Ω, Pr[A ∈ S] ≤ eε · Pr[B ∈ N (S)] + δ, where the neighbor set
N (S) is defined as N (S) := {b ∈ Ω|∃a ∈ S, a ∼ b}.

2. There exists an (ε, δ)-matching w : Ω × Ω → [0, 1] satisfying the following
conditions:
(a) For all a, b ∈ Ω, w(a, b) > 0 only if a ∼ b;
(b) For all a ∈ Ω,

∑
b∈Ω,b∼a w(a, b) ≤ Pr[A = a];

(c) For all b ∈ Ω,
∑

a∈Ω,a∼b w(a, b) ≤ eε · Pr[B = b];
(d)

∑
a,b∈Ω w(a, b) ≥ 1 − δ.

Graph Interpretation. Lemma 4.1 has a similar flavor as the Hall’s theorem
for bipartite graphs. The Hall’s theorem says that if for each subset S of one
component of a bipartitie graph, the size of its neighbor set satisfies |N (S)| ≥ |S|,
then we can find a perfect matching in the graph. The proof of Lemma 4.1 is
also inspired by the proof of the Hall’s theorem.

We think of a bipartite graph where vertices on the left and right both
come from the set Ω, and w(a, b) defines the weight on edge (a, b). Imagine that
each vertex a ∈ Ω on the left is factory that produces Pr[A = a] amount of
produce, and each vertex b ∈ Ω on the right is a warehouse that can store up to
eε ·Pr[B = b] amount of produce. Condition (a) says that a factory is only allowed
to route its produce to neighboring warehouses. The function w effectively defines
a fractional flow such that almost all, i.e., 1 − δ amount of produce is routed to
some warehouse, and moreover, none of the warehouses exceed their capacity.
For this reason, we also call w an (ε, δ)-matching. The full proof of Lemma 4.1
is deferred to Appendix B.2 of the full version [74]. Below, we prove our main
composition theorem assuming that Lemma 4.1 holds.

Proof (Proof of Theorem 3.6). We directly prove the more general case when
M2 is (ε2, δ2)-NPDO. When M2 is only (ε2, δ2)-DO, we can prove M2 ◦ M1 is
(ε1 + ε2, δ1 + δ2)-DO with nearly the same argument.

Fix any neighboring input x, x′. By Lemma 4.1, there exists an (ε1, δ1)-
matching w : (V1 × Y) × (V1 × Y) → [0, 1] w.r.t the natural neighbor notion
∼ in the product space V1 × Y: (v1, y) ∼ (v′

1, y
′) when v1 = v′

1 and y ∼Y y′. We
want to prove that, for any subset S ⊆ V1 × V2 × Z,

Pr[ExecM2◦M1(x) ∈ S] ≤ eε1+ε2 Pr[ExecM2◦M1(x′) ∈ N (S)] + δ1 + δ2.

Define the partial set Sv1 := {(v2, z)|∃(v1, v2, z) ∈ S} for any v1 ∈ V1. Then,

Pr[ExecM2◦M1(x) ∈ S]

=
∑

(v1,y)∈V1×Y
Pr[ExecM1(x) = (v1, y)] · Pr[ExecM2(y) ∈ Sv1 ]

(Use condition (a), (b) and (d) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Y y

w
(
(v1, y), (v1, y

′)
) · Pr[ExecM2(y) ∈ Sv1 ] + δ1
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≤
∑

(v1,y)∈V1×Y,y′∼Y y

w
(
(v1, y), (v1, y

′)
) ·

(
eε2 Pr[ExecM2(y′) ∈ N (Sv1)] + δ2

)
+ δ1

(Use condition (b) of the matching)

≤
∑

(v1,y)∈V1×Y,y′∼Y y

w
(
(v1, y), (v1, y

′)
) ·

(
eε2 Pr[ExecM2(y′) ∈ N (Sv1)]

)
+ δ2 + δ1

(Use condition (c) of the matching)

≤
∑

(v1,y′)∈V1×Y
eε1 Pr[ExecM1(x′) = (v1, y

′)] ·
(
eε2 Pr[ExecM2(y′) ∈ N (Sv1)]

)
+ δ2 + δ1

= eε1+ε2 Pr[ExecM2◦M1(x′) ∈ N (S)] + δ2 + δ1.

5 Application: DO Compaction w.r.t. Edit Distance

Earlier in our Examples 1, 2, and 4, we assumed a stable compaction algorithm
that is differentially oblivious w.r.t. the edit distance. Chan et al. [17] showed how
to construct a stable compaction algorithm that is (ε, δ)-DO w.r.t. the Hamming
distance [17], taking O(n(log log n + log log 1

δ )) time to compact an array of size
n (assuming that ε is a constant). However, we are not aware of any straight-
forward way to modify their algorithm to work for edit distance. Another näıve
approach is to use oblivious sorting directly but this would incur Θ(n log n) run-
time which is asymptotically worse. In this section, we fill in this missing piece
that is needed by Examples 1, 2, and 4. We will describe a stable compaction
algorithm that works for edit distance and it preserves the runtime of Chan et
al. [17]. Intriguingly, the design of our new compaction algorithm turns out to be
a great example that demonstrates the power of our compositional framework.

5.1 Additional Preliminaries

Stable Compaction. Recall that in stable compaction, we are given an input
array which is written on an input tape. Some elements in the input array are
real elements, and others are fillers. We want to output an array that contains
only the real elements, and they must appear in the same order as the input
array. We assume that the input array is written on the input tape, and its true
length is written on some designated location on the input tape. The algorithm
should write the output array to an output tape, and the true length of the
output array should be written to some dedicated location on the output array.

Stable Oblivious Sorting. Suppose we are given an input array I containing
a list of m elements with a key attached to each element. Earlier works [18,53]
showed how to oblivious sort the array according to the keys in O(m log m)
runtime while maintaining the stable property: the elements will be ordered by
their relative order in the original array when their keys are the same.
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Differentially Private Prefix Sum. Given an input array I containing a list
of m integers, we want to its prefix sums. We say that two inputs I, and I ′ are
neighboring iff 1) they have the same length and 2) they differ in at most one
position j, and |I[j]−I ′[j]| ≤ 1. Earlier works [19,31] showed how to construct a
prefix sum mechanism that satisfies (ε, δ)-differential privacy, and moreover, the
mechanism satisfies the following properties: 1) The access patterns (i.e., view)
of the algorithm depend only on the input length; 2) The additive error is upper
bounded by O

(
1
ε (log |I|)1.5 log 1

δ

)
with probability 1.

5.2 Roadmap and Intuition

Our algorithm Compact is the composition of the following two algorithms, i.e.,
Compact(·) = CompactBin ◦ RandBin(·). Suppose we can prove that RandBin is
(ε1, δ1)-NPDO and prove that CompactBin is (ε2, δ2)-NPDO, we have Compact
is (ε1 + ε2, δ1 + δ2)-NPDO due to our main composition Theorem 3.6.

1. RandBin: Given an input array I containing real elements and fillers, and
whose true length is stored in a dedicated location on the input tape, RandBin
outputs a list of B bins denoted (Bin(Z)

i : i ∈ [B]), each of capacity Z.
Each bin contains a random number of real elements and the rest are fillers.
Furthermore, the ordered list of all real elements in all bins is the same as
the ordered list of real elements in the input. The algorithm should output
the parameters B and Z to some dedicated location on the output tape.

2. CompactBin: Given a list of B bins denoted (Bin(Z)
i : i ∈ [B]) each of capacity

Z, where the parameters B and Z are stored in some dedicated location on the
input tape, the CompactBin algorithm outputs a compacted array containing
only the real elements in the input bins, and preserving the same order they
appear in the input bins. The algorithm outputs the true output length to
some dedicated location on the output tape.

In short, RandBin is a pre-processing step that takes the input array and
converts it into bin format, and CompactBin takes the bin representation, and
performs the actual compaction. The informal intuition is as follows. From earlier
work [17], we know how to construct an efficient DO stable compaction algorithm
for Hamming distance. However, in our case, we have two inputs I and I ′ that
have edit distance 1. The difficulty with edit distance is when I is obtained by
inserting an extra element into I ′ at position j, the two inputs I and I ′ will differ
in every position after j. Our idea is to leverage RandBin to “probabilistically
localize” this difference caused by a single insertion operation. In particular, if
some bin representation occurs for input I with some probability p, we want that
under the neighboring input I ′, with probability close to p, we should encounter
a similar bin representation where the difference is localized to only one or two
bins. If we can accomplish this, then hopefully we can adapt ideas that worked
for Hamming distaince [17] to compact the resulting bin representation.

Below, we will define an appropriate neighboring notion ∼B on the bin repre-
sentation. We want to show that the RandBin pre-processing step satisfies NPDO
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w.r.t. the input relation ∼E and output relation ∼B for the bin representation.
Further, we want to show that CompactBin satisfies NPDO w.r.t. ∼B and ∼H .
Then, the composed algorithm should be NPDO by our composition theorem.

Neighboring Relation for Bin Representation ∼B. Specifically, the neigh-
boring relation ∼B is defined as below. Two lists of bins (Bin(Z)

i : i ∈ [B]) and
(Bin

′(Z′)
i : i ∈ [B′]) are said to be neighboring, iff the following all hold:

– they have compatible dimensions, i.e., B = B′ and Z = Z ′;
– After removing all fillers and concatenating the real elements in the list of

bins, the resulting outcomes have edit distance at most one;
– There are at most two bins that have different bin loads (defined to be the

number of real elements in the bin), further, for both of them, the difference
in load is at most one.

5.3 RandBin Algorithm

We now describe the RandBin algorithm, which preprocesses the input array into
a bin representation.
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Roughly speaking, the RandBin algorithm generates a list of random counts
ρ := (ρ1, . . . , ρB). Then, all real elements contained in the first ρ1 positions of the
input are moved into Bin1, all real elements contained in the next ρ2 positions of
the input are moved into Bin2, and so on. To guarantee differential obliviousness,
the algorithm cannot directly reveal the vector ρ—instead, it reveals only the
noisy prefix sum of ρ. Specifically, we apply an (ε3, δ3)-differentially private prefix
sum algorithm to the vector y, i.e., cnt := PrefixSumε3,δ3(Y ). In other words,
cnt[i] stores a noisy version of

∑
j≤i ρi, and it is guaranteed that the estimation

error is at most s. Now, in each step i of the algorithm, we want to populate
Bini. To do so, we simply fetch the next batch of elements in the input array
up to position cnt[i] into a poly-logarithmically sized working buffer Buf. Buf
also contains previously fetched elements that have not been placed into any bin
yet. We can now obliviously sort Buf to create the next Bini. At the end of each
step i, it is guaranteed that there are at most 2s real elements remaining in Buf.
Therefore, we can obliviously sort Buf and compact its length to 2s. This makes
sure that Buf is always poly-logarithmic in size. Finally, to make the algorithm
secure, we also need to mask the true input length, and we can accomplish this
by adding a truncated geometric random noise to the true length, and revealing
only the noisy length. Note that the number of bins B is a random variable that
depends only on the noisy input length.

Theorem 5.1. The RandBin algorithm always outputs the correct bin represen-
tation: For all i ∈ [B], all real elements from I

[∑
j<i ρj + 1

]
to I

[∑
j≤i ρj

]
are

moved to Bini. Also, all real elements in the input array are moved to the bins.

Theorem 5.2. Assuming |I| ≥ c
ε log 1

δ for any fix constant c, RandBin has a
worst-case runtime of O

(|I| (log log |I| + log 1
ε + log log 1

δ

))
.

Theorem 5.3. RandBin is (ε, δ)-NPDO w.r.t. the input neighboring notion ∼E

and the output neighboring notion ∼B.

The above theorems’ proofs are in Appendix B.3 of the full version [74].

5.4 CompactBin Algorithm

We now describe the CompactBin algorithm which takes in a bin representation,
outputs a compacted array, and writes the true length of the output to some
dedicated location on the output tape.
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CompactBinε,δ
(
(Bin(Z)

i : i ∈ [B])
)
: // Let ε1 = ε

2 , δ1 = δ
2(1+eε1 ) .

– Let s = 4
ε1

log2 B log 2
δ1

, be an upper bound of the additive error of
(ε1, δ1)-differentially private prefix sums on at most B integers.

– Let R := (Ri : i ∈ [B]), where Ri is the number of real elements in Bini.
Call cnt := PrefixSumε1,δ1(R).

– Let Buf and the output array be initially empty. For i = 1 to B:
• Read the i-th bin and append it to the end of Buf.
• Perform stable oblivious sorting on Buf such that all real elements

are moved to the front.
• Let L be the current length of the output array. Remove an appropri-

ate number of elements from the beginning of Buf and append them
to the output array, such that the output array has length exactly
max(cnt[i] − s, L).

• Truncate Buf if necessary such that its length is at most 2s.
– Append Buf to the end of the output array. Write the true output length∑

i∈[B] Ri to some dedicated location on the output tape.

To gain some intuition, basically in each step i, the CompactBin algorithm
reads the next bin i, and tries to copy the real elements in bin i to the end
of the output array. To achieve differential obliviousness, the algorithm cannot
reveal the true number of real elements inside each bin. Therefore, it calls a
differentially private prefix sum mechanism to compute an array cnt[1 : B] where
cnt[i] is an estimate of the number of real elements contained in the first i bins.
The prefix sum algorithm guarantees that the estimation error is upper bounded
by s. Therefore, at the end of the i-th step, the algorithm should have written
exactly cnt[i] − s number of real elements to the output array. To accomplish
this, the algorithm makes use of a temporary working buffer Buf that is used to
store the real elements that have been fetched from the input bins but have not
been appended to the output array. It guarantees that at the end of each step,
there are at most 2s real elements leftover in Buf.

Theorem 5.4. With probability 1, the output of CompactBin includes all the
real elements from the B input bins with their order preserved and the filler
elements in the output array only appear after the last real element.

Theorem 5.5. CompactBinε,δ is (ε, δ)-NPDO w.r.t. the input neighboring rela-
tion ∼B and output neighboring relation ∼E.

Theorem 5.6. CompactBin has a worst-case runtime of O(B(Z+s) log(Z+s)).

The theorems’ proofs are deferred to Appendix B.3 of the full version [74].
From the RandBin algorithm, BZ = O(|I|), Z = Θ(s), and s =

O(1ε log2 |I| log 1
δ ). By Theorem 5.2 and Theorem 5.6, the following corollary

holds:

Corollary 5.7. Assuming |I| ≥ c
ε log 1

δ for any fix constant c, then the full
compaction algorithm Compactε,δ := CompactBinε/2,δ/2 ◦ RandBinε/2,δ/2 has a
worst-case runtime of O

(|I| (log log |I| + log 1
ε + log log 1

δ

))
.
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6 Application: Optimal Privacy Amplification
in the Differentially Oblivious Shuffle Model

In this section, we use our composition framework to prove a privacy amplifica-
tion theorem for the differentially oblivious shuffle (DO-shuffle) model.

Background. Consider a distributed setting with n clients and an untrusted
server who wants to learn some statistics of the clients’ private data. To achieve
this, the differential privacy literature proposed two models for achieving this.
In the local model, each client adds some noise to its own data by running an
ε0-locally differentially private (LDP) mechanism, and sends the noisy result the
server. The server then computes the desired statistics using each client’s noisy
input. In the local model, the server’s view satisfies ε0-DP.

Some more recent works [22,23,39,40] considered a new model called the
shuffle model. In this model, we assume that a trusted shuffler can shuffle all
of the clients’ messages, and the server only sees the permuted messages (with-
out learning the permutation). Interestingly, earlier works [22,23,39,40] showed
that the shuffle model can amplify privacy. In particular, suppose each client
still runs an ε0-locally differentially private (LDP) mechanism before sending
the noisy outcomes to the shuffler, then the server’s view would satisfy (ε, δ)-
DP where ε can be much smaller than ε0. Notably, the recent work of Feld-
man et al. [37] proved optimal parameters for privacy amplification in a per-
fectly secure shuffle model, that is, it can achieve (ε, δ)-DP with any δ > 0 and

ε = O

(

(1 − e−ε0)eε0/2
√

log(1/δ)
n

)

. In this section, our goal is to show that the

perfectly secure shuffle in privacy amplification can be replaced with a much
weaker, (ε, δ)-differentially oblivious shuffle, without degrading the amplification
guarantees (except for extra ε and δ additive factors that arise from the differ-
entially oblivious shuffler itself).

To benefit from the shuffle model, we need to realize the shuffle either using
trusted hardware or through a cryptographic protocol. Some recent works [5,
13,45] showed that it may be asymptotically more efficient to realize a relaxed
shuffler that satisfies differential obliviousness than a perfectly secure shuffler.
Therefore, a natural question is whether we can also enjoy the same degree
of privacy amplification with a differentially oblivious shuffler rather than a
perfectly secure shuffler. We explore this question in the remainder of this section.

6.1 Definitions

Suppose that the server and the clients jointly execute a protocol to realize a
shuffler. The syntax of a shuffle protocol is defined below.

Definition 6.1 (Syntax of a shuffle protocol). A protocol between a server
and n clients each with some input from X is said to be a shuffle protocol,
iff under an honest execution, the server outputs a random permutation of the
clients’ inputs.
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Before defining security, we need to define the adversary’s capabilities and the
view of the adversary. We assume that an adversary A may control up to t clients
as well as the server, we define the random variable ViewA(xH) to mean the view
of the adversary during an execution where the honest clients’ inputs are xH ∈
X n−t. The view of the adversary A should include whatever the adversary can
observe during the execution. Specifically, the view include the server’s output,
all messages sent and received by the corrupted clients and the server. Further,
the view may include any additional information the adversary can observe. For
example, if the adversary can observe honest-to-honest communication (e.g.,
a network adversary), then, the view should also include the honest-to-honest
communication. For a protocol secure in the semi-honest model, we assume that
the corrupt players will honestly follow the protocol. For the protocol secure
in the malicious model, we assume that the corrupt players can send arbitrary
messages and the adversary A controls the messages sent by corrupt players.

Remark 6.2. Different DO-shuffle protocols may provide security guarantees
under differing adversarial power. For example, of Gordon et al. [45] assumes a
semi-honest adversary cannot observe honest-to-honest communication, whereas
Bünz et al. [13] assumes a malicious adversary who can observe the entire net-
work communication. Our privacy amplification theorem does not care about the
exact modeling choice made by the underlying DO-shuffle protocol, and the com-
posed DO-shuffle-model mechanism essentially inherits the same assumptions as
the underlying DO-shuffle.

Next, we define the notion of differential obliviousness for a shuffle protocol.
We first need to define what neighboring means.

Neighboring by Swapping. Given some set D and two vectors y,y′ ∈ Dm,
we say that y ∼S y′, iff either y = y′, or y′ can be obtained from y by swapping
the values of two coordinates.

Definition 6.3 (Differential obliviousness of a shuffle protocol). A shuf-
fle protocol is said to satisfy statistical (ε, δ)-differential obliviousness in the pres-
ence of t ≤ n corruptions, iff the following holds: for any adversary A control-
ling the server and at most t clients, for any two honest input configurations
yH ,y′

H ∈ Yn−t such that yH ∼S y′
H , for any subset S ⊆ V where V denotes the

view space, it holds that

Pr
[
ViewA(yH) ∈ S

]
≤ eε · Pr

[
ViewA(y′

H) ∈ S
]

+ δ

If we set ε = 0 and δ = 0, the above notion becomes equivalent to the security
of a perfectly secure shuffle.

We next define a computational variant of the DO notion, since some known
DO shuffler instantiations enjoy computational security [5,13,45].
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Definition 6.4 (Computational DO for a shuffle protocol). A shuffle pro-
tocol Φ is said to satisfy computational (ε, δ)-differential obliviousness in the
presence of t ≤ n corruptions, iff for any non-uniform probabilistic polynomial-
time (p.p.t.) adversary A controlling the server and at most t clients, for any
two neighboring honest input configurations yH ∼S y′

H , it holds that

Pr
[
ExptA(1λ,yH) = 1

]
≤ eε · Pr

[
ExptA(1λ,y′

H) = 1
]

+ δ

where ExptA(1λ,y) is the randomized experiment where we execute the protocol
using security parameter λ and interacting with the adversary A, and at the end
we output whatever A outputs.

Next, we define the notion of a locally differentially private (LDP) mecha-
nism. The main privacy amplification theorem we want to prove in this section
asks the following question: if each client computes its message by applying an
ε0-LDP mechanism to its private input, and then a DO shuffler shuffles all clients’
messages before revealing the shuffled result to the server, can we prove that the
server’s view satisfies (ε, δ)-DP where ε is much smaller than ε0?

Definition 6.5 (ε0-LDP mechanism). R : X → Y is an ε0-LDP mechanism
if for any x, x′ ∈ X and any subset S ⊆ Y, Pr[R(x) ∈ S] ≤ eε0 Pr[R(x′) ∈ S].

6.2 Privacy Amplification in the DO-Shuffle Model

We formally restate Theorem 1.4 when the DO-shuffler Φ statisfies statistical
DO as the following theorem. In Appendix A.1 of the full version [74], we will
extend our composition framework to support the case when the DO-shuffler
satisfies computational differential obliviousness (Definition 6.4).

Theorem 6.6. Let R : X → Y be an ε0-LDP mechanism to be run by each
client over its private input. Suppose A is an adversary controlling the server
and at most t clients. Let Φ be a statistical (ε1, δ1)-DO shuffling protocol. Define
the random experiment ExptA(x1, . . . , xn) as the following where each xi ∈ X
denotes the private input of client i ∈ [n]:

1. Each honest client i treats the output of R(xi) as the input in the next step;
2. Execute the DO-shuffling protocol Φ with the presence of the adversary A and

let A also observe the outcome of the shuffling.
3. Output whatever A outputs.

Let x = (x1, . . . , xn) ∈ X n and x′ = (x′
1, . . . , x

′
n) ∈ X n be any two neighbor-

ing input configurations that differ in at most one client’s input. For any δ > 0
that ε0 ≤ log

(
n−t

16 log(2/δ)

)
, we have that

Pr
[
ExptA(x) = 1

]
≤ eε+ε1 · Pr

[
ExptA(x′) = 1

]
+ δ + δ1

for ε = O

(

(1 − e−ε0)eε0/2
√

log(1/δ)
n−t

)

.
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Since we want to use our composition framework to prove optimal privacy
amplification in the DO-shuffle model, we can define the first and second mech-
anism M1 and M2 as follows:

– The first mechanism M1 : X n → Yn is where the n clients each apply the
ε0-LDP mechanism R : X → Y to their private data, respectively. The mecha-
nism generates no view observable by the adversary, and moreover, its output
is the concatenation of all clients’ outputs.

– The second mechanism M2 : Yn → Yn is the DO-shuffler itself. Here, the view
of the adversary is its view in the DO-shuffle protocol, and the output is the
shuffled outcome. In the main body, we shall first assume that M2 satisfies
statistical differential obliviousness (Definition 6.3).

It is easy to see that the adversary has the same view in the composed
mechanism M2 ◦M1 and in the random experiment described in Theorem 6.6. So
we only need to prove that M2◦M1 is (ε+ε1, δ+δ1)-DO. The crux is to show that
M1 satisfies (ε, δ)-NPDO when at most t clients are corrupted, as more formally
stated in the following lemma:

Lemma 6.7. Suppose ε0 ≤ log
(

n−t
16 log(2/δ)

)
. The above mechanism M1 satisfies

(ε, δ)-NPDO w.r.t. the input relation ∼H , (i.e., two vectors are neighboring if
they have the same length and differ in at most one position) and the output
relation ∼S (i.e., neighboring by swapping).

We can directly apply our composition theorem (Theorem 3.6) and Lemma
6.7 to get the desired result. The proof is in Appendix B.4 of the full version [74].
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Abstract. We study the space complexity of the two related fields of
differential privacy and adaptive data analysis. Specifically,

1. Under standard cryptographic assumptions, we show that there
exists a problem P that requires exponentially more space to be
solved efficiently with differential privacy, compared to the space
needed without privacy. To the best of our knowledge, this is the
first separation between the space complexity of private and non-
private algorithms.

2. The line of work on adaptive data analysis focuses on understanding
the number of samples needed for answering a sequence of adaptive
queries. We revisit previous lower bounds at a foundational level,
and show that they are a consequence of a space bottleneck rather
than a sampling bottleneck.

To obtain our results, we define and construct an encryption scheme with
multiple keys that is built to withstand a limited amount of key leakage
in a very particular way.

1 Introduction

Query-to-communication lifting theorems allow translating lower bounds on the
query complexity of a given function f to lower bounds on the communication
complexity of a related function f̂ . Starting from the seminal work of Raz and
McKenzie [31], several such lifting theorems were presented, and applied, to
obtain new communication complexity lower bounds in various settings.

In the domain of cryptography, related results have been obtained, where the
starting point is a lower bound on the query complexity of an adversary solving a
cryptanalytic problem in an idealized model, such as the random oracle model [4].
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The query complexity lower bound is then lifted to a query-space lower bound for
a non-uniform (preprocessing) adversary solving the same problem [11,12,37].

Building on ideas developed in these lines of work, we present a new technique
for translating sampling lower bounds to space lower bounds for problems in the
context of differential privacy and adaptive data analysis. Before presenting our
results, we motivate our settings.

1.1 Differential Privacy

Differential privacy [16] is a mathematical definition for privacy that aims to
enable statistical analyses of datasets while providing strong guarantees that
individual-level information does not leak. Informally, an algorithm that analyzes
data satisfies differential privacy if it is robust in the sense that its outcome
distribution does not depend “too much” on any single data point. Formally,

Definition 1.1 ([16]). Let A : X∗ → Y be a randomized algorithm whose input
is a dataset D ∈ X∗. Algorithm A is (ε, δ)-differentially private (DP) if for any
two datasets D,D′ that differ on one point (such datasets are called neighboring)
and for any outcome set F ⊆ Y it holds that Pr[A(D) ∈ F ] ≤ eε · Pr[A(D′) ∈
F ] + δ.

To interpret the definition, let D be a dataset containing n data points, each
of which represents the information of one individual. Suppose that Alice knows
all but one of these data points (say Bob’s data point). Now suppose that we
compute z ← A(D), and give z to Alice. If A is differentially private, then Alice
learns very little about Bob’s data point, because z would have been distributed
roughly the same no matter what Bob’s data point is.

Over the last few years, we have witnessed an explosion of research on dif-
ferential privacy in various settings. In particular, a fruitful line of work has
focused on designing differentially private algorithms with small space complex-
ity, mainly in streaming settings. These works show many positive results and
present differentially private algorithms with small space complexity for various
problems. In fact, some of these works show that classical streaming algorithms
are differentially private essentially as is. For example, Blocki et al. [5] show
that the Johnson-Lindenstrauss transform itself preserves differential privacy,
and Smith et al. [32] show this for the classical Flajolet-Martin Sketch.

In light of these positive results, one might think that algorithms with small
space are particularly suitable for differential privacy, because these algorithms
are not keeping too much information about the input to begin with.

Question 1.2. Does differential privacy require more space?

Our Results for Differential Privacy With bounded Space. We answer
Question 1.2 in the affirmative, i.e., we show that differential privacy may require
more space. To this end, we come up with a problem that can be solved using a
small amount of space without privacy, but requires a large amount of space to
be solved with privacy. As a first step, let us examine the following toy problem,
which provides some answer to the above question.
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A Toy Problem. Recall that F2 (the second frequency moment of a stream)
estimation with multiplicative approximation error 1 + α has an Ω(1/α2) space
lower bound [38]. This immediately shows a separation for the problem of “output
either the last element of the stream or a (1+α)-approximation to the F2 value
of the stream”. In the non-private setting, the last element can be output using
space independent of α, but in the private setting the algorithm is forced to
(privately) estimate F2 and thus use at least 1/α2 space. Of course, we could
replace F2 with other tasks that have a large space lower bound in the standard
non-private model.

We deem this toy problem non-interesting because, at a high level, our goal is
to show that there are cases where computing something privately requires a lot
more space than computing “the same thing” non-privately. In the toy problem,
however, the private and non-private algorithms are arguably not computing “the
same thing”. To reconcile this issue, we will focus on problems that are defined
by a function (ranging over some metric space), and the desired task would be
to approximate the value of this function. Note that this formulation disqualifies
the toy problem from being a valid answer to Question 1.2, and that with this
formulation there is a formal sense in which every algorithm for solving the task
must compute (or approximate) “the same thing”.

Let us make our setting more precise. In order to simplify the presentation,
instead of studying the streaming model, we focus on the following computation
model.1 Consider an algorithm that is instantiated on a dataset D and then aims
to answer a query with respect to D. We say that such an algorithm has space
s if, before it gets the query, it shrinks D to a summary z containing at most s
bits. Then, when obtaining the query, the algorithm answers it using only the
summary z (without additional access to the original dataset D). Formally, we
consider problems that are defined by a function P : X∗ × Q → M , where X is
the data domain, Q is a family of possible queries, and M is a metric space.

Definition 1.3. We say that A = (A1,A2) solves a problem P : X∗ × Q → M
with space complexity s, sample complexity n, error α, and confidence β if

1. A1 : X∗ → {0, 1}s is a preprocessing procedure that takes a dataset D and
outputs an s-bit string.

2. For every input dataset D ∈ Xn and every query q ∈ Q it holds that

Pr
z←A1(D)
a←A2(z,q)

[|a − P (D, q)| ≤ α] ≥ 1 − β.

We show the following theorem.

Theorem 1.4 (informal). Let d ∈ N be a parameter controlling the size of
the problem (specifically, data points from X can be represented using polylog(d)
bits, and queries from Q can be represented using poly(d) bits). There exists a
problem P : X∗ × Q → M such that the following holds.
1 We remark, however, that all of our results extend to the streaming setting. See

Remark 3.3.
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1. P can be solved non-privately using polylog(d) bits of space.
% See Lemma 3.2 for the formal statement.

2. P can be solved privately using sample and space complexity Õ(
√

d).
% See Lemma 3.4 for the formal statement.

3. Assuming the existence of a sub-exponentially secure symmetric-key encryp-
tion scheme, every computationally-efficient differentially-private algorithm
A for solving P must have space complexity Ω̃(

√
d), even if its sample com-

plexity is a large polynomial in d. Furthermore, this holds even if A is only
required to be computationally differentially private (namely, the adversary
we build against A is computationally efficient).
% See Corollary 3.13 for the formal statement.

Note that this is an exponential separation (in d) between the non-private
space complexity and the private space complexity. We emphasize that the hard-
ness of privately solving P does not come from not having enough samples.
Indeed, by Item 2, Õ(

√
d) samples suffice for privately solving this problem.

However, Item 3 states that unless the algorithm has large space, then it cannot
privately solve this problem even if it has many more samples than needed.

To the best of our knowledge, this is the first result that separates the space
complexity of private and non-private algorithms. Admittedly, the problem P
we define to prove the above theorem is somewhat unnatural. In contrast, our
negative results for adaptive data analysis (to be surveyed next) are for the
canonical problem studied in the literature.

1.2 Adaptive Data Analysis

Consider a data analyst interested in testing a specific research hypothesis. The
analyst acquires relevant data, evaluates the hypothesis, and (say) learns that it
is false. Based on the findings, the analyst now decides on a second hypothesis
to be tested, and evaluates it on the same data (acquiring fresh data might be
too expensive or even impossible). That is, the analyst chooses the hypotheses
adaptively, where this choice depends on previous interactions with the data.
As a result, the findings are no longer supported by classical statistical theory,
which assumes that the tested hypotheses are fixed before the data is gathered,
and the analyst runs the risk of overfitting to the data.

Starting with [15], the line of work on adaptive data analysis (ADA) aims
to design methods for provably guaranteeing statistical validity in such settings.
Specifically, the goal is to design a mechanism A that initially obtains a dataset D
containing t i.i.d. samples from some unknown distribution P, and then answers
k adaptively chosen queries w.r.t. P. Importantly, A’s answers must be accurate
w.r.t. the underlying distribution P, and not just w.r.t. the empirical dataset D.
The main question here is,
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Question 1.5. How many samples does A need (i.e., what should t be) in order
to support k such adaptive queries?

As a way of dealing with worst-case analysts, the analyst is assumed to be
adversarial in that it tries to cause the mechanism to fail. If a mechanism can
maintain utility against such an adversarial analyst, then it maintains utility
against any analyst. Formally, the canonical problem pursued by the line of
work on ADA is defined as a two-player game between a mechanism A and an
adversary B. See Fig. 1.

1. The adversary B chooses a distribution P over a data domain X.
2. The mechanism A obtains a sample S ∼ Pt containing t i.i.d. samples from P.
3. For k rounds j = 1, 2, . . . , k:

– The adversary chooses a function hj : X → {−1, 0, 1}, possibly as a function
of all previous answers given by the mechanism.

– The mechanism obtains hj and responds with an answer zj , which is given
to B.

Fig. 1. A two-player game between a mechanism A and an adversary B.

Definition 1.6 ([15]). A mechanism A is (α, β)-accurate for k queries over a
domain X using sample size t if for every adversary B (interacting with A in
the game specified in Fig. 1) it holds that

Pr
[∃j ∈ [k] s.t. |zj − hj(P)| > α

] ≤ β,

where hj(P) = Ex∼P [hj(x)] is the “true” value of hj on the underlying distribu-
tion P.

Following Dwork et al. [15], this problem has attracted a significant amount of
work, most of which is focused on understanding how many samples are needed
for adaptive data analysis (i.e., focused on Question 1.5). In particular, the
following almost matching bounds are known.

Theorem 1.7 ([2,15]). There exists a computationally efficient mechanism that
is (0.1, 0.1)-accurate for k queries using sample size t = Õ

(√
k
)
.

Theorem 1.8 ([24,34], informal). Assuming the existence of one-way func-
tions, every computationally efficient mechanism that is (0.1, 0.1)-accurate for k

queries must have sample size at least t = Ω
(√

k
)
.

Our Results for Adaptive Data Analysis with Bounded Space. All
prior work on the ADA problem treated it as a sampling problem, conveying the
message that “adaptive data analysis requires more samples than non adaptive
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data analysis”. In this work we revisit the ADA problem at a foundational level,
and ask:

Question 1.9. Is there a more fundamental bottleneck for the ADA problem
than the number of samples?

Consider a mechanism A that initially gets the full description of the under-
lying distribution P, but is required to shrink this description into a summary z,
whose description length is identical to the description length of t samples from
P. (We identify the space complexity of A with the size of z in bits.) Afterwards,
A needs to answer k adaptive queries using z, without additional access to P.
Does this give A more power over a mechanism that only obtains t samples from
P?

We show that, in general, the answer is no. Specifically, we show the following
theorem.

Theorem 1.10 (informal version of Theorem 4.1). Assuming the existence
of one-way functions, then every computationally efficient mechanism that is
(0.1, 0.1)-accurate for k queries must have space complexity at least Ω

(√
k
)
.

In fact, in the formal version of this theorem (see Theorem 4.1) we show that
the space complexity must be at least Ω

(√
k
)

times the representation length
of domain elements. We view this as a significant strengthening of the previous
lower bounds for the ADA problem: it is not that the mechanism did not get
enough information about P; it is just that it cannot shrink this information in
a way that allows for efficiently answering k adaptive queries. This generalizes
the negative results of [24,34], as sampling t =

√
k points from P is just one

particular way for storing information about P.

1.3 Our Techniques

We obtain our results through a combination of techniques across several research
areas including cryptography, privacy, learning theory, communication complex-
ity, and information theory.

Our Techniques: Multi-instance Leakage-Resilient Scheme. The main
cryptographic tool we define and construct is a suitable encryption scheme with
multiple keys that is built to withstand a certain amount of key leakage in a very
particular way. Specifically, the scheme consists of n instances of an underlying
encryption scheme with independent keys (each of length λ bits). The keys are
initially given to an adversary who shrinks them down to a summary z containing
s 
 n · λ bits. After this phase, each instance independently sets an additional
parameter, which is public but unknown to the adversary in the initial phase.
Then, the adversary obtains encryptions of plaintexts under the n keys. We
require that given z and the public parameters, the plaintexts encrypted with
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each key remain computationally hidden, except for a small number of the keys
(which depends on s, but not on n).

We call the scheme a multi-instance leakage-Resilient scheme (or MILR
scheme) to emphasize the fact that although the leakage of the adversary is an
arbitrary function of all the n keys, the scheme itself is composed of n instances
that are completely independent.

The efficiency of the MILR scheme is measured by two parameters: (1) the
number of keys under which encryptions are (potentially) insecure, and (2) the
loss in the security parameter λ. The scheme we construct is optimal in both
parameters up to a multiplicative constant factor. First, encryptions remain
hidden for all but O

(
s
λ

)
of the keys. This is essentially optimal, as the adversary

can define z to store the first s
λ keys. Second, we lose a constant factor in the

security parameter λ. An additional advantage of our construction is that its
internal parameters do not depend on s. If we did allow such a dependency, then
in some settings (particularly when s ≤ o(n ·λ)) it would be possible to fine-tune
the scheme to obtain a multiplicative 1 + o(1) loss in the efficiency parameters,
but this has little impact on our application.

Our construction is arguably the most natural one. To encrypt a plaintext
with a λ-bit key after the initial phase, we first apply an extractor (with the
public parameter as a seed) to hash it down to a smaller key, which is used to
encrypt the plaintext with the underlying encryption scheme.

The MILR scheme is related to schemes developed in the area of leakage-
resilient cryptography (cf., [10,19,20,26,27,30,33]) where the basic technique
of randomness extraction is commonly used. However, leakage-resilient cryp-
tography mainly deals with resilience of cryptosystems to side-channel attacks,
whereas our model is not designed to formalize security against such attacks
and has several properties that are uncommon in this domain (such as protecting
independent multiple instances of an encryption scheme in a way that inherently
makes some of them insecure). Consequently, the advanced cryptosytems devel-
oped in the area of leakage-resilient cryptography are either unsuitable, overly
complex, or inefficient for our purposes.

Despite the simplicity of our construction, our proof that it achieves the
claimed security property against leakage is somewhat technical. We stress that
we do not rely on hardness assumptions for specific problems, nor assume that
the underlying encryption scheme has special properties such as resilience to
related-key attacks. Instead, our proof is based on the pre-sampling technique
introduced by Unruh [37] to prove security of cryptosystems against non-uniform
adversaries in the random oracle model. This technique has been recently refined
and optimized in [11,12,14] based on tools developed in the area of communica-
tion complexity [22,28]. The fact that we use the technique to prove security in
a computational (rather than information-theoretic) setting seems to require the
assumption that the underlying encryption scheme is secure against non-uniform
adversaries (albeit this is considered a standard assumption).
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Our Techniques: Privacy Requires More Space. We design a problem that
can be solved non-privately with very small space complexity, but requires a large
space complexity with privacy. To achieve this, we lift a known negative result on
the sample complexity of privately solving a specific problem to obtain a space
lower bound for a related problem. The problem we start with, for which there
exists a sampling lower bound, is the so-called 1-way marginals problem with
parameter d. In this problem, our input is a dataset D ∈ ({0, 1}d)∗ containing
a collection of binary vectors, each of length d. Our goal is to output a vector
�a ∈ [0, 1]d that approximates the average of the input vectors to within small
L∞ error, say to within error 1/10. That is, we want vector �a ∈ [0, 1]d to satisfy:∥
∥
∥�a − 1

|D|
∑

�x∈D �x
∥
∥
∥

∞
≤ 1

10 .

We say that an algorithm for this problem has sample complexity n if, for
every input dataset of size n, it outputs a good solution with probability at least
0.9. One of the most fundamental results in the literature of differential privacy
shows that this problem requires a large dataset:

Theorem 1.11 ([9], informal). Every differentially private algorithm for solv-
ing the 1-way marginal problem with parameter d must have sample complexity
n = Ω(

√
d).

To lift this sampling lower bound into a space lower bound, we consider a
problem in which the input dataset contains n keys �x = (x1, . . . , xn) (sampled
from our MILR scheme). The algorithm must then shrink this dataset into a
summary z containing s bits. Afterwards, the algorithm gets a “query” that is
specified by a collection of n ciphertexts, each of which is an encryption of a d-
bit vector. The desired task is to approximate the average of the plaintext input
vectors. Intuitively, if the algorithm has space s 
 √

d, then by the properties of
our MILR scheme, it can decrypt at most ≈ s 
 √

d of these d-bit vectors, and
is hence trying to solve the 1-way marginal problem with fewer than

√
d samples.

We show that this argument can be formalized to obtain a contradiction.

Our Techniques: ADA Is About Space. As we mentioned, Hardt and Ull-
man [24] and Steinke and Ullman [34] showed that the ADA problem requires a
large sample complexity (see Theorem 1.8). Specifically, they showed that there
exists a computationally efficient adversary that causes every efficient mech-
anism to fail in answering adaptive queries. Recall that the ADA game (see
Fig. 1) begins with the adversary choosing the underlying distribution.

We lift the negative result of [24,34] to a space lower bound. To achieve
this, we design an alternative adversary that first samples a large collection
of keys for our MILR scheme, and then defines the target distribution to be
uniform on these sampled keys. Recall that in our setting, the mechanism gets
an exact description of this target distribution and afterwards it must shrink
this description into s bits. However, by the properties of our MILR scheme,
this means that the mechanism would only be able to decrypt ciphertexts that
correspond to at most ≈ s/λ of the keys. We then show that the adversary
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of [24,34] can be simulated under these conditions, where the “input sample”
from their setting corresponds to the collection of indices of keys for which the
mechanism can decrypt ciphertexts.

1.4 Applications to Communication Complexity

Finally, our arguments also provide distributional one-way communication com-
plexity lower bounds, which are useful when the goal is to compute a relation
with a very low success probability. To the best of our knowledge, existing query-
to-communication lifting theorems, e.g., [22,23,31] do not consider the problems
and input distributions that we consider here. Roughly speaking, we show that
if any sampling based protocol for computing a function f requires k samples
(a1, b1), . . . , (ak, bk), where ai ∈ {0, 1}t for each i ∈ [k], then any one-way proto-
col that computes f(A,B) in this setting must use Ω(kt) communication.

More precisely, in the two-player one-way communication game, inputs A
and B are given to Alice and Bob, respectively, and the goal is for Alice to send
a minimal amount of information to Bob, so that Bob can compute f(A,B) for
some predetermined function f . The communication cost of a protocol Π is the
size of the largest message in bits sent from Alice across all possible inputs A and
the (randomized) communication complexity is the minimum communication
cost of a protocol that succeeds with probability at least 2

3 . In the distributional
setting, A and B are further drawn from a known underlying distribution.

In our distributional setting, suppose Alice has m independent and uniform
numbers a1, . . . , am so that either ai ∈ GF (p) for all i ∈ [m] or ai ∈ GF (2t)
for sufficiently large t for all i ∈ [m] and suppose Bob has m independent and
uniform numbers b1, . . . , bm from the same field, either GF (p) or GF (2t). Then
for any function f(〈a1, b1〉, . . . , 〈am, bm〉), where the dot products are taken over
GF (2) or f(a1 ·b1, . . . , am ·bm), where the products are taken over GF (p), has the
property that the randomized one-way communication complexity of computing
f with probability σ is the same as the number of samples from a1, . . . , am

that Alice needs to send Bob to compute f with probability σ − ε. It is easy
to prove sampling lower bounds for many of these problems, sum as

∑
i ai ·

bi (mod p) or MAJ(〈a1, b1〉, . . . , 〈am, bm〉), and this immediately translates into
communication complexity lower bounds. The main intuition for our overall
lower bound argument is that the numbers b1, . . . , bm can be viewed as the hash
functions that Bob has and thus we can apply a variant of the leftover hash
lemma if Bob only has a small subset of these numbers. See the full version of
this work for the details.

1.5 Related Works

Dwork et al. [17] used traitor-tracing schemes to prove computational sampling
lower bounds for differential privacy. Their results were extended by Ullman [36],
who used fingerprinting codes to construct a novel traitor-tracing scheme and
to obtain stronger computational sampling lower bounds for differential pri-
vacy. Ullman’s construction can be viewed as an encrypted variant of the 1-way
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marginal problem. Bun et al. [8] and Alon et al. [1] showed that there are trivial
learning tasks that require asymptotically more samples to solve with differen-
tial privacy (compared to the non-private sample complexity). These results are
fundamentally different than ours, as they are about sampling rather than space.
Feldman [21] and Brown et al. [7] showed that there are learning problems for
which every near optimal learning algorithm (obtaining near optimal error w.r.t.
to the number of input samples it takes) must memorize a large portion of its
input data. These works do not directly address the additional space required
for preserving privacy. See the full version for additional related works.

1.6 Paper Structure

The rest of the paper is structured as follows. The MILR scheme is defined
in Sect. 2. Our results for differential privacy and adaptive data analysis are
described in Sects. 3 and 4, respectively. We construct our MILR scheme in
Sect. 5, and prove its security in Sect. 6. Some of the technical details from these
sections are deferred to the full version of this work.

2 Multi-instance Leakage-Resilient Scheme

We define a multi-instance leakage-resilient scheme (or MILR scheme) to be a
tuple of efficient algorithms (Gen, Param,Enc,Dec) with the following syntax:

– Gen is a randomized algorithm that takes as input a security parameter λ
and outputs a λ-bit secret key. Formally, x ← Gen(1λ).

– Param is a randomized algorithm that takes as input a security parameter λ
and outputs a poly(λ)-bit public parameter. Formally, p ← Param(1λ).

– Enc is a randomized algorithm that takes as input a secret key x, a pub-
lic parameter p, and a message m ∈ {0, 1}, and outputs a ciphertext
c ∈ {0, 1}poly(λ). Formally, c ← Enc(x, p,m).

– Dec is a deterministic algorithm that takes as input a secret key x, a public
parameter p, and a ciphertext c, and outputs a decrypted message m′. If the
ciphertext c was an encryption of m under the key x with the parameter
p, then m′ = m. Formally, if c ← Enc(x, p,m), then Dec(x, p, c) = m with
probability 1.

To define the security of an MILR scheme, let n ∈ N, let �x = (x1, . . . , xn) be
a vector of keys, and let �p = (p1, . . . , pn) be a vector of public parameters (set
once for each scheme by invoking Param). Let J ⊆ [n] be a subset, referred to
as the “hidden coordinates”. Now consider a pair of oracles E1(�x, �p, J, ·, ·) and
E0(�x, �p, J, ·, ·) with the following properties.

1. E1(�x, �p, J, ·, ·) takes as input an index of a key j ∈ [n] and a message m, and
returns Enc(xj , pj ,m).

2. E0(�x, �p, J, ·, ·) takes the same inputs. If j ∈ J then the outcome is
Enc(xj , pj , 0), and otherwise the outcome is Enc(xj , pj ,m).
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Definition 2.1. Let λ be a security parameter. Let Γ : R → R and τ : R2 →
R be real-valued functions. An MILR scheme (Gen,Param,Enc,Dec) is (Γ, τ)-
secure against space bounded preprocessing adversaries if the following holds.

(1) Multi semantic security: For every n = poly(Γ (λ)) and every
poly(Γ (λ))-time adversary B there exists a negligible function negl such that
∣
∣
∣
∣

Pr
�x,�p,B,Enc

[

BE0(�x,�p,[n],·,·)(�p) = 1
]

− Pr
�x,�p,B,Enc

[

BE1(�x,�p,[n],·,·)(�p) = 1
]
∣
∣
∣
∣
≤ negl(Γ (λ)).

That is, a computationally bounded adversary that gets the public parame-
ters, but not the keys, cannot tell whether it is interacting with E0 or with
E1.

(2) Multi-security against a bounded preprocessing adversary: For
every n = poly(Γ (λ)), every s ≤ n · λ, and every preprocessing proce-
dure F :

({0, 1}λ
)n → {0, 1}s (possibly randomized), there exists a ran-

dom function J = J(F, �x, z, �p) ⊆ [n] that given a collection of keys �x and
public parameters �p, and an element z ← F (�x), returns a subset of size
|J | ≥ τ := n−τ(λ, s) such that for every poly(Γ (λ))-time algorithm B there
exists a negligible function negl satisfying
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
�x,�p,B,Enc
z←F (�x)

J←J(F,�x,z,�p)

[

BE0(�x,�p,J,·,·)
(z, �p) = 1

]

− Pr
�x,�p,B,Enc
z←F (�x)

J←J(F,�x,z,�p)

[

BE1(�x,�p,J,·,·)
(z, �p) = 1

]

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(Γ (λ)).

That is, even if s bits of our n keys were leaked (computed by the prepro-
cessing function F operating on the keys), then still encryptions w.r.t. the
keys of J are computationally indistinguishable.

Remark 2.2. When Γ is the identity function, we simply say that the scheme
is τ -secure. Note that in this case, security holds against all adversaries with
runtime polynomial in the security parameter λ. We will further assume the
existence of a sub-exponentially secure encryption scheme. By that we mean
that there exists a constant ν > 0 such that the scheme is (Γ, τ)-secure for
Γ (λ) = 2λν

. That is, we assume the existence of a scheme in which security
holds against all adversaries with runtime polynomial in 2λν

.

In Sects. 5 and 6 we show the following theorem.

Theorem 2.3. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ). If there exists a Γ (λ)-secure encryp-
tion scheme against non-uniform adversaries then there exists an MILR scheme
that is (Γ (λ), τ)-secure against space bounded non-uniform preprocessing adver-
saries, where τ(λ, s) = 2s

λ + 4.
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3 Space Hardness for Differential Privacy

Consider an algorithm that is instantiated on a dataset D and then aims to
answer a query w.r.t. D. We say that such an algorithm has space s if, before
it gets the query, it shrinks D to a summary z containing at most s bits. Then,
when obtaining the query, the algorithm answers it using only the summary z
(without additional access to the original dataset D).

Let (Gen,Param,Enc,Dec) be an MILR scheme with security parameter λ. In
the (λ, d)-decoded average (DA) problem with sample complexity n, the input
dataset contains n keys, that is D = (x1, . . . , xn) ∈ ({0, 1}λ

)n. A query q =
((p1, c1), . . . , (pn, cn)) is specified using n pairs (pi, ci) where pi is a public param-
eter and ci is a ciphertext, which is an encryption of a binary vector of length d.
The goal is to release a vector �a = (a1, . . . , ad) ∈ [0, 1]d that approximates the
“decrypted average vector (dav)”, defined as davq(D) = 1

n

∑n
i=1 Dec(xi, pi, ci).

Definition 3.1. Let A = (A1,A2) be an algorithm where A1 :
({0, 1}λ

)n →
{0, 1}s is the preprocessing procedure that summarizes a dataset of n keys into s
bits, and where A2 is the “response algorithm” that gets the outcome of A1(D)
and a query q. We say that A solves the DA problem if with probability at least
9/10 the output is a vector �a satisfying ‖�a − davq(D)‖∞ ≤ 1

10 .

Without privacy considerations, the DA problem is almost trivial. Specifically,

Lemma 3.2. The (λ, d)-DA problem can be solved efficiently using space s =
O (λ log(d)).

Proof. The preprocessing algorithm A1 samples O (log d) of the input keys. Algo-
rithm A2 then gets the query q and estimates the dav vector using the sampled
keys. The lemma then follows by the Chernoff bound.

Remark 3.3. As we mentioned, to simplify the presentation, in our computa-
tional model we identify the space complexity of algorithm A = (A1,A2) with
the size of the output of algorithm A1. We remark, however, that our separation
extends to a streaming model where both A1 and A2 are required to have small
space. To see this, note that algorithm A1 in the above proof already has small
space (and not just small output length), as it merely samples O(log d) keys from
its input dataset. We now analyze the space complexity of A2, when it reads the
query q in a streaming fashion. Recall that the query q contains n public param-
eters p1, . . . , pn and n ciphertexts c1, . . . , cn, where each ci is an encryption of a
d-bit vector, call it yi ∈ {0, 1}d. To allow A2 to read q using small space, we order
it as follows: q = (p1, . . . , pn), (c1,1, . . . , cn,1), . . . , (c1,d, . . . , cn,d) � q0◦q1◦· · ·◦qd.
Here ci,j = Enc(xi, pi, yi[j]) is an encryption of the jth bit of yi using key xi and
public parameter pi. Note that the first part of the stream, q0, contains the public
parameters, and then every part qj contains encryptions of the jth bit of each
of the n input vectors. With this ordering of the query, algorithm A2 begins by
reading q0 and storing the O(log d) public parameters corresponding to the keys
that were stored by A1. Then, for every j ∈ [d], when reading qj, algorithm A2
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estimates the average of the jth coordinate using the sampled keys. Algorithm
A2 then outputs this estimated value, and proceeds to the next coordinate. This
can be implemented using space complexity poly(λ log(d)).

So, without privacy constraints, the DA problem can be solved using small
space. We now show that, assuming that the input dataset is large enough,
the DA problem can easily be solved with differential privacy using large space.
Specifically,

Lemma 3.4. There is a computationally efficient (ε, δ)-differentially pri-
vate algorithm that solves the (λ, d)-DA problem using space s =

O
(

1
ε ·

√
d · log(1δ ) · λ · log d

)
, provided that the size of the input dataset satis-

fies n = Ω(s) (large enough).

Proof. The preprocessing algorithm A1 samples ≈ √
d of the keys. By standard

composition theorems for differential privacy [18], this suffices for the response
algorithm A2 to privately approximate each of the d coordinates of the target
vector.

Thus the DA problem can be solved non-privately using small space, and it
can be solved privately using large space. Our next goal is to show that large
space is indeed necessary to solve this problem privately. Before showing that, we
introduce several additional preliminaries on computational differential privacy
and on fingerprinting codes.

3.1 Preliminaries on Computational Differential Privacy
and Fingerprinting Codes

Computational differential privacy was defined by Beimel et al [3] and Mironov et
al. [29]. Let A be a randomized algorithm (mechanism) that operates on datasets.
Computational differential privacy is defined via a two player game between a chal-
lenger and an adversary, running a pair of algorithms (Q,T ). The game begins with
the adversary Q choosing a pair of neighboring datasets (D0,D1) of size n each, as
well as an arbitrary string r (which we think of as representing its internal state).
Then the challenger samples a bit b and applies A(Db) to obtain an outcome a.
Then T (r, ·) is applied on a and tries to guess b. Formally,

Definition 3.5. Let λ be a security parameter, let ε be a constant, and let
δ : R → R be a function. A randomized algorithm A : X∗ → Y is (ε, δ)-
computationally differentially private (CDP) if for every n = poly(λ) and every
non-uniform poly(λ)-time adversary (Q,T ) there exists a negligible function negl
such that

Pr
(r,D0,D1)←Q

A,T

[T (r,A(D0)) = 1] ≤ eε · Pr
(r,D0,D1)←Q

A,T

[T (r,A(D1)) = 1]+δ(n)+negl(λ).

Definition 3.6. Let ε be a constant and let δ = δ(λ) be a function. Given two
probability ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N we write X ≈ε,δ Y if for
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every non-uniform probabilistic polynomial-time distinguisher D there exists a
negligible function negl such that Prx←Xλ

[D(x) = 1] ≤ eε ·Pry←Yλ
[D(y) = 1] +

δ(λ) + negl(λ), and vice versa.

We recall the concept of fingerprinting codes, which was introduced by Boneh
and Shaw [6] as a cryptographic tool for watermarking digital content. Starting
from the work of Bun, Ullman, and Vadhan [9], fingerprinting codes have played
a key role in proving lower bounds for differential privacy in various settings.

A (collusion-resistant) fingerprinting code is a scheme for distributing code-
words w1, · · · , wn to n users that can be uniquely traced back to each user.
Moreover, if a group of (at most k) users combines its codewords into a pirate
codeword ŵ, then the pirate codeword can still be traced back to one of the users
who contributed to it. Of course, without any assumption on how the pirates can
produce their combined codeword, no secure tracing is possible. To this end, the
pirates are constrained according to a marking assumption, which asserts that
the combined codeword must agree with at least one of the “real” codewords in
each position. Namely, at an index j where wi[j] = b for every i ∈ [n], the pirates
are constrained to output ŵ with ŵ[j] = b as well.2

Definition 3.7 ([6,35]). A k-collusion resilient fingerprinting code of length d
for n users with failure probability γ, or (n, d, k, γ)-FPC in short, is a pair of ran-
dom variables C ∈ {0, 1}n×d and Trace : {0, 1}d → 2[n] such that the following
holds. For all adversaries P : {0, 1}k×d → {0, 1}d and S ⊆ [n] with |S| = k,

Pr
C,Trace,P

[(∀1 ≤ j ≤ d ∃i ∈ [n] s.t. P (CS)[j] = ci[j]) ∧ (Trace(P (CS)) = ∅)] ≤ γ,

and
Pr

C,Trace,P
[Trace(P (CS)) ∩ ([n] \ S) �= ∅] ≤ γ,

where CS contains the rows of C given by S.

Remark 3.8. As mentioned, the condition {∀1 ≤ j ≤ d ∃i ∈ [n] s.t. P (CS)[j]
= ci[j]} is called the “marking assumption”. The second condition is called the
“small probability of false accusation”. Hence, if the adversary P guarantees that
its output satisfies the marking assumption, then with probability at least 1− 2γ
it holds that algorithm Trace outputs an index i ∈ S.

Theorem 3.9 ([6,34,35]). For every 1 ≤ k ≤ n there is a k-collusion-resilient
fingerprinting code of length d = O(k2 · log n) for n users with failure probability
γ = 1

n2 and an efficiently computable Trace function.

We remark that there exist both adaptive and non-adaptive constructions of
fingerprinting codes with the guarantees of Theorem 3.9; we use the non-adaptive
variant.

2 We follow the formulation of the marking assumption as given by [34], which is a bit
different than the commonly considered one.
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3.2 A Negative Result for the DA Problem

Our main negative result for space bounded differentially private algorithms is
the following.

Theorem 3.10. Let Π = (Gen,Param,Enc,Dec) be an MILR scheme with
security parameter λ that is (Γ, τ)-secure against space bounded preprocessing
adversaries. Let d ≤ poly(Γ (λ)) and n ≤ poly(Γ (λ)) be functions of λ. Let ε
be a constant and let δ ≤ 1

4n(eε+1) = Θ( 1n ). For every poly(Γ (λ))-time (ε, δ)-
CDP algorithm for the (λ, d)-DA problem with sample complexity n and space
complexity s it holds that τ(λ, s) = Ω

(√
d

log n

)
.

Proof. Let A = (A1,A2) be a poly(Γ (λ))-time CDP algorithm for the (λ, d)-
DA problem using sample complexity n = poly(Γ (λ)) and space complexity s.
Denote τ = τ(λ, s), and assume towards a contradiction that τ = O

(√
d

log n

)

(small enough). We construct the following adversary B to an
(
n+1, d, τ , 1

n2

)
-

FPC (such a code is guaranteed to exist by Theorem 3.9 and by the contradictory
assumption).

1. The input is n codewords w1, . . . , wn ∈ {0, 1}d.
2. Sample n keys x1, . . . , xn ∼ Gen(1λ).
3. Let z ← A1(x1, . . . , xn).
4. Sample n public parameters p1, . . . , pn ∼ Param(1λ).
5. For i ∈ [n] let ci ← Enc(xi, pi, wi).
6. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
7. Output �a, after rounding its coordinates to {0, 1}.

We think of B as an adversary to an FPC, and indeed, its input is a collection
of codewords and its output is a binary vector of length d. Observe that if A
solves the DA problem (i.e., approximates the decrypted average vector), then
for every coordinate, the outcome of B must agree with at least one of the input
codewords, namely, it satisfies the marking assumption (see Remark 3.8).

Remark 3.11. Before we proceed with the formal proof, we give an overview of
its structure (this remark can be ignored, and is not needed for the formal proof).
Informally, we will show that

(1) Algorithm B is computationally differentially private w.r.t. the collection of
codewords (even though our assumption on A is that it is private w.r.t. the
keys).

(2) Leveraging the properties of the MILR scheme, we will show that B must
effectively ignore most of its inputs, except for at most τ codewords. This
means that B is effectively an FPC adversary that operates on only τ code-
words (rather than the n codewords it obtains as input).



50 I. Dinur et al.

(3) A known result in the literature of differential privacy (starting from [9]) is
that a successful FPC adversary cannot be differentially private, because this
would contradict the fact that the tracing algorithm is able to recover one of
its input points. Our gain here comes from the fact that B only uses (effec-
tively) τ codewords, and hence, in order to get a contradiction, it suffices
to use an FPC with a much shorter codeword-length (only ≈ τ2 instead of
≈ n2). This will mean that the hardness of the DA problem depends on the
space of A (which controls τ) rather than the size of the input (which is n).

Recall that A = (A1,A2) is computationally differentially private w.r.t. the
keys. We first show that B is computationally differentially private w.r.t. the
codewords. To this end, let Q be an adversary (as in Definition 3.5) that outputs
a pair of neighboring datasets (�w, �w′), each containing n codewords, together
with a state r. Given (�w, �w′), we write � = �(�w, �w′) ⊆ [n] to denote the index on
which �w, �w′ differ. We also write x0 to denote another key, independent of the
keys x1, . . . , xn sampled by algorithm B. By the privacy guarantees of algorithm
A and by the semantic security of the encryption scheme (see Definition 2.1) we
have that

〈r, B(�w)〉 ≡
≡ 〈r, A2 (A1(x1, ..., x�, ..., xn), �p,Enc(x1, p1, w1), ...,Enc(x�, p�, w�), ...,Enc(xn, pn, wn))〉

≈(ε,δ) 〈r, A2 (A1(x1, ..., x0, ..., xn), �p,Enc(x1, p1, w1), ...,Enc(x�, p�, w�), ...,Enc(xn, pn, wn))〉
≡c 〈r, A2

(A1(x1, ..., x0, ..., xn), �p,Enc(x1, p1, w1), ...,Enc(x�, p�, w
′
�), ...,Enc(xn, pn, wn)

)〉
≈(ε,δ) 〈r, A2

(A1(x1, ..., x�, ..., xn), �p,Enc(x1, p1, w1), ...,Enc(x�, p�, w
′
�), ...,Enc(xn, pn, wn)

)〉
≡ 〈r, B( �w′)〉.

So algorithm B is (2ε, (eε + 1)δ)-computationally differentially private. Now
consider the following variant of algorithm B, denoted as B̂. The modifications
from B are marked in red.

1. The input is n codewords w1, . . . , wn ∈ {0, 1}d.
2. Sample n keys x1, . . . , xn ∼ Gen(1λ).
3. Let z ← A1(x1, . . . , xn).
4. Sample n public parameters p1, . . . , pn ∼ Param(1λ).
5. Let J ← J(A1, �x, z, �p) ⊆ [n] be the subset of coordinates guaranteed to exist

by Definition 2.1, of size |J | = n − τ .
6. For i ∈ J let ci ← Enc(xi, pi, 0).
7. For i ∈ [n] \ J let ci ← Enc(xi, pi, wi).
8. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
9. Output �a, after rounding its coordinates to {0, 1}.
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Remark 3.12. Observe that algorithm B̂ is not necessarily computationally effi-
cient, since computing J(A1, �x, z, �p) might not be efficient. Nevertheless, as we
next show, this still suffices to obtain a contradiction and complete the proof of
the lower bound. Specifically, we will show that B̂ is computationally differentially
private (w.r.t. the codewords) and that it is a successful adversary to the FPC.
This will lead to a contradiction, even if B̂ itself is a non-efficient mechanism.

We now show that, by the multi-security of the MILR scheme (see Defini-
tion 2.1), the outcome distributions of B and B̂ are computationally indistin-
guishable. Specifically, we want to show that for every efficient adversary (Q,T ),
as in Definition 3.5, it holds that

|Pr[T (r,B(�w)) = 1] − Pr[T (r, B̂(�w)) = 1]| ≤ negl(Γ (λ)).

Note that here both expressions are with the same dataset �w (without the neigh-
boring dataset �w′). To show this, consider the following algorithm, denoted as
W, which we view as an adversary to the MILR scheme. This algorithm has only
oracle access to encryptions, via an oracle E .

1. The input of W is n codewords w1, . . . , wn ∈ {0, 1}d, an element z (supposedly
computed by A1), and a collection of n public parameters p1, . . . , pn.

2. For i ∈ [n] let ci ← E(i, wi).
3. Let �a ← A2(z, (p1, c1), . . . , (pn, cn)).
4. Output �a, after rounding its coordinates to {0, 1}.

Now by the multi-security of the MILR scheme we have
∣
∣
∣
∣ Pr
Q,T,B

[T (r,B(�w)) = 1] − Pr
Q,T,B

[T (r, B̂(�w)) = 1]
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
�x,�p,W,Q,T,Enc

z←A1(�x)
J←J(A1,�x,z,�p)

[Q(r,WE1(�x,�p,J,·,·)(�w, z, �p)) = 1]

− Pr
�x,�p,W,Q,T,Enc

z←A1(�x)
J←J(A1,�x,z,�p)

[Q(r,WE0(�x,�p,J,·,·)(�w, z, �p)) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(Γ (λ)).
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So we have that B̂ ≡c B and we have that B is (2ε, (eε+1)δ)-computationally
differentially private. Hence, algorithm B̂ is also (2ε, (eε + 1)δ)-computationally
differentially private (w.r.t. the input codewords). Observe that algorithm B̂
ignores all but N − |J | = τ of the codewords, and furthermore, the choice of
which codewords to ignore is independent of the codewords themselves. Now
consider the following thought experiment.

1. Sample a codebook w0, w1, . . . , wn for the fingerprinting code.
2. Run B̂ on (w1, . . . , wn).
3. Run Trace on the outcome of B̂ and return its output.

As B̂ ignores all but τ codewords, by the properties of the FPC, with probability
at least 1− 1

n2 ≥ 1
2 the outcome of Trace is a coordinate of a codeword that B̂ did

not ignore, and in particular, it is a coordinate between 1 and n. Therefore, there
must exist a coordinate i∗ �= 0 that is output by this thought experiment with
probability at least 1

2n . Now consider the following modified thought experiment.

1. Sample a codebook w0, w1, . . . , wn for the fingerprinting code.
2. Run B̂ on (w1, . . . , wi∗−1, w0, wi∗+1, . . . , wn).
3. Run Trace on the outcome of B̂ and return its output.

As B̂ is computationally differentially private and as Trace is an efficient algo-
rithm, the probability of outputting i∗ in this second thought experiment is
roughly the same as in the previous thought experiment, specifically, at least

e−2ε

(
1
2n

− (eε + 1)δ − negl(Γ (λ))
)

≥ e−2ε

(
1
4n

− negl(Γ (λ))
)

= Ω

(
1
n

)
.

However, by the guarantees of the FPC (small probability of false accusation),
in the second experiment the probability of outputting i∗ should be at most 1

n2 .
This is a contradiction to the existence of algorithm A.

The following corollary follows by instantiating Theorem 3.10 with our MILR
scheme, as specified in Theorem 2.3.

Corollary 3.13. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), and let d ≤ poly(Γ (λ)). If there
exists a Γ (λ)-secure encryption scheme against non-uniform adversaries then
there exists an MILR scheme such that the corresponding (λ, d)-DA problem
requires large space to be solved privately. Specifically, let n ≤ poly(Γ (λ)), let ε
be a constant, and let δ ≤ 1

4n(eε+1) = Θ( 1n ). Every poly(Γ (λ))-time (ε, δ)-CDP
algorithm for the (λ, d)-DA problem with sample complexity n must have space
complexity s = Ω

(
λ ·

√
d

log n

)
.

4 Space Hardness for Adaptive Data Analysis (ADA)

Consider a mechanism that first gets as input a sample containing t i.i.d. samples
from some underlying (unknown) distribution D, and then answers k adaptively
chosen statistical queries w.r.t. D. Importantly, the answers must be accurate
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Algorithm 1. AdaptiveGameSpace(A = (A1,A2),B, s, k)
1. The adversary B chooses a distribution D over a domain X .
2. The mechanism A1 gets D and summarizes it into s bits, denoted as z.
3. The mechanism A2 is instantiated with z.
4. For round i = 1, 2, . . . , k:

(a) The adversary B specifies a query qi : X → {−1, 0, 1}
(b) The mechanism A2 obtains qi and responds with an answer ai ∈ [−1, 1]
(c) ai is given to A

5. The outcome of the game is one if ∃i s.t. |ai − Ey∼D[qi(y)]| > 1/10, and zero
otherwise.

w.r.t. the underlying distribution and not just w.r.t. the empirical sample. The
challenge here is that as the queries are being chosen adaptively, the interaction
might quickly lead to overfitting, i.e., result in answers that are only accurate
w.r.t. the empirical sample and not w.r.t. the underlying distribution. This fun-
damental problem, which we refer to as the ADA problem, was introduced by
Dwork et al. [15] who connected it to differential privacy and showed that differ-
ential privacy can be used as a countermeasure against overfitting. Intuitively,
overfitting happens when answers reveal properties that are specific to the input
sample, rather than to the general population, and this is exactly what differen-
tial privacy aims to protect against.

Hardt, Steinke, and Ullman [24,34] showed negative results for the ADA
problem. Specifically, they showed that given t samples, it is computationally
hard to answer more than k = O(t2) adaptive queries. We show that the hardness
of the ADA problem is actually more fundamental; it is, in fact, a result of a
space bottleneck rather than a sampling bottleneck. Informally, we show that
the same hardness result continues to hold even if in the preprocessing stage
the mechanism is given the full description of the underlying distribution D,
and is then required to store only a limited amount of information about it (an
amount that equals the representation length of t samples from D). So it is not
that the mechanism did not get enough information about D; it is just that it
cannot shrink this information in a way that supports t2 adaptive queries. This
generalizes the negative results of [24,34], as sampling t points from D is just
one particular way of trying to store information about D.

Consider AdaptiveGameSpace, where the mechanism initially gets the full
description of the underlying distribution, but it must shrink it into an s-bit
summary z. To emphasize that the mechanism does not have additional access to
the underlying distribution, we think about it as two mechanisms A = (A1,A2)
where A1 computes the summary z and where A2 answers queries given z. We
consider s = |z| as the space complexity of such a mechanism A.

Our main theorem in the context of the ADA problem is the following.
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Theorem 4.1. Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), and let k ≤ poly(Γ (λ)). If there
exists a Γ (λ)-secure encryption scheme against non-uniform adversaries then
there exists a poly(Γ (λ))-time adversary B such that the following holds.
Let A=(A1,A2) be a poly(Γ (λ))-time mechanism with space complexity s ≤
O

(
λ · √

k
)

(small enough). Then, Pr[AdaptiveGameSpace(A,B, s, k) = 1] > 2
3 .

Furthermore, the underlying distribution defined by the adversary B can be
fully described using O(

√
k · λ) bits, it is sampleable in poly(Γ (λ))-time, and

elements sampled from this distribution can be represented using O(λ + log(k))
bits.

In a sense, the “furtheremore” part of the theorem shows that the distribu-
tion chosen by our adversary is not too complex. Specifically, our negative result
continues to hold even if the space of the mechanism is linear in the full descrip-
tion length of the underlying distribution (in a way that allows for efficiently
sampling it). If the space of the mechanism was just a constant times bigger,
it could store the full description of the underlying distribution and answer an
unbounded number of adaptive queries. The formal proof of Theorem 4.1 is
deferred to the full version of this work. Here we only provide an informal (and
overly simplified) proof sketch.

4.1 Informal Proof Sketch

Let k denote the number of queries that the adversary makes. Our task is to show
that there is an adversary that fails every efficient mechanism Aspace that plays
in AdaptiveGameSpace, provided that it uses space s 
 √

k. What we know from
[24,34] is that there is an adversary Bsample that fails every efficient mechanism
that plays in the standard ADA game (the game specified in Fig. 1), provided
that its sample complexity is t 
 √

k. We design an adversary Bspace that plays
in AdaptiveGameSpace in a way that emulates Bsample. We now elaborate on the
key points in the construction of Bspace, and their connection to Bsample.

Recall that both games begin with the adversary specifying the underlying
distribution. A useful fact about the adversary Bsample (from [24,34]) is that
the distribution it specifies is uniform on a small set of points of size n = Θ(t)
(these n points are unknown to the mechanism that Bsample plays against). Our
adversary, Bspace, first samples n independent keys (x1, . . . , xn) from our MILR
scheme, and then defines the target distribution Dspace to be uniform over the
set {(j, xj)}j∈[n]. Recall that in AdaptiveGameSpace this target distribution is
given to the mechanism Aspace, who must shrink it into a summary z containing
s bits. After this stage, by the security of our MILR scheme, there should exist
a large set J ⊆ [n] of size |J | = n − τ corresponding to keys uncompromised by
Aspace. Denote I = [n] \ J .

Our adversary Bspace now emulates Bsample as follows. First, let Dsample

denote the target distribution chosen by Bsample, and let m1, . . . ,mn denote
its support. Our adversary then samples n public parameters p1, . . . , pn, and
encrypts every point in the support mj using its corresponding key and public
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parameter. Specifically, cj ← Enc(xj , pj ,mj). % This is an over-simplification. For
technical reasons, the actual construction is somewhat different.

Now, for every query q specified by Bsample, our adversary outputs the query
fq defined by fq(j, x) = q(Dec(x, pj , cj)). Our adversary then obtains an answer
a from the mechanism Aspace, and feeds a to Bsample. Observe that the “true”
value of fq w.r.t. Dspace is the same as the “true” value of q w.r.t. Dsample. There-
fore, if Aspace maintains accuracy in this game against our adversary Bspace, then
in the emulation that Bspace runs internally we have that Bspace maintains utility
against Bsample. Intuitively, we would like to say that this leads to a contradic-
tion, since Bsample fails every efficient mechanism it plays against. But this is
not accurate, because Bspace saw the full description of the target distribution
Dsample, and Bsample only fools mechanisms that get to see at most t samples
from this target distribution.

To overcome this, we consider the following modified variant of our adversary,
called B̂space. The modification is that B̂space does not get to see the full descrip-
tion of Dsample. Instead it only gets to see points from the support of Dsample that
correspond to indices in the set I = [n] \ J . Then, when generating the cipher-
texts cj , the modified adversary B̂space encrypts zeroes instead of points mj

which it is missing. By the security of our MILR scheme, the mechanism Aspace

cannot notice this modification, and hence, assuming that it maintains accuracy
against our original adversary Bspace then it also maintains accuracy against our
modified adversary B̂space. As before, this means that B̂space maintains accuracy
against the emulated Bsample. Intuitively, this leads to a contradiction, as B̂space

is using only τ ≤ t points from the target distribution Dsample.
We stress that this proof sketch is over-simplified and inaccurate. In partic-

ular, the following two technical issues need to be addressed: (1) It is true that
B̂space uses only τ points from the support of the target distribution Dsample,
but these points are not necessarily sampled from Dsample; and (2) The modified
adversary B̂space is not computationally efficient because computing the set J
is not efficient. We address these issues, and other informalities made herein, in
the full version of this work.

5 Construction of an MILR Scheme from a Semantically
Secure Encryption Scheme

Construction. Let λ′ ≤ λ be such that λ = poly(λ′). Given an encryption
scheme Π ′ = (Gen′,Enc′,Dec′) such that Gen′(1λ′

) outputs a key uniformly
distributed on {0, 1}λ′

(i.e., x′ ←R {0, 1}λ′
), we construct an MILR scheme

Π = (Gen,Param,Enc,Dec) as follows:



56 I. Dinur et al.

– Gen: On input 1λ, return x ←R {0, 1}λ.
– Param: On input 1λ, let G be a family of universal hash functions with domain

{0, 1}λ and range {0, 1}λ′
. Return (a description of) g ←R G.

– Enc: On input (x, p,m), parse g := p (as a description of a hash function), let
x′ = g(x) and return Enc′(x′,m).

– Dec: On input (x, p, c), parse g := p, let x′ = g(x) and return Dec′(x′, c).

Using a standard construction of a universal hash function family, all the
algorithms run in time polynomial in λ. Moreover, if c ← Enc(x, p,m), then
Dec(x, p, c) = m with probability 1 (as this holds for Enc′ and Dec′).

The following two theorems (corresponding to the two security properties in
Definition 2.1) establish the security of Π and prove Theorem 2.3.

Theorem 5.1 (Multi semantic security). Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ) and
λ′ = 0.1λ. If Π ′ is Γ (λ′)-secure against uniform (resp. non-uniform) adver-
saries, then Π is Γ (λ)-secure against uniform (resp. non-uniform) adversaries.

Theorem 5.2 (Multi-security against bounded preprocessing adver-
saries). Let Ω(λ) ≤ Γ (λ) ≤ 2o(λ), λ′ = 0.1λ (as in Theorem 5.1). If Π ′ is
Γ (λ′)-secure against non-uniform adversaries then Π is (Γ (λ), τ)-secure against
space bounded non-uniform preprocessing adversaries, where τ(λ, s) = 2s

λ + 4.

Remark 5.3. Since Γ (λ) ≤ 2o(λ) and λ′ = 0.1λ, then poly(Γ (λ′)) =
poly(Γ (λ)). Therefore, for the sake of simplicity, we analyze the runtime and
advantage of all adversaries (including those that run against Π ′) as functions
of λ.

The proof of Theorem 5.1 is given in the full version of this work. We prove
Theorem 5.2 in Sect. 6.

6 Multi-security Against a Bounded Preprocessing
Adversary

In this section we prove Theorem 5.2. The proof requires specific definitions and
notation, defined below.

6.1 Preliminaries

Notation. Given a sequence of elements X = (X1, . . . , Xn) and a subset I ⊆ [n],
we denote by XI the sequence composed of elements with coordinates in I.

For a random variable X, denote its min-entropy by H∞(X). For random
variables X,Y with the same range, denote by Δ(X,Y ) the statistical distance
of their distributions. We say that X and Y are γ-close if Δ(X,Y ) ≤ γ. We
use the notation X ←R X to indicate that the random variable X is chosen
uniformly at random from the set X .
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Dense and Bit-Fixing Sources. We will use the following definition (see [12,
Definition 1]).

Definition 6.1. An (n, 2λ)-source is a random variable X with range
({0, 1}λ)n. A source is called

– (1 − δ)-dense if for every subset I ⊆ [n], H∞(XI) ≥ (1 − δ) · |I| · λ,
– (k, 1− δ)-dense if it is fixed on at most k coordinates and is (1− δ)-dense on

the rest,
– k-bit-fixing if it is fixed on at most k coordinates and uniform on the rest.

Namely, the min-entropy of every subset of entries of a (1 − δ)-dense source
is at most a fraction of δ less than what it would be for a uniformly random one.

6.2 Key Leakage Lemma

Let X = (X1, . . . , Xn) ∈ ({0, 1}λ)n be a random variable for n keys of Π chosen
independently and uniformly at random. Let Z := F (X) be a random variable
for the leakage of the adversary. For z ∈ {0, 1}s, let Xz be the random variable
chosen from the distribution of X conditioned on F (X) = z.

We denote G := (G1, . . . , Gn) and G(X) := (G1(X1), . . . , Gn(Xn)) the ran-
dom variable for the hash functions (public parameters) of Π. We will use similar
notation for sequences of different lengths (which will be clear from the context).

The proof of Theorem 5.2 is based on the lemma below (proved in Sect. 6.4),
which analyzes the joint distribution (G,Z,G(X)).

Lemma 6.2. Let F : ({0, 1}λ)n → {0, 1}s be an arbitrary function, X =
(X1, . . . , Xn) ←R ({0, 1}λ)n and denote Z := F (X). Let G be a family of univer-
sal hash functions with domain {0, 1}λ and range {0, 1}λ′

and let G ←R (G)n.
Let δ > 0, γ > 0, s′ > s be parameters such that (1 − δ)λ > λ′ + log n + 1.

Then, there exists a family VG,Z = {V�g,z}�g∈(G)n,z∈{0,1}s of convex combina-
tions V�g,z of k-bit-fixing (n, 2λ′

)-sources for k = s′+log 1/γ
δ·λ such that

Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤
√

2−(1−δ)λ+λ′+log n + γ + 2s−s′
.

We obtain the following corollary (which implies the parameters of Theo-
rem 5.2).

Corollary 6.3. In the setting of Lemma 6.2, assuming n < 20.15λ and suffi-
ciently large λ, the parameters s′ = s + λ, λ′ = 0.1λ, δ = 0.5, γ = 2−λ give

Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ, and k =
2s
λ

+ 4.
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Proof. Set s′ = s + λ, λ′ = 0.1λ, δ = 0.5, γ = 2−λ. Then, for sufficiently
large λ, (1 − δ)λ = 0.5λ > 0.1λ + 0.15λ + 1 > λ′ + log n + 1 (and the
condition of Lemma 6.2 holds). We therefore have (for sufficiently large λ):
Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤

√
2−(1−δ)λ+λ′+log n+γ+2s−s′

=
√
2−0.4λ+log n+

2−λ + 2−λ ≤ 2−0.1λ, and k = s′+log 1/γ
δ·λ = s+λ+λ

0.5·λ = 2s
λ + 4.

6.3 The Proof of Theorem 5.2

Using Lemma 6.2 to Prove Theorem 5.2. Before proving Theorem 5.2, we explain
why Lemma 6.2 is needed and how it used in the proof.

It is easy to prove some weaker statements than Lemma 6.2, but these do not
seem to be sufficient for building the MILR scheme (i.e., proving Theorem 5.2).
For example, one can easily prove that with high probability, given the leakage
z and hash functions �g, there is a large subset of (hashed) keys such that each
one of them is almost uniformly distributed. However, the adversary could have
knowledge of various relations between the keys of this subset and it is not clear
how to prove security without making assumptions about the resistance of the
encryption scheme against related-key attacks.

Moreover, consider a stronger statement, which asserts that with high proba-
bility, given the leakage z and hash functions �g, there is a large subset of (hashed)
keys that are jointly uniformly distributed. We claim that even this stronger
statement may not be sufficient to prove security, since it does not consider the
remaining keys outside of the subset. In particular, consider a scenario in which
the adversary is able to recover some weak keys outside of the subset. Given this
extra knowledge and the leakage z, the original subset of keys may no longer be
distributed uniformly (and may suffer from a significant entropy loss).

Lemma 6.2 essentially asserts that there is a subset of keys that is almost
jointly uniformly distributed even if we give the adversary z,�g and all the remain-
ing keys. More specifically, given the hash functions �g and the leakage z, accord-
ing to the lemma, the distribution of the hashed keys �g(X) is (close to) a convex
combinations V�g,z of k-bit-fixing sources. In the proof of Theorem 5.2 we will
fix such a k-bit-fixing source by giving the adversary k hashed keys (we will do
this carefully, making sure that the adversary’s advantage does not change sig-
nificantly). Since the remaining hashed keys are uniformly distributed from the
adversary’s view, security with respect to these keys follows from the semantic
security of the underlying encryption scheme.

Proof (Proof of Theorem 5.2). Fix a preprecessing procedure F and let λ be
sufficiently large, n < 20.15λ. By Lemma 6.2 (with parameters set in Corol-
lary 6.3), there exists a family VG,Z of convex combinations V�g,z of k-bit-fixing
(n, 2λ′

)-sources for k = 2s
λ + 4 such that Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ.

Sampling the Index Set J and Simplifying the Distribution. We first define how
the oracles E0 and E1 in Definition 2.1 sample J . The random variable J is
naturally defined when sampling the random variables (G,Z, VG,Z): given �g ∈
(G)n, z ∈ {0, 1}s, sample a k-bit-fixing source in the convex combination V�g,z
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(according to its weight) and let J be the set of (at least) n−k indices that are not
fixed. This defines a joint distribution on the random variables (G,Z, VG,Z , J).
Another way to sample from this distribution is to first sample the variables
(G,Z, VG,Z) and then sample J according to its marginal distribution. This
defines a randomized procedure for sampling J . Although the oracles do not
sample (G,Z, VG,Z), we reuse the same sampling procedure for sampling J given
the sample (�g, z,�g(�x)) (if the sample (�g, z,�g(�x)) is not in the support of the
distribution of (G,Z, VG,Z), define J = [n]).

Consider a poly(Γ (λ))-time algorithm B. As encryption queries of B to E0

and E1 are answered with the hash keys �g(�x), then given �g(�x), the interaction
of B with E0 and E1 no longer depends on �x. Therefore, for t = 0, 1 we define
E(1)

t (�g(�x), �g, J, ·, ·) that simulates the interaction of Et(�x,�g, J, ·, ·) with B. Instead
of sampling �x, the oracles directly sample (�g, z,�g(�x), J) according to their joint
distribution before the interaction with B. To simplify notation, we denote this
joint distribution by D1. Denote

AdvB(λ) =
∣
∣
∣
∣
∣
∣
∣

Pr
B,Enc

(�g,z,�g(�x),J)←D1

[

BE(1)
0 (�g(�x),�g,J,·,·)(z,�g) = 1

]

− Pr
B,Enc

(�g,z,�g(�x),J)←D1

[

BE(1)
1 (�g(�x),�g,J,·,·)(z,�g) = 1

]

∣
∣
∣
∣
∣
∣
∣

.

It remains to prove that AdvB(λ) ≤ negl(Γ (λ)).

Using Lemma 6.2 to switch to a family of convex combinations of bit-fixing
sources. We have

Δ[(G,Z,G(X), J), (G,Z, VG,Z , J)] ≤ Δ[(G,Z,G(X)), (G,Z, VG,Z)] ≤ 2−0.1λ,

where the first inequality follows by the data processing inequality, since J is
computed by applying the same function to the three variables of both distri-
butions, and the second inequality is by Corollary 6.3. Hence, for t = 0, 1 we
replace E(1)

t that samples from D1 with E(2)
t that samples from the joint distribu-

tion of (G,Z, VG,Z , J), which we denote by D2. Since B and Enc use independent
randomness, by the triangle inequality, the total penalty is at most 2 · 2−0.1λ,
namely
∣
∣
∣
∣
∣
∣

Pr
B,Enc

(�g,z,�y,J)←D2

[
BE(2)

0 (�y,�g,J,·,·)(z,�g) = 1
]

− Pr
B,Enc

(�g,z,�y,J)←D2

[
BE(2)

1 (�y,�g,J,·,·)(z,�g) = 1
]
∣
∣
∣
∣
∣
∣
≥

AdvB(λ) − 2−0.1λ+1,

where we denote a sample from D2 by (�g, z, �y, J).

Giving the Adversary Additional Input. Consider a (potentially) more powerful
poly(Γ (λ))-time algorithm B1 against Π whose input consists of (z,�g, J, �yJ ),
where J = [n]\J . Namely, in addition to (z,�g) the input also consists of J , as
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well as the hashed keys �yJ ∈
(
{0, 1}λ′

)n−|J|
(note that these parameters define

a |J |-bit-fixing source). We denote in = (z,�g, J, �yJ ), and

AdvB1(λ) =∣
∣
∣
∣
∣
∣

Pr
B1,Enc

(�g,z,�y,J)←D2

[
BE(2)

0 (�y,�g,J,·,·)
1 (in) = 1

]
− Pr

B1,Enc
(�g,z,�y,J)←D2

[
BE(2)

1 (�y,�g,J,·,·)
1 (in) = 1

]
∣
∣
∣
∣
∣
∣
.

Next, we prove that for any such poly(Γ (λ))-time algorithm B1, AdvB1(λ) ≤
negl(Γ (λ)). As any algorithm B with input (z,�g) can be simulated by an
algorithm B1 with input in and similar runtime, this implies that AdvB(λ) −
2−0.1λ+1 ≤ negl(Γ (λ)) and hence AdvB(λ) ≤ negl(Γ (λ)), concluding the proof.

Fixing the Adversary’s Input. Since both E(2)
0 and E(2)

1 sample the input of B1
from the same distribution, by an averaging argument, there exists an input
in∗ = in∗

λ = (z∗, �g∗, J∗, �y∗
J∗) such that the advantage of B1 remains at least as

large when fixing the input to in∗ and sampling from D2 conditioned on in∗.
Note that given in∗ sampling from D2 reduces to sampling from the |J∗|-bit-
fixing source defined by (J∗, �y∗

J∗), i.e., selecting �w ←R ({0, 1}λ′
)|J

∗|. Therefore,
∣
∣
∣
∣
∣
∣
∣
∣

Pr
B1,Enc

�w←R({0,1}λ′
)|J∗|

[

BE(2)
0 (in∗, �w,·,·)

1 (in∗) = 1

]

− Pr
B1,Enc

�w←R({0,1}λ′
)|J∗|

[

BE(2)
1 (in∗, �w,·,·)

1 (in∗) = 1

]

∣
∣
∣
∣
∣
∣
∣
∣

≥

AdvB1 (λ).

Reducing the Security of Π with Preprocessing from the (Multi-instance) Secu-
rity of Π ′. We now use B1 to define a non-uniform poly(Γ (λ))-time adversary B2

(with no preprocessing) that runs against |J∗| instances of Π ′ and has advantage
at least AdvB1(λ). By the semantic security of Π ′ and a hybrid argument (sim-
ilarly to the proof of Theorem 5.1), this implies that AdvB1(λ) ≤ negl(Γ (λ)),
concluding the proof.

The adversary B2 is given in Algorithm 2. Note that B2 perfectly simulates
the oracles of B1 given the input in∗, and hence its advantage is at least AdvB1(λ)
as claimed. Finally, it runs in time poly(Γ (λ)).

6.4 Proof of Lemma 6.2

Proof Overview. We first prove in Lemma 6.4 that G = (G1, . . . , Gt) (for some
t ∈ [n]) is a good extractor, assuming its input Y = (Y1, . . . , Yt) is (1 − δ)-
dense, namely, it has sufficient min-entropy for each subset of coordinates (see
Lemma 6.4 for the exact statement). Specifically, we prove that (G,G(Y )) is
statistically close to (G,U), where U is uniformly distributed over ({0, 1}λ′

)t.
The proof is by a variant of the leftover hash lemma [25] where a sequence of hash
functions (G1, . . . , Gt) are applied locally to each block of the input (instead of
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Algorithm 2. BE(3)
(·) (

�x′,[|J∗|],·,·)
2 ()

Setting: B2 is a non-uniform adversary that runs against |J∗| instances of Π ′

(defined by E(3)

(·) ). It gets in∗ = in∗
λ = (z∗, �g∗, J∗, �y∗

J∗) as advice. B2 has access to

BE(2)
(·) (in∗, �w,·,·)

1 (in∗), which runs against Π.

1. B2 gives in∗ to B1 as input.
2. B2 answers each query (j, m) of B1 as follows:

– If j ∈ J∗, B2 uses the advice string in∗ (which contains �y∗
j ) to compute the

answer Enc′(�y∗
j , m) and gives it to B1.

– If j ∈ J∗, B2 translates the query (j, m) to (j′, m), where j′ ∈ [|J∗|] is obtained
by mapping j to J∗ (ignoring indices in J∗). B2 then queries its oracle with
(j′, m) and forwards the answer to B1.

3. B2 outputs the same output as B1.

applying a single hash function to the entire input). We note that a related lemma
was proved in [22, Lem. 13] in a different setting of communication complexity.
Our variant is applicable to a different (mostly wider) range of parameters (such
as various values of δ and the number of bits extracted, t · λ′) that is relevant in
our setting. Additional (somewhat less related) results were presented in [13,14].

The remainder of the proof is deferred to the full version of this work, and
is somewhat similar to [12, Lem. 1].

Block-Wise Extraction from Dense Sources.

Lemma 6.4 Let Y = (Y1, . . . , Yt) ∈ ({0, 1}λ)t be a (t, 2λ)-source that is (1− δ)-
dense for 0 < δ < 1. Let G be a family of universal hash functions with domain
{0, 1}λ and range {0, 1}λ′

. Then, for G ←R (G)t and U ←R ({0, 1}λ′
)t,

Δ[(G,G(Y )), (G,U)] ≤
√
2−(1−δ)λ+λ′+log t,

assuming that (1 − δ)λ > λ′ + log t + 1.

Proof. Let d := log |G|. For a random variable Q, and Q′ an independent copy
of Q, we denote by Col[Q] = Pr[Q = Q′] the collision probability of Q. We have

Col[(G,G(Y ))] = Pr
G,Y,G′,Y ′

[(G,G(Y ′)) = (G′, G′(Y ′))]

= Pr
G,G′

[G = G′] · Pr
G,Y,Y ′

[G(Y ) = G(Y ′)] = 2−t·d · Pr
G,Y,Y ′

[G(Y ) = G(Y ′)].
(1)

For sequences Y1, . . . , Yt, Y
′
1 , . . . , Y

′
t , define C = |{i | Yi = Y ′

i }|. We now upper
bound the expression Pr[C = c].
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Recall that Y is a (1−δ)-dense source, i.e., for every subset I ⊆ [t], H∞(YI) ≥
(1 − δ) · |I| · λ. Fix a subset I ⊆ [t] such that |I| = c. Then,

Pr[YI = Y ′
I ] =

∑

yI∈({0,1}λ)c

(Pr[YI = yI ])2

≤ max
yI

{Pr[YI = yI ]} ·
∑

yI∈({0,1}λ)c

Pr[YI = yI ] ≤ 2−(1−δ)·c·λ.

Therefore,

Pr[C = c] ≤
∑

{I⊆[t]||I|=c}
Pr[YI = Y ′

I ] ≤
(

t

c

)
· 2−(1−δ)·c·λ

≤ tc · 2−(1−δ)·c·λ = 2c·(−(1−δ)λ+log t).

(2)

We have

Pr
G,Y,Y ′

[G(Y ) = G(Y ′)] =
t∑

c=0

Pr
Y,Y ′

[C = c] · Pr
G,Y,Y ′

[G(Y ) = G(Y ′) | C = c].

For each coordinate i such that Yi �= Y ′
i , Pr

Gi

(Gi(Yi) = Gi(Y ′
i )) = 2−λ′

as

Gi is selected uniformly from a family of universal hash functions. Since G =
(G1, . . . , Gt) contains t independent copies selected uniformly from G,

Pr
G
[G(Y ) = G(Y ′) | C = c] = 2−λ′·(t−c).

Hence, using (2) we obtain

Pr
G,Y,Y ′

[G(Y ) = G(Y ′)] =
t∑

c=0

Pr[C = c] · 2−λ′·(t−c)

≤
t∑

c=0

2c·(−(1−δ)λ+log t) · 2−λ′·(t−c) = 2−λ′·t ·
t∑

c=0

2−c·((1−δ)λ−λ′−log t)

= 2−λ′·t · (1 +
t∑

c=1

2−c·((1−δ)λ−λ′−log t)) ≤ 2−λ′·t · (1 + 2−(1−δ)λ+λ′+log t+1),

where the last inequality uses the assumption that (1 − δ)λ > λ′ + log t + 1.
Treating distributions as vectors over {0, 1}t·d+t·λ′

(and abusing notation),
we plug the above expression into (1) and deduce

‖(G,G(Y )) − (G,U)‖22 = Col[(G,G(Y ))] − 2−t·d−t·λ′ ≤
2−t·d−t·λ′ · (1 + 2−(1−δ)λ+λ′+log t+1) − 2−t·d−t·λ′

= 2−t·d−t·n′−(1−δ)λ+λ′+log t+1.
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Finally, using the Cauchy-Schwarz inequality, we conclude

Δ[(G,G(Y )), (G,U)] ≤ 1/2 ·
√
2t·d+t·λ′ · ‖(G,G(Y )) − (G,U)‖2

≤ 1/2 ·
√
2t·d+t·λ′ ·

√
2−t·d−λ′·t−(1−δ)λ+λ′+log t+1 <

√
2−(1−δ)λ+λ′+log t.
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Abstract. Deniable Authentication is a highly desirable property for
secure messaging protocols: it allows a sender Alice to authentically
transmit messages to a designated receiver Bob in such a way that only
Bob gets convinced that Alice indeed sent these messages. In particular,
it guarantees that even if Bob tries to convince a (non-designated) party
Judy that Alice sent some message, and even if Bob gives Judy his own
secret key, Judy will not be convinced: as far as Judy knows, Bob could
be making it all up!

In this paper we study Deniable Authentication in the setting where
Judy can additionally obtain Alice’s secret key. Informally, we want that
knowledge of Alice’s secret key does not help Judy in learning whether
Alice sent any messages, even if Bob does not have Alice’s secret key and
even if Bob cooperates with Judy by giving her his own secret key. This
stronger flavor of Deniable Authentication was not considered before and
is particularly relevant for Off-The-Record Group Messaging as it gives
users stronger deniability guarantees.

Our main contribution is a scalable “MDRS-PKE” (Multi-Designated
Receiver Signed Public Key Encryption) scheme—a technical formaliza-
tion of Deniable Authentication that is particularly useful for secure
messaging for its confidentiality guarantees—that provides this stronger
deniability guarantee. At its core lie new MDVS (Multi-Designated Ver-
ifier Signature) and PKEBC (Public Key Encryption for Broadcast)
scheme constructions: our MDVS is not only secure with respect to
the new deniability notions, but it is also the first to be tightly secure
under standard assumptions; our PKEBC—which is also of independent
interest—is the first with ciphertext sizes and encryption and decryp-
tion times that grow only linearly in the number of receivers. This is a
significant improvement upon the construction given by Maurer et al.
(EUROCRYPT ’22), where ciphertext sizes and encryption and decryp-
tion times are quadratic in the number of receivers.
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1 Introduction

Motivation. More than 3 billion people currently use messaging apps.1 Naturally,
there is a demand for secure messaging which guarantees, e.g., the secrecy of the
transmitted contents, or the authenticity of senders. For point-to-point connec-
tions, combining standard cryptographic building blocks (like digital signature,
public-key, and secret-key encryption schemes) may be sufficient. However, in par-
ticular for group messaging (in which groups of users communicate in a group
chat), additional security properties are desirable. For instance, group members
may want to be sure that all members receive the same messages (a property that,
surprisingly, is not captured by traditional broadcast encryption definitions [7]).

Another security property that is generally desirable in messaging is deniabil-
ity. Intuitively, it should be possible for a sender to deny having sent a message,
or for a receiver to deny having received a particular message. Achieving denia-
bility is even more challenging when considering that users may store copies of
received (or even sent) messages on their communication device.

Here, we focus on a relatively mild (but still technically quite challeng-
ing) variant of deniability: “Off-The-Record” (OTR) messaging. Informally, with
OTR security, received ciphertexts can be simulated, in the sense that it is easy
to come up with ciphertexts for arbitrary messages that look as if they had
been sent by a particular sender. In this sense, OTR security guarantees that
third parties cannot be convinced of group-internal interactions. Of course, even
OTR is relatively difficult to achieve, and becomes even harder so in the group
messaging setting.

MDRS-PKE Schemes. When translating desirable properties of such group mes-
saging protocols into suitable cryptographic primitives (with associated proper-
ties), we end up with “Multi-Designated Receiver Signed Public Key Encryption”
(MDRS-PKE, [15]). Informally, these protocols function like signed versions of
broadcast encryption schemes with additional integrity properties (that guar-
antee, e.g., that all receivers receive the same message). A little more formally,
MDRS-PKE schemes work in a public-key infrastructure, and guarantee the
following:

Syntax: A sender can prepare a single broadcast ciphertext c for a set R of
intended receivers. Any intended receiver in R can decrypt c to retrieve the
identity pkS of the sender S, the encrypted message m, and the set R.

Consistency: Not even a maliciously created c should decrypt to different
sender identities, messages, or receiver sets for different intended receivers.
Furthermore, if one receiver decrypts to (pkS ,m,R), then all receivers in R
obtain the same (pkS ,m,R).

Unforgeability: Nobody except S can produce a ciphertext that decrypts to
sender identity pkS for any receiver.

Anonymity: c does not reveal the sender S or the set R of intended receivers
(only its size |R|).

1 https://www.businessofapps.com/data/messaging-app-market/.

https://www.businessofapps.com/data/messaging-app-market/
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Confidentiality: c does not reveal the encrypted message (only its length |m|).
Off-The-Record: Plausible-looking ciphertexts c can be simulated by any (sub-

set of) intended receivers of that ciphertext. Intuitively, this guarantees that
receivers cannot convince a third party of a received encrypted message.

MDRS-PKE is a complex primitive, and appears to require specific, case-tailored
primitives to realize it. For instance, the combination of a group of designated
receivers and the simulation properties required by OTR prevent the use of
ordinary designated-verifier signatures (or even MACs) [5].

Fortunately, [15] shows how to construct MDRS-PKE schemes from a com-
bination of suitable variants of signature and broadcast encryption schemes.
Specifically, they require the following:

– A type of signature scheme called “Multi-Designated Verifier Signature”
(MDVS [4,5,11]) with suitable consistency, unforgeability, and OTR prop-
erties. (Here, “OTR” means that valid-looking signatures can be simulated
by designated receivers.) State-of-the-art MDVS constructions [5] exist from
algebraic assumptions (like the combination of Diffie-Hellman and Paillier-like
assumptions), and also from generic primitives (like the combination of non-
interactive key exchange (NIKE), non-interactive zero-knowledge (NIZK),
and a few other standard primitives).

– A type of broadcast encryption scheme called “Public-Key Encryption for
Broadcast” (PKEBC [15]) that essentially has all the properties of an MDRS-
PKE scheme except for authenticity. PKEBC schemes can be instantiated
from a combination of public-key encryption, NIZKs, and commitments.

The Current Situation. In summary, we do have tools that give meaningful
security and privacy guarantees for group messaging even in face of corruptions.
The current state of the art [5,15] leaves a few questions unanswered, however:

Limited deniability guarantees. The deniability (technically: OTR) guaran-
tees given by the combination of [5,15] are limited to the case where the secret
keys of honest senders remain secret. In particular, simulated ciphertexts are
only proven to look plausible when the corresponding sender key is unknown.
However, current deniability notions do not provide any guarantees if an hon-
est sender is forced (or blackmailed) to give away its secret key, in which case
the sender might not be able to plausibly deny having sent a message.

Limited unforgeability guarantees. The MDVS constructions and analy-
ses from [5] show unforgeability only in a setting in which an adversary has
no verification oracle. (Intuitively, in such designated-verifier settings, signa-
tures are not publicly verifiable, and hence typically adversaries are given
access to an explicit verification oracle [13,18]). This is undesirable, in par-
ticular because a constructive modeling of MDVS schemes [14] requires such
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a verification oracle. As a result, the resulting combined MDRS-PKE scheme
from [5,15] suffers from a similarly weak unforgeability guarantee.2

Limited scalability. The combined MDRS-PKE construction of [5,15] has
ciphertexts whose sizes are quadratic in the number of receivers. This is clearly
undesirable for large groups. Furthermore, while the generic transformation
of [15] itself is tightly secure, i.e., gives security guarantees that do not incur
a loss in the number of parties or ciphertexts, the underlying primitives from
[5,15] are not known to be. In particular, the (known) security guarantees of
the final scheme degrade in the number of ciphertexts and users.

Gaps in some proofs. Unfortunately, some of the proofs in [5] appear incom-
plete. (See [3, Appendix C] for details.)

Our Contribution. In this work, we construct a MDRS-PKE scheme that

– enjoys strong deniability guarantees (i.e. a strong OTR notion that takes into
account leaked sender secret keys),

– likewise enjoys strong unforgeability properties (that take into account adver-
saries with a verification oracle),

– is scalable, in the sense that ciphertext sizes, encryption and decryption times
are linear in the number of receivers, and we can prove it tightly secure based
on primitives for which tightly secure instantiations are known.

Like [15], our MDRS-PKE scheme is based upon suitable MDVS and PKEBC
schemes. In fact, we use the same generic MDRS-PKE construction as [15], but
for more secure and more efficient MDVS and PKEBC schemes (that we also
provide). In particular, we provide

– a conceptually simple MDVS scheme that achieves strong OTR and strong
unforgeability guarantees (as explained above),

– a PKEBC scheme for which ciphertext sizes, and both encryption and decryp-
tion times only grow linearly with the number of receivers.
Both of these schemes can be proven tightly secure from primitives that

have tightly secure instantiations from standard computational assumptions.
In particular, unlike [5], we avoid the use of non-interactive key exchange, a
primitive which is known to be difficult to prove tightly secure [2,10].

2 It should be noted that this shortcoming appears to have gone unnoticed. In partic-
ular, [15] explicitly define and assume MDVS schemes that are unforgeable in the
presence of a verification oracle, while [5] simply do not prove this property about
their MDVS schemes. Technically speaking, this means the transformation of [15]
cannot be directly applied to the MDVS schemes from [5]. However, it is easy to see
that the results from [15] carry over to “weakly unforgeable” (in the above sense)
MDVS schemes, such that the result is simply a weakly unforgeable MDRS-PKE
scheme.
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2 Technical Overview

We now give an overview of the techniques used to construct our MDRS-PKE
scheme. As aforementioned, our scheme is tightly secure under adaptive corrup-
tions and satisfies the new (stronger) OTR notion considered in this paper. The
main building blocks of our construction are: 1. a new MDVS scheme construc-
tion satisfying (the MDVS analogous of) the new OTR security notion which
is tightly secure under adaptive corruptions; and 2. a new PKEBC scheme con-
struction with linear-size ciphertexts, and linear-time encryption and decryption
which is also tightly secure under adaptive corruptions. By following (a straight-
forward generalization of) the transformation given in [15] we then obtain the
intended MDRS-PKE scheme. It is worth noting that, since the MDRS-PKE
construction given in [15] uses the PKEBC scheme to encrypt a message whose
size is already linear in the number of receivers, it is not sufficient for the under-
lying PKEBC scheme to have ciphertext sizes, encryption and decryption times
that grow linearly with the number of receivers times the size of the message:
it is necessary for the PKEBC’s ciphertext sizes, encryption and decryption
times to grow linearly with the number of receivers plus the size of the mes-
sage. This is exactly what we achieve: when instantiated with our new MDVS
and PKEBC constructions, the MDRS-PKE construction given in [15] yields
the first (MDRS-PKE) scheme that satisfies the new stronger OTR notion, that
has ciphertext size, encryption and decryption times that grow linearly with the
number of receivers, and that is tightly secure under adaptive corruptions.

2.1 MDVS Construction

We now give an overview of our MDVS scheme construction. As a first step we
consider the case of a single verifier and show how to construct a Designated
Verifier Signature (DVS) scheme. This already conveys the main technical ideas
of our construction. Then we discuss how to generalize the DVS to the case of
multiple verifiers (MDVS), and, finally, we explain how to achieve tight security
under adaptive corruptions. The building blocks of all our (M)DVS constructions
are an IND-CPA secure PKE scheme, a One-Way Function (OWF) F and a
Simulation-Sound (SS) NIZK.

The DVS Scheme. Our signature scheme is of the following form: the public
parameters pp consist of a public key pk of the PKE scheme, and a Common
Reference String crs of the NIZK argument system. The secret signing key
ssk is a pre-image xS of the OWF F and the signer’s public key spk is the
corresponding image (i.e. spk = yS = F (xS)). A verifier’s key-pair is similar,
except that it additionally includes a PKE key pair (pkV , skV ): the verifier’s
secret key vsk consists of a pre-image xV of F together with the PKE secret
key skV ; the verifier’s public key vpk are the corresponding public keys, i.e.
vpk = (pkV , yV := F (xV )). To sign a message m (using ssk = xS , and vpk =
(pkV , yV )), we first generate two ciphertexts, c and cpp: c encrypts the bit 1 under
the verifier’s public key pkV (the role of this will be clear soon); cpp encrypts
the tuple (m, 1, ssk) under the public key pk included in the public parameters
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pp. Finally, we generate a NIZK proof π that binds the ciphertexts together: π
proves that both cpp and c are well-formed and encrypt the same bit b, and that if
b = 1 then cpp encrypts a pre-image (under F ) of either yS or yV . The signature
σ then consists of the tuple (cpp, c, π). To verify a signature the receiver first
verifies the NIZK proof π and then decrypts ciphertext c using its PKE secret
key skV ; the signature is valid if π is a valid NIZK proof and the decryption of
c is 1.

Simulating a signature works as follows: 1. for the case of a dishonest verifier,
to simulate a signature one proceeds just like an honest signer would to generate
a signature, the only difference being that cpp, instead of encrypting xS—the pre-
image of the signer’s public key—encrypts xV —the pre-image of the verifier’s
public key; 2. if the verifier is honest, one forges a signature by having c be an
encryption of 0 under the verifier’s public PKE key pkV , cpp be an encryption
of the triple (m, 0, 0), and π be a NIZK proof. Note that, thanks to the NIZK
relation we consider, in both cases one can compute a valid NIZK proof π: in
the first case this is possible because cpp encrypts a pre-image of the verifier’s
secret key; for the latter case this is possible because c is an encryption of 0.

To understand why the DVS scheme sketched above is unforgeable note first
that if both the sender and the verifier are honest, by the one-wayness of F
the adversary does not know a pre-image of neither F (xS) nor F (xV ). On a
high level the proof proceeds as follows: we begin by changing both the public
parameter’s crs and each signature’s NIZK proof by simulated ones. We, next,
further modify the signatures the adversary sees by making cpp be an encryption
of a “0” string—possible by the IND-CPA security of the underlying PKE scheme.
Note that at this point all the adversary sees is independent of both ssk = xS

and vsk = xV .3 Now suppose the adversary manages to come up with a forgery
(c∗

pp, c
∗, π∗) corresponding to some message m∗ whose signature it has never seen:

if the forgery is valid then on one hand c∗ is encryption of bit 1 and on the other
hand π∗ is a valid NIZK proof; by (simulation) soundness this means that c∗

pp

encrypts a pre-image of either yS or yV . However, at this point we can use the
PKE secret key corresponding to the public parameter’s public key to extract
the pre-image, contradicting the one-wayness of F .

Understanding why the scheme sketched above satisfies the (stronger) OTR
property is more involved (and refer the reader to the full version [3] for details).
For simplicity, below we consider a weaker OTR notion—one where the adversary
is not given access to a signature verification oracle: 1. If the verifier is dishonest
the only differences between real and simulated signatures are that in the first
case cpp encrypts xS and the NIZK proof π is generated using xS as (part of the)
witness, whereas in the latter case cpp encrypts xV and π is generated using xV .
If an adversary were able to distinguish real signatures from simulated ones then
it would be either breaking the IND-CPA security of the underlying PKE scheme,
or the Zero-Knowledge security of the NIZK (or both). 2. If the verifier is honest
the differences between real signatures and simulated ones are that in the first

3 Here, independent is in the sense that all the adversary sees only depends on yS :=
F (xS) and yV := F (xV ), but not on any pre-image of yS or yV .
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case cpp encrypts xS , c is an encryption of 1 and π is generated using xS , while in
a simulated signature cpp encrypts a “0” string, c is an encryption of 0 and π is
no longer generated using a pre-image of neither yS nor yV . So, if an adversary
were be able to distinguish real and simulated signatures then it could break
the IND-CPA security of the underlying PKE scheme—since it could distinguish
either the cpp or the c ciphertexts—or could break the Zero-Knowledge of the
NIZK.

Generalizing for Multiple Verifiers. We now discuss how to extend the previous
construction to the case of multiple designated verifiers. The main difference
is that we additionally need to guarantee consistency—meaning that either all
honest verifiers accept a signature, or they all reject.

Signatures in our MDVS construction consist of a vector of ciphertexts �c =
(c1, · · · , cn) (one per receiver) and a ciphertext cpp. Each ciphertext ci is the
encryption of a bit bi under the i-th receiver’s public key pkVi

, and the ciphertext
cpp is an encryption of the tuple (m, bglobal, �α = (α1, · · · , αn)), where αi = (bi, xi),
under the public parameter’s public key pk. Similarly to the DVS construction,
signatures also contain a NIZK proof π that not only ensures ciphertexts are
well-formed and signatures are unforgeable, but also consistency. In particular, π
proves: 1. all ciphertexts in�c and ciphertext cpp are well-formed—in particular each
ciphertext ci of �c encrypts the bit bi that is in the αi encrypted in cpp; 2. for each
verifier, say the i-th, if bi = 1 then the αi encrypted in cpp contains a pre-image of
either yS—the signer’s public key—or yVi

—the i-th verifier’s public key—under F
(this guarantees unforgeability); and 3. for each i-th verifier, if the value xi in αi

that is encrypted under cpp is not a pre-image of this verifier’s public key yVi
then

bi = bglobal (this guarantees consistency). Note that, if the verification of the NIZK
proof is deterministic, the NIZK’s soundness implies that if two verifiers disagree
on a signature’s validity, one of them is dishonest.

Achieving Tight Security Under Adaptive Corruptions. While the MDVS con-
struction above already satisfies correctness, consistency, unforgeability and
OTR, we do not know how to prove it is tightly secure under adaptive cor-
ruptions. Our problem is that we do not know how a reduction could know in
advance which parties the adversary will corrupt (and thus ask for their secret
keys) and which ones it will not. Suppose for example we are reducing an adver-
sary from breaking some security property of the MDVS construction to breaking
the IND-CPA game of the underlying PKE scheme, and in particular consider a
reduction that simply guesses whether the adversary will corrupt a party Pi: on
one hand, if the reduction guesses incorrectly that Pi will be corrupted then it is
not taking advantage of the adversary to win the underlying IND-CPA game; on
the other hand, if the reduction incorrectly guesses Pi will not be corrupted—in
which case it would set Pi’s public key to be one output by the underlying IND-
CPA game—then we do not know how the reduction could handle a query for
the secret key of Pi—and so the reduction would again not be taking advantage
of the adversary to win the underlying IND-CPA game. So although one could
resort to this guessing technique to prove the security of the MDVS scheme
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under adaptive corruptions (via a hybrid argument), this leads to a reduction
loss that grows linearly with the number of parties.

To void this reduction loss we follow the “two-key” technique already used
in the context of tightly secure public-key encryption [1]. In the new scheme,
and at a high level, the public key of each party Pi is a pair of public keys—
say (pk0, pk1)—from the previous scheme, and its secret key consists of a bit
b—picked uniformly at random—and the secret key skb corresponding to pkb.
Signatures then consist of cpp as before, a vector of ciphertexts that includes two
ciphertexts per verifier—one under each of the verifier’s public keys—and the
NIZK proof π—which now proves that cpp encrypts a pre-image of one of the
public keys of a party (rather than a single one as before). This technique allows
to come up with tight security reductions to the underlying building blocks:
having the two keys allows, on one hand, to embed challenges in the part of the
public key whose corresponding secret key is “forgotten”, i.e. pk1−b, where b is
the bit in the party’s secret key, and on the other hand to handle any possible
queries the adversary may make, including ones where the party’s secret key is
leaked.

2.2 PKEBC Construction

We now give a high level overview of our PKEBC scheme’s construction. We first
explain how to achieve linear sized ciphertexts and linear time encryption (in the
number of receivers), and then move towards making decryption time also linear.
(We note that the ciphertext size and both the encryption and decryption times
of the only prior PKEBC scheme construction (see [15]) all grow quadratically
in the number of receivers.) Since the technique we use to obtain tight security
reductions under adaptive corruptions is the same one we used in the MDVS
construction, we do not include it in this overview.

As building blocks, we assume an IND-CPA and IK-CPA secure PKE scheme, a
Simulation-Sound NIZK and a (one-time) IND-CPA secure Symmetric Encryption
(SKE) scheme. The public parameters of our PKEBC schemes are the same as
for the MDVS construction—comprising a public key of a PKE scheme and a
crs for a NIZK, i.e. pp = (pk, crs)—and in the two constructions discussed
below a PKEBC key-pair is simply a key-pair of the underlying PKE scheme.

Achieving Linear Ciphertext Size and Encryption Time. As we now explain, the
main idea to achieve linear ciphertext sizes and encryption time (in the number
of receivers) is to use hybrid encryption.

To encrypt a message m to a vector of receiver public keys �v = (pk1, . . . , pkn)
we first encrypt (�v,m) under the public parameters’ public key; let cpp denote the
resulting ciphertext and rpp the sequence of random bits used for this encryption.
Next we generate a symmetric key k for the SKE scheme and for each receiver
public key pki in �v we encrypt k under pki, resulting in a vector of ciphertexts
(c1, . . . , cn). Then we use k to encrypt not only �v and m, but also rpp; let csym
denote the resulting (symmetric) ciphertext. (Having csym encrypt �v, m and rpp
allows receivers to confirm they obtained the correct vector of receivers and
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message: since the public parameter’s public key is honestly sampled, cpp is a
commitment to (�v,m), and since csym also encrypts rpp, a receiver can simply
recompute cpp; as we will see, this is key to guaranteeing correctness, robustness
and consistency.) Finally, we create a NIZK proof π showing that: 1. cpp is
an encryption of (�v,m) under the public parameters’ public key using rpp as
the sequence of random encryption bits; 2. the symmetric key k was correctly
sampled; 3. csym is an encryption under k of (rpp, �v,m); and 4. for each ciphertext
ci of �c, ci is an encryption of k under the i-th public key pki of �v. The final
ciphertext is then the quadruple c = (cpp,�c, csym, π). To decrypt a receiver first
checks if π is a valid NIZK proof; if π is valid the receiver then starts trying to
decrypt each ciphertext ci ∈ �c; for each symmetric key k′ the receiver obtains
from successfully decrypting a ciphertext ci, the receiver tries decrypting csym.
If the decryption of csym is successful, returning a triple (rpp, �v,m), the receiver
checks if cpp indeed encrypts (�v,m) under the public parameters’ public key using
rpp as the random encryption coins, and if it does the receiver outputs (�v,m) as
the result of decryption. If it does not (or any of the decryption attempts failed)
the receiver moves on to the next ciphertext cj of �c, or returns the special error
symbol ⊥ if there are no more ciphertexts.

It is easy to see that for a vector of receivers �v and message m both the
ciphertext size and the encryption time of the scheme are O(|�v| + |m|), exactly
as we needed. Unfortunately, the scheme does not achieve linear time decryption:
in the worst case the decryption of each ciphertext ci ∈ �c outputs a valid looking
symmetric key k′4, the decryption of csym is successful—which, given the size of
csym is linear in the number of receivers, already takes time linear in the number
of receivers—but then the triple (rpp′, �v′,m′) resulting from csym’s decryption
does not match cpp, i.e. cpp is not the encryption of (�v′,m′) under the public key
of the public parameters, and using rpp

′ as the random encryption coins. Given
the number of ciphertexts of �c is linear in the number of receivers, the time to
decrypt then grows quadratically in the number of receivers.

Achieving Linear Decryption Time. To achieve linear time decryption receivers
need a fast way of checking if any particular ciphertext cj ∈ �c is really meant
for them without having to decrypt csym, as this already takes linear time in the
number of receivers. A first idea is adding, for each receiver, an encryption of
a long enough 0 bitstring (and appropriately modifying the NIZK relation): to
decrypt, a receiver would then first check if the decryption of this new ciphertext
would output back the expected 0 bitstring, and if not the receiver would not
have to attempt decrypting the (linear sized) csym ciphertext. Unfortunately, this
approach only works for honestly generated ciphertexts. For instance, consider
two key-pairs (pk, sk), (pk′, sk′) of some arbitrary PKE scheme with pk �= pk′:
one cannot assume that an adversarially created encryption of a 0 bitstring
under pk does not decrypt, under the non-matching secret key sk′, to the same
0 bitstring (and, more generally, to any particular value). This means that a

4 For an arbitrary PKE scheme a receiver cannot a priori tell whether a given cipher-
text is intended for itself.
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dishonest sender could potentially come up with “malformed” ciphertexts that
would pass this first check, thus making a receiver have to decrypt the (large)
csym ciphertext and then recompute cpp to ensure consistency.

The way our scheme achieves linear time decryption is by pairing each cipher-
text ci ∈ �c with: 1. a commitment to the i-th receiver’s public key pki; and 2.
a ciphertext that encrypts, under pki, the random coins used to generate the
commitment. More concretely, in our scheme there are three ciphertexts per
receiver, i.e. �c = (c1, . . . , cn) with ci = (ci,0, ci,1, ci,2), where: ci,0 is an encryp-
tion, under the public parameter’s public key, of the i-th receiver’s public key
pki using some sequence of random bits ri,0; ci,1 is an encryption, under pki, of
the random coins ri,0; and ci,2 is an encryption of the SKE key k used to encrypt
csym. As one might note, by appropriately modifying the NIZK statement, we can
ensure that receivers no longer need to recompute cpp to confirm they obtained
the correct pair (�v = (pk1, . . . , pkn),m) from the decryption of csym: first, note
that the correctness of the underlying PKE scheme together with the soundness
of the NIZK (for the modified NIZK statement) guarantee that ciphertext cj,0 of
each triple cj = (cj,0, cj,1, cj,2) of �c binds the triple to a single receiver public key
pkj ; second, the PKE scheme’s correctness with the NIZK’s soundness further
imply that ciphertext cj,2 of every triple is an encryption of the same symmetric
key k under the public key pkj bound to the triple; third, the SKE’s (perfect)
correctness again with the NIZK’s soundness imply that the decryption of csym
using the aforementioned key k yields the same pair (�v = (pk1, . . . , pkn),m),
where for each i ∈ {1, . . . , n}, the triple ci ∈ �c is bound to the (corresponding)
public key pki ∈ �v. Since, as explained above, receivers need not recompute cpp,
in the new scheme csym no longer encrypts the random coins rpp. Furthermore, as
each receiver’s public key pki is already encrypted under the public parameter’s
public key in ci,0, cpp no longer needs to encrypt vector �v; in the new scheme cpp
encrypts only the message m.

3 Preliminaries

We denote the arity of a vector �x by |�x| and its i-th element by xi. We write
α ∈ �x to denote ∃i ∈ {1, . . . , |�x|} with α = xi. We write Set(�x) to denote the set
induced by vector �x, i.e. Set(�x) := {xi | xi ∈ �x}.

Throughout the paper we frequently use vectors. We use upper case letters
to denote vectors of parties, and lower case letters to denote vectors of arti-
facts such as public keys, sequences of random coins, etc. Moreover, we use the
convention that if �V is a vector of parties, then �v denotes �V ’s corresponding
vector of public keys. For example, for a vector of parties �V := (Bob,Charlie),
�v := (pkBob, pkCharlie) is �V ’s corresponding vector of public keys. In particular,
V1 is Bob and v1 is Bob’s public key pkBob, and V2 is Charlie and v2 is Charlie’s
public key pkCharlie. More generally, for a vector of parties �V with corresponding
vector of public keys �v, Vi’s public key is vi, for i ∈ {1, . . . ,

∣
∣
∣�V

∣
∣
∣}.
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4 Multi-designated Verifier Signature Schemes
with Enhanced Off-The-Record Security

An MDVS scheme Π is a 6-tuple of Probabilistic Polynomial Time Algorithms
(PPTs) Π = (S,GS , GV , Sig, V fy, Forge), where:

– S: on input 1k, generates public parameters pp;
– GS : on input pp, generates a signer key-pair (spk, ssk);
– GV : on input pp, generates a verifier key-pair (vpk, vsk);
– Sig: on input (pp, ssk, �v,m), where ssk is the signer’s secret key, �v is the

vector of public verifier keys of the designated verifiers and m is the message,
generates a signature σ;

– V fy: on input (pp, spk, vsk, �v,m, σ), where vsk is a verifier’s secret key, V fy
checks if σ is a valid signature on message m with respect to signer’s public
key spk and vector of verifier public keys �v;

– Forge: on input (pp, spk, �v,m,�s), where spk is the signer’s public key, �v is
the vector of the designated verifiers’ public keys, �s is a vector of designated
verifiers’ secret keys—with |�s| = |�v| and where for i ∈ {1, . . . , |�v|}, either
si = ⊥ or si is the secret key corresponding to the i-th public key of �v, i.e.
vi—and m is the message, generates a forged signature σ.

In this section we introduce a new (stronger) Off-The-Record security notion
for MDVS schemes capturing the setting where the signer’s secret key can leak
(Definition 4) and give a new construction satisfying this stronger notion.

4.1 Security Notions

Let Π = (S,GS , GV , Sig, V fy, Forge) be an MDVS scheme. The MDVS secu-
rity games ahead have an implicitly defined security parameter k, and provide
adversaries with access to the following oracles:

Public Parameter Generation Oracle: OPP

1. On the first call to OPP , compute pp ← S(1k); output pp;
2. On subsequent calls, simply output pp.

Signer Key-Pair Generation Oracle: OSK(Ai)
1. On the first call to OSK on input Ai, compute (spki, sski) ← GS(pp),

and output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Verifier Key-Pair Generation Oracle: OV K(Bj)
1. Analogous to the Signer Key-Pair Generation Oracle.

Signer Public-Key Oracle: OSPK(Ai)
1. (spki, sski) ← OSK(Ai); output spki.

Verifier Public-Key Oracle: OV PK(Bj)
1. Analogous to the Signer Public-Key Oracle.

Signing Oracle: OS(Ai, �V ,m)
1. (spki, sski) ← OSK(Ai);
2. �v = (OV PK(V1), . . . ,OV PK(V|�V |));



80 S. Chakraborty et al.

3. Output σ ← Sigpp(sski, �v,m).
Verification Oracle: OV (Ai, Bj , �V ,m, σ)

1. spki ← OSPK(Ai);
2. �v = (OV PK(V1), . . . ,OV PK(V|�V |));
3. (vpkj , vskj) ← OV K(Bj);
4. Output d ← V fypp(spki, vskj , �v,m, σ), where d ∈ {0, 1}.

Definition 1 (Correctness). Game system GCorr provides an adversary A
with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins
the game if there are two queries qS and qV to OS and OV , respectively, where qS
has input (Ai, �V ,m) and qV has input (Ai

′, Bj , �V ′,m′, σ), satisfying (Ai, �V ,m) =
(Ai

′, �V ′,m′), Bj ∈ �V , the input σ in qV is the output of the oracle OS on query
qS, and the output of the oracle OV on the query qV is 0. The advantage of A
in winning the Correctness game, denoted AdvCorr(A), is the probability that A
wins game GCorr as described above.

We say an adversary A (ε, t)-breaks the (nV , qS , qV )-Correctness of Π if
A runs in time at most t, queries OV K , OV PK , OS and OV on at most nV

different verifiers, makes at most qS and qV queries to OS and OV , respectively,
and satisfies AdvCorr(A) ≥ ε.

Definition 2 (Consistency). Game GCons provides an adversary A with
access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . We say
that A wins the game if it queries OV on inputs (Ai, Bj , �V ,m, σ) and
(Ai

′, Bj
′, �V ′,m′, σ′) with (Ai, �V ,m, σ) = (Ai

′, �V ′,m′, σ′) and where {Bj , Bj
′} ⊆

�V , the outputs of the two queries differ, and there is no OV K query on either
Bj or Bj

′. The advantage of A in winning the Consistency game, denoted
AdvCons(A), is the probability that A wins game GCons as described above.

An adversary A (ε, t)-breaks the (nV , qV )-Consistency of Π if A runs in time
at most t, queries OV K , OV PK , OS and OV on at most nV different verifiers,
makes at most qV queries to OV and satisfies AdvCons(A) ≥ ε.

Definition 3 (Unforgeability). Game system GUnforg provides an adversary
A with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins
if it makes a query OV (Ai

∗, Bj
∗, �V ∗,m∗, σ∗) with Bj

∗ ∈ �V ∗ that outputs 1,
for every query OS(Ai

′, �V ′,m′), (Ai
∗, �V ∗,m∗) �= (Ai

′, �V ′,m′), and there is no
OSK query on Ai

∗ nor OV K query on Bj
∗. The advantage of A in winning

the Unforgeability game is the probability that A wins GUnforg, and is denoted
AdvUnforg(A).

An adversary A (ε, t)-breaks the (nS , nV , qS , qV )-Unforgeability of Π if A
runs in time at most t, queries OSK , OSPK , OS and OV on at most nS different
signers, OV K , OV PK , OS and OV on at most nV different verifiers, makes at
most qS and qV queries to OS and OV , respectively, and satisfies AdvUnforg(A) ≥
ε.
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4.1.1 New Off-The-Record Security Notion
We now present the new enhanced off-the-record security notion for MDVS
schemes. As already mentioned, the main difference between our new notion
and the existing one (see [5,15]) is that in our new notion the adversary can
query for the secret key of any sender (and still win the game). This is reflected
in Definition 4 in that there is no restriction on which signer secret keys an
adversary may query.

The off-the-record security notion defines two game systems, GOTR
0 and

GOTR
1 , which provide adversaries with access to an additional oracle OChallenge

whose behavior varies depending on the underlying game system:

Challenge Oracle: OChallenge(type ∈ {sig, sim}, Ai, �V ,m, C)
For game system GOTR

b , the oracle behaves as follows:
1. (spki, sski) ← OSK(Ai);
2. Let �v = (v1, . . . , v|�V |) and �s = (s1, . . . , s|�V |), where, for i ∈ {1, . . . ,

∣
∣
∣�V

∣
∣
∣}:

– (vi, si) =
{ OV K(Vi) if Vi ∈ C

(OV PK(Vi),⊥) otherwise;
3. (σ0, σ1) ← (Π.Sigpp(sski, �v,m),Π.Forgepp(spki, �v,m,�s));
4. If b = 0, output σ0 if type = sig and σ1 if type = sim; otherwise, if

b = 1, output σ1.

Definition 4 (Off-The-Record). For b ∈ {0, 1}, game GOTR
b provides an

adversary A with access to oracles OPP , OSK , OV K , OSPK , OV PK , OV and
OChallenge. We say that A wins the game if it outputs a guess bit b′ with b′ = b,
and for every query OChallenge(type, Ai, �V ,m, C): 1. C ⊆ Set(�V ); 2. there is no
query OV K(Bj) with Bj ∈ Set(�V )\C; 3. letting σ be the output of the OChallenge

query above, there is no query OV (Ai, Bj , �V ,m, σ) with Bj ∈ �V . The advantage
of A in winning the Off-The-Record security game is

AdvOTR(A) :=
∣
∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win] − 1

∣
∣ .

An adversary A (ε, t)-breaks the (nV , dS , qS , qV )-Off-The-Record security of
Π if A runs in time at most t, queries OV K , OV PK , OV and OChallenge on at
most nV different verifiers, makes at most qS and qV queries to OChallenge and
OV , respectively, with the sum of the verifier vectors’ lengths input to OChallenge

being at most dS , and satisfies AdvOTR(A) ≥ ε. We say that Π is

(εCorr, εCons, εUnforg, εOTR, t, nS , nV , dS , qS , qV )-secure

if there is no adversary A that: 1. (εCorr, t)-breaks Π’s (nV , qS , qV )-Correctness; 2.
(εCons, t)-breaks Π’s (nV , qV )-Consistency; 3. (εUnforg, t)-breaks Π’s (nS , nV , qS ,
qV )-Unforgeability; or 4. (εOTR, t)-breaks Π’s (nV , dS , qS , qV )-Off-The-Record.

4.2 DVS Construction

We present our MDVS construction incrementally.5 We begin by giving a con-
struction of a (single verifier) DVS scheme (see Algorithm 1) that is Correct
5 We only prove the security of the final MDVS construction given in Sect. 4.4.
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(Definition 1), Unforgeable (Definition 3) and Off-The-Record (Definition 4);
next, we generalize it into an MDVS scheme (which has to additionally satisfy
consistency); finally, we use a technique first introduced by Bader et al. in [1] to
make the scheme tightly secure under adaptive corruptions. The building blocks
for all our constructions are a NIZK scheme ΠNIZK = (G,P, V, S := (SG, SP )),
a PKE scheme ΠPKE = (G,E,D), and a One Way Function ΠOWF = (S, F ).

For modularity, rather than introducing a single language/relation for the
NIZK scheme used by our constructions, we will introduce different relations
and then define the relation/language for our constructions as the intersection
of these relations. For example, in Algorithm 1 we consider the language induced
by a relation RDVS := RDVS-Match ∩ RDVS-Unforg, where

• RDVS-Match :=
{

((pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)) |
(

cpp = ΠPKE.Epkpp
((m, b, a); rpp)

)

∧ (c = ΠPKE.Evpk.pk(b; r))
}

;

• RDVS-Unforg :=
{

((pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)) |

(b = 1) → (ΠOWF.F (a) ∈ {spk.y, vpk.y})
}

.

The corresponding language is then defined as LDVS := {(pkpp, spk, vpk,m,
c, cpp) | ∃(a, b, r, rpp) : ((pkpp, spk, vpk,m, c, cpp), (a, b, r, rpp)) ∈ RDVS}.

In our scheme a signature consists of two ciphertexts, c and cpp, together
with a NIZK proof p which is the key for guaranteeing signature unforgeability.
Informally, ΠNIZK’s soundness guarantees that, on one hand, since RDVS ⊆
RDVS-Match, ciphertexts cpp and c encrypt the same bit b, and on the other
hand, since RDVS ⊆ RDVS-Unforg, if this bit b is 1 (in which case the signature
verification succeeds), cpp encrypts either the signer’s or the verifier’s secret key.

4.3 A Conceptually Simple MDVS Construction

We now show how to generalize the DVS scheme from before into an MDVS
scheme. Our MDVS scheme construction is defined in Algorithm 2 and is anal-
ogous to the DVS scheme from before, but adapted to the multi-verifier case.
The main difference is that MDVS schemes need to guarantee consistency.
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Algorithm 1. DVS scheme construction ΠDVS = (S,GS , GV , Sig, V fy, Forge).
S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

GS(pp)

x ← ΠOWF.S(1k)
return (spk := ΠOWF.F (x), ssk := (spk, x))

GV (pp)

(pk, sk) ← ΠPKE.G(1k)

x ← ΠOWF.S(1k)
return (vpk := (ΠOWF.F (x), pk), vsk := (vpk, sk, x))

Sigpp(ssk, vpk, m)

c ← ΠPKE.Evpk.pk(1; r)
cpp ← ΠPKE.Epp.pk((m, 1, ssk.x); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, vpk, m, c, cpp) ∈ LDVS, (ssk.x, 1, r, rpp))
return σ := (p, c, cpp)

V fypp(spk, vsk, m, σ := (p, c, cpp))

b ← ΠNIZK.Vcrs((pp.pk, spk, vpk, m, c, cpp) ∈ LDVS, p)
return b ∧ ΠPKE.Dvsk.sk(c)

Forgepp(spk, vpk, m, vsk)
if vsk �= ⊥ then � Forge using verifier’s secret key.

c ← ΠPKE.Evpk.pk(1; r)
cpp ← ΠPKE.Epp.pk((m, 1, vsk.x); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, vpk, m, c, cpp) ∈ LDVS, (vsk.x, 1, r, rpp))

else � Forge without using verifier’s secret key.
c ← ΠPKE.Evpk.pk(0; r)
cpp ← ΠPKE.Epp.pk((m, 0, 0); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, vpk, m, c, cpp) ∈ LDVS, (0, 0, r, rpp))

return σ := (p, c, cpp)

In the following, let �α := ((b1, a1), . . . , (b|�α|, a|�α|)); we assume for simplicity
that all vectors have matching lengths, i.e. |�v| = |�c| = |�α|.

• RMDVSstatic-Match :=
{

((pkpp, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

[

cpp = ΠPKE.Epkpp
((m, b, �α); rpp)

]

∧
⎡

⎣
∧

i∈{1,...,|�v|}
(ci = ΠPKE.Evi.pk(bi; ri))

⎤

⎦

}

• RMDVSstatic-Unforg :=
{

((pkpp, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

∧

i∈{1,...,|�v|}

(

(bi = 1) → (ΠOWF.F (ai) ∈ {spk.y, vi.y})
)}

• RMDVSstatic-Cons :=
{

((pkpp, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

∧

i∈{1,...,|�v|}
((ΠOWF.F (ai) �= vi.y) → (bi = b))

}

.
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Similarly to RDVS, and for the sake of modularity, we define relation
RMDVSstatic as RMDVSstatic := RMDVSstatic-Match ∩ RMDVSstatic-Unforg ∩ RMDVSstatic-Cons.
In Algorithm 2, we consider the respective induced language LMDVSstatic :=
{(pkpp, spk, �v,m,�c, cpp) | ∃(�α,�r, rpp, b) : ((pkpp, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) ∈
RMDVSstatic}.

Note that, since RMDVSstatic ⊆ RMDVSstatic-Match ∩ RMDVSstatic-Unforg, ΠNIZK’s
soundness guarantees that if for any i ∈ {1, . . . , |�v|}, ci is an encryption of 1, then
cpp contains either the signer’s secret key or the i-th verifier’s secret key. Similarly,
since RMDVSstatic ⊆ RMDVSstatic-Match ∩ RMDVSstatic-Cons, ΠNIZK’s soundness implies
that every designated verifier Bj whose secret key is not in cpp’s underlying
plaintext will agree on whether the signature is valid.

4.4 Achieving Tight Security Under Adaptive Corruptions

We now show how to transform the MDVS scheme from before into one that
is tightly secure under adaptive corruptions. The main challenge here is finding
a way to embed the challenges from the security games of the underlying PKE
and OWF building blocks into the reductions (in such a way that the reduction
is tight on the security of the underlying building blocks) while still being able
to answer queries for the secret keys of signers and/or verifiers. To achieve this,
we rely on a technique that was first introduced in [1]. Essentially, for each party
two key-pairs are now sampled; the party’s public key are the public keys of each
of the underlying key-pairs, and the secret key is the secret key of one (and only
one) of these key-pairs. This allows answering secret key queries by the adversary
while still being able to embed challenges from the underlying security games
into reductions.

Let �α := ((b1, a1), . . . , (b|�α|, a|�α|)); in the following, vectors are assumed to
have matching lengths:

• RMDVSadap-Match :=
{

((pp.pk, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

(cpp = ΠPKE.Epp.pk((m, b, �α); rpp))
∧

⎡

⎣
∧

i∈{1,...,|�v|}
((ci,0 = ΠPKE.Evi.pk0

(bi; ri,0)) ∧ (ci,1 = ΠPKE.Evi.pk1
(bi; ri,1)))

⎤

⎦

}

• RMDVSadap-Unforg :=
{

((pp.pk, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

∧

i∈{1,...,|�α|}

(

(bi = 1) → (ΠOWF.F (ai) ∈ {spk.y0, spk.y1, vi.y0, vi.y1})
)}

• RMDVSadap-Cons :=
{

((pp.pk, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) :

∧

i∈{1,...,|�α|}

(

(ΠOWF.F (ai) �∈ {vi.y0, vi.y1}) → (bi = b)
)}

.
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Algorithm 2. Πstat
MDVS.

S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

GS(pp)

x ← ΠOWF.S(1k)
return (spk := ΠOWF.F (x), ssk := (spk, x))

GV (pp)

(pk, sk) ← ΠPKE.G(1k)

x ← ΠOWF.S(1k)
return (vpk := (ΠOWF.F (x), pk), vsk := (vpk, sk, x))

Sigpp(ssk, �v := (vpk1, . . . , vpk|�v|), m)

for each i ∈ {1, . . . , |�v|} do
ci ← ΠPKE.Evi.pk(1; ri)

(�c, �r) ← ((c1, . . . , c|�v|), (r1, . . . , r|�v|))
�α ← (α1 := (1, ssk.x), . . . , α|�v| = (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, �α); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSstatic , (�α, �r, rpp, 1))
return σ := (p,�c, cpp)

V fypp(spk, vsk, �v, m, σ := (p,�c, cpp))

if ΠNIZK.Vcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSstatic , p) = 1 then
for i = 1, . . . , |�v| do

if vsk.vpk = vi then
return ΠPKE.Dvsk.sk(ci)

return 0

Forgepp(spk, �v, m,�s := (vsk1, . . . , vsk|�v|))
for each i ∈ {1, . . . , |�v|} do

if si �= ⊥ then
ci ← ΠPKE.Evi.pk(1; ri)
αi ← (1, si.x)

else
ci ← ΠPKE.Evi.pk(0; ri)
αi ← (0, 0)

(�c, �r) ← ((c1, . . . , c|�v|), (r1, . . . , r|�v|))
�α ← (α1, . . . , α|�v|)
cpp ← ΠPKE.Epp.pk((m, 0, �α); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSstatic , (�α, �r, rpp, 0))
return σ := (p,�c, cpp)

As in Sect. 4.3, we define RMDVSadap := RMDVSadap-Match ∩ RMDVSadap-Unforg∩
RMDVSadap-Cons; in Algorithm 3, we consider the language LMDVSadap that is induced
by RMDVSadap , which is defined as: LMDVSadap := {(pp.pk, spk, �v,m,�c, cpp) |
∃(�α,�r, rpp, b) : ((pp.pk, spk, �v,m,�c, cpp), (�α,�r, rpp, b)) ∈ RMDVSadap}.

4.4.1 Security Analysis of Πadap
MDVS

The theorem below gives an informal summary of our construction’s security prop-
erties. See [3] for the formal security theorems and the corresponding full proofs.

Theorem 1 (Informal). If ΠPKE is correct and tightly multi-user and multi-
challenge IND-CPA and IK-CPA secure under non-adaptive corruptions, ΠNIZK

is complete, sound, tightly multi-statement adaptive zero-knowledge and tightly
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Algorithm 3. The Πadap
MDVS MDVS scheme.

S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

GS(pp)

(x0, x1) ← (ΠOWF.S(1k), ΠOWF.S(1k))
(y0, y1) ← (ΠOWF.F (x0), ΠOWF.F (x1))
b ← RandomCoin
return (spk := (y0, y1), ssk := (spk, x := xb))

GV (pp)

((pk0, sk0), (pk1, sk1)) ← (ΠPKE.G(1k), ΠPKE.G(1k))

(x0, x1) ← (ΠOWF.S(1k), ΠOWF.S(1k))
(y0, y1) ← (ΠOWF.F (x0), ΠOWF.F (x1))
b ← RandomCoin
return (vpk := (pk0, y0, pk1, y1), vsk := (vpk, b, sk := skb, x := xb))

Sigpp(ssk, �v := (vpk1, . . . , vpk|�v|), m)

for each i ∈ {1, . . . , |�v|} do
(ci,0, ci,1) ← (ΠPKE.Evi.pk0 (1; ri,0), ΠPKE.Evi.pk1 (1; ri,1))

(�c, �r) ← (((c1,0, c1,1), . . . , (c|�v|,0, c|�v|,1)), ((r1,0, r1,1), . . . , (r|�v|,0, r|�v|,1)))
�α ← (α1 := (1, ssk.x), . . . , α|�v| := (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, �α); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSadap , (�α, �r, rpp, 1))
return σ := (p,�c, cpp)

V fypp(spk, vsk, �v, m, σ := (p,�c, cpp))

if ΠNIZK.Vcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSadap , p) = 1 then
for i = 1, . . . , |�v| do

if vsk.vpk = vi then
return ΠPKE.Dvsk.sk(ci,vsk.b)

return 0

Forgepp(spk, �v, m,�s := (vsk1, . . . , vsk|�v|))
for each i ∈ {1, . . . , |�v|} do

if si �= ⊥ then
(ci,0, ci,1) ← (ΠPKE.Evi.pk0 (1; ri,0), ΠPKE.Evi.pk1 (1; ri,1))
αi := (1, si.x)

else
(ci,0, ci,1) ← (ΠPKE.Evi.pk0 (0; ri,0), ΠPKE.Evi.pk1 (0; ri,1))
αi := (0, 0)

(�c, �r) ← (((c1,0, c1,1), . . . , (c|�v|,0, c|�v|,1)), ((r1,0, r1,1), . . . , (r|�v|,0, r|�v|,1)))
�α ← (α1, . . . , α|�v|)
cpp ← ΠPKE.Epp.pk((m, 0, �α); rpp)
p ← ΠNIZK.Pcrs((pp.pk, spk, �v, m,�c, cpp) ∈ LMDVSadap , (�α, �r, rpp, 0))
return σ := (p,�c, cpp)

multi-statement simulation sound, and ΠOWF is tightly multi-instance secure
under non-adaptive corruptions, then Πadap

MDVS is:

1. tightly correct;
2. tightly consistent under adaptive corruptions;
3. tightly unforgeable under adaptive corruptions; and
4. tightly off-the-record under adaptive corruptions.

4.4.2 On Efficiently Instantiating the NIZK Relations
All the relations we consider consist of checking a number of equations over
a pairing-friendly group, when implemented with suitably algebraic primitives.
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(For instance, we can use ElGamal [6] as the PKE scheme, and a pairing with
one fixed input as the One Way Function). Then, we can use a simulation-sound
variant of Groth-Sahai proofs [8,9] as a compatible NIZK scheme to prove these
relations. This yields proofs that are only linear-sized in the number of witness
variables and equations. Of course, this will result in an unoptimized solution
that may not be quite practical yet.

5 PKEBC Scheme with Linear Ciphertext Size
and Decryption Time

A PKEBC scheme Π is a quadruple Π = (S,G,E,D) of PPTs, where:

– S: on input 1k, generates public parameters pp;
– G: on input pp, generates a receiver key-pair (pk, sk);
– E: on input (pp, �v,m), where �v is a vector of public keys of the intended

receivers and m is the message, generates a ciphertext c;
– D: on input (pp, sk, c), where sk is the receiver’s secret key, D decrypts c

using sk, and outputs the decrypted receiver-vector/message pair (�v,m) (or
⊥ if the ciphertext did not decrypt correctly).

In this section we introduce new security notions capturing the security of
PKEBC schemes under adaptive corruptions and give a new construction of a
PKEBC scheme that not only is tightly secure under these stronger notions,
but also for which both the ciphertext size and the decryption time only grow
linearly with the number of receivers.

5.1 Security Notions for Adaptive Corruptions

The security notions we now introduce are a strengthening of the original ones
introduced by Maurer et al. in [15], but capturing the security of PKEBC schemes
under adaptive corruptions. More concretely, in the Correctness, Robustness and
Consistency notions adversaries are now allowed to query for the secret keys of
any receiver and still win the game; in the (IND + IK)-CCA-2adap security games—
a combination of the original IND-CCA-2 and IK-CCA-2 security notions [15]
capturing adaptive corruptions—adversaries can now corrupt parties adaptively.
(Our (IND + IK)-CCA-2adap security notion can also be interpreted as a variant
of the notion introduced by Lee et al. in [12]—which captures the IND-CCA-2
security of PKE schemes under adaptive corruptions—but adapted for PKEBC
schemes and also capturing anonymity).

We now introduce some oracles that the game systems ahead provide to the
adversaries. In the following, consider a PKEBC scheme Π = (S,G,E,D) with
message space M. The oracles below are defined for a game-system with (an
implicitly defined) security parameter k:

Public Parameters Oracle: OPP

1. On the first call, compute and store pp ← S(1k); output pp;



88 S. Chakraborty et al.

2. On subsequent calls, output the previously generated pp.
Secret Key Generation Oracle: OSK(Bj)

1. If OSK was queried on Bj before, simply look up and return the previously
generated key for Bj ;

2. Otherwise, store (pkj , skj) ← G(pp) as Bj ’s key-pair, and output
(pkj , skj).

Public Key Generation Oracle: OPK(Bj)
1. (pkj , skj) ← OSK(Bj);
2. Output pkj .

Encryption Oracle: OE(�V ,m)
1. �v ← (OPK(V1), . . . ,OPK(V|�V |));
2. Create and output a fresh encryption c ← Epp,�v(m).

Decryption Oracle: OD(Bj , c)
1. Query OSK(Bj) to obtain the corresponding secret-key skj ;
2. Decrypt c using skj , (�v,m) ← Dpp,skj

(c), and then output the resulting
receivers-message pair (�v,m), or ⊥ (if (�v,m) = ⊥, i.e. the ciphertext is
not valid with respect to Bj ’s secret key).

Definition 5 (Correctness). Game GCorr provides an adversary A with
access to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are
two queries qE and qD to OE and OD, respectively, where qE has input (�V ,m)
and qD has input (Bj , c), satisfying Bj ∈ �V , the input c in qD is the output
of qE, and the output of qD is either ⊥ or (�v′,m′) with (�v,m) �= (�v′,m′). The
advantage of A in winning the Correctness game, denoted AdvCorr(A), is the
probability that A wins game GCorr as described above.

An adversary A (εCorr, t)-breaks the (n, dE , qE , qD)-Correctness of a PKEBC
scheme Π if A runs in time at most t, queries OSK , OPK , OE and OD on
at most n different parties, makes at most qE and qD queries to OE and OD,
respectively, with the sum of lengths of the party vectors input to OE being at
most dE , and satisfies AdvCorr(A) ≥ εCorr.

Definition 6 (Robustness). Game GRob provides an adversary A with access
to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are two
queries qE and qD to OE and OD, respectively, where qE has input (�V ,m) and
qD has input (Bj , c), satisfying Bj �∈ �V , the input c in qD is the output of qE, and
the output of qD is (�v′,m′) with (�v′,m′) �= ⊥. The advantage of A in winning the
Robustness game is the probability that A wins game GRob as described above,
and is denoted AdvRob(A).

An adversary A (εRob, t)-breaks the Robustness of a PKEBC scheme Π if A
runs in time at most t and satisfies AdvRob(A) ≥ εRob.

Definition 7 (Consistency). Game GCons provides an adversary A with acc-
ess to oracles OPP , OSK , OPK and OD. A wins the game if there is a ciphertext
c such that OD is queried on inputs (Bi, c) and (Bj , c) for some Bi and Bj

(possibly with Bi = Bj), query OD(Bi, c) outputs some (�v,m) satisfying (�v,m) �=
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⊥ with pkj ∈ �v (where pkj is Bj’s public key), and query OD(Bj , c) does not
output (�v,m). The advantage of A in winning the Consistency game is denoted
AdvCons(A) and corresponds to the probability that A wins game GCons.

We say that an adversary A (εCons, t)-breaks the (n, qD)-Consistency of Π
if A runs in time at most t, queries OSK , OPK and OD on at most n different
parties, makes at most qD queries to OD and satisfies AdvCons(A) ≥ εCons.

Below we present the definition of (IND + IK)-CCA-2adap security. This notion
is a combination of the original IND-CCA-2 and IK-CCA-2 security notions intro-
duced in [15] that captures adaptive security (i.e. the adversary is allowed to
corrupt parties adaptively). The games defined by this definition provide adver-
saries with access to the oracles OPP , OSK and OPK defined above, as well as
to oracles OE and OD defined below:

Encryption Oracle: OE((�V0,m0), (�V1,m1))
1. For game system G(IND+IK)-CCA-2adap

b , encrypt mb under �vb, the vector of
public keys corresponding to �Vb; output c.

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute and output (�v,m) ← Dpp,skj

(c), where skj is Bj ’s
secret key.

Definition 8 ((IND + IK)-CCA-2adap Security). For b ∈ {0, 1}, game system
G(IND+IK)-CCA-2adap

b provides an adversary A with access to oracles OPP , OSK ,
OPK , OE and OD. A wins the game if it outputs a guess bit b′ satisfying b′ = b
and for every query OE((�V0,m0), (�V1,m1)): 1.

∣
∣
∣�V0

∣
∣
∣ =

∣
∣
∣�V1

∣
∣
∣; 2. |m0| = |m1|; and

3. there is no query to OSK on any Bj ∈ Set(�V0) ∪ Set(�V1) at any point during
the game. We define the advantage of A in winning the (IND + IK)-CCA-2adap

game as

Adv (IND+IK)-CCA-2adap(A) :=
∣
∣
∣Pr[AG(IND+IK)-CCA-2adap

0 = win] + Pr[AG(IND+IK)-CCA-2adap

1 = win] − 1
∣
∣
∣ .

We say that an adversary A (ε, t)-breaks the (n, dE , qE , qD)-(IND + IK)-
CCA-2adap security of Π if A runs in time at most t, queries the oracles it has
access to on at most n different parties, makes at most qE and qD queries to
oracles OE and OD, respectively, with the sum of lengths of all the party vectors
input to OE being at most dE , and satisfies Adv (IND+IK)-CCA-2adap(A) ≥ ε. Finally,
we say that Π is

(εCorr, εRob, εCons, ε(IND+IK)-CCA-2adap , t, n, dE , qE , qD, adap)-secure,

if there is no adversary A that: 1. (εCorr, t)-breaks Π’s (n, dE , qE , qD)-
Correctness; 2. (εRob, t)-breaks Π’s Robustness; 3. (εCons, t)-breaks Π’s (n, qD)-
Consistency; or 4. (ε(IND+IK)-CCA-2adap , t)-breaks Π’s (n, dE , qE , qD)-(IND + IK)-
CCA-2adap security.
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5.2 Achieving Linear Ciphertext Size

As before, we present our PKEBC construction incrementally (and only prove
the security of the final PKEBC construction given Sect. 5.4). Our first PKEBC
scheme is defined in Algorithm 4. Like Maurer et al.’s scheme [15], our con-
struction is a generalization of Naor-Yung’s PKE scheme for multiple receivers
(see [17]). However, while Maurer et al.’s scheme encrypts, for each receiver,
the vector of all receivers’ public keys plus the message—leading not only to
quadratic sized ciphertexts but also to quadratic encryption and decryption
time—our scheme instead relies on a SKE scheme ΠSKE to encrypt the vec-
tor of all receivers plus the message under a key k that is then encrypted under
each receiver’s public key, resembling the hybrid encryption technique [19]. Fur-
thermore, while Maurer et al.’s construction relies on a binding commitment
scheme in order to achieve consistency, our scheme instead uses a PKE scheme:
note that as long as a PKE key-pair (pk, sk) is sampled honestly, by the correct-
ness of the PKE scheme, the encryption of any message m under pk also works
as a commitment to m.6 The building blocks of this first scheme consist of a
PKE scheme ΠPKE = (G,E,D), a SKE scheme ΠSKE = (G,E,D) and a NIZK
scheme ΠNIZK = (G,P, V, S := (SG, SP )). In the following, vectors are assumed
to have matching lengths; consider relation RPKEBClin-ctxt defined as

RPKEBClin-ctxt :=
{

((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym
′)) : (5.1)

(ksym = ΠSKE.G(1k; rsym)) ∧ (csym = ΠSKE.E(ksym, (rpp, �v,m); rsym′))∧
⎡

⎣
∧

j∈{1,...,|�c|}
(cj = ΠPKE.Evj

(ksym; rj))

⎤

⎦ ∧ (cpp = ΠPKE.Epkpp
((�v,m); rpp))

}

.

In Algorithm 4, we consider the language LPKEBClin-ctxt that is induced by relation
RPKEBClin-ctxt : LPKEBClin-ctxt := {(1k, pkpp, cpp,�c, csym) | ∃(�v,m, rpp, �r, rsym, rsym

′) :
((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym

′)) ∈ RPKEBClin-ctxt}.

5.3 Achieving Linear Time Decryption

As discussed in Sect. 2.2, while the scheme given in Sect. 5.2 already achieves
linear size ciphertexts and linear time encryption, it does not achieve linear
time decryption. We now show how to modify Π lin-ctxt

PKEBC to achieve linear time
decryption. The new scheme, denoted Π lin-dec

PKEBC, is defined in Algorithm 5, and
uses the same building blocks as Π lin-ctxt

PKEBC. In the following, vectors are assumed
to have matching lengths; furthermore, to simplify the definition of the relations
below, we introduce the following predicate:

6 At a more technical level, replacing the binding commitment scheme of Maurer et
al.’s PKEBC construction by a PKE scheme also serves the purpose of allowing the
(IND + IK)-CCA-2 security reductions to handle decryption queries.
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Algorithm 4. Construction of PKEBC scheme Π lin-ctxt
PKEBC = (S,G,E,D).

S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

G(pp)

(pk′, sk′) ← ΠPKE.G(1k)
return (pk := pk′, sk := (pk, sk′))

Epp(�v := (pk1, . . . , pk|�v|), m)

cpp ← ΠPKE.Epp.pk((�v, m); rpp)

ksym ← ΠSKE.G(1k; rsym)
csym ← ΠSKE.Eksym ((rpp, �v, m); rsym

′)
for each j ∈ {1, . . . , |�v|} do

cj ← ΠPKE.Evj
(ksym; rj)

(�r,�c) := ((r1, . . . , r|�v|), (c1, . . . , c|�v|))
p ← ΠNIZK.Pcrs((1

k, pp.pk, cpp, �c, csym) ∈ LPKEBClin-ctxt , (�v, m, rpp, �r, rsym, rsym
′))

return (p, cpp, �c, csym)

Dpp(sk, c := (p, cpp, �c, csym))

if ΠNIZK.Vcrs((1
k, pp.pk, cpp, �c, csym) ∈ LPKEBClin-ctxt , p) = valid then

for j = 1, . . . , |�c| do
ksym ← ΠPKE.Dsk.sk′ (cj)
(rpp, �v, m) ← ΠSKE.Dksym (csym)

if (rpp, �v, m) �= ⊥ ∧ sk.pk = vj then
if cpp = ΠPKE.Epp.pk((�v, m); rpp) then

return (�v, m)

return ⊥

CtxtMatch(pk, pk′, r0, r1, r2, α, k, c0, c1, c2) := ((c0, c1, c2) (5.2)
= (ΠPKE.Epk(α; r0),ΠPKE.Epk′(r0; r1),ΠPKE.Epk′(k; r2))).

Consider relation RPKEBClin-dec defined as

RPKEBClin-dec :=
{

((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym
′)) : (5.3)

(ksym = ΠSKE.G(1k; rsym)) ∧ (csym = ΠSKE.E(ksym, (�v,m); rsym′))

∧
⎡

⎣
∧

j∈{1,...,|�c|}
CtxtMatch(pkpp, vj , rj,0, rj,1, rj,2, vj , ksym, cj,0, cj,1, cj,2)

⎤

⎦

∧ (cpp = ΠPKE.Epkpp
(m; rpp))

}

.

In Algorithm 5, we consider the language LPKEBClin-dec that is induced by relation
RPKEBClin-dec : LPKEBClin-dec := {(1k, pkpp, cpp,�c, csym) | ∃(�v,m, rpp, �r, rsym, rsym

′) :
((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym

′)) ∈ RPKEBClin-dec}.

5.4 Achieving Tight Security Under Adaptive Corruptions

Finally, we modify Π lin-dec
PKEBC to get a PKEBC scheme that is tightly security under

adaptive corruptions. Informally, we use the same two-key technique that we used
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Algorithm 5. Construction of PKEBC scheme Π lin-dec
PKEBC.

S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

G(pp)

(pk′, sk′) ← ΠPKE.G(1k)
return (pk := pk′, sk := (pk, sk′))

Epp(�v := (pk1, . . . , pk|�v|), m)

cpp ← ΠPKE.Epp.pk(m; rpp)

ksym ← ΠSKE.G(1k; rsym)
csym ← ΠSKE.Eksym ((�v, m); rsym

′)
for each j ∈ {1, . . . , |�v|} do

(cj,0, cj,1, cj,2) ← (ΠPKE.Epp.pk(vj ; rj,0), ΠPKE.Evj
(rj,0; rj,1), ΠPKE.Evj

(ksym; rj,2))

�r := ((r1,0, r1,1, r1,2), . . . , (r|�v|,0, r|�v|,1, r|�v|,2))
�c := ((c1,0, c1,1, c1,2), . . . , (c|�v|,0, c|�v|,1, c|�v|,2))
p ← ΠNIZK.Pcrs((1

k, pp.pk, cpp, �c, csym) ∈ LPKEBClin-dec , (�v, m, rpp, �r, rsym, rsym
′))

return (p, cpp, �c, csym)

Dpp(sk, c := (p, cpp, �c, csym))

if ΠNIZK.Vcrs((1
k, pp.pk, cpp, �c, csym) ∈ LPKEBClin-dec , p) = valid then

for j = 1, . . . , |�c| do
r ← ΠPKE.Dsk.sk′ (cj,1)
if r �= ⊥ ∧ ΠPKE.Epp.pk(sk.pk; r) = cj,0 then

ksym ← ΠPKE.Dsk.sk′ (cj,2)
return ΠSKE.Dksym (csym)

return ⊥

for our MDVS scheme construction [1,17]. In other words, in our scheme each
party generates two key-pairs, (pk0, sk0) and (pk1, sk1), and then discards one
of the secret keys skb picked uniformly at random. The new scheme is denoted
Πadap

PKEBC and is defined in Algorithm 6. Similarly to Π lin-dec
PKEBC, Πadap

PKEBC uses the
same building blocks as Π lin-ctxt

PKEBC. Consider relation RPKEBCadap defined as

RPKEBCadap :=
{

((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym
′)) | (5.4)

(ksym = ΠSKE.G(1k; rsym)) ∧ (csym = ΠSKE.E(ksym, (�v,m); rsym′))

∧ (cpp = ΠPKE.Epkpp
(m; rpp)) ∧ [

∧

j∈{1,...,|�c|}, b∈{0,1}

CtxtMatch(pkpp, vj .pkb, rj,0, rj,b,1, rj,b,2, vj , ksym, cj,0, cj,b,1, cj,b,2)]
}

,

where CtxtMatch is as in Eq. 5.2. In Algorithm 6, we consider the follow-
ing language: LPKEBCadap := {(1k, pkpp, cpp,�c, csym) | ∃(�v,m, rpp, �r, rsym, rsym

′) :
((1k, pkpp, cpp,�c, csym), (�v,m, rpp, �r, rsym, rsym

′)) ∈ RPKEBCadap}.

5.4.1 Security Analysis of Πadap
PKEBC

The following theorem gives an informal overview of the security properties of
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Algorithm 6. Construction Πadap
PKEBC.

S(1k)

(pk, sk) ← ΠPKE.G(1k)

return pp := (1k, crs ← ΠNIZK.G(1k), pk)

G(pp)

(pk0, sk0) ← ΠPKE.G(1k)

(pk1, sk1) ← ΠPKE.G(1k)
b ← RandomCoin
return (pk := (pk0, pk1), sk := (pk, b, skb))

Epp(�v := (pk1, . . . , pk|�v|), m)

cpp ← ΠPKE.Epp.pk(m; rpp)

ksym ← ΠSKE.G(1k; rsym)
csym ← ΠSKE.Eksym ((�v, m); rsym

′)
for each j ∈ {1, . . . , |�v|} do

cj,0 ← ΠPKE.Epp.pk(vj ; rj,0)
for each b ∈ {0, 1} do

(cj,b,1, cj,b,2) ← (ΠPKE.Evj.pkb
(rj,0; rj,b,1), ΠPKE.Evj.pkb

(ksym; rj,b,2))

(rj , cj) ← ((rj,0, rj,0,1, rj,0,2, rj,1,1, rj,1,2), (cj,0, cj,0,1, cj,0,2, cj,1,1, cj,1,2))

(�r,�c) := ((r1, . . . , r|�v|), (c1, . . . , c|�v|))
p ← ΠNIZK.Pcrs((1

k, pp.pk, cpp, �c, csym) ∈ LPKEBCadap , (�v, m, rpp, �r, rsym, rsym
′))

return (p, cpp, �c, csym)

Dpp(sk, c := (p, cpp, �c, csym))

if ΠNIZK.Vcrs((1
k, pp.pk, cpp, �c, csym) ∈ LPKEBCadap , p) = valid then

for j = 1, . . . , |�c| do
r ← ΠPKE.Dsk.sk(cj,sk.b,1)
if r �= ⊥ ∧ ΠPKE.Epp.pk(sk.pk; r) = cj,0 then

ksym ← ΠPKE.Dsk.sk(cj,sk.b,2)
return ΠSKE.Dksym (csym)

return ⊥

our PKEBC scheme construction. See [3] for the formal security theorems and
the corresponding full proofs.

Theorem 2 (Informal). If ΠPKE is correct and tightly multi-user and multi-
challenge IND-CPA and IK-CPA secure under non-adaptive corruptions, ΠNIZK

is complete, sound, tightly multi-statement adaptive zero-knowledge and tightly
multi-statement simulation sound, and ΠSKE is correct and tightly multi-instance
IND-CPA secure, then Πadap

PKEBC is:

1. tightly correct;
2. tightly robust;
3. tightly consistent; and
4. tightly (IND + IK)-CCA-2adap secure under adaptive corruptions.

6 Multi-designated Receiver Signed Public Key
Encryption Schemes

An MDRS-PKE scheme is a 6-tuple of PPTs Π = (S,GS , GR, E,D, Forge),
where:
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– S: on input 1k, generates public parameters pp;
– GS : on input pp, generates a sender key-pair (spk, ssk);
– GR: on input pp, generates a receiver key-pair (rpk, rsk);
– E: on input (pp, ssk, �v,m), where ssk is the secret sending key, �v is a vector

of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

– D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts c
using rsk, obtaining a triple sender/receiver-vector/message (spk, �v,m) (or
⊥ if decryption fails) which it then outputs;

– Forge: on input (pp, spk, �v,m,�s), where spk is the sender’s public key, �v is
a vector of public keys of the intended receivers, m is the message and �s is
a vector of designated receivers’ secret keys—with |�s| = |�v| and where for
i ∈ {1, . . . , |�v|}, either si = ⊥ or si is the secret key corresponding to the i-th
public key of �v, i.e. vi—generates a ciphertext c.

Analogously to Sect. 4, in this section we introduce new (stronger) security
notions for MDRS-PKE schemes (see Definitions 12 and 13). Then, we briefly
describe how one use the MDVS and PKEBC constructions from before to obtain
an MDRS-PKE scheme with the desired properties (by following the construction
given by Maurer et al. in [15]), and argue why the scheme is secure with respect
to our new stronger MDRS-PKE security notions.

6.1 Security Notions

Below we state the notions of Correctness, Consistency, Unforgeability,
(IND + IK)-CCA-2adap and Off-The-Record for MDRS-PKE schemes. Analo-
gously to the new MDVS Off-The-Record security notion we introduced in
Sect. 4.1 (Definition 4), the (IND + IK)-CCA-2adap and Off-The-Record security
notions we now present (Definitions 12 and 13, respectively), allow the adver-
sary to obtain the sender’s secret key; and analogously to the new PKEBC
security notions we introduced in Sect. 5.1 (in particular Definition 8), our new
MDRS-PKE security notions capture the setting where the adversary can adap-
tively corrupt parties (see Definition 12). The security notions we now present
are thus an enhancement over the original ones given in [15].

Let Π = (S,GS , GV , E,D, Forge) be an MDRS-PKE scheme with message
space M. The oracles below are defined for a game-system with (an implicitly
defined) security parameter k:

Public Parameter Generation Oracle: OPP

1. On the first call, compute pp ← S(1k); output pp;
2. On subsequent calls, simply output pp.

Sender Key-Pair Oracle: OSK(Ai)
1. On the first call on input Ai, compute and store (spki, sski) ← GS(pp);

output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Receiver Key-Pair Oracle: ORK(Bj)
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1. Analogous to the Sender Key-Pair Oracle.
Sender Public-Key Oracle: OSPK(Ai)

1. (spki, sski) ← OSK(Ai); output spki.
Receiver Public-Key Oracle: ORPK(Bj)

1. Analogous to the Sender Public-Key Oracle.
Encryption Oracle: OE(Ai, �V ,m)

1. (spki, sski) ← OSK(Ai);
2. �v ← (ORPK(V1), . . . ,ORPK(V|�V |));
3. Output c ← Epp(sski, �v,m).

Decryption Oracle: OD(Bj , c)
1. (rpkj , rskj) ← ORK(Bj);
2. Output (spk, �v := (rpk1, . . . , rpk|�v|),m) ← Dpp(rskj , c).

Definition 9 (Correctness). Game system GCorr provides an adversary A
with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins
the game if there are two queries qE and qD to OE and OD, respectively, where
qE has input (Ai, �V ,m) and qD has input (Bj , c), satisfying Bj ∈ �V , the input c
in qD is the output of qE, the output of qD is (spki

′, �v′,m′) with (spki
′, �v′,m′) =

⊥ or (spki
′, �v′,m′) �= (spki, �v,m)—where spki is Ai’s public key and �v is the

corresponding vector of public keys of the parties of �V . The advantage of A in
winning the Correctness game, denoted AdvCorr(A), is the probability that A wins
game GCorr as described above.

Definition 10 (Consistency). Game system GCons provides an adversary A
with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins
the game if there is a ciphertext c such that OD is queried on inputs (Bi, c)
and (Bj , c) for some Bi and Bj (possibly with Bi = Bj), there is no prior
query on either Bi or Bj to ORK , query OD(Bi, c) outputs some (spkl, �v,m)
satisfying (spkl, �v,m) �= ⊥, spkl is some party Al’s public sender key (i.e.
OSPK(Al) = spkl) and rpkj ∈ �v (where rpkj is Bj’s public key), and query
OD(Bj , c) does not output the same triple (spkl, �v,m). The advantage of A in
winning the Consistency game is denoted AdvCons(A) and corresponds to the
probability that A wins game GCons as described above.

Definition 11 (Unforgeability). Game system GUnforg provides an adversary
A with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. We say
that A wins the game if there is a query q to OD on an input (Bj , c) that
outputs (spki, �v,m) �= ⊥ with spki being some party Ai’s sender public key (i.e.
OSPK(Ai) = spki), there was no query OE(Ai, �V ,m) where �V is the vector
of parties with corresponding public keys �v, OSK was not queried on input Ai,
and ORK was not queried on input Bj. The advantage of A in winning the
Unforgeability game is the probability that A wins game GUnforg as described
above, and is denoted AdvUnforg(A).

We say that an adversary A (ε, t)-breaks the (nS , nR, dE , qE , qD)-
Correctness, Consistency, or Unforgeability of Π if A runs in time at most
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t, queries OSK , OSPK , OE and OD on at most nS different senders, queries
ORK , ORPK , OE and OD on at most nR different receivers, makes at most
qE and qD queries to OE and OD, respectively, with the sum of lengths of the
party vectors input to OE being at most dE , and A’s advantage in winning the
(corresponding) security game is at least ε.

6.1.1 New (IND + IK)-CCA-2adap and Off-The-Record Notions
Analogously to Sect. 4.1.1, in this section we present the new enhanced OTR and
(IND + IK)-CCA-2adap security notions for MDRS-PKE schemes. As already men-
tioned, the main difference between our new notions and existing ones (see [15])
is that in our new notions the adversary can query for the secret key of any
sender (see Definitions 12 and 13) and can corrupt parties adaptively.

The games defined by these notions provide adversaries with access to the
oracles from before as well as to the oracles OE and OD defined below:

Encryption Oracle: OE((Ai,0, �V0,m0), (Ai,1, �V1,m1))

1. For game system G(IND+IK)-CCA-2adap

b , encrypt mb under sski,b (Ai,b’s
sender secret key) and �vb ( �Vb’s corresponding vector of receiver public
keys); output c.

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, compute (spki, �v,m) ← Dpp,skj

(c), where skj is Bj ’s secret
key; output (spki, �v,m).

Definition 12. ((IND + IK)-CCA-2adap Security). For b ∈ {0, 1}, game sys-
tem G(IND+IK)-CCA-2adap

b provides an adversary A with access to oracles OPP ,
OSK , ORK , OSPK , ORPK , OE and OD. A wins the game if it outputs a
guess bit b′ with b′ = b and for every query OE((Ai,0, �V0,m0), (Ai,1, �V1,m1)):

1. |m0| = |m1|; 2.
∣
∣
∣�V0

∣
∣
∣ =

∣
∣
∣�V1

∣
∣
∣; and 3. there is no query to ORK on any

Bj ∈ Set(�V0) ∪ Set(�V1) at any point during the game. We define the advantage
of A in winning the (IND + IK)-CCA-2adap game as

Adv (IND+IK)-CCA-2adap(A) :=
∣
∣
∣Pr[AG(IND+IK)-CCA-2adap

0 = win] + Pr[AG(IND+IK)-CCA-2adap

1 = win] − 1
∣
∣
∣ .

An adversary A (ε, t)-breaks the (nR, dE , qE , qD)-(IND + IK)-CCA-2adap security
of Π if A runs in time at most t, queries ORK , ORPK , OE and OD on at most nR

different receivers, makes at most qE and qD queries to OE and OD, respectively,
with the sum of lengths of the party vectors input to OE being at most dE , and
satisfies Adv (IND+IK)-CCA-2adap(A) ≥ ε.

The following notion defines two game systems, GOTR
0 and GOTR

1 , which
provide adversaries with access to an oracle OE , whose behavior varies depending
on the underlying game system. For b ∈ {0, 1}, OE behaves as follows:
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Encryption Oracle: OE(type ∈ {sig, sim}, Ai, �V ,m, C)
For game system GOTR

b , the oracle behaves as follows:
1. Let �v = (v1, . . . , v|�V |) and �s = (s1, . . . , s|�V |), where, for i ∈ {1, . . . ,

∣
∣
∣�V

∣
∣
∣}:

– (vi, si) =
{ ORK(Vi) if Vi ∈ C

(ORPK(Vi),⊥) otherwise;
2. (c0, c1) ← (Π.Epp(sski, �v,m),Π.Forgepp(spki, �v,m,�s));
3. If b = 0, output c0 if type = sig and c1 if type = sim; otherwise, if

b = 1, output c1.

Definition 13 (Off-The-Record). For b ∈ {0, 1}, game system GOTR
b pro-

vides an adversary A with access to oracles OPP , OSK , ORK , OSPK , ORPK ,
OE and OD. A wins the game if it outputs a guess bit b′ with b′ = b and for
every query (type, Ai, �V ,m, C) to OE, and letting c be the output of OE, all of the
following hold: 1. C ⊆ Set(�V ); 2. for every query Bj to OV K , Bj �∈ Set(�V )\C; 3.
for all queries OD(Bj , c

′), c′ �= c. A’s advantage in winning the Off-The-Record
security game is

AdvOTR(A) :=
∣
∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win] − 1

∣
∣ .

We say that an adversary A (εOTR, t)-breaks the (nS , nR, dE , qE , qD)-Off-The-
Record security of Π if A runs in time at most t, queries OSK , OSPK , OE and
OD on at most nS different senders, queries ORK , ORPK , OE and OD on at
most nR different receivers, makes at most qE and qD queries to OE and OD,
respectively, with the sum of lengths of the party vectors input to OE being at
most dE , and satisfies AdvOTR(A) ≥ εOTR. Finally, we say that Π is

(εCorr, εCons, εUnforg, ε(IND+IK)-CCA-2adap , εOTR,

t, nS , nR, dE , qE , qD)-secure,

if no adversary A: 1. (εCorr, t)-breaks the (nS , nR, dE , qE , qD)-Correctness of Π;
2. (εCons, t)-breaks the (nS , nR, dE , qE , qD)-Consistency of Π; 3. (εUnforg, t)-breaks
the (nS , nR, dE , qE , qD)-Unforgeability of Π; 4. (ε(IND+IK)-CCA-2adap , t)-breaks the
(nR, dE , qE , qD)-(IND + IK)-CCA-2adap security of Π; or 5. (εOTR, t)-breaks the
(nS , nR, dE , qE , qD)-Off-The-Record security of Π.

6.2 Construction of MDRS-PKE with Short Ciphertexts

Maurer et al. give a black-box construction of an MDRS-PKE scheme from a
PKEBC scheme and an MDVS scheme [15]. At a high level, the construction [15,
Algorithm 2] essentially relies on the MDVS scheme to sign messages, and on
the PKEBC scheme to encrypt the message, the signature and all relevant pub-
lic keys. More concretely, in their construction a sender key-pair consists of an
MDVS signer key-pair, whereas a receiver key-pair consists of an MDVS verifier
key-pair and a PKEBC key-pair. To encrypt a message m, a signer first uses
its MDVS signer key-pair to generate a signature σ on both m and the vec-
tor of PKEBC public keys of the intended receivers, and then uses the PKEBC
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scheme to encrypt its own MDVS signer public key, the MDVS verifier public key
of each receiver, the message m and the signature σ; the resulting MDRS-PKE
ciphertext is the one output by the PKEBC scheme. Conversely, to decrypt an
MDRS-PKE ciphertext, a receiver first decrypts the PKEBC ciphertext, obtain-
ing not only the vector of PKEBC public keys of the receivers, but also a signer’s
MDVS public key (of the sender), a vector of MDVS verifier public keys (of each
of the receivers), a message m, and an MDVS signature σ; then, it uses its
MDVS secret verification key to check if σ is a valid MDVS signature on the
message m and the vector of PKEBC public keys obtained from decryption, and
with respect to all the MDVS public keys obtained from decrypting the PKEBC
ciphertext.

Security of the Resulting MDRS-PKE Scheme. In contrast to the MDRS-PKE
security notions considered in this paper, the original notions introduced in [15]
do not capture the setting where the adversary is given access to the secret keys
of signers (see [15, Definitions 9, 10 and 11]). Yet, as noted by the authors, on
one hand the IND-CCA-2 and IK-CCA-2 security proofs of the MDRS-PKE con-
struction (see [16, Sections H.2 and H.3]) actually prove the scheme’s security
with respect to the stronger IND-CCA-2 and IK-CCA-2 security notions where
the adversary is given access to any sender secret keys. On the other hand, and
as is even noted by the authors in [15, Remark 11], if one would assume the
underlying MDVS scheme satisfies the stronger off-the-record notion we con-
sider in this paper—wherein the adversary is given access to the sender’s secret
key, see Definition 4—then the resulting MDRS-PKE scheme also satisfies the
corresponding stronger off-the-record notion (that we also consider in this paper,
see Definition 13).

Regarding adaptive security, note that the only security notions from [15]
where the adversary cannot adaptively corrupt parties are the IND-CCA-2 and
IK-CCA-2 security notions (see [15, Definitions 9 and 10]). Yet, the MDRS-PKE
construction’s IND-CCA-2 security proof (see [16, Section H.2]) is a trivial reduc-
tion to the IND-CCA-2 security of the underlying PKEBC scheme, and the IK-
CCA-2 security proof (see [16, Section H.3]) is also a trivial reduction, but to
both the IND-CCA-2 and IK-CCA-2 security of the underlying PKEBC scheme
(this is necessary since the PKEBC is used to encrypt the MDVS public keys
of the involved parties). It is then rather straightforward to see that the IND-
CCA-2 and IK-CCA-2 security proofs from [16] can be trivially adapted for the
case of adaptive corruptions, as long as one assumes that the underlying PKEBC
scheme is also secure with respect to adaptive corruptions. In fact, and since, as
one may note, we consider the joint (IND + IK)-CCA-2adap security notions (see
Definitions 8 and 12) that capture both IND-CCA-2adap and IK-CCA-2adap, the
MDRS-PKE scheme’s (IND + IK)-CCA-2adap security proof becomes even sim-
pler: it essentially becomes a one to one reduction to the (IND + IK)-CCA-2adap

security of the underlying PKEBC scheme.
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Abstract. We show that the adaptive compromise security definitions
of Jaeger and Tyagi (Crypto ’20) cannot be applied in several natural use-
cases. These include proving multi-user security from single-user security,
the security of the cascade PRF, and the security of schemes sharing the
same ideal primitive. We provide new variants of the definitions and show
that they resolve these issues with composition. Extending these defini-
tions to the asymmetric settings, we establish the security of the modular
KEM/DEM and Fujisaki-Okamoto approaches to public key encryption
in the full adaptive compromise setting. This allows instantiations which
are more efficient and standard than prior constructions.

Keywords: Adaptive security · Ideal models · Selective-opening
attacks

1 Introduction

Definitions lie at the heart of modern cryptography. They allow us to math-
ematically specify what should be achieved by a scheme in practice and give
modular, proof-based analyses to ensure these properties are achieved. Studying
and understanding definitions is fundamental to the field of cryptography.

There are multiple desiderata to consider when giving a security definition
for a primitive including: (i) Is it philosophically sound? Does it meaningfully
model the uses and goals of a primitive in the real world? (ii) Is it sufficiently
strong? Can we prove that this security notion will imply security of higher-level
protocols constructed from the primitive? (iii) Is it sufficiently weak? Can we
prove that schemes which “should be” secure satisfy the definition?1

In this work, we consider a set of definitions recently introduced by Jaeger
and Tyagi [23] for the security of encryption schemes and pseudorandom func-
tions in the “adaptive compromise” setting. They gave several examples of
1 More nuanced versions of (ii) and (iii) ask not just whether these proofs are pos-

sible, but also how easy they are to write. Definitions which are difficult to work
with can result in proof errors or cryptographers only loosely sketching their proofs
(potentially hiding errors).
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schemes achieving their definitions as well as higher-level protocols which can
be proven secure based on sub-primitives achieving their definitions, thereby
evidencing that their definitions achieve desiderata (ii) and (iii). We provide
counter-evidence. There are natural goals and constructions for which their def-
initions fail with respect to (ii) and (iii).2

As an example, it does not seem to be possible to prove that single-user
restrictions of their definitions implies the full multi-user versions. Across a wide
variety of definitions, the notion of multi-user security that is considered “cor-
rect” follows from single-user security by a straightforward hybrid argument.
Thus, whether this holds for a definition might be considered a sort of litmus
test. A definition for which this is not possible should be examined carefully to
understand why. Having done so, we propose new variants of Jaeger and Tyagi’s
definitions and show that they resolve these shortcomings, while preserving the
positive qualities of the original definitions.

1.1 Adaptive Compromise and SIM-AC Security

Before discussing our contributions, let us first briefly recall the adaptive com-
promise setting broadly and the specific SIM-AC definitions of Jaeger and Tyagi
(simulation security under adaptive compromise). Roughly speaking, the adap-
tive compromise setting captures times when there are multiple users of a sys-
tem, each of whom have their own secrets. An attacker then interacts with these
users and based on these interactions may adaptively decide to steal some of the
secrets. In applications of these definitions, this description may be somewhat
metaphorical. For example, in the searchable encryption scheme of CJJJKR [14]
the “users” are keywords, each of which are assigned a secret key. The “stealing”
of keys occurs because to perform a search for a particular keyword, the protocol
shares the keyword’s secret key. The adaptive compromise setting is widely stud-
ied in cryptography and is associated with a variety of terms including (but not
limited to) adaptive corruption/compromise/security [23,26], non-committing
encryption [10,12,13,25], and selective-opening attacks [6,7,9,18,19,21].

Jaeger and Tyagi’s work was motivated by various papers that ran into adap-
tive compromise issues for symmetric encryption or PRFs and had addressed
the issues by fixing particular uses of random oracles acting like PRFs. They
observed that these works all technically required the same detail-intensive ran-
dom oracle analysis (which was usually omitted or incorrect). To address this,
they introduced their SIM-AC definitions which allow one to abstract away this
detail-intensive analysis as something that need only be done once at the lowest
levels of analysis. They showed that these notions were achieved by standard effi-
cient schemes in appropriate ideal models, and sufficed for proving the security of
their motivating higher-level applications. Broadly their definitions were online-
simulator based definitions in which the attacker tries to distinguish between a

2 The examples for which (iii) fails are “intermediate-level” proofs where both the
assumption and desired result use their definitions. Arguably then, it is only with
respect to (ii) that these definitions have issues.
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Fig. 1. Left: Typically one proves a scheme Π achieves a security notion with random
oracle P, then heuristically assumes it is SEC secure with a particular hash function
(e.g. SHA-384). Middle and Right: A scheme Π cannot be SIM-AC-X secure with
any standard model hash function [23,25]. Instead, one uses SIM-AC-X security of ΠP

as an intermediate step to showing that ΠP achieves some security notion SEC′. Then
one heuristically assumes ΠSHA is SEC′ secure.

real world where they interact with the honest algorithms of the scheme and
an ideal world where the simulator provides responses for every oracle query
(including ideal primitive queries). Security requires that for every adversary
there is a simulator whose responses it cannot distinguish from the real world.

Notably these definitions were defined explicitly for use only with ideal prim-
itives because techniques of Nielsen [25] show that such definitions cannot be
achieved in the standard model. Arguably this causes issues with desiderata (i).
Consider a scheme ΠH which expects access to a hash function H. In practice,
the might be deployed with the hash function SHA-384 (giving ΠSHA) under
the hope that it achieves some security notion SEC. Towards justifying this the
scheme may be analyzed when the hash function is replaced with a random
oracle P (giving ΠP). If ΠP is shown to be SEC secure, this may be taken as
heuristic evidence that ΠSHA will be SEC secure. However, this clearly cannot
be the case for SEC=SIM-AC-X from the aforementioned result that SIM-AC
notions cannot be achieved in the standard model.

From our perspective, the “correct” interpretation is that the SIM-AC def-
initions are intentionally chosen to be overly strong so that (in ideal models)
they imply any other security property SEC′ one desires. Suppose SEC′ is plau-
sibly achievable in the standard model and one proves that SIM-AC-X security
implies SEC′ security. Then a proof that ΠP is SIM-AC-X secure can be viewed
as part of a longer ideal model proof that it achieves SEC′. Then the proof can
act as heuristic evidence that ΠSHA is a standard model scheme achieving SEC′.
We represent this pictorially in Fig. 1.

A similar viewpoint can be taken to proving that a particular hash function
construction is indifferentiable from a random oracle. It is trivial to show that
no standard model hash function can achieve this. However, analyzing indiffer-
entiability in ideal models still serves as a convenient intermediate notion for
heuristically justifying the use of the hash function in some contexts.
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1.2 Our Results

Shortcomings of SIM-AC. After introducing notations and other preliminar-
ies, we start in Sect. 3 by recalling the original SIM-AC definitions of Jaeger and
Tyagi. In their definitions, an attacker interacts with either a real world (where
oracles are instantiated honestly) or an ideal world (where oracles are all sim-
ulated by a simulator given only some leakage about the queries being made).
The definitions are multi-user and allow the attack to ask that a particular users
secrets be revealed at any time. Then, in the ideal world, the simulator is given
all of the suppressed information about prior queries and must produce a con-
sistent key, lest it be discovered. In the ideal world, the simulator completely
controls the responses of the ideal primitive.

We evidence some shortcomings of these definitions, in that they are seem-
ingly unable to prove some very natural results.3 One example, which came up
in their own work, is that their definitions cannot be used for proofs wherein the
ideal object is used multiple times within a protocol (whether by multiple differ-
ent sub-primitives or repeated use of the same sub-primitive). For example, in
the searchable encryption construction of CJJJKR [14] the same random oracle
was shared across encryption and a PRF, but for the analysis done by Jaeger
and Tyagi they were forced to use different primitives for the two uses. One can
generically solve this problem via oracle cloning [5], but we find this unsatis-
factory. A good definitional framework should allow us to capture when uses of
ideal primitives don’t require domain separation techniques. Furthermore, while
domain separation is relatively fast and efficient for random oracles, we are gen-
erally interested in the use of a variety of ideal primitives and it is much less
clear how to do oracle cloning efficiently with something like an ideal cipher.

Similar and even more subtle issues arise in some “standard” results that one
would expect to hold with a “good” definition. One would expect that it should
be possible to prove secure the cascade construction of a PRF [4,17] which iter-
atively applies a smaller PRF, as well as to prove that for most security notions
single-user security implies multi-user security. The cascade construction under-
lies several other construction PRFs including AMAC, HMAC, and NMAC [1–3].
These (and other) issues all stem from a common cause. In SIM-AC, the simu-
lator completely controls and replaces the ideal primitive. As such the definition
is not robust to proofs which require multiple different applications of security
with respect to the same ideal primitive.

New Definition, SIM*-AC. Motivated by these shortcomings, in Sect. 4 we
propose new variants of these definitions, which we term SIM*-AC. Our new
definitions match the prior SIM-AC definitions, but make three crucial modifi-
cations. The first is that rather having complete control of the ideal primitive,
we give the simulator access to an oracle for querying the primitive and which

3 We use “seemingly” here and similar phrasing elsewhere because, while we have
deeply considered these problems and do not see how SIM-AC could be used to prove
these results, we do not have any explicit counterexamples showing it is impossible.
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additionally provides the special power of being able to give an input-output pair
which the primitive will program itself to be consistent with, if possible. This
modification means that applications of SIM*-AC in a proof will leave the ideal
primitive around for use in further proof steps. However, these future steps can
run into issues where the simulator is supposed to have programmed the ideal
primitive, but a reduction attacker who wants to run the simulator internally has
no way of forcing other parties to use a programmed ideal primitive. This issue is
resolved by our second modification which gives the adversary the ability to pro-
gram the ideal primitive. The final modification is aimed at proofs which require
a polynomial number of hybrids and, as such, the reduction adversary needs
to depend on the simulator so that it can properly simulate internal hybrids.
We simply reverse the order of quantification so that a universal simulator is
quantified before a specific attacker.

After the introduction of the new definitions we show by example that the mod-
ifications suffice to write the proofs we identified as seemingly not possible with
the original SIM-AC definitions. Namely, we prove that for all of our SIM*-AC
definitions (with one exception) single-user security implies multi-user security4

and that the cascade construction of a large-domain PRF from a small-domain
PRF is secure. Both proofs are hybrid argumentswhich conceptually resemble such
proofs for most standard indistinguishability-based security notions. For going
from single-user to multi-user the hybrid is over how many of the users will be hon-
estly run versus emulated by a copy of the single-user simulator. For the cascade
construction (which is a generalization of the GGM construction of a PRF from a
PRG), we think of there being an underlying tree structure imposed on the internal
values of the computation. The proof performs a hybrid over how many layers of
the tree are honestly run versus emulated by a multi-user simulator for the under-
lying PRF. Using multi-user security allows us to hybrid one layer at a time, rather
than having hybrid over each node individually.

Asymmetric Encryption. The SIM-AC definitions focus on symmetric prim-
itives (encryption and PRFs) because this is what was required by their appli-
cations. However, adaptive compromise has been studied in detail for public-
key encryption, so it is natural to ask how a SIM*-AC notion for public key
encryption would work. We do so in Sect. 5, providing a definition that cap-
tures the compromise of receiver secret decryption keys and sender randomness.
The resulting definition roughly matches the SIM-FULL definition of Camen-
sich, Lehmann, Neven, and Samelin [12].5 In their work, they showed that SIM-
FULL was stronger than various prior adaptive compromise definitions [11,18]
and equivalent to a new universal composability definition they introduce.

Casting this definition in SIM*-AC language provides benefits. Where CLNS
constructed one particular secure encryption scheme from one-way trapdoor
permutations, the broader context of SIM*-AC style definitions allows us to
4 The exception is key-private security which is meaningless with only a single user.
5 Their definition is basically a SIM-AC-CCA (not SIM*-AC) definition with labels

and using a random oracle.
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follow the example of Jaeger and Tyagi by giving modular analysis. In particu-
lar, we introduce SIM*-AC definitions for key-encapsulation mechanisms (KEM),
then show the KEM/DEM approach [15] allows one to combine a KEM with
a symmetric encryption scheme to construct public-key encryption. We con-
sider one version of the Fujisaki-Okamoto transformation [16] (as modularized
by Hofheinz, Hövelmanns, and Kiltz [20]) to show that it can lift a KEM satis-
fying a one-wayness security notion to a KEM satisfying our full SIM*-AC-CCA
notion. Thereby we have a more general collection of different options how to
construct a public-key encryption scheme secure against adaptive compromise.
We can instantiate this with well-studied and standardized schemes, improving
efficiency because our analysis allows the use of block-cipher based symmetric
encryption for the DEM.

An interesting comparison point for our KEM/DEM analysis is the work of
Heuer and Poettering [19] who also looked at the KEM/DEM construction. They
proved a weaker offline-simulation notion of security for public key encryption
by making a particular concrete assumption about the DEM being constructed
from a blockcipher and having to have a particular simulatable form.

New Definition, Old Results. Jaeger and Tyagi showed a number posi-
tive results in their original work. These include that random oracles and ideal
ciphers make SIM-AC-PRF secure function families, that various constructions
of symmetric encryption achieve SIM-AC security when their underlying func-
tion families are SIM-AC-PRF secure, and that higher-level protocols can be
proven secure assuming the SIM-AC security of their constituent elements. It
would be rather disappointing if our switch to SIM*-AC security required us to
re-prove all of these results from scratch.

In Sect. 6, we dedicate the end of our paper to showing that these results
hold with SIM*-AC security. We roughly divide these pre-existing results into
three categories: low-level results (constructing basic SIM-AC primitives directly
from ideal primitives), intermediate-level results (using one notion of SIM-AC
to achieve another), and high-level results (proving secure some non-SIM-AC
protocol). For each we discuss how the existing result can be seen, possibly with
minor modification to the proof, to hold for SIM*-AC security. In some cases we
can get minor improvements along the way, such as allowing the proof to handle
when a single ideal primitive is shared between multiple schemes.

2 Preliminaries

Pseudocode Notation. We define security notions using pseudocode-based
games. The pseudocode “Require bool” is shorthand for “If not bool then return
⊥”. If S is a set, then x ←$ S sets x equal to a uniformly random element of S.
The notation x(·) ←$ S means that each xu will be sampled according to xu ←$ S
the first time it is accessed.

The notation y ←$ A(x1, x2, · · · : σ) denotes the (randomized) execution of A
with state σ. Deterministic execution uses ←. The state σ is passed by reference,
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so changes that A makes to σ are maintained after A’s execution. All other inputs
are passed by value. For given x1, x2, . . . and σ we let [A(x1, x2, · · · : σ)] denote
the set of possible outputs of A given these inputs.

The symbol ⊥ is used to indicate rejection or uninitialized variables. The
symbol � is used as a return value by functions that do not need to return any-
thing. Unless specified otherwise, these values are assumed not to be contained
in sets. Algorithms and oracles will typically assume their input is from a par-
ticular domain (e.g. the message space of an encryption scheme). We implicitly
assume adversaries never provide them with input not in these domains.

A list T of length n ∈ N specifies an ordered sequence of elements T [1], T [2],
. . . , T [n]. The operation T.add(x) appends x to this list by setting T [n+1] ← x,
so T is now of length n + 1. We let |T | denote the length of T . In pseudocode
lists are assumed to be initialized empty (i.e. have length 0). An empty list or
table is denoted by [·]. We sometimes use set notation with a list. For example,
x ∈ T is true if x = T [i] for any 1 ≤ i ≤ |T |. The loop “For x ∈ T ” is defined to
be looping “For i = 1, . . . , |T |” and defining x ← T [i] in each iteration.

If T is a list of tuples (x, y) then we index into T like a table where T 〈x〉 is
the y value of the last tuple in the list with first component x (or is ⊥ if no such
tuple exists). By T.add(x, y) we mean T.add((x, y)).

We use an asymptotic formalism with security parameter λ. A function f is
negligible if for all polynomials p there exists a λp ∈ N such that f(λ) ≤ 1/p(λ)
for all λ ≥ λp. We say it is super-polynomial if 1/f is negligible and super-
logarithmic if 2f is super-polynomial.

Suppose Gsec
x is a game that samples a uniformly random bit b, runs an

adversary which guesses bit b′, and then returns the boolean (b = b′). Then for
d ∈ {0, 1}, we let Gsec

x,d be the game with b hardcoded to have value d and which
outputs the boolean (b′ = 1). Standard conditional probability calculations give
that 2Pr[Gsec

x ] − 1 = Pr[Gsec
x,1] − Pr[Gsec

x,0].

Ideal Primitives. Most of the definitions we consider are dependent on ideal
primitives such as random oracles or ideal ciphers, so we require a careful for-
malization of them. An ideal primitive P specifies (for each λ ∈ N) a distibution
Pλ over functions f : Kλ ×Dλ → Rλ. When needed to avoid ambiguity we write
P.Pλ, P.Kλ, P.Dλ, and P.Rλ. In the P ideal model, f ←$ Pλ is sampled at the
beginning of any security game and algorithms are given oracle access to f .

It is often important that oracle access to an ideal primitive can be efficiently
simulated despite the fact that each f ∈ Pλ is typically exponential in size. This
is referred to as lazy sampling, which we notate using an algorithm P.Ls. We will
think of f as being (partially) specified by a table σP indexed by Kλ ×Dλ. Then
the evaluation algorithm has syntax y ←$ P.Ls(1λ, k, x : σP). If σP[k, x] = ⊥,
it samples σP[k, x] according to the appropriate distribution conditioned on the
current value of σP.6 Then it outputs σP[k, x]. We sometimes use AP as shorthand
for giving algorithm A oracle access to P.Ls(1λ, ·, · : σP).
6 Concretely, this is the distribution induced by sampling f ←$ Pλ subject to

f(k′, x′) = σ[k′, x′] wherever the latter is not ⊥ and assigning σP[k, x] ← f(k, x).
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The standard model is captured by the primitive Psm for which Pλ always
returns the function f defined exactly by f(ε, ε) = ε. A random oracle Prom is
captured by Pλ’s output being uniform over the set of all functions f : Kλ×Dλ →
Rλ. An ideal injection Pinj is captured by letting Kλ consist of tuples (◦, k) for
◦ ∈ {+,−}. Then Pλ returns a uniform f for which f((+, k), ·) is an injection
with inverse f((−, k), ·) (we define inverse functions to output � on input a
value not in the image of the original function). An ideal cipher Picm is an ideal
injection for which f((+, k), ·) is a bijection on the finite set Dλ = Rλ. Standard
techniques allow Ls to be efficiently evaluated for such functions.

Cryptographic schemes may be constructed from multiple underlying cryp-
tographic schemes, each expecting its own ideal primitive. Let P′ and P′′ be ideal
primitives. We define P = P′ × P′′ via the following algorithms.

P.Init(1λ)
σP

′ ←$ P′.Init(1λ)
σP

′′ ←$ P′′.Init(1λ)
Return (σP

′, σP
′′)

P.Ls(1λ, k, x : σP)
(σP

′, σP
′′) ← σP

(d, k) ← k
If d = 1 then y ←$ P′.Ls(1λ, k, x : σP

′)
If d = 2 then y ←$ P′′.Ls(1λ, k, x : σP

′′)
σP ← (σP

′, σP
′′)

Return y

In other words, P.Pλ samples f ′ ←$ P′.Pλ and f ′′ ←$ P′′.Pλ, then defines f by
f((1, k), x) = f ′(k, x) and f((2, k), x) = f ′′(k, x).

Programming Ideal Primitives. For our new security notions we need to
make explicit a notion of “programming” an ideal model. By this we mean allow-
ing some third party to define the output of ideal model on inputs that have
not previously been queried. Let σP be a table indexed by Kλ × Dλ and let
(k, x, y) ∈ Kλ × Dλ × Rλ. We say that σP is compatible with (k, x, y), denoted
σP♥(k, x, y) if there exists f ∈ Pλ such that (i) σP[k′, x′] = f(k′, x′) wherever
σP[k′, x′] = ⊥ and (ii) f(k, x) = y. Then we allow programming of an ideal
model P using the algorithm P.Prog defined as follows.

P.Prog(1λ, k, x, y : σP)
If σP♥(k, x, y) then σP[k, x] ← y
Return �

This ensures that P cannot be redefined on an input where it was already defined
and that an ideal injection cannot be made to have inconsistent inverses.

Our careful formalizing of ideal primitives in terms of functions, particularly
in requiring that P.Prog maintain consistency, is important for avoiding subtle
issues in later proofs. This formalization ensures that a deterministic algorithm
with oracle access to P always gives consistent outputs even if P is programmed
between executions. Correctness of a scheme with access to P (e.g. that decryp-
tion inverts encryption) is maintained even if P is programmed between execu-
tions of different algorithms. Without these properties it would be difficult to
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avoid erroneous proofs that implicitly assumed them during typically “straight-
forward” proof steps.

This is not without cost. The requirement for consistency in programming
has the potential to introduce subtle errors elsewhere in proofs by implicitly
assuming an attempt to program an oracle worked, when in fact it failed because
of inconsistency. Additionally, the act of honestly querying the ideal primitive
can be detected by a programming adversary who attempts to program at that
point and then checks if they succeed in this programming. We believe this cost
to be worthwhile because in the analyses we have considered, the places that
could cause such proof errors would anyway need to be analyzed carefully to
avoid other errors if we were using a more permission notion of programming.

For generality, we allow the use of non-programmable ideal primitives in
games that allow programming. This is captured by defining P.Prog to immedi-
ately return �. When we quantify over an arbitrary ideal primitive, we allow it
to be programmable or non-programmable (or the combination of multiple ideal
primitives – some programmable, some not). When we discuss a specific ideal
primitive, we mean the programmable version unless specified otherwise.

Syntax for Cryptographic Primitives. We assume familiarity with (ran-
domized) symmetric encryption, asymmetric encryption, function families (e.g.
PRFs), and key encapsulation mechanisms. We use the following syntax.

Symmetric encryption
k ←$ SE.Kg(1λ)
c ←$ SE.EncP(1λ, k,m)
m ← SE.DecP(1λ, k, c)

Asymmetric encryption
(ek,dk) ←$ PKE.Kg(1λ)
c ←$ PKE.EncP(1λ, ek,m)
m ← PKE.DecP(1λ,dk, c)

Function Family
k ←$ F.KgP(1λ)
y ← F.EvP(1λ, k, x)
x ← F.InvP(1λ, k, y)

Key Encapsulation Mechanism
(ek,dk) ←$ KEM.Kg(1λ)
(c, k) ←$ KEM.EncapsP(1λ, ek)
k ← KEM.DecapsP(1λ,dk, c)

A family of functions F only has inverse algorithm F.Inv if it is a blockcipher. For
simplicity, we assume perfect correctness which holds for all f ∈ P.Pλ. We will
make careful note of where proofs make use of this correctness. To use notions of
imperfect correctness in these proofs, one must choose an imperfect correctness
notion that is “robust” to the ideal primitive being programmable.

We additionally will sometimes assume a notion we call query consistency
which requires that if c is produced by encryption/encapsulation, then decrypt-
ing/decapsulating c with the correct key only makes ideal primitive queries that
were also made by encryption/encapsulation. This ensures that any querying of
the ideal primitive while decrypting/decapsulating an honest ciphertext cannot
be detected by a programming adversary.
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3 SIM-AC Definitions and Their Shortcomings

We start by recalling the definitions that Jaeger and Tyagi [23] introduced
for the simulation security of symmetric encryption or pseudorandom functions
under adaptive compromise. Jaeger and Tyagi showed that these definition were
achieved by very natural encryption/PRF constructions in the random oracle
or ideal cipher model and that they moreover sufficed for proving the security
of higher-level constructions (e.g. searchable encryption schemes, asymmetric
password-authenticated key exchange, and self-revocable encrypted cloud stor-
age). In this section, we will identify ways in which these definitions fall short.
Namely, that there are other natural encryption/PRF constructions and high-
level construction which cannot be proven secure using these definitions.7

3.1 SIM-AC Definitions

All of the SIM-AC definitions have a common structure; they measure the ability
of an adversary to distinguish between a “real” and a “simulated” world. In the
real world, the adversary interacts with multiple “users” that honestly execute
the algorithms of scheme. The adversary has access to an exposure oracle which
it can query to be given the secret keys of any users it chooses. Finally, the
adversary has oracle access to the ideal primitive algorithm P.Ls. In the ideal
world, the output of all of these oracles is provided instead by a simulator S. For
the definition to be meaningful, the behavior of the simulator when responding
to queries for “unexposed” users is restricted in some manner. (For example, the
simulator may be required to return a uniformly random string or may only be
given partial information about what the query was).

Pseudorandom Function Security. We start with the notion of SIM-AC-
PRF security for a function family F. It is captured by the game Gsim-ac-prf

F,S,P,Aprf

shown in Fig. 2. The variable X is used to track which users have been exposed,
so Xu is true when the user has been exposed. The game hardcodes that random
values are returned for evaluation queries to unexposed users in the simulated
world. Inputs and outputs to evaluation are stored in the table Tu which is given
to S when u is exposed.

We define Advsim-ac-prf
F,S,P,Aprf

(λ) = 2Pr[Gsim-ac-prf
F,S,P,Aprf

(λ)] − 1 and say that F is SIM-
AC-PRF secure with P if for all PPT Aprf there exists a PPT S such that
Advsim-ac-prf

F,S,P,Aprf
(·) is negligible. Intuitively, this definition captures that the outputs

of Fk look random to an adversary until they expose k.

Encryption Definitions. Next we recall the SIM-AC security notions for a
symmetric encryption scheme SE. Consider the game Gsim-ac-cca

SE,S,P,Acca
(λ) shown in

Fig. 2. During encryption queries for unexposed users, the simulator is only told

7 Technically, we do not show that these proofs are impossible. We show why the
“natural” proofs fail and informally argue why it seems difficult to find other proofs.
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Game Gsim-ac-prf
F,S,P,Aprf

(λ)

k(·) ←$ F.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEv,Exp,Prim

prf (1λ)

Return (b = b′)

Prim(k, x)

y1 ←$ P.Ls(1λ, k, x : σP)

y0 ←$ S.Ls(1λ, k, x : σ)

Return yb

Ev(u, x)

If Tu[x] �= ⊥ then return Tu[x]

y1 ← F.EvP(1λ, ku, x)

If Xu then y0 ←$ S.Ev(1λ, u, x : σ)

Else y0 ←$ F.Out(λ)

Tu[x] ← yb

Return yb

Exp(u)
k′
1 ← ku

k′
0 ←$ S.Exp(1λ, u, Tu : σ)

Xu ← true

Return k′
b

Game Gsim-ac-cca
SE,S,P,Acca

(λ)

k(·) ←$ SE.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Prim(k, x)

y1 ←$ P.Ls(1λ, k, x : σP)

y0 ←$ S.Ls(1λ, k, x : σ)

Return yb

Enc(u, m)

If not Xu then � ← |m| else � ← m

c1 ←$ SE.EncP(1λ, ku, m)

c0 ←$ S.Enc(1λ, u, � : σ)

Mu.add(cb, m); Return cb

Dec(u, c)

If Muc �= ⊥ then return Muc

m1 ← SE.DecP(1λ, ku, c)

m0 ←$ S.Dec(1λ, u, c : σ)

Return mb

Exp(u)
k′
1 ← ku; k′

0 ←$ S.Exp(1λ, u, Mu : σ)

Xu ← true; Return k′
b

Fig. 2. Games defining SIM-AC-PRF security of F and SIM-AC-CCA security of SE.

the length of the message m. The list Mu stores the messages queried to user u
and ciphertexts returned. It is given to the simulator when that user is exposed.
If the attacker forwards challenge ciphertexts from encryption to decryption, this
list is used to respond appropriately.

We define Advsim-ac-cca
SE,S,P,Acca

(λ) = 2Pr[Gsim-ac-cca
SE,S,P,Acca

(λ)] − 1 and say SE is SIM-
AC-CCA secure with P if for all PPT Acca there exists a PPT S such that
Advsim-ac-cca

SE,S,P,Acca
(·) is negligible. Intuitively, this definition captures that an adver-

sary learns nothing (other than the length) about a message m encrypted with a
key k until they expose k. For chosen-plaintext security we restrict attention to
attackers that never query decryption. We then write the superscript sim-ac-cpa.

Stronger notions of security are captured by requiring that S be chosen from
some restricted set. Key-private security (SIM-AC-KP) requires that the CPA
simulator respond to encryption queries for un-exposed users using an algorithm
S.Enc1(1λ, � : σ) which is not given u as input. Indistinguishable from random
security (SIM-AC-$) requires that the CPA simulator respond to encryption
queries for un-exposed users by sampling c from a set S.Out(λ, �). Authenticated
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encryption security (SIM-AC-AE) requires that the CCA simulator respond to
encryption queries as in SIM-AC-$ security and to decryption queries for un-
exposed users with ⊥.

Simplifying Assumptions. Jaeger and Tyagi observed the following simplify-
ing assumptions (copied almost verbatim from [23]) for their SIM-AC definitions.

– If an oracle is deterministic in the real world we can assume that the adversary
never repeats a query to this oracle or that the simulator always provides the
same output to repeated queries.

– We can assume the adversary never makes a query to a user it has already
exposed or that for such queries the simulator just runs the code of the real
world (replacing calls to P with calls to S.Ls).

– We can assume the adversary always queries with u ∈ [uλ] = {1, 2, . . . ,uλ}
for some polynomial u(·) or that the simulator is agnostic to the particular
strings used to reference users.

– We can assume that adversaries never make queries that fail “Require” state-
ments. (All requirements of oracles will be efficiently computable given the
transcripts of queries the adversary has made).

Looking ahead, we will be able to make the analogous assumptions for the new
definitions introduced in this paper. These assumptions are convenient for prov-
ing that a scheme satisfies a given SIM-AC definition of security. The fact that
these assumptions are not hardcoded into the security game is convenient when
proving the security of a higher-level construction assuming that constituent
schemes satisfy some SIM-AC security notion.

3.2 Shortcomings of SIM-AC

Now that we have introduced SIM-AC security notions we can discuss ways that
they fall short of being able to establish the results we would like.

Multiple Schemes with the Same P. Suppose a higher-level protocol is con-
structed from multiple underlying schemes satisfying SIM-AC security notions.
We generally will not be able to prove the security of the protocol if the underly-
ing schemes make use of the same P.8 Performing a SIM-AC reduction with the
first scheme will replace the entirety of P with some S.Ls. With P being gone,
the security of the second scheme with respect to P is of no use.

As a toy example, we might consider function families F0 and F1. Even assum-
ing they are both SIM-AC-PRF secure with P, it seems impossible to prove F
is SIM-AC-PRF secure where F.EvP(1λ, (k0, k1), (b, x)) = Fb.EvP(1λ, kb, x). Sev-
eral of Jaeger and Tyagi’s proofs were restricted by this and had to assume
underlying schemes used distinct ideal primitives.

8 Note this is the more general result, as we could let P = P1 × P2 × . . . and have the
i-th scheme using P only actually query Pi.
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Multiple Uses of the Same Scheme. Suppose a higher-level protocol is
constructed from an underlying scheme satisfying a SIM-AC security notion and
that this scheme is used in several distinct ways in the protocol.

If it’s not possible to write a careful reduction that covers all of the uses
of the scheme at once, then we run into a similar issue as the above. The first
application of the scheme’s SIM-AC security will replace its ideal primitive with
a simulator, preventing us from applying its security again.

As a toy example, we might consider a function family F. Even assuming F is
SIM-AC-PRF secure with P, it seems impossible to prove that F′ is SIM-AC-PRF
secure where F′.Ev

P(1λ, k, (x0, x1)) = F.EvP(1λ,F.EvP(1λ, k, x0), x1).
One of Jaeger and Tyagi’s proofs (for their Theorem D.1) almost ran into

issue with this. However, they seemingly got “lucky” in that for that particular
proof they were able to use just plain PRF security for the first use of the
underlying function family.

Single-user Security Implies Multi-user Security. With most “standard”
security notions (e.g. PRF, IND-CPA, IND-CCA) single-user security implies
multi-user security. These results are proven by a “hybrid proof” wherein the
single-user attacker picks a user u at random. It externally simulates u with
its own oracle, internally simulates all “prior” users as in the b = 0 world, and
internally simulates all “later” users as in the b = 1 world.

We run into issue if we try to write an analogous proof for SIM-AC definitions.
Note that simulating the b = 0 world for some users requires the attacker to run
the given single-user simulator. This creates a circular dependency as in SIM-AC
the simulator is allowed to depend on the adversary.

Even if we changed the order of quantification, we would still run into issues.
Each instance of the single-user simulator expects to already have complete con-
trol of the ideal primitive. This makes it unclear what ideal primitive oracle the
single-user adversary should provide the multi-user adversary it runs internally.
Because of these issues, Jaeger and Tyagi directly consider multi-user SIM-AC
definitions and do not discuss single-user variants thereof.

It may seem strange to consider “adaptive compromise” in a single-user set-
ting. Do expose queries make sense where there is only one user to be exposed?
It is useful to first observe that multi-user SIM-AC notions would be unchanged
if we required that the attacker expose all users before halting. Crucially, these
definitions use “online” simulators that are forced to commit to simulated cipher-
texts (without knowledge of the encrypted message) for users that will later be
exposed (at which time the simulator is told the messages).

4 SIM*-AC Security

We saw in the previous section some ways in which SIM-AC security definitions
cannot be used for proving results which intuitively “should” be possible to prove
with a “good” security defintion. In this section, we will introduce a related class
of security definitions which we notate by SIM*-AC. These new definition will
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strengthen the power of the attacker and weaken the power of the simulator.
This allows proving the results that were a challenge for the prior definitions,
while still maintaining the value of the prior definitions. In particular, the results
previously shown by Jaeger and Tyagi with SIM-AC can be shown to hold with
SIM*-AC, while requiring minimal modifications to the proofs. We discuss the
details of this in Sect. 6.

Motivating the New Definition. The starting place for our new definitions
partially goes back to the original explicit proposal of random oracles by Bellare
and Rogaway [8]. Therein, their definition of zero knowledge in the random
oracle model requires that the (offline) simulator’s final outputs includes the list
of points at which it would like the random oracle to have given values. At all
other points, the oracle is sampled at random. Wee [28] built on this, considering
different levels of how the simulator controls the random oracle and showing
that zero-knowledge proofs are closed under sequential composition when the
random oracle is explicitly programmable (or non-programmable). Sequential
composition fails in the “fully programmable” model as applying the simulator
for the first round of execution replaces the random oracle completely, at which
point we cannot use it to reason about further rounds.

There is a second subtle detail allowing sequential composition proof to go
though with polynomially many rounds. It is important that (part of) the adver-
sary was quantified after the simulator. The proof followed a hybrid argument
wherein rounds of zero knowledge are switched from real to simulated, one at a
time. To apply security for a particular round, the attacker must simulate the
other (real and simulated) rounds. For a constant number of rounds, we could
fix the attacker for the first round, be given its simulator, use the simulator
in the attacker for the second round, be given its simulator, and so on. When
the number of rounds is polynomial, we cannot fix an attacker for each round.
Instead a single attacker must work for all rounds, which requires knowing the
simulator ahead of time so it can properly emulate simulated rounds.

To resolve the issues identified with composition and hybrid arguments for
SIM-AC we will restrict the simulator to explicitly program the ideal primitive
and require a universal simulator that works for all attackers. However, this
still is not enough! The zero knowledge composition discussed above is impor-
tantly “sequential” in an “offline simulation” setting. The simulator runs once
in isolation, then provides its output to the attacker which runs in isolation.
The attacker has complete control over all code executing with it, so can per-
fectly emulate the programmed random oracle. In an “online simulation” setting
like SIM-AC, the attacker runs in parallel with the honest scheme algorithms
or the simulator. Our proofs would run into issues when attackers internally
run copies of the simulator which wants to program the random oracle, but the
attacker is then unable to force the honest scheme algorithms or simulator it
does not control to use this modified random oracle. We resolve this issue by
expanding the power of the adversary and giving it the capacity to program the
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ideal primitive.9 We use the prefix SIM*-AC for the definitions we write in this
style.

Summarizing, in our SIM*-AC definitions simulators and adversaries can
access an oracle PPrim which allows them to evaluate or explicitly program the
ideal primitive. Schemes are still restricted to not program the ideal primitive.
This is a restriction on the simulator and strengthening of the attacker. Because
of the programmability of P we must write the code so that S is only run in the
ideal world and SE is only run in the real world.

Comparisons to Prior Definitions. Through this sequence of ideas we have
reached the same general structure of random oracle modeling proposed by
Camenisch, Drijvers, Gagliardoni, Lehmann, and Neven [10]. Their work is in
the universal composability (UC) setting where they consider several models
for global random oracles. In one, simulators and adversaries can explicitly pro-
gram the random oracle. They show it allows security proofs that very efficient
and natural random oracle-based constructions of several primitives satisfy the
desired security. Our work generalizes this any ideal primitive (not just random
oracles) and considers its application outside the universal composability frame-
work. That UC and SIM-AC work well with a similar programmability notion
is, in hindsight, natural as they both consider online simulation.

Our SIM*-AC definitions as not strictly better for cryptographers than the
SIM-AC definitions of Jaeger and Tyagi [23]. One benefit of their work was the
ease with which existing results could be ported to the SIM-AC setting (e.g.
replacing IND-CPA in a proof with SIM-AC-CPA). This holds to some extent
with the new SIM*-AC definitions as well, but proofs do occasionally run into
additional difficulties because of fragilities caused by the programming of the
oracle. Overall we believe that this cost is worth the benefits provided by our new
definitions being able to show natural and desirable results that are seemingly
out of reach of plain SIM-AC.

High-Level Remarks. There is value in incorporating this explicit program-
ming capacity for adversaries even into non-simulation definitions. Consider
the construction of some high-level system making use of multiple underlying
schemes that use the same ideal primitive, some for SIM*-AC security and some
for non-simulation security notions. (See, e.g., the searchable encryption proof
in [23] that involved the standard notion of PRF security in addition to SIM-
AC-PRF/KPA security). If the proof requires use of the non-simulation security
notion after a SIM*-AC notion has already been applied, this will only be possi-
ble if the attacker can program the ideal primitive in the non-simulation notion.

Allowing the adversary to program the ideal primitive is strange. It does
not seem to capture anything about reality, despite the fact that we allow the
adversary to do this programming even in the “real world”. However, this ability

9 We would have run into similar issues had their hybrid tried to switch rounds to
simulated from first to last, rather than the last to first approach they took.
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Game Gsim∗-ac-prf
F,S,P,Aprf

(λ)

k(·) ←$ F.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEv,Exp,PPrim

prf (1λ)

Return (b = b′)

PPrim(Op, k, x, y)

Require Op ∈ {Ls, Prog}
y ←$ P.Op(1λ, k, x, y : σP)

Return y

Ev(u, x)

If Tu[x] �= ⊥ then return Tu[x]

If b = 1 then y ← F.EvP(1λ, ku, x)

If b = 0 then
If Xu then y ← S.EvPPrim(1λ, u, x : σ)

Else y ←$ F.Out(λ)

Tu[x] ← y

Return y

Exp(u)
If b = 1 then k′ ← ku

If b = 0 then k′ ←$ S.ExpPPrim(1λ, u, Tu : σ)

Xu ← true; Return k′

Game Gsim∗-ac-cca
SE,S,P,Acca

(λ)

k(·) ←$ SE.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEnc,Dec,Exp,PPrim

cca (1λ)

Return (b = b′)

PPrim(Op, k, x, y)

Require Op ∈ {Ls, Prog}
y ←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u, m)

If not Xu then � ← |m| else � ← m

If b = 1 then c ←$ SE.EncP(1λ, ku, m)

If b = 0 then c ←$ S.EncPPrim(1λ, u, � : σ)

Mu.add(c, m); Return c

Dec(u, c)

If Muc �= ⊥ then return Muc

If b = 1 then m ← SE.DecP(1λ, ku, c)

If b = 0 then m ←$ S.DecPPrim(1λ, u, c : σ)

Return m

Exp(u)
If b = 1 then k′ ← ku

If b = 0 then k′ ←$ S.ExpPPrim(1λ, u, Mu : σ)

Xu ← true; Return k′

Fig. 3. Games defining SIM*-AC-PRF security of F and SIM*-AC-CCA security of SE.
We use highlighting to indicate where the definitions differ from SIM-AC versions.

will be crucial to how we can use this new definition to prove the results that
we were unable to with the original SIM-AC definitions. We can view this in
the same paradigm we discussed for SIM-AC-style definitions in general; there is
value in studying very strong definitions which exploit ideal primitives beyond
how they can reasonably be thought to capture something about reality because
these notions can then serve as intermediate steps for proving (in the ideal model)
that the scheme satisfies other more “reasonable” security notions.

4.1 SIM*-AC Definitions

Pseudorandom Function Security. We start with PRF security for a func-
tion family F. Our new definition is captured by the game Gsim∗-ac-prf

F,S,P,Aprf
shown in

Fig. 3. It differs from Gsim-ac-prf
F,S,P,Aprf

as described above; namely, Aprf is given oracle
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PPrim which uses P in both the real and simulated world.10 In the simulated
world, S is also given PPrim to query and program P. Note that the scheme
algorithm F.Ev is still given access only to P.Ls and not to P.Prog.

We define Advsim
∗-ac-prf

F,S,P,Aprf
(λ) = 2Pr[Gsim∗-ac-prf

F,S,P,Aprf
(λ)]− 1 and say that F is SIM*-

AC-PRF secure with P if there exists a PPT S such that for all PPT Aprf , the
advantage function Advsim

∗-ac-prf
F,S,P,Aprf

(·) is negligible. Note here that we quantified
the simulator before the adversary, unlike in SIM-AC-PRF security where the
simulator is allowed to depend on the adversary. This strengthens the definition
and is necessary for some of our positive results, but for some of our results the
weaker quantification will suffice. We say F is wSIM*-AC-PRF secure with P if
for all PPT Aprf there exists a PPT S such that Advsim

∗-ac-prf
F,S,P,Aprf

(·) is negligible.

Encryption Definitions. The SIM*-AC-CCA security of an encryption scheme
SE is similarly captured by the game Gsim∗-ac-cca defined in Fig. 3 which modifies
the SIM-AC game to have the attacker and simulator both use PPrim. We define
Advsim

∗-ac-cca
SE,S,P,Acca

(λ) = 2Pr[Gsim∗-ac-cca
SE,S,P,Acca

(λ)] − 1 and say SE is SIM*-AC-CCA secure
with P if there exists a PPT S such that for all PPT Acca, the advantage function
Advsim

∗-ac-cca
SE,S,P,Acca

(·) is negligible. wSIM*-AC-CCA is captured by quantifying the
simulator after the adversary.

Chosen-plaintext security is captured by restricting attention to attackers
that do not query decryption. We then write sim∗-ac-cpa in superscripts. SIM*-
AC-X and wSIM*-AC-X security for X ∈ {KPA, $,AE} security are defined by
restricting the behavior of the simulator appropriately.

4.2 Single-user Security Implies Multi-user Security

As with SIM-AC security, we can capture single-user SIM*-AC security by requir-
ing that all of the attacker’s oracle queries use the same value of u. The fol-
lowing theorem captures that single-user SIM*-AC-CPA security implies multi-
user security. The result would also hold with SIM*-AC-X security for any
X ∈ {PRF,CCA, $,AC}, via the same proof technique. If does not hold for
X = KP. We will discuss why in more detail after the proof.

Theorem 1. Single-user SIM*-AC-CPA security implies multi-user SIM*-AC-
CPA security.

This proof follows using the ideas from a fairly standard single-user to multi-
user proof via a hybrid argument. Given a single-user simulator S1 and multi-user
adversary A, we define single-user A1 to pick a random t and respond to queries
with u < t by encrypting honestly, with u = t using its own encryption oracle,
and with u > t using a copy of S1 specific for that user. The multi-user simulator
we construct runs multiple independent copies of the single-user simulator – one
10 Here we are using a notational convention that an algorithm given more inputs

than it expects will ignore any extra inputs, so P.Ls(1λ, k, x, y : σP) is equivalent to
P.Ls(1λ, k, x : σP).
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for each user. Note that this proof critically requires all three of the changes we
used to derive SIM*-AC from SIM-AC: (i) the simulator needs to be quantified
before the adversary so that A1 can run S1, (ii) the simulator must not have full
control of the ideal primitives output so there is no ambiguity in which “copy”
of the simulator run by A1 should get to respond to primitive queries, and (iii)
the adversary must be able to program the ideal primitive so that A1 is able to
correctly control the primitive when running copies of S1.

Proof. Let SE be single-user SIM*-AC-CPA secure with P and S1 be the simu-
lator that is guaranteed to exist. We show that SE is SIM*-AC-CPA secure with
P via the following simulator which runs independent copies of S1 for each user.

S.Init(1λ)

σ(·) ←$ S1.Init(1λ)
Return σ(·)

S.EncPPrim(1λ, u, � : σ(·))
c ←$ S1.EncPPrim(1λ, u, � : σu)
Return c

S.ExpPPrim(1λ, u, Mu : σ(·))
k ←$ S1.ExpPPrim(1λ, u, Mu : σu)
Return k

Let A be a SIM*-AC-CPA adversary. It will be notationally convenient to
assume that it only queries users with identifiers u ∈ [uλ] = {1, . . . ,uλ} where
u(·) is a polynomial. This assumption is without loss of generality.

Hybrid Hi(λ), 0 ≤ i ≤ uλ

For u ∈ [uλ] do
ku ←$ SE.Kg(1λ)

σu ←$ S1.Init(1λ)

σP ←$ P.Init(1λ)

b′ ←$ AEnc,Exp,PPrim(1λ)

Return (b′ = 1)

Enc(u, m)

If u ≤ i then d ← 0

Else d ← 1

c ← Encd(u, m)

Return c

Exp(u)
If u ≤ i then d ← 0

Else d ← 1

k ← Expd(u)

Return k

Encd(u, m)

If not Xu then � ← |m| else � ← m

If d = 1 then c ←$ SE.EncP(1λ, ku, m)

Else c ←$ S1.EncPPrim(1λ, u, � : σu)

Mu.add(c, m)

Return c

Expd(u)

If d = 1 then k ← ku

Else k ←$ S1.ExpPPrim(1λ, u, Mu :

σu)

Xu ← true

Return k

Adversary AEnc,Exp,PPrim
1 (λ)

For u ∈ [uλ] do
ku ←$ SE.Kg(1λ)

σu ←$ S1.Init(1λ)

t ←$ {1, . . . , uλ}
b′ ←$ AEncSim,ExpSim,PPrim(1λ)

Return b′

Encd(u, m), Expd(u)

//Unchanged from above

EncSim(u, m)

If u < t then c ← Enc0(u, m)

Else if u = t then c ← Enc(u, m)

Else c ← Enc1(u, m)

Return c

ExpSim(u)

If u < t then k ← Exp0(u)

Else if u = t then k ← Exp(u)
Else k ← Exp1(u)

Return k

Fig. 4. Hybrids and adversary showing single-user security implies multi-user.
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Now, consider the hybrid games Hi for i = 0, . . . ,uλ defined in Fig. 4. For
u ≤ i, the game uses Enc0 and Exp0 to respond to encryption and exposure
queries as in the b = 0 simulated world of Gsim∗-ac-cpa using S. Otherwise, it
uses Enc1 and Exp1 to respond as in the b = 1 real world. Each hybrid game
returns true whenever A outputs 1. When i = uλ, it always holds that u ≤ i
so this game is identical to the b = 0 simulated world (except that the output
boolean is flipped). In the other extreme, when i = 0, it never holds that u ≤ i
so this game is identical to the b = 1 real world. Then (by standard conditional
probability calculation) we have

Advsim
∗-ac-cpa

SE,S,P,A (λ) = Pr[H0] − Pr[Huλ
] =

uλ∑

i=1

Pr[Hi−1] − Pr[Hi].

We construct a single-user adversary A1 that obtains advantage 1/uλ times
the above. It samples an index t ∈ {1, . . . ,uλ} at random. Then it runs A,
simulating their oracle queries. When u < t, it responds as in the simulated
world of Gep-sim-ac-cpa using S1. When u = t it forwards the query to its own
oracle. Otherwise, it responds to Enc and Exp queries as in the real world. Let
b denote the bit in the game A1 is being run in and t be the random value picked
by A1. Then in the view of A, the oracles for the first t − b users are simulated
and the rest are real – this is identical to its view in the hybrid game Ht−b.

Then the following calculations complete the proof.

Advsim
∗-ac-cpa

SE,S1,P,A1
(λ) = Et[Pr[Ht−1]] − Et[Pr[Ht−0]]

= (1/uλ)
uλ∑

t=1

Pr[Ht−1] − (1/uλ)
uλ∑

t=1

Pr[Ht]

= (1/uλ)
uλ∑

i=1

Pr[Hi−1] − Pr[Hi]

= (1/uλ)Advsim
∗-ac-cpa

SE,S,P,A (λ).

Here Et denotes expectation over t ←$ {1, . . . , uλ}. ��
We can note in the above proof that for A1 to be able to correctly run

Enc0 and Exp0 it needed to run S1. This means that we needed the stronger
quantification where the adversary can depend on the simulator and that the
adversary needed to have the ability to program the random oracle.

Key-Private Security. Among the various SIM*-AC security notions we con-
sider here, the only variant for which single-user security does not imply multi-
user security is SIM*-AC-KPA security. Here, the simulator may not make use
of its input u when replying to encryption queries for un-exposed users (beyond
checking if they are exposed). Note that in the hybrid argument above, the multi-
user simulator S uses the user identifier u to decide which state σu to use. Hence
this is incompatible with SIM*-AC-KPA security. Taking a step back, we can
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notice that this issue with the proof is unsurprising and inherent. The issue is
that that single-user SIM*-AC-KPA does not meaningfully capture any notion
of key-privacy because the restriction on the simulator’s behavior is trivially
achievable when the attacker will only every query a single user. This is nicely
captured by the following result.

Theorem 2. Single-user SIM*-AC-KPA security is equivalent to SIM*-AC-
CPA security, which is weaker than SIM*-AC-KPA security.

Proof (Sketch). Note that single-user SIM*-AC-KPA security implies single-user
SIM*-AC-CPA security trivially. Then, by Theorem 1 this implies SIM*-AC-
CPA security. In the other direction, we can create a single-user SIM*-AC-KPA
simulator from a SIM*-AC-CPA simulator by always running the latter on, say,
u = 1. Hence the first claim of the theorem holds.

We can see that SIM*-AC-CPA security is weaker than SIM*-AC-KPA secu-
rity by constructing a contrived scheme. Given some scheme SE, we define a new
scheme which adds a random bit d to its keys and then appends d to every cipher-
text produced. It is straightforward to show this new scheme is SIM*-AC-CPA
secure if SE was, but that is not SIM*-AC-KPA secure. ��

4.3 Cascade Construction

If F : F.K × F.Inp → F.K is a function family and n is a polynomial, then the
n-cascade construction Fn : F.K×F.Inpn → F.K is defined by the evaluation algo-
rithm Fn.Ev(1λ, k0,x) which computes ki ← F.Ev(1λ, ki−1,xi) for i = 1, . . . , n(λ)
and then outputs kn(λ). Here xi denotes the i-th entry of vector x. This is a
“domain extension” technique for building a PRF with a large domain from one
with a small domain. It was originally defined and analyzed in [4].11 Fn general-
izes the GGM construction of a PRF from a PRG [17]. It underlies several other
constructions of PRFs including AMAC, HMAC, and NMAC [1–3].

Theorem 3. If F is SIM*-AC-PRF secure with P, then Fn is as well.

The proof of this result is given in the full version. Intuitively, we can think of
the possible keys generated by Fn existing in a tree structure. Our proof does
a hybrid argument over the layers of the tree where we one at a time switch
the layers to being simulated. The simulator for a given layer treats all of the
keys at its layer as being multiple F “users”. This proof requires the “strong”
quantification, the simulator to not completely replacing the ideal primitive,
and the adversary having the ability to program the ideal primitive so that it
can internally run the simulator for layers that have been switched already.

Jaeger and Tyagi [23, ePrint, p.22-23] said, “It is often useful to construct a
PRF H with large input domains from a PRF F with smaller input domains [. . . ]

11 Technically, they considered a more general construction where the number of iter-
ations was not a priori fixed and so the adversary was restricted to make only
prefix-free queries. Our proof would extend to this setting as well.
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one can often [use our techniques] to lift a PRF security proof for H to a SIM-
AC-PRF security proof for H whenever F is SIM-AC-PRF secure.” The cascade
construction is one choice of H for which this is not possible with SIM-AC, but
becomes possible with SIM*-AC.

5 Asymmetric Encryption

In this section, we provide our treatment for the security of asymmetric crypto-
graphic primitives against adaptive compromise. We start by providing our secu-
rity definitions for public-key encryption (PKEs) and key-encapsulation mecha-
nisms (KEMs). Then we discuss how our definitions compare to prior definitions,
in particular those of Camensich, Lehmann, Neven, and Samelin [12]. We show
that the KEM/DEM approach to constructing a PKE scheme works with these
definitions and that standard ways of constructing CPA/CCA secure KEMs from
one-way secure primitives and a random oracle are secure.

5.1 Definitions

Public-Key Encryption. The SIM*-AC-CCA security of a public-key encryp-
tion scheme PKE is captured by the game Gsim∗-ac-cca shown in Fig. 5. It differs
from the SIM*-AC-CCA definition for symmetric encryption (Fig. 2) in that it
introduces an encryption key oracle (Ek) that the adversary can call to learn
the public encryption key for a user and it has oracles for two different kinds of
exposure. The receiver exposure oracle (RExp) is like the exposure oracles from
prior games, returning a user’s secret decryption key. The sender exposure oracle
(SExp) allows the attacker to ask for the randomness underlying the ciphertexts
that were returned by encryption.

We define Advsim
∗-ac-cca

PKE,S,P,Acca
(λ) = 2Pr[Gsim∗-ac-cca

PKE,S,P,Acca
(λ)]−1 and say PKE is SIM*-

AC-CCA secure with P if there exists a PPT S such that for all PPT Acca, the
advantage function Advsim

∗-ac-cca
PKE,S,P,Acca

(·) is negligible. wSIM*-AC-CCA is captured
by quantifying the simulator after the adversary. We capture xSIM*-AC-CPA
by ignoring the decryption oracle. Security considering only compromise of the
receiver/sender can be captured by ignoring the appropriate oracle. Then we
write SIM*-rAC or SIM*-sAC.

Key Encapsulation Mechanism. We also give definitions for key encapsula-
tion mechanisms (KEM). Our SIM*-AC definitions are highly analogous to the
corresponding public-key encryption definition. They are formally specified by
the game Gsim-ac-cca shown in Fig. 5. Therein, the Enc and Dec oracles have been
replaced with Encaps and Decaps oracles. The encapsulation oracle returns a
ciphertext along with the corresponding encapsulated key. In the ideal world, the
simulator provides the ciphertext and the encapsulated key is chosen at random
from the key space by the game for unexposed users.

We define Advsim
∗-ac-cca

KEM,S,P,Acpa
(λ) and the notions xSIM*-yAC-X for x ∈ {ε,w},

y ∈ {ε, r, s}, and X ∈ {CCA,CPA} as for PKE.
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Games Gsim∗-ac-cca
PKE,S,P,Acca

(λ)

(ek(·), dk(·)) ←$ PKE.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEk,Enc,Dec,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Game Gsim∗-ac-cca
KEM,S,P,Acca

(λ)

(ek(·), dk(·)) ←$ KEM.Kg(1λ)

σP ←$ P.Init(1λ)

σ ←$ S.Init(1λ)

b ←$ {0, 1}
b′ ←$ AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek(u)

ek′ ← eku

ek′ ←$ S.EkPPrim(1λ, u : σ)

Return ek′

PPrim(Op, k, x, y)

Require Op ∈ {Ls, Prog}
y ←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u, m)

If not Xu then � ← |m| else � ← m

r ←$ PKE.Rand(λ)

c ← PKE.EncP(1λ, eku, m; r)

c ←$ S.EncPPrim(1λ, u, � : σ)

Mu.add(c, m); Ru.add(r)

Return c

Dec(u, c)

If Muc �= ⊥ then return Muc

m ← PKE.DecP(1λ, dku, c)

m ←$ S.DecPPrim(1λ, u, c : σ)

Return m

SExp(u, i)

r ← Ru[i]

r ←$ S.SExpPPrim(1λ, u, i, Mu[i] : σ)

Return r

RExp(u)

dk′ ← dku

dk′ ←$ S.RExpPPrim(1λ, u, Mu : σ)

Xu ← true

Return dk′

Encaps(u)
r ←$ KEM.Rand(λ)

(c, k) ← KEM.EncapsP(1λ, eku; r)

(c, k) ←$ S.EncapsPPrim(1λ, u : σ)

If not Xu then k ←$ KEM.K(λ)

Mu.add(c, k); Ru.add(r)

Return (c, k)

Decaps(u, c)

If Muc �= ⊥ then return Muc

k ← KEM.DecapsP(1λ, dku, c)

k ←$ S.DecapsPPrim(1λ, u, c : σ)

Return k

Fig. 5. Games defining the SIM*-AC-CCA security of PKE and KEM. Solid-boxed code
is only executed if b = 1. Dash-boxed code is only executed if b = 0.
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5.2 Comparison to SIM-FULL Definition

The definition we have arrived at is similar to the FULL-SIM security definition
for PKE introduced by Camensich, Lehmann, Neven, and Samelin (CLNS) [12].
We quickly summarize the differences. There are two dimensions in which their
definition is strong than ours. First, their definition considers PKE with labels,
while we have decided not consider labels. Labels can easily be added. Likely,
the best way to incorporate labels in constructions would be to use a symmetric
encryption scheme that accepts associated data as part of the KEM/DEM trans-
form (discussed momentarily). Second, in FULL-SIM the randomness used by
key generation is revealed rather than the decryption key. SIM-AC* can be used
to reason over this case by simply modify the scheme to use said randomness as
its decryption key (and recompute the actual decryption key during decryption).

Our definition strengthens theirs in several dimension. Theirs is more closely
analogous to SIM-AC than SIM*-AC as the simulator is given complete control
of the random oracle, the adversary is not able to modify it, and the “weak”
quantification is used. Resultantly, their single-user definition is seemingly unable
to prove that a corresponding multi-user definition holds.

We are not restrictive in the type of ideal primitive considered. CLNS con-
sidered only one specific construction in which they basically used a trapdoor
permutation generator as a KEM and then hand-crafted a symmetric encryp-
tion scheme using a random oracle.12 We will momentarily show that the task of
building SIM*-AC secure PKE can be broken down into constructing KEMs and
symmetric encryption. This is modular, allowing numerous instantiation and in
particular, allowing the symmetric encryption to be instantiated by well-studied
and standardized schemes based on blockciphers rather than using less efficient
hash functions throughout.

CLNS showed that SIM-FULL implied a variety of prior definitions consid-
ering compromise scenarios for PKE. These implications will carry over to our
definition as well. We explore the relationship between SIM*-AC-CCA, SIM-
FULL, and these other definitions more formally in the full version. Further,
CLNS considered a UC secure notion and proved it to be essentially equivalent
to SIM-FULL. Camenisch, Drijvers, Gagliardoni, Lehmann, and Nevin [10] con-
sidered this in the UC programmable random oracle model, proving the same
construction secure. Likely SIM*-AC-CCA is equivalent to this notion and so our
result will give modular, standard, efficient instantiations of UC secure public
key encryption secure under adaptive compromise.

5.3 KEM/DEM Hybrid Encryption

A common technique for building public key encryption is KEM/DEM hybrid
encryption in which a key encapsulation mechanism produces a key which is
12 Speaking loosely, they basically use a random input to the trapdoor permutation

as a “symmetric key” with which they perform counter mode encryption, using the
random oracle as a pseudorandom function and then perform a MAC over all of the
relevant variables, again using the random oracle as a pseudorandom function.
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then used to encrypt the message with a symmetric encryption scheme (i.e. “data
encapsulation mechanism”). This was proven secure by Cramer and Shoup [15].

Let KEM be a key encapsulation mechanism and SE be a symmetric encryp-
tion scheme (i.e. data encapsulation mechanism) where SE.Kg samples uniformly
from KEM.K. We denote the KEM/DEM scheme as KD[KEM,SE] and provide
the algorithms KD.Enc and KD.Dec below, where we assume KEM and SE expect
access to ideal primitive P. Then KD expects access to P. It key generation algo-
rithm is defined by KD[KEM,SE].Kg = KEM.Kg.

KD[KEM,SE].EncP(1λ, ek,m)
(cKEM, k) ←$ KEM.EncapsP(1λ, ek)
cSE ←$ SE.EncP(1λ, k,m)
c ← (cKEM, cSE)
Return c

KD[KEM,SE].DecP(1λ,dk, c)
(cKEM, cSE) ← c

k ← KEM.DecapsP(1λ,dk, cKEM)
m ← SE.DecP(1λ, k, cSE)
Return m

It is assumed that SE.Dec immediately halts and returns ⊥ if k = ⊥. Next, we
show that given the appropriate adaptive compromise security for the underlying
KEM scheme and encryption scheme, the composed KEM/DEM scheme is also
secure against adaptive compromise.

Exposure of encryption randomness is not captured by our definitions for
symmetric encryption. Rather than introduce a new security definition, in these
cases we restrict attention to coin extractable schemes for which there exists an
algorithm SE.CExt which always satisfies SE.CExtP(1λ, k,SE.EncP(1λ, k,m; r)) =
r. We are not aware of any practically deployed schemes which do not satisfy
this. For technical reasons, we assume that SE.CExt is query consistent by which
we mean that it does not make any ideal primitive queries that were not made
by the execution of SE.Enc that produced its input.

Theorem 4. Let x ∈ {ε,w}, y ∈ {ε, r, s}, and X ∈ {CPA,CCA}. If KEM is
xSIM*-yAC-X secure with P and SE is xSIM*-AC-X secure with P (and coin
extractable if y ∈ {ε, s}), then KD[KEM,SE] is xSIM*-yAC-X secure with P.

In fact, for the DEM we need only “single-challenge” security wherein the
attacker makes at most one encryption query per user. This allows the use of
deterministic DEMs. The proof of this result is given in the full version. The
general flow of the proof is what one would expect, first we replace honest use of
the KEM with simulated use that outputs uniformly random keys. We think of
the i-th key generated for user u as correspond to a DEM user (u, i) and replace
the DEM with simulation.

5.4 Hashed KEM

We consider a simple, standard way to construct a CPA secure KEM from a one-
way secure KEM and a random oracle. Conceptually, this construction follows
from the CPA secure PKE scheme considered in [8]. Let KEM be a key encapsu-
lation mechanism. Then the hashed KEM scheme which outputs the hash of a
key generated by KEM is denoted as HKEM[KEM]. Its algorithms are defined as
follows. Its key generation algorithm is defined by HKEM[KEM].Kg = KEM.Kg.
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HKEM[KEM].EncapsP×Prom(1λ, ek)

(c, kKEM) ←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, ε); Return (c, k)

HKEM[KEM].DecapsP×Prom(1λ, dk, c)

kKEM ← KEM.DecapsP(1λ, dk, c)
k ← Prom(kKEM, ε); Return k

If the KEM expects access to P, then HKEM expects access to P×Prom. Note
that the random oracle must be “new” and cannot be queried by KEM. This is
necessary as the KEM could otherwise query the random oracle on the key it will
output and include that as part of the ciphertext. Note that one can use oracle
cloning [5], to create multiple random oracles from a single random oracle.

Intuitively, CPA security is achieved if the attacker cannot predict kKEM and
query it to the random oracle, i.e., as long as the KEM is one-way secure.

Theorem 5. If KEM is OW* secure with P, then HKEM[KEM] is SIM*-AC-
CPA secure with respect to P × Prom.

The full proof (and the formal definition of OW*) are given in the full version.
The proof works as one would expect. The simulator produces ciphertexts by
using KEM honestly. On exposures, it returns the keys/randomness it used and
attempts to reprogram the random oracle to map keys encapsulated by KEM to
the keys that were randomly sampled by the encapsulation oracle.

5.5 Fujisaki-Okamoto Transform

Finally, we consider a way to construct a CCA secure KEM from a one-way secure
KEM. In particular, we look at part of one version of the Fujisaki-Okamoto trans-
formation [16]. We work from the modular treatment of Hofheinz, Hövelmanns,
and Kiltz [20] (HHK), in particular showing that the transformation which they
refer to as U�⊥ achieves SIM*-AC-CCA security. This should extend to the other
variants as well, but have focused on one for simplicity. Slightly corrected ver-
sions of HHK’s proofs can be found in [22, Sec. 2.1-2.2].

Let KEM be a key encapsulation mechanism and F be a function family.
Then we consider the scheme U�⊥[KEM,F] defined as follows. The key gen-
eration algorithm U�⊥[KEM,F].Kg generates keys (ek,dk) ←$ KEM.Kg(1λ) and
fk ←$ F.Kg(1λ), then outputs (ek, (dk, fk)).

U�⊥[KEM, F].Encaps
P×Prom

(1λ, ek)

(c, kKEM) ←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, c); Return (c, k)

U�⊥[KEM, F].Decaps
P×Prom

(1λ, (dk, fk), c)

kKEM ← KEM.DecapsP(1λ, dk, c)
If kKEM �= ⊥ then k ← Prom(kKEM, c)

Else k ← F.EvP×Prom(1λ, fk, c)
Return k

Here U�⊥[KEM,F].K(λ) = F.Out(λ) = Prom.Rλ. Note that if KEM expects
access to P, then U�⊥[KEM,F] expects access to P × Prom. We allow F to have
access to P × Prom. It is important that KEM not have access to the random
oracle used by the transform (otherwise it could, for example, ensure that it
always produces output for which the first bit of Prom(kKEM, c) is 0 and thus
distinguishable from random).
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However, our results show there is no issue with F having access to the same
random oracle used by U�⊥. Indeed, HHK actually used the specific construction
F.Ev(1λ, fk, c) = Prom(fk, c). Considering an arbitrary F is more general. We
emphasize the proof with this generality only works because we are using our
new SIM*-AC security definitions. Moreover, given that caveat, this supports
Jaeger and Tyagi’s motivation for introducing SIM-AC definitions because this
modularity allows our proof to avoid the details of the random oracle analysis
required to prove that Prom(kKEM, c) is secure.

Additionally HHK use a public-key encryption scheme applied to a random
message in place of KEM. Again, U�⊥[KEM,F] is a generalization of this as the
security they assume of the encryption scheme implies that the KEM obtained
by encrypting a randome message satisfies the security we require.

They showed that the construction is IND-CCA secure as long as the underly-
ing scheme achieves a variant of one-way security which provides to the attacker
a plaintext checking oracle which decrypts a given ciphertext and returns a
boolean indicating whether the result is the same as a given message. We show
the same for our security definition.

Theorem 6. If KEM is OW*-PCA secure with P and F is SIM*-AC-PRF secure
with P × Prom, then U�⊥[KEM,F] is SIM*-AC-CCA secure with P × Prom.

HHK gave a transform T which transforms a OW secure PKE scheme into a
OW-PCA secure PKE scheme. Interpreting this as a KEM in the natural manner
gives a OW-PCA secure KEM.

6 Recovering Prior Results

Finally, we conclude by showing that the positive results Jaeger and Tyagi [23]
established regarding various notions of SIM-AC security also hold with respect
to our analogous SIM*-AC notions. For this, we divide the results of Jaeger
and Tyagi into three general categories. This first category covers results where
(non-SIM-AC) security of some “high-level” construction is shown assuming
its constituent elements satisfy SIM-AC security. The second category covers
results where SIM-AC security of some “intermediate-level” construction is shown
assuming its constituent elements satisfy SIM-AC security. The final category
covers results where SIM-AC security of some “low-level” primitive is shown by
direct ideal model analysis.

6.1 High-Level Proofs

The first category is the easiest in which to replace SIM-AC with SIM*-AC. In
particular Jaeger and Tyagi showed: (1) SIM-AC-CPA secure encryption suffices
for a version of the OPAQUE password-authenticated key exchange protocol of
Jarecki, et al. [24] (because the latter was proven secure assuming “equivocable
encryption” which is a weaker notion than SIM-AC-CPA security), (2) SIM-AC-
PRF secure PRFs and SIM-AC-KP secure encryption suffice for a searchable
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symmetric encryption scheme of Cash, et al. [14], and (3) SIM-AC-CPA secure
encryption suffices for the self-revocable cloud storage scheme of Tyagi, et al. [27].
We can recover these results with wSIM*-AC in place of SIM-AC by noting that
our new notion is strictly stronger.

Lemma 1. For X ∈ {PRF,CPA,KPA, $,CCA,AE}, wSIM*-AC-X security
implies SIM-AC-X security. The converse does not hold.

This result follows from the fact that wSIM*-AC security strengthens adver-
saries (by allowing them to program the ideal primitive) and weakens simulators
(by restricting them to explicitly program the ideal primitive rather than having
complete control of it). For the converse, note that a SIM*-AC adversary can,
e.g., break the one-way function or collision-resistance security of a random ora-
cle by programming it appropriately. Hence, one can modify a SIM-AC secure
scheme to be trivially insecure (e.g. reveal its secret key) when a collision in the
random oracle is known. SIM-AC security will be maintained, but the modified
scheme will not be SIM*-AC secure.

In each of the searchable symmetric encryption and BurnBox proof, Jaeger
and Tyagi had to assume that the constituent elements each used separate ideal
primitives. Using SIM*-AC definitions we could reproduce these results without
the assumption of separate ideal primitives using the proof modifications we
discussion for intermediate-level proofs.

6.2 Intermediate-Level Proofs

In the second category, Jaeger and Tyagi gave security results for several encryp-
tion schemes. There is no general way to prove that these result carry over from
SIM-AC to SIM*-AC security notions.13 However, by examining the details of
the proofs used for each of these result we can see that we are in luck. In each, the
ideal primitive was used as a black-box. Constructed SIM-AC reduction adver-
saries provided the given SIM-AC adversaries with direct access to their own
Prim oracle. The S.Ls algorithm of any constructed SIM-AC simulators S just
ran the corresponding algorithms of the given SIM-AC simulators.

As such, modifying these proofs for SIM*-AC (or wSIM*-AC) requires only
syntactic change to treat the ideal primitive as a black-box. Reduction adver-
saries provide their given adversaries with direct access to PPrim. Rather than
having a S.Ls algorithm, SIM*-AC simulators will provide their given underlying
simulators with direct access to PPrim. Otherwise the analysis follows as given.

In fact, in places where multiple SIM-AC primitive had to use separate ideal
primitives, this black-box use of the primitives allow them to share the same
primitive for SIM*-AC security without any extra effort.

Moreover, the only way in which constructed simulators depended on adver-
saries was through dependance on given simulators for the constituent algorithms
(which were allowed to depend on the adversary per SIM-AC security). As such,

13 This follows from the counter-example described above where we construct a scheme
which is trivially insecure if a collision in the random oracle is known.
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there is no issue when using the order of quantification required for SIM-AC
rather than wSIM*-AC security. Hence the following results hold.

Lemma 2. Let x ∈ {ε, w}. Then the following hold.

– If SE is xSIM*-AC-CPA and INT-CTXT* secure with P, then SE is xSIM*-
AC-CCA secure with P.

– If SE is xSIM*-AC-CPA secure with P and F is UF-CMA* secure with P,
then (SE,F) encrypt-then-mac is xSIM*-AC-CCA secure with P.

– If SE[·] is IND-AC-EXT secure and F is xSIM*-AC-PRF secure with P, then
SE[F] is xSIM*-AC-$ secure with P.

This last result covers modes of operation such as counter (CTR), cipher-block
chaining (CBC), cipher feedback (CFB), and output feedback (OFB) mode.

The asterisks added to INT-CTXT and UF-CMA indicate that we need these
security notions to hold even for adversaries who are able to program the ideal
primitive. We note, for example, that UF-CMA* security is implied by SIM*-
AC-PRF security. We similarly expect that schemes which are known to achieve
INT-CTXT security when constructed from a PRF secure function family can
be shown by essentially the same proof to achieve INT-CTXT* security when
using a SIM*-AC-PRF secure function family.

6.3 Low-Level Proofs

For the third category, Jaeger and Tyagi used information theoretic analysis to
show that random oracles are SIM-AC-PRF secure, ideal ciphers are SIM-AC-
PRF secure, and the ideal encryption model [27] is SIM-AC-AE secure.14

To re-establish these results one technically would have to re-write the proofs.
We will sketch how to modify the SIM-AC proofs for the first two of these.

Lemma 3. Random oracles are SIM*-AC-PRF secure (assuming |Kλ| is super-
polynomial) and ideal ciphers are SIM*-AC-PRF secure (assuming |Kλ| and |Dλ|
are super-polynomial).

The simulators given for both work by honestly simulating the ideal primitive
except whenever a new users is exposed they sample the key at random and
then program the primitive to be consistent with the random values returned
by earlier evaluation queries. This can done with the more restricted SIM*-AC
syntax for simulators. These simulators do not depend on the chosen adversary.

If F : Kλ × Dλ → Rλ, their analysis showed that

Advsim
∗-ac-prf

F,Sprf ,Prom,A(λ) ≤ u2λ
2|Kλ| +

uλpλ

2|Kλ| and

Advsim
∗-ac-prf

F,Sprf ,Picm,A(λ) ≤ u2λ
2|Kλ| +

uλpλ

2|Kλ| +
q2λ

2|Dλ| .

14 The last of these is a slight “cheat” as the ideal encryption model does not satisfy
their (or our) definitions of what an ideal primitive is.
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Here u is the number of distinct users A interacts with, p is the number of ideal
primitive queries it makes, and q is the number of evaluation queries it makes.
Each summand represents a bound of the probability that a bad event occurs
which could let an adversary distinguish the real and simulated worlds. The
first corresponds to distinct users choosing the same random key. The second
corresponds to the attacker making an ideal primitive query with an unexposed
user’s key. The third corresponds to random outputs of Ev colliding. A useful
proof flow for this would introduce a notion of SIM*-AC-PRP security then prove
that it is achieved by an ideal cipher and equivalent to SIM*-AC-PRF security
up to the birthday bound. We sketch this in the full version.

For SIM*-AC-PRF/PRP security of these constructions the only additional
bad event we could have to analyze is the probability that the attacker happening
to make an ideal model programming query using an unexposed user’s key. If p′

λ

denotes the number of programming queries the attacker makes, this just adds
an additional term of 0.5uλp′

λ/|Kλ| to either bound. Alternatively, we could leave
the bound unchanged and redefine pλ to include programming queries as well.
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Abstract. In this paper, we consider tight multi-user security under
adaptive corruptions, where the adversary can adaptively corrupt some
users and obtain their secret keys. We propose generic constructions for
a bunch of primitives, and the instantiations from the matrix decisional
Diffie-Hellman (MDDH) assumptions yield the following schemes:
(1) the first digital signature (SIG) scheme achieving almost tight strong

EUF-CMA security in the multi-user setting with adaptive corrup-
tions in the standard model;

(2) the first public-key encryption (PKE) scheme achieving almost tight
IND-CCA security in the multi-user multi-challenge setting with
adaptive corruptions in the standard model;

(3) the first signcryption (SC) scheme achieving almost tight privacy and
authenticity under CCA attacks in the multi-user multi-challenge
setting with adaptive corruptions in the standard model.

As byproducts, our SIG and SC naturally derive the first strongly secure
message authentication code (MAC) and the first authenticated encryp-
tion (AE) schemes achieving almost tight multi-user security under adap-
tive corruptions in the standard model. We further optimize construc-
tions of SC, MAC and AE to admit better efficiency.

Furthermore, we consider key leakages besides corruptions, as a natu-
ral strengthening of tight multi-user security under adaptive corruptions.
This security considers a more natural and more complete “all-or-part-
or-nothing” setting, where secret keys of users are either fully exposed
to adversary (“all”), or completely hidden to adversary (“nothing”), or
partially leaked to adversary (“part”), and it protects the uncorrupted
users even with bounded key leakages. All our schemes additionally sup-
port bounded key leakages and enjoy full compactness. This yields the
first SIG, PKE, SC, MAC, AE schemes achieving almost tight multi-user
security under both adaptive corruptions and leakages.

1 Introduction

Cryptography aims to provide two fundamental security guarantees: privacy
and authenticity. Centered around privacy and authenticity, a variety of crypto-
graphic primitives are developed, including public-key encryption (PKE), sym-
metric encryption (SE), digital signature (SIG), message authentication code
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(MAC), signcryption (SC), authenticated encryption (AE), etc. To rigorously
define security notions for these primitives, proper security models have to be
set up according to their working environments and the adversaries’ attacking
abilities. Along the path of proving security, PKE and SE are defined with indis-
tinguishability under chosen plaintext/ciphertext attacks (IND-CPA/CCA), SIG
and MAC are defined with existential unforgeability under chosen message
attacks (EUF-CMA), and SC and AE with both privacy (Priv) and authen-
ticity (Auth). To prove a specific primitive construction achieves the security
goals, the most important technique is security reduction. Roughly speaking, a
security reduction establishes a link from an adversary A against the security of
a primitive to another adversary B solving a well-studied computationally hard
problem, such as the decisional Diffie-Hellman (DDH) and learning with errors
(LWE) problems, with approximately the same running time. The ratio of A’s
advantage εA to B’s advantage εB is defined as the loss factor � := εA/εB, which
measures the quality of the security reduction.1 If � is a small constant, we call
the reduction tight. Tight security is more desirable than non-tight one, since
it enables a theoretically-sound instantiation without the need to compensate a
security loss by increasing key lengths or group sizes, and allows universal key-
length recommendations for applications. Many works (e.g., [10,15,16,18,22,26])
also consider the tightness notion called almost tight, where � depends at most
linearly (or even better, logarithmically) on the security parameter λ. For ease
of exposition, we will use the term “tight” to denote “(almost) tight” as conven-
tionally did [15,16,18,22,26], but we will detail the security loss in the security
theorems and scheme comparisons to reflect almost tightness.

Tight Multi-user Security Under Adaptive Corruptions (MUc). Cryp-
tographic primitives are usually deployed in multi-user settings. But most of
the security models for the primitives only consider single user. This is accept-
able, since single-user security generally implies multi-user security via a security
reduction called hybrid argument. But the price is a large loss factor � at least
nQ, where n is the number of users and Q the number of instances per user [6].
Considering billions of users and trillions of running instances over Internet, the
security loss � can be as large as 260. Such a large loss factor does hurt and has to
be taken into account in the security parameter configuration during the deploy-
ment of primitives over Internet. To avoid a large loss factor that varies with the
number of users and/or the number of target instances, many works [15,16,21]
(to name a few) focus on primitive design with tight multi-user security.

Compared with a single-user setting, a multi-user environment becomes more
involved and leaves more opportunities to adversaries implementing new attacks.
An important attack is key corruption in that the adversary takes full control
of some users and of course their keys. This happens since some adversary may
snatch secrets from some user by system hacking or from key exposure due to

1 Strictly speaking, the loss factor is defined as � := (εA/εB) · (T(B)/T(A)), where
T(A) and T(B) denote the running time of A and B, respectively. For reductions
where T(A) and T(B) are approximately the same (as in many related works and
also in this work), the loss factor can be simplified to εA/εB.
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the user’s bad key management. Therefore, it is reasonable for us to consider
Multi-User security under corruptions, which we denote MUc or more precisely
MUc-XX with notion XX depending on the primitive.2 The existing works on
MUc indicates that pursuing tight MUc security is not easy, as shown below.

Technical Difficulties in Achieving Tight MUc Security. As pointed out
in [12,18], there is a seemingly paradoxical technical problem needing to be
addressed for proving tight MUc-CMA security of SIG. On the one hand, the
security reduction algorithm has to know the signing keys of all users so that it
can successfully answer adversary’s adaptive corruption query without resorting
to a guessing strategy. On the other hand, the reduction algorithm should also be
able to extract an answer to the underlying computationally hard problem from
the adversary’s forged signature. However, if the reduction knows all the signing
keys, it should be able to forge a signature by itself without the adversary.

There exist similar technical problems in achieving tight MUc security for
other primitives. For example, to achieve tight MUc-CPA/CCA security for PKE,
the security reduction algorithm has to know the secret keys of all users to avoid
the loss factor incurred by a guessing strategy. On the other hand, it should also
be able to extract an answer from the adversary’s guessing of challenge bit. This
seems to lead to a similar paradox since the reduction can decrypt the challenge
ciphertexts to learn the challenge bit by itself if it knows all the secret keys.

Impossibility Results on Tight MUc Security. In fact, there is a line of
research which showed impossibility results on tight MUc security for a class of
PKE, SIG, MAC and AE schemes that meet certain conditions.

– PKE. Bader et al. [5] proved that there exists no tight security reduction
from MUc-CPA/CCA security of PKE to non-interactive assumptions, if the
relation between public key and secret key is “unique” or “re-randomizable”.

– SIG. The above impossibility result for PKE also applies to MUc-CMA secu-
rity of SIG, except that the relation is defined for the verification key and
signing key [5]. Alternatively, if the signing algorithm is a deterministic one,
there exists no tight security reduction from MUc-CMA security of SIG to
bounded-round assumptions [30].

– MAC. Morgan et al. [30] showed that if MAC is a deterministic one, then
there exists no tight security reduction from MUc-CMA security of MAC to
bounded-round assumptions.

– AE. Jager et al. [23] proved that if AE satisfies a minimal key uniqueness,
any reasonable reduction from MUc to single-user security is not tight.

These impossibility results indicate that it is not an easy job to obtain tight
MUc Security. However, it does not eliminate all hopes as long as we can find
ways bypassing the conditions leading to the impossibility results.

2 For primitives like PKE, SC, AE, we also consider Multi-User Multi-Challenge secu-
rity under corruptions to capture multiple challenge ciphertexts, denoted by MUMCc.
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Possibility Results on Tight MUc Security. There are very few construc-
tions in the literature proved to have tight MUc security, even in the Random
Oracle (RO) model.

– PKE. To the best of our knowledge, only one PKE scheme in [27] is proved to
be tightly multi-user multi-challenge CCA secure under adaptive corruptions
(MUMCc-CCA). Its security proof relies on the RO model.

– SIG. Gjøsteen and Jager [17] and Pan and Wagner [33] proposed tightly
MUc-CMA secure SIG schemes in the RO model. Bader et al. [4] constructed
a tightly MUc-CMA secure SIG scheme in the standard model. Its tree-
based component makes the signature non-compact. Recently, Han et al. [18]
designed a new MUc-CMA secure SIG in the standard model. Their scheme
enjoys compact signature while having non-compact public parameters (con-
sisting of over a thousand group elements).
It is more desirable to pursue strong MUc-CMA security of SIG, which even
guarantees the hardness for adversary to forge a new signature for an already
signed message, thus additionally ensuring “non-malleablility” of signatures.
Strongly MUc-CMA secure SIG has important applications in building more
complex primitives such as SC [3] and authenticated key exchange (AKE)
[12], where it can help SC to achieve ciphertext integrity (authenticity) [7] and
AKE to achieve strong notion of “matching conversations” security [8] (see
more discussions in [12]). One may want to resort to the Generalized Boneh-
Shen-Waters (GBSW) transform [35] to convert a (non-strongly) secure SIG
scheme to a strongly secure one, with the help of chameleon hash functions.
However, the GBSW transform was originally proposed in the single-user set-
ting, and was recently extended to the multi-user setting in [28], but without
the consideration of corruptions. As noted in [28], it seems difficult to show
that the GBSW transform also works under corruptions and preserves the
tightness, i.e., converting a tightly MUc-CMA secure SIG scheme to a tightly
and strongly MUc-CMA secure one. The reason is, the resulting SIG scheme
contains the trapdoor of chameleon hash in its secret key, thus corruption of
secret key means revealing of trapdoor, which is not supported by the security
of chameleon hash [28].
Up to now, only one SIG scheme in a recent work [12] is proved to have tight
strong MUc-CMA security, based on the RO model.

– SignCryption(SC). In [9], Bellare and Stepanovs defined multi-user secu-
rity for SC to cover both insider and outsider security. Their security notions
are essentially multi-user CCA security under adaptive corruptions which
considers both privacy (MUMCc-Priv) and authenticity (MUMCc-Auth). They
also designed a SC scheme with security proved in the RO model.

– MAC and AE. Note that SIG naturally implies a MAC scheme and SC
implies an AE scheme. As far as we know there is no approach to tight MUc-
CMA security other than derived from SIG. Similar statement holds for AE.

Up to now, there exists no PKE scheme achieving tight MUMCc-CCA security,
no SIG and MAC achieving tight strong MUc-CMA security, and no SC and AE
achieving tight MUMCc-Priv&Auth in the standard model. The challenges are:
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Can we fill the aforementioned blanks on tight MUc security in the standard
model? Can we step even forward by considering tight multi-user security under
not only adaptive corruptions but also key leakages?

1.1 Our Contributions

We propose generic constructions for a bunch of primitives and prove their tight
multi-user security under adaptive corruptions and key leakages.

• We propose generic constructions of SIG, PKE, SC, MAC, AE and prove
their MUc security with tight security reductions. The instantiations yield
the following concrete schemes from the matrix DDH (MDDH) assumptions
[14] (which corresponds to the standard DDH, k-Linear assumptions under
different parameters) over asymmetric pairing groups in the standard model:

– the first PKE scheme achieving almost tight MUMCc-CCA security;
– the first SIG scheme achieving almost tight strong MUc-CMA security;
– the first SC scheme achieving almost tight MUMCc-Priv&Auth security;
– the first MAC scheme achieving almost tight strong MUc-CMVA security;
– the first AE scheme achieving almost tight MUMCc-Priv&Auth security.

Moreover, all our schemes are fully compact, i.e., all the parameters, keys,
signatures, ciphertexts consist of only a constant number of group elements.

• We formalize stronger multi-user security notions for the primitives under
not only adaptive corruptions but also key leakages, denoted by MUc&l. In
addition to MUc, the MUc&l security protects the uncorrupted users even if
adversary also obtains bounded leakage information on their secret keys.
Key leakage [2,32] is closely related to corruption, especially in the multi-
user setting, and MUc&l is a natural strengthening of MUc. The reason is
as follows. Existing MUc security considers an “all-or-nothing” setting, where
secret keys of users are either fully exposed to adversary (“all”) or completely
hidden to adversary (“nothing”), and it protects the uncorrupted users. In
realistic environments, there would naturally be users whose secret keys are
only partially leaked to adversary (“part”). These users sit in a situation that
is neither “all” nor “nothing”. The new MUc&l security additionally takes into
account the security of these users. Hence the new MUc&l security considers
a more natural and more complete setting of “all-or-part-or-nothing”.
Thanks to the leakage resilience property of the building blocks, the almost
tight MUc security of all our SIG, PKE, SC, MAC, AE schemes can be fur-
ther strengthened to support key leakage, thus achieving almost tight MUc&l

security.
• At the heart of our constructions is new technical tool called Publicly-

Verifiable Quasi-Adaptive Hash Proof System and a set of new properties
for it. These, together with our novel tight proof strategies for handling cor-
ruptions, help us circumvent the seemingly paradoxical technical problems.

We refer to Table 1 and Table 2 for comparisons of our SIG and PKE with known
schemes, respectively.
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In summary, our work shows that almost tight MUc security (and even
together with full compactness) for SIG, PKE, SC, MAC and AE are achievable
in the standard model. Moreover, our MDDH-based schemes support bounded
key leakages as well, thus our work also provides the first schemes achieving
almost tight MUc&l security, no matter in the standard model or RO model.

Table 1. Comparison of signature (SIG) schemes that have (almost) tight MU-CMA
security under adaptive corruptions (MUc-CMA). The column Standard Model shows
whether the security is proved in the standard model. The column Strong Security
shows whether the scheme is proved strongly existentially unforgeable. The column
Corruption? asks whether the security is proved in the presence of adaptive corrup-
tions. The column Leakage? asks whether the security is proved additionally in the
presence of key leakages, and if so, a leakage rate (defined as the ratio of leakage amount
to secret key size) is presented. The column Full Compactness shows whether the
scheme is fully compact (i.e., all the public parameters pp, verification key vk, signing
key sk and signature σ consist of only a constant number of group elements or lattice
vectors), and if not, the non-compact part is presented. The column Security Loss
shows the security loss factor of the reductions, where λ denotes the security parameter.
The column Assumption shows the computational assumption on which the security
is based.

SIG Scheme
Standard
Model

Strong
Security Corruption? Leakage? Full Compactness

Security
Loss Assumption

BHJKL [4,21] � – � – × (non-compact σ) O(1) MDDH
GJ [17] × – � – � O(1) DDH

DGJL [12] × � � – � O(1) DDH or φ-Hiding
HJKLPRS [18] � × � – × (non-compact pp) O(λ) MDDH

PW [33] × – � – × (non-compact vk) O(1) LWE
Our SIGMDDH � � � � ( 16 − o(1)) � O(log λ) MDDH

Table 2. Comparison of public-key encryption (PKE) schemes that have (almost) tight
MUMC-CCA security under adaptive corruptions (MUMCc-CCA) or key leakages. The
columns have similar meanings as those in Table 1.

PKE Scheme
Standard
Model Corruption? Leakage? Full Compactness

Security
Loss Assumption

HLLG [20] � – � ( 1
18 − o(1)) � O(log λ) MDDH

LLP [27] × � – � O(1) CDH
Our PKEMDDH � � � ( 13 − o(1)) � O(log λ) MDDH

2 Technical Overview

In this section, we provide a technical overview of our results. We show the main
ideas in our generic constructions of SIG and PKE, and give a high-level overview
of their tight MUc security proofs in Subsect. 2.1 and Subsect. 2.2, respectively.
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We describe our SC, MAC and AE constructions and how to optimize them
in Subsect. 2.3. Then in Subsect. 2.4, we explain the instantiations from the
MDDH assumptions and explain why our aforementioned constructions support
key leakage and achieve tight MUc&l security. Finally, in Subsect. 2.5, we compare
our technique with existing techniques for tight MUc security.

2.1 Our SIG: Technical Overview

Our starting point is a useful tool called Quasi-Adaptive Hash Proof System
(QA-HPS), which was proposed by Han et al. [20] for achieving tight leakage
resilient security of PKE. QA-HPS generalizes HPS [11] with a collection L =
{Lρ}ρ of NP-languages (Lρ ⊆ X ) and a family of projection functions α(·). The
projection key is determined by pk := αρ(sk), hence depends on language Lρ.
Meanwhile, QA-HPS has two ways of computing the hash value Λsk(x): the
public evaluation Pub(pk, x, w) for the instance x ∈ Lρ with witness w, and the
private evaluation Priv(sk, x) for x ∈ X . Its correctness requires Pub(pk, x, w) =
Priv(sk, x) = Λsk(x) for x ∈ Lρ. Moreover, the subset membership problem
(SMP) asks the computational indistinguishability of x ←$ Lρ and x ←$ X .

Another technical tool is Quasi-Adaptive Non-Interactive Zero-Knowledge
argument (QA-NIZK) proposed by Jutla and Roy [24], where the common refer-
ence string crs depends on language Lρ. For tag-based QA-NIZK [25], there are
two ways of generating a proof π for x ∈ Lρ w.r.t. tag τ : Prove(crs, τ, x, w) using
a witness w for x ∈ Lρ, and the simulator Sim(crs, tdcrs, τ, x) using a trapdoor
tdcrs. With VrfyNIZK(crs, τ, x, π), one can verify whether π is a valid proof. Perfect
zero-knowledge requires that the proofs generated by Prove and Sim are iden-
tically distributed. Besides, unbounded simulation-soundness (USS) [1,22,34]
stipulates that a PPT adversary cannot prove a false statement x /∈ Lρ, even if
it can obtain multiple simulated proofs for instances not necessarily in Lρ.

QA-HPS and HPS have found wide applications in designing PKE [11], MAC
[13], etc. However, there are rarely applications in building SIG schemes, mainly
because the designated-verifier style inherent in (QA)HPS is insufficient to sup-
port public verification of SIG. To fill the gap, we propose a new tool.

Publicly-Verifiable QA-HPS. The core technical tool underlying our SIG
construction is a Publicly-Verifiable variant of QA-HPS, or PV-QA-HPS in short,
which enables public verification of hash values with an extra verification key.
We introduce a verification key generation function ν(·) to compute verification
key vk := ν(sk), and a verification algorithm VrfyHPS(vk, x, hv) to check whether
an element hv equals the hash value Λsk(x) of x with the help of vk.

We also define two important properties for PV-QA-HPS, which play essen-
tial roles in the tight security reduction of our SIG.

• Verification soundness. It is a computational property requiring that, given
all secret/verification key pairs {(ski, vki)}i∈[n], it is hard for any PPT adver-
sary to come up with an index i∗ ∈ [n], an instance x∗ ∈ X and a hash value
hv∗ which is false but passes the verification w.r.t. key pair (ski∗ , vki∗), i.e.,
hv∗ �= Λski∗ (x∗) but VrfyHPS(vki∗ , x∗, hv∗) = 1.
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• 〈L0,L 〉-One-Time(OT)-extracting. It is a statistical property parameter-
ized by two language collections L0 = {Lρ0}ρ0 and L = {Lρ}ρ. It demands
that the hash value Λsk(x∗) for any x∗ ∈ Lρ ∈ L retains a large enough
min-entropy, even conditioned on the verification key vk = ν(sk) and the
projection key pkρ0 = αρ0(sk) w.r.t. language Lρ0 ∈ L0. This min-entropy
makes sure that any (unbounded) adversary is unable to guess the correct
hash value Λsk(x∗), except with a negligible probability.

Our SIG from PV-QA-HPS and QA-NIZK. The building blocks for our
SIG construction consists of a PV-QA-HPS scheme PVQAHPS = (α(·), ν(·),Pub,
Priv,VrfyHPS) for both language Lρ ∈ L and language Lρ0 ∈ L0

3, a tag-based
QANIZK = (Prove,VrfyNIZK,Sim) for Lρ and a collision-resistant hash function
H. The signing and verification keys of SIG are just the secret key sk and
verification key vk = ν(sk) of PVQAHPS. The signature for message m is 4

σ := ( x ←$ Lρ, d := Priv(sk, x), π := Prove(crs, τ, x, w) ), with τ := H(vk,m).

The verification of SIG checks VrfyHPS(vk, x, d) = 1 and VrfyNIZK(crs, τ, x, π) = 1.
In the strong MUc-CMA security model, adversary A adaptively issues user-

message pairs (i,m) to the signing oracle and obtains valid signatures σ. It can
also issue corruption queries and get the corresponding signing keys. A tries to
output a fresh and valid forgery (i∗,m∗, σ∗) /∈ {(i,m, σ)} for an uncorrupted
user i∗.

Our tight strong MUc-CMA security proof goes with three steps. See also
Fig. 1 for a graphical high-level overview.

Step 1. Switch language from Lρ to Lρ0 for signing queries. Through
signing queries, A obtains a bunch of tuples (i,m, σ = (x, d, π)), where σ is a
valid signature of m under ski.

• According to the perfect zero-knowledge of QANIZK, the computation of
π by Prove can be replaced by Sim without any witness of x ∈ Lρ.

• By the hardness of (multi-fold) SMP, the samplings of all x can be changed
from x ←$ Lρ to x ←$ Lρ0 .

• For x ∈ Lρ0 with witness w, d := Priv(ski, x) = Pub(αρ0(ski), x, w). So

σ =
(

x ←$ Lρ0 , d := Pub(αρ0(ski), x, w), π := Sim(crs, tdcrs, τ, x)
)
.

Now αρ0(ski) (out of the whole ski) suffices for generating σ.
Step 2. Restrict language from X to Lρ in the forgery. A’s forgery

(i∗,m∗, σ∗ = (x∗, d∗, π∗)) is successful if it is fresh and passes the valid-
ity check VrfyHPS(vki∗ , x∗, d∗) = 1 ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 with τ∗ :=
H(vki∗ ,m∗).

3 This means that PVQAHPS works correctly both for x ∈ Lρ with pk = αρ(sk) and
x ∈ Lρ0 with pk = αρ0(sk).

4 Here ρ is part of the public parameters of SIG and is chosen from the language
collection L by the setup algorithm of SIG, while w is a witness for x ∈ Lρ and is
picked along with x ←$ Lρ by the signing algorithm of SIG.
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Fig. 1. The high-level overview of our proof strategy for tight strong MUc-CMA security
of SIG. The black arrows illustrate language switches, and the blue arrows as well as
the blue brace show the applications of quasi-adaptive properties. (Color figure online)

• By the verification soundness of PVQAHPS, the check of VrfyHPS(vki∗ , x∗,
d∗) = 1 can be replaced by d∗ = Priv(ski∗ , x∗).

• The USS property of QANIZK makes sure that x∗ ∈ Lρ in the forgery,
except with a negligible probability.

Strategy for corruptions in reductions. Note that in the above two steps,
when reducing to SMP or QANIZK, the reduction algorithms can choose all
users’ signing keys themselves. As for the verification soundness of PVQAHPS,
the reduction algorithm gets all users’ signing keys from its own challenger.
Therefore, all of them are able to handle A’s adaptive corruption queries.

Step 3. A’s forgery fails due to the 〈L0,L 〉-OT-extracting property.
Now all information about ski∗ that A learns from the signing queries is
limited to the projection key αρ0(ski∗) on language Lρ0 . On the other hand,
x∗ in A’s forgery is restricted in Lρ and A wins only if d∗ = Priv(ski∗ , x∗).
By the 〈L0,L 〉-OT-extracting property of PVQAHPS, A hardly succeeds.

How We Circumvent the Seemingly Paradoxical Technical Problem.
Now we conclude how we circumvent the paradoxical technical problem for
achieving tight strong MUc-CMA security of SIG: our proof goes with a con-
stant number of computationally indistinguishable changes to arrive at a final
game where the technical problem has turned into a statistical one.

(1) All the reduction algorithms to computational properties or problems pos-
sess the signing keys of all users to handle adaptive corruption queries.

(2) After arriving at a statistical problem (〈L0,L 〉-OT-extracting property), it
is hard for the adversary to forge valid signature information-theoretically.

How We Circumvent the Existing Impossibility Results. Below we
explain how we circumvent the impossibility results on tight MUc security. Recall
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that the impossibility results apply to a SIG scheme when the relation between
the verification key and the signing key is “unique” or “re-randomizable” [5], or
the signing algorithm is a deterministic one [30].

Firstly, the signing algorithm of our SIG is not a deterministic one since it
samples a random element x from Lρ with witness w.

Next, we show that the relation between the verification key vk = ν(sk) and
the signing key sk of our SIG is neither “unique” nor “re-randomizable”, by the
properties we defined for PV-QA-HPS.

– The relation is not “unique” due to the statistical 〈L0,L 〉-OT-extracting
property of PV-QA-HPS. Suppose, towards a contradiction, that the relation
is unique, then an (unbounded) adversary can uniquely determine sk from
ν(sk), and thus break the property easily by computing hv∗ = Λsk(x∗) for
any x∗ ∈ Lρ.

– The relation is not “re-randomizable” due to the verification soundness prop-
erty of PV-QA-HPS. Suppose, towards a contradiction, that the relation
is re-randomizable, then for any user i∗ ∈ [n], an adversary can resample
another sk′

i∗ from vki∗ and ski∗ , such that vki∗ = ν(ski∗) = ν(sk′
i∗). Then

the adversary picks x∗ from X uniformly, computes hv∗ = Λsk′
i∗ (x∗) using

sk′
i∗ , and outputs (i∗, x∗, hv∗). On the one hand, since vki∗ is also the verifi-

cation key of sk′
i∗ , i.e., vki∗ = ν(sk′

i∗), hv∗ passes the verification w.r.t. vki∗ ,
i.e., VrfyHPS(vki∗ , x∗, hv∗) = 1. On the other hand, we have sk′

i∗ �= ski∗ with
high probability (≥ 1/2, by the fact that the relation between vk and sk is not
unique, as shown above), thus hv∗ = Λsk′

i∗ (x∗) �= Λski∗ (x∗) with high prob-
ability. Consequently, the adversary breaks the verification soundness with
high probability.

Of course, being neither “unique” nor “re-randomizable” nor “deterministic”
is only a necessary condition for tight MUc security. To achieve tight MUc secu-
rity, the cooperation of PV-QA-HPS and QA-NIZK in the design of our SIG as
well as the nice properties of PV-QA-HPS play the most important roles.

2.2 Our PKE: Technical Overview

Our PKE is built upon the recent work [20], where the concept of QA-HPS
was proposed to construct PKE with tight leakage resilient security. That tight
security heavily relies on two statistical properties of QA-HPS: key-switching
and universal. Intuitively, 〈L ,L0〉-key-switching requires that conditioned on a
projection key αρ(sk) w.r.t. language Lρ ∈ L , the projection key αρ0(sk) w.r.t.
language Lρ0 ∈ L0 can be switched to αρ0(sk

′) for an independent key sk′.
The PKE in [20] makes use of three QA-HPS schemes, one for masking the

message and the other two for proving the well-formedness of ciphertext. As
far as we understand, it is hard to prove the tight security of their PKE under
adaptive corruptions, since their proof strategy that increases the entropy in
secret keys gradually does not work in the presence of corruptions.

To support corruptions in the tight security, (1) we define new properties for
QA-HPS, (2) we use another approach: QA-HPS with new properties to mask
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the message and QA-NIZK to prove the well-formedness of ciphertext, and (3)
we develop a new proof strategy to achieve tight MUMCc-CCA security.

QA-HPS with New Properties. We define two new properties for QA-HPS.

• Multi-language multi-fold SMP. This new type of SMP asks the comp-
utational indistinguishability of (xi,j ←$ Lρ)i∈[n],j∈[Q] and
(xi,j ←$ L

ρ
(i)
0

)i∈[n],j∈[Q], where Lρ ∈ L , and L
ρ
(1)
0

, ...,L
ρ
(n)
0

∈ L0 are n inde-
pendent languages chosen from L0. Jumping ahead, this new SMP enables
us to switch the language Lρ to different languages {L

ρ
(i)
0

}i∈[n] for different
users in our tight proof.

• L0-Multi-key multi-extracting. It demands the pseudorandomness of
multiple hash values {Λski

(xj)}i∈[n],j∈[Q] of multiple instances x1, ..., xQ ∈
Lρ0 under uniformly and independently chosen keys sk1, ..., skn.

Our PKE from QA-HPS with New Properties and QA-NIZK. The
secret and public keys of PKE are just the secret key sk and projection key
pk = αρ(sk) of QA-HPS for language Lρ. The ciphertext for plaintext m is

c := (x ←$ Lρ, d := Pub(pk, x, w) + m, π := Prove(crs, τ, x, w)), with τ := H(pk, d).

The decryption of c = (x, d, π) checks whether VrfyNIZK(crs, τ, x, π) = 1 and
recovers m := d − Priv(sk, x) after a successful check.

It is interesting to note that our PKE shares a similar design with our SIG.
However, their tight proofs are quite different.

In the MUMCc-CCA security model, adversary A adaptively issues encryption
queries (i∗,m0,m1) to encryption oracle and obtains challenge ciphertexts c∗ =
(x∗, d∗, π∗) that encrypts mβ under pki∗ , where β ←$ {0, 1} is the challenge bit.
It can issue corruption queries and get the corresponding secret keys, and issue
decryption queries (i, c = (x, d, π)) and obtain the decryption of c under ski.
Finally A outputs a guessing bit β′ and wins if β′ = β.

Our tight MUMCc-CCA security proof goes with five steps. See also Fig. 2 for
a graphical high-level overview.

Step 1. Switch language from Lρ to {L
ρ
(i∗)
0

}i∗∈[n] for encryption queries.
Through encryption queries (i∗,m0,m1), A obtains multiple challenge cipher-
texts c∗ = (x∗, d∗, π∗).

• According to the perfect zero-knowledge of QANIZK, the computation of
π∗ by Prove can be replaced by Sim without any witness of x∗ ∈ Lρ.

• By the correctness of QAHPS, the computation of d∗ by Pub can be
replaced by d∗ := Priv(ski∗ , x∗) + mβ , without any witness of x∗ ∈ Lρ.

• By the new multi-language multi-fold SMP, for each user i∗, the samplings
of all x∗ can be changed from x∗ ←$ Lρ to x∗ ←$ L

ρ
(i∗)
0

.
• For each user i∗, since x∗ ∈ L

ρ
(i∗)
0

with witness w∗, we have d∗ :=
Priv(ski∗ , x∗) + mβ = Pub(α

ρ
(i∗)
0

(ski∗), x∗, w∗) + mβ . Hence
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Fig. 2. The high-level overview of our proof strategy for tight MUMCc-CCA security of
PKE. The black arrows illustrate language switches, and the blue arrows as well as the
blue brace show the applications of quasi-adaptive properties. (Color figure online)

c∗ :=
(

x∗ ←$ L
ρ
(i∗)
0

, d∗ := Pub(α
ρ
(i∗)
0

(ski∗), x∗, w∗) + mβ , π∗ := Sim(crs, tdcrs, τ∗, x∗)
)
.

Now {α
ρ
(i∗)
0

(ski∗)}i∗∈[n] (out of whole {ski∗}i∗∈[n]) suffices for generating c∗.
Step 2. Restrict language from X to Lρ for decryption queries. For query

(i, c = (x, d, π)), A obtains m := d − Priv(ski, x) if VrfyNIZK(crs, τ, x, π) = 1.
• The USS property of QANIZK makes sure that A obtains m only if x ∈ Lρ

in the decryption query, except with a negligible probability.
Hence A learns only {αρ(ski)}i∈[n] (out of {ski}i∈[n]) from decryption queries.

Step 3. Switch {ski∗}i∗∈[n] to new keys {sk′
i∗}i∗∈[n] for encryption queries.

Note that to avoid trivial attacks, A is not allowed to corrupt those users i∗ for
which A issues encryption queries. Thus for such users i∗, after the first two
steps, A’s information about ski∗ can be summarized by αρ(ski∗) (involved
in public keys and decryption oracle) and α

ρ
(i∗)
0

(ski∗) (involved in encryption
oracle).

• According to the 〈L ,L0〉-key-switching property of QAHPS, α
ρ
(i∗)
0

(ski∗)
can be switched to α

ρ
(i∗)
0

(sk′
i∗) to compute d∗ for encryption queries, with

sk′
i∗ uniformly and independently chosen.

Though there are n switches, it does not lead to a loose security reduction,
since key-switching is a statistical property of QAHPS.
As a result, new independent secret keys {sk′

i∗}i∗∈[n] are split from the original
{ski∗}i∗∈[n], and are only used for answering encryption queries.

Step 4. Switch languages {L
ρ
(i∗)
0

}i∗∈[n] to Lρ0 for encryption queries.
The argument is similar to step 1. As a result, the computation of d∗ :=
Pub(α

ρ
(i∗)
0

(sk′
i∗), x∗, w∗)+mβ is changed to d∗ := Pub(αρ0(sk

′
i∗), x∗, w∗)+mβ ,

which is equivalent to d∗ := Λsk′
i∗ (x∗) + mβ .

Step 5. Plaintexts mβ are perfectly hidden due to the L0-multi-key-
multi-extracting property. Note that the new keys {sk′

i∗}i∗∈[n] are uniform
and only used for computing d∗ := Λsk′

i∗ (x∗) + mβ .
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• By the L0-multi-key-multi-extracting of QAHPS, the hash values
Λsk′

i∗ (x∗) are pseudorandom, so all the d∗’s can be replaced by random
elements.

Hence d∗ perfectly hides mβ , and A has no advantage in guessing β.
Strategy for corruptions in reductions. Similar to the security reductions

for SIG, the reduction algorithms in steps 1, 2, 4, 5 can handle A’s adaptive
corruption queries by choosing all users’ secret keys themselves.

In particular, in step 5, new keys {sk′
i∗}i∗∈[n] (for answering encryption

queries) have been split from {ski∗}i∗∈[n] (for answering adaptive corrup-
tions, decryption queries and generation of public keys). Thus the reduction
algorithm to the L0-multi-key-multi-extracting property of QAHPS is able to
implicitly set {sk′

i∗}i∗∈[n] as the keys chosen by its own challenger, but choose
{ski∗}i∗∈[n] itself to deal with A’s adaptive corruption queries.

How We Circumvent the Seemingly Paradoxical Technical Problem.
Now we conclude how we circumvent the paradoxical technical problem for
achieving tight MUMCc-CCA security of PKE: our proof goes with a constant
number of computationally indistinguishable changes, as well as n statistical
changes, to arrive at a final game where the challenge ciphertexts are no longer
generated by the users’ real secret keys.

(1) All the reduction algorithms to computational properties or problems pos-
sess the secret keys of all users to handle adaptive corruption queries.

(2) With n statistical changes (〈L ,L0〉-key-switching), new and independent
secret keys (for generating challenge ciphertexts) have been split from real
secret keys (for corruption and other queries), ready for the final game.

(3) In the final game, the reduction algorithm (for L0-multi-key-multi-
extracting) can embed its challenge instances in the new secret keys to
randomize challenge ciphertexts, and sample the real secret keys itself to
handle adaptive corruption queries from the adversary.

How We Circumvent the Existing Impossibility Results. Recall that
the impossibility results apply to a PKE scheme when the relation between the
public key and the secret key is “unique” or “re-randomizable” [5]. For reasons
similar to our SIG (as shown in Subsect. 2.1), we can show that the relation
between the public key pk = αρ(sk) and the secret key sk of our PKE is neither
“unique” nor “re-randomizable”, by the new properties we defined for QA-HPS.

2.3 Our SC, MAC and AE: Technical Overview

Our SC. There are a variety of constructions for building SignCryption (SC)
from SIG and PKE, encompassing “Encrypt-then-Sign”, “Sign-then-Encrypt”,
“Encrypt-and-Sign”, etc. [3,9]. However, there is no SC available with tight
MUMCc-Priv&Auth (multi-user multi-challenge CCA privacy and authenticity
under corruptions) in the standard model. As far as we see, this is mainly due
to the missing of tightly strongly MUc secure SIG and tightly MUc secure PKE.
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Our SIG and PKE constructions fill the blank and immediately lead to tightly
MUMCc-Priv&Auth secure SC.

Moreover, we can optimize the SC construction by taking advantage of the
similar structures and compatible underlying building blocks of our SIG and
PKE. In our optimized construction of SC, we integrate the ciphertext of PKE
and signature of SIG in a more efficient way of reusing the instance x ∈ Lρ and
the proof π of QANIZK, and the signcryption of message m is now given by

c := (x ←$ Lρ, d := Pub(pkr, x, w) + m, d̃ := Priv(s̃ks, x), π := Prove(crs, τ, x, w)),

where τ := H(ṽks, pkr, d, d̃), pkr is receiver’s public (encryption) key and s̃ks

sender’s secret (signing) key. The tight MUMCc-Priv&Auth security of our SC
can be proved similar to the tight MUc security of PKE and SIG.

Our MAC and AE. A SIG scheme is itself a MAC scheme and a SC scheme is
an AE scheme, when taking the secret key as the symmetric key. Therefore, our
SIG and SC constructions immediately lead to a strongly MUc-CMA secure MAC
and MUMCc-Priv&Auth secure AE. However, we can do more about MAC since
it does not need public verification. We provide a more efficient MAC following
our SIG construction but replacing the building block PVQAHPS by QAHPS
with new properties. Furthermore, the security of MAC can also be improved
to an even stronger notion, namely strong MUc-CMVA security, which considers
chosen verification attacks as well [13] in addition to strong MUc-CMA.

2.4 Instantiations from MDDH Assumptions and Leakage Resilience

Instantiations. We instantiate PV-QA-HPS and QA-HPS with new properties
from the MDDH assumptions. The associated language collections L and L0 are
independently generated linear subspaces [25]. The instantiations stem from the
DDH-based HPS proposed by Cramer and Shoup [11], and rely on pairing groups
to accomplish public verifiability of PV-QA-HPS, inspired by [25]. We provide
tight security proofs for the properties of PV-QA-HPS and QA-HPS based on
MDDH. Below we give a high-level overview of our PV-QA-HPS instantiation.
We rely on an asymmetric pairing group (G1,G2,GT , e) of prime order p with e :
G1 ×G2 −→ GT . We use implicit representation of group elements [14], namely,
using [·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups
G1,G2,GT .

• Let us start with the Cramer-Shoup HPS [11]. We describe the MDDH-
based generalized version with k ≥ 1 the MDDH parameter (k = 1 corre-
sponds to the original DDH-based version). The hashing key is sk = K ∈
Z
(k+1)×(2k+1)
p and the projection key is pk = [KA]1 on a linear subspace

language Lρ = Span([A]1) =
{

[c]1
∣
∣∃ w ∈ Z

k
p, s.t. [c]1 = [Aw]1

}
with

ρ = [A]1 ∈ G
(2k+1)×k
1 . For an instance [c]1 = [Aw]1 ∈ Lρ, the HPS hash

value is given by [hv]1 =

(private evaluation) K · [c]1 = [KA]1 · w (public evaluation).
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• To support public verification, we resort to pairing technique, inspired by
the Kiltz-Wee QA-NIZK [25]. We use vk = [K�B]2 as the verification key
with matrix [B]2 ∈ G

(k+1)×k
2 defined by the MDDH assumption. Then, the

correctness of hash value [hv]1
?= [Kc]1 can be verified publicly via pairing:

e([hv�]1, [B]2)
?= e([c�]1, [K�B]2) (= [(Kc)�B]T ).

Verification soundness. This is tightly implied by the Kernal Matrix DH
(KerMDH) assumption [31], which in turn is implied by the MDDH assump-
tion [31]. If the adversary is able to produce an incorrect hash value [hv]1 �=
[Kc]1 but passes the public verification e([hv�]1, [B]2) = e([c�]1, [K�B]2),
then [hv−Kc]1 is a non-zero element such that e([(hv−Kc)�]1, [B]2) = [0]T ,
resulting in a solution to the KerMDH problem defined by [B]2.

〈L0,L 〉-OT-extracting. This holds information-theoretically, where Lρ0 =
Span([A0]1) ∈ L0 and Lρ = Span([A]1) ∈ L with ρ0 = [A0]1 ∈ G

(2k+1)×k
1

chosen independently of ρ = [A]1. Note that A0 is (2k +1) by k, B is (k +1)
by k, and sk = K is (k + 1) by (2k + 1) matrices. Given the projection key
pkρ0 = [KA0]1 w.r.t. Lρ0 and vk = [K�B]2, the hashing key sk = K reserves
entropy in its projection on the kernel of A0 and B. Then for any (non-zero)
instance [c]1 ∈ Lρ = Span([A]1), [c]1 is outside Lρ0 = Span([A0]1), thus the
reserved entropy of sk = K is transmitted to the hash value [Kc]1 so that
the adversary can hardly guess [Kc]1 correctly. This holds even if some extra
(bounded) information of sk = K is leaked to the adversary.

The instantiation of tag-based QA-NIZK can be adapted from the QA-NIZK
scheme proposed by Abe et al. [1], which has tight USS based on MDDH.

According to our generic constructions, the instantiations of PV-QA-HPS,
QA-HPS and tag-based QA-NIZK result in concrete SIG, PKE, SC, MAC, AE
schemes with tight MUc security from MDDH in the standard model.

Leakage Resilience. Note that HPS is intrinsically leakage resilient [32]. The
leakage resilience can naturally extend to QA-HPS [20], and also to PV-QA-HPS.
More precisely, we define leakage-resilient-〈L0,L 〉-OT-extracting property for
PV-QA-HPS (cf. Sect. 4) and adopt the leakage-resilient-〈L ,L0〉-key-switching
for QA-HPS defined in [20], which are met by our MDDH-based instantiations.
This shows that all our SIG, PKE, SC, MAC, AE schemes not only have tight
MUc security but also support key leakage, thus achieving tight MUc&l security.

The tight MUc&l security protects our schemes from key leakages on the
uncorrupted users besides adaptive corruptions. When used in the construction
of more advanced protocols, the applications of our tightly MUc&l secure primi-
tives may also improve the security of the protocols to be leakage resilient ones.
For instance, we can always make a drop-in replacement of the tightly MUc

secure SIG with our tightly MUc&l secure SIG in the construction of tightly
secure authenticated key exchange (AKE) protocols [4,18,29] where the signing
key of SIG serves as the long-term secret key of AKE, and the resulting AKEs
readily augment their tight security with leakage-resilience.
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Moreover, our tightly MUMCc&l-CCA secure PKE scheme has essential
improvements in terms of leakage resilience beyond corruptions, compared with
the tightly leakage-resilient CCA-secure PKE scheme in [20]. See Table 2. Con-
cretely, (1) our leakage rate is 1

3 −o(1) while theirs is 1
18 −o(1); (2) our multi-user

leakage model is stronger than theirs, since their model [20, Appendix A.1] does
not allow any leakage queries to any user after the very first encryption query to
any user, while our model allows leakage queries for any particular user until the
first encryption query to that user (cf. Definition 16 in Subsect. 6.1). Informally
speaking, our PKE achieves the stronger multi-user leakage resilience mainly due
to the introduction of multi-language multi-fold SMP, which helps to switch Lρ

to different and independently chosen languages {L
ρ
(i)
0

} for different users, thus
the leakages w.r.t. different users can be handled independently.

2.5 Comparison with Existing Techniques for Tight MUc Security

Most existing works on tight MUc security [4,12,17,27] designed their schemes in
a “double encryption/signing” fashion (the only exception is [18]), and the secret
key of their schemes consists of only one key (say sk0) out of two possible keys
(say sk0, sk1). For example, in [4,27], their PKE encrypts plaintext by running
a “sub-encryption procedure” twice (possibly in a correlated way), resulting in
a ciphertext containing two “sub-ciphertexts” of the plaintext, and there are
two decryption ways according to which possible key (sk0 or sk1) is used. In
their tight MUc security proofs, the reduction algorithms always possess the real
secret keys (sk0) of all users, while embed the challenges in the other possible
keys (sk1). With this strategy, their reductions can handle adaptive corruptions.

In contrast, all our constructions are different from the “double encryp-
tion/signing” design. For example, it is hard to split the ciphertext of our PKE
to two “sub-ciphertexts”. So the proof strategy in [4,12,17,27] does not apply.

We develop two different novel proof strategies for tight strong MUc-CMA
security of SIG and tight MUMCc-CCA security of PKE (cf. Fig. 1 and Fig. 2),
respectively. At a high level, we do not “double” the secret key by construction,
but “split” the key during our tight proofs, which can be summarized as first
“switch the languages for different oracles” then “apply quasi-adaptive prop-
erties” (such as 〈L0,L 〉-OT-extracting, 〈L ,L0〉-Key-switching, L0-Multi-key
multi-extracting).

3 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper, and
all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. Let ∅ denote the empty set. If x is defined by y or the value of y is
assigned to x, we write x := y. For n ∈ N, define [n] := {1, 2, ..., n}. For a set X ,
denote by x ←$ X the procedure of sampling x from X uniformly at random.
If D is distribution, x ←$ D means that x is sampled according to D. All our
algorithms are probabilistic unless stated otherwise. We use y ←$ A(x) to define
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the random variable y obtained by executing algorithm A on input x. We use
y ∈ A(x) to indicate that y lies in the support of A(x). If A is deterministic
we write y ← A(x). We also use y ← A(x; r) to make explicit the random
coins r used in the probabilistic computation. Denote by T(A) the running time
of A. “PPT” abbreviates probabilistic polynomial-time. Denote by poly some
polynomial function and negl some negligible function.

The syntax of signature (SIG), public-key encryption (PKE) and the defini-
tion of collision-resistant hash functions are presented in the full version [19].

3.1 Language Distribution

We formalize a collection of NP-languages as a language distribution.

Definition 1 (Language Distribution). A language distribution L is a
probability distribution that outputs a language parameter ρ as well as a trapdoor
td in polynomial time. The language parameter ρ publicly defines an NP-language
Lρ ⊆ Xρ. For simplicity, we assume that the universe Xρ is the same for all
parameters ρ output by all distributions L , and denoted by X . The trapdoor
td is required to contain enough information for efficiently deciding whether an
instance x ∈ X is in Lρ. We require that there are PPT algorithms for sampling
x ←$ Lρ uniformly together with a witness w and sampling x ←$ X uniformly.

A language distribution is associated with a subset membership problem
(SMP), which asks whether an element is uniformly chosen from Lρ or X . SMP
can be extended to multi-fold SMP by considering multiple elements.

Definition 2 (SMP). The subset membership problem (SMP) related to a
language distribution L is hard, if for any PPT adversary A, it holds that
Advsmp

L ,A(λ) := |Pr[A(ρ, x) = 1] − Pr[A(ρ, x′) = 1]| ≤ negl(λ), where the proba-
bility is over (ρ, td) ←$ L , x ←$ Lρ and x′ ←$ X .

Definition 3 (Multi-fold SMP). The multi-fold SMP related to a lan-
guage distribution L is hard, if for any PPT adversary A and any poly-
nomial Q = poly(λ), it holds that Advmsmp

L ,A,Q(λ) := |Pr[A(ρ, {xj}j∈[Q]) =
1] − Pr[A(ρ, {x′

j}j∈[Q]) = 1]| ≤ negl(λ), where (ρ, td) ←$ L , x1, ..., xQ ←$ Lρ

and x′
1, ..., x

′
Q ←$ X .

3.2 Quasi-Adaptive Hash Proof System

Hash proof system (HPS) was proposed by Cramer and Shoup [11], and turned
out to be a powerful tool in a wide range of applications. Han et al. [20] general-
ized HPS in a quasi-adaptive setting, termed as Quasi-Adaptive HPS (QA-HPS),
by allowing the projection key to depend on the specific language Lρ for which
hash values are computed. We give the definition of QA-HPS according to [20].

Definition 4 (QA-HPS). A quasi-adaptive hash proof system (QA-HPS)
scheme QAHPS = (SetupHPS, α(·),Pub,Priv) for a language distribution L con-
sists of four PPT algorithms:
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– ppHPS ←$ SetupHPS: The setup algorithm outputs a public parameter ppHPS,
which implicitly defines a hashing key space SK, a hash value space HV, and
a family of hash functions Λ(·) : X −→ HV indexed by hashing keys sk ∈ SK,
where X is the universe for languages output by L .
We require that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ←$ SK uniformly and sampling hv ←$ HV uniformly. We
require ppHPS to be an implicit input of other algorithms.

– pkρ ← αρ(sk): Taking as input a hashing key sk ∈ SK, the projection algo-
rithm indexed by language parameter ρ outputs a projection key pkρ.

– hv ← Pub(pkρ, x, w): Taking as input a projection key pkρ = αρ(sk) specified
by ρ, an instance x ∈ Lρ and a witness w for x ∈ Lρ, the public evaluation
algorithm outputs a hash value hv = Λsk(x) ∈ HV.

– hv ← Priv(sk, x): Taking as input a hashing key sk and an instance x ∈ X ,
the private evaluation algorithm outputs a hash value hv = Λsk(x) ∈ HV.

Correctness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS, sk ∈ SK, x ∈ Lρ

with witness w, pkρ := αρ(sk), it holds that Pub(pkρ, x, w) = Λsk(x) =Priv(sk, x).

We can naturally define QA-HPS for two language distributions L and L0,
by requiring correctness to hold not only for language parameters ρ output by
L , but also for language parameters ρ0 output by L0.

We recall a statistical property of QA-HPS from [20], parameterized by κ ∈ N

and two language distributions L , L0, called κ-leakage-resilient(LR)-〈L ,L0〉-
key-switching. Informally speaking, it stipulates that in the presence of a pro-
jection key αρ(sk) w.r.t. a language parameter ρ output by L and given κ bits
leakage information about sk, the projection key αρ0(sk) w.r.t. another language
parameter ρ0 output by L0 can be switched to αρ0(sk

′) for an independent sk′.

Definition 5 ( κ-LR-〈L ,L0〉-Key-Switching of QA-HPS). Let κ =
κ(λ) ∈ N, and let L and L0 be a pair of language distributions. A QA-HPS
scheme QAHPS for L supports κ-LR-〈L ,L0〉-key-switching, if for any (possibly
unbounded) adversary A, it holds that ε

lr-〈L ,L0〉-ks
QAHPS,A,κ (λ) :=

∣
∣ Pr[Explr-〈L ,L0〉-ks

QAHPS,A,κ ⇒
1] − 1

2

∣
∣ ≤ negl(λ), where the experiment Explr-〈L ,L0〉-ks

QAHPS,A,κ is specified in Fig. 3.

3.3 Tag-Based Quasi-Adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive Non-Interactive Zero-Knowledge argument (QA-NIZK) was pro-
posed by Jutla and Roy [24], where the common reference string (CRS) may
depend on the specific language Lρ for which proofs are generated. We present
the formal definition of QA-NIZK in its tag-based variant following [25].

Definition 6 (Tag-based QA-NIZK). A tag-based quasi-adaptive non-
interactive zero-knowledge scheme QANIZK = (SetupNIZK,CRSGen,Prove,
VrfyNIZK,Sim) for a language distribution L with tag space T consists of five PPT
algorithms:
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Exp
lr-〈L ,L 0〉-ks
QAHPS,A,κ :

ppHPS ←$ SetupHPS, (ρ, td) ←$ L , (ρ0, td0) ←$ L0

sk, sk′ ←$ SK
b ←$ {0, 1} �Challenge bit

chal := false

b′ ←$ AOLeak(·),OChal()(ppHPS, ρ, αρ(sk))

If b′ = b: Return 1; Else: Return 0

OLeak(L): �at most κ leakage bits in total

If chal = true: Return ⊥
Return L(sk)

OChal(): �one query

chal := true

If b = 0: Return (ρ0, αρ0(sk));

Else b = 1: Return (ρ0, αρ0(sk
′))

Fig. 3. The κ-LR-〈L ,L0〉-Key-Switching experiment Exp
lr-〈L ,L 0〉-ks
QAHPS,A,κ for QAHPS.

– ppNIZK ←$ SetupNIZK: The setup algorithm outputs a public parameter ppNIZK,
which serves as an implicit input of other algorithms.

– (crs, tdcrs) ←$ CRSGen(ρ): Taking as input a language parameter ρ, the CRS
generation algorithm outputs a common reference string (CRS) crs and a
simulation trapdoor tdcrs.

– π ←$ Prove(crs, τ, x, w): Taking as input crs, a tag τ ∈ T , x ∈ Lρ and a
witness w for x ∈ Lρ, the proof generation algorithm outputs a proof π.

– 0/1 ← VrfyNIZK(crs, τ, x, π): Taking as input crs, a tag τ ∈ T , x ∈ X and
a proof π, the deterministic verification algorithm outputs a bit indicating
whether π is a valid proof.

– π ←$ Sim(crs, tdcrs, τ, x): Taking as input crs, a simulation trapdoor tdcrs, a
tag τ ∈ T and x ∈ X , the simulation algorithm outputs a simulated proof π.

Perfect completeness requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, π ∈ Prove(crs, τ, x, w),
it holds that VrfyNIZK(crs, τ, x, π) = 1.
Perfect zero-knowledge requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, the outputs of Prove(crs,
τ, x, w) and Sim(crs, tdcrs, τ, x) are identically distributed, where the probability
is over the inner coin tosses of Prove and Sim.

Below we define Unbounded Simulation-Soundness (USS) according to [1,22].

Definition 7 (USS of Tag-based QA-NIZK). A tag-based QA-NIZK
scheme QANIZK for L has unbounded simulation-soundness (USS), if for any
PPT adversary A, it holds that AdvussQANIZK,A(λ) := Pr[ExpussQANIZK,A ⇒ 1] ≤
negl(λ), where the experiment ExpussQANIZK,A is defined in Fig. 4.

We note that the above USS definition for tag-based QA-NIZK is stronger
than the usual one in [15,25] in two aspects.

– Firstly, A is given the trapdoor td of the language parameter ρ. Recall that
td contains enough information for efficiently deciding whether or not an
instance x is in Lρ. This is stronger than the usual USS, but weaker than the
USS for witness-sampleable distributions defined in [1,22], where A essentially
samples (ρ, td) itself and provides (ρ, td) to the experiment.

– Secondly, A is allowed to output a forgery with a reused tag.



Almost Tight Multi-user Security Under Adaptive Corruptions & Leakages 151

ExpussQANIZK,A:

(ρ, td) ←$ L . ppNIZK ←$ SetupNIZK. (crs, tdcrs) ←$ CRSGen(ρ)

QSim := ∅ �Record the simulation queries

(τ∗, x∗, π∗) ←$ AOSim(·,·)(ρ, td, ppNIZK, crs)

If (x∗ /∈ Lρ) ∧ ((τ∗, x∗, π∗) /∈ QSim) ∧ (VrfyNIZK(crs, τ∗, x∗, π∗) = 1): Return 1;

Else: Return 0

OSim(τ, x):

π ←$ Sim(crs, tdcrs, τ, x)

QSim := QSim ∪ {(τ, x, π)}
Return π

Fig. 4. The Unbounded Simulation-Soundness experiment ExpussQANIZK,A for QANIZK.

In [1], Abe et al. proposed a QA-NIZK scheme with tight USS for witness-
sampleable distributions based on the MDDH assumptions. As noted in [1, Sub-
sect. 3.2], their scheme can be easily extended to a tag-based QA-NIZK scheme
with tight USS, by using collision-resistant hash functions.

4 Publicly-Verifiable QA-HPS and New Properties

In this section, we propose a new variant of QA-HPS, called Publicly-Verifiable
QA-HPS (PV-QA-HPS), which additionally enables public verification of hash
values with an extra verification key. Then we formalize a set of computational
and statistical properties for PV-QA-HPS and QA-HPS serving different appli-
cations in subsequent sections.

– For PV-QA-HPS, we define a computational verification soundness and sta-
tistical properties including leakage-resilient one-time-extracting (LR-OT-
extracting) and verification key diversity (VK-diversity). PV-QA-HPS will
be an important building block for SIG in Sect. 5 and these properties help
SIG to achieve tight multi-user security under corruptions and leakages.

– For QA-HPS, we define a computational multi-key-multi-extracting and a
statistical projection key diversity (PK-diversity). We also define a multi-
language multi-fold SMP for language distributions. QA-HPS will be an
important building block for PKE in Sect. 6, and these new properties help
PKE to achieve tight multi-user security under corruptions and leakages.

Jumping ahead, we will give instantiations of PV-QA-HPS and QA-HPS based
on the matrix DDH (MDDH) assumptions in Sect. 7 and the full version [19].

Firstly, we present the syntax of PV-QA-HPS.

Definition 8 (PV-QA-HPS). A publicly-verifiable QA-HPS (PV-QA-HPS)
scheme PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for a language distri-
bution L consists of six PPT algorithms:

– (SetupHPS, α(·),Pub,Priv) is a QA-HPS scheme for L as per Definition 4.
– ppHPS ←$ SetupHPS: It outputs a public parameter ppHPS, which also defines

a verification key space VK besides (SK,HV, Λ(·)) as per Definition 4.
– vk ← ν(sk): Taking as input a hashing key sk ∈ SK, the verification key

generation algorithm outputs a verification key vk ∈ VK.
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– 0/1 ← VrfyHPS(vk, x, hv): Taking as input a verification key vk = ν(sk) ∈
VK, an instance x ∈ X and a hash value hv ∈ HV, the deterministic verifi-
cation algorithm outputs a bit indicating whether hv = Λsk(x) or not.

Verification completeness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS,
sk ∈ SK, x ∈ X , vk := ν(sk) and hv := Λsk(x), it holds VrfyHPS(vk, x, hv) = 1.

Remark 1 (Relations between PV-QA-HPS and QA-NIZK). PV-QA-
HPS can be viewed as a special kind of Designated-Prover (DP) QA-NIZK [1],
but with different properties. The pkρ of PV-QA-HPS can be viewed as the prov-
ing key of DP-QA-NIZK, sk as the simulation trapdoor and vk as the common
reference string (used for verification). With pkρ, the prover can prove x ∈ Lρ

with the help of a witness w via hv ← Pub(pkρ, x, w), where the hash value hv
can be viewed as a proof for x ∈ Lρ . With vk, the verifier can check whether hv is
a valid proof for x ∈ Lρ via VrfyHPS(vk, x, hv). Moreover, with sk, the simulator
can generate a proof for x without knowing a witness via hv ← Priv(sk, x).

Verification completeness of PV-QA-HPS corresponds to the perfect com-
pleteness of DP-QA-NIZK. Correctness of (PV-)QA-HPS guarantees Pub(pkρ, x,
w) = Priv(sk, x) for all x ∈ Lρ with witness w, thus corresponding to the perfect
zero-knowledge of DP-QA-NIZK.

On the other hand, PV-QA-HPS has its own features. Firstly, it has a projec-
tion function αρ(·) (which is inherent to HPS) and a verification key generation
function ν(·). Secondly, a set of properties of PV-QA-HPS and QA-HPS are built
upon functions αρ(·) and/or ν(·). For instance, the κ-LR-〈L ,L0〉-Key-Switching
(cf. Definition 5 in Subsect. 3.2) is closely associated with αρ(·).

Next we define a computational verification soundness for PV-QA-HPS in
the setting of multiple keys. Intuitively, it requires that for any (sk, vk) among
the multiple key pairs, a PPT adversary cannot find a tuple (x∗ ∈ X , hv∗) such
that hv∗ �= Λsk(x∗) but VrfyHPS(vk, x∗, hv∗) = 1, even given all the key pairs.

Definition 9 (Verification Soundness of PV-QA-HPS). A PV-QA-HPS
scheme PVQAHPS for L has verification soundness, if for any PPT adver-
sary A and any polynomial n = poly(λ), it holds that Advvrfy-sndPVQAHPS,A,n(λ) :=
Pr[Expvrfy-sndPVQAHPS,A,n ⇒ 1] ≤ negl(λ), where Expvrfy-sndPVQAHPS,A,n is defined in Fig. 5.

We formalize a statistical extracting property for (PV-)QA-HPS, param-
eterized by κ ∈ N and two language distributions L0, L , called κ-
leakage-resilient(LR)-〈L0,L 〉-one-time(OT)-extracting. Informally speaking, it
demands high min-entropy of Λsk(x) for any x ∈ Lρ with ρ output by L , when
sk is uniformly chosen from SK, even in the presence of a projection key αρ0(sk)
w.r.t. ρ0 output by L0 and given κ bits leakage information about sk. For PV-
QA-HPS, it requires the property to hold even in the presence of the verification
key ν(sk).
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Expvrfy-sndPVQAHPS,A,n:

ppHPS ←$ SetupHPS. For i ∈ [n]: ski ←$ SK, vki := ν(ski)

(i∗ ∈ [n], x∗ ∈ X , hv∗) ←$ A(ppHPS, (ski, vki)i∈[n])

If (hv∗ 
= Λski∗ (x∗)) ∧ (VrfyHPS(vki∗ , x∗, hv∗) = 1): Return 1; Else: Return 0

Fig. 5. Verification Soundness experiment Expvrfy-sndPVQAHPS,A,n for PVQAHPS.

Definition 10 (κ-LR-〈L0,L 〉-OT-Extracting of QA-HPS and PV-QA-
HPS). Let κ = κ(λ) ∈ N, and let L0 and L be a pair of language distribu-
tions. A (PV-)QA-HPS scheme (PV)QAHPS for L supports κ-LR-〈L0,L 〉-OT-
extracting, if for any (unbounded) adversary A, it holds that ε

lr-〈L0,L 〉-otext
(PV)QAHPS,A,κ(λ) :=

Pr[Explr-〈L0,L 〉-otext
(PV)QAHPS,A,κ ⇒ 1] ≤ negl(λ), where Exp

lr-〈L0,L 〉-otext
(PV)QAHPS,A,κ is defined in Fig. 6.

Exp
lr-〈L 0,L 〉-otext
(PV)QAHPS,A,κ:

ppHPS ←$ SetupHPS. (ρ0, td0) ←$ L0, (ρ, td) ←$ L . sk ←$ SK
(x∗, hv∗) ←$ AOLeak(·)(ppHPS, ρ0, ρ, αρ0(sk), ν(sk) )

If (x∗ ∈ Lρ) ∧ (hv∗ = Λsk(x∗)): Return 1; Else: Return 0

OLeak(L): �at most κ leakage

�bits in total

Return L(sk)

Fig. 6. The κ-LR-〈L0,L 〉-OT-Extracting experiment Exp
lr-〈L 0,L 〉-otext
(PV)QAHPS,A,κ for QAHPS

(without gray part) and Publicly-Verifiable PVQAHPS (with gray part).

Han et al. [20] proposed a computational property for QA-HPS, called L0-
multi-extracting, which demands the pseudorandomness of Λsk(xj) for multiple
instances xj ∈ Lρ0 (j ∈ [Q]) with ρ0 output by L0, when sk is uniformly chosen
from SK. We extend this property in the multi-key setting as follows.

Definition 11 (L0-Multi-Key-Multi-Extracting of QA-HPS). A QA-
HPS scheme QAHPS for L supports L0-multi-key-multi-extracting, if for any
PPT A, any polynomial n = poly(λ) and any polynomial Q = poly(λ), it holds

AdvL0-mk-mext
QAHPS,A,n,Q(λ) := |Pr[A(ppHPS, ρ0, {xj ,

∣
∣{Λski

(xj)}i∈[n] }j∈[Q]) = 1]

−Pr[A(ppHPS, ρ0, {xj ,
∣
∣{hvi,j}i∈[n] }j∈[Q]) = 1]| ≤ negl(λ),

where ppHPS ←$ SetupHPS, (ρ0, td0) ←$ L0, sk1, ..., skn ←$ SK, x1, ..., xQ

←$ Lρ0 and hv1,1, ..., hvn,Q ←$ HV.

We formalize two statistical properties, called projection key diversity (PK-
diversity) and verification key diversity (VK-diversity), for QA-HPS and PV-
QA-HPS respectively. Intuitively, PK-diversity (resp. VK-diversity) expresses
statistical collision resistance of projection keys (resp. verification keys) under
different hashing keys.
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Definition 12 (PK-Diversity of QA-HPS). A QA-HPS scheme QAHPS

for L has projection key diversity (PK-diversity), if εpk-divQAHPS(λ) := Pr[αρ(sk) =
αρ(sk′)] ≤ negl(λ), where (ρ, td) ←$ L , ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Definition 13 (VK-Diversity of PV-QA-HPS). A PV-QA-HPS scheme
PVQAHPS for L has verification key diversity (VK-diversity), if εvk-divPVQAHPS(λ) :=
Pr[ν(sk) = ν(sk′)] ≤ negl(λ), where ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Finally, we define a multi-language multi-fold SMP for language distributions.

Definition 14 (Multi-Language Multi-fold SMP). The multi-language
multi-fold SMP related to L is hard, if for any PPT adversary A, any polynomial
n = poly(λ) and any polynomial Q = poly(λ), it holds that Advml-msmp

L ,A,n,Q(λ) :=

|Pr[A({ρ(i), {x
(i)
j }j∈[Q]}i∈[n]) = 1] − Pr[A({ρ(i), {x

′(i)
j }j∈[Q]}i∈[n]) = 1]| ≤

negl(λ), where for each i ∈ [n], (ρ(i), td(i)) ←$ L , x
(i)
1 , ..., x

(i)
Q ←$ Lρ(i) ,

x
′(i)
1 , ..., x

′(i)
Q ←$ X .

Multi-language multi-fold SMP can generally be reduced to SMP with a
security loss of nQ with n the number of languages and Q the number of folds
per language. For some language distributions, such as those for linear subspaces
based on the MDDH assumptions (cf. the full version [19]), the hardness of multi-
language multi-fold SMP can be tightly reduced to that of SMP.

5 SIG with Tight Strong MUc&l-CMA Security

In this section, we present digital signature (SIG) schemes with tight strong
MUc&l-CMA security, by using Publicly-Verifiable QA-HPS (PV-QA-NIZK) for-
malized in Sect. 4 as a central building block.

In Subsect. 5.1, we define the strong MUc&l-CMA security of SIG. Then in
Subsect. 5.2, we present our generic construction of SIG.

5.1 Definition of Strong MUc&l-CMA Security

In [4], Bader et al. defined existential unforgeability for digital signatures under
chosen-message attacks (CMA) in a Multi-User setting with adaptive corruptions
of secret keys (MUc-CMA). Here we extend it to MUc&l-CMA, which considers
existential unforgeability under not only chosen-message attacks and adaptive
corruptions but also key leakages in the multi-user setting. Moreover, strong
MUc&l-CMA requires that the adversary cannot even forge a new signature for
a message that it has ever queried. Below we present the definition of strong
MUc&l-CMA and the non-strong version can be easily adapted accordingly.

Definition 15 (Strong MUc&l-CMA Security for SIG). Let κ = κ(λ) ∈ N.
A signature scheme SIG = (SetupSIG,Gen,Sign,VrfySIG) is strongly MUc&l-CMA
secure under κ bits leakage per user, if for any PPT adversary A and any poly-
nomial n, it holds that Advs-cma-c&l

SIG,A,n,κ(λ) := Pr[Exps-cma-c&l
SIG,A,n,κ ⇒ 1] ≤ negl(λ), where

the experiment Exps-cma-c&l
SIG,A,n,κ is defined in Fig. 7.
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Exps-cma-c&l
SIG,A,n,κ:

ppSIG ←$ SetupSIG
For i ∈ [n]: (vki, ski) ←$ Gen(ppSIG)

QSign := ∅ �Record the signing queries

QCor := ∅ �Record the corruption queries

(i∗ ∈ [n], m∗, σ∗) ←$ AOSign(·,·),OCor(·),OLeak(·,·)(ppSIG, {vki}i∈[n])

If (i∗ /∈ QCor) ∧ ((i∗, m∗, σ∗) /∈ QSign) ∧ (VrfySIG(vki∗ , m∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(i, m):

σ ←$ Sign(ski, m)

QSign := QSign ∪ {(i, m, σ)}
Return σ

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

Return L(ski)

Fig. 7. The strong MUc&l-CMA security experiment Exps-cma-c&l
SIG,A,n,κ for SIG.

5.2 Generic Construction of SIG from PV-QA-HPS and QA-NIZK

We present a generic construction of strongly MUc&l-CMA secure SIG. Let M
be an arbitrary message space. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A publicly-verifiable PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for

both L and L0, with hashing key space SK and verification key space VK.
• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,

whose tag space is T .
• A family of collision-resistant hash functions H = {H : VK × M −→ T }.

Our generic construction of SIG= (SetupSIG,Gen,Sign,VrfySIG) is shown in Fig. 8.

ppSIG ←$ SetupSIG:
(ρ, td) ←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs) ←$ CRSGen(ρ).
H ←$ H.
Return ppSIG :=

(ρ, ppHPS, ppNIZK, crs,H).

(vk, sk) ←$ Gen(ppSIG):
sk ←$ SK, vk := ν(sk).
Return (vk, sk).

σ ←$ Sign(sk,m):
x ←$ Lρ with witness w.
d := Priv(sk, x).
vk := ν(sk).
τ := H(vk,m) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return σ := (x, d, π).

0/1 ← VrfySIG(vk,m, σ):
Parse σ = (x, d, π).
τ := H(vk,m) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1

∧ VrfyHPS(vk, x, d) = 1:
Return 1.

Else: Return 0.

Fig. 8. Generic construction of SIG = (SetupSIG,Gen, Sign,VrfySIG) from PVQAHPS,
tag-based QANIZK and H. The message space is M.

Correctness of SIG follows directly from the verification completeness of
PVQAHPS and the perfect completeness of QANIZK.

Next, we show its strong MUc&l-CMA security. We stress that the projection
key pkρ = αρ(sk) is not published as part of SIG’s verification key, and this is
crucial to the security of SIG since otherwise one can publicly generate valid
signatures for any message via the Pub algorithm of PVQAHPS by using pkρ.

Theorem 1 (Strong MUc&l-CMA Security of SIG). Assume that (i) L and
L0 have hard SMPs, (ii) PVQAHPS is a publicly-verifiable QA-HPS for both
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L and L0, having verification soundness, VK-diversity, and supporting κ-LR-
〈L0,L 〉-OT-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , sat-
isfying both perfect zero-knowledge and unbounded simulation-soundness, (iv)
H is collision-resistant. Then the proposed SIG scheme in Fig. 8 is strongly
MUc&l-CMA secure under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qs times of OSign queries, there exist adversaries B1, · · · ,B6, such that
T(B1) ≈ · · · ≈ T(B5) ≈ T(A) + (n + Qs) · poly(λ), with poly(λ) independent of
T(A), and

Advs-cma-c&l
SIG,A,n,κ(λ) ≤ Advvrfy-sndPVQAHPS,B1,n(λ) + AdvcrH,B2

(λ) + Advmsmp
L ,B3,Qs

(λ) + Advmsmp
L0,B4,Qs

(λ)

+ AdvussQANIZK,B5
(λ) + n(n−1)

2 · εvk-divPVQAHPS(λ) + n · ε
lr-〈L0,L 〉-otext
PVQAHPS,B6,κ(λ).

We refer to Subsect. 2.1 and Fig. 1 therein for an overview of the proof. Due
to space limitations, we postpone the formal proof to the full version [19].

6 PKE with Tight MUMCc&l-CCA Security

In this section, we present public-key encryption (PKE) schemes with tight
MUMCc&l-CCA security, by using QA-HPS with new properties formalized in
Sect. 4 as a central building block.

In Subsect. 6.1, we define the MUMCc&l-CCA security of PKE. Then in Sub-
sect. 6.2, we present our generic construction of PKE.

6.1 Definition of MUMCc&l-CCA Security

In [27], Lee et al. defined indistinguishability for PKE schemes under chosen-
ciphertext attacks (CCA) in a Multi-User Multi-Challenge setting with adap-
tive corruptions of secret keys (which was originally called MUC+ in [27] and is
denoted by MUMCc-CCA in this paper). Here we extend it to MUMCc&l-CCA,
which also takes key leakages into account. Below we present the formal
definition.

Definition 16 (MUMCc&l-CCA Security for PKE). Let κ = κ(λ) ∈ N. A
PKE scheme PKE = (SetupPKE,Gen,Enc,Dec) is MUMCc&l-CCA secure under
κ bits leakage per user, if for any PPT adversary A and any polynomial n, it
holds that Advcca-c&l

PKE,A,n,κ(λ) :=
∣
∣ Pr[Expcca-c&l

PKE,A,n,κ ⇒ 1] − 1
2

∣
∣ ≤ negl(λ), where the

experiment Expcca-c&l
PKE,A,n,κ is defined in Fig. 9.

6.2 Generic Construction of PKE from QA-HPS and QA-NIZK

In this subsection, we present a generic construction of MUMCc&l-CCA secure
PKE. The underlying building blocks are as follows.
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Expcca-c&l
PKE,A,n,κ:

ppPKE ←$ SetupPKE
For i ∈ [n]: (pki, ski) ←$ Gen(ppPKE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

For i ∈ [n]: chali := false

β ←$ {0, 1} �Single challenge bit

β′ ←$ AOEnc(·,·,·),ODec(·,·),OCor(·),OLeak(·,·)(ppPKE, {pki}i∈[n])

If β′ = β: Return 1; Else: Return 0

OEnc(i
∗, m0, m1):

If |m0| 
= |m1|: Return ⊥
If i∗ ∈ QCor: Return ⊥
chali∗ := true

c∗ ←$ Enc(pki∗ , mβ)

QEnc := QEnc ∪ {(i∗, c∗)}
Return c∗

ODec(i, c):

If (i, c) ∈ QEnc: Return ⊥
Return Dec(ski, c)

OCor(i):

If (i, ·) ∈ QEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

If chali = true: Return ⊥
Return L(ski)

Fig. 9. The MUMCc&l-CCA security experiment Expcca-c&l
PKE,A,n,κ for PKE.

• Two language distributions L and L0, both of which have hard SMPs.
• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing

key space is SK, projection key space is PK and hash value space is HV. We
require HV to be an (additive) group. We stress that QAHPS is not required
to be publicly-verifiable.

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : PK × HV −→ T }.
Our generic construction of PKE = (SetupPKE,Gen,Enc,Dec) is shown in Fig. 10.

ppPKE ←$ SetupPKE:
(ρ, td) ←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs) ←$ CRSGen(ρ).
H ←$ H.
Return ppPKE :=

(ρ, ppHPS, ppNIZK, crs,H).

(pk, sk) ←$ Gen(ppPKE):
sk ←$ SK, pk := αρ(sk).
Return (pk, sk).

c ←$ Enc(pk,m ∈ HV):
x ←$ Lρ with witness w.
d := Pub(pk, x, w) + m ∈ HV.
τ := H(pk, d) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return c := (x, d, π).

m/⊥ ← Dec(sk, c):
Parse c = (x, d, π).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1:

m := d − Priv(sk, x) ∈ HV.
Return m.

Else: Return ⊥.

Fig. 10. Generic construction of PKE = (SetupPKE,Gen,Enc,Dec) from QAHPS, tag-
based QANIZK and H. The message space is M := HV.

Correctness of PKE follows directly from the correctness of QAHPS and the
perfect completeness of QANIZK. Next, we show its MUMCc&l-CCA security.

Theorem 2 (MUMCc&l-CCA Security of PKE). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfying both
perfect zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 10 is MUMCc&l-CCA secure
under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist adver-
saries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n + Qe + Qd) ·
poly(λ), with poly(λ) independent of T(A), and
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Advcca-c&l
PKE,A,n,κ(λ) ≤ AdvcrH,B1(λ) + Advmsmp

L ,B2,Qe
(λ) + 2 · Advml-msmp

L 0,B3,n,Qe
(λ) + Advmsmp

L 0,B4,Qe
(λ)

+ AdvussQANIZK,B5(λ) + AdvL 0-mk-mext
QAHPS,B6,n,Qe

(λ) + n(n−1)
2

· εpk-divQAHPS(λ) + 2n · ε
lr-〈L ,L 0〉-ks
QAHPS,B7,κ (λ).

We refer to Subsect. 2.2 and Fig. 2 therein for an overview of the proof. Due
to space limitations, we postpone the formal proof to the full version [19].

7 More Primitives and Instantiations from MDDH

Tightly MU c&l Secure SC, MAC and AE. Our SIG and PKE immediately
lead to direct constructions of tightly MUMCc&l-Priv&Auth secure SC [3,9]. By
fully exploiting the similar and composable components of our SIG and PKE,
we can obtain a more efficient SC construction, which is shown in the full ver-
sion [19]. Since SIG naturally implies MAC and SC implies AE, we can also
obtain the constructions of tightly secure MAC and AE. We also give optimized
MAC and AE constructions in the full version [19], where PVQAHPS is replaced
with QAHPS. Our MAC achieves tight strong MUc&l-CMVA security, which also
considers chosen verification attacks [13] in addition to strong MUc&l-CMA.

Instantiations from MDDH. We give instantiations of SIG and PKE from
the matrix DDH (MDDH) assumptions over asymmetric pairing groups. Our
SC, MAC and AE can be similarly instantiated.

Firstly, we instantiate the building blocks needed in our generic construc-
tions (cf. the full version [19]). More precisely, we give concrete instantiations
of Publicly-Verifiable QA-HPS (with an overview in Subsect. 2.4) and QA-HPS,
built upon the MDDH-based QA-HPS schemes proposed in [20], which are in
turn generalizations of the well-known DDH-based HPS scheme proposed by
Cramer and Shoup in [11]. Then we instantiate tag-based QA-NIZK with a tag-
base variant of the QA-NIZK scheme proposed in [1] that has tight USS based
on MDDH, which is recalled in the full version [19] for completeness.

Next we instantiate the generic SIG construction in Sect. 5 with the above
building blocks. Let x · G denote x elements in G. Under MDDH parameters
�, k ∈ N where � ≥ 2k + 1, the MDDH-based SIG scheme SIGMDDH has public
parameter ppSIG : (5k2 + 3k + �k) · G1 + (5k2 + 4k + 1 + 2�k) · G2, verification
key vk : (�k) · G2, signing key sk : �(k + 1) · Zp, and signature σ : (4k2 + 4k +
2 + �) · G1 + (2k2 + 3k + 1) · G2. By plugging the theorems regarding the tight
security of the MDDH-based PV-QA-HPS and QA-NIZK schemes (cf. the full
version [19]) into Theorem 1, we have the following corollary showing the tight
strong MUc&l-CMA security of SIGMDDH based on the MDDH assumptions (as
well as the collision-resistance of hash functions).

Corollary 1 (Tight Strong MUc&l-CMA Security of SIGMDDH). Let � ≥ 2k+
1 and κ ≤ log p − Ω(λ). For any number n of users and any adversary A who
makes at most Qs times of OSign queries, there exist adversaries B1,B2 and B3,
such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) + (n + Qs) · poly(λ), with poly(λ)
independent of T(A), and
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Advs-cma-c&l
SIGMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4k�log Qs� + � − k + 6) · Advmddh
D�,k,G1,B2

(λ)

+(2�log Qs� + 3) · Advmddh
Dk,G2,B3

(λ) + n+2	log Qs
Qs

p−1 + n(n−1)
2 · 1

pk� .

Since Qs = poly(λ) for PPT adversaries, the security loss is in fact O(log Qs) =
O(log λ), which is lower than O(λ). For k = 1 and � = 3, we get a fully compact
SIG scheme with ppSIG : 11·G1+16·G2, vk : 3·G2, sk : 6·Zp and σ : 13·G1+6·G2.
The resulting SIG scheme has tight strong MUc&l-CMA security based on the
SXDH assumption (which requires the DDH assumption to hold both in G1 and
G2), and supports κ = log p − Ω(λ) bits leakage per user. The leakage rate (i.e.,
κ/ bit-length of sk) is log p−Ω(λ)

6 log p = 1
6 − o(1) asymptotically as p grows.

We also instantiate the generic PKE construction in Sect. 6. Under MDDH
parameters �, k ∈ N where � ≥ 2k +1, the MDDH-based PKE scheme PKEMDDH

has public parameter ppPKE : (5k2+3k+�k) ·G1+(4k2+3k+1+2�k) ·G2, public
key pk : k·G1, secret key sk : �·Zp, and ciphertext c : (4k2+3k+2+�)·G1+(2k2+
3k+1)·G2. By plugging the theorems regarding the tight security of the MDDH-
based QA-HPS and QA-NIZK schemes (cf. the full version [19]) into Theorem
2, we have the following corollary showing the tight MUMCc&l-CCA security of
PKEMDDH based on the MDDH assumptions (as well as the collision-resistance
of hash functions).

Corollary 2 (Tight MUMCc&l-CCA Security of PKEMDDH). Let � ≥ 2k + 1
and κ ≤ log p − Ω(λ). For any number n of users and any adversary A who
makes at most Qe times of OEnc queries and Qd times of ODec queries, there
exist adversaries B1,B2 and B3, such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) +
(n + Qe + Qd) · poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKEMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4k�log Qe� + � − k + 9) · Advmddh
D�,k,G1,B2

(λ)

+(2�log Qe� + 2) · Advmddh
Dk,G2,B3

(λ) + 2n+2	log Qe
Qe

p−1 + n(n−1)
2 · 1

pk .

For k = 1 and � = 3, we get a fully compact PKE scheme with ppPKE : 11 ·G1 +
14 ·G2, pk : 1 ·G1, sk : 3 ·Zp and c : 12 ·G1 + 6 ·G2. The resulting PKE scheme
has tight MUMCc&l-CCA security based on the SXDH assumption, and supports
κ = log p − Ω(λ) bits leakage per user. The leakage rate is log p−Ω(λ)

3 log p = 1
3 − o(1)

asymptotically as p grows.
For an overview, we refer to Table 1 and Table 2 in the introduction.

On Tightness of our MDDH-Based Schemes. Our MDDH-based schemes
are the first ones achieving almost tight MUc/MUc&l security in the standard
model, and the security loss factor is O(log λ).

We stress that all our generic constructions are fully tightness-preserving, i.e.,
the MUc/MUc&l securities of the resulting SIG, PKE, SC, MAC, AE schemes are
tightly reduced to the security properties of the building blocks PV-QA-HPS,
QA-HPS and tag-based QA-NIZK, with constant security loss factors. More-
over, our instantiations of PV-QA-HPS and QA-HPS have fully tight securities,
and only the tag-based QA-NIZK instantiation has security loss factor O(log λ).
Therefore, our fully tightness-preserving generic constructions leave spaces for
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even tighter (fully tight) MUc/MUc&l security, as long as we can find instantia-
tions of tag-based QA-NIZK with tighter security.

On Efficiency of Our MDDH-Based Schemes. Note that all our schemes
enjoy full compactness (i.e., all the parameters, keys, signatures and cipher-
texts consist of only a constant number of group elements). We believe our fully
compact schemes are good starts for almost tight MUc/MUc&l security in the
standard model and follow-up work might improve efficiency even further.
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Abstract. A private puncturable pseudorandom function (PRF)
enables one to create a constrained version of a PRF key, which can be
used to evaluate the PRF at all but some punctured points. In addition,
the constrained key reveals no information about the punctured points
and the PRF values on them. Existing constructions of private punc-
turable PRFs are only proven to be secure against a restricted adversary
that must commit to the punctured points before viewing any informa-
tion. It is an open problem to achieve the more natural adaptive security,
where the adversary can make all its choices on-the-fly.

In this work, we solve the problem by constructing an adaptively
secure private puncturable PRF from standard lattice assumptions. To
achieve this goal, we present a new primitive called explainable hash,
which allows one to reprogram the hash function on a given input. The
new primitive may find further applications in constructing more cryp-
tographic schemes with adaptive security. Besides, our construction has
collusion resistant pseudorandomness, which requires that even given
multiple constrained keys, no one could learn the values of the PRF
at the punctured points. Private puncturable PRFs with collusion resis-
tant pseudorandomness were only known from multilinear maps or indis-
tinguishability obfuscations in previous works, and we provide the first
solution from standard lattice assumptions.

1 Introduction

A constrained pseudorandom function (PRF) [BW13,KPTZ13,BGI14] is a fam-
ily of PRF [GGM84] that allows one to derive a constrained key for a predicate
from a PRF key. The constrained key can be used to evaluate the PRF on
inputs satisfying the predicate, but it reveals no information about the PRF
values at other points. The latter requirement is denoted as (constrained) pseu-
dorandomness and is the main security property of a constrained PRF. Besides,
a constrained PRF is said to be private [BLW17] if the constrained keys also
hide the constraint predicates.

As shown in [BW13,KPTZ13,BGI14], private constrained PRFs for the
prefix-fixing constraint, where the predicate outputs 1 on inputs starting with
a specified string, can be constructed from any one-way function via the GGM
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 163–193, 2023.
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framework [GGM84]. From this framework, we can also construct constrained
PRFs for the puncturing constraint (a.k.a. puncturable PRFs), where the pred-
icate outputs 1 on all but some punctured points. This simple construction does
not provide privacy, and the first private puncturable PRF is constructed from
multilinear maps in [BLW17]. Then in [BKM17], Boneh et al. construct private
puncturable PRFs from standard lattice assumptions.

Constrained PRFs for more complicated constraint predicates are also pro-
posed in the literature. In particular, constrained PRFs for circuits are con-
structed from multilinear maps and indistinguishability obfuscation in [BW13,
CRV16] and [BZ14], respectively. Moreover, via using (differing-input) indistin-
guishability obfuscation, constrained PRFs for Turing machines are presented in
[AFP16,AF16,DKW16,DDM17]. Besides, private constrained PRFs for circuits
are constructed from indistinguishability obfuscation in [BLW17].

Subsequent works focus on constructing constrained PRFs for general con-
straints without using heavy tools such as multilinear maps or obfuscations.
In [BV15], Brakerski and Vaikuntanathan construct the first constrained PRF
for circuits from standard lattice assumptions. Then in [CC17,BTVW17,PS18,
CVW18,PS20], lattice-based private constrained PRFs for circuits are provided.
Besides, in [Bit17,GHKW17,AMN+18], (private) constrained PRFs are also
constructed from Diffie-Hellman type assumptions in traditional groups.

Adaptively Secure (Private) Constrained PRFs. When defining security
properties of a (private) constrained PRF, we usually consider an adversary
that is able to query some oracles, and the scheme has adaptive security if the
adversary can query these oracles in an arbitrary order. Most previous (private)
constrained PRFs are only proved to have a weaker selective security, where
the adversary has to query the oracles in some predefined order. To achieve
adaptive security generically, one can use complexity leveraging, but this would
introduce an exponentially large reduction loss. In addition, the GGM frame-
work based constrained PRFs are proved to have adaptive pseudorandomness
in [FKPR14,JKK+17], but the reduction loss is still super-polynomial. Besides,
(private) constrained PRFs with adaptive security for various constraints are
also proposed in the random oracle model in [BW13,HKKW19,AMN+18].

The first adaptively secure constrained PRF in the standard model with a
polynomial reduction loss is given in [HKW15], for the puncturing constraint.
In the same setting, adaptively secure constrained PRFs for NC1 circuits and
any polynomial-size circuits are presented in [AMN+19] and [DKN+20], respec-
tively. However, all three constructions need an indistinguishability obfuscation
and are not private. Recently, (private) constrained PRFs with adaptive pseu-
dorandomness are also constructed from simple assumptions such as one-way
function and standard lattice assumptions in [DKN+20], but the constructions
only support constraints that can be implemented by an inner-product predicate
and do not have adaptive privacy.

Collusion Resistant (Private) Constrained PRFs. A (private) constrained
PRF is collusion resistant if its security properties hold against an adversary
that sees multiple constrained keys, and in contrast, it is single-key secure
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if it is only secure against an adversary that sees one constrained key. Col-
lusion resistance is generally satisfied by constructions from multilinear maps
or indistinguishability obfuscation (e.g., [BW13,BZ14,BLW17]). However, it is
quite difficult to achieve it without using these strong primitives. Especially, as
shown in [CC17], a private constrained PRF with collusion resistant privacy (for
certain constraints) implies indistinguishability obfuscation. Besides, previous
constructions of collusion resistant constrained PRFs from standard assump-
tions [BW13,KPTZ13,BGI14,BFP+15,DKN+20] only support constraints in
subclasses of the inner-product predicate, including the prefix-fixing constraint,
the left/right predicate, and the O(1)-CNF predicate. We refer the readers to
[DKN+20] for definitions of these constraints and their relations with the inner-
product predicate.

This Work. In this work, we consider private constrained PRFs with adap-
tive security and collusion resistant pseudorandomness. Both security require-
ments are necessary for many applications illustrated in [BW13,BZ14,BLW17]
and would also be useful in future applications. In addition, to prevent poten-
tial security risk (e.g., quantum attacks), we focus on constructions in the
standard model from standard lattice assumptions, with a polynomial reduc-
tion loss. Existing private constrained PRFs constructed in this “standard
setting” with either adaptive security or collusion resistant pseudorandom-
ness [BW13,KPTZ13,BGI14,DKN+20] only support constraints that can be
implemented by the inner-product predicate. This raises the following natural
question:

Can we construct private constrained PRFs with the desired security
requirements in the standard setting for beyond inner-product predicates?

To answer the question, we focus on private puncturable PRFs. Note that
as demonstrated in [PTW20], in some special cases, constrained PRFs for the
inner-product predicate exist, but it is impossible to construct a secure punc-
turable PRF. Thus, the puncturing constraint cannot be implemented by the
inner-product predicate. Besides, private puncturable PRFs are useful in con-
structing many advanced cryptographic primitives, including symmetric deni-
able encryption [CDNO97], cryptographic watermarking [CHN+16], restricted
searchable symmetric encryption [SWP00,BLW17], and distributed point func-
tion [GI14,BGI15]. Some of the applications (e.g., collusion resistant watermark-
ing) need a collusion resistant (private) puncturable PRF, and some applications
will achieve new desirable features immediately if the employed private punc-
turable PRF has adaptive security1. Moreover, the new security properties might
inspire more potential applications. Therefore, it is of both theoretical and prac-
tical interest to study private puncturable PRFs with adaptive security and
collusion resistance.
1 For example, if we use an adaptively secure private puncturable PRF in the construc-

tion of restricted searchable encryption given in [BLW17], the scheme will addition-
ally achieve adaptive security, which allows the database owner to issue restricted
search keys on restrictions determined after the system has been put in use.
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Table 1: Properties achieved by constrained PRFs that can be instantiated from
standard lattice assumptions (including one-way function) in the standard model. For
either pseudorandomness or privacy, we use “adaptive” to denote adaptive security and
use “selective” to denote selective security. Both the adaptive security and the selective
security consider adversaries that can make queries to an evaluation oracle (see Sect.
4.1 for more details), and we use “weak” to denote that the scheme has privacy against
a weaker adversary that is not allowed to query the evaluation oracle. Besides, we
use the terms 1, O(1), and poly to denote that the adversary can obtain 1, constant,
and polynomial constrained key(s) when attacking the security properties. For the
constraints, “Prefix” denotes the prefix-fixing constraint and “Puncturing” denotes the
puncturing constraint. We use “NC1” and “P/Poly” to denote NC1 circuits and any
polynomial-size circuits. Also, we use “IP” to denote the inner-product predicate and
use “O(1)-CNF” to denote the O(1)-CNF predicate. Note that the predicates Prefix ⊆
O(1)-CNF ⊆ IP.

Pseudorandomness Privacy Constraint

[BW13,KPTZ13,BGI14] selective poly selective poly Prefix

[BFP+15] selective poly ✗ ✗ Prefix

[BV15] selective 1 ✗ ✗ P/Poly

[BKM17] selective 1 selective 1 Puncturing

[CC17,CVW18] selective 1 selective 1 NC1

[BTVW17,PS18,PS20] selective 1 selective 1 P/Poly

[DKN+20] adaptive O(1) weak 1 O(1)-CNF

adaptive 1 weak 1 IP

This Work adaptive poly adaptive 1 Puncturing

1.1 Our Results

In this work, we construct a private puncturable PRF from standard lattice
assumptions in the standard model, where the reduction loss is polynomial in
the security parameter. The scheme has collusion resistant pseudorandomness
against an adaptive adversary. In addition, it has adaptive (single-key) privacy.
The latter property (i.e., adaptive privacy) is not achieved in previous construc-
tion of private constrained PRFs for any constraint from any assumption in the
standard model without using complexity leveraging. We summarize features
of our construction and compare it with previous constructions of constrained
PRFs in the standard setting in Table 1.

To accomplish our goal, we provide new techniques for constructing adap-
tively secure and collusion resistant private constrained PRFs. Especially, we
present a new primitive called explainable hash and construct it from lattices.
The new primitive enables us to upgrade a selectively secure private punc-
turable PRF to have adaptive security, and it could be applied to construct
other adaptively secure cryptographic schemes. We also introduce a new app-
roach to achieve collusion resistance from standard assumptions. The idea is
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very different from previous methods and would inspire new constructions of
collusion resistant constrained PRFs for a wider class of constraints.

1.2 Technical Overview

In this section, we provide an overview of our main techniques for construct-
ing private puncturable PRFs with collusion resistant pseudorandomness and
adaptive security. We first describe our main ideas for achieving either adaptive
security or collusion resistance. Then we demonstrate how to combine the ideas
to construct a private puncturable PRF with both desirable security properties.

On Achieving Adaptive Security. First, we explain how to achieve adaptive
security. The adaptive security requires that the adversary cannot break security
of the scheme even if it can make queries to a constrain oracle and an evaluation
oracle in an arbitrary order, where the constrain oracle returns a constrained key
punctured on the submitted set, and the evaluation oracle evaluates the PRF on
the submitted input. Here, we consider private 1-puncturable2 PRF with single-
key security and present a general construction that upgrades a selectively secure
scheme to have adaptive security in this setting.3

The Difficulty. First, note that it is easy to answer evaluation oracle queries
after the constrain oracle query, since the evaluation results can be computed
by the constrained key returned to the adversary and will not leak additional
information. However, for the evaluation oracle queries before the constrain ora-
cle query, it seems that they must be answered by the original PRF key since
the puncture point is still unknown now. Thus, the evaluation results may leak
information about the PRF key, which may help the adversary to break security
of the scheme. This is the main difficulty for achieving adaptive security.

Our Solution. To overcome the difficulty, we introduce a new primitive called
explainable hash function. At a high level, an explainable hash H is an injective
keyed function that can reprogram the output on a given input to a predefined
value. More precisely, in its security definition, the adversary can first make
queries to an evaluation oracle H(hk, ·) before viewing the hash key hk, and
then it receives hk after submitting a challenge input x∗ that is not queried
before. Its security requires that the adversary’s view in above experiment can
be simulated by a simulator, and it is guaranteed that the returned hash key hk
satisfies H(hk, x∗) = u∗, where u∗ is a uniform output sampled in the beginning
of the security experiment.4

2 A 1-puncturable PRF punctures each PRF key on only one input.
3 The general construction also works for larger puncture sets if we use a stronger

building block in the construction. Looking ahead, this needs an explainable hash
that can reprogram the outputs on multiple inputs simultaneously, which is much
more difficult to construct (compared to the standard explainable hash constructed
in this work).

4 In the formal definition of explainable hash, the simulator may fail and abort with
a non-negligible probability. In this overview, we assume that the simulator always
succeeds for simplicity.
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Next, let PRF0 be a private puncturable PRF with selective security, i.e., it
is secure against an adversary that can make queries to the evaluation oracle
after querying the constrain oracle. Then we show how to construct adaptively
secure private puncturable PRF from PRF0 and an explainable hash H. In our
new construction, the PRF key is a PRF key k of PRF0 and a hash key hk of H.
Then, given an input x, the PRF outputs PRF0(k,H(hk, x)). Besides, on input
a punctured point x∗, the constraining algorithm punctures k on H(hk, x∗) and
outputs the constrained version of k and the hash key hk. Since H is injective,
H(hk, x) �= H(hk, x∗) if x �= x∗. Therefore, the constrained key allows one to
evaluate the PRF at all points not equal to x∗.

Now, to prove adaptive security (either pseudorandomness or privacy) of the
above construction, we can puncture the secret key k on a random string u∗

in the beginning and then use this constrained key (denoted as ku∗) and the
simulator of H to answer the evaluation oracle queries from the adversary. Next,
after receiving the puncture point x∗, we can use the simulator of H to generate a
hash key hk s.t. H(hk, x∗) = u∗ and return (ku∗ , hk) to the adversary. Adaptive
security then comes from security of H and selective security properties of PRF0.

Constructing Explainable Hash with 1-bit Output. It remains to show how to
construct an explainable hash function. We first present a basic construction
of (non-injective) explainable hash with 1-bit output. In a nutshell, the con-
struction embeds an admissible hash function [BB04] into a lattice-based PRF
using the matrix embedding mechanism given in [BGG+14].

An admissible hash allows one to partition an input space such that for any
polynomial-size set Q of inputs and any input x∗ �∈ Q, we have

∀x ∈ Q, P(K,x) = 0 ∧ P(K,x∗) = 1

with a non-negligible probability, where P is the partitioning function and K is
a random partitioning key. Again, we omit the non-negligible failing probability
here and only consider the case that the partitioning succeeds.

To embed the partitioning key K = (K1, . . . , KN ) into a matrix A, we set

A =
[
B1 − K1 · G | . . . | BN − KN · G]

where B1, . . . ,BN ∈ Z
n×m
q are random matrices and G is the standard powers-

of-two gadget matrix [MP12]. Then given the matrix A and an input x (note
that the partitioning key K is not needed), one can get an encoding of P(K,x)
as

Ax =
[
B1 | . . . | BN

] · T − P(K,x) · G
where T is a low-norm matrix.

Now, we are ready to describe our construction of the explainable hash H0.
The hash key is a random matrix A ∈ Z

n×m·N
q and a random vector s ∈ Z

n
q .

Given an input x, the evaluation algorithm first computes Ax from A and x.
Then it outputs 0 if

sᵀ · Ax · G−1(v1) ∈ [0,
q

2
]
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and outputs 1 otherwise, where v1 = ( q−1
2 , 0, . . . , 0)ᵀ ∈ Z

n
q , and G−1(v1) decom-

poses each element in v1 into bits and satisfies G · G−1(v1) = v1.
Next, we demonstrate how the simulator works. Recall that the simulator

will first answer the evaluation oracle queries from an adversary, and then after
the adversary submits an input x∗, the simulator needs to output a hash key,
which is compatible with the evaluation oracle outputs and can map x∗ to a
given bit u∗.5 Inspired by [LST18,DKN+20], we use the lossy mode of A for
the simulator. More precisely, let n̄ � n be an integer, the simulator embeds a
random partitioning key K to the matrix A as follows:

A =
[
B1 − K1 · G | . . . | BN − KN · G]

where

∀i ∈ [1, N ], Bi =
(
rᵀ · B̄
B̄

)
· Si + Ei

r
$← {0, 1}n−1, B̄

$← Z
(n−1)×n̄
q , ∀i ∈ [1, N ], Si

$← Z
n̄×m
q

and Ei is a low-norm noise matrix. Note that A still looks uniform in Z
n×m·N
q

due to the learning with errors (LWE) assumption and the leftover hash lemma.
In addition, for any input x, we have

Ax =
[(

rᵀ · B̄
B̄

)
· S1 + E1 | . . . |

(
rᵀ · B̄
B̄

)
· SN + EN

]
· T − P(K,x) · G

≈
(
rᵀ · B̄
B̄

)
· [
S1 | . . . | SN

] · T − P(K,x) · G

The simulator also samples a random vector s
$← Z

n
q and uses the hash key

(s,A) to answer the evaluation oracle queries from the adversary. Then given an
input x∗ and a bit u∗, the simulator computes u† = H0((s,A), x∗). It outputs
(s,A) if u† = u∗ and outputs (s + d,A) otherwise, where d = (−1, rᵀ)ᵀ.

Notice that if the partitioning is successful (i.e., P(K,x) = 0 for all queried
x and P(K,x∗) = 1), then for any queried x, we have

dᵀ · Ax · G−1(v1) ≈ dᵀ ·
(
rᵀ · B̄
B̄

)
· [
S1 | . . . | SN

] · T · G−1(v1) = 0

Thus, H0((s,A), x) = H0((s+d,A), x) for all queried x,6 and therefore the hash
key outputted by the simulator, which is either (s,A) or (s + d,A), is always
compatible with its answers to the evaluation oracle. In addition,

dᵀ ·Ax∗ ·G−1(v1) ≈ dᵀ ·
(
rᵀ · B̄
B̄

)
·[S1 | . . . | SN

]·T ·G−1(v1)−dᵀ ·v1 =
q − 1

2

5 Here, the adversary cannot view the hash key before submitting x∗, and this allows
the simulator to choose a suitable hash key after receiving x∗.

6 This also relies on the fact that sᵀ · Ax · G−1(v1) is not close to the borders (i.e., 0
and q

2
), which can be guaranteed by adding an additional random element to it.
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Thus, we have H0((s,A), x∗) �= H0((s + d,A), x∗), i.e., if the bit u∗ �= H0((s,
A), x∗), then u∗ = H0((s + d,A), x∗). Therefore the simulator can succeed in
mapping x∗ to u∗.

Explainable hash with Injectivity. We next describe how to construct injective
explainable hash functions from the above (non-injective) explainable hash H0.
The construction runs multiple instances of H0 and rerandomize the outputs.

More precisely, let l be the length of the inputs, then we define the new hash
function as

H(HK,x) = (H0(hki,j , x) ⊕ vi,j,x[i])i∈[1,l],j∈[1,L]

where L = O(l) is large enough, HK = (hki,j , vi,j,0, vi,j,1)i∈[1,l],j∈[1,L], and for
i ∈ [1, l], j ∈ [1, L], hki,j is a random hash key of H0 and vi,j,0, vi,j,1 are random
bits.

For any inputs x �= x′, there exists i s.t. x[i] �= x′[i]. Thus, vi,j,x[i] and vi,j,x′[i]
are random and independent bits and therefore, for all j ∈ [1, L], we have

Pr[H0(hki,j , x) ⊕ vi,j,x[i] = H0(hki,j , x
′) ⊕ vi,j,x′[i]] =

1
2

This implies that Pr[H(HK,x) = H(HK,x′)] ≤ 1
2L . Then, as there are at most

22l possible pairs of distinct inputs (x, x′), we have

Pr[∃x, x′ s.t. x �= x′ ∧ H(HK,x) = H(HK,x′)] ≤ 22l

2L

which can be made negligible for large enough L. That is, with all but negligible
probability over the choice of the random hash key, the hash function will be
injective. Besides, given an input x∗ and a string u∗ ∈ {0, 1}l·L, the simulator of
H can invoke the simulator of H0 to generate hki,j satisfying

H0(hki,j , x
∗) = u∗

i,j ⊕ vi,j,x∗[i]

for i ∈ [1, l], j ∈ [1, L], and security of the new construction follows.

On Achieving Collusion Resistant Pseudorandomness. Next, we describe
how to achieve collusion resistant pseudorandomness, which requires that given
a constrained key punctured on a set P1 and a constrained key punctured on
a set P2, the adversary cannot learn the PRF value at an input x ∈ P1 ∩ P2

7.
The starting point is a single-key secure private puncturable PRF with special
properties. Concretely, we will use the private constrained PRF given in [PS18].

The [PS18] PRF. In a nutshell, the secret key of the PRF is a vector s ∈ Z
n
q ,

where s[1] = 1 and for i ∈ [2, n], s[i] is a random element in Zq. Also, given an
input x, the PRF outputs

p

q
· (sᵀ · Ax)[1]�

7 Note that if x �∈ P1 ∩ P2, i.e., x �∈ P1 or x �∈ P2, then the PRF value at x can be
trivially learned from one of the constrained keys.



Privately Puncturing PRFs from Lattices 171

where Ax ∈ Z
n×m
q is a random matrix determined by x and some public matrices

A1, . . . ,AN+k. The constrained key for a constraint predicate C includes a vector

aC = sᵀ · [A1 + ct1 · G | . . . | AN + ctN · G
| AN+1 + sk1 · G | . . . | AN+k + skk · G] + eᵀ

and a ciphertext ct = (ct1, . . . , ctN ), where ct is the ciphertext that encrypts
the constraint C using a fully homomorphic encryption (FHE) scheme, sk is the
secret key of the FHE scheme, and e is a low-norm noise vector. Besides, given
the constrained key (aC, ct) and an input x, the constrained evaluation algorithm
first computes

ax ≈ (sᵀ · Ax)[1] + (1 − C(x)) · rx

via another version of the matrix embedding technique [BGG+14,GVW15],
where rx is a pseudorandom element in Zq determined by x. Then, it rounds ax

to Zp and outputs the rounding result. Note that ax is close to (sᵀ · Ax)[1] if
C(x) = 1, and is pseudorandom (and thus hides the real PRF value) if C(x) = 0.
Then the correctness8 and the pseudorandomness follow. In addition, its privacy
comes from security of the FHE scheme and the LWE assumption, which implies
that aC is a pseudorandom vector and thus hides sk.

The Difficulty for Achieving Collusion Resistance. In above construction
(denoted as PRF0 here), one can recover the PRF key s from constrained keys for
two different constraints C(1) and C(2). First, since the constraints are different,
the ciphertexts ct(1) and ct(2) that encrypt C(1) and C(2) respectively will also
be different. That is, there exists i s.t. ct

(1)
i �= ct

(2)
i and w.l.o.g., assume that

ct
(1)
i = 1 and ct

(2)
i = 0. Then, from the constrained keys, one can get

(sᵀ(Ai + ct
(1)
i · G) + eᵀ

1) − (sᵀ(Ai + ct
(2)
i · G) + eᵀ

2) = sᵀ · G + eᵀ

from which recovering s is easy. Similar collusion attacks also work for many
other lattice-based constrained PRFs (e.g., [BV15,BKM17,BTVW17]).

The First Attempt. To get around the above obstacle and construct collusion
resistant τ -puncturable PRFs (i.e., the PRF can be punctured at τ points), our
initial idea is to split the PRF key into τ parts and puncture each part on one
input.9 In particular, let t1, . . . , tτ be τ independent secret keys of PRF0, then
the new PRF key is (t1, . . . , tτ ). Moreover, given an input x, the PRF outputs

τ∑

i=1

PRF0(ti, x)

8 This also relies on the fact that (sᵀ · Ax)[1] is not close to the “rounding border”,
which can be ensured either by the 1D-SIS assumption [Reg04,BV15,BKM17] or via
adding an additional random element to it. In this work, we use the latter method.

9 A similar idea is also employed in [BKM17] to achieve τ -puncture PRF from 1-
puncture PRF. However, as discussed below, we cannot achieve collusion resistance
merely from this approach.
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and on input a puncture set P = {x1, . . . , xτ}, the constraining algorithm punc-
tures the secret key ti on xi and outputs the constrained versions of all ti.

Now, given two puncture sets P(1) = {x
(1)
1 , . . . , x

(1)
τ } and P(2) = {x

(2)
1 , . . . ,

x
(2)
τ } and supposing x

(1)
1 = x

(2)
1 = x1, then t1 is punctured on the same input x1

in the two constrained keys. Next, by the single-key security of PRF0, PRF0(t1,
x1) is pseudorandom given the constrained keys, which implies the pseudoran-
domness of the PRF value at x1. Note that if x

(1)
2 �= x

(2)
2 , then one can still

recover t2 from the constrained keys via the attack described above. Nonethe-
less, this will not affect security of the t1 part, since t1 and t2 are independent.

The above approach works only if we can assign the “correct” input to each
part of the PRF key. Especially, let x ∈ P1 ∩ P2, then we need to assign x (but
no other inputs) to the same ti in both constrained keys. We can ensure that x
is assigned to a fixed ti by using a deterministic function that maps each input
into an index in [1, τ ] in the constraining algorithm. However, since the input
space is exponentially large, there will be collisions here and we have to puncture
ti also on some other inputs, which will cause the attacks. On the other hand,
if we do not use such map, it seems impossible to assign x to the same index i
in independent constraining procedures.

Our Solution. To solve this problem, we generate the secret vector tx for each
punctured point x on-the-fly.10 In more detail, the PRF key of our construction
is a PRF key s of PRF0, and the PRF outputs PRF0(s, x) given an input x.
Then to puncture s on a set P = {x1, . . . , xτ}, the constraining algorithm first
derives txi

, which is also a PRF key of PRF0, from xi via a standard PRF. Then
it punctures txi

on xi and computes t0 = s− ∑τ
i=1 txi

. The constrained key for
P includes t0 and the constrained version of each txi

.
Correctness of PRF0 guarantees that given a constrained key for P = {x1,

. . . , xτ} and an input x �∈ P, one can compute PRF0(txi
, x) and PRF0(t0, x).

Then by the key-homomorphism property of PRF0,11 we have

PRF0(t0, x) +
τ∑

i=1

PRF0(txi
, x) = PRF0(t0 +

τ∑

i=1

txi
, x) = PRF0(s, x)

and the correctness of our new construction follows.
Next, we explain why the construction has collusion resistant pseudorandom-

ness. Given constrained keys for P1 and P2, and let x ∈ P1 ∩ P2. Then tx is
punctured on the same input x in both constrained keys. Thus, the adversary
cannot learn any information about PRF0(tx, x) from the constrained version of
tx due to the single-key security of PRF0. We also need to show that other parts
10 As a byproduct, this also leads to puncturable PRFs for puncture sets of unbounded

sizes.
11 The key-homomorphism property requires that PRF0(t1, x) + PRF0(t2, x) =

PRF0(t1 + t2, x). Actually, due to the rounding operation, PRF0 is only “almost key-
homomorphic”, i.e., there may exist a small difference between PRF0(t1, x)+PRF0(t2,
x) and PRF0(t1 + t2, x). We close the gap by summing the variables before rounding
and then rounding the result to Zp.
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of the constrained keys reveal no information about tx and PRF0(tx, x). Note
that we have

t
(1)
0 +

∑

x′∈P1\{x}
tx′ = t

(2)
0 +

∑

x′∈P2\{x}
tx′ = s − tx

where t
(1)
0 and t

(2)
0 are the t0 vectors in the two constrained keys. Since s and

tx are random vectors with the first coordinate set to be 112, tx can be masked
by s and cannot be learned from other secret vectors, namely, t

(1)
0 , t

(2)
0 and

tx′ for x′ ∈ (P1 ∪ P2)\{x}. As PRF0(tx, x) (and thus PRF0(s, x)) is pseudoran-
dom for an adversary that sees multiple constrained keys, the collusion resistant
pseudorandomness property follows.

The above proof strategy, however, cannot be applied to prove the collusion
resistant privacy of our construction. This is because the solution does not pro-
vide any protection for an input x ∈ (P1 ∪P2)− (P1 ∩P2), given the constrained
keys for P1 and P2. Thus, the adversary can still learn these inputs and know if
it belongs to P1 or P2, from the constrained keys. Therefore, our construction
only has 1-key privacy, which is guaranteed by the 1-key privacy of PRF0.

Remark 1.1. The construction described above is nearly generic. In particular,
it can transform a single-key secure private puncturable PRF F into a private
puncturable PRF with collusion resistant pseudorandomness if (1) F is key-
homomorphic and (2) the distribution of t1 + t2 is identical to the distribution
of t3, where t1, t2, t3 are PRF keys of F. Although there are no lattice-based
private puncturable PRFs satisfying either of the properties, the transform still
works for some concrete instantiations (e.g., the one presented in [PS18]) with
weaker form of key-homomorphism and suitable PRF key distribution, as we
have just shown.

Putting It All Together. We have described a general construction of adap-
tively secure private 1-puncturable PRF from any selectively secure private 1-
puncturable PRF. Also, we have shown how to construct a private puncturable
PRF with collusion resistant pseudorandomness from the private puncturable
PRF given in [PS18]. Next, we explain how to combine the techniques to get a
private puncturable PRF with both adaptive security and collusion resistance.

The construction proceeds in two steps. First, we apply the general con-
struction for achieving adaptive security to the private puncturable PRF from
[PS18]. This leads to an adaptively secure private 1-puncturable PRF with single-
key security. Note that the new scheme has the same PRF key distribution
(excluding the hash key of explainable hash) as the original one, and it is still
key-homomorphic (before rounding). So, we can apply our ideas for obtaining
collusion resistance to upgrade this scheme to have both adaptive security and
collusion resistant pseudorandomness.

12 Recall that both s and tx are PRF keys of PRF0.
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1.3 Related Work

Constrained PRFs with Additional Features. There are many works con-
structing (private) constrained PRFs with additional features. For example, in
[CRV14,Fuc14,DDM17], constrained PRFs supporting verifiability of evaluation
results are constructed. Also, in [BKW17], Boneh et al. present constrained
PRFs that allow one to invert the PRF evaluation with a (constrained) key.
Besides, in order to construct watermarking schemes for PRFs [CHN+16], (pri-
vate) puncturable PRFs that support testing of punctured points are proposed
in [BLW17,KW17,KW19]. We note that while watermarkable PRFs and punc-
turable PRFs are highly related, and collusion resistant watermarkable PRFs
have been constructed from standard lattice assumptions in [YAYX20], the con-
struction ideas cannot be applied to construct collusion resistant puncturable
PRFs.

Private Programmable PRFs. Our notion of explainable hash is close to the
notion of private programmable PRF [BLW17], which is a private puncturable
PRF that allows one to reprogram the PRF output on a punctured point. It
seems that a private programmable PRF with adaptive privacy and injectiv-
ity implies an explainable hash. However, existing private programmable PRFs
[BLW17,PS18,PS20] only have selective security. On the other hand, a private
programmable PRF with adaptive privacy can be constructed from a selectively-
secure private programmable PRF and an explainable hash using the techniques
provided in this work.

2 Preliminaries

In this section, we give notations and background knowledge that we require.

Notations. We write negl(·) to denote a negligible function, and write poly(·)
to denote a polynomial. For integers a ≤ b, we write [a, b] to denote all integers
from a to b. Let s be a string, we use |s| to denote the length of s. For integers
a ≤ |s|, we use s[a] to denote the a-th character of s and for integers a ≤ b ≤ |s|,
we use s[a : b] to denote the substring (s[a], s[a + 1], . . . , s[b]). Let S be a finite

set, we use |S| to denote the size of S, and use s
$← S to denote sampling an

element s uniformly from set S. Let D be a distribution, we use d ← D to denote
sampling d according to D.

We will use bold lower-case letters to denote vectors, and use bold upper-
case letters to denote matrices. All elements in vectors and matrices are integers
unless otherwise specified. Let v be a vector of length n, we use v[i] to denote
the i-th element of v for i ∈ [1, n] and use v[i : j] to denote the vector (v[i],
v[i + 1], . . . ,v[j])ᵀ for 1 ≤ i < j ≤ n. We use ‖v‖∞ = maxi∈[n]|v[i]| to denote
the infinity-norm of v. For an m-by-n matrix A, we use A[i, j] to denote the
element on the i-th row and the j-th column of A for i ∈ [1,m] and j ∈ [1, n].

For any positive integers p, q s.t. p ≤ q, and for any y ∈ Zq, we define
y�p = p

q ·y� ∈ Zp. Without loss of generality, we use integers in [0, q −1] (resp.
[0, p − 1]) to represent elements in Zq (resp. Zp).
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Discrete Gaussian Distribution. We use Dσ to denote the discrete Gaussian
distribution over Z with standard deviation σ. Let λ be a security parameter,
we use D̃σ to denote the truncated discrete Gaussian distribution over Z, which
samples x ← Dσ, and then it outputs x if |x| ≤ λ · σ and outputs 0 otherwise.
By the following lemma, Dσ and D̃σ are statistically indistinguishable.

Lemma 2.1 ([Lyu12]). For any k > 0, Pr[|z| > kσ : z ← Dσ] ≤ 2e
−k2
2 .

Gadget Matrix. For any positive integers n,m, q s.t. m = n · �log q�, we define
the gadget matrix Gn,q ∈ Z

n×m as

Gn,q =

⎡

⎢
⎢
⎢
⎣

1 2 4 . . . 2�log q�−1

1 2 4 . . . 2�log q�−1

. . .
1 2 4 . . . 2�log q�−1

⎤

⎥
⎥
⎥
⎦

(1)
For any positive integer l, we also define the inverse function G−1

n,q : Z
n×l
q → {0,

1}m×l to be a function that decomposes each element a ∈ Zq of a matrix into
a column of size �log q� consisting of the binary representation of a. For any
matrix A ∈ Z

n×l
q , we have

Gn,q · G−1
n,q(A) = A

The LWE Assumption. We will use the LWE assumption in this paper.

Definition 2.1 (Decision-LWEn,m,q,χ). Given a random matrix A ∈ Z
m×n
q ,

and a vector b ∈ Z
m
q , where b is generated according to either of the following

two cases:

1. b = A · s + e mod q, where s
$← Z

n
q and e ← χm

2. b
$← Z

m
q

distinguish which is the case with non-negligible advantage.

Let m = poly(n), poly(n) ≤ q ≤ 2poly(n), and χ = Dσ (or D̃σ) be a (trun-
cated) discrete Gaussian error distribution with standard deviation σ ≥ O(

√
n),

then solving the decision-LWEn,m,q,χ problem is as hard as solving the GapSVPγ

problem on arbitrary n-dimensional lattices by a quantum algorithm [Reg05],
where γ = Õ(nq/σ). In subsequent works [Pei09,BLP+13], classical reductions
from LWE to GapSVP are also presented for different parameterizations.

Note that the hardness of the LWE problem depends only on n, q, σ, thus,
we write LWEn,m,q,χ as LWEn,q,χ for short.

Matrix Embeddings. The matrix embedding technique [BGG+14,GVW15,
BV15,BKM17] embeds bits into matrices and then computes circuits on these
matrices. Formally, we have the following Lemmas.
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Lemma 2.2 ([BGG+14]). Let n,m, q,B, d,N be positive integers that m = n ·
�log q�. Let C : {0, 1}N → {0, 1} be a depth-d Boolean circuit. Also, let s ∈ Z

n
q ,

A0,A1, . . . ,AN ∈ Z
n×m
q , x1, . . . , xN ∈ {0, 1}, and a0,a1, . . . ,aN ∈ Z

m
q , where

‖aᵀ
0 − sᵀ(A0 + G)‖∞ ≤ B ∧ ∀i ∈ [1, N ], ‖aᵀ

i − sᵀ(Ai + xi · G)‖∞ ≤ B

There exists the following two deterministic algorithms:

• EvalPK(C,A0, . . . ,AN ) → AC ∈ Z
n×m
q .

• EvalCT(C,A0, . . . ,AN ,a0, . . . ,aN , x1, . . . , xN ) → aC ∈ Z
m
q .

such that for AC = EvalPK(C,A0, . . . ,AN ) and aC = EvalCT(C,A0, . . . ,AN ,a0,
. . . ,aN , x1, . . . , xN ), we have

‖aᵀ
C − sᵀ(AC + C(x) · G)‖∞ ≤ (m + 2)d · B

Lemma 2.3 ([GVW15]). Let n,m, q,B, k be positive integers that m = n ·
�log q�. Also, let s ∈ Z

n
q , A1, . . . ,Ak,B1, . . . ,Bk ∈ Z

n×m
q , x1, . . . , xk ∈ {0, 1},

y1, . . . , yk ∈ Zq, and a1, . . . ,ak, b1, . . . , bk ∈ Z
m
q , where

∀i ∈ [1, k], ‖aᵀ
i − sᵀ(Ai + xi · G)‖∞ ≤ B ∧ ‖bᵀ

i − sᵀ(Bi + yi · G)‖∞ ≤ B

There exists the following two deterministic algorithms:

• IPEvalPK(A1, . . . ,Ak,B1, . . . ,Bk) → CIP ∈ Z
n×m
q .

• IPEvalCT(B1, . . . ,Bk,a1, . . . ,ak, b1, . . . , bk, x1, . . . , xk) → cIP ∈ Z
m
q .

such that for CIP = IPEvalPK(A1, . . . ,Ak,B1, . . . ,Bk) and cIP = IPEvalCT
(B1, . . . ,Bk,a1, . . . ,ak, b1, . . . , bk, x1, . . . , xk), we have

‖cᵀ
IP − sᵀ(CIP +

k∑

i=1

xi · yi · G)‖∞ ≤ k · (m + 1) · B

The GSW FHE Scheme. Our construction relies on some specific properties
of the GSW FHE scheme:

Lemma 2.4 ([GSW13]). Let λ be the security parameter and d = poly(λ).
Let n, k, q, c, σ be positive integers such that n, σ are polynomial in λ, k =
O(n · �log q�), c = O(n2 log2q), and q > λ · σ · kO(d). Then there exists a
secure FHE scheme FHE = (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) for cir-
cuits with depth at most d with the following properties, assuming the LWEn,q,D̃σ

assumption:

• The secret key of FHE is in Z
k
q .

• The encryption algorithm takes in a message in {0, 1} and outputs a ciphertext
in {0, 1}c.

• The evaluation algorithm can additionally take as input an integer � ∈ [1,
�log q�] and output a ciphertext in {0, 1}k.
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• Given any boolean circuit of depth at most d, the evaluation algorithm can be
evaluated by a Boolean circuit of depth at most D = d · poly(log λ, log log q).

• For any polynomial N, d, any � ∈ [1, �log q�], any messages μ1, . . . , μN ∈ {0,
1}, and any boolean circuit C : {0, 1}N → {0, 1} of depth at most d, let
(pk, sk) ← FHE.KeyGen(1λ, 1d) and for i ∈ [1, N ], let cti ← FHE.Enc(pk, μi).
Also let

ct′ ← Eval(�, C, (ct1, . . . , ctN ))

ν =
k∑

i=1

sk[i] · ct′[i] mod q

then we have
|ν − C(μ1, . . . , μN ) · 2�−1| ≤ λ · σ · kO(d)

Admissible Hash. We use the (balanced) admissible hash function [BB04,
Jag15] in our construction. The following definition is adapted from the definition
given in [Jag15], where we modify the definition of τ in Eq. (3) below.

Definition 2.2. Let λ be the security parameter. Let l, t be positive integers that
are polynomial in λ. Let Hadm : {0, 1}l → {0, 1}t be an efficiently computable
function. For K ∈ {0, 1,⊥}t, let PK : {0, 1}t → {0, 1} be defined as

PK(w) =

{
1 if ∀i ∈ [1, t],K[i] =⊥ ∨ K[i] = w[i]
0 otherwise

(2)

We say that Hadm is a balanced admissible hash function if for any polynomial
Q and non-negligible real value δ ∈ (0, 1], there exits a PPT algorithm

• AdmSmpQ,δ(1
λ) → K. On input the security parameter 1λ, the algorithm out-

puts K ∈ {0, 1,⊥}t.

and non-negligible real values γmin and γmax such that for all x1, . . . , xQ, x∗ ∈ {0,
1}l with x∗ �∈ {x1, . . . , xQ}13, we have

γmin ≤ Pr[PK(Hadm(x∗)) = 1 ∧ ∀i ∈ [1, Q],PK(Hadm(xi)) = 0] ≤ γmax

and
τ = γmin · δ − (γmax − γmin) (3)

is a non-negligible positive real value, where the probability is taken over the
choice of K ← AdmSmpQ,δ(1

λ).

13 We allow xi = xj for some distinct i, j ∈ [1, Q].
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The (balanced) admissible hash function presented in [Lys02,FHPS13,
Jag15], which are constructed from an error correcting code with suitable min-
imal distance (see e.g., [SS96,Zém01,Gol08] for explicit constructions of such
codes), also satisfy Definition 2.2. We formally state this in Lemma 2.5 and for
completeness, we give its proof in the full version.

Lemma 2.5. Let c be a constant and t = O(l). Let C : {0, 1}l → {0, 1}t be a
family of code with minimal distance c · t (i.e., for any distinct x1, x2 ∈ {0, 1}l,
C(x1) and C(x2) differ in at least c · t positions). Then C is a balanced admissible
hash function defined in Definition 2.2.

We need to embed the evaluation of PK into matrices using another form of
the matrix embedding technique, and the result can be described by the following
lemma.

Lemma 2.6. Let t be a polynomial in λ. Let K ∈ {0, 1,⊥}t and let PK : {0,
1}t → {0, 1} be the function defined in Eq. (2). For i ∈ [1, t], let

(Ki,0,Ki,1) =

{
(0, 0) if K[i] =⊥
(1,K[i]) otherwise

Let n,m, q be positive integers that m = n · �log q�. Also, let A1,0,A1,1, . . . ,At,0,
At,1,B1,0,B1,1, . . . ,Bt,0,Bt,1 ∈ Z

n×m
q , where

∀i ∈ [1, t], Ai,0 = Bi,0 − Ki,0 · G, Ai,1 = Bi,1 − Ki,1 · G

There exists the following deterministic algorithm:

• EvalAdm(A1,0,A1,1, . . . ,At,0,At,1, w) → AP ∈ Z
n×m
q .

such that for any w ∈ {0, 1}t and for AP = EvalAdm(A1,0,A1,1, . . . ,At,0,At,1,
w), there exists T ∈ [−m,m]2tm×m satisfying

AP = (B1,0,B1,1, . . . ,Bt,0,Bt,1) · T − PK(w) · G

3 Explainable Hash Functions

3.1 The Definition

In this section, we provide the definition of explainable hash. Roughly speaking,
an explainable hash is an injective function that can generate a hash key mapping
a given input to a predefined output and being compatible with previous hash
evaluations. Formally, an explainable hash H = (KeyGen, Eval) with input space
X and output space U consists of the following probabilistic polynomial-time
(PPT) algorithms:

• KeyGen(1λ) → hk : On input the security parameter 1λ, the key generation
algorithm outputs the hash key hk.
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• Eval(hk, x) → u : On input the hash key hk and an input x ∈ X , the
deterministic evaluation algorithm outputs an output u ∈ U .

We require that the hash function is injective for nearly all hash keys.

Definition 3.1 (Injectivity). Let hk ← KeyGen(1λ), then the probability that
there exist distinct x1, x2 ∈ X s.t. Eval(hk, x1) = Eval(hk, x2) is negligible.

Besides, its explainability property requires that there exists a simulator that
can simulate the hash function evaluation oracle to an adversary, and then after
the adversary submits an input, the simulator can generate a hash key that
maps this input to a predefined uniform output and is compatible with previous
evaluation oracle outputs. Here, we allow the simulator to abort with a non-
negligible probability and require that the simulator aborts if and only if the
inputs submitted to the evaluation oracle and the final input do not pass a
validity check algorithm.

Definition 3.2 (Explainability). For any polynomial Q and non-negligible
real value δ ∈ (0, 1], we first define two algorithms (VKeyGenQ,δ, VerifyQ,δ) as
follows:

• VKeyGenQ,δ(1
λ) → vk : On input the security parameter 1λ, the verification

key generation algorithm outputs the verification key vk.
• VerifyQ,δ(vk,Q, x∗) → α : On input the verification key vk, a set Q ⊂ X

s.t. |Q| ≤ Q and an input x∗ ∈ X , the deterministic verification algorithm
outputs a bit α ∈ {0, 1}.

The explainability property has the following two requirements:

• Abort Probability. There exists Γmin, Γmax that for any set Q ⊂ X s.t.
|Q| ≤ Q and for any input x∗ ∈ X\Q

Γmin ≤ Pr
[
vk ← VKeyGenQ,δ(1

λ) : VerifyQ,δ(vk,Q, x∗) = 1
] ≤ Γmax

and

T = Γmin · δ − (Γmax − Γmin)

is a non-negligible positive real value.
• Indistinguishability. There exists a stateful simulator SIM such that for

any PPT and stateful adversary A, we have

|Pr[ExpRealA(1λ) = 1] − Pr[ExpIdealA,SIM(1
λ) = 1]| ≤ negl(λ)
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where the experiments ExpReal and ExpIdeal are defined as follows

ExpRealA(1λ) :

vk ← VKeyGenQ,δ(1
λ);

hk ← KeyGen(1λ);

x∗ ← AEval(hk,·)(1λ);
If VerifyQ,δ(vk,Q, x∗) = 1 :

out = (hk, Eval(hk, x∗));
Otherwise :

out =⊥;
b ← A(out);
Output b;

ExpIdealA,SIM(1
λ) :

vk ← VKeyGenQ,δ(1
λ);

u∗ $← U ;
SIM(vk, u∗);

x∗ ← ASIM(·)(1λ);
If VerifyQ,δ(vk,Q, x∗) = 1 :

hk ← SIM(x∗);
out = (hk, u∗);

Otherwise :
out =⊥;

b ← A(out);
Output b;

In above experiments, Q is the set of inputs submitted to the (simulated)
evaluation oracle and we require that (1) |Q| ≤ Q and (2) x∗ �∈ Q. In the
third step of the experiment ExpIdeal, the stateful simulator SIM takes as
input (vk, u∗) and updates its internal state, but it does not output anything
in this step.

3.2 The Construction

In this section, we present our construction of explainable hash. Let λ be the
security parameter. Let l, k, t be positive integers that are polynomial in λ such
that k = 4l + λ. Let n̄, n,m, σ,Σ be positive integers that are polynomial in λ,
and let q be a positive odd prime, which satisfy: m = n·�log q�, n = n̄·�log q�+λ,
Σ = 2tm3λσ, and q ≥ 2l+ω(log λ)(4Σ + 2). Let

Hadm : {0, 1}l → {0, 1}t

be a balanced admissible hash function and let

EvalAdm : (Zn×m
q )2t × {0, 1}t → Z

n×m
q

be the algorithm defined in Lemma 2.6. Let G = Gn,q and write G−1
n,q as G−1.

Let
h = G−1((

q − 1
2

, 0, . . . , 0)ᵀ) ∈ {0, 1}m

We construct the explainable hash function H = (KeyGen, Eval), which has
input space {0, 1}l and output space {0, 1}l·k as follows:
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• KeyGen. On input the security parameter 1λ, the key generation algorithm
samples

Az
$← Z

n×m
q for z ∈ [1, 2t]

si,j
$← Z

n
q for i ∈ [1, l], j ∈ [1, k]

vi,j,ι
$← Zq for i ∈ [1, l], j ∈ [1, k], ι ∈ {0, 1}

and outputs the hash key

hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1})

• Eval. On input the hash key hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k],

(vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1}), and an input x ∈ {0, 1}l, the evaluation algorithm
first computes:

w = Hadm(x), Aw = EvalAdm(A1, . . . ,A2t, w), bw = Aw · h mod q

Let u1, . . . ,ul be k-dimension binary vectors, then for i ∈ [1, l], j ∈ [1, k], it
computes:

yi,j = sᵀ
i,j · bw + vi,j,x[i] mod q

and sets

ui[j] =

{
0 if yi,j ∈ [0, q−1

2 ]
1 otherwise

Finally, it outputs
u = (uᵀ

1 , . . . ,uᵀ
l )ᵀ

Theorem 3.1. If Hadm is a balanced admissible hash as defined in Definition
2.2, then H is a secure explainable hash assuming the hardness of LWEn̄,q,D̃σ

.

We present proof of Theorem 3.1 in the full version.

Parameters. Next, we give an instantiation for the parameters of H. Security
of H relies on the hardness of LWEn̄,q,D̃σ

. In addition, we require that

q ≥ 2l+ω(log λ) · (4Σ + 2) ≥ 2l+ω(log λ) · poly(λ) ≥ 2l+ω(log λ)

Let ε ∈ (0, 1) be a constant real value. We set n̄ = (l + λ)
1
ε and set q = 2O(l+λ).

This makes the approximation factor γ = O(n̄q/σ) of the underlying worst-case
lattices problems to be 2O(n̄ε).

Now, assume that the input length l = O(λ), then the output length will be
in O(λ2) and the hash key size will be

|hk| = 2t · nm�log q� + lk · n�log q� + 2lk · �log q� = O(λ5+ 2
ε )
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4 Private Puncturable PRFs

4.1 The Definition

In this section, we provide the definition of private puncturable PRF, which
is adapted from definitions in previous works (e.g., [BW13,HKW15,BLW17,
BKM17,DKN+20]). More precisely, a private puncturable pseudorandom func-
tion PRF = (KeyGen, Eval, Constrain, ConstrainEval) with key space K, input
space X , and output space Y consists of the following four PPT algorithms:

• KeyGen(1λ) → k : On input the security parameter 1λ, the key generation
algorithm outputs the secret key k ∈ K.

• Eval(k, x) → y : On input the secret key k ∈ K and an input x ∈ X , the
evaluation algorithm outputs an output y ∈ Y.

• Constrain(k,P) → ck : On input the secret key k ∈ K and a polynomial-size
set14 P ⊂ X , the constraining algorithm outputs a constrained key ck.

• ConstrainEval(ck, x) → y : On input the constrained key ck and an input
x ∈ X , the constrained evaluation algorithm outputs an output y ∈ Y.

Besides, it should satisfy the correctness, pseudorandomness, and privacy prop-
erties defined as follows.

Correctness. The correctness of a private puncturable PRF requires that the
constrained key can preserve the functionality of the PRF on unpunctured
points. In this work, we consider a statistical notion of correctness.

Definition 4.1 (Correctness). Let k ← KeyGen(1λ), then the probability that
there exists polynomial-size set P∗ ⊂ X , input x∗ ∈ X\P∗, and constrained
key ck ← Constrain(k,P∗) satisfying Eval(k, x∗) �= ConstrainEval(ck, x∗) is
negligible.

Pseudorandomness. The pseudorandomness of a private puncturable PRF
requires that given a constrained key, the PRF values at the punctured points
are pseudorandom. As shown in [BKM17], this property implies the standard
pseudorandomness of the PRF.

In this work, we consider adaptive collusion resistant pseudorandomness, i.e.,
the adversary can make queries to the evaluation oracle and the constrain oracle
both before and after seeing the challenge in an adaptive manner, and it can
make a priori unbounded number of queries to the constrain oracle.

Definition 4.2 (Pseudorandomness). For any PPT adversary A = (A1,
A2), we have

Pr[b $← {0, 1}, ExpPRA,b(1
λ) = 1] ≤ 1/2 + negl(λ)

14 We implicitly assume that a set P is described by listing all elements in P, thus, the
puncture set is always of polynomial-size in this paper.
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ExpPRA,b(1
λ):

1. k ← KeyGen(1λ);

2. (x∗, state) ← AEval(k,·),Constrain(k,·)
1 (1λ);

3. y∗
0 = Eval(k, x∗), y∗

1
$← Y;

4. b′ ← AEval(k,·),Constrain(k,·)
2 (state, y∗

b );
5. If b = b′, output 1; If b �= b′, output 0.

ExpPrivA,b(1
λ) :

1. k ← KeyGen(1λ);

2. (P∗
0 , P∗

1 , state) ← AEval(k,·)
1 (1λ);

3. ck∗ ← Constrain(k, P∗
b );

4. b′ ← AEval(k,·)
2 (state, ck∗);

5. Output b′;

Fig. 1: The experiments ExpPR and ExpPriv.

where the experiment ExpPR is defined in Fig. 1. Let x1, . . . , xQe
be the inputs

submitted to the evaluation oracle Eval(k, ·) and let P1, . . . ,PQc
be the sets sub-

mitted to the constrain oracle Constrain(k, ·). To prevent the adversary from
trivially winning in the experiment, we require that:

∀i ∈ [1, Qe], x∗ �= xi ∧ ∀i ∈ [1, Qc], x∗ ∈ Pi (4)

Remark 4.1 (Weak Adaptivity). We say that a private puncturable PRF has
weakly adaptive pseudorandomness if the adversary A1 in Definition 4.2 is not
allowed to query the constrain oracle.15

The following theorem states that weakly adaptive pseudorandomness implies
the fully adaptive pseudorandomness defined in Definition 4.2, and we provide
the proof of Theorem 4.1 in the full version.

Theorem 4.1. Let PRF be a private puncturable PRF with weakly adaptive
pseudorandomness, then it also satisfies the pseudorandomness property defined
in Definition 4.2.

Privacy. The privacy of a private puncturable PRF requires that the constrained
key can hide the punctured points. In this work, we consider adaptive 1-key
privacy, i.e., the adversary can only obtain 1 constrained key, and it can make
queries to the evaluation oracle both before and after seeing the constrained key
adaptively.

Definition 4.3 (Privacy). For any PPT adversary A = (A1,A2), we have

|Pr[ExpPrivA,0(1
λ) = 1] − Pr[ExpPrivA,1(1

λ) = 1]| ≤ negl(λ)

where the experiment ExpPriv is defined in Fig. 1. Let x1, . . . , xQe
be the inputs

submitted to the evaluation oracle Eval(k, ·), to prevent the adversary from triv-
ially winning in the experiment, we require that:

∀i ∈ [1, Qe], (xi ∈ P∗
0 ∧ xi ∈ P∗

1 ) ∨ (xi �∈ P∗
0 ∧ xi �∈ P∗

1 ) (5)
15 In this setting, A1 can still make queries to the evaluation oracle, and A2 can

still query the evaluation oracle and the constrain oracle adaptively for a priori
unbounded number of times.
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Besides, we require that
|P∗

0 | = |P∗
1 | (6)

Remark 4.2. The requirement of Eq. (6) is necessary if |X | is superpolynomial
in λ and we do not have an a priori bound on the sizes of the puncture sets.
In particular, assume there exists a private puncturable PRF PRF = (KeyGen,
Eval, Constrain, ConstrainEval) that can achieve privacy without requiring
Eq. (6). Let x be an arbitrary input, let n be the upper bound on the size of
ck ← Constrain(K, {x}), and let U ⊂ X be an arbitrary set with (n+λ) inputs.
Also, let P be a random subset of U and let ck′ ← Constrain(K,P). Then with
all but negligible probability, we have |ck′| ≤ n as otherwise, the adversary
can distinguish the constrained key for x from the constrained key for P by
comparing the lengths of the constrained keys. In addition, given a constrained
key ck′, we can test if ck′ is punctured on an input x ∈ U via checking if Eval(K,
x) �= ConstrainEval(ck′, x), this will succeed with all but negligible probability
due to the correctness and the pseudorandomness of PRF. That is, from PRF,
we can construct a mechanism that compresses a random (n + λ)-bit string16

into an (n+1)-bit code17 and then recover the input from the code, with all but
negligible probability. This is information theoretically impossible.

Remark 4.3. Previous works on puncturable PRFs (e.g., [HKW15,BKM17,
PS18]) mainly consider the τ -puncturable PRF, where the sizes of the puncture
sets should be equal to (or not greater than) a predefined polynomial τ .18 One
can construct τ -puncturable PRF from our puncturable PRF PRF = (KeyGen,
Eval, Constrain, ConstrainEval) as follows:

• KeyGen′(1λ, 1τ ). Output k ← KeyGen(1λ).
• Eval′(k, x). Output y = Eval(k, 0‖x).
• Constrain′(k,P). Pad P ′ = {0‖x}x∈P ∪ {1‖x̄i}i∈[τ−|P|] and output ck ←
Constrain(k,P ′).

• ConstrainEval′(ck, x). Output y = ConstrainEval(ck, 0‖x).

where x̄i are some random inputs and are used to pad the puncture set P.
Note that the real input and the dummy inputs for padding P have different
prefix. It is easy to check that correctness, pseudorandomness, and privacy of
the new construction follow from the security properties of PRF. Especially, after
padding all puncture sets to be of size τ , Eq. (6) in the privacy game will always
be satisfied. In contrast, it seems difficult to extend existing constructions of
τ -puncturable PRF to be the puncturable PRF defined in this work.

Remark 4.4. A simulation-based definition, which can capture the correctness,
pseudorandomness, and privacy in a single definition, is used in [CC17,PS18].
As shown in [CC17], our indistinguishability-based definitions (from Definition
4.1 to Definition 4.3) implies this simulation-based definition.
16 Note that there are 2n+λ possible subsets of U .
17 We can use (n + 1)-bit strings to represent all strings with length not larger than n.
18 Since the sizes of the puncture sets are a priori bounded, the restriction described

by Eq. (6) is not needed.
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4.2 The Construction

In this section, we present our main construction of private puncturable PRF.
Our construction can be roughly divided into two steps. In this first step, we
construct an adaptively secure private puncturable PRF from the selectively
secure private puncturable PRF given in [PS18], and then in the second step, we
upgrade the scheme to have collusion resistant pseudorandomness. An overview
for how both steps proceed and how to combine the steps is provided in Sect.
1.2, and below we give a concrete construction of private puncturable PRF with
both adaptive security and collusion resistant pseudorandomness from scratch.

Let λ be the security parameter. Let l, L, c, k, n,m, q, p, κ, N, σ,Σ′, Σ, d,D
be positive integers that satisfy:

• l, L, c, k, n, p, σ are polynomial in λ.
• κ = �log q�, m = n · κ, and N = (L + κ) · c.
• d = O(log L) = O(log λ).
• D = d · poly(log λ, log log q) = poly(log λ, log log q).
• Σ′ ≥ κ · λ · σ · (kO(d) + k · mO(D)).
• Σ ≥ 2ω(log λ) · Σ′.
• q ≥ 2L+ω(log λ) · p · (2Σ + 1).
• p is an odd prime and q is a power of p.

Let G = Gn,q and write G−1
n,q as G−1. Let GS : RGS → Z

m be an algo-
rithm that takes as input a random string from its randomness space RGS and
outputs an m-dimension vector e that follows the truncated discrete Gaussian
distribution D̃m

σ .
The construction is built on the following building blocks:

• The GSW fully homomorphic encryption scheme FHE = (FHE.KeyGen,
FHE.Enc,FHE.Dec,FHE.Eval), where the message space is {0, 1}, the cipher-
text space is {0, 1}c, and the secret key space is Z

k
q . Here, we use RKeyGen and

REnc to denote the randomness space for the algorithms FHE.KeyGen and
FHE.Enc respectively.

• An explainable hash function H = (H.KeyGen,H.Eval) with input space {0,
1}l and output space {0, 1}L.

• A PRF F = (F.KeyGen,F.Eval) with input space {0, 1}L and output space
RKeyGen × RL+κ

Enc × Zq × Z
n−1
q × RN+k+1

GS .

Besides, for any u ∈ {0, 1}L and j ∈ [1, κ], we define equ,j : {0, 1}L × {0,
1}κ → {0, 1} of depth d as

equ,j(u
∗, r) =

{
r[j] if u∗ = u

0 otherwise

and for any u ∈ {0, 1}L, j ∈ [1, κ], and ι ∈ [1, k], we define Cu,j,ι : {0, 1}N → {0,
1} of depth D as

Cu,j,ι(ct) = FHE.Eval(j, equ,j , ct)[ι]
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Let
EvalPK : CN,D × (Zn×m

q )N+1 → Z
n×m
q

EvalCT : CN,D × (Zn×m
q )N+1 × (Zm

q )N+1 × {0, 1}N → Z
m
q

be the algorithms defined in Lemma 2.2, where we use CN,D to denote the set
of polynomial-size circuit from {0, 1}N → {0, 1} with depth at most D, and let

IPEvalPK : (Zn×m
q )k × (Zn×m

q )k → Z
n×m
q

IPEvalCT : (Zn×m
q )k × (Zm

q )k × (Zm
q )k × {0, 1}k → Z

m
q

be the algorithms defined in Lemma 2.3.
We construct the private puncturable PRF PRF = (KeyGen, Eval,

Constrain, ConstrainEval) with input space {0, 1}l and output space Zp as
follows:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
generates:

Ai
$← Z

n×m
q for i ∈ [0, N ]

Bi
$← Z

n×m
q for i ∈ [1, k]

s̄
$← Z

n−1
q s = (1, s̄ᵀ)ᵀ v

$← Zq

kH ← H.KeyGen(1λ) kF ← F.KeyGen(1λ)

and outputs the PRF key

K = ((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF)

• Eval. On input the PRF key K = ((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF) and an
input x ∈ {0, 1}l, the evaluation algorithm first computes u = H.Eval(kH, x).
Then it computes

Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ) for j ∈ [1, κ], ι ∈ [1, k]

and
Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk) for j ∈ [1, κ]

Finally, it computes

ȳ = (
κ∑

j=1

sᵀ · Dj)[1] + v mod q

and outputs
y = ȳ�p mod p

• Constrain. The constraining algorithm takes as input the PRF key K =
((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF) and a set P ⊂ {0, 1}l.
Let P = {x1, . . . , x|P|}, then for i ∈ [1, |P|], the constraining algorithm first
prepares:
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1. ui = H.Eval(kH, xi).
2. (RK,i, (RE,i,j)j∈[1,L+κ], r̄i, t̄i, (RG,i,j)j∈[0,N+k]) = F.Eval(kF, ui).

3. ti =
(

1
t̄i

)
.

4. ri = G−1
1,q(r̄i).

5. (pki, ski) = FHE.KeyGen(1λ, 1d;RK,i).
6. ei,j = GS(RG,i,j) for j ∈ [0, N + k].

Next, it computes the ciphertexts

cti,j = FHE.Enc(pki, ui[j];RE,i,j) for j ∈ [1, L]

cti,L+j = FHE.Enc(pki, ri[j];RE,i,L+j) for j ∈ [1, κ]

and encodes the ciphertexts and the secret key into matrices as

aᵀ
i,0 = tᵀi · (A0 + G) + eᵀ

i,0

aᵀ
i,j = tᵀi · (Aj + cti[j] · G) + eᵀ

i,j for j ∈ [1, N ]

bᵀ
i,j = tᵀi · (Bj + ski[j] · G) + eᵀ

i,N+j for j ∈ [1, k]

where cti = (cti,1‖ . . . ‖cti,L+κ).
Besides, it computes

t0 = s −
|P|∑

i=1

ti

and generates encodings of 0 as

e0,0 ← D̃m
σ , aᵀ

0,0 = tᵀ0 · (A0 + G) + eᵀ
0,0

e0,j ← D̃m
σ , aᵀ

0,j = tᵀ0 · (Aj + 0 · G) + eᵀ
0,j for j ∈ [1, N ]

e0,N+j ← D̃m
σ , bᵀ

0,j = tᵀ0 · (Bj + 0 · G) + eᵀ
0,N+j for j ∈ [1, k]

Finally, the algorithm outputs:

CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k], v, kH,

(a0,j)j∈[0,N ], (b0,j)j∈[1,k],

{(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,|P|])

• ConstrainEval. On input the constrained key CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k],
v, kH, (a0,j)j∈[0,N ], (b0,j)j∈[1,k], {(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,P ]) and an
input x ∈ {0, 1}l, the constrained evaluation algorithm first computes u =
H.Eval(kH, x). Let ct0 = 0N , then for i ∈ [0, P ], j ∈ [1, κ], and ι ∈ [1, k], the
algorithm computes

c̃ti,j,ι = Cu,j,ι(cti)

ci,j,ι = EvalCT(Cu,j,ι,A0, . . . ,AN ,ai,0, . . . ,ai,N , cti)
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Also, for i ∈ [0, P ] and j ∈ [1, κ], it computes

di,j = IPEvalCT(B1, . . . ,Bk, ci,j,1, . . . , ci,j,k, bi,1, . . . , bi,k, c̃ti,j,1, . . . , c̃ti,j,k)

Finally, it computes

ȳ = (
P∑

i=0

κ∑

j=1

di,j)[1] + v mod q

and outputs
y = ȳ�p mod p

Theorem 4.2. If FHE is a secure FHE scheme with additional properties
defined in Lemma 2.4, H is a secure explainable hash function, and F is a secure
PRF, then PRF is a secure private puncturable PRF as defined in Sect. 4.1
assuming the hardness of LWEn−1,q,D̃σ

.

We present proof of Theorem 4.2 in the full version.

Parameters. Next, we give an instantiation for the parameters of PRF. Security
of PRF relies on the hardness of LWEn−1,q,D̃σ

and LWEO(k/�log q�),q,D̃σ
, where

the latter is required to guarantee the security of FHE. Besides, we require

q ≥ 2L+ω(log λ) · p · (2Σ + 1) ≥ 2L+ω(log λ) · p · 2ω(log λ) · Σ′

≥ 2L+ω(log λ) · p · κ · λ · σ · (kO(d) + k · mO(D))

≥ 2L+ω(log λ) · 2poly(log λ,log log q) ≥ 2L+poly(log λ,log log q)

Let ε ∈ (0, 1) be a constant real value. We set k = O(n · �log q�), n = (L + λ)
1
ε

and q = 2O(L+λ). This makes the approximation factor γ = O(nq/σ) of the
underlying worst-case lattices problems to be 2O(nε).

Now, assume that the input length and the output length are in O(λ), then
the size of the PRF key will be

|K| = (N + 1) · nm�log q� + k · nm�log q� + n�log q� + |kH| + |kF| = O(λ10+ 8
ε )

In addition, assume that the size of the puncture set is constant, then the size
of the constrained key will be

|CK| = (N + 1) · nm�log q� + k · nm�log q� + �log q� + |kH| + |P| · (L + κ) · c

+ (|P| + 1) · ((N + 1) · m�log q� + k · m�log q�) = O(λ10+ 8
ε )

Given the huge key sizes and the large approximation factor of the underlying
lattice problems, our construction is far from practical. It is an interesting and
challenging open problem to reduce the parameters and construct a practical
private puncturable PRF with the desired security properties.

Acknowledgement. We appreciate the anonymous reviewers for their valuable com-
ments.
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Abstract. We propose and analyze a simple strategy for constructing
1-key constrained pseudorandom functions (CPRFs) from homomorphic
secret sharing. In the process, we obtain the following contributions: first,
we identify desirable properties for the underlying HSS scheme for our
strategy to work. Second, we show that (most of) recent existing HSS
schemes satisfy these properties, leading to instantiations of CPRFs for
various constraints and from various assumptions. Notably, we obtain
the first (1-key selectively secure, private) CPRFs for inner-product and
(1-key selectively secure) CPRFs for NC1 from the DCR assumption,
and more. Last, we revisit two applications of HSS equipped with these
additional properties to secure computation: we obtain secure comput-
ation in the silent preprocessing model with one party being able to
precompute its whole preprocessing material before even knowing the
other party, and we construct one-sided statistically secure computation
with sublinear communication for restricted forms of computation.

1 Introduction

Since their introduction in [21], pseudorandom functions (PRFs) have played a
central role in modern cryptography and numerous extensions have been pro-
posed. Of particular interest is the notion of constrained pseudorandom func-
tions (CPRFs), introduced concurrently in [5,9,25]. Recall that a PRF is a fam-
ily of keyed functions {Fk}k∈K : X → Y such that the input-output behav-
ior of any randomly selected Fk should be computationally indistinguishable
from that of a truly random function with same domain and range (without
any knowledge of k). Constrained pseudorandom functions for a class of con-
straints C extend PRFs by allowing to delegate partial evaluation keys ckC for
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any C : X → {0, 1} ∈ C, termed constrained keys, generated from the mas-
ter secret key k as ckC ← Constrain(k,C). A partial key allows to compute
Fk(x) for any input x such that C(x) = 0, by running a constrained evaluation
algorithm CEval(ckC , x), while preserving pseudorandomness of evaluations on
inputs x satisfying C(x) = 11. A constrained PRF can further be private, or
constraint-hiding, if a constrained key hides the constraint C. Significant efforts
have been made to obtain CPRFs for broad classes of constraints from various
assumptions in the recent years [2,3,11–13,16,19,23,28]. As of today, CPRFs for
simple class of constraints (e.g., point functions or constant-degree CNFs) are
known from minimal assumptions (e.g., from one-way functions [19,21]). Yet,
constructing CPRFs for broader classes of constraints such as NC1 has proven
notoriously hard. While (private) CPRFs for NC1 and even P/poly exist based
on the learning with errors assumption (with subexponential modulus-to-noise
ratio) [11,12], other families of standard assumptions have so far failed to pro-
vide advanced constructions, except for one construction for NC1 based on an
exotic Q-type variant of DDH over the group of quadratic residues modulo a
safe prime q = 2p + 1, and the DDH assumption [2].

This serious lack of constructions remains when considering simpler classes
of constraints such as inner products (C(x) = 0 iff 〈x, y〉 = 0 for some fixed
vector y), despite the large amount of work on inner-product-based encryption
in other contexts (e.g., for attribute-based encryption or functional encryption)
and the recent lattice-based CPRF for inner-product [19].

In this work, we draw connections between constrained pseudorandom func-
tions and homomorphic secret sharing (HSS), a notion introduced by Boyle et al.
in [8]. One of our main contributions is to construct CPRFs for inner-product as
well as for NC1 via HSS, leading to instantiations from a wide variety of assump-
tions thanks to the recent developments in HSS [1,27,29]. Before describing in
more details our contributions, we briefly remind the definition of HSS. An HSS
scheme for a class of functions F allows to generate a public key pk and two eval-
uations keys ek0, ek1, such that one can securely share an input x into two shares
(I0, I1) ← Input(pk, x) such that, given one of the two evaluation keys: each share
computationally hides x, and it is possible to homomorphically evaluate any
function f ∈ F on the shares of x as yb = Eval(ekb, Ib, f), for b ∈ {0, 1}. More-
over, the resulting shares satisfy y1 − y0 = f(x). Since its introduction, HSS has
found numerous applications in cryptography and beyond, and notably for (1)
low-communication secure computation [8], and for (2) secure computation with
silent preprocessing [7,27]. In this work, we also revisit the latter applications.
Again, we briefly remind them before diving into the details of our contributions.
A long-standing problem in secure computation had been to achieve communica-
tion smaller than the circuit size (for rich classes of functions). It was first solved
via fully-homomorphic encryption (FHE) [20]. To securely compute a function f
on their respective private inputs x and y, Alice and Bob can use the following
protocol: Alice sends to Bob an FHE encryption of x, and Bob homomorphically

1 The inverse condition is often used (pseudorandomness if C(x) = 0 and partial
evaluation if C(x) = 1). Our choice slightly simplifies our constructions.



196 G. Couteau et al.

computes an encryption of f(x, y) by evaluating f(·, y). He then sends back the
result to Alice who can recover f(x, y) by decrypting. Homomorphic secret shar-
ing leads to another solution to this problem, by first having Alice and Bob
compute shares of x and y (which is independent of circuit size) and then locally
compute shares of f(x, y).

Regarding secure computation in the preprocessing model, a protocol is split
in two phases: a first preprocessing phase run ahead-of-time (independently of
inputs and function to compute) in which Alice and Bob jointly generate long,
correlated random strings, and a second online phase where the actual secure
computation takes place. In the latter phase, the former correlated random
strings are consumed by a fast, non-cryptographic, information-theoretic secure
computation protocol. Homomorphic secret sharing enables secure computation
with silent preprocessing: a short one-time interaction allows Alice and Bob to
generate short keys, from which they can later locally (i.e., without any interac-
tion) stretch arbitrarily long correlated (pseudo-)random strings, which are later
used in the online phase. Effectively, this pushes almost all the computational
overhead of the preprocessing phase to a purely local computation.

1.1 Our Contributions

In this work, we show how to use homomorphic secret sharing schemes towards
constructing constrained pseudorandom functions for rich classes of constraints
and from new assumptions. Our main contributions are threefold.

Extending HSS Properties. We identify two natural extensions of homomor-
phic secret sharing, which we term respectively homomorphic secret sharing with
simulatable memory shares and staged homomorphic secret sharing. At a high
level, both notions capture the ability to perform some limited form of program-
ming of HSS shares, i.e., to construct one of the two HSS shares of an input x
before knowing x. It turns out that most of known HSS constructions already
achieve these extensions, leading to constructions based on a wide variety of
assumptions.

New Constructions of CPRFs. Combining our extensions of HSS with any
standard PRF with evaluation in NC1 (which is known from every assumption
implying HSS), we construct: (1) CPRFs for inner-product, starting with any
HSS with simulatable memory shares with statistical correctness, and (2) CPRFs
for NC1 starting with any staged HSS with statistical correctness. This leads to
the following statement.

Theorem 1 (informal). Assuming any of the following assumptions:

• the DCR assumption,
• the hardness of the Joye-Libert encryption scheme,
• the DDH and DXDH assumptions over class groups,
• the Hard Subgroup Membership assumption over class groups,
• the LWE assumption with super-polynomial modulus-to-noise ratio,
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there exist (1-key, selectively secure) private CPRFs for inner product, and (1-
key, selectively secure) CPRFs for NC1.

Our results significantly expand the set of assumptions known to imply CPRFs
for rich classes of constraints. In particular, our CPRF for NC1 from DCR yields
the first construction of a CPRF for a rich class of constraints from a well-
established standard assumption beyond LWE-based constructions.

Revisiting Applications of HSS to Secure Computation. Equipped with
our additional properties for HSS, we revisit two standard applications, namely
secure computation with silent preprocessing, and secure computation with sub-
linear communication, and obtain the following results.

Precomputable Secure Computation with Silent Preprocessing. As described
above, secure computation with silent preprocessing requires a short initial inter-
action before being able to run the heavy local preprocessing. In particular, the
parties need to have decided who they will execute a secure computation pro-
tocol with. In contrast, we show that using staged HSS allows to build a silent
preprocessing protocol where one of the parties (say, Alice) can entirely run the
heavy offline computation before she even knows the identity of Bob (and in
particular, before she interacts with Bob). This means that Alice can, at any
point, locally generate (her share of) long pseudorandom correlated strings and
store them for later use. Then, when she meets someone she wants to securely
compute a function with in the future, she can execute the short, one-time inter-
active protocol (with little communication and computation), and be done with
the preprocessing phase. Of course, the other party still needs to execute the
heavy offline computation after their interaction2. We call this model secure
computation with precomputable silent preprocessing; it is especially well suited
to a client-server setting, where a weak client (Alice) wants to start the bulk of
the computation a long time in advance, whereas the powerful server can run
the heavy computation after its interaction with the client.

One-Sided Statistically Secure Computation with Sublinear Communication. A
core feature of FHE-based sublinear secure computation is that it achieves one-
sided statistical security when using an FHE scheme with statistical circuit-
privacy, since homomorphic evaluation of f(·, y) leaks statistically no information
about y beyond f(x, y). In other words, Bob’s security in the aforementioned pro-
tocol holds unconditionally. One-sided statistical security is a desirable security
notion and can be achieved quite easily if we do not require sublinear communica-
tion, e.g., by using the seminal GMW protocol [22] with a one-sided statistically
secure oblivious transfer [26] (to our knowledge, this was first observed in [15]).
Yet, as of today, one-sided statistically secure computation with sublinear com-
munication is only known from FHE : all HSS-based constructions inherently
achieve only computational security for both parties.

2 It is not too hard to see that having both parties execute the bulk of the computation
prior to interacting (while keeping a non-cryptographic online phase) is impossible.
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Using staged HSS, we obtain the first non-FHE-based constructions of one-
sided statistically secure protocols with sublinear communication. Concretely, we
obtain secure computation for any log log-depth circuits with optimal communi-
cation, where x remains statistically hidden, provided that |x| < |y|/poly(λ)
(where poly(λ) denotes some fixed polynomial), via a black-box use of staged
HSS. We also get secure computation of any layered arithmetic circuit C of size
s over a sufficiently large ring Zn, with sublinear communication O(s/ log log s)
and one-sided statistical security (without any restriction on the statistically
protected input size), assuming the Paillier encryption scheme is circular-secure.
The latter construction is non-black box and exploits the specific structure of a
concrete Paillier-based staged HSS scheme from [27].

2 Technical Overview

2.1 General Strategy

Let us first explain a (partly wrong but insightful) strategy for constructing
CPRFs from HSS. Let F denote a pseudorandom function with keyspace K and
domain X , and let C : X �→ {0, 1} be a class of constraints. Consider an HSS
scheme HSS = (Setup, Input,Eval) for a class of programs P such that it contains
all functions fx : (k,C) �→ C(x) · Fk(x), for all x ∈ X . Then, we consider the
following construction.

• KeyGen(1λ, C) : sample a PRF key K
$← K. Run (pk, ek0, ek1) ← Setup(1λ),

(Ik0 , I
k
1) ← Input(pk, k), and (IC0 , IC1 ) ← Input(pk, C). Set pp ← pk and msk ←

(ek0, ek1, Ik0 , I
k
1 , I

C
0 , IC1 ).

• Constrain(msk, C) : parse msk as (ek0, ek1, Ik0 , I
k
1 , I

C
0 , IC1 ) and output ckC ←

(ek1, Ik1 , I
C
1 ).

• Eval(pp,msk, x) : run y0 ← Eval(0, ek0, I
k
0 , I

C
0 , fx) and output y0.

• CEval(pp, ckC , x) : run y1 ← Eval(1, ek1, I
k
1 , I

C
1 , fx) and output y1.

By correctness of the HSS scheme, for any input x, we have y1−y0 = C(x)·Fk(x).
Therefore, if C(x) = 0, y1 = y0 i.e. the CEval algorithm outputs the same
value as the evaluation with msk. Yet, if C(x) = 1, y1 = y0 + Fk(x) and y0 is
pseudorandom, even given y1 (and ckC).

The problem with the above construction is that the master secret key does
depend on the constraint C while it should be independent of it3. A way around
this issue would be to use an HSS scheme with programmable input shares,
i.e., a scheme where IC0 can be generated before knowing C, and the second
share IC1 can be constructed afterwards from IC0 and C, when the constraint is
chosen. Unfortunately, the only known constructions of HSS with such a strong
programmability feature rely on powerful primitives such as threshold FHE. As
3 If the key could depend on C, one could just generate two independent PRF keys

k0, k1 and define the evaluation as FkC(x)(x). Revealing k0 then allows to compute
the evaluation on any x such that C(x) = 0 and reveals nothing about the key k1

used when C(x) = 1.
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FHE-style constructions of CPRFs for all circuits are already known, this would
defeat the purpose of obtaining constructions based on new assumptions. In this
work, we identify weaker properties which still suffice to instantiate the above
template, yet are achieved by most of known HSS constructions.

2.2 CPRF from HSS with Simulatable Memory Shares

As a start, we propose a first simple solution to circumvent the lack of program-
mability. This first property already allows to handle simple forms of constraints
such as inner-product, and follows from the common design of HSS constructions.
We start by providing a high-level description of HSS schemes, which applies to
essentially all known HSS constructions (beside FHE-based constructions).

HSS schemes rely on an additively homomorphic encryption scheme with
some form of linear decryption. The public key of the HSS scheme is the public
key pk of the underlying encryption scheme, and evaluation keys ek0, ek1 are
additive shares of the underlying secret key s. A scheme uses two types of data:
(1) Input shares (I0, I1) which are generated by running Input(pk, x) on some
input x and consist in an encryption of (x, x · s), and (2) Memory shares
(M0,M1) which are typically additive shares of (x, x · s) over Z. Two types
of operations are handled: Additions of memory shares (simply add the
shares as (x, x · s) + (y, y · s) = (x + y, (x + y) · s)), and a restricted form of
Multiplication. Specifically, multiplication can only be performed between an
input share of some value x and a memory share of some value y, and returns a
memory share of their product x · y. Typically, multiplication uses the memory
share (y, y · s) to “linearly multiply-and-decrypt” the encryption of (x, x · s),
getting some encoding of (xy, xy · s). Then, the encoding is converted into a
valid memory share using a specific procedure, which depends on the concrete
scheme and is often a form of distributed discrete logarithm. We provide more
details about multiplication later. Note that one can transform any input share
into a memory share of the same value by multiplying it with a memory share of
1. At the end of a computation, each party recovers a memory value consisting in
an additive share of (z, z ·s), and therefore a share of the result z by dropping the
second part. One can evaluate any polynomial-size program following the above
restrictions, which precisely corresponds to restricted multiplication straight-line
(RMS) programs, and encompasses branching programs, NC1, and more.

HSS with Simulatable Memory Shares. Our starting point is the result of
two observations. First, we observe that any HSS following the above structure
does in fact allow for a limited form of programming regarding memory values.
Indeed, while input shares include a homomorphic encryption of the input (which
cannot be generated without knowing the input), memory shares are simply
additive shares. Thus, we can always simulate a memory share of one party
before knowing the value to share, by generating a first random share u. The
other share is later set to x − u when the actual value x to share is known.

Second, we remark that two parties sharing input shares of some values
(x1, . . . , xn) as well as memory shares of a value z can compute memory shares
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of z · P (x1, . . . , xn) for any RMS program P . The trick is to evaluate all the
operations of P “with z in front”, i.e. by maintaining as an invariant that any
memory share for any value y that should be used in the computation is replaced
by a memory share for the value z · y. This invariant being preserved by the two
RMS operations (addition and multiplication), it is sufficient to guarantee that
every memory value satisfies it when created. This is simply done by transforming
an input x into a memory value by multiplying it with the memory share of z
in order to get a memory share for z · x rather than for x.

CPRF for Linear Constraints. Combining these two observations leads to
constructions of constrained PRFs for linear constraints (and in particular for
inner-product). Looking back to the construction aforementioned, we just would
like to be able to generate IC0 , the share of C used for evaluation with the master
secret key, without knowing the constraint C in advance. We do it by replacing
IC0 by a simulated memory share M0 of the (yet unknown) constraint C. The con-
strained key for C is then computed from M0 and C to generate the appropriate
memory share M1 (i.e. setting M1 such that M0 + M1 = C).

While this prevents the need for knowing the constraint ahead of time, this
comes with a price: we now get a memory share of C rather than an input share,
which reduces the set of functions one can evaluate. Still, thanks to our second
observation, having a memory share of C and an input share of k allows to
compute shares of C · P (k) for any RMS program P . Moreover, given memory
shares of multiple Ci’s, one can then compute any linear combination of shares
Ci ·P (k), by summing the latter additive shares. Notably, this allows computing
shares of 〈C, x〉 · Fk(x) as long as the function k �→ Fk(x) is an RMS program
(assuming F is in NC1 is sufficient for that purpose).

We just constructed constrained pseudorandom functions for inner-product
from any assumption that suffices to construct an HSS scheme for RMS programs
satisfying the above conditions. For example, using the recent HSS scheme of [27]
yields a CPRF for inner products over Z (or any integer ring) under the DCR
assumption (which also implies PRFs in NC1). The construction extends imme-
diately to any constant-degree polynomial constraints (by memory-sharing all
the coefficients of C). It achieves 1-key selective security, as well as constraint
privacy. To the best of our knowledge, this is the first construction of (1-key,
selective, private) CPRF for inner products that does not rely on LWE.

Security analysis proceeds through a sequence of hybrid games. Recall that
the adversary is given a constrained key ckC of its choice, and access to an
evaluation oracle Eval(pp,msk, ·). We first modify the evaluation oracle to return
C(x) · FK(x) + CEval(pp, kC , x) on query x. By correctness of the HSS, the
adversary’s view remains identical to its view in the previous game though the
game no longer relies in msk (and in particular now only relies on the evaluation
key ek1 from ckC). This let us replace the input share I1 of k in ckC by an input
share of a dummy value, thanks to HSS security. Then, the adversary does no
longer have any information about k except in the evaluations, and we can use
PRF security to replace evaluations of FK(·) by truly random values, therefore
proving pseudorandomness. Constraint privacy is proven in a similar fashion.
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2.3 Handling More Constraints via Staged HSS

While the above already offers enough flexibility to evaluate linear functions
(and extensions thereof, such as low-degree polynomials), we still cannot handle
general computations like NC1 circuits. To overcome this limitation, we show by
a deeper analysis of known HSS schemes that most of them also achieve some
specific, limited form of programmability, which turns out to be sufficient to
construct CPRFs for all RMS programs (hence in particular for NC1).

Concretely, for a vector u = (u1, . . . , u�), our core observation is that it
is possible to share u between parties P0 and P1 with two alternate sharing
algorithms (Input0, Input1) such that: (1) P0’s share of u, obtained from Input0,
is independent of u (and can be generated without u), (2) P0 and P1 can use
specific Eval0,Eval1 evaluation algorithms to produce memory shares of P (u) for
any RMS program P , provided that P1 knows u in the clear. We call staged-
HSS an HSS scheme satisfying the latter properties, as it intuitively allows to
split share generation and evaluation in 2 stages: a first input-independent stage,
corresponding to P0’s view, and a second input-dependent stage corresponding
to P1’s view.

At first sight, staged-HSS might not seem particularly useful: if P1 knows u in
the clear, then P1 can already compute P (u) for any RMS program P . The key
observation is that P0 and P1 get memory shares of P (u), and not just P (u).
This memory share can then be combined with the prior observations to let
P0, P1 compute additive shares of P (u) ·Q(v), for any other RMS program P,Q,
given input shares of v. Setting u to be the description of the constraint C, P to
be a universal circuit (with input x hardwired) which on input C returns C(x), v
to be a PRF key k, and Q to be the RMS program (with x hardwired) which on
input k returns Fk(x), parties P0 and P1 can then compute shares of C(x)·Fk(x),
with shares of P0 being independent of C. We can then instantiate our simple
aforementioned strategy for constructing CPRFs while circumventing the need
for C during KeyGen. As a result, we obtain (1-key selective) CPRFs for RMS
programs (and therefore for NC1) from any staged-HSS, i.e. from a wide variety
of assumptions (including DCR [27,29], class groups assumptions, or variants of
QR [1,14], and more.). The security analysis is similar to our construction for
inner-product, though this new construction is no longer constraint-hiding, since
the CEval algorithm now relies on knowing C (i.e. u above) in clear.

It remains to explain why known HSS schemes are also staged-HSS schemes.
To illustrate this, we use the simple ElGamal-based HSS scheme from [8]4. We
assume basic knowledge of ElGamal encryption in what follows. This scheme
follows the general structure detailed above by instantiating the additively homo-
morphic encryption scheme with ElGamal encryption. That is, an input share
for x is an ElGamal encryption of the pair (x, x · s)5, i.e. a tuple (c0, c′

0, c1, c
′
1) =

4 This scheme does not yield CPRFs as it does not achieve statistical correctness, but
staged-HSS is easily illustrated with it.

5 Actually of x and x · si’s for each bit si of s.
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(gr0 , hr0 · gx, gr1 , hr1 · gx·s) with s ∈ Zp being the secret key, h = gs being the
public key, and r0, r1

$← Zp encryption randomness6.
Multiplication between an input share (c0, c′

0, c1, c
′
1) of x and a memory share

(ασ, βσ) of y (which is just an additive share of (y, y · s) over Zp owned by party
Pσ) is done as follows. First, party Pσ computes gσ ← (c′

0)
ασ/cβσ

0 . Observe
that g0 · g1 = (c′

0)
α0+α1/cβ0+β1

0 = (gsr · gx)y/(gr)sy = gxy. Hence, parties get
multiplicative shares g0, g1 of gxy. Doing the same with c1, c

′
1 allows to get mul-

tiplicative shares of gxy·s. Then, an operation termed distributed discrete loga-
rithm allows to transform these multiplicative shares of (gxy, gxy·s) into additive
shares of (xy, xy · s), i.e. memory shares for the value xy, as desired. Despite
being at the core of HSS constructions, the details of the distributed discrete
logarithm procedure do not matter here. The only important observation is that
the ci = gri components of input shares are independent of the input x; only the
c′
i components actually depend on x. Furthermore, in the multiplication above,

the only place where c′
i is involved is in the computation of gσ ← (c′

i)
ασ/cβσ

i .
Now, assume that one of the parties, say, P1, already knows y in the clear: in
this case, one can simply define α1 ← y and α0 ← 0, which form valid additive
shares of y. But now, P0 does no longer need to know c′

i components either, since
we now have g0 = 1/(ci)β0 .

2.4 Applications of Staged HSS to Secure Computation

From a different angle, staged HSS allows Alice and Bob, respectively owning
private inputs x and y, to securely retrieve, given shares of their joint input
(x, y), additive shares of f(x) · g(y) for any RMS programs f, g, and even of any
P (x, y) =

∑m
i=1 fi(x) · gi(y), where the (fi, gi) are RMS programs since additive

shares can be added.
Secure Computation with Precomputable Silent Preprocessing. In this
setting, the goal of the preprocessing phase is to securely distribute correlated
randomness of a particular form (e.g., random oblivious transfers, vector-OLE,
batch-OLE, Beaver triples, authenticated Beaver triples, etc.) which can be seen
as special cases of the following general additive correlation: Alice receives ran-
dom vectors (rA, sA) and Bob receives random vectors (rB , sB), such that sA and
sB form additive shares of the tuple s = (Q1(rA, rB), · · · , Qm(rA, rB)), where
Q1, . . . , Qm are public low-degree polynomials. To silently distribute such (pseu-
dorandom) correlations, Alice and Bob can use a generic secure computation
protocol to distribute HSS shares of two PRF keys (kA, kB) sampled by Alice
and Bob respectively. Then, Alice locally defines rA ← (FkA

(1), · · · , FkA
(n)),

and Bob does the same with FkB
. Both of them also compute their share sA and

sB by homomorphically evaluating the program Pi for i ≤ m with their share of
(kA, kB), where Pi is defined as:

Pi : (kA, kB) → Qi((FkA
(1), · · · , FkA

(n)), (FkB
(1), · · · , FkB

(n))).

6 s is encrypted bit-by-bit in the actual construction.
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Note that, as long as F is in NC1 and Qi is a constant-degree polynomial, Pi

remains in NC1. We now observe that when Qi is a constant-degree polynomial,
the program Pi can always be (publicly) rewritten as

Pi(kA, kB) =
M∑

j=1

αj ·
∏

i∈Sj
A

FkA
(i) ·

∏

i∈Sj
B

FkB
(i) =

M∑

j=1

fj(kA) · gj(kB),

where Si
A, Si

B are public subsets of [n], by writing Qi in algebraic normal form
and separating the component of each monomial depending on whether they are
computed using kA or kB . Above, each of the fj , gj functions belong to NC1.
Therefore, Pi belongs to the class of programs supported by our staged HSS
construction. Furthermore, Bob always knows his input kB in the clear. There-
fore, using staged HSS, Alice can generate the HSS shares of kA together with
the input-independent share of kB , and she can locally compute (rA, sA) entirely
from these shares, using the staged evaluation algorithm, and later execute a
short interactive update protocol with Bob (with communication and computa-
tion independent of n and m) to let Bob (with input kB) obtain the full HSS
shares of (kA, kB). Therefore, Alice can entirely compute all of her preprocessing
material before she even interacts with Bob (or knows his identity).

Sublinear Secure Computation with One-Sided Statistical Security.
Our last application follows the exact same line as above, further noting that
evaluation of F (x, y) =

∑
i fi(x) · gi(y) can be performed while statistically

protecting one of the two inputs (e.g., x). Moreover, the class of such functions
F (x, y) contains in particular all arithmetic circuits (with fan-in 2) of size s and
depth log log s, as in such circuits, every output bit depends on at most log s
inputs, and can therefore be written as a multivariate polynomial in the inputs,
with at most s monomials. As a consequence, if there is a secure computation
protocol for generating staged HSS shares of inputs x and y with communication
c(|x|, |y|), then there exists a protocol for securely computing all circuits of size
s and depth log log s with |x| + |y| inputs and m outputs with communication
c(|x|, |y|)+2m, which is asymptotically optimal. It only remains to find a protocol
to securely distribute staged HSS shares with linear communication.

This is not easily done in general, as the standard technique to generate HSS
shares with low communication uses hybrid encryption: to share an input x,
one generate HSS shares of some seed seed (using a generic secure computation
protocol), and publishes x⊕PRG(seed). Then, the homomorphic evaluation first
computes PRG(seed), unmaskes x, and then applies the function. The issue is
that this is inherently incompatible with having (one-sided) statistical security.
We describe two cases where we can get around this issue:

1. The first way is to use hybrid encryption only on y, for which we just aim to
computational security, and to share x using the standard staged HSS sharing
algorithm. This yields a one-sided statistically secure protocol for all log log-
depth circuits with communication |y|+ |x| ·poly(λ)+O(m), which is optimal
as soon as |x| < |y|/poly(λ). In other terms, if the input to be statistically
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protected is polynomially smaller than the other input, we achieve optimal
communication.

2. Our second solution relies on a specific construction of staged HSS scheme
that relies on the circular security of the Paillier-ElGamal encryption scheme.
Here, we manage to leverage the inherent compactness of this specific scheme
to get a protocol with optimal communication |y| + |x| + O(m) for arith-
metic circuits over a sufficiently large ring (since Paillier encryption is com-
pact only when the values are from a large ring), by designing a tailored
low-communication HSS share distribution protocol. By breaking the circuit
into log log-depth blocks, this generalizes naturally to a one-sided statistically
secure protocol with sublinear communication O(s/ log log s) for any layered
arithmetic circuits7 over a sufficiently large field.

3 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the set
{0, 1, . . . , n − 1} is denoted by [n]. We mostly use bold lowercase letters (e.g.,
r) to denote vectors. For a vector r = (r1, . . . , rn), the vector (gr1 . . . . , grn) is
sometimes denoted by gr. We write poly(λ) to denote an arbitrary polynomial
function. We denote by negl(λ) a negligible function in λ, and PPT stands for
probabilistic polynomial-time. For a finite set S, we write x

$←− S to denote that
x is sampled uniformly at random from S. For an algorithm A, we denote by
y ← A(x) the output y after running A on input x.

We recall the notion of constrained pseudorandom functions. For simplicity,
we focus on selective, 1-key secure, constraint-hiding, constrained pseudorandom
functions, which are the main focus of our work, and refer the reader to [4,5,9,25]
for the general definitions. Additional definitions related to our assumptions or
applications to multi-party computation (MPC), and in particular definition of
pseudorandom correlation functions, can be found in the full version.

Definition 1 (Constrained Pseudorandom Functions). Denote by λ a
security parameter. A Constrained Pseudorandom Function (CPRF) with do-
main X = {Xλ}λ∈N, key space K = {Kλ}λ∈N, and range Y = {Yλ}λ∈N, that
supports a class of circuits C = {Cλ}λ∈N, where each Cλ has domain Xλ and
range {0, 1}, consists of the following four algorithms:8

• KeyGen(1λ) → (pp,msk): On input the security parameter λ, the master key
generation algorithm outputs a public parameter pp and a master secret key
msk ∈ K.

• Eval(pp,msk, x) → y: On input the public parameter pp, the master secret
key msk, and an input x ∈ X , the evaluation algorithm outputs a value y ∈ Y.

7 An arithmetic circuit is layered if its nodes can be partitioned into layers, such that
any wire connects adjacent layers.

8 In the remaining of the paper, we drop the λ subscript when it is clear from context.
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• Constrain(msk, C) → ckC : On input the master secret key msk, and a circuit
C ∈ C, the constrained key generation algorithm outputs a constrained key
ckC .

• CEval(pp, ckC , x) → y: On input the public parameter pp, a constrained key
ckC , and an input x ∈ X , the constrained evaluation algorithm outputs a
value y ∈ Y.

Correctness. For any security parameter λ, any constrain C ∈ C, and any input
x ∈ X such that C(x) = 0, we have:

Pr

⎡

⎢
⎢
⎣Eval(pp,msk, x) 
= CEval(pp, ckC , x) :

pp ← Setup(1λ)

msk ← KeyGen(pp)

ckC ← Constrain(msk, C)

⎤

⎥
⎥
⎦ ≤ negl(λ).

1-Key Selective Security. We say that a CPRF is 1-key selectively secure if
the advantage of any PPT adversary A in the following game is negligible:

– Selective Choice of Constraint: The adversary chooses a (single) circuit
C ∈ C and sends it to the challenger.

– Setup: The challenger runs (pp,msk) ← KeyGen(1λ), initializes a set Seval =
∅, and computes ckC ← Constrain(msk, C). The challenger also chooses a
random bit b

$←− {0, 1}. It sends pp, ckC to A.
– Pre-Challenge Evaluation Queries: A can adaptively send arbitrary

input values x ∈ X to chall. The challenger computes y ← Eval(pp,msk, x)
and returns y to A. It also updates Seval ← Seval ∪ {x}.

– Challenge Phase: A sends an input x∗ ∈ X as its challenge query to chall
with the restriction that x∗ /∈ Seval, and C(x∗) 
= 0. If b = 0, then chall

computes y∗ ← Eval(pp,msk, x∗). If b = 1, it picks a random value y∗ $←− Y.
Finally, chall returns y∗ to A.

– Post-Challenge Evaluation Queries: A continues the queries as before,
with the restriction that it cannot query x∗ as an evaluation query.

– Guess: A outputs a bit b′ ∈ {0, 1}.

1-Key Selective Constraint-Hiding. We say that a CPRF is selectively 1-
key constraint-hiding if the advantage of any PPT adversary A in the following
game is negligible:

– Selective Choice of Constraint: The adversary chooses a (single) pair of
circuits (C0, C1) ∈ C and sends it to the challenger.

– Setup: The challenger runs (pp,msk) ← KeyGen(1λ), chooses a random bit
b

$←− {0, 1}, and computes ck∗ ← Constrain(msk, Cb). It sends pp, ck∗ to A.
– Evaluation Queries: A can query evaluations for arbitrary inputs x ∈ X

to chall, with the restriction that C0(x) = C1(x) must hold. The challenger
returns y ← Eval(pp,msk, x) to A.
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– Guess: A outputs a bit b′ ∈ {0, 1}.

In both games, A wins if b′ = b and its advantage is defined as |2 · Pr[A wins] − 1|
where the probability is over the internal coins of A and of Setup.

4 Homomorphic Secret Sharing and Extensions

The core notion underlying our constructions is homomorphic secret sharing
(HSS), introduced by Boyle et al. in [8]. In this section, we remind the standard
definition of HSS as well as propose several extensions, in particular defining
some special properties that play an important role in our constructions. We
further remark that these extensions are easily instantiated using the DCR-based
HSS construction from [27].

4.1 Homomorphic Secret Sharing

We start by recalling the standard definition of homomorphic secret sharing, as
well as of Restricted Multiplication Straight-line (RMS) programs which is the
common model of computation in the context of HSS.

Definition 2 (Homomorphic Secret Sharing). Denote by λ a security para-
meter. A Homomorphic Secret Sharing (HSS) scheme for a class of programs P
which is defined over a ring R and has input space I ⊆ R consists of three PPT
algorithms (Setup, Input,Eval) such that:

• Setup(1λ) → (pk, (ek0, ek1)): On input the security parameter λ, the setup
algorithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

• Input(pk, x) → (I0, I1): On input the public key pk and an input x ∈ I, the
input algorithm outputs a pair of input information (I0, I1).

• Eval(σ, ekσ, Iσ = (I(1)σ , . . . , I
(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1},

an evaluation key ekσ, a vector of ρ input values (I(1)σ , . . . , I
(ρ)
σ ), and a program

P ∈ P, the evaluation algorithm outputs the party σ’s corresponding share
of the output yσ.

We require an HSS scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any program P ∈ P
with input space I ⊆ R, we have:

Pr
[
y0 − y1 = P (x(1), . . . , x(ρ))

]
≥ 1 − negl(λ),

where the probability is taken over (pk, (ek0, ek1)) ← Setup(1λ), (I(i)0 , I
(i)
1 ) ←

Input(pk, x(i)) for i ∈ [ρ], and yσ ← Eval(σ, ekσ, (I(1)σ , . . . , I
(ρ)
σ ), P ), for σ ∈

{0, 1}.
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• Security. For any PPT adversaries A,A′, and any bit σ ∈ {0, 1} the following
value should be negligible in λ:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b′ = b :

(x0, x1, state) ← A(1λ)

(pk, (ek0, ek1)) ← Setup(1λ)

b
$←− {0, 1}

(I0, I1) ← Input(xb)

b′ ← A′ (state, pk, ekσ, Iσ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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∣
∣
∣
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We now remind the definition of Restricted Multiplication Straight-line
(RMS) programs. RMS programs form a class of programs which encompasses
branching programs of polynomial-size and therefore NC1 circuits. In an RMS
program, the multiplication is restricted to happen between an input value and
an intermediate value of the computation (so-called “memory” value).

Definition 3 (RMS Programs). An RMS program with magnitude bound B
is defined as a sequence of the instructions as follows:

– ConvertInput(Ix) → Mx: Loads an input x into memory.
– Add(Mx,My) → Mx+y: Adds two memory values.
– Mul(Ix,My) → Mx·y: Multiplies an input value and a memory value to produce

a memory value of their product.
– Output(Mx, n) → x mod n: Outputs a memory value w.r.t. a modulus n < B.

4.2 HSS Following the RMS Template

Similarly to [7], we first propose a more specific definition for HSS with additional
algorithms that are relevant in the context of RMS programs.

Definition 4 (HSS Following the RMS Template). A homomorphic secret
sharing scheme HSS = (Setup, Input,MemGen,Eval) following the RMS template
is an HSS scheme as defined in Definition 2 with an additional algorithm MemGen
which serves to produce memory values as follows:

• MemGen(σ, ekσ, x) → Mσ: On input a party index σ ∈ {0, 1}, an evaluation
key ekσ, and an input x ∈ I, the memory generator algorithm outputs a
memory value Mσ.

Moreover, the Eval algorithm proceeds with sub-routines following the RMS
operations ConvertInput,Add,Mul,Output as follows:

• Eval(σ, ekσ, (I(1)σ , . . . , I
(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1}, an

evaluation key ekσ, a vector of ρ input values (I(1)σ , . . . , I
(ρ)
σ ), and an RMS

program P , this algorithm follows the instructions of P and processes them
as follows:

• ConvertInput(σ, ekσ, Ixσ) → Mx
σ: This algorithm simply uses the MemGen

and Mult algorithms as follows:
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– Run MemGen(σ, ekσ, 1) → M1
σ.

– Run Mult(σ, ekσ, Ixσ,M1
σ) → Mx

σ.
• Add(σ, ekσ,Mx,My) → Mx+y: This algorithm directly adds the given

memory values of x and y. Namely, Mx+y
σ = Mx

σ + My
σ.

• Mul(σ, ekσ, Ix,My) → Mx·y: It multiplies an input value Ix and a memory
value My and outputs a memory value of x · y. The template does not
impose any non-black box requirement on this algorithm.

• Output(σ,Mx, n) → x mod n: It uses Mx to output xσ mod n.

Correctness and security properties are defined as in Definition 2, and we further
require the following property:

Additively Homomorphic Memory. The memory values generated in HSS
should be additively homomorphic. Meaning that for any two x, y ∈ I and any
party index σ ∈ {0, 1}, it holds that

Mx
σ + My

σ = Mx+y
σ ,

where Mz
σ ← MemGen(σ, ekσ, z), for z ∈ {x, y}, and (pk, (ek0, ek1)) ← Setup(1λ).

Throughout this work, we may refer to memory values satisfying this property
as “valid” memory values.

4.3 Extended Evaluation and Simulatable Memory Values

Any HSS following the RMS template as defined above satisfies the following
lemma, which states that one can evaluate share of z · P (x(1), . . . , x(ρ)) using
only a memory value of z (instead of an input value) together with the input
values of the rest of variables (x(1), . . . , x(ρ)). This lemma plays a central role in
our CPRF constructions.

Lemma 1. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following
the RMS template. There exists an extended evaluation algorithm ExtEval:

• ExtEval(σ, ekσ,Mσ, (I(1)σ , . . . , I
(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1},

an evaluation key ekσ, a single memory value Mσ, a vector of ρ input val-
ues (I(1)σ , . . . , I

(ρ)
σ ), and an RMS program P , return a value yσ such that the

following holds.

For any security parameter λ ∈ N and any RMS program P , we have:

Pr
[
y0 − y1 = z · P (x(1), . . . , x(ρ))

]
≥ 1 − negl(λ), (1)

where the probability is taken of the choice of (pk, (ek0, ek1)) ← Setup(1λ),
(I(i)0 , I

(i)
1 ) ← Input(pk, x(i)), Mσ ← MemGen(σ, ekσ, z), and yσ ← ExtEval(σ, ekσ,

Mσ, (I(1)σ , . . . , I
(ρ)
σ ), P ), for σ ∈ {0, 1}, i ∈ [ρ].
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The proof of the above lemma is detailed in the the full version of the paper. It
essentially consists in recursively incorporating the memory value Mσ using the
standard Eval algorithm by first multiplying inputs with it.

We now introduce an additional property termed simulatable memory values.
Here, we require that for an input x ∈ I, the memory value of one of the two
parties can be generated ahead of time and without the knowledge of x using
a simulation algorithm, while the other memory value can be generated given
the pre-computed first memory value and the exact value of x. This simulation
should not affect the correctness of ExtEval.

Definition 5 (HSS with Simulatable Memory Values). Let HSS = (Setup,
Input,MemGen,Eval) be an HSS following the RMS template as per Definition 4,
with input space I over the ring R. We say that HSS is simulatable with respect
to its memory values if there exist algorithms Sim0 and Sim1 such that

• Sim0(1λ) → M0: on input the security parameter λ outputs a memory value
M0.

• Sim1(M0, z, (ek0, ek1)) → M1: on input a memory value M0, an element z ∈ I,
and two encoding keys (ek0, ek1) outputs a memory value M1.

We also require the two following properties:

Simulation Correctness. For any λ ∈ N and any z ∈ I, the above correctness
condition (Eq. 1) still holds when the memory value is simulated, i.e. when M0 ←
Sim0(1λ) and M1 ← Sim1(M0, z, (ek0, ek1)).

Simulation Security. It should be computationally hard to distinguish the two
memory values obtained via the simulation algorithms. That is, for any λ ∈ N

and any z ∈ I, we have (z,M0) ≈c (z,M1) for any (pk, (ek0, ek1)) ← Setup(1λ),
M0 ← Sim0(1λ), and M1 ← Sim1(M, z, (ek0, ek1)).

4.4 Staged Homomorphic Secret Sharing

Finally, we define a new notion termed staged-HSS which is merely extending
the idea of HSS with simulatable memory values to the case where we require
the possibility of input values to be simulatable as well.

Definition 6 (staged-HSS). Let HSS = (Setup,MemGen, Input,Eval) be an
HSS scheme following the RMS template, with input space I over the ring R.
We say it is a staged-HSS if there exist additional algorithms (Input0, Input1),
and (Eval0,Eval1) such that:

• Input0(pk) → (I0, aux): On input a public key pk, return a value I0 and an
auxiliary output aux.

• Input1(pk, x, aux, (ek0, ek1)) → I1: On input a public key pk, an input x ∈ I,
an auxiliary input aux, and two encoding keys (ek0, ek1), return a value I1.
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• Eval0(ek0, (I
(1)

0 , . . . , I
(ρ)

0 ), P ) → M0: On input an evaluation key ek0, a vector
of ρ input values (I

(1)

0 , . . . , I
(ρ)

0 ), and a program P , return a memory value M0.
• Eval1(ek1, (I

(1)

1 , . . . , I
(ρ)

1 ), (x(1), . . . , x(ρ)), P ) → M1: On input an evaluation
key ek1, a vector of ρ input values (x(1), . . . , x(ρ)) as well as (I

(1)

1 , . . . , I
(ρ)

1 ),
and a program P , return a memory value M1.

We further require the two following properties:

Correctness. We would like the outputs of Eval0 and Eval1 to be usable within
the extended evaluation algorithm ExtEval (Lemma 1). Formally, for any λ ∈ N

and any two RMS programs P,Q ∈ P, it should hold that

Pr[y0 − y1 = P (z(1), . . . , z(�)) · Q(x(1), . . . , x(ρ))] ≥ 1 − negl(λ),

where (pk, (ek0, ek1)) ← Setup(1λ), (Ix
(i)

0 , Ix
(i)

1 ) ← Input(pk, x(i)), for all i ∈
[ρ], (I

z(i)

0 , aux(i)) ← Input0(pk) and I
z(i)

1 ← Input1(pk, z(i), aux(i), (ek0, ek1)),

for all i ∈ [�], M0 ← Eval0(ek0, (I
z(1)

0 , . . . , I
z(�)

0 ), P ), M1 ← Eval1(ek1, (I
z(1)

1 ,

. . . , I
z(�)

1 ), (z(1), . . . , z(�)), P ), and yσ ← ExtEval(σ, ekσ, (Mσ, Ix
(1)

σ , . . . , Ix
(ρ)

σ ), Q),
for σ ∈ {0, 1}.

Security. The output of Input1 and Input should be computationally indistingui-
shable. Formally, for any λ ∈ N, and any x ∈ I, the two following distributions
should be computationally indistinguishable:

⎧
⎪⎨

⎪⎩
I1 :

(pk, (ek0, ek1)) ← Setup(1λ)

(I0, aux) ← Input0(pk)

I1 ← Input1(pk, x, aux, (ek0, ek1))

⎫
⎪⎬

⎪⎭

c≈
{

I1 :
(pk, (ek0, ek1)) ← Setup(1λ),

(I0, I1) ← Input(pk, x)

}

.

Theorem 2. Assuming the hardness of DCR, there exists HSS scheme following
the RMS template which generates simulatable memory values, as well as staged-
HSS scheme for the class of RMS programs.

The above theorem follows from the HSS scheme introduced by Orlandi, Scholl,
and Yakoubov in [27] that supports the class of RMS programs and works under
the DCR assumption. In the full version of the paper, we show that it satisfies
the properties of all the three introduced variants.

5 Constrained Pseudorandom Functions

We now present our two transformations from homomorphic secret sharing to
constrained pseudorandom functions.
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5.1 CPRF for Inner-Product from HSS

Our first construction is a 1-key selectively secure constrained pseudorandom
function for inner-product. The space input is Rn for some ring R and n > 0,
and a constraint is defined by a vector z ∈ Rn. A constrained key for a vector z
allows to compute the PRF evaluation on input x ∈ Rn if and only if 〈z,x〉 = 0.
Specifically, the class of constraints is {Cz | z ∈ Rn} where the circuit Cz :
Rn → {0, 1} is defined as Cz(x) = 0 if 〈z,x〉 = 0, else 1.

The intuition behind our construction is that the master secret key and
the constrained key (for a vector z) are used to compute, via HSS, a share
of 〈x, z〉 · Fk(x), where k is a PRF key encoded via the HSS scheme. Then, if
〈x, z〉 = 0, the two evaluations produce substractive shares of 0, i.e. equal shares,
while if 〈x, z〉 
= 0, the shares differ by (a non-zero multiple of) Fk(x). By the
security of HSS, the PRF key k remains hidden to the constrained key owner,
hence the actual PRF evaluation (the value of the share computed from the
master secret key) is pseudorandom even given the value of the second share
(which can be computed from the constrained key).

Before diving into our construction, we generalize Lemma 1, stating that not
only one can produce shares of any evaluation of the form z·P (x) given a memory
value for z and encoding of x, but of any linear combination

∑
i α(i)z(i) · P (x)

with known coefficients given memory values for multiple z(i)’s, i.e. for 〈z,α〉 for
a known vector α = (α(1), . . . , α(�)).

Corollary 1. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme follow-
ing the RMS template. There exists an extended evaluation algorithm LinExtEval:

• LinExtEval(σ, ekσ, (M(1)
σ , . . . ,M

(�)
σ ), (I(1)σ , . . . , I

(ρ)
σ ), (α(1), . . . , α(�)), P ) → yσ:

On input a party index σ ∈ {0, 1}, an evaluation key ekσ, a vector of � memory
values M

(1)
σ , . . . ,M

(�)
σ , a vector of ρ input values (I(1)σ , . . . , I

(ρ)
σ ), a vector of �

ring elements α(1), . . . , α(�), and an RMS program P , this algorithm outputs
a value yσ such that the following holds.

For any security parameter λ ∈ N, any α(i) ∈ R for i ∈ [�], and any RMS
program P , we have:

Pr

[

y0 − y1 =

(
�∑

i=1

α(i) · z(i)

)

· P (x(1), . . . , x(ρ))

]

≥ 1 − negl(λ),

where the probability is taken over the choice of (pk, (ek0, ek1)) ← Setup(1λ),
(I(i)0 , I

(i)
1 ) ← Input(pk, x(i)), M

(j)
σ ← MemGen(σ, ekσ, z(j)), and over the shares

yσ ← LinExtEval(σ, ekσ, (M(1)
σ , . . . ,M

(�)
σ ), (I(1)σ , . . . , I

(ρ)
σ ), (α(1), . . . , α(�)), P ), with

σ ∈ {0, 1}, j ∈ [�], i ∈ [ρ].

The proof of the above statement follows from Lemma 1 by linearly combining
the substractive shares obtained by applying ExtEval with each memory value.

For a PRF F : K × Rn → Y with domain Rn and for x ∈ Rn, we denote by
F•(x) : K → Y the function that maps k ∈ K to Fk(x).

We now have all the ingredients for our first construction.



212 G. Couteau et al.

Construction 1. (CPRF for IP from HSS). Let F : K×Rn → Y be a PRF
with evaluation in NC1. Let HSS = (Setup, Input,MemGen,Eval) be a homomor-
phic secret sharing following the RMS template with simulatable memory values.
We design (KeyGen,Eval,Constrain,CEval) as follows:

KeyGen(1λ):

1. (pk, (ek0, ek1))
$← Setup(1λ).

2. Sample k
$← K for F

3. Run (I0, I1) ← Input(pk, k).
4. For i ∈ {1, . . . , n}:

Mi
0 ← Sim0(1λ).

5. msk ←
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1))
6. Output pp = pk and msk.

Eval(pp,msk,x):

1. Parse msk as
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1)).
2. Compute y0 ←

LinExtEval(0, ek0, (Mi
0)i∈[n], I0,x, F•(x)).

3. Output y0.

Constrain(msk, z):

1. Parse msk as
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1))
2. Parse z = (z1, . . . , zn).
3. For i ∈ {1, . . . , n}:

Mi
1 ←

Sim1(Mi
0, zi, (ek0, ek1))

4. Return ckz =
(ek1, I1, (Mi

1)i∈[n]).

CEval(pp, ckz,x):

1. Parse ckz = (ek1, I1, (Mi
1)i∈[n]).

2. Compute y1 ←
LinExtEval(1, ek1, (Mi

1)i∈[n], I1,x, F•(x)).
3. Output y1.

Theorem 3. Assuming F is a secure PRF with evaluation in NC1 and HSS
is a secure HSS scheme following the RMS template with simulatable memory
values, then Construction 1 is a selective 1-key, constraint-hiding, secure CPRF
for inner-product.

The proof of Theorem 3 is detailed in the full version of our paper.

Remark 1. In the above construction, we require the PRF range Y to be such
that F is pseudorandom on Zn, for a fixed n < B, where B is the magnitude
bound of the RMS programs that the HSS scheme used in the construction
supports. We need to then reduce the outputs of the HSS evaluation algorithm
modulo n by inputting n as the modulus to algorithm Output (See Definition 4).
This is used in the security proof to ensure that masking with a pseudorandom
value over Y causes the output to be pseudorandom.

Corollary 2. There exist 1-key selectively-secure, constraint-hiding constrained
pseudorandom functions for inner-product assuming the hardness of DCR.

5.2 CPRF for NC1 from HSS

We now describe CPRF for the class of NC1 constraints. We consider the rep-
resentation of an NC1 circuit C with input size n = poly(λ) and depth d =
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O(log n) to be a bit string (C1, . . . , Cz) ∈ {0, 1}z, where z = poly(n) is the
description size. Also, we denote the universal circuit by U(·, ·) that on input
a circuit C ∈ {0, 1}z and x = (x1, . . . , xn) ∈ {0, 1}n, outputs U(C, x) = C(x).
Due to the work of Cooks and Hoover [17], we know that there exists a universal
circuit that correctly computes any NC1 circuit and is itself an NC1 circuit.

The strategy for our construction is similar as for inner-product. We aim to
obtain substractive shares U(C, x) · Fk(x) via the (standard and constrained)
evaluation algorithms, where F is a pseudorandom function with evaluation in
NC1, C denotes the constraint, and U denotes the above universal circuit.

A crucial point is that the master secret key should allow to compute such a
share for any input x independently of the constraint C. Hence, we have to find
a way to replace the encoding of C that is given to the evaluator by oblivious
values that guarantee the correctness. In the inner-product case, where we want
shares of 〈x, z〉 · Fk(x), we used simulated memory values as the independent
share of the undetermined constraint z, and programmed the constrained key
to guarantee correctness according to the constraint vector z. However, this
technique cannot be applied to the case of NC1 constraints as we are dealing
with non-linear evaluations.

The idea is again to use staged-HSS. We first compute a memory for U(C, x)
using Eval0 and Eval1. Then, this memory value is used in the ExtEval algorithm
from Lemma 1 to compute a share of U(C, x) · Fk(x) additionally using an
encoding of k.

The important point here, is that inputs of Eval0 can be sampled obliviously
using (I0, aux) ← Input0(pk), and therefore can be sampled during Setup without
the knowledge of the constraint C. Yet, when computing the constrained key for
C, the master key owner can use the full knowledge of C as well as auxiliary
information generated during Setup to appropriately compute memory values for
the i-th bit Ci of the description of C, using I1 ← Input1(pk, Ci, aux, (ek0, ek1)).
The correctness of staged-HSS then guarantees the correctness of evaluations,
while its security plays a role in the security proof to remove the need for both
evaluation keys when computing I1, therefore allowing to rely on HSS security
to remove the information about the underlying PRF key k.

We now detail our construction. For any x ∈ {0, 1}n, we denote by U(·, x)
the circuit that maps C ∈ {0, 1}z to U(C, x) = C(x) ∈ {0, 1}.

Construction 2 (CPRF for NC1from HSS). Let F : K × {0, 1}n → Y be
a pseudorandom function with evaluation in NC1, where Y is a finite cyclic
group. Let HSS = (Setup,MemGen, Input,Eval) be a staged homomorphic secret
sharing scheme and denote by (Input0, Input1), and (Eval0,Eval1) the additional
algorithms defined in Definition 6. Let ExtEval be the modified evaluation algo-
rithm as in Lemma 1. We construct a constrained pseudorandom function that
supports NC1 constraints as follows:

• KeyGen(1λ):
– Run (pk, (ek0, ek1)) ← Setup(1λ).
– Choose a random key k

$←− K for F and compute (I0, I1) ← Input(pk, k).
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– For i ∈ {1, . . . , z}, compute (I
(i)

0 , aux(i)) ← Input0(pk).
– Output pp = pk, and msk = ((ek0, ek1, I0, I1), (I

(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))).
• Eval(pp,msk, x):

– Parse pp = pk, and msk = ((ek0, ek1, I0, I1), (I
(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))).
– Run M0 ← Eval0(ek0, (I

(1)

0 , . . . , I
(z)

0 ), U(·, x)). Here, I
(i)

0 represents the
input value of Ci for i ∈ {1, . . . , z}.

– Run y0 ← ExtEval(0, ek0,M0, I0, F•(x)). Here, M0 denotes the memory
value of U(C, x), and I0 denotes the input value of k.

– Output y0.
• Constrain(msk, C):

– Parse msk = ((ek0, ek1, I0, I1), (I
(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))), and
C = (C1, . . . , Cz) ∈ {0, 1}z.

– For i ∈ {1, . . . , z}, run I
(i)

1 ← Input1(pk, Ci, aux
(i), (ek0, ek1)).

– Output ckC = (ek1, I1, (I
(1)

1 , . . . , I
(z)

1 ), C).
• CEval(pp, ckC , x):

– Parse ckC = (ek1, I1, (I
(1)

1 , . . . , I
(z)

1 ), C).
– Run M1 ← Eval1(ek1, (I

(1)

1 , . . . , I
(z)

1 ), (C(1), . . . , C(z)), U(·, x)).
– Run y1 ← ExtEval(1, ek1,M1, I1, F•(x)).
– Output y1.

Theorem 4. Assuming F is a secure pseudorandom function with evaluation
in NC1 and HSS is a secure staged-HSS scheme, Construction 2 is a selective
1-key secure constrained pseudorandom function for NC1.

We refer the reader to the full version of our paper for the proof of Theorem 4.

Remark 2. We note that the above construction is not constraint-hiding, since
the constrained evaluation algorithm relies on the knowledge of the constraint.

Corollary 3. Assuming the DCR assumption holds, there exist 1-key selectively-
secure constrained pseudorandom functions for NC1 constraints.

Remark 3 (Other Instantiations). Although not explicitly detailed in this work,
our transformations from HSS to CPRF works using either of the schemes
from [10] based on the Learning With Errors (LWE) assumption with super-
polynomial modulus, from [1] based on the hardness of Joye-Libert encryption
scheme, from [1] based on the Decisional Diffie-Hellman (DDH) and Decisional
Cross-Group Diffie-Hellman (DXDH) assumptions over class groups, or from [14]
based on the Hard Subgroup Membership (HSM) assumption over class groups.
All of the above HSS schemes follow the same outline as the DCR-based scheme
of [27] when generating input and memory values. More precisely, input val-
ues are ciphertexts computed using a PKE scheme, and in all of the mentioned
schemes, the used encryption tool generates ciphertexts that contain a separate
part as a commitment to the encryption randomness which is independent of the
underlying plaintext. This feature makes it feasible to generalize these schemes
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into staged-HSS schemes and then use it to construct CPRF for NC1 constraints.
These schemes also allow simulation of memory values which enables using the
scheme to construct CPRF for inner-product constraints. This holds since a
valid memory value of these schemes is a subtractive share of a secret vector
dependent on the secret key of the used PKE, thus one share can be sampled
obliviously and the other one can be correctly computed given the secret vector.

Also, using HSS with only polynomial correctness (e.g., the DDH-based
scheme of [8]) still yields CPRFs for polynomial-size domain. This leads to con-
structions of poly-size domain private CPRFs for inner-products and CPRFs for
NC1 from DDH, and from LWE with polynomial modulus-to-noise ratio.

6 Applications to Secure Multiparty Computation

In this section, we explore the applications of staged-HSS (defined in Sect. 4) to
secure computation. We first show how using staged-HSS allows constructing a
secure two-party computation protocol with precomputable silent preprocessing.
In this model, one party can perform all of the heavy preprocessing, not only
before the inputs are selected (which can be already achieved by “non-staged”
HSS for RMS programs) but also before knowing the identity of the other party.
Next, we show that the DCR-based construction of staged-HSS (provided in the
full version) can be used to obtain sublinear-communication secure two-party
computation with one-sided statistical security. Our proposal follows the same
outline as [8] where the authors showed how HSS for RMS programs yields
secure computation with sublinear communication. Definitions and proofs for
this section can be found in the full version.

We start by introducing the notion of precomputability for pseudorandom
correlation functions. Informally, precomputability enables the first party to gen-
erate its key locally before knowing anything about the second party. The second
party’s key is then (securely) computed as a function of the first key.

In the absence of some form of trusted setup, dishonest-majority secure com-
putation requires computational assumptions. A popular paradigm (used for
instance in [18,24]) is to first have the parties jointly execute a precomputation
phase which is independent of their inputs or the function they want to compute,
in order to distribute correlated randomness, and afterwards, use the computed
correlated randomness in an information-theoretic online phase to perform the
secure computation. Heuristically, this online phase, which is free of any expen-
sive cryptographic operations, can be made highly efficient. The generation of the
correlated randomness in the precomputation phase can be done via a pseudo-
random correlation generator (PCG) [6] or a pseudorandom correlation function
(PCF), whose seeds (in the case of PCG), or keys (in the case of PCF) are
generated using generic (computationally secure) MPC protocol.

Using a precomputable PCF allows the parties to perform the following three-
phase MPC protocol: (1) Alice samples her PCF key, and can perform the expen-
sive PCF evaluation with her key offline to recover her share of the correlated
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randomness; (2) Alice and Bob use generic secure computation to generate Bob’s
key, which then allows Bob to evaluate the PCF with his key and recover his
share of the correlated randomness; (3) Alice and Bob perform the information-
theoretic phase online, using their correlated randomness. This allows Alice to
perform the brunt of her computation offline, before any interaction with Bob.
This offline phase can be viewed as “party-independent” precomputation, which
is more general than input-independence.

Definition 7 (Precomputable Pseudorandom Correlation Function).
Let Y be a reverse-sampleable correlation with output lengths �0(λ), �1(λ) and
let λ ≤ n(λ) ≤ poly(λ) be its input length. We say that a pseudorandom correla-
tion function (PCF.Gen,PCF.Eval) is precomputable if the description of PCF.Gen
contains the descriptions of two algorithms (PCF.Gen0,PCF.Gen1) such that

• PCF.Gen0(1λ): On input the security parameter λ, returns a key k0 and aux-
iliary output aux.

• PCF.Gen1(1λ, k0, aux): On input the security parameter λ, a key k0, and an
auxiliary input aux, outputs a key k1.

We also require the following property to hold:

Precomputability. For any security parameter λ ∈ N, the two following distri-
butions are computationally indistinguishable:

{
(k0, k1) : (k0, k1) ← PCF.Gen(1λ)

}
c≈

{

(k0, k1) :
(k0, aux) ← PCF.Gen0(1λ)

k1 ← PCF.Gen1(1λ, k0, aux)

}

.

Below, we provide a construction of precomputable PCF for OLE correla-
tions from staged-HSS, and using a pseudorandom function. Given an input,
first, each party samples a PRF key and sets the first half of the correlated pair
to be the value of the PRF on the input. Next, to generate the additive shares
of the product of these two values, they use staged-HSS. Here, we require the
staged-HSS scheme to generate shares that are individually pseudorandom given
the input, and in Lemma 2 we show that this can be assumed without loss of
generality. This is because the property “pseudorandom R-OLE-correlated out-
puts” for a PCF, which can be seen as a form of correctness property, essentially
requires that the PCF outputs not only valid OLE tuples but also pseudorandom
ones from the view of an external adversary.

Lemma 2 (HSS with Pseudorandom Outputs). Denote by P a class of
programs defined over a ring R, with input space I ⊆ R. Assuming the existence
of one-way functions, any HSS scheme for P can be modified in such a way that
each output share is pseudorandom to an external adversary given only the input
(but neither input share).

Formally, assuming the existence of an HSS scheme HSS = (Setup, Input,
Eval,Rec) for P, there exists an HSS scheme HSS′ = (Setup′, Input′,Eval′,Rec′)
for P such that:
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∀σ ∈ {0, 1},∀(P : R → Y) ∈ P,∀x ∈ R :
⎧
⎨

⎩
(x, yσ) :

(pk, (ek0, ek1)) ← Setup′(1λ)

(I0, I1) ← Input′(x)

yσ ← Eval′(σ, ekσ, Iσ, P )

⎫
⎬

⎭

c≈ {(x, r) : r
$← Y}.

Moreover, if HSS has additive reconstruction, then so does HSS′, and if HSS
is a staged-HSS scheme, then HSS′ is also a staged-HSS.

The proof of Lemma 2 uses a trick which is standard in the HSS literature,
which we sketch here and expand upon in the full version of the paper: a PRF key
(the same for both parties) is added to the HSS keys, which is used at evaluation
time to “mask” the output shares. Because both parties use the same mask,
they can simply remove it before reconstruction and correctness is preserved.
Moreover, the HSS shares are pseudorandom from the point of view of an external
adversary who does not know the PRF key.

Construction 3 (Precomputable & Programmable PCF for OLE). Let
F : K × I → Y be a pseudorandom function with evaluation in NC1, where
I,Y are finite rings. Let HSS = (Setup,MemGen, Input,Eval) be a staged-
homomorphic secret sharing scheme and denote by (Input0, Input1), and (Eval0,
Eval1) the additional algorithms defined in Definition 6. Let ExtEval be the mod-
ified evaluation algorithm as in Lemma 1. Our PCF works as follows:

• PCF.Gen(1λ):
– Run (k0, aux) ← PCF.Gen0(1λ).
– Run k1 ← PCF.Gen1(1λ, k0, aux).
– Output (k0, k1).

• PCF.Gen0(1λ):
– Run (pk, ek0, ek1) ← HSS.Setup(1λ).
– Sample k

(0)
prf

$← K, and compute (I0, I1) ← HSS.Input(pk, k(0)
prf ).

– Run (I0, aux′) ← HSS.Input0(pk).
– Output k0 = (ek0, I0, I0, k

(0)
prf ), and aux = (aux′, ek1, I1).

• PCF.Gen1(1λ, k0, aux):
– Parse k0 = (ek0, I0, I0, k

(0)
prf ), and aux = (aux′, ek1, I1).

– Sample k
(1)
prf

$← K, and compute I1 ← HSS.Input1(pk, k
(1)
prf , aux

′).

– Output k1 = (ek1, I1, I1, k
(1)
prf ).

• PCF.Eval(σ, kσ,x):
– Parse kσ = (ekσ, Iσ, Iσ, k

(σ)
prf ).

– If σ = 0, then
* Run Mσ ← HSS.Eval0(ekσ, Iσ, F•(x)).

Else if σ = 1,
* Run Mσ ← HSS.Eval1(ekσ, Iσ, k

(σ)
prf , F•(x)).

– Run yσ ← HSS.ExtEval(ekσ, (Mσ, Iσ), F×(x)), with F×(x) defined as
F×(x) : (k(0), k(1)) �→ Fk(0)(x) · Fk(1)(x).

– Output (F
k
(σ)
prf

(x), yσ).
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Theorem 5. Let R be a finite ring. Assuming F is a secure pseudorandom
function with evaluation in NC1 and HSS is a secure staged-HSS scheme, Cons-
truction 3 is a two-party precomputable PCF for OLE correlations over R. Fur-
thermore, this PCF is programmable.

The proof of Theorem 5 is provided in the full version of the paper. By
combining Theorems 5 and 2, we get Corollary 4.

Corollary 4 (Precomputable PCF for R-OLEfrom DCR). Assuming the
DCR assumption holds, there exists a two-party precomputable pseudorandom
correlation function (as per Definition 7) for the R-OLE correlation.

Corollary 5 (From OLE to Low-Degree Correlations). Assuming the
existence of (one-way functions and of) staged-HSS supporting the class of RMS
programs, there exists a two-party precomputable PCF (Definition 7) for low-
degree correlations ( c.f. full version). In particular, such a PCF exists under the
DCR assumption.

6.1 Sublinear Computation with One-Sided Statistical Security

Most constructions of two-party HSS for super-constant depth circuits can be
used in a non black-box way to build two-party secure computation with an
amount of communication which is sublinear in (or even independent of) the
circuit-size: if the input share generation algorithm is simple enough to be
securely distributed with low communication, the parties need to only run the
evaluation algorithm locally, then reconstruct the output.

In the FHSS
update-Hybrid Model. The main component (apart from the HSS

scheme itself) in building sublinear secure computation from HSS is the low-
communication distributed share generation. When using staged-HSS, the first
party can simply sample its share locally, so the hard part is updating the second
party so they can receive their share too. We formalize this task in Fig. 1 as the
ideal functionality FHSS

update. We prove in Lemma 3 that there exists sublinear two-
party secure computation, provided this step can be performed with one-sided
statistical security and with low-enough communication.

Functionality FHSS
update

The functionality is parameterized with a staged-HSS scheme staged-HSS =
(staged-HSS.Setup, staged-HSS.Input, staged-HSS.MemGen, staged-HSS.Eval).

Input: Wait to receive (share, staged-HSS.pk, I0, aux) from P0 and
(input, x1) from P1.
Output: Compute I1 ← staged-HSS.Input1(staged-HSS.pk, x1, aux), and
output (staged-HSS.pk, I1) to P1.

Fig. 1. Ideal functionality FHSS
update, parameterized by a staged-HSS scheme, for generat-

ing the second input share given the first, precomputed, one.
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Protocol ΠC

Parties: Alice and Bob
Parameters: The protocol is parameterized with:

– C : F
n0 × F

n1 → F
m is an arithmetic circuit over finite field F.

– HSS = (HSS.Setup,HSS.Input,HSS.MemGen,HSS.Eval) is a staged-HSS
scheme with pseudorandom shares supporting the class of RMS pro-
grams over F (seen as a ring). We denote the staged input and evaluation
algorithms by (HSS.Input0,HSS.Input1) and (HSS.Eval0,HSS.Eval1). Let
HSS.ExtEval be defined as in Lemma 1.

– F (·, ·) is a PRF in NC1 with domain {0, 1}λ, key space {0, 1}λ, and range
F

n1 .

Hybrid Model: The protocol is defined in the FHSS
update-hybrid model.

Input: Alice holds x0 ∈ F
n0 and Bob holds x1 ∈ F

n1 .
The Protocol:

Alice’s precomputation phase. Alice does the following:
1. K

$← {0, 1}λ

2. (HSS.pk, ek0, ek1) ← HSS.Setup(1λ)
3. (I0, aux) ← HSS.Input0(HSS.pk)
4. (I0, I1) ← HSS.Input(1λ,K)
5. α

$← {0, 1}λ, cin ← x0 + F (K,α), and rout
$← F

m

6. M0 ← HSS.Eval(ek0, I0, F (·, α))
7. y0 ← HSS.ExtEval(ek0, (M0, I0), fα,cin),

where fα,cin : (X, Y ) �→ C(cin − F (X, α), Y )

Online phase.
8. Alice sends (ek1, I1, cin, α, rout) to Bob, who waits to receive it.
9. Alice sends (share,HSS.pk, I0, aux) to FHSS

update;
Bob sends (input, x1) to FHSS

update, and waits to receive (HSS.pk, I1)
from FHSS

update.
Bob’s computation phase. Bob does the following:
1. M1 ← HSS.Eval(ek1, I1, F (·, α))
2. y1 ← HSS.ExtEval(ek1, (M1, I1), fα,cin),

where fα,cin : (X, Y ) �→ C(cin − F (X, α), Y )

Output phase. Alice outputs y′
0 ← y0+rout; Bob outputs y′

1 ← y1−rout.

Fig. 2. (Sublinear) Secure Two-Party Computation with One-Sided Statistical Security
from staged-HSS Supporting the Class of RMS Programs.

Lemma 3 (Secure Computation with One-Sided Statistical Security in
the FHSS

update-hybrid model). Let C : F
n0 × F

n1 → F
m be an arithmetic circuit
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over a finite field F. Let staged-HSS be a staged-HSS scheme with pseudorandom
shares supporting the class of RMS programs over F (seen as a ring).

The protocol ΠC provided in Fig. 2 UC-securely implements the two-party
functionality FSFE(C) in the FHSS

update-hybrid model, against a passive adversary
statically corrupting at most one of the parties, with perfect security against
Alice, and computational security against Bob. The protocol uses λO(1) + (n1 +
m) · log |F| bits of communication.

Instantiating FHSS
update Under DCR. We now show how to instantiate FHSS

update for
construction of staged-HSS from DCR (see the full version). This instantiation
is non black-box in the HSS scheme, and uses a combination of the Paillier-
ElGamal encryption scheme, which is provably semantically secure under DCR,
and oblivious linear evaluation (OLE) with one-sided statistical security, which
is known from DCR.

Functionality FOLE

The functionality FOLE for (batch) oblivious linear evaluation is parame-
terized by a finite field F, and interacts with two parties P0 and P1.

Input: Wait to receive (input, 0,u = (u1, . . . , us)) (where u1, . . . , us ∈ F)
from P0 and (input, 1,v = (v1, . . . , vt)) (where v1, . . . , vt ∈ F) from P1.
Output: Compute z ← (ui ·vj)i∈[s],j∈[t], sample z0

$← F
s·t, set z1 ← z−z0;

Output zσ to Pσ for σ ∈ {0, 1}.

Fig. 3. Ideal functionality FOLE for (batch) oblivious linear evaluation.

Protocol ΠHSS
update

Parties: Alice and Bob.
Parameters: F2λ is an exponential-size finite field; n1 is an input size.
staged-HSS is the staged-HSS scheme inspired by [27] using Paillier-
ElGamal under DCR (see the full version). The Paillier-ElGamal cryptosys-
tem itself is parameterized by GenPQ, an algorithm that on input 1λ, gener-
ates (N = p ·q, p, q), where p and q are �(λ)-bit primes where � : N

� → N
� is

a function such that ∀κ ∈ N
�, �(κ) ≥ 1.5κ. Bsk := 22�(λ)−2 log |F| is the base

for the decomposition of the secret key into digits; s := 2�(λ) + 2 log |F| is
the number of cyphertexts needed to encrypt the secret key; t := �n1

log |F|
2�(λ) �.

Hybrid Model: The protocol is defined in the FOLE-hybrid model.
Input: Alice holds (HSS.pk, I0, aux) and Bob holds x1 = (x(1)

1 , . . . , x
(t)
1 ) ∈

Rn1 ≈ [N ]t.
The Protocol:
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1. Alice does the following:
– Parse HSS.pk = (pkPaillierEG,D(0), . . . , D(s−1))

// D(j) is a Paillier-ElGamal encryption under pk of the jth digit of
the secret key in base Bsk

– Parse I0 = (ctind, (ct
(i,j)
ind )(i,j)∈[t]×[s+1])

// ctind is of the form gr, and ct
(i,j)
ind is of the form gri,j

– Parse aux = (gr, pkr
PaillierEG, (gri,j )(i,j)∈[t]×[s+1], (pk

ri,j

PaillierEG)(i,j)∈[t]×[s+1])
// pkPaillierEG = gskPaillierEG mod N2

2. Alice sends (N, pkPaillierEG, ctind) to Bob
3. Alice sends (input, 0, (1‖d)) to FOLE and waits to receive y(0) =

(y(0)
i,j )(i,j)∈[t]×[s+1];

Bob sends (input, 1, x1) to FOLE and waits to receive y(1) =
(y(1)

i,j )(i,j)∈[t]×[s+1].
// Adding the digit 1 to the secret key d condenses the notations of the
encryption of the input alone, and those of the input times each digit of
the secret key, as x · (1, d0, . . . , ds−1) = (x, x · d0, . . . , x · ds−1).

4. Alice does the following:
For each (i, j) ∈ [t] × [s + 1], ci,j ← (1 + N)y

(0)
i,j · hri,j

5. Alice sends c = (ci,j)(i,j)∈[t]×[s+1] to Bob, who waits to receive it.

6. Bob sets ctdep ← (ci,j · (1 + N)y
(1)
i,j )(i,j)∈[t]×[s+1] and outputs I1 ←

(ctind, ctdep).

Fig. 4. Protocol for securely realizing FHSS
update under the circular security of the Paillier-

ElGamal cryptosystem.

Lemma 4 (Instantiating Lemma 3 under DCR). Let HSS be the staged-HSS
scheme inspired by [27] using Paillier-ElGamal (see the full version). Assuming
the DCR assumption holds, the protocol ΠHSS

update provided in Fig. 4 UC-securely
implements the two-party functionality FHSS

update in the FOLE-hybrid model, against
a passive adversary statically corrupting at most one of the parties, with perfect
security against Alice and Bob. The protocol uses O(λ·n1) bits of communication.

We then obtain our final claim.

Theorem 6 (Computation for NC1 with Circuit-Independent-Commu-
nication and One-Sided Statistical Security from Circular Security of
Paillier-ElGamal). Let C be an RMS program with n = n0 + n1 inputs and
m outputs over F2λ . Assuming DCR and the circular security of the Paillier-
ElGamal encryption scheme, there exists a protocol that UC-securely implements
the two-party functionality FSFE(C), against a passive adversary that statically
corrupts at most one of the parties, with perfect security against a corrupted
Alice, and computational security against a corrupted Bob. The protocol uses
λO(1) + O((n + m) · log |F|) bits of communication.
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applicability.
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support for arbitrary secret key distributions at no additional runtime
costs, while using small evaluation keys. (Support for arbitrary secret
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homomorphic encryption library. We provide optimized parameter sets
and implementation results showing that the proposed algorithm has
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in terms of runtime and key size. We illustrate the benefits of our method
by sketching a simple construction of threshold homomorphic encryption
based on FHEW.

Keywords: Automorphism · Blind Rotation · Bootstrapping · Fully
Homomorphic Encryption (FHE) · Threshold Homomorphic
Encryption

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 227–256, 2023.
https://doi.org/10.1007/978-3-031-30620-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30620-4_8&domain=pdf
http://orcid.org/0000-0001-9424-6498
http://orcid.org/0000-0003-3323-9985
http://orcid.org/0000-0002-0974-6787
http://orcid.org/0000-0002-6166-8173
http://orcid.org/0000-0002-6761-3667
http://orcid.org/0000-0002-1010-2698
http://orcid.org/0000-0001-6997-2658
https://doi.org/10.1007/978-3-031-30620-4_8


228 Y. Lee et al.

1 Introduction

The FHEW fully homomorphic encryption scheme [24] and its TFHE variant [21]
are the best-known methods to perform bit-level homomorphic computations on
encrypted data. There are two competing approaches to bootstrap FHEW-like
Fully Homomorphic Encryption (FHE) schemes [21,24,38]: the AP bootstrap-
ping method (originally proposed by Alperin-Sheriff and Peikert [2] and effi-
ciently instantiated in the ring setting by the FHEW cryptosystem [24]), and
the GINX method (originally proposed by Gama et al. [26] and adapted to the
ring setting by the TFHE scheme [21].) A detailed comparison between the two
methods is presented in [38], which concludes that the AP/FHEW method [2,24]
is faster when LWE (Learning With Errors) secret keys follow the Gaussian (or
uniform) distribution, while the (ring) GINX/TFHE method [21,26] has the lead
for the special case of binary LWE secret keys. For the crossover point of ternary
keys, [38] still recommends GINX bootstrapping due to its much lower memory
(bootstrapping key) requirements. Very recently, [8,30] further improved GINX
bootstrapping for ternary secrets by reducing the computation by half. (In our
comparison, we refer to this optimized scheme as GINX∗.) Besides the smaller
running times, a big attraction of using GINX bootstrapping (with binary or
ternary keys, as implemented by [21,38]) is its lower memory footprint, which is
substantially smaller than the AP method.

Efficiency aside, the use of secret keys with large entries is still interesting
for both theoretical and practical reasons. On the theoretical side, the foun-
dation of lattice cryptography only offers solid support for Gaussian keys with
relatively large entries, of the order of O(

√
n) [35,43], where n is the secret vec-

tor dimension serving as a security parameter. The use of smaller keys (e.g.,
with binary coefficients) has also received a substantial amount of theoretical
attention [11,13,27,32,36,37]. However, the current state of the art, provided
by [36]1, only shows that LWE with binary secrets can be proved as hard as
standard LWE (with uniform or gaussian secrets) at the cost of increasing the
secret dimension by a factor O(log q) and the error rate by a factor O(

√
n). So,

motivated by practical considerations (limiting error growth during homomor-
phic computation, and the efficient implementation of GINX bootstrapping),
these theoretical results supporting binary secrets are typically ignored, and
parameters are set based on the best currently known attacks.2 For fairness, this
is also the approach followed in this paper when comparing our work to previous
schemes that benefit from the use of binary secrets.

A more compelling motivation to use larger secret keys in practice is offered
by threshold (lattice-based, homomorphic) encryption [4,6]. Threshold cryptog-
1 The more recent work [11] provides more general results for arbitrary “entropic”

distributions, but does not improve the reduction for binary secrets.
2 This has become quite common for uniformly random binary secrets, and their use

is now included in practical tools, like the lattice estimator of [1]. However, for
extreme parameter settings (e.g., sparse keys or a very large number of samples),
using binary keys is still a source of concern, as they weaken the security of the LWE
problem [3,18], and their use is generally discouraged.
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raphy offers a method to distribute a secret key s among a set of participants,
say P1, . . . , Pk, each holding a share si of the secret key, in such a way that they
can collaboratively decrypt messages. Still, if a subset of parties is corrupted
and their secret shares si are made available to an adversary, ciphertexts retain
their security. So, threshold cryptography eliminates the single point of failure
associated with the secret key and ensures that encrypted data remains secure
unless collaboratively decrypted by all parties.

The use of threshold cryptography is particularly attractive in the setting of
homomorphic computation, as it requires modifications only to the key genera-
tion and decryption procedures. A threshold encryption scheme still has a single
public key p (under which all messages can be encrypted by different parties) and
evaluation key (used to perform homomorphic computations on ciphertexts.) In
other words, applications of threshold Homomorphic Encryption (HE) support
the same, simple workflow of standard (single party) HE: all data owners encrypt
their data under a single public key p, and send their encrypted data to a sin-
gle server that securely performs the encrypted computation, leading to a final
encrypted result. Only at this point, the protocol requires interaction with multi-
ple decryption servers (each holding a secret share si) to recover the final result.
So, by only increasing the cost of decryption (and only by a modest amount, see
below), threshold cryptography guarantees the security of all data (encrypted
under a common public key p), even against the servers holding the decryption
key (as long as they are not all corrupted.3)

Lattices (and the LWE problem) provide a very convenient setting to imple-
ment threshold cryptography, as the public key (p ≈ a · s) is defined as a (noisy)
linear function of the secret key s, for a random, publicly known value a. (See
next section for a more formal definition of the LWE function.) So, distributed
(shared) key generation can be easily implemented by having each party choose
a local public-secret key pair (pi ≈ a · si, si) individually (without any interac-
tion), and then setting the public key to the sum p = p1 + · · · + pk of the local
public keys. It is immediate to see that this is a valid public key corresponding
to the secret key s = s1 + · · ·+ sk implicitly shared by all parties. In fact, this is
how keys are generated in [6] (using uniformly random si) and [4] (using an arbi-
trary LWE key generation algorithm for each si.) Decryption can also easily be
implemented4 by decrypting a ciphertext c using the individual secret key shares
and then adding up the partial decryptions. So, key generation and decryption
are minimally interactive.5 We remark that the threshold schemes [4,6] predate
FHEW-like HE ([6] does not explicitly provide any homomorphic computation
capability, and [4] is a BGV-type encryption scheme.) However, the same prin-
3 As standard in HE, we consider security against passive adversaries, in which case

the security threshold can be set to k − 1.
4 This requires some care, adding noise to the partial decryptions to avoid information

leakage, as already done in [4,6]. In this paper, we focus on the distributed key
generation and homomorphic computation stages, which are the most relevant to
FHE bootstrapping.

5 HE also requires the generation of public evaluation keys, which introduces some
additional complications, and is discussed below.
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ciples apply to virtually any LWE-based encryption scheme, including those
considered in this paper. Now comes a critical observation: even if the local key
shares si have binary coefficients, their sum s (used by homomorphic computa-
tions and bootstrapping) is no longer binary and has coefficients potentially as
large as k, the number of parties participating in the shared decryption protocol.
Depending on the application, this number can be quite high, requiring similarly
large secret keys. (E.g., see [17] for an application of lattice-based threshold
(additively) HE with as many as 1000 parties.)

The FHEW-like cryptosystems with either AP or GINX bootstrapping are
the most attractive methods for bit-level homomorphic computations.6 But when
ported to the threshold cryptography setting (with its correspondingly larger
secrets), FHEW-like encryption presents the user with a difficult choice between

– the AP bootstrapping method of [2,24], with its fast performance (essentially
independent of the secret key size) but very large evaluation keys, and

– the GINX bootstrapping method and its variants [21,26,29,38], with much
smaller evaluation keys, but substantially larger running time due to the use
of large secret keys.

A related class of applications to “multi-key HE” is discussed later on. So, one
may ask the question: is it possible to design a bootstrapping procedure that
offers the advantages of both methods, i.e., fast bootstrapping with arbitrarily
distributed secret keys and small public evaluation keys?

1.1 Our Results

We answer the above question in the affirmative, designing a new bootstrapping
procedure that supports the use of arbitrary secret key distributions without
any performance penalty (similar to AP/FHEW bootstrapping) while keeping
the attractive small size of GINX/TFHE bootstrapping keys. In fact, we even
improve upon the performance of the best previously known scheme (with binary
secrets), both in terms of key size and running time. For example, for the simple
case of a (single user) gate bootstrapping operation at a 128-bit target security
level, we improve upon previous schemes by reducing the evaluation key size by
30% (from 20MB to 14MB) while also slightly reducing the running time. (See
Sect. 5 for details.) The impact of our bootstrapping method becomes significant
with larger keys or a moderately large number of threshold decryption servers.
Our method offers the additional advantage of reducing the amount of noise
introduced during bootstrapping, even for the case of binary keys that are the
most favorable to GINX so far. The improvements over previous methods are
both theoretical (reducing either the running time or memory requirement of
previous bootstrapping procedure by factors as high as O(log n), depending on
the size of the secret keys/threshold group size), and practical. We verified our
6 Other methods oriented towards arithmetics on integer or approximations to

real/complex numbers like [12,19] offer advantages for a complementary set of appli-
cations, but are not within the scope of our paper.
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theoretical results and the practicality of the proposed method with experiments,
performed using a prototype implementation within the PALISADE/OpenFHE
open-source homomorphic encryption library [5,41].

1.2 Techniques

The main operation underlying both AP and GINX bootstrapping is the evalu-
ation of a so-called “blind rotation”. This operation takes some polynomial f0 as
an input and “rotates” it by some value encrypted within a given LWE ciphertext
(�α = (α0, . . . , αn−1) , β) using secret key �s = (s0, . . . , sn−1). (See Sect. 2 for more
details.)

Starting with the encryption RLWE(f0) of a polynomial f0, previous blind
rotation algorithms work as follows: at step i, given an encryption RLWE(fi−1) of
a polynomial fi−1(X) = f0 ·X

∑
j≤i−1 αjsj , homomorphically compute RLWE(fi)

of an updated polynomial fi = fi−1 · Xαi·si = f0 · X
∑

j≤i αjsj , using a publicly
known constant αi (part of the input LWE ciphertext) and an encryption7 E(si)
of a secret key coordinate si. After repeating this step n times, we obtain the
encryption of RLWE(f0 · X〈�α,�s〉), which is a negacyclic rotation of f0 by 〈�α,�s〉
positions. The difference between the two bootstrapping procedures is that

– AP works by including in the evaluation key encryptions E(α · si) for all
possible values of α and then using αi as a selector to pick one of them. This
allows using arbitrary keys si with no impact on the running time, but also
requires large evaluation keys due to the need to store multiple encryptions
E(α · si) for every secret key element si.8

– GINX on the other hand works by assuming si ∈ {0, 1} is a single bit, and
using E(si) as a selector between the original ciphertext RLWE(fi−1) and
a modified one RLWE(fi−1 · Xαi), using a homomorphic “MUX” gate. This
only requires a single encryption E(si) for each key element, but it is directly
applicable only to binary secrets. Larger secrets can be handled in a number of
ways, but not without a cost either in terms of key size or computation time.
For example, [38] shows how to handle k-bit secrets by increasing both the
evaluation key size and the bootstrapping running time, each by a factor k.
A different tradeoff is given in [29], which incurs a smaller increase in running
time (for small values of k) but at the cost of increasing the key size by an
exponential factor 2k − 1. Both methods also result in higher bootstrapping
noise.

In this paper, we present new techniques and optimizations to perform blind
rotations using ring automorphisms and key switching. In its most basic form,
the idea is the following: given RLWE(fi−1(X)), one can first apply a ring

7 Under a typically different scheme E(·), used when generating the evaluation key.
8 The method also offers storage memory trade-offs, decomposing a into a sequence

of smaller “digits”, but the same remarks apply.
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autormorphsim9 ψ1/αi
(·) where ψa(h) := h(Xa). This gives an encryption of

fi−1(α−1). Next, we homomorphically multiply the ciphertext by Xsi , to get an
encryption of fi−1(α−1) · Xsi . Finally, we apply the ring automorphism ψαi

(·)
to get an encryption of fi−1(X) ·Xαisi . After repeating this process n times, we
obtain the encryption of RLWE(f0 · X〈�α,�s〉).

The idea of using automorphisms is not new. For example, it was already
used in a different context by Halevi and Shoup [28] to implement linear transfor-
mations and permutation networks in the (BGV-based) HElib library. Directly
related to our use is the work of Bonnoron et al. (following a suggestion of Mic-
ciancio [7, Footnote 6]), which first used automorphisms to reduce the key size
of a variant of the FHEW cryptosystem, in a way that is essentially the same
as in the basic algorithm presented in our paper, but with some crucial techni-
cal differences. Specifically, in [7] the method is applied to the product of two
cyclic polynomial rings of prime order, while we apply it to a single power-of-two
cyclotomic ring, which is more practical but also more challenging. In fact, in
prime-order cyclic rings, automorphisms ψα exist for any (nontrivial) value of α,
making their application in [7] rather strightforward. However, in the power-of-
two cyclotomic setting (as used by FHEW and our paper), automorphisms ψα

exist only for odd values of α, and we need to develop new techniques to deal
(efficiently) with even values of α. It should also be noted that [7] investigates a
nontrivial extension of FHEW (to large gates with multi-bit inputs and outputs),
resulting in much higher running times. By comparison, our work focuses on the
simpler setting of homomorphic computations with small (binary) gates, and
uses several algorithmic ideas which make the application of the automorphisms
based method more practical and efficient than [7].

The basic algorithm based on automorphisms can be improved in a number
of ways. For example, as already mentioned in [7], automorphisms from different
steps can be composed together and replaced by a single automorphism. Other
optimizations, specific to our paper, revolve around the technical difficulty that
in a power-of-two cyclotomic automorphisms ψα exist only for odd coefficients
while bootstrapping requires multiplication by both even and odd values of α.
Moreover, the resulting methods require a substantial number of “automorphism
keys”, to perform the required key switching after each application of ψa. We
further improve the performance of the algorithm by introducing a new blind
rotation strategy that reorders the secret key elements s1, . . . , sn. Instead of
iterating over the si (homomorphically multiplying by si), and the applying
automorphism ψαi/αi+1 at each step, we iteratively apply a fixed automorphism
ψg (where g generates a large subgroup Z

∗
q). This alone produces rotations f0 ·

Xgi

for all possible values of gi ∈ Z
∗
q . Then, we intersperse the homomorphic

multiplications by the secret key elements sj when gi is the correct value of
αj . The final result is RLWE(f0 · X〈�α,�s〉) as desired, but using only a single
automorphism key corresponding to the generator g. Notice how our proposed

9 The automorphism ψa alone maps an encryption under z(X) to an encryption under
modified key z(Xa). Then, key-switching is used to turn this into an encryption
under the original key z(X).
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method is applicable to arbitrary keys, and its performance is independent of
the range of the secret coordinates si.

The possibility of reducing the key size by reordering the operations is one
of the ideas already suggested in [7, Appendix F], but without filling in many
important technical implementation details, and offering only a heuristic esti-
mate of the potential memory savings. Fully developing the idea into a concrete
algorithm, and providing a rigorous performance analysis as well as an imple-
mentation and experimental evaluation, is one of the main contributions of our
work. In fact, in the intuitive explanation of the technique given above we omit-
ted several important technicalities:

– The coefficients αi are arbitrary integers in Zq, while automorphisms exist
only for invertible α ∈ Z

∗
q .

– The multiplicative group Z
∗
q is not cyclic, but factors as the product of two

groups of size q/4 and 2.
– In order to run over all of Z∗

q , the automorphism g needs to be applied O(q)
times, but we would like the computation to take only O(n) steps, indepen-
dently of q.

The algorithms presented in our paper address all these difficulties and introduce
further optimizations, which we analyze both in terms of worst-case and average-
case complexity. As a result, our final algorithm achieves the best performance
among all the known blind rotation techniques for FHEW-like cryptosystems
both in terms of running time and key size.

Remark 1. In practice, one can use Torus LWE or other similar structures over
Ring LWE as demonstrated in [21]. To compare all bootstrapping methods
observed in the same environment, we will use only Ring LWE in this paper
following [38]. We note that it is straightforward to apply Torus LWE to each of
the observed methods as it has shown in [21] for GINX.

1.3 Applications to Threshold and Multi-key FHE

As described earlier, the linear properties of LWE allow to easily build threshold
public-key encryption schemes: each party locally generates a key pair pi ≈ a ·si,
and the public key p = p1+ · · ·+pk can be set to the sum of the individual pub-
lic keys. Things are more complex for threshold FHE. This is because, beside a
public encryption key p, one needs to generate an evaluation key, which is essen-
tially an encryption Ep(s) of the secret key s = s1+ · · ·+sk under the public key
p. Naturally, this can be done using generic techniques from secure multiparty
computation, with each party holding si as a local input, and common input p.
However, this would not be quite practical. In fact, [4] gives specialized protocols
to compute the evaluation key, but the method is specific to the BGV encryp-
tion scheme underlying their protocol. So, an interesting question is if a similar
specialized evaluation key generation protocol can be designed for the threshold
version of FHEW-like HE schemes. We observe that this is indeed possible, again
using the linear homomorphic properties of lattice-based encryption. Specifically,
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after generating the global public key p, parties can encrypt their own secret
shares Ep(si) under it. Since all the shares are encrypted under a common pub-
lic key, they can be added up, resulting in a HE

∑
i Ep(si) = Ep(

∑
i si) = Ep(s)

of the global secret key.10
Our blind rotation techniques also require the generation of switching keys

to be used in conjunction with the ring automorphisms ψa. Again, a special-
ized distributed key generation algorithm can be built using the linearity of
LWE encryption and the automorphisms. More in detail, in order to apply the
automorphism ψa to a ciphertext, one needs to generate an encryption of the
permuted secret key Ep(ψa(s)). Using the linearity of ψa, this can be achieved by
having each party computing the encryption Ep(ψa(si)) of a permuted key share,
and then combining these ciphertexts into

∑
i Ep(ψa(si)) = Ep(

∑
i ψa(si)) =

Ep(ψa(
∑

i si)) = Ep(ψa(s)). The difference with standard (non-threshold) key
generation, is that when the evaluation key is computed by a single party, the
switching key Ep(ψa(s)) can be computed using a more efficient (and less noisy)
private key version of LWE encryption Es(ψa(s)). Here, in order to distribute the
computation among parties that only have shares si of the secret key, encryption
is performed using the common public key p.

Another potential application of our techniques is Multi-Key HE. This is
a generalization of HE where messages can be encrypted under independently
generated public keys p1, . . . , pk, and still allow to perform joint computations
on them. Naturally, decrypting the final result requires knowledge of all relevant
secret keys s1, . . . , sk. So, this is similar to threshold encryption, but with the
difference that p1, . . . , pk are not combined in advance into a single public key
p, and the set of keys can be chosen dynamically. GSW-based (e.g., FHEW-like)
multi-key HE schemes were proposed in a sequence of works [14,16,23,40,42].
These schemes typically work by combining ciphertexts encrypted under different
keys into a “multi-ciphertext”, corresponding to the concatenation of the keys.
Since the secret (decryption) key is also a concatenation, if the individual keys si

are binary (as is the case for example in [16]), their concatenation is also binary,
and one can make direct use of the efficient GINX bootstrapping for binary keys.
However, these concatenated “multi-ciphertexts” are much longer than simple
RLWE encryption, and the cost of bootstrapping (compared to the single key
setting) is even higher than GINX with large keys. (Specifically, it grows linearly
with the number of parties, rather than logarithmically.) Recently, [45] have
proposed a multi-key HE scheme with compact ciphertexts. Interestingly, this
compact scheme combines the individual secret keys by taking their sum. So,
it requires an efficient bootstrapping method with non-binary keys. Similar to
the threshold encryption setting, our techniques can be applied to speed up
bootstrapping while keeping a small evaluation key.

10 Calculation of
∑

i Ep(si) proposed in this paper is done by the products of RGSW
ciphertexts encrypting secret shares (see Sect. 6.).
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1.4 Other Important Related Works

Besides bootstrapping of FHEW/TFHE, blind rotation is a useful tool to evalu-
ate arbitrary functions in HE. For example, the Cheon-Kim-Kim-Song (CKKS)
scheme [19] is efficient in the evaluation of complex numbers, but it only supports
addition and multiplication. Thus, the ReLU and comparison functions, which
are important components of neural networks, are evaluated using blind rota-
tion in [9,22,33,34] as they are not represented as polynomials in real numbers.
Also, a generalized bootstrapping for all the RLWE-based HE schemes includ-
ing CKKS, Brakerski-Gentry-Vaikuntanathan(BGV) [12], and Brakerski/Fan-
Vercauteren (BFV) [10,25], was proposed using blind rotation in [30].

1.5 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the
previous blind rotation techniques are presented in Sect. 2. In Sect. 3, a new blind
rotation algorithm and its variants are proposed. The theoretical analysis and
comparison to prior works are given in Sect. 4 and the implementation results
are given in Sect. 5. In Sect. 6, a threshold HE scheme based on our proposed
blind rotation is described as a possible application. Finally, we conclude with
remarks in Sect. 7.

2 Preliminaries

Let N be a power of two. We denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by RQ := R/QR. Ring elements in R
are indicated in bold, e.g. a = a(X). For two vectors �a and �b, we denote their
inner product by 〈�a,�b〉. We denote a vector of ones of length n by �1n. All log-
arithms are base 2 unless otherwise indicated. We write the floor, ceiling and
round functions as �·�, 	·
 and �·
, respectively. For q ∈ Z and q > 1, we identify
the ring Zq with [−q/2, q/2) as the representative interval, and for x ∈ Z we
denote the centered remainder of x modulo q by [x]q ∈ Zq. We extend these
notations to elements of R by applying them coefficient-wise. We use a ← S
to denote uniform sampling from the set S. We denote sampling according to a
distribution χ by a ← χ.

2.1 Basic Lattice-Based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Zq under the secret
key �s ← χkey is defined as

LWEq,�s(m) = (�α, β) = (�α,−〈�α,�s〉 + e + m) ∈ Z
n+1
q ,

where �α ← Z
n
q and error e ← χerr. We occasionally drop subscripts q and �s

when they are obvious from the context.
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For a positive integer Q and a power of two N , basic RLWE encryption of
m ∈ R under the secret key z ← χkey is defined as

RLWEQ,z (m) := (a,−a · z + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e where i ∈ [0, N − 1].
As with LWE, we will occasionally drop subscripts Q and z.

We say that (t0, · · · , tdg−1) is a gadget decomposition of t ∈ RQ if t =
∑dg−1

i=0 gi · ti where �g = (g0, . . . , gdg−1) is a gadget vector, and ‖ti‖∞ < Bg. We
adapt the definitions of RLWE′ and RGSW from [38]. For a gadget vector �g, we
define RLWE′

z (m) and RGSWz (m) as follows

RLWE′
z (m) :=

(
RLWEz (g0 · m),RLWEz (g1 · m), · · · ,RLWEz (gdg−1 · m)

) ∈ R2d
Q

RGSWz (m) :=
(
RLWE′

z (z · m),RLWE′
z (m)

) ∈ R2×2d
Q .

The scalar multiplication between an element in RQ and RLWE′ ciphertext

 : RQ × RLWE′ → RLWE

is defined as

t  RLWE′
z (m) = 〈(t0, · · · , tdg−1),

(
RLWEz (g0 · m), · · · ,RLWEz (gdg−1 · m)

)〉

=
dg−1∑

i=0

ti · RLWEz (gi · m) = RLWEz

⎛

⎝
dg−1∑

i=0

gi · ti · m

⎞

⎠

= RLWEz (t · m) ∈ R2
Q,

For each error ei in RLWEz (gi · m), the error after multiplication is equal to
∑dg−1

i=0 ti · ei which is small if ti and ei are small.
The multiplication between RLWE and RGSW ciphertexts

� : RLWE × RGSW → RLWE

is defined as

RLWEz (m1) � RGSWz (m2) = (a, b) �
(
RLWE′

z (z · m2),RLWE′
z (m2)

)

= a  RLWE′
z (z · m2) + b  RLWE′

z (m2)
= RLWEz (a · z · m2) + RLWEz (b · m2)

= RLWEz (m1 · m2 + e1 · m2) ∈ R2
Q.

This result represents an RLWE encryption of the product m1 · m2 with an
additional error term e1 · m2. In order to have RLWEz (m1) � RGSWz (m2) ≈
RLWEz (m1 · m2), it is necessary to make the error term e1 · m2 small. This can
be achieved by using monomials m2 = ±Xυ as messages. The multiplication
between RLWE�RGSW is naturally extended to RGSWz (m1)�RGSWz (m2) ≈
RGSWz (m1 · m2).
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Remark 2. We note that for gadget vector �g = (1, Bg, . . . , B
dg−1
g ), we can ignore

t0 without a disadvantage and reduce runtime and key size. The error intro-
duced by  is dgN

B2
g

12 σ2, where σ2 is error variance of a fresh ciphertext.

The error variance of
∑dg−1

i=1 ti · RLWEz (gi · m) = RLWEz

(∑dg−1
i=1 gi · ti · m

)

is (dg − 1)N B2
g

12 σ2 +Var(t0 · m), where Var(γ) is the variance of random variable
γ. Thus, it has less or equal error as long as Var(m) ≤ σ2, but saves one RLWE in
RLWE′ and one NTT in . This is similar to approximate gadget decomposition
proposed in [21].

Public-key Lattice-based Encryption. If an encryption of zero pkRLWE
z =

RLWEz (0) = (a,−a·z+e) is given as a public key, then the public-key encryption
can be done as

EncRLWE(m; pkRLWE
z ) := v · pkRLWE

z + (e0,m + e1) = RLWEz (m),

where v ← χkey, and e0,e1 ← χerr.
We also can find encryption of z · m without the knowledge of z by slightly

modifying the public key encryption (with the same amount of noise) as follows:

Enc′RLWE(m; pkRLWE
z ) := v · pkRLWE

z + (m + e0,e1) = RLWEz (zm).

Using EncRLWE one can generate RLWE′ ciphertexts, and also can generate RGSW
ciphertexts together with Enc′RLWE under the secret z.

Key Switching in RLWE The key switching operation converts a cipher-
text RLWEz1(m) encrypted under a secret key z1 to a ciphertext RLWEz2(m)
encrypted by a new secret key z2. There are different variants of the key switch-
ing technique and readers can refer to the literature (e.g., see [31]) for details.
We focus on the BV key switching method [15]:

– KSGen(z1,z2): Outputs swk = RLWE′
z2
(z1).

– KSz1→z2(RLWEz1(m), swk): Given RLWEz1(m) = (a, b), it outputs

RLWEz2(m) = a  RLWE′
z2
(z1) + (0, b) (mod Q).

RLWE′
z2
(z1) generated by KSGen is a public switching key. The key switching

error is equal to the error of R  RLWE′ multiplication.

Automorphisms in RLWE. In order to perform some operations in HE, we
use the automorphisms of R. There are N automorphisms ψt : R → R given
by a(X) �→ a(Xt) for t ∈ Z

∗
2N . We naturally extend ψt to R2 to apply the

automorphism on a RLWE ciphertext. Automorphisms are applied using the
following procedures which make use of a special set of switching keys akt =
RLWEz(X)(z(Xt)):

– EvalAutot (RLWEz (m), akt): Given RLWEz (m(X)) = (a(X), b(X)) and
switching key akt, apply ψt to a(X) and b(X) to obtain (a(Xt), b(Xt)),
which is an RLWE encryption of m(Xt) under the secret key z(Xt). Then
apply the key switching function KSz(Xt)→z(X) on the RLWEz(Xt)(m(Xt))
ciphertext, to produce the final output ciphertext RLWEz(X)(m(Xt)).
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We note that ψ is a permutation on the coefficients of the elements of R, which
is easily calculated. ψt does not introduce additional error as an automorphism
ψt is a norm-preserving map.

2.2 FHEW-Like Bootstrapping

We briefly explain FHEW-like bootstrapping for NAND gates [24,38]. FHEW-
like NAND gate bootstrapping starts with two LWEq,�s ciphertexts with a small
modulus q and adds them (HomNAND). After blind rotation and extraction pro-
cedures, we obtain an LWEQ,�z encryption of the result with a higher ciphertext
modulus Q. Using a sequence of modulus and key switchings we get back to an
LWEq,�s ciphertext. The bootstrapping procedure is shown in Fig. 1. We focus
on the blind rotation part and refer to [38] for more details on other parts of
FHEW-like bootstrapping.

Fig. 1. NAND gate bootstrapping procedure of FHEW scheme [24,38]

Blind Rotation. Blind rotation is an operation that multiplies a given ring
element f ∈ RQ by a monomial Y u, where the exponent u = β + 〈�α,�s〉 ∈ Zq is
given by an LWE ciphertext (�α, β) ∈ Z

n+1
q encrypted under a secret key �s ∈ Z

n
q .

The output of the blind rotation is an RLWE encryption of f ·Y u, where q is small
in practice (q ≈ 210 in [21,24] and q ≈ 212 in [30]). The operation is called “blind
rotation” because it rotates the coefficients of f negacyclically, by an amount u
which is provided in encrypted form. A formal definition is given below.

Definition 1 (Blind Rotation). For q|2N , let Y = X
2N
q . A blind rotation is

an algorithm which takes as input a ring element f ∈ RQ, an LWEq,�s ciphertext
(�α, β) ∈ Z

n+1
q , and blind rotation keys brkz ,�s corresponding to secrets z and �s,

and outputs an RLWE ciphertext

RLWEQ,z

(
f · Y β+〈�α,�s〉

)
∈ R2

Q.
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Two different blind rotation algorithms were proposed in [21,24]. Follow-
ing [38], we refer to the two algorithms as “AP blind rotation” and “GINX blind
rotation” respectively, as they are optimized ring versions of two bootstrapping
procedures (for general LWE) originally proposed in [2] (AP) and [26] (GINX).
Both methods rely on the properties of RGSW ciphertexts described above.

AP Blind Rotation. In AP blind rotation [2,24], the blind rotation keys are
generated for each element si ∈ Zq of the secret �s as

brkAP = {brki,j,v = RGSWz (Y vBj
rsi)}i,j,v

for i ∈ [0, n − 1], j ∈ [
0, logBr

(q) − 1
]
, and v ∈ ZBr

. In the algorithm, acc is
initialized to the trivial encryption acc = RLWEQ,z (f · Y β) = (0,f · Y β). Then,
for each i ∈ [0, n − 1], αi is decomposed in base Br as αi =

∑logBr
(q)−1

j=0 αi,jB
j
r

and acc is updated sequentially for all αi,j as

acc ← acc � RGSWz (Y αi,jBj
rsi).

The full procedure of AP blind rotation is described in Algorithm 1.

Algorithm 1. Blind Rotation: AP [2,24]

1: procedure BlindRotateAP(f , (�α, β), {brki,j,v = RGSWz (Y
vBj

rsi)}i,j,v)
2: acc ← (0, f · Y β)
3: for (i = 0; i < n; i = i + 1) do
4: for (j = 0; j < logBr

(q); j = j + 1) do
5: αi,j =

⌊
αi/Bj

r

⌋
(mod Br)

6: acc ← acc � brki,jαi,j

7: return acc = RLWEz (f · Y u)

AP blind rotation supports all types of secret key distributions and provides a
useful tradeoff between space and computational complexity based on the choice
of the base Br ≥ 2. Greater Br allows performing computations faster at the
cost of storing more rotation keys, while smaller Br reduces storage overhead
but increases computational time.

GINX Blind Rotation. GINX blind rotation [21,26] is more efficient than AP
when the secret key �s is set to a binary or ternary vector, but its performance
degrades when using larger secret keys [38]. In the general case, each secret key
element si ∈ Zq, i ∈ [0, N − 1], is expressed as subset-sum si =

∑|U |−1
j=0 uj ·

si,j where si,j ∈ {0, 1} and U ⊂ Zq is an appropriately chosen subset of Zq.
To express arbitrary elements of Zq one can use U = {1, 2, 4, . . . , 2k−1}. But
one can also use U = {1} and U = {1,−1} for binary and ternary secrets,
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respectively [38]. Using this notation for any fixed set U , the blind rotation key
is generated as

brkGINX = {brki,j = RGSWz (si,j)}
where i = 0, . . . , n − 1 and j = 0, . . . , |U | − 1. In the algorithm, acc is initiated
to acc = RLWEQ,z (f · Y β) = (0,f · Y β) and updated as

acc ← acc+ (Y αiuj − 1) · (acc � RGSWz (si,j)).

If si,j = 0, the second addendum is ignored since it gives an encryption of
0 and the value stored by the accumulator stays the same. If si,j = 1, then
acc�RGSWz (1) is equal to acc and the accumulator is updated to Y αiuj · acc.
Repeating this procedure for all j ∈ [0, |U | − 1] results in Y αisi · acc. The full
procedure for GINX blind rotation is described in Algorithm 2.

Algorithm 2. Blind Rotation: GINX [21,26,38]
1: procedure BlindRotateGINX(f , (�α, β), {brki,j = RGSWz (si,j) | si =

∑
si,juj})

2: acc ← (0, f · Y β)
3: for (i = 0; i < n; i = i + 1) do
4: for (j = 0; j < |U |; j = j + 1) do
5: acc ← acc+ (Y αiuj − 1) · (acc � brki,j)

6: return acc = RLWEz (f · Y u)

It is easy to see that for the small U this procedure may be efficient in both
key size and running time. However, the running time and storage overhead grow
significantly with larger secret key distributions. GINX blind rotation is more
efficient than AP for secret keys �s chosen from small distributions such as binary
or ternary secret keys; but less efficient for general key size.

There is another optimization of GINX to remove the second loop in Algo-
rithm 2 in such a way that it has about half of the computations and the same
key size and error for ternary keys. However, it is only optimized for ternary
keys [8,30] and cannot be efficiently extended to larger keys. A variant of GINX
was proposed in [29], which is a generalization of methods in [38] and [30], how-
ever, using binary and ternary secrets is suggested as they are the most efficient.

3 New Blind Rotation Techniques

In this section, we present new blind rotation algorithms which improve on
previous methods [2,20,21,24,26,29,38] in terms of running time, public key
size, or both. Our algorithms update an accumulator ciphertext acc initialized
to acc = (0,f ′) = RLWE(f ′), holding the encryption of a ring element f ′

related to f , to be specified. The accumulator is updated through a sequence
of RLWE � RGSW products, where RLWE holds the value of the accumulator
acc, and RGSW is an auxiliary ciphertext brki holding a secret key element si.
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Unlike previous techniques, our algorithms do not substitute multiplication in
the exponent by series of additions (i.e. RLWE�RGSW products) but make use
of ring automorphisms ψt and their associated switching keys akt instead.

For brevity, we first describe a core blind rotation algorithm for the case
where q = 2N and all αi are odd since ψt is only defined for odd t, and then
provide its variants and optimizations for other cases.

3.1 The Core Blind Rotation Algorithm

We recall that the goal of the algorithm is to rotate the accumulator by Y 〈�α,�s〉 =
Y

∑
i αisi , where

∑
i αisi is computed modulo q = 2N . For N ≥ 8 the group

Z
∗
2N is isomorphic to ZN/2 ⊗ Z2 with generators {g,−1} (e.g., g = 5) and every

t ∈ Z
∗
2N can be written as ±gk where k ∈ ZN/2. Let αi = ±gki (mod 2N) for i =

0, . . . , n−1. Let I+� =
{
i : αi = g�

}
and I−

� =
{
i : αi = −g�

}
, for 	 ∈ [0, N/2−1].

Using the fact that gN/2 = 1 (mod 2N) we have the following decomposition
∑

i αisi =
(∑

j∈I+
0

sj + · · · + g
(∑

j∈I+
N/2−1

sj − g
(∑

j∈I−
0

sj + · · · + g
(∑

j∈I−
N/2−1

sj

))))
(mod 2N).

Denote brkj := RGSWz (Xsj ). Given an initial ciphertext acc =
RLWE0

z (f ′(X)), we first multiply it by brkj for all j ∈ I−
N/2−1, then apply

automorphism EvalAutog to acc and obtain

acc = RLWEz

(

f ′(Xg) · X
g·∑

j∈I
−
N/2−1

sj

)

.

Then we multiply the accumulator by brkj for j ∈ I−
N/2−2 and again apply

automorphism EvalAutog to acc. This process is repeated for both I−
� and I+�

for all 	 = N/2− 1, ..., 0. However, at the (N/2)th step (i.e., after multiplication
by I−

0 ) we apply the automorphism EvalAuto−g instead of EvalAutog, and (as
an optimization) we skip the multiplication by the set I+0 . The final result is

acc = RLWEz

(
f ′

(
X−g(N/2)−1

)
· X

∑
i αisi

)
.

If we set f ′(X) = f (X−g) · X−gβ , this equals acc = RLWEz

(
f(X) · Xβ+〈�α,�s〉).

During the computation, we use n keys brki for i ∈ [0, n − 1] and two automor-
phism keys akg and ak−g. The algorithm performs two types of homomorphic
operations: RLWE�RGSW multiplications and key switching for automorphisms.
The number of RLWE�RGSW multiplications is n, and the number of automor-
phisms is N −1. We can reduce the number of automorphisms when some of the
I±
� are empty because the automorphisms between them can be composed and

replaced by a single automorphism application. However, this requires storing a
large number of automorphism keys ak±gu for all possible values of u. Instead,
for efficiency purposes, we store only a small number of keys {akgu}u∈[1,w] for
some parameter w which we call the window size. The full algorithm is provided
in Algorithm 3. We will see in Sect. 4 that with a quite small window size we can
achieve essentially the same improvement as when storing keys for all N possible
automorphisms.
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Algorithm 3. Core Blind Rotation Sub Algorithm for odd αi

1: procedure BlindRotateCore
(
acc, �α, {brki}i∈[0,n−1] , {akgu}u∈[1,w] , ak−g

)

2: v ← 0
3: for (� = N/2 − 1; � > 0; � = � − 1) do
4: for j ∈ I−

� do
5: acc ← acc � brkj

6: v ← v + 1
7: if (I−

�−1 �= ∅ or v = w or l = 1) then
8: acc ← EvalAutogv (acc, akgv )
9: v ← 0

10: for j ∈ I−
0 do

11: acc ← acc � brkj

12: acc ← EvalAuto−g(acc, ak−g)
13: for (� = N/2 − 1; � > 0; � = � − 1) do
14: for j ∈ I+

� do
15: acc ← acc � brkj

16: v ← v + 1
17: if (I+

�−1 �= ∅ or v = w or l = 1) then
18: acc ← EvalAutogv (acc, akgv )
19: v ← 0
20: for j ∈ I+

0 do
21: acc ← acc � brkj

22: return acc

3.2 Dealing with Even αi

We provide several solutions to overcome the issue with even αi.

Memory Efficient Algorithm. One solution is to set ωi = αi − 1 if αi is even
and ωi = αi if αi is odd. Now we can apply the core blind rotation algorithm for
the vector �ω and obtain RLWE

(
f · Xβ+〈�ω,�s〉). Then we repeatedly multiply brki

for each even αi. This algorithm requires n/2 additional RGSW multiplications
on average. If we store one additional key brknsum := RGSW(X− ∑

i si), and in
case of the number of even αi is greater than n/2, we initially multiply acc by
brknsum := RGSW(X− ∑

i si), and update αi ← αi+1. This will make the number
of odd αi to be greater than half, mitigating the worst case. The full algorithm
is provided in Algorithm 4.

Computation Efficient Algorithm. We can get rid of additional multiplica-
tions for even αi in the previous solution by using auxiliary blind rotation keys
brk∗

i := RGSW(Xsi+si+1), for i ∈ [0, n − 2]. The idea is to find odd α′
i such that∑

i αisi =
∑

i α′
is

′
i, where s′

i is either equal to si or to si+si+1. First, we assume
that α0 is odd and set α′

0 = α0, otherwise, we initially multiply the accumulator
by brknsum and update αi ← αi+1. Then at each step i, assuming (by induction)
that α′

i is odd, we consider two cases, depending on the parity of αi+1. If αi+1
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Algorithm 4. Memory Efficient Blind Rotation Algorithm, q = 2N

1: procedure BlindRotateME
(
f , �α, β, {brki}i∈[0,n−1] , brknsum, {akgu}u∈[1,w] , ak−g

)

2: acc ← (0, f
(
X−g

) · X−gβ)
3: if number of even αi is > n/2 then
4: acc ← acc � brknsum
5: �α ← �α + �1n (mod 2N)

6: for (i = 0; i < n; i = i + 1) do
7: if αi is even then
8: ωi ← αi − 1 (mod 2N)
9: else

10: ωi ← αi

11: acc ← BlindRotateCore(acc, �ω, {brki} , {akgu} , ak−g)
12: for (i = 0; i < n; i = i + 1) do
13: if αi is even then
14: acc ← acc � brki

15: return acc = RLWEz (f (X) · Xβ+〈�α,�s〉)

is odd, we set s′
i = si and α′

i+1 = αi+1. Otherwise, we set s′
i = si + si+1 and

balance this by setting α′
i+1 = αi+1 −αi. In either case, the value of α′

i+1 is odd,
preserving the inductive hypothesis, and we may move to the next iteration. For
the last iteration we always set s′

n−1 = sn−1. Note that during the process we do
not need to know the values si, we only have the information of whether s′

i = si

or s′
i = si + si+1. The full algorithm is provided in Algorithm 5.

Algorithm 5. Computation Efficient Blind Rotation Algorithm, q = 2N

1: procedure BlindRotateCE
(
f , (�α, β), {brki}i∈[0,n−1] , {brk∗

i }i∈[0,n−2] ,
)

brknsum, {akgu}u∈[1,w] , ak−g

2: acc ← (0, f
(
X−g

) · X−gβ)
3: if α0 is even then
4: acc ← acc � brknsum
5: �α ← �α + �1n (mod 2N)

6: Find odd α′
i :

∑
i αisi =

∑
i α′

is
′
i

7: for (i = 0; i < n; i = i + 1) do
8: if s′

i = si then
9: brk′

i ← brki

10: else
11: brk′

i ← brk∗
i

12: acc ← BlindRotateCore(acc, �α′, {brk′
i} , {akgu} , ak−g)

13: return acc = RLWEz (f (X) · Xβ+〈�α,�s〉)

Case q = N. In FHEW-like cryptosystems [21,24,38], commonly the blind
rotation input LWE ciphertext (�α, β) has a modulus q < 2N . The use of q <
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Algorithm 6. Blind Rotation Algorithm, q = N

1: procedure BlindRotateOptim
(
f , �α, β, {brki}i∈[0,n−1] , brknsum, {akgu}u∈[1,w] , ak−g

)

2: acc ← (0, f
(
X−g

) · X−2gβ)
3: acc ← acc � brknsum
4: �α′ ← 2�α + �1n (mod 2N)
5: acc ← BlindRotateCore(acc, �α′, {brki} , {akgu} , ak−g)

6: return acc = RLWEz (f (X) · X2(β+〈�α,�s〉))

2N helps decrease the key size of AP-style bootstrapping. The size of q affects
the decryption failure of LWE ciphertexts. However in practice, in the most
interesting case, we can achieve q = N with a negligible probability of decryption
failure.

For our case we raise the modulus from N to 2N , by multiplying the cipher-
text (�α, β) by factor 2, resulting (2�α, 2β) with all even 2αi. We initially multiply
acc by brknsum to make all 2αi + 1 to be odd. The full algorithm is provided in
Algorithm 6.

3.3 Improved FHEW Scheme and Removal of brknsum

As was mentioned in [24] we can reduce the noise and number of key switching
operations in FHEW-like bootstrapping, by swapping some operations in the
procedure in Fig. 1. We start with a ciphertext with a higher modulus Q rather
than q and do modulus switching to q right before the blind rotation. (See Fig. 2.)

Fig. 2. NAND gate bootstrapping procedure of FHEW scheme. We start from LWEQ,�z

and switch to LWEq,�s before blind rotation. We refer [38] for other gates.

Here we propose a trick which we call round-to-odd to get all-odd LWE
ciphertext during modulus reduction so that brknsum in Algorithm 6 becomes
unnecessary. Thus, the round-to-odd gives advantages in runtime, key size,
and noise growth regarding multiplication of brknsum. For ciphertext (�α′, β′) =
LWEQks(Qks/4 · m), the modulus reduction is defined as

(

�α =
⌊

q

Qks
· �α′

⌉

, β =
⌊

q

Qks
· β′

⌉)

= LWEq(q/4 · m).

We modify the rounding operation to round-to-odd, �x
odd, which returns the
nearest odd integer for the given input x. In addition, if x is closer to zero than
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Algorithm 7. Blind Rotation Algorithm with Round-to-odd Input, q = 2N

1: procedure BlindRotateRoundToOdd
(
f , �α, β, {brki}i∈[0,n−1] , {akgu}u∈[1,w] , ak−g

)

� �α, β are all odd
2: acc ← (0, f

(
X−g

) · X−gβ)
3: acc ← BlindRotateCore(acc, �α, {brki} , {akgu} , ak−g)

4: return acc = RLWEz (f (X) · Xβ+〈�α,�s〉)

any other odd number (i.e., 1), it returns zero. Then the new modulus reduction
is defined as

(

�α =
⌊
2N
Qks

· �α′
⌉

odd
, β =

⌊
2N
Qks

· β′
⌉

odd

)

= LWE2N (q/4 · m),

which gives an LWE ciphertext of modulus 2N with all-odd coefficients. We
note that the modulus reduction error by round-to-odd is equivalent to modulus
switching to N . The blind rotation algorithm for the round-to-odd trick case is
provided in Algorithm 7.

4 Analysis

In this section, we analyze our new blind rotation technique and compare it to the
prior art. We analyze blind rotation separately from the full FHEW scheme since
blind rotation is a useful tool in a number of other applications, e.g., the homo-
morphic evaluation of non-polynomial functions [33,34] and CKKS/BGV/BFV
bootstrapping [30].

4.1 Analysis of the Number of Automorphisms

We focus on the number of automorphisms for Algorithm 3. First notice that
the number of non-empty I±

� is always at most min(N,n) just because there are
a total of N sets, and their union has size n, i.e., the total number of terms αisi.
Moreover, it can be less than n if some of the si have the same coefficient αi. We
evaluate the average number of non-empty I±

� under the standard assumption
that the LWE coefficients αi are random and independent.11 Assume without loss
of generality that all αi are odd, as enforced by our algorithms. Each fixed set I±

�

is empty if all αi do not belong to it. Since the αi are uniform and independent,
this happens with probability (1 − 1/N)n ≈ e−n/N . Therefore I±

� is non-empty
with probability 1 − (1 − 1/N)n ≈ 1 − e−n/N , and, by linearity of expectation,
the expected number of nonempty sets is N(1 − (1 − 1/N)n) ≈ N(1 − e−n/N ).

11 This is certainly true for freshly encrypted messages, as the αi are chosen uniformly
at random by the encryption algorithm. But it is reasonable to expect this to be
true even when the ciphertext is the result of a homomorphic computation.
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Counting the number of non-empty sets I±
� is useful to estimate the number

of automorphism applications performed by our algorithm because the automor-
phisms between non-empty sets are composed and replaced by a small number
of automorphisms with keys in {akgu}u∈[1,w] for a given window size w. Let
k be the number of non-empty sets I±

� , be it either min(N,n) in the worst
case, or k = N(1 − e−n/N ) on average. Let v1, . . . , vk be the exponents of the
k automorphisms gvi that need to be applied after each non-empty set. Write
each exponent as vi = v′

i + w · v′′
i where v′

i = vi mod w ∈ {1, . . . , w − 1}, and
v′′

i = �v′
i/w�. (In case vi is a multiple of w, the v′

i part can be omitted altogether.)
In Algorithm 3, the vi applications of the basic automorphism g (following mul-
tiplication by the ith set I±

� ) are replaced by one application of automorphism
gv′

i and v′′
i applications of automorphism gw. So, the number of automorphism

applications of type gv′
i is κ, for some κ ≤ k.12 In order to bound the num-

ber of applications of automorphism gw, we use the fact that the sum
∑

i vi is
bounded by N . Therefore,

∑
i v′′

i is at most N−κ
w . In summary, by storing w

automorphism keys {akgu}u∈[1,w], we can reduce the number of automorphism
applications to κ + N−κ

w = (1 − 1/w)κ + (1/w)N ≤ (1 − 1/w)k + (1/w)N . We
always have n ≤ N , and in the worst case, we have k ≤ n. So the total num-
ber of automorphism applications is always bounded by (1 − 1/w)n + (1/w)N .
On average, using k ≈ N(1 − e−n/N ), the expected number of automorphism
applications reduces to N(1 − (1 − 1/w) · e−n/N ).

4.2 Complexity, Key Size, and Error Analysis

The comparison of computational complexity, key size, and error are given in
Table 1. In order to facilitate the comparison of all blind rotation algorithms,
we measure their time complexity in terms of the number of R  RLWE′ prod-
ucts they perform, as the cost of these operations dominates the total running
time. Each RLWE � RGSW product requires two  multiplications, while key
switching is performed with a single  multiplication. So, both � products and
key switching operations are easily expressed in terms of  products. We note
that the operation  can be considered as an abstraction of a basic operation
for FHEW and its torus variant TFHE [21]. Another common measure of com-
plexity used in previous works on FHEW-like HE is the number of NTT/FFT
performed by the algorithms. We note that one can easily convert the number
of  products to the number of NTT as each  requires precisely (dg +1) NTT
operations, where dg is the number of elements of a gadget vector. We note that
 requires dg NTT operations if approximate gadget decomposition is used.

Similarly, we compare the memory requirement of all blind rotation algo-
rithms using the total number of RLWE′ ciphertexts required by the blind rota-
tion key. The blind rotation keys for all methods consist of several RGSW and
RLWE′ ciphertexts. In turn, each RGSW is composed of two RLWE′ ciphertexts.
For the sake of brevity, “blind rotation key size” refers to the size of both brk

12 κ will be less than k if some of the v′
i are 0.
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and ak in this section. This can be translated into a traditional “bit size” simply
noting that each RLWE′ ciphertext requires roughly 2dgN logQ-bit of space (or
2(dg − 1)N logQ-bit with approximate gadget decomposition.)

We also note that in our analysis and implementation we use approximate
gadget decomposition described in Remark 2. Approximate gadget decomposi-
tion does not introduce additional error but reduces runtime and key size for
all analyzed blind rotation techniques. One can find the counterparts for exact
gadget decomposition by simply substituting dg − 1 with dg in the equations.

We use an approach from [24,38] to estimate the variance σ2
acc from the blind

rotation procedure. The total error for algorithms using blind rotation such
as FHEW/TFHE bootstrapping [21,24,38] and amortized FHEW bootstrap-
ping [39], can be easily estimated using this value. The error variance introduced

by a single  operation is equal to dgN
B2

g

12 σ2, where Bg and dg are parameters
for gadget decomposition used in  multiplication. For the sake of brevity we
denote σ2


 := dgN
B2

g

12 σ2.
In AP and our algorithms, each � is performed by RGSW encrypting the

monomial, and thus introduces an additive error with variance 2 ·σ2

. The auto-

morphism operation due to key switching introduces an additive error with vari-
ance σ2


. Thus the variance σ2
acc can be estimated as σ2


 multiplied by the number
of  operations. In the GINX and GINX* variants, due to the preprocessing of
RGSW ciphertexts before � multiplications, each � introduces an additive error
with variance 4 · σ2


 and 8 · σ2

, respectively.

We note that the parameters for the FHEW scheme in Sect. 5 are selected
following this theoretical analysis. However, the fact that one technique has a
smaller complexity expression than another in this theoretical analysis does not
necessarily mean that it will show a better runtime in practice, because of the
use of different parameter sets required to achieve a target security level. For
example, binary GINX has the smallest expression representing the abstract
key size and runtime in this analysis. But in practice, our new blind rotation
algorithm outperforms binary GINX because of the following two reasons. First,
our blind rotation has less noise growth compared to binary GINX, allowing a
smaller parameter set to be used. Second, we can achieve the same security level
with a smaller n by using Gaussian secrets at no cost in performance.

5 Implementation

In this section, we present the implementation results of our new blind rotation
algorithm as applied to FHEW bootstrapping. For our implementation, we use
Algorithm 6 optimized by reducing the number of automorphisms, which gives
the best performance. We compare it to the AP and GINX blind rotation tech-
niques. According to the theoretical analysis presented in the previous section,
similar results will be achieved for TFHE [21] by using floating-point operations
and DFTs instead of operations over finite rings and NTTs, respectively for each
discussed blind rotation technique.
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Table 1. Complexity, key size, and error variance of each blind rotation technique.
Key size (# keys) is the number of RLWE′ ciphertexts, and computational complexity
(# mult) is the number of R � RLWE′. The parameter w is a small integer, typically
a small constant independent of n. The parameter |U | depends on the secret key size
and can be as large as logn for gaussian secrets following the error distribution.

Method # keys # mult σ2
acc/σ2

�

AP [2,24] 2dr(Br − 1)n 2dr

(
1 − 1

Br

)
n 2dr

(
1 − 1

Br

)
n

GINX [21,26,38] 2|U |n 2|U |n 4|U |n
GINX* [8,30] 4n 2n 8n

Ours (Algorithm 4) 2n + w + 3 3n + w−1
w

κ + N
w

3n + w−1
w

κ + N
w

Ours (Algorithm 5) 4n + w + 1 2n + w−1
w

κ + N
w

+ 2 2n + w−1
w

κ + N
w

+ 2

Ours (Algorithm 6) 2n + w + 3 2n + w−1
w

κ + N
w

+ 2 2n + w−1
w

κ + N
w

+ 2

Ours (Algorithm 7) 2n + w + 1 2n + w−1
w

κ + N
w

2n + w−1
w

κ + N
w

5.1 Parameter Sets

The full procedure for FHEW bootstrapping is presented in Fig. 2. Using the
unique characteristics of each blind rotation technique and the choice of secret
key distribution, in Table 2 we provide optimized parameter sets for FHEW
schemes with AP, GINX, and our new technique. Following to [24], we choose
the best parameters to have the smallest key size and runtime while keeping
the gate bootstrapping (NAND) failure probability below 2−32. According to
these criteria, we propose new 128-bit secure parameter sets 128_Ours/AP,
128_tGINX, and 128_bGINX for Ours/AP with Gaussian secrets, GINX∗ with
ternary secrets, and GINX with binary secrets, respectively. For comparison
purposes, Table 2 also provides optimized parameters for AP and GINX from
previous works which have smaller security considering the latest cryptoanal-
ysis. The security is estimated using the lattice estimator (commit 09e235) [1]
.

Table 2. Optimized parameter sets for FHEW schemes. Error variance is 3.2 and for
TFHE, we put error variance instead of q and Q as it is defined over Torus.

Parameter set key n q N Q Qks dg dks λmin

128_Ours/AP σ = 3.2 458 1024 1024 228 214 3 2 128.2
128_tGINX ternary 531 2048 1024 226 214 4 2 128.5
128_bGINX binary 571 2048 1024 225 214 4 2 128.1
STD128_OPT [38] ternary 502 1024 1024 227 214 4 2 121.0
TFHE [44] binary 630 σ = 2−15 1024 σ = 2−25 − 3 2 115.11

Let σ2
ms1, σ2

ks, and σ2
ms2 denote the error variances introduced by modulus

switching from Q to Qks, key switching from �z to �s, and modulus switching from
Qks to q, respectively. LWEq,�s(q/4 · m) has the greatest noise, whose variance is

ς2 =
q2

Q2
· 2σ2

acc +
q2

Qks
2

(
σ2
ks + σ2

ms1
)
+ σ2

ms2.
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Similar to [24] we estimate

σ2
ms1 =

‖�z‖2 + 1
12

, σ2
ks = σ2 Ndks, σ

2
ms2 =

‖�s‖2 + 1
12

.

We assume ‖�z‖ ≤ √
N/2 and ‖�s‖ ≤ √

n/2 for binary or ternary secrets [24],
and ‖�z‖ =

√
Nσ2 and ‖�s‖ =

√
nσ2 for Gaussian secrets. The decryption fails

when the noise of LWEq,�s(q/4 · m) exceeds q/8, and thus the decryption failure
probability per NAND is given by 1 − erf( q/8√

2ς
).

Table 3. Bootstrapping failure probability of each blind rotation method. The fail-
ure probability of Algorithm 7 is estimated for the worst case, i.e., the number of
automorphism is (1 − 1/w)n + (1/w)N .

Parameter set Algorithm 7 AP GINX* GINX-binary

128_Ours/AP 2−85.68 2−77.74 x x
128_tGINX 2−113.02 2−105.56 2−93.84 x
128_bGINX 2−90.53 2−79.82 x 2−79.82

STD128_OPT [38] 2−111.35 2−108.87 2−104.38 x
TFHE [44] 2−77.49 2−58.63 x 2−58.63

Table 3 provides the estimated bootstrapping failure probability 1−erf( q/8√
2ς
).

It shows that among all the existing methods, the proposed blind rotation has
the least error. As our blind rotation and AP take advantage of smaller q, we
replaced q = 1024 in this table. In this estimate, we set w = 10.

5.2 Runtime Results

In order to provide a fair comparison of bootstrapping algorithms, we have imple-
mented all of them using identical libraries and computing environments. The
evaluation environment is PALISADE v.1.11.5 on Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz, running Ubuntu 20.04.3 LTS. We compiled with clang 12 and
the following CMake flags: NATIVE_SIZE = 32, WITH_OPENMP = OFF,
WITH_NATIVEOPT = ON.

Table 4. Timing results (average of 400, w = 10 for our method), blind rotation key
size, and failure probability for FHEW bootstrapping (NAND gate)

Parameter set Method Runtime [ms] Key size [MB] Fail. prob

128_Ours/AP Algorithm 7 80.1 12.67 2−85.68

128_Ours/AP AP 127.8 776.45 2−77.74

128_tGINX GINX* 89.7 40.45 2−93.84

128_bGINX GINX 84.1 20.91 2−79.82
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Fig. 3. Bootstrapping performance results of Algorithm 7 method for different window
sizes

Table 4 shows runtime results and blind rotation key size for NAND gate eval-
uation of FHEW. We provide experimental results for different parameter sets
for binary, ternary, and Gaussian secret key distributions. This table demon-
strates that the proposed algorithm with the parameter set 128_Ours/AP has
the best performance. The impact of different window sizes is demonstrated in
Fig. 5.2 where runtime results for NAND gate evaluation of FHEW are presented
depending on the window size w. With w ≥ 10, the running time of the proposed
blind rotation technique is approximately the same. This is consistent with our
complexity analysis in Sect. 3.

6 Applications to Threshold Homomorphic Encryption

In this section, we outline a threshold HE scheme which takes advantage of the
proposed blind rotation technique. The simple structure of our blind rotation
keys gives us an instinctive design of FHEW-like threshold HE with the approach
proposed in [4].

Following the basic concept described in Sect. 1.3, to enable threshold HE
using the FHEW scheme, we define the algorithms for distributed evaluation
key generation. Each participant j has the secret keys �sj for LWE encryption
and zj for RLWE encryption, where j ∈ J and J denotes the set of participants.
The common secret keys are defined as �s∗ =

∑
j∈J �sj and z∗ =

∑
j∈J zj .

6.1 Distributed Generation of Evaluation Keys

The distributed generation of evaluation key for threshold version of Algorithm 3
explained in this section is naturally extended to other proposed variants by
simple modifications. We omit a description of the LWE switching key which is
not the main interest of this paper and is straightforward.
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Public Key Generation. The public key for implicit secret keys z∗ =
∑

j∈J zj

is generated by the following procedures [4].

– Each participant j ∈ J independently generates their own secrets �sj and zj .
– Given common random string acrs, each participant calculates bj = −acrs ·

zj + ej and shares them to other participants, where ej ← χerr.
– The public key is generated as pkRLWE

z∗ = (acrs,
∑

j∈J bj).

Generation of Automorphism Keys. The generation of automorphism keys
consists of the following two stages.

– Using the shared public key pkRLWE
z∗ , each participant generates encryptions

akThr
j,i = RLWE′

z∗

(
zj(Xi)

)
as

akThr
j,i :=

(
EncRLWE(B0

g · zj(Xi)), . . . , EncRLWE(Bdg−1
g · zj(Xi))

)

for each i, where �Bg = (B0
g , B1

g , . . . , B
dg−1
g ) is a gadget vector. The error

for encryption is sampled from χsmenc, which is a special distribution for a
large error to “smudge out” small differences in distributions [4], we denote
its variance by σ2

smenc in the later analysis. Next, each participant sends akThr
j,i

to the computing party.
– The computing party generates automorphism keys akThr

i as follows

akThr
i :=

∑

j∈J

akThr
j,i =

∑

j∈J

RLWE′
z∗

(
zj(Xi)

)
= RLWE′

z∗

(
z∗(Xi)

)
.

Generation of Blind Rotation Keys. The difference from the generation
of the automorphism keys is that the sum of components sj,i is done in the
exponent. Hence, the merging is done by RGSW�RGSW multiplications, instead
of additions.

– Each participant generates the partial encryption brkThr
j,i = RGSWz∗(X

sj,i)
for i ∈ [0, n − 1], where sj,i is the i-th component of �sj . We can generate the
RGSW key using the following equation:

brkThr
j,i :=

(
RLWE′

z∗(z∗ · Xsj,i),RLWE′
z∗(X

sj,i)
)
.

Then, each party sends brkThr
j,i to the computing party.

– The computing party calculates brkThr
i = RGSWz∗(X

s∗,i) for i ∈ [0, n − 1]
using the following equation (note that the error is additive.):

brkThr
i :=

∏

j∈J

brkThr
j,i =

∏

j∈J

RGSWz∗(X
sj,i) = RGSWz∗(X

s∗,i).

Any party can use these keys to perform secure computations without reveal-
ing the secrets of any participants, including the binary gate evaluation [24] using
the proposed blind rotation technique.
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6.2 Performance Analysis

Computational Complexity and Key Size. Following the above evaluation
key generation, the computing party finds the evaluation keys:

⎧
⎨

⎩

brkThr
i = RGSWz∗ (X

s∗,i) , i ∈ [0, n − 1]
akThr

u = RLWE′
z∗

(
z∗(Xgu

)
)
, u ∈ [1, w]

akThr
−1 = RLWE′

z∗ (z∗(X−g))
.

The computation of blind rotation and the structure of the keys are the same as
in Algorithm 3, so the computational complexity and key size are the same as in
Table 1 in terms of the number of  multiplications (computational complexity)
and RLWE′ ciphertexts (key size). In other words, the number of participants does
not affect asymptotic computational complexity and key size. This implies that
the proposed blind rotation is preferable for threshold HE as it takes advantage of
fast evaluation and the small key size regardless of the number of participants.
In practice, a larger parameter is required due to larger error introduced by
distributed key generation.

Error Analysis. This analysis is similar to Sect. 4, except for the fact that
ak and brk now have higher error variance. The variance of pkRLWE

z∗ error epk
is equal to kσ2 as it is the sum of errors ej of all parties. The error of each
RGSWz (Xsj,i) is equal to v ·epk+e0 ·z∗ +e1. Hence, the error variance is given
as σ2

fresh ≤ 2N
3 |J |·σ2+(‖z∗‖2+1)·σ2

smenc. The blind rotation key RGSWz (Xsi) is
obtained by consecutive multiplication of RGSW�RGSW and introduces additive
error, whose variance is equal to σ2

brk = 2|J |dgN
B2

g

12 · σ2
fresh. For automorphism

keys, again each RLWE′
z (zj(Xt)) has the error of variance σ2

fresh. Thus the error
of RLWE′

z (z(Xt)) is equal to σ2
ak = |J | · σ2

fresh.
The worst-case total variance after blind rotation in Algorithm 7 can be

estimated as

σ2
acc = dgN

B2
g

12
·
(

2n · σ2
brk +

(

κ +
N − κ

w

)

· σ2
ak

)

.

The blind rotation algorithm for AP can be also extended in a similar way,
whose blind rotation keys are RGSWz∗(Y

vBt
rs∗,i) for i ∈ [0, n − 1], t ∈ [0, dr − 1],

and v ∈ ZBr
. Then, the error after AP blind rotation is

σ2
acc = dgN

B2
g

12
·
(

2dr

(

1 − 1
Br

)

n · σ2
brk

)

.

Since σbrk is much greater than σak (it is same as σ in non-threshold setting),
the error difference between our technique and AP variant becomes bigger in
threshold setting. The parameters for FHEW-like HE are error-sensitive and our
algorithm produces the least blind rotation error (which enables to use smaller
parameters). Thus, it is more favorable in threshold HE.
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7 Conclusion

A new blind rotation technique for homomorphic encryption is proposed with
several variants which provide tradeoffs between key size and complexity. The
proposed method offers the best of both previous AP and GINX bootstrap-
ping simultaneously and further improves on them. We demonstrated that our
method is better than both approaches in terms of running time and evaluation
key size. It offers the additional advantage of reducing the amount of noise intro-
duced during blind rotation, even for the case of the binary key that is the most
favorable to GINX.

We also showed a simple threshold HE scheme based on FHEW. This scheme
takes advantage of the proposed blind rotation technique since it requires com-
putations under secret keys with distributions wider than binary or ternary. Our
analysis showed that the performance and key size could be kept relatively low
with increasing the number of participants, unlike GINX. This is an important
property for the distributed computation settings. This demonstrates the high
potential of FHEW-like schemes in different applications where the secret key
distribution is wider than binary or ternary. In addition, it would be of great
interest to apply our technique to schemes of other structures such as NTRU
and Torus variants of bootstrappings as further work.

Acknowledgments. This work was supported by the Samsung Electronics co. ltd.,
Samsung Advanced Institute of Technology.

References

1. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9(3), 169–203 (2015). https://doi.org/10.1515/jmc-2015-0016

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17

3. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_29

5. Badawi, A.A., Bet al.: Openfhe: open-source fully homomorphic encryption library.
Cryptology ePrint Archive, Paper 2022/915 (2022). https://eprint.iacr.org/2022/
915, https://www.openfhe.org

6. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2_13

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://www.openfhe.org
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13


254 Y. Lee et al.

7. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homomor-
phic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018.
LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89339-6_13

8. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster
FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) Advances
in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. LNCS, vol. 13792, pp.
188–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_7

9. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: combining Ring-LWE-
based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1), 316–338
(2020). https://doi.org/10.1515/jmc-2019-0026

10. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_50

11. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_19

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014). https://doi.org/10.1145/2633600

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pp. 575–584 (2013). https://doi.org/10.1145/2488608.
2488680

14. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4_8

15. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

16. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_16

17. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a
dishonest majority. In: 2021 IEEE Symposium on Security and Privacy (S&P), pp.
590–607. IEEE (2021). https://doi.org/10.1109/sp40001.2021.00025

18. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret LWE. IEEE Access (2019). https://doi.org/10.
1109/access.2019.2925425

19. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_15

20. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8_14

https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-45724-2_19
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1109/sp40001.2021.00025
https://doi.org/10.1109/access.2019.2925425
https://doi.org/10.1109/access.2019.2925425
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_14


Efficient FHEW Bootstrapping and Applications to Threshold HE 255

21. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

22. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas,
B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 1–19. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_1

23. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_31

24. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

25. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012/144 (2012). https://eprint.iacr.org/2012/144

26. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions and homomorphic cryptosystems.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 528–
558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_19

27. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Innovations in Computer Science - ICS 2010,
pp. 230–240. Tsinghua University Press (2010). http://conference.iiis.tsinghua.edu.
cn/ICS2010/content/papers/19.html

28. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_4

29. Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with
extended keys. In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptol-
ogy, and Machine Learning. CSCML 2022. LNCS, vol. 13301, pp. 1–18. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-07689-3_1

30. Kim, A., et al.: General bootstrapping approach for RLWE-based homomorphic
encryption. Cryptol. ePrint Arch. 2021/691 (2021). https://eprint.iacr.org/2021/
691

31. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes
for finite fields. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol.
13092, pp. 608–639. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4_21

32. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6_3

33. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation
using FHEW/TFHE bootstrapping. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. LNCS, vol. 13792, pp. 130–
160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_5

34. Lu, W.J., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE sym-
posium on Security and Privacy (S&P), pp. 1057–1073. IEEE (2021). https://doi.
org/10.1109/sp40001.2021.00043

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-49896-5_19
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-031-07689-3_1
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1109/sp40001.2021.00043
https://doi.org/10.1109/sp40001.2021.00043


256 Y. Lee et al.

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM (JACM) 60(6), 1–35 (2013). https://doi.org/10.1145/2535925

36. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory
Comput. 14(1), 1–17 (2018). https://doi.org/10.4086/toc.2018.v014a013

37. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

38. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In:
WAHC 2021, pp. 17–28. ACM (2021). https://doi.org/10.1145/3474366.3486924

39. Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping.
In: 45th International Colloquium on Automata, Languages, and Programming.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.ICALP.2018.100

40. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–
763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

41. PALISADE: Lattice Cryptography Library (release 1.11.7), September 2021.
https://palisade-crypto.org/

42. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5_9

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM (JACM) 56(6), 1–40 (2009). https://doi.org/10.1145/1060590.
1060603

44. TFHE: Fast fully homomorphic encryption library over the torus. https://tfhe.
github.io/tfhe/

45. Zhou, T., Zhang, Z., Chen, L., Che, X., Liu, W., Yang, X.: Multi-key fully homo-
morphic encryption scheme with compact ciphertext. IACR Cryptol. ePrint Arch.
2021/1131 (2021). https://eprint.iacr.org/2021/1131

https://doi.org/10.1145/2535925
https://doi.org/10.4086/toc.2018.v014a013
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://doi.org/10.1007/978-3-662-49896-5_26
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://eprint.iacr.org/2021/1131


On Polynomial Functions Modulo pe

and Faster Bootstrapping
for Homomorphic Encryption

Robin Geelen1(B) , Ilia Iliashenko2 , Jiayi Kang1 ,
and Frederik Vercauteren1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{robin.geelen,jiayi.kang,frederik.vercauteren}@esat.kuleuven.be

2 CipherMode Labs, Los Angeles, USA
ilia@ciphermode.com

Abstract. In this paper, we perform a systematic study of functions
f : Zpe → Zpe and categorize those functions that can be represented
by a polynomial with integer coefficients. More specifically, we cover the
following properties: necessary and sufficient conditions for the existence
of an integer polynomial representation; computation of such a represen-
tation; and the complete set of equivalent polynomials that represent a
given function.

As an application, we use the newly developed theory to speed up
bootstrapping for the BGV and BFV homomorphic encryption schemes.
The crucial ingredient underlying our improvements is the existence of
null polynomials, i.e. non-zero polynomials that evaluate to zero in every
point. We exploit the rich algebraic structure of these null polynomials to
find better representations of the digit extraction function, which is the
main bottleneck in bootstrapping. As such, we obtain sparse polynomi-
als that have 50% fewer coefficients than the original ones. In addition,
we propose a new method to decompose digit extraction as a series of
polynomial evaluations. This lowers the time complexity from O(

√
pe) to

O(
√

p
4√

e) for digit extraction modulo pe, at the cost of a slight increase
in multiplicative depth. Overall, our implementation in HElib shows a
significant speedup of a factor up to 2.6 over the state-of-the-art.

Keywords: Homomorphic encryption · Bootstrapping · Polyfunctions

1 Introduction

Homomorphic encryption (HE) allows computations on encrypted data with-
out knowledge of the secret key. In the past 15 years, there have been tremen-
dous improvements in HE protocols, both in speed and applicability. In spite
of these efforts, homomorphic encryption remains extremely slow compared to
unencrypted computations and further speedups are required.

Homomorphic computations are typically realized as arithmetic circuits, i.e.
sequences of additions and multiplications that implement a desired function-
ality. In the lattice-based schemes BGV [6] and BFV [5,10], these operations
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are performed over (extensions of) Zpe , where p is a prime number and e is
a positive integer.1 Functions on Zpe have rather interesting properties. First,
only a limited class of functions can be described by polynomials with integer
coefficients, the so-called polyfunctions (short for polynomial functions). Second,
the polynomials that represent a given polyfunction are always non-unique and
we can therefore try to find the polynomial representation that is most efficient
to evaluate homomorphically.

An example application that can benefit from the study of polyfunctions
is bootstrapping – the ciphertext refreshing procedure that enables unbounded
fully homomorphic encryption. This procedure is necessary because lattice-based
schemes include a noise term that grows when we evaluate an arithmetic circuit.
Bootstrapping reduces the noise back to a lower level, which enables further eval-
uation of homomorphic additions and multiplications. Since its introduction by
Gentry in 2009 [11], the latency and throughput of bootstrapping were improved
several orders of magnitude in many subsequent works [8,13,15], but it remains
the main bottleneck to achieve fully homomorphic encryption.

1.1 Related Work

Polyfunctions. Research into polyfunctions has a long history. Already in
1921, Kemper [17] studied elementary structures of polyfunctions over Zm

for a composite integer m. This early research represents polynomials in the
monomial basis {Xi}i=0,1,.... However, since the mid-1960s, much of the liter-
ature [7,9,16,23] started to use the falling factorial basis {X · (X − 1) · . . . ·
(X − i)}i=0,1,.... The reason for this shift is that the falling factorial polynomials
almost directly give rise to non-trivial null polynomials (i.e. polynomials that by
definition evaluate to zero in every point when interpreted modulo some prime
power pe).

Null polynomials result in equivalent representations of the same polyfunc-
tion f : Zpe → Zpe . Specifically, two polynomials F (X),H(X) ∈ Z[X] represent
the same function f if and only if their difference F (X) − H(X) is a null poly-
nomial. Equivalently, the set of all possible representations of f is obtained as
F (X) + Ope , where Ope is the set of all null polynomials modulo pe. In other
words, there exists a one-to-one correspondence between polyfunctions and col-
lections of equivalent polynomials:

polyfunction f : Zpe → Zpe ⇐⇒ F (X) + Ope .

Bootstrapping. The first bootstrapping procedure for BGV was proposed
by Gentry et al. [13] for encryption of single bits, and improved by subse-
quent research [1]. The most relevant works for this paper are from Halevi and
Shoup [15], and Chen and Han [8]. Halevi and Shoup proposed a bootstrapping
1 Some protocols for secure multi-party computation [3] also work over Zpe , which

makes our study of polyfunctions even more widely applicable. However, improve-
ments in multi-party computation are not the direct focus of this paper.



On Polynomial Functions Modulo pe and Faster Bootstrapping for HE 259

method that works for the more general plaintext space Zpe . Their technique
relies on a “digit removal” procedure, which involves repeated homomorphic
evaluation of the lifting polynomial and has degree pe−1 in total. Chen and Han
introduced an additional digit extraction polynomial (sometimes called the lowest
digit retain polynomial) that has a much lower degree equal to (p−1) ·(e−1)+1.
Lower degrees are typically favored in homomorphic encryption.

In practice, polynomial evaluations account for most of the computational
cost of bootstrapping: in the implementation of HElib, they are altogether 3×
to 50× more expensive than all other operations combined [15]. This situation
is exactly the same for BGV and BFV, because both schemes have an identical
bootstrapping procedure.

1.2 Our Contributions

The aim of this paper is to further develop the theory of polyfunctions with a
focus on cryptographic applications. New insights in these polyfunctions allow
us to significantly accelerate HE bootstrapping.

Polyfunctions. In the first part of the paper (Sect. 3), we study polyfunctions
modulo pe. This includes the following:

– In Sect. 3.1, we study the complete set of null polynomials modulo pe (denoted
by Ope) as to obtain the set of all equivalent polyfunction representations.
A novel element of our approach is also restricting Ope to contain only poly-
nomials of bounded degree. When doing so, the resulting set forms a lattice
structure, and we can find small-coefficient representations by solving the
closest vector problem in this lattice. This is interesting in homomorphic
encryption, because small coefficients lead to less noise growth.

– In Sect. 3.3, we extend Newton interpolation from the real numbers to Zpe .
Our method always returns a polynomial representation of the lowest degree
when given a polyfunction as input. When given a function that is not a
polyfunction, our method can detect this and returns an error.

– In Sect. 3.5, we discuss several properties of polyfunctions that are especially
relevant for HE bootstrapping. In particular, we consider the class of even
and odd polyfunctions that satisfy respectively f(−a) = f(a) (mod pe) and
f(−a) = −f(a) (mod pe) for a ∈ Z. We show that each such function can be
represented by a sparse polynomial with only even- or odd-exponent terms.
Evaluating such a sparse representation is asymptotically cheaper by a factor
of

√
2.

Bootstrapping. In the second part of the paper (Sects. 4 and 5), we apply the
newly developed theory to speed up BGV and BFV bootstrapping. The most
expensive component of bootstrapping, both in degree and execution time, is
evaluation of the digit extraction polynomial. In order to accelerate it, we apply
the following improvements:
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– We propose multiple methods to obtain better representations of the digit
extraction function. First, we show that this function is either even or odd,
and can therefore be represented as a polynomial with only 50% of the coeffi-
cients. Second, we propose a new technique to decompose digit extraction in
multiple stages. Let ge be the digit extraction function modulo pe, then we
write it as ge = ge,e′ ◦ ge′ . In our algorithm, both ge′ and ge,e′ are evaluated
using polynomials of much smaller degree than the direct approach. As a
consequence, we lower the time complexity for digit extraction from O(

√
pe)

to O(
√

p
4√

e), at the cost of �log2 p	 increase in multiplicative depth.
– In order to fully benefit from the optimized digit extraction polynomials,

we revise the digit removal procedure of Chen and Han [8]. Our improved
algorithm utilizes the digit extraction polynomial exclusively, without relying
on the lifting polynomial. We implemented our new bootstrapping algorithm
in HElib, and observe that it is up to 2.6 times faster than the state-of-the-art.
Our code is made publicly available.2

2 Preliminaries

2.1 Notations

For prime p and integer exponent e � 1, the set of functions from Zpe to itself
is denoted by Fpe . Moreover, we write the evaluation of a polynomial F (X) at
X = a as F (a) or sometimes F (X)|X=a.

Let νp(·) denote the p-adic valuation function defined as

νp(m) =

{
max{k ∈ N : pk | m} if m 
= 0
∞ if m = 0.

It generalizes to the rational numbers as νp(m/n) = νp(m)−νp(n), and we call a
rational number p-integral if its p-adic valuation is non-negative. Let μ(·) denote
the Smarandache function defined as

μ(k) = min{i ∈ N : k | i!} .

Observe that νp(·) and μ(·) are complementary in some sense. Specifically, it
follows directly from the above definitions that μ(pe) is the smallest integer for
which νp(μ(pe)!) � e. A few example instances of νp(n!) and μ(pe) for p = 2 are
listed in Tables 1 and 2.

2.2 Newton Interpolation over R

The Falling Factorial Basis. The Newton interpolation method relies on
the so-called falling factorial polynomials. Those polynomials are indexed by an
integer i � 0 and defined as

(X)i =
i−1∏
k=0

(X − k) ∈ Z[X],

2 See https://github.com/KULeuven-COSIC/Bootstrapping_Polyfunctions.

https://github.com/KULeuven-COSIC/Bootstrapping_Polyfunctions
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Table 1. Examples of ν2(n!)

n 1 2 3 4 5 6 7 8 9 10

ν2(n!) 0 1 1 3 3 4 4 7 7 8

Table 2. Examples of μ(2e)

e 1 2 3 4 5 6 7 8 9 10

μ(2e) 2 4 4 6 8 8 8 10 12 12

where by definition we set (X)0 = 1. When reduced modulo pe, these polynomials
exhibit very specific properties that will be studied later in this paper.

Let Pn ⊆ Z[X] be the set of polynomials of degree at most n. Obviously, the
set {Xi | 0 � i � n} forms a basis for Pn when seen as a module over Z. We
refer to it as the monomial basis. Similarly, also the set {(X)i | 0 � i � n} forms
a basis for Pn, known as the falling factorial basis.

Newton Interpolation. Consider a collection of n+1 data points (i, yi) ∈ R
2

for i = 0, . . . , n.3 Using Newton interpolation, we can find a polynomial F (X)
of degree at most n that interpolates these data points. Concretely, write the
polynomial F (X) ∈ R[X] in the format

F (X) = c0 + c1(X)1 + c2(X)2 + . . . + cn(X)n. (1)

Then we can uniquely determine the falling factorial coefficients ci such that

F (i) = yi, ∀0 � i � n.

The coefficients can be computed from forward differences, as introduced in the
following definition.

Definition 1. The i-th forward difference of a function f : R → R, evaluated
at j ∈ Z, is recursively defined as

Δif(j) =

{
f(j) if i = 0
Δi−1f(j + 1) − Δi−1f(j) if i > 0.

We will now apply these forward differences to a polynomial F (X). Note
that we slightly abuse notation and consider a polynomial as a function in X.
As shown in Fig. 1, the value of ΔiF (X)|X=j for i, j = 0, 1, . . . , n can be derived
from Definition 1. Each element in this triangle is defined as αi,j = ΔiF (X)|X=j ,
and computed as the difference between the element above and the element above
left. We only show rows for i = 0, . . . , n, because all following rows are zero for
a polynomial of degree n. This is easily seen by computing

Δ (X)i = (X + 1)X · . . . · (X − i + 2) − X(X − 1) · . . . · (X − i + 1)
= i(X)i−1,

(2)

3 In a more general version, we could consider the data points (xi, yi). For our purpose,
however, it is sufficient to choose xi = i.
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and using the result in Eq. (1). Note that Eq. (2) is the analogue of taking the
derivative of the monomial Xi.

The coefficients of the interpolating polynomial F (X) can now be computed
as ci = αi,0 = ΔiF (X)|X=0/i!. This result is achieved by taking the i-th forward
difference of both sides of Eq. (1), and again filling in Eq. (2). This leads to the
interpolating polynomial

F (X) = α0,0 + α1,0(X)1 +
α2,0

2!
(X)2 + · · · + αn,0

n!
(X)n. (3)

Note the analogy with the Taylor series of a function.
Finally, the following relations are useful:

α0,j =
j∑

v=0

(
j

v

)
αv,0, (4a)

αi,0 =
i∑

v=0

(−1)i+v

(
i

v

)
α0,v. (4b)

These equations establish a relationship between the elements in the first row
and the diagonal of Fig. 1.

α0,0 α0,1 α0,2 · · · α0,n

α1,0 α1,1 · · · α1,n−1

α2,0 · · · α2,n−2

. . .
...

αn,0

Fig. 1. Evaluation of forward differences with αi,j = ΔiF (X)|X=j .

The above theory generalizes directly to polynomial rings over any field.
However, the subject of this paper is polynomials over Zpe , which is not a field
in general.

2.3 Polyfunctions Modulo pe

Definition 2. Let f ∈ Fpe be a function from Zpe to itself. If there exists a
polynomial F (X) ∈ Z[X] that satisfies F (a) = f(a) (mod pe) for all a ∈ Z, then
f is a polyfunction modulo pe and F (X) is a representation of f .4

4 We define the evaluation of a function f ∈ Fpe at an integer a in the natural way,
by implicitly converting a to its residue class modulo pe.
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As a corollary of the theory in Sect. 2.2, all functions from the field Fp to itself
are polyfunctions. A unique representation of degree less than p is obtained by
starting from all data points and applying Newton interpolation. However, the
situation is different for functions modulo pe: first, not all functions are described
by integer polynomials modulo pe, regardless of the degree; second, polyfunctions
always have a non-unique representation of the lowest degree due to the existence
of null polynomials [16,19,21,23].

Null Polynomials Modulo pe . We define a null polynomial as follows.

Definition 3. An element O(X) ∈ Z[X] is called a null polynomial modulo pe

if the function f ∈ Fpe that it represents maps every element to zero. In other
words, we have that O(a) = 0 (mod pe) for all a ∈ Z.

Observe that the evaluation of the falling factorial polynomial (X)i at any
integer is divisible by i!. Hence it is a null polynomial modulo pe if νp(i!) � e.
Also the other direction holds: if (X)i is a null polynomial modulo pe, then
evaluating it at X = i gives (X)i |X=i = i!, and therefore νp(i!) � e. Following
the notation defined earlier, we find that the smallest possible value of i for
which (X)i is a null polynomial modulo pe, is equal to i = μ(pe).

2.4 Lattices

Definition 4. The set L ⊆ R
n is a lattice if there exist R-linearly independent

vectors b1, . . . ,bk ∈ R
n such that

L =

{
k∑

i=1

xibi | xi ∈ Z

}
.

The set of vectors B = {b1, . . . ,bk} constitute a basis, and k is called the rank.
A lattice is called q-ary for an integer q if qZ

n ⊆ L ⊆ Z
n.

For a lattice vector v ∈ L, the length ‖v‖ denotes its Euclidean norm (2-
norm). We will rely on the closest vector problem (CVP):

Definition 5 (Closest vector problem (exact form)). Consider a lattice
L ⊆ R

n and a vector t ∈ R
n, CVP asks to recover a lattice vector v ∈ L such

that ‖t − v‖ = miny∈L ‖t − y‖.
Lattices have been studied extensively in cryptography due to the conjectured

intractability of certain lattice problems, such as the shortest vector problem
(SVP) and the closest vector problem (CVP). The hardness of these problems
is used as the security foundation of many cryptosystems, including the BGV
and BFV schemes. However, we will use lattices for a different reason, namely
the study of polynomial representations with small coefficients.
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2.5 Homomorphic Encryption

We are interested in homomorphic encryption schemes that support arithmetic
circuits over Zpe . In the literature, those schemes are known as BGV [6] and
BFV [5,10]. Both schemes have the same interface, and only differ from each
other in terms of the underlying implementation.

Homomorphic Operations. Next to the usual key generation, encryption and
decryption, homomorphic encryption schemes have two extra procedures to eval-
uate additions and multiplications over the ciphertexts that they encrypt. Both
procedures can either take two ciphertexts, or one ciphertext and one plaintext.
Moreover, there is one special division operation, which takes a ciphertext that
encrypts a message m known to be divisible by p. It outputs a new cipher-
text that encrypts m/p, but under plaintext modulus pe−1 instead of pe. This
operation fails if the input message is not divisible by p.

Plaintext Batching. BGV and BFV can batch multiple elements of Zpe per
plaintext [22]. Specifically, the plaintext ring is isomorphic to Z

�
pe , where addition

and multiplication are defined component-wise. Each copy of Zpe is called a
plaintext slot, and can be operated on homomorphically and in parallel. This
is sometimes referred to as SIMD operations due to the resemblance in parallel
computing architectures.

The above explanation is actually a special case of a more general technique.
Given a polynomial F (X) ∈ Z[X] that is irreducible modulo p, we can define the
Galois ring E = Zpe [X]/(F (X)) ⊇ Zpe . The plaintext rings of BGV and BFV
are then isomorphic to E�, again with component-wise addition and multiplica-
tion. We refer to this more general version as fully packed slots. If the slots are
restricted to encode elements from the subring Zpe (like explained above), then
they are called sparsely packed.

Bootstrapping. Every HE ciphertext contains a special component called the
noise. When evaluating homomorphic additions and multiplications, the noise
gets larger depending on the complexity of the involved operations. The decryp-
tion function removes the noise, but only works correctly if the noise is small
enough (depending on the chosen scheme parameters).

To enable circuits that consist of an unlimited number of additions and multi-
plications, we need a method to reduce the ciphertext noise without decrypting
directly. This is achieved via bootstrapping. The idea is to decrypt a cipher-
text homomorphically by evaluating the scheme’s own decryption circuit. This
reduces noise and allows further evaluation of additions and multiplications.
Bootstrapping comes in two variants: the slots of the encrypted message can
either be fully packed or sparsely packed. We refer to the first situation as
general bootstrapping, and the second one as thin bootstrapping. Finally, we
emphasize that BGV and BFV have an identical bootstrapping procedure. All
optimizations for one scheme therefore carry over to the other one immediately.
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3 Systematic Study of Polyfunctions

3.1 Null Polynomials

The set of null polynomials modulo pe can be described in the falling facto-
rial basis. This was already noticed by Singmaster [21] who proved the general
structure of this set. We formulate an adapted version in the following theorem,
where we additionally take into account null polynomials of bounded degree.
Our theorem is proven based on the same outline as Singmaster’s proof.

Theorem 1. A polynomial O(X) ∈ Z[X] is a null polynomial modulo pe of
degree at most n if and only if there exist a0, . . . an ∈ Z such that

O(X) =
n∑

i=0

ai · Oi(X), with Oi(X) = pmax(e−νp(i!),0) · (X)i . (5)

In this equation, the exponent of p equals 0 if i � μ(pe).

Proof. (⇐) As already pointed out in Sect. 2.3, the evaluation of (X)i at any
integer is divisible by pνp(i!). Therefore, each term in Eq. (5) evaluated at any
integer is divisible by pmax(e,νp(i!)) � pe. Since each term is a null polynomial
modulo pe, so is their linear combination.

(⇒) We prove the following assertion for 0 � m � n + 1 by applying induction
on m:

O(X) =
n∑

i=m

bi · (X)i +
m−1∑
i=0

ai · Oi(X), (6)

for some ai, bi ∈ Z.
The base case m = 0 is trivial since the second sum is empty, and the first

sum amounts to writing a polynomial in the falling factorial basis. It is therefore
possible to find appropriate constants bi that satisfy Eq. (6).

Now suppose that Eq. (6) was established for some m < n + 1, that is

O(X) = bm · (X)m +
n∑

i=m+1

bi · (X)i +
m−1∑
i=0

ai · Oi(X).

Evaluating both sides at X = m gives

0 = O(m) = bm · m! (mod pe).

Taking the p-adic valuation of the right-hand side gives

νp(bm · m!) = νp(bm) + νp(m!) � e =⇒ νp(bm) � e − νp(m!).

The constants bi are integers, so it follows that νp(bm) � max(e−νp(m!), 0). We
can therefore write bm = am · pmax(e−νp(m!),0) for some am ∈ Z, which results in

O(X) =
n∑

i=m+1

bi · (X)i +
m∑

i=0

ai · Oi(X).
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This expression replaces m by m+1 in Eq. (6) and thereby completes the induc-
tion. The final result follows by setting m = n + 1 in Eq. (6). ��
Corollary 1. Each null polynomial modulo pe of degree n < μ(pe) is divisible
by pe−νp(n!), where divisibility is defined in the polynomial ring Z[X]. Therefore,
all monic null polynomials have degree at least μ(pe).

Corollary 2. The set of all null polynomials modulo pe is obtained directly from
Theorem 1 by allowing an arbitrarily large (but finite) degree n.

The Null Lattice. Adopting the notation from Eq. (5), the set of null polyno-
mials of degree at most n is given by

O(n)
pe =

{
n∑

i=0

ai · Oi(X) | ai ∈ Z

}
⊆ Pn.

When considering polynomials as coefficient vectors, it can easily be seen that
the above set forms a pe-ary lattice with basis vectors Oi(X). For convenience of
notation, we will not make a difference between polynomials and lattice vectors:
the set O(n)

pe inherits all properties from Sect. 2.4, including the norm.

3.2 Cosets of Equivalent Polynomials

A representation F (X) of a polyfunction f is never unique. That is, given a null
polynomial O(X), we can construct an equivalent polynomial H(X) = F (X) +
O(X) that represents the same polyfunction. The set of all representations of a
polyfunction forms the coset F (X)+Ope . Moreover, the set of all representations
of degree at most n forms the coset F (X) + O(n)

pe (assuming that deg(F ) � n).
As explained in Sect. 2.3, (X)μ(pe) is a monic null polynomial modulo pe,

which implies that we can always divide by it (using Euclidean division) to obtain
a representation of degree less than μ(pe). This proves the following lemma.

Lemma 1 (Small degree representation [16]). Each polyfunction f ∈ Fpe

has a representation of degree strictly less than μ(pe).

Although Euclidean division always returns a representation of degree less
than μ(pe), it is not necessarily minimized. In order to guarantee the lowest
possible degree, one has to consecutively divide by Oi(X) for i = μ(pe), . . . , 0.
This leads to the canonical representation of Keller and Olson [16].

Theorem 2 (Canonical representation [16]). Let f ∈ Fpe be a polyfunction,
then there exists a unique canonical representation

F (X) =
μ(pe)−1∑

i=0

ci(X)i

with 0 � ci < pe−νp(i!).
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From Theorem 2, we can compute the number of canonical representations,
which is equal to the number of polyfunctions modulo pe. This is done by adding
the total number of possibilities for the coefficients ci, which gives

vol
(
O(μ(pe)−1)

pe

)
= expp

⎛
⎝μ(pe)−1∑

k=0

e − νp(k!)

⎞
⎠ = expp

(
e∑

k=1

μ(pk)

)
, (7)

where vol(·) denotes the volume of a lattice and expp(·) the exponential function
with base p. The first equality highlights the one-to-one correspondence between
polyfunctions and equivalent representations of degree less than μ(pe), obtained
as cosets modulo the null lattice. The second equality was proven by Specker et
al. [23] and not repeated here for brevity.

Note that, although a canonical representative can be chosen in a unique
manner, it is not necessarily the most convenient polynomial to evaluate homo-
morphically. Later we study the digit extraction polynomial in FHE bootstrap-
ping, where we take a different representative than the canonical choice.

Finally, we compare the number of functions in Fpe to the number of poly-
functions from Eq. (7). Since a function is uniquely determined by its input-
output pairs, the total number of functions equals (pe)p

e

= pe·pe

. This expression
is typically much larger than Eq. (7) for e � 2, so only very few functions are
representable by polynomials.

Example 1. There are 28·28 ≈ 10617 functions in F28 , while only 250 ≈ 1015 of
them are polyfunctions as computed from Eq. (7).

3.3 Existence of Polynomial Representation

In this section, we examine whether a given function f ∈ Fpe is a polyfunction
or not. We extend the Newton interpolation method to functions modulo pe, and
return a representation of the lowest degree if f is a polyfunction.

Consider a function f ∈ Fpe that is defined by pe data points (i, f(i)) ∈ Z
2
pe

for i = 0, . . . , pe − 1. We will now use reduced forward differences, which are
similar to the regular forward difference defined earlier, but include an extra
reduction modulo pe in the set {0, . . . , pe − 1}.

Definition 6. The reduced i-th forward difference of a function f ∈ Fpe , eval-
uated at j ∈ Z, is defined as

Δif(j) = Δif(j) (mod pe).

The values Δif(j) for i = 0, 1, . . . , μ(pe) and j = 0, . . . , pe −1 can be derived
from Definition 6. This is shown in Fig. 2, where αi,j = ΔiF (X)|X=j .

The relations in Sect. 2.2 such as Eqs. (2), (4a), and (4b) still hold modulo
pe. Moreover, we will show later that the interpolating polynomial from Eq. (3)
is also valid for polyfunctions over Zpe .
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α0,0 α0,1 α0,2 · · · α0,μ(pe) · · · α0,pe−1

α1,0 α1,1 · · · α1,μ(pe)−1 · · · α1,pe−2

α2,0 · · · α2,μ(pe)−2 · · · α2,pe−3

. . .
...

...
αμ(pe),0 · · · αμ(pe),pe−μ(pe)−1

Fig. 2. Evaluation of reduced forward differences with αi,j = ΔiF (X)|X=j .

Polynomial Representation. In order to examine if a function f ∈ Fpe is a
polyfunction, we introduce a new lemma.

Lemma 2. Let F (X) ∈ Q[X] be a polynomial of degree less than μ(pe) with
evaluation function f . Then f interpreted modulo pe is a polyfunction if and
only if the coefficients of F (X) are p-integral.

Proof. (⇐) If the coefficients of F (X) are p-integral, then it can be coerced into
Z[X] by replacing all denominators by their multiplicative inverse modulo pe.

(⇒) Since f is a polyfunction, there exists a representation H(X) ∈ Z[X] of
degree less than μ(pe). The polynomial O(X) = H(X) − F (X) also has degree
less than μ(pe), and its evaluation function modulo pe is zero. Writing

O(X) =
μ(pe)−1∑

i=0

ai

bi
· (X)i,

where ai/bi is a fraction in simplest form, it suffices to prove νp(bi) = 0 for all i.
Assume on the contrary that νp(bi) = maxj{νp(bj)} = c > 0, then pc · O(X)

can be coerced into a null polynomial modulo pc+e. Since the degree of this null
polynomial is strictly less than μ(pe) � μ(pc+e), it follows from Corollary 1 that

pc · ai

bi
= 0 (mod p).

From νp(bi) = c, it follows directly that ai = 0 (mod p). Hence both ai and bi

are divisible by p, which contradicts the fact that ai/bi is in its simplest form. ��
Remark 1. A polynomial F (X) ∈ Q[X] with non-p-integral coefficients can still
represent a (poly)function f ∈ Fpe , for example if its degree is at least μ(pe).
However, it is not directly possible to evaluate such a function homomorphically.

Now we introduce a simple way to decide whether a given function f ∈ Fpe

is a polyfunction, relying on the reduced forward differences from Fig. 2.

Theorem 3. A function f ∈ Fpe is a polyfunction if and only if the following
two criteria are satisfied:
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1. For all i < μ(pe), we have νp(αi,0) � νp(i!). Note that αi,0 are the diagonal
elements of Fig. 2.

2. All elements in the last row of Fig. 2 are zero.

Proof. (⇐) Consider the polynomial

F (X) =
pe−1∑
i=0

αi,0

i!
· (X)i ∈ Q[X]. (8)

Following Eq. (3), this polynomial interpolates f in all data points. Now we are
given that all elements in the last row of Fig. 2 are zero, thus so are all values in
the next row (which is not displayed). Hence αi,0 = 0 for all i � μ(pe). Therefore,
we can terminate the summation of Eq. (8) earlier and get

F (X) =
μ(pe)−1∑

i=0

αi,0

i!
· (X)i ∈ Q[X]. (9)

Now it remains to prove that the coefficients of F (X) are p-integral, and then
the result follows immediately from Lemma 2. Considering Eq. (9), this is trivial
since we are given that νp(αi,0) � νp(i!) for all i < μ(pe).

(⇒) If f is a polyfunction, it has a representation F (X) of degree less than μ(pe).
Hence it follows from Eq. (2) that Δμ(pe)F (X) is zero in every point, which proves
the second criterion of the theorem.

Consider again the polynomial of Eq. (9). Following the same line of reasoning
as in the first part of this proof, it is a representation of f modulo pe. According
to Lemma 2, we know that F (X) must have p-integral coefficients, which implies
νp(αi,0) � νp(i!) for all i < μ(pe). ��

Interestingly, Eq. (9) gives a polynomial representation F (X) obtained by
Newton interpolation restricted to {0, 1, . . . , μ(pe) − 1}, i.e. only information
about f(i) for i < μ(pe) has been used. Condition 1 of Theorem 3 can be inter-
preted as restricting the coefficients of F (X) to p-integral values. Condition 2 is a
consistency requirement: F (a) = f(a) (mod pe) for each a ∈ {μ(pe), . . . , pe −1}.
Finally, we note that also different interpolation methods could be used.

Corollary 3. If f is a polyfunction, then Eq. (9) gives a representation of the
lowest degree.

Proof. It was already proven that the polynomial F (X) from Eq. (9) can be
coerced into a representation in Z[X], so it remains to show that its degree is
minimal. Suppose that n is the largest integer such that αn,0 
= 0, and assume
on the contrary that there exists a representation H(X) whose degree is less
than n. Then O(X) = H(X) − F (X) is a null polynomial modulo pe, with
leading monomial (αn,0/n!) · Xn. It follows from Corollary 1 that

αn,0

n!
= 0 (mod pe−νp(n!)),

and thus αn,0 = 0 (mod pe), leading to a contradiction. ��
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3.4 Bit and Digit Extraction Function

As an example, we apply the previously developed theory to the bit extraction
function – a polyfunction that is useful in the part about FHE bootstrapping.

Example 2. Let ge ∈ F2e be the bit extraction function defined as

ge : Z2e → Z2e : a �→ a (mod 2) ,

where reduction modulo 2 is done in the set {0, 1}. Its forward differences are
shown in Fig. 3, which should be closely compared to Fig. 2. The reduced forward
differences are computed via reduction modulo 2e. It can easily be verified in
Table 1 that the diagonal elements αi,0 = (−2)i−1 satisfy ν2(αi,0) � ν2(i!), and
that all elements on the last row are congruent to zero modulo 2e. Therefore,
the bit extraction function is a polyfunction.

0 1 0 1 0 · · · 1 · · · 1
1 −1 1 −1 · · · 1 · · · 1

−2 2 −2 · · · 2 · · · 2
. . .

...
...

...
(−2)i−1 · · · ±2i−1 · · · 2i−1

. . .
...

...

(−2)μ(2e)−1 · · · 2μ(2e)−1

Fig. 3. Forward differences of the bit extraction function.

Following Corollary 3, the polynomial

Ge(X) =
e∑

i=1

(−2)i−1

i!
· (X)i (10)

is a representation of ge of the lowest degree. It follows that there does not exist
a bit extraction polynomial of degree less than e. Finally, the complete set of
representations is easily obtained as Ge(X) + O2e .

More generally, we define the digit extraction function modulo pe for any
prime p from its balanced digit decomposition. Denote the balanced digits of
w ∈ Zpe by wi ∈ {−(p − 1)/2, . . . , (p − 1)/2} such that

w =
e−1∑
i=0

wip
i,

then we define the map ge ∈ Fpe as

ge : Zpe → Zpe : w �→ w0.
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Analogously to the previous example, we can show that ge is a polyfunction and
obtain a representation of the lowest degree. In the general case, there does not
exist a digit extraction polynomial of degree less than (p − 1)(e − 1) + 1. The
complete set of representations is obtained by adding Ope .

3.5 Further Properties of Polyfunctions

Not every function is a polyfunction modulo pe. For example, the function

f(a) =

{
1 if a = 0
0 otherwise

is not a polyfunction for e > 1, because it is not congruence preserving. More
specifically, all polyfunctions satisfy the following lemma.

Lemma 3 (Congruence preservation [7,9,16,17]). Let f be a polyfunction
modulo pe, then for any a ∈ Z, we have

f(a + pk) = f(a) (mod pk), ∀k � e. (11)

Proof. Let F (X) be a representation of f . Since a polynomial is built from
additions and multiplications only, we know that

F (a + pk) = F (a) (mod pk).

Since pk | pe, we can directly replace F by f . This completes the proof. ��
Congruence preservation is not a sufficient condition to be a polyfunction [4].

In Sect. 3.3 – Theorem 3, we derived a necessary and sufficient condition for a
function to be a polyfunction based on reduced forward differences [17], which
is consistent with the analytical characterization by Carlitz [7] and further leads
to a representation of the lowest degree.

We can also give a sufficient but unnecessary condition for a function to be
a polyfunction. A function that satisfies

f(a + p) = f(a) (mod pe), ∀a ∈ Z, (12)

is said to have period p and is always a polyfunction. A representation can be
derived as follows.

Lemma 4 (Adapted from [14]). The polynomial U(X) = 1− Xϕ(pe) satisfies
the following property modulo pe:

∀a ∈ Z : U(a) =

{
1 if p | a

0 otherwise,

where ϕ(·) is Euler’s totient function.
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A representation for a function f with period p is

F (X) =
p−1∑
k=0

f(k) · U(X − k), (13)

from which we can construct the set of complete representations F (X)+Ope . A
well-known example is the digit extraction function.

As shown by the next example, having period p is a sufficient, but not a
necessary condition for a function to be a polyfunction.

Example 3. As computed in Example 1, there are 28·28 ≈ 10617 functions in F28 ,
while only 250 ≈ 1015 of them are polyfunctions. From these polyfunctions, only
28·2 ≈ 105 have period 2.

Even and Odd Polyfunctions. We construct a new lemma to find sparse
representations of even and odd polyfunctions.

Lemma 5. Let f ∈ Fpe be an even (resp. odd) polyfunction, that is, f(−a) =
f(a) (mod pe) (resp. f(−a) = −f(a) (mod pe)) for a ∈ Z. Moreover, assume
that f has a degree-n representation. Then the following holds:

– If p is an odd prime, then f has a representation F (X) of degree at most n,
which contains only even (resp. odd) exponents.

– If p = 2, and we consider f modulo pe−1 instead of pe, then it has a rep-
resentation F (X) of degree at most n, which contains only even (resp. odd)
exponents.

Proof. Consider a representation H(X) ∈ Z[X] of f that has degree equal to n.
Due to the evenness (resp. oddness) of f , the polynomial H ′(X) = H(−X) (resp.
H ′(X) = −H(−X)) is an equivalent representation of f .

Now we consider the integer polynomial

F (X) =
H(X) + H ′(X)

2
, (14)

which contains only even (resp. odd) exponents and has degree at most n. By
evaluating Eq. (14) in any a ∈ Z, we see that F (a) = f(a) (mod pe) for an
odd prime p, and F (a) = f(a) (mod pe−1) for p = 2. Hence F (X) is also a
representation of f , and it can easily be checked that it contains only even (resp.
odd) exponents. ��

4 Faster Bootstrapping for BGV and BFV

This section explains our improved bootstrapping techniques for BGV and BFV,
leveraging the observations from the first part of the paper. Both general and thin
bootstrapping involve two important components: the linear transformations and
digit removal. We do not propose adaptations to the linear transformations, and
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leave them unchanged in the implementation. Our improvements are inside the
digit removal step, and follow from the polyfunctions theory. Since digit removal
is 3× to 50× more expensive than the linear transformations [15], any speedup
leads to an almost equal effect in the entire bootstrapping procedure.

4.1 Cost Model

Amdahl’s law [2] states that the speedup gained by optimizing a single part of
an algorithm is limited to the fraction of time that the improved part is used. In
order to accelerate digit removal, we must therefore concentrate on the slowest
and most commonly used FHE operations. The true bottleneck of digit removal
is non-scalar multiplication, i.e. multiplication of two ciphertexts. For an example
parameter set with ring dimension N = 216, non-scalar multiplication in HElib
is 7× more expensive than its scalar counterpart.

An approach that follows our cost model is the baby-step/giant-step algo-
rithm for evaluating a set of polynomials with scalar coefficients in a common
non-scalar point [12,20]. It can asymptotically evaluate m degree-n polynomials
with 2

√
mn non-scalar multiplications. Therefore, our implementation uses this

algorithm for polynomial evaluation.
Although not the focus of this paper, digit removal is also costly in terms of

multiplicative depth (which is by definition the maximal number of multiplica-
tions encountered in each possible input-output path). Our approach accelerates
bootstrapping without significantly affecting the multiplicative depth of digit
removal. This is achieved by exclusive use of low-degree polynomials.

4.2 Digit Removal Algorithm

The digit removal procedure removes the v least significant digits of its input
w ∈ Zpe for a given prime number p and v < e. Formally, for odd p, denote the
balanced digits of w ∈ Zpe by wi ∈ {−(p − 1)/2, . . . , (p − 1)/2} such that

w =
e−1∑
i=0

wip
i.

Digit removal is then defined as the map

w �→
⌊

w

pv

⌉
=

e−1∑
i=v

wip
i−v.

In other words, it consecutively scales and rounds the input. This is necessary in
bootstrapping to remove the noise. To evaluate the procedure homomorphically,
it is written as a series of polynomial evaluations and divisions.

Note that the balanced digit representation only exists for odd prime num-
bers. If p = 2, we need to consider the digits in {0, 1}, which causes the out-
put of digit removal to be �w/pv�. However, bootstrapping requires a rounding
operation instead of flooring. This can be fixed by applying the simple equality
�x	 = �x + 1/2� just before digit removal.
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Existing Digit Removal Algorithms. Digit removal uses the following nota-
tion: we write wi,j for any integer of which the least significant digit is wi,
and the next j least significant digits are all zeros. Formally, this means that
wi,j = wi (mod pj+1). Moreover, we require two well-known polynomials:

– The lifting polynomial Fe(X) ∈ Z[X] satisfies Fe(wi,j) = wi,j+1 for j � e. In
other words, it allows us to compute a valid wi,j+1 from any given wi,j by
zeroing one extra digit.

– The digit extraction polynomial Ge(X) ∈ Z[X] satisfies Ge(wi,0) = wi,e−1,
which allows us to compute a valid wi,e−1 from any given wi,0 by zeroing
e−1 extra digits. In other words, it is a representation of the digit extraction
function ge introduced in Sect. 3.3.

It can be proven that the above polynomials always exist [8]. Their degrees are
respectively p and (e − 1)(p − 1) + 1.

The high-level idea of digit removal is to use the lifting polynomial and/or
digit extraction polynomial to extract the least significant digit of the input w.
The result is then subtracted from w and divided by p, and this is repeated
until enough digits are removed. A suitable choice of lifting and digit extraction
polynomials ensures a low multiplicative depth of the resulting procedure. Digit
removal is visualized in the trapezoid of Fig. 4 for an example parameter set of
e = 5 and v = 3. The procedure works as follows:

– We start from w0,0 = w in the first row, and then compute the numbers on
its right via a series of polynomial evaluations. The choice of polynomials
depends on the chosen algorithm, and is explained later.

– In the second row, we first compute w1,0 = (w − w0,1)/p and then repeat the
same procedure from the first row.

– In the last row, we similarly compute w2,0 = ((w − w0,2)/p − w1,1)/p and
again repeat the same procedure from the first and second row.

– The result is obtained as (((w − w0,4)/p − w1,3)/p)− w2,2/p. This is omitted
from the figure.

In summary, the first digit of each row is computed by subtracting the digits on
the same diagonal and dividing by p. All other digits are obtained via a series
of polynomial evaluations, starting from the first digit in its row. Finally, the
result is obtained by subtracting the last digit of each row from the input and
dividing by p.

w0,0 w0,1 w0,2 w0,3 w0,4

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2

Fig. 4. Visualization of digit removal for e = 5 and v = 3.
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Until now, we have only specified operations between rows, which are identical
for all methods that we will discuss (including our own). Existing digit removal
procedures differ in how they compute digits within the same row. Two different
methods have been proposed for this: the first one is from Halevi and Shoup [15],
and the second one from Chen and Han [8].

Halevi/Shoup Digit Removal. This procedure computes each number in the
trapezoid (except for the first one in each row) by applying the lifting polynomial
to the number on its left. In other words, we use the identity wi,j+1 = Fe(wi,j).
The cost is dominated by ev − v(v + 1)/2 evaluations of the lifting polynomial.
The degree of this procedure is roughly pe−1.

Chen/Han Digit Removal. This procedure computes the last number of each
row by applying the digit extraction polynomial to the first number of the same
row. In other words, we use the identity wi,j = Gj+1(wi,0). All other digits are
computed identical to the Halevi/Shoup procedure; but note that some digits
are not used and can therefore be omitted. In the example of Fig. 4, we do not
need to compute w0,3, w1,2 and w2,1.

The cost of Chen/Han digit removal is dominated by v(v − 1)/2 evaluations
of the lifting polynomial and v evaluations of the digit removal polynomial.
However, its main advantage is in degree, which is roughly equal to rpv with
r = e− v. During bootstrapping, the parameter r represents the precision of the
plaintext space, i.e. plaintexts are computed modulo pr. As such, the Chen/Han
procedures has asymptotically lower degree than Halevi/Shoup for high-precision
plaintext spaces.

4.3 Faster Digit Removal

In the following sections, we apply five changes to the original Chen/Han digit
removal procedure. The first adaptation relates to digit removal itself, and is a
better method to evaluate the polynomials of each row. The other improvements
follow from polyfunctions theory.

Adapted Row Computation. As already mentioned earlier, digit removal can
be analyzed row per row, where Halevi and Shoup take a different approach than
Chen and Han. In contrast to both these versions, we propose a method that
uses the digit extraction polynomial exclusively, without relying on the lifting
polynomial. Specifically, we compute each element of the trapezoid by applying a
suitable digit extraction polynomial to the first element in the same row. This has
two advantages: firstly, all polynomials can be evaluated simultaneously using
the baby-step/giant-step technique. Due to the 2

√
mn complexity, this leads to

a performance benefit over evaluating all polynomials separately. Secondly, this
method works well in conjunction with our next optimization (finding a more
efficient representation of the digit extraction polynomial).

In instantiating our method, we need to avoid depth increase of the resulting
procedure as much as possible. In particular, we have to be careful with the
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path along the evaluated circuit of largest depth, referred to as the critical path.
Any depth increase in the critical path causes a corresponding depth increase in
the entire procedure. The critical path of Chen/Han digit removal is depicted in
Fig. 5. It runs via the vertical dimension first, because the depth grows linearly
there and logarithmically in the horizontal dimension.

w0,0 w0,1 w0,2 w0,3 w0,4

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2

Fig. 5. Critical path of digit removal for e = 5 and v = 3.

In a first attempt, we can compute each digit as wi,j ← Gj+1(wi,0). In some
cases, however, we can do better by reusing computed elements. In particular, we
can set wi,k ← wi,j for k < j without affecting correctness; however, also this is
not always desirable because it can lead to a depth increase of the digit removal
procedure. For example, it is never beneficial to take wi,1 ← wi,j in terms of
noise growth, because wi,1 lies on the critical path. Our implementation takes
the heuristic approach of computing wi,j ← Gj+1(wi,0) for each value of j + 1
that is a power of 2, and setting wi,j ← wi,j+1 otherwise. This heuristic does
not increase the multiplicative depth compared to Chen/Han digit removal.

Even and Odd Functions. The digit extraction function for p = 2 is an even
function. Following Lemma 5, we can find a representation of degree e + 1 or
less that contains only even exponents. Specifically, we write the digit extraction
polynomial as Ge(X) = F (X2) for some polynomial F (X) of degree �(e + 1)/2�.
Such polynomials can be evaluated more efficiently than regular ones by first
computing X2 before applying a standard baby-step/giant-step method. This
requires asymptotically

√
2mn non-scalar multiplications for evaluating m poly-

nomials of degree n.
Similarly to the case above, the digit extraction function for an odd prime p

is an odd function. Following Lemma 5, we can find a representation of degree
(e − 1)(p − 1) + 1 that contains only odd exponents. Specifically, we write the
digit extraction polynomial as Ge(X) = X · F (X2) for some polynomial F (X)
of degree (e − 1)(p − 1)/2. Such polynomials can be evaluated more efficiently
than regular ones, using one the methods of Lee et al. [18]. Their first method
omits unused powers of X in the baby-step, and can be evaluated with optimal
multiplicative depth. Their second method first evaluates F (X2) using the strat-
egy from above, and then multiplies by X. This increases the depth by at most
one. Both methods require asymptotically

√
2mn non-scalar multiplications for

evaluating m polynomials of degree n. All experiments in Sect. 5 are conducted
with the first variant.
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Function Composition. We propose a new method to obtain the digit extrac-
tion function modulo pe by decomposing it as ge = ge,e′ ◦ ge′ for some e′ < e. In
our method, the relevant domain of ge,e′ is therefore no longer Z, but rather the
range of ge′ . Our analysis starts from the following definitions.

Definition 7. Let f ∈ Fpe be a function from Zpe to itself. If there exists a
polynomial F (X) ∈ Z[X] that satisfies F (a) = f(a) (mod pe) for all a ∈ S ⊆ Z,
then f is a polyfunction modulo pe over S and F (X) is a representation of f .

Definition 8. An element O(X) ∈ Z[X] is called a null polynomial modulo pe

over S ⊆ Z if the function f ∈ Fpe that it represents maps every element from S
to zero. In other words, we have that O(a) = 0 (mod pe) for all a ∈ S.

The inner function ge′ can directly be represented as a polynomial in the
even or odd representation. For the outer function ge,e′ , we can use the adapted
definitions from above, where we define the set

S =
{

k + i · pe′
: − (p − 1)/2 � k � (p − 1)/2 and i ∈ Z

}
. (15)

This coincides with the range of ge′ . For p = 2, we slightly need to change the
definition of S and allow 0 � k � 1.

Since digit extraction is an idempotent operation, one possible representation
of ge,e′ is Ge(X). But the domain of ge,e′ is restricted to S, so we can find other
representations by adding null polynomials that satisfy Definition 8. Therefore,
our problem reduces to studying null polynomials over S, which we can construct
as follows. Consider

Hj(X) =

{
(X)j if p = 2(
X + p−1

2

)
j

if p is an odd prime.
(16)

To ease notation, we also write H(X) = Hp(X). Moreover, let

(X)i,j =

(
i−1∏
k=0

H(X − k · pe′
)

)
Hj(X − i · pe′

) (17)

for 0 � j < p. Then we can adapt Theorem 1 as follows.

Theorem 4. A polynomial O(X) ∈ Z[X] is a null polynomial modulo pe over
the set S from Eq. (15) of degree at most n if and only if there exist ai,j ∈ Z

such that

O(X) =
∑

0�d(i,j)�n

ai,j · Oi,j(X), with Oi,j(X) = pmax(e−i·e′−νp(i!),0) · (X)i,j .

In this equation, the function d(i, j) = p · i + j denotes the degree of Oi,j(X). It
is also implicitly assumed that 0 � j < p.
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Proof. (⇐) Evaluating Eq. (17) at any a ∈ S gives

(X)i,j |X=a =

(
i−1∏
k=0

H(a − k · pe′
)

)
Hj(a − i · pe′

). (18)

From the definition of H(X) in Eq. (16) and the restriction to S, it follows that
H(a) is divisible by pe′

. In fact, exactly one factor of H(X) will be divisible by
pe′

when evaluated at X = a. Let X − q be this linear factor where 0 � q � 1 (if
p = 2) or −(p− 1)/2 � q � (p− 1)/2 (if p is odd), then we can set a− q = α · pe′

for some α. Equation (18) is then divisible by

i−1∏
k=0

(
a − q − k · pe′)

=
i−1∏
k=0

(
α · pe′ − k · pe′)

= pi·e′ · (X)i |X=α.

As already pointed out in Sect. 2.3, the evaluation of (X)i at any integer is
divisible by pνp(i!). Hence our result is divisible by pi·e′+νp(i!), and it follows that
Oi,j(X)|X=a is divisible by pmax(e,i·e′+νp(i!)) � pe. Any Z-linear combination of
these Oi,j(X) is thus a null polynomial modulo pe over S.

(⇒) We prove the following assertion for 0 � m � n + 1 by applying induction
on m:

O(X) =
∑

m�d(i,j)�n

bi,j · (X)i,j +
∑

0�d(i,j)<m

ai,j · Oi,j(X), (19)

for some ai,j , bi,j ∈ Z.
The base case m = 0 is trivial since the second sum is empty, and the first

sum amounts to writing a polynomial in the basis given by (X)i,j . It is therefore
possible to find appropriate constants bi,j that satisfy Eq. (19).

Now suppose that Eq. (19) was established for some m < n + 1, that is

O(X) = bi′,j′ · (X)i′,j′ +
∑

m<d(i,j)�n

bi,j · (X)i,j +
∑

0�d(i,j)<m

ai,j · Oi,j(X),

with d(i′, j′) = m. Evaluating both sides at X = a with a = i′ ·pe′
+ j′ (if p = 2)

or a = i′ · pe′
+ j′ − (p − 1)/2 (if p is odd) gives

0 = O(a) = bi′,j′ ·
i′−1∏
k=0

(X)p |X=(i′−k)·pe′+j′ · (j′)! (mod pe).

Taking the p-adic valuation of the right-hand side and following a similar line of
reasoning as in the first part of this proof, we get

νp

⎛
⎝bi′,j′ ·

i′−1∏
k=0

(X)p |X=(i′−k)·pe′+j′ · (j′)!

⎞
⎠ = νp(bi′,j′) + i′ · e′ + νp((i′)!) � e.
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The constants bi′,j′ are integers, so νp(bi′,j′) � max(e − i′ · e′ − νp((i′)!), 0). We
can therefore write bi′,j′ = ai′,j′ ·pmax(e−i′·e′−νp((i

′)!),0) for some ai′,j′ ∈ Z, which
results in

O(X) =
∑

m<d(i,j)�n

bi,j · (X)i,j +
∑

0�d(i,j)�m

ai,j · Oi,j(X).

This expression replaces m by m + 1 in Eq. (19) and thereby completes the
induction. The final result follows by setting m = n + 1 in Eq. (19). ��

To study the degree of null polynomials restricted to the set S, we consider
an adapted variant of the Smarandache function that takes two inputs:

μp(e, e′) = min{i ∈ N : e′ · i + νp(i!) � e}.

Then it is clear that

Oμp(e,e′),0(X) =
μp(e,e′)−1∏

k=0

H(X − k · pe′
) (20)

is a monic null polynomial of degree p · μp(e, e′) ≈ p · �e/e′	.
Now we have all ingredients available to find a better representation of ge,e′ .

Starting from Ge(X), we can apply Euclidean division and reduce it modulo the
null polynomial of Eq. (20). This results in a representation Ge,e′(X) that has
degree strictly less than p · �e/e′	. This can be much smaller than the degree of
Ge(X), which is equal to (e − 1)(p − 1) + 1.

For odd primes p, the function ge,e′ is odd and we can directly choose Ge,e′(X)
with only odd-exponent terms. However, if p = 2 then −S � S, hence ge,e′ is not
defined for all inputs from −S. The function is therefore not even, and we cannot
directly choose Ge,e′(X) with only even-exponent terms. One possible solution
is to allow −1 � k � 1 in Eq. (15) instead of 0 � k � 1. However, this increases
the degree of the polynomial from Eq. (20) by 50%, hence also the degree of the
resulting polynomial representation. We did not incorporate this solution in our
implementation.

Finally, we note that the set of null polynomials modulo pe over S of degree
bound n still forms a pe-ary lattice. This lattice is given by⎧⎨

⎩
∑

0�d(i,j)�n

ai,j · Oi,j(X) | ai,j ∈ Z

⎫⎬
⎭ ⊆ Pn,

where the basis vectors are Oi,j(X).

Asymptotic Complexities. We now analyze the asymptotic depth and time com-
plexities of our composite approach. Specifically, its depth is bounded by

�log2 ((p − 1) · (e′ − 1) + 1)	 +
⌈
log2

(
p ·

⌈ e

e′
⌉)⌉

≈ �log2 e	 + 2 · �log2 p	 ,
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counting only non-scalar multiplications. The first term comes from ge′ and the
second one from ge,e′ . When compared to the regular Ge(X), there is a depth
increase of �log2 p	. Note that we can also apply function composition multiple
times in a row, and then the depth will increase with �log2 p	 per stage. In terms
of scalar multiplications, there is a depth increase of 1 for each stage of function
composition. For the sake of noise control, our approach favors a small number
of stages and a low value of p.

Performance-wise, we make a difference between scalar and non-scalar mul-
tiplications. The baby-step/giant-step technique can asymptotically evaluate a
polynomial of degree n with 2

√
n non-scalar and n scalar multiplications. If the

polynomial is even or odd, these numbers reduce to respectively
√
2n and n/2. As

such, we have the following time complexities for the digit extraction function:

– For p = 2, the original method can evaluate the digit extraction polynomial
asymptotically with

√
2e non-scalar and e/2 scalar multiplications. Our com-

posite approach reduces this to respectively
√
2e′+2

√
2e/e′ and e′/2+2e/e′.

The number of non-scalar multiplications is minimal if e′ = 2
√

e, which gives
4 4√

e non-scalar and 2
√

e scalar multiplications. Since p = 2, this analysis
assumes that Ge,e′(X) has both even- and odd-exponent terms.

– For larger values of p, the original method can evaluate the digit extraction
polynomial asymptotically with

√
2pe non-scalar and pe/2 scalar multiplica-

tions. Our composite approach reduces this to respectively
√
2p(

√
e′+

√
e/e′)

and (p/2) · (e′ + e/e′). The number of non-scalar multiplications is minimal
if e′ =

√
e, which gives 2

√
2p 4√

e non-scalar and p
√

e scalar multiplications.
Since p 
= 2, this analysis assumes that Ge,e′(X) has only odd-exponent terms.
Moreover, the degree of Ge(X) is approximated as pe.

In conclusion, our method reduces the number of non-scalar multiplications from
O(

√
pe) to O(

√
p

4√
e) asymptotically. The number of scalar multiplications are

reduced from O(pe) to O(p
√

e).
Table 3 shows the number of operations to evaluate digit extraction, compar-

ing the Halevi/Shoup and Chen/Han method to our approach. The even and
odd entries represent the standard version (without function composition). The
tuples represent the indices (e, e′, e′′) of the digit extraction function, where e′′ is
the index of the innermost function and e is the index of the outermost function.
It is clear from the table that our composite method works especially well for
low p and high e, where the performance benefits can be fully exploited without
a significant depth increase. On the other hand, it turns out that even for large
values of e (up to 256), splitting in more than 2 stages does not (much) increase
performance anymore.

Lattices. Another method to find better polynomial representations is via lat-
tice problems. Given a polynomial F (X) and the null lattice, we can solve the
closest vector problem to find a null polynomial O(X) that lies closest to F (X).
The representation F (X) − O(X) is then equivalent to the original one, but it
has smaller coefficients. This leads to less noise growth in FHE ciphertexts.
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Table 3. Non-scalar depth and operation count for the digit extraction function.

p e method depth #(non-scalar mults) #(scalar mults)

2 64 H/S 63 63 0

C/H 6 16 64

Our even 6 12 32

(64, 16) 7 9 15

256 H/S 255 255 0

C/H 8 33 256

Our even 8 25 128

(256, 32) 9 15 31

(256, 67, 16) 10 13 22

3 64 H/S 126 126 0

C/H 7 24 127

Our odd 7 20 64

(64, 16) 9 16 22

(64, 25, 8) 10 15 24

256 H/S 510 510 0

C/H 9 49 511

Our odd 9 38 256

(256, 24) 11 23 40

(256, 92, 8) 12 21 58

This lattice trick can also be combined with all earlier described techniques.
For even or odd functions, we can start from a lattice that only contains even
or odd null polynomials. These can be found via simple linear algebra on the
original null lattice. For the function composition approach, we can start from
the null lattice restricted to the set S as defined earlier.

Example 4. The advantage of using lattices is demonstrated on the bit extraction
polynomial. Our method was able to find the following representations for p = 2:

– Bit extraction modulo 28 can be done with G8(X) = 13X8 − 12X6.
– Starting from the result modulo 28, bit extraction modulo 225 can be done

with G25,8(X) = 6X5 − 15X4 + 10X3.

Both polynomials have remarkably small coefficients, since they are defined mod-
ulo 28 and 225 respectively.

Multivariate Approach. We considered one more strategy to compute better
polynomial representations based on multivariate equations. The idea is to write
out consecutive digit extraction polynomials in a pattern that minimizes the
non-scalar multiplications. This gives a system of non-linear equations, which
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Table 4. Recursive evaluation of the bit extraction polynomial.

e Ge(X)

2 X2

4 G2(X)2

8 112 · G2(X) + (94 · G2(X) + 121 · G4(X))2

16 11136 · G4(X) + (28504 · G2(X) + 8968 · G4(X) − G8(X)) ·
(15364 · G4(X) + 14115 · G8(X))

can be solved for the coefficients of the digit extraction polynomial. Although
this strategy does not generalize to higher parameters, we were able to find bit
extraction polynomials for e � 16 that can be evaluated with �log2 e	 non-scalar
multiplications, which is provably minimal. These instances are listed in Table 4.

5 Implementation and Performance

We implemented our new digit removal procedure for the BGV scheme in HElib.
For two reasons, we did not implement it for the BFV scheme: firstly, there is no
software library that supports BFV bootstrapping; secondly, BGV and BFV are
known to be equivalent in terms of bootstrapping, and only differ in some minor
implementation details. Therefore, any performance discrepancy would reflect
the underlying arithmetic operations and not our improvements.

We give experimental results for general bootstrapping in Table 5 and for
thin bootstrapping in Table 6. The tables show capacity (number of bits in the
noise) and execution time. The factorization of the parameter m determines the
complexity of the linear maps (explained in [15]), but is not relevant for digit
removal. The regular plaintext modulus is pr, which is augmented to pe during
bootstrapping. The function composition method was not used for these tables,
since its effect is thoroughly analyzed in Sect. 5.1. All experiments were run on a
single-threaded Intel� CoreTM i7-6700HQ CPU with 8 GB memory and Ubuntu
22.04.1 LTS installed.

The “improvement” in the last row of Tables 5 and 6 was computed in the
amortized sense, i.e. as the ratio

improvement =
old execution time
new execution time

· new remaining capacity
old remaining capacity

.

We achieve a significant improvement for all tested parameter sets, ranging from
1.3× to 2.6×. The speedups are higher for general bootstrapping than for thin
bootstrapping. The reason is that the general version requires multiple digit
removals, whereas the thin version requires only one. In terms of noise capacity,
the advantage also tends to be in our direction. This is likely a consequence of
two facts: we replaced the lifting polynomial by the digit extraction polynomial
of lower degree; and the coefficients of our polynomials are smaller due to the
lattice trick.
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5.1 Function Composition

Our implementation also includes the function composition approach, which is
asymptotically cheaper for high-precision plaintext spaces (i.e. large values of r
and e). We demonstrate its benefit in Table 7 for plaintext moduli up to 259. For
technical reasons (not inherent to the BGV scheme), HElib does not support
more than 59 bits of precision, so we could not test with higher values than this.
Furthermore, bootstrapping is only supported for pe < 230 [15], so it is impossible
to run bootstrapping with the parameter sets from Table 7. We therefore show
the results for digit extraction only. Finally, note that the parameters e and e′

have the same meaning as in Sect. 4.3.

Table 5. General bootstrapping in HElib (original/ours).

Cyclotomic index m 127 · 337 101 · 451 43 · 757
Number of slots 2016 1000 2268
Params (p, r, e) (2, 8, 15) (17, 4, 6) (127, 2, 4)

Security level (bits) 81 78 66
Number of digit removals 21 40 14
Capacity
(bits)

Initial 1151 1136 1134
Linear maps 100 147 140
Digit extract 307/298 541/514 671/712
Remaining 744/753 448/475 323/282

Execution
time (sec)

Linear maps 134 150 290
Digit extract 2014/743 2665/1879 1407/863
Total 2248/877 2815/2029 1697/1153

Improvement 2.6× 1.5× 1.3×

The table has four values per column: the original built-in implementation;
our standard method without function composition; our method with partial
function composition; and our method with full function composition. The third
value of each column (partial function composition) is generated by applying
function composition to each row of Fig. 5, except for the last one. The moti-
vation for this is as follows. Since the bottom right element of Fig. 5 lies on the
critical path, it determines the multiplicative depth of digit removal. Turning
this argument around, we can reduce the depth by not applying function com-
position in the last row. In other words, there is a depth-efficiency trade-off,
where function composition favors efficiency and the standard method favors
depth.
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Table 6. Thin bootstrapping in HElib (original/ours).

Cyclotomic index m 127 · 337 101 · 451 43 · 757
Number of slots 2016 1000 2268
Params (p, r, e) (2, 8, 15) (17, 4, 6) (127, 2, 4)

Security level (bits) 81 78 66
Capacity
(bits)

Initial 1151 1136 1134

Linear maps 137 174 164
Digit extract 267/260 445/435 604/640
Remaining 747/754 517/527 366/330

Execution
time (sec)

Linear maps 35 32 31

Digit extract 105/35 65/46 101/64
Total 140/70 97/78 132/95

Improvement 2.0× 1.3× 1.3×

The “speedup” in the last row of Table 7 was computed as the ratio between
the original approach and our three methods:

speedup =
old execution time
new execution time

.

This cost measure ignores the remaining noise capacity, because we cannot run
the full bootstrapping procedure and therefore don’t have this number available.
Again, we achieve major speedups compared to HElib’s built-in digit removal,
ranging from 1.6× to 2.8×. Since digit removal is the main bottleneck, boot-
strapping would exhibit almost identical speedups.

Table 7. High-precision digit removal in HElib (original/our standard method/partial
function composition/full function composition).

Cyclotomic index m 42799 63973
Number of slots 2016 2592
Params (p, r, e, e′) (2, 51, 59, 16) (3, 32, 37, 6)

Security level (bits) 80 77
Capacity
(bits)

Initial 1137 1335
Digit extract 1049/991/970/1006 1142/1047/1103/1170

Execution time (sec) 180/100/67/64 191/151/124/119
Speedup 1.8×/2.7×/2.8× 1.3×/1.5×/1.6×
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6 Conclusion

Although polynomial functions over rings are commonly used in cryptography,
their properties are currently not well understood. This paper contributed to the
analysis of such polyfunctions, including existence, computation and equivalence
of polynomial representations, among other things.

Our theory is directly applicable to FHE bootstrapping: we found sparse rep-
resentations (either even or odd) for the digit extraction function, which is the
bottleneck in bootstrapping; we also proposed a new method to decompose digit
extraction into multiple stages, each of which can be evaluated with a polynomial
of low degree. Altogether, we observed speedups of up to 2.6× for bootstrapping
and up to 2.8× for digit removal, including our function composition approach.
Finding the optimal way to evaluate the polynomials during bootstrapping, tak-
ing into account both noise growth and execution time, remains an interesting
open problem.

Acknowledgements. This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract No. HR0011-21-C-0034.
The views, opinions, and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government. This work was additionally supported in part by
CyberSecurity Research Flanders with reference number VR20192203, and in part by
the Research Council KU Leuven grant C14/18/067. Robin Geelen is funded in part by
Research Foundation - Flanders (FWO) under a PhD Fellowship fundamental research
(project number 1162123N).

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_1

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Com-
puter Conference, pp. 483–485 (1967)

3. Araki, T., et al.: Generalizing the SPDZ compiler for other protocols. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 880–895 (2018)

4. Bhargava, M.: P-orderings and polynomial functions on arbitrary subsets of
dedekind rings. Journal für die reine und angewandte Mathematik (Crelles Jour-
nal) 1997(490–491), 101–128 (1997). https://doi.org/10.1515/crll.1997.490.101

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012: 3rd Inno-
vations in Theoretical Computer Science, pp. 309–325. Association for Computing
Machinery, January 2012. https://doi.org/10.1145/2090236.2090262

https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262


286 R. Geelen et al.

7. Carlitz, L.: Functions and polynomials (mod pn). Acta Arith. 9(1), 67–78 (1964).
http://eudml.org/doc/207463

8. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS,
vol. 10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9_12

9. Chen, Z.: On polynomial functions from Zn to Zm. Discret. Math. 137(1–3), 137–
145 (1995)

10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178.
ACM Press (May/June 2009). https://doi.org/10.1145/1536414.1536440

12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9

13. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8_1

14. Guha, A., Dukkipati, A.: An algorithmic characterization of polynomial functions
over Zpn . Algorithmica 71(1), 201–218 (2015)

15. Halevi, S., Shoup, V.: Bootstrapping for helib. J. Cryptol. 34(1), 1–44 (2021)
16. Keller, G., Olson, F.R.: Counting polynomial functions (mod pn). Duke Math. J.

35(4), 835–838 (1968)
17. Kempner, A.J.: Polynomials and their residue systems. Trans. Am. Math. Soc.

22(2), 240–288 (1921)
18. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: Optimal minimax polynomial

approximation of modular reduction for bootstrapping of approximate homo-
morphic encryption. Cryptology ePrint Archive, Paper 2020/552 (2020). https://
eprint.iacr.org/archive/2020/552/20200803:084202

19. Li, S.: Null polynomials modulo m. arXiv preprint math/0510217 (2005)
20. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-

essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)
21. Singmaster, D.: On polynomial functions (mod m). J. Number Theory 6(5), 345–

352 (1974)
22. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes

Cryptogr. 71(1), 57–81 (2014)
23. Specker, E., Hungerbühler, N., Wasem, M.: The ring of polyfunctions over Z/nZ

(2021)

http://eudml.org/doc/207463
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
http://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://eprint.iacr.org/archive/2020/552/20200803:084202
https://eprint.iacr.org/archive/2020/552/20200803:084202


Functional Commitments for All
Functions, with Transparent Setup

and from SIS

Leo de Castro1 and Chris Peikert2(B)

1 EECS, Massachusetts Institute of Technology, Cambridge, USA
2 Computer Science and Engineering, University of Michigan, Ann Arbor, USA

cpeikert@umich.edu

Abstract. A functional commitment scheme enables a user to concisely
commit to a function from a specified family, then later concisely and
verifiably reveal values of the function at desired inputs. Useful special
cases, which have seen applications across cryptography, include vector
commitments and polynomial commitments.

To date, functional commitments have been constructed (under falsifi-
able assumptions) only for functions that are essentially linear, with one
recent exception that works for arbitrarily complex functions. However,
that scheme operates in a strong and non-standard model, requiring an
online, trusted authority to generate special keys for any opened function
inputs.

In this work, we give the first functional commitment scheme for non-
linear functions—indeed, for all functions of any bounded complexity—
under a standard setup and a falsifiable assumption. Specifically, the
setup is “transparent,” requiring only public randomness (and not any
trusted entity), and the assumption is the hardness of the standard Short
Integer Solution (SIS) lattice problem. Our construction also has other
attractive features, including: stateless updates via generic composability;
excellent asymptotic efficiency for the verifier, and also for the commit-
ter in important special cases like vector and polynomial commitments,
via preprocessing; and post-quantum security, since it is based on SIS.

1 Introduction

In a functional commitment scheme, a user first commits to a function f from
some specified family. Later, the user can open the function at one or more
desired inputs xi, generating noninteractive and publicly verifiable proofs for
the claimed values yi = f(xi), which can be checked against the original com-
mitment.1 In order to be nontrivial, commitments and proofs should be concise,

L. de Castro and C. Peikert—Some of this work was done while at Algorand, Inc.
1 Some works consider a dual notion, in which the user commits to some data x and

then can open various functions f of it. Our present formulation is a natural one
for most specific purposes of interest. Moreover, assuming a sufficiently expressive
scheme of either form, its dual notion can be achieved by swapping “code” and
“data” using a universal function; see Sect. 4.3 for details.
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i.e., significantly smaller than (i.e., sublinear or better in) the function’s rep-
resentation. The primary security property of interest is evaluation binding : a
(possibly maliciously generated) commitment should fix some underlying func-
tion. That is, it should be infeasible for an attacker to produce a commitment
along with valid proofs for two different function values y �= y′ at a single input x
(all chosen by the attacker). In this work we will not focus on other security prop-
erties like function hiding or zero-knowledge for proofs, since they are often not
needed in applications, and when they are needed, they can usually be added
using standard techniques.

The notion of functional commitments was first formally defined in [LRY16]
to encompass prior notions for specific kinds of functionalities, like vector com-
mitments [LY10,CF13], polynomial commitments [KZG10,PST13,LRY16], and
linear commitments [LRY16].2 These kinds of constructions have had a wealth
of applications across cryptography, including verifiable outsourcing of stor-
age [BGV11], authenticated streaming data structures [PSTY13], updateable
zero-knowledge sets and databases [MRK03,Lis05], cryptographic accumula-
tors [BdM93], pseudonymous credentials [KZG10], stateless transaction valida-
tion in cryptocurrencies [CPSZ18], verifiable secret sharing [CGMA85], content-
extraction signatures [SBZ01], proof-carrying data systems, and succinct nonin-
teractive arguments (of knowledge), also known as SNARGs/SNARKs [BFS20,
BDFG21].

An important bonus feature of functional commitments, which is needed for
several of the above-cited applications, is (stateless) updateability. This means
that it is possible to concisely update the commitment and proofs for some func-
tion f to ones for a related function f ′, without needing to know f . For example,
a user—who may or may not be the original committer—may wish to define
f ′ = f + δ for some “update” function δ, and distribute corresponding updates
to existing proofs. This functionality can enable authentication for “streaming”
data structures and the like (see, e.g., [PSTY13]).

Beyond Linearity. As noted in [LRY16], there is a simple, generic construction
of functional commitments for arbitrary functions, which combines an ordinary
concise commitment and a SNARG (see also [BNO21]). In turn, SNARGs can be
constructed in the random-oracle model, by making a succinct interactive argu-
ment (e.g., [Kil92,Mic94]) non-interactive via the Fiat–Shamir transform [FS86].
However, in the absence of random oracles, SNARGs are powerful tools whose
known constructions are heuristic, since their security cannot be based on any
falsifiable assumption via a black-box security reduction [GW11].

Until quite recently, all known functional commitment schemes (without ran-
dom oracles) from falsifiable assumptions were limited to classes of linearizable
functions, i.e., ones that can be expressed as linear functions of a suitably “prepro-
cessed” input. This includes the recent constructions of [LP20,CFT22,ACL+22]

2 Earlier works [IKO07,BC12] considered similar concepts, but allowing for interaction
and private verifier randomness during the commitment and proving phases. Func-
tional commitments require noninteractive commitments and proofs, and public ver-
ifiability.
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for “semi-sparse” or constant-degree multi-variate polynomials. In particular, a
polynomial can be expressed as the (linear) inner product between the vectors of
the polynomial’s coefficients and the powers of the input; the preprocessing there-
fore computes these powers.

Recent work [PPS21] overcame this linearizability barrier for the first time.
It obtained functional commitments for functions of any (bounded) complex-
ity under the standard Short Integer Solution (SIS) assumption, and thereby
worst-case lattice assumptions [Ajt96], via techniques from fully homomorphic
encryption and commitments [GSW13,GVW15b]. (These homomorphic schemes
are not succinct, so they do not immediately yield functional commitments.)

However, the construction from [PPS21] has a major drawback: it operates
in a non-standard model that requires an online trusted authority. As in other
schemes requiring “structured” public parameters, the authority generates such
parameters together with a secret “trapdoor” (which can be used to break the
scheme’s security). But in addition, the authority must remain online to gener-
ate opening keys for any inputs at which users wish to open their committed
functions.3 So, this model requires a strong trust assumption.

1.1 Our Contributions

Our main contribution resolves the main problem left open by [PPS21]: we con-
struct a functional commitment scheme for all functions of a-priori bounded
complexity, whose setup needs only an “unstructured” uniformly random string
(and no trusted authority, online or otherwise), and whose security is based
on the standard SIS lattice problem. Such a “transparent” setup of the public
parameters is very attractive, because it requires only a public source of trust-
worthy randomness (which can even be heuristically expanded to the needed
size using a cryptographic hash function), and because no entity ever knows a
trapdoor that could be use to break the scheme’s security.

In particular, we obtain the first constructions, with a standard setup, of
polynomial commitments and general linear commitments from standard lat-
tice assumptions (or falsifiable post-quantum assumptions more broadly), and
of non-linearizable functional commitments under any falsifiable assumption.4

Moreover, our construction has several other attractive features:

3 The work of [PPS21] actually uses the dual formulation of functional commitments,
where data x is committed and then functions f of the data are opened. However,
the construction easily adapts to our present formulation of functional commitments.

4 We caution that some works on polynomial commitment schemes (e.g., [BDFG21])
consider additional requirements, e.g., that the committed function is indeed a poly-
nomial of some bounded degree, or even that openings are proofs of knowledge of
such a polynomial (which SNARK applications rely upon). These are much stronger
properties than originally considered in [KZG10] and in this work, typically requir-
ing strong (often unfalsifiable) assumptions, and our construction does not achieve
them. In addition, many works like [BBB+18,VP19,BFS20,BDFG21,Lee21,BNO21,
KPV22] allow openings to be interactive proofs, then heuristically (and unfalsifiably)
make them noninteractive using a random oracle using Fiat–Shamir [FS86]. Our con-
struction is natively noninteractive without any heuristics.
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Table 1. Comparison to prior statelessly updateable vector commitment schemes for
bit vectors of dimension D = dh (where d, h can be set freely), allowing updates to at
most S entries (including the initial commitment). Here ‘Setup’ is either private coin
(i.e., structured random string) or public coin (i.e., transparent, uniformly random
string), ‘PQ’ indicates post-quantum security, |pp| is the public parameter size, |c| is
the commitment size, and |π| is the proof size. Logarithmic factors in log D = h log d
and quasi-linear factors in the security parameter are omitted throughout.

Scheme (Assumption) Setup PQ |pp| |c| |π|
[CF13] (RSA, ECDH) Private ✗ D, D2 1 1

[CPSZ18] (q-SBDH) Private ✗ D 1 1

[PSTY13] (SIS) Public � log2 S log S dh log2 S

[PPS21] (SIS) Private � d2 log S + d log2 S log S h log2 S

Our construction (SIS) Public � log D log2 S log S log D log2 S

– It is statelessly updateable in very general ways, via generic composition prop-
erties. In particular, a committed function may be updated additively or mul-
tiplicatively, or even generically composed with another function, i.e., outputs
of committed functions can be post-processed. The updated commitment and
proofs are obtained simply by operating on the original ones according to the
update function.

– It efficiently specializes to particular functionalities of interest, like vector
commitments and polynomial commitments. In these settings and others,
the public parameters can first be preprocessed, even by an untrusted party.
Then, committing to a function and opening it become relatively fast, highly
parallel linear operations (i.e., just one matrix-matrix or even matrix-vector
multiplication). Moreover, for vector commitments, the sizes of our commit-
ments and proofs asymptotically beat or essentially match those of prior SIS-
based constructions [PSTY13,PPS21] (see Table 1), even though our scheme
has simpler opening and verification algorithms (after preprocessing).

– The verifier is efficient and essentially linear : it simply checks a single n-
dimensional (inhomogeneous) SIS relation, i.e., a short integral solution S to
a linear equation AS = Y, where the matrices A,Y are constructed linearly
from the public parameters, the commitment, and the claimed input-output
pair. This makes verification highly amenable to recent techniques for proving
relations of this kind in zero knowledge, and even succinctly (e.g., [BBC+18,
BLS19,LNP22,ACL+22]).

– A variant (using the “context hiding” technique of [GVW15b]) has (statisti-
cal) zero knowledge commitments and proofs, though with a weaker notion
called “target” evaluation binding, which requires the commitment to be gen-
erated honestly. Zero knowledge means that the commitments and proofs
reveal nothing more about the committed function than what is revealed by
the provided input-output pairs.
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Table 2. Comparison to concurrent works [BCFL22,WW23] that also construct func-
tional commitments for non-linearizable functions, from falsifiable lattice assumptions.
For a fair comparison, all quantities are given for the following setting: a two-input
circuit C(·, ·) of width w is fixed ahead of time, where each input may represent either
‘data’ or ‘code’. Its first input u is committed, then a proof is generated and verified
for the evaluation of Cu(·) := C(u, ·) at its second input v. Here ‘Setup’, |pp|, |c|, and
|π| are as in Table 1, and T refers to the running time of the operation in the subscript.
Dependencies on the security parameter and circuit depth, and poly-logarithmic fac-
tors in all parameters, are omitted. In addition, [BCFL22] supports a sublinear -time
verification, following an input-independent preprocessing step.

Scheme Assumption (type) Setup |pp| |c| |π| TCommit TOpen TVerify

[BCFL22] Twin-k-M -SIS (new) Private w5 1 1 |u| |Cu(·)| |Cu(·)|
[WW23] BASISstruct (new) Private |u|2 1 1 |u|2 |Cu(·)| |Cu(·)|

Construction 2 SIS (standard) Public |v| 1 |v| |Cu(·)| |Cu(·)| |v|

1.2 Concurrent Related Work

We briefly discuss two concurrent works [BCFL22,WW23] that also construct
functional commitments from lattice-style assumptions; see Table 2 for a sum-
mary. Both of these works require private setup of a structured random string
(with a trapdoor) by a trusted party—versus our transparent setup—and rely on
new, ad-hoc lattice assumptions—versus our reliance solely on the standard SIS
problem, which has been well studied and is supported by worst-case-hardness
theorems [Ajt96,MR04].

Regarding efficiency, their proofs are succinct, whereas ours grow with the
size of the opened data, but their runtimes are “dual” to ours in a way that
puts a higher burden on the verifier. Specifically, their commitment algorithms’
runtimes grow merely with the size of the committed data, but their verifiers’
runtimes grow with the function’s runtime (though [BCFL22] also supports
sublinear-time verification, after preprocessing that grows with the function’s
runtime). In our work, this profile is essentially reversed: the committer’s run-
time grows with the function’s runtime (though this can be reduced in many
important cases using preprocessing), but the verifier’s runtime grows only quasi-
linearly with the size of the opened data.

The work of [BCFL22] constructs functional commitments with private setup
from a new “twin-k-MSIS” assumption, which extends an assumption recently
introduced in [ACL+22]. In this construction, the sizes of some objects grow
with the width of the function’s arithmetic circuit, in addition to the depth.
More specifically, the public parameters scale polynomially with the width, the
commitment size scales logarithmically with the width, and the proofs scale
linearly in the depth.

The work of [WW23] constructs functional commitments with private setup
from a new “basis-augmented” SIS-like assumption. As in our work, this con-
struction uses homomorphic techniques from [GSW13,GVW15b], and a variant
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enjoys zero knowledge (which [WW23] calls “private openings”), but only with
the weaker notion of target binding that requires the commitment to be honestly
generated. In contrast to our work, the new basis-augmented SIS assumption
enables succinct proofs (analogously to [PPS21]), and an extension of the pub-
lic parameters enables proof aggregation, which allows multiple proofs (for the
same commitment) to be combined into a single, shorter proof that verifies the
original collection of openings.

Related Notions. We also mention two other concurrent works [GSW23,KLVW23]
that construct primitives that are closely related to functional commitments.

The work of [GSW23] constructs a non-interactive, publicly verifiable delega-
tion scheme for committed programs, with private setup from the Learning With
Errors (LWE) assumption [Reg05], via non-interactive batch arguments [CJJ21].
In this primitive, a delegator publishes a succinct digest of a program, which
can later be used to verify proofs of correctness for input-output pairs, much
like in functional commitments. The efficiency requirements are also essentially
the same as those for functional commitments, so the two concepts are syn-
tactically interchangeable. However, the security notion considered in [GSW23]
assumes that the program digest is honestly generated, so it is strictly weaker
than (full) evaluation binding for functional commitments, but it does match the
weaker notion of target binding. In summary, functional commitments provide
an alternative solution to the delegation problem considered in [GSW23].

The work of [KLVW23] constructs SNARGs for RAM computations, with
private setup from the LWE assumption, via (somewhere-extractable) batch
arguments. This primitive concisely commits to a large memory, then proves
the output of a RAM program (with that memory) on a small explicit input.
This is effectively a functional commitment (in “dual” form) for RAM programs,
which, in contrast to the circuit model adopted in this work, can access parts of
a large memory without having to read all of it as input.

1.3 Technical Overview

Here we summarize our general functional commitment construction and some
of its important instantiations. The details are in Sects. 3 and 4, respectively.

Functional Commitment Scheme. At a high level, our functional commit-
ment construction works similarly to the one from [PPS21], but ours does not
require an authority or even any structured public parameters. To set the stage,
we briefly recall the main ideas from the construction of [PPS21] (adapted so
that it commits to functions and opens at inputs).

The public parameters are a uniformly random SIS matrix A, which is gen-
erated together with a secret “trapdoor” as in [MP12], along with another uni-
formly random matrix C whose width is proportional to the length of a function
input. We view C as a commitment to an as-yet undetermined input x, under
the fully homomorphic encryption/commitment scheme of [GSW13,GVW15b].
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To commit to a function f , one just homomorphically evaluates f on C, resulting
in some Cf . Accordingly, we view this as a commitment to the function value
f(x), but for an unspecified x.

Recall that opening a committed function at a desired input x requires an
authority-generated “opening key” for x. This key is some “short” random coins
that open C as a commitment to x, which the adversary samples using its
trapdoor for A. Given these coins, and using the properties of the homomorphic
commitment scheme, the committer can track how the coins combine and grow
during the homomorphic evaluation of f on C, which results in some fairly short
derived coins that open Cf as a commitment to f(x). These coins serve as
the proof for the function value f(x). For other inputs x′, the authority must
generate corresponding opening keys upon request, which, again, are random
coins opening C as a commitment to those x′.

The main challenge in implementing the above strategy is that it is actually
insecure to equivocate C as a commitment to two different values—at least
relative to the same “base” matrix A. The solution given in [PPS21] is as follows:
when the authority opens C as a commitment to x, it does so relative to a
“tagged” base matrix Ax that is derived from A using x as the tag. This turns
out to be secure to do for essentially unlimited values of x. Very importantly,
the homomorphic evaluations of functions f on C do not depend at all on the
base matrix, so they can still be computed independent of any specific x.

Our Approach. As already mentioned, our functional commitment scheme works
similarly, but does not use an authority or any trapdoored public param-
eters. Interestingly, we achieve this in a remarkably simple way, by rely-
ing on fewer features of the underlying homomorphic commitment scheme
from [GSW13,GVW15b]. In particular, we do not use any notions of “base”
matrices, commitment coins, equivocation, or even committed data at all! We
refer to the stripped-down set of features that we do use as a homomorphic com-
putation scheme, to reflect the fact that it does not operate on any hidden data.
(See Sect. 3.1 for full details.)

In our scheme, the public parameter is just a uniformly random matrix C as
above; there is no longer any trapdoored base matrix A. In contrast to [PPS21],
we do not view C as a commitment to any data, and never open it as such. But
to commit to a function f , we still homomorphically evaluate f on C, yielding a
commitment Cf . To open the committed function at an input x, we cannot use
any opening of C. Instead, we track an “input aware” homomorphic evaluation
of f on C, which is “shifted” by (a suitable matrix encoding of) the input x. By
the properties of homomorphic computation, the result of this evaluation turns
out to be Cf , but similarly shifted by (the encoding of) f(x). Moreover, this
evaluation yields a fairly short multiplier matrix that links the shifted C and Cf

matrices; this multiplier serves as the proof for the function value f(x).
Overall, our functional commitment scheme significantly simplifies the one

from [PPS21], by disposing of the trapdoored setup, the online generation of
opening keys, and the tracing of commitment randomness, but it otherwise works
quite similarly. One additional difference is that in our scheme, the dimension
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of a proof is linear in the size of the input x (because the proof is left-multiplied
by the shifted C matrix), whereas in [PPS21] the proof dimension is essentially
independent of the input size (because the proof is left-multiplied by the trap-
doored matrix Ax). This has some implications for proof size and efficiency, but
proofs are still concise when the input is smaller than the function description,
which is almost always the case in applications.

Instantiations: Key-Value Commitments, Polynomial Commitments,
and More. In Sect. 4 we give several concrete instantiations of our general
functional commitment scheme, for specific function families of interest. Most of
these instantiations fit the following template: we identify a (potentially huge) set
of (potentially complex) “basis” functions, and show how to express any member
of the family relatively simply in terms of this basis, e.g., as a linear or low-degree
combination of not too many basis functions. Using our functional commitment
scheme’s generic composition properties, this immediately yields a commitment
scheme for the family, whose parameters and complexity are mainly determined
by the homomorphic implementation of the basis functions. Moreover, if there
are not too many basis functions (and similarly, function inputs that might be
opened), then commitments to all of them (and their associated openings) can
be preprocessed, making the “online” cost of committing (and opening) fairly
low. Finally, this approach naturally supports stateless updates, e.g., by other
combinations of the basis functions. We next mention some specific examples of
this template that we work out in detail.

Bounded-Support Functions. In Sect. 4.1 we consider arbitrary functions of
bounded support over some potentially huge domain X . We show how bounded-
support commitments directly yield commitments to arbitrary key-value maps
(with a bounded number of keys), a notion introduced in [BBF19] that gener-
alizes and unifies both vector commitments and accumulators (see also [AR20,
CEO22]). A suitable basis for bounded-support functions is the set of point func-
tions Eqx̄ : X → {0, 1} for x̄ ∈ X , where Eqx̄(x) is defined to be 1 if x = x̄ and 0
otherwise. Any function f of support supp(f) can be expressed as a linear com-
bination of |supp(f)| such point functions, as f(x) =

∑
x̄∈supp(f) f(x̄) · Eqx̄(x).

From the above, we immediately get key-value commitments from any homo-
morphic implementation of the Eqx̄ functions. We give a (to our knowledge)
new, very simple, and low-expansion implementation, which just does k = log X
homomorphic bit multiplications, scheduled in a certain way. Due to the particu-
lar properties of the homomorphic computation scheme, the associated expansion
factor is only linear in k, which ultimately leads to good SIS parameters.

Polynomials. In Sect. 4.2 we apply the template to obtain commitments for
(univariate or multivariate) polynomials of bounded degree. Here the “basis”
functions are just the powers of the input variable(s), and each such polynomial
can be expressed as a linear combination of these powers (or their products,
in the multivariate case). Here the linearity is over the polynomial’s coefficient
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ring, so even if commitments to the powers are precomputed, the “online” com-
mitment procedure does not necessarily consist solely of linear homomorphic
operations. However, we show that if the coefficient ring can be embedded as a
suitable matrix ring, then the online phase can be made linear, at the expense
of sacrificing further multiplicative (but not linear) compositions.

1.4 Future Work

We believe that our work opens many avenues for interesting further research.
One exciting direction is to see whether our techniques can pave the way for
succinct noninteractive arguments (of knowledge) (SNARGs or SNARKs) from
lattice assumptions that are simple to state and analyze. Recent work [ACL+22]
took a major step forward on lattice-based SNARGs, but under rather compli-
cated and ad-hoc (knowledge) assumptions. Our functional commitments do
not directly yield SNARGs because, while a commitment binds the committer
to some function, it does not guarantee anything about the form of that func-
tion. In other words, nothing ties the committed function to the computation or
relation for which we seek a SNARG. Indeed, SIS-based functional commitments
cannot yield a complete solution, because SNARGs for NP cannot be constructed
based on any falsifiable assumption, via a black-box security reduction [GW11].

Another direction for future work is to construct subvector commitments
from standard lattice assumptions. Such commitments allow a user to commit
to a vector and then later open any subset of its entries, where for nontrivial-
ity the proof size should be sublinear in the size of the subset. Our work does
not achieve this because we simply prove and verify each function output inde-
pendently. However, it seems likely that, due to the simple linear nature of our
verifier, multiple proofs could be compressed using amortization techniques for
interactive arguments for lattice relations [BBC+18].

Finally, there are a number of technical improvements one could seek for
our functional commitment scheme. As mentioned above, the proof size grows
at least linearly with the length of the function input, and it would be good to
reduce this dependence. (On the other extreme, the proof length in the functional
commitment scheme of [PPS21] is essentially independent of the input length,
thanks to the online authority.) Another area of potential improvement is in
the notion of security achieved. We mainly prove selective binding, where the
adversary must name the input on which it will attempt to break binding before
seeing the public parameters. We can immediately obtain the more realistic
notion of adaptive binding via complexity leveraging, assuming that SIS is hard
to break with inverse-subexponential probability exp(−λε), for some (arbitrarily
small) constant ε > 0. However, obtaining adaptive security under a tighter
reduction would be welcome.
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2 Preliminaries

For any non-negative integer i, denote [i] = {1, . . . , i}. For a real vector v, let
‖v‖1 :=

∑
i|vi| denote its �1 norm. For a real matrix V, let ‖V‖1 := maxj‖vj‖

denote the maximum �1norm of its column vectors vj . Observe that for any
matrices V,U, we have ‖VU‖1 ≤ ‖V‖1 · ‖U‖1 by the triangle inequality.

The Kronecker product A ⊗ B, where each of A,B is a vector or a matrix,
is obtained by replacing each entry ai,j of A with the block ai,jB. It obeys the
mixed-product property: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for any A,B,C,D
having compatible dimensions.

2.1 Short Integer Solution

We briefly recall the Short Integer Solution (SIS) and its hardness based on
worst-case lattice problems. Due to the particulars of our constructions and
analyses, we define the problem in terms of the �1 norm, not the �2 norm (as
is more typical). Because the �1 norm of any vector is at least its �2 norm, the
variant of SIS that uses �1 is no easier than, and is plausibly even harder than,
the one that uses �2 (for the same norm bound β).

Definition 1. The normal-form SISn,q,m,β problem in the �1 norm is: given a
uniformly random matrix A ∈ Z

n×m
q , find a non-zero integral vector z = (x ∈

Z
m, e ∈ Z

n) such that Ax = e (mod ∗)q and ‖z‖1 ≤ β.

When q ≥ β · τ(n) for a sufficiently large τ(n) = Õ(
√

n) and m is polynomial
in n and log q, solving normal-form SISn,q,m,β (in �2, and hence also in �1)
is at least as hard as approximating certain worst-case lattice problems on n-
dimensional lattices to within a β · Õ(

√
n) factor [Ajt96,MR04,GPV08].

2.2 Functional Commitments

Here we give a general definition of functional commitments and their main
security property. In this definition, one commits to a function and then can
open it (with proof) at desired inputs. This is the most natural formulation for
our construction (Sect. 3) and most of its instantiations (see Sect. 4), and it
naturally generalizes other notions of concise commitments, such as vector and
polynomial commitments. However, if desired, the roles of the function and the
input can be swapped via the standard technique of using a universal function
(see Sect. 4.3).

Definition 2. A functional commitment scheme for a function family F =
{f : X → Y}, where X is a set of opening inputs and Y is the space of out-
puts (and all of F ,X ,Y may depend on the security parameter), is a tuple of
algorithms with the following interfaces:

– Setup(), given an (implicit) security parameter, outputs public parameters pp.
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– Commit(pp, f ∈ F), given public parameters pp and a function f , outputs a
commitment cf to f .

– Open(pp, f, x ∈ X ), given public parameters pp, function f , and an opening
input x, outputs a proof pf,x attesting to the value of f(x).

– Verify(pp, cf , x ∈ X , y ∈ Y, pf,x), given public parameters pp, some cf that
purportedly commits to some function f , an opening input x, a claimed
value y, and a purported proof pf,x that f(x) = y, either accepts or rejects.

The scheme should satisfy the following correctness property: for any f ∈ F
and x ∈ X , and for any pp ← Setup(), cf ← Commit(pp, f), and pf,x ←
Open(pp, f, x), Verify(pp, cf , x, f(x), pf,x) should accept. For nontriviality, com-
mitments should be concise, i.e., smaller than the representations of functions
from the family F .

Definition 3. For a functional commitment scheme FCS (or more precisely,
just its Verify algorithm), the selective-input attack game between an adversary
and a challenger is defined as follows:

1. The adversary is given the security parameter λ and outputs an opening input
x∗ ∈ X to the challenger.

2. The challenger lets pp ← Setup() and gives pp to the adversary.
3. Finally, the adversary outputs a commitment c∗ and two value-proof pairs

(y0, p0) and (y1, p1). It wins the game if y0 �= y1, and if Verify(pp, c∗, x∗, yb, pb)
accepts for both b ∈ {0, 1}.

The advantage of an adversary A in the above game, denoted Advsia
FCS(A), is

the probability that it wins the game (as a function of the security parameter).
We say that FCS (or just its Verify algorithm) has (selective) evaluation binding
if Advsia

FCS(A) = negl(λ) for every probabilistic polynomial-time adversary A.

As explained in Sect. 4, (selective) evaluation binding captures the main secu-
rity property for prior special cases of functional commitments, e.g., position
binding for vector commitments.

Remark 1 (Target security). A weaker notion of security, which is relevant to our
zero-knowledge variant construction, is called target evaluation binding. Essen-
tially, this says that it is infeasible to prove an incorrect input-output pair relative
to an honestly generated commitment to a function—even given any randomness
used in generating the commitment. (This is sufficient for, e.g., the program-
delegation problem considered in [GSW23].) Formally, we consider the following
modification of Definition 3:

– After Step 2, the adversary outputs a target function f∗ ∈ F , and the chal-
lenger generates a commitment c∗ ← Commit(pp, f∗), which it gives (along
with the random coins, if any) to the adversary.

– In Step 3, the adversary outputs a value-proof pair (y∗, p∗), and wins if
Verify(pp, c∗, x∗, y∗, p∗) accepts but y∗ �= f∗(x∗).
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Remark 2 (Adaptive security). One can strengthen Definition 3 (and its target
variant) by changing the attack game so that the adversary does not specify the
target opening input x∗ until Step 3 (rather than in Step 1, before seeing the
public parameters); we call the resulting security notion adaptive, or full, evalu-
ation binding. Generically, any scheme with selective security also has adaptive
security, up to a loose reduction whose advantage is smaller by a factor of |X |,
the size of the input space. This follows by the standard technique of complexity
leveraging—i.e., initially “guessing” the input x∗ that the adversary will even-
tually choose. Concretely, we can obtain adaptive security for Construction 2
under the assumption that SIS is hard to break with inverse-subexponential
probability exp(−λε), for some (arbitrarily small) constant ε > 0.

3 Functional Commitments from SIS

In this section we construct a very general functional commitment scheme, sup-
porting rich and complex function classes, based on the SIS problem.

3.1 Homomorphic Computation

The heart of our functional commitment scheme is what we call a “homomorphic
computation” scheme, which is inherent in the homomorphic encryption scheme
of Gentry, Sahai, and Waters (GSW) [GSW13], and was made more explicit
in the works of [BV14,AP14,GVW15b], with other useful properties derived in
related works like [BGG+14,GVW15a,PS19,PPS21].

Here we lay out a somewhat different perspective that focuses on just those
limited properties needed for our purposes, and hence exposes less of the func-
tionality than is used in prior works, making it slightly simpler. In particular, we
do not need any explicit notions of encrypted/committed/hidden data, encryp-
tion/commitment randomness, or decryption/opening.

Overview. The homomorphic computation scheme operates on matrices C ∈
Z

n×W
q for some fixed q, n and various W . Performing homomorphic operations

that correspond to a function f yields a matrix Cf ∈ Z
n×W ′
q . The key property

is that for any input x to f ,

(C − Rep(x) ⊗ gt) · Sf,x = Cf − Rep(f(x)) ⊗ gt (1)

for some “short” (and efficiently computable) matrix Sf,x ∈ Z
W×W ′

that can
depend on C, f, x. Here Rep outputs a suitable matrix representation of its argu-
ment, and g is a special fixed vector, described next.

The above Kronecker products serve as “robust” matrix encodings using a
fixed gadget vector g ∈ Z

�
q, which must come with a corresponding decom-

position function g−1 : Zq → Z
�. These are defined so that g−1(u) ∈ Z

� is
“short” (relative to q) and gt · g−1(u) = u, for all u ∈ Zq. This naturally
extends to (X ⊗ gt) · g−1(Y) = XY for any X ∈ Z

n×d
q and Y ∈ Z

d×d′
q ,
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where g−1(Y) operates entry-wise, replacing each yi,j with the “short” column
vector g−1(yi,j) ∈ Z

�.
For concreteness, we use the powers-of-two gadget g := (1, 2, 4, . . . , 2�−1)t for

� = �log2 q, where g−1 : Zq → {0, 1}� simply outputs the binary representation
of (the distinguished representative in {0, 1, . . . , q − 1} of) its argument, least-
significant bit first. All of what follows straightforwardly generalizes to other
choices of gadget, with suitable adjustments to the bounds on “short” objects.

In addition, the decomposition operation g−1 can be randomized as in [MP12,
AP14]. This can be used for (statistically) function-hiding homomorphic compu-
tation, using ideas from [BPMW16], but simplified in our setting because only
SIS (not LWE) instances need to be re-randomized. Function hiding is used only
in the zero-knowledge variant of our functional commitment construction (see
Sect. 3.2).

Linear Homomorphisms. We recall the homomorphic operations supporting
linear functions. First, for any X1,X2 ∈ Z

n×d
q (for any d) we have

(
[X1 | X2] ⊗ gt

) ·
[
Id�

Id�

]

︸ ︷︷ ︸
S+

=
(
[X1 | X2] ·

[
Id

Id

])
⊗ (gt · I�) = (X1 + X2) ⊗ gt.

This yields the homomorphic operation for addition: given any C ∈ Z
n×2d�
q ,

define C+ := C · S+ ∈ Z
n×d�
q . Then for any X1,X2 ∈ Z

n×d
q we have

(C − [X1 | X2] ⊗ gt) · S+ = C+ − (X1 + X2) ⊗ gt. (2)

Note that S+ is short: ‖S+‖1 = 2.
Second, recall from above that for any X ∈ Z

n×d
q and Y ∈ Z

d×d′
q ,

(X ⊗ gt) · g−1(Y)
︸ ︷︷ ︸

S×Y

= XY ∈ Z
n×d′
q .

This yields homomorphic (right-)multiplication by any fixed matrix Y: given
any C ∈ Z

n×d�
q , define C×Y := C · S×Y. Then for any X ∈ Z

n×d
q , we have

(C − X ⊗ gt) · S×Y = C×Y − (XY) ⊗ gt. (3)

Note that S×Y is short: ‖S×Y‖1 ≤ d�.

Linear Functions Over Finite Fields. For values in the matrix ring R = Z
n×n
q ,

the above yields a linearly homomorphic scheme, i.e., one that supports addition
and (right-)multiplication by known R-elements. This in turn yields a linearly
homomorphic scheme for the finite field Fpn′ for any prime p that divides q and
any n′ ≤ n, using standard encoding and padding techniques. (In summary: Fpn′

is an n′-dimensional vector space over Fp, so multiplication by each field element
can be represented by a corresponding matrix in Z

n′×n′
p , which can be scaled

and padded to Z
n×n
q .)
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Multiplicative Homomorphism. To support multiplicative homomorphism,
and thereby arbitrary Boolean circuits of bounded size or branching programs,
we restrict all the data values to be bits, and represent any b ∈ {0, 1} by the
scaled identity matrix bIn ∈ Z

n×n
q . This leads to the homomorphic operation

for multiplication: given any C = [C1 | C2] where each Ci ∈ Z
n×w
q for w = n�,

define C× := C1 · g−1(C2) ∈ Z
n×w
q . Then for any x1, x2 ∈ {0, 1}, we have

(C − [x1In | x2In] ⊗ g
t
) ·

[
g−1(C2)

x1Iw

]
︸ ︷︷ ︸

S×,x1

= C× + C2 · x1Iw − x1In · C2 − (x2In ⊗ g
t
) · (x1In ⊗ I�)

= C× − (x1x2)In ⊗ g
t
. (4)

Note that the multiplier matrix S×,x1 is short: ‖S×,x1‖1 ≤ w + 1. Also note
that, unlike above, here the multiplier matrix depends on the initial matrix C2

as well as one of the input values x1 (which is not determined at the time of the
homomorphic multiplication).

More generally, the asymmetric form of the short multiplier matrix S×,x1

means we can perform many sequential multiplications with a short multiplier
whose norm bound is only linear in the number of operations. Specifically, given
any C = [C1 | · · · | Ck] where each Ci ∈ Z

n×w
q , define C× = C1 · g−1(C2 ·

g−1(· · ·g−1(Ck))). Then for any x ∈ {0, 1}k, by iteratively applying the above
we get a multiplier matrix

S×,x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g−1(C2 · g−1(C3 · · ·g−1(Ck)))
x1 · g−1(C3 · · ·g−1(Ck))

...
x1 · · · xk−2 · g−1(Ck)

x1 · · · xk−1 · Iw

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Z
kw×w. (5)

Note that ‖S×,x‖1 ≤ (k − 1)w + 1.
Using the above, we can homomorphically evaluate any Boolean circuit f

on a given matrix C, by expressing each gate of the circuit algebraically (e.g.,
x NAND y = 1 − xy). Due to Eqs. (2) to (4), the result Cf satisfies Eq. (1) for
any circuit input x, where the multiplier matrix Sf,x is the product of some
short multiplier matrices, and hence is somewhat short itself. Similarly, we can
homomorphically evaluate branching programs, where, as with multiplication of
several bits, the asymmetric nature of each step’s multiplier matrix means that
their product has �1 norm proportional to the program length.

Summary. We summarize all of the above in the following.

Definition 4. Define the following function families Flinear,Fcircuit,FBP:

– Fk
linear = {fw : Fk → F : w ∈ F

k} is the family of linear functions fw(x) :=
〈w,x〉 over F, where F = Fpn′ for any prime p that divides q and any n′ ≤ n.
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– Fk
circuit = {f : {0, 1}k → {0, 1}} is the family of functions that are computable

by Boolean circuits of some specified depth D (and fan-in two).
– Fk

BP = {f : {0, 1}k → {0, 1}} is the family of functions that are computable
by branching programs of some specified size S (and some fixed width).

Remark 3. In the above-defined families, for simplicity we restrict the functions
to output a single value (i.e., a field element or bit). This is without loss of
generality, because any vector-valued (i.e., multi-output) function of the same
complexity can be obtained as the concatenation of the functions that produce
each entry of its output vector, and we can commit to and open each such
function in parallel. Indeed, our concrete instantiations will use vector-valued
functions, which are implicitly handled in this way.

Theorem 1 (Homomorphic computation scheme). Let n, q ∈ N and D =
{0, 1} or D = Fpn′ for a prime p that divides q and some n′ ≤ n. There is
an efficient deterministic robust matrix encoding for any v ∈ Dd, denoted vt ⊗
gt ∈ Z

n×dw
q where w = n�, and a deterministic polynomial-time homomorphic

evaluation algorithm Eval, where for any function family F = {f : Dk → D}
from Definition 4:5

– Eval’s input in square brackets is optional, and when it is provided, the addi-
tional output (also in square brackets) is also produced. The non-optional
output is unaffected by whether or not an optional input is provided.

– Eval(f ∈ F ,C ∈ Z
n×kw
q [,x ∈ Dk]) outputs a matrix Cf ∈ Z

n×w
q [and an

integral matrix Sf,x ∈ Z
kw×w], where the additional output Sf,x satisfies

(C − xt ⊗ gt) · Sf,x = Cf − f(x)t ⊗ gt, (6)

and
1. for F = Fk

linear, ‖Sf,x‖1 ≤ kw; moreover, ‖Sf,x‖1 ≤ k when f is a
subset-sum function;

2. for F = Fk
circuit, ‖Sf,x‖1 ≤ O(w)D;

3. for F = Fk
BP, ‖Sf,x‖1 ≤ wO(1) · S.

Remark 4. The form of Eq. (6) means that Eval is composable, i.e., it can be
applied to its own outputs, to homomorphically compute on the results of other
homomorphic computations. More specifically, we can compute (Cf [,Sf,x ]) =
Eval(f,C [,x]) then (Cg◦f [,Sg,f(x)]) = Eval(g,Cf [, f(x)]), where recall that f, g
can be vector-valued functions. Then Sf,x ,Sg,f(x) satisfy the norm bounds cor-
responding to f, g (respectively), and

(C − xt ⊗ gt) · Sf,x · Sg,f(x) = (Cf − f(x)t ⊗ gt) · Sg,f(x)

= Cg◦f − g(f(x))t ⊗ gt.

5 More generally, the scheme works for vector-valued (multi-output) functions, follow-
ing Remark 3.
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For notational convenience, we express the above process (hiding the intermedi-
ate values) as

(Cg◦f [,Sg◦f,x ]) = Eval(g ◦ f,C [,x]),

where Sg◦f,x = Sf,x · Sg,f(x).

3.2 Functional Commitment Construction

Our functional commitment scheme is parameterized by a function family
F = {f : X → Y} and a corresponding norm bound κ, which is used only
in verification. Recall from Definition 2 that a user first commits to some func-
tion f ∈ F . Then, for one or more inputs x ∈ X , the user can generate a proof
that f(x) = y for some claimed y ∈ Y. The main security property of interest
(see Definition 3) is essentially that it should be infeasible to generate a (pos-
sibly malformed) commitment, an input x, and valid proofs for two different
purported function outputs (at x).

Construction 2 (SIS-based functional commitment). Let n, q ∈ N. Following
Theorem 1, let X ,Y be finite domains where x ∈ X , y ∈ Y have robust matrix
encodings denoted xt ⊗ gt ∈ Z

n×W
q , yt ⊗ gt ∈ Z

n×W ′
q (respectively), and let

Eval be the homomorphic evaluation algorithm. Let F = {f : X → Y} be some
function family and κ be a corresponding norm bound.6 Define the following
functional commitment scheme for F .

– Setup(): choose uniformly random C ← Z
n×W
q and output it as the public

parameter. (Note that this is an “unstructured” random string, so the setup
is untrusted.)

– Commit(C, f ∈ F): output commitment Cf = Eval(f,C) ∈ Z
n×W ′
q .7

[For Boolean functions the commitment can be compressed significantly; see
Sect. 3.2 below.]

– Open(C, f ∈ F , x ∈ X ): compute (Cf ,Sf,x) = Eval(f,C, x), and output proof
Sf,x ∈ Z

W×W ′
.8

[For Boolean functions the proof can be compressed significantly; see Sect. 3.2
below.]

– Verifyκ(C,C∗, x ∈ X , y ∈ Y,S∗): if ‖S∗‖1 ≤ κ and

(C − xt ⊗ gt) · S∗ = C∗ − yt ⊗ gt,

then accept; otherwise, reject.
6 The norm bound κ should be set large enough so that the verifier accepts properly

generated proofs for all functions in F (see Lemma 1). Then, n and q should be set
so that the SIS problem underlying the scheme’s evaluation binding is sufficiently
hard (see Theorem 3).

7 We can make the commitment hide the function f by using circuit-private homo-
morphic computation, such as from [BPMW16], and retaining the randomness for
use in opening.

8 In concert with a function-hiding commitment, we can make the opening reveal
nothing more than the single input-output pair (x, f(x)) by giving a zero-knowledge
proof (of knowledge) of some Sf,x that satisfies the verifier.
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Section 3.2 describes a zero-knowledge variant of this construction with the
weaker notion of target evaluation binding, and sketches the proofs of its security
properties.

Complexity. For security (see Theorem 3 and the remark following Definition
1), the modulus q should satisfy q ≥ κ ·τ(n), or q ≥ k′κ ·τ(n) for the compressed
variant for k′-bit function outputs, for some large enough τ(n) that can be
Õ(

√
n). Because κ ≥ √

n in any useful instantiation, we can ensure that log2 q =
Θ(log κ). Recall that w = n� = n�log2 q.

The sizes of the scheme’s various objects are as follows:

– The public parameter C is ≈ W · w bits, where W is the width of the robust
matrix encoding of any input x ∈ X . Concretely, W = kw when X = Dk for
D = {0, 1} or D = Fpn′ (see Definition 4), so the public parameter is ≈ kw2

bits.
– An (uncompressed) commitment Cf is ≈ W ′ · w bits, where W ′ is the width

of the robust matrix encoding of any output y ∈ Y, which is W ′ = k′w when
Y = Dk′

. So, a commitment is ≈ k′w2 bits. A compressed commitment for
k′-bit function outputs (where k′ ≤ n) is just ≈ w bits; see Sect. 3.2 below.

– An (uncompressed) proof Sf,x is ≈ W ·W ′·log2 κ bits (using a näıve encoding);
for a Dk → Dk′

function, this is ≈ k · k′ · w2 · log2 κ bits. A compressed proof
for k′-bit function outputs (where k′ ≤ n) is just kw log2(k′κ) bits.

(We can reduce the sizes of all these objects by about a factor of n, using “alge-
braically structured” lattices and the Ring-SIS problem [Mic02,PR06,LM06].)

The running times of Commit and Open are just those of homomorphic eval-
uation of the committed function, in the latter case with the known input. The
verifier’s running time is dominated by a matrix multiplication, or a matrix-
vector multiplication for a compressed proof.

Composition, Stateless Updates, and (Outsourced) Precomputation.
Because both algorithms Commit,Open are simply the homomorphic evaluation
algorithm Eval (with the latter providing the function input x as Eval’s optional
input), Construction 2 supports function composition in the same way that the
homomorphic computation scheme does, as described in Remark 4. We use sim-
ilar notation Cg◦f = Commit(C, g ◦ f) and Sg◦f,x = Open(C, g ◦ f, x) to denote
this kind of composition. Note that f and g need not come from the same func-
tion family. As usual, for correctness we simply need to use an appropriate norm
bound κ in verification.

This kind of composition has several beneficial consequences: it enables state-
less updates, reuse, and (outsourced) precomputation of commitments and proofs.
More specifically, a commitment Cf to a function f can be updated to a com-
mitment Cg◦f = Commit(Cf , g) to any g ◦ f , using Cf and g alone; the original
function f is not needed. Similarly, for any x, a proof Sf,x that f(x) = y can
be updated to a proof Sg◦f,x = Sf,x · Open(Cf , g, y) that g(f(x)) = z, using
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just Cf , g, y. In addition, commitments and proofs for other functions g′ ◦ f can
be created by reusing Cf and its proofs Sf,x. This enables precomputation, in
case a committer does yet not know which of multiple functions with common
structure gi ◦ f it will commit to, or which inputs it will open. Finally, this pre-
computation of commitments and proofs can even be outsourced to an untrusted
worker, as long as the client verifies them. Then any commitments and proofs
derived (exclusively) from them will verify as well.

Several of our concrete instantiations in Sect. 4 rely on a few specific kinds
of compositions. Fix some “base” function f . Then for an “additive update”
function δ, the updated function f ′ = f+δ obviously satisfies f ′(x̄) = f(x̄)+δ(x̄)
for all x̄. For a “multiplicative update” function c (which can be, but need not
be, a constant), the updated function f ′ = c · f satisfies f ′(x̄) = c(x̄) · f(x̄) for
all x̄. Most generally, for a “post-processing update” function g, the updated
function f ′ = g ◦ f satisfies f ′(x̄) = g(f(x̄)) for all x̄.

Compression for Binary Functions. For concatenations of any k′ ≤ n func-
tions with Boolean (or more generally, small integer) outputs, we can signifi-
cantly reduce the sizes of the commitments and proofs, by a factor of W ′ =
k′w = k′n�.

Let e = (et
1, e

t
2, . . . , e

t
k′)t ⊗ g−1(1) ∈ {0, 1}k′w, where ei ∈ Z

n
q is the ith

standard basis vector, and note that ‖e‖1 = k′. Then any commitment Cf ∈
Z

n×W ′
q can be compressed as the single vector cf = Cf · e ∈ Z

n
q , and any proof

Sf,x ∈ Z
W×W ′

can be replaced by a single vector sf,x = Sf,x ·e ∈ Z
W .9 We then

define the compressed verification algorithm Verify′
κ(C, c∗, x,y ∈ {0, 1}k′

, s∗) to
accept if ‖s∗‖1 ≤ κ′ := k′κ and

(C − xt ⊗ gt) · s∗ = c∗ −
(
y
0

)

.

In brief, this compressed scheme is correct because the uncompressed scheme
is, and because ‖sf,x‖1 ≤ ‖Sf,x‖1 ·‖e‖1 ≤ k′κ = κ′ and (yt⊗In⊗gt) ·e = ( y

0 ) by
construction of e. See Lemma 1 below for details, and for security see Theorem
3.

Compressed commitments and proofs are no longer generally composable,
i.e., they do not support arbitrary further homomorphic operations. However, it
is straightforward to see that they still are linear homomorphic via small integer
combinations, as long as the norm bound used in verification is set appropriately.

Correctness

Lemma 1. For the values of κ given above, Construction 2 [and its compressed
variant for Boolean functions] is a correct functional commitment scheme for
the corresponding function family.
9 In some contexts, compressed commitments and proofs even be computed directly,

without first computing uncompressed ones.
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Proof. Let f ∈ F and x ∈ X be arbitrary, and let C ← Setup() and (Cf ,Sf,x) =
Open(C, f, x) = Eval(f,C, x). Note that Cf = Commit(C, f) = Eval(f,C) by
definition of Eval.

We show that Verifyκ(C,Cf , x, f(x),Sf,x) accepts. By the correctness of Eval
(Eq. (6)), we have

(C − xt ⊗ gt) · Sf,x = Cf − f(x)t ⊗ gt.

In addition, ‖Sf,x‖1 ≤ κ by Theorem 1, so Verifyκ accepts.
For the compressed variant for k′-bit outputs, where W ′ = k′w, the com-

mitment is cf := Cf · e and proof is sf,x := Sf,x · e, where e ∈ {0, 1}W ′
is as

defined in Sect. 3.2. Consider Verify′
κ(C, cf , x,y = f(x) ∈ {0, 1}k′

, sf,x). Because
f(x)t ⊗ gt = yt ⊗ In ⊗ gt in this setting, we have that

(C−xt⊗gt) ·sf,x = (C−xt⊗gt) ·Sf,x ·e =
(
Cf − (yt ⊗ In ⊗ gt)

) ·e = cf −
(
y
0

)

and ‖sf,x‖1 ≤ ‖Sf,x‖1 · ‖e‖1 ≤ k′κ = κ′, so Verify′
κ accepts. ��

Security

Theorem 3. For any κ > 0, the Verifyκ algorithm from Construction 2 [and
its compressed variant Verify′

κ for k′-bit function outputs, from Sect. 3.2] has
selective evaluation binding (Definition 3) if normal-form SISn,q,W,β in the �1
norm is hard, where β = 2wκ+n for finite-field function outputs, and β = 2κ+n
for Boolean function outputs [or for the compressed variant, β = 2k′κ + n].10

More specifically, for any adversary A against the selective evaluation binding
of the scheme, there is a normal-form SISn,q,W,β adversary B for which

AdvSIS(B) ≥ Advsia(A),

and whose running time is that of A plus a small polynomial in n.

Proof. Let A be any adversary that attacks the selective evaluation binding
(Definition 3) of Verifyκ [or Verify′

κ]. For the former (non-compressed) version,
we assume that the function output is a single finite-field element or bit, and
hence W ′ = w, because breaking binding for multi-output functions requires
breaking it at some single position.

We construct a reduction B which, on input A ∈ Z
n×W
q , attempts to output a

vector x ∈ Z
W such that Ax ∈ {0,±1}n \ {0} ⊆ Z

n
q where ‖x‖1 ≤ β − n; note

that such an x is a normal-form SIS solution (in �1) for A. It operates as follows:

1. Give the security parameter to A and receive x∗ ∈ X in return.

10 As mentioned in Sect. 3.2, security for the compressed variant extends to concate-
nations of k′ functions with small integer outputs, where the additive n term in β is
replaced by the maximum �1 norm of the difference between two such output vectors.
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2. Let the public parameter C := A + (x∗)t ⊗ gt and give it to A. Note that
this makes C − (x∗)t ⊗ gt = A.

3. A outputs some (C∗, y0,S0, y1,S1). If y0 = y1, abort.
[For the compressed variant, A instead outputs some (c∗,y0, s0,y1, s1).]

4. Compute the binary vector e = g−1(Y−1e1) ∈ {0, 1}w, where Y ∈ Z
n×n
q is

the invertible matrix representing multiplication by y1 − y0 �= 0 (and e1 ∈ Z
n
q

is the first standard basis vector).
More specifically, for finite-field outputs, y1 − y0 is a nonzero field element,
hence it corresponds to an invertible Y ∈ Z

n×n
q , and ‖e‖1 ≤ w. For Boolean

functions, y0 − y1 = ±1, and hence corresponds to the invertible matrix
±In ∈ Z

n×n
q , so we can use e = ±e1 and hence ‖e‖1 = 1.

[For the compressed variant, this step is skipped.]
5. Output x = (S0 − S1)e ∈ Z

W .
[For the compressed variant, output x = s0 − s1 ∈ Z

W .]

By inspection, it is clear that B runs in the same time as A, plus a small poly-
nomial. In addition, for any choice of x∗ ∈ X by A, the public parameter C is
uniformly random (because A is), as needed.

We now show that if A successfully breaks selective evaluation binding, then
B outputs an x such that Ax = e1 ∈ Z

n
q and ‖x‖1 ≤ 2k′κ. In this case, we have

y0 �= y1; ‖S0‖1, ‖S1‖1 ≤ κ; and

C∗ = AS0 + yt
0 ⊗ gt = AS1 + yt

1 ⊗ gt,

so A(S0 − S1) = (y1 − y0)t ⊗ gt. Therefore,

Ax = A(S0 − S1) · e
= ((y1 − y0)t ⊗ gt) · e = e1.

Moreover, ‖x‖1 = ‖(S0 − S1)1 · e‖ ≤ ‖S0 − S1‖1 · ‖e‖1, which by the triangle
inequality is at most 2wκ for finite-field outputs, and at most 2κ for Boolean
outputs, as needed.

For the compressed variant (for functions with binary outputs of length k′ ≤
n), A instead outputs some (c∗,y0 ∈ {0, 1}k′

, s0 ∈ Z
W ,y1 ∈ {0, 1}k′

, s1 ∈ Z
W ),

and succeeds if y0 �= y1; ‖s0‖1, ‖s1‖1 ≤ k′κ; and

c∗ = As0 +
(
y0

0

)

= As1 +
(
y1

0

)

.

Since x = s0 − s1, it immediately follows that

Ax = A(s0 − s1) =
(
y1 − y0

0

)

∈ {0,±1}n \ {0},

and ‖x‖1 ≤ 2k′κ, as needed.

Zero-KnowledgeVariant. Using the “context hiding” technique of [GVW15b],
Construction 2 for binary functions f : {0, 1}k → {0, 1} can be modified to have
zero-knowledge commitments and proofs, but a weaker “target” binding property
(see Remark 1). We describe this modification and briefly sketch the proofs.
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Modified algorithms.

– The Setup algorithm additionally includes a uniformly random u ∈ Z
n
q in the

public parameter.
– The Commit algorithm does (statistically) function-hiding homomorphic eval-

uation (which uses a randomized decomposition operation g−1), and retains
its random choices for generating proofs.

– The Open algorithm, having computed Sf,x that satisfies Equation (6), treats
it as a trapdoor in the sense of [MP12] for a combined matrix Cf,x, i.e.,

[C − xt ⊗ gt | Cf − (1 − f(x))t ⊗ gt]
︸ ︷︷ ︸

Cf,x

·
[
Sf,x

−In�

]

= (1−2f(x))t ⊗gt = ±1t ⊗gt.

Using this trapdoor, it randomly samples a Gaussian-distributed integral
preimage s for which Cf,x · s = u, and outputs s as the proof.

– The Verify algorithm reconstructs Cf,x using y as the purported value of f(x),
and checks that s is sufficiently short and that Cf,x · s = u.

Zero Knowledge and Target Binding. The modified scheme has zero-knowledge
commitments and proofs: function hiding ensures that Cf reveals nothing
about f (formally, a simulator can return a random “dummy” commitment Cf

instead), while Gaussian preimage sampling ensures that proofs reveal noth-
ing beyond the input-output pairs (formally, a simulator can embed a trapdoor
in C that lets it sample from the desired distribution for any x, f(x); for this it
is convenient for x to have one “dummy” coordinate that never changes).

The scheme satisfies target evaluation binding (see Remark 1) under a suit-
able SIS assumption. In brief, the reduction is given a random SIS challenge
A ∈ Z

n×W
q . It gets x∗ from the adversary, and supplies public parameter

C = A + (x∗)t ⊗ gt = A and u = Ar for a (secret) uniformly random
r ← {0, 1}W . It then gets a function f∗ from the adversary, and supplies an
honestly generated commitment Cf∗ (and its underlying randomness); it also
computes the associated short multiplier matrix Sf∗,x∗ that satisfies Eq. (6).
Finally, the adversary (if successful) outputs a sufficiently short proof s∗ for
y∗ = 1 − f∗(x∗), which satisfies

[C − (x∗)t ⊗ gt | Cf∗ − f∗(x∗)t ⊗ gt] · s∗ = [A | ASf∗,x∗ ] · s∗ = u.

Hence A([IW | Sf∗,x∗ ]s∗ − r) = 0, yielding an SIS solution—which is nonzero
with high probability, since r has large min-entropy in the adversary’s view.

4 Concrete Instantiations

In this section we present and analyze several important instantiations of our
functional commitment scheme from Sect. 3.2. These include commitments to
functions of bounded support (Sect. 4.1), which encompass vector commitments
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(Sect. 4.1), and accumulators (Sect. 4.1); polynomial commitments (Sect. 4.2);
and commitments to data with openings that reveal functions thereof (Sect. 4.3).

Each instantiation of is obtained by (1) defining an appropriate function
family that captures the desired functionality, (2) showing how to efficiently
implement it homomorphically using Theorem 1, and (3) analyzing the resulting
norm bounds to set the verification threshold κ appropriately (to ensure cor-
rectness). Moreover, for all the special-purpose function families, we show how
to implement updates via simple compositions, which means the corresponding
commitment schemes are statelessly updateable. Finally, we show that the forms
of certain function families enable certain optimizations in their corresponding
functional commitment schemes.

At a high level, all of our instantiations for specific kinds of functionalities
follow a common template. We first identify a (potentially huge) set of “basis”
functions, and show how to express the desired functions relatively simply in
terms of this basis, e.g., as linear or low-degree combinations. Plugging this into
Construction 2 (and using its composition properties) then yields a functional
commitment scheme for all functions that have “bounded weight” in terms of the
basis. The scheme’s running time and associated norm bound is therefore deter-
mined mainly by the complexity of the basis functions. Moreover, if there are
not too many basis functions (or function inputs), then their commitments (and
proofs) can be precomputed, so that the “online” running time is determined by
the (low) complexity of the combining operation(s).

4.1 Bounded-Support Commitments

Here we instantiate our general functional commitment scheme (Construction
2) for the general class of functions having bounded support over a potentially
huge domain. As we show below, vector commitments, accumulators, and a gen-
eralization of both called key-value commitments [BBF19] can be expressed as
special cases of bounded-support commitments. Moreover, all these schemes are
statelessly updateable, via composition.

Representing Bounded-Support Functions. Let f : X → Y be a function for some
finite X ,Y, where Y is without loss of generality an additive group with identity
element denoted 0, and let supp(f) := {x ∈ X : f(x) �= 0} ⊆ X denote the
support of f . For each x̄ ∈ X , define the “point function” Eqx̄ : X → {0, 1} as

Eqx̄(x) =

{
1 if x = x̄

0 otherwise.
(7)

Then f can be expressed as a linear combination of the Eqx̄ functions, as

f(x) =
∑

x̄∈X
Eqx̄(x) · f(x̄) =

∑

x̄∈S:=supp(f)

Eqx̄(x) · f(x̄) = LfS
(
−→
EqS(x)), (8)

where
−→
EqS(x),fS are respectively the vectors of Eqx̄(x), f(x̄) over all x̄ ∈ S, and

LfS
: {0, 1}|S| → Y is the linear function that outputs the inner product of its
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argument with fS . In summary, we have expressed f as the composition of
−→
EqS

and LfS
.

Therefore, by the linear homomorphisms given in Sect. 3.1 and the composi-
tion properties of the generic functional commitment scheme (see Sect. 3.2), we
immediately have the following. (A norm bound κEqX is derived below.) Simi-
lar correctness lemmas can easily be obtained for richer forms of updates (e.g.,
post-processing of function outputs), with corresponding norm bounds κ.

Lemma 2. Let κEqX be a norm bound for which the functional commitment
scheme from Construction 2 is correct for function family FEqX . Then for any
Y = Z

n×d
q , any s ≥ 1, and any κ ≥ s · w · κEqX , Construction 2 is a correct

functional commitment scheme for any sum of functions X → Y whose total
support size is at most s. The same also holds for Y = {0, 1}, with the tighter
bound κ ≥ s · κEqX .

Remark 5 (Optimizations). Note that
−→
EqS depends only on the support S of f

(not its specific values), and LfS
is linear. Together with composition properties

of the functional commitment scheme (see Sect. 3.2), these properties allow us to
commit to f with a running time, and norm bound, proportional to its support
size |S|. Moreover, they enable some substantial optimizations. First, if S (or a
small enough superset thereof) is known before f itself, then the commitment to−→
EqS can be precomputed, making the “online” commitment to f just a relatively
fast linear operation (see Sect. 3.1). Second, and similarly, if a subset X ⊆ X of
potential opening inputs is known in advance, then the openings of

−→
EqS(x) for all

x ∈ X can also be precomputed, yielding fast, linear “online” openings of f on
these inputs. This precomputation can even be outsourced to an untrusted party,
as long as the user verifies the precomputed proofs. Finally, and separately, for
functions with binary or small-integer outputs, we can compress commitments
and proofs as described in Sect. 3.2.

Instantiating FEqX . We now describe a particularly simple homomorphic imple-
mentation of the family FEqX , for which the short multiplier matrices satisfy a
small polynomial norm bound.

Let k ≥ �log2|X | be the length of an element of X , represented as a bit
string. Each function Eqx̄ : {0, 1}k → {0, 1} for x̄ ∈ X can then be implemented
(homomorphically) using bit operations, in the following way: on input x ∈
{0, 1}k, for each i ∈ [k] let ei = xi if x̄i = 1 and ei = 1 − xi if x̄i = 0; this
represents whether xi equals x̄i. Then output the product

∏
i∈[k] ei. It is clear

that this procedure correctly computes Eqx̄(x). Its homomorphic implementation
consists of a fixed pattern of bit flips, which have no effect on the ultimate
norm bound (because x̄ is fixed, not an input to the function), followed by
a homomorphic product of k bits. So, following Eq. (5), the �1 norm bound
associated with the homomorphic evaluation of any member of FEqX is

κEqX := (k − 1)w + 1 ≤ kw. (9)



310 L. de Castro and C. Peikert

We remark that the simultaneous (homomorphic) evaluation of all Eqx̄ ∈
FEqX (i.e., the function

−→
EqX ) can be amortized to save about a k/2 factor in

the number of (homomorphic) bit multiplications, versus the näıve evaluation of
each function individually, which uses (k−1) ·2k multiplications. On input x, for
each i ∈ [k] we prepare both possible values xi, 1−xi of the bit ei. Then for j =
k−1, . . . , 0, we compute all 2k−j possible partial products

∏
i>j ei, by multiplying

the previous step’s 2k−j−1 partial products by the two possible values of ej .11

The total number of multiplications used by this method is 4+8+· · ·+2k ≈ 2k+1.
A similar amortized improvement can be obtained for computing openings at all
inputs x ∈ X , for all the functions.

Discussion. It is instructive to consider the structure of the bounded-support
scheme’s main intermediate matrices, commitments, and proofs in more detail.
As above, let k be the length of the bit-string representation of an ele-
ment of X . The public parameter is a uniformly random C ∈ Z

n×kw
q , where

recall that w = n� = n�log2 q. For every x̄ ∈ X , define the commitment
Cx̄ = Commit(C,Eqx̄) ∈ Z

n×w
q ; together these define the (potentially enormous)

matrix CX = [Cx̄]x̄∈X ∈ Z
n×|X|w
q . And for every x, x̄ ∈ X , define the “short”

proof12 Sx,x̄ = Open(C,Eqx̄, x) ∈ Z
kw×w, which satisfies

(C − xt ⊗ gt) · Sx,x̄ = Cx̄ − Eqx̄(x) ⊗ In ⊗ gt.

All this can be represented concisely by the single matrix equation
(
(I|X | ⊗ C) − diag

(
xt ⊗ gt

)
x∈X

)
· (
Sx,x̄

)
x,x̄∈X =

(
1|X | ⊗ CX

) − I|X | ⊗ In ⊗ gt.

(10)
As discussed above in Remark 5, any of the matrices Cx̄,Sx,x̄ can be precom-
puted (and verified) in advance, or they can be computed as needed. One can
view them as “structured” public parameters for the “online” phase of commit-
ment that depends on the function f .

Now, for a function f : X → Y, let f = (f(x̄))x̄∈X ∈ Y |X | be its “value
vector,” whose matrix representation is some F ∈ (Zn×n

q )|X | = Z
|X |n×n
q . The

commitment to f is simply Cf = CX ·S×F for the “short” matrix S×F = g−1(F⊗
gt) ∈ Z

|X |w×w (see Sect. 3.1). Naturally, any blocks of CX corresponding to zero
outputs of f can be skipped, because the corresponding blocks of S×F are zero;
this enables computing Cf in time roughly proportional to |supp(f)|. Notice that
multiplying the right-hand side of Eq. (10) by S×F yields 1|X | ⊗ Cf − F ⊗ gt,
i.e., the xth block is Cf minus the xth block of F ⊗ gt, i.e., the robust matrix
encoding of f(x). Similarly, the (row) blocks of (Sx,x̄) · S×F are proofs for all
inputs x ∈ X . To verify for a particular x, one just checks these xth blocks
against each other using the xth row of the matrix at the left of Eq. (10), which
is possible because that matrix is block diagonal.
11 We use decreasing j here simply for consistency with the notation in Sect. 3.1, but

any order can work.
12 For convenience of matrix operations, we have swapped the indices of Sx,x̄ from the

usual Sf,x form.
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Key-Value Commitments. A key-value map for a key space X and a value
space Y is a set of pairs in X × Y whose first entries are mutually distinct, i.e.,
each key in X has at most one associated value in Y. In a key-value commitment
scheme, a user first commits (concisely) to such a map. Later, the user can
(concisely) prove that a given pair (k, v) ∈ X × Y is in the committed map. The
key-binding property says that it is infeasible to prove two different values v �= v′

for the same key. Stateless updateability means that, without needing to know
the current contents of the map, the user can add, remove, or change key-value
pairs, along with any existing proofs.

Instantiation. We obtain key-value commitments as a special case of bounded-
support commitments. We simply represent any key-value map over X × Y as a
function f : X → Y (and vice-versa) in the natural way, i.e., f(x) = y for each
key-value pair (x, y) in the map, and f(x′) = 0 for all keys x′ ∈ X that do not
have an associated value.13 Clearly, the support size of f is the number of entries
in the map.

We can update (the function representing) a key-value map simply by com-
posing with a suitable update map (function). For example, to insert a key-value
pair (k, v) when k does not already have an associated value, or to add v to the
existing value for k, we simply add the update function δk,v(x) := v ·Eqk(x). To
delete (k, v) from the map, we subtract δk,v(x).14 By Lemma 2, this instantia-
tion works for any initial map and sequence of updates having a bounded total
number of keys (with multiplicity). In addition, using the composition properties
of the functional commitment scheme, we can perform other kinds of updates
on the map, like arbitrary post-processing of its values.

Vector Commitments. A vector commitment scheme for d-dimensional vec-
tors over a message space M is merely a special case of key-value commitment,
where X = [d] and Y = M. That is, a vector m ∈ Md corresponds to a key-value
map consisting of the pairs (i,mi) for all i ∈ [d]. (Equivalently, the vector m
corresponds to the function fm : X → Y defined as fm(i) = mi.) Clearly, the
support size of any vector is at most the domain size d. As a special case of
key-value commitments, the vector commitment scheme supports all the same
stateless update operations on the vector entries. Finally, because the index i

13 Note that this makes 0 the implicit ‘default’ value for all such keys. If we wish to
have a distinguished ‘undefined’ value ⊥ for such keys, we can replace Y with a
larger group like Y ′ = Y × C for some nontrivial cycle C, representing each y ∈ Y
by (y, 1) ∈ Y ′, and letting ⊥ be represented by the identity element (0, 0) ∈ Y ′.
Note that this encoding requires some care regarding updates, because, for example,
representing y − y = 0 by (y, 1) − (y, 1) = (0, 0) yields ⊥, not the encoding of
0 ∈ Y. A simple solution is for all insertions and deletions to use 1s in their second
components, and for all modifications of existing values to use 0s.

14 See Footnote 13 for how insertions/deletions can be handled separately from addi-
tions/subtractions, when using an encoding that has a distinguished ‘undefined’
value ⊥ that is separate from 0.
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corresponds to the key, (selective) key binding is equivalent to (selective) posi-
tion binding for vector commitments, i.e., it should be infeasible to open a vector
commitment to two different values at the same index i.

Precomputation. In vector commitments, the domain size d = |X | is typically
considered to be polynomially bounded, so both optimizations described in
Remark 5 apply. Specifically, the commitment to

−→
Eq[d] and its openings at every

i ∈ [d] can be precomputed; moreover, this can even be outsourced, as described
in Sect. 3.2. Then committing to a vector, and opening it an any position, is just
a relatively fast linear combination of these precomputed values. The size of the
precomputed data is proportional to Õ(d2), which is asymptotically about the
same as several prior vector commitments, but here the setup is untrusted. The
result is a special case of Eq. (10) with X = [d].

Comparison to Other SIS-Based Vector Commitments. We now briefly compare
our vector commitment scheme to prior SIS-based ones [PSTY13,PPS21]. The
public parameters for the “base” vector commitment scheme from [PPS21], for d-
dimensional vectors of b-bit messages, consist of: uniformly random Cj ∈ Z

n×b
q

for each j ∈ [d], defining C[d] = [C1 | · · · | Cd] ∈ Z
n×bd
q ; a single uniformly

random A ∈ Z
n×m
q that for each i ∈ [d] defines some Ai ∈ Z

n×m
q ; and for all

i �= j, a “short” random matrix Si,j ∈ Z
m×b that satisfies Ai ·Si,j = Cj . Letting

Si,i = 0 for all i ∈ [d], all this can be represented concisely by the single matrix
equation

diag(Ai)i∈[d] ·
(
Si,j

)
i,j∈[d]

=
(
1d ⊗ C[d]

) − diag(Cj)j∈[d]. (11)

This has several similarities to Eq. (10), but generating these parameters requires
a trusted setup that uses secret randomness (including discrete Gaussian sam-
pling to generate the short Si,j), and the size of the parameters grows at least
as d2, which is prohibitive for even moderate dimensions. By contrast, our setup
uses only public randomness, and the size of the public parameter grows only
as poly(log d). Commitments and proofs in [PPS21] are generated and verified
very similarly to what is described following Eq. (10), exploiting the repeated
structure of 1d ⊗ C[d] and the block-diagonal structure of diag(Ai).

Finally, the works of [PSTY13,PPS21] also describe specialized Merkle tree-
like vector commitments that, unlike ordinary Merkle trees, are statelessly
updateable. Asymptotically, our scheme matches or outperforms these in terms
of commitment and proof sizes. Moreover, the verifiers from [PSTY13,PPS21]
must check a separate short solution to a linear system for each layer of their
trees, whereas our verifier checks a single short solution (of a correspondingly
larger dimension). This is a moderate advantage when proving that verification
accepts in zero knowledge or with a SNARG, because proving short solutions to
linear relations is moderately expensive in these contexts.

Accumulators. A cryptographic accumulator [BdM93] is a scheme to concisely
commit to a (polynomial-sized) subset of some (possibly huge) universe. This is
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another special case of key-value commitment, where X is taken to be the uni-
verse and Y = {0, 1}. A subset S ⊆ X corresponds to a key-value map consisting
of the pairs (x, 1) for all x ∈ S. (Equivalently, the subset S corresponds to its
indicator function fS : X → {0, 1}, defined as fS(x) = 1 if x ∈ S and fS(x) = 0
otherwise.) Clearly, the number of keys (i.e., support size) is the cardinality of
the set. As a special case of key-value commitments, the accumulator supports
stateless updates, so elements can be “dynamically” [CL02] added and removed
from the committed set. Finally, because keys correspond to universe elements,
(selective) key binding is equivalent to set-binding for the accumulator, i.e., it
should be infeasible to prove that a value is both in, and not in, the committed
set.

4.2 Polynomial Commitments

Here we show how polynomial commitments can be constructed as an instantia-
tion of our general functional commitment scheme, via an analogous approach as
for bounded-support commitments, and with similar efficiency and updateabil-
ity properties. Specifically, we view a polynomial as the composition of a linear
function (specified by the coefficients) and a vector of fixed non-linear functions,
namely the powers of the input.

Let R be a finite commutative ring. For an integer i ≥ 0, define Powi : R → R
as Powi(x) = xi, and for a positive integer d, define

−−→
Powd to be the vector of

functions Powi over i = 0, . . . , d − 1. For any d ≥ 1 with k = �log2 d, we can
evaluate

−−→
Powd by evaluating

−−→
Pow2k recursively, using a depth-k tree of at most 2k

ring multiplications.

Univariate Polynomials. A univariate polynomial f(x) =
∑d−1

i=0 fi · xi of degree
less than d over R can be expressed as the composition of

−−→
Powd and the R-linear

function Lf (·) := 〈f , ·〉 for the coefficient vector f of f , as

f(x) = Lf (
−−→
Powd(x)).

Therefore, we can evaluate f by evaluating
−−→
Powd in multiplicative depth k, then

multiplying the results component-wise with f , then adding the results via a
depth-k binary tree of addition operations.15

By the composition properties of the generic functional commitment scheme
(see Sect. 3.2), we immediately have the following basic, generic instantiation.
Similar correctness lemmas can easily be obtained for richer forms of compo-
sition, like updating, adding, multiplying, or dividing polynomials. All of this
also generalizes to “sparse” polynomials (i.e., ones with a bounded number of
nonzero monomials) of potentially huge degree.

15 More generally, the treatment is essentially the same for polynomials whose coeffi-
cients come from some R-module.
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Lemma 3. Let κMul, κAdd be norm bounds for which the functional commitment
from Construction 2 is correct for the multiplication and addition operations
in R, respectively. Let d ≥ 1 be a degree bound and k = �log2 d. Then for any
κ ≥ κk+1

Mul · κk
Add, Construction 2 is a correct polynomial commitment scheme for

polynomials over R of degree less than d.

For almost all concrete rings of interest, addition and multiplication are
not “natively” supported by the homomorphic operations detailed in Sect. 3.1.
Instead, ring operations typically need to be implemented via rich combinations
of homomorphic operations on the bit representations of ring elements, and this
complexity affects the norm bounds κMul, κAdd (as well as the running times of
committing and opening). However, for suitable rings like finite fields Fpn′ , the
linear function Lf can be implemented “natively” using just the linear homo-
morphisms from Sect. 3.1, because the coefficients of f are known. (See Remark
6 below for further details.)

Remark 6 (Optimizations). Similarly to bounded-support commitments (see
Remark 5), the commitment to

−−→
Powd can be precomputed, making the “online”

commitment to f more efficient. Similarly, if a subset R ⊂ R of potential opening
inputs is known in advance, then the openings of

−−→
Powd for x ∈ R can also be

precomputed. However, note that this may not make the online computations
linear, because ring addition and multiplication (with a known element) may
not correspond to linear homomorphic operations.

For a ring that can be embedded into the matrix ring Z
n×n
q , we can further

improve the complexity of the “online” phase of committing and opening, making
them just linear operations, by “flattening” the Powi commitments to use the
matrix representations of their outputs. This sacrifices the ability to do further
multiplicative compositions on the powers—but linear combinations, like those
needed to commit to a polynomial, are still supported (because the polynomial
coefficients are known).

In brief: suppose that for homomorphic computation, the bit representation
bits(x) of any ring element x ∈ R is such that each entry of its matrix rep-
resentation R ∈ Z

n×n
q is some fixed Zq-linear function of bits(x). (If not, we

can homomorphically convert to such a representation when it is needed.) Then
there exists a matrix M over Zq for which (bits(r)t ⊗ In) · M = R. So, given a
commitment to any function (e.g., Powi) that outputs the bit representation of
a ring element, we can “flatten” it to a commitment of the same function, but
whose output is represented (robustly) in the matrix ring Z

n×n
q . This is done

simply by composing the commitment with the linear function given by M⊗gt,
i.e., right-multiplying the commitment by the short matrix S×M = g−1(M⊗gt).

Multivariate Polynomials. Multivariate polynomials can also be viewed as com-
positions of Pow functions and a linear function specified by the polynomial’s
coefficients.
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Recall that the individual degree of a multivariate polynomial is the max-
imum degree of any single variable.16 For a multivariate polynomial with m
variables and individual degree less than d, the monomials can be indexed by
D = {0, . . . , d− 1}m, where each entry of the index is the exponent of the corre-
sponding variable in the monomial. That is, the index e ∈ D corresponds to the
monomial Powe(x1, . . . , xm) := xe1

1 · · · xem
m . Any polynomial f : Rm → R on m

variables with individual degree less than d can be written as

f(x1, . . . , xm) =
∑

e∈D

fe
∏

i∈[m]

xei
i = LfS

(
−−→
PowS(x1, . . . , xm)),

where each coefficient fe ∈ R (many of which may be zero), where S =
supp(f) := {e ∈ D : fe �= 0} is the support of f ; fS ,

−−→
PowS are the vectors

of fe,Powe over all e ∈ S (respectively); and LfS
(·) := 〈fS , ·〉.

We now discuss the computation of the commitment to
−−→
PowS . By definition,

each entry of
−−→
PowS can be written as the product of univariate Powi functions,

i.e., it has the form
∏

i∈[m] Powei
(xi) for some e ∈ S. So, we can compute a

commitment to
−−→
PowS by multiplicatively composing commitments to the com-

ponents of
−−→
Powd. Interestingly, we only need to compute commitments to each

Powe up to permutation, i.e., we can use the same commitment for any e′ that
is a permutation of e. This is simply because upon opening, we can permute the
input values appropriately.

4.3 Functional Commitments for Bounded Boolean Functions

In this section, we describe how to commit to input data and then open to
various functions of it. This is the notion of functional commitment originally
put forth in [LRY16] and also considered in [PPS21]. The core technique is
the standard one of swapping “code” and “data” using a universal evaluator.
Let C := {C : X → Y} be the family of circuits of depth at most D, and let
U : C × X → Y be a depth-universal circuit for this family, for which U(C, x) =
C(x); there exists such a circuit of depth O(D′) [CH85]. Define Ux(·) := U(·, x).
To commit to an input x ∈ X , use Construction 2 to commit to the function Ux.
We can then open the commitment for a circuit C (implementing a desired
function f) in the usual way, by treating C as the input to the committed
function. Following Theorem 1, we can use a suitable κ = O(w)O(D) for the
verification norm bound.

For (constant-width) branching programs of size at most S, we proceed simi-
larly. We first obtain a universal branching program for programs of this size, by
applying Barrington’s theorem [Bar86] to a certain universal circuit CBP (B, x)
that evaluates a given size-S branching program B on a given input x. It can
be constructed to have depth D′ = O(log S), because B can be evaluated using

16 Our treatment also adapts straightforwardly to polynomials of bounded total degree.
We use individual degree because it follows more naturally from the univariate case.
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a �log2 S-depth tree of multiplications of (constant-dimensional) permutation
matrices. Applying Barrington’s theorem to CBP then gives a (constant-width)
universal branching program of size 4D′

= poly(S).
Define Cx(·) := CBP (·, x). To commit to an input x, we simply use Construc-

tion 2 to commit to the function Cx. We can then open the commitment for a
size-S branching program B (implementing a desired function f) in the usual
way, but treating B as the input to the committed function. Following Theorem
1, we can use a suitable κ = wO(1) · poly(S) for the verification norm bound.
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Abstract. In this series of work, we aim at improving the bootstrap-
ping paradigm for fully homomorphic encryption (FHE). Our main goal
is to show that the amortized cost of bootstrapping within a polynomial
modulus only requires Õ(1) FHE multiplications.

To achieve this, we develop substantial algebraic techniques in two
papers. Particularly, the first one (this work) proposes a new mathemat-
ical framework for batch homomorphic computation that is compatible
with the existing bootstrapping methods of AP14/FHEW/TFHE. To
show that our overall method requires only a polynomial modulus, we
develop a critical algebraic analysis over noise growth, which might be of
independent interest. Overall, the framework yields an amortized com-
plexity Õ(λ0.75) FHE multiplications, where λ is the security parameter.
This improves the prior methods of AP14/FHEW/TFHE, which required
O(λ) FHE multiplications in amortization.

Developing many substantial new techniques based on the founda-
tion of this work, the sequel (Bootstrapping II, Eurocrypt 2023) shows
how to further improve the recursive bootstrapping method of MS18
(Micciancio and Sorrell, ICALP 2018), yielding a substantial theoretical
improvement that can potentially lead to more practical methods.

1 Introduction

Fully homomorphic encryption (FHE) allows arbitrary computation over cipher-
texts without the need to first decrypt it. The concept was first proposed by [34]
back to 1978, and soon numerous applications were noticed, albeit no plausible
scheme was known. Thirty years later, Gentry [18] proposed the first plausi-
ble scheme that supports general homomorphic computation1, inspiring many
follow-up works, (see [36] for a comprehensive listing), with a wide array of
optimizations and as well new applications, such as outsourcing computation,
multiparty computation, and many others.

1 Homomorphic computation refers to the ability to compute on ciphertexts
(encrypted data). A fully homomorphic encryption supports general homomorphic
computation, i.e., computation for any arbitrary function.
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FHE was initially considered as theoretical only as the homomorphic oper-
ations were prohibitively expensive. During the past years, many exciting new
methods were proposed, e.g., [3,4,12,15,17,21], making substantial steps towards
practical realizations. A particularly important progress is the improvement of
Gentry’s bootstrapping technique, which is currently the only known method to
achieve fully homomorphic encryption. Originally bootstrapping was extremely
impractical, yet after years of efforts, now we can achieve the task within sub-
seconds (amortized), e.g., [15,21,28] by even a simple personal computing sys-
tem. Thus, FHE with bootstrapping can be practical in some applications [21].

Limitations of Current Bootstrapping Techniques. Despite significant
progress, there are some fundamental questions unanswered. Below we summa-
rize the two main approaches in the state of the art, and then their deficiencies.

– Bootstrapping BGV. This line was used (and implemented) by the work [3,
19,21]. An advantage of this approach is the support of single instruction
multiple data (SIMD) operations, and thus can achieve batch computation
that bootstraps multiple ciphertexts per operation. However, the method
inherently incurs a super-polynomial error, and thus would require a super-
polynomial size modulus (e.g., concretely a 400-bit integer [21]), resulting in
large bootstrapping keys and thus large storage to perform the homomor-
phic computation. Moreover, this would require a stronger assumption (i.e.,
a super-polynomial modulus-to-noise ratio) of the underlying (Ring)-LWE.

– The AP14/FHEW approach. Bootstrapping within a polynomial size modu-
lus was first achieved by [9], and later improved by AP14 [4], and the ring
variant FHEW [17] (with other novel optimizations). With further optimiza-
tions [6,13,15,23,28], now bootstrapping a single ciphertext can be computed
within 100 ms, with significantly smaller bootstrapping key and memory
(compared with the above approach). The methods in this line are modu-
lar and thus conceptually simpler, and moreover, can be used to bootstrap
all currently known (Ring) LWE-based FHE schemes.
However, all exiting practical methods (in the current libraries) can only boot-
strap one single ciphertext per operation, and thus the amortized efficiency does
not outperform the above. Particularly, the existing methods [4,6,13,15,17,23,
28] requireO(λ) FHEmultiplications to bootstrap one single (LWE) ciphertext,
where λ is the security parameter. Some later works [5,29] tried to mitigate this
by new designs built on top of the FHEW, but their techniques have several
inherent drawbacks, which limit their potential practicality.
Specifically, the work [5] cannot batch the computation beyond a logarith-
mic number of ciphertexts. The work MS18 [29] can bootstrap λ (LWE)
ciphertexts using roughly O(31/ελ1+ε) FHE multiplications, for any arbitrary
constant ε > 0, implying an amortized cost O(31/ελε) FHE multiplications
per ciphertext. Theoretically, ε can be set close to 0, e.g., 0.01, at the cost of
a large constant, e.g., 3100, exceeding what can be considered as practical by
a large margin. Thus, it is unclear whether MS18 [29] can lead to a practical
solution that matches their best theoretical indication.

In this series of works, we aim to achieve the best of both by breaking the limi-
tations as above. Our overall goal is to bootstrap λ (LWE) ciphertexts by using
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only Õ(λ) FHE multiplications, meaning that the amortized cost of bootstrap-
ping is essentially the same as that of the FHE multiplication, up to a factor of
Õ(1). Our goal is summarized by the following statement.

Main Goal. Bootstrapping within a polynomial modulus only requires
Õ(1) FHE multiplications in amortization, with a small hidden constant.

Note: the complexity of existing FHE multiplications in the ring settings (set
to the same ring dimension) only differs by a (poly)-logarithmic factor, and thus
it is without loss of generality to use the number of “FHE multiplications” as a
clean measure of efficiency.

The outcome can consequently improve all the bootstrapping-based FHE for
general computation, such as FHEW [17] and TFHE [13], and their applications.
This would substantially advance the state of the art research.

1.1 Our Contributions

To achieve this, we present our new techniques in a series of two works – the
first (Batch Bootstrapping I ) focuses on the foundation, i.e., the establishment
of a new mathematical framework and noise analysis for batch homomorphic
computation. The new framework can improve the FHEW [17] and TFHE [13]
bootstrapping methods by a factor of O(λ0.25−o(1)), implying a new bootstrap-
ping method of amortized cost equal to Õ(λ0.75) FHE multiplications.

By using the framework of the first work as a solid foundation, the sequel
(Batch Bootstrapping II ) [24] further develops new critical methods to improve
main components of the MS18 [29]. Jointly the two works achieve the main goal
as stated above. Below we highlight the significant results of the first work, and
then give a preview of the sequel for curious readers.

Significant Results of Bootstrapping I (This Work).

– First, we propose a new algebraic framework that naturally supports the
batch homomorphic operations of the AP14/FHEW-like frameworks, e.g.,
FHEW and TFHE.

– Our next contribution is a new and refined algebraic analysis of the noise
growth incurred in our new batch framework. We notice that using the exist-
ing existing analysis directly on our framework would result in a super-
polynomial noise growth. Thus, our refined analysis is a necessary key to
achieve batch bootstrapping within a polynomial modulus.

– Quantitatively, our batch framework allows an explicit batch bootstrapping
on FHEW/TFHE with O(λ1/4−o(1)) slots, where λ denotes the security
parameter. This means that we can bootstrap λ (LWE) ciphertexts using
Õ(λ1.75) FHE multiplications, resulting in the following informal theorem.

Theorem 1.1 (Main Result of this Work, Informal). Bootstrappingwithin
a polynomial modulus requires Õ(λ0.75) FHE multiplications in amortization.
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This result can improve the prior methods of AP14, FHEW and TFHE, which
required O(λ) FHE multiplications in amortization. We notice that in this series
of work (i.e., AP14/FHEW/TFHE), the bootstrapping algorithm only requires
workspace for computation (excluding the input and bootstrapping key) roughly
O(1) FHE ciphertexts. Thus, our framework yields the first non-trivial batch
bootstrapping method that only requires workspace O(1) FHE ciphertexts.

If we allow more workspace (e.g., O(λ) FHE ciphertexts) for computation,
then the MS18 [29] method provides a more asymptotically efficient bootstrap-
ping, with amortized cost O(31/ελε) FHE multiplications. As argued however,
there is an inherent barrier for a practical realization that matches the best theo-
retical indication, as it would require to set ε close to 0, implying a prohibitively
large constant. It is our next target to get rid of the dependency of ε in MS18.

A Preview of Bootstrapping II. In our next work [24], we show how to
use our batch framework as a key ingredient to improve the MS18 method [29].
Particularly, we apply the technical foundation in this work (along with many
new ideas) to the homomorphic Discrete Fourier Transform (DFT) paradigm
developed by MS18. The foundation of this work is the crux to achieve our main
goal. More details can be found in the sequel [24].

We believe that the new algebraic framework and noise analysis in this work
are both important and might find further optimizations and applications. Thus,
the foundation can be valuable and deserve its independent merits.

1.2 Technical Overview

Now we present an overview of our new techniques. We first recall the task
of bootstrapping and the framework of AP14/FHEW [4,17] and later work
TFHE [13,15], who designed an explicit bootstrapping method within a polyno-
mial modulus. Then we discuss why it is inherently incompatible with existing
batch computation. Finally, we present our new insights to break the barriers.

Backgrounds and Challenges

Bootstrapping. When we perform homomorphic operations from existing FHE
schemes, the noise in the resulting ciphertext would grow with the number of
operation, eventually becoming too big for correct decryption. To proceed homo-
morphic computation, Gentry [18] invented the bootstrapping technique that
refreshes the noise. Currently, this is the only way to achieve fully homomorphic
encryption which supports an arbitrary (polynomial) number of operations.

Briefly speaking, the task can be achieved as follow. Given an input cipher-
text that encrypts m (i.e., ct, which might contain a large noise) and some eval-
uation key evk (i.e., some FHE encryption of the secret key Enc(sk)), the goal
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is to homomorphically compute the decryption function, i.e., Enc(Dec(sk, ct))2,
which by correctness would yield an encryption of m. Suppose the homomorphic
decryption only incurs a small noise, then we have achieved the task.

Bootstrapping within a polynomial modulus was first achieved by [9]. How-
ever, the method requires to use the Barrington Theorem to convert an NC1
circuit into a polynomial length branching program, and thus does not give an
efficient explicit construction. A subsequent work [4] presented the first explicit
construction by using the idea of symmetric group, and FHEW [17] showed how
to optimize the approach in the ring setting, extending the prior idea to a group
of roots of unity. Later on, TFHE [13,15] followed this idea and provided further
optimizations, e.g., CMUX, external products, and computation over torus.

As mentioned in [28] that FHEW and TFHE are conceptually the same in
the core bootstrapping procedure (with different optimizations and implemen-
tation techniques), we refer this approach as the name of the earlier work, i.e.,
AP14/FHEW framework. This framework in our view, gives a conceptually sim-
ple and modular approach. Below we present the high level idea.

The AP14/FHEW Framework. The framework takes input an LWE cipher-
text ct = (b, a) that encrypts m and an evaluation key evk = {BKi} where each
BKi is a Ring-GSW ciphertext that encrypts the i-th bit of the secret. Let n, q
be the LWE dimension and modulus, N,Q be the Ring-GSW dimension and
modulus. Without loss of generality, n, q can be set to small quantities, e.g.,
n = O(λ) and q = Õ(

√
n), via the dimension reduction and modulus switch [4].3

We emphasize that q = Õ(
√

n) is an important setting of parameter. The reader
should keep this in mind, and we will further elaborate. Moreover, we notice
that the LWE ciphertext has the following structure: b = sa + e + q/2 · m,
where m ∈ {0, 1} is the message, s is the secret key, and e is some perhaps
non-small error. Here we do not need to worry about their actual space, and this
presentation is sufficient to illustrate the core idea.

The decryption function can be done in two steps: (1) compute m′ = b − sa
mod q, and (2) output Round(m′) for some appropriate rounding function. This
function can be computed by a low-depth function, i.e., NC1, but the question is
how to compute it efficiently with an explicit procedure. And this is the insight
of the AP14/FHEW framework as we present next.

Briefly, the approach identifies that the homomorphic decryption should use
computation over the root of unity of cyclotomic rings. More specifically, let
us consider a commonly used cyclotomic ring R of degree N of a power of 2.
In this case, we can think of R as the polynomial ring R = Z[X]/(XN + 1),
satisfying X2N = 1. Suppose q|N , Y = X2N/q, and one can homomorphi-
cally compute on the exponent for the first step of linear operation of the

2 More precisely, the computation should be denoted as Eval(Dec(ct, ·),Enc(sk)). By
correctness, the output ciphertext should belong to Enc(m), though perhaps dis-
tributed differently from a fresh ciphertext.

3 The work [4] sets q = Õ(λ). If we use a randomized rounding for the modulus switch,
q can be further reduced to Õ(

√
n) = Õ(

√
λ).
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decryption, i.e., obtain Enc(Y m′
) where m′ = b − as. Then we will have

Y m′
= Y m′ mod q, as {1, Y, Y 2, . . . , Y q−1} forms a multiplicative (sub)-group

of {1,X,X2, . . . , X2N−1}. Then a very simple and efficient extraction proce-
dure can be derived from the work [1,13], computing Enc(f(m′)) given input
Enc(Y m′

) for any arbitrary f : Zq → {0, 1}, which includes the non-linear Round
function of the decryption procedure. These two insights yield a very efficient
bootstrapping that outputs a ciphertext encrypting a single-bit.

Challenge for Batch Computation. As we discuss next, the AP14/FHEW
framework is however not compatible with existing batch computation tech-
niques, which heavily rely on the Chinese Remainder Theorem (CRT) decompo-
sition. Roughly speaking, the CRT-based batch method supports computation
over some ring Rt that is isomorphic to Zt × Zt × · · · × Zt for properly chosen
modulus t. In this way, we can pack N bits into these N slots, and multiplications
and additions over Rt correspond to the component-wise operations over the N
slots. This can be used to batch bootstrapping by expressing the decryption
function as a boolean circuit as used in prior work [3,21], though the method
would incur a super-polynomial noise growth. On the other hand, the CRT slots
are intrinsically different from the cyclotomic structure and thus cannot support
the AP14/FHEW framework. This is the current major technical barrier.

Our New Techniques. As discussed, to support batch computation over the
AP14/FHEW framework, the scheme must support batch homomorphic compu-
tation over the subgroup {1, Y, Y 2, . . . , Y q−1}. As a high level, we need a math
structure that allows the following packing mechanism: let x = (x1, . . . , xr) and
y = (y1, . . . , yr) where each vector component resides in a space containing
the cyclotomic subgroup. The packing mechanism can pack x,y into some x, y
(in some appropriately designed space) such that x + y corresponds to x + y,
and x • y (for some operation •) corresponds to x � y, where � denotes the
component-wise multiplication. This mechanism can then be used to perform
the AP14/FHEW bootstrapping in a batch way.

To achieve this, this work proposes a new algebraic framework and refined
homomorphic methods/analyses for efficient implementations. Particularly, we
first describe our new design of for batch computation over the plaintexts, and
then show how to do homomorphic computation with a small noise growth. We
will point out multiple technical subtleties and challenges, so a straight-forward
adoption of the existing noise analysis would not give a satisfactory solution.
Our new analytical insights serve as the critical key.

New Batch Plaintext Computation. So now we present our new insights of
a new math structure that supports the above property, by using tensor rings
in a novel way. To illustrate our ideas, we first present some insightful yet failed
attempts that gradually lead to our final construction.
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Attempt 1. Let R1 = Zq[X]/(Xq + 1) be the cyclotomic ring4, which clearly
contains the required subgroup, and R2 be some linearly disjoint ring with basis
B = (v1, v2, . . . , vρ). Then we consider the tensor ring R = R1 ⊗ R2. Intuitively
for r ≤ ρ, we can pack x = (x1, . . . , xr) ∈ Rr

1 as x =
∑

xivi, i.e., each element
is put on one basis, and similarly, y = (y1, . . . , yr) ∈ Rr

1 to y =
∑

yivi. Clearly,
x+y corresponds x+y, but the ring multiplication, i.e., x·y ∈ R1⊗R2, does not
correspond to the component-wise multiplication x � y. This is because there
are a lot of uncanceled cross terms vi · vj when we compute x · y.

Attempt 2. To cancel the cross terms, we can use the dual basis with the
trace function in the following way. Let R∨

2 be the dual ring with basis
B∨ = (v∨

1 , v∨
2 , . . . , v∨

ρ ), i.e., the dual basis of B. Now we can pack x the same way,
i.e., x =

∑
xivi, but pack y in the dual space, i.e., y =

∑
yiv

∨
i . Even though x ·y

has a lot of cross terms, we notice that TrR/Q(x · y) =
∑

xiyi, as TrR/Q(viv
∨
j )

acts as the Kronecker delta δij , which is equal to 1 if i = j or otherwise 05. This
method does cancel the cross terms, but it also mixes up the xiyi’s like the inner
product. Thus, this attempt still does not achieve the goal.

Attempt 3. To further separate xiyi’s, we propose to use a third ring R3 with
basis W = (w1,w2, . . . ,wτ ) for τ > r. Then we consider the tensor ring R =
R1 ⊗ R2 ⊗ R3. In this setting, we still pack x in the same way, i.e., x =

∑
xivi,

but y in the space R1 ⊗ R∨
2 ⊗ R3 as y =

∑
yiv

∨
i wi. Interestingly, now we have

w′ = TrR/R1⊗R3(xy) =
∑

xiyiwi, as the trace function (over R/R1⊗R3) would
act as δij on the term viv

∨
j and as a constant function on elements in R1 ⊗ R3.

Thus, the resulting w′ can be viewed as a packed plaintext of x�y in R1 ⊗ R3.
Here a natural question raises – how do we proceed with the computation?

A naive way to achieve this is to introduce a fourth ring R4, and then pack
the next vector, e.g., say z = (z1, . . . , zr) as z in the space R∨

3 ⊗ R4, and then
compute w′′ = TrR/R3⊗R4(zw′). However, this way would require to blow up the
ring dimension linearly to the number of multiplications. This is clearly unsat-
isfactory and impractical even in theory.

Final Idea. To tackle the above drawback, we observe that the space can be
reused so that the tensor product of three rings, e.g., R = R1 ⊗ R2 ⊗ R3, is suf-
ficient. Particularly, consider this example where we want to compute x⊗y⊗z.
We can pack x as

∑
xivi and y =

∑
yiv

∨
i wi. Then by using the trace computa-

tion, we obtain the intermediate result w′ =
∑

xiyiwi. Then we can pack z as
z =

∑
ziw

∨
i vi, and then compute w′′ = TrR/R1⊗R2(w

′z) =
∑

xiyizivi. Now, w′′

is the packed element of x � y � z in the space R1 ⊗ R2. Thus, by alternating
between the spaces R1 ⊗ R2 and R1 ⊗ R3, we can batch plaintext computation

4 The cyclotomic polynomial would be of a different form if q is not a power of two.
Here we use this setting for simplicity of exposition, but note that our framework
works for general cyclotomic rings.

5 We abuse the notation in the subscribe by using the rings for simplicity. Precisely,
this should be TrK/Q where K is the number field for which R is its ring of integers.
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for any arbitrary number of steps, without further blowing up the ring dimen-
sion.

Instantiation. There can be various ways to instantiate the framework. The most
intuitive one is to use the decomposability of cyclotomic rings. Particularly, let
ξm be the m-th root of unity for m = qpt for co-prime factors q, p, t. Then the
cyclotomic ring Z[ξm] is isomorphic to the tensor of the three smaller and linearly
disjoint cyclotomic rings, i.e., Z[ξm] ∼= Z[ξq] ⊗ Z[ξp] ⊗ Z[ξt]. In this case, we can
define sub-rings R1,R2,R3 as Z[ξq],Z[ξp],Z[ξt], respectively. We notice that the
dimension of R would be N = φ(m), and the dimensions of the sub-rings would
be φ(q), φ(p), φ(t), respectively, where φ is the Euler’s phi function.

Homomorphic Computation over Batch Plaintexts. Next we present how
to perform homomorphic computation over ciphertexts that encrypt the batch
plaintexts as above. First we observe that the RGSW supports the computation
naturally if we instantiate the scheme in the cyclotomic ring Z[ξm] as above.
While the prior analyses of RGSW (e.g., noise growth) focused on the case when
m is power-of-two, this work shows that similar analyses would also work in the
general cyclotomic rings, by using the toolkits of [26]. However, as we elaborate
below, a direct adoption of the analyses would hit several technical challenges,
and thus cannot derive a polynomial bound for the noise growth.

Notice that RGSW can be packed the same way as packing the plaintexts.
Particularly, given C1, . . . ,Cr that encrypt (x1, . . . , xr) ∈ Rr

1, C′ =
∑

Civi is
an encryption of x =

∑
xivi. And similarly, we can pack the ciphertexts in the

other modes, e.g., C′ =
∑

Civ
∨
i wi. As the batch multiplication (for plaintexts)

consists of a multiplication followed by a trace computation, homomorphic mul-
tiplication would involve a RGSW multiplication followed by a homomorphic
trace evaluation. Thus, the task is reduced to how to homomorphically compute
the trace function.

Subtle Issue 1. We notice that TrR/R1⊗R3(x) =
∑

σ∈Gal(R/R1⊗R3)
(x), i.e., sum-

mation over all the automorphisms in the Galois group. Furthermore, homomor-
phic computation of the automorphism σ() can be achieved by the BV key-switch
technique [8], roughly of the same complexity of a RGSW homomorphic multipli-
cation. Thus, a naive application of this idea would require τ = |Gal(R/R1⊗R3)|
calls to the key-switch methods, meaning roughly τ RGSW homomorphic mul-
tiplications. However, this would require complexity as much as computing the
individual unpacked homomorphic multiplications separately, meaning that the
batch computation does not provide any advantage. Thus, to instantiate a mean-
ingful batch homomorphic multiplication, we must be able to compute the trace
homomorphically within o(τ) RGSW homomorphic multiplications.

While this task is in general difficult, we observe that if R2 has a tower
structure, e.g., Z[ξτ ] for τ = 3d, then we can compute the homomorphic eval-
uation by making O(log τ) calls to the key-switch algorithm, which is roughly
O(log τ) RGSW multiplications. Thus under this structure, to compute x� y of
size r � τ , we need roughly O(log τ) RGSW multiplications to compute in batch,
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which is significantly better than computing separately (which would require r
RGSW multiplications). We notice that this more efficient trace (homomorphic)
computation has been explored for cyclotomic rings of two’s power [3,11], and
this work further extends the result to general cyclotomic rings.
Subtle Issue 2. Another perhaps even more subtle issue is the noise analysis.
Consider messages (plaintexts) x := (x1, . . . , xr) and y := (y1, . . . , yr) are packed
into x, y ∈ R, and Cx = Enc(x),Cy = Enc(y) (in the RGSW form). Then by the
asymmetry noise growth property [4], the error of Cx � Cy (where � denotes
RGSW homomorphic multiplication) would roughly be ex

√
N + xey, where N is

the dimension of the ring R, ex and ey are the noise terms inside Cx and Cy,
respectively. Then the homomorphic trace evaluation would incur a blowup of
some multiplicative factor W , which is some fixed polynomial. Thus, the overall
noise behavior would be roughly expoly(λ) + xWey.

However, to bootstrap within a polynomial modulus, the AP14/FHEW
framework crucially requires that ‖xW‖ ≤ 1. In the case of unpacked bit com-
putation, this is true as x ∈ {0, 1} and there is no need to do trace evaluation
(so W can be thought as 1). However, in the packed computation of our frame-
work, ‖xW‖ is inherently greater to 1. Thus, a direct analysis would result in a
super-polynomial blow up on noise, implying a super-polynomial modulus.

Even though the general analysis does not work, for our particular batch
framework computation, we do identify a beautiful noise characterization if we
alternate the multiplications between R1 ⊗ R2 and R1 ⊗ R3, under a careful
algebraic analysis. Below we describe the core insight at a high level and refer
curious readers to the proof of Theorem 6.2 for the details.

As we discussed, the W term comes from the trace evaluation, i.e., Tr(·).
If we perform homomorphic multiplications on multiple ciphertexts, then the
following term will appear in the noise – Tr(x1 ·Tr(x2 ·Tr(. . .Tr(xke)), where e is
some fresh error, and xi’s are the packed messages. This term will approach W k

for the general case, resulting in an exponential blowup in the noise. However,
under the following two conditions: (1) we alternate the trace functions between
R1 ⊗R2 and R1 ⊗R3; (2) each xi is a packing of (xi1, . . . , xir) where ‖xij‖ = 1,
e.g., a power of some root of unity ξz

q , then we can derive a simple and small
polynomial upper bound for this term.

This insight can be used to prove that the batch AP14/FHEW bootstrap
algorithm only incurs a polynomial error growth under our framework.

Overall – How Many Slots can the Framework Batch. Now we determine
how many slots our framework can batch when applying to the AP14/FHEW
framework. We can set the tensor ring Z[ξq]⊗R2 ⊗R3 to perform batch compu-
tation of the explicit framework of AP14/FHEW. Let N denote the dimension
of the ring R. By setting n = O(λ), q ≈ Õ(

√
n) and R2 roughly of a similar

dimension to R3, we can batch r = O(
√

N/q) slots. Asymptotically, we can set
N = O(n), resulting in r = O(λ1/4−o(1)).

Thus, we can bootstrap λ LWE ciphertexts, using O(λ/r) = Õ(λ1.75) FHE
multiplications. This proves Theorem 1.1.
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Comparison with a Recent Progress. Recently, the work [16] considered
batch homomorphic computation, yet only achieved a weaker version of the task.
Briefly speaking, [16] is able to bootstrap one LWE input ciphertext, e.g., Enc(μ)
to 
 LWE ciphertexts Enc(f1(μ)), Enc(f2(μ)), . . . ,Enc(f�(μ)), for 
 different func-
tions. However the message space of μ is small, e.g., a bit or Zt for some small t,
so one cannot squeeze a long string x ∈ {0, 1}n into μ. Moreover, their method
does not support batch computing on multiple LWE inputs, whereas our frame-
work does. Thus, our framework has non-trivial advantages.

2 Preliminary

Notations. Denote the set of integers by Z, the set of rational numbers by Q,
real numbers by R, and complex numbers by C. Notation log refers to the base-2
logarithm. For a positive k ∈ Z, let [k] be the set of integers {1, ..., k}. We denote
[a, b] as the set [a, b] ∩ Z for any integers a ≤ b.

In this work, a vector is always a column vector by default and is denoted by
a bold lower-case letter, e.g., x. We use xi to denote the i-th element of x. We
use ‖x‖2 denotes the l2-norm, i.e., ‖x‖2 =

√∑
i ‖xi‖2 and ‖x‖∞ denotes the l∞-

norm of x, i.e., ‖x‖ = max
i

{‖xi‖}. We use bold capital letters to denote matrices.

For a matrix X, xi denotes its i-th column vector without extra instructions,
X� denotes the transpose of X, ‖X‖2 := maxi{‖xi‖2}, ‖X‖∞ := maxi{‖xi‖∞}.
Given some set S, Sm×n denotes the set of all m × n matrices with entries in S.
For matrices X ∈ Sm×n1 and Y ∈ Sm×n2 over some set S, [X‖Y](∈ Sm×(n1+n2))
denotes the concatenation of X with Y.

For a set A and a probability distribution P, we use a ← A to denote that a
is uniformly chosen from A and a ← P to denote that a is chosen according to
the distribution P.

2.1 Lattices and Sub-Gaussian Random Variables

Lattices. An n-dimension (full-rank) lattice Λ ⊆ R
n is the set of all integer

linear combinations of some set of independent basis vectors B = {b1, . . . , bn} ⊆
R

n, Λ = L(B) = {∑n
i=1 zibi : zi ∈ Z}.

Sub-Gaussian. As discussed in [4,17], it is convenient to use the notion of sub-
Gaussian to analyze the error growth in the FHE constructions. A sub-gaussian
variable X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα2/t2 , for all t ∈ R.

– Boundedness: If X is a sub-Gaussian variable with parameter r > 0, then
Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2).

– Homogeneity: If X is a sub-Gaussian variable with parameter r > 0, then cX
is sub-gaussian with parameter c · r for any constant c ≥ 0.

– Pythagorean additivity: If X1 and X2 are two sub-Gaussian variables with
parameter r1 and r2 respectively, then X1 + X2 is sub-Gaussian with param-
eter r1 + r2, or

√
r21 + r22 if the two random variables are independent.
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g−1 Algorithm. This algorithm is used heavily in the research of FHE as we
summarize in the following lemma.

Lemma 2.1. For a given integer q, let 
 = �log q� and g = (1, 2, .., 2�−1). Then
there is a randomized, efficiently computable algorithm denoted as g−1 : Zq → Z

�

such that the output of the function, x ← g−1(a) is sub-gaussian with parameter
O(1), satisfying 〈g,x〉 = a mod q.

We can extend g−1 to the matrix case (using the notation G−1(·)) by applying
g−1(·) to each entry of the matrix.

2.2 Algebraic Number Theory Background

We present some necessary background of algebraic number theory. This work
heavily uses number fields and their rings of integers, and particularly, we rep-
resent a ring element as an algebraic number, instead of a polynomial. This
representation gives more algebraic insights for our designs and analyses. Due
to space limit, we defer some basic concepts to the full version of this work, and
note that more details can be found in the work [26].

Number Fields. This work focuses on number fields as field extension that
can be expressed as K = Q(α), by adjoining some α to Q where α is a root of
some irreducible polynomial f(x) ∈ Z[x]. Let ξm be the m-th root of unity, and
Q(ξm) is known as the m-th cyclotomic field. We also use the concept of tensor
fields, whose preliminaries are presented in the full version of this paper. Below
we present a useful decomposition property of cyclotomic fields.

Lemma 2.2 [26]. Let m =
∏

� m� be the prime-power factorization. Then K =
Q(ξm) is isomorphic to the tensor product ⊗�Q(ξm�

), via the bijection
∏

� a� �→
⊗�(a�), where each a� in K� can be naturally embedded in the field K.

Geometry of Number Fields. Throughout this work, we use the canonical
embedding to define norms for algebraic numbers. As argued in [26], this defini-
tion is independent of the representation of the algebraic number and can give
us better bounds in the setting of general cyclotomic fields. Due to space limit,
we present the details in the full version of this work.

Trace. We notice that the cyclotomic field K = Q(ξm) is a Galois extension
over Q, and thus the homomorphisms {σi} are automorphisms that form the
Galois group, denoted by Gal(K/Q). The trace Tr = TrK/Q : K → Q of an
element a ∈ K can be defined as the sum of the embeddings: Tr(a) =

∑
i σi(a) =∑

σi∈Gal(K/Q) σi(a). Clearly, the trace is Q-linear, and also notice that Tr(a · b) =

〈σ(a), σ(b)〉, so Tr(a · b) is a symmetric bilinear form akin to the inner product
of the embeddings of a and b.
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By the Galois theory, there is a bijection between the set of subfields E
of K containing Q and the set of subgroups G of Gal(K/Q). Thus, for any
intermediate subfield E, the Galois group of Gal(K/E) is also well-defined. Fur-
thermore, we can define the trace function for the intermediate subfields as:
TrK/E(a) =

∑
σ∈Gal(K/E) σ(a) for a ∈ K and TrE/Q(b) =

∑
σ∈Gal(E/Q) σ(b) for

b ∈ E. The trace functions behave well in towers, i.e. for a ∈ K,

TrK/Q(a) = TrE/Q(TrK/E(a)).

Ring of Integers and Ideals. An algebraic integer is an algebraic number
whose minimal polynomial over the rationals has integer coefficients. For a num-
ber field K, denote its subset of algebraic integers by OK , which forms a ring,
called the ring of integers of K. The norm of any algebraic integer is in Z.

An (integer) ideal I ⊂ OK is an additive subgroup and for any x ∈ K,
xI ⊂ I. Every ideal in OK is a set of all Z-linear combinations of some basis.

The sum of two ideals I,J is the set of all x + y for x ∈ I, y ∈ J , and the
product ideal IJ is the ideal generated by terms of xy. A fractional ideal I ⊂ K
is a set such that dI ⊂ OK is an integral ideal for some d ∈ OK . A fractional
ideal I is invertible if there exists a fractional ideal J such that OK = I · J ,
which is unique and denoted as I−1.

Duality. For any lattice L ⊂ K(i.e. the Z-span of any Q-basis of K), its dual
is defined as L∨ = {x ∈ K|Tr(xL) ⊂ Z}. Then L∨ embeds as the complex
conjugate of the dual lattice, which means σ(L∨) = σ(L)∗ due to the fact that
Tr(xy) =

∑
i σi(x)σi(y) = 〈σ(x), σ(y)〉. It is easy to check that L = (L∨)∨, and

that if L is a fractional ideal, so is the L∨.
For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨

j }, which

is characterized by Tr(bi ·b∨
j ) =

{
1, i = j
0, i �= j

. It is immediate that (B∨)∨ = B, and

if B is a Z-basis of some fractional ideal I, then B∨ is a Z-basis of its dual ideal
I∨. If a =

∑
aj · bj for aj ∈ R is the unique presentation of a ∈ KR in basis B,

then aj = Tr(ab∨
j ). For a fixed Zq-basis {b1, ..., bn} of OK/qOK , the randomized

algorithm g−1(·) can be extended to the subring of K modulo q, OK/qOK .

Lemma 2.3. For a given integer q, let 
 = �log q�, g� = (1, 2, .., 2�−1) and
a fixed Zq-basis {b1, ..., bn} of OK/qOK , then there is a randomized, efficiently
computable function g−1 : OK/qOK → O�

K , such that the output of the function,
x ← g−1(a), always satisfies 〈g,x〉 = a mod q.

In details, if a = a1b1 + ...+anbn where ai ∈ Zq and xi ← g−1(ai) where the
function g−1(·) is defined in Lemma 2.1, then x = x1b1 + ... + xnbn and each
vector xi ∈ Z

�
q is sub-gaussian with parameter O(1).

2.3 Learning with Errors Assumption

The learning with errors (LWE) problem was introduced by Regev [33], which is
as hard as several worst-case lattice problems. For the definition of LWE, we need
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the following distribution As,χ. If χ is a distribution over Z and s ∈ Z
n
q , a sample

from the distribution As,χ is of the form (b,a) ∈ Zq × Z
n
q with b = 〈a, s〉 + e

mod q, where a is chosen from Z
n
q uniformly and e is chosen from the distribution

χ. Now we propose the problem formally in the following definitions.

Definition 2.4 (LWE). Let χ be a distribution over Z, an integer modulus
q ≥ 2. The decision version of LWE, denoted as LWEn,q,χ, is given m pairs of
(b′,a′) ∈ Zq × Z

n
q and decide these pairs are from the uniform distribution or

As,χ.

The ring variant of LWE is the foundation of this work. In the rest of the paper,
the special ring R = OK is used by default. We present the definition of RLWE
by defining the distribution As,χ as follow. Let χ be a distribution over KR and
s ∈ Rq, and then a sample from As,χ is of the form

(b = s · a + e mod qR, a) ∈ KR/q × Rq,

where a ← Rq and e ← χ. Then, the definition of RLWE is presented as follows.

Definition 2.5 (RLWE). For security parameter λ, let n = n(λ) be the dimen-
sion, q = q(λ) ≥ 2 be an integer modulus, and χ = χ(λ) be a distribution over
KR. The task of decision RLWEn,q,χ is, given m pairs of (b′, a′) ∈ KR/q × Rq,
decide whether the pairs are from the uniform distribution or As,χ.

There is strong evidence showing hardness of LWE e.g., [7,33] and RLWE,
e.g., [25,26,32]. These problems have been extensively studied in the NIST’s
post-quantum standardization process in recent years. Particularly, many plau-
sible candidates are LWE or RLWE-based designs.

Remark 2.6. In this work, we present the primal version of the RLWE where
the secret s lies in the primal ring Rq, where the original RLWE [25] is defined in
the dual. Nevertheless, the dual and primal versions are equivalent up to a tweak
factor [30], and thus the primal variant is also plausibly as hard. For simplicity
of presentation, this work uses secrets in the primal ring by default.

3 RGSW in General Cyclotomic Rings

In this section, we first revisit the basic RLWE encryption scheme and the FHE
scheme GSW [4,20] in the ring settings, denoted as RGSW. The RGSW has been
analyzed in power-of-two cyclotomic rings, e.g., [13,17], yet the prior analyses on
noise growth crucially relies on the cyclotomic polynomial Φm(X) = Xm/2 + 1,
due to some nice properties of the coefficient embedding in such type of rings.
However, this work requires to work with RGSW in general cyclotomic rings,
where the prior analyses do not carry over directly. To handle this, we re-analyze
the noise growth of RGSW by using the techniques of canonical embedding as
described in [26], showing that RGSW in general cyclotomic rings behaves basi-
cally the same as that in the power-of-two setting.
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Important Note. Throughout this work, we use the algebraic representation
for ring elements for better mathematical insights.

Below we describe the parameters of the RLWE and RGSW schemes.

– λ: the security parameter.
– R: the m-th cyclotomic ring with degree N = φ(m).
– Q: the modulus.
– RQ: the quotient ring R/QR.
– D: some error distribution over R.
– 
: set 
 = �log Q�.

3.1 RLWE Scheme

We start from the basic symmetric RLWE encryption scheme (in the primal form
for simplicity). The scheme contains the following algorithms.

– KeyGen(1λ): Choose randomly s ← RQ and output sk := (1,−s)� ∈ R2
Q.

– Enc(sk, μ ∈ Rt): Sample a uniform ring element a ← RQ and a noise e ← D.

The output ciphertext is set as c :=

(
sa + e

a

)
+

(⌊
Q
t

⌉
μ

0

)
∈ R2

Q.

We call
⌊

Q
t

⌉
μ the encoded message of c and μ the encrypted message of c.

– Dec(c, sk): The algorithm outputs an element μ in Rt as follow:

μ = �〈(1,−s), c〉�t := �t〈(1,−s), c〉/Q� mod t.

We use RLWEt/Q
s (μ) to denote the set of all RLWE ciphertexts of encoded message

μ under secret s with ciphertext modulus Q and plaintext modulus t. Sometimes,
we use RLWEQ

s (
⌊

Q
t

⌉
μ) to denote the same set. The latter notion drops the t in

the super-script, but presents the whole encoded message in the parentheses.

3.2 RGSW Scheme

Now we present the RGSW scheme, which is basically the same as the work [4]
by moving the algebraic structure to the setting of general cyclotomic rings. We
notice that it suffices to develop our further results by using the symmetric-key
version of RGSW, and thus we just present this version for convenience. The
public-key version works analogously.

We denote the fixed gadget vector as g� = (1, 2, ..., 2�−1), and the gadget
matrix is defined as G = g� ⊗ I2. As demonstrated by [4,27], the gadget vec-
tor/matrix play a vital role in the homomorphic computation methods. Similar
to the RLWE scheme, we present the primal version of RGSW.

– KeyGen(1λ): Choose randomly s ← RQ and set sk := (1,−s)� ∈ R2
Q.

– Enc(sk, μ ∈ R ): Sample a uniform vector a ← R2�
Q and a noise vector

e ← D2�. The ciphertext is set as C :=
(

sa� + e�

a�

)

+ μG ∈ R2×2�
Q .



Batch Bootstrapping I 335

– Dec(C, sk): The algorithm outputs an element μ in R/2R as follow6:

μ =
⌊〈(1,−s)�, c(�−1)〉

⌉
mod 2,

where c(�−1) is the (
 − 1)-th column of C.
– Homomorphic Addition C1�C2: It takes as inputs two RGSW ciphertexts

C1, C2 under the same secret key sk and outputs C1 � C2 := C1 + C2.
– Homomorphic Multiplication C1 � C2: It takes as inputs two RGSW

ciphertexts C1, C2 under the same secret key sk and outputs the following
as the result of homomorphic multiplication: C1 � C2 ← C1 · G−1(C2).
Here G−1(·) can be either deterministic or randomized. As argued by [4],
a randomized instantiation can yield tighter parameters of the noise growth
than those derived from the deterministic version. We notice that in the ring
setting, a basis needs to be specified when computing G−1.

– External Product C1 � c2: It takes as inputs a RGSW ciphertexts C1 and
a RLWE ciphertext c2 under the same secret key sk and outputs the following
RLWE ciphertext as the result of external product: C1 � c2 ← C1 · g−1(c2).

The IND-CPA security of the above RGSW scheme (for general cyclotomic rings)
follows from the RLWE assumption, using the same argument of [4,20]. Therefore,
this work focuses on the noise analyses, which are not trivial when porting the
results to general cyclotomic rings.

Definition 3.1. Adapt the notations from the above. Given a ciphertext C that
encrypts message μ under a secret key sk = (1,−s)�, we can express as the
following relation sk� ·C = μ · sk� ·G+e� ∈ Rm

Q , for some error vector e. Then
define Errμ(C) := e� = sk� · C − μ · sk� · G. When the context is clear, we may
drop the index μ.

We use RGSWQ
s (μ) to denote the set of all the RGSW ciphertexts that encrypt

μ under secret s in the modulo Q space. If the parameters Q are clear from the
context, we would use the abbreviation RGSWs(μ) for simplicity.

Note. The above error function can be defined for RLWE ciphertexts analo-
gously. We do not present another definition to avoid repetition.

Below we present a lemma that summarizes the error behavior of the homo-
morphic operations. The error behavior in the general cyclotomic rings is similar
to that in the case of power-of-two as in the prior work [13,17], yet requires a
more refined analysis. Due to the space limit, we describe the statement and
defer the proof to the full version of this work.

Lemma 3.2. For any RGSW ciphertexts C1,C2 that encrypt μ1, μ2 with the
error terms e1,e2 respectively, then we have the following.

– Err(C1 � C2) = e�
1 + e�

2 .

6 We notice that R2 is used to denote a second ring in our framework. To avoid
notation overloading, we use R/2R to denote R modulo 2.
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– Err(C1 � C2) = e�
1 · G−1(C2) + μ1 · e�

2 .

Furthermore, suppose G−1 is sampled with respect to some Z-basis of R, i.e.,
B = {b1, ..., bn}, such that maxi∈[n]{‖σ(bi)‖∞} ≤ 1 as Lemma 2.3. Then the
following facts hold.

– Denote e�
1 · G−1(C2) as e� = (e1, ..., e2�). Then each entry of e is an inde-

pendent random variable.
– ||σ(e)||∞ is upper bounded by a sub-Gaussian variable with parameter O(r),

for some real positive r ≤ √
N · log Q · ‖σ(e1)‖∞.

4 New Batch Homomorphic Methods via Tensor Rings

We present our framework for batch (or SIMD) homomorphic computation by
using the tensor of linearly disjoint fields (and their rings of integers). Our frame-
work is naturally compatible with the AP14/FHEW/TFHE bootstrapping meth-
ods, resulting in more efficient batch bootstrapping mechanisms. We present our
new framework for batch plaintext computation, and then show how to per-
form homomorphically with the framework. In this section, we present in a more
abstract and algebraic way, and in Sect. 5 we show instantiations.

4.1 Framework of Batch Plaintext Computation

We first present some math background and then our new framework.

Math Background and Notations. Let K = K1 ⊗ K2 ⊗ K3 be a tensor
field of three linearly disjoint fields, and R1, R2, R3 be their rings of integers,
respectively. It follows that the ring of integers of K (denoted as R) is isomorphic
to R1 ⊗ R2 ⊗ R3. Furthermore, we present some useful facts and notations.

– K12 and K13 denote K1 ⊗ K2 and K1 ⊗ K3, respectively.
– R, R12 and R13 denote the rings of integers of K, K12, and K13, respectively.

It is known that R ≡ R1 ⊗ R2 ⊗ R3, R12 ≡ R1 ⊗ R2, and R13 ≡ R1 ⊗ R3.
– Let (v1, v2, . . . , vρ) and (w1,w2, . . . ,wτ ) be some Z-bases of R2 and R3, respec-

tively, where ρ and τ are the degrees of the rings R2 and R3.
– Denote (v∨

1 , v∨
2 , . . . , v∨

ρ ) and (w∨
1 ,w∨

2 , . . . ,w∨
τ ) as the corresponding Z-bases of

the dual spaces R∨
2 and R∨

3 , respectively.
– Let r = min(ρ, τ), the maximal number of slots our method can pack.
– Denote the trace functions (with respect to different underlying subfields) as

TrK/K12 : K → K12 and TrK/K13 : K → K13

Construction. Now we present our plaintext encoding/computation methods.

– Plaintext Packing. The algorithm takes input (x1, . . . , xr) ∈ Rr
1, and an

index to one of the four modes: (1) “R12”, (2) “R13”, (3) “R12 → R13”,
and (4) “R13 → R12”, and outputs an encoding of the input. The packing
algorithm does one of the following, selected by the mode.
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• Mode “R12”: output
∑r

i=1 xi · vi ∈ R12.
• Mode “R13”: output

∑r
i=1 xi · wi ∈ R13.

• Mode “R12 → R13”: output
∑r

i=1 xi · v∨
i wi ∈ R1 ⊗ R∨

2 ⊗ R3.
• Mode “R13 → R12”: output

∑r
i=1 xi · viw

∨
i ∈ R1 ⊗ R2 ⊗ R∨

3 .
We assume that the packing algorithm will attach an index to its mode.

– Addition. The algorithm takes as input two encodings, namely (x,mode1),
(y,mode2), outputs (x + y,mode1) if mode1 = mode2, otherwise ⊥.

– Multiplication. The algorithm takes input two encodings, namely
(x,mode1) and (y,mode2), and does one of the following, selected by the
modes.

• mode1 = “R12” and mode2 = “R12 → R13”: output TrK/K13(xy) ∈ R13.
• mode1 = “R13” and mode2 = “R13 → R12”: output TrK/K12(xy) ∈ R12.
• mode1 = “R12 → R13” and mode2 = “R12”: output TrK/K13(xy) ∈ R13.
• mode1 = “R13 → R12” and mode2 = “R13”: output TrK/K12(xy) ∈ R12.
• Otherwise, output ⊥.

Correctness of these operations can be easily checked as we summarize in the
following theorems. We present the proof in the full version of this work.

Theorem 4.1 (Correctness of Addition). For any x = (x1, . . . , xr) ∈ Rr
1

and y = (y1, . . . , yr) ∈ Rr
1, let x, y be encodings of x and y respectively of the

same mode under the plaintext packing. Then x + y is an encoding of x + y of
the same mode under the plaintext packing.

Theorem 4.2 (Correctness of Multiplication). For any x = (x1, . . . , xr) ∈
Rr

1 and y = (y1, . . . , yr) ∈ Rr
1, let x, y be encodings of x and y respectively of

modes “R1b” and “R1b → R1f(b)” under the plaintext packing for b ∈ {2, 3}
and mapping f(2) = 3, f(3) = 2, and let c be the output of the multiplication
algorithm on inputs x, y. Then c is an encoding of (x1y1, x2y2, . . . , xryr) ∈ Rr

1,
with the mode “R1f(b)” under the plaintext encoding.

4.2 Homomorphic Encoding and Computation

We now present how to homomorphically perform the batch plaintext compu-
tation in the prior section. Here we assume two homomorphic evaluation algo-
rithms, Eval-TrK/K12(·) and Eval-TrK/K13(·), as black-boxes, and will instantiate
these algorithms in the next section (i.e., Sect. 4.3). We first describe the syntax
of these two algorithms and some other necessary backgrounds.

Homomorphic Eval of Trace. Let Eval-TrK/K12(·) be a homomorphic
evaluation algorithm that takes input either a RGSW ciphertext C ∈
RGSWs(μ) or a RLWE ciphertext c ∈ RLWEs(μ), and outputs a RGSW
ciphertext C′ ∈ RGSWs(TrK/K12(μ)), or respectively a RLWE ciphertext c′ ∈
RLWEs(TrK/K12(μ)). Importantly, here each entry of the input ciphertext, e.g.,
C or c, and the message μ may be in a slightly larger (tensor) ring, i.e.,
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(R1 ⊗ R∨
2 ⊗ R3). The output C′ or c′, and the underlying message go back

to the original ring (R1 ⊗ R2 ⊗ R3).
The syntax of Eval-TrK/K13(·) can be defined analogously, so here we omit

the statement to avoid repetition.

G−1 for the Dual Spaces. Our homomorphic computation uses G−1(C) for
C ∈ (R1 ⊗ R∨

2 ⊗ R3)2×2� or (R1 ⊗ R2 ⊗ R∨
3 )2×2� when computing the homo-

morphic multiplications, and analogously uses g−1(c) for c ∈ (R1 ⊗ R∨
2 ⊗ R3)2

or ∈ (R1 ⊗ R2 ⊗ R∨
3 )2 when computing the homomorphic external products.

We recall that in the ring/module settings, the function G−1 or g−1 is defined
with respect to some Z-basis, i.e., express the ring element as integer coefficients
with respect to the basis, and then do some (randomized) bit-decomposition.
(Ref. Lemma 2.3).

Now we present the homomorphic computation methods corresponding to
the plaintext packing/computation in Sect. 4.1.

– RGSW-Pack. The algorithm takes input r RGSW ciphertexts C1,C2, . . . ,Cr ∈
R2×2�, where each Ci ∈ RGSWs(μi) for μi ∈ R1, and an index to one of
the four modes: (1) “R12”, (2) “R13”, (3) “R12 → R13”, and (4) “R13 →
R12”. The algorithm outputs a packed RGSW ciphertext, by doing one of the
following four according to the mode.

• Mode “R12”: output
∑r

i=1 Ci · vi ∈ R2×2�.
• Mode “R13”: output

∑r
i=1 Ci · wi ∈ R2×2�.

• Mode “R12 → R13”: output
∑r

i=1 Ci · v∨
i wi ∈ (R1 ⊗ R∨

2 ⊗ R3)2×2�.
• Mode “R13 → R12”: output

∑r
i=1 Ci · viw

∨
i ∈ (R1 ⊗ R2 ⊗ R∨

3 )2×2�.
The packing algorithm attaches the index of its mode in the clear.

– RLWE-Pack. The algorithm takes input r RLWE ciphertexts c1, c2, . . . , cr,
where each ci ∈ RLWEs(μi) for μi ∈ R1, and an index to one of the four
modes the same as RGSW-packing. The algorithm outputs an encoding of the
RLWE ciphertexts.

• Mode “R12”: output
∑r

i=1 ci · vi ∈ R2.
• Mode “R13”: output

∑r
i=1 ci · wi ∈ R2.

• Mode “R12 → R13”: output
∑r

i=1 ci · v∨
i wi ∈ (R1 ⊗ R∨

2 ⊗ R3)2.
• Mode “R13 → R12”: output

∑r
i=1 ci · viw

∨
i ∈ (R1 ⊗ R2 ⊗ R∨

3 )2.
We assume that the mode is included in the clear.

– Add, (Addition for RGSW-encodings). The algorithm takes as input two
RGSW-encodings, namely (C1,mode1), (C2,mode2), outputs (C1+C2,mode1)
if mode1 = mode2, otherwise ⊥.

– Add7, (Addition for RLWE-encodings). The algorithm takes as input two
RLWE-encodings, namely (c1,mode1), (c2,mode2), outputs (c1 + c2,mode1) if
mode1 = mode2, otherwise ⊥.

– Mult, (Homomorphic Product for RGSW-RGSW). The algorithm takes
input two (packed) RGSW ciphertexts, namely (C1,mode1) and (C2,mode2),
and then computes C = C1 · G−1(C2). Then it outputs as:

7 Here we use the same function name as the above, where the input type specifies
which function the call refers to.
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• mode1 = “R12” and mode2 = “R12 → R13”: output (Eval-TrK/K13(C),
R13).

• mode1 = “R13” and mode2 = “R13 → R12”: output (Eval-TrK/K12(C),
R12).

• mode1 = “R12 → R13” and mode2 = “R12”: output (Eval-TrK/K13(C),
R13).

• mode1 = “R13 → R12” and mode2 = “R13”: output (Eval-TrK/K12(C),
R12).

• Otherwise, output ⊥.
– Ext-Prod, (External Product for RGSW-RLWE). The algorithm takes inputs

a RGSW encoding (C1,mode1) and a RLWE encoding (c2,mode2), and then
computes c = C1 � c2 = C1 · g−1(c2). Then it outputs according as:

• mode1 = “R12” and mode2 = “R12 → R13”: output Eval-TrK/K13(c).• mode1 = “R13” and mode2 = “R13 → R12”: output Eval-TrK/K12(c).• mode1 = “R12 → R13” and mode2 = “R12”: output Eval-TrK/K13(c).• mode1 = “R13 → R12” and mode2 = “R13”: output Eval-TrK/K12(c).• Otherwise, output ⊥.

The readers should keep it in mind that the above operations are in RQ,
where the modulo Q is taken implicitly. Next we describe theorems to summarize
the correctness and error growth. Detailed proofs appear in the full version.

Theorem 4.3. Let C1, . . . ,Cr be RGSW ciphertexts with error terms e1, . . . ,er,
messages μ1, . . . , μr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with error terms

e′
1, . . . ,e

′
r, messages μ′

1, . . . , μ
′
r ∈ R1. Denote

– RGSW-Pack(C1, . . . ,Cr, “R12”) as D,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Mult(D′,D) as F,
– the encrypted messages of the packed ciphertexts D as μD,
– the encrypted messages of the packed ciphertexts D′ as μD′ .

Then, μD =
∑r

i=1 μi · vi, μD′ =
∑r

i=1 μ′
i · v∨

i wi and F is a packed RGSW cipher-
text encrypting TrK/K13(μD · μD′) with mode R13.

Theorem 4.4. Let c1, . . . , cr be RLWE ciphertexts with error terms e1, . . . , er,
messages μ1, . . . , μr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with error terms

e′
1, . . . ,e

′
r, messages μ′

1, . . . , μ
′
r ∈ R1. Denote

– RLWE-Pack(c1, . . . , cr, “R12”) as d,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Ext-Prod(D′,d) as f ,
– the encrypted messages of the packed ciphertexts d as μd ,
– the encrypted messages of the packed ciphertexts D′ as μD′ .

Then, μd =
∑r

i=1 μi · vi, μD′ =
∑r

i=1 μ′
i · v∨

i wi and f is a packed RLWE cipher-
text encrypting TrK/K13(μd · μD′) with mode R13.

Assuming that for any x (in the input domain), Err(Eval-TrK/K13(x)) =
TrK/K13(Err(x)) + e′ for some e′, whose norm upper bound can be independent
of x, then we have Err(f) = TrK/K13

(∑
i e

′
iv

∨
i wig

−1(d) + μD′(eivi)
)

+ e′.
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We notice the above two theorems can be easily adapted to the setting of the
modes R13 and R13 → R12. We omit the statement to avoid repetition.

4.3 Homomorphic Evaluation of the Trace Function

In this section, we present an efficient method for homomorphic evaluation of
the trace function, which was used as a black-box in the homomorphic multipli-
cation in the prior subsection. There have been efficient methods studied in the
literature, e.g., [3,11,22], in the cyclotomic rings of powers of two, and here we
generalize the prior methods to the setting of general cyclotomic rings.

General Method over RLWE Ciphertexts. Suppose E/F is an algebraic
extension and the degree [E : F ] = d, then the function TrE/F is the sum of d
automorphisms on E that fix every element in F . These d automorphisms form
a group, namely the Galois group denoted as Gal(E/F ). Then we can express
TrE/F (·) =

∑
σ∈Gal(E/F ) σ(·).

The general way to compute homomorphic evaluation of TrE/F is to compute
homomorphic evaluation of all the σ’s in the Galois group, and then sum them
up. We notice that homomorphic evaluation of any automorphism σ can be
achieved using the classic key-switch technique [8] as follows. We first present
the syntax of the key-switch algorithm.

Key-Switch Algorithm. Let KS be the key-switch algorithm (the ring variant
of [8]) that takes input a RLWE ciphertext (b, a) ∈ RLWEs(μ) ∈ R2

Q and an
evaluation key evk(σ) and outputs a RLWE ciphertext (b′, a′) ∈ RLWEσ(s)(μ) ∈
R2

Q. We present the details of KS in the full version of this work.
Given the evaluation algorithm KS, homomorphic evaluation of Tr can be

achieved by the following. Given input (b, a) ∈ RLWEs(μ) and evaluation keys
{evkσ}σ∈Gal(E/F ), the algorithm does:

1. For each σ ∈ Gal(E/F ), compute cσ = (σ(b), σ(a)) and set c′
σ =

KS(cσ, evk(σ
−1)).

2. Output
∑

σ∈Gal(E/F ) c′
σ as the resulting ciphertext.

It is not hard to check that for each σ, cσ ∈ RLWEσ(s)(σ(μ)), and by correctness
of KS, c′

σ ∈ RLWEs(σ(μ)). Thus, the above is a correct algorithm. Moreover, it
requires d calls8 to the underlying KS algorithm.

More Efficient Evaluation with Algebraic Structures. If there is an inter-
mediate field K between E and F , then we can (homomorphically) compute the
trace function more efficiently via the composition property of the trace func-
tion. Let F ⊂ K ⊂ E be algebraic extensions, [E : K] = d1 and [K : F ] = d2,
then we have d = d1 · d2 and TrE/F = TrK/F ◦ TrE/K . By definition, we have
TrE/K(·) =

∑
σ∈Gal(E/K) σ(·), and TrK/F (·) =

∑
σ∈Gal(K/F ) σ(·). To compute

8 For small d’s, the Hoistng technique [22] can be used to improve efficiency.
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TrE/F (x), we can first compute x′ = TrE/K(x), and then output TrK/F (x′). The
homomorphic evaluation just computes the basic trace evaluation twice of the
cases E/K and K/F . In this way, the algorithm would require only d1 +d2 calls
to the underlying KS. This is more efficient than the basic algorithm applied to
the case E/F directly, which would require d = d1 · d2 calls to the KS.

The Tower Case. The above idea works best in the tower case, where there are
many intermediate fields between E and F . In the rest, we present an optimized
homomorphic evaluation algorithm for TrK/K13 : R1 ⊗ R∨

2 ⊗ R3 �→ R1 ⊗ R3,
assuming there are many intermediate fields. We discuss how to instantiate this
later in Sect. 5. Note that a homomorphic algorithm for the other case TrK/K12

can be derived similarly.
Assume the following tower structure: K13 = Et ⊂ Et−1 ⊂ · · · ⊂ E1 = K.

Then we can express TrK/K13 = TrEt−1/Et
◦ TrEt−2/Et−1 ◦ · · · ◦ TrE1/E2 . We will

present how to instantiate this tower structure in the cyclotomic fields in Sect. 5.
By using the basic homomorphic evaluation on the cases Ei/Ei+1, we can derive
a more efficient algorithm.

Before presenting formally the procedure, we notice that there is a technical
subtlety – the input RLWE ciphertext is in the dual module, e.g., (R1⊗R∨

2 ⊗R3)2,
so that we cannot directly apply the above procedure. To tackle this, we first
observe that there is an integer P that is invertible under modulo Q, and can
map an element in the dual module to a ring element by the multiplication, i.e.,
(1) P−1 mod Q exists, and (2) for every x ∈ R1⊗R∨

2 ⊗R3, P ·x ∈ R1⊗R2⊗R3.
In Sect. 5, we show how to set P concretely with detailed instantiations of the
required tensor rings. By using this number P , we present a tweaked method in
Algorithm 4.1 below.

Algorithm 4.1: (RLWE)-Eval-TrK/K13 with the tower structure
Input :

– A RLWE ciphertext (b, a) ∈ (R1 ⊗ R∨
2 ⊗ R3)

2 that encrypts a message
μ ∈ R1 ⊗ R∨

2 ⊗ R3 under a secret s ∈ R.
– Evaluation Key: {evk(σ)}σ∈⋃

i∈[t−1] Gal(Ei/Ei+1), and

evk ∈ RGSWs(P
−1 · s) ∈ R2.

Output : A RLWE ciphertext c ∈ RLWEs(TrK/K13(μ)).

1 Initialize c = (b, a), and set ā = P · a (interpreted as an element in R) ;
2 Set c′ = (0, ā) and compute d = evk � c′; �d ∈ RLWEs(P

−1s · ā) ∈ R2 ;
3 for i = 1 to t − 1 do
4 Let (d1, d2) = d;

5 Compute d′ =
∑

σ∈Gal(Ei/Ei+1)
KS((σ(d1), σ(d2)), evk

(σ−1));

6 Set d = d′ and d′ = (0, 0)

7 Return (TrK/K13(b), 0) − d. �d ∈ RLWEs(TrK/K13(sa)) ∈ R2
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Remark 4.5. Here we slightly abuse the notation of the automorphism σ ∈
Gal(Ei/Ei+1) for simplicity of presentation.

As the input domain of such σ is Ei, we should not give (d1, d2) ∈ R ⊂ K
(elements of the full ring) as the input to the automorphism. Nevertheless, by
the Galois theorem, for any σ ∈ Gal(Ei/Ei+1), there exists at least one σ′ ∈
Gal(K/Ei+1) such that σ′|Ei

= σ. In this paper, σ refers to (an arbitrary) of
such σ′ who acts identically as σ for all inputs in Ei.

To verify correctness, we first notice that TrK/K13(b) = TrK/K13(sa) +
TrK/K13(e) + TrK/K13(μ) ∈ R. Next, at the end of the for loop (line 6), we
can easily check that d ∈ RLWEs(TrK/K13(P

−1sā)). Then we have

TrK/K13(P
−1sā) = P−1TrK/K13(sā) = P−1TrK/K13(sPa) = TrK/K13(sa).

Crucially the last equality holds because TrK/K13(sa) ∈ R1 ⊗ R3, and P−1 ·
TrK/K13(sPa) = P−1 · P · TrK/K13(sa) = TrK/K13(sa) in modulo Q. Then cor-
rectness simply follows. As the modulus does not change in the whole procedure,
we omit the modulo Q description in the algorithm.

To analyze efficiency, we first denote the degrees as di = [Ei : Ei+1] for
i ∈ [t − 1]. Then the above algorithm makes

∑
i∈[t−1] di calls to the underlying

KS algorithm, which is again way more efficient than the basic algorithm applied
to the case K/K13, which would require d =

∏
i∈[t−1] di calls to KS. Moreover,

if each di = O(1), then the efficient algorithm as above would require O(log d)
calls to the KS, which is significantly better than d calls by the basic approach.

Below we present the noise analysis and defer the proof to the full version.

Theorem 4.6. Adapt the notations of Algorithm 4.1. Assume that for every d ∈
RLWEs(μ), Err(KS(d)) = Err(d)+e′ where ‖e′‖∞ is a sub-Gaussian with param-
eter B, and for the initial d, ‖Err(d)‖∞ is also a sub-Gaussian with parameter
B. Let c be the output ciphertext of the algorithm. Then Err(c) = TrK/K13(e)+e′′

where e is the noise of the input ciphertext, and ‖e′′‖∞ is a sub-Gaussian with
parameter upper bounded by 3dB.

Eval-Tr for RGSW. The Eval-TrK/K13 algorithm for RLWE ciphertexts can be
extended to RGSW ciphertexts. Details are in the full version.

5 Instantiations

In this section, we present how to instantiate all the components used in the
abstraction in Sect. 4, so that the parameters can be analyzed concretely. Par-
ticularly, we need to instantiate: (1) tensor ring R = R1⊗R2⊗R3, and (2) good
bases of these rings and their duals. Then we can further determine parameters
for the noise growth in Theorems 4.3 and 4.4, under the instantiations.
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Tensor Fields/Rings. We notice that any cyclotomic field has some nice prop-
erties of decomposability, i.e., for m = qρ′τ ′ where q, ρ′, τ ′ are co-prime integers,
then Q(ξm) ∼= Q(ξq) ⊗ Q(ξρ′) ⊗ Q(ξτ ′). Thus, we can use their rings of integers
to instantiate our framework. Particularly, we set R1 = Z[ξq], R2 = Z[ξρ′ ], and
R3 = Z[ξτ ′ ]. We notice that the tensor ring R = R1 ⊗ R2 ⊗ R3 has dimension
N = φ(m), R2 has dimension ρ = φ(ρ′), and R3 has dimension τ = φ(τ ′).
Moreover, we have N = φ(q)ρτ . We notice that the hardness of RLWE scales
with N [2,25,31].

To apply the fast trace evaluation as Sect. 4.3, we choose ρ′ and τ ′ as powers
of primes, i.e., ρ′ = pd1

1 and τ ′ = pd2
2 , for some small primes p1, p2 of constant

sizes, e.g., 3, 5. We notice that for any element x ∈ R∨
2 , ρ′x ∈ R2, and therefore

we can set P = ρ′ in Algorithm 4.1. Similarly, we can set P = τ ′ for comput-
ing (RLWE)-Eval-TrK/K12 . As argued before, the homomorphic evaluation of the
trace function would need O(log ρ′) or O(log τ ′) calls to the key-switch function
(for the RLWE case). To maximize the space utility, we would set ρ ≈ τ . For the
batch bootstrapping of the AP14/FHEW framework, we set q to be the input
LWE modulus, which can be Õ(

√
n) where n is the LWE dimension.

Bases. We next determine concrete bases for R1,R2,R3 (and their dual rings),
denoted as B1,B2, B3(and B∨

1 ,B∨
2 , B∨

3 , respectively).
Particularly, we set B∨

i to be the decoding basis of the work [26] for each
i = 1, 2, 3. As argued in [26], the primal bases B1,B2, B3 are defined as the
conjugate of the powerful bases. These bases are “short”, and thus would give
tighter bounds for our analyses. Below we briefly summarize some nice properties
about the decoding bases and their duals from [26].

Lemma 5.1 ([26]). Let z = we be some prime power, d be the decoding basis
of Z∨[ξz], and b be the dual of d. Then for any element d ∈ d, b ∈ b, we have
‖b‖∞ = 1 and ‖d‖∞ ≤ 2(w − 1)/z.

By using our notation in Sect. 4.1, we denote the conjugate of the powerful
basis as B2 = {vi}i∈[ρ], B3 = {wi}i∈[τ ], and the decoding bases (their dual) as
B∨
2 = {v∨

i }i∈[ρ], B∨
3 = {w∨

i }i∈[τ ]. Then by the above lemma, we have (1) ‖vi‖∞ =
1 and ‖wi‖∞ = 1, and (2) ‖v∨

i ‖∞ ≤ 2(p1 − 1)/ρ′ and ‖w∨
i ‖∞ ≤ 2(p2 − 1)/τ ′.

As we choose q, ρ′, τ ′ to be relatively prime, we can use the individual bases
to determine a basis of the tensor ring, i.e., Bi ⊗ Bj is the powerful basis of
Ri ⊗ Rj . Also, we set parameter r = min(ρ, τ) as the batch parameter, i.e., the
maximal number of slots our method can pack. If we set ρ ≈ τ , then r ≈ √

N/q.

Examples. We give some examples of concrete numbers to illustrate the above
ideas. Let Q be the RLWE modulus, and σ be the noise parameter (in the absolute
value). The RLWE hardness can be estimated by N (the ring dimension) and
noise-to-modulus ratio σ/Q (also known as α) from the estimator [2] (Table 1).
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Table 1. Some examples of parameters

m-cyclotomic
= q × ρ′ × τ ′

Dim N = φ(m)
= φ(q) × ρ × τ

Batch param
r

Modulus
Q (approx)

Noise
σ

Hardness
(in bit)

Input Dim
n

Set 1 251 ∗ 23 ∗ 32 250 ∗ 4 ∗ 6 = 6000 4 2128 3.2 129.9 500

Set 2 211 ∗ 32 ∗ 7 210 ∗ 6 ∗ 6 = 7560 6 2128 3.2 178.4 500

Note: These examples demonstrate some ideas to set concrete parameters. How
to optimize the concrete performance is an interesting future work. The moduli
Q’s here are approximated at this order. There can be other constraints, e.g., Q
and m are co-prime for NTT accelerations.

Key-Switch Instantiation. Our trace evaluation algorithms (both the RLWE
and RGSW settings) require to use the key-switch procedure. This can be
achieved with existing techniques, e.g., [22]. Details are presented in the full
version.

Particularly, by the parameters of the key-switch (in the full version) and
Lemma 3.2, we can set B =

√
N · log Q · E in Theorem 4.6, where E is the

noise bound in the key-switch keys. By using these instantiations applied to
Theorem 4.4, we can achieve the following corollary for the external product:

Corollary 5.2. Adapt the notations of Theorems 4.4. If the errors of the key-
switch keys is upper bounded by E, and g−1 is with respect to the basis B1⊗B2⊗
B3. Then ‖Err(f )‖∞ is upper bounded by

2ρ(p1 − 1)
√

N log Q

ρ′
∑

‖e′
i‖∞ + ρ‖μD′‖

∑
‖ei‖∞ + ‖e′′‖∞,

where ‖e′′‖∞ is a sub-Gaussian with parameter upper bounded by 3ρ′√N log QE.

A similar bound can be derived for the RGSW multiplication of Theorem 4.3
under the instantiation in this section. Details are in the full version.

6 Batch Bootstrapping via Our New Framework

Now we present how to batch the AP14/FHEW bootstrapping [4,13,17] within a
polynomial modulus. We first present some background and notations, and then
describe how to apply our new batch framework to the bootstrapping procedure.

6.1 Bootstrapping Background

Input. The general bootstrapping algorithm takes an LWE ciphertext (b,a) ∈
Z
1+n
q as input, where n and q are small, i.e., n = Õ(λ), q = Õ(

√
λ)9. Also

9 In the full version of this work, we present how to achieve such a q.
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it is without loss of generality to assume the input ciphertexts are encrypted
under binary secret vectors. These can be achieved without loss of generality
by applying the dimension reduction, modulus switch (the randomized version),
and bit-decomposition/power-of-two10 as described in [4]. We know for any GSW,
RLWE, or RGSW ciphertext, we can always publicly extract an LWE ciphertext
that encrypts the same message [4]. Therefore, assuming the input to be the
LWE form is without loss of generality.

The Batch Setting. Let r be the batch parameter as we instantiate in Sect. 5.
Our bootstrapping algorithm takes input r LWE ciphertexts, i.e., {(bi,ai)}i∈[r],
encrypting perhaps different messages under the same secret key s.

Output. The output of bootstrapping algorithm is a ciphertext encrypting the
same as the input ciphertexts. In the batch setting, the output can be either a
packed ciphertext, or r different ciphertexts, encrypting the same message vector.
Let N,Q denote the dimension and modulus used by the output ciphertext.

6.2 Batch Bootstrapping

Notations. We use the instantiation in Sect. 5 for the batch framework and
present the required parameters in our batch algorithm.

– n: the dimension of the input LWE scheme.
– q: the modulus of the input LWE scheme, set as a prime of size Õ(

√
λ).

– r: the number of slots we can pack, where r = min{ρ, τ}.
– s: the secret key of the input LWE ciphertexts.
– R: the underlying ring of the RGSW scheme. We use the instantiation in

Sect. 5, i.e., the tensor ring R = R1 ⊗ R2 ⊗ R3.
– R1: the first ring is set as Q(ξq).
– R2: the second ring with dimension ρ = φ(ρ′), ρ′ = pd1

1
– R3: the third ring with dimension τ = φ(τ ′), τ ′ = pd2

2
– Q: the modulus of the RGSW scheme.
– s′: the secret of the RGSW scheme.

Auxiliary Algorithm. In Algorithm 6.1 below, we describe a batch blind-
rotate (BR) algorithm, which is an SIMD version of FHEW/TFHE blind-rotate
of [14,17], under our framework.

10 For any (s,a) ∈ Z
n
q × Z

n
q , 〈s,a〉 = 〈s′,a′〉 where a′ ∈ Z

n log q
q is the power-of-two

of a and s′ ∈ Z
n log q
q is the bit-decomposition of s. Using this insight, it is without

loss of generality to just consider binary secret vectors in the bootstrapping task.
Some practical optimizations, e.g., [6,13,17,28] use binary or ternary LWE, so that
the secret vector s is set directly to binary or ternary. In this case, there is no need
to blow up the dimension of a.
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Algorithm 6.1: Batch-BR (i.e., Batch Blind Rotate)
Input :

– A packed RLWE ciphertext ACC0.
– (Partial) Bootstrapping key: {BK ∈ RGSWQ

s′(s)} where s ∈ {0, 1}.
– Integers {ai}i∈[r].

Output : A packed RLWE ciphertext.

1 if the mode of ACC0 is “R12” then
2 Set ACC = Ext-Prod((BK · (

∑
i ξai

q v∨
i wi) + (G − BK) · ∑

i v
∨
i wi, “R12 →

R13”), (ACC0, “R12”))

3 else if the mode of ACC0 is “R13” then
4 Set ACC = Ext-Prod((BK · (

∑
i ξai

q viw
∨
i ) + (G − BK) · ∑

i viw
∨
i , “R13 →

R12”), (ACC0, “R13”))

5 Return: ACC

We next present a high level description of what the batch BR algorithm
is computing. Suppose the input ACC0 is a packed ciphertext that encrypts
(ξx1

q , . . . , ξxr
q ) under mode “R′′

12. Then the result of the algorithm will produce a
packed ciphertext that encrypts (ξx1+a1s

q , . . . , ξxr+ars
q ), under mode “R′′

13. The
formal analysis is captured by the following theorem.

Theorem 6.1. Adapt the notations in Algorithm 6.1. Let the input ACC0 be a
packed RLWE encrypting μ of mode“R′′

1b for b ∈ {2, 3}. If b = 2, then the output
is a packed RLWE ciphertext encrypting TrK/K13(μ · ∑

i∈[r] ξ
ais
q v∨

i wi) of mode
“R13”, or TrK/K12(μ · ∑

i∈[r] ξ
ais
q viw

∨
i ) of mode “R12” if b = 3.

Proof. By symmetry, it suffices to prove the case b = 2, and the other case
follows analogously. Since s ∈ {0, 1}, we have BK · (

∑
i ξai

q v∨
i wi) + (G − BK) ·∑

i v
∨
i wi ∈ RGSW(

∑
i∈[r] ξ

ais
q v∨

i wi). Then by the Theorem 4.4, ACC belongs to
RLWE(TrK/K13(μ · ∑

i∈[r] ξ
ais
q v∨

i wi)).

Batch Bootstrapping. In Algorithm 6.2, we present our final batch bootstrap-
ping algorithm, using the batch BR (Algorithm 6.1) as a subroutine. To analyze
the concrete bounds, we use the instantiation in Sect. 5. We recall some basic
facts: let {vi}i∈[ρ], {wi}i∈[τ ] be the bases of R2 and R3. Then we have

1. ‖vi‖∞ = 1 and ‖wi‖∞ = 1,
2. ‖v∨

i ‖∞ ≤ 2(p1 − 1)/ρ′ and ‖w∨
i ‖∞ ≤ 2(p2 − 1)/τ ′.

The analysis of Algorithm 6.2 is summarized by the theorem.

Theorem 6.2. Let µ = (μ1, . . . , μr) be binary messages encrypted in the input
LWE ciphertexts, {(bi,ai)}i∈[r]. Then the algorithm outputs a fresh packed RLWE

ciphertext c, either in RLWEQ
s′(

∑
μivi) or RLWEQ

s′(
∑

μiwi).
Moreover, ‖Err(c)‖∞ is bounded by a sub-Gaussian variable with parameter

O(γ) such that γ ≤ nrqN
√

N log QE, where E is the upper bound (infinity norm
of the canonical embedding) of errors in all bootstrapping/evaluation keys.
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Algorithm 6.2: Batch-BTS
Input :
– r LWE ciphertexts (bi,ai) = (bi, ai1, ..., ain) ∈ LWEs(μi) for i ∈ [r].

– Bootstrapping key: {BKi ∈ RGSWQ′
s′ (si)}i∈[n], where si is the i-th entry of the

common secret s of the LWE ciphertexts, and evk is the evaluation key for the
homomorphic trace algorithms.

Output : A packed RLWE ciphertext.

1 Set ACC0 = RLWE-Pack((q−1ξb1
q , 0), ..., (q−1ξbr

q , 0)), “R12”), where q−1 ∈ RQ;
2 for k = 1 to n do
3 ACCk = Batch-BR

(
ACCk−1,BKk ∈ RGSW(sk), {aik}i∈[r]

)
;

4 Set test =
(∑

y∈Zq&�y�2=1 ξ−y
q

)
, d = (

∑
i∈[r] q

−1vi, 0); �d ∈ RLWEs′ (q−1
∑

i∈[r] vi) ;

5 Return c = d + Eval-TrK/K23 (test · ACCn).

Proof. We first analyze the correctness. By applying Theorem 6.1 to the for loop
in Step 2, we can obtain that ACCn encrypts

∑
i∈[r] q

−1ξ
bi−〈ai,s〉
q vi, (assuming

n is even, which is without loss of generality). Next we use an important fact
observed by the work [1] – For any y = ξz

q , the following equation holds.

1 + y + y2 + · · · + yq−1 =

{
q if z = 0 mod q
0 otherwise

.

As y is a power of ξq, we can further express the equation as
∑

0≤i<q yi =
1+TrK/K23(y), when q is a prime (which follows by our parameter choice). This
corresponds to what step 5 does.

By using this fact, it is easy to verify the following: for any ξz
q , z ∈ Zq, let

x = test · (q−1ξz
q ). Then we have q−1 + TrK/K23(x) =

{
1 if �z�2 = 1
0 otherwise. = �z�2 .

By the above equation with our batch computation, the final output of the
algorithm would be encrypting

∑
i∈[r] �bi − 〈ai, s〉�2 · vi. By the correctness of

decryption for LWE, the resulting ciphertext belongs to RLWEQ
s′(

∑
μivi). The

same analysis works for the case if n is odd, i.e., the resulting ciphertext belongs
to RLWEQ

s′(
∑

μiwi). Thus, the correctness is proved.
Next we analyze the noise growth. We first analyze the noise of the ACCn

in the for loop and then that of the next stage. By our batch computation
framework, we have for k ∈ [n], Err(ACCk) = Err (Eval-Tr(BKk � ACCk−1)) .
We denote ek as the Err(ACCk), mk as the message of BKk, e′

k as the additive
error from the key-switching algorithm in Eval-Tr. Without loss of generality,
we consider that ACCk−1 is of the mode “R12”, and then identify the recursive
relation as following:

ek = e′
k + TrK/K13(Err(BKk)G−1(ACCk−1)) + TrK/K13(mk · ek−1)

= e′′
k + TrK/K13(mk · ek−1),
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where e′′
k = e′

k +TrK/K13(Err(BKk)G−1(ACCk−1)). We notice that e′
k is fresh

noise from KS and Err(BKk)G−1(ACCk−1) is also independent of the recursion
index k. Thus, e′′

k can also be viewed as non-accumulating noise that does not
increase over the recursion. Next we further expand the equation and obtain:

ek = e′′
k + TrK/K13(mk · ek−1)

= e′′
k + TrK/K13

(
mk · (

e′′
k−1 + TrK/K12(mk−1 · ek−2)

))
= e′′

k + TrK/K13

(
mk · e′′

k−1

)
+ TrK/K13

(
mk · TrK/K12(mk−1 · ek−2)

)
= ẽk + TrK/K13

(
mk · TrK/K12(mk−1 · ek−2)

)
,

where ẽk = e′′
k + TrK/K13

(
mk · e′′

k−1

)
. A similar argument as above shows that

ẽk is independent of the recursion index k and thus non-accumulating.
To proceed with the analysis, we first define the following notation. Without

loss of generality, we only consider the case where n and k are both even.

Definition 6.3. Let mk, . . . ,m1 be the packed messages as used in the algo-
rithm, and let e ∈ R be some input. Define

T 2j(e) =

{
TrK/K13

(
mkTrK/K12 (mk−1 · e)

)
for j = 1

T 2j−2
(
TrK/K13

(
mk−2j+1TrK/K12 (mk−2j · e)

))
for j ∈ [2, k/2]

.

Then we can unfold the recursive formula and obtain the following expression.

ek = ẽk + T 2(ẽk−2) + T 4(ẽk−4) + · · · + T k(e0).

To derive an upper bound for the above, we first prove the following claim:

Claim 6.4. For j ≤ k/2 and any e ∈ R such that ‖e‖∞ is B bounded, then
‖T 2j(e)‖∞ ≤ 4p1p2r

2B.

Proof. We start from the base case j = 1. First we can express e =∑
i∈[ρ] eivi where each ei ∈ R13. From our design, we notice that

mk−1 =
∑

i∈[r] ξ
sk−1
q v∨

i wi, and mk =
∑

i∈[r] ξ
sk
q w∨

i vi. Therefore, E :=
TrK/K13 (mk−1 · e) =

∑
i∈[r] ξ

sk−1
q eiwi as the cross terms v∨

i vj are all can-
celled out by the trace for i �= j. According to our choice of the basis, we
have ‖E‖∞ ≤ ρ · ‖mk−1‖ · ‖e‖∞ ≤ ρ · r · 2(p1 − 1)/ρ′ · B ≤ 2p1rB. We
can further express E =

∑
i∈[r] ξ

sk−1
q ziwi, where each zi ∈ R1. We then

use the fact ‖zi‖∞ ≤ τ · ‖E‖∞ · ‖w∨
i ‖∞ as implicitly analyzed in [26]. By

plugging the bound of the basis and ‖E‖∞, we have ‖zi‖∞ ≤ 4p1p2rB, for
every i ∈ [r]. Then TrK/K12(mk · ∑

i∈[r] ξ
sk−1
q ziwi) =

∑
i∈[r] ξ

sk+sk−1
q zivi. Thus,

‖T 2(e)‖∞ ≤ ∑
i∈[r] ‖zi‖∞ ≤ 4p1p2r

2B.
For j ≥ 2, let s′

j =
∑

t≤j(sk−t+1 + sk−t). Then we can use the same calcu-

lation to obtain T 2j(e) =
∑

i∈[r] ξ
s′

ij
q zivi. This means that the coefficient with

respect to vi remains the same but with different phase, i.e., and only the expo-
nent on ξq changes but zi does not. Therefore, ‖T 2j(e)‖∞ ≤ 4p1p2r

2B under the
same analysis as above. ��
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Next, we can check that each coefficient of ẽk is bounded by a subgaussian
with parameter less than O(r

√
N log Q · E). Therefore, by setting B as this

quantity, the above claim proves that ‖ek‖∞ is bounded by a subgaussian with
parameter less than O(kr3

√
N log QE) (as p1, p2 are constants according to our

parameter selection). By plugging k = n, we conclude that ‖en‖∞ is bounded by
a subgaussian with parameter less than O(nr3

√
N log QE). In Step 4, we further

multiply the ACC by the test vector, which at most increase the error by a factor
of q. In step 5, we apply another homomorphic trace function Eval-TrK/K23(),
which increases the error by at most q. So the final error is bounded by a sub-
gaussian with parameter less than O(nr3q2

√
N log QE) = O(nrqN

√
N log QE)

and we prove this theorem. ��
Remark 6.5. We can easily unpack the output RLWE ciphertext. If the output
c ∈ RLWEQ

s′(
∑

μivi), then by applying (RLWE)-Eval-TrK/K13 to v∨
i c, the result

is a RLWE ciphertext in RLWEQ
s′(μi). The other case can be achieved similarly.

Remark 6.6. We notice that the techniques in the analysis of Theorem 6.2
(specifically Claim 6.4) can be used to analyze batch homomorphic computation
of branching programs (e.g., [9]) under our framework. In the same way, we
can show that our batch framework only incurs a polynomial error growth for
computing any constant-width polynomial-depth branching program.

6.3 Efficiency

Finally, we compare the efficiency of the batch bootstrapping with the sequential
non-batch bootstrapping (that can be achieved within a polynomial modulus).
We first notice that one call to the non-batch AP14/FHEW framework would
require at least O(n) external products, even just counting the step of blind
rotate. Thus, to bootstrap r input ciphertexts sequentially, it would require
O(rn) external products.

On the other hand, our batch blind-rotate for bootstrapping r input cipher-
texts would require O(n) external products and O(n) calls to the homomorphic
trace evaluation. We notice that each homomorphic trace evaluation would make
O(log r) calls to the key-switch algorithm, which is roughly equal to O(log r)
external products. The final step of equality test take q queries to the underlying
key-switches. Thus, the overall algorithm would require O(n log r + q) external
products to bootstrap r input ciphertexts.

Asymptotic Setting. Now we determine all the parameters in λ as follow. We
can set n = O(λ), q = Õ(

√
n), N = O(n), and r ≈ O(

√
N/q) = O(λ1/4−o(1))

as the AP14/FHEW framework [4,13,17]. By plugging these parameters to the
above analysis, our batch algorithm can therefore bootstrap O(λ1/4−o(1)) input
ciphertexts by using Õ(λ) external products, implying the amortized complexity
Õ(λ0.75) external products per input ciphertext. On the other hand, the non-
batch method would require the amortized complexity O(λ) external products
per input ciphertext.
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Our theoretical advances can potentially lead to noticeable practical improve-
ments, as all the components are explicit and have been implemented in the
power-of-two’s settings. By using the insights of [26], it is possible to port the
existing implementations to the general cyclotomic rings, with the same asymp-
totic computational efficiency. We leave it as an interesting open direction to
determine the concrete practical performances of our framework.
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Abstract. This work continues the exploration of the batch framework
proposed in Batch Bootstrapping I (Liu and Wang, Eurocrypt 2023).
By further designing novel batch homomorphic algorithms based on
the batch framework, this work shows how to bootstrap λ LWE input
ciphertexts within a polynomial modulus, using Õ(λ) FHE multiplica-
tions. This implies an amortized complexity Õ(1) FHE multiplications
per input ciphertext, significantly improving our first work (whose amor-
tized complexity is Õ(λ0.75)) and the theoretical state of the art MS18
(Micciancio and Sorrell, ICALP 2018), whose amortized complexity is
O(31/ε · λε), for any arbitrary constant ε.

We believe that all our new homomorphic algorithms might be useful
in general applications, and thus can be of independent interests.

1 Introduction

This work is the second work of the Batch Bootstrapping series, aiming to
advance the frontier of the Fully homomorphic encryption (FHE). We con-
tinue the exploration of the algebraic batch bootstrapping framework of the
first work [7], and our particular goal is to prove the following theorem:

Theorem 1.1 (Main Result of this Work, Informal) Bootstrapping within
a polynomial modulus requires Õ(1) FHE multiplications in amortization.

Contexts. FHE [5] is a powerful cryptographic tool that allows arbitrary com-
putation over encrypted data, without the secret key. Currently, the only known
way to achieve “fully”-HE is via the bootstrapping paradigm, which was origi-
nally perceived as theoretical only for its large computation overhead. After more
than a decade of research and optimizations, there has been significant progress
toward more efficient realizations. As major prior results (before the first work)
have been summarized in the first work [7], curious readers can find relevant
references there, so we do not repeat the presentation.

Below, we just go directly to the point, by staring with what is not achieved
in [7], and a comparison with the current state of the art. In this way, the readers
can easily identify the “delta”, when reading the contributions of this work.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 353–384, 2023.
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Challenges in the Prior Work. We first present a quick summary of the
work [7], and state what was not solved. In Sect. 3, we give a more detailed
review of the foundation, based on which, we develop various new homomorphic
algorithms to further improve the frontier of the bootstrapping paradigm.

Briefly, the work [7] proposes a new batch framework, allowing single instruc-
tion multiple data (SIMD) operations that are compatible with FHEW-like
(e.g., [3,4]) bootstrapping methods. The framework allows SIMD computa-
tion over r = O(λ0.25−o(1)) slots, where λ is the security parameter. Applying
this to the AP14/FHEW/TFHE methods, we can bootstrap r = O(λ0.25−o(1))
LWE ciphertexts within a polynomial modulus, using Õ(λ) FHE multiplications,
meaning Õ(λ0.75) FHE multiplications in amortization. This is an improvement
of a factor of O(r) over the prior non-batch methods. We notice that all these
methods only require workspace O(1) FHE ciphertext for computation (exclud-
ing the input and the bootstrapping keys).

If more workspace for computation is available, the theoretical complexity of
the above however, is not better than that of the existing method MS18 [11],
whose amortized cost is O(31/ε · λε) FHE multiplications per input ciphertext,
where ε > 0 is an arbitrary constant. However, the dependency on ε posts an
undesirable tradeoff between theory and practice – to achieve the best asymp-
totic complexity, ε should approach 0, e.g., 0.01, yet the constant would become
prohibitively large, e.g., 3100. Thus, it is not clear whether MS18 can lead to a
practical method that matches their best theoretical indication.

Focus of this Work. An obvious open question is whether the tradeoff as
stated above is inherent for the MS18 approach [11]. This work shows how to
break the technical limitations, by developing various new batch homomorphic
algorithms under the batch framework foundation [7]. Below we elaborate.

1.1 Our Contributions

The main result of this work is to prove Theorem 1.1. To achieve this, we first
develop several new critical batch homomorphic algorithms based on the batch
framework of [7]. These new algorithms play as important building blocks to
improve the MS18 method, leading to our main result.

Recall that r = O(λ0.25−o(1)) denotes the number of slots that the batch
framework [7] can support. Using this foundation, we develop significant new
batch homomorphic methods as stated below.

– We first propose a new batch vector-matrix multiplication algorithm, com-
puting a vector of dimension w (in the clear) left multiplied by an encrypted
matrix of dimension h × w for h < r, using Õ(w + r) FHE multiplications.
Thus, the amortized cost is Õ(1 + w/r) FHE multiplications per dimension.
As a ring multiplication can be expressed as the coefficient vector multiplied
by the rotation matrix, our new batch algorithm immediately gives a batch
algorithm for multiplying two ring elements of dimension 2d with amortized
complexity Õ(1 + 2d/r) FHE multiplications. Particularly, for 2d < r, the
amortized complexity would be Õ(1) FHE multiplications per dimension. See
Sect. 4 for details.



Batch Bootstrapping II 355

– Next we construct a new batch homomorphic (inverse) Discrete Fourier Trans-
form (DFT) of dimension 2d < r, with amortized complexity Õ(1) FHE mul-
tiplications per dimension.
To achieve this, we design three critical subroutines over packed ciphertexts:
(1) homomorphic permutation, (2) homomorphic inverse over the exponents,
and (3) batch homomorphic anti-cyclic rotation (via (1) + (2)). The batch
homomorphic DFT/inverse-DFT can be achieved by using as a key building
block the batch homomorphic anti-cyclic rotation. See Sect. 5 for details.

– We show that our batch homomorphic DFT/inverse-DFT is compatible with
the recursive optimization of the Nussbaumer Transform. This plays a critical
step to get rid of the dependency on ε as required by the MS18 framework.
See Sect. 6 for details.

Putting these algorithms together, we are able to improve the overall MS18
bootstrapping method and achieve Theorem 1.1. See Sect. 7 for details of the final
algorithm. We believe that all the new batch algorithms above can be of inde-
pendent interests and might find applications in broader scoped of homomorphic
computation. Below we present a table to compare results of this work with prior
explicit methods (i.e., bootstrapping within a polynomial modulus) (Table 1).

Table 1. Comparison with prior work.

Ref. Amortized Complexity for Bootstrapping

(# of FHE Multiplications per input LWE ciphertext)

[1,3,4] O(λ)

[2] O(λ/ log λ)

[11] O(31/ε · λε)

[7] Õ(λ0.75)

This work Õ(1)

1.2 Technical Overview

We give a quick review of MS18 [11], and then present our new insights to break
the technical limitation. We first recall the overall goal below.

The Goal. Let {cti = (ai, bi) ∈ Z
n
q × Zq}i∈[n] be n LWE ciphertexts of dimen-

sion n, and each bi = 〈ai, s〉+ei + q/2 ·mi, i.e., an encryption of the bit mi. The
goal is to compute bootstrapping of these n input ciphertexts (given appropri-
ate bootstrapping keys), resulting in {ct′i = (a′

i, b
′
i) ∈ Z

n
q × Zq}i∈[n], where each

output ct′i encrypts the same underlying message mi as cti.

The MS18 Framework. To achieve the goal, the MS18 framework does the
following high-level steps:

1. First convert the input ciphertexts, i.e., {cti}i∈[n], into a Ring-LWE ciphertext
(a, b) ∈ Rq × Rq for ring R of degree n. Namely, b = as + e + q/2 · m, where
m is a ring element such that coeffs(m) = (m1, . . . , mn), s is a ring element
representing the secret key.
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2. Let z = b − as. Given (a, b) in the clear and appropriate bootstrapping keys
that encrypt the secret s, the next step computes n Ring-LWE ciphretexts
d1, . . . ,dn, where each di ∈ RLWE.Enc(Xcoeffs(z)[i]). That is, the resulting
ciphertexts encrypt the coefficients of z in the exponents.

3. Apply the sample-extraction procedure of [3,4]. As a result, we have ct′i ∈
LWE.Enc(Round(coeffs(z)[i])), where Round is the Ring-LWE decryption
rounding procedure.

It is easy to verify correctness of this approach. For complexity, the first and third
steps are rather efficient as shown by [11]. The second step is the most computa-
tionally heavy one, and requires new techniques of homomorphic computation.
The work MS18 [11] shows that this step can be achieved by O(31/ε ·λ1+ε) FHE
(particularly Ring-GSW) multiplications, and thus the amortized complexity is
O(31/ε·λε) FHE multiplications per input LWE ciphertext (by setting n = O(λ)).
This work shows how to further improve the efficiency of Step 2 by designing
several new batch methods under the framework of [7].

In order to understand our insights, we need to delve into Step 2. Below we
elaborate on this step, and some technical challenges that MS18 [11] faced. Then
we present our new insight that breaks all these challenges.

More Details on Step 2. We notice that as long as we can homomor-
phically compute the coefficients of w = −as in the exponents, i.e., c̃ti ∈
RLWE.Enc(Xcoeffs(w)[i]), then this step can be achieved by additionally multi-
plying Xcoeffs(b)[i] to c̃ti. Thus, we focus on how to homomorphically compute w
given a in the clear and s encrypted under an appropriate form.

Naively, we can express coeffs(w) = Coeffs-Rot(a) · coeffs(s) where
Coeffs-Rot(a) is the anti-cyclic rotation matrix of a and coeffs(·) denotes the
coefficients of the input ring element. Then given bootstrapping keys BKi =
RGSW.Enc(coeffs(s)[i]), we can achieve the task by using the FHEW-(like) method
on every row of the rotation matrix Coeffs-Rot(a). However, this approach does not
improve the amortized complexity at all, as it is basically the same as applying the
straight-forward method on individual input ciphertexts, separately.

To further improve the complexity, the work MS18 [11] explores nice recursive
property from the algebraic ring in a novel way. Below we present some basic
high level ideas, and the novel contributions of MS18.

We first recall that currently the most efficient way to compute ring mul-
tiplications is via the Fast Fourier Transform (FFT) technique, or its Number
Theoretic Transform (NTT) variant as follow. To multiply ring elements a and
s, we first convert a and s into the FFT/NTT form (ã1, . . . , ãn) and (s̃1, . . . , s̃n)
respectively. Next we do a component-wise multiplication, and then convert the
outcome back to the coefficient form using inverse FFT/NTT.

Following this idea, if we can adopt the idea to the homomorphic com-
putation, then we can achieve the Step 2. However, there are several tech-
nical subtleties that a direct adoption would not work. Consider the follow-
ing attempt: let BKi = RGSW.Enc(X s̃i) be the bootstrapping key, encrypting
the FFT/NTT coefficients in the exponents. Then we first homomorphically
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compute ct′i = RGSW.Enc(X s̃i·ãi), which can be done via the method of [4].
Finally we compute the inverse-FFT/NTT for the final outcome. This idea seems
promising, but would face the following technical barriers.

– The FFT representation needs to work with complex numbers, which is not
compatible with the existing FHE schemes, especially for encrypting an ele-
ment in the exponent.

– The NTT representation would require special property on the modulus q,
i.e., qR fully splits. Such a modulus must be greater to n (and might be even
much larger), and thus might not be compatible with FHEW, on which the
MS18 framework is based.

– This subtle barrier is identified by the work MS18 [11] – the noise growth
of the homomorphic computation based on FHEW would be O(λρ) where ρ
is the recursive depth of the inverse FFT/NTT step. In order to bootstrap
within a polynomial modulus, the recursive depth ρ can only be O(1). As the
complexity of (inverse)-FFT/NTT is better for larger recursive depth, this
constraint seems to post an inherent barrier of efficiency of homomorphic
(inverse)-FFT/NTT. In fact, this is also a major reason why MS18 has the
dependency on ε.

To tackle the first two challenges as above, one novel technical insight of
MS18 [11] is to (recursively) apply the Nussbaumer Transform over the FHEW
framework [4], yet the third challenge still remains. This work shows that our
new algorithms developed under the batch framework of [7] provide a novel way
that solves the third challenge. We next elaborate on the idea of the Nussbaumer
Transform, and then our new insights.

Nussbaumer Transform. We describe the high level concept using the alge-
braic language, which might look different from the description in MS18 [11]
(and some other references), but what we state captures exactly the same algo-
rithm. The algebraic presentation would be simpler for distilling its algorithmic
ideas, assuming some algebraic number theory backgrounds.

Let d > 2 be a power of two, and Z[ξ2d] be a subring of Z[ξd2 ] where ξm

is the m-th root of unity. To multiply a, s ∈ Z[ξd2 ], the Nussbaumer Transform
does essentially the following steps:

– Convert a, s into 2d points in the subring Z[ξ2d], namely (ã1, . . . , ã2d) and
(s̃1, . . . , s̃2d) via the Discrete Fourier Transform (DFT).

– Multiply the points in the subring coordinate-wisely, resulting in (z̃1, . . . , z̃2d).
– Convert the result back to z ∈ Z[ξd2 ] via the inverse DFT.

The DFT and inverse-DFT require the computation to support operations with
the 2d-th root of unity, i.e., ξ2d, and its powers. Beautifully in the Nussbaumer
Transform as above, we have ξ2d ∈ Z[ξ2d] ⊂ Z[ξd2 ], and thus, this required ele-
ment and its powers naturally reside in the subring and the ring! This structure
naturally supports the DFT/inverse-DFT, solving the first two challenges above.
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This idea can be optimized in a recursive way. For example, consider the
following tower of subrings: Z[ξdρ ] ⊃ Z[ξdρ−1 ] ⊃ · · · ⊃ Z[ξd2 ] ⊃ Z[ξ2d] for d > 2
being some power of two. In order to compute ring multiplications over Z[ξdρ ],
we can first recursively convert the elements into two vectors, each of 2ρ ·d points
in Z[ξ2d]. Then we compute the point-wise multiplication over Z[ξ2d], and finally
convert them back to an element in Z[ξdρ ] by the inverse-DFT, recursively.

Now, let us describe the homomorphic version of the above idea, using as
example the one-level recursion for simplicity of exposition, i.e., multiplying
a, s ∈ Z[ξd2 ] as above. The computation consists of the following three high level
parts. (1) We can set the bootstrapping key as BKij = RGSW.Enc(Xcoeffs(s̃i)[j]).
(2) Then we homomorphically compute Cij = RGSW.Enc(Xcoeffs(z̃i)[j]), where
z̃i = ãi · s̃i ∈ Z[ξ2d]. (3) Finally we apply the homomorphic inverse DFT over
these Cij ’s as the MS18 method [11], resulting in what we want.

Limitations in MS18. To implement the above high level steps, MS18 however
faces several technical challenges.

– First, to multiply elements in the bottom base field Z[ξ2d], MS18 uses the
textbook multiplication1, whose amortized complexity is roughly O(d) FHE
multiplications per dimension.

– For the inverse DFT computation, MS18 also uses the straight-forward mul-
tiplication with the inverse-DFT matrix (of dimension 2d), and similarly, the
amortized complexity is roughly O(d) multiplications per dimension.

Analyzing the recursion with the above facts, MS18 can compute multiplication
over Z[ξd2 ] roughly with amortized complexity O(d) FHE multiplications per
dimension. As MS18 observed, the recursive depth can be at most ρ = O(1)
to maintain a polynomial modulus, because the noise growth is roughly O(λρ).
This would imply d = O(λε), where ε = O(1/ρ) = O(1). Applying the argument
recursively, their overall algorithm can achieve the amortized complexity O(λε)
FHE multiplications per input LWE ciphertext.

Our New Insights. Here we observe – as long as we can improve the amortized
complexity of the ring multiplications over Z[ξ2d] and inverse-DFT of dimension
2d, we can improve the overall algorithm. Due to the noise growth, we cannot
set d = O(1) as it would require a large recursive depth, i.e., ρ = O(log λ).
To handle this barrier, we next observe that the batch framework of our first
work [7] is exactly the technical tool we need. Even though it can only batch
r = O(λ0.25−o(1)) slots, we can set r > 2d such that the amortized complexity of
the sub-ring multiplication over Z[ξ2d] is small. Similarly, this idea can be applied
to the inverse-DFT as well. Particularly, under the batch framework of [7], we
develope the following new methods.

1 As this is the bottom base field, no further recursive acceleration can be applied
(e.g., Karatsuba or Toom-Cook).



Batch Bootstrapping II 359

– We design a new homomorphic ring multiplication over Z[ξ2d], using Õ(d +
d2/r) FHE multiplications. Thus, the amortized complexity is Õ(1) FHE
multiplications per dimension.

– We design a new homomorphic inverse-DFT with dimension 2d, with amor-
tized complexity Õ(1) FHE multiplications per dimension.

Using a similar analysis of MS18 [11], we can then prove that the overall amor-
tized complexity is Õ(1) FHE multiplications, to bootstrap one input LWE
ciphertext, achieving our main result. We notice that to implement the above
high level picture requires substantial new design ideas over the batch frame-
work [7]. We elaborate on the details of each piece in the coming sections.

2 Preliminaries

In this section, we present the preliminaries of this work. We note that this work
shares a lot of common background with the first work of the series [7], so many
basic materials are described verbatim as those in the first work.

Notations. Denote the set of integers by Z, the set of rational numbers by Q,
real numbers by R, and complex numbers by C. Notation log refers to the base-2
logarithm. For a positive k ∈ Z, let [k] be the set of integers {1, ..., k}. We denote
[a, b] as the set [a, b] ∩ Z for any integers a ≤ b.

In this work, a vector is always a column vector by default and is denoted
by a bold lower-case letter, e.g., x. We use ‖x‖2 denotes the l2-norm and ‖x‖∞
denotes the l∞-norm of x. We use bold capital letters to denote matrices. For
a matrix X, X� denotes the transpose of X. Given some set S, Sm×n denotes
the set of all m × n matrices with entries in S. For matrices X ∈ Sm×n1 and
Y ∈ Sm×n2 over some set S, [X‖Y](∈ Sm×(n1+n2)) denotes the concatenation
of X with Y. Let X be a matrix with even columns a matrix, and denote
X = (X(1)‖X(2)), where X(1) is the left half sub-matrix of X and X(2) is the
right half sub-matrix.

For a set A and a probability distribution P, we use a ← A to denote that a
is uniformly chosen from A and a ← P to denote that a is chosen according to
the distribution P.

Vector/Matrix Indexing. For vector a, we use a[i] to describe the i-th ele-
ment. Similarly, for matrix X, we use X[i, j] to index the element in i-th row
and j-th column. For an n-dimensional vector a, we usually start the index from
1, i.e., a = (a[1], . . . ,a[n]), and set a[0] = a[n]. Similarly, for an n × m matrix
X, we usually start the index from X[1, 1] to X[n,m], and set X[0, j] = X[n, j]
and X[i, 0] = X[i,m] for general i, j’s. For RGSW scheme, we use a bold and
upper case variable, e.g., C to describe a ciphertext as it is a ring matrix. We
use

−→
C to describe a vector of ciphertexts, and

−→
C [j] to index the j-th ciphertext.

Similar to the previous case,
−→
C [0] =

−→
C [n] indexes the n-th ciphertext where n

is the vector dimension.
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2.1 Lattices and Sub-Gaussian Random Variables

Lattices. An n-dimension (full-rank) lattice Λ ⊆ R
n is the set of all integer

linear combinations of some set of independent basis vectors B = {b1, . . . , bn} ⊆
R

n, Λ = L(B) = {∑n
i=1 zibi : zi ∈ Z}.

Sub-Gaussian. As discussed in [1,4], it is convenient to use the notion of sub-
Gaussian to analyze the error growth in the FHE constructions. A sub-gaussian
variable X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα2/t2 , for all t ∈ R.

– Boundedness: If X is a sub-Gaussian variable with parameter r > 0, then
Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2).

– Homogeneity: If X is a sub-Gaussian variable with parameter r > 0, then cX
is sub-gaussian with parameter c · r for any constant c ≥ 0.

– Pythagorean additivity: If X1 and X2 are two sub-Gaussian variables with
parameter r1 and r2 respectively, then X1 + X2 is sub-Gaussian with param-
eter r1 + r2, or

√
r21 + r22 if the two random variables are independent.

g−1 algorithm. This algorithm is used heavily in the research of FHE as we
summarize in the following lemma.

Lemma 2.1. For a given integer q, let 	 = �log q� and g = (1, 2, .., 2�−1). Then
there is a randomized, efficiently computable algorithm denoted as g−1 : Zq → Z

�

such that the output of the function, x ← g−1(a) is sub-gaussian with parameter
O(1), satisfying 〈g,x〉 = a mod q.

We can extend g−1 to the matrix case (using the notation G−1(·)) by applying
g−1(·) to each entry of the matrix.

2.2 Algebraic Number Theory Background

We present some necessary background of algebraic number theory. This work
heavily uses number fields and their rings of integers, and particularly, we rep-
resent a ring element as an algebraic number, instead of a polynomial. This
representation gives more algebraic insights for our designs and analyses. Due
to space limit, we defer some basic concepts in the full version of this work, and
note that more details can be found in the work [9].

Number Fields. This work focuses on number fields as field extension that
can be expressed as K = Q(α), by adjoining some α to Q where α is a root of
some irreducible polynomial f(x) ∈ Z[x]. Let ξm be the m-th root of unity, and
Q(ξm) is known as the m-th cyclotomic field. Suppose Φm(x) is the m-th cyclo-
tomic polynomial, then the Z-ring homomorphism Υ induces an isomorphism of
Z[x]/Φm(x) ∼= Z[ξm] as:

Υ : Z[x] → Z[ξm] such that x �→ ξm.

We also use the concept of tensor fields, whose preliminaries are presented in
the full version. Below we present a useful decomposition property.
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Lemma 2.2. [9] Let m =
∏

� m� be the prime-power factorization. Then K =
Q(ξm) is isomorphic to the tensor product ⊗�Q(ξm�

), via the bijection
∏

� a� �→
⊗�(a�), where each a� in K� can be naturally embedded in the field K.

Geometry of Number Fields. Throughout this work, we use the canonical
embedding to define norms for algebraic numbers. As argued in [9], this definition
is independent of the representation of the algebraic number and can give us
better bounds in the setting of general cyclotomic fields. Due to space limit, we
defer the details to the full version of this work.

Trace, Ring of Integers, and Duality. The first work of this series [7] devel-
oped the batch homomorphic computation based heavily on the concepts of the
algebraic trace, tensor rings, and their duals. This work builds upon the prior
results in a black-box way, so our new results can still be accessible without the
mathematical details.

2.3 Learning with Errors Assumption

Our schemes and analyses are based on the learning with errors (LWE) and the
ring version RLWE (in general cyclotomic rings) as introduced by [8,12]. We
assume that the readers are familiar with these problems, and defer more details
to the full version.

2.4 RLWE/RGSW in General Cyclotomic Rings

We present the schemes RLWE [8,9] and RGSW [1,6] in the setting of general
cyclotomic rings. As the first work [7] showed, the noise behavior of the homo-
morphic operations in general cyclotomic rings is similar to that in the setting
of power-of-two’s, under the analysis of the canonical embedding [8,9]. Below,
we describe these schemes with a lemma that summarizes the noise growth.

Below we describe the parameters of the RLWE and RGSW schemes.

– λ: the security parameter.
– R: the m-th cyclotomic ring with degree N = φ(m).
– Q: the modulus.
– RQ: the quotient ring R/QR.
– D: some error distribution over R.
– 	: set 	 = �log Q� (with respect to some log base).

RLWE Scheme. We describe the basic symmetric RLWE encryption scheme (in
the primal form for simplicity). The scheme contains the following algorithms.

– KeyGen(1λ): Choose randomly s ← RQ and output sk := (1,−s)� ∈ R2
Q.
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– Enc(sk, μ ∈ Rt): Sample a uniform ring element a ← RQ and a noise e ← D.

The output ciphertext is set as c :=

(
sa + e

a

)
+

(⌊
Q
t

⌉
μ

0

)
∈ R2

Q.

We call
⌊

Q
t

⌉
μ the encoded message of c and μ the encrypted message of c.

– Dec(c, sk): The algorithm outputs an element μ in Rt as follow:

μ = �〈(1,−s), c〉�t := �t〈(1,−s), c〉/Q� mod t.

We use RLWEt/Q
s (μ) to denote the set of all RLWE ciphertexts of encoded message

μ under secret s with ciphertext modulus Q and plaintext modulus t. Sometimes,
we use RLWEQ

s (
⌊

Q
t

⌉
μ) to denote the same set. The latter notion drops the t in

the super-script, but presents the whole encoded message in the parentheses.

RGSW Scheme. Now we present the RGSW scheme. We notice that this work
suffices to use the symmetric-key version of RGSW, so we just present this for
simplicity. The public-key version works analogously.

Denote the fixed gadget vector as g� = (1, 2, ..., 2�−1), and the gadget matrix
as G = g�⊗I2. As demonstrated by [1,10], the gadget vector/matrix play a vital
role in the homomorphic computation methods. Similar to the RLWE scheme
above, we present the primal version of RGSW.

– KeyGen(1λ): Choose randomly s ← RQ and set sk := (1,−s)� ∈ R2
Q.

– Enc(sk, μ ∈ R2): Sample a uniform vector a ← R2�
Q and a noise vector

e ← D2�. The ciphertext is set as C :=
(

sa� + e�

a�

)

+ μG ∈ R2×2�
Q .

– Dec(C, sk): The algorithm outputs an element μ in Rt as follow:

μ =
⌊〈(1,−s)�, c(�−1)〉

⌉
mod 2,

where c(�−1) is the (	 − 1)-th column of C.
– Homomorphic Addition C1�C2: It takes as inputs two RGSW ciphertexts

C1, C2 under the same secret key sk and outputs C1 � C2 := C1 + C2.
– Homomorphic Multiplication C1 � C2: It takes as inputs two RGSW

ciphertexts C1, C2 under the same secret key sk and outputs the following
as the result of homomorphic multiplication: C1 � C2 ← C1 · G−1(C2).
Here G−1(·) can be either deterministic or randomized. As argued by [1],
a randomized instantiation can yield tighter parameters of the noise growth
than those derived from the deterministic version. We notice that in the ring
setting, a basis needs to be specified when computing G−1.

– External Product C1 � c2: It takes as inputs a RGSW ciphertexts C1 and
a RLWE ciphertext c2 under the same secret key sk and outputs the following
RLWE ciphertext as the result of external product: C1 � c2 ← C1 · g−1(c2).

The IND-CPA security of the above RGSW scheme (for general cyclotomic rings)
follows from the RLWE assumption, using the same argument of [1,6]. Below we
present some notations for the noise analysis.
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Definition 2.3. Adapt the notations from the above. Given a ciphertext C that
encrypts message μ under a secret key sk = (1,−s)�, we can express as the
following relation sk� · C = μ · sk� · G + e� ∈ Rm

Q , for some error vector e.
Then define Errμ(C) := e� = sk� · C − μ · sk� · G. When the context is clear,
we may drop the index μ.

We use RGSWQ
s (μ) to denote the set of all the RGSW ciphertexts that encrypt

μ under secret s in the modulo Q space. If the parameters Q are clear from the
context, we would use the abbreviation RGSWs(μ) for simplicity.

Note. The above error function can be defined for RLWE ciphertexts analo-
gously. We do not present another definition to avoid repetition.

The following analysis was developed by the prior work of the series [7].

Lemma 2.4. ([7]) For any RGSW ciphertexts C1,C2 that encrypt μ1, μ2 with
the error terms e1,e2 respectively, then we have the following.

– Err(C1 � C2) = e�
1 + e�

2 .
– Err(C1 � C2) = e�

1 · G−1(C2) + μ1 · e�
2 .

Furthermore, suppose G−1 is sampled with respect to some Z-basis of R, i.e.,
B = {b1, ..., bn}, such that for all i ∈ [n] ‖σ(bi)‖∞ ≤ 1. Then the following
holds.

– Denote e�
1 · G−1(C2) as e� = (e1, ..., e2�). Then each entry of e is an inde-

pendent random variable.
– ||σ(e)||∞ is upper bounded by a sub-Gaussian variable with parameter O(r),

for some real positive r ≤ √
N · log Q · ‖σ(e1)‖∞.

Encrypted Elements in the Exponents. Next we define a notation for
RGSW ciphertexts, encrypting integers of a vector in the exponents. This nota-
tion will be convenient for the presentation of our new homomorphic algorithms.

Definition 2.5. Let ξp be the p-th root of unity which is included in the mes-
sage space of RGSW. Given an integer vector a = (a0, a1, · · · , an−1) ∈ Z

n,
we denote RGSW.EncVec-Exp(a) as a vector of ciphertexts, each entry of
which is a RGSW ciphertext encrypting ξai

q . Namely,
−→
C = (C0, · · · ,Cn−1) ∈

RGSW.EncVec-Exp(a), where each Ci ∈ RGSW(ξai
q ).

The parameter ξq will be specified in each algorithm that uses RGSW.EncVec-Exp.
Moreover, there exists a homomorphic anti-rotation algorithm Anti-Rot(·, ·) that
on input

−→
C ∈ RGSW.EncVec-Exp(a) and z ∈ Z outputs a rotated ciphertext

−→
C ′ ∈

RGSW.EncVec-Exp(Anti-Rot(a, z)), where Anti-Rot(a, z) is the anti-cyclic rotation
of z positions in the plaintext. The error growth is only increased by an additive
term e′ that is independent of the input ciphertext.
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3 Foundation Developed in Batch Bootstrapping I

In this section, we present the framework of batch homomorphic computation of
the work [7]. To be rigorous, our presentation uses the math concepts of tensor
rings and dual basis. To make it more friendly to the general, we abstract the
required homomorphic methods and analyses in a modular way, so that how to
apply the framework can be accessible without going into the math details. The
main results and algorithms of this work will be presented using the modular
abstraction of the homomorphic methods.

Math Background and Notations. Let K = K1 ⊗ K2 ⊗ K3 be a tensor
field of three linearly disjoint fields, and R1, R2, R3 be their rings of integers,
respectively. It follows that the ring of integers of K (denoted as R) is isomorphic
to R1 ⊗ R2 ⊗ R3. Furthermore, we present some useful facts and notations.

– K12 and K13 denote K1 ⊗ K2 and K1 ⊗ K3, respectively.
– R, R12 and R13 denote the rings of integers of K, K12, and K13, respectively.

It is known that R ∼= R1 ⊗ R2 ⊗ R3, R12
∼= R1 ⊗ R2, and R13

∼= R1 ⊗ R3.
– Let (v1, v2, . . . , vρ) and (w1,w2, . . . ,wτ ) be some Z-bases of R2 and R3, respec-

tively, where ρ and τ are the degrees of the rings R2 and R3.
– Denote (v∨

1 , v∨
2 , . . . , v∨

ρ ) and (w∨
1 ,w∨

2 , . . . ,w∨
τ ) as the corresponding Z-bases of

the dual spaces R∨
2 and R∨

3 , respectively.
– Let r = min(ρ, τ), the maximal number of slots our method can pack.
– Denote the trace functions (with respect to different underlying subfields) as

TrK/K12 : K → K12 and TrK/K13 : K → K13

In our instantiation, we set K := Q[ξqρ′τ ′ ] ∼= Q[ξq]⊗Q[ξρ′ ]⊗Q[ξτ ′ ] := K1⊗K2⊗
K3, where q is equal to the modulus of input (Ring)-LWE being bootstrapped,
ρ′ and τ ′ are powers of some prime numbers of size O(1). Moreover, we have
ρ = φ(ρ′) and τ = φ(τ ′).

3.1 The Framework of Batch Homomorphic Computation

By using the tensor of three rings, the work [7] showed how to batch homomor-
phic computation as we summarize below.

Message Packing and Operations. First, the message space is the first ring,
i.e., R1, and the other two rings, i.e., R2,R3 are the work rings for computation.
Particularly, there are features as following:

1. There are four modes of packing, i.e., mode ∈ {“R12”, “R13”, “R12 →
R13”, “R13 → R12”}, where a vector of messages can be packed with respect
to.
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2. There is an algorithm Pack that on input a vector (of messages) x =
(x1, . . . , xr) ∈ Rr

1 and mode outputs a packed message x. Particularly,
if mode = “R12”, then x ∈ R1 ⊗ R2; mode = “R13”, x ∈ R1 ⊗ R3;
mode = “R12 → R13”, x ∈ R1 ⊗ R∨

2 ⊗ R3; mode = “R13 → R12”,
x ∈ R1 ⊗ R2 ⊗ R∨

3 .
3. For any two packed messages (x,mode) and (y,mode) where x =

Pack(x,mode) and y = Pack(y,mode), (x + y,mode) = Pack((x + y),mode).
4. There is a multiplication method that on input two packed messages

(x,mode1) and (y,mode2), outputs a packed message (z,mode3) with the
following. If mode1 = “R12”, mode2 = “R12 → R13” or vice versa, then
mode3 = “R13”. If mode1 = “R13”, mode2 = “R13 → R12” or vice versa,
then mode3 = “R12”. For all the other cases, mode3 = ⊥.
Moreover, (z,mode3) = Pack(z,mode3) where z = (x1y1, . . . , xryr).

Ciphertext Packing and Operations. For RGSW instantiated over the ten-
sor ring R, the work [7] realizes homomorphic methods for the above plaintext
packing and operations. Particularly, we have the following.

1. There is an algorithm RGSW-Pack that on input mode and C1, . . . ,Cr where
each Ci ∈ RGSW(xi) ∈ R2×2� and xi ∈ R1, outputs a packed ciphertext
(C,mode). The ciphertext C ∈ R2×2� or the dual ring (omitting the modu-
lus), depending on mode the same way as Item 2 of the plaintext packing.
Importantly, the size of C is the same as that of each Ci, meaning that the
packing method is non-trivial.

2. Let (Cx,mode) and (Cy,mode) be two packed ciphertexts of the message
vectors x = (x1, . . . , xr) ∈ Rr

1, y = (y1, . . . , yr) ∈ Rr
1. Then (Cx + Cy,mode)

is a packed ciphertext of the message vector x + y.
3. Continue from the above notation. There is a non-trivial2 batch homomor-

phic algorithm Batch-Mult that on input (Cx,mode1) and (Cy,mode2) out-
puts (Cz,mode3) where the modes mode1,mode2,mode3 follow the relation as
described in item 4 of the above plaintext packing. Moreover, Cz is a packed
ciphertext that corresponds to the vector of messages (x1y1, . . . , xryr).

4. There is an algorithm UnPack that on input a packed ciphertext (Cx,mode)
outputs C1, . . . ,Cr where each Ci ∈ RGSW(xi) for xi ∈ R1.

Remark 3.1. In the framework, only two ciphertexts/plaintexts of the modes
(“R12” and “R12 → R13”) or (“R13” and “R13 → R12”) can be homomor-
phically multiplied. All the other combinations do not support the multiplication,
e.g., if C1 is mode “R12” and C2 is mode “R12”, then they cannot be multiplied.

Parameters and Computational Efficiency. The first work [7] showed that
the following parameters and computational complexity are feasible. First, we set
2 The term non-trivial requires Batch-Mult to be much more efficient than the trivial

non-batch computation, i.e., computing r RGSW multiplications separately and then
packing the outcomes into one ciphertext.
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the first ring as the q-th cyclotomic ring, i.e., R1 = Z(ξq), where q the modulus
of the input LWE being bootstrapped. Then we set the maximal number of slots
as r = deg(R2/Q) ≈ deg(R3/Q) = O(

√
N/q). Asymptotically, this would be

q = Õ(
√

λ), meaning that r = O(λ0.25−o(1)).
For the (homomorphic) efficiency, the following can be achieved.

– RGSW-Pack requires O(r) RGSW additions.
– Efficiency of the packed addition is the same as that of the RGSW addition.
– Batch-Mult for packed ciphertexts takes O(log λ) number of calls to RGSW

multiplications, i.e., �, by setting R2 and R3 as cyclotomic rings with a
proper tower structure.
Note: this satisfies the non-trivial requirement as O(log λ) calls of RGSW mul-
tiplications are much less than the trivial non-batch method, which requires
r = O(λ0.25−o(1)) RGSW multiplications.

– UnPack takes O(r) RGSW multiplications.

Noise Growth. The noise growth depends on how we choose the basis for G−1

to which the RGSW multiplication is with respect (see Lemma 2.4 for reference).
For the case of general cyclotomic rings, the work [7] showed a way to instantiate
a short basis (with infinity norms 1 for all elements in the basis) and all the
necessary components, leading to the following results:

Theorem 3.2 ([7]) Let C be a RGSW ciphertext that encrypts m ∈ R, and
denote Err(C) := (Err1(C)‖Err2(C)), where Err1(C) is the first half of the
error vector, and Err2(C) is the other half. There exists a homomorphic method
Eval-TrK/K12 that on input C outputs C′ ∈ RGSW(TrK/K13(m)), satisfying
Err1(C′) = TrK/K12(Err1(C)) + e′ for some e′ that is independent of C. More-
over, Err2(C′) = s · TrK/K12(Err1(C)) + e′′ for some e′′ that is independent of
C.

Theorem 3.3 ([7]) Let C1, . . . ,Cr be RGSW ciphertexts with error terms
e1, . . . ,er, messages μ1, . . . , μr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with

error terms e′
1, . . . ,e

′
r, messages μ′

1, . . . , μ
′
r ∈ R1. Denote

– RGSW-Pack(C1, . . . ,Cr, “R12”) as D,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Batch-Mult(D′,D) as F,
– the encrypted messages of the packed ciphertexts D as μD,
– the encrypted messages of the packed ciphertexts D′ as μD′ .

Then, μD =
∑r

i=1 μi · vi, μD′ =
∑r

i=1 μ′
i · v∨

i wi and F is a packed RGSW cipher-
text encrypting TrK/K13(μD · μD′) with mode R13.

Combing Algorithm 3.2, then we have Err1(F) = TrK/K13(
∑

i e′
iv

∨
i wi

G−1(D(1))+μD′(e(1)
i vi))+e′ and Err2(F) = s ·TrK/K13(

∑
i e′

iv
∨
i wiG−1(D(1))+

μD′(e(1)
i vi)) + e′′, where e′ and e′′ are independent of C.
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Corollary 3.4 ([7]) Adapt the notations of Theorems 3.3. If the errors of the
key-switch keys is upper bounded by E, and g−1 is with respect to the basis
B1 ⊗ B2 ⊗ B3. Denote the error of the output by Err(F) = (e�

1 ||e�
2 ), where e1

and e2 are both 	-entry vectors. Then ‖Err1(F)‖∞ is upper bounded by

2ρ(p1 − 1)
√

N log Q

ρ′
∑

‖e′
i‖∞ + ρ‖μD′‖

∑
‖ei‖∞ + ‖e′‖∞,

where ‖e′‖∞ is a sub-Gaussian with parameter upper bounded by 3ρ′√N log QE.
‖Err2(F)‖∞ is upper bounded by

2ρ(p1 − 1)
√

N log Q‖s‖∞
ρ′

∑
‖e′

i‖∞ + ρ‖s‖∞‖μD′‖
∑

‖ei‖∞ + ‖e′′‖∞,

where ‖e′′‖∞ is a sub-Gaussian with parameter upper bounded by (3ρ′‖s‖∞ +
2)

√
N log QE.

4 New Batch Homomorphic Algorithms

Here we present some critical batch homomorphic algorithms, which will be
used as building blocks to improve the MS18 method [11]. As discussed in the
introduction, an important goal is to design a batch algorithm that gives a better
amortized efficiency to compute ring multiplications of the sub-ring Z[ξ2d].

To achieve this, we first consider a more general setting of batch vector-matrix
multiplication of the following form. The input contains:

1. v vectors a1 . . . av where for k ∈ [v], ak ∈ {0, 1}w;
2. v matrices of ciphertexts {Ck,(i,j)}i∈[h],j∈[w],k∈[v], where each Ck,(i,j) ∈

RGSW(ξMk[i,j]
q ) and for each k ∈ [v], Mk is a matrix in the domain Z

h×w
q .

Let zk = Mk ·ak ∈ Z
h
q for k ∈ [v]. The goal is to compute a vector of ciphertext−→

C ∈ RGSW.EncVec-Exp(z1‖z2‖ . . . ‖zv), where ‖ denotes the concatenation.
Even though each input vector ai ∈ {0, 1}w is just a bit vector, this still

suffices to capture general vector-matrix multiplication in Zq by using the tech-
nique of bit-decomposition and power-of-2. Particularly, any X · y is equivalent
to X′ ·y′ where X′ is the power-of-2 matrix, i.e., = g� ⊗X, and y′ = G−1(y) is
the bit-decomposition vector. Therefore, this form of homomorphic computation
would be sufficient for our later algorithms.

For the naive un-batch homomorphic computation, this would require v ·h ·w
RGSW multiplications. In the next section, we show that suppose the input
ciphertext is packed under the batch framework [7], then we can improve the
efficiency by using roughly O(v · h · w/r) RGSW multiplications. By using this
batch algorithm, we can derive more efficient homomorphic ring multiplications
of the sub-ring Z[ξ2d] and other critical procedures as we will present next.
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Note: our further presentation heavily uses indices to vectors and matrices,
and thus we would recommend the readers to quickly recall the indexing rules
of this work as described in the preliminary (Sect. 2). Consider an example with
an n-dimensional vector a. We represent it as (a[1],a[2], . . . ,a[n]), and for con-
venience we use a[0] as a reference to a[n] – namely, they are the same variable
holding the same value.

4.1 Batch “Vector”-“Encrypted Matrix” Multiplication

Let {Mk}k∈[v] be matrices, each belonging to Z
h×w
q , and {Ck,(i,j)}i∈[h],j∈[w],k∈[v]

be RGSW ciphertexts as specified as above. Now we consider the following pre-
processing of the ciphertexts. In our applications, we assume w to be even, which
is without loss of generality. Importantly, for the best amortized efficiency, we
require the constraint hv ≤ r, where r (which can be set to O(λ0.25−o(1))) is the
number of slots supports by the framework [7]. Intuitively, this means that we
have a sufficient number of slots to pack the inputs.

Let
−−→
Cki := (Ck,(1,i),Ck,(2,i), · · · ,Ck,(h,i))� as the i-th column vector of

{Ck,(i,j)}i∈[h],j∈[w]. Then the pre-processing step pre-computes the following
packed ciphertexts.

Pre-computing Bki’s. We pack the column vectors into mode “R12 → R13”
and mode “R12 → R13”, alternately. Let ηk ∈ Z

v be the vector with only one 1
in the k-th entry and 0 elsewhere, i.e., (0, 0, . . . , 1, 0, . . . , 0)�. Then we compute:

Bk1 =RGSW-Pack(
−−→
Ck1 ⊗ ηk, “R12 → R13”)

Bk2 =RGSW-Pack(
−−→
Ck2 ⊗ ηk, “R13 → R12”)

· · ·
Bkw =RGSW-Pack(

−−→
Ckw ⊗ ηk, “R13 → R12”)

Moreover, we set

G0 = RGSW-Pack(G,G, · · · ,G, “R13 → R12”)

G1 = RGSW-Pack(G,G, · · · ,G, “R12 → R13”)
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Algorithm 4.1: VecMatMult(·, ·)
Input :

– ak ∈ {0, 1}w, for k ∈ [v]
– a vector of (pre-processed) packed RGSW ciphertext {Bki}i∈[w],k∈[v].

Output : a ciphertext vector
−→
C ∈ RGSW.EncVec-Exp(z1|| · · · ||zv), where

zk = Mk · ak.

1 ACC0 = RGSW-Pack(G,G, · · · ,G, “R12”);
2 for i = 1 to w do
3 Bi =

∑
k∈[v]

(
ak[i] · Bki + (1 − ak[i]) · G(i mod 2)

)
;

4 ACCi=Batch-Mult(ACCi−1,Bi);

5
−→
C = UnPack(ACCw);

6 Return:
−→
C ;

Next we present Algorithm 4.1 and Theorem 4.1 to capture the correctness
and error growth. As the proof technique is similar to that of [7], due to the
space limit, we defer the proof to the full version.

Theorem 4.1 Algorithm 4.1 satisfies the correctness as required by the
input/output specification. Moreover, let s be the secret of the RGSW scheme
and E be the upper bound (infinity norm of the canonical embedding) of
errors in all evaluation keys and the packed RGSW ciphertexts in {Bki}. Then
max ‖Err(

−→
C [i])‖∞ is bounded by a sub-Gaussian variable with parameter O(γ)

such that γ ≤ wvr2
√

N log Q · ‖s‖∞ · E.

Complexity. The preprocessing step takes wv RGSW-Pack packing, and thus
requires O(wvr) RGSW additions. For the online computation, we have O(wv)
RGSW additions and w Batch-Mult’s in the for loop. Then we compute UnPack(),
which is roughly vh Batch-Mult’s. We notice that one Batch-Mult is roughly
O(log λ) RGSW multiplications. Thus in total, we have O(wv) RGSW additions
and O((w + vh) log λ) RGSW multiplications. In amortization, this would be
O(wv/(vh)) RGSW additions and O((w+vh) log λ/(vh)) RGSW multiplications,
per dimension (over h) per vector-matrix pair (over v).

4.2 Multiplications Over Small(er) Rings

Now we show how to achieve a batch homomorphic multiplication over Z[ξ2d]
for 2dv < r with good amortized complexity, by using the homomorphic method
as we developed above. Particularly, let d be a power of two such that 2dv < r,
and {ak}k∈[v], {xk}k∈[v] be ring elements over Z[ξ2d]. We consider the task of
homomorphic computation of {akxk}k∈[v] where each ak ∈ Z[ξ2d] is in the clear
and xk ∈ Z[ξ2d] is encrypted in some form, as we formalize below.
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Task Specifications. Let Xk = Coeffs-Rot(xk) ∈ Z
2d×2d
q be the anti-cyclic

rotation matrix of xk for k ∈ [v]. Set the power-of-two matrix, i.e., Mk = g� ⊗
Xk ∈ Z

2d×2d log q
q , and generate RGSW ciphertexts {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[v],

each of which encrypts the corresponding entry Mk[i, j] of Mk. Finally, let
{Bkj}j∈[2d log q],k∈[v] be the packed ciphertext as computed in the pre-processing
of Sect. 4.1. Now we formally present the task statement:

– Input: Let a1, . . . , av ∈ Zq[ξ2d] and {Bkj}j∈[2d log q],k∈[v] be the packed
ciphertexts that represent the pre-processed ciphertext of xk ∈ Zq[ξ2d].

– Output: (
−→
C ′

1,
−→
C ′

2, . . . ,
−→
C ′

v) such that for each k ∈ [v],
−→
C ′

k[i] ∈ RGSW(mk[i]),
mk[i] = ξ

zk[i]
q and zk = coeffs(ak · xk).

This task can be achieved easily given Algorithm 4.1 as we present below.

Algorithm 4.2: Multiplications over Small(er) Rings
Input : a1, . . . , av ∈ Zq[ξ2d] and {Bkj}j∈[2d log q],k∈[v] (as specified above).

Output : (
−→
C ′

1, . . . ,
−→
C ′

v) (as specified above).

1 a′
k = g−1(coeffs(ak)), for k ∈ [v];

2 Return: VecMatMult
({a′

k}, {Bkj}k∈[v],j∈[2d log q]

)
(setting h = 2d, w = 2d log q

in Algorithm 4.1).

Theorem 4.2 The above algorithm satisfies the correctness as required by the
input/output specification.

This theorem simply follows from Theorem 4.1.

Complexity. The complexity of this algorithm follows essentially the same as
that of Algorithm 4.1, by setting h = 2d, w = 2d log q. Assuming that d = λO(1),
v = λO(1), q = poly(λ), then the amortized complexity of the online computation
would be O(log λ) RGSW additions, and O(log λ) RGSW multiplications. This
can be simplified as O(log λ) = Õ(1) RGSW multiplications, per dimension (over
2d) per ring multiplication (over v).

5 Homomorphic DFT/Inverse-DFT

In this section, we consider another form of batch vector-matrix multiplication
where the vector is encrypted and the matrix is in the clear yet of some special
form, where each entry is a power of a root of unity. By setting the matrix to the
DFT (or respectively DFT−1) matrix, this task would immediately give a batch
homomorphic DFT/inverse-DFT, which is another important building block of
the bootstrapping framework of MS18 [11]. Here we present an efficient batch
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DFT/inverse-DFT with dimension 2d < r where r = O(λ0.25−o(1)) is the number
of slots that the batch framework can support. Then in Sect. 6, we show that a
recursive optimization can be further applied for larger dimensions, e.g., O(λ)
as required by the bootstrapping. Below we present a detailed formulation.

Setting. Let m > d be two numbers of powers of two. Clearly, we have 2d|m,
and thus Z[ξ2d] is a sub-ring of Z[ξm]. Let M ∈ Zq[ξ2d]2d×2d be a matrix where
each entry is some power of the 2d-th root of unity, i.e., each M[i, j] = ξ

δij

2d

for δij ∈ Z2d, and let a ∈ Zq[ξm]2d be a vector of elements in the ring of the
extension field. This task is to homomorphically compute M · a, where M is in
the clear and a is encrypted in some form as specified next.

Basic Facts. We first describe some useful facts in the algebraic num-
ber theory. We know that d′ = m/(2d) is the degree of field extension
Q(ξm)/Q(ξ2d). Then for any x ∈ Z[ξm], we can uniquely represent x as d′

Z[ξ2d]-
coefficients (say, x0, x1, . . . , xd′−1 ∈ Z[ξ2d]d

′
) over some Q(ξ2d)-basis of Q(ξm),

e.g., {1, ξm, ξ2m, . . . , ξd′−1
m }, meaning that x =

∑
0≤i<d′ xiξ

i
m. The coefficients can

be viewed as a vector space with coefficients in Z[ξ2d], i.e., for any x′ ∈ Z[ξ2d], we
have x′ ·x =

∑
0≤i<d′(x′ ·xi)ξi

m, whose Z[ξ2d]-coefficients are (x′x0, . . . , x
′xd′−1).

We notice that the matrix M in the setting suffices to capture the case of
DFT/inverse-DFT, as the DFT matrix (of dimension 2d) can be expressed as

MDFT =

⎛
⎜⎜⎝

ξ1·1
2d ξ1·1

2d · · · ξ1·2d
2d

ξ2·1
2d ξ2·1

2d · · · ξ2·2d
2d

· · ·
ξ2d·1
2d ξ2d·2

2d · · · ξ2d·2d
2d

⎞
⎟⎟⎠ .

The inverse DFT matrix can be expressed as MDFT−1 = (2d)−1 · M∗
DFT where

∗ denotes the conjugate. We notice that for the homomorphic DFT−1 over the
exponent (over R1 = Z[ξq]), we need that 2d to be relatively prime to q, and
thus (2d)−1 exists when taking modulo q. In our setting, this is not a problem
as we can set q to be a prime. For the work [11], they use power-of-two q as
required by the FHEW framework [4]. In this case, they would need to change
the degree of DFT into 3’s powers.

Next we present the details of the task.

Task Specifications. Now we specify how a = (a1, . . . , a2d) ∈ Zq[ξm]2d is
encrypted. For each i ∈ [2d], we represent ai =

∑
0≤j<d′ aijξ

j
m where each aij ∈

Z[ξ2d]. Similar to the indexing principle as we used for vectors/matrices, we
let a(2d)(j) = a0j and a(i)(d′) = ai0 for general i, j’s. Then we denote

−→
Cij ∈

RGSW.EncVec-Exp(coeffs(aij)) for i ∈ [2d], j ∈ [d′]. Given these ciphertexts, we
formally describe the task statement:

– Input: (1) M ∈ Zq[ξ2d]2d×2d such that each M[i, j] = ξ
δij

2d for δij ∈ Z2d. (2){−→
Cij ∈ RGSW.EncVec-Exp(coeffs(aij))

}

i∈[2d],j∈[d′]
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– Output: {−→C ′
ij}i∈[2d],j∈[d′] such that

−→
C ′

ij ∈ RGSW.EncVec-Exp(coeffs(zij)) for
each i ∈ [2d], j ∈ [d′] with the following conditions. Let each zi ∈ Zq[ξm]
be the i-th element entry of M · a, i.e., zi = M · a[i] ∈ Zq[ξm], and
(zi0, . . . , zi(d′−1)) ∈ Zq[ξ2d]d

′
be its unique coefficient representation with

respect to the power basis, i.e., zi =
∑

0≤j<d′ zijξ
j
2d. Note: for convenience,

the following two variables are equivalent zid′ := zi0, as the indexing rule of
vectors/matrices.

(*) Importantly, in this section we assume 2d < r, where r is the number of
slots the batch framework supports. Intuitively, this allows us to encrypt all the
coefficients of aij ∈ Z[ξ2d] in one packed RGSW cipherext.

5.1 First Attempt

At a first sight, the main task can be achieved by using the prior batch vector-
matrix multiplication (Algorithm 4.1). Following this intuition, below we present
an attempt that would almost achieve our task, yet would require too many
homomorphic additions. Even though unsatisfactory, this attempt still gives
insights that lead to our further improvements in the next section. Thus, we
still present this algorithm here as a good warm up for the readers.

Recall the following procedure from Sect. 2.4: there is an effi-
cient homomorphic procedure Anti-Rot(·, ·) that given as inputs

−→
C ∈

RGSW.EncVec-Exp(coeffs(z)) for z ∈ Z[ξ2d], and δ ∈ Z2d, outputs
−→
C ′ ∈

RGSW.EncVec-Exp(coeffs(z · ξδ
2d)). We notice that in the setting power-of-two,

coeffs(z · ξ2d) is an anti-cyclic rotation of coeffs(z), and this procedure can be
computed homomorphically. Next we present the algorithm below.

Algorithm 5.1: Batch Vector-Matrix Mult for Special Matrices
Input :

– M ∈ Zq[ξ2d]2d×2d, where each entry is a power of ξ2d;

–
{−→
Cij ∈ RGSW.EncVec-Exp(coeffs(aij))

}
i∈[2d],j∈[d′]

, as specified above.

Output : {−→
C ′

ij}i∈[2d],j∈[d′] as specified above.

1 Let v = (1, 1, . . . , 1) ∈ {0, 1}2d be the all-one vector;
2 for i = 1 to 2d do
3 for j = 1 to d′ do
4 for k = 1 to 2d do

5 set
−→
Rkj = Anti-Rot(

−→
Ckj ,M[i, k]);

6 set Dkj = RGSW-Pack(
−→
Rkj) (to the appropriate mode, either

“R12 → R13” or “R13 → R12” ) ;

7 Set
−→
C ′

ij = VecMatMult(v, {Dkj}i∈[2d]) ;

8 Return: {−→
C ′

ij}i∈[2d],j∈[d′].
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The correctness can be easily verified so we do not present the details. Below
we just analyze the complexity and point out a technical subtlety that this
algorithm does not satisfy our efficiency requirement.

Complexity Analysis. From the computation, at least the algorithm needs
2dd′ VecMatMult(), each of which is roughly 2d Batch-Mult, and 4d2d′ RGSW-
Pack. As we analyzed, each Batch-Mult is roughly O(d log λ) RGSW multipli-
cations, and each RGSW-Pack is roughly O(d) RGSW additions. Thus in total
this would be O(d2d′) RGSW multiplications and O(d3d′) RGSW additions. In
amortization (per ring dimension m and per inverse-DFT dimension 2d), this
would be Õ(1) RGSW multiplications and O(d) RGSW additions. At first it seems
we can neglect the RGSW additions, yet in our parameter setting later, we will
require d = λO(1). As a RGSW multiplication is roughly equal to O(log λ) RGSW
additions, then the overall amortized complexity will be dominated by the O(d)
RGSW additions. This will prevent us from getting the desired efficiency, i.e.,
overall Õ(1) RGSW multiplications for bootstrapping, per input ciphertext.

This drawback comes from Step 6, where the above algorithm needs too many
calls to RGSW-Pack. At a high level, we need to perform anti-cyclic rotations on
the ciphertexts, and then perform the vector-matrix multiplication. The input
matrices {Dkj} to VecMatMult() need to be packed in the mode of either “R12 →
R13” or “R13 → R12”, but we do not know how to perform homomorphic anti-
cyclic rotations over packed ciphertexts of these modes. Therefore, the above
method can only perform anti-cyclic rotations on un-packed ciphertexts (Step
5) and then compute different packed ciphertexts (Step 6) for each call of the
vector-matrix multiplication (Step 7).

5.2 New Building Blocks

In this section, we present some useful batch homomorphic algorithms, which
will be used as major building blocks for our improved method. Particularly,
we identify a new batch homomorphic method to compute anti-cyclic rotations
for packed ciphertexts of modes “R12” and “R13”. Even though this does not
solve the challenge described in the prior section3, later on we will show a new
homomorphic method that can incorporate the new homomorphic anti-cyclic
algorithm, resulting in the overall improvement.

We now present the task for our new homomorphic method. Let x be some
vector, and y be its anti-cyclic rotation, i.e., y = Anti-Rot(x). Given input a
packed ciphertext C ∈ RGSW(

∑
i∈[r] xivi) of mode “R12” (or “R13” respec-

tively), our goal is to compute a packed ciphertext C ∈ RGSW(
∑

i∈[r] yivi).
To achieve this, we first consider the following two sub-tasks:

3 Recall that the challenge is to homomorphically rotates batch ciphertexts of modes
“R12 → R13” or “R13 → R12”.
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Sub-Task I: Batch Permutation: Given input (1) a permutation π : [r] →
[r] ∈ Sr where Sr is the symmetric group of degree r, and (2) a packed ciphertext
C ∈ RGSW(

∑
i∈[r] xivi) of mode “R12” (or “R13” respectively), the goal is to

compute a packed ciphertext C′ ∈ RGSW(
∑

i∈[r] xπ(i)wi) (or the other mode
respectively). This can be achieved by the Algorithm 5.2.

Algorithm 5.2: Batch-Permute(·, ·)
Input :

– C, a packed RGSW ciphertext encrypting
∑

i∈[r] xivi;
– π, a permutation in the symmetric group Sr.

Output : C′, a packed RGSW ciphertext encrypting
∑

xiwπ(i).

1 Let Cπ =
∑

i∈[r] v
∨
i wπ(i), i.e., a packed ciphertext of mode R12 → R13;

2 Return: C′ = Batch-Mult(C,Cπ).

Sub-Task II: Batch Inverse Automorphism: Given input a packed cipher-
text C ∈ RGSW(

∑
i∈[r] ξ

ai
q vi) of mode “R12” (or “R13” respectively), the goal is

to compute a packed ciphertext C′ ∈ RGSW(
∑

i∈[r] ξ
−ai
q vi) (or the other mode

respectively). In another word, this is to homomorphically conjugate the plain-
texts (the R1 part) while keeping the basis {vi} intact. The can be achieved by
Algorithm 5.3.

Algorithm 5.3: Inv-Auto(·)
Input : C, a packed RGSW ciphertext encrypting

∑
i∈[r] ξ

ai
q vi, i.e., plaintext

Pack(ξa1
q , · · · , ξar

q ) in mode R12;
Output : C′, a packed RGSW ciphertext encrypting

∑
i∈[r] ξ

−ai
q vi, i.e.,

Pack(ξ−a1
q , · · · , ξ−ar

q ) in mode R12;

1 Let σ be the automorphism of R, satisfying ξq �→ ξ−1
q , ξρ′ �→ ξρ′ and ξτ ′ �→ ξτ ′ ;

2 Apply σ to each entry of C and get C;

3 Return: RGSW-KS(C, evk(σ−1))

Combining the above two algorithms, we can homomorphically evaluate the
homomorphic anti-cyclic rotation over packed ciphertexts as Algorithm 5.4.
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Algorithm 5.4: Batch-Anti-Rot(·,·)
Input :

– C, a packed RGSW ciphertext encrypting
∑

i∈[r] ξ
ai
q vi, i.e., plaintext

Pack(ξa1
q , · · · , ξar

q ) in mode R12;
– a monomial ξδ

q .

Output : C′, a packed RGSW ciphertext encrypting∑
i∈[δ] ξ

−ar−δ+i
q wi +

∑
i∈[r−δ] ξ

ai
q wi+δ, namely, plaintext is

Pack(ξ
−ar−δ+1
q , · · · , ξ−ar

q , ξa1
q , · · · , ξ

ar−δ
q ), the anti-cyclic rotation of

the input in mode R12;

1 Let πδ be the cyclic rotation that shifts δ;
2 ACC=Batch-Permute(C, πδ);
3 ACC′=Inv-Auto(ACC);
4 ACC+ = Batch-Mult(ACC,

∑r
i=δ+1 vi · w∨

i );

5 ACC− = Batch-Mult(ACC′,
∑δ

i=1 vi · w∨
i );

6 C′ = ACC+ + ACC−;
7 Return: C′

Theorem 5.1 The above algorithm satisfies the correctness as required by the
input/output specification.

The correctness can be easily verified. We do not analyze the noise here. Instead,
we analyze the overall noise behavior in our Algorithm 5.5, the improved homo-
morphic anti-cyclic rotation.

5.3 Our Improved Method

Now we describe our new improved algorithm to achieve the main task of this
section, by using the new algorithms in Sect. 5.2 as critical building blocks. We
first present some basic ideas for the plaintext computation, and then the homo-
morphic method.

We use the following (simplified) example to illustrate our core idea. Given
b = (b1, . . . , b2d) ∈ Zq[ξ2d]2d and x = (ξδ1

2d, . . . , ξ
δ2d

2d ), the task is to compute
the inner product 〈b,x〉. In the homomorphic computation, b is encrypted and
x is in the clear. At a high level, Algorithm 5.1 performs the computation as:
∑

i∈[2d] coeffs
(
bi · ξδi

2d

)
. Even though the term coeffs

(
bi · ξδi

2d

)
can be (homo-

morphically) computed by using Anti-Rot, i.e., permuting the coefficients and
negating some of them properly, the homomorphic algorithm requires to pack the
coefficients in every coeffs

(
bi · ξδi

2d

)
in mode R12 → R13 or R13 → R12, resulting

in the undesired O(d3d′) homomorphic additions. It is unclear whether there is
an efficient homomorphic method transforming a ciphertext of Pack(coeffs(bi))
into another of Pack(Anti-Rot(coeffs(bi), ξδi

2d)), under the modes R12 → R13 or
R13 → R12. It is important to notice that our algorithm in the above section
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(Sect. 5.2) can compute the anti-cyclic rotation for ciphertexts of mode R12 or
R13 but not R12 → R13 or R13 → R12.

To tackle the above challenge, we consider another way of computation. First
we observe that the inner product 〈b,x〉 can be re-expressed as computing g2d

recursively as follow: g1 = b1 · ξδ1−δ2
2d , for 1 < j < 2d, gj = (gj−1 + bj) · ξδj−δj+1

2d ,
g2d = (g2d−1 + b2d) · ξδ2d

2d . It is not hard to verify that these two computation
methods are equivalent, producing the same value for any b and x.

Now, we can homomorphically compute the above sequence using an ACC
storing each gj in mode either R12 or R13. Let consider an example where gj is
stored in mode R12. Now suppose the ciphertexts that encrypt the coefficients
of bj+1 are packed into mode R12 → R13. Then we can compute a ciphertext D
of gj+1 in mode R13, and then apply the homomorphic Anti-Rot on D to update
the ACC, which works because D is in mode R13. Proceeding in this way, the
final ACC would be a ciphertext that encrypts g2d = 〈b,x〉. We formalize the
idea into Algorithm 5.5.

Algorithm 5.5: RGSW.EncVec-MatMult(·, ·)
Input :
1. M ∈ Zq[ξ2d]2d×2d where each entry is a power of ξ2d.

2.
{−→
Ckj ∈ RGSW.EncVec-Exp(coeffs(akj))

}
k∈[2d],j∈[d′]

, as above in the task

specifications.

Output : {−→
C ′

ij}i∈[2d],j∈[d′] as required above.

1 for j = 1 to d′, k = 1 to 2d do

2 Ckj=RGSW-Pack(
−→
Ckj , “R1,(3−(k mod 2)) → R1,(2+(k mod 2))”);

3 Initialize ACC0=RGSW-Pack(G, · · · ,G, ”R12”);
4 for i = 1 to 2d do
5 for j = 1 to d′ do
6 ACCR=ACC0;
7 for k = 1 to 2d − 1 do
8 ACCM = Batch-Mult(ACCR,Ckj);
9 ACCR = Batch-Anti-Rot(ACCM ,M[i, k]/M[i, k + 1]);

10 ACCM = Batch-Mult(ACCR,C(2d)j);
11 ACCR = Batch-Anti-Rot(ACCM ,M[i, 2d]);

12 Set
−→
C ′

ij = UnPack(ACCR);

13 Return: {−→
C ′

ij}i∈[2d],j∈[d′].

Theorem 5.2 summarizes the correctness and error growth. As the proof is
similar to that of Theorem 4.1 (though much tedious), due to space limit we
defer the proof to the full version.

Theorem 5.2 The above algorithm satisfies the correctness as required by the
main task specification in this section.
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Moreover, let s be the secret of the RGSW scheme and E be the upper
bound (infinity norm of the canonical embedding) of errors in all evaluation keys
and the packed RGSW ciphertexts in

{−→
Cij

}

i∈[2d],j∈[d′]
. Then the error of each

RGSW ciphertext in
{−→
C ′

ij

}

i∈[2d],j∈[d′]
is bounded by a sub-Gaussian variable with

parameter O(γ) such that γ ≤ dr3‖s‖√
N log QE.

Efficiency. The algorithm makes O(d′d) calls to RGSW-Pack, O(d2d′) calls to
Batch-Mult, and O(dd′) calls to UnPack. Similar to the prior analysis, this would
be upper bounded by O(d2d′) RGSW additions and Õ(d2d′) RGSW multiplica-
tions, which is dominated by O(d2d′) RGSW multiplications. Thus, in amorti-
zation (per ring dimension m = 2dd′ per inverse-DFT dimension 2d) the cost
would be Õ(1) RGSW multiplications.

6 Homomorphic DFT−1, Recursively

The multiplication of the DFT/inverse-DFT matrix is a critical step for realizing
the recursive DFT/inverse-DFT. In this section, we show how to achieve a homo-
morphic DFT/inverse-DFT by applying the method in Sect. 5 recursively, via the
Nussbaumer Transform as identified by MS18 [11]. First we present the Nuss-
baumer Transform using the language of algebraic extension, which might give
a better intuition than the polynomial representation as used in the work [11].

6.1 Nussbaumer Transform

Let K ⊇ E ⊇ Q be towers of field extensions, where K = Q(ξn), E = Q(ξn′) for
n > n′. Denote d = n/n′ be the degree of the field extension K/E, and we assume
that 2d | n′, which is required by the DFT framework as we further elaborate
later. At a high level, Nussbaumer Transform shows that the multiplication
operation (of two elements) in K can be reduced to 2 · d multiplications of
elements in E in the following way.

First we observe that K is a field extension over E that can be expressed in
a polynomial quotient ring with coefficients in E, i.e., K ∼= E[X]/(Xd − ξn′),
where ξn′ ∈ E is the n′-th root of unity. Then any two ring elements a, b ∈ K
can be expressed as a ∼= a(X) = a0 + a1X + · · · + ad−1X

d−1 and b ∼= b(X) =
b0 + b1X + · · · + bd−1X

d−1, where all the coefficients are in E. In this way,
the multiplication of a · b ∈ K can be computed equivalently as a(X) · b(X)
mod (Xd − ξn′) ∈ E[X]/(Xd − ξn′).

To compute a(X) · b(X) in the DFT manner, we notice that the 2d-th root
of unity, denoted as ω = ξ2d, would be used. If the underlying coefficients are
in Q, then we inherently need to work with complex numbers, which are not
compatible with the FHEW-based computation. Interestingly, if the coefficients
are in E, then we do have ω = ξ2d ∈ E = Q(ξn′) as long as 2d | n′. Now
we can compute DFT-based multiplication with integral coefficients. This is
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compatible with FHEW as demonstrated by [11], and can be further batched by
our framework as we will show in the next section. Now we present the DFT-
based multiplication in details.

– Convert a(X) in the DFT representation as (a(ω0), . . . , a(ω2d−1)) ∈ E2d, and
similarly b(X) as (b(ω0), . . . , b(ω2d−1)) ∈ E2d.

– Multiply the vectors component-wisely, and obtain (c(ω0), . . . , c(ω2d−1)).
– Convert the resulting vector back to the polynomial c(X) using inverse DFT,

and then output c(X) mod (Xd − ξn′).

We notice that a(X) · b(X) is a polynomial of degree at most 2(d − 1) < 2d,
and therefore, can be uniquely interpolated from the DFT representation of 2d
points. Thus, c(X) mod Xd − ξn′ would give the correct answer. We notice
that there is a natural mapping from c(X) to the ring element in K, namely
c(X) �→ c(ξn), which can be thought as plugging in X with ξn.

Recursive Optimizations. This process can be further optimized by recur-
sively computing multiplications in E, as long as there is another intermediate
field E ⊃ F ⊃ Q. Under this observation, a tower structure would give the best
performance for recursion. Particularly, we assume that n = 2dρ for some integer
ρ > 1, and n, d are both two’s power, i.e., d = 2δ, and n = 2δρ+1. This allows us
to present the recursive optimization in a clean way.

Let DFT2d be an algorithm parameterized by 2d and DFT−1
2d be the inverse-

DFT algorithm parameterized by 2d. We present these algorithms in Algo-
rithms 6.1 and 6.2. The correctness and efficiency can be easily verified and
analyzed. Here our description can help readers get better intuitions of the homo-
morphic version of the inverse-DFT.

Importantly, these two algorithms are defined for general (recursive) inputs,
which can be of varying input lengths. In the first level, DFT2d takes input
a ∈ Z[ξn], and DFT−1

2d takes input a ∈ Z[ξ2d](2d)ρ−1
.

6.2 Homomorphic Evaluation

Now we present the homomorphic algorithm for the recursive inverse-DFT as
Aglrotihm 6.3. Here we describe the specifications.

– Input: The input contains ciphertext vectors that encrypts a ∈ Z[ξn′ ](2d)ρ′−1
,

where a is the input of the plaintext-based algorithm DFT−1 as Algorithm 6.2.
Specifically, let ρ′, n′ be two parameters as implicit inputs, indicat-
ing which recursive level the algorithm is at. The (explicit) input con-
tains (2d)ρ′−1 ciphertext vectors

{−→
C i

}

i∈[(2d)ρ′−1]
, where each

−→
Ci ∈

RGSW.EncVec-Exp(coeffs(a[i])), meaning that it encrypts all the coefficients
of a[i] in the exponents.

– Output: Let a = DFT−1(a) ∈ Z[ξn′dρ′−1 ]. The output contains a ciphertext
vector

−→
C ′ ∈ RGSW.EncVec-Exp(coeffs(a)), meaning that it encrypts all the

coefficients of a in the exponents.
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Algorithm 6.1: DFT2d

Input : a ∈ Q(ξn′) for n′ = 2dρ′

Output : a ∈ Q(ξ2d)(2d)ρ′−1

1 if n′ = 2d then
2 return a
3 else

4 represent a ∼= a(X) = a0 + a1X + · · · + ad−1X
d−1, where each ai ∈ Q(ξn′/d);

5 let ω = ξ2d ∈ Q(ξn′/d);

6 compute (a′
0, . . . , a

′
2d−1) := (a0, . . . , ad−1, 0, . . . , 0) · MDFT; // a′

i = a(ωi)

7 return
(
DFT2d(a′

1), . . . , DFT2d(a′
2d)

)
.

Algorithm 6.2: DFT−1
2d

Input : a ∈ Q(ξn′)(2d)ρ′−1

Output : a ∈ Q(ξn′dρ′−1)

1 if ρ′ = 1 then
2 return: a;
3 else

4 parse a = (a1, . . . , a2d) where each ai ∈ Q(ξn′)(2d)ρ′−2
;

5 compute a′
i = DFT−1

2d (ai) for i ∈ [2d];
6 compute (a1, . . . , a2d) = (a′

1, . . . , a
′
2d) · MDFT−1 ;

7 compute a(X) = a0 + a1X + · · · + a2d−1X
2d−1 mod Xd − ξn′dρ′−2 , where

we set a0 = a2d;
8 return a ∼= a(X) as an element in the extension field Q(ξn′dρ′−1).

Before presenting our homomorphic algorithm, we first introduce some useful
facts for “change of representation”. Let m ≥ 2d be two numbers of two’s powers.
Below, we consider two particular ways to represent a ring element.

• Given ring element a ∈ Z[ξm], we can express it as a Z-coefficient vector of
dimension m/2, denoted as coeffs(a) with respect to the power basis, namely
a �→ (a1, . . . , am/2) ∈ Z

m/2 such that a = a0 +
∑

i∈[m/2−1] aiξ
i
m. Using our

indexing rule for convenience, we set am/2 as an alias variable of a0.
• On the other hand, we can also represent a as a Z[ξ2d]-coefficient vector

of dimension m/(2d), namely a �→ (a′
1, . . . , a

′
m/(2d)) ∈ Z[ξ2d]m/(2d) such that

a = a′
0+

∑
i∈[m/(2d)−1] a

′
iξ

i
m. Similarly, we set a′

m/(2d) as an alias variable of a′
0.

Of course each a′
i can be further expanded by the Z-coefficient representation,

namely a′
i �→ (a′

i1, . . . , a
′
id) denoted as coeffs(a′

i).

These two representations are equivalent as they both represent the same ring
element. Moreover, the two representations can be mutually converted from one
to the other, just by permuting/rearranging the indices. Thus, this also gives
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an efficient homomorphic method for converting a ciphertext vector
−→
C that

encrypts (a1, . . . , am/2), into ciphertext vectors {−→Ci}i∈[m/(2d)] where each
−→
C i

encrypts coeffs(a′
i), and vice versa. As it just requires to permute the indices, no

heavy homomorphic method (even addition) is required.
We can formalize the conversions as the following two algorithms, and their

homomorphic variants work analogously.

– Rearr: on input m → 2d, coeffs(a) ∈ Z
m/2 representing the Z coefficients of

a ∈ Z[ξm], outputs
(
coeffs(a′

1), . . . , coeffs(a′
m/(2d))

)
;

– Rev-Rearr: on input 2d → m,
(
coeffs(a′

1), . . . , coeffs(a′
m/(2d))

)
representing

(a′
1, . . . , a

′
m/(2d)) ∈ Z[ξ2d]m/(2d), outputs coeffs(a) ∈ Z

m/2 where a ∈ Z[ξm].

We notice that it is natural to present our homomorphic inverse-DFT algorithm
using the first representation. However, it is more natural to use the second rep-
resentation for the improved batch homomorphic multiplication of the inverse-
DFT matrix as we designed in Algorithm 5.5. Thus, we introduce the above two
efficient conversions to glue these two parts together. Additionally, we also define
the following notation for convenience.

Definition 6.1 Let a|b be integers. Define sets S1, . . . , Sa that equally partition
[b] as: S1 = [b/a], S2 = [b/a + 1, 2b/a], . . . , and Sa = [(a − 1)b/a + 1, b].

Now we present our new method in Algorithm 6.3 and summarize the result in
Theorem 6.2. Due to space limit, we defer the proof to the full version.

Theorem 6.2 The above algorithm satisfies the correctness as required by the
task specification in this section.

Moreover, let s be the secret of the RGSW scheme and E be the upper
bound of errors in all evaluation keys and in all RGSW ciphertexts in{−→
Cij

}

i∈[(2d)ρ′−1],j∈[d′]
. Then the error of each RGSW ciphertext in output

is bounded by a sub-Gaussian variable with parameter O(γ) such that γ ≤
(dr3‖s‖N log Q)ρ′

E.

Complexity. We can show that the amortized complexity of the recursive
version is still Õ(1) RGSW multiplications. Intuitively, if the multiplication of
inverse-DFT matrix has Õ(1) amortized complexity (which is true for our Algo-
rithm 5.5), then we can achieve Õ(ρ) amortized complexity where ρ is the recur-
sive depth. We will set parameters such that ρ = O(1), and thus the overall
amortized complexity matches what we claimed. Below we elaborate.

Let n = (2d)ρ be the final output (ring) dimension. Similar to the analysis
of [11], we first identify that at level i of the recursion, the algorithm makes (2d)i

calls to the RGSW.EncVec-MatMult algorithm, with dimension mi = (2d)ρ−i−1.
Thus at this level, each call would be Õ(mi × 2d) = Õ((2d)ρ−i) RGSW multi-
plications, resulting in a total complexity (at this level) Õ((2d)ρ) as the setting
of parameters. Thus, in total there would be Õ(ρ(2d)ρ) RGSW multiplications.
For the case where ρ = O(1), this would be Õ((2d)ρ), implying the amortized
complexity Õ(1) RGSW multiplications per dimension.
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Algorithm 6.3: Hom-DFT−1

Input : Integers ρ′, n′ and ciphertext vectors
{−→
Ci

}
i∈[(2d)ρ′−1]

Output : A ciphertext vector
−→
C ′ as specified above.

1 if ρ′ = 1 then

2 Return:
−→
C ;

3 else

4 Let S1, . . . , S2d be the sets that equally partition [(2d)ρ′−1];

5 For i ∈ [2d], compute
−→
C ′

i = Hom-DFT−1
(
{−→
Cj}j∈Si

)
;

6 For i ∈ [2d], compute {−→
C′

ij}j∈[d′′] = Rearr((2d)ρ′−2 → 2d,
−→
C ′

i), where

d′′ = n′dρ′−2/(2d);

7 {−→
C ′′

ij}i∈[2d],j∈[d′′] = RGSW.EncVec-MatMult(MDFT−1 , {−→
C′

ij}i∈[2d],j∈[d′′]);

8 For i ∈ [2d], compute
−→
C ′′

i = Rev-Rearr(2d → (2d)ρ′−2, {−→
C ′′

ij}j∈[d′′]);

9 For i ∈ [d + 1, 2d],
−→
C ′′

i = Anti-Rot(
−→
C ′′

i , ξn′dρ′−2);
10 for i = 1 to d do

11 for j = 1 to n′dρ′−2 do

12
−→
C ′′

i [j] =
−→
C ′′

i [k] �
−→
C ′′

i+d[k];

13
−→
C ′ = Rev-Rearr((2d)ρ′−2 → (2d)ρ′−1, {−→

C ′′
i }i∈[d]);

14 Return:
−→
C ′;

7 Putting Things Together – Faster Bootstrapping

Now we present how to use our new batch algorithms in Sects. 4 and 6 to improve
MS18 [11], resulting an overall more efficient bootstrapping method.

7.1 MSB Extract and LWE Packing

We recall several building blocks from the literature.

– From [11], there is a conversion algorithm that takes input n LWE ciphertexts
(under the same secret key), and outputs (a, b) ∈ RLWE with secret z ∈ R,
of dimension n, such that b − az = Δm + e where coeffs(m)[i] corresponds to
the i-th message, Δ is some scaling number, e.g., q/2, and q is the modulus.

– From [3,4,7,11], there is an algorithm msbExtract that on input C ∈
RGSW(ξm

q ) outputs an LWE ciphertext c ∈ LWE(f(m)), where f(m) denotes
the most significant bit. Assuming β is the error bound of the input cipher-
text, then the error in the resulting ciphertext is bounded by O(qβ).

7.2 Our Batch Bootstrapping Method

Parameters. Here are the parameters used in our overall bootstrapping.
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– N : the ring dimension of RGSW (the bootstrapping keys).
– n: the dimension of input LWE ciphertexts, and number of input ciphertexts.

Here we set n to be a power of two.
– q: the input LWE modulus. In the batch framework, R1 is set to be Z[ξq].
– 2d: the parameter of DFT/DFT−1. We set d to be a power of two.
– ρ: the depth of the recursive algorithm. We set n = 2dρ.
– r: the maximal number of slots we can packed in the batch framework of [7].
– v: the number of inputs in Algorithm 4.2. We require r > 2dv.

The Bootstrapping Algorithm. We first present how the bootstrapping keys
are constructed. Let z be the secret of the RLWE ciphertext derived from packing
n input LWE ciphertexts. Let (z1, . . . , z(2d)ρ−1) = DFT(z), Zk = Coeffs-Rot(zk) ∈
Z
2d×2d
q be the anti-cyclic rotation matrix of zk, and the corresponding power-

of-two matrix, i.e., Mk = g� ⊗ Xk ∈ Z
2d×2d log q
q . Then we generate RGSW

ciphertexts {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[(2d)ρ−1], each of which encrypts the corre-
sponding entry Mk[i, j] in the exponents.

Now we equally partition [(2d)ρ−1] into v′ sets (ref. Definition 6.1), namely,
U1, . . . , Uv′ where v′ = (2d)ρ−1/v. For each w ∈ [v′], we pack the ciphertexts
{Ck,(i,j)}i∈[2d],j∈[2d log q],k∈Uw

according to the pre-processing step of Sect. 4.1,
obtaining the resulting packed ciphertext as {B(w)

kj }w∈[v′],j∈[2d log q],k∈Uw
.

Note. The above step uses many indices, which might look overwhelming. Here
we remind readers the high level ideas, which would be helpful in understanding
what we are doing. Basically, we first encrypt the (power-or-two) rotation matri-
ces of (z1, . . . , z(2d)ρ−1) in the exponents as {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[(2d)ρ−1].
To compute multiplications over the sub-ring Z[ξ2d], we would need to pack
these ciphertexts according to Algorithm 4.2, particularly the preprocess-
ing steps in Sect. 4.1. Given these packed ciphertexts and ring elements
(x1, . . . , x(2d)ρ−1) ∈ Z[ξ2d](2d)ρ−1

, we can homomorphically compute the coef-
ficients (x1z1, . . . , x(2d)ρ−1z(2d)ρ−1) in the exponents, in a batch way using Algo-
rithm 4.2.

Now we present our batch bootstrapping algorithm in Algorithm 7.1, and
Theorem 7.1 to summarize the correctness and noise growth. The proof follows
from Theorems 4.1 and 6.2 in a straight-forward way.

Theorem 7.1 Adapt the notations above. If each (bi,ai) in the input is an
LWE ciphertext encrypting μi, then the output are LWE ciphertexts encrypting
μi respectively.

Moreover, let s be the secret of the RGSW scheme, E be the upper
bound of errors in all evaluation keys and in all RGSW ciphertexts in
{B(i)

kj }i∈[v′],j∈[2d log q],k∈Ui
. Then the error of each LWE ciphertext in output

is bounded by a sub-Gaussian variable with parameter O(γ) such that γ ≤√
n log qdρr3ρ+3‖s‖ρ+1(N log Q)ρ+1/2E.
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Algorithm 7.1: Batch Ring Bootstrapping
Input :

– n LWE ciphertexts
– Bootstrapping keys: {B(i)

kj }i∈[v′],j∈[2d log q],k∈Ui
.

Output : n bootstrapped LWE ciphertexts.

1 Convert n LWE ciphertexts into one RLWE ciphertext (a(ξn), b(ξn)) under some
secret z(ξn);

2 (ai)i∈[(2d)ρ−1] ← DFT(a);

3 for i = 1 to v′ do
4 (

−→
Ci1, · · · ,

−→
Civ)= VecMatMult((ai)i∈Ui , {B(i)

kj }i∈[v′],j∈[2d log q],k∈Ui
);

5 Set
−→
C ′

(i−1)v+j =
−→
Cij , for i ∈ [v′] and j ∈ [v];

6
−→
C ′′ =Hom-DFT−1(

−→
C ′

1, · · · ,
−→
C ′

(2d)ρ−1);

7 For i ∈ [n],
−→
C ′′[i] =

−→
C ′′[i] · ξbi

q ;

8 For i ∈ [n], (b′
i, a

′
i) = msbExtract(

−→
C ′′[i]);

9 Return: {(b′
i, a

′
i)}i∈[n].

7.3 Efficiency

To analyze the asymptotic efficiency, we first determine all the parameters in
terms of the security parameter λ. Similar to our first work [7], we set n = O(λ),
q = Õ(

√
n), N = O(n). In this way, the batch parameter can be set as r ≈

O(
√

N/q) = O(λ1/4−o(1)). Then we set d = O(λ0.2), v = O(λ0.04), satisfying
2dv < r. Finally, we can set ρ = 5, which is O(1), meaning that the noise
growth in Theorem 7.1 can be bounded by a fixed polynomial. Moreover, we
have n = 2dρ = O(λ).

By plugging these parameters to the above analysis, now we analyze the
efficiency of the overall Algorithm 7.1. It requires Õ(2dvv′) = Õ(n) RGSW mul-
tiplications in the first for loop (Lines 3–4), as analyzed in Sect. 4. The Hom-
DFT−1 would require Õ((2d)ρ) = Õ(n) RGSW multiplications as analyzed in
Sect. 6. The other steps are dominated by these two modules. Thus, the over-
all complexity is Õ(n) RGSW multiplications to bootstrap n = O(λ) LWE input
ciphertexts. In amortization, this would be Õ(1) RGSW multiplications per input
LWE ciphertext as claimed.
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Abstract. Vector commitment schemes allow a user to commit to a
vector of values x ∈ {0, 1}� and later, open up the commitment to a
specific set of positions. Both the size of the commitment and the size
of the opening should be succinct (i.e., polylogarithmic in the length �
of the vector). Vector commitments and their generalizations to polyno-
mial commitments and functional commitments are key building blocks
for many cryptographic protocols.

We introduce a new framework for constructing non-interactive
lattice-based vector commitments and their generalizations. A simple
instantiation of our framework yields a new vector commitment scheme
from the standard short integer solution (SIS) assumption that supports
private openings and large messages. We then show how to use our frame-
work to obtain the first succinct functional commitment scheme that
supports openings with respect to arbitrary bounded-depth Boolean cir-
cuits. In this scheme, a user commits to a vector x ∈ {0, 1}�, and later
on, open the commitment to any function f(x). Both the commitment
and the opening are non-interactive and succinct: namely, they have size
poly(λ, d, log �), where λ is the security parameter and d is the depth of the
Boolean circuit computing f . Previous constructions of functional commit-
ments could only support constant-degree polynomials, or require a trusted
online authority, or rely on non-falsifiable assumptions. The security of
our functional commitment scheme is based on a new falsifiable family of
“basis-augmented” SIS assumptions (BASIS) we introduce in this work.

We also show how to use our vector commitment framework to
obtain (1) a polynomial commitment scheme where the user can commit
to a polynomial f ∈ Zq[x] and subsequently open the commitment to an
evaluation f(x) ∈ Zq; and (2) an aggregatable vector (resp., functional)
commitment where a user can take a set of openings to multiple indices
(resp., function evaluations) and aggregate them into a single short open-
ing. Both of these extensions rely on the same BASIS assumption we use
to obtain our succinct functional commitment scheme.

1 Introduction

Vector commitment schemes [Mer87,CFM08,LY10,CF13] allow a user to com-
mit to a vector of values x ∈ {0, 1}� and subsequently, open up the commit-
ment to a specific set of positions. Both the commitment and the openings
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 385–416, 2023.
https://doi.org/10.1007/978-3-031-30620-4_13
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should be succinct (i.e., have size that scales polylogarithmically with the vec-
tor length �) and non-interactive.1 There has recently been tremendous interest
and progress in the design and application of vector commitments, and even
a “Vector Commitment Research Day” [Res22]. Starting from the classic vec-
tor commitment scheme of Merkle [Mer87] based on collision-resistant hash
functions, we now have a broad range of algebraic constructions from pairing-
based assumptions [LY10,KZG10,CF13,LRY16,LM19,TAB+20,GRWZ20] as
well as assumptions over groups of unknown order (e.g., RSA groups or class
groups) [CF13,LM19,CFG+20,AR20,TXN20]. We refer to [Nit21] for a sur-
vey of recent schemes. As a primitive, vector commitment schemes have found
numerous applications to verifiable outsourced databases [BGV11,CF13], cryp-
tographic accumulators [CF13], pseudonymous credentials [KZG10], and to
blockchain protocols [RMCI17,CPSZ18,BBF19]. Moreover, the generalization of
vector commitments to polynomial commitments [KZG10] has emerged as a key
building block in many recent (random-oracle) constructions of succinct non-
interactive arguments of knowledge (SNARKs) [MBKM19,CHM+20,GWC19,
BDFG21,BFS20,COS20] having various appealing properties (e.g., universal or
transparent setup, recursive composability, and more).

In this work, we focus on two themes in the study of vector commitments
where progress has been more limited: (1) post-quantum constructions based
on lattices [PSTY13,LLNW16,PPS21,ACL+22,FSZ22]; and (2) functional com-
mitments, a generalization of vector commitments that supports openings to var-
ious functions on the committed values [LRY16,LP20,PPS21,BNO21,ACL+22].
There are good technical reasons for the limited progress on these two fronts.
First, many of the techniques developed for vector commitments crucially exploit
algebraic structure in pairing and RSA/class groups that do not naturally extend
to the lattice setting. Second, pairing and RSA/class groups only support limited
homomorphic capabilities.

1.1 Our Results

In this work, we introduce a general framework for constructing lattice-based
vector commitments that simultaneously encapsulates recent lattice-based vec-
tor commitment schemes [PPS21,ACL+22] and enables us to achieve stronger
functionality and security properties. As we describe below, our framework read-
ily generalizes to also yield polynomial commitments, functional commitments,
and aggregatable commitments from (falsifiable) lattice-based assumptions.

A New Family of SIS Assumptions. The security of our schemes relies on a
new “basis-augmented” family of short integer solution (SIS) assumptions we
introduce in this work. We refer to our basis-augmented SIS assumption as
the BASIS assumption (Assumption 3.2). The basic version of our assumption
(denoted BASISrand) suffices for constructing standard vector commitments and

1 We discuss interactive commitments (as well as constructions in the random oracle
model) in Sect. 1.3.
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is implied by the standard SIS assumption. The structured version of the assump-
tion (denoted BASISstruct) we need for our extensions has a similar flavor as the
k-SIS-like assumptions introduced in [ACL+22] for constructing lattice-based
succinct arguments (c.f., Sect. 6). While the BASISstruct assumption is not a stan-
dard lattice-based assumption, it is a falsifiable assumption [Nao03]. We view our
assumption as a “q-type” lattice assumption and at a conceptual level, it shares a
similar flavor as the q-type assumptions used in the pairing-based world for con-
structing vector commitments [CF13] and polynomial commitments [KZG10].

Vector Commitments with Private Opening. An immediate consequence of our
framework is a vector commitment scheme that supports private openings. In
this setting, a user can commit to a vector x ∈ {0, 1}� with a short commitment
σ and then open σ to an index-value pair (i, xi) with a short opening πi. We say
the vector commitment scheme supports private openings if the commitment σ
and any collection of openings {(i, xi, πi)}i∈S reveal no additional information
about xj for any j /∈ S. Notably and in contrast to previous lattice-based vector
commitment schemes [PPS21,ACL+22], our scheme also does not impose any
restrictions on the magnitude of the entries of x (the vectors can be arbitrary
elements of Z�

q and the commitment as well as the opening are vectors over Zq).
Previous lattice-based schemes [PPS21,ACL+22] require that the components
of x be small and this property was essential for both correctness and security.

Our vector commitment scheme has the same efficiency properties as the ear-
lier scheme of Peikert et al. [PPS21] which did not support private openings and
was limited to a small message space. Our scheme provides the same functionality
(e.g., support for “stateless updates”) and like the scheme of [PPS21], security
can be based on the standard SIS assumption. Thus, relative to [PPS21], our
framework achieves private openings and supports a large message space with
essentially no overhead.

We could alternatively obtain a lattice-based vector commitment by instanti-
ating Merkle’s classic construction [Mer87] with a lattice-based collision-resistant
hash function (e.g., Ajtai’s hash function from SIS [Ajt96,GGH96]). Our vector
commitment scheme improves upon this generic approach in two main ways:
(1) we support (bounded) stateless updates like [PPS21] (where a user can
update a commitment to a vector x into a commitment to a vector x′ given
only knowledge of the difference x′ − x and not the entirety of x or x′); and (2)
we can support private openings directly. It is possible to extend Merkle hashing
to support private openings via zero-knowledge proofs, but this would either
need non-black-box use of cryptography or require interaction, random oracles,
or correlation-intractable hash functions [CCH+19,PS19]. More broadly, as we
illustrate below, our algebraic scheme serves as a stepping stone for realizing
polynomial and functional commitment schemes (for which we crucially exploit
algebraic structure).

Functional Commitments. A functional commitment [GVW15,LRY16] is a gen-
eralization of a vector commitment with the property that given a commitment
to an input x ∈ {0, 1}�, one can then construct an opening πf to y = f(x),
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for some function f . The basic binding property of the commitment scheme
says that the adversary cannot come up with openings πf and π′

f that open σ
to different values y �= y′ with respect to the same function f . The efficiency
requirements are that the size of the commitment and the opening should be
sublinear in both the size of the function f and the length of the input x.
Previously, Peikert et al. [PPS21] showed how to construct functional commit-
ments for bounded-depth Boolean circuits in an online model where a central
trusted authority issues opening keys for functions f , with security based on
the standard SIS assumption. Albrecht et al. [ACL+22] subsequently showed
how to construct functional commitments for constant-degree polynomials from
new variants of the SIS assumption in the standard setting without an online
authority. Earlier pairing-based functional commitments could only support lin-
ear functions [LRY16] or sparse polynomials [LP20]. Functional commitments
can also be obtained generically by combining a vanilla vector commitment (e.g.,
a Merkle tree [Mer87]) with a succinct non-interactive argument of knowledge
(for NP). However, existing constructions of SNARKs (for NP) either rely on
making non-falsifiable assumptions [GW11] or working in idealized models.

Our vector commitment framework directly yields a succinct functional com-
mitment scheme for all bounded-depth Boolean circuits in the standard offline
model without an authority and from falsifiable assumptions. The size of the
commitment and the openings are poly(λ, d, log �), where λ is a security parame-
ter, d is the depth of the Boolean circuit computing f : {0, 1}� → {0, 1}, and � is
the length of the input. Security relies on the new non-standard, but falsifiable,
BASISstruct assumption we introduce in this work (with a sub-exponential noise
bound). Notably, this is the first succinct functional commitment scheme for gen-
eral circuits from a falsifiable assumption, and answers an open question posed by
Peikert et al. [PPS21]. Our construction can be viewed as a succinct analog of the
homomorphic commitments and signatures introduced by [GSW13,GVW15].2

PolynomialCommitments. In apolynomial commitment [KZG10], a user can com-
mit to a polynomial f ∈ Zq[x] over Zq and later open to an evaluation f(x) at any
point x ∈ Zq. A polynomial commitment can be viewed as a succinct commitment
to the vector of evaluations of f on all inputs x ∈ Zq. While a polynomial com-
mitment can be built from a succinct functional commitment for Boolean circuits,
this incurs a poly(log q) overhead to encode the polynomial evaluation over Zq as a
Boolean circuit and also relies on theBASISstruct assumption with a sub-exponential
noise bound. In this work, we show that a simple adaptation of our succinct func-
tional commitments to the setting of linear functions directly gives a polynomial
commitment over Zq. Notably, this construction can be based on our BASISstruct
assumption with only a polynomial noise bound. This is the first polynomial com-
mitment scheme from lattices based on falsifiable assumptions.

An important feature of our framework that enables the direct construc-
tion of polynomial commitments is that it natively supports values over Zq.

2 The homomorphic commitments from [GSW13,GVW15] are non-succinct; in par-
ticular, the size of the commitment scales linearly with the input length �.
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Previous lattice-based vector commitments [PPS21,ACL+22] required that the
committed value x and the opened value f(x) be “small,” and moreover, that the
modulus q scale with the norm of the output (i.e., f(x)) when computed over
the integers. This is not suitable when constructing polynomial commitments
directly, as the size of f(x) computed over the integers scales with the degree of
f . Correspondingly, if the modulus q scales linearly with the degree of f , then
the resulting scheme is no longer succinct. The ability to directly work over the
entirety of Zq is an appealing property of our new framework.

Aggregatable Commitments. A simple modification to our basic vector commit-
ment scheme yields a scheme that supports aggregation. We say a vector commit-
ment scheme is aggregatable [BBF19,CFG+20] if given a commitment σ along
with a set of openings π1, . . . , πt to indices i1, . . . , it ∈ [�] and values xi1 , . . . , xit

,
there is an efficient aggregation algorithm that outputs a short aggregate open-
ing π that validates the full set of values {(ij , xij

)}j∈[t]. The requirement is
that the size of π scale sublinearly, or better yet, polylogarithmically with t.
Aggregatable commitments immediately imply subvector commitments [LM19]
(i.e., a vector commitment scheme that supports batch openings to a set of
indices S ⊆ [�]). Our framework yields an aggregatable commitment scheme
for short messages from the same falsifiable BASISstruct assumption used to con-
struct succinct functional commitments. This is the first aggregatable commit-
ment scheme from lattice assumptions without relying on general-purpose suc-
cinct arguments [ACL+22] or batch arguments [CJJ21,DGKV22], and answers
another open question posed by Peikert et al. [PPS21].

A limitation of our aggregatable commitment is that it only satisfies same-set
binding, which guarantees that for every subset of indices S ⊆ [�], the adversary
can only open to a single set of values. However, there is still the possibility
that an adversary could open the commitment to different sets S and T that
are inconsistent (i.e., xi = 0 with respect to S while xi = 1 with respect to
T ).3 Constructing aggregatable commitments that satisfy the stronger notion
of different-set binding directly from falsifiable lattice-based assumptions is an
interesting open problem.

The same techniques we use to construct aggregatable vector commitments
also applies to our succinct functional commitment scheme, and we obtain an
aggregatable functional commitment scheme from the same underlying hardness
assumption. In this setting, a user can take openings π1, . . . , πt for function-value
pairs (f1, y1), . . . , (ft, yt) and aggregate the openings into a single short opening
π that validates all t function-value pairs and where the size of the aggregated
opening scales polylogarithmically with t.

Summary. Similar to previous lattice-based vector commitments [PPS21,
ACL+22], we rely on a structured reference string in all of our constructions.
We refer to the structured reference string as a common reference string (CRS).

3 Note though that if the commitment is honestly-generated, then same-set binding
implies different-set binding; see the full version of this paper [WW22].
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To summarize, our new lattice-based vector commitment framework yields the
following constructions:

– A vector commitment scheme with private openings based on the standard
SIS assumption with polynomial noise bound (Corollary 3.6). For vectors of
dimension �, the size of the commitment is O(λ(log λ + log �)) and the size of
an opening is O(λ(log2 λ + log2 �)).4 The size of the CRS is �2 · poly(λ, log �).

– A succinct functional commitment scheme supporting all bounded-depth
Boolean circuits from the BASISstruct assumption with a sub-exponential noise
bound (Corollary 4.3). A variant of this construction supports private open-
ings under a weaker notion of target binding. For both constructions, to sup-
port functions on �-bit inputs and computable by Boolean circuits of depth
d, the sizes of the commitment and openings are poly(λ, d, log �). The size of
the CRS is �2 · poly(λ, d, log �).

– A polynomial commitment (for polynomials of a priori bounded degree) under
the BASISstruct assumption with a polynomial noise bound. To support poly-
nomials of degree up to d over Zq (where q = poly(λ)), the sizes of the commit-
ment and openings are poly(λ, log d). The size of the CRS is d2 ·poly(λ, log d).

– An aggregatable vector commitment scheme (over a small message space)
based on the BASISstruct assumption with polynomial noise bound. The sizes
of the commitment, openings, and CRS match those above for our vanilla
vector commitment.

– An aggregatable functional commitment scheme for all bounded-depth
Boolean circuits from the BASISstruct assumption used to obtain succinct
functional commitments. To support aggregating T openings for functions
on �-bit inputs and computable by Boolean circuits of depth d, the sizes of
the commitment and opening are poly(λ, d, log �, log T ). The size of the CRS is
(�2+T )·poly(λ, d, log �, log T ). In the random oracle model, we can reduce the
CRS size to �2 · poly(λ, d, log �) and support an arbitrary polynomial number
of aggregations.

1.2 Technical Overview

In this section, we provide a general overview of our new framework for construct-
ing vector commitments from lattices as well as the family of basis-augmented
SIS assumptions (BASIS) we use to prove hardness. In the following descrip-
tion, for a matrix A ∈ Z

n×m
q and a target vector t ∈ Z

n
q , we write A−1(t)

to denote a random variable x ∈ Z
m
q whose entries are distributed accord-

ing to a discrete Gaussian conditioned on Ax = t. Sampling x ← A−1(t)
can be done efficiently given a trapdoor for A [Ajt96,GPV08,AP09,ABB10a,
ABB10b,CHKP10,MP12]. Here, we will use the Micciancio-Peikert gadget trap-
doors [MP12]; namely, a matrix R is a gadget trapdoor for A if R is short and
AR = G, where G = In ⊗ gT is the gadget matrix and gT = [1, 2, . . . , 2�log q�].
4 We note that these bounds match the base construction of Peikert et al. [PPS21].

While [PPS21, Figure 1] reports that their scheme has O(log �)-size openings (ignor-
ing the security parameter λ), the construction itself [PPS21, Construction 1] has
O(log2 �)-size openings.
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A General Framework for Constructing Vector Commitments. We begin by
describing a general framework for constructing lattice-based vector commit-
ments that encapsulates the recent schemes from [PPS21,ACL+22]:

– The common reference string (CRS) specifies a collection of � matrices
A1, . . . ,A� ∈ Z

n×m
q and � vectors t1, . . . , t� ∈ Z

n
q along with some auxil-

iary input aux� := {A−1
i (tj)}i�=j .

– The commitment to a vector x = (x1, . . . , x�) ∈ {0, 1}� is a vector c ←∑
i∈[�] xiti ∈ Z

n
q .

– An opening to index i ∈ [�] and value xi ∈ {0, 1} is a short vector vi ∈ Z
m
q

such that
c = Aivi + xiti. (1.1)

The honest opening is computed as vi ← ∑
j �=i xjA−1

i (tj).

Correctness follows by inspection:

Aivi + xiti =
∑

j �=i

xjAi · A−1
i (tj) + xiti =

∑

i∈[�]

xiti = c.

For binding, we require that it is hard to find a short vector z ∈ Z
m
q such that

Aiz = ti for any i ∈ [�] given the components in the CRS. Next, we explain how
the schemes PPS1 from [PPS21]5 and MatrixACLMT from [ACL+22]6 fall into
this framework.

– In PPS1, the matrices Ai
r← Z

n×m
q and vectors ti

r← Z
n
q are independent and

uniformly random for all i ∈ [�]. Binding in turn is based on the standard SIS
assumption.

– In MatrixACLMT, they sample uniformly random vectors ui
r← Z

n
q , a matrix

A r← Z
n×m
q , and invertible matrices Wi

r← Z
n×n
q for each i ∈ [�]. Then, they

set Ai ← WiA, ti ← Wiui. In this case, A−1
i (tj) = A−1(W−1

i Wjuj). Bind-
ing is based on a new assumption which stipulates that it is hard to find a short
vector z ∈ Z

m
q where Az = ui for any i ∈ [�] given the CRS. The authors

of [ACL+22] then show how to leverage the extra structure arising from
the correlated Ai’s to obtain a functional commitment scheme for constant-
degree polynomials as well as a preprocessing succinct non-interactive argu-
ment (SNARG) for NP.

Before describing our approach, we describe two limitations of these instantia-
tions:

5 By PPS1, we refer to the the base scheme from [PPS21, Construction 1]; they also
present a second tree-based scheme that uses PPS1 as a building block.

6 The authors of [ACL+22] describe their scheme in the ring setting. We write
MatrixACLMT to denote one possible translation from the ring setting to the inte-
ger setting. Note that there are other ways to translate their scheme to the integer
setting such as sampling Wi

r← Z
m×m
q and then setting Ai ← AWi.
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– Small message space: In both the PPS1 and the MatrixACLMT instantia-
tions of this framework, both correctness and security require that the entries
of the vector x = [x1, . . . , x�] be small. This is because the verification relation
is checking that the opening vi =

∑
j �=i xjA−1

i (tj) is small. Thus, correct-
ness requires that each xj be small. Moreover, in the proof of binding, the
reduction algorithm takes a commitment c along with two openings (xi,vi),
(x′

i,v
′
i) to derive a solution to SIS or a related problem. The existing reduc-

tions require that the difference (xi − x′
i) be small (in order to derive a short

solution).
– Uniform target vectors. In both the PPS1 and MatrixACLMT construc-

tions, the target vectors ti are essentially random vectors. This is impor-
tant for ensuring that A−1

i (tj) does not leak a trapdoor for Ai, which would
immediately break binding. Using structured target vectors could enable addi-
tional functionality. For instance, in Remark 6.1, we show that instantiating
MatrixACLMT with structured targets can be used to support functional open-
ings. Unfortunately, this instantiation also leaks a trapdoor for Ai, and is
insecure.

The approach we take in this work avoids these limitations and allows us to
construct vector commitments with a large message space as well as support
new capabilities like polynomial and functional openings.

Our Approach. We consider the same verification relation c = Aivi + xiti from
Eq. (1.1), but take a completely different approach for computing the com-
mitment c and the openings vi: we sample a random tuple (v1, . . . ,v�, c) that
simultaneously satisfies the verification relation for all i ∈ [�]. As in the previ-
ous verification relation, we require that the openings v1, . . . ,v� are short. The
commitment c can have large entries. In our particular setting, we write c as
c = Gĉ where ĉ ∈ Z

m
q is a short vector. Using the gadget matrix G will be

important in the security analysis. Then, Eq. (1.1) corresponds to the relation
Gĉ = Aivi + xiti, or equivalently, Aivi − Gĉ = −xiti for all i ∈ [�]. We can
express these � relations as a linear system:

⎡

⎢
⎣

A1 −G
. . .

...
A� −G

⎤

⎥
⎦

︸ ︷︷ ︸
B�

·

⎡

⎢
⎢
⎢
⎣

v1

...
v�

ĉ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−x1t1
...

−x�t�

⎤

⎥
⎦ . (1.2)

Our goal now is to sample a random short tuple (v1, . . . ,v�, ĉ) that satisfies Eq.
(1.2). This can be done by giving out a random trapdoor for the matrix B�:

B� :−

⎡

⎢
⎣

A1 −G
. . .

...
A� −G

⎤

⎥
⎦ . (1.3)

Using B�, we can sample a random short preimage (v1, . . . ,v�, ĉ) satisfying Eq.
(1.2). This yields the commitment c = Gĉ and the openings v1, . . . ,v�. In our
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construction, we set the target vector ti to the first basis vector e1 = [1, 0, . . . , 0]T

for all i ∈ [�]. We now make the following observations:

– Binding: To argue that the scheme is binding, we require that it is hard
to find a short vector z where Aiz = 0 for any i ∈ [�] even given the
(related) matrix B� and a trapdoor for B�. Here, Ai denotes Ai with the
first row removed. We refer to assumptions of this type as “basis-augmented
SIS” (BASIS) assumptions (Assumption 3.2). As we sketch below (and show
formally in Theorem 3.4), when A1, . . . ,A�

r← Z
n×m
q are random, this instan-

tiation of the BASIS assumption holds under the standard SIS assumption.
We refer to this instance of the BASIS assumption with random matrices as
BASISrand. Now, to argue binding, we observe that an adversary that breaks
binding is able to come up with an index i ∈ [�], short vectors v,v′ ∈ Z

m
q and

values x, x′ ∈ Zq such that c = Aiv + xe1 = Aiv′ + x′e1. This means that

Ai(v − v′) = (x′ − x)e1.

As long as x′ − x �= 0, v − v′ �= 0, and so v − v′ is a SIS solution to Ai.
Observe that this analysis does not impose any restriction on the magnitude
of x′ − x. This means our construction naturally supports committing to
arbitrary vectors over Zq as opposed to vectors with small entries.7 We give
the formal reduction to the BASISrand assumption in the full version of this
paper [WW22].

– Private openings. A vector commitment scheme supports private openings
if the commitment c and any collections of openings {(i, xi,vi)}i∈S com-
pletely hide the values xj for j /∈ S. Since we sample the commitment c and
the openings vi jointly in our approach, it is straightforward to argue (by
appealing to properties of discrete Gaussians) that the commitment c is sta-
tistically close to uniform over Zn

q and each opening vi is statistically close to
the distribution A−1

i (c−xiti). Thus our scheme provides statistically private
openings out of the box.

Taken together, this yields a vector commitment from standard SIS that supports
statistically private openings and commitments to arbitrary vectors over Z�

q. We
give the full description and analysis in Sect. 3.

Reducing BASISrandto Standard SIS. As described above, the binding property
of our vector commitment relies on the BASIS assumption, which says that SIS
with respect to Ai (i.e., Ai with the first row removed) is hard even given the
related matrix B� from Eq. (1.3) and a trapdoor for B�. As we show in Theorem
3.4, when the matrices A1, . . . ,A�

r← Z
n×m
q are uniform and independent, this

assumption (BASISrand) reduces to the standard SIS assumption in a straightfor-
ward way. Here, we provide a sketch of the reduction. For ease of exposition, we
show that SIS with respect to Ai (as opposed to Ai) is hard given a trapdoor

7 As discussed earlier, previous vector commitments [PPS21,ACL+22] based on SIS
or its generalizations needed to assume small inputs for both correctness and security.
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for B�. We also describe the approach for the case i = 1, and refer to Theorem
3.4 for the full analysis.

The idea is simple: we set A1 to be the SIS challenge and sample matrices
A2, . . . ,A� together with trapdoors R2, . . . ,R� (i.e., AiRi = G). Let B̃� be
B� with the first column block removed (i.e., the column block containing A1).
Then, using R2, . . . ,R� we can construct a trapdoor R̃� for B̃� (i.e., B̃�R̃� =
Gn� = In� ⊗ gT):

B̃� =

⎡

⎢
⎢
⎢
⎣

0 · · · 0 −G
A2 −G

. . .
...

A� −G

⎤

⎥
⎥
⎥
⎦

and R̃� =

⎡

⎢
⎢
⎢
⎣

−R2 R2

...
. . .

−R� R�

−I 0 · · · 0

⎤

⎥
⎥
⎥
⎦

Using standard trapdoor extension techniques [ABB10a,ABB10b,CHKP10,
MP12], we can extend R̃� to obtain a trapdoor R� for B�. This yields a BASISrand
instance (i.e., comprised of the matrix A1, the matrix B�, and the trapdoor R�).
Thus, an adversary that breaks the BASISrand assumption implies an adversary
that breaks SIS (with comparable parameters). We give the formal analysis in
Theorem 3.4.

Functional Commitments Using Structured Ai. Instantiating our framework
with uniform Ai

r← Z
n×m
q (as in PPS1), we obtain a vector commitment scheme

with private openings and supporting large messages from the standard SIS
assumption. If we instead use a structured set of matrices Ai as in MatrixACLMT,
we obtain functional commitments, polynomial commitments, and aggregatable
commitments.

We start by describing our functional commitment scheme. Our starting point
is to consider the main verification relation from Eq. (1.1) and generalize it in two
ways: (1) we replace the matrices A1, . . . ,A� ∈ Z

n×m
q with structured matrices;

and (2) we consider a matrix extension of the verification relation. In particular,
we first sample A r← Z

n×m
q . Then, for each i ∈ [�], we sample an invertible

matrix Wi
r← Z

n×n
q and set Ai ← WiA. We now consider a matrix analog of the

verification relation from Eq. (1.1) where each target vector ti is replaced with
the matrix WiG (this choice will be helpful for supporting functional openings).
Our matrix verification relation is now

C = AiVi + xiWiG. (1.4)

Our goal now is to sample a tuple (V1, . . . ,V�,C) that satisfy Eq. (1.4) for all
i ∈ [�] and where V1, . . . ,V� ∈ Z

m×m
q are short. As before, the commitment

C can be large and we specifically define it to be C = GĈ, where Ĉ ∈ Z
m×m
q

is short. This way, we can sample Ĉ using an analogous trapdoor sampling
procedure as before. Specifically, the trapdoor for the same matrix B� from Eq.
(1.3) allows us to jointly sample short openings V1, . . . ,V� along with a matrix
Ĉ that satisfy Eq. (1.4):
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B�

⎡

⎢
⎢
⎢
⎣

V1

...
V�

Ĉ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

A1 −G
. . .

...
A� −G

⎤

⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

V1

...
V�

Ĉ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−x1W1G
...

−x�W�G

⎤

⎥
⎦ . (1.5)

By construction, for all i ∈ [�], we have that AiVi − GĈ = −xiWiG, or
equivalently, C = GĈ = AiVi +xiWiG and Eq. (1.4) holds. We now show that
this directly extends to yield a succinct functional commitment. Since Ai =
WiA and Wi is invertible, we can rewrite Eq. (1.4) as

W−1
i C = AVi + xiG,

where Vi is short. Readers familiar with the homomorphic encryption scheme
of Gentry et al. [GSW13] or the homomorphic signature scheme of Gor-
bunov et al. [GVW15] may recognize that W−1

i C is an encryption of xi under
randomness Vi or that Vi is a signature on xi under the verification key W−1

i C.
Thus, we can use the same lattice-based homomorphic evaluation machin-
ery [GSW13,BGG+14] to homomorphically compute an opening to f(x) for
an arbitrary Boolean circuit f : {0, 1}� → {0, 1}.

In slightly more detail, let C̃ = [W−1
1 C | · · · | W−1

� C] and Ṽ =
[V1 | · · · | V�]. Then,

AṼ = A[V1 | · · · | V�] = [W−1
1 C− x1G | · · · | W−1

� C− x�G] = C̃− xT ⊗G.

Using the homomorphic evaluation techniques from [GSW13,BGG+14], there
exists a short matrix HC̃,f,x that depends on C̃, f , and x such that

(C̃ − xT ⊗ G) · HC̃,f,x = C̃f − f(x) · G, (1.6)

where C̃f is a matrix that can be efficiently computed from C̃ and f . To open
C to a function f , the user computes Ṽf ← Ṽ · HC̃,f,x. To verify a candidate
value y ∈ {0, 1} with respect to a function f and commitment C, the verifier
first computes C̃f from (C,W1, . . . ,W�, f) and then checks that Ṽf is short
and moreover,

AṼf = C̃f − y · G.

For correctness, observe that

AṼf = AṼHC̃,f,x = (C̃ − xT ⊗ G) · HC̃,f,x = C̃f − f(x) · G.

For binding, we require that SIS is hard with respect to A even given the matrix
B� and a trapdoor for B�. We refer to this instance of the BASIS assumption
with structured Ai’s as BASISstruct. Since the matrices Ai that comprise B� are
now correlated, we do not know how to reduce BASISstruct to the standard SIS
assumption. Nonetheless, BASISstruct is a falsifiable assumption under which we
obtain a succinct functional commitment for all bounded-depth Boolean circuits.
This is the first succinct functional commitment for general circuits from a fal-
sifiable assumption. We provide the full description in Sect. 4 and a comparison
to previous succinct functional commitments in Table 1.
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Functional Commitments with Private Openings. Using the approach from
[GVW15] for constructing context-hiding homomorphic signatures [GVW15], we
can easily extend our functional commitment scheme above to support private
openings (i.e., where the commitment C and the opening Ṽf reveals nothing
more about the input x other than the value f(x)). We sketch the approach
here. Let C be a commitment to x and let Ṽf = Ṽ · HC̃,f,x be the opening
computed as described above. Then, define the matrix Df to be

Df = [A | C̃f + (f(x) − 1) · G] = [A | AṼf + (2f(x) − 1) · G].

Since Ṽf is short and 2f(x) − 1 ∈ {−1, 1}, the matrix
[

Ṽf

−In

]
is a trapdoor for

Df . We now include a random target u ∈ Z
n
q as part of the CRS, and define

the opening to be a random short vector vf where Dfvf = u. The honest
prover samples vf using the trapdoor for Df (derived from Ṽf ). To check an
opening vf is a valid opening to a value y ∈ {0, 1} with respect to a function
f and commitment C, the verifier computes C̃f from (C,W1, . . . ,W�, f) as
before, defines the matrix Df = [A | C̃f + (y − 1) · G], and finally, checks that
Dfvf = u. To argue that vf hides all information about x other than what is
revealed by f(x), observe that the matrix Df depends only on f(x) and not x.
Thus, given a trapdoor for A (which can be extended into a trapdoor for Df for
all f), and the value f(x), we can sample a short vf such that Dfvf = u whose
distribution is statistically close to the real opening. This latter procedure only
depends on f(x) and not x, so hiding follows. While this construction is hiding,
we do not know how to show that it is binding; however, it does satisfy the
weaker notion of target binding where binding holds for all honestly-generated
commitments. We provide the full details and analysis in the full version of this
paper [WW22].

Polynomial Commitments. We can obtain a polynomial commitment over Zq

via a simple adaptation of our functional commitment. The starting point is to
construct a functional commitment scheme for linear functions on Z

�
q (as opposed

to a function on the binary domain {0, 1}�). We first consider linear functions
with small coefficients. Let z ∈ {0, 1}� be a vector and define the linear function
fz(x) := zTx. We use the same commitment and opening structure as in our
functional commitment. Namely, a commitment C and the openings V1, . . . ,V�

for an input x satisfy AVi = W−1
i C − xiG, where xi ∈ Zq now. Observe that

∑

i∈[�]

ziAVi

︸ ︷︷ ︸
AVz

=
∑

i∈[�]

ziW−1
i C −

∑

i∈[�]

zixiG =
∑

i∈[�]

ziW−1
i C

︸ ︷︷ ︸
C̃z

− (zTx) · G
︸ ︷︷ ︸

fz(x)·G

.

Thus, Vz =
∑

i∈[�] ziVi is an opening to the function fz. Here, we need z ∈
{0, 1}� to be short so Vz is short. To extend to arbitrary linear functions over
Z

�
q (rather than short ones), we rely on standard binary decomposition and blow
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Table 1. Summary of succinct functional commitments. For each scheme, we report the
size of the CRS as a function of the security parameter λ and the input length �. We say
that a scheme supports “fast verification” if after an input-independent preprocessing
step, the verification running time is sublinear in �. In all schemes, the size of the
commitment and the openings are polylogarithmic in the input length �.

Scheme CRS Size Function Class Assumption Fast

Verification

Folklore poly(λ, log �) Boolean circuits CRHF + SNARK∗ ✓

[LRY16] O(�) linear functions bilinear maps ✓

[PPS21]† s · poly(λ, d) depth d Boolean circuits‡ SIS ✗

[ACL+22] �2d · poly(λ) degree d polynomials§ k-R-ISIS ✓

This work �2 · poly(λ, d, log �) depth d Boolean circuits BASISstruct ✗

This work �2 · poly(λ, log �) linear functions BASISstruct ✓

∗ Collision-resistant hash functions (CRHFs) together with a succinct non-interactive argument
of knowledge (SNARK).
† This scheme is in a significantly weaker model that requires an online trusted authority to issue
opening keys.
‡ The Boolean circuit has size at most s.
§ Only supports commitments and openings to small values.

up the vector dimension by a factor of O(log q). Namely, to commit to a vector
x, the user now commits to x ⊗ gT, and to open to a linear function fz where
z ∈ Z

n
q , the user constructs an opening with respect to fg−1(z). This yields a

functional commitment scheme for linear functions over Z
�
q.

As observed by Libert et al. [LRY16], a functional commitment scheme for
linear functions over Z

�
q directly implies a polynomial commitment over Zq for

polynomials of degree up to d = � − 1. Namely, a commitment to a polynomial
f ∈ Zq[x] of degree d is a vector commitment to the coefficients of f . To open the
commitment to a point x ∈ Zq, the user constructs a linear opening with respect
to the evaluation vector [1, x, x2, . . . , xd]. For this to work, it is critical that
our functional commitment for linear functions over Z

�
q supports committing

to and opening to arbitrary Zq values (and not just small values). Thus, we
obtain a polynomial commitment scheme where the commitment size and the
opening size is poly(λ, log d). We provide the full details in the full version of this
paper [WW22].

Aggregatable Commitments. Another application of using structured matrices Ai

is it immediately gives an aggregatable commitment. As before, we instantiate
our framework with Ai = WiA. We also sample target vectors u1, . . . ,u�

r← Z
n
q

and include them as part of the CRS. To commit to an input x ∈ Z
�
q, we sample

(v1, . . . ,v�, c) where

B�

⎡

⎢
⎢
⎢
⎣

v1

...
v�

ĉ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

A1 −G
. . .

...
A� −G

⎤

⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

v1

...
v�

ĉ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−x1W1u1

...
−x�W�u�

⎤

⎥
⎦ .
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Let c = Gĉ. Then, for all i ∈ [�], Aivi −c = −xiWiui, or equivalently, W−1
i c =

Avi + xiui. Observe now that this scheme immediately supports aggregation:
for any set S ⊆ [�],

∑

i∈S

W−1
i c = A

∑

i∈S

vi −
∑

i∈S

xiui.

Thus,
∑

i∈S vi is an opening to all of the indices in S. We show in the full version
of this paper [WW22] that under the same BASISstruct assumption (i.e., SIS is
hard with respect to A given B� and a trapdoor for B�), this scheme satisfies
“same-set binding.” This means no efficient adversary can open a commitment
c to different sets of values {(i, xi)}i∈S and {(i, x′

i)}i∈S for the same set S.
Unlike our vector commitment construction, the security of our aggregatable
construction only holds when the input vector x is short (i.e., our reduction to
the BASISstruct assumption in the full version of this paper [WW22] constructs
an SIS solution whose norm scales with the magnitude of the opened values).

Our aggregatable vector commitment scheme does not satisfy the stronger
notion of “different-set binding.” This means an efficient adversary may be
able to construct a commitment c along with valid openings {(i, xi)}i∈S and
{(i, x′

i)}i∈T to (distinct) sets S and T , respectively, such that xi = 0 and
x′

i = 1. Indeed in the full version of this paper [WW22], we describe an explicit
attack where an adversary can use the trapdoor for B� to (heuristically) obtain
a trapdoor for the matrix [W−1

S A | W−1
T A] whenever S �= T and where

WS =
∑

i∈S W−1
i and WT =

∑
i∈T W−1

i . Knowledge of this trapdoor allows
an adversary to construct a valid opening to {(i, xi)}i∈S and {(i, x′

i)}i∈T for any
choice of xi, x

′
i.

Conceptually, our approach for constructing an aggregatable vector commit-
ment scheme is to replace the fixed target value xie1 from our basic vector com-
mitment with random linear combinations of {xi}i∈S (where the coefficients of
the random linear combination are the vectors {ui}i∈S). A similar approach was
used for aggregating pairing-based signatures in [BDN18] and for aggregating
openings (to constant-degree polynomials) in [ACL+22].

Aggregating Functional Commitments. The same aggregation technique applies
to our succinct functional commitment scheme. Recall the functional com-
mitment verification relation from Eq. (1.6): AṼf = C̃f − y · G. Here Ṽf

is the opening, C̃f is a function of the commitment C and the function f ,
and y is the value. To support aggregating up to t openings, we include ran-
dom vectors u1, . . . ,ut

r← Z
n
q in the CRS. Then, given a collection of open-

ings (f1, y1, Ṽ1), . . . , (ft, yt, Ṽt) where the functions f1, . . . , ft are sorted in
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lexicographic order, we define the aggregate opening to be v =
∑

i∈[t] Ṽi ·
G−1(ui). The new verification relation is then

∑

i∈[t]

C̃fi
· G−1(ui) = Av −

∑

i∈[t]

yiui.

Similar to the case with aggregatable vector commitments, we can argue “same-
function binding,” where no efficient adversary can open a commitment C to
two different sets of values (y1, . . . , yt) �= (y′

1, . . . , y
′
t) with respect to the same

set of functions (f1, . . . , ft). We provide the full analysis in the full version of
this paper [WW22].

Understanding the BASIS Assumption. The BASIS assumptions we introduce
in this work enable a number of new constructions of vector commitments and
their generalizations. While the basic version BASISrand that suffices for vector
commitments can be reduced to the standard SIS assumption (Theorem 3.4), the
more general version BASISstruct with structured matrices does not. Nonetheless,
the BASISstruct assumption is still falsifiable and thus, yields the first succinct
functional commitments and polynomial commitments from falsifiable lattice
assumptions. We invite cryptanalysis of our new family of SIS assumptions and
are also optimistic that the assumption as well as our general methodology will
be helpful for realizing new lattice-based cryptographic primitives.

In Sect. 6, we compare the BASISstruct assumption to similar assumptions
made in [ACL+22]. We show a close connection between the two families of
assumptions. We can also view the BASIS assumptions as a new type of “q-
type” assumption in the lattice-based setting (where the size of the assumption
grows with the input dimension).

1.3 Related Work and Concurrent Work

Functional commitments have also been extensively studied in the interactive
model. In these settings, there is typically an interactive opening procedure
between the committer and the verifier. Ishai et al. [IKO07] introduced inter-
active functional commitments for linear function, and subsequently, Bitansky
and Chiesa [BC12] extended it to interactive functional commitments. In both
cases, these were used to construct (interactive) succinct arguments without rely-
ing on probabilistically-checkable proofs (PCPs). Alternatively, using PCPs or
their generalization to interactive oracle proofs [BCS16], we can also construct
a functional commitment from any collision-resistant hash function via Kilian’s
interactive succinct argument [Kil92], which can then be made non-interactive
in the random oracle model [Mic00]. Our focus in this work is on non-interactive
vector and functional commitments in the plain model (i.e., without random
oracles).

Concurrent Works. Recently, two concurrent works [dCP23,BCFL22] intro-
duced new constructions of functional commitments. We provide a more detailed
comparison with these works in the full version of this paper [WW22].
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2 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N, we
write [n] to denote the set {1, . . . , n}. For integers a, b ∈ N, we write [a, b] to
denote the set {a, a + 1, . . . , b}. For a positive integer q ∈ N, we write Zq to
denote the integers modulo q. We use bold uppercase letters to denote matrices
(e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v). We use
non-boldface letters to refer to their components: v = (v1, . . . , vn). For matri-
ces A1, . . . ,A� ∈ Z

n×m
q , we write diag(A1, . . . ,A�) ∈ Z

n�×m�
q to denote the

block diagonal matrix with blocks A1, . . . ,A� along the main diagonal (and 0
elsewhere).

We write poly(λ) to denote a fixed function that is O(λc) for some c ∈ N

and negl(λ) to denote a function that is o(λ−c) for all c ∈ N. For functions
f = f(λ), g = g(λ), we write g ≥ O(f) to denote that there exists a fixed function
f ′(λ) = O(f) such that g(λ) > f ′(λ) for all λ ∈ N. We say an event occurs with
overwhelming probability if its complement occurs with negligible probability.
An algorithm is efficient if it runs in probabilistic polynomial time in its input
length. We say that two families of distributions D1 = {D1,λ}λ∈N and D2 =
{D2,λ}λ∈N are computationally indistinguishable if no efficient algorithm can
distinguish them with non-negligible probability, and we say they are statistically
indistinguishable if the statistical distance Δ(D1,D2) is bounded by a negligible
function negl(λ).

We review additional preliminaries, especially on lattice-based cryptography
in the full version of this paper [WW22].

3 Vector Commitments with Private Opening from SIS

In this section, we show how to construct a vector commitment with private
openings from the standard SIS assumption. We start by recalling the definition
of a vector commitment:

Definition 3.1 (Vector Commitment). A vector commitment scheme with
succinct local openings over a message space M consists of a tuple of efficient
algorithms ΠVC = (Setup,Commit,Open,Verify) with the following properties:

– Setup(1λ, 1�) → crs: On input the security parameter λ and the vector length
�, the setup algorithm outputs a common reference string crs.

– Commit(crs,x) → (σ, st): On input the common reference string crs and a
vector x ∈ M�, the commit algorithm outputs a commitment σ and a state
st.

– Open(st, i) → π: On input a commitment state st and an index i ∈ [�], the
open algorithm outputs an opening π.

– Verify(crs, σ, i, xi, π) → {0, 1}: On input the common reference string crs, a
commitment σ, an index i, a message xi ∈ M, and an opening π, the verifi-
cation algorithm outputs a bit b ∈ {0, 1}.

We now define several standard properties on vector commitment schemes:
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– Correctness: For all security parameters λ, vector dimensions �, and inputs
x = (x1, . . . , x�) ∈ M�,

Pr

⎡

⎣Verify(crs, σ, i,mi, π) = 1 :
crs ← Setup(1λ, 1�);

(σ, st) ← Commit(crs,x);
π ← Open(st, i)

⎤

⎦ = 1 − negl(λ).

– Succinctness: The vector commitment scheme is succinct if there exists a
universal polynomial poly(·) such that for all λ ∈ N, |σ| = poly(λ, log �) and
|π| = poly(λ, log �) in the correctness definition.

– Binding: We say the commitment scheme is statistically binding (resp., com-
putationally binding) if for all polynomials � = �(λ) and all adversaries A
(resp., efficient adversaries A),

Pr

⎡
⎣
Verify(crs, σ, i, xi, π) = 1

and xi �= x′
i and

Verify(crs, σ, i, x′
i, π

′) = 1
:

crs ← Setup(1λ, 1�);(
σ, i, (xi, π), (x′

i, π
′)

) ← A(1λ, 1�, crs)

⎤
⎦ = negl(λ).

– Private openings: For a vector dimension �, an adversary A, and a simula-
tor S = (S0,S1), we define two distributions RealA(1λ, 1�) and IdealA,S(1λ, 1�)
as follows:
RealA(1λ):

1. Give crs ← Setup(1λ, 1�) to A.
2. Algorithm A outputs an input x ∈

M�.
3. Compute (σ, st) ← Commit(crs,x)

and give σ to A.
4. Algorithm A outputs an index i ∈ [�].
5. Give πi ← Open(st, i) to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

IdealA,S(1λ):

1. Sample (crs, σ, st) ← S0(1
λ, 1�)

and give crs to A.
2. Algorithm A outputs an input

x ∈ M�.
3. Give σ to A.
4. Algorithm A outputs an index i ∈

[�].
5. Compute πi ← S1(st, i, xi) and

give πi to A.
6. Algorithm A outputs a bit b ∈

{0, 1} which is the output of the
experiment.

We say that the vector commitment scheme has statistically (resp., com-
putationally) private openings if for all polynomials � = �(λ) and adver-
saries A (resp., efficient adversaries A), there exists an efficient simula-
tor S = (S0,S1) such that RealA(1λ, 1�) and IdealA,S(1λ, 1�) are statistically
(resp., computationally) indistinguishable.

3.1 The Basis-Augmented SIS (BASIS) Assumption

In this section, we introduce the family of SIS assumptions that we use to build
our vector commitment schemes. At a high level, our assumptions assert that the
SIS problem is hard with respect to a random matrix A even given a trapdoor for
a matrix B that is correlated with A. We refer to our family of assumptions as
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the “basis-augmented SIS” (BASIS) assumption. As we discuss below (Theorem
3.4), some versions of the BASIS assumption can be reduced to the standard
SIS assumption. For instance, our first construction of a vector commitments
with private openings (Construction 3.5) relies on a version that reduces to the
standard SIS assumption.

Assumption 3.2 (BASIS Assumption). Let λ be a security parameter and
n = n(λ), m = m(λ), q = q(λ), and β = β(λ) be lattice parameters. Let
s = s(λ) be a Gaussian width parameter. Let Samp be an efficient sampling
algorithm that takes as input a security parameter λ and a matrix A ∈ Z

n×m
q

and outputs a matrix B ∈ Z
n′×m′
q along with auxiliary input aux. We say that

the basis-augmented SIS (BASIS) assumption holds with respect to Samp if for
all efficient adversaries A,

Pr

⎡
⎣Ax = 0 and 0 < ‖x‖ ≤ β :

A r← Z
n×m
q ;

(B, aux) ← Samp(1λ,A),T ← B−1
s (Gn′ );

x ← A(1λ,A,B,T, aux)

⎤
⎦ = negl(λ).

In other words, we require that SIS is hard with respect to A even given a
trapdoor T for the related matrix B.

Assumption 3.3 (BASIS Assumption Instantiations). Let λ be a security
parameter and n = n(λ), m = m(λ), q = q(λ), and β = β(λ) be lattice parame-
ters. Let s = s(λ) be a Gaussian width parameter and � = �(λ) be a dimension.
We consider two concrete instantiations of the BASIS assumption:

– BASISrand : The sampling algorithm Samp(1λ,A) samples i∗ r← [�], Ai
r←

Z
(n+1)×m
q for all i �= i∗, a r← Z

m
q , sets Ai∗ ← [

aT

A

]
, and outputs

B� =

⎡

⎢
⎣

A1 −Gn+1

. . .
...

A� −Gn+1

⎤

⎥
⎦ and aux = i∗.

We refer to this assumption as “the BASIS assumption with random matri-
ces.”

– BASISstruct: The sampling algorithm Samp(1λ,A) samples Wi
r← Z

n×n
q for all

i ∈ [�] and outputs

B� =

⎡

⎢
⎣

W1A −Gn

. . .
...

W�A −Gn

⎤

⎥
⎦ and aux = (W1, . . . ,W�).

This is essentially BASISrand with structured matrices A1, . . . ,A�. We refer to
this assumption as “the BASIS assumption with structured matrices.”

Each of the above assumptions is parameterized by the tuple of parameters
(n,m, q, β, s, �). Strictly speaking, in both cases above, the auxiliary information
aux can be efficiently computed directly from A and B�, and thus, can be safely
omitted. We include them here for notational convenience.
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Hardness of BASISrand. The BASISrand assumption can be reduced to SIS.
We state the theorem below and give the proof in the full version of this
paper [WW22].

Theorem 3.4 (Hardness of BASISrand). Let λ be a security parameter and
n = n(λ), m = m(λ), q = q(λ), β = β(λ) be lattice parameters. Take any poly-
nomial � = �(λ) and suppose n ≥ λ, m ≥ O(n log q), and s ≥ O(�m log(n�)).
Then, under the SISn,m,q,β assumption, the BASISrand assumption with parame-
ters (n,m, q, β, s, �) holds.

3.2 Vector Commitments with Private Opening from SIS

We now show how to construct a vector commitment scheme with statistically
private openings from the BASISrand assumption. By Theorem 3.4, we can in
turn base hardness on the standard SIS assumption (with polynomial modulus).

Construction 3.5 (Vector Commitments from SIS). Let λ be a security
parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice parameters. Let
m′ = n(	log q
 + 1) and B = B(λ) be a bound. Let s0 = s0(λ), s1 = s1(λ) be
Gaussian width parameters. Let � be the vector dimension. We construct a vector
commitment scheme ΠVC = (Setup,Commit,Open,Verify) for Z

�
q as follows:

– Setup(1λ, 1�): On input the security parameter λ and the vector dimension
�, the setup algorithm samples (Ai,Ri) ← TrapGen(1n, q,m) for each i ∈ [�].
Then, it constructs matrices B� and R where

B� =

⎡

⎢
⎣

A1 −G
. . .

...
A� −G

⎤

⎥
⎦ and R =

[
diag(R1, . . . ,R�)

0m′×�m′

]

. (3.1)

Finally, the setup algorithm samples T ← SamplePre(B�,R,Gn�, s0) and
outputs the common reference string crs = (A1, . . . ,A�,T).

– Commit(crs,x): On input the common reference string crs = (A1, . . . ,A�,T)
and a vector x ∈ Z

�
q, the commit algorithm constructs B� from A1, . . . ,A�

according to Eq. (3.1) and then uses T to sample
⎡

⎢
⎢
⎢
⎣

v1

...
v�

ĉ

⎤

⎥
⎥
⎥
⎦

← SamplePre(B�,T,−x ⊗ e1, s1), (3.2)

where e1 = [1, 0, . . . , 0]T ∈ Z
m
q is the first standard basis vector. It computes

c ← Gĉ ∈ Z
n
q and outputs the commitment σ = c and the state st =

(v1, . . . ,v�).
– Open(st, i): On input the state st = (v1, . . . ,v�) and the index i ∈ [�], the

opening algorithm outputs vi.
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– Verify(crs, σ, i, xi, π): On input the common reference string crs =
(A1, . . . ,A�,T), a commitment σ = c ∈ Z

n
q , an index i ∈ [�], a message

xi ∈ Zq, and an opening π = vi, the verification algorithm outputs 1 if

‖vi‖ ≤ B and c = Aivi + xie1.

Due to space limitations, we defer the formal analysis of Construction 3.5 to the
full version of this paper [WW22] and simply state the main result below:

Corollary 3.6 (Vector Commitments with Private Openings from
SIS). Let λ be a security parameter. Then, for all polynomials � = �(λ), under
the SIS assumption with a polynomial norm bound β = poly(λ, �) and a polyno-
mial modulus q = poly(λ, �), there exists a vector commitment scheme over Z

�
q

that is computationally binding and has statistically private openings. The size
of a commitment to a vector x ∈ Z

�
q has size O(λ(log λ+log �)) and the openings

have size O(λ(log2 λ + log2 �)). The size of the CRS is �2 · poly(λ, log �).

Extensions: Linear Homomorphism and Updatability. Similar to the non-private
scheme of Peikert et al. [PPS21], our vector commitment scheme is linearly
homomorphic and supports stateless updates. We provide more details in the
full version of this paper [WW22].

4 Succinct Functional Commitments for Circuits

In this section, we show how to obtain a succinct functional commitment for
general circuits from the BASISstruct assumption. We consider schemes where the
parameters scale with the depth of the Boolean circuit. We start with the formal
definition:

Definition 4.1 (Succinct Functional Commitment). Let λ be a security
parameter. Let F = {Fλ}λ∈N be a family of functions f : {0, 1}� → {0, 1} on
inputs of length � = �(λ) and which can be computed by Boolean circuits of depth
at most d = d(λ). A succinct functional commitment for F is a tuple of efficient
algorithms ΠFC = (Setup,Commit,Eval,Verify) with the following properties:

– Setup(1λ, 1�, 1d) → crs: On input the security parameter λ, the input length �,
and the bound on the circuit depth d, the setup algorithm outputs a common
reference string crs.

– Commit(crs,x) → (σ, st): On input the common reference string crs and an
input x ∈ {0, 1}�, the commitment algorithm outputs a commitment σ and a
state st.

– Eval(st, f) → πf : On input a commitment state st and a function f ∈ F , the
evaluation algorithm outputs an opening πf .

– Verify(crs, σ, f, y, π) → {0, 1}: On input the common reference string crs, a
commitment σ, a function f ∈ F , a value y ∈ {0, 1}, and an opening π, the
verification algorithm outputs a bit b ∈ {0, 1}.
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We now define several correctness and security properties on the functional com-
mitment scheme:

– Correctness: For all security parameters λ, all functions f ∈ F , and all
inputs x ∈ {0, 1}�,

Pr

⎡

⎣Verify
(
crs, σ, f, f(x), πf

)
= 1 :

crs ← Setup(1λ, 1�, 1d);
(σ, st) ← Commit(crs,x);

πf ← Eval(st, f)

⎤

⎦ = 1 − negl(λ).

– Succinctness: The functional commitment scheme is succinct if there exists
a universal polynomial poly(·, ·, ·) such that for all λ ∈ N, |σ| = poly(λ, d, log �)
and |πf | = poly(λ, d, log �) in the correctness definition.8

– Binding: We say ΠFC satisfies statistical (resp., computational) binding if
for all adversaries A (resp., efficient adversaries A),

Pr [Verify(crs, σ, f, 0, π0) = 1 = Verify(crs, σ, f, 1, π1)] = negl(λ),

where crs ← Setup(1λ, 1�, 1d) and (σ, f, π0, π1) ← A(1λ, 1�, 1d, crs).
– Private openings: For an adversary A and a simulator S = (S0,S1), we

start by defining two distributions RealA(1λ, 1�, 1d) and IdealA,S(1λ, 1�, 1d):
RealA(1λ, 1�, 1d):

1. Give crs ← Setup(1λ, 1�, 1d) to A.
2. Algorithm A outputs an input x ∈

{0, 1}�.
3. Compute (σ, st) ← Commit(crs,x) and

give σ to A.
4. Algorithm A outputs a function f ∈

Fλ.
5. Give πf ← Eval(st, f) to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

IdealA,S(1λ, 1�, 1d):

1. Sample (crs, σ, st) ← S0(1λ, 1�, 1d)
and give crs to A.

2. Algorithm A outputs an input x ∈
{0, 1}�.

3. Give σ to A.
4. Algorithm A outputs a function f ∈

Fλ.
5. Compute πf ← S1(st, f, f(x)) and

give πf to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

We say that ΠFC has statistical (resp., computational) private openings if
for all adversaries A (resp., efficient adversaries A), there exists an efficient
simulator S = (S0,S1) such that RealA(1λ, 1�, 1d) and IdealA,S(1λ, 1�, 1d) are
statistically (resp., computationally) indistinguishable.

Construction 4.2 (Succinct Functional Commitment). Let λ be a secu-
rity parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice parame-
ters where q is prime. Let m′ = n(	log q
 + 1) and B = B(λ) be a bound.
8 We could consider an even stronger notion of succinctness where the size of the com-

mitment and the opening depends polylogarithmically on the size of the Boolean cir-
cuits computing F . However, like existing (non-succinct) lattice-based homomorphic
commitments and signatures [GVW15], the size of the commitment and openings in
our construction scale with the depth of the computation.
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Let s0 = s0(λ), s1 = s1(λ) be Gaussian width parameters. Let F = {Fλ}λ∈N

be a family of Boolean valued functions f : {0, 1}� → {0, 1} where each function
f : {0, 1}� → {0, 1} is a function on inputs of length � = �(λ) and which can
be computed by a Boolean circuit of depth at most d = d(λ). We construct a
functional commitment ΠVC = (Setup,Commit,Open,Verify) for F as follows:

– Setup(1λ, 1�, 1d): On input the security parameter λ, the input length �, and
the bound d on the circuit depth, the setup algorithm samples (A,R) ←
TrapGen(1n, q,m) and for each i ∈ [�], samples an invertible matrix Wi

r←
Z

n×n
q . Next, it computes R̃i ← RG−1(W−1

i G) ∈ Z
m×m′
q for each i ∈ [�] and

constructs matrices B� and R as follows:

B� =

⎡

⎢
⎣

W1A −G
. . .

...
W�A −G

⎤

⎥
⎦ and R̃ =

[
diag(R̃1, . . . , R̃�)

0m′×�m′

]

. (4.1)

Finally, the setup algorithm samples T ← SamplePre(B�, R̃,Gn�, s0) and
outputs the common reference string crs = (A,W1, . . . ,W�,T).

– Commit(crs,x): On input the common reference string
crs = (A,W1, . . . ,W�,T) and a vector x ∈ {0, 1}�, the commit algorithm
constructs B� from A,W1, . . . ,W� according to Eq. (4.1). It then constructs
a target matrix

Ux =

⎡

⎢
⎣

−x1W1G
...

−x�W�G

⎤

⎥
⎦ ∈ Z

n�×m′
q . (4.2)

It then uses T to sample a preimage
⎡

⎢
⎢
⎢
⎣

V1

...
V�

Ĉ

⎤

⎥
⎥
⎥
⎦

← SamplePre(B�,T,Ux, s1). (4.3)

It outputs the commitment σ = C = GĈ ∈ Z
n×m′
q and the state st =

(x,C,V1, . . . ,V�).
– Eval(crs, st, f): On input the common reference string crs = (A,W1, . . . ,
W�,T), a commitment state st = (x,C,V1, . . . ,V�), and a function
f : {0, 1}� → {0, 1}, the evaluation algorithm sets C̃ ← [W−1

1 C | · · · |W−1
� C],

computes HC̃,f,x ← EvalFX(C̃, f,x), and outputs the opening πf = Vf ←
[V1 | · · · | V�] · HC̃,f,x.

– Verify(crs, σ, f, y, π): On input the common reference string crs =
(A,W1, . . . ,W�,T), a commitment σ = C ∈ Z

n×m′
q , a function f : {0, 1}� →

{0, 1}, a value y ∈ {0, 1}, and an opening π = Vf ∈ Z
m×m′
q , the verification

algorithm sets C̃ ← [W−1
1 C | · · · | W−1

� C], computes C̃f ← EvalF(C̃, f) and
outputs 1 if

‖Vf‖ ≤ B and AVf = C̃f − yG. (4.4)

Due to space limitations, we defer the analysis of Construction 4.2 to the full
version of this paper [WW22]. We summarize the parameter instantiation below:
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Parameter Instantiation. Let λ be a security parameter and F = {Fλ}λ∈N be a
family of functions f : {0, 1}� → {0, 1} on inputs of length � = �(λ) and which
can be computed by Boolean circuits of depth at most d = d(λ).

– Let ε > 0 be a constant. We set the lattice dimension n = d1/ε · poly(λ) and
m = O(n log q).

– We set s0 = O(�m2 log(n�)) and

s1 = O(�3/2m3/2 log(n�) · s0) = O(�5/2m7/2 log2(n�)) = O(�5/2n7/2 log2(n�) log7/2 q).

– We set the bound B = s1 · √
�m + m′ · (n log q)O(d) = �3 log2 � · (n log q)O(d).

– We set the modulus q so that the BASISstruct assumption holds with parame-
ters (n,m, q, β, s0, �), where

β = 2Bm
√

m′ log n = �3 log2 � · (n log q)O(d) = 2Õ(d) = 2Õ(nε),

where we write Õ(·) to suppress polylogarithmic factors in λ, d, �. Note that
this also requires that SISn,m,q,β hold. For instance, we set q = β · poly(n).
Then, log q = poly(d, log λ, log �). Note that the underlying SIS assumption
now relies on a sub-exponential noise bound.

With this setting of parameters, we obtain a functional commitment scheme for
F with the following parameter sizes:

– Commitment size: A commitment σ to an input x ∈ {0, 1}� consists of a
matrix σ = C ∈ Z

n×m′
q so

|σ| = nm′ log q = O(n2 log2 q) = poly(λ, d, log �).

– Opening size: An opening π to a function f consists of a matrix π = Vf ∈
Z

m×m′
q . Then,

|π| = mm′ log q = poly(λ, d, log �).

In Remark 4.4, we describe a simple approach to compress the opening to a
vector instead of a matrix.

– CRS size: The CRS consists of (A,W1, . . . ,W�,T), where A ∈ Z
n×m
q ,

Wi ∈ Z
n×n
q , and T ∈ Z

(�m+m′)×�m′
q . Thus, the total size of the CRS is

|crs| = nm log q + �n2 log q + (�m + m′)(�m′) log q = �2 · poly(λ, d, log �).

Thus, Construction 4.2 is a succinct functional commitment scheme for bounded-
depth circuits. We summarize the instantiation in the following corollary:

Corollary 4.3 (Succinct Vector Commitment from BASISstruct). Let λ be
a security parameter, and let F = {Fλ}λ∈N be a family of functions f : {0, 1}� →
{0, 1} on inputs of length � = �(λ) and which can be computed by Boolean circuits
of depth at most d = d(λ). Under the BASISstruct assumption with a norm bound
β = 2Õ(d) and modulus q = 2Õ(d), there exists a computationally-binding succinct
functional commitment scheme for F . Both the size of the commitment and the
opening are poly(λ, d, log �), and the CRS has size �2 ·poly(λ, d, log �). Here, Õ(·)
suppresses polylogarithmic factors in λ, d, and �.
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Remark 4.4 (Reducing the Opening Size). An opening πf to a function f in Con-
struction 4.2 consists of a matrix πf = Vf ∈ Z

m×m′
q where m,m′ = O(n log q).

It is easy to adapt Construction 4.2 to obtain slightly shorter openings (i.e.,
πf = vf ∈ Z

m
q ). The idea is simple: we publish a random target vector u r← Z

n
q

in the CRS and define the new opening to be vf ← VfG−1(u), where Vf is
the original opening from Construction 4.2. The updated verification relation
then checks that ‖vf‖ is small and that Avf = C̃G−1(u) − y · u. We also use
this approach to aggregate openings in the full version of this paper [WW22].
However, giving out the “matrix” opening is convenient when specializing our
construction to obtain polynomial commitments.

Remark 4.5 (Comparison with [ACL+22]). The authors of [ACL+22] showed
how to construct a functional commitment for constant-degree polynomials
where the size of the CRS scales exponentially with the degree of the polyno-
mial. Our functional commitment scheme (Construction 4.2) supports arbitrary
Boolean circuits of bounded depth, and the size of our CRS scales polynomially
with the depth of the circuit family. Moreover, security of our construction can
be reduced to a function-independent assumption (the BASISstruct assumption)
whereas the scheme in [ACL+22] relied on a function-dependent assumption.
We compare the two types of assumptions in more detail in Sect. 6.

An advantage of the [ACL+22] construction is that if supports fast verifica-
tion with preprocessing. Namely, in their scheme, the verifier can precompute a
verification key for a function f , and subsequently, verify openings with respect
to f in time that is polylogarithmic in the running time of f . In contrast, with our
scheme, the verifier has to first homomorphically compute f on the commitment
in order to verify. In the full version of this paper [WW22], we show that for the
special case of linear functions, we can adapt Construction 4.2 to support fast
verification in the preprocessing model.

Remark 4.6 (A Candidate SNARG with Expensive Verification). The authors
of [ACL+22] show how to boost their functional commitment for quadratic poly-
nomials to a preprocessing SNARG for NP as follows:

1. First, [ACL+22] applying “sparsification” to their functional commitment
scheme. Over the integers, one analog of sparsification is to require the adver-
sary to output a short Ṽ such that ÃṼ = DC, where D ∈ Z

2m×n
q , where

Ã r← Z
2m×2m log q
q is a sparsification matrix. The CRS includes short preim-

ages of Ã to enable sampling of Ṽ.
2. Next, [ACL+22] introduce a knowledge assumption that says that the only

way an adversary can produce C and Ṽ is by computing a short linear com-
bination of the preimages in the CRS (where the coefficients correspond to
the committed vector x).

3. To support openings to multiple quadratic polynomials with a succinct open-
ing (i.e., sublinear in the number of openings), [ACL+22] introduces a novel
SIS-based technique.

Taken together, [ACL+22] show how to obtain an “extractable” commitment
scheme, a notion that is equivalent to a succinct argument of knowledge for
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satisfiability of quadratic systems. This yields a publicly-verifiable preprocess-
ing SNARG for NP since satisfiability of degree-2 polynomials is NP-complete.
Specifically, a proof for a statement x consists of a commitment σ to a satisfying
witness w and an opening π of σ to a satisfying assignment to the quadratic con-
straint system representing the NP relation. By relying on preprocessing (Remark
4.5), the [ACL+22] SNARG has short proofs and fast verification.

We can apply an analogous approach to our functional commitment scheme
(Construction 4.2) to obtain a candidate SNARG for NP; our SNARG would have
short proofs but an expensive verification step (since our functional commitment
does not support fast verification in the preprocessing model). We also note that
even without sparsification, our construction is still a candidate SNARG: we do
not know how to prove soundness of our construction, but at the same time, are
not aware of any attacks either. An attack on our candidate SNARG (without
sparsification) would be interesting, and we invite cryptanalysis of our candidate.

4.1 Opening to Linear Functions and Applications to Polynomial
Commitments

In the full version of this paper [WW22], we describe a variant of Construction
4.2 for the setting of linear functions that supports fast verification in the prepro-
cessing model (see Remark 6.1). Moreover, the full version of this paper [WW22]
naturally supports linear functions over Z

�
q (as opposed to {0, 1}�) and gener-

alizes to yield a polynomial commitment [KZG10]. Unlike [ACL+22], we do not
require the values in the committed vector or the output of the linear function to
be short. Supporting large values is necessary for obtaining a succinct polynomial
commitment.

4.2 Supporting Private Openings

In the full version of this paper [WW22], we show how to extend Construction 4.2
to additionally support private openings. Recall from Definition 4.1 that a func-
tional commitment supports private openings if the commitment σ to an input
x together with an opening πf with respect to a function f leaks no additional
information about x other than the value f(x). In the context of homomorphic
signatures [GVW15], this property is called context hiding. We show that the
same approach used to achieve context hiding in the setting of homomorphic
signatures applies to our setting and yields a succinct functional commitment
that supports private openings. However, the transformation does not preserve
the binding property on the functional commitments scheme. Nonetheless, we
can still show that the scheme satisfies a weaker notion of binding called target
binding, which says that any honestly-generated commitment on x can only be
opened to f(x) for any function f . We defer the details to the full version of this
paper [WW22].
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5 Aggregatable Vector Commitments

In the full version of this paper [WW22], we show how to use the BASISstruct
assumption to obtain a variant of our SIS-based vector commitment (Construc-
tion 3.5) that supports aggregation. Recall that in an aggregatable commitment,
one can take a collection of openings {(i, πi)}i∈S for a set of S ⊆ [�] of indices
and aggregate them into a single opening π (for the set S) whose size scales
sublinearly with the size of S. Aggregatable commitments imply subvector com-
mitments [LM19] which are vector commitments that allow for succinct openings
to a set of indices (but do not necessarily support aggregating openings).

6 New SIS Assumptions: Relations and Discussion

In this section, we compare our approach of publishing a full trapdoor in the com-
mon reference string with the approach of Albrecht et al. [ACL+22] of publishing
short preimages in the CRS. While Albrecht et al. formulate their assumption
over polynomial rings, their ideas apply equally well in the integer setting. We
describe everything over the integers to enable a more direct comparison. We
start by recalling the general paradigm for constructing vector commitments
from Sect. 1.2 common to our approach and their approach:

– The CRS consists of � matrices Ai ∈ Z
n×m
q and a set of target vectors ti ∈ Z

n
q

for i ∈ [�]. The CRS also contains some auxiliary information aux� that is used
to construct commitments and openings.

– An opening vi to value xi at index i with respect to a commitment c ∈ Z
n
q is

a short vector vi that satisfies c = Aivi − xiti.

We now compare the two types of auxiliary information aux� in our approach
(based on the BASIS assumption) and the Albrecht et al. approach (based on
variants of the k-ISIS assumption):

(I) Our approach: In our approach based on the BASIS assumption, aux� = T
is a trapdoor T ← B−1

� (Gn�) for the matrix B� = [diag(A1, . . . ,A�) | −
1�⊗G]. As shown in Sects. 3 and 4, the trapdoor T suffices to jointly sample
commitments c and openings v1, . . . ,v� that satisfy the verification relation.

(II) The Albrecht et al. approach: In the Albrecht et al. [ACL+22] approach,
the auxiliary information aux� = {zj,i}i�=j consists of a collection of short
vectors zj,i ← A−1

i (tj). The commitment to a vector x ∈ {0, 1}� is the
vector c =

∑
i∈[�] −xiti and the openings are vi =

∑
j �=i −xjzj,i.

We now compare the relative power of these two types of auxiliary information.
We refer to the above auxiliary data as “Type I” auxiliary data and “Type II”
auxiliary data, respectively.

– When the target vectors t1, . . . , t� are uniform, we can simulate a CRS with
Type II auxiliary data from a CRS with Type I auxiliary data. Namely, given
matrices A1, . . . ,A� and the trapdoor aux� = T for B, we can sample
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⎡

⎢
⎢
⎢
⎣

zj,1

...
zj,�

ĉj

⎤

⎥
⎥
⎥
⎦

← B−1
� (0),

for each j ∈ [�]. By construction of B�, for all j ∈ [�], zj,i ∈ Z
m
q is a short

vector satisfying Aizj,i = Gĉj . The marginal distribution of each ĉj is a
discrete Gaussian, and Gĉj is uniform over Z

n
q . Thus, we obtain a Type II

CRS with matrices A1, . . . ,A�, target vectors t1 = Gĉ1, . . . , t� = Gĉ�, and
auxiliary data aux� = {zj,i}i�=j .

– Next, we show that we can also use Type II auxiliary data to obtain a trapdoor
for sub-matrices of B. We illustrate this with a concrete example. Suppose
we want to obtain a trapdoor for the matrix Bk (where k < �/m):

Bk =

⎡

⎢
⎣

A1 −G
. . .

...
Ak −G

⎤

⎥
⎦ ∈ Z

kn×(km+m′)
q ,

where m′ = n(�log q� + 1). For j �= i, let zj,i ∈ Z
m
q be short vectors where

Aizj,i = tj be the vectors in the Type II auxiliary data. For any j > k,
consider the vector

vj =

⎡

⎢
⎢
⎢
⎣

zj,1

...
zj,k

G−1(tj)

⎤

⎥
⎥
⎥
⎦

∈ Z
km+m′
q ,

Observe that vj is short, and moreover Bkvj = 0. If �−k > km+m′, then we
can collect km+m′ such vectors vj . Heuristically, if these vectors are linearly
independent (over the integers), then this yields a Ajtai-basis for Bk. Thus
Type II auxiliary data implies Type I auxiliary data for a slightly smaller
dimension k ≈ �/m.

While asking for security given a full trapdoor for the related matrix B� might
seem like a stronger assumption than giving our many short preimages under
A1, . . . ,A�, the above analysis shows that these these two types of auxiliary
data have comparable power. Hardness of SIS/ISIS with respect to one type of
auxiliary data is comparable to hardness with respect to the other (up to an
O(n log q) loss in the vector dimension �). In fact, the above analysis shows that
Type II auxiliary data (with essentially arbitrary target vectors ui) is already
sufficient to construct a trapdoor that yields a Type I auxiliary data for a smaller
input dimension. However, the converse is not true, as the trapdoor for B�

seem to only allow sampling preimages of A1, . . . ,A� with respect to random
target vectors t1, . . . , t�. This distinction is important, and as we discuss in
Remark 6.1, Type I auxiliary data seem essential to realizing the functional
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commitment scheme from Sect. 4 (as well as its aggregatable analog in the full
version of this paper [WW22]). Other advantages to using a Type I auxiliary
data include supporting private openings (Construction 3.5) and commitments
to large inputs.

Remark 6.1 (Structured Targets and Functional Commitments). The main ver-
ification relation of our functional commitment scheme (Construction 4.2) is
C = AiVi + xiG where Ai = WiA. If we consider a Type II auxiliary data for
this verification relation, the auxiliary data would contain A−1

i (G), or equiv-
alently, A−1(W−1

i G). However, A−1(W−1
i G) is a trapdoor for A (with tag

W−1
i ), which trivially breaks security. In contrast, using Type I auxiliary data

does not appear to yield a trapdoor for A, and plausibly yields a succinct func-
tional commitment scheme.

6.1 Another View of the BASISstruct Assumption

To facilitate cryptanalysis of our new assumption, we provide an equivalent
formulation of the BASISstruct assumption (Assumption 3.3) underlying our
functional, polynomial, and aggregatable commitments. Consider a variant of
the BASISstruct assumption where T is an Ajtai trapdoor for B (i.e., T ←
B−1

s (0m×2m)). Note that we can efficiently convert between gadget trapdoors
and Ajtai trapdoors, up to small polynomial losses in the quality of the trap-
door. It is easy to see that we can re-express B−1(0m×2m) as A−1(W−1

i R) for
all i ∈ [�], and R r← Z

n×2m
q . Therefore, the BASISstruct assumption is equivalent

to:

SIS is hard with respect to A r← Z
n×m
q given A−1(W−1

i R)
for all i ∈ [�], where Wi

r← Z
n×n
q and R r← Z

n×2m
q .

Remark 6.2 (Parameter Choices for the BASISstructassumption). While hard-
ness of the BASISrand assumption can be based on the hardness of the standard
SIS assumption, we do not know of an analogous reduction for the BASISstruct
assumption. When setting parameters for the BASISstruct assumption, we use
Theorem 3.4 as a guide and consider instantiations where n ≥ λ, m ≥ O(n log q)
and s ≥ O(�m log n) = poly(λ, �). Note that this means the quality of the basis
decreases with the dimension. For this parameter setting, we are not aware of
any concrete attacks on the BASISstruct assumption and conjecture that its secu-
rity is comparable with the hardness of SISn,m,q,β , with a noise bound bound
β = poly(λ, �) that scales with the dimension of the vector (as in Theorem 3.4).
In particular, the hardness of the SIS instance decreases with the dimension �
(similar to the case with q-type assumptions over groups [Che06]).
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Abstract. Laconic cryptography is an emerging paradigm that enables
cryptographic primitives with sublinear communication complexity in
just two messages. In particular, a two-message protocol between Alice
and Bob is called laconic if its communication and computation com-
plexity are essentially independent of the size of Alice’s input. This can
be thought of as a dual notion of fully-homomorphic encryption, as it
enables “Bob-optimized” protocols. This paradigm has led to tremendous
progress in recent years. However, all existing constructions of laconic
primitives are considered only of theoretical interest : They all rely on
non-black-box cryptographic techniques, which are highly impractical.

This work shows that non-black-box techniques are not necessary for
basic laconic cryptography primitives. We propose a completely alge-
braic construction of laconic encryption, a notion that we introduce
in this work, which serves as the cornerstone of our framework. We
prove that the scheme is secure under the standard Learning With
Errors assumption (with polynomial modulus-to-noise ratio). We pro-
vide proof-of-concept implementations for the first time for laconic primi-
tives, demonstrating the construction is indeed practical: For a database
size of 250, encryption and decryption are in the order of single digit
milliseconds.

Laconic encryption can be used as a black box to construct other
laconic primitives. Specifically, we show how to construct:

– Laconic oblivious transfer
– Registration-based encryption scheme
– Laconic private-set intersection protocol

All of the above have essentially optimal parameters and similar practical
efficiency. Furthermore, our laconic encryption can be preprocessed such
that the online encryption step is entirely combinatorial and therefore
much more efficient. Using similar techniques, we also obtain identity-
based encryption with an unbounded identity space and tight security
proof (in the standard model).
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1 Introduction

Laconic cryptography [17,20,22,40] is an emerging paradigm to securely com-
pute on large amounts of data in just two messages, while incurring very small
communication. Specifically, in the laconic setting the receiver Alice has an input
of very large size, whereas we typically think of the sender Bob’s input as smaller
in size. In the first message, Alice publishes a succinct hash h of her input D,
which may be thought of as a large database D ∈ {0, 1}n. Such a compressing
hash function cannot be unkeyed, therefore laconic protocols also rely on public
parameters, which are typically also required to be succinct1. Given the hash h,
Bob can encrypt his input x with respect to h, obtaining a succinct ciphertext
ctxt. Importantly, the workload of Bob should also be independent of n. Such
a ciphertext ctxt enables Alice to compute a joint function of her input D and
Bob’s input x, while Bob has the guarantee that Alice learns nothing but the
legitimate function output. The specific choice of the function f computed by
such a protocol leads to different laconic primitives:

– In laconic OT [17], Bob’s input consists of an index i and two messages
m0 and m1. The function f is given by f(D, (i,m0,m1)) = (i,mD[i]), i.e.
Alice learns the index i, and if the i-th bit of the database D is 0 she learns
m0, otherwise m1. The setting of laconic OT typically imposes an additional
efficiency requirement concerning Alice. Concretely, we require Alice’s second
phase to have a runtime essentially independent of n.

– In laconic function evaluation (LFE) [40], Alice’s input D is a (large) boolean
circuit C, and the function computed by an LFE protocol is f(C, x) = C(x).
The construction provided in [40] satisfies a somewhat relaxed succinctness
guarantee: While the size of the communication does not scale with the size
of the circuit C, it scales polynomially with the depth of C. Furthermore, the
runtime of the second phase of Alice scales linearly with the size of C.

Implications. The notion of laconic OT in particular has had broader impli-
cations: The core-ideas underlying laconic OT led to a series of constructions of
identity-based encryption (IBE) from weaker assumptions [15,18,19,21] and gave
rise to the notion of registration-based encryption (RBE) [24,25,33]. These con-
structions make essential use of the above-mentioned more stringent efficiency-
property of the laconic OT constructions they are based on. Consequently, these
primitives are not known to be generically constructible from LFE.

Furthermore, the techniques developed in the context of laconic cryptography
were key to making progress on a broad range of problems: trapdoor functions
from the computational Diffie-Hellman assumption [23], private-information
retrieval (PIR) from the decisional Diffie-Hellman assumption [22], two-round
multi-party computation protocols from minimal assumptions [8,26,28], adap-
tively secure garbled circuits [27], laconic conditional disclosure of secrets [20],
and laconic private set intersection [3,7].

1 That is, independent or at least sublinear in n.



Efficient Laconic Cryptography from Learning with Errors 419

Reverse Delegation. Laconic cryptography can be seen as enabling reverse
delegation without requiring additional rounds of communication. In a standard
delegation scheme, a user outsources its computation to an untrusted server
with the goal of learning the output while keeping its input private. The canon-
ical cryptographic tool that enables delegation is fully-homomorphic encryption
(FHE) [29], since it allows the server to perform the computation without know-
ing the user’s input. Reverse delegation allows a user (Bob, in our previous
example) to delegate the computation completely to the server (Alice) while
also letting her learn the output of the computation and nothing beyond that.
For instance, [17] provided a protocol to let Bob reverse-delegate RAM compu-
tations to Alice, such that Bob’s overhead and the size of the communication
scales only with runtime of the RAM program, but not with the size of Alice’s
(large) input. Likewise, the laconic function evaluation scheme of [40] allows to
reverse-delegate circuit computations to Alice, while incurring a communication
overhead that only scales with the depth of the circuit.

A Non-blackbox “Barrier” for Practicality. So far, the aforementioned
progress in designing new cryptographic primitives has been almost exclusively
of theoretical interest. In essence, the lack of practicality of these new solutions
can be explained by their non-blackbox use of underlying cryptographic building
blocks. For example, essentially all known constructions of laconic OT involve a
re-encryption step, also called deferred encryption [15], which gives the receiver
Alice the ability to produce ciphertexts under keys that were not known to the
sender Bob at the time of encryption. In the above-mentioned constructions, this
re-encryption step is implemented using garbled circuits [42] for circuits which
perform public-key cryptographic operations. The non-black box use of crypto-
graphic primitives is such a grave source of inefficiency that, to the best of our
knowledge, not even the basic laconic OT has ever been implemented as a proof
of concept. On a slightly different note, we remark that while the LFE scheme
of [40] does not make use of garbled circuits, it relies on a different non-blackbox
mechanism based on FHE to bootstrap a weaker notion called attribute-based
LFE into fully-fledged LFE.

In summary, the present state of affairs sees laconic cryptography as a pow-
erful theoretical tool for enabling new cryptographic primitives and realizing
powerful notions from weaker assumptions. However, the resulting schemes are
practically inefficient, thus calling into question the relevance of this framework
beyond theoretical feasibility results. Motivated by this gap, we ask:

Can we realize truly efficient laconic cryptography?

Towards a positive resolution to this question, it seems insufficient to optimize
existing techniques. Instead, a conceptual reworking of basic laconic primitives
will be required.

1.1 Our Results

This work shows that garbled circuits (and other non-black box cryptographic
techniques) are not needed to construct laconic cryptography. We establish a
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new paradigm for constructing concretely efficient laconic cryptographic schemes
based on the hardness of the standard learning with errors (LWE) problem with
a polynomial modulus-to-noise ratio. In contrast to prior works, we show that our
schemes are practical with a proof of concept implementation. In the following,
we discuss our contributions in more detail.

Laconic Encryption. We propose the notion of laconic encryption as the cen-
tral abstraction of our framework. Laconic encryption allows Alice to construct
a binary tree whose leaves are public keys (pk1, . . . , pkn) and sends the root of
the tree to Bob. Given only the root of the tree and an index ind, Bob can
then encrypt a message with respect to pkind, which can only be decrypted with
the corresponding secret key skind. Such a scheme is called laconic since Alice’s
message is independent of n, as she only sends the root of the tree.

We then show how to construct laconic encryption efficiently and with
(asymptotically) optimal parameters without relying on garbled circuits or other
non-black box cryptographic techniques. At a technical level, our construction
relies on the algebraic properties of the SIS-based hash tree. It exploits the gadget
matrix to efficiently re-encrypt the message layer-by-layer. In order to demon-
strate the security of the scheme, we introduce a new variant of the (ring/module)
LWE problem, in which the adversary is also given a leakage on the error. Then
we prove that this problem is as hard as the standard (ring/module) LWE prob-
lem, with an essentially tight reduction. Our proof relies on spectral analysis of
positive definite matrices, a subject of independent interest.

Applications. We show how laconic encryption enables a wide range of laconic
cryptographic primitives with minimal overhead. The following constructions use
laconic encryption in a black-box sense, and the additional methods required are
combinatorial. That is, all of the resulting schemes are concretely efficient and
have near-optimal parameters. Specifically, we show how to construct:

– Laconic OT: As an immediate application of laconic encryption, we con-
struct a laconic OT protocol with essentially optimal parameters.

– Registration-Based Encryption: Registration-based encryption (RBE) is
a notion recently introduced in [24] to solve the key-escrow problem for
identity-based encryption (IBE) while preserving the “encrypt with respect to
identity” functionality. Laconic encryption enables the first concretely efficient
RBE construction that the size of the public parameters scales logarithmically
with the number of users.

– Laconic Private-Set Intersection: Private-set intersection (PSI) allows
Alice and Bob to check whether they have a common item in their database
without revealing anything about other items. Laconic encryption allows us
to construct an efficient laconic PSI protocol where the communication com-
plexity is independent of the size of Alice’s database.

Optimizations and Extensions. We explore a number of optimizations and
extensions for our laconic encryption construction. First, we show that the
encryption algorithm can be pre-processed : In an input-independent offline
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phase, the encryptor can prepare auxiliary information at essentially the same
cost as the encryption algorithm. In an online phase, where the message msg and
the index ind are known, the encryptor can use the auxiliary information pre-
pared earlier to produce a correctly-formed ciphertext. Importantly, the online
phase is entirely combinatorial, and all public-key operations happen in the
offline phase.

Second, we explore the possibility of plugging-in different encryption schemes
in our construction. Natively, our laconic encryption supports only dual-Regev
ciphertexts [30], whereas for some applications it may be desirable to use sup-
port other encryption schemes. We show how our scheme can be adapted to
support a large class of algorithms, which includes LPN-based encryption [5]
and recently NIST-standardized lattice-based schemes [10]. To solve this chal-
lenge, we develop a new special-purpose randomized encoding scheme, which
may be of independent interest.

Finally, we show that our construction of laconic encryption can be turned
into that of identity-based encryption (IBE) [9] with similar efficiency properties.
Our IBE is the first scheme that simultaneously achieves: (i) Constant-size public
parameters, (ii) an unbounded identity space, (iii) a tight proof of (adaptive)
security against a standard assumption (specifically, LWE).

Implementation and Benchmark. To demonstrate the practicality of our
laconic encryption scheme, we implemented a proof of concept in Go (see the
full version for more details). We ran the benchmarks for the scheme with a
database size/index space of 250 and achieved encryption and decryption times
below 10 ms on a personal computer. We believe these times can be improved
using further optimizations, which are beyond the scope of this work.

1.2 Related Work

We mention prior works that study practical variants of laconic cryptographic
primitives. In [7] the authors show a variant of laconic private-set intersection
that is practically efficient and leads to substantial improvements in real-world
protocols. However, the variant that is implemented has a long common reference
string, linear in the size of Alice’s database D; thus it is not fully laconic.

In [35] the authors propose the notion of registered attribute-based encryp-
tion, as an extension of the notion of RBE, and they show a constructions based
on bilinear pairings. Compared to our work, their scheme has a long common
reference string (in fact, quadratic in n), the runtime of the key generation and
registration algorithms is linear in n, and they have an a-priori bound on the
number of users. On the flip-side, they achieve the attribute-based functionality,
that we do not consider in this work.

Another recent work [31] proposes the first practically efficient registration-
based encryption scheme, and shows the first proof of concept implementation.
Contrary to this work, their scheme is asymptotically only sublinear in the size
of D (specifically,

√
n as opposed to polylog(n)), and requires an a-priori bound

on n. Furthermore, they rely on the hardness of problems over bilinear pairings
and thus their scheme is immediately insecure in the quantum settings.
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2 Technical Overview

We give a brief overview of the new ideas and the technical innovations intro-
duced in this work. We start by describing the new notion of laconic encryp-
tion, how to construct it efficiently from the standard LWE assumptions, and
the challenges that arise during the security proofs. Then we outline the new
cryptographic schemes that are enabled by this new notion and possible opti-
mizations and extensions. In favor of a more intuitive description, the following
outline considers the special case of Z-lattices; however, in the technical sections,
we prove all of our statements for the more general R-module settings.

2.1 Laconic Encryption

Before delving into the description of our scheme, we introduce the syntax of
laconic encryption, and we recall how prior work (implicitly) addresses the chal-
lenges needed to build this notion.

Syntax and Properties. A laconic encryption scheme allows Alice to (iter-
atively) construct a digest (e.g., via a Merkle hash tree) of public keys
(pk1, . . . , pkn) where (pki, ski) ← KGen(pp) and pp can be thought of as a uni-
formly random string, which is common to all participants. We denote by st
the message that Alice sends to Bob, which consists of the digest (e.g., the root
of the Merkle tree). Importantly, the size of pp and st is only polynomial in
the security parameter, and in particular, it does not depend on n. On input
a message msg and an index ind ∈ [n], Bob can then compute a ciphertext
ctxt ← Enc(pp, st, ind,msg). Correctness requires that anyone possessing the cor-
responding secret key can decrypt ctxt, more specifically:

msg = Dec(skind,witind, ctxt)

where witind is some (public) auxiliary information, whose size is logarithmic in
n. The reader can think of this information as being the Merkle tree opening,
i.e., the root-to-leaf path, of the key pkind. For security, we require that if the
adversary does not know the secret key associated with index ind (or if no key
is added to the tree at that particular index), then:

Enc(pp, st, ind,msg0) ≈ Enc(pp, st, ind,msg1).

In fact, we will require (and prove) a slight strengthening of this property, i.e.,
that ciphertexts should look pseudorandom to anyone who cannot decrypt them.

Prior Works. To gain some intuition on why constructing laconic encryption is
a challenging problem, it is useful to recall how prior works [17] (implicitly) build
this cryptographic primitive. Loosely speaking, their main leverage is a construc-
tion of a structured two-to-one hash function Hash (which can be constructed
from a variety of computational assumptions) that supports an encryption func-
tionality. More specifically, given a digest d ← Hash(D), Bob can compute a
ciphertext ctxt ← Enc(d, ind, (msg0,msg1)) that allows Alice (who knows the
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database D) to recover msgDind
, whereas the message msgD1−ind

remains compu-
tationally hidden. While this looks like a promising start, it should be noted that
the hash function is only two-to-one, and therefore the size of the digest d is only
half that of the original database D. If one were to naively recurse this scheme,
the encryption algorithm would quickly start running in exponential time.

To circumvent the runtime issue, the strategy of [17] is to rely on garbled
circuits [42]. More specifically, to boost the compression of the hash function,
they define a binary tree of hash values and use garbled circuits to (asymptot-
ically efficiently) implement a re-encryption gadget from one layer to another.
Given a digest di ← Hash(Di+1), where Di+1 = (di+1,0, di+1,1) are the digests
at a lower layer, the encryption algorithm uses the above procedure to encrypt
the labels of a garbled circuit, that internally runs the encryption Enc for the
layer below. Crucially, the size of the labels is independent of the size of the
garbled circuit (except for its input) and therefore this encryption strategy can
be recursed without incurring an exponential blow-up. Although this framework
achieves asymptotically optimal parameters, it is prohibitively expensive to use
garbled circuits for public-key operations. In contrast, our strategy (described
below in detail) will bypass this barrier by leveraging the algebraic properties of
a particular hash function.

Our Approach. As hinted above, a strategy of constructing laconic encryption
is to design a mechanism allowing to “encrypt with respect to a Merkle tree open-
ing”, and successfully executing this strategy requires an “encryption-friendly”
hash function. Our starting point is the following variant of Ajtai’s [2,32]
collision-resistant hash function based on the short integer solution (SIS)
assumption:

f(x0,x1) := A0(−G−1(x0)) +A1(−G−1(x1)) mod q

where A0,A1 ∈ Z
n×m
q are uniformly random matrices with m ≈ n log q, x0,x1 ∈

Z
n
q are vectors, and G−1 denote the binary-decomposition operator (so that

for any x ∈ Z
n
q we have G · G−1(x) = x). A very similar hash function was

used in [36] to build lattice-based Merkle-tree accumulators, ring signatures,
and group signatures. At first glance, it may seem that the hash function f is
not encryption-friendly since the binary-decomposition operation G−1 is highly
non-linear. What enables us to encrypt with respect to a Merkle tree opening is
the crucial observation that a hash chain formed by f induces a linear relation.

More concretely, consider the Merkle tree built using the hash function f
where the node indexed by str ∈ {0, 1}∗ is labeled by ystr. Suppose that ustr =
−G−1(ystr) for each str ∈ {0, 1}∗. Closing into the top of the tree, we observe
that (u0,u1) is a short (in fact binary) vector satisfying the linear relation:

(
A0 A1

G 0

)(
u0

u1

)
=
(

yε

−y0

)
mod q.
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where yε is the node denoting the root of the tree. In other words, the vector
(u0,u1) is a valid solution to the (inhomogeneous) SIS instance

((
A0 A1

G 0

)
,

(
yε

−y0

))
.

Likewise, (u0,u1) is also a valid solution to the (inhomogeneous) SIS instance
((

A0 A1

0 G

)
,

(
yε

−y1

))
.

Dual-Regev Encryption. It turns out that this structure synergizes remark-
ably well with the dual-Regev encryption scheme [30]. Recall that in the dual-
Regev encryption scheme [30], whose security is based on the standard LWE
assumption, a public key is a SIS instance and the corresponding secret key is the
SIS solution. Specifically, in the following assume that the matrix A = (A0 A1)
is part of the public parameters. Further assume that y0 and y1 are dual-Regev
public keys with respect to A. That is, for b ∈ {0, 1} we generate yb by choosing
a uniformly random wb ∈ {0, 1}2m and set yb = A · wb mod q. Here, wb is the
secret key corresponding to yb. By the leftover-hash-lemma [34,41], the yb are
statistically close to uniform. To encrypt a message msg under yb, we choose an
LWE secret r1 and compute a ciphertext (c1, d1) via

c1 ≈ rT1 · A mod q,

d1 ≈ rT1 · yb + Encode(msg) mod q.

Here, we use the“≈” notation to omit the LWE error. The function Encode(·)
protects the message msg against small errors, a popular choice is to encode a
message bit msg in the most-significant bit, i.e. Encode(·) = q

2 · msg. To decrypt
a ciphertext (c1, d1) using a secret key wb we compute

d1 − cT1 · wb ≈ rT1 · yb + Encode(msg) − rT1 · A · wb︸ ︷︷ ︸
=yb

= Encode(msg) mod q,

from which the message msg can be efficiently recovered.

Encrypting to Hash Values. Now assume that we are not given y0 and y1,
but only their hash value

y = A ·
(−G−1(y0)

−G−1(y1)

)
mod q.

Our goal is to produce a ciphertext “for the key yb” given only the hash value y.
Towards this goal, let us examine what happens when we generate a dual-Regev
encryption scheme with respect to the “public key”

pk :=
((

A0 A1

G 0

)
,

(
y
0

))
,
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Choosing LWE secrets r0 and r1 we compute a ciphertext ctxt = (c, d) by

cT ≈ (rT0, rT1) ·
(
A0 A1

G 0

)
= rT0 · A+ rT1 · (G 0) mod q

d ≈ (rT0, rT1) ·
(
y
0

)
+ Encode(msg) = rT0 · y + Encode(msg) mod q.

If we “decrypt” the ciphertext using (u0 = −G−1(y0),u1 = −G−1(y1)) as the
secret key, we obtain

d − cT ·
(
u0

u1

)
≈ rT0 · y + Encode(msg) − rT0 · (A0 A1) ·

(
u0

u1

)
︸ ︷︷ ︸

=y

−rT1 · (G 0) ·
(
u0

u1

)
︸ ︷︷ ︸

=−y0

= rT1 · y0 + Encode(msg) mod q.

Consequently, this “decryption operation” has produced (part of) a ciphertext
encrypted under the public key y0! Analogously, if we use the public key

pk :=
((

A0 A1

0 G

)
,

(
y
0

))
,

the above decryption operation would result in a ciphertext component rT1 ·
y1 + Encode(msg) mod q. Thus, decryption of such ciphertext with (u0 =
−G−1(y0),u1 = −G−1(y1)) is effectively a re-encryption to either public key
y0 or y1.

To make such a ciphertext decryptable under one of the corresponding secret
keys, we add an additional ciphertext component cT1 = rT1 ·A+e1 mod q to ctxt.
Then, a ciphertext ctxt for yb comprises of

cT ≈ rT0 · A+ rT1 · ((1 − b) · G b · G) mod q

cT1 ≈ rT1 · A mod q

d ≈ rT0 · y + Encode(msg) mod q.

Finally, observe that it doesn’t matter if the yb are actually dual-Regev public
keys or itself a hash value, the ciphertext structures are identical! Hence, for a
larger tree we can apply this mechanism recursively, which results in one addi-
tional ciphertext component cTi ≈ rTi ·A+ rT1 · ((1− bi) ·G bi ·G) mod q per level
of the tree, where the bi define the path through the tree.

Security of the Construction. We will now focus on establishing the security
of this construction with the goal of basing security on the LWE assumption. For
this purpose, we need to consider the error terms in our construction explicitly.
Let A = (A0 A1). A ciphertext ctxt = (c, c1, d) for b = 0 is computed by

cT = rT0 · A+ rT1 · (G 0) + e mod q

cT1 = rT1 · A+ e1 mod q

d = rT0 · y + e∗ + Encode(msg) mod q,
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where e, e1 and e∗ are short error vectors.
On the face of it, this looks almost like a classical LWE encryption. Hence,

one might try to reduce security directly to the LWE problem. That is, given
LWE samples (A,vT = rT0 ·A+ eT mod q) and (y, v = rT0 · y+ e∗ mod q) we can
simulate a ciphertext by computing

cT = vT + rT1 · (G 0) mod q

cT1 = rT1 · A+ e1 mod q

d = v + Encode(msg) mod q.

By replacing vT and v by uniformly random values, as per the LWE assumption,
the term d now hides msg and security follows.

However, upon closer inspection there is a problem with this approach: The
matrix A and the vector yT are not independent from the view of an adversary.
Specifically, the adversary knows an explicit relation between A and yT, namely

yT = A0 · (−G−1(y0)) +A0 · (−G−1(y1)) =: A · z mod q,

as y0 and y1 are known to the adversary. Here z :=
(−G−1(y0)

−G−1(y1)

)
is a binary

(and thus short) vector (denoted (u0,u1) above). For this reason, vT = rT0 ·A+
eT mod q and v = rT0 · y + e∗ mod q are easily distinguishable from uniformly
random values: It holds that v − vT · z = e∗ − eT · z mod q is short, whereas for
uniformly random vT and v this expression is, with high probability, not short.

Drowning Out Correlations. However, there is a fairly routine solution to
this issue using a technique called drowning. The idea is, given LWE samples
(A,vT = rT0 · A+ e mod q), to simulate v from v and z by computing it via

v ≈ vT · z = (rT0 · A+ eT) · z = rT0 · A · z+ eT · z = rT0 · y + eT · z mod q.

Yet, now the error terms in vT and v are obliviously correlated. To get rid of
this correlation, we can opt to drown it out: If e∗ is chosen from a suitable short
distribution which produces super-polynomially larger values than eT · z, then it
holds that eT · z+ e∗ ≈s e∗, i.e. eT · z+ e∗ and e∗ are statistically close. Hence,
we can simulate v by computing v = vT · z+ e∗ mod q.

Hence, our security proof now proceeds as follows. Given LWE samples
(A,vT = rT0 · A + eT mod q) we can simulate a ciphertext ctxt = (c, c1, d) by
sampling e∗ and setting

cT = vT + rT1 · (G 0) mod q

cT1 = rT1 · A+ e1 mod q

d = vT · z+ e∗ + Encode(msg) mod q.

If (A,v) are well-formed LWE samples, then by the above discussion,

d = vT · z+ e∗ + Encode(msg)

= rT0 · y + eT · z+ e∗ + Encode(msg)

≈s rT0 · y + e∗ + Encode(msg) mod q,
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i.e. such a ctxt = (c, c1, d) is statistically close to a real ciphertext. Under the
LWE assumption, we can now replace v with a uniformly random v′ and get

cT = v′T + rT1 · (G 0) mod q

d = v′T · z+ e∗ + Encode(msg) mod q.

Now, since v′ is uniformly random, we can equivalently choose it by computing
v′T = v′′T − rT1(G 0), where v′′ is also chosen uniformly random. That is, we
compute ctxt = (c, c1, d) by

cT = v′′T

cT1 = rT1 · A+ e1 mod q

d = (v′′T − rT1 · (G 0)) · z+ e∗ + Encode(msg)

= v′′T · z − rT1 · (G 0) · z+ e∗ + Encode(msg)

= v′′T · z+ rT1 · y0 + e∗ + Encode(msg) mod q,

as (G 0) · z = −y0 mod q. Going a step further, we can compute d by d =
v′′T · z+ d1 mod q, where d1 = rT1 · y0 + e∗ + Encode(msg) mod q is the payload
part of an encryption of msg under the public key y0. In other words, we are
now in a situation where we can simulate a ciphertext ctxt = (c, c1, d) given
and encryption (c1, d1) of msg under the public key y0! Hence, we can now
immediately appeal to the fact that, from the view of the adversary, y0 looks
indeed uniformly random to argue security: Via the LWE assumption, (A, rT1 ·
A + e1 mod q) and (y0, rT1 · y0 + e∗

1 mod q) are indistinguishable from uniform.
Thus, from the adversary’s view d1 looks uniformly random, and therefore d =
v′′T · z + d1 mod q also looks uniformly random. In fact, from the adversary’s
view all ciphertext components look uniformly random and independent.

LWE with Error-Leakage. Drowning is, however, a rather heavy-handed app-
roach that, for all intents and purposes, ruins the LWE parameters. Specifically,
to use this approach we need to assume the security of LWE with superpolyno-
mial modulus-to-noise ratio. This means, in turn, that the underlying worst-to-
average case reduction of LWE [41] reduces LWE to worst-case lattice problems
with super-polynomial approximation factors. Moreover, it forces us to use a
superpolynomially large modulus q.

We will now look a bit closer at the above drowning step. Specifically, given
z and vT = rT0 · A+ e mod q we computed

v = vT · z+ e∗ = rT0 · A · z+ eT · z+ e∗ = rT0 · y0 + eT · z+ e∗ mod q.

Our main observation is the following: If we were somehow given an advice l =
−eT ·z+e∗ about e and e∗, we could use l to switch the correlated error term eT ·z
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in vT ·z to a fresh and uncorrelated e∗. Namely by computing v = vT ·z+l mod q.
Then it holds that

v = vT · z+ l = rT0 · y0 + eT · z − eT · z+ e∗ = rT0 · y0 + e∗ mod q.

Thus, such an advice l is sufficient to make the security argument in the last
paragraph work. Our hope now is that the advice l = −eT · z+ e∗ does not fully
reveal e and e∗, i.e. that e and e∗ mutually conceal one another, even if the
parameters of these error terms are way below the drowning regime.

This motivates the definition of Learning with Errors with Error-Leakage,
elLWE for short. As the name suggests, in this variant of the LWE problem
the adversary gets a leak or advice about the LWE error term. To make this
definition useful for our purposes, we will allow the leak to depend on the LWE
matrix A. Consequently, we will define elLWE similarly to the regular LWE
assumption, but via an interactive experiment. The security experiment of elLWE
is given as follows, where we assume that a modulus q, dimensions n,m and error
distributions χ, χ∗ are parametrized by the security parameter.

The elLWE Security Experiment:

– In the first step, the experiment chooses a uniformly random matrix
A ←$Z

n×m
q and provides A to the adversary.

– Given the matrix A, the adversary now chooses a short vector z ∈ Z
m and

provides z to the experiment.
– The experiment samples e ←$χ1 and e∗ ←$χ∗ and sets l = eT · z+ e∗.
– Now the experiment flips a random bit b ←$ {0, 1}. If b = 0 it chooses a

uniformly random r ←$Z
n
q and sets vT = rT ·A+eT mod q. If b = 1 it chooses

v ←$Z
m
q uniformly at random.

– The experiment now provides (A,v, l) to the adversary. The adversary then
produces a guess b′ ∈ {0, 1} for the bit b

– If b′ = b the adversary wins, and loses otherwise.

As usual, we say that elLWE is secure if no PPT adversary has non-negligible
advantage in this experiment. Now, via the above discussion we can routinely
reduce the security of our construction to elLWE.

We remark that the elLWE problem generalizes the extended LWE problem [6,
38]. Specifically, in the extended LWE problem the vector z is chosen at random
from a Gaussian distribution instead of adversarially (as in the case of the elLWE
problem).

From LWE to elLWE. As an additional technical contribution of this work,
we provide a hardness result for elLWE. Specifically, we show that the security of
elLWE can be based on standard LWE with polynomial modulus-to-noise ratio. In
this paragraph, we will sketch the main ideas underlying this result. In a nutshell,
the main idea of our approach is to choose the leakage term l independent of the
LWE error, and then adjust the LWE error in such a way that it conforms with
the leakage. More precisely in the case of Gaussian e and e∗, we will show the
following. There is a (sufficiently wide) Gaussian distribution ê, such that for
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every (short) vector z there is an efficiently sampleable pair of correlated random
variables (fz, fz) (independent of ê), such that

(eT, eT · z+ e∗) ≈s (êT + fTz , fz).

In other words, fz simulates the leakage eT · z + e∗, whereas fz can be used to
additively adjust an independent Gaussian ê to have the same distribution as
e given the leakage eT · z + e∗. Equipped with such an efficiently sampleable
pair (fz, fz), reducing elLWE to LWE is almost straightforward: Given an LWE
instance (A,vT) we run the elLWE adversary on A, who returns z. The reduction
now samples (fz, fz), provides (A,vT + fTz , fz) to the adversary, and outputs
whatever the adversary outputs.

On one side, if vT is an LWE sample, i.e. vT = rT · A+ ê mod q, then

(A,vT + fTz , fz) = (A, rT · A+ ê+ fTz mod q, fz)

≈s (A, rT · A+ eT mod q, eT · z+ e∗),

is statistically close to a correctly formed elLWE sample for b = 0.
On the other hand, if v is chosen uniformly random, then v′ := v+fz mod q is

also uniformly random. Consequently (A,v+ fz mod q, fz) ≈s (A,v′, eTz+ e∗),
i.e. it is statistically close to an elLWE sample for b = 1. The claim follows.
Notice that this reduction is tight, i.e. it does not (substantially) degrade the
adversary’s runtime or advantage. Further notice that this reduction is agnostic
of the structure of the matrix A and the secret r. Consequently, it is applicable
to any structured LWE variant [14].

Constructing the Leakage Simulator. We will now briefly discuss how such a
pair (fz, fz) can be constructed. For simplicity, assume that e and z are scalars,
i.e. e = e and z = z. To further simplify matters, assume first that e and
e∗ are continuous Gaussians instead of discrete Gaussians. In this perspective,
(e, ez + e∗) is a pair of correlated Gaussians, i.e. a 2-dimensional Gaussian with
(possibly) non-diagonal covariance matrix. If e ∼ Dσ and e∗ ∼ Dσ∗2, then a
routine calculation shows that the covariance matrix C of (e, ez + e∗) is

C =
(

σ2 σ2z

σ2z σ2z2 + σ∗2

)
.

Our idea now is, basically speaking, to find an alternative way to represent
this distribution. Specifically, we want to alternatively compute (e, ez + e∗) via
(ê + we†, e†), where ê ∼ Dσ̂ and e† ∼ Dσ† are independent Gaussians and w
is fixed (depending on σ, σ∗ and z). Again, a routine calculation finds that the
covariance matrix C′ of (ê + we†, e†) is

C′ =

(
σ̂2 + σ†2w2 σ†2w

σ†2w σ†2

)
.

2 We denote the continuous Gaussian distribution with parameter σ by Dσ, i.e. the

probability density function of Dσ is proportional to e
−π x2

σ2 .
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Now, two centered multivariate Gaussians are identically distributed, if and only
if they have the same covariance matrix. Consequently, setting C = C′ and
solving for σ̂2, σ†2 and w yields

σ†2 = σ2z2 + σ∗2,

w =
σ2z

σ†2 =
σ2z

σ2z2 + σ∗2 ,

σ̂2 = σ2 − σ†2w2 = σ2 − σ4z2

σ2z2 + σ∗2 =

(
1 − 1

1 + σ∗2

σ2z2

)
σ2. (1)

That is, for these parameters of σ̂, σ† and w it holds that (e, ez + e∗) ≡ (ê +
we†, e†), i.e. the two pairs are identically distributed. Thus, we can define (fz, fz)
by fz = we† and fz = e†.

Now, recall that in our reduction ê corresponds to the error-term in the
underlying LWE-instance. Thus, we should choose σ∗ so as to ensure that ê ∼ Dσ̂

is a sufficiently wide Gaussian, while σ∗ should not be too large. A reasonable
choice for σ∗ (which simplifies calculations) is to choose it such that σ∗ ≥ σ · β,
where β is an upper bound for |z| (recall that z is adversarially chosen but short).
For this choice of σ∗, it holds by (1) that σ̂ ≥ σ/

√
2. In other words, for this

parameter choice σ∗ is only a factor β bigger than σ, whereas σ̂ is only a factor
1/

√
2 smaller than σ. In essence, this means that the reduction roughly preserves

the LWE parameters, up to small factors.
The final piece of our reduction is to make this leakage simulator work for

discrete Gaussians instead of continuous Gaussians. For this, we will make use of
Peikert’s randomized rounding approach [39]. That is, a discrete Gaussian can be
computed as the randomized rounding of a continuous Gaussian. This, together
with Regev’s discrete-to-continuous Gaussian smoothing lemma [41], allows us
to adapt the simulator for continuous Gaussians to discrete Gaussians. While
the simplified analysis above only uses simple arithmetic, the actual analysis in
the full version, while similar in spirit, relies on more involved concepts from
singular value analysis to deal with high-dimensional multivariate Gaussians.

2.2 Applications

Laconic OT. As a warm-up application, it is easy to see that laconic encryption
immediately implies laconic OT. Alice can construct a binary tree of keys with
the following procedure: For each index pair (2ind, 2ind − 1), Alice inserts in the
tree a uniformly sampled public key either in the even position if Dind = 0, or in
the odd position if Dind = 1. Bob can then simply encrypt msg0 with respect to
the index 2ind and msg1 with respect to index 2ind−1. Since Alice is semi-honest,
the security of laconic encryption immediately carries over.

Registration-Based Encryption. Laconic Encryption almost implies RBE:
Each user ind generates a key-pair and sends her pkind for registration to an
(untrusted) Key Curator, which is added to the database D ← D ∪ {pki}.
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Then the digest d (the root of the tree) and the witnesses witj of all users
are updated accordingly. Encryption and decryption with respect to ind work
exactly as in laconic encryption. The crucial caveat is that in RBE, being highly
dynamic, it’s unrealistic to consider that the users are receiving an updated wit
each time a new user registers. Therefore, there is an additional strict efficiency
requirement: No user’s witness should change more than logN times throughout
the lifetime of the system (N being the total number of users). This requirement
minimizes the interaction between a user and the key curator.

Garg et al. [24] achieve this requirement by providing a direct construction
based on Merkle trees. In a nutshell, to accumulate the public keys, there are
multiple Merkle trees with an increasing number of leaves. A new public key
enters a (degenerate) tree that consists of a single leaf. Then, as soon as the
number of its leaves is the same with the next tree, the two trees are merged. This
means that a tree (and therefore its corresponding paths-witnesses) is changing
only when its leaves are doubled. Overall, this translates to logN number of trees
and thus at most logN number of updates per user’s witness. We generalize this
idea and show a generic transformation from any laconic encryption scheme to
a registration-based encryption scheme. A more detailed overview and a formal
description can be found in the full version.

Laconic PSI. We present a semi-honestly secure laconic PSI from laconic
encryption. Here the receiver who owns a large database chooses a message
for the sender to encrypt, and then it checks whether the ciphertext can be
decrypted correctly with respect to the indices registered on the receiver’s side.

We first need to have a hash function H : {0, 1}∗ 
→ {0, 1}� to map elements
into the universe of indices. For simplicity, we assume the sender’s set is a sin-
gleton set SS = {y}. Besides sampling a hash function H, the setup phase is the
same as the laconic encryption. Then the receiver constructs a binary tree with
the freshly generated public keys with respect to the indices where the elements
in SR are mapped. In the meantime, the receiver generates the witnesses. Then
the receiver sends the updated st and a random message msg. Next, the sender
encrypts msg with st with respect to the index H(y), and sends the ciphertext
ctxt to the receiver. Finally, upon receiving the ciphertext, the receiver will check
for all xk ∈ SR, whether it holds that Dec(skk,witk, ctxt) = msg. If it finds such
a k, xk will be output as the intersection of SS and SR. The actual protocol will
be obtained by running the above for every element in the sender’s set. Cor-
rectness and security of this protocol follows from the guarantees of the laconic
encryption scheme. For more details, we refer the reader to the full version.

Identity-Based Encryption. We also show that our laconic encryption scheme
can be modified to construct an IBE. The basic idea is simple: Instead of con-
structing a tree of public keys iteratively, the key authority implicitly defines
an exponentially large tree by sampling the root of the tree at random. The
key difference is that now the authority must choose the matrices in the public
parameters with a trapdoor. This way, when the user ind wants to register to
the system, the authority can provide it with the appropriate root-to-leaf path
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(which will function as the secret key) by sampling pre-images, starting from the
root and all the way down to the corresponding leaf.

Compared with other LWE-based constructions [1,13,16,18,21], our IBE sup-
ports an unbounded identity space, and has a tight security reduction of full
(adaptive) security in the standard model. This is achieved with a new simula-
tion strategy that relies on two alternating pairs of matrices (B0,even,B1,even) and
(B0,odd,B1,odd), for left and right children and for even and odd layers, respec-
tively. In the security proof, the simulator can “forget” the trapdoor of any one
of the four matrices, and it can still issue decryption keys using the remaining
trapdoors. This way, one can substitute ciphertext components one-by-one with
uniformly sampled vectors. Proceeding until the last layer completes the security
proof. A more detailed overview can be found in the full version.

Pre-Processing and Other Extensions. To increase the efficiency of our
laconic encryption even further, we also construct a pre-processing variant of
our scheme. Informally, the encryption algorithm Enc is split into an offline
part (OfflineEnc), which is input-independent, and an online part (OnlineEnc).
Crucially, the online algorithm is much more efficient and does not perform
any public-key operation. The main observation is that each element of the
ciphertext ci depends only on a single bit of the corresponding index/identity.
Thus, we can let the OfflineEnc algorithm computing both possible ciphertexts
for each bit of the index (making sure to use the randomness consistently), and
output two commitments. The OnlineEnc algorithm is on the other hand given
the index ind, so it can complete the encryption by simply revealing the openings
of the commitments corresponding to (ind1, . . . , ind�). As for the message, the
OfflineEnc algorithm can simply encrypt a random bit r, and when the message
msg is given to the OnlineEnc algorithm, it can simply output msg⊕r. This way,
the OnlineEnc is entirely combinatorial, and all the public-key operation happen
in an offline and input-independent phase.

We also explore a number of other extensions of laconic encryption: We
describe how we can make the encryption algorithm compatible with other
encryption schemes (possibly not even lattice-based), and we present an alter-
native laconic encryption construction that offers different efficiency trade-offs.
We refer the reader to the full version for more details.

3 Preliminaries

Let (n, p, q) = (n, p, q)(λ) with p < q. Let m := n · logp q�. Define the (p, q)-ary
gadget matrix

G := In ⊗ (1 p . . . p�logp q�)

and denote the (balanced) p-ary decomposition by G−1(·). For a bit b ∈ {0, 1},
denote b̄ := 1 − b.
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3.1 Lattices

Let K = Q(ζ) be a cyclotomic field and R = Z[ζ] its ring of integers, where
ζ ∈ C is a root of unity. Write dR for the degree of (the cyclotomic polynomial
defining K and) R. The (infinity) norm ‖·‖ of an element a =

∑dR−1
i=0 aiζ

i ∈ R
is defined as the norm of its coefficient vector (a0, . . . , adR−1) ∈ Z

dR , i.e. ‖a‖ =
maxdR−1

i=0 |ai|. For a vector x = (x0, . . . , xm−1) ∈ Rm, its norm is defined as
‖x‖ := maxm−1

i=0 ‖xi‖. For q ∈ N, write Rq := R/qR. Let χ be a distribution over
R.

Definition 1 (LWER,n,q,χ Assumption). Let R, n,m, q, χ be parametrised by
λ. The (decision) LWER,n,m,q,χ assumption states that for any PPT adversary
A∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎣A(A,b) = 1

∣∣∣∣∣∣∣∣∣

A ←$Rn×m
q

s ←$Rn
q

e ←$χm

bT = sT · A+ eT mod q

⎤
⎥⎥⎥⎦ − Pr

[
A(A,b) = 1

∣∣∣∣∣
A ←$Rn×m

q

b ←$Rm
q

]
∣∣∣∣∣∣∣∣∣

≤ negl(λ).

The LWER,n,q,χ assumption is said to hold if the LWER,n,m,q,χ assumption holds
for all m = poly(λ).

Definition 2 (Discrete Gaussian Distributions). Let m ∈ N and s > 0.
The discrete Gaussian function over R with parameter s is defined as ρs(x) :=
exp

(
−π |x|2

s2

)
with support R. The discrete Gaussian distribution over Z with

parameter s is defined as DZ,s(x) := ρs(x)∑
x′∈Z

ρs(x′) with support Z. The discrete
Gaussian distribution over R with parameter s, denoted by DR,s is induced by
sampling dR independent samples xi ←$DZ,s and outputing x =

∑dR−1
i=0 xi · ζi.

We recall a version of the leftover hash lemma over cyclotomic rings.

Lemma 1 (Adapted from [11, Lemma 7]). Let n = poly(λ), p, q ∈ N, and
m ≥ n · logp q + ω(log λ). The following distributions are statistically close in λ:

⎧⎪⎨
⎪⎩(B,y) :

B ←$Rn×m
q

x ←$Rm
p

y := B · x mod q

⎫⎪⎬
⎪⎭ and

{
(B,y) :

B ←$Rn×m
q

y ←$Rn
p

}
.

Lemma 2 (Derived from [37, Section 2.4]). For any k > 0,

Pr[‖u‖ > k · s |u ←$DR,s] < 2 · dR · exp(−π · k2).

Definition 3 (Ring Expansion Factor). The expansion factor of R, denoted
by γR, is γR := maxa,b∈R\{0}

‖a·b‖
‖a‖·‖b‖ .

Proposition 1 ([4]). If R is a prime-power cyclotomic ring, then γR ≤ 2 degR.
If R is a power-of-2 cyclotomic ring, then γR ≤ degR.
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4 Laconic Encryption

4.1 Definition

Definition 4 (Laconic Encryption). A laconic encryption scheme for mes-
sage space M consists of a tuple of PPT algorithms (Setup,KGen,Upd,Enc,
WGen,Dec) with the following syntax:

– (pp, st, aux) ← Setup(1λ, 1�): The setup algorithm is a randomized algorithm
which takes as input the security parameter 1λ and a length parameter 1�. It
generates the public parameters pp, a state st, and some auxiliary information
aux.

– (pk, sk) ← KGen(pp): The key generation algorithm takes as input the public
parameters pp and outputs a pair of public and secret keys (pk, sk).

– st′ ← Updaux(pp, st, ind, pk): The membership update algorithm, with (read-
and-write-)random access to the auxiliary information aux, takes as input the
public parameters pp, the state st, an index ind ∈ {0, 1}�, and a public key pk
(or ⊥). It outputs updated state st′.

– ctxt ← Enc(pp, st, ind,msg): The encryption algorithm is a randomized algo-
rithm which takes as input the public parameters pp, the state st, an index
ind ∈ {0, 1}�, and a message msg ∈ M. It outputs a ciphertext ctxt.

– wit ← WGenaux(pp, st, ind, pk): The witness generation algorithm, with (read-
)random access to the auxiliary information aux, takes as input the public
parameters pp, the state st, an index ind ∈ {0, 1}�, and a public key pk. It
outputs a (non)-membership witness wit.

– msg ← Dec(sk,wit, ctxt): The decryption algorithm takes as input a secret
key sk, a membership witness wit, and a ciphertext ctxt. It outputs a message
msg.

Furthermore, there exists t ∈ poly(λ, �) such that all above algorithms run in
time at most t(λ, �).

Our correctness definition considers a scenario where the public parameters
have underdone an arbitrary sequence of updates such that in the latest ver-
sion a tuple (ind, pk) is registered. In this case, if a message is encrypted with
respect to (pp, st, ind, pk), then decrypting the ciphertext with the secret key sk
corresponding to pk recovers the message with overwhelming probability.

Definition 5 (Correctness). A laconic encryption scheme Π is said to be
statistically correct if for any (unbounded) algorithm A, any � = poly(λ), it
holds that

Pr
[
CorrectnessΠ,A(1λ, 1�) = 1

] ≥ 1 − negl(λ)

where the experiment CorrectnessΠ,A is defined in Fig. 1.

Our security definition combines both index and message-hiding. It requires
that if each of two adversarially chosen indices ind0, ind1 is either registered by
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CorrectnessΠ,A(1λ, 1�)

Honest := Empty dictionary
(pp, st, aux) ← Setup(1λ, 1�)

(ind∗,msg∗) ← AKGenO,UpdO(pp, st, aux)

if ind∗ /∈ Honest then return 1

ctxt∗ ← Enc(pp, st, ind∗,msg∗)

(pk∗, sk∗) ← Honest[ind∗]

wit∗ ← WGen(pp, st, aux, ind∗, pk∗)

msg = Dec(sk∗,wit∗, ctxt∗)

return (msg = msg∗)

KGenO(ind)

(pk, sk) ← KGen(pp)

st ← Updaux(pp, st, ind, pk)

Honest[ind] := (pk, sk)

return (st, aux, pk)

UpdO(ind, pk)

pp ← Updaux(pp, st, ind, pk)

if pk = ⊥ then Honest[ind] := ⊥
else Malicious := Malicious ∪ { ind }
return (pp, aux)

Securityb
Π,A(1λ, 1�)

Malicious := ∅
(pp, st, aux) ← Setup(1λ, 1�)

(M0, M1) ← AKGenO,UpdO(pp, st, aux)

M0 = (ind0,msg0), M1 = (ind1,msg1)

if { ind0, ind1 } ∩ Malicious �= ∅ then

return 0

ctxt∗ ← Enc(pp, st, indb,msgb)

b′ ← AKGenO,UpdO(ctxt∗)

return b′

PseudorandomnessbΠ,A(1λ, 1�)

Malicious := ∅
(pp, st, aux) ← Setup(1λ, 1�)

(ind∗,msg∗) ← AKGenO,UpdO(pp, st, aux)

if ind∗ ∈ Malicious then return 0

if b = 0 then

ctxt∗ ← Enc(pp, st, ind∗,msg∗)

else ctxt∗ ←$ C
b′ ← AKGenO,UpdO(ctxt∗)

return b′

Fig. 1. Correctness, security, pseudorandomness and update privacy experiments for
laconic encryption.

an honest party (so that the secret key is unknown to the adversary) or not
registered, then for any adversarially chosen messages msg0,msg1 the adversary
should not be able to distinguish a ciphertext encrypting msg0 with respect to
ind0 from that encrypting msg1 with respect to ind1.

Definition 6 (Security). A laconic encryption scheme Π is said to be secure
if for any PPT (stateful) adversary A, any � = poly(λ), it holds that

|Pr [Security0Π,A(1λ, 1�) = 1
]− Pr

[
Security1Π,A(1λ, 1�) = 1

]| ≤ negl(λ)

where the experiment Securityb
Π,A is defined in Fig. 1.

We will further define a slightly stronger security notion called pseudorandom
ciphertexts. In essence, this property guarantees that if an index ind∗ has not
been registered, then a ciphertext with respect to ind∗ looks pseudorandom.

Definition 7 (Pseudorandom Ciphertexts). A laconic encryption scheme
Π with ciphertext space C is said to be have pseudorandom ciphertexts if for
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any PPT (stateful) adversary A, any � = poly(λ), it holds that

|Pr [Pseudorandomness0Π,A(1λ, 1�) = 1
]− Pr

[
Pseudorandomness1Π,A(1λ, 1�) = 1

]|
≤ negl(λ)

where the experiment Pseudorandomnessb
Π,A is defined in Fig. 1.

We also define a security notion called update privacy. It requires that the
state st hides the indices where the public keys have been registered.

Definition 8 (Update Privacy). A laconic encryption scheme Π is said to
be updated private if the distribution of the state st is (statistically close to)
independent of the update operations Updaux.

4.2 Our Construction

We construct a laconic encryption scheme for the message space M = R2

in Fig. 2.

Theorem 1. Let R, �,m, p, q, s, t be such that s < t, χ = DR,s, χ̄ = DR,t, and
q > ((2� + 1) · m · γR · p + 4) · √

λ · t + 1. The construction in Fig. 2 is correct
with overwhelming probability in λ.

Proof. Observe that decryption is correct whenever |e−eT ·
(
u[ind]

xind

)
| < (q−1)/4.

By Lemma 2, with overwhelming probability in λ, we have ‖e‖ ≤
√

λ
2 · t and

‖e‖ ≤
√

λ
2 · s <

√
λ
2 · t. Since

(
u[ind]

xind

)
∈ R(2�+1)m

p , we have
∥∥∥∥
(
u[ind]

xind

)∥∥∥∥ ≤ p/2.

Combining these facts yields
∥∥∥∥e − eT ·

(
u[ind]

xind

)∥∥∥∥ ≤ (2� + 1) · m · γR ·
√

λ

2
· t · p

2
+

√
λ · t < (q − 1)/4

with overwhelming probability in λ. ��
Theorem 2. If dR ≥ λ, m ≥ n · logp q + ω(log λ), and the LWER,n,q,χ assump-
tion holds, the laconic encryption in Fig. 2 is secure. More specifically, for every
PPT adversary A against the pseudorandom ciphertext security of the construc-
tion in Fig. 2, there exist PPT adversaries A1 against elLWER,n,m,1,q,χ,χ̄,p/2, A2

against LWER,n,2m,q,χ and A3 against LWER,n,m+1,q,χ such that

adv(A) ≥ � · adv(A1) + adv(A2) + � · adv(A3) + lhl(λ)

where lhl is the statistical distance defined by Lemma 1.

Proof. Denote the construction by Π and write C := R(2�+1)m+1
q for the cipher-

text space. Before we discuss the hybrids, we will briefly analyze the struc-
ture of the challenge ciphertext. In the following, let ind∗ = (ind∗

1, . . . , ind∗
� ),
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Setup(1λ)

A0,A1,B ←$Rn×m
q

yε := y∗ ←$Rn
q

T := { ε }
pp := (A0,A1,B,y∗)
st := yε

aux := (T , {yv }v∈T )

return (pp, st, aux)

KGen(pp)

x ←$Rm
p

y := B · x mod q

return (pk, sk) := (y,x)

Updaux(pp, st, ind, pk)

if pk = ⊥ then

T := T \ { ind }
else

T := T ∪ { ind }
yind := pk

st′ ← TreeUpdateaux(pp, st, ind)

return st′

Enc(pp, st, ind,msg)

rj ←$Rn
q , ∀j ∈ { 0, . . . , � }

for j = 0, . . . , � − 1 do

ej ←$χ2m

Bj :=

(
A0 A1

¯indj+1 · G indj+1 · G

)

cTj := (rTj , rTj+1) · Bj + eTj mod q

e� ←$χm, e ←$ χ̄

cT� := rT� · B+ eT� mod q

d := rT0 · yε + e + � q
2
� · msg mod q

return ctxt := (c0, . . . , c�, d)

WGenaux(pp, st, ind, pk)

for j = � − 1, . . . , 0 do

uind1:j‖0 := −G−1(yind1:j‖0)

uind1:j‖1 := −G−1(yind1:j‖1)

return wit := (uind1:j‖0,uind1:j‖1)
�−1
j=0

Dec(sk,wit, ctxt)

parse sk as xind

μ̄ := d −
�−1∑
j=0

cTj ·
(

uind1:j‖0
uind1:j‖1

)
− cT� · xind mod q

if |μ̄| < q/4 then return 0

else return 1

TreeUpdateaux(pp, st, ind)

for j = � − 1, . . . , 0 do

if (ind1:j‖0) /∈ T ∧ (ind1:j‖1) /∈ T then // Both children of ind1:j are unassigned.

T := T \ { ind1:j }
else

if (ind1:j‖ ¯indj+1) /∈ T then // ind1:j+1 is assigned but its sibling not.

yind1:j‖ ¯indj+1
:= y∗

uind1:j‖0 := −G−1(yind1:j‖0), uind1:j‖1 := −G−1(yind1:j‖1)
T := T ∪ { ind1:j } // Assign ind1:j if any of its children is assigned.

yind1:j := A0 · uind1:j‖0 +A1 · uind1:j‖1 mod q

return st

Fig. 2. Construction of laconic encryption.
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and let k be such that ind∗
1:k = (ind∗

1, . . . , ind∗
k) is a leaf node in the tree

for which the adversary does not have a corresponding preimage. Further-
more, we denote y∗

i = yind∗
1:i

at the nodes ind∗
1, . . . , ind∗

1:k. In the following
let ctxt∗ = (c0, . . . , c�, d) be the challenge ciphertext. Consider the following
hybrids.

– H0: Identical to Pseudorandomness0Π,A(1λ, 1�). Note that in this hybrid

cTj = rTj · (A0 A1) + rTi+1( ¯indi+1G indi+1G) + eTj mod q ∀j ∈ {0, . . . , � − 1},

cT� = rT� · B+ eT� mod q, and

d = rT0 · y∗
0 + e + �q

2
� · msg mod q.

– H1: Compute ctxt∗ as follows. Choose c0, . . . , ck−1 ←$R2m
q uniformly at ran-

dom, choose e0, . . . , ek−1 ←$χ2m, and set

d =
k−1∑
j=0

(cj − ej)T · zj + rTk · y∗
k + e + �q

2
� · msg mod q,

where zj =

(
uind∗

1:j‖0
uind∗

1:j‖1

)
∈ R2m

p . Furthermore, compute ck, . . . , c� as in H0.

– H2: In this hybrid we choose ck ←$R2m
q and d ←$Rq uniformly at random.

– H3: In this hybrid we choose ci ←$R2m
q uniformly at random for i = k +

1, . . . , � − 1 and c� ←$Rm
q uniformly at random.

Note that in H3 all ciphertext components are chosen uniformly random. Hence
the claim of the theorem follows. We will establish the indistinguishability of
successive hybrids via a sequence of lemmata. ��
Lemma 3. For any PPT adversary A there exists a PPT adversary A1 against
elLWER,n,m,1,q,χ,χ̄,p/2 such that

|Pr [H0(A) = 1] − Pr [H1(A) = 1] | ≤ � · adv(A1).

Proof. To show that H0 and H1 are computationally indistinguishable, we define
the following sub-hybrids H′

0, . . . ,H′
� and H′′

0 , . . . ,H′′
� .

– H′
i (for i = 0, . . . , �): H′

0 is identical to H0 and hybrids H′
>k are identical

to H1. For the middle cases, i.e. 1 ≤ i ≤ k, we define hybrid H′
i so that

c0, . . . , ci−1 and d are computed as in H1, and ci, . . . , c� are computed as in
H0. Specifically, different from H0, we choose c0, . . . , ci−1 ←$R2m

q uniformly
at random, choose e0, . . . , ei−1 ←$χ2m and set

d =
i−1∑
j=0

(cj − ej)T · zj + rTi · y∗
i + e + �q

2
� · msg mod q.
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– H′′
i (for i = 1, . . . , �): If i > k, then this hybrid is identical to H′

i. Else
(1 ≤ i ≤ k), cj for all j ∈ [0 : �]\{i − 1} are computed as in H′

i, and ci−1 is
computed as follows. Choose ĉi−1 uniformly at random and set

cTi−1 = ĉTi−1 + rTi · ( ¯indi · G indi · G) mod q.

Furthermore, we set

d =
i−2∑
j=0

(cj − ej)T · zj + (ĉTi−1 − eTi−1) · zi−1 + e + �q

2
� · msg mod q.

First, observe that H′
i and H′′

i are in fact identically distributed: In H′′
i , since

ĉi−1 is uniformly and independently distributed, we can equivalently compute
it as

ĉTi−1 = c̄Ti−1 − rTi · ( ¯indi · G indi · G)

for a uniformly random and independent c̄i−1. This makes ci−1 = c̄i−1 uniformly
random, as in H′

i. Substituting the new ĉi to the expression of d in H′′
i , we have

d =
i−2∑
j=0

(cj − ej)T · zj + (ĉTi−1 − eTi−1) · zi−1 + e + �q

2
� · msg mod q

=
i−2∑
j=0

(cj − ej)Tzj + (cTi−1 − rTi ( ¯indiG indiG) − eTi−1)zi−1 + e + �q

2
�msg mod q

=
i−1∑
j=0

(cj − ej)T · zj − rTi · ( ¯indi · G indi · G) · zi−1 + e + �q

2
� · msg mod q

=
i−1∑
j=0

(cj − ej)T · zj + rTi · y∗
i + e + �q

2
� · msg mod q,

as in H′
i, where the last equality was due to ( ¯indi · G indi · G) · zi−1 = −y∗

i .
The main technical part of this proof lies in establishing indistinguishability

between hybrids H′
i and H′′

i+1 for i ∈ {0, . . . , � − 1}. Note that the case k <
i ≤ � − 1 is trivial since H′′

i = H′
i = H1 for i > k. In the following, we focus

on the remaining case 0 ≤ i ≤ k. We will show that these two hybrids are
indistinguishable under elLWE. Assume towards contradiction that

Pr [H′
i(A) = 1] − Pr

[H′′
i+1(A) = 1

] ≥ ε.

We will show that this implies a PPT adversary A′
1 against elLWE with advantage

ε.
The adversary A′

1 is specified as follows. As input it receives a matrix A ∈
Rn×2m

q , and it parses A as A = (A0 A1) where A0,A1 ∈ Rn×m
q . Now A′

1

simulates H′
i(A) with the matrices A0,A1 thus obtained, until the adversary A

queries the challenge ciphertext. Now it chooses z∗ = −zi and sends z∗ to its
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challenger. Note that z∗ is a legit query as ‖z∗‖ ≤ p/2. Now A′
1 obtaining a leak

l and y. Next, it computes the challenge ciphertext as in H′
i(A), except that it

sets
ci = y + ri+1 · ( ¯indi+1 · G indi+1 · G) mod q

and

d =
i−1∑
j=0

(cj − ej)Tzj − yT · z∗ + l + �q

2
� · msg mod q.

Note that the remaining ciphertext components are the same as in H′
i(A) and

H′′
i+1(A). From there on, A′

1 continues the simulation of H′
i(A) and outputs

whatever H′
i(A) outputs.

Now let b ∈ {0, 1} be the challenge bit of the elLWE experiment. We claim
that if b = 0, then A′

1 faithfully simulates H′
i(A). On the other hand, we claim

that for b = 1 the A′
1 faithfully simulates H′′

i+1(A). From these two claims it
follows that A′

1 has advantage ε.

– For b = 0, it holds that yT = rT · A + eT = rT · (A0 A1) + eT mod q and
l = eT · z∗ + e = −eT · zi + e mod q. Renaming r to ri and e to ei, it holds
that

cTi = yT + rTi+1 · ( ¯indi+1 · G indi+1 · G) mod q

= rTi · (A0 A1) + rTi+1 · ( ¯indi+1 · G indi+1 · G) + eTi mod q

and

d =
i−1∑
j=0

(cj − ej)T · zj − yT · z∗ + l + �q

2
� · msg mod q (2)

=
i−1∑
j=0

(cj − ej)T · zj + (rTi · A+ eTi ) · zi − eTizi + e + �q

2
� · msg mod q (3)

=
i−1∑
j=0

(cj − ej)T · zj + rTi · y∗
i + e + �q

2
� · msg mod q, (4)

where the last equality holds as y∗
i = Azi. We can conclude that in this case

the simulation of A′
1 and H′

i(A) are identically distributed.
– For b = 1, it holds that y = ĉi for a uniformly random ĉi ←$R2m

q and
l = eT · z∗ + e = −eTzi + e. It therefore holds that

cTi = yT + rTi+1 · ( ¯indi+1 · G indi+1 · G) mod q

= ĉTi + rTi+1 · ( ¯indi+1 · G indi+1 · G) mod q
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and

d =
i−1∑
j=0

(cj − ej)T · zj − yT · z∗ + l + �q

2
� · msg mod q

=
i−1∑
j=0

(cj − ej)T · zj + ĉTi · zi − eTizi + e + �q

2
� · msg mod q

=
i−1∑
j=0

(cj − ej)T · zj + (ĉTi − eTi ) · zi + e + �q

2
� · msg mod q.

I.e. it holds that in this case the simulation of A′
1 and H′′

i+1(A) are identically
distributed. ��

Lemma 4. For any PPT adversary A there exists a PPT adversary A2 against
LWER,n,2m,q,χ such that

|Pr [H1(A) = 1] − Pr [H2(A) = 1] | ≤ adv(A2) + lhl(λ).

Proof. In the following we describe the adversary A2 for the case where k �= �,
i.e., the challenge identity is not registered. For the case k = �, the argument
is the same, except that we first invoke Lemma 1 to switch the matrix B to
uniformly sampled, which introduces an additive (statistical) term lhl(λ) in the
distance between the two hybrids.

A2 first queries 2m LWE samples from its oracle and arranges them in matrix
form as (A,v), this A is then parsed as A = (A0 A1) and uses A0 and A1 in
pp, whereas the vector v is stored. Next, A2 queries m LWE samples from its
oracle and arranges them in matrix form as (B,v′), this B is then used as part
of pp. Now A2 simulates H1, but whenever a new honest key pk∗

i is generated,
A2 queries its LWE oracle and obtains (ŷi, v̂i), sets pki = ŷi and stores v̂i.
The challenge ciphertext is generated as follows: Assume the challenge identity
ind∗ terminates in a public key pki∗ . The challenge ciphertext is computed as in
H2(A), except that we set

d =
k−1∑
j=0

(uj − ej)T · zj + v̂i∗ + �q

2
� · msg mod q

and cTk = v if k < � and cTk = v′ if k = �. A2 then continues simulation of H2(A)
and outputs whatever H2(A) outputs.

First observe that if (A,v), (B,v′) and {(ŷi∗ , v̂i∗)} are LWE samples, i.e.
v = sT · A+ eT mod q, (v′)T = sT · B+ êT mod q and v̂i∗ = sT · ŷi∗ + êi∗ mod q,
then the simulation of A2 is identically distributed to H2(A). On the other hand,
if c, v′ and the v̂i∗ are uniformly random and independent, then the simulation
of A2 is identically distributed to H3(A). The claim of the lemma follows. ��
Lemma 5. For any PPT adversary A there exists a PPT adversary A3 against
LWER,n,m+1,q,χ such that

|Pr [H2(A) = 1] − Pr [H3(A) = 1] | ≤ � · adv(A3).



442 N. Döttling et al.

Proof. Consider the following hybrids H′′′
0 , . . . ,H′′′

� , where H′′′
0 is identically dis-

tributed to H2, and H′′′
� is identically distributed to H3.

– H′′′
i+1 (For i = 0, . . . , � − 1): Identically distributed to Hi, except that, for

i > k, ci is chosen uniformly at random.

Assume towards contradiction that

Pr
[H′′′

i+1(A) = 1
]− Pr [H′′′

i (A) = 1] ≥ ε

for some i ∈ {0, . . . , �}. We will show that this implies a PPT adversary A3

against LWER,n,m,q,χ with advantage ε. The adversary A3 receives an input
(A,v) and proceeds as follows. A3 simulates H′′′

i (A), except for the following
modifications. First, it uses the matrix A = (A0 A1) in the public parameters.
Next, when the challenge ciphertext is generated, if i > k it sets ci = v. A3

then continues the simulation and outputs whatever its simulation of H′′′
i−1(A)

outputs.
Now, it follows routinely that if (A,v) is an LWE sample, i.e. vT = sT · A+

eT mod q, then the simulation of A3 is distributed identically to H′′′
i (A). On the

other hand, if v is uniformly random, then the simulation of A3 is distributed
identically to H′′′

i+1(A). We can conclude that A3 has advantage ε. ��

Update Privacy. There is a simple modification to construction of laconic
encryption in Fig. 2 which yields update-privacy. The idea is to make the hash-
function fA0,A1(y0,y1) = A0 · (−G−1(y0))+A1 · (−G−1(y1)) randomized such
that fA0,A1(y0,y1) statistically hides y0 and y1. This can be achieved by slightly
modifying the gadget matrix G into G′ and making G′−1 randomized3, and
replacing the parameter m with a slightly larger m′ = m + n log(q). Specifi-
cally, we set G′ = (G 0) ∈ Z

n×m′
, i.e. we obtain G′ by appending n log(q)

all-zero columns to G. Furthermore, we define G′−1(x) =
(
G−1(x)

r

)
, where

r ←$R2n log(q)
2 is chosen uniformly at random. Note that it still holds that

G′G′−1(x) = x for all x ∈ Rn
q . The modified hash function is now

f ′(y0,y1) = A0 · (−G′−1(y0)) +A1 · (−G′−1(y1)).

Now, decomposing A0 = (A0,1 A0,2) and A1 = (A1,1 A1,2), where A0,1,A1,1 ∈
Rn×m

q and A0,2,A1,2 ∈ Rn×n log(q)
q , it holds that

f ′(y0,y1) = A0 · (−G′−1(y0)) +A1 · (−G′−1(y1))

= (A0,1 A0,2) · (−
(
G−1(y0)

r0

)
) + (A1,1 A1,2) · (−

(
G−1(y1)

r1

)
)

= (A0,1 A1,1)
(−G−1(y0)

−G−1(y1)

)
− (A0,2 A1,2)

(
r0
r1

)
︸ ︷︷ ︸

=:v

.

3 [12] defined a similar notion of randomized G−1, which however samples a discrete
gaussian preimage.
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Since the matrix (A0,2 A1,2) ∈ Rn×2n log(q)
q is chosen uniformly random

and (r0, r1) is uniformly random in R2n log(q)
2 , it holds by the leftover hash

lemma (Lemma 1) that v is 2−n-close to uniform. Consequently, the hash-value
f ′(y0,y1) is statistically close to uniform. Hence, update privacy of the modified
construction follows. We can conclude the following lemma.

Lemma 6. The modified construction of Fig. 2 using G′ and the randomized
G′−1 is update private.

Properties and Efficiency. We remark about some properties and efficiency
of our construction. The public parameters (initially) consists of three uniformly
random matrices A0,A1,B ∈ Rn×m

q which can be sampled with public coin.
Subsequent updates to the public parameters, more specifically to yε ∈ Rn

q , are
deterministic. Suppose we pick q to be linear in �, then the Setup and KGen
algorithms run in time logarithmic in �, while the Upd, Enc, WGen, and Dec
algorithms run in time quasi-linear in �.
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Abstract. Decentralized multi-authority attribute-based encryption
(MA-ABE) is a distributed generalization of standard (ciphertext-policy)
attribute-based encryption where there is no trusted central authority:
any party can become an authority and issue private keys, and there is
no requirement for any global coordination other than the creation of an
initial set of common reference parameters.

We present the first multi-authority attribute-based encryption
schemes that are provably fully-adaptively secure. Namely, our construc-
tion is secure against an attacker that may corrupt some of the authori-
ties as well as perform key queries adaptively throughout the life-time of
the system. Our main construction relies on a prime order bilinear group
where the k-linear assumption holds as well as on a random oracle. Along
the way, we present a conceptually simpler construction relying on a com-
posite order bilinear group with standard subgroup decision assumptions
as well as on a random oracle.

Prior to this work, there was no construction that could resist adap-
tive corruptions of authorities, no matter the assumptions used. In fact,
we point out that even standard complexity leveraging style arguments
do not work in the multi-authority setting.

1 Introduction

Attribute-based encryption schemes [22,41] allow fine-grained access control
when accessing encrypted data: Such encryption schemes support decryption
keys that allow users that have certain credentials (or attributes) to decrypt cer-
tain messages without leaking any additional information. Over the years, the
challenge of designing ABE schemes has received tremendous attention resulting
in a long sequence of works achieving various trade-offs between expressiveness,
efficiency, security, and underlying assumptions.

Multi-Authority Attribute-Based Encryption: In ABE schemes, restricted
decryption keys can only be generated and issued by a central authority who pos-
sesses the master secret key. Chase [10] introduced the notion of multi-authority
c© International Association for Cryptologic Research 2023
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ABE (MA-ABE) which allows multiple parties to play the role of an author-
ity. More precisely, in an MA-ABE, there are multiple authorities which control
different attributes and each of them can issue secret keys to users possessing
attributes under their control without any interaction with the other authorities
in the system. Given a ciphertext generated with respect to some access pol-
icy, a user possessing a set of attributes satisfying the access policy can decrypt
the ciphertext by pulling the individual secret keys it obtained from the various
authorities controlling those attributes.

After few initial attempts [10,11,32,34,35] that had various limitations,
Lewko and Waters [30] were able to design the first truly decentralized MA-ABE
scheme in which any party can become an authority and there is no requirement
for any global coordination other than the creation of an initial trusted setup. In
their scheme, a party can simply act as an authority by publishing a public key
of its own and issuing private keys to different users that reflect their attributes.
Different authorities need not even be aware of each other and they can join the
system at any point of time. There is also no bound on the number of attribute
authorities that can ever come into play during the lifetime of the system. Their
scheme supports all access policies computable by NC1 circuits. Furthermore,
utilizing the powerful dual system technique [45], security is proven assuming a
composite order bilinear group with “subgroup decision”-style assumptions and
in the random oracle model.

Following Lewko and Waters [30] there were several extensions and improve-
ments. Okamoto and Takashima [38] gave a construction over prime order bilin-
ear groups relying on the decision-linear (DLIN) [7] assumption. Rouselakis and
Waters [40] and Ambrona and Gay [2] provided efficiency improvements but pro-
vide weaker security guarantees and/or used the less standard q-type assump-
tions and the generic group model (GGM) respectively. Datta et al. [14] gave the
first Learning With Errors (LWE)-based construction supporting a non-trivial
class of access policies. All of the above are in the random oracle model. Very
recently, Waters, Wee, and Wu [48] gave a construction (for the same class of
policies as [14]) whose security can be based in the plain model without ran-
dom oracles, relying on the recently-introduced evasive LWE assumption [43,49]
which is a very strong knowledge type assumption.

Security: The natural MA-ABE security definition requires the usual collu-
sion resistance against unauthorized users with the important difference that
now some of the attribute authorities may be corrupted and therefore may col-
lude with the adversarial users. While some constructions support adaptive key
queries, there is no known construction, under any assumption, which supports
fully adaptive corruption of authorities. Given the distributed nature of
MA-ABE it seems unsatisfying to assume that an attacker commits on a cor-
rupted set of authorities at the beginning of the security game, even before
seeing any secret key. Indeed, in reality we do not even expect all attribute
authorities to join the system at the same time. Therefore, we argue that the
“static corruptions” model that previous works have considered does not capture
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realistic attack scenarios, and we therefore ask whether it is possible to improve
it by supporting adaptive corruption of authorities.

We emphasize that getting fully adaptive security is a well-known gap in
existing constructions. Even though the authors of [30] were well versed in sophis-
ticated dual system technique, they (and all followup attempts) got fundamen-
tally stuck in solving this obstacle. More broadly, getting adaptive security is a
fundamental area of research in the cryptographic community with many suc-
cesses over the years (e.g., [3,21,26,33,47]). Still, this natural question in the
MA-ABE domain remained untouched.

Interestingly, this is one of the rare cases where generic complexity lever-
aging/guessing style arguments fail (even if we are fine with a sub-exponential
security loss). Indeed, applying these arguments in our setting results in an expo-
nential loss proportional to the maximum number of authorities per ciphertext.
Thus, there needs to be a pre-determined maximum number of authorities per
ciphertext limit and then the security parameter needs to be chosen appropri-
ately. Our goal, of course, is to devise a truly decentralized scheme where any
party could join as an authority at any point in time and there is no limit to the
number of authorities.

1.1 Our Results

We construct the first truly decentralized MA-ABE schemes which is provably
secure even when fully adaptive corruption of authorities are allowed, in addition
to fully adaptive key queries. Our schemes are based on bilinear groups with
standard polynomial hardness assumptions and in the random oracle model. We
emphasize that our constructions are the first provably secure schemes against
fully adaptive corruptions of authorities under any assumption.

We first give a construction based on bilinear groups of composite order with
(by now) standard subgroup-decision assumptions, and then give a construc-
tion in prime order bilinear groups where the k-Linear (k-Lin) [24,42] or more
generally the matrix Diffie-Hellman (MDDH) [17] holds.

Theorem 1.1 (Informal; see Section 4). Assume a composite order bilinear
group where “standard” subgroup-decision assumptions hold. Then, there is a
fully-adaptive MA-ABE scheme in the random oracle model.

The assumptions that we use in the above theorem have been used mul-
tiple times in the past and they were shown to hold in the generic bilinear
group model [29–31]. However, we still point out that composite order-based
constructions have few drawbacks compared to the more standard prime order
setting. First, in prime order groups, we can obtain security under more stan-
dard assumptions such as k-LIN or bilinear Diffie-Hellman (BDH) [8] assumption.
Second, in prime order groups, we can achieve much more efficient systems for
the same security levels [19,23,39]. This is because in composite order groups,
security typically relies on the hardness of factoring the group order. In turn,
this requires the use of large group orders, which results in considerably slower
group and pairing operations.
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To this end, starting with Freeman [19] and Lewko [27], multiple frameworks
and tools have been developed to translate existing composite order group con-
structions into prime order analogues (see, for example, [1,4,12,13,20,25,36,37]).
We use a recent set of tools due to Chen, Gong, Kowalczyk, and Wee [13] (build-
ing on [12,20]) and manage to obtain a construction in (asymmetric) bilinear
groups of prime order whose security is based on the more standard k-Lin or
MDDH assumption.1

Theorem 1.2 (Informal; see Section 5). Assume a prime order bilinear
group where the k-Lin or MDDH assumption holds. Then, there is a fully-adaptive
MA-ABE scheme in the random oracle model.

The state of the art MA-ABE constructions are compared in Table 1.

Table 1. State of the Art in Decentralized MA-ABE

Scheme Access policy Assumption Security Bounded policy size

[2] NC1 GGM adaptive no
[2] NC1 SXDH selective no
[30] NC1 subgroup decision adaptive no
[38] NC1 DLin adaptive no
[40] NC1 q-type static no
[14] DNF LWE static yes
[15] NC1 C/D-BDH static yes
[48] DNF evasive LWE static yes

This Work NC1 subgroup decision full no
This Work NC1 k-Lin or MDDH full no

In this table, static security requires all of the ciphertexts, secret keys, and
corruption queries to be issued by the adversary before the public key of any
attribute authority is published, selective security requires the ciphertext and
corruption queries to be made upfront while the key queries can be made adap-
tively, adaptive security requires corruption queries to be issued ahead of time,
but all other queries (secret keys and ciphertexts) can be made adaptively, and
full security enables all queries, including corruption queries, to be made adap-
tively. Schemes having a restriction that the maximal size of policies has to be
declared during system setup are said to have bounded policy size. All of the
works are in the random oracle model except [48]. Lastly, we mention that this
table only lists truly decentralized schemes with no trusted centralized authority.

Technical Highlight: As all previous group-based decentralized MA-ABE sys-
tems secure against adaptive key queries in the standard model [30,38], we also
1 Our construction is secure based on any choice of k. For instance, setting k = 1 we

get security under the Symmetric External Diffie-Hellman Assumption (SXDH), and
setting k = 2 corresponds to security under the DLIN assumption.
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use the dual-systems methodology. However, as we explain below, the existing
techniques in this space cannot be used to prove fully adaptive security, that is,
security against both adaptive key queries and adaptive corruption of attribute
authorities. As our main conceptual contribution, we introduce a new technique
within this space that allows us to bleed information from one sub-group to
another in an unnoticeable way. We call this technique dual systems with dual
sub-systems and it allows us to undetectably move information between different
sub-groups across ciphertexts and key components via a secondary dual sub-
system. We believe that this conceptual contribution is of independent interest.
See Sect. 2 for details.

2 Technical Overview

This section starts by providing an overview of the notion of MA-ABE schemes
and our fully adaptive security definition, followed by an exposition of previous
works and why they failed to achieve the fully adaptive security. We then con-
tinue with explaining our main new ideas, followed by an overview of the final
scheme and its security proof. We decided to provide an extensive and detailed
technical overview in order to help in understanding the challenges stemming
from the fully adaptive security model and our approach for dealing with them.
A reader interested in our constructions can directly refer to Sect. 2.4.1.

2.1 Background on MA-ABE

Our MA-ABE (like all other known MA-ABE schemes) is designed under the
assumption that each user in the system has a unique global identifier GID coming
from some universe of global identifiers GID ⊂ {0, 1}∗. We shall further assume
(without loss of generality) that each authority controls just one attribute, and
hence we can use the words “authority” and “attribute” interchangeably. (We
note that this restriction can be relaxed to support an a priori bounded number
of attributes per authority [30].) We denote the authority universe by AU .

Let us recall the syntax of decentralized MA-ABE for NC1 access poli-
cies, which is well known to be realizable by (monotone) linear secret sharing
schemes (LSSS) [6,30]. A decentralized MA-ABE scheme consists of 5 procedures
GlobalSetup,AuthSetup,KeyGen,Enc, and Dec. The GlobalSetup procedure gets
as input the security parameter (in unary encoding) and outputs global public
parameters. All of the other procedures depend on these global parameters (we
may sometimes not mention them explicitly when they are clear from context).
The AuthSetup procedure can be executed by any authority u ∈ AU to generate
a corresponding public and master secret key pair, (PKu,MSKu). An authority
holding the master secret key MSKu can then generate a secret key SKGID,u for a
user with global identifier GID. At any point in time, using the public keys {PKu}
of some authorities, one can encrypt a message msg relative to some linear secret
sharing policy (M , ρ), where M is the policy matrix and ρ is the function that
assigns row indices in the matrix to attributes controlled by those authorities,
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to get a ciphertext CT. Finally, a user holding a set of secret keys {SKGID,u}
(relative to the same GID) can decrypt a given ciphertext CT if and only if the
attributes corresponding to the secret it possesses “satisfy” the access structure
with which the ciphertext was generated. If the MA-ABE scheme is built in the
random oracle model as is the case in this paper and in all previous collusion
resistant MA-ABE schemes,2 the existence of a public hash function H mapping
the global identifiers in GID to some appropriate space is considered. This hash
function H is generated by GlobalSetup and is modeled as a random oracle in the
security proof.

2.2 Fully Adaptive Security

Just like standard ABE, the security of an MA-ABE scheme demands collusion
resistance, that is, no group of colluding users, none of whom is individually
authorized to decrypt a ciphertext, should be able to decrypt the same when
they pull their secret key components together. However, in case of MA-ABE,
it is further required that collusion resistance should hold even if some of the
attribute authorities collude with the adversarial users and thereby those users
can freely obtain secret keys corresponding to the attributes controlled by those
corrupt authorities. Decentralized MA-ABE further allows the public and secret
keys of the corrupt authorities to be generated in a malicious way and still needs
collusion resistance. This is crucial since, in a decentralized MA-ABE scheme,
anyone is allowed to act as an attribute authority by generating its public and
secret keys locally and independently of everyone else in the system. We are
aiming for fully adaptive security which is roughly defined by the following
game:

– Global Setup: The challenger runs GlobalSetup to generate global public
parameters.

– Query Phase I: The attacker is allowed to adaptively make a polynomial
number of queries of the following form:
1. Authority Setup Query : the challenger runs AuthSetup to create a pub-

lic/master key pair for an authority specified by the adversary.
2. Secret Key Query : the challenger runs KeyGen to create a secret key for

a given attribute.
3. Authority Master Key Query : the challenger provides the attacker the

master secret key corresponding to some authority of the adversary’s
choice.

– Challenge Phase: The adversary submits two messages msg0,msg1, and
an access structure along with a set of public keys of authorities involved in
the access structure. The authority public keys supplied by the attacker can
potentially be malformed, i.e., can fall outside the range of AuthSetup. It gets

2 The very recent construction of Waters, Wee, and Wu [48] is in the plain model, how-
ever, as mentioned, it is based on a newly introduced and less standard assumption
and achieves the rather weak “static” security definition..
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back from the challenger an encryption of one of the messages (chosen at
random) with respect to the access structure. It is crucial that the adversary
does not hold enough secret keys/authority master keys to decrypt a message
that is encrypted with respect to the access structure.

– Query Phase 2: Same as in Query Phase 1 (while making sure that the
constraint from the challenge phase is not violated).

– Guess: The attacker submits a guess for which message underlies the chal-
lenge ciphertext.

All previous MA-ABE schemes consider a much weaker definition where the
adversary must commit during the Global Setup phase on the set of authorities
in the system as well as on the subset of corrupted authorities. Already at that
point, the private/public key pairs of all non-corrupt authorities are created by
the challenger and the public keys are given to the attacker. (That is, during
Query Phase I and II, only queries of form 2 (secret key query) are allowed.)
Our fully adaptive definition is much more realistic given the distributed nature
of MA-ABE.

2.3 Limitations of Previous Works

As in any ABE scheme, the challenge in MA-ABE is to make it collusion resistant.
Usually, ABE schemes achieve collusion resistance by using the system’s author-
ity who knows a master secret key to “tie” together different key components
representing the different attributes of a user with the help of fresh randomness
specific to that user. Such randomization would make the different key compo-
nents of a user compatible with each other, but not with the parts of a key issued
to another user.

In a multi-authority setting, however, we want to satisfy the simultaneous
goals of autonomous key generation and collusion resistance. The requirement
of autonomous key generation means that standard techniques for key random-
ization cannot be applied since there is no one party to compile all the pieces
together. Furthermore, in a decentralized MA-ABE system each component may
come from a different authority, where such authorities have no coordination
and are possibly not even aware of each other. To overcome this, all previous
decentralized MA-ABE schemes use the output of a public hash function applied
on the user’s global identity, GID, as the randomness tying together multiple key
components issued to a specific user by different authorities.3

To see the challenge let us focus on one particular construction due to Lewko
and Waters [30]. Although this is the very first truly decentralized MA-ABE
scheme, all relevant follow-up works heavily rely on it and therefore suffer from
similar problems. The security proof of the [30] construction uses the dual sys-
tem technique originally developed by Waters [45]. In a dual system, ciphertexts
and keys can take on two forms: normal or semi-functional. Semi-functional
ciphertexts and keys are not used in the real system, they are only used in the
security proof. A normal key can decrypt normal or semi-functional ciphertexts,

3 [48] is an exception; see Footnote 2.
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and a normal ciphertext can be decrypted by normal or semi-functional keys.
However, when a semi-functional key is used to decrypt a semi-functional cipher-
text, decryption will fail. Security for dual systems is proved using a sequence of
“indistinguishable” games. The first game is the real security game (with nor-
mal ciphertext and keys). In the next game, the ciphertext is semi-functional,
while all the keys are normal. For an attacker that makes q secret key requests,
we define q games, where in the k-th one, the first k keys are semi-functional
while the remaining keys are normal. In game q, all the keys and the challenge
ciphertext given to the attacker are semi-functional. Hence, none of the given
keys are useful for decrypting the challenge ciphertext.

The proof of [30] follows this high level approach, but inherently relies on the
fact that the corrupted authorities are specified in advance. There, towards the
end of the proof, all keys are semi-functional and the challenge ciphertext is also
semi-functional. The goal in the last hybrid is to move to a game where the semi-
functional challenge ciphertext is of a random message (rather than the original
message). For this to be indistinguishable, they need to “shut off” the rows in
the matrix of the access policy corresponding to the corrupted authorities. This
is done by using an information theoretic tool of choosing a vector which is
orthogonal to those rows in the challenge ciphertext (such a vector must exist
since the corrupted set must be unauthorized). Effectively, this allows them to
completely ignore the existence of authority master keys corresponding to those
rows, while for the other rows the inexistence of a secret key was already taken
care of when they moved to a game where all keys are semi-functional.

This approach clearly fails when authorities can be corrupted adaptively.
Technically, it is impossible to “shut off” the rows corresponding to the cor-
rupted authorities since the latter may not be even known at the time the chal-
lenge ciphertext is created since authorities may be corrupted after the challenge
ciphertext is created where the challenger should be able to give the adversary
the corresponding master key. However, with the (proof) approach of Lewko and
Waters [30] this is impossible since the challenger (at that point) does not even
have a properly formed master key for the authority.

A Fundamental Limitation?: At this point it is useful to step back and try
to discern whether and why handling corrupted authorities was a foundational
problem of [30] and has remained open for more than a decade. Lewko and
Waters create an intricate dual system encryption proof that uses two semi-
functional subspaces. Their techniques go beyond the prior methods of [28,29]
to adapt to the demands of the multi-authority setting. Now the question is the
following.

Question: Is the lack of handling authority corruption mostly an oversight that
can be addressed by pushing their techniques a tiny bit further or is there a more
fundamental barrier?

The answer to this question can be distilled by making a quick observa-
tion about the Lewko-Waters construction. In their construction all user keys
are composed of bilinear group elements. Thus, one can execute a dual system
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encryption proof by applying subgroup decision or k-linear assumptions (depend-
ing on the setting) to change the distribution of such groups over the course of
a sequence of games as is typically done.

The authority master secret keys however consist solely of exponents over the
order of the group. The reason for authority keys being exponents is a conse-
quence of the demands of the multi-authority setting. To bring authority keys
into the fold of a dual system encryption proof one would need a plan for chang-
ing such keys to some kind of semi-functional form. However, there is no trodden
path in the dual system encryption literature for doing this for keys formed solely
from exponents. Indeed, none of the hardness assumptions seem to align with
this goal at all!

Due to these fundamental barriers, the construction and proof of Lewko
and Waters dealt with key queries and corrupted authorities separately. For
uncorrupted authorities, the proof handles key generation queries via a dual
system encryption. In contrast, corrupted authorities were statically “routed
around” in the proof so as to not have important information when needed and
thus taken “outside” the dual system encryption proof.

In our work, we will show how to overcome this barrier and bring adaptive
corruption of authorities into the fold of a dual system encryption proof. Doing
so will require both a novel construction and proof ideas. We shall focus on the
composite order construction next as this is where most of the new ideas already
come up and it is also much easier to describe. We give an overview of how we
port the construction to the prime order setting in Sect. 2.5.

2.4 Overview of Our Approach and Our (Composite Order) Scheme

Looking into the Lewko-Waters [30] MA-ABE scheme and the security proof more
closely, we observe that their authority master keys consist of two exponents,
namely α, y ← ZN where N = p1p2p3 is the order of the underlying composite
order group. At the final step of their security proof where they transition from
a correctly formed semi-functional ciphertext for the challenge message to one
for a completely random message, they simulated the exponents α and y based
on the instance of the underlying hard problem. As such, they could not hope to
give out those keys to the adversary during the security game. In other words,
they could not support adaptive corruption of authorities.

In order to resolve this problem, ultimately, we want to come up with a
construction and a corresponding proof strategy that never needs to simulate the
authority master keys based on instances of underlying hard problems. Towards
this end, we first observe that it is due to their scheme design that Lewko-
Waters [30] needed to simulate the authority master keys. More specifically, in
each ciphertext, the payload is masked with the group element e(g1, g1)s in the
target group for random s ← ZN . Next, the ciphertext provides secret shares of
the masking factor s according to the underlying access policy in the exponent
of e(g1, g1) and they mask them with α for the corresponding authorities also
in the exponent of e(g1, g1). This is done to ensure that during decryption, only
the shares corresponding to the attributes possessed by the decryptor can be
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recovered by canceling out the α part with a collection of appropriate secret
keys for user GID.

Now, at the final hybrid transition of their security proof, they utilized an
assumption similar to decisional bilinear Diffie-Hellman (DBDH) where they sim-
ulate s as abc, where a, b, c ← ZN are random exponents and unknown to the
simulator. Therefore, the simulator has to embed the term ab within α so that it
can simulate the ciphertext components containing the shares of s by canceling
out ab in the exponent.

In order to do away with α and transition to a construction and proof tech-
nique that do not require simulating the authority master keys, we consider a
new element h from the p1 subgroup in the global public parameters. Instead of
relying on the entropy derived from the exponents α corresponding to the author-
ities/attributes a user does not possess, we would like to rely on the entropy
obtained from this new component h to hide the payload (recall that h is a part
of the global public parameters and is not associated with any attribute author-
ity). Simulating h based on the underlying hard problem would not affect the
simulator’s ability to give out authority master keys. So, our initial idea is to
simply mask the payloads with e(g1, h)s for s ← ZN . We then provide ElGamal
encryptions of the secret shares of the masking factor s under the corresponding
authority master keys, which now consist only of the exponents y. More pre-
cisely, we include C1,x = grx

1 , C2,x = g
yρ(x)rx

1 gσx
1 for all rows x of the associated

LSSS access structure (M , ρ).4 For the user’s secret keys, instead of generating
it as gα · H(GID)y, as in Lewko-Waters construction, we form the secret keys as
(h · H(GID))y.

The high level idea of the security proof is then to change h from being an
element of the p1 subgroup to being an element of the p1p2 subgroup. Then, the
factor masking the message would become e(g1, h)s · e(g2, h)s. At this point, we
can leverage the entropy of s mod p2 to hide the payload in the final game.

Dual Systems with Dual Sub-systems: Unfortunately, the above scheme
does not satisfy correctness. This is because, at the time of decryption, while
pairing the ciphertext and key components, some additional terms involving the
shares of the masking factor s in the exponent of e(g1,H(GID)) would remain.
In order to cancel out these terms and ensure correctness, we introduce another
parallel sub-system where we provide ElGamal encryptions of shares of −s under
corresponding authority master keys and provide elements of the form H(GID)y

as part of the user’s secret keys. At the time of decryption, this part will produce
e(g1,H(GID))−s that will cancel e(g1,H(GID))s from the first sub-system.

Now, observe that if the same authority master keys y are used across both
the sub-systems, then a user obtaining (h ·H(GID))y and H(GID)y as parts of its
secret key can easily recover hy which may hamper security. We therefore use
two different exponents for the two sub-systems.

Overall, our scheme consists of two sub-systems which we refer to as the “A”
sub-system and the “B” sub-system. Accordingly, the master key of an attribute
4 The ρ function maps between rows of the policy matrix M and the index of the

associated authorities/attributes.
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authority consists of two random exponents yA, yB ← ZN . The first sub-system
deals with encoding the payload and the shares of the masking factor s, whereas
the second sub-system works as a shadow system to cancel out some extra terms
during decryption to ensure correctness.

Our security proof proceeds as follows. The first step of our proof is to make a
ciphertext semi-functional over the p3 subgroup. The argument relies on two key
facts. (1) Any subset of authorities the attacker compromises will not satisfy the
access structure. Thus, the corrupted authorities alone are not enough to (infor-
mation theoretically) determine if the challenge ciphertext is semi-functional.
(2) The keys given out by uncorrupted authorities will not have any component
in the order p3 subgroup, thus they will not help out such an attacker (at this
step). Put together, this gives a method to leverage the information theoretic
steps in order to handle adaptive corruption of authorities. Our approach uses
both computational and information theoretic arguments to step between differ-
ent hybrid experiments. A critical feature of our security proof is that any step
that relies on the attacker’s keys not satisfying the access structure will be an
information theoretic argument, thereby sidestepping issues related to guessing
which authorities are corrupted. (There will of course be multiple computational
arguments between and setting up the information theoretic ones.) A similar
high-level approach of using information regarding what the adversary corrupts
only in information theoretic arguments was used in few previous dual system
proofs (e.g., [28,29,45]), but here we are able to implement the technique in the
(more challenging) distributed setting and enfolding corrupted authorities.

Our approach allows us to establish both semi-functional keys and ciphertexts
in a given subspace of the cryptosystem. However, it comes with a big caveat.
While the semi-functional argument is established in the p3 subgroup we had
to keep it separate from the ciphertext component blinding the message which
lives solely in the p1 subgroup. At this stage it is therefore unclear that all the
work we did will even hide the message at all. Therefore, the next portion of
our proof needs to “bleed” the semi-functional portions of the ciphertext into
the portions blinding the message. Here again our two sub-system construction
crucially comes into play. We will take turns by first bleeding over into one and
then into the other.

We call this novel technique as a dual system with dual sub-systems. This
technique utilizes the semi-functionality within one sub-system to introduce
semi-functionality within the other. Then, this will allow us to transform the
challenge ciphertext and keys in such a way that the p2 segment of the special
group element h remains information-theoretically hidden to the adversary and
so its entropy can then be amplified using a suitable randomness extractor to
hide the encrypted message completely.

As we mentioned above, we set the user secret key components for the two
sub-system asymmetrically, namely, we multiply the special group element h
within the user secret key components that correspond to the first sub-system.
But, we do not multiply it within those corresponding to the second sub-system.
We crucially leverage this asymmetry in the security proof as follows. We first
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bleed the semi-functional portions within the p3 subgroup of the second sub-
system into the p2 subgroup of the same to make the p2 components semi-
functional. After that, we utilize this semi-functionality of the second sub-system
to switch the special group element h from being embedded within the user secret
key components of the first sub-system to those corresponding to the second
sub-system. Once we are done with this step, we then bleed the semi-functional
portions within the p3 subgroup of the first sub-system into the p2 portions of the
same and make the p2 portions of this sub-system semi-functional. This strategy
is crucial since it is not clear how to leverage the dual-system methodology to
inject semi-functionality into the p2 portions of the first sub-system if the group
element h is not moved away from this sub-system. At this point, the p2 segment
of the ciphertext component blinding the message becomes completely indepen-
dent of the p2 segments of all the other ciphertext and key components. There-
fore, we can utilize its entropy to blind the message information-theoretically. For
a more detailed overview of our hybrid proof strategy, please refer to Sect. 2.4.2
below.

We once again emphasize that all applications of the dual system methodol-
ogy so far only dealt with a single system. The two sub-system design is com-
pletely new to this work. Also, as we argued above, full security of MA-ABE
seems out of reach using standard previously used dual system techniques (since
it is not clear how to bleed the semi-functional portions of the ciphertext com-
ponents into those blinding the message and make the user keys independent
of the special group element h within a single system). As is evident from our
work, our new technique is useful and we believe that it will find further uses in
other contexts related to adaptive security (for example, constructing adaptively
secure functional encryption schemes beyond linear functions under standard
group-based assumption).

2.4.1 Our Construction
Recall that our scheme relies on bilinear group G of composite order N which
is a product of three primes, that is, N = p1p2p3 with subgroups Gp1 ,Gp2 , and
Gp3 . We also make use of a seeded randomness extractor Ext and let seed be
a seed for it. The elements g1 and h are uniformly random generators of the
subgroup Gp1 that along with seed are part of the global parameters GP. H is a
global hash function that we model as a random oracle in the security proof.

At a very high level, as is evident from the construction, the encryption
algorithm blinds the message msg with the term Ext(e(g1, h)s, seed), where s is
a random element in ZN . The goal in the security proof is to show that given
the view of the adversary there is enough entropy left in e(g1, h)s so that the
message is indeed hidden. There are two secret sharing schemes involved, one of
s and the other of −s. Let us denote the shares of s with σA,x and the shares of
−s with σB,x. The decryptor recovers e(g1,H(GID) ·h)σA,x and e(g1,H(GID))σB,x

by appropriately pairing their keys for attributes and ciphertext components.
If the user holds sufficient secret keys to decrypt a ciphertext, the two terms
e(g1,H(GID) · h)σA,x and e(g1,H(GID))σB,x can be used to recover e(g1,H(GID) ·
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h)s and e(g1,H(GID))−s which, if multiplied, give the blinding factor e(g1, h)s,
as necessary.
AuthSetup(GP,u): The algorithm chooses random values yA,u, yB,u ∈ ZN and
outputs

PKu = (gyA,u

1 , g
yB,u

1 ) MSKu = (yA,u, yB,u).

Enc(GP,msg, (M, ρ), {PKu}): It first chooses a random value s ← ZN . It then
uses the LSSS access policy5 (M , ρ) to generate a secret sharing of s where σA,x

will be the share for all x ∈ [�], i.e., for all x ∈ [�], let σA,x = Mx · vA, where
vA ← Z

d
N is a random vector with s as its first entry and Mx is the xth row

of M . It additionally creates another secret sharing of −s with respect to the
LSSS access policy (M , ρ) where σB,x is the corresponding share for ρ(x) for all
x ∈ [�], i.e., for all x ∈ [�], σB,x = Mx · vB , where vB ← Z

d
N is a random vector

with −s as its first entry. The procedure generates the ciphertext as follows: For
each row x ∈ [�], it chooses random rA,x, rB,x ← ZN and outputs the ciphertext

CT = ((M , ρ), C,{C1,A,x, C2,A,x, C1,B,x, C2,B,x}x∈[�]),

where

C = msg ⊕ Ext(e(g1, h)s, seed), C1,A,x = g
rA,x

1 C2,A,x = g
yA,ρ(x)rA,x

1 g
σA,x

1

C1,B,x = g
rB,x

1 C2,B,x = g
yB,ρ(x)rB,x

1 g
σB,x

1 .

KeyGen(GP,GID,MSKu): The authority attribute u generates a secret key
SKGID,u for GID as SKGID,u = (KGID,A,u,KGID,B,u), where

KGID,A,u = (H(GID) · h)yA,u KGID,B,u = (H(GID))yB,u .

Dec(GP,CT,GID, {SKGID,u}): Decryption takes as input the global parameters
GP, the hash function H, a ciphertext CT for an LSSS access structure (M , ρ)
with M ∈ Z

�×d
N and ρ : [�] → AU , the user’s global identifier GID ∈ GID,

and the secret keys
{
SKGID,ρ(x)

}
x∈I

corresponding to a subset of rows of M

with indices I ⊆ [�]. If (1, 0, . . . , 0) is not in the span of these rows, M I , then
decryption fails. Otherwise, the decryptor finds coefficients {wx ∈ ZN }x∈I such
that (1, 0, . . . , 0) =

∑
x∈I wx · Mx.

For all x ∈ I, the decryption algorithm computes:

DA,x = e(C2,A,x,H(GID) · h) · e(C1,A,x,KGID,A,ρ(x))−1 = e(g1,H(GID) · h)σA,x

DB,x = e(C2,B,x,H(GID)) · e(C1,B,x,KGID,B,ρ(x))−1 = e(g1,H(GID))σB,x .

It computes D =
∏

x∈I(DA,x · DB,x)wx = e(g1, h)s and outputs C ⊕
Ext(D, seed) = msg. The proposed scheme is correct by inspection; see Sect. 4.3
for details.
5 The access policy (M , ρ) is of the form M = (Mx,j)�×d = (M 1, . . . , M �)

� ∈ Z
�×d
N

and ρ : [�] → AU . The function ρ associates rows of M to authorities. We assume
that ρ is an injective function, that is, an authority/attribute is associated with at
most one row of M . This can be extended to a setting where an attribute appears
within an access policy for at most a bounded number of times [30,46].
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2.4.2 Our Security Proof
We now dive into a more detailed look at our security proof. We choose to
present an overview of the main steps of our proof interleaved with a running
commentary on the intuition behind them. Our goal here is to give a reader
both a semi-detailed sense of the proof along side the conceptual ideas driving
our approach.

Hyb0 : We start with the real game.
Hyb1 : Modify the random oracle to return random elements from Gp1 . This

modification is clearly indistinguishable under the subgroup decision assump-
tion between Gp1 and G.
After this step all user key material is relegated to the Gp1 subgroup. (Recall
h was already in Gp1). One important consequence of this is that for any
uncorrupted authority u, both the yA,u and yB,u values modulo p2 and p3
are information theoretically hidden no matter how many keys the attacker
requests from the authority u.

Hyb2 : Add a Gp3 component to each part of the challenge ciphertext. This
transition follows from the subgroup decision assumption between Gp1 and
Gp1p3 .

Hyb3 : We modify the Gp3 components of C2,A,x, C2,B,x to involve shares of
independent secrets instead of correlated ones.
This is an information theoretic step relying on two important facts. (1) That
the attacker has no information on yA,u, yB,u(mod p3) of any uncorrupted
authority u per our step in Hyb1. The fact that yA,u mod p3 is hidden (and
each authority appears at most once in a ciphertext) means that C2,A,x can-
not be distinguished from random in the Gp3 subgroup. Thus, the share is
hidden when row x corresponds to an uncorrupted authority u. (2) That the
rows of the challenge matrix (M , ρ) associated with the corrupted authorities
are unauthorized for decryption. Hence, they are insufficient for learning the
value of s mod p3.
Critically, this step employs an information theoretic argument and therefore
there is no issue to how to properly embed a reduction to a computational
assumption in the presence of adaptive corruptions. In general, this is a theme
in our whole reduction process. Throughout the proof, we separate the com-
putational and information theoretic arguments. The parts of the argument
that relate to what the attacker corrupted is only in the information theoretic
pieces where adaptivity is not a problem.
After this step the ciphertext begins to have a somewhat semi-functional form
in that the Gp3 subgroups are not correlated in the system A and B halves.
However, the effect is currently vacuous as none of the keys “look at” the Gp3

subgroup which vanishes upon pairing the keys and ciphertext.
Hyb4 : Add a Gp2 component to each part of the challenge ciphertext. This

transition follows from the subgroup decision assumption between Gp1 and
Gp1p2 .

Hyb5 : Modify the random oracle to return random elements from Gp1p3 . The
proof that this change is indistinguishable actually goes through a sequence



Fully Adaptive Decentralized Multi-Authority ABE 461

of sub-hybrids where we change the oracle queries one by one. Intuitively,
changing the random oracle output for a certain GID is akin to making the
secret key components for GID to be semi-functional. Thus, the proof will
need to leverage the fact that the key components acquired by GID do not
satisfy the challenge ciphertext access structure. For each GID the proof will
first establish this in the Gp2 subgroup to be “temporarily semi-functional”,
then use this to move it to the “permanent semi-functional” space in Gp3 .
Finally, undo the work in the Gp2 space to make it available for moving the
next GID over.
We consider the following sequence of sub-hybrids for each random oracle
query GIDj .

• First modify the random oracle output H(GIDj) to be a random element
in Gp1p2 instead of Gp1 . This change is clearly indistinguishable under
the subgroup decision assumption between Gp1 and Gp1p2 .

• Modify the Gp2 components of C2,A,x, C2,B,x to involve shares of inde-
pendent secrets instead of correlated ones. This is again an information
theoretic step which uses the fact that the rows of the challenge matrix
(M , ρ) associated with the corrupted authorities in conjunction with all
those rows for which the adversary requests a secret key for GIDj are
unauthorized for decryption. The adaptive corruption of the authority as
well as the adaptive key requests for GIDj do not cause any problem.
We emphasize that since this information theoretic argument is done over
the Gp2 subgroup, it does not matter whether the adversary has infor-
mation about the Gp3 from keys for other global identities. This is the
benefit for modifying keys one by one in an isolated subspace.

• Next, modify H(GIDj) to be a random element from the whole group G.
This transition is indistinguishable under the subgroup decision assump-
tion between Gp1p2 and G. The work done so far allows us to simulate this
transition using the group elements available in the problem instance.

• Modify the Gp2 components of C2,A,x, C2,B,x to again involve shares of
correlated secrets instead of independent ones. This is again an informa-
tion theoretic step similar to the previous one.

• Change the random oracle output H(GIDj) to be a random element in
Gp1p3 instead of G. This transition is indistinguishable under the sub-
group decision assumption between Gp1 and Gp1p2 .

Note that in the above sequence of sub-hybrids, the Gp2 subgroup is used over
and over again to “escort” a value into the Gp3 subgroup. Until this step, this
portion of the proof follows closely [30] at a high level although there are
differences in the low level details. In particular, unlike [30] which involves
a single semi-functional form of the ciphertext, we consider several different
semi-functional forms in order to handle a more sophisticated scenario of
adaptive authority corruption in addition to the adaptive secret key queries.
However, the following steps significantly depart from [30].
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Hyb6 : Sample h from Gp1p2 instead of Gp1 . The indistinguishability follows
from the subgroup decision assumption between Gp1 and Gp1p2 In addition,
the challenge ciphertext message is now blinded as

C = msgb ⊕ Ext(e(g1, h)s · e(g2, h)s′′
, seed)

for random s′′ and a generator g2 ∈ Gp2 . At this point the message is blinded
in Gp2 while the semi-functional components are established in the Gp3 sub-
groups for both keys and ciphertexts. We now need to bleed these over into
Gp2 to argue the message is hidden.

Hyb7 : Make the C1,B,x, C2,B,x parts have shares of an independent random
secret in Gp2 rather than one correlated to C1,A,x, C2,A,x. This is again an
information theoretic step which relies on the fact that the rows of the chal-
lenge matrix M labeled by the corrupted authorities are unauthorized for
decryption.
We now have that the ‘B’ side of our cryptosystem is complete for our proof
with the secret shared on the ‘B’ side being uncorrelated in the Gp2 compo-
nent with both the ‘A’ share and s′′ from C. This step is feasible since the
keys in our system are created as H(GID)yB,u . In contrast the ‘A’ side has
keys created as (H(GID) · h)yA,u . To decouple the Gp2 component of the ‘A’
side with s′′ we must next effectively move the h value from the ‘A’ side to
‘B’ side.

Hyb10 :6 Modify the random oracle output for all the global identifiers GID
queried by the adversary as H(GIDj) = Pj ·h−1 for the jth random oracle query
where Pj is randomly sampled from Gp1p3 . Once this transition is achieved,
we will clearly have H(GIDj) · h = Pj for all random oracle queries, i.e.,
H(GIDj) · h involves no Gp2 component. This step is crucial for changing the
Gp2 components of C1,A,x, C2,A,x in the subsequent hybrids. This transition
is achieved via a sequence of sub-hybrids.

• Modify the jth random oracle query to output random elements from G.
The indistinguishability follows from the subgroup decision assumption
between Gp1p2 and G.

• Modify the jth random oracle query to output Rj · h−1 where Rj is ran-
domly sampled from G. Observe that since Rj is uniformly sampled from
G, this new form of H(GIDj) is actually identical to the one in the previous
game.

• Modify the jth random oracle query to output Pj · h−1 where Pj is ran-
domly sampled from Gp1p3 . The indistinguishability follows from the sub-
group decision assumption between Gp1p2 and G.

Hyb11 : Make the C1,A,x, C2,A,x parts have shares of an independent random
secret in Gp2 . This is again an information theoretic step similar to the pre-
vious one of Hyb6.

6 In our formal proof presented in the full version [16] this is spread out over Hybrids
8–10. We will condense these for this overview and thus skip two numbers of hybrids.
We are however not changing the numbers from those in the formal proof for ease
of correlation.
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Hyb12 : Replace C with a random value unrelated to the message. Due to the
work done so far, s′′ mod p2 is information theoretically hidden and so s′′ has
at least log(p2) bits of entropy. The extractor hides the message.

2.5 Porting to Prime Order Groups

As mentioned there have been many works trying to come up with a method
to translate existing composite order group constructions into prime order ana-
logues [1,4,12,13,19,20,25,27,36,37]. All of these frameworks are different and
have varying levels of simplicity or generality. We use the recent framework of
Chen et al. [13] which seems to be the most efficient and (arguably) the simplest
to use, and succeed in adapting the construction as well as the proof from the
composite order setting to the prime order setting.

This framework, in a high level, shows how to simulate a composite order
group and its subgroups using a prime order group while guaranteeing a prime
order analogue of various subgroup decision style assumptions. These analogues
follow from the standard k-Linear assumption (and more generally, the MDDH
assumption [18]). Here, since the translation process is not completely black
box and needs to be adapted for the scheme at hand, we need to introduce a
few extra technical ideas to handle our specific setting. Specifically, the proof
of security of our prime order construction relies not only on subgroup decision
style assumptions but also on few information theoretic arguments as well as on
the security of a random oracle. Using the framework and making it work on
our scheme is fairly technical and systematic; we refer to the technical section
for details. Nevertheless, we point out that the high level idea as well as the
sequence of hybrids is the same as in the composite order case.

3 Preliminaries

A function negl : N → R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant c > 0 there exists an
integer Nc such that negl(λ) ≤ λ−c for all λ > Nc. We let [n] = {1, . . . , n}.

We use bold lower case letters, such as v, to denote vectors and upper-case,
such as M , for matrices. We assume all vectors, by default, are column vectors.
The ith row of a matrix is denoted M i and analogously for a set of row indices
I, we denote M I for the sub-matrix of M that consists of the rows M i for all
i ∈ I. For an integer q ≥ 2, we let Zq denote the ring of integers modulo q. We
represent Zq as integers in the range (−q/2, q/2].

Indistinguishability: Two sequences of random variables X = {Xλ}λ∈N
and

Y = {Yλ}λ∈N
are computationally indistinguishable if for any non-uniform PPT

algorithm A there exists a negligible function negl(·) such that |Pr[A(1λ,Xλ) =
1] − Pr[A(1λ,Yλ) = 1]| ≤ negl(λ) for all λ ∈ N.
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For two distributions D and D′ over a discrete domain Ω, the statistical
distance between D and D′ is defined as SD(D,D′) = (1/2)·∑ω∈Ω |D(ω)−D′(ω)|.
A family of distributions D = {Dλ}λ∈N

and D′ = {D′
λ}λ∈N

, parameterized by
security parameter λ, are said to be statistically indistinguishable if there is a
negligible function negl(·) such that SD(Dλ,D′

λ) ≤ negl(λ) for all λ ∈ N.

3.1 Access Structures and Linear Secret Sharing Schemes

Definition 3.1 (Access Structures, [5,6]): Let U be the attribute universe.
An access structure on U is a collection A ⊆ 2U\∅ of non-empty sets of attributes.
The sets in A are called the authorized sets and the sets not in A are called the
unauthorized sets. An access structure is called monotone if ∀B,C ∈ 2U if B ∈ A

and B ⊆ C, then C ∈ A.

Definition 3.2 (Linear Secret Sharing Schemes (LSSS), [5,6,30]): Let q =
q(λ) be a prime and U the attribute universe. A secret sharing scheme Π with
domain of secrets Zq for a monotone access structure A over U, a.k.a. a monotone
secret sharing scheme, is a randomized algorithm that on input a secret z ∈ Zq

outputs |U| shares sh1, . . . , sh|U| such that for any set S ∈ A the shares {shi}i∈S

determine z and other sets of shares are independent of z (as random variables).
A secret sharing scheme Π realizing monotone access structures on U is linear
over Zq if

1. The shares of a secret z ∈ Zq for each attribute in U form a vector over Zq.
2. For each monotone access structure A on U, there exists a matrix M ∈ Z

�×s
q ,

called the share-generating matrix, and a function ρ : [�] → U, that labels
the rows of M with attributes from U which satisfy the following: During
the generation of the shares, we consider the vector v = (z, r2, ..., rs), where
r2, . . . , rs ← Zq. Then the vector of � shares of the secret z according to Π
is given by μ = Mv� ∈ Z

�×1
q , where for all j ∈ [�] the share μj “belongs” to

the attribute ρ(j). We will be referring to the pair (M , ρ) as the LSSS policy
of the access structure A.

The correctness and security of a monotone LSSS are formalized in the follow-
ing: Let S (resp. S′) denote an authorized (resp. unauthorized) set of attributes
according to some monotone access structure A and let I (resp. I ′) be the set of
rows of the share generating matrix M of the LSSS policy pair (M , ρ) asso-
ciated with A whose labels are in S (resp. S′). For correctness, there exist
constants {wi}i∈I in Zq such that for any valid shares

{
μi = (Mv�)i

}
i∈I

of
a secret z ∈ Zq according to Π, it is true that

∑
i∈I wiμi = z (equivalently,

∑
i∈I wiM i = (1,

s−1︷ ︸︸ ︷
0, . . . , 0), where M i is the ith row of M). For soundness,

there does not exists any subset I ′ of the rows of the matrix M and any coeffi-
cients {wi}i∈I′ for which the above hold.

Remark 3.1 (NC1 and Monotone LSSS): Consider an access structure A

described by an NC1 circuit. There is a folklore transformation that converts this
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circuit to a Boolean formula of logarithmic depth that consists of (fan-in 2) AND,
OR, and (fan-in 1) NOT gates. We can further push the NOT gates to the leaves
using De Morgan laws, and assume that internal nodes only constitute of OR
and AND gates and leaves are labeled either by attributes or by their negations.
In other words, we can represent any NC1 policy over a set of attributes into
one described by a monotone Boolean formula of logarithmic depth over the
same attributes together with their negations. Lewko and Waters [30] presented
a monotone LSSS for access structures described by monotone Boolean formulas.
This implies that any NC1 access policy can be captured by a monotone LSSS.

3.2 Strong Randomness Extractors

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]).
A t-source is a random variable X with H∞(X) ≥ t. The statistical distance
between two random variables X and Y over a finite domain Ω is SD(X,Y ) =
1
2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

Definition 3.3 (Seeded Randomness Extractor, Definition 6.16 [44]): A
function Ext : Ω × S → Γ is a strong (t, ε)-extractor if for every t-source X on
Ω, SD((US , Ext(X,US)), (US ,UΓ )) < ε.

Theorem 3.1 (Theorem 6.17 [44]): For every n, t ∈ N and ε > 0, there exists
a strong (t, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with m = t−2 log(1/ε)−
O(1) and d = log(n − t) + 2 log(1/ε) + O(1).

3.3 Fully-Adaptive Decentralized MA-ABE for LSSS

A decentralized multi-authority attribute-based encryption (MA-ABE) system
MA-ABE = (GlobalSetup,AuthSetup,KeyGen,Enc,Dec) consists of five proce-
dures whose syntax is given below. The supported access structures that we
deal with are ones captured by linear secret sharing schemes (LSSS). We denote
by AU the authority universe and by GID the universe of global identifiers
of the users. We denote by M the supported message space. Additionally, we
assume that each authority controls just one attribute, and hence we would use
the terms “authority” and “attribute” interchangeably. This definition naturally
generalizes to the situation in which each authority can potentially control an
arbitrary (bounded or unbounded) number of attributes (see [30,40]).

– GlobalSetup(1λ) �→ GP : The global setup algorithm takes in the security
parameter λ in unary representation and outputs the global public parame-
ters GP for the system. We assume that GP includes the descriptions of the
universe of attribute authorities AU and universe of the global identifiers of
the users GID. Note that both AU and GID are given by {0, 1}λ in case
there is no bound on the number of authorities and users in the system.

– AuthSetup(GP, u) �→ (PKu,MSKu) : The authority u ∈ AU calls the authority
setup algorithm during its initialization with the global parameters GP as
input and receives back its public and master secret key pair PKu,MSKu.



466 P. Datta et al.

– KeyGen(GP,GID,MSKu) �→ SKGID,u : The key generation algorithm takes as
input the global parameters GP, a user’s global identifier GID ∈ GID, and
a master secret key MSKu of an authority u ∈ AU . It outputs a secret key
SKGID,u for the user.

– Enc(GP,msg, (M , ρ),{PKu}) �→ CT : The encryption algorithm takes in the
global parameters GP, a message msg ∈ M, an LSSS access policy (M , ρ) such
that M is a matrix over ZN and ρ is a row-labeling function that assigns to
each row of M an attribute/authority in AU , and the set {PKu} of public
keys for all the authorities in the range of ρ. It outputs a ciphertext CT. We
assume that the ciphertext implicitly contains (M , ρ).

– Dec(GP,CT,{SKGID,u}) �→ msg′ : The decryption algorithm takes in the
global parameters GP, a ciphertext CT generated with respect to some LSSS
access policy (M , ρ), and a collection of keys {SKGID,u} corresponding to user
ID-attribute pairs {(GID, u)} possessed by a user with global identifier GID. It
outputs a message msg′ when the collection of attributes associated with the
secret keys {SKGID,u} satisfies the LSSS access policy (M , ρ), i.e., when the
vector (1, 0, . . . , 0) is contained in the linear span of those rows of M which
are mapped by ρ to some attribute/authority u ∈ AU such that the secret
key SKGID,u is possessed by the user with global identifier GID. Otherwise,
decryption fails.

Correctness: An MA-ABE scheme for LSSS-realizable access structures is said
to be correct if for every λ ∈ N, every message msg ∈ M, and GID ∈ GID, every
LSSS access policy (M , ρ), and every subset of authorities U ⊆ AU controlling
attributes which satisfy the access structure, it holds that

Pr

⎡

⎢
⎢
⎢
⎣
msg′ = msg |

GP ← GlobalSetup(1λ)
∀u ∈ U : PKu,MSKu ← AuthSetup(GP, u)

∀u ∈ U : SKGID,u ← KeyGen(GP,GID,MSKu)
CT ← Enc(GP,msg, (M , ρ),{PKu})
msg′ = Dec(GP,CT,{SKGID,u}u∈U )

⎤

⎥
⎥
⎥
⎦

= 1.

Fully Adaptive Security: We define the fully adaptive (chosen-plaintext) secu-
rity for a decentralized MA-ABE scheme, namely, we consider a security game
where there could be adaptive secret key queries, adaptive authority corruption
queries, and adaptive challenge ciphertext query. This is formalized in the follow-
ing game between a challenger and an attacker. Note that we will consider two
types of authority public keys, those which are honestly generated by the chal-
lenger and those which are supplied by the attacker itself where the former type
of authority keys can be corrupted by the attacker at any point of time during
the game and the latter type of authority keys can potentially be malformed.

The game consists of the following phases:

Global Setup: The challenger runs GlobalSetup to generate global public
parameters GP and gives it to the attacker.
Query Phase 1: The attacker is allowed to adaptively make a polynomial
number of queries of the following types:
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– Authority Setup Queries: The attacker request to set up an authority
u ∈ AU of its choice. If an authority setup query for the same author-
ity u has already been queried before, the challenger aborts. Other-
wise, the challenger runs AuthSetup to create a public/master key pair
(PKu,MSKu) for the authority u. The challenger provides PKu to the
attacker and stores (PKu,MSKu). Note that the challenger does not return
the generated public/master key pair to the attacker.

– Secret Key Queries: The attacker makes a secret key query by submitting
a pair (GID, u) to the challenger, where GID ∈ GID is a global identifier
and u ∈ AU is an attribute authority. If an authority setup query for the
authority u has not been made already, the challenger aborts. Otherwise,
the challenger runs KeyGen using the public/master key pair it already
created in response to authority setup query for u and generates a secret
key SKGID,u for (GID, u). The challenger provides SKGID,u to the attacker.

– Authority Master Key Queries: The attacker requests the master secret
key of an authority u ∈ AU to the challenger. If an authority setup query
for the authority u has not been made previously, the challenger aborts.
Otherwise, the challenger provides the attacker the master secret key
MSKu for authority u it created in response to the authority setup query
for u.

Challenge Phase: The attacker submits two messages, msg0,msg1 ∈ M

and an LSSS access structure (M , ρ). The attacker also submits the public
keys {PKu} for a subset of attribute authorities appearing in the LSSS access
structure (M , ρ). The authority public keys {PKu} supplied by the attacker
can potentially be malformed, i.e., can fall outside the range of AuthSetup.
The LSSS access structure (M , ρ) and the authority public keys {PKu} must
satisfy the following constraints.
(a) Let UA denote the set of attribute authorities for which the attacker

supplied the authority public keys {PKu}. Also let UB denote the set of
attribute authorities for which the challenger created the master public
key pairs in response to the authority setup query of the attacker so far.
Then, it is required that UA ∩ UB = ∅.

(b) Let V denote the subset of rows of M labeled by the authorities in UA
plus the authorities for which the attacker made a master key query so
far. For each global identifier GID ∈ GID, let VGID denote the subset of
rows of M labeled by authorities u such that the attacker queried a secret
key for the pair (GID, u). For each GID ∈ GID, it is required that the rows
of M labeled by authorities in V ∪ VGID do not span (1, 0, . . . , 0).

The challenger flips a random coin b ← {0, 1} and generates a ciphertext CT
by running the Enc algorithm that encrypts msgb under the access structure
(M , ρ).
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Query Phase 2: The attacker is allowed to make all types of queries as in
Query Phase 1 as long as they do not violate the constraints Properties (a)
and (b) above.
Guess: The attacker must submit a guess b′ for b. The attacker wins if b = b′.

The advantage of an adversary A in this game is defined as:

AdvMA-ABE,fully-adaptive
A = |Pr[b′ = b] − 1/2| .

Definition 3.4 (Fully adaptive security for MA-ABE for LSSS): An MA-
ABE scheme for LSSS-realizable access structures is fully adaptively secure if for
any PPT adversary A there exists a negligible function negl(·) such that for all
λ ∈ N, we have AdvMA-ABE,fully-adaptive

A ≤ negl(λ).

Remark 3.2 (Fully adaptive security of MA-ABE for LSSS in the Ran-
dom Oracle Model): Similar to [30,38,40], we additionally consider the afore-
mentioned notion of fully adaptive security in the random oracle model. In this
context, we assume a global hash function H published as part of the global
public parameters and accessible by all the parties in the system, including the
attacker. In the security proof, we model H as a random function and allow it
to be programmed by the challenger. Therefore, in the fully adaptive security
game described above, we further let the adversary adaptively submit H-oracle
queries to the challenger, along with the key queries it makes both before and
after the challenge ciphertext query.

4 Our Composite Order Group MA-ABE Scheme

In Sect. 4.1 we recall composite order bilinear groups. In Sect. 4.2 we give the
construction. In Sect. 4.3 we prove correctness of the construction and we give
the security proof in the full version [16] The complexity assumptions on which
our security proof relies on are basically different types of subgroup decision
assumptions and can also be found in the full version.

4.1 Composite Order Bilinear Groups

Our system relies on composite order bilinear groups, which were first defined
in [9]. Particularly, we will rely on a bilinear group G of composite order N
which is a product of three primes, that is, N = p1p2p3. Such a group has
unique subgroups of order q for all divisor q of N and we will denote such a
subgroup as Gq. Also every element g ∈ G, can be written (uniquely) as the
product of an element of Gp1 , an element of Gp2 , and an element of Gp3 . We
refer to these elements as the “Gp1 part of g”, the “Gp2 part of g”, and the “Gp3

part of g”, respectively. We shall assume that there is a procedure G(1λ) that
gets as input a security parameter λ and outputs G = (N = p1p2p3,G,GT , e),
where e : G × G → GT is a pairing. We assume that the group operations in G

and GT as well as the bilinear map e are computable in polynomial time in λ.
Further, we assume that e satisfies the following:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab.
2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .
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4.2 The Construction

Here, we present our MA-ABE for NC1 construction in composite order bilinear
groups. As mentioned, we assume that each authority controls just one attribute,
and hence we would use the terms “authority” and “attribute” interchangeably.

GlobalSetup(1λ): The global setup algorithm takes in the security parameter
1λ encoded in unary. The procedure first chooses primes p1, p2, p3 and let N =
p1p2p3. Next, it generates a bilinear group G = (N,G,GT , e) of order N . Let
Gp1 be the subgroup of G of order p1 and let g1 and h be uniformly random
generators of the subgroup Gp1 . We make use of a strong seeded randomness
extractor Ext : GT × S → M, where M ⊂ {0, 1}∗ is the message space and
S ⊂ {0, 1}∗ is the seed space. The algorithm samples a seed seed ← S. It sets
the global parameters GP = (G, g1, h, seed). Furthermore, we make use of a hash
function H : {0, 1}∗ → G mapping global identities GID ∈ GID to elements in
G.

AuthSetup(GP,H,u): Given the global parameters GP, the hash function
H, and an authority index u ∈ AU , the algorithm chooses random values
yA,u, yB,u ∈ ZN and outputs

PKu = (PA,u = g
yA,u

1 , PB,u = g
yB,u

1 ) MSKu = (yA,u, yB,u).

Enc(GP,H,msg, (M, ρ),{PKu}): The encryption algorithm takes as input the
global parameters GP, the hash function H, a message msg ∈ M to encrypt, an
LSSS access structure (M , ρ), where M = (Mx,j)�×d = (M1, . . . ,M �)� ∈ Z

�×d
N

and ρ : [�] → AU , and public keys of the relevant authorities{PKu}. The function
ρ associates rows of M to authorities (recall that we assume that each authority
controls a single attribute). We assume that ρ is an injective function, that is,
an authority/attribute is associated with at most one row of M .

It first chooses a random value s ← ZN . It then uses the LSSS access structure
(M , ρ) to generate a secret sharing of s where σA,x will be the share for all x ∈ [�],
i.e., for all x ∈ [�], let σA,x = Mx · vA, where vA ← Z

d
N is a random vector with

s as its first entry and Mx is the xth row of M . It additionally creates another
secret sharing of −s with respect to the LSSS access policy (M , ρ) where σB,x is
the corresponding share for ρ(x) for all x ∈ [�], i.e., for all x ∈ [�], σB,x = Mx·vB,
where vB ← Z

d
N is a random vector with −s as its first entry. The procedure

generates the ciphertext as follows: For each row x ∈ [�], it chooses random
rA,x, rB,x ← ZN and outputs the ciphertext

CT = ((M , ρ), C,{C1,A,x, C2,A,x, C1,B,x, C2,B,x}x∈[�]),

where

C = msg ⊕ Ext(e(g1, h)s, seed),

C1,A,x = g
rA,x

1 C2,A,x = P
rA,x

A,ρ(x)g
σA,x

1 = g
yA,ρ(x)rA,x

1 g
σA,x

1

C1,B,x = g
rB,x

1 C2,B,x = P
rB,x

B,ρ(x)g
σB,x

1 = g
yB,ρ(x)rB,x

1 g
σB,x

1 .
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KeyGen(GP,H,GID,MSKu): The key generation algorithm takes as input the
global parameters GP, the hash function H, the user’s global identifier GID ∈
GID, and the authority’s master secret key MSKu. It generates a secret key
SKGID,u for GID as

SKGID,u = (KGID,A,u,KGID,B,u)

where KGID,A,u = (H(GID) · h)yA,u and KGID,B,u = (H(GID))yB,u .

Dec(GP,CT,GID, {SKGID,u}): Decryption takes as input the global parameters
GP, the hash function H, a ciphertext CT for an LSSS access structure (M , ρ)
with M ∈ Z

�×d
N and ρ : [�] → AU injective, the user’s global identifier GID ∈

GID, and the secret keys {SKGID,u}u∈ρ(I) corresponding to a subset of rows of
M with indices I ⊆ [�]. If (1, 0, . . . , 0) is not in the span of these rows, M I ,
then decryption fails. Otherwise, the decryptor finds {wx ∈ ZN }x∈I such that
(1, 0, . . . , 0) =

∑
x∈I wx · Mx.

For all x ∈ I, the decryption algorithm first compute:

DA,x = e(C2,A,x,H(GID) · h) · e(C1,A,x,KGID,A,ρ(x))−1 = e(g1,H(GID) · h)σA,x

DB,x = e(C2,B,x,H(GID)) · e(C1,B,x,KGID,B,ρ(x))−1 = e(g1,H(GID))σB,x

Then compute D =
∏

x∈I(DA,x · DB,x)wx = e(g1, h)s. Finally it outputs C ⊕
Ext(D, seed) = msg.

Remark 4.1 (On GlobalSetup): Similar to all prior decentralized MA-ABE
schemes, our proposed schemes utilize a GlobalSetup algorithm that samples
a random string (“setup”) with a specific structure (i.e., private coin). This
setup string needs to be generated only once, can be reused in different sessions,
and the randomness used to generate it is never used subsequently so it can be
discarded once the setup string is generated.

Theorem 4.1 (Security of Composite-Order MA-ABE Scheme): The
above MA-ABE scheme for NC1 is fully adaptively secure in the random ora-
cle model assuming the various types of sub-group decision assumptions.

The proof of correctness of the scheme is presented in Sect. 4.3. The proof of
security, i.e., that of Theorem 4.1, is deferred to the full version [16].

4.3 Correctness

Assume that the authorities in {SKGID,u} correspond to a qualified set according
to the LSSS access structure (M , ρ) associated with CT, that is, the correspond-
ing subset of row indices I corresponds to rows in M that have (1, 0, . . . , 0) in
their span.

For each x ∈ I, letting ρ(x) be the corresponding authority,

e(C2,A,x,H(GID) · h) = e(gyA,ρ(x)rA,x

1 g
σA,x

1 ,H(GID) · h)

= e(gyA,ρ(x)rA,x

1 ,H(GID) · h) · e(gσA,x

1 ,H(GID) · h)
= e(g1,H(GID) · h)yA,ρ(x)rA,x · e(g1,H(GID) · h)σA,x .
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Also, for each x ∈ I,

e(C1,A,x,KGID,A,ρ(x)) = e(grA,x

1 , (H(GID) · h)yA,ρ(x))
= e(g1,H(GID) · h)yA,ρ(x)rA,x .

Hence,

DA,x = e(C2,A,x,H(GID) · h) · e(C1,A,x,KGID,A,ρ(x))−1

=
e(g1,H(GID) · h)yA,ρ(x)rA,x · e(g1,H(GID) · h)σA,x

e(g1,H(GID) · h)yA,ρ(x)rA,x

= e(g1,H(GID) · h)σA,x .

Similarly,

DB,x = e(C2,B,x,H(GID)) · e(C1,B,x,KGID,B,ρ(x))−1

=
e(g1,H(GID))yB,ρ(x)rB,x · e(g1,H(GID))σB,x

e(g1,H(GID))yB,ρ(x)rB,x
= e(g1,H(GID))σB,x .

We then have

D =
∏

x∈I

(DA,x · DB,x)wx

=
∏

x∈I

(e(g1,H(GID) · h)σA,x)wx · (e(g1,H(GID))σB,x)wx

=
∏

x∈I

e(g1,H(GID) · h)wxσA,x · e(g1,H(GID))wxσB,x

= e(g1,H(GID) · h)s · e(g1,H(GID))−s = e(g1, h)s,

where the fourth equality follows since
∑

x∈I wx ·Mx = (1, 0, . . . , 0) and σA,x =
Mx · vA and σB,x = Mx · vB . Thus we have

C ⊕ Ext(D, seed) = msg ⊕ Ext(e(g1, h)s, seed) ⊕ Ext(e(g1, h)s, seed)
= msg.

5 Our Prime Order Group MA-ABE Scheme

In Sect. 5.1 we recall prime order bilinear groups and give the associated nota-
tions. In Sect. 5.2 we give the basis structure of the translation framework. Our
construction is based on various subspace assumptions derived from the MDDH
assumption [13] and can also be found in the full version [16]. In Sect. 5.3 we
give the construction. The correctness and security proofs are deferred to the
full version.
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5.1 Prime Order Bilinear Groups and Associated Notations

Notations: Let A be a matrix over the ring Zq. We use span(A) to denote the
column span of A, and we use spanm(A) to denote matrices of width m where
each column lies in span(A); this means M ← spanm(A) is a random matrix of
width m where each column is chose uniformly from span(A). We use basis(A)
to denote a basis of span(A), and we use (A1 ‖A2) to denote the column-wise
concatenation of matrices A1,A2. We let I be the identity matrix and 0 be a
zero matrix whose size will be clear from the context.

Fix a security parameter, for any bilinear group parameter G =
(p,G1,G2,GT , g1, g2, e) and any i = 1, 2, T with gT = e(g1, g2), we write �M�i

for gM
i where the exponentiation is element-wise. When bracket notation is used,

we denote group operations with �, i.e., �M�i � �N�i = �M + N�i for matri-
ces M ,N , and � as their negatives, i.e., �M�i � �N�i = �M − N�i. Also, we
define N � �M�i = �NM�i and �M�i � N = �MN�i. We also slightly abuse
notations and use the original pairing notation e to denote the pairing between
matrices of group elements as well, i.e., we write e(�M�1, �N�2) = �MN�T .

Prime Order Bilinear Groups: Let G1,G2 and GT be three multiplicative
cyclic groups of prime order p = p(λ) where the group operations are efficiently
computable in the security parameter λ and there is no isomorphism between
G1 and G2 that can be computed efficiently in λ. Let g1, g2 be generators of
G1,G2 respectively and e : G1 × G2 → GT be an efficiently computable pairing
function that satisfies the following properties:

– Bilinearity : for all u ∈ G1, v ∈ G2 and a, b ∈ Zp it is true that e(ua, vb) =
e(u, v)ab.

– Non-degeneracy : e(g1, g2) �= 1GT
, where 1GT

is the identity element of the
group GT .

Let G be an algorithm that takes as input 1λ, the unary encoding of the security
parameter λ, and outputs the description of an asymmetric bilinear group G =
(p,G1,G2,GT , g1, g2, e).

5.2 Composite to Prime Order Translation Framework

We want to simulate composite order groups whose order is the product of three
primes. Fix parameters �1, �2, �3, �W ≥ 1. Pick random

A1 ← Z
�×�1
p ,A2 ← Z

�×�2
p ,A3 ← Z

�×�3
p

where � := �1+�2+�3. Let (A∗
1 ‖A∗

2 ‖A∗
3)

� denote the inverse of (A1 ‖A2 ‖A3),
so that A�

i A∗
i = I (known as non-degeneracy) and A�

i A∗
j = 0 if i �= j (known

as orthogonality).

Correspondence: We have the following correspondence with composite order
groups:

gi �→ �Ai�1, gs
i �→ �Ais�1

w ∈ ZN �→ W ∈ Z
�×�W
p , gw

i �→ �A�
i W �1
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The following statistical lemma is analogous to the Chinese Remainder Theorem,
which tells us that w mod p2 is uniformly random given gw

1 , gw
3 , where w ← ZN :

Lemma 5.1 (statistical lemma). With probability 1 − 1/p over
A1,A2,A3,A

∗
1,A

∗
2,A

∗
3, the following two distributions are statistically

identical.

{A�
1 W ,A�

3 W , W } and {A�
1 W ,A�

3 W , W + V (2) }

where W ← Z
�×�W
p and V (2) ← span�W (A∗

2).

5.3 The Construction

Here, we present our MA-ABE for NC1 construction in prime order bilinear
groups. As mentioned, we assume that each authority controls just one attribute,
and hence we would use the terms “authority” and “attribute” interchangeably.

GlobalSetup(1λ): The global setup algorithm takes in the security parameter
1λ encoded in unary. The procedure first chooses a prime p. Next it generates a
bilinear group G = (p,G1,G2,GT , g1, g2, e) of order p. Let g1, g2 be the generators
of G1,G2 respectively. We make use of a strong seeded randomness extractor
Ext : GT ×S → M, where M ⊂ {0, 1}∗ is the message space and S ⊂ {0, 1}∗ is the
seed space. The algorithm samples a seed seed ← S. Next, the algorithm samples
A1,A2,A3 ← Z

3k×k
p ,h ← Z

k
p. Let (A∗

1 ‖A∗
2 ‖A∗

3) =
(
(A1 ‖A2 ‖A3)−1

)� where
A∗

1,A
∗
2,A

∗
3 ← Z

3k×k
p such that A�

i A∗
j = I if i = j, and 0 if i �= j for all i, j ∈ [3].

It outputs the global parameters as GP = (G, �A1�1,H = �A∗
1h�2, seed).

Furthermore, we assume that all parties has access to the hash function
H : {0, 1}∗ → G

3k
2 mapping global identifiers GID ∈ GID to random vectors in

G
3k
2 , i.e., for all GID ∈ GID we have H(GID) = �hGID�2 for some hGID ← Z

3k
p .

AuthSetup(GP,u): Given the global parameters GP and an authority index
u ∈ AU , the algorithm chooses random matrices W A,u,W B,u ∈ Z

3k×3k
p and

outputs

PKu = (PA,u = W �
A,u � �A1�1, PB,u = W �

B,u � �A1�1)

= (�W �
A,uA1�1, �W

�
B,uA1�1)

MSKu = (W A,u,W B,u).

Enc(GP,msg, (M, ρ),{PKu}): The encryption algorithm takes as input the
global parameters GP, a message msg ∈ M to encrypt, an LSSS access structure
(M , ρ), where M = (Mx,j)�×d = (M1, . . . ,M �)� ∈ Z

�×d
N and ρ : [�] → AU , and

public keys of the relevant authorities {PKu}. The function ρ associates rows of
M (viewed as column vectors) to authorities (recall that we assume that each
authority controls a single attribute). We assume that ρ is an injective function,
that is, an authority/attribute is associated with at most one row of M .
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It first samples a random vector d ← Z
k
p and random matrices UA,UB ←

Z
3k×(d−1)
p . The procedure generates the ciphertext as follows: For each row x ∈

[�], it chooses random vectors sA,x, sB,x ← Z
k
p and outputs the ciphertext

CT = ((M , ρ), C,{C1,A,x, C2,A,x, C1,B,x, C2,B,x}x∈[�]),

where C = msg ⊕ Ext(e(�A1d�1,H), seed), and

C1,A,x = �A1�1 � sA,x = �A1sA,x�1

C2,A,x = (�A1�1 � d ‖ �UA�1) � Mx + �W �
A,ρ(x)A1�1 � sA,x

=
�
(A1d ‖UA) Mx + W �

A,ρ(x)A1sA,x

�

1

C1,B,x = �A1�1 � sB,x = �A1sB,x�1

C2,B,x = (�A1�1 � (−d) ‖ �UB�1) � Mx + �W �
B,ρ(x)A1�1 � sB,x

=
�
(−A1d ‖UB) Mx + W �

B,ρ(x)A1sB,x

�

1
.

KeyGen(GP,GID,MSKu): The key generation algorithm takes as input the
global parameters GP, the user’s global identifier GID ∈ GID, and the authority’s
master secret key MSKu. It generates a secret key SKGID,u for GID as

SKGID,u = (KGID,A,u,KGID,B,u)

where

KGID,A,u = W A,u � (H(GID) · H) = �W A,u · (hGID + A∗
1h)�2

KGID,B,u = W B,u � H(GID) = �W B,u · hGID�2

Dec(GP,CT,GID, {SKGID,u}): Decryption takes as input the global parameters
GP, a ciphertext CT for an LSSS access structure (M , ρ) with M ∈ Z

�×d
N and

ρ : [�] → AU injective, the user’s global identifier GID ∈ GID, and the secret
keys {SKGID,u}u∈ρ(I) corresponding to a subset of rows of M with indices I ⊆
[�]. If (1, 0, . . . , 0) is not in the span of these rows, M I , then decryption fails.
Otherwise, the decryptor finds {wx ∈ ZN }x∈I such that (1, 0, . . . , 0) =

∑
x∈I wx ·

M�
x .
For all x ∈ I, the decryption algorithm first compute:

DA,x = e(C2,A,x, �hGID + A∗
1h�2)e(C1,A,x,KGID,A,ρ(x))−1

=
�
((A1d ‖UA) Mx)� · (hGID + A∗

1h)
�

T

DB,x = e(C2,B,x, �hGID�2)e(C1,B,x,KGID,B,ρ(x))−1

=
�
((−A1d ‖UB) Mx)� · hGID

�

T

Then compute D =
∏

x∈I(DA,x · DB,x)wx = e(�A1d�1,H). Finally it outputs
C ⊕ Ext(D, seed) = msg.
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Theorem 5.1 (Security of Prime-Order MA-ABE Scheme): Assuming the
MDDH assumption holds, then all PPT adversary has a negligible advantage in
breaking the fully adaptive security of the above MA-ABE scheme in the random
oracle model.
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Abstract. We investigate the best-possible (asymptotic) efficiency of
functional encryption (FE) and attribute-based encryption (ABE) by
proving inherent space-time trade-offs and constructing nearly optimal
schemes. We consider the general notion of partially hiding functional
encryption (PHFE), capturing both FE and ABE, and the most efficient
computation model of random-access machine (RAM). In PHFE, a secret
key skf is associated with a function f , whereas a ciphertext ctx(y) is tied
to a public input x and encrypts a private input y. Decryption reveals
f(x, y) and nothing else about y.

We present the first PHFE for RAM solely based on the necessary
assumption of FE for circuits. Significantly improving upon the efficiency
of prior schemes, our construction achieves nearly optimal succinctness
and computation time:

– Its secret key skf is of constant size (optimal), independent of the
function description length |f |, i.e., |skf | = poly(λ).

– Its ciphertext ctx(y) is rate-2 in the private input length |y| (nearly
optimal) and independent of the public input length |x| (optimal),
i.e., |ctx(y)| = 2|y| + poly(λ).

– Decryption time is linear in the instance running time T of the RAM
computation, plus the function and public/private input lengths, i.e.,
TDec = (T + |f | + |x| + |y|) poly(λ).

As a corollary, we obtain the first ABE with both keys and cipher-
texts being constant-size, while enjoying the best-possible decryption
time matching the lower bound by Luo [ePrint ’22]. We also separately
achieve several other optimal ABE subject to the known lower bound.

We study the barriers to further efficiency improvements. We prove
the first unconditional space-time trade-offs for (PH-)FE:

– No secure (PH-)FE can have |skf | and TDec both sublinear in |f |.
– No secure PHFE can have |ctx(y)| and TDec both sublinear in |x|.

Our lower bounds apply even to the weakest secret-key 1-key 1-ciphertext
selective schemes. Furthermore, we show a conditional barrier towards
the optimal decryption time TDec = T poly(λ) while keeping linear size
dependency — any such (PH-)FE scheme implies doubly efficient private
information retrieval (DE-PIR) with linear-size preprocessed database,
for which so far there is no candidate.
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1 Introduction

Functional encryption (FE) [15,50] and attribute-based encryption (ABE) [34,
52] are powerful enhancement of public-key encryption with many fascinating
applications. In this work, we investigate the best-possible efficiency of these
primitives, proving inherent space-time trade-offs for FE and presenting nearly
optimal constructions of FE and ABE.

To this end, we consider the general notion of partially hiding functional
encryption (PHFE) [5,33,38] capturing both FE and ABE. In PHFE, a secret
key skf is associated with a function f , whereas a ciphertext ctx(y) is tied to a
public input x and encrypts a private input y. Their decryption recovers the com-
putation output f(x, y). Collusion-resistant (indistinguishability-based) security
ensures that given unboundedly (polynomially) many secret keys {skfq

}q for dif-
ferent functions {fq}q, ciphertexts ctx(y0) and ctx(y1) tied to the same public
input x and encrypting different private inputs y0, y1 remain indistinguishable so
long as none of the keys separate them by functionality, i.e., fq(x, y0) = fq(x, y1).
Put simply, the only information revealed about the private input y is the out-
puts {fq(x, y)}q.

Over the past decade, significant progress has been made in establishing the
feasibility of (PH-)FE, for various classes of computation, with different levels
of efficiency and security, and from different assumptions. However, we are yet
to understand the asymptotic optimality and theoretical limits of its efficiency.
We ask:

What is the best-possible asymptotic efficiency of PHFE?
Are there trade-offs among different aspects of efficiency?

Can we construct optimally efficient PHFE?

We make progress towards answering the above questions.
For the lower bounds, we prove inherent trade-offs between the size of keys

or ciphertexts and the decryption time, and show barriers towards achieving the
optimal decryption time.

On the constructive front, we present the first collusion-resistant PHFE
for RAM solely based on the necessary assumption of (polynomially secure)
collusion-resistant FE for circuits, which in turn can be based on well-studied
assumptions [39,40]. Our scheme has nearly minimally sized keys and cipher-
texts, and nearly optimal decryption time matching our lower bounds. As a
corollary, we obtain the first ABE with both constant-size keys and constant-
size ciphertexts, and the best-possible decryption time matching the recently
discovered lower bound [48].

By slightly tweaking the construction, we also obtain ABE with linear-size
keys and/or ciphertexts and the optimal decryption time subject to the known
lower bound.

Dream Efficiency. Before describing our results, we first picture the dream
efficiency with respect to three important dimensions. Each dimension has been
a consistent research theme across many primitives in cryptography.
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Efficient Computation Model. Functions should be represented by random-access
machines (RAM), the most efficient computation model subsuming both circuits
and Turing machines. RAM is also closer to real-world computers.

We consider a RAM U (fixed1 at set-up time) with random access to three
tapes, a function tape containing f , an input tape containing x‖y, and a working
tape. It may produce arbitrarily long output, e.g., one bit at every step. This
flexible model captures many natural scenarios, e.g., binary search where the
database could be part of f, x, y. It can emulate the evaluation of a circuit C on
input (x, y) by putting the circuit description on the function tape. In ciphertext-
policy ABE, each ciphertext is tied to a predicate P , which can be captured by
setting x = P . These examples tell us that any or even all of f, x, y could be
long, and we want to optimize the efficiency dependency on their lengths.

Succinctness. Enjoying low communication and storage overhead means having
short master public key mpk, secret keys skf , and ciphertexts ctx(y). At the
most basic level, the size of each component should be polynomial in the length
of the information it is associated with — |mpk| = O(1),2 |skf | = poly(|f |), and
|ctx(y)| = poly(|x|, |y|), where |f |, |x|, |y| are the description lengths of f, x, y,
respectively — referred to as polynomial efficiency.3 However, there is much
to be desired beyond this basic level of efficiency. For instance, linear effi-
ciency means |skf | = O(|f |) and |ct| = O(|x| + |y|), and rate-1 efficiency means
|skf | = |f | + O(1) and |ct| = |x| + |y| + O(1).

In fact, even smaller parameters are possible. Since (PH-)FE does not aim to
hide the function f , it is allowed to put the description of f in the clear in the
secret key, and the non-trivial part of the secret key may be shorter than f . In
this case, the right measure of efficiency should be the size of the non-trivial part
(i.e., the overhead), which we now view as the secret key. We can aim for secret
keys of size independent of that of the function — i.e., |skf | = O(1) — referred
to as constant-size keys. The same observation applies to the public input x
tied to the ciphertext and we can hope for ciphertexts of size independent of |x|
while having optimal, rate-1 dependency on the private input length |y| — i.e.,
|ctx(y)| = |y| + O(1). In summary:

Ideal SuccinctnessIdeal Succinctness: |mpk| = O(1), |skf | = O(1), |ctx(y)| = |y| + O(1).

Note that the ideal component sizes are completely independent of the running
time or the output length of the computation.

1 We can think of U as a universal RAM.
2 In this introduction, O(·) hides a multiplicative factor of poly(λ).
3 It may appear that polynomial efficiency is the bare minimum. However, it is possible

to consider components whose sizes depend on an upper bound of the length of some
information not tied to them. Many early schemes are as such, e.g., the FE scheme
of [26] has |mpk| = O(poly(max |y|)), and the celebrated ABE scheme by [14] has
|mpk|, |ct| growing polynomially with the maximum depth of the computation. When
a scheme requires fixing an upper bound on parameter Z (e.g., input length, depth,
or size), it is said to be Z-bounded.
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Decryption Time. Decryption is also a RAM computation, Decf,x,skf ,ctx(y)(mpk),
which on input mpk and with random access to f, x, skf , ctx(y), computes the
output Uf,x‖y(). We want decryption to be efficient, ideally taking time linear
in the instance running time T of the RAM computation in the clear:

Ideal Decryption TimeIdeal Decryption Time: TDec = O(T ).

Organization. In Sect. 1.1, we describe our results. In Sect. 1.2, we present an
overview of our techniques. In Sect. 1.3, we discuss the related works. In Sect. 2,
we lay out our formulations of succinct garbled RAM and PHFE. In Sect. 3, we
formally prove our unconditional lower bounds. Due to the space constraint, we
refer the readers to the full version [37] for the complete details on definitions,
constructions, applications, and proofs.

1.1 Our Results

The question is whether the dream efficiency is attainable simultaneously in
all above three dimensions. Towards understanding this, we present both new
constructions and lower bounds.

New PHFE for RAM with Nearly Optimal Succinctness. Starting from
selectively and polynomially secure bounded FE for circuits, i.e., all of |mpk|,
|skf |, |ct(y)| are just poly(|f |, |y|), which in turn can be constructed from three
well-studied assumptions [39,40], we construct an adaptively secure (unbounded)
PHFE for RAM with nearly optimal succinctness.

Theorem 1 (informal). Assuming polynomially secure FE for circuits, there
exists an adaptively secure PHFE for RAM:

PHFE EfficiencyPHFE Efficiency: |mpk| = O(1), |skf | = O(1), |ctx(y)| = 2|y| + O(1),
TDec = O(T + |f | + |x| + |y|).

Our construction gives the first collusion-resistant (PH-)FE for RAM, and also
the first (PH-)FE for any model of computation (e.g., circuit or TM) with nearly
optimal succinctness. The only gap to optimality is that the ciphertext is rate-2
in |y| instead of rate-1. Prior constructions work with either circuits [26,39,40] or
Turing machines [1,8,42], except for the recent concurrent and independent work
of [3], which also constructs FE for RAM. All of them only achieve polynomial
efficiency as summarized in Table 1. We further discuss related works in Sect.
1.3.

As a corollary, we obtain the first ABE for RAM from falsifiable assumptions,
and the first for any model of computation with both constant-size keys and
constant-size ciphertexts. The only prior construction of ABE for RAM by [31]
relies on non-falsifiable assumptions like SNARK and differing-input obfuscation.
In terms of succinctness, existing schemes achieve either constant-size keys or
constant-size ciphertexts [9–11,45,46,53–55]. Achieving constant-size keys and
ciphertexts simultaneously has been an important theoretical open question (see
discussion in [45]). The state-of-the-art is summarized in Table 2.
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Table 1. Comparison among some (PH-)FE schemes. All rows except this work are FE,
and this work is PHFE. C is the circuit. T is the instance running time of TM/RAM.
All poly(·) and O(·) implicitly contains λ. For assumptions, FE is always for circuits,
“sls” means sublinearly succinct, “subexp” means subexponentially secure, and “PK-
DE-PIR” means public-key doubly efficient private information retrieval.

reference functionality |sk| |ct| TDec adaptive assumption

GGHRSW [26] circuit poly(|C|) poly(|y|) poly(|C|) iO
KNTY [42] circuit poly(|C|) poly(|y|) poly(|C|) � 1-key sls FE

GWZ [35] circuit poly(|C|) |y| + O(1) poly(|C|) iO
AS [8] TM poly(|f |) poly(|y|) poly(|f |, |y|)T � iO

AJS [6] TM c|f | + O(1) c|y| + O(1) poly(|f |, |y|)T � subexp iO
AM [1] TM poly(|f |) O(|y|) poly(|f |)T � FE

KNTY [42] TM poly(|f |) poly(|y|) poly(|f |, |y|)T 1-key sls FE

ACFQ [3] RAM poly(|f |) poly(|y|) O(T ) PK-DE-PIR & FE

this work RAM O(1) 2|y| + O(1) O(T + |f | + |x| + |y|) � FE

Table 2. Comparison among some KP-ABE schemes. Notations shared with Table 1.
ABP means arithmetic branching programs (also using C). For assumptions, “k-Lin”
means k-Linear in pairing groups, “GGM” means generic pairing group model, and
“diO” means differing-input obfuscation.

reference functionality |sk| |ct| TDec adaptive assumption

BGGHNSVV [14] circuit poly(d) |x| poly(d) |C| poly(d) LWE

LL [46] ABP O(|C| · |x|) O(1) O(|C| · |x|) � k-Lin

LLL [45] circuit O(1) poly(d) |C| poly(d) � GGM & LWE

GKPVZ [31] RAM O(1) poly(|x|) O(T + |f | + |x|) SNARK & diO

this work RAM O(1) O(1) O(T + |f | + |x|) � FE

Corollary 2 (informal). Assuming polynomially secure FE for circuits, there
exists an adaptively secure key-policy ABE (KP-ABE) for RAM as well as an
adaptively secure ciphertext-policy ABE (CP-ABE) for RAM:

KP-ABE EfficiencyKP-ABE Efficiency: |mpk| = O(1), |skf | = O(1), |ctx| = O(1),
TDec = O(T + |f | + |x|);

CP-ABE EfficiencyCP-ABE Efficiency: |mpk| = O(1), |skx| = O(1), |ctf | = O(1),
TDec = O(T + |f | + |x|).

The decryption time of our PHFE and ABE appears suboptimal. In addition to
the necessary linear dependency on T , it also grows linearly with |f |, |x|, |y|. It
turns out that ideal succinctness and ideal decryption time are at conflict. We
prove that under sublinear succinctness, the linear dependency of TDec on |f |, |x|
is inherent. We also show barriers towards removing the dependency of TDec on
|y| or |f |, |x| while maintaining linear succinctness.

Our PHFE scheme matches the lower bounds and barriers — it is Pareto-
optimal with respect to the dependency on |f |, |x|. For ABE, our lower bounds
and barriers do not apply. Nevertheless, our ABE scheme matches an existing
lower bound by [48], which states that any moderately expressive ABE must
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satisfy |ctx| · TDec = Ω(|x|) and |skf | · TDec = Ω(|f |).4 Given that our scheme has
constant-size keys and ciphertexts, its decryption time matches the lower bound
of [48], hence it is thus Pareto-optimal. By tweaking the construction, we obtain
several other Pareto-optimal ABE schemes:

Theorem 3 (informal). Assuming polynomially secure FE for circuits, there
exist adaptively secure KP-/CP-ABE schemes for RAM:

KP-ABE EfficiencyKP-ABE Efficiency: |mpk| = O(1), |skf | = |f |α + O(1), |ctx| = |x|β + O(1),

TDec = O(T + |f |1−α + |x|1−β).

CP-ABE EfficiencyCP-ABE Efficiency: |mpk| = O(1), |skx| = |x|β + O(1), |ctf | = |f |α + O(1),

TDec = O(T + |f |1−α + |x|1−β).

All four combinations of α, β ∈ {0, 1} are possible for both KP- and CP-ABE.

Contention Between Succinct Components and Fast Decryption. We
now describe our lower bounds in more detail. Consider the efficiency dependency
on the lengths of public information f and x. We show that unconditionally, it
is impossible to simultaneously achieve key size sublinear in |f | and decryption
time sublinear in |f |. Similarly, it is impossible to have both ciphertext size and
decryption time sublinear in |x|. In fact, these trade-offs apply to the weakest
secret-key 1-key 1-ciphertext selectively secure PHFE, and the first trade-off
with respect to |f | also applies to plain FE. More precisely:

Theorem 5 (informal). For a secret-key 1-key 1-ciphertext selectively secure
moderately expressive PHFE with

|sk| = O(|f |α) and TDec = (T + |f |β + |y|) poly(|x|),

it must hold that α ≥ 1 or β ≥ 1. The same (without x) is true for FE.

Theorem 6 (informal). For a secret-key 1-key 1-ciphertext selectively secure
moderately expressive PHFE with

|ct| = |x|α poly(|y|) and TDec = (T + |f | + |x|β) poly(|y|),

it must hold that α ≥ 1 or β ≥ 1.

Our PHFE scheme achieves one profile of Pareto-optimality, α = 0 and β = 1.
A natural question that our work leaves open is whether the other Pareto-

optimal profile, α = 1 and β = 0 (or even just β < 1), is attainable. Another
question is whether the decryption time must grow with the length of the private
input y.

4 The lower bounds apply as long as the ABE scheme supports broadcast encryption.
Theorem 14 in [48] is the first trade-off between |ctx| and TDec. Essentially the same
proof yields the second trade-off between |skf | and TDec.



On the Optimal Succinctness and Efficiency of FE and ABE 485

Barriers to Ideal Decryption Time. We illustrate barriers to positive
answers to the above two questions. We show that PHFE with decryption time
independent of |y|, |x|, or |f | implies secret-key doubly efficient private informa-
tion retrieval (SK-DE-PIR) with small preprocessed database.

Theorem 4 (informal). Suppose a moderately expressive secret-key PHFE
with selective security has

|skf | = �sk(λ, |f |), |ctx(y)| = �ct(λ, |x|, |y|),
TDec = (|f |ef + |x|ex + |y|ey ) poly(T ).

Then the following hold:

– If ex = 0, there exists an SK-DE-PIR scheme with preprocessed database size
�ct(N, poly(λ), λ), where N is the length of the original database. The PHFE
only has to be 1-ciphertext secure.

– If ey = 0, the SK-DE-PIR preprocessed database will have size �ct(0, N, λ).
The PHFE only has to be 1-ciphertext secure.

– If ef = 0, the SK-DE-PIR preprocessed database will have size �sk(N,λ).
The PHFE only has to be 1-key secure.

SK-DE-PIR, introduced by [17,22], allows a client to privately encode a database
D into ˜D while keeping a secret key k. Later, client can outsource the encoded
database ˜D to a remote storage server, and obliviously query the database using k
hiding the logical access pattern. Different from ORAM, the server never updates
the encoded database nor keeps any additional state. Different from PIR, SK-
DE-PIR allows the database to be privately encoded in exchange for double
efficiency — for each query, the complexities of both the client and the server
are, ideally, independent of the database size |D|, whereas PIR necessarily has
server complexity Ω(|D|). The double efficiency of SK-DE-PIR makes it highly
desirable. The initial works [17,22] presented candidate constructions based on
a new conjecture that permuted local-decoding queries (for a Reed–Muller code
with suitable parameters) are computationally indistinguishable from uniformly
random sets of points. More recently, a simple “toy conjecture” inspired by
(though formally unrelated to) those SK-DE-PIR schemes has been broken [16].
Very recently, in a concurrent and independent work, Lin, Mook, and Wichs [47]
constructed DE-PIR with public preprocessing from the ring-LWE assumption.
The most important efficiency metrics of DE-PIR are the preprocessed database
size and the complexity per query. None of the existing schemes simultaneously
achieve constant complexity per query and linear-size preprocessed database.

Our theorem shows that constructing PHFE with short decryption time
entails constructing SK-DE-PIR with preprocessed database size inherited from
ciphertext/key size. In particular, a PHFE scheme with decryption time inde-
pendent of |y| and ciphertext size linear in |y| implies an SK-DE-PIR with pre-
processed database of length O(N) and constant complexity per query. Since
no such SK-DE-PIR is known even under non-standard assumptions, this repre-
sents a barrier towards improving the decryption time dependency on |y| in our
PHFE construction.
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Succinct Garbled RAM and Constant-Overhead iO. The main tool in
our construction of PHFE for RAM is succinct garbled RAM (GRAM). Initiated
by [13,21,43], a sequence of works have constructed succinct garbled RAM [2,
19,20,23] based on subexponentially secure FE for circuits and succinct garbled
Turing machines [6,7,30,43] based on polynomially secure FE for circuits.

In this work, we formulate a new notion of succinct GRAM (informally
described in the technical overview and formally defined in Sect. 2.1) geared
for building highly efficient PHFE for RAM, and construct it based on poly-
nomially secure FE for circuits. Our construction has two consequences: i) we
obtain the first succinct GRAM (our or the standard notion) based on polyno-
mial hardness, as opposed to subexponential hardness as in prior constructions,
and ii) using iO for circuits, we obtain iO for RAM with constant overhead —
the size of the obfuscated program is 2|M | + poly(λ, �), where M is the origi-
nal RAM and � is the input length. Previously, constant-overhead iO was only
known for Turing machines [6].

1.2 Technical Overview

We start with an overview of our negative results.

Unconditional Lower Bounds. As introduced earlier, we show that it is
impossible for a secure PHFE to enjoy sublinear dependency on |f | (resp. |x|)
simultaneously for |skf | (resp. |ctx(y)|) and TDec when TDec is linear in T, |x|, |y|
(resp. T, |f |, |y|). We illustrate our ideas of proving the contention between

|skf | = O(|f |α) and TDec = O(T + |f |β + |x| + |y|) for α < 1 and β < 1

by exhibiting an efficient adversary breaking the security of PHFE for RAM
(polynomial factors in the security parameter are ignored).

Adversarial Function and Strategy. The adversary will selectively request one
secret key and one ciphertext. Let n < N be determined later.

– The function f is described by a string R ∈ {0, 1}N .
– There is no public input, so x = ⊥.
– The private input y is either (I ⊆ [N ], w ∈ {0, 1}n) or z ∈ {0, 1}n, where I is

a set containing n indices and w is a one-time pad.

The functionality is simply reading and XORing or outputting as-is, i.e.,

f(x, y) =

{

R[I] ⊕ w, if y = (I, w);
z, if y = z;

where R[I] means the n bits of R at the indices in I. Clearly,

|f | = O(N), |x| = O(1), |y| = O(n), T = O(n),

|sk| = O(Nα), TDec = O(n + Nβ).
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More precisely, |y| = O(n log n), but the log n factor is absorbed by the poly(λ)
factor hidden in O(·).

The adversary chooses

key query f with R $← {0, 1}N
,

challenge x ← ⊥, y0
$← random (I, w), y1 ← z = R[I] ⊕ w.

By our choice, f(x, y0) = R[I] ⊕ w = z = f(x, y1), so the challenge is well-
formed. Upon receiving sk and ct, the adversary simply runs the decryption
algorithm on (sk, ct) with random access to the function, i.e., R, in the clear.
Let L ⊆ [N ] be the set of indices in R that is read during decryption:

R[I] ⊕ w ← DecR,x=⊥(sk, ct), where Dec reads R[L].

The adversary determines that

ct is an encryption of

{

y0 = (I, w), if |L ∩ I| is large;
y1 = z, if |L ∩ I| is small;

where the threshold for large and small is described below.

Intuition and Toy Proof. The intuition behind the adversary’s strategy is sim-
ple. Let Lb be the index set L that decryption accessed when decrypting ct
encrypting yb.

– When ct encrypts y0, decryption must correctly recover R[I] (as the adver-
sary knows w). The decryption algorithm can only obtain information of R[I]
either from sk or via accesses to the tape R. Since R[I] contains n bits of
information, by setting |sk| = O(Nα) 
 n, decryption must read a large por-
tion of information of R[I] from the tape R, implying |L ∩ I| is large, namely,
Ω(n).

– In contrast, when ct encrypts y1, observe that the joint distribution of
(R, ct, sk) is independent of I, as w is a one-time pad and completely hides
I in y1 = R[I] ⊕ w. Therefore, the behavior of Dec is independent of I. Since
Dec runs in a short time O(n + Nβ) 
 N , without knowing I, where it reads
in R cannot overlap with I for a large portion. Therefore, |L ∩ I| is likely to
be small.

It remains to analyze how large and small |L ∩ I| is in the above two cases. Let us
first consider a toy proof, under the hypothesis that sk contains no information
about R[I] at all. We will remove this hypothesis below. By this hypothesis,
when ct encrypts y0, the decryption algorithm must read the entire R[I] from
the tape R and hence |L ∩ I| = n. When ct encrypts y1, since the indices L1 that
the decryption algorithm reads from R is independent of I, the intersection size
|L1 ∩ I| follows a hypergeometric distribution, and hence

E
[

|L1 ∩ I|
]

≤ TDec · n

N

 n. (1)

This means the adversary can distinguish when ct encrypts y0 or y1 with good
probability, and contradicts the security of PHFE.



488 A. Jain et al.

Removing the Hypothesis. The hypothesis that sk contains no information about
R[I] at all may well be false. When it is removed, we can no longer argue that
I ⊆ L0, as the adversary may obtain some information of R[I] from sk. Our
intuition is |L0 ∩ I| ≥ |I| − |sk|, but proving this formally is not trivial as sk
may contain arbitrary information of R[I].

We employ a compression argument. The basic idea behind a compression
argument is that there is no pair of encoding and decoding algorithms (Encode,
Decode), with arbitrarily long shared randomness s, is able to transmit an n-bit
random string u (independent of s) from one end to the other, via an encoding
v containing less than n bits. Informally,

if Pr

⎡

⎢

⎣

s $← Ds

u $← {0, 1}n

v ← Encode(s, u)

: Decode(s, v) = u

⎤

⎥

⎦
= 1, then |v| ≥ |u|.

(Lemma 9 is the formal statement by [24].) We show that if |L0 ∩ I| < |I| − |sk|,
then we can design a pair of (Encode,Decode) violating the above information-
theoretic bound.

– The shared randomness s is the PHFE randomness and I, w,R[[N ] \ I].
– To encode u ∈ {0, 1}n, the procedure Encode first sets R[I] = u. Using s,

it then generates a PHFE key sk for R and a ciphertext ct encrypting
y0 = (I, w), runs Dec to obtain the locations L0 in R that decryption reads.
Lastly, it sets the codeword to be v = (sk, R[L0 ∩ I]).

– To decode, Decode regenerates ct using s, and runs Dec to obtain the out-
put z = R[I] ⊕ w and recover u = z ⊕ w. During decryption, Dec queries for
locations L0 in R. Every query is in either R[[N ] \ I] or R[L0 ∩ I]; the former
can be answered by finding the right element in s and the latter in v.

Suppose |L0 ∩ I| < |I| − |sk|, then |v| is less than |I| = |u|, which contradicts the
incompressibility of u. (In the formal proof, we make v fixed-length and suffer
from incorrect decoding, hence the statements are probabilistic. See Sect. 3.1 for
more details.)

Stepping back, the compression argument shows that |L0 ∩ I| ≥ |I| − |sk|. In
contrast, by Eq. (1), |L1 ∩ I| ≤ n/2 with high probability. To show that the
adversary can distinguish ct encrypting y0 or y1, we can set, e.g., n = N (α+1)/2,
so that |sk| = O(Nα) 
 n, and |L0 ∩ I| ≥ |I| − |sk| ≥ n/2. (In the formal proof,
N itself is a large poly(λ) to overwhelm poly(λ) factors, which is ignored in
this overview.) In summary, any PHFE with both |sk| sublinear in |f | and TDec

sublinear in |f | (and linear in T, |x|, |y|) is insecure.

Technical Barrier Towards Fast Decryption. As described earlier, we show
barriers in current techniques against constructing a PHFE scheme with fast
decryption. Consider a PHFE scheme whose decryption time is

O(T βT

ϕ(f,x,y) + |f |βf + |x|βx + |y|βy )
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for constants βT , βf , βxβy. We show that even if just one of βx, βy, and βf is zero,
then the scheme implies SK-DE-PIR (an informal description of SK-DE-PIR is
in the introduction and formal definition in the full version [37]).

To illustrate our main idea, we start by describing this transformation for the
case when the decryption is efficient in the length of the public input x, namely
when βx = 0. The ideas naturally extend to the other cases.

Since the decryption is efficient in |x|, as a first attempt, we set DB ∈ {0, 1}n

as x, and y as empty. The client processes the database DB by first sampling
(mpk,msk) for the PHFE scheme and then encodes the database into

˜DB = (DB, ctPHFE = PHFE.Enc(mpk, (x = DB, y = ⊥)))

and sends it over to the server. To look up a location DBij
, the client can compute

a PHFE function key skfj
for the program fj that looks up and outputs DBij

and sends the key as the query to the server.
The server responds to the query by decrypting ctPHFE in ˜DB using the key

skfj
and with random access to DB, and learns DBij

. Note that double efficiency
requirement is already satisfied. Client only needs to compute a function key
skfj

that can be computed in time polynomial in the description length of fj ,
and hence polynomial in λ and log n. On the other hand, due to the supposed
efficiency of decryption, the decryption time is polynomial in Tfj(x,y), |fj |, |y|,
which are also polynomial in λ and log n.

While this idea solves the core issue, we have completely missed one impor-
tant aspect. The scheme reveals the indices {ij}j to the server as the keys {skfj

}j

are not guaranteed to hide the function descriptions {fj}j . To resolve this issue,
we observe that if we had a function-hiding PHFE scheme, we would have been
done. To enable this, we will use similar techniques as used to convert any FE
to a function-hiding FE [18]. Namely, we will compute a symmetric-key encryp-
tion SKE of the index i (denoted as ctk1). We will hardwire ctk1 in the function
secret key instead of the index i. The corresponding secret key SKE.sk1 will be
put in the private component y, which will be used to decrypt ctk1 to learn
index i. While this might seem to be enough, we face yet another issue. Learn-
ing DBij

in the clear upon decryption can reveal information about the index
ij to the server. To fix this, the decryption will output an encryption of DBij

under another secret key SKE.sk2 of the secret-key encryption scheme. We will
put this key in the private input y along with a PRF key to derive randomness
to compute the encryption.

˜DB = (DB, ctPHFE = PHFE.Enc(mpk, (DB, (SKE.sk1,SKE.sk2,PRF.k)))),

query = skfj
where fj [ckt1(ij), $]DB,(SKE.sk1,SKE.sk2,PRF.k)

= SKE(SKE.sk2,DBij
; PRF(PRF.k, $)).

Double efficiency is still preserved. We have increased the complexity of fj mul-
tiplicatively by a polynomial amount (in λ and log n), similarly the size of y is
also polynomial in λ to store secret keys of SKE and a PRF key. There are a
few more subtleties. To make the proof go through, we need to use the Trojan
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method in the FE literature [25], which requires another encryption key SKE.sk3
and additional programming.

Overview of Our PHFE for RAM. At a very high level, we use a succinct
garbled RAM (GRAM) scheme to lift a FE for circuits to a PHFE for RAM. This
former can be viewed as a 1-key, 1-ciphertext, secret-key FE for RAM, where
succinctness implies that the running time of key generation and encryption
is independent of the running time of the RAM computation. The (collusion-
resistant) FE for circuits is then used to lift the one-time security to many-
time security. This high-level approach first appeared in [8] for building FE
for TM. In this work, towards nearly optimally efficient FE for RAM, we first
observe that existing definitions and constructions of succinct GRAM [2,13,19–
21,23] are insufficient. Therefore, we first formulate a new variant of succinct
GRAM, termed laconic GRAM, and then construct it using polynomially hard
FE for circuit. Along the way, we weaken the assumption underlying succinct
GRAM schemes from iO, which requires subexponentially hard FE for circuit,
to polynomially-hard FE for circuits.

Let us first review the syntax and security of standard GRAM schemes. They
consist of the following algorithms. The encoding algorithm encodes a database
D into D̂ and outputs a private state τ . The garbling algorithms uses τ to garble a
RAM M into M̂ and outputs a collection of input labels {Li,b}i,b. The evaluation
algorithm given the garbled RAM M̂ , a subset of labels Lk corresponding to
an input k, and random access to D̂, returns the output MD(k) of the RAM
computation. Simulation based security ensures that D̂, M̂ , Lk = {Li,ki

}i can be
simulated using only the output MD(k). The efficiency of different algorithms
is is described below.

(D̂, τ) ← Encode(D) , M̂ , {Li,b}i,b ← Garble(M, τ) , MD(k) = EvalD̂(M̂, Lk)

|D̂| = |D|poly(λ) , |M̂ | = poly(λ), TEval = T poly(|M |, λ).

We now describe why the standard notion falls short for our purpose of building
very efficient FE for RAM and how to address these issues. An informal definition
of our succinct GRAM is provided in Fig. 1.

– many-tape v.s. single-tape: To start with, we consider RAM computation with
multiple tapes Ux,y,f (1) instead of a single tape MD(k).

– public-tape v.s. private-tape: Some of the tapes we consider, such as x and
f , are public. But standard GRAM only provides a mechanism for encoding
private tape, and the encoding is necessarily at least as long as the tape
itself. However, optimal succinctness requires the FE ciphertext- and key-
size to be independent of |x| and |f |. Hence we cannot afford to encode x, f
as in standard GRAM. Instead, our new notion of succinct GRAM has a
Compress algorithm that compresses the public tapes into hashes/digests hx

and hf ; the Garble algorithm “ties” these hashes to the garbled program Û ;
and finally Eval makes random access to x and f in the clear directly (just as
the decryption algorithm of RAM-FE does).
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– rate-2 encoding v.s. rate-poly(λ) encoding of private tape: Our setting also has
private tape, namely y. But optimal succinctness requires concretely efficient,
rate-1 or rate-2, encoding of y, whereas standard GRAM allows much worse
rate poly(λ). To achieve concretely efficient encoding, we can only encrypt y
using a rate-1 encryption scheme. To bind the encryption ŷ with a garbled
program, we simply treat ŷ as yet another public tape just like x, f . In other
words, we consider the modified RAM computation Ūx,ŷ,f (k) = Ux,y,f (1),
where k is the secret key of the rate-1 encryption. As such, our succinct
GRAM only need to handle public tapes.
In our construction of FE, additional care needs to be taken to ensure that
our GRAM security implies that y is hidden. To achieve this, We rely on
existing techniques [49], which requires two (rate-1) encryption of y with
independent keys so that different security hybrids can invoke the semantic
security of different encryption. This is why our FE has rate-2 dependency
on |y|, instead of rate-1. We omit details in this overview.

– reusable digests v.s. one-time encoding: In standard GRAM, the database
encoding D̂ can only be used, once, by a single garbled program M̂ generated
using the right state τ . The technical cause of the one-time security of D̂
is due to the use of ORAM in order to hide the access pattern of M to D;
the same ORAM storage D̂ cannot be used by multiple garbled programs.5

The one-time security means that when using succinct GRAM to construct
RAM-FE, the decryption of every ciphertext and key pair must generate fresh
encoding D̂ (and M̂). Such fresh encoding can only be generated using the
underlying FE for circuit, by encoding D in its key or ciphertext, which would
lead to large polynomial dependency on |D|.
Our notion of succinct GRAM compresses the public tapes into hashes
hx, hf , hŷ. For the same reasons, we cannot afford to generate fresh hashes
at decryption of every pair of ciphertext and key. Instead, our hashes are
reusable – they can be tied to multiple garbled programs; this is ensured by
the fact that our Garble algorithm does not take any private state from the
Compress algorithm. A technical issue we must resolve is how to hide access
pattern to the public tapes x, ŷ, f since they are not encoded using ORAM,
which we discuss later.

– Difference in decryption time: The reusability comes at a cost. In our new
notion, evaluation time is (T +|x|+|y|+|f |) poly(λ) whereas standard GRAM
has evaluation time T poly(|M |, λ) independent of tape size |D|. Nevertheless,
our lower bound for RAM-FE implies that the dependency on |x|, |y|, |f | is
hard to get around (as our succinct GRAM implies RAM-FE with the same
decryption time).

5 This should be distinguished from the scenario of GRAM with persistent database

where a sequence of garbled program (M̂1, M̂2, · · · )D̂ are executed sequentially with
D̂. The difference lies in that in sequential execution, each garbled RAM can modify
D̂ and the changes are kept persistently to the next computation. Here, we are con-
sidering the scenario where the unmodified D̂ is used by multiple garbled program,
which breaks ORAM security.
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– RAM with long outputs v.s. single-bit output: Standard succinct GRAM han-
dles RAM computation with a single-bit output. To handle RAM with m-bit
output, it reduces to creating m instances of garbled RAM, one for each out-
put bit. Under simulation security, the size of the garbled RAM necessarily
grows linearly with the output length m.
In our notion, we require garbling RAM with arbitrarily long outputs, without
efficiency degradation in the output length. To do so, we switch to indistin-
guishability based security instead of simulation security.

Putting the above pieces together, we formulate succinct GRAM as in Fig. 1.

Our Notion of Succinct Garbled RAM

– Compress(τ, Dτ ) compresses the τ ’th public tape Dτ into a short hash digestτ of
length poly(λ). It runs in time O(|Dτ |).

– Garble(U, {digestτ}τ∈[T ]) outputs a garbled program ̂U tied with hashes of the
public tapes, and pairs of labels {Li,b}i,b. It runs in time poly(λ) (U has constant-
size).

– EvalD1,...,DT (U, {digestτ}τ∈[T ], ̂U, Lk) returns the (long) output of RAM compu-
tation UD1,...,DT (k) if Lk = {Li,ki}i. It runs in time (T +

∑

τ |Dτ |) poly(λ).
Security guarantees that for two computations UD1,...,DT (k0) and UD1,...,DT (k1)
with different inputs but identical outputs and running time, the distributions of
(̂U, {digestτ}τ∈[T ], Lk0) and (̂U, {digestτ}τ∈[T ], Lk1) are indistinguishable. This
holds when the tapes {Di} are chosen adaptively dependent on the hashes of
previously chosen tapes, before the program U and inputs k0, k1 are chosen.

Fig. 1. Our notion of succinct GRAM.

Our Construction of Succinct GRAM. One approach towards constructing suc-
cinct GRAM for TM or RAM is starting from a non-succinct GRAM for TM or
RAM where the size of the garble program scales with the worst-case time com-
plexity of the TM/RAM U , into one that is succinct. First introduced in [13], this
approach uses iO to obfuscate a circuit that on input an index t, outputs the t’th
component in the non-succinct GRAM. If every component of the non-succinct
GRAM can be locally generated using a small circuit of size poly(|U |, λ), then
the obfuscated circuit also has size poly(|U |, λ) and can be viewed as the suc-
cinct garbled program. To prove security, [13] identified that the non-succinct
garbling scheme must satisfy another property, articulated later by [7], called
local simulation. Informally, it requires that the non-succinct garbled scheme is
proven secure via a sequence of hybrids, where components of every hybrid gar-
bled program can be locally generated using a small circuit, and in neighboring
hybrids, only a few components changes. Beyond succinct garbling, local simu-
lation has also found application in achieving adaptive security [12] of garbling
schemes. A sequence of works developed local simulation strategies for garbled
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circuit [29,36], TM [7,30], and RAM [27]. Most notably, the work by Garg and
Srinivasan [29] introduced a beautiful pebbling technique for realizing local sim-
ulation.

Our construction of succinct GRAM proceeds in steps. First, we use the
Garg–Srinivasan [29] pebbling technique to obtain a non-succinct GRAM that
has a local simulation proof for, however, weak indistinguishability security called
fixed-memory security. Indistinguishability only holds when the two RAM com-
putations have not only identical outputs and running time, but also identical
memory access pattern and content. Then by the same approach of [7,13,30],
we turn it into a succinct GRAM, still with only fixed-memory security, relying
on iO for polynomial-size domain which is implied by polynomially hard FE for
circuits. Many details need to be ironed out in order to realize our new notion of
succinct GRAM. For example, prior works [7,29,30] deal with single-bit output
RAM and can build intermediate security hybrid where the suffix (i.e., the last
certain number of steps) of a computation is simulated by hardwiring the single-
bit output. In contrast, we directly garble RAM with arbitrarily long outputs.
Hardwiring the long output would compromise the local simulation property
(since the hybrid garbled program can no longer be locally generated by a small
circuit). To avoid this, we build a hybrid GRAM that runs with one input k0
in the prefix of the computation and with another input k1 in the suffix (recall
that these two inputs produce identical memory). This ensures that the output
is always correctly computed, while keeping local simulation. Similar hybrids
appeared in [27] for different reasons.

Finally, we lift fixed-memory security to full security using punctured PRF
and ORAM to protect the memory content and access pattern. One issue is that
in our succinct GRAM, the public input tapes D1, ...,DT are not encoded using
ORAM, and evaluation is given random access to them in the clear. Yet, to ensure
security, evaluation must access these tapes in an oblivious way, independent of
the input k0 or k1. To solve this issue, we consider a modified RAM program
U ′, which has random access to D1, ...,DT and additionally a working tape that
contains an ORAM storage that initially contains no elements. The program U ′

starts with linearly scanning every tape Dτ and inserting every element into the
ORAM storage. Only after that, it emulates the execution of the original RAM
program U ; every time U read from/write to a location in tape Dτ , U ′ accesses
the corresponding location on its working tape through ORAM, which hides
the access pattern of U . The intuition is that since the access pattern of U ′ is
independent of the input, it suffices to garble it using GRAM with fixed-memory
security. Clearly, the running time of U ′ scales linearly with the total length of all
tapes

∑

τ |Dτ |. This is why the evaluation time of our succinct GRAM is linear
in
∑

τ |Dτ |. Nevertheless, our lower bound shows that this dependency is hard
to circumvent. Lastly, we mention that to prove security, one must ensure that
the use of ORAM does not hurt local simulation. Fortunately, the techniques
by [20] provide a solution.
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1.3 Related Works

Our new construction significantly improve upon the efficiency of prior FE and
ABE schemes. The state-of-the-art is summarized in Tables 1 and 2. Below, we
compare with prior works in more detail.

FE for Circuits. The first construction of collusion-resistant FE for
polynomial-size circuits is by [26] and based on iO, which in turn relies on subex-
ponential hardness. Later works [28,41,42,44] improved the assumption from
iO to 1-key FE with sublinearly compact ciphertext, |ct(y)| = poly(|y|)|Tf |1−ε,
where ε is a positive constant and Tf is the circuit complexity of f . The latter
has been recently constructed by [39,40] from the polynomial hardness of three
well-studied assumptions. However, these circuit-FE schemes have polynomial
efficiency. The only exception is the recent construction by [35], which has rate-
1 ciphertext, i.e., |ct(y)| = |y| + O(1), but still large secret keys |skf | = poly(Tf ).

FE for Turing Machines. Several works constructed FE for Turning machines
with arbitrary-length inputs, first from the assumption of iO [8], then from FE
for circuits [1], and more recently from 1-key sublinearly compact FE [42] (which
implies collusion-resistant FE for circuits). The construction of [8] relies on a 1-
key 1-ciphertext secret-key FE for TM, which is essentially a succinct garbling
scheme for TM with indistinguishability security. They constructed it by modi-
fying the succinct garbling for TM of [43]. Later, the works of [7,30] improved
and simplified the construction of succinct garbling for TM. The work of [42]
improved the assumption to the existence of 1-key sublinearly succinct FE, and
showed that their garbling scheme can be combined with [8] to obtain FE for
TM. On the other hand, the work of [1] presented an alternative direct approach
to FE for TM from FE for circuits without going through succinct garbling for
TM. Prior constructions of FE for TM [1,8,42] focus more on weakening the
underlying assumptions, and only show polynomial efficiency. Examining their
schemes, we conclude that they achieve efficiency listed in Table 1.

FE for Bounded-Input RAM. A line of research obtained bounded-input
iO for Turning machines [6,30,43] and RAM [2,13,19–21,23]. Plugging these iO
schemes into the construction of [26] yields bounded-input FE for TM and RAM.
Unfortunately, these schemes are not full-fledged FE for TM or RAM for the
following reason: Existing iO only handles bounded-input TM and RAM in the
sense that the obfuscator needs to know the maximum input length max |y| to the
TM/RAM f being obfuscated. (Constructing iO for unbounded input TM/RAM
remains a major open question.) Plugging them into [26] yields schemes where
the key generation algorithm needs to know the maximum input length max |y|,
despite that the TM/RAM f could process arbitrarily long inputs. Such FE
is said to have bounded input. In terms of efficiency, the secret key contains an
obfuscated program of size poly(|f |,max |y|) when using the RAM-iO of [20,21],
and poly(|f |,max |y|, S), where S is the space complexity of f when using the
RAM-iO of [13].
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In summary, our construction gives the first full-fledged (PH-)FE scheme
for RAM computation with arbitrarily long inputs and outputs, significantly
improves the efficiency of prior FE schemes, and matches newly proven lower
bounds.

ABE for Circuits and Turing Machines. Since FE implies ABE, the
aforementioned FE schemes immediately imply ABE with the same level of
efficiency. The literature on ABE focuses on constructing ABE from weaker
assumptions, and achieving better efficiency, among others. The celebrated
works of [14,32] showed that ABE for bounded-depth circuits can be constructed
from the learning With errors (LWE) assumption. Parameters of these schemes
however depend polynomially on the maximum depth d of the circuits sup-
ported, namely, |mpk| = poly(d), |skf | = poly(d), |ct(x,m)| = poly(d)|x|, and the
decryption time is TDec = poly(d)T . A recent work [45] improved it to obtain
constant-size keys while keeping the sizes of master public key and ciphertext
intact, but at the cost of additionally relying on the generic (pairing) group
model (GGM). ABE for low-depth computation such as NC1 or (arithmetic)
branching programs can be constructed using pairing groups, where several
schemes have either constant-size keys or constant-size ciphertexts, but never
both [9–11,46,53–55].

The work of [31] constructed ABE for Turing machines and RAM with
constant-size secret keys |skf | = O(1), but still large ciphertexts |ctx| = poly(|x|).
Their scheme uses SNARK and differing-input iO, which cannot be based on
falsifiable assumptions. Another work [4] tries to construct ABE for RAM from
LWE, at the cost of making the master public key, secret keys, and ciphertexts
all grow polynomially with the maximum running time of the RAM supported,
i.e., it is an ABE for bounded-time RAM.

In summary, we give the first ABE for RAM from falsifiable assumptions,
simultaneously having constant-size secret keys, constant-size ciphertexts, and
the best-possible decryption time matching the known lower bound [48] under
the constraint of having constant-size keys and ciphertexts.

Concurrent and Independent Work on FE for RAM. Concurrently and
independently of our work, the recent work by Ananth, Chung, Fan, and Qian
(ACFQ) [3] also considers the question of FE for RAM. Despite an apparent over-
lap between both these works, there are many differences. The two works start with
different motivations. Our goal is to understand the optimal succinctness and effi-
ciency of PHFE, both constructively and from a lower-bound perspective, whereas
ACFQ aims to construct FE for RAM with optimal decryption time TDec = O(T ).
Consequently, the two works obtain mostly complementary results.

First, we prove unconditional trade-offs between the sizes of secret
keys/ciphertexts and decryption time; it shows that no PHFE can have both
optimal succinctness and optimal decryption time. We then construct PHFE
for RAM with (nearly) optimal succinctness, while minimizing the decryption
time to the best-possible matching our lower bounds. ACFQ, on the other hand,
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constructs FE for RAM with optimal decryption time. (They did not attempt
to simultaneously minimizing the sizes of secret keys and ciphertexts.)

On the common front, both works show that any (PH-)FE scheme for RAM
with optimal decryption time implies SK-DE-PIR. We regard this as a barrier
to optimal efficiency due to lack of DE-PIR schemes from well-studied assump-
tions, whereas in ACFQ, public key version of DE-PIR (PK-DE-PIR) is used as
a building block to realizing such PHFE. As a result their scheme relies on ideal
obfuscation and a new assumption of permuted puzzles inherited from current
candidate PK-DE-PIR, whereas our storage optimal PHFE scheme is based on
circuit-FE, which is necessary and can in turn be based on well-studied assump-
tions.

There are two other major differences in the schemes: Our scheme handles
arbitrarily long output, where as ACFQ consider single-bit output. To handle
long output, they proposes to generate a separate key for computing each output
bit, meaning that the key-size grows linearly with the output length, which could
be as long as the running time in many scenarios. Moreover, our scheme achieves
adaptive security, whereas that ACFQ scheme is only selectively secure.

In terms of techniques, both works demonstrate that the main bottleneck
towards (PH-)FE for RAM is that existing notions of succinct GRAM are insuf-
ficient — it needs GRAM with reusable tape encoding. The two works develop
different techniques to achieve this: Our construction lets an GRAM instance
build fresh ORAM storage at the beginning of every evaluation and hence ORAM
is never reused, whereas ACFQ uses PK-DE-PIR which is essentially a reusable
ORAM.

2 Preliminaries

We present our formulations of laconic garbled RAM and partially hiding func-
tional encryption, essential for considering the optimal succinctness and effi-
ciency and the lower bounds. The details can be found in the full version [37].

Multi-tape RAM. We consider T -tape RAM for natural number T . Such a
machine has T read-only input tapes and one read/write working tape. Each
input tape consists of multiple �cell-bit cells indexed by �addr-bit addresses. For
the working tape, the lengths are �cell and �addr. The machine is also given an
�in-bit (short) input that remains constant during one execution, and it maintains
an �st-bit internal state. At each step, the machine could produce an optional
output bit. We denote an execution of M with input tape contents D1, . . . , DT
and short input w by MD1,...,DT (w), and write time(M,D1, . . . , DT , w) and
outS(M,D1, . . . , DT , w) for its running time and its output sequence (a sequence
of elements in {⊥, 0, 1}).

2.1 Laconic Garbled RAM

Our notion of garbling RAM laconically involves two steps. First, a reusable
short digest is created for each input tape. The digest has length independent of
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that of the tape itself and must be computable in linear time. Second, the RAM
and the short digests are put together to produce a garbled program and the
labels. This procedure runs in time poly-logarithmic in the RAM running time.
Given a garbled program and one set of labels (selected by the bits of the short
input), the evaluation procedure computes the output sequence in time linear in
the RAM running time.

We consider indistinguishability-based security for the short input. The input
tape contents can be chosen adaptively, but the short input cannot depend on
the garbled program (i.e., selectiveness).

Definition 1 (LGRAM). Let T be a natural number. A laconic garbling scheme
for T -tape RAM consists of three algorithms:

– Compress(1λ, 1�cell , 1�addr , τ,Dτ ) takes as input a cell length �cell, an address
length �addr, an input tape index τ ∈ [T ], and the content of that input tape,
Dτ ∈ ({0, 1}�cell)≤2�addr . It outputs a short digest digestτ . The algorithm runs
in time |Dτ |poly(λ, �cell, �addr) and its output length is poly(λ, �cell, �addr).

– Garble(1λ, Tmax,M, {digestτ}τ∈[T ]) takes as input a time bound Tmax ∈ N+, a
T -tape RAM M , and T input tape digests. It outputs a garbled program ̂M
and �in pairs of labels {Li,b}i∈[�in],b∈{0,1}in polynomial time.

– EvalD1,...,DT (1λ, Tmax,M, {digestτ}τ∈[T ],̂M, {Li}i∈[�in]) takes as input Tmax,
M , the input tape digests, ̂M , and one set of labels. Given random access to
the input tapes, it is supposed to compute the output sequence. The algorithm
runs in time
(

min
{

Tmax, time(M,D1, . . . , DT , w)
}

+
T
∑

i=1

|Dτ |
)

poly(λ, |M |, log Tmax),

where w is the short input corresponding to the labels.

The scheme must be correct, i.e., for all λ, �in ∈ N, �cell, �addr, Tmax ∈ N+, input
tape contents D1, . . . , DT ∈ ({0, 1}�cell)≤2�addr , short input w ∈ {0, 1}�in , T -tape
RAM M such that MD1,...,DT (w) halts in time at most Tmax,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

digestτ
$← Compress(1λ, 1�cell , 1�addr , τ,Dτ ) ∀τ ∈ [T ]

(̂M, {Li,b}i∈[�in],b∈{0,1})
$← Garble(1λ, Tmax,M, {digestτ}τ∈[T ])

:
EvalD1,...,DT (1λ, Tmax,M, {digestτ}τ∈[T ],̂M, {Li,w[i]}i∈[�in])

= outS(M,D1, . . . , DT , w)

⎤

⎥

⎥

⎥

⎥

⎦

= 1.

Remark 1 (unboundedness). Our notion of LGRAM is unbounded, i.e., it is not
necessary to know a polynomial upper bound of the instance running time
upon garbling. By choosing an exponentially large Tmax, one garbling works
for all polynomial-time computation. In contrast is a bounded scheme for all
polynomial-time computation, where Tmax can be any polynomial, but it must
be a polynomial, hence every garbling is restricted to some polynomial time
bound upon creation. Unboundedness is reflected in both efficiency and security
(below), where Tmax is written in binary.
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Definition 2 (LGRAM security). An LGRAM scheme (Definition 1) is (tape-
adaptively, indistinguishability-based) secure if Exp0LGRAM ≈ Exp1LGRAM, where
Expβ

LGRAM(1λ,A) proceeds as follows:

– Setup. Launch A(1λ) and receive (1�cell , 1�addr) from it.
– Tape Choices. Repeat this for T rounds. In each round, A chooses τ ∈ [T ]

and Dτ ∈ ({0, 1}�cell)≤2�addr . Upon receiving such choice, run

digestτ
$← Compress(1λ, 1�cell , 1�addr , τ,Dτ )

and send digestτ to A.
– Challenge. A chooses an instance running time bound 1T (in unary), a time

bound Tmax (in binary), a T -tape RAM M , and two inputs (w0, w1). Run

(̂M, {Li,b}i∈[�in],b∈{0,1})
$← Garble(1λ, Tmax,M, {digestτ}τ∈[T ])

and send (̂M, {Li,wβ [i]}i∈[�in]) to A.
– Guess. A outputs a bit β′. The output of the experiment is β′ if all of the

following conditions hold:
• The τ ’s in all rounds of Tape Choices are distinct.
• Both MD1,...,DT (w0) and MD1,...,DT (w1) halt in time T ≤ T ≤ Tmax with

identical output sequences outS(· · ·).
Otherwise, the output is set to 0.

Remark 2 (polynomial security). Although Tmax can be exponentially large, we
only require security for polynomially large instance running time, which is cap-
tured by the requirement that the adversary must produce 1T , an upper bound
of the instance running time in unary.

2.2 Partially Hiding Functional Encryption and FE for Circuits

We define partially hiding functional encryption with respect to functionality

ϕ : F × X × Y → {⊥} ∪ (N+ × Z),

where F,X, Y, Z are the sets of function description, public input, private input,
and output, respectively. Each key is associated with some f ∈ F , and each
ciphertext encrypts some private input y ∈ Y and is tied to some public input
x ∈ X. The decryptor should be able to recover z if ϕ(f, x, y) = (T, z), in which
case T is the time to compute z from f, x, y in the clear and serves as a baseline
for decryption efficiency. For security, we only consider f, x, y for which T is
polynomially bounded. On the other hand, if ϕ(f, x, y) = ⊥, we require neither
correctness nor security. This can be used to exclude non-halting computation.

Definition 3 (PHFE). Let Φ = {Φλ}λ∈N be a sequence of functionality families

with ϕ : Fϕ × Xϕ × Yϕ → {⊥} ∪ (N+ × Zϕ) for each ϕ ∈ Φλ.

A partially hiding functional encryption scheme for Φ consists of four algorithms,
with efficiency defined in Definition 4:
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– Setup(1λ, ϕ) takes a functionality ϕ ∈ Φλ as input, and outputs a pair of
master public/secret keys (mpk,msk).

– KeyGen(1λ,msk, f) takes as input msk and a function description f ∈ Fϕ. It
outputs a secret key skf for f .

– Enc(1λ,mpk, x, y) takes as input mpk, a public input x ∈ Xϕ, and a private
input y ∈ Yϕ. It outputs a ciphertext ctx of y tied to x.

– Decf,x,skf ,ctx(1λ,mpk) takes mpk as input and is given random access to f, x,
skf , ctx. It is supposed to compute z in ϕ(f, x, y) = (T, z) efficiently.

The scheme must be correct, i.e., for all λ ∈ N, ϕ ∈ Φλ, f ∈ Fϕ, x ∈ Xϕ, y ∈ Yϕ

such that ϕ(f, x, y) = (T, z) �= ⊥, it holds that

Pr

⎡

⎢

⎣

(mpk,msk) $← Setup(1λ, ϕ)

skf
$← KeyGen(1λ,msk, f)

ctx
$← Enc(1λ,mpk, x, y)

: Decf,x,skf ,ctx(1λ,mpk) = z

⎤

⎥

⎦
= 1.

Definition 4 (PHFE efficiency). The basic efficiency requirements for a PHFE
scheme (Definition 3) are as follows:

– Setup,KeyGen,Enc are polynomial-time.
– Dec runs in time poly(λ, |ϕ|, |f |, |x|, |y|, T ) if ϕ(f, x, y) = (T, z) �= ⊥.

The following time-efficiency properties are considered:

– It has linear-time KeyGen [resp. Enc] if KeyGen [resp. Enc] runs in time
|f |poly(λ, |ϕ|) [resp. (|x| + |y|) poly(λ, |ϕ|)];

– It has (T eT + |f |ef + |x|ex + |y|ey )-time Dec (for constants eT , ef , ex, ey) if
Dec runs in time

(T eT + |f |ef + |x|ex + |y|ey ) poly(λ, |ϕ|),

where ϕ(M,f, x, y) = (T, z) �= ⊥. Furthermore, the scheme has f -fast [resp. x -
fast, y-fast] Dec if it has (T eT + |f |ef + |x|ex + |y|ey )-time Dec with ef = 0
[resp. ex = 0, ey = 0].

The following size-efficiency properties are considered:

– It is f -succinct if |skf | = poly(λ, |ϕ|), independent of |f |.
– It is x -succinct if |ctx| = poly(λ, |ϕ|, |y|), independent of |x|.
– It has rate-c ciphertext for some constant c if |ctx| = c|y| + poly(λ, |ϕ|).

Security. We consider adaptive IND-CPA for polynomially bounded T :

Definition 5 (PHFE security). A PHFE scheme (Definition 3) is (adaptively
IND-CPA) secure if Exp0PHFE ≈ Exp1PHFE, where Expβ

PHFE(1λ,A) proceeds as
follows:

– Setup. Launch A(1λ) and receive from it some ϕ ∈ Φλ and 1T . Run

(mpk,msk) $← Setup(1λ, ϕ)

and send mpk to A.
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– Query I. Repeat the following for arbitrarily many rounds determined by A.
In each round, A submits some fq ∈ Fϕ. Upon receiving such query, run

skq
$← KeyGen(1λ,msk, fq)

and send skq to A.
– Challenge. A submits x ∈ Xϕ and y0, y1 ∈ Yϕ. Upon the challenge, run

ct $← Enc(1λ,mpk, x, yβ)

and send ct to A.
– Query II. Same as Query I.
– Guess. A outputs a bit β′. The outcome of the experiment is β′ if

|y0| = |y1|,
and ϕ(fq, x, y0) = ϕ(fq, x, y1) = (Tq, zq) �= ⊥ for all q,

and Tq ≤ T for all q.

Otherwise, the outcome is set to 0.

FE for Circuits. As an example, we show how to instantiate Definition 3 into
FE for circuits, a building block of our construction (see the full version [37]).
Definition 6 (FE for circuits). A functional encryption scheme for circuits is
a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {ϕ�,s}�,s∈N+ ,

ϕ�,s : F�,s × X × Y� → {⊥} ∪ (N+ × Z),
F�,s = { circuits of input length � and size at most s },

X = {⊥}, Y� = {0, 1}�
, Z = {0, 1}∗

,

ϕ�,s(f,⊥, y) =
(

1, f(y)
)

,

where the functionality ϕ�,s is represented by (1�, 1s).

Remark 3. The first output of ϕ�,s is just a placeholder value and all efficiency
parameters (Definition 4) are always allowed arbitrary polynomial dependency
on λ, �, s by our choice of representing ϕ�,s by (1�, 1s). This is intended as we use FE
for circuits as a building block and do not wish to start with too strong a scheme.

2.3 Universal RAM and PHFE for RAM

In this section, we define PHFE for RAM after explaining some rationales behind
certain subtleties in our formulation.

To obtain PHFE for RAM, we will employ the standard transformation [51]
of using FE for circuits to compute LGRAM. However, in LGRAM (Definition
1), the running time of Garble depends on the machine size. This dependency
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is inherited by every efficiency parameter of the resultant PHFE for RAM if
we associate each key with a RAM. To get rid of this dependency, we fix some
universal RAM U of size poly(λ)6 upon setting up the scheme, and associate
with each key a piece of code interpreted by U .

The other issue is that LGRAM puts an upper bound on the running time and
its incorrectness in case of exceeding the time limit is propagated to the PHFE
scheme. We avoid it7 by defining ϕ = ⊥ if the running time exceeds some super-
polynomial value prescribed upon set-up.

The above explains the intended usage of PHFE for RAM, yet we define it for
general machines. Moreover, as an intermediate primitive, we will first consider
PHFE for RAM with bounded private input, where the private input is simply the
short input to the machine:

Definition 7 (PHFE for RAM with bounded private input). A PHFE scheme for
RAM with bounded private input is a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {ϕM,Tmax}M is a 2-tape RAM and Tmax∈N+ ,

ϕM,Tmax : FM × XM × YM → {⊥} ∪ (N+ × Z),

FM = XM = ({0, 1}�cell)≤2�addr
, YM = {0, 1}�in , Z = {⊥, 0, 1}∗

,

ϕM,Tmax(f, x, y) =

{

(

T, outS(M,f, x, y)
)

, if time(M,f, x, y) = T ≤ Tmax;
⊥, otherwise;

where ϕM,Tmax is represented by (M,Tmax).

In a full-fledged PHFE for RAM, the machine has no short input, and the private
input is encoded on a tape:

Definition 8 (full-fledged PHFE for RAM). A full-fledged PHFE scheme for
RAM is a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {ϕM,Tmax}M is a 2-tape RAM with �in=0, and Tmax∈N+ ,

ϕM,Tmax : FM × XM × YM → {⊥} ∪ (N+ × Z),

FM = XM = YM = ({0, 1}�cell)≤2�addr
, Z = {⊥, 0, 1}∗

,

ϕM,Tmax(f, x, y) =

⎧

⎪

⎨

⎪

⎩

(

T, outS(M,f, x‖y, ε)
)

,

if |x| + |y| ≤ 2�addr and time(M,f, x‖y, ε) = T ≤ Tmax;
⊥, otherwise;

where ε is the empty string and ϕM,Tmax is represented by (M,Tmax).

6 U is not the same RAM across different values of λ — its input address length should
be ω(log λ) to accommodate all polynomially long input.

7 An alternative solution is to blatantly reveal everything if the running time is too
large so that correctness in that case can be implemented by executing the machine in
the clear. Security is not affected because the adversary is not allowed to choose keys
and ciphertexts with super-polynomial instance running time. However, non-halting
computation still needs to be handled separately.
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Remark 4 (unbounded scheme and polynomial security). When Definitions 3 and
5 are instantiated into PHFE for RAM (Definitions 7 and 8), the scheme is
unbounded, meaning that Tmax can be exponentially large, yet security only holds
for polynomially bounded instance running time. This is similar to the case in Sect.
2.1.

3 Efficiency Trade-Offs of PHFE for RAM

We present the unconditional lower bounds. Additional contents about technique
barriers can be found in the full version [37].

3.1 Contention Between Storage Overhead and Decryption Time

In this section, we show that it is impossible to achieve

|sk| = O(|f |α) and TDec = O(T + |f |β + |x| + |y|)

simultaneously for a secure PHFE for RAM when α, β < 1, where polynomial
factors in the security parameter are ignored. This leaves us with two candidate
optima:

– α = 0 and β = 1 for succinct keys; or
– α = 1 and β = 0 for f -fast decryption.

Similarly, it is impossible to achieve

|ct| = O(|x|α) poly(|y|) and TDec = O(T + |f | + |x|β + |y|)

simultaneously if α, β < 1, which implies a contention between succinct cipher-
texts and x-fast decryption.

Formally, our theorems are slightly stronger than the discussion above:

Theorem 5 (contention of |f |-dependency between |sk| and TDec;¶). For a secure
full-fledged PHFE for RAM (Definitions 3, 5, and 8), if

|sk| ≤ |f |α(λ + |ϕ|)C and TDec ≤ (T + |f |β + |y|)(λ + |ϕ| + |x|)C

for infinitely many λ, where α, β,C are constants, then α ≥ 1 or β ≥ 1.

Theorem 6 (contention of |x|-dependency between |ct| and TDec). For a secure
full-fledged PHFE for RAM (Definitions 3, 5, and 8), if

|ct| ≤ |x|α(λ + |ϕ| + |y|)C and TDec ≤ (T + |f | + |x|β)(λ + |ϕ| + |y|)C

for infinitely many λ, where α, β,C are constants, then α ≥ 1 or β ≥ 1.
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We will only prove Theorem 5. The proof of Theorem 6 is similar.

Proof (Theorem 5). Let (Setup,KeyGen,Enc,Dec) be a secure PHFE for RAM.
Suppose for contradiction that α, β < 1 − 5ε for some 0 < ε ≤ 1

5 . By enlarging C
as needed, we could assume |ϕ| ≤ λC − λ − 1 for all sufficiently large λ, where

ϕ = (Mλ, 2λ), f = R ∈ {0, 1}≤2λ

, x = ⊥,

y =

{

(I, w) = (i1, w[1], . . . , in, w[n]) ∈ ( [2λ] × {0, 1})≤2λ

;
z = (⊥, z[1], . . . , ⊥, z[n]) ∈ ({⊥} × {0, 1})≤2λ

;

Mf,x‖y() =

{

(R[i1] ⊕ w[1], . . . , R[in] ⊕ w[n]), if y = (I, w);
( z[1] , . . . , z[n] ), if y = z.

Under appropriate encoding and step circuit design, y has exactly n cells and
M halts in exactly (2n + 1) steps.

We focus on the values of λ (hereafter, “λ with efficiency”) such that

|sk| ≤ |f |α(λ + |ϕ|)C and TDec ≤ (T + |f |β + |y|)(λ + |ϕ| + |x|)C

By setting

|R| = N =
⌈

λ(C2+1)/ε
⌉

, n = �N1−3ε�,

we would have n < N < 2λ for sufficiently large λ. Consider the following adver-
sary A (Definition 5):

– Upon launching, it computes ϕ,N, n defined above, sets up the PHFE scheme
for ϕ, and submits 12n+1 as the time bound.

– It samples R $← {0, 1}N and requests a key sk for f = R.
– It samples w $← {0, 1}n and a list I of n distinct random elements from [N ], sets

z = (R[i1] ⊕ w[1], . . . , R[in] ⊕ w[n]).

It challenges with

x = ⊥, y0 = (I, w), y1 = z,

and obtains a ciphertext ct encrypting either y0 or y1.
– It runs Decf,x,sk,ct(mpk) and notes down the list L of indices into R = f where

it is read during decryption. A outputs 1 if and only if

|L ∩ I| > N1−4ε,

where L and I are regarded as sets (unordered and deduplicated) for the inter-
section operation.

Clearly, A would be efficient and its challenge would satisfy the constraints of
PHFE security for sufficiently large λ. We claim:



504 A. Jain et al.

Claim 7 (¶). For sufficiently large λ with efficiency,

Pr
[

|L ∩ I| > N1−4ε in Exp0PHFE

]

≥ 3
4
.

Claim 8 (¶). For sufficiently large λ with efficiency,

Pr
[

|L ∩ I| > N1−4ε in Exp1PHFE

]

≤ 1
4
.

The two claims together would contradict the security of PHFE, as the advantage
of A would be at least 1

2 for infinitely many λ. Therefore, α ≥ 1 or β ≥ 1. ��
To prove Claim 7, we need the following lemma about incompressibility of infor-
mation:

Lemma 9 ([24]). Suppose E : S × U → V and D : S × V → U are functions
and S is a distribution over S, then

|V | ≥ |U | · Pr
s $←S
u $←U

[D(s,E(s, u)) = u].

Proof (Claim 7). We use the PHFE scheme to compress a string u of length n. To
encode, we embed u into a string R of length N at random locations (i.e., I) and
generate a PHFE key for R. The encoding is the key plus some bits in R used during
decryption. To decode, run the decryption algorithm. Lemma 9 will generate the
following inequality equivalent to the desired one:

Pr
[

|L ∩ I| ≤ �N1−4ε� in Exp0PHFE

]

≤ 1
4
.

Formally, let

S =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

mpk,msk, I, w, R′,

rKeyGen, rEnc, rDec

)

:

(mpk,msk) $← Setup(ϕ)
(I, w) as how A samples it

R′[i] $← {0, 1} for i ∈ [N ] \ I

rKeyGen, rEnc, rDec
$← algorithm randomness

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

U = {0, 1}n
, V = {0, 1}
N1−4ε� × {0, 1}
N1−4ε�

.

The encoding procedure E(s, u) works as follows:

– Parse I = (i1, . . . , in) and set

R[i] =

{

R′[i], if i ∈ [N ] \ I;
u[j], if i = ij .
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– Run

sk ← KeyGen(msk, R; rKeyGen),
ct ← Enc(mpk,⊥, (I, w); rEnc),

u ⊕ w ← DecR,⊥,sk,ct(mpk; rDec),

and note down the list L = (�1, . . . ) of indices into R read by Dec.
– Output v = (v1, v2) with v1, v2 ∈ {0, 1}
N1−4ε� and

v1 = 0
N1−4ε�−|sk|−11‖sk,

v2[i] =

{

R[�j ], if |{�1, . . . , �j−1} ∩ I| = i − 1 and |{�1, . . . , �j−1, �j} ∩ I| = i;
0, if no such j exists.

Here, v1 is a fixed-length encoding of sk and is indeed well-defined since

|sk| ≤ |f |α(λ + |ϕ|)C ≤ N1−5ε
(

λ + (λC − λ − 1)
)C ≤ N1−5ελC2

< �N1−4ε� − 1

for sufficiently large λ with efficiency. The string v2 records, sequentially, the bits
in R at each distinct index read by Dec that are part of u and not known from R′,
for at most �N1−4ε� bits.

The decoding procedure D(s, v) works as follows:

– Run ct ← Enc(mpk,⊥, (I, w); rEnc).
– Parse v = (v1, v2) and recover sk from v1 as specified in E.
– Initialize j, an index into v2, by j ← 0, and initialize R by

R[i] =

{

R′[i], if i ∈ [N ] \ I;
⊥, if i ∈ I.

Run z ← DecR,⊥,sk,ct(mpk; rDec) with R filled on the fly. When Dec reads R[i]:
• if R[i] = ⊥ and j < �N1−4ε�, then let j ← j + 1 and set R[i] ← v2[j];
• if R[i] = ⊥ and j = �N1−4ε�, then abort by outputting 0n;
• otherwise, R[i] �= ⊥, then just proceed without aborting;

and return R[i] to Dec if not aborting.
– Output z ⊕ w.

D will fill v2 into the correct indices of R since the PHFE algorithms are deran-
domized with the same randomness as in E.

The sampling of s, u and the setting of R in E(s, u) simulate A in Exp0PHFE. If s
andu are such that |L ∩ I| ≤ �N1−4ε� inE(s, u), thenD will successfully recoveru.
By Lemma 9,

Pr
[

|L ∩ I| ≤ �N1−4ε� in Exp0PHFE

]

= Pr
s $←S
u $←U

[

|L ∩ I| ≤ �N1−4ε� in E(s, u)
]

≤ Pr
s $←S
u $←U

[D(s,E(s, u)) = u] ≤ |V |
|U | =

22
N1−4ε�

2n
= 22
N1−4ε�−
N1−3ε� ≤ 1

4

for sufficiently large λ with efficiency. ��
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Proof (Claim 8). For sufficiently large λ with efficiency,

|L| ≤ TDec ≤ (T + |f |β + |y|)(λ + |ϕ| + |x|)C

≤
(

(2n + 1) + N1−5ε + n
)(

λ + (λC − λ − 1) + 1
)C

≤
(

3N1−3ε + N1−5ε + 1
)

λC2 ≤ N1−2ε.

In Exp1PHFE, the input to Dec is independent of I, which only symbolically
appears in ct as

y1 = z = (R[i1] ⊕ w[1], . . . , R[in] ⊕ w[n])

and is fully hidden by the one-time pad w. Therefore, the list of indices into R read
by Dec (i.e., L) is independent of I. Conditioned on L, the intersection size |L ∩ I|
follows a hypergeometric distribution. By the law of total expectation,

E
[

|L ∩ I|
]

= E

[

E
[

|L ∩ I|
∣

∣ L
]

]

= E

[

|I| · |L|
N

]

≤ N1−3ε · N1−2ε

N
= N1−5ε

for sufficiently large λ with efficiency, which implies, by Markov’s inequality,

Pr[ |L ∩ I| > N1−4ε in Exp1PHFE ] ≤
E
[

|L ∩ I|
]

N1−4ε
≤ N1−5ε

N1−4ε
= N−ε ≤ 1

4
.
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Abstract. Attribute-based encryption (ABE) generalizes public-key
encryption and enables fine-grained control to encrypted data. However,
ABE upends the traditional trust model of public-key encryption by
requiring a single trusted authority to issue decryption keys. If an adver-
sary compromises the central authority and exfiltrates its secret key, then
the adversary can decrypt every ciphertext in the system.

This work introduces registered ABE, a primitive that allows users
to generate secret keys on their own and then register the associated
public key with a “key curator” along with their attributes. The key
curator aggregates the public keys from the different users into a single
compact master public key. To decrypt, users occasionally need to obtain
helper decryption keys from the key curator which they combine with
their own secret keys. We require that the size of the aggregated public
key, the helper decryption keys, the ciphertexts, as well as the encryp-
tion/decryption times to be polylogarithmic in the number of registered
users. Moreover, the key curator is entirely transparent and maintains
no secrets. Registered ABE generalizes the notion of registration-based
encryption (RBE) introduced by Garg et al. (TCC 2018), who focused
on the simpler setting of identity-based encryption.

We construct a registered ABE scheme that supports an a priori
bounded number of users and policies that can be described by a linear
secret sharing scheme (e.g., monotone Boolean formulas) from assump-
tions on composite-order pairing groups. Our approach deviates sharply
from previous techniques for constructing RBE and only makes black-box
use of cryptography. All existing RBE constructions (a weaker notion
than registered ABE) rely on heavy non-black-box techniques. The
encryption and decryption costs of our construction are comparable to
those of vanilla pairing-based ABE. Two limitations of our scheme are
that it requires a structured reference string whose size scales quadrati-
cally with the number of users (and linearly with the size of the attribute
universe) and the running time of registration scales linearly with the
number of users.

Finally, as a feasibility result, we construct a registered ABE scheme
that supports general policies and an arbitrary number of users from
indistinguishability obfuscation and somewhere statistically binding hash
functions.
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1 Introduction

Attribute-based encryption (ABE) [23,37] extends traditional public-key encryp-
tion to enable fine-grained access control to encrypted data. For instance, in a
ciphertext-policy ABE, secret keys are associated with attributes, and cipher-
texts are associated with decryption policies. A secret key skx for an attribute
x can decrypt a ciphertext ctP with policy P only if the attribute satisfies the
ciphertext’s policy (i.e., P (x) = 1). In contrast, with vanilla public-key encryp-
tion, decryption is all-or-nothing: if a user has the secret key, she can decrypt
every ciphertext encrypted under the respective public key and if the user does
not know the secret key, she cannot decrypt any ciphertext.

While ABE is a versatile cryptographic primitive for enabling fine-grained
control to encrypted data, it significantly changes the trust model compared to
standard public-key encryption. In an ABE scheme, a central trusted author-
ity is required to issue the secret decryption keys associated with each user.
Critically, this central authority needs to retain a long-term secret key. If the
central authority is compromised by an adversary at any point, then the adver-
sary gains the ability to decrypt all ciphertexts in the system. This makes ABE
inherently vulnerable to key exfiltration attacks, and the long-term secret key
must be carefully protected for the lifetime of the system. In contrast, with stan-
dard public-key encryption, users can generate their own public/secret keys, and
they do not have to entrust their secret keys to any central party. Public-key
encryption do not open users up to a central point of failure. The combination of
built-in key escrow and vulnerability to key exfiltration is a common impediment
to deploying ABE.

Registration-Based Encryption. Garg et al. [18] introduced the notion of
registration-based encryption (RBE) to address the key-escrow problem in the
setting of identity-based encryption (IBE). In an IBE scheme [6,12,38], secret
keys and ciphertexts are associated with identities and decryption succeeds if the
identities associated with the secret key and ciphertexts match; an IBE scheme
is a special case of ABE for the equality policy. In an RBE scheme, the central
authority is replaced by a “key curator.” The role of the key curator is not to
issue secret decryption keys, but instead, to aggregate public keys from registered
users into a short master public key mpk.

In more detail, users in an RBE scheme generate their own public/secret
keys (like in traditional public-key encryption), and then register their public
keys together with their identity with the key curator. The key curator then
updates the master public key of the scheme. Like IBE, the master public key
can be used to encrypt a message to any identity. If the identity corresponds
to that of a registered user, then the user can decrypt the message using their
secret key and a publicly-computable helper decryption key that binds the user’s
public key to the current master public key. Since the master public key of the
RBE scheme changes whenever new users join the system, users must periodically
refresh their helper decryption keys over the lifetime of the system. Note that the
helper decryption keys for each user can be computed publicly, and importantly,
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in an RBE system, the key curator does not possess any secret information.
The efficiency requirement is that if L users register, then each user only needs
to update their decryption key at most O(logL) times over the lifetime of the
system. The size of each update should also be short (i.e., poly(λ, logL), where
λ is a security parameter). In addition, like IBE, the master public key must be
short: |mpk| ≤ poly(λ, logL).

A Challenge: Non-black-Box Use of Cryptography. In recent years, a number
of works have constructed registration-based encryption [13,18–20] from stan-
dard assumptions such as CDH, factoring, or LWE assumptions. However, all
of the existing constructions make heavy non-black-box use of cryptography.
Existing constructions either apply indistinguishability obfuscation to a crypto-
graphic hash function [18] or use a hash garbling scheme to traverse a Merkle
tree [13,19,20]. The latter approach chains together a sequence of garbled cir-
cuits (proportional to the length of the identity), where each garbled circuit
reads one bit of the input and outputs a set of labels for the next garbled cir-
cuit; the final garbled circuit is a garbling of the encryption algorithm for a
public-key encryption scheme. The heavy use of non-black-box cryptography in
both approaches render existing schemes completely impractical. Even in spite
of recent optimization efforts [13], a single ciphertext in a system supporting
2 billion users is estimated to be 4.5 terabytes.

This Work: Registered ABE. In this work, we introduce a generalization of RBE
called registered ABE to address the key escrow problem and remove the need
for long-term secret keys in the context of ABE. We introduce a new set of
techniques for realizing registered ABE with only black-box use of cryptography.
Our work extends registration-based encryption in two key ways:

– Functionality: Our scheme is attribute-based rather than identity-based,
and is capable of supporting any access control policy that can be described by
a linear secret sharing scheme (which includes monotone Boolean formulas).
This matches the state-of-the-art in pairing-based ABE schemes. We refer to
our new primitive as a registered ABE scheme. Our scheme includes RBE as
a special case if we instantiate the scheme for the class of equality policies.
Much like RBE provides a solution to the key-escrow problem for the setting
of IBE, registered ABE provides an analogous solution in the setting of ABE.

– Black-box use of cryptography: Our construction does not make any non-
black-box use of cryptography. The key-generation, encryption, and decryp-
tion algorithms in our scheme is comparable to that of existing pairing-based
ABE schemes (e.g., [30]). Our approach departs from the hash garbling app-
roach used in all existing constructions of RBE [13,18–20] and instead, takes
an aggregation-based approach that is conceptually similar to those used in
the construction of pairing-based vector commitments [8,29] and batch argu-
ments [41].
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We construct a registered ABE scheme from static assumptions on composite-
order pairing groups (Assumption 5.2). We rely on the same assumptions as
those used previously to construct IBE [31] and ABE [30].

A limitation of our scheme is that it imposes an a priori bound L on the
number of users in the system, and security relies on a one-time trusted sampling
of a common reference string (CRS). We note that this setup only needs to be
done once and the same CRS can be reused across different systems. The size
of the CRS is quadratic in L while the registration time is linear in L. However,
the size of the master public key, the size of the helper decryption keys, as well
as the encryption and decryption times, all scale polylogarithmically with L. As
with standard RBE, the key curator is a deterministic algorithm and does not
need to store any secret information. We also note that our scheme is limited to
a polynomial-size attribute universe and the size of the CRS, the master public
key, and each user’s helper decryption key scale linearly with the size of the
attribute universe.

While the CRS in our scheme is structured1 and needs to be sampled by a
trusted party (or using an MPC protocol), this is the only trusted component
in our system. Thereafter, the behavior of the key curator is deterministic and
auditable. As long as the adversary does not compromise this one-time setup,
security holds. This is in contrast to traditional ABE where users must always
trust the central authority who holds the long-term secret key. If the authority
is compromised at any point in time and the adversary successfully exfiltrates
the authority’s secret key, then they gain the ability to decrypt every ciphertext
in the system. Thus, even with a structured CRS, the registered ABE model
still represents a significant reduction in trust compared to the traditional ABE
model.

We summarize our main instantiation with the following (informal) charac-
terization of Corollary 6.2:

Theorem 1.1 (Informal). Let λ be a security parameter. Let U be an attribute
space and P be a set of policies that can be described by a linear secret sharing
scheme over U . Let L be a bound on the number of users. Then, under reasonable
assumptions on a composite-order pairing group, there exists a registered ABE
scheme that supports up to L users with attribute universe U and policy space P
with the following properties:

– The size of the CRS and the size of the auxiliary data maintained by the key
curator is L2 · poly(λ, |U|, logL).

– The running time of key-generation and registration is L · poly(λ, |U|, logL).
– The size of the master public key and the helper decryption keys are both

|U| · poly(λ, logL).
– The size of a ciphertext is |P | ·poly(λ, logL), where P is the size of the cipher-

text policy.

1 Previous constructions of registration-based encryption [13,18–20] only assumed a
uniform random string rather than a structured reference string.
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Note that only the key-generation, registration, and update algorithms depend on
the (long) CRS. The running time of encryption and decryption are all polylog-
arithmic in the number of users L.

In addition to the above scheme based on composite-order bilinear maps, we
also show how to construct a registered ABE scheme for an arbitrary number
of users and supporting arbitrary policies (on a super-polynomial size attribute
space) using indistinguishability obfuscation [2,3] and somewhere statistically
binding hash functions [25]. Coupled with the work of Jain et al. [26,27], this
yields a registered ABE scheme from falsifiable assumptions. We view this latter
result as primarily a feasibility result for constructing registered ABE schemes
capable of supporting general policies and an arbitrary number of users.

1.1 Related Work

Many previous works have explored mechanisms to address the key-escrow lim-
itation inherent to IBE and ABE. One approach is based on threshold cryp-
tography [6,11,28,35] where the master secret key is secret-shared across mul-
tiple independent authorities; this way, no single authority has the ability to
decrypt ciphertexts. A similar notion in the setting of ABE is multi-authority
ABE [9,10,14,15,32–34,36,40] where anyone can become an authority and issue
secret keys corresponding to the set of attributes within their domain. Policies
in a multi-authority ABE scheme are in turn formulated with respect to the
attributes of one or more authorities. Nonetheless, the keys in threshold and
decentralized systems are still issued by entities other than the user, and if a
sufficient number of the key-issuing entities are compromised or corrupted, then
the schemes no longer ensure confidentiality.

Other techniques have focused on adding accountability to the central author-
ity [21,22] or introducing hybrid notions that combine IBE and traditional
public-key directories [1]. However, none of these approaches completely elimi-
nate the key-escrow problem inherent to notions like IBE and ABE.

Registration-based encryption was first introduced by Garg et al. [18] who
also gave a construction from indistinguishability obfuscation and somewhere
statistically binding hash functions. They also gave a “weakly-efficient” scheme
(where registration runs in time that is polynomial in the number of registered
users) from simpler assumptions like CDH or LWE. Subsequently, [18] provided
a fully-efficient construction (where registration runs in time that is polyloga-
rithmic in the number of registered users) from assumptions like CDH or LWE.
Cong et al. [13] subsequently improved the concrete efficiency of their scheme.
Goyal and Vusirikala [20] then showed how to augment RBE with protection
against malicious key curators. All of these existing constructions (including the
weakly-efficient ones) rely on non-black-box use of cryptography (e.g., obfusca-
tion or hash garbling techniques).
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2 Technical Overview

In this work, we construct a ciphertext-policy registered ABE scheme that sup-
ports any access policy that can be described by a linear secret sharing scheme
(see Sect. 2.1 and Definition 3.2). In the following description, we let U be the
universe of attributes. We will assume that U is polynomial-size (i.e., we are
in the small universe setting). We additionally assume that there is an a priori
bound L on the maximum number of users that can be registered, and moreover,
that there is a (trusted) setup algorithm that samples a common reference string
crs that will be used for key-generation, registration, and computing the helper
information for decryption. In our setting, we allow the size of the crs to be
poly(λ,L). The key curator initializes the master public key mpk to the empty
string.

When a user wants to join the system, it first samples a public/secret key-
pair (pk, sk). To register, the user provides their public key pk along with their
set of attributes S ⊆ U to the key curator.2 The key curator then aggregates
the key into the master public key mpk and produces an updated key mpk′. In
addition, the key curator computes a helper decryption key hsk and gives it to
the user. In our setting, we allow the key-generation and registration process
to be slow (i.e., running in time poly(λ,L)).3 However, the size of the master
public key mpk, the secret key sk, and helper decryption key hsk for each user
must be short (i.e., poly(λ, logL)). Each time a user registers, the master public
key needs to be updated; this means users will need to periodically obtain an
updated helper decryption key corresponding to the most recent master public
key. As in RBE, we require that over the lifetime of the system, the user only
needs to request O(logL) many updates from the key curator.

In a registered ABE scheme, encryption only requires knowledge of the mas-
ter public key mpk (and not the long common reference string). The encryption
algorithm takes in the master public key mpk, the access policy P , and a mes-
sage μ and outputs a ciphertext ct. In turn, every registered user whose set of
attributes S satisfy the policy is able to decrypt using their secret key sk and
the helper decryption key hsk. Neither the encryption nor decryption algorithms
require knowledge of the crs, and the running time of all of these algorithms
scale with poly(λ, logL, |P |). Notably, in a registered ABE scheme, there is an
initial slow one-time process for generating and registering keys. Encryption and
decryption are both fast (comparable to standard ABE).

Slotted Registered ABE. Our construction of registered ABE proceeds in two
steps. First, we define and construct an intermediate primitive that we call
2 Just like in RBE, the key curator first verifies the attributes claimed by the user

before proceeding. This step is analogous to the checks certificate authorities per-
form in the public-key infrastructure before issuing a certificate or what the central
authority would do in a standard ABE setting before issuing a decryption key. A
difference is that the key curator possesses no secret information.

3 This roughly coincides with the notion of weak efficiency in the work of
Garg et al. [18].
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“slotted registered ABE” (Sect. 4.1). We then show how to compile a slotted
registered ABE scheme into a registered ABE scheme (Sect. 6).

In a slotted registered ABE scheme, we specify a fixed number of users L at
setup, and moreover, each user is associated with a slot index i ∈ [L]. Public
keys in a slotted registered ABE scheme are generated with respect to a partic-
ular slot. In addition, we replace the registration algorithm with an aggregation
algorithm that takes as input a collection of L public keys pk1, . . . , pkL, one
for each slot, along with their associated attribute sets S1, . . . , SL ⊆ U , and
outputs the master public key mpk together with the helper decryption keys
hsk1, . . . , hskL associated with each slot. The main difference is that aggregation
takes all L keys at once and outputs the master public key (which is then fixed).
In contrast, in (non-slotted) registered ABE, the public keys are registered one
at a time, and the master public key is updated after each registration. We pro-
vide the formal definition of a slotted registered ABE scheme in Sect. 4.1 and
show how to construct a slotted registered ABE scheme from assumptions on
a composite-order pairing group in Sect. 5. We note that our scheme assumes a
polynomial-size attribute universe and the sizes of the master public key and the
helper decryption keys scale linearly with the size |U| of the attribute universe.
We provide an overview of our slotted registered ABE scheme in 2.1.

From Slotted Registered ABE to Registered ABE. To go from a slotted registered
ABE scheme to a registered ABE scheme, we use a simple “powers-of-two” app-
roach that was also used implicitly in previous constructions [18,19]. Suppose
we want to support a maximum of L = 2� users. Our construction uses � + 1
copies of the slotted registered ABE scheme, where the kth copy is a slotted
ABE with exactly 2k slots (with k ranging from 0 to �). The master public
key mpk consists of � + 1 master public keys mpk0, . . . ,mpk�, one for each of
the underlying schemes. Initially, mpkk = ⊥ for all k. The first user registers
to an empty slot in each of the � + 1 instances. At this point, the first slot-
ted registered ABE scheme (with 1 slot) is full, and the key curator computes
mpk0 and updates its value in mpk. When subsequent users join the system,
they continue to register to the next vacant slot in each of the � + 1 instances
(if one exists). If scheme k fills up (i.e., there is a key associated with each of
its 2k slots), the key curator updates mpkk in the master public key and then
removes all of the registered keys from schemes 0, . . . , k − 1 (since all of those
users’ public keys are now aggregated as part of mpkk).4 Subsequent registra-
tions will reuse schemes 0, . . . , k − 1 since these are no longer full. On every
registration, exactly one of the master public keys mpkk is updated. When this
occurs, all of the users who are now registered in the kth scheme will need to
obtain a decryption key update from the key curator. By design, this process
can only happen at most � + 1 = O(logL) times, so this satisfies the efficiency
requirements on the registered ABE scheme. To encrypt a message with respect

4 For ease of notation in the formal description (Sect. 6 Construction 6.1), we do not
implement this “clearing out” step explicitly. However, the construction is function-
ally behaving in this manner.
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to mpk = (mpk0, . . . ,mpk�), the encrypter encrypts the message to each mpkk

to obtain ctk. The ciphertext is ct = (ct0, . . . , ct�). To decrypt, a user who is
currently registered in mpkk takes ctk and decrypts. Overall this powers-of-two
approach incurs O(logL) overhead on the size of the public parameters, the
ciphertext size, and the encryption time compared to the slotted scheme, but
now supports efficient updates. We describe and analyze this transformation in
Sect. 6 (Construction 6.1). We summarize the properties of our final registered
ABE scheme in Corollary 6.2 (and Theorem 1.1).

Registered ABE for Unbounded Users from Obfuscation. Our pairing-based reg-
istered ABE construction only supports a bounded number of users. A natural
question is whether we can construct registered ABE that supports an arbi-
trary number of users. In 7, we show the feasibility of such a scheme using
indistinguishability obfuscation [2,3] and somewhere statistically binding hash
functions [25]. Our registered ABE (for arbitrary circuit predicates) is a direct
generalization of the RBE scheme of Garg et al. [18] from indistinguishability
obfuscation. Here, we describe a slotted version of the scheme. Given a collection
of public keys pk1, . . . , pkL along with their attribute sets S1, . . . , SL, we first con-
struct a Merkle hash tree on values (pk1, S1), . . . , (pkL, SL). The master public
key is the root of the Merkle tree. A ciphertext consists of an obfuscated program
that takes as input an index i ∈ [L], the public key pki and its accompanying
secret key ski, the set of attributes Si, and a Merkle proof of opening for the
value (pki, Si) at index i. The obfuscated program checks that (1) the opening
with respect to the hash root (hard-coded) is valid; (2) Si satisfies the ciphertext
policy (also hard-coded); and (3) ski is the secret key associated with pki. If all
of these checks pass, it outputs the message m. This approach directly yields
a registered ABE for an arbitrary number of users and which supports general
circuit policies. We give the full construction in Sect. 7 (Construction 7.1). We
leave the question of constructing registered ABE that supports an unbounded
number of users without obfuscation (or without needing non-black-box use of
cryptography) as an intriguing open problem.

2.1 Constructing Slotted Registered ABE from Pairings

In this section, we provide a general overview of our slotted registered ABE
scheme from composite-order pairing groups. The full construction and analysis
are provided in Sect. 5. Together with the slotted-to-full transformation from
Sect. 6, we obtain a registered ABE for an a priori bounded number of users.

Composite-Order Pairing Groups. Our construction relies on composite-order
pairing groups where the group order N is a product of three primes N = p1p2p3.
Then, a (symmetric) composite-order pairing group consists of two cyclic groups
G and GT , each of order N . Let g be a generator of G. By the Chinese remainder
theorem, we can write G ∼= G1 × G2 × G3, where Gi is the subgroup of G

order pi and is generated by gi = gN/pi . Additionally, there exists an efficiently-
computable, non-degenerate bilinear map e : G × G → GT called the pairing.
For all exponents a, b ∈ ZN , we have that e(ga, gb) = e(g, g)ab. Again by the
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Chinese remainder theorem, the subgroups G1, G2, G3 are orthogonal: namely
e(gi, gj) = 1 for all i �= j where i, j ∈ {1, 2, 3}.

Linear Secret Sharing Schemes. Like numerous other pairing-based ABE
schemes [23,30,32], we design a (ciphertext-policy) ABE scheme that supports
access policies which can be described by a linear secret sharing scheme (LSSS).
Very briefly, a linear secret sharing scheme is specified by a share-generating
matrix M ∈ Z

K×n
N , where each row of M is associated with a distinct attribute

x1, . . . , xK . We say a set of attributes {xi}i∈S is authorized if and only if there
exists a vector ωS ∈ Z

|S|
N such that ωT

SMS = eT
1 = [1, 0, · · · , 0], where MS is

the matrix formed by taking the subset of rows indexed by S ⊆ [K]. In other
words, the attributes {xi}i∈S satisfy the policy if and only if eT

1 is in the row-
span of MS . Given an LSSS matrix M, we can secret share a value s ∈ ZN

by sampling v2, . . . , vn
r← ZN , constructing the vector v = [s, v2, . . . , vn]T and

computing the vector of shares u = Mv ∈ Z
K
q . The ith component ui ∈ ZN

is the share associated with attribute xi. Given an authorized set of attributes
{xi}i∈S and the subset of shares uS ∈ Z

|S|
N associated with S, reconstructing the

secret corresponds to computing ωT

SuS = ωT

SMSv = eT
1v = s.

Slotted Registered ABE Overview. In a slotted registered ABE scheme with L
slots, users register a public key pk along with a set of attributes S ⊆ U to a
particular slot i ∈ [L]. In our construction, the decryption algorithm implicitly
enforces the following two checks:

– Slot-specific check: The user possesses a secret key associated with some
slot i in the scheme.

– Attribute-specific check: The attributes associated with the slot i satisfy
the ciphertext policy. In our construction, this check shares a similar structure
to the Lewko et al. [30] ciphertext-policy ABE scheme.

Thus, when describing our scheme, we roughly partition the components of the
CRS, the master public key, and the ciphertext based on whether they are “slot-
specific” or “attribute-specific.”

A Single Slot Scheme. We start by describing a simple version of our scheme
with just a single slot.5 The single-slot scheme highlights the core components
of our construction. Subsequently, we describe how to extend the single-slot
scheme into a multi-slot scheme. An important difference between registered
ABE and vanilla ABE is the fact that the master public keys in a registered
ABE can depend on the set of attributes that have been registered so far. Thus,
in the single-slot setting that just supports a single user, the user’s attributes
are directly embedded into the master public key. Let U be a (polynomial-size)

5 Note that a single-slot scheme by itself is trivial to construct. We can simply define
the master public key to be the public key and set of attributes associated with
the slot. However, for describing our construction, it is simpler to first illustrate
the mechanics in the single-slot setting and then build up to the full multi-slot
construction.
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universe of attributes and let G = (G, GT , N, g, e) be a composite-order pairing
group with N = p1p2p3. We now describe the main components of the scheme:

– The components of the common reference string crs can be partitioned into
three general categories:

• General components: The general component is used for blinding
the message and linking together the slot-specific and attribute-specific
decryption procedures. These components will subsequently be included
as part of the master public key. Concretely, we sample exponents
α, β r← ZN and include Z ← e(g1, g1)α and h ← gβ

1 in the CRS.
• Slot-specific components: Each slot in the CRS is associated with a

set of group elements. In the single-slot setting, we have two elements
A ← (g1g3)t and B ← gα

1 htgτ
3 , where t r← ZN is a slot-specific exponent,

α ∈ ZN is the “general” exponent from above, and τ r← ZN is a blinding
factor.

• Attribute-specific components: For each attribute w ∈ U , the CRS
contains a group element Uw ← guw

1 , where uw
r← ZN is the attribute-

specific exponent associated with w.
Putting all the pieces together, the CRS in the single-slot setting consists of
the following terms:

crs =
(G , g1 , g3 , Z , h , (A,B) , {Uw}w∈U

)
.

– To sample a new public/secret key-pair, the user samples r r← ZN and sets it
as their secret key sk = r. The user sets the public key to be pk = T = gr

1.
– When the user registers their public key pk = T = gr

1 along with their set of
attributes S ⊆ U , the key curator sets T̂ = T and Ûw = Uw if w /∈ S and
Ûw = 1 if w ∈ S. The key curator then outputs the master public key

mpk =
(G , g1 , h , Z , T̂ , {Ûw}w∈U

)
. (2.1)

As we will see later on, T̂ is the attribute-independent key aggregated across
all of the slots while Ûw is the key associated with attribute w aggregated
across all of the slots.

– The helper decryption key for the user is just the slot-specific components
A = (g1g3)t and B = gα

1 htgτ
3 from the CRS.

– To encrypt a message μ ∈ GT to a policy (M, ρ), where M ∈ Z
K×n
N is the

share-generating matrix associated with the policy, and ρ : [K] → U is an
injective row-labeling function that maps the rows of M onto the particular
attribute to which it corresponds, the encrypter samples s r← ZN and h1, h2

r←
G1 such that h1h2 = h. Namely, h1 and h2 function as a secret sharing of h.
The ciphertext then consists of the following:

• Message-embedding components: Let C1 ← μ · Zs = μ · e(g1, g1)αs.
Let C2 ← gs

1.
• Attribute-specific component: Let v = [s, v2, . . . , vn]T, where v2, . . . ,

vn
r← ZN . For each k ∈ [K], set C3,k ← h

mT
kv

2 Û−s
ρ(k). Here mT

k ∈ Z
n
N

denotes the kth row of M.
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• Slot-specific component: Set C4 ← hs
1T̂

−s.
The ciphertext is

ct =
(
(M, ρ) , C1 , C2 , {C3,k}k∈[K] , C4

)
.

Note that if we ignore the slot-specific ciphertext component, then the struc-
ture of the ciphertexts in our scheme coincides with those in the ciphertext-
policy ABE scheme of Lewko et al. [30].6 However, once we move beyond the
single-slot setting, we will need to introduce additional components into the
aggregated public key. This leads to a more complex decryption procedure
and requires a more intricate security analysis compared to [30]. We discuss
some of these details below and refer to Sect. 5 for the complete details.

The decryption algorithm can be decomposed into two main components: the
first ensures the user’s attributes satisfy the policy, and the second ensures the
user’s public key is bound to a specific slot. We describe these two steps below:

– Policy check: Let S′ = {k ∈ [K] : ρ(k) ∈ S} be the subset of the user’s
attributes that are associated with the policy (M, ρ). Suppose S′ satisfies
the policy (M, ρ). This means there exists a vector ωS′ ∈ Z

|S′|
N such that

ωT

S′MS′ = eT
1. Moreover, by construction, Ûw = 1 for all w ∈ S′. In particular,

this means that C3,k = h
mT

kv
2 for all k ∈ S′. Using ωS′ and h

mT
kv

2 , the decrypter

can compute h
ωT

S′MS′v
2 = h

eT
1v

2 = hs
2. Finally, the decryption algorithm can

pair A = (g1g3)t with hs
2 to obtain

Dattrib = e(hs
2, A) = e(hs

2, (g1g3)
t) = e(h2, g1)st,

since h2 ∈ G1. Essentially, the decrypter should only be able to recover
e(h2, g1)st if its set of attributes satisfy the policy. We note here that if an
attribute ρ(k) /∈ S, then Ûρ(k) �= 1; this property effectively “prevents” the
decrypter from using C3,k during decryption since it would not be able to
remove the extra U−s

ρ(k) component. The formal security analysis is more del-
icate and we defer to Sect. 5 for the exact analysis.

– Slot check: For the slot component, the decrypter takes its secret key r and
computes

Dslot = e(C4, A) · e(C2, A
r) = e

(
hs
1g

−sr
1 , (g1g3)t

) · e
(
gs
1, (g1g3)

rt
)

= e(h1, g1)st · e(g1, g1)−srt · e(g1, g1)srt

= e(h1, g1)st, (2.2)

since T̂ = gr
1 and h1 ∈ G1. Essentially, the decrypter should only be able to

recover e(h1, g1)st if it knows the secret key associated with the slot.

6 The scheme of Lewko et al. [30] also includes a row-specific blinding factor sk
r← ZN

associated with each row of M. We do not need this additional randomization in our
security analysis.
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Recall now that h1 and h2 are a multiplicative secret sharing of h (i.e., h1h2 = h).
This means that if both of the policy check and the slot check passes (and in
fact, only in this case), the decrypter is able to recover e(h, g1)st. This can now
be combined with the message-embedding ciphertext components to recover the
original message:

C1 · e(h, g1)st

e(C2, B)
=

μ · e(g1, g1)αse
(
h, g1)st

e(gs
1, g

α
1 htgτ

3

) =
μ · e(g1, g1)αs · e

(
h, g1)st

e(g1, g1)αs · e(h, g1)st
= μ,

again using the fact that h ∈ G1.

Extending to Multiple Slots via Key Aggregation. To extend to an L-slot scheme,
we essentially “concatenate” L independent copies of the single-slot scheme in
the CRS. Specifically, for each slot i ∈ [L], the CRS contains a set of slot-specific
components and a set of attribute-specific components (in addition to the same
set of general components from the single-slot scheme):

– Slot-specific components: Sample a slot-specific exponent ti
r← ZN and a

blinding factor τi
r← ZN , and let Ai ← (g1g3)ti and Bi ← gα

1 htigτi
3 .

– Attribute-specific components: For each attribute w ∈ U , sample an
attribute-specific exponent ui,w

r← ZN and let Ui,w ← g
ui,w

1 .

The CRS consists of the general components, the slot-specific components, and
the attribute-specific components for each of the slots:

crs =
(G , g1 , g3 , Z , h , {(Ai, Bi)}i∈[L] , {Ui,w}i∈[L],w∈U

)
.

Next, we need a way to aggregate the public keys for the different slots into a
single compact master public key mpk. Let {pki}i∈[L] be a collection of public
keys where pki = Ti = gri

1 is the public key associated with slot i. Let Si ⊆ U be
the set of attributes associated with pki. Our aggregation mechanism is simple:
the aggregated public key components T̂ , Ûw simply correspond to the product
of the components associated with each slot:

T̂ =
∏

j∈[L]

Tj and Ûw =
∏

j∈[L]:w/∈Sj

Uj,w.

The structure of the mpk is the same as in Eq. (2.1). Importantly, the size of
the master public key is independent of the number of slots. The encryption
algorithm also remains the same as in the single-slot case.

Cross Term Cancellation for Decryption. When a message is encrypted with
respect to an aggregated key, the ciphertext components are now a function of
the exponents associated with all of the slots. However, the decrypter only has a
key for a single slot (e.g., ri), so the decrypter needs additional helper information
in order to decrypt. To illustrate this, consider the decryption relation associated
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with the slot check (Eq. (2.2)). Suppose we are decrypting for slot i (using secret
exponent ri). Then,

Dslot = e(C4, Ai) · e
(
C2, A

ri
i )

= e(hs
1T̂

−s, (g1g3)ti
) · e

(
gs
1, (g1g3)

riti
)

= e(h1, g1)sti · e(g1, g1)−sriti
∏

j �=i

e(g1, g1)−srjti · e(g1, g1)sriti

= e(h1, g1)sti
∏

j �=i

e(g1, g1)−srjti , (2.3)

using the fact that T̂ =
∏

j∈[L] Tj =
∏

j∈[L] g
rj

1 . This is the same expres-
sion from Eq. (2.2) in the single-slot setting, except we have an extra term∏

j �=i e(g1, g1)−srjti from the slots j �= i. We refer to these terms as the “cross-
terms” since they correspond to an interaction between the secret key for slot j
with the slot exponent for slot i. We thus require a way to eliminate the cross
terms. Here, we take an approach that is often encountered when using pair-
ings for aggregation (e.g., aggregating openings for vector commitments [8,29]
or aggregating proofs in the case of batch arguments [41]). The strategy is to
have the user for slot i provide the cross-terms Vj,i = Ari

j = (g1g3)ritj for
each j �= i as part of its public key pki. Given all of the cross-terms from all
of the users, the key curator can compute a helper decryption key component
V̂i =

∏
j �=i Vi,j =

∏
j �=i(g1g3)

rjti for each slot i. Given V̂i, the decrypter can now
compute

e(C2, V̂i) =
∏

j �=i

e
(
gs
1, (g1g3)

rjti
)

=
∏

j �=i

e(g1, g1)srjti ,

which precisely cancels out the extra term in Eq. (2.3). Finally, observe that
the additional helper decryption component is just a single group element and
is again, independent of the number of slots. This means that the size of the
master public key, the size of the helper decryption components, as well as the
encryption and decryption times are independent of the number of slots. Only
the (one-time) key-generation and registration costs scale with the number of
slots. We introduce a similar cross-term cancellation approach for the attribute-
specific components and refer to Sect. 5.2 for the full description and analysis.

Security Analysis. To prove security of our construction, we follow the dual-
system methodology [31,39]. While traditional dual-system proofs modify the
distribution of the secret keys and the ciphertexts given out in the security game,
in the registered ABE setting, we modify the distribution of the slot parameters
and the ciphertexts. In more detail, in the security proof, we introduce modified
ciphertexts (referred to as “semi-functional ciphertexts”) and slot components
(referred to as “semi-functional slots”). Keys registered to a semi-functional
slot can be used to decrypt normal ciphertexts (i.e., those output by the honest
encryption algorithm) and keys registered to a normal slot can be used to decrypt
semi-functional ciphertexts. However, a key registered to a semi-functional slot
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is unable to decrypt a semi-functional ciphertext. The proof then proceeds via
a hybrid argument where we first switch the challenge ciphertext from a normal
ciphertext to a semi-functional one. Then, we switch the parameters associated
with each slot from normal to semi-functional. In the final experiment then,
all of the slots are semi-functional, as is the challenge ciphertext. Since keys
associated with semi-functional slots cannot be used to decrypt a semi-functional
ciphertext, arguing semantic security in the final experiment is straightforward.
We give the full proof in Sect. 5. Here, we highlight two of the technical challenges
that arise in the proof:

– Malformed public keys: In registered ABE, the adversary is allowed to
submit arbitrary public keys to the key curator. In the security proof (and
even for correctness), it will be important that the public keys are well-formed
(and in particular, that the cross-terms are properly constructed). To enable
this, we introduce a validity-check mechanism that uses the pairing to check
that the components of the public key are properly computed. In the security
proof, we show that the only public keys an efficient adversary can con-
struct that pass the validity check are those in the support of the honest
key-generation algorithm. Note that an alternative approach to rule out mal-
formed public keys is to have users include a non-interactive zero-knowledge
proof of knowledge of their public key that certifies well-formedness of the
public key. However, doing so generically would either bring in random ora-
cles [16] or require making non-black-box use of cryptography. Hence, we opt
for a simpler algebraic mechanism that integrates directly with the rest of
our construction.

– Arguing semantic security. A standard proof strategy for arguing security
of an ABE scheme based on linear secret sharing is to construct a sequence of
hybrid experiments such that in the final experiment, the challenge ciphertext
information-theoretically hides the message by the security of the linear secret
sharing scheme. This strategy applies if all of the keys the adversary possesses
do not satisfy the challenge policy, and indeed, this property is enforced in
the standard ABE security experiment. In registered ABE, the scenario is
slightly different since there are two possibilities we have to consider:

• The adversary knows the secret key associated with slot i and the
attributes associated with slot i do not satisfy the challenge policy; or

• The adversary does not know the secret key associated with slot i. In this
case, it could be the case that the attributes associated with slot i do
satisfy the challenge policy.

Handling these two cases requires two different information-theoretic argu-
ments: the first relies on the linear secret sharing scheme while the second
relies on the secret key ri for slot i to be hidden from the view of the adversary.
Setting up these information-theoretic arguments requires slightly different
distributions on the slot components. Consequently, we rely on two different
sequence of hybrid experiments to handle the two cases. We refer to the full
version of this paper [24] for more details.
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We refer to Sect. 5 for the full construction and analysis of our slotted registered
ABE scheme.

3 Preliminaries

Throughout this work, we write λ to denote the security parameter. For a positive
integer n ∈ N, we write [n] to denote the set {1, . . . , n}, and [0, n] to denote the
set {0, . . . , n}. We use bold uppercase letters (e.g., M) to denote matrices and
bold lowercase letters (e.g., v) to denote vectors. We use non-boldface letters to
refer to their components (e.g., v = [v1, . . . , vn]). For a positive integer N ∈ N,
we write ZN to denote the integers modulo N .

We write poly(λ) to denote a function that is O(λc) for some constant c ∈ N

and negl(λ) to denote a function that is o(λ−c) for all c ∈ N. We say that
an event occurs with overwhelming probability if its complement occurs with
negligible probability. We say an algorithm is efficient if it runs in probabilistic
polynomial time in its input length. We say that two families of distributions
D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable if
no efficient algorithm can distinguish them with non-negligible probability. We
say they are statistically indistinguishable if the statistical distance Δ(D1,D2)
is bounded by a negligible function in λ.

Access Structures and Linear Secret Sharing. We also recall the definition of
monotone access structures and linear secret sharing which we will use in this
work.

Definition 3.1 (Access Structure [4]). Let S be a set and let 2S denote the
power set of S (i.e., the set of all subsets of S). An access structure on S is a
set A ⊆ 2S \ ∅ of non-empty subsets of S. We refer to the elements of A as the
authorized sets and those not in A as the unauthorized sets. We say an access
structure is monotone if for all sets B,C ∈ 2S, if B ∈ A and B ⊆ C, then
C ∈ A.

Definition 3.2 (Linear Secret Sharing Scheme [4]). Let P be a set of
parties. A linear secret sharing scheme over a ring ZN for P is a pair (M, ρ),
where M ∈ Z

�×n
N is a “share-generating” matrix and ρ : [�] → P is a “row-

labeling” function. The pair (M, ρ) satisfy the following properties:

– Share generation: To share a value s ∈ ZN , sample v2, . . . , vn
r← ZN and

define the vector v = [s, v2, . . . , vn]T. Then, u = Mv is the vector of shares
where ui ∈ ZN belongs to party ρ(i) for each i ∈ [�].

– Share reconstruction: Let S ⊆ P be a set of parties and let IS = {i ∈
[�] : ρ(i) ∈ S} be the row indices associated with S. Let MS ∈ Z

|IS |×n
N be the

matrix formed by taking the subset of rows in M that are indexed by IS. If
S is an authorized set of parties, then there exists a vector ωS ∈ Z

|IS |
N such

that ωT

SMS = eT
1, where eT

1 = [1, 0, . . . , 0] denotes the first elementary basis
vector. Conversely, if S ⊆ is an unauthorized sets of parties, then eT

1 is not in
the row-span of M (i.e., there does not exist ωS ∈ Z

|S|
N where ωT

SMS = eT
1).
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Remark 3.3 (One-Use Restriction). In this work, we construct a registered ABE
scheme (Sect. 5) that supports any policy that can be described by a linear
secret sharing scheme (Definition 3.2), with the restriction that each attribute is
associated with at most one row of M. This corresponds to policies (M, ρ) where
the row-labeling function ρ is injective. As shown in Lewko et al. [30, §2.2], it is
straightforward to extend a scheme with the one-use restriction into one where
attributes can be used up to k times by expanding the public parameters and
secret keys by a factor of k (i.e., split each attribute into k independent copies).

Remark 3.4 (Monotone Boolean Formulas). Our pairing-based registered ABE
construction (Sect. 5) supports monotone access policies that can be described
by any (one-use) linear secret sharing scheme. As a special case, this captures the
class of monotone Boolean formulas. There are multiple ways to take a monotone
Boolean formula and express it as a linear secret sharing scheme; we refer to [32,
Appendix G] for one such approach.

4 Registered Attribute-Based Encryption

In this section, we introduce the notion of a registered attribute-based encryption
scheme for a polynomial-size attribute space. Our definition is an adaptation of the
notion of registration-based encryption (RBE) [18] to the more general attribute-
based setting. We compare some features of our definition with RBE in the full
version of this paper [24].

Definition 4.1 (Registered Attribute-Based Encryption). Let λ be a
security parameter. Let U = {Uλ}λ∈N be a universe of attributes and P =
{Pλ}λ∈N be a set of policies on U . Let M = {Mλ}λ∈N be the message space.
A registered attribute-based encryption scheme with attribute universe U , pol-
icy space P, and message space M consists of a tuple of efficient algorithms
ΠR-ABE = (Setup,KeyGen,RegPK,Encrypt,Update,Decrypt) with the following
properties:

– Setup(1λ, 1|U|) → crs: On input the security parameter λ and the size of the
attribute universe U , the setup algorithm outputs a common reference string
crs.

– KeyGen(crs, aux) → (pk, sk): On input the common reference string crs, and a
(possibly empty) state aux, the key-generation algorithm outputs a public key
pk and a secret key sk.

– RegPK(crs, aux, pk, Spk) → (mpk, aux′): On input the common reference string
crs, a (possibly empty) state aux, a public key pk, and a set of attributes
Spk ⊆ U , the registration algorithm deterministically outputs the master public
key mpk and an updated state aux′.

– Encrypt(mpk, P, μ) → ct: On input the master public key mpk, an access policy
P ∈ P, and a message μ ∈ M, the encryption algorithm outputs a ciphertext ct.

– Update(crs, aux, pk) → hsk: On input the common reference string crs, a state
aux, and a public key pk, the update algorithm deterministically outputs a
helper decryption key hsk.
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– Decrypt(sk, hsk, ct) → M ∪ {⊥,GetUpdate}: On input the master public key
mpk, a secret key sk, a helper decryption key hsk, and a ciphertext ct, the
decryption algorithm either outputs a message μ ∈ M, a special symbol ⊥
to indicate a decryption failure, or a special flag GetUpdate that indicates an
updated helper decryption key is needed to decrypt.

Correctness and Efficiency. We now define the correctness and efficiency require-
ments on a registered ABE scheme. At a high level, correctness says that if a
user properly registers her public key along with a set of attributes, then she can
use her secret key to decrypt all future ciphertexts ct encrypted under the result-
ing (and any subsequent) master public key, provided that her set of attributes
satisfy the policy associated with the ciphertext. Notably, this should hold even
if malicious users register (possibly-malformed) keys. In other words, as long
as the key curator is semi-honest, an adversary cannot register “bad” keys to
cause decryption to fail for an honest user. The main efficiency requirements we
impose is that the size of the master public key and the size of each user’s helper
decryption key should be compact (i.e., polylogarithmic in the total number of
users). We compare our notion with the RBE definition in the full version of this
paper [24].

Registered ABE Security. The security requirement for a registered ABE scheme
is analogous to the standard ABE security notion. Namely, semantic security
should hold for a ciphertext associated with a policy P if the user only has keys
registered to attribute sets S1, . . . , Sk which do not satisfy the policy. In the
security game, we allow the adversary the ability to register users with a set of
attributes that do satisfy the challenge policy, provided the adversary does not
know the user’s secret key (i.e., they are generated honestly by the challenger). In
addition, the adversary is allowed to register (arbitrary) public keys for attribute
sets of its choosing, provided that none of them satisfy the challenge policy. We
give the formal definition below:

Definition 4.2 (Security of Registered ABE). Let ΠR-ABE = (Setup,
KeyGen,RegPK,Encrypt,Update,Decrypt) be a registered ABE scheme with
attribute universe U , policy space P, and message space M. For a security
parameter λ, an adversary A, and a bit b ∈ {0, 1}, we define the following game
between A and the challenger:

– Setup phase: The challenger samples the common reference string crs ←
Setup(1λ, 1|U|). It then initializes the auxiliary input aux ← ⊥, the initial
master public key mpk ← ⊥, a counter ctr ← 0 for the number of honest-
key-registration queries the adversary has made, an empty set of keys C ← ∅

(to keep track of corrupted public keys), and an empty dictionary mapping
public keys to registered attribute sets D ← ∅. For notational convenience, if
pk /∈ D, then we define D[pk] := ∅. to be the empty set. The challenger gives
the crs to A.

– Query phase: Adversary A can now issue the following queries:
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• Register corrupted key query: In a corrupted-key-registration query,
the adversary A specifies a public key pk and a set of attributes S ⊆ U .
The challenger registers the key by computing (mpk′, aux′) ← RegPK(crs,
aux, pk, S). The challenger updates its copy of the public key mpk ← mpk′,
its auxiliary data aux ← aux′, adds pk to C, and updates D[pk] ← D[pk]∪
{S}. It replies to A with (mpk′, aux′).

• Register honest key query: In an honest-key-registration query, the
adversary specifies a set of attributes S ⊆ U . The challenger increments
the counter ctr ← ctr+1 and samples (pkctr, skctr) ← KeyGen(crs, aux), and
registers (mpk′, aux′) ← RegPK(crs, aux, pkctr, S). The challenger updates
its public key mpk ← mpk′, its auxiliary data aux ← aux′, and D[pkctr] ←
D[pkctr] ∪ {S}. It replies to A with (ctr,mpk′, aux′, pkctr).

• Corrupt honest key query: In a corrupt-honest-key query, the adver-
sary specifies an index 1 ≤ i ≤ ctr. Let (pki, ski) be the ith pub-
lic/secret key the challenger samples when responding to the ith honest-
key-registration query. The challenger adds pki to C and replies to A with
ski.

– Challenge phase: The adversary A chooses two messages μ∗
0, μ

∗
1 ∈ M and

an access policy P ∗ ∈ P. The challenger replies with the challenge ciphertext
ct∗ ← Encrypt(mpk, P ∗, μ∗

b).
– Output phase: At the end of the game, algorithm A outputs a bit b′ ∈ {0, 1}.
Let S = {S ∈ D[pk] : pk ∈ C} be the set of corrupted attributes. We say that
an adversary A is admissible if the challenge policy P ∗ is not satisfied by any
attribute set S ∈ S. Note that it could be the case that P ∗ is satisfied by the
attributes S from an honest key query (that was not subsequently corrupted).
We say that a registered ABE scheme is secure if for all efficient and admissible
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,
we have that |Pr[b′ = 1 | b = 0] − Pr[b′ = 1 | b = 1]| = negl(λ) in the above
security game.

Definition 4.3 (Bounded Registered ABE). We say a registered ABE
scheme ΠR-ABE is bounded if there is an a priori bound on the number of reg-
istered users in the system. In this setting, we modify Setup to takes as input
an additional bound parameter 1L which specifies the maximum number of reg-
istered users. In the correctness and security definitions, we allow the adversary
to specify the bound 1L at the beginning, and in the games themselves, the adver-
sary can make up to L queries (the challenger answers subsequent registration
queries with ⊥).

4.1 Slotted Registered Attribute-Based Encryption

In this section, we formally introduce the notion of a slotted registered ABE
scheme which is the core building block underlying our pairing-based construc-
tion (Sect. 5) and obfuscation-based construction (Sect. 7). Then in Sect. 6, we
show how to compile a slotted registered ABE scheme into a standard registered
ABE scheme.
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Definition 4.4 (Slotted Registration-Based Encryption). Let λ be a
security parameter. Let U = {Uλ}λ∈N be a universe of attributes and P =
{Pλ}λ∈N be a set of policies on U . Let M = {Mλ}λ∈N be the message space.
A slotted registered ABE scheme with attribute universe U , policy space P, and
message space M is a tuple of efficient algorithms ΠsRBE = (Setup,KeyGen,
IsValid,Aggregate,Encrypt,Decrypt) with the following properties:

– Setup(1λ, 1|U|, 1L) → crs: On input the security parameter λ, the size of the
universe U , and the number of slots L, the setup algorithm outputs a common
reference string crs.

– KeyGen(crs, i) → (pki, ski): On input the common reference string crs, a slot
index i ∈ [L], the key-generation algorithm outputs a public key pki and a
secret key ski for slot i.

– IsValid(crs, i, pki) → {0, 1}: On input the common reference string crs, a slot
index i ∈ [L], and a public key pki, the key-validation algorithm outputs a bit
b ∈ {0, 1} indicating whether pki is valid or not. This algorithm is determin-
istic.

– Aggregate(crs, (pk1, S1), . . . , (pkL, SL)) → (mpk, hsk1, . . . , hskL): On input the
common reference string crs and a list of public keys and the associated
attributes (pk1, S1), . . . , (pkL, SL), the aggregate algorithm outputs the master
public key mpk and a collection of helper decryption keys hsk1, . . . , hskL. This
algorithm is deterministic.

– Encrypt(mpk, P, μ) → ct: On input the master public key mpk, an access policy
P ∈ P, and a message μ ∈ M, the encryption algorithm outputs a ciphertext
ct.

– Decrypt(sk, hsk, ct) → m: On input a decryption key sk, the helper decryption
key hsk, and a ciphertext ct, the decryption algorithm outputs a message μ ∈
M ∪ {⊥}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:

– Completeness: For all parameters λ ∈ N, L ∈ N, all attribute universes U ,
and all indices i ∈ [L],

Pr[IsValid(crs, i, pki) = 1 : crs ← Setup(1λ, 1|U|, 1L);
(pki, ski) ← KeyGen(crs, i)] = 1.

– Correctness: We say ΠsRBE is correct if for all security parameters λ ∈
N, all attribute universes U , all slot lengths L ∈ N, all indices i ∈ [L], if
we sample crs ← Setup(1λ, 1|U|, 1L), (pki, ski) ← KeyGen(crs, i), then for all
collections of public keys {pkj}j �=i (which may be correlated with pki) where
IsValid(crs, j, pkj) = 1, all messages μ ∈ M, all sets of attributes S1, . . . , SL ⊆
U , all policies P ∈ P where Si satisfies policy P , the following holds:

Pr [Decrypt(ski, hski, ct) = μ] = 1,

where (mpk, hsk1, . . . , hskL) ← Aggregate(crs, (pk1, S1), . . . , (pkL, SL)), ct ←
Encrypt(mpk, P, μ), and the probability is taken over the randomness in Setup,
KeyGen, and Encrypt.
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– Compactness: There exists a universal polynomial poly(·, ·, ·) such that the
length of the master public key and individual helper secret keys output by
Aggregate are poly(λ, |U|, logL).

– Security: Let b ∈ {0, 1} be a bit. For an adversary A, define the following
security game between A and a challenger:

• Setup phase: The adversary A sends a slot count 1L to the challenger.
The challenger then samples crs ← Setup(1λ, 1|U|, 1L) and gives crs to A.
The challenger also initializes a counter ctr ← 0, a dictionary D, and a
set of slot indices C ← ∅.

• Pre-challenge query phase: Adversary A can now issue the following
queries:
∗ Key-generation query: In a key-generation query, the adversary

specifies a slot index i ∈ [L]. The challenger responds by incrementing
the counter ctr ← ctr + 1, sampling (pkctr, skctr) ← KeyGen(crs, i)
and replies with (ctr, pkctr) to A. The challenger adds the mapping
ctr �→ (i, pkctr, skctr) to the dictionary D.

∗ Corruption query: In a corruption query, the adversary specifies
an index 1 ≤ c ≤ ctr. In response, the challenger looks up the tuple
(i′, pk′, sk′) ← D[c] and replies to A with sk′.

• Challenge phase: For each slot i ∈ [L], adversary A must specify a
tuple (ci, Si, pk

∗
i ) where either ci ∈ {1, . . . , ctr} to reference a challenger-

generated key or ci = ⊥ to reference a key outside this set. The adversary
also specifies a challenge policy P ∗ ∈ P and two messages μ∗

0, μ
∗
1 ∈ M.

The challenger responds by first constructing pki as follows:
∗ If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] =

(i′, pk′, sk′). If i = i′, then the challenger sets pki ← pk′. Moreover,
if the adversary previously issued a “corrupt identity” query on index
ci, then the challenger adds the slot index i to C. Otherwise, if i �= i′,
then the experiment halts.

∗ If ci = ⊥, then the challenger checks that IsValid(crs, i, pk∗
i ) outputs

1. If not, the experiment halts. If the key is valid, the challenger sets
pki ← pk∗

i and adds the slot index i to C.
The challenger computes (mpk, hsk1, . . . , hskL) ← Aggregate(crs, (pk1, S1),
. . . , (pkL, SL)) and replies with the challenge ct∗ ← Encrypt(mpk, P ∗, μ∗

b).
Note that because Aggregate is deterministic and can be run by A itself,
there is no need to additionally provide (mpk, hsk1, . . . , hskL) to A. Simi-
larly, there is no advantage to allowing the adversary to select the challenge
policy and messages after seeing the aggregated key.

• Post-challenge query phase: Adversary A can now issue the following
queries:
∗ Corruption query: In a corruption query, the adversary specifies an

index c ∈ {1, . . . , ctr}. In response the challenger looks up the tuple
(i′, pk′, sk′) ← D[c] and replies to A with sk′. Moreover, if the adver-
sary registered a tuple of the form (c, S, pk∗) in the challenge phase for
some choice of S ⊆ U and pk∗, then the challenger adds the slot index
i′ ∈ [L] to C.
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• Output phase: At the end of the experiment, algorithm A outputs a bit
b′ ∈ {0, 1}, which is the output of the experiment.

We say an adversary A is admissible if for all corrupted slot indices i ∈ C,
the set Si does not satisfy P ∗ (i.e., the attributes associated with a cor-
rupted slot does not satisfy the challenge policy). Finally, we say that a slotted
registration-based encryption scheme is secure if for all polynomials L = L(λ)
and all efficient and admissible adversaries A, there exists a negligible func-
tion negl(·) such that for all λ ∈ N,

|Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| = negl(λ)

in the above security experiment.

The security requirement in Definition 4.4 allows the adversary to issue addi-
tional corruption queries in a post-challenge query phase. However, as we show
in the full version of this paper [24], it suffices to argue security in the simpler
setting where there are no post-challenge queries. Security in the setting without
post-challenge queries implies security in the setting with post-challenge queries.

5 Slotted Registered ABE from Pairings

In this section, we show how to construct a slotted registered ABE scheme
for policies describable by a linear secret sharing scheme using composite-order
bilinear maps.

5.1 Preliminaries: Composite-Order Pairing Groups

Our pairing-based construction of slotted registered ABE will rely on composite-
order pairing groups [7]. We recall the formal definition below:

Definition 5.1 (Three-Prime Composite-Order Bilinear Group [7]). A
(symmetric) three-prime composite-order bilinear group generator is an efficient
algorithm CompGroupGen that takes as input the security parameter λ and out-
puts a description (G, GT , p1, p2, p3, g, e) of a bilinear group where p1, p2, p3 are
distinct primes, G and GT are cyclic groups of order N = p1p2p3, g is a gen-
erator of G, and e : G × G → GT is a non-degenerate bilinear map (called the
“pairing”). We require that the group operation in G and GT as well as the
pairing operation be efficiently computable.

Notation. Let G be a cyclic group with order N = p1p2p3 and generator g. In the
following, we will write G1 = 〈gp2p3〉 to denote the subgroup of G of order p1. We
define G2 and G3 analogously. By the Chinese Remainder Theorem, if g1, g2, g3
are generators of G1, G2, G3, respectively, then g1g2g3 ∈ G is a generator of G,
and moreover, every element h ∈ G can be uniquely written as gx1

1 gx2
2 gx3

3 where
x1 ∈ Zp1 , x2 ∈ Zp2 , and x3 ∈ Zp3 . In the following description, we will say h ∈ G

has a non-trivial component in the Gi subgroup if xi �= 0.
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Generalized subgroup assumptions. Security of our construction relies on sev-
eral variants of the subgroup decision assumptions introduced by Lewko and
Waters [31] for constructing adaptively-secure (hierarchical) identity-based
encryption, and subsequently by Lewko et al. [30] for constructing adaptively-
secure attribute-based encryption. The first two assumptions are special cases of
the generalized subgroup decision assumption from Bellare et al. [5]. Lewko and
Waters previously showed that all of the assumptions hold in the generic bilinear
group model. Finally, we state a simple implication (Lemma 5.3) from [31] of
the assumptions that will be useful in our security analysis.

Assumption 5.2 (Subgroup Decision Assumptions [31]). Let algorithm
CompGroupGen be a three-prime composite-order bilinear group generator. Let
(G, GT , p1, p2, p3, g, e) ← CompGroupGen(1λ), N = p1p2p3, G = (G, GT , N, g, e),
and g1

r← G1, g2
r← G2, and g3

r← G3. We now define several pairs of distribu-
tions D0,D1 where each distribution Db = (D,Tb) consists of a set of common
components D and a challenge element Tb. We say that each assumption below
holds with respect to CompGroupGen if for all efficient adversaries A, there exists
a negligible function negl(·) such that for all λ ∈ N,

|Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| = negl(λ).

Assumption 5.2a: Sample r r← ZN , and let

D = (G, g1, g3) , T0 = gr
1, T1 = (g1g2)r.

Assumption 5.2b: Sample s12, s23, r
r← ZN , and let

D = (G, g1, g3, (g1g2)s12 , (g2g3)s23) , T0 = (g1g3)r, T1 = gr.

Assumption 5.2c: Sample α, s, t1, t2, r
r← ZN , and let

D =
(G, g1, g2, g3, g

α
1 gt1

2 , gs
1g

t2
2

)
, T0 = e(g1, g1)αs, T1 = e(g, g)r.

Lemma 5.3 (Hardness of Factoring [31, Lemma 5]). Let CompGroupGen
be a composite-order bilinear group generator where Assumption 5.2b holds.
Then, for all efficient adversaries A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

⎡
⎢⎢⎣1 < gcd(x, N) < N :

(G, GT , p1, p2, p3, g, e) ← CompGroupGen(1λ),
N ← p1p2p3, G ← (G, GT , N, g, e),
g1 r← G1, g3 r← G3, s12, s23 r← ZN

x ← A(G, g1, g3, (g1g2)
s12 , (g2g3)

s23
)
,

⎤
⎥⎥⎦ = negl(λ).

In words, given
(G, g1, g3, (g1g2)s12 , (g2g3)s23

)
, no efficient adversary can output

a non-trivial factor of N .
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5.2 Slotted Registered ABE from Composite-Order Pairing Groups

In this section, we show how to construct a slotted registered ABE scheme from
composite-order pairing groups.

Construction 5.4 (Slotted Attribute-Based Registration-Based Encr-
yption). Let CompGroupGen be a composite-order bilinear group generator,
let U = {Uλ}λ∈N be a (polynomial-size) attribute space, and let P = {Pλ}λ∈N

be a set of policies that can be described by a (one-use) linear secret sharing
scheme (Definition 3.2 and Remark 3.3) over U . We construct a slotted attribute-
based registration-based encryption scheme ΠR-ABE = (Setup,KeyGen, IsValid,
Aggregate,Encrypt,Decrypt) with message space M = GT , attribute space U ,
and policy space P as follows:

– Setup(1λ, 1|U|, 1L): On input the security parameter λ, the size of the attribute
space U , and the number of slots L, the setup algorithm starts by sam-
pling (G, GT , p1, p2, p3, g, e) ← CompGroupGen(1λ). Let G1, G2, G3 be the
subgroups of G of orders p1, p2, p3, respectively. The setup algorithm now
constructs the following quantities:

• Let N = p1p2p3 and let G = (G, GT , N, g, e) be the (public) group descrip-
tion.

• Sample generators g1
r← G1, g3

r← G3 and exponents α, β r← ZN . Let
h ← gβ

1 .
• For each slot index i ∈ [L], sample exponents ti, δi

r← ZN and a slot
blinding factor τi

r← ZN . Construct the slot components as follows:

Ai ← (g1g3)ti , Bi ← gα
1 Aβ

i gτi
3 , Pi ← (g1g3)δi .

Then, for each attribute w ∈ U and each slot i ∈ [L], sample an exponent
ui,w

r← ZN , and for each j ∈ [L] with j �= i, sample a blinding factor
γi,j,w

r← ZN . Construct the attribute components Ui,w and Wi,j,w as
follows:

Ui,w ← g
ui,w

1 , Wi,j,w ← A
uj,w

i g
γi,j,w

3 .

• Finally, compute Z ← e(g1, g1)α and output the common reference string

crs =
(G , Z , g1 , h , g3 , {(Ai, Bi, Pi)}i∈[L] , {Ui,w,Wi,j,w}i�=j,w∈U

)

(5.1)
– KeyGen(crs, i): On input the common reference string crs (with components

given by Eq. (5.1)) and a slot index i ∈ [L], the key-generation algorithm
samples ri

r← ZN and computes

Ti ← gri
1 , Qi ← P ri

i , Ri ← gri
3 .

Then for each j �= i, it computes the cross terms Vj,i ← Ari
j . Finally, it

outputs the public key pki and the secret key ski defined as follows:

pki = (Ti, Qi, Ri, {Vj,i}j �=i) and ski = ri.

Note that this particular key-generation algorithm does not depend on the
set of attributes.
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– IsValid(crs, i, pki): On input the common reference string crs (with components
given by Eq. (5.1)), a slot index i ∈ [L], and a purported public key pki =
(Ti, Qi, Ri, {Vj,i}j �=i), the key-validation algorithm first affirms that each of
the components in pki is a valid group element (i.e., an element in G). If so,
it then checks

e(g3, Ti) = 1 = e(g1, Ri) and e(Ti, Pi) = e(g1, Qi)
and e(Ri, Pi) = e(g3, Qi).

Next, for each j �= i, the algorithm checks that

e
(
g1, Vj,i

)
= e(Ti, Aj) and e

(
g3, Vj,i

)
= e(Ri, Aj).

If all checks pass, it outputs 1; otherwise, it outputs 0.
– Aggregate(crs, (pk1, S1), . . . , (pkL, SL)): On input the common reference string
crs (with components given by Eq. (5.1)), a collection of L public keys
pki = (Ti, Qi, Ri, {Vj,i}j �=i) together with their attribute sets Si ⊆ U , the
aggregation algorithm starts by computing the attribute-independent public
key T̂ and the attribute-independent slot key V̂i for each i ∈ [L]:

T̂ =
∏

j∈[L]

Tj , V̂i =
∏

j �=i

Vi,j .

Next, for each attribute w ∈ U , it computes the attribute-specific public key
Ûw and the attribute-specific slot key Ŵi,w for each i ∈ [L]:

Ûw =
∏

j∈[L]:w/∈Sj

Uj,w , Ŵi,w =
∏

j �=i:w/∈Sj

Wi,j,w

Finally, it outputs the master public key mpk and the slot-specific helper
decryption keys hski where

mpk =
(G, g1, h, Z, T̂ , {Ûw}w∈U

)
and

hski =
(
mpk, i, Si, Ai, Bi, V̂i, {Ŵi,w}w∈U

)
.

– Encrypt(mpk, (M, ρ), μ): On input the master public key mpk = (G, g1, h, Z, T̂ ,
{Ûw}w∈U ), a policy (M, ρ) where M ∈ Z

K×n
p and ρ : [K] → U is an injective

row-labeling function, and a message μ ∈ GT , the encryption algorithm starts
by sampling a secret exponent s r← ZN and h1, h2

r← G1 such that h = h1h2.
Then, it constructs the ciphertext components as follows:

• Message-embedding components: First, let C1 ← μ·Zs and C2 ← gs
1.

• Attribute-specific component: Sample v2, . . . , vn
r← ZN for the linear

secret sharing scheme and let v = [s, v2, . . . , vn]T. For each k ∈ [K], set

C3,k ← h
mT

kv
2 Û−s

ρ(k), where mT

k ∈ Z
n
p denotes the kth row of M.

• Slot-specific component: Set C4 ← hs
1T̂

−s.
It then outputs the ciphertext

ct =
(
(M, ρ), C1, C2, {C3,k}k∈[K], C4

)
.
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– Decrypt(sk, hsk, ct): On input the secret key sk = r, the helper key hsk =(
mpk, i, Si, Ai, Bi, V̂i, {Ŵi,w}w∈U

)
, where mpk = (G, g1, h, Z, T̂ , {Ûw}w∈U ),

and the ciphertext ct =
(
(M, ρ), C1, C2, {C3,k}k∈[K], C4

)
where M ∈ Z

K×n
p

and ρ : [K] → U is an injective row-labeling function, the decryption algo-
rithm proceeds as follows:

• If the set of attributes Si is not authorized by (M, ρ), then the decryption
algorithm outputs ⊥.

• Otherwise, let I = {k ∈ [K] : ρ(k) ∈ Si} be the indices of the rows of
M associated with the attributes Si ⊆ U . Write the elements as I =
{k1, . . . , k|I|}.

• Let MSi
be the matrix formed by taking the subset of rows in M indexed

by I. Since Si is authorized, let ωSi
∈ Z

|I|
N be a vector such that ωT

Si
MSi

=
eT
1.

• Then, compute and output the message μ computed as follows:

Dslot = e(C4, Ai) · e(C2, A
r
i V̂i)

Dattrib =
∏

1≤j≤|I|

(
e(C3,kj

, Ai) · e(C2, Ŵi,ρ(kj))
)ωSi,j

μ = C1 · Dslot · Dattrib/e(C2, Bi).

We will refer to Dslot as the slot-specific decryption component and Dattrib

as the attribute-specific decryption component.

Correctness and Security Analysis. We provide the correctness and security anal-
ysis in the full version of this paper [24]. Taken together, we obtain the following
corollary:

Corollary 5.5 (Slotted Registered ABE from Pairings). Let λ be a secu-
rity parameter, L = L(λ) be the number of slots, and M, U , P, be the mes-
sage space, attribute space, and policy space from Construction 5.4, respectively.
Assuming Assumption 5.2 holds with respect to CompGroupGen, Construction
5.4 is a secure slotted registered ABE scheme with the following efficiency prop-
erties:

– The size of the CRS is L2 · |U| · poly(λ).
– The size of the master public key mpk and each helper decryption key hski for

any slot i ∈ [L] is |U| · poly(λ). Notably, this is independent of the number of
slots (i.e., registered users).

– The size of a ciphertext associated with policy P = (M, ρ) ∈ P is |P | ·poly(λ).

6 From Slotted Registered ABE to Registered ABE

In this section, we show how to generically transform a slotted registered ABE
scheme (Definition 4.4) to a standard registered ABE scheme (Definition 4.1).
We refer to Sect. 2 for an overview of thhe construction.



536 S. Hohenberger et al.

Construction 6.1 (Slotted Registered ABE to Registered ABE).
Let λ be a security parameter. Let ΠsRBE = (sRBE.Setup, sRBE.KeyGen,
sRBE.IsValid, sRBE.Aggregate, sRBE.Encrypt, sRBE.Decrypt) be a slotted regis-
tered ABE scheme with attribute universe U = {Uλ}λ∈N, policy space P =
{Pλ}λ∈N, and message space M = {Mλ}λ∈N. We now construct a registered
ABE scheme ΠR-ABE = (Setup,KeyGen,RegPK,Encrypt,Update,Decrypt) that
supports a bounded number of users and over the same attribute space U , pol-
icy space P, and message space M as follows. In the description, we adopt the
following conventions:

– Without loss of generality, we assume that the bound on the number of users
L = 2� is a power of two. Rounding the bound to the next power of two incurs
at most a factor of 2 overhead.

– The registered ABE scheme will internally maintain � + 1 slotted ABE
schemes, where the kth scheme is a slotted scheme with 2k slots (for k ∈ [0, �]).

– The auxiliary data aux = (ctr,D1,D2,mpk) consists of the following compo-
nents:

• A counter ctr that keeps track of the number of registered users in the
system.

• A dictionary D1 that maps a scheme index k ∈ [0, �] and a slot index
i ∈ [2k] to a pair (pk, S) which specifies the public key and attribute set
currently assigned to slot i of scheme k.

• A dictionary D2 that maps a scheme index k ∈ [0, �] and a user index
i ∈ [L] to the helper decryption key associated with scheme k and user i.

• The current master public key mpk = (ctr,mpk0, . . . ,mpk�).
If aux = ⊥, we parse it as (ctr,D1,D2,mpk) where ctr = 0, D1,D2 = ∅, and
mpk = (0,⊥, . . . ,⊥). This corresponds to a fresh scheme with no registered
users.

We construct our registered ABE scheme as follows:

– Setup(1λ, 1|U|, 1L): On input the security parameter λ, the attribute universe
U , and a bound on number of registrants L = 2�, the setup algorithm runs
the setup algorithm for � + 1 copies of the slotted RBE scheme. Specifically,
for each k ∈ [0, �], it samples crsk ← sRBE.Setup(1λ, 1|U|, 12

k

) and outputs
crs = (crs0, . . . , crs�).

– KeyGen(crs, aux): On input the common reference string crs = (crs0, . . . , crs�)
and the auxiliary data aux = (ctr,D1,D2,mpk), the key-generation algorithm
generates a public/secret key-pair for each of the � + 1 underlying schemes.
Specifically, for each k ∈ [0, �], let ik ← (ctr mod 2k)+1 ∈ [2k] be a slot index
for the kth scheme, and sample a key (pkk, skk) ← sRBE.KeyGen(crsk, ik).
Output pk = (ctr, pk0, . . . , pk�) and sk = (ctr, sk0, . . . , sk�).

– RegPK(crs, aux, pk, Spk): On input the common reference string crs =
(crs0, . . . , crs�), the auxiliary data aux = (ctraux,D1,D2,mpk), where mpk =
(ctraux,mpk0, . . . ,mpk�), a public key pk = (ctrpk, pk0, . . . , pk�), and an asso-
ciated set of attributes Spk, the registration algorithm proceeds as follows:
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• For each k ∈ [0, �], let ik = (ctraux mod 2k) + 1 ∈ [2k] be the slot index
for the kth scheme.

• For each k ∈ [0, �], check that sRBE.IsValid(crsk, ik, pkk) = 1. In addi-
tion, check that ctraux = ctrpk. If any check fails, the algorithm halts and
outputs the current auxiliary data aux and master public key mpk.

• Then for each k ∈ [0, �], the registration algorithm updates D1[k, ik] ←
(pk, Spk). In addition, if ik = 2k (i.e., all of the slots in scheme k are
filled), the registration algorithm additionally does the following:
∗ Compute

(
mpk′

k, hsk′
k,1, . . . , hsk

′
k,2k

)
as

sRBE.Aggregate
(
crsk,D1[k, 1], . . . ,D1[k, 2k]

)
.

∗ Update D2[ctr + 1 − 2k + i, k] ← hsk′
k,i for each i ∈ [2k].

∗ If ik �= 2k, mpk′
k = mpkk is unchanged.

• Define the new master public key mpk′ = (ctraux + 1,mpk′
0, . . . ,mpk′

�).
• Finally, the registration algorithm outputs the new master public key
mpk′ and auxiliary data aux′ = (ctraux + 1,D1,D2,mpk′).

– Encrypt(mpk, P, μ): On input the master public key mpk = (ctr,mpk0, . . . ,
mpk�), the access policy P ∈ P, and a message μ ∈ M, the encryption
algorithm computes ctk ← sRBE.Encrypt(mpkk, P, μ) for each k ∈ [0, �]; if
mpkk = ⊥, then it sets ctk ← ⊥. Then it outputs ct = (ctr, ct0, . . . , ct�).

– Update(crs, aux, pk): On input crs = (crs0, . . . , crs�), the auxiliary data aux =
(ctraux,D1,D2,mpk), and a public key pk = (ctrpk, pk0, . . . , pk�), the update
algorithm outputs ⊥ if ctrpk ≥ ctraux. Otherwise, for each k ∈ [0, �], it sets
hskk ← D2[ctrpk + 1, k] and replies with hsk = (hsk0, . . . , hsk�).

– Decrypt(sk, hsk, ct): On input a secret key sk = (ctrsk, sk0, . . . , sk�), a helper
key hsk = (hsk0, . . . , hsk�), and a ciphertext ct = (ctrct, ct0, . . . , ct�), the
decryption algorithm outputs ⊥ if ctrct ≤ ctrsk. Otherwise, it computes the
largest index k on which ctr and ctr′ differ (where bits are 0-indexed starting
from the least significant bit). If hskk = ⊥, then the decryption algorithm
outputs GetUpdate. Otherwise, it outputs sRBE.Decrypt(skk, hskk, ctk).

We give the full analysis of Construction 6.1 in the full version of this paper [24].
Combining Construction 6.1 with Construction 5.4, we now obtain the following
corollary:

Corollary 6.2 (Bounded Registered ABE from Pairings). Let λ be a
security parameter. Let U = {Uλ}λ∈N be any (polynomial-size) attribute space,
and let P = {Pλ}λ∈N be a set of policies that can be described by a one-use linear
secret sharing scheme over U . Then, under Assumption 5.2, for every polynomial
L = L(λ), there exists a bounded registered ABE scheme with attribute universe
U , policy space P, and supporting up to L users with the following properties:

– The size of the CRS and the size of the auxiliary data maintained by the key
curator is L2 · poly(λ, |U|, logL).

– The running time of key-generation and registration is L · poly(λ, |U|, logL).
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– The size of the master public key and the helper decryption keys are both
|U| · poly(λ, logL).

– The size of a ciphertext is K · poly(λ, logL), where K denotes the number of
rows in the linear secret sharing matrix M associated with the access policy.

Remark 6.3 (Efficiency Preserving). Our transformation in Construction 6.1
preserves the efficiency of the underlying slotted registered ABE scheme with
respect to the following properties:

– Large universe: If the underlying slotted registered ABE scheme supports a
large universe (i.e., |U| = 2ω(logλ)), then the transformed scheme also supports
a large universe. As discussed in the full version of this paper [24], we would
formally model this by having the Setup algorithm take as input the bit-
length of the attributes rather than the size of the attribute space in both
the slotted scheme and the full scheme. Our obfuscation-based construction
in Sect. 7 (Construction 7.1) supports a large universe.

– Arbitrary number of users: If the running time of Setup in the underlying
slotted scheme is polylogarithmic in the bound on the number of users L, then
the running time of Setup in the transformed scheme is also polylogarithmic in
the number of users L. Note that if Setup runs in time that is polylogarithmic
in L, the size of the CRS must also be polylogarithmic in L. In this case, we
can set L = 2λ to support an arbitrary polynomial number of users. Formally,
we would model this setting by having Setup take the bound L in binary rather
than unary in both the slotted scheme and the full registered ABE scheme.
While our pairing-based construction (Construction 5.4) does not support
this notion, our obfuscation-based construction (Construction 7.1) does.

7 Registered ABE from Indistinguishability Obfuscation

In this section, we show how to build a registered ABE scheme that does not
impose an a priori bound on the number of users in the system (in contrast
to the pairing-based construction from Sect. 5 (Corollaries 5.5 and 6.2)) using
indistinguishability obfuscation (iO) [3,17], a somewhere statistically binding
(SSB) hash function [25] and a pseudorandom generator (PRG). We refer to
the full version of this paper [24] for formal definitions of these notions. Our
approach is similar to but generalizes the RBE construction of Garg et al. [18]
which uses iO, SSB hash functions and public-key encryption.

Construction 7.1 (Slotted Registered ABE from iO). Let λ be a secu-
rity parameter. Let PRG : {0, 1}λ → {0, 1}2λ be a length-doubling pseudoran-
dom function. Let �c = �c(λ) be the attribute length and let U = {0, 1}�c be
the attribute space. Let P = {Pλ} be a family of Boolean circuits on inputs of
length �c. Let ΠSSB = (SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) be a some-
where statistically binding hash function. We construct a slotted registered
attribute-based encryption scheme ΠsRBE = (Setup,KeyGen, IsValid,Aggregate,
Encrypt,Decrypt) with message space M = {0, 1}λ, attribute space U , and pol-
icy space P as follows:
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– Setup(1λ, 1�c , L): On input the security parameter λ, the bit-length �c of the
attributes, and the number of users L (in binary), the setup algorithm sets
�blk = 2λ + �c and samples a hash key hk ← SSB.Setup(1λ, 1�blk , L, 1). It
outputs crs ← hk.

– KeyGen(crs, i): On input the common reference string crs = hk, the key-
generation algorithm samples a random seed s ← {0, 1}λ. It outputs the
public key pk = PRG(s) and the secret key sk = s.

– IsValid(crs, i, pki): On input the common reference string crs, an index i, and
a public key pk, the validation algorithm outputs 1 if pk ∈ {0, 1}2λ.

– Aggregate(crs, (pk1, S1) . . . , (pkL, SL)): On input the common reference string
crs = hk and a collection of public keys pki along with their associated
attributes Si ∈ {0, 1}�c , the aggregation algorithm computes the master pub-
lic key

mpk ← (
hk,SSB.Hash

(
hk,

(
(pk1, S1), . . . , (pkL, SL)

)))
.

Here we treat each pair (pki, Si) as a binary string of length {0, 1}2λ+�c , which
is the length of an SSB hash block. Then, for each user i ∈ [L], the aggregate
algorithm computes

πi ← SSB.Open
(
hk,

(
(pk1, S1), . . . , (pkL, SL)

)
, i

)
,

which is the local opening of the SSB hash for index i, and sets the helper
secret key to hski ← (i, pki, Si, πi). Finally, it outputs mpk and hski for all
i ∈ [L].

– Encrypt(mpk, C, μ): On input the master public key mpk = (hk, h), the cipher-
text policy C ∈ P and a message μ ∈ {0, 1}λ, the encryption algorithm sets
j = 0 and defines the following program:

Constants: mpk = (hk, h), Boolean circuit C : {0, 1}�c → {0, 1}, message
μ ∈ {0, 1}λ, index j ∈ [0, L + 1]
Inputs: index i ∈ [L], public key pki ∈ {0, 1}2λ, attribute Si ∈ {0, 1}�c ,
opening πi ∈ {0, 1}�open , and secret key ski ∈ {0, 1}λ.

1. If SSB.Verify(hk, h, i, (pki, Si), πi) = 1 and C(Si) = 1 and pki = PRG(ski)
and i > j, output μ.

2. Otherwise, output ⊥.

Fig. 1: Program Embed[mpk, C, μ, j].

Here we assume that the circuit Embed[mpk, C, μ, j] is padded to the maxi-
mum size of any program appearing in the proof (Fig. 1). The encryption algo-
rithm then computes the obfuscated program C ′ ← iO(Embed[mpk, C, μ, j])
and outputs ct = C ′.

– Decrypt(sk, hsk, ct): On input the the secret key sk, the helper secret key
hsk = (i, pki, Si, πi), and a ciphertext ct = C ′, the decryption algorithm
outputs C ′(i, pki, Si, πi, sk).

We defer the correctness and security analysis of Construction 7.1 to the full
version of this paper [24].
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Abstract. We propose the first unbounded functional encryption (FE)
scheme for quadratic functions and its extension, in which the sizes of
messages to be encrypted are not a priori bounded. Prior to our work,
all FE schemes for quadratic functions are bounded, meaning that the
message length is fixed at the setup. In the first scheme, encryption
takes {xi}i∈Sc , key generation takes {ci,j}i,j∈Sk , and decryption outputs∑

i,j∈Sk
ci,jxixj if and only if Sk ⊆ Sc, where the sizes of Sc and Sk can

be arbitrary. Our second scheme is the extension of the first scheme to
partially-hiding FE that computes an arithmetic branching program on
a public input and a quadratic function on a private input. Concretely,
encryption takes a public input u in addition to {xi}i∈Sc , a secret key is
associated with arithmetic branching programs {fi,j}i,j∈Sk , and decryp-
tion yields

∑
i,j∈Sk

fi,j(u)xixj if and only if Sk ⊆ Sc. Both our schemes
are based on pairings and secure in the simulation-based model under
the standard MDDH assumption.

Keywords: functional encryption · unbounded · quadratic functions ·
arithmetic branching programs · pairings

1 Introduction

Functional encryption (FE) [10,29] is a new cryptographic paradigm that allows
a decrypter to learn a function value of the underlying message without reveal-
ing any other information and enables fine-grained access control over encrypted
data. This is in contrast to traditional public-key encryption, which only provides
all-or-nothing decryption. Concretely, an FE scheme that supports a function
class F allows an owner of a master secret to issue a secret key SK for a function
f ∈ F. Decryption of a ciphertext CT for a message x with SK yields f(x) and
nothing else. Functional encryption has been extensively studied in the litera-
ture, with elegant constructions supporting various function classes, achieving
different notions of security and from various assumptions, e.g., [1,8,12,17,18].

In this paper, we focus on the following FE system. Consider a database con-
sisting of pairs of a unique public identifier i and an encrypted private attribute
xi (e.g., age, medical history, salary, etc.). An authority can issue a secret key
SK that allows a user to compute an analysis f ′ using a portion of the encrypted
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14006, pp. 543–572, 2023.
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data with respect to some identifier set Sk. In other words, the user given SK can
learn f ′({xi}i∈Sk

) if and only if Sk ⊆ Sc from the encrypted database, where Sc

is the set of all identifiers in the database. We consider that preventing decryp-
tion in the case Sk �⊆ Sc is important since otherwise the decrypter may learn
specific information on some private attribute, which is undesirable in many
applications (for instance, even in the case where Sk is large and f ′ computes
average, the decrypter can learn exact xi if Sk ∩ Sc = {i}). In both theory and
practice, it is arguably desirable if the system satisfies the following properties:

1. the size of the database that can be encrypted is not a priori bounded;
2. the size of the encrypted database is linear in the number of records |Sc|; and
3. the system is based on standard assumption and does not rely on heavy

cryptographic tools such as obfuscation [17] and multi-linear maps [16].

Most of the existing FE schemes do not satisfy item 1 since the size of mes-
sages to be encrypted is a priori fixed. To our knowledge, the exceptions are FE
for Turing machines [7,11,22], unbounded FE for inner product [14,32], and FE
for attribute-weighted sums [3,13]. However, since all the FE schemes for Turing
machines (secure against unbounded collusion) rely on obfuscation, only a few
FE schemes satisfy all the properties simultaneously. Furthermore, the output of
the functions in these few FE schemes are all linear in {xi}i∈Sc

. This naturally
motivates the following question:

Can we construct an FE scheme for quadratic functions with all the
properties?

We basically use the term “unbounded” to describe the property of item 1,
but crucially, it also implies that the system supports variable-length plaintext.
Note that most FE schemes support only fixed-length plaintext, meaning that
we always have Sc = Sk = [n] for a fixed polynomial n. In fixed-length schemes,
when encrypting messages shorter than the fixed length, it is necessary to do
something like zero padding, and it is impossible to encrypt messages longer
than the fixed length.

From an efficiency standpoint, the variable-length property is quite important
in systems that may handle data of various lengths. Let us consider a case where
a country introduces an FE system, and local governments use it to encrypt
the database of their residents. It is natural for the number of residents in each
district to be various sizes. At some point, local governments may annex their
regions, and the population of the new region would exceed the system limit. In
such a case, we have to re-deploy the encryption system with a larger limit if
they are using a fixed-length FE scheme. This problem can be avoided by setting
the system limit with a huge margin in the setup phase. However, this solution
brings a significant overhead to the system since the lengths of all ciphertexts
become at least linear in the fixed system limit even if most plaintexts to be
encrypted in the system are much shorter than the fixed length!

In contrast, the ciphertext sizes of variable-length FE schemes are linear in
the size |Sc| of each database as specified in item 2. Hence, variable-length FE
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schemes can be much more efficient than fixed-length FE schemes in situations
as described above. Furthermore, we do not need to care even the system limit
if we can use an unbounded FE scheme. However, all previous FE schemes for
quadratic functions are fixed-length [4,8,19,21,25,30,33], and no unbounded (or
even no variable-length) schemes are known. Hence, the above question is not
only of theoretical interest but also important from a practical viewpoint.

1.1 Our Results

We construct an unbounded (public-key) FE scheme for quadratic functions
and its extension. Both schemes have semi-adaptive, simulation-based security
under the matrix decisional Diffie-Hellman (MDDH) assumption in the ran-
dom oracle model (ROM) and thus satisfy the three properties simultaneously.
Note that achieving adaptive security in FE for quadratic functions is a long-
standing open problem, and no quadratic FE scheme achieves adaptive security
(except the scheme based on the generic group model). We also remark that
we cannot use the ROM straightforwardly to extend the existing quadratic FE
schemes to be unbounded, and we overcome many hurdles to obtain the current
results. We elaborate on this later in the technical overview. We leave construct-
ing unbounded quadratic FEs without the ROM as an interesting open problem.

The first scheme is unbounded FE for quadratic functions, that is, f ′ in the
above context can be any quadratic function. More formally, the message space
and the function space is specified as X = {(x1, x2) ∈ 2[p] × ⋃

i∈[p] Z
i
p | |x1| =

|x2|}, and F = {(f1, f2) ∈ 2[p] × ⋃
i∈[p] Z

i2

p | |f1|2 = |f2|}, respectively, where p is
an exponentially large prime1, and 2[p] denotes the set consisting of all subset of
[p]. For x = (Sc, {xi}i∈Sc

) ∈ X and f = (Sk, {ci,j}i,j∈Sk
) ∈ F, f(x) is defined as

f(x) =

{∑
i,j∈Sk

ci,jxixj Sk ⊆ Sc

⊥ otherwise

where Sc is clear in the ciphertext. Observe that Sc can be an arbitrary subset of
[p] where p is an exponentially large prime, and thus the size of Sc is unbounded
since encryption is a polynomial time algorithm.

Our unbounded quadratic FE scheme can be easily modified to a (bounded)
variable-length quadratic FE scheme without random oracles. In the scheme, Sc

and Sk must be subsets of a fixed poly-sized set [n′] instead of an exponentially
large set [p]. We present a comparison of our quadratic FE schemes with previous
schemes in Table 1.

The second scheme is inspired by the recent works of partially-hiding func-
tional encryption [5,20,24,33], where a message consists of public input u and
private input x while a secret key is associated with f ′ in NC1 or arithmetic
branching programs (ABPs), and decryption yields f(u,x) = 〈f ′(u),x ⊗ x〉.
We extend this functionality to unbounded FE for quadratic functions. Assume

1 Concretely, p is an order of bilinear groups that the scheme based on.



546 J. Tomida

Table 1. Comparison among public-key functional encryption schemes for quadratic
functions. Fixed-length schemes refer to [4,8,19,21,30,33]. In this table, n is the fixed
vector length, Sc and Sk are the identifier sets, and n′ is the upper bound of the vector
length, i.e., Sc and Sk must be subsets of [n′] in the bounded scheme. RO stands for
random oracles.

Scheme |PK| |CT| |SK| Variable-length Unbounded w/o RO

Fixed-length schemes O(n) O(n) O(n) or O(1) × × �
Ours (bounded) O(n′) O(|Sc|) O(|Sk|) � × �
Ours (unbounded) O(1) O(|Sc|) O(|Sk|) � � ×

that each database additionally has a public input u (e.g., the description of the
database) with a fixed length n, while a secret key is associated with Sk and
arithmetic branching program f ′2 the input and output lengths of which are n
and |Sk|2, respectively. Then, the decryption reveals

∑
i,j∈Sk

f ′
i,j(u)xixj where

f ′
i,j(u) is the (i, j)-th output of f ′(u). Formally, the message space and the func-

tion space is specified as X = {(x1, x2, x3) ∈ Z
n
p × 2[q] × ⋃

i∈[q] Z
i
p | |x2| = |x3|},

and F = {(f1, f2) ∈ 2[q] × ⋃
i∈[q] F

ABP
n,i2 | |f1|2 = OutLen(f2)}, respectively,

where q ∈ N is an exponentially large number (q = p − 1 in our scheme),
FABP

n,n′ denotes the set of all ABPs with the input and output lengths being
n and n′, respectively, and OutLen(f2) denotes the output length of f2. For
x = (u, Sc, {xi}i∈Sc

) ∈ X and f = (Sk, f ′) ∈ F, f(x) is defined as

f(x) =

{∑
i,j∈Sk

f ′
i,j(u)xixj Sk ⊆ Sc

⊥ otherwise

where u, Sc are clear in the ciphertext. We call this functionality ABP ◦ UQF.
By similar observation to [3], we can confirm that FE for ABP ◦ UQF sub-

sumes many classes of FE: (unbounded) FE for inner product [1,32]; FE for
quadratic functions [8]; attribute-based encryption for ABPs [26]; attribute-
based inner product FE [2]; and attribute-based quadratic FE [33] as well as
unbounded FE for quadratic functions (our first scheme)3. Hence, for instance,
FE for ABP◦UQF allows the decryption of an encrypted database with descrip-
tion u and identifier set Sc in which it first checks whether u satisfies a NC1
predicate P and then outputs a quadratic function f ′ over the portion {xi}i∈Sk

of the private input of the database iff P(u) = 1 and Sk ⊆ Sc, because such
computation can be expressed by ABPs.

Comparison with FE for Attribute-Weighted Sums. Although FE for
ABP ◦ UQF is similar to FE for attribute-weighted sums [3] in that they can
encrypt a database with unbounded length, and a secret key is associated with
an ABP, their functionalities are essentially different as follows. The public input
2 Note that ABPs are a stronger computational model than NC1 circuits.
3 This does not mean that our results imply the listed schemes since we ignore the

security requirement here and focus on only functionalities.
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u is specific to a database in FE for ABP◦UQF while each record has the public
input ui in FE for attribute-weighted sums. In decryption with a secret key for
an ABP f , the output of FE for ABP ◦ UQF is the weighted-sum of xixj for
i, j ∈ Sk with the weight being fi,j(u) while that of FE for attribute-weighted
sums is the weighted-sum of xi for i ∈ Sc with the weight being f(ui).

1.2 Technical Overview

For simplicity, we stick to the case using the SXDH assumption, which is the
special case of the MDDH assumption in this overview.

Why the ROM does not Work Straightforwardly? Before diving into our
construction, we first see why it is difficult to extend the existing quadratic FE
schemes to be unbounded by the ROM. For all public-key quadratic FE schemes
[8,19,21,30,33], a public key PK and a secret key SK for any quadratic function
f consist of following elements:

PK = ([A1]1, [A2]2, [B]1, . . .), SK = ([D]i, . . .)

where A1,A2 are (pseudo)random matrices in Zp the sizes of which depend
on the message length m, B,D are some matrices in Zp, i ∈ {1, 2}, and [·]i
denotes element-wise exponentiation in the source group Gi. How to define these
matrices and i depends on the scheme. The natural idea to make the scheme
unbounded is to generate [A1]1, [A2]2 by hash functions H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → G2 in an ad hoc way in encryption. In all the existing schemes,
however, either B [19] or D [8,21,30,33] contains the entries of the form va1a2+c,
where a1, a2 are entries of A1,A2, respectively, and v, c are Zp elements that are
independent of both a1 and a2. It is not hard to see that neither [va1a2 + c]1
nor [va1a2 + c]2 can be computed efficiently even in symmetric pairings. Hence,
this strategy makes encryption or key generation inefficient. Furthermore, such
a construction will not become collusion resistant, that is, a user can generate
a secret key for Sk,1 from secret keys for Sk,2 and Sk,3 such that Sk,1 ⊆ Sc but
Sk,2, Sk,3 �⊆ Sc in a certain case [14].

Starting from Lin’s Secret-Key FE Scheme. Since the known public-key
quadratic FE schemes are not ROM-friendly as observed, we construct a new
public-key quadratic FE scheme that is inspired by the secret-key quadratic FE
scheme from pairings by Lin [25]. Her scheme builds on the public-key IPFE
scheme from DDH by Abdalla et al. [1] (ABDP), which is described as follows:

Setup(1λ): w ← Z
m
p , PK = [w], MSK = w.

Enc(PK,x ∈ Z
m): s ← Zp, CT = (CT1,CT2) = ([s], [x + sw]).

KeyGen(MSK, c ∈ Z
m): SK = −c�w.

Dec(CT,SK): SKCT1 + c�CT2 = −c�w[s] + c�[x + sw] = [〈c,x〉].
Lin’s quadratic FE scheme uses a clever interleaving of IPFE schemes. To

compress the size of ABDP ciphertexts for quadratic terms, she uses function-
hiding IPFE where a secret key hides the underlying vector as well as a ciphertext
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hides the message [9]. Decryption of components in this scheme yields a cipher-
text of the ABDP IPFE scheme, while a secret key of the ABDP scheme is gen-
erated using another function-hiding IPFE. Finally, decryption of ABDP IPFE
allows to recover the output. In more detail, let iFE = (iSetup, iEnc, iKeyGen,
iDec) be a function-hiding IPFE scheme based on pairings, which outputs a
decryption value as an exponent of the target-group generator. Her quadratic
FE scheme is informally described as follows (we omit the components of the
scheme that are only used in the security proof):

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m) ← Z
m
p , iMSK′ ← iSetup(1λ)

MSK = (iMSK′,w, w̃).
Enc(MSK,x ∈ Z

m): s ← Zp, iCT′ ← iEnc(iMSK′, s), iMSK ← iSetup(1λ)
iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT = (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Z
m2

):
SK = iSK′ ← iKeyGen(iMSK′, c�(w ⊗ w̃)).

Dec(CT,SK):
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) − iDec(iCT′, iSK′) = [〈c,x ⊗ x〉]T .

In decryption, we compute iDec(iCTi, iSKj) = [xixj + swiw̃j ]T , which can be
seen as the (i, j)-th element of the ABDP ciphertext [x ⊗ x + sw ⊗ w̃]T , and
−iDec(iCT′, iSK′) = [−sc�(w⊗w̃)]T , where −c�(w⊗w̃) is an ABDP secret key
for c. Since w⊗ w̃ only appears on the exponent, it looks uniformly distributed
under the SXDH assumption.

Making Lin’s Scheme Public-Key. We next show how to turn her scheme
into a public-key scheme. Observe that her scheme is secret-key since it uses the
function-hiding property of the secret-key IPFE. More specifically, encryption
chooses fresh iMSK by itself while iMSK′ is the part of MSK. This means that we
would be able to make her scheme public-key if we can publicly encrypt s into
iCT′ in encryption, and at the same time, iSK′ is still function-hiding so that the
security proof goes well.

Fortunately, we already have slotted IPFE [27], which is a hybrid between
public-key IPFE and a function-hiding IPFE and satisfies the above properties.
Specifically, both message and key spaces of slotted IPFE are separated into
two slots Z

m1
p and Z

m2
p , and we can publicly encrypt all messages of the form

(x1,0) for x1 ∈ Z
m1
p via slot encryption algorithm iSlotEnc while we need a

master secret key to encrypt a message of the form (x1,x2) ∈ Z
m1
p × Z

m2
p for

x2 �= 0 via encryption algorithm iEnc. A secret key for (y1,y2) ∈ Z
m1
p × Z

m2
p is

function-hiding with respect to y2, which is essential for the security proof.
Another nice property of (slotted) IPFE is that (slot) encryption and key

generation can take a group element in G1 and G2 of pairing groups as input,
respectively [26]. Thus, we can publish [w]1 and [w̃]2 as a part of public key
and use them to generate iCTi, iSKi in encryption. It seems that the modified
scheme is now public-key, but unfortunately, this is not the case. This is because,
in the security proof of Lin’s scheme, we argue that [wiw̃]2 looks random given
PK, but it is not the case if [w]1 is included in PK. To circumvent this problem,
we modify Lin’s scheme to obtain a public-key scheme using a slotted IPFE
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scheme iFE′ = (iSetup′, iSlotEnc′, iEnc′, iKeyGen′, iDec′) as follows (we again omit
the components of the scheme that are only required for the proof of security):

Setup(1λ): w = (w1, . . . , wm) ← Z
m
p , (iPK′, iMSK′) ← iSetup′(1λ)

PK = ([w]2, iPK′), MSK = iMSK′.
Enc(PK,x ∈ Z

m): s = (s1, . . . , sm) ← Z
m
p , iCT′ ← iSlotEnc′(iPK′, [s]1)

iMSK ← iSetup(1λ)
iCTi ← iEnc(iMSK, [(xi, si)]1), iSKi ← iKeyGen(iMSK, [(xi, wi)]2).
CT = (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(PK,MSK, c = {ci,j}i,j∈[m] ∈ Z
m2

):
SK = iSK′ ← iKeyGen′(iMSK′, [(

∑
j∈[m] c1,jwj , . . . ,

∑
j∈[m] cm,jwj)]2).

Dec(CT,SK):
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) − iDec′(iCT′, iSK′) = [〈c,x ⊗ x〉]T .

The above issue does not occur in this modified scheme, that is, we can argue
that [siw]2 looks random under the SXDH assumption even if PK is given. Even
better, this scheme is ROM-friendly in a sense that Enc and KeyGen are still
efficient even if [w]2 is generated by hashing as [wi]2 = H(i)! Note that the
ciphertext size of the above scheme is still linear in m since the ciphertext size
of the slotted IPFE scheme is linear in m1 and m2, and m2 = 1 is sufficient for
the security proof.

How to Achieve the Partial Decryption. As discussed above, our goal
is to allow an owner of a secret key with respect to Sk to decrypt the por-
tion Sk of a ciphertext for Sc if and only if Sk ⊆ Sc. Our observation is
that if the underlying slotted IPFE scheme iFE′ is unbounded and allows the
partial decryption, the entire quadratic FE scheme is also unbounded and
allows the partial decryption. Intuitively, {iDec(iCTi, iSKj)}i,j∈Sc

in CT reveals
only {[xixj + siwj ]T }i,j∈Sc

, and {[siwj ]T }i,j∈Sc
looks random under the SXDH

assumption. Therefore, the decrypter can learn [
∑

i,j∈Sk
ci,jxixj ]T if and only if

it can compute [
∑

i,j∈Sk
ci,jsiwj ]T . This is why the decryption condition of the

quadratic FE scheme is reduced to that of the underlying slotted IPFE scheme.
Thus, the remaining task is to construct an unbounded IPFE that allows the
partial decryption armed with the slotted property, which is necessary to achieve
simulation-based security of our unbounded quadratic FE schemes.4

The closest scheme to what we need is the public-key unbounded IPFE
scheme by Tomida and Takashima [32], which is an unbounded IPFE allow-
ing the partial decryption. However, their scheme is deficient in the two points.
First, it is not slotted. Second, it can encode only a Zp element for each identifier
while we need to encode a vector consisting of group elements for each identifier
in encryption and key generation5. This is why we construct a new unbounded
4 We require only indistinguishability-based security for unbounded slotted IPFE to

prove simulation-based security of unbounded quadratic FE schemes. Note that the
slotted property with indistinguishability-based security basically implies simulation-
based security, and thus our approach essentially follows previous quadratic FE
schemes with simulation-based security [19,21,33].

5 The second property is required for our unbounded quadratic FE from MDDHk for
k > 1 and FE for ABP ◦ UQF.
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slotted IPFE scheme, which is of independent interest. Recall that their scheme
is a direct construction based on the DPVS framework [28], and its security
analysis is rather complex. In contrast, our scheme is generically obtained from
slotted IPFE and thus much simpler.

We construct the unbounded slotted IPFE (slotted uIPFE) scheme in two
steps. First, we construct a predicate slotted IPFE (slotted pIPFE) from a slotted
IPFE, which is a slotted variant of the predicate IPFE proposed in [4]. Then,
we construct a slotted uIPFE from a slotted pIPFE.

Slotted pIPFE is an extension of slotted IPFE in which we can control decryp-
tion conditions by an inner product predicate. Specifically, the message space is
separated in two slots Z

d
p × Gm1

1 and Gm2
1 , and we can publicly encrypt all mes-

sages of the form (u, [x1]1, [0]1) for (u, [x1]1) ∈ Z
d
p × Gm1

1 while we need the
master secret key to encrypt a message of the form (u, [x1]1, [x2]1) for x2 �= 0.
A secret key for (v, [y1]2, [y2]2) ∈ Z

d
p × Gm1

2 × Gm2
2 is function-hiding with

respect to [y2]2, and decryption of these reveals [〈(x1,x2), (y1,y2)〉]T if and
only if 〈u,v〉 = 0. The construction is almost the same as pIPFE in [4] except
that we use a slotted IPFE as a building block instead of an IPFE.

We next define slotted uIPFE more formally. The message space consists
of two slots {(x1, x2) ∈ 2[p] × ⋃

i∈[p](G
m1
1 )i | |x1| = |x2|/m1} and Gm2

1 , and
we can publicly encrypt all messages of the form (Sc, {[xi]1}i∈Sc

, [0]1) while we
need a master secret key to encrypt of the form (Sc, {[xi]1}i∈Sc

, [x0]1) for x0 �= 0
similarly to the other slotted FE schemes. A secret key for (Sk, {[yi]2}i∈Sk

, [y0]2)
is function-hiding with respect to [y0]2, and decryption reveals [

∑
i∈Sk

〈xi,yi〉 +
〈x0,y0〉]T if and only if Sk ⊆ Sc.

The high-level idea of the construction of slotted uIPFE is similar to the
uIPFE scheme in [32]. For ease of exposition, let us ignore the second slot of
uIPFE for now. Informally, slot encryption for (Sc, {[xi]1}i∈Sc

) chooses z ← Zp

and encrypts (ui, [x̃i]1) by slot encryption of pIPFE for all i ∈ Sc, where ui =
(1, i) and x̃i = (xi, z). Key generation for (Sk, {[yi]2}i∈Sk

) chooses ai ← Zp so
that

∑
i∈Sk

ai = 0 and computes a secret key of pIPFE for (vi, [ỹi]1) for all
i ∈ Sk, where vi = (i,−1) and ỹi = (yi, ai). Then, a decrypter can learn only
[
∑

i∈Sc∩Sk
〈xi,yi〉 + zai]T via decryption of pIPFE, where zai = 0 only when

Sk ⊆ Sc, and zai looks random otherwise. Thus, we can recover [
∑

i∈Sk
〈xi,yi〉]T

iff Sk ⊆ Sc. We defer how to obtain the slotted property to Sect. 4.

Put it All Together. Let uFE = (uSetup, uSlotEnc, uEnc, uKeyGen, uDec) be
a slotted uIPFE scheme and H : {0, 1}∗ → G2 be a hash function. Then, our
unbounded quadratic FE scheme qFE is informally given as follows:

Setup(1λ): (PK,MSK) = (uPK, uMSK) ← uSetup(1λ)
Enc(PK, (Sc, {xi}i∈Sc

)): si ← Zp, uCT ← uSlotEnc(uPK, (Sc, {si}i∈Sc
))

iMSK ← iSetup(1λ), [wi]2 = H(i)
iCTi ← iEnc(iMSK, [(xi, si)]1), iSKi ← iKeyGen(iMSK, [(xi, wi)]2).
CT = (uCT, {iCTi, iSKi}i∈Sc

).
KeyGen(PK,MSK, (Sk, {ci,j}i,j∈Sk

)): [wi]2 = H(i)
SK = uSK ← uKeyGen(uMSK, (Sk, {[

∑
j∈Sk

ci,jwj ]2}i∈Sk
)).
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Dec(CT,SK):∑
i,j∈Sk

ci,j iDec(iCTi, iSKj) − uDec(uCT, uSK) = [
∑

i,j∈Sk
ci,jxixj ]T .

Since the ciphertext size of slotted uIPFE is linear in |Sc|, that of the above
quadratic FE scheme is also linear in |Sc|. The variable-length scheme without
random oracles can be obtained by generating [w1]2, . . . , [wn′ ]2 in the setup.

Security. Simulation-based security essentially asserts that a challenge cipher-
text can be simulated without a challenge message, and secret keys can be simu-
lated from corresponding decryption values. In our scheme, the simulation algo-
rithms leverage the second slot of slotted uIPFE scheme uFE. Specifically, a
simulated ciphertext is generated in the same manner as Enc except that uCT
additionally encrypts [1]1 (the generator of g1) in the second slot, and iCTi, iSKi

encrypt [(0, si)]1, [(0, wi)]2 instead of [(xi, si)]1, [(xi, wi)]2, respectively. A simu-
lated secret key for decryption value α is a secret key uSK of uFE that additional
encodes [−α]2 if Sk ⊆ Sc and [0]2 otherwise in the second slot. Thanks to the
slotted property, −uDec(uCT, uSK) = [−∑

i,j∈Sk
ci,jsiwj +α]T if Sk ⊆ Sc in the

above setting and the simulation goes well.
The indistinguishability between the real system and the simulated system

can be proven by a series of hybrids similar to that used in Lin’s secret-key
quadratic FE scheme. Concretely, in the �-th hybrid for � ∈ Sc, iCTi and iSKi is
encrypting vectors xi and x̃i where

xi =

{
(0, si) (i ≤ �)
(xi, si) (i > �)

, x̃i = (xi, wi)

However, this change is detectable by decrypting the challenge ciphertext, and
we need to adjust the difference using the second slot of uFE in each hybrid.
Concretely, we encode [1]1 into the second slot of uCT in the challenge ciphertext
and [−∑

i∈S�
c∩Sk,j∈Sk

ci,jxixj ]2 into the second slot of uSK iff Sk ⊆ Sc, where S�
c

denotes the set consisting of the first � elements of Sc. The indistinguishability
between the � − 1-th hybrid and the �-th hybrid can be proven similarly to the
proof of Lin’s scheme. Observe that, in the final hybrid, the view of the adversary
basically corresponds to that in the simulated system.

Extension to FE for ABP◦UQF. The high-level idea to extend our unbounded
quadratic FE to FE for ABP◦UQF is similar to the technique used when achiev-
ing unboundedness in quadratic FE. That is, we can basically obtain FE for
ABP ◦ UQF by enhancing the unbounded uIPFE uFE so that it can compute
ABPs on a public input and linear functions on a private input. A similar idea
is also used in the construction of Wee’s recent partially-hiding FE scheme [33].
We use a partially garbling scheme (PGS) for ABPs [23] for a building block.

We can formulate PGS for ABPs as follows. A garbling algorithm pgb takes
an ABP f : Z

n
p → Z

n′
p , a public input u ∈ Z

n
p , a private input x ∈ Z

n′
p , a random

tape t ∈ Z
t−1
p and outputs

� = (u′�L1t, . . . ,u′�Lmt, x1 + u′�Lm+1t, . . . , xn′ + u′�Ltt) ∈ Z
t
p
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where u′ = (u, 1), the parameter t and matrices Li ∈ Z
(n+1)×(t−1)
p are deter-

mined by f , and m = t − n′. The correctness of the PGS requires that we can
reconstruct 〈f(u),x〉 given � together with f and u. Furthermore, the reconstruc-
tion is linear in �, that is, there exists df,u ∈ Z

t
p and we have 〈df,u, �〉 = 〈f(u),x〉.

The PGS is secure if there is an efficient algorithm pgb∗ that takes (f,u, α, t) for
α ∈ Zp, and the output distributions of pgb(f,u,x; t) and pgb∗(f,u, 〈f(u),x〉; t)
are statistically close where the probability is taken over t ← Z

t−1
p .

Given the PGS for ABPs, we modify our unbounded quadratic FE scheme
qFE to obtain FE for ABP ◦ UQF as follows. In encryption of (u, Sc, {xi}i∈Sc

),
now uCT encrypts ru′ with respect to identifier p in addition to {si}i∈Sc

where
r ← Zp (recall that Sc ⊆ [p − 1] in FE for ABP ◦ UQF). A secret key for (Sk, f)
consists of a set {uSKh}h∈[t] of secret keys of slotted uIPFE where uSKh encodes
[wi]2 for i ∈ Sk and Lht such that uDec(uCT, uSKh) decrypts to the h-th element
of [�]T where

� = (ru′�L1t, . . . , ru′�Lmt, (siwj + ru′�Lφ(i,j)t)i,j∈Sk
) ∈ Z

t
p (1.1)

and φ : Sk × Sk → {m + 1, . . . , t} is a bijective function. Then, the decryption
works as follows:

∑

i,j∈Sk

fi,j(u)iDec(iCTi, iSKj) − 〈df,u, [�]T 〉

=[
∑

i,j∈Sk

fi,j(u)(xixj + siwj)]T − [
∑

i,j∈Sk

fi,j(u)siwj ]T = [
∑

i,j∈Sk

fi,j(u)xixj ]T

where the first equality follows from the correctness of the PGS.
The simulation algorithms of this extension scheme can be constructed in a

similar manner to our unbounded quadratic FE scheme. A simulated ciphertext
is the same as a normal ciphertext except that uCT encrypts [0]1 in the first slot
and [1]1 in the second slot, and iCTi, iSKi encrypt [(0, si)]1, [(0, wi)]2 instead of
[(xi, si)]1, [(xi, wi)]2, respectively. A simulated secret key for decryption value α is
the same as a normal secret key except that the h-th element of [pgb∗(f,u,−α+∑

i,j∈Sk
fi,j(u)siwj , t)]2 (if Sk ⊆ Sc) or 0 (if Sk �⊆ Sc) is encoded in the second

slot of uSKh, where t is a random vector in Z
t−1
p . In this simulation, we have

〈df,u, (uDec(uCT, uSKh)h∈[t]〉 = [−α +
∑

i,j∈Sk
fi,j(u)siwj ]T if Sk ⊆ Sc, and

thus the simulation works.6

The intuition for the indistinguishability between the real system and the
simulated system is given as follows. The adversary in the real system can basi-
cally learn {[xixj + siwj ]T }i,j∈Sc

from iCTi, iSKi in the challenge ciphertext and
[�]T defined in Eq. (1.1) with respect to secret keys for Sk ⊆ Sc from uCT, uSKh.
Under the SXDH, the adversary cannot detect the change if � is computed as

� = (u′�L1t̃, . . . ,u′�Lmt̃, (siwj + u′�Lφ(i,j)t̃)i,j∈Sk
)

6 It is not hard to see that the security of the partially garbling scheme implies that
〈df,u, pgb∗(f,u, α; t)〉 = α for all α ∈ Zp.
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where t̃ is a random vector that is independent of t used in generating uSKh.
Then, due to the security of the PGS, � reveals only [

∑
i,j∈Sk

fi,j(u)siwj ]T .
Again, {siwj}i,j∈Sc

looks random under the SXDH, and thus we have

{{[xixj + siwj ]T }i,j∈Sc
, [

∑

i,j∈Sk

fi,j(u)siwj ]T }

≈c {{[siwj ]T }i,j∈Sc
, [

∑

i,j∈Sk

fi,j(u)(siwj − xixj)]T }

where the RHS basically corresponds to the view in the simulated system.

2 Preliminaries

2.1 Notations

For m ∈ N, [m] denotes a set {1, . . . , m}. For vectors v1, . . . ,vn, (v1, . . . ,vn)
denotes the vector concatenation as row vectors regardless of whether each vi

is a row or column vector. For instance, for v1 ∈ Z
m×1
p ,v2 ∈ Z

1×n
p , (v1,v2) =

(v�
1 ||v2). For a matrix A = (aj,�)j,� over Zp, [A]i denotes a matrix over Gi

whose (j, �)-th entry is g
aj,�

i , and we use this notation for vectors and scalars
similarly. We use ⊗ for the Kronecker product. For a matrix M ∈ Z

a×b
p and

vectors a ∈ Z
a
p,b ∈ Z

b
p, we denote a vector m such that 〈a ⊗ b,m〉 = a�Mb

by vec(M). For families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we
denote X ≈c Y and X ≈s Y as computational indistinguishability and statistical
indistinguishability, respectively.

2.2 Basic Tools and Assumptions

We use cryptographic bilinear groups and the MDDH assumption [15].

Definition 2.1 (Arithmetic Branching Programs (ABPs)). An arith-
metic branching program f : Z

n
p → Zp is defined by a prime p, a directed

acyclic graph (V,E), two special vertices v0, v1 ∈ V , and a labeling function
σ : E → FAffine, where FAffine consists of all affine functions g : Z

n
p → Zp. The

size of f is the number of vertices |V |. Given an input x ∈ Z
n
p to the ABP, we can

assign a Zp element to edge e ∈ E by σ(e)(x). Let P be the set of all paths from
v0 to v1. Each element in P can be represented by a subset of E. The output
of the ABP on input x is defined as

∑
E′∈P

∏
e∈E′ σ(e)(x). We can extend the

definition of ABPs for functions f : Z
n
p → Z

n′
p by evaluating each output in a

coordinate-wise manner and denote such a function class by FABP
n,n′ .

Note that we can convert any boolean formula, boolean branching program
or arithmetic formula to an arithmetic branching program with a constant blow-
up in the representation size. Thus, ABPs are a stronger computational model
than all of the above.
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2.3 Functional Encryption

We first define functional encryption (FE). In FE, the system can generate a
secret key that is associated with a function f , and a ciphertext for a message x
decrypts to f(x) when it is decrypted by the secret key for f . Typically, FE is
defined as the ciphertext for x entirely hides x. Recently, the more generalized
notion called partially hiding FE [6] was introduced, where the ciphertext of
x partially hides x. More precisely, x consists of the public part xpub and the
private part xpriv, and the ciphertext for x hides only xpriv. In this paper, we use
several classes of partially hiding FE, which is formally defined as follows.

Definition 2.2 (Functional Encryption). Let X = Xpub ×Xpriv be a message
space. Let F be a function family such that, for all f ∈ F, f : X → Z. A (public-
key) functional encryption (FE) scheme for F, FE, consists of four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PK
and a master secret key MSK. The other three algorithms implicitly take PK
as input.

Enc(x): It takes x ∈ X and outputs a ciphertext CT.
KeyGen(MSK, f): It takes MSK and f ∈ F, and outputs a secret key SK.
Dec(CT,SK): It takes CT and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. FE is correct if it satisfies the following condition. For all λ ∈
N, x ∈ X, f ∈ F, we have

Pr

⎡

⎣Dec(CT,SK) = f(x)

∣
∣
∣
∣
∣
∣

PK,MSK ← Setup(1λ)
CT ← Enc(x)
SK ← KeyGen(MSK, f)

⎤

⎦ = 1.

Security. We define partially-hiding security for FE7. For a stateful PPT adver-
sary A and λ ∈ N, let

AdvFE
A,ph(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣β′ = β

∣
∣
∣
∣
∣
∣
∣
∣

β ← {0, 1}, PK,MSK ← Setup(1λ)
(xpub, x

0
priv, x

1
priv) ← A(PK)

CT ← Enc((xpub, x
β
priv))

β′ ← AKeyGen(MSK,·)(CT)

⎤

⎥
⎥
⎦ − 1/2

∣
∣
∣
∣
∣
∣
∣
∣

(2.1)

Let qk be a number of queries to KeyGen and f � be the �-th function on which
A queries KeyGen. We say A is admissible if A’s queries satisfy the followings:

f �((xpub, x
0
priv)) = f �((xpub, x

1
priv)) for all � ∈ [qk].

FE is said to be partially hiding if, for all admissible PPT adversaries A, we
have AdvFE

A,ph(λ) ≤ negl(λ).

7 We consider only selective (or semi-adaptive more precisely) security in this paper.
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Next, we define a more generalized notion that we call slotted functional
encryption. Slotted FE was first introduced in [27] for inner product function-
ality, which is called slotted inner product FE. We extend it to handle general
functions since we use slotted FE schemes for other classes in this paper.

Before explaining the definition of slotted FE, let us recall the notion of
function-hiding FE. In function-hiding FE, a secret key for f hides f as well
as a ciphertext for x hides x. We usually consider the secret-key setting where
encryption requires a master secret key for function-hiding FE. This is because
an adversary can learn f(x) for any x from a secret key for f in public-key FE,
and it is difficult to achieve meaningful function-hiding security.

Slotted FE is a hybrid between public-key FE and function-hiding secret-key
FE. In slotted FE, a private message space Xpriv consists of two spaces Xpriv1 and
Xpriv2, that is, a message space consists of three spaces: X = Xpub ×Xpriv1 ×Xpriv2.
For some default value e ∈ Xpriv2, a user can publicly encrypt (xpub, xpriv, e) ∈ X

for all (xpub, xpriv) ∈ Xpub×Xpriv1 while an owner of master secret key can encrypt
all x ∈ X. On the other hand, a function space F consists of two spaces Fpub

and Fpriv. A secret key for f = (fpub, fpriv) ∈ Fpub × Fpriv hides fpriv. Intuitively,
meaningful function-hiding security with respective to Fpriv can be achieved by
the fact that the adversary can encrypt only messages of the form (xpub, xpriv, e) ∈
X. Slotted FE is formally defined as follows.

Definition 2.3 (Slotted Functional Encryption). Let X = Xpub × Xpriv1 ×
Xpriv2 be a message space. We sometimes denote Xpriv1 × Xpriv2 by Xpriv. Let
F = Fpub × Fpriv be a function family such that, for all f ∈ F, f : X → Z.
A slotted functional encryption (SlotFE) scheme for F, SlotFE, consists of five
algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public key PK and
a master secret key MSK. The other four algorithms implicitly take PK as
input.

Enc(MSK, x): It takes MSK and x ∈ X and outputs a ciphertext CT.
SlotEnc(x): It takes x ∈ Xpub × Xpriv1 and outputs a ciphertext CT.
KeyGen(MSK, f): It takes MSK and f ∈ F, and outputs a secret key SK.
Dec(CT,SK): It takes CT and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. SlotFE is correct if it satisfies the following condition. For all
λ ∈ N, x ∈ X, f ∈ F, we have

Pr

⎡

⎣Dec(CT,SK) = f(x)

∣
∣
∣
∣
∣
∣

PP,MSK ← Setup(1λ)
CT ← Enc(MSK, x)
SK ← KeyGen(MSK, f)

⎤

⎦ = 1.

Slot-Mode Correctness. SlotFE is slot-mode correct with respect to a public
element e ∈ Xpriv2 if it satisfies the following condition. For all λ ∈ N, x ∈



556 J. Tomida

Xpub × Xpriv1, the following distributions are identical:
{
(PK,MSK,CT) | (PK,MSK) ← Setup(1λ), CT ← Enc(MSK, (x, e))

}

{
(PK,MSK,CT) | (PK,MSK) ← Setup(1λ), CT ← SlotEnc(x)

}

Security. We define partially-hiding security for SlotFE. For a stateful PPT
adversary A and λ ∈ N, let

AdvSlotFE
A,ph =

∣
∣
∣
∣Pr

[

β′ = β

∣
∣
∣
∣

β ← {0, 1}, PK,MSK ← Setup(1λ)
β′ ← AcO(β,·),kO(β,·)(PK)

]

− 1/2
∣
∣
∣
∣ (2.2)

where cO(β, ·) takes (xpub, x
0
priv, x

1
priv) ∈ Xpub × X2

priv and returns
Enc(MSK, (xpub, x

β
priv)), kO(β, ·) takes (fpub, f

0
priv, f

1
priv) ∈ Fpub × F2

priv and returns
KeyGen(MSK, (fpub, f

β
priv)). Let qc, qk be a number of queries to cO, kO, respec-

tively. Let xj,β = (xj
pub, x

j,β
priv) for j ∈ [qc], and f �,β = (f �

pub, f
�,β
priv) for � ∈ [qk]. We

say A is admissible if A’s queries satisfy the followings:

– A never queries cO after querying kO even once8;
– f �,0(xj,0) = f �,1(xj,1) for all j ∈ [qc], � ∈ [qk]; and
– f �,0((x, e)) = f �,1((x, e)) for all � ∈ [qk], x ∈ Xpub ×Xpriv1 where e is the public

element defined in slot-mode correctness9.

SlotFE is said to be qc-partially hiding if, for all admissible PPT adversaries A

querying cO at most qc times, we have AdvSlotFE
A,ph ≤ negl(λ). When qc can be any

polynomial in λ, i.e., qc = poly(λ), we call the scheme just partially hiding.

We define slotted FE for inner product over bilinear groups called slotted
IPFE, which we extensively use in this paper. A concrete construction of slotted
IPFE is found in [26, Appendix A].

Definition 2.4 (Slotted IPFE). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear
groups, Xpub = ∅,Xpriv1 = Gm1

1 ,Xpriv2 = Gm2
1 ,Fpub = Gm1

2 ,Fpriv = Gm2
2 . A

function family FIP
m1,m2,G = Fpub × Fpriv consists of functions f : Xpub × Xpriv1 ×

Xpriv2 → GT ∪{⊥}. Each f ∈ FIP
m1,m2,G is specified by ([y1]2, [y2]2) ∈ Fpub ×Fpriv

where yi = Z
mi
p and defined as

f([x1]1, [x2]1) = [〈x1,y1〉 + 〈x2,y2〉]T
where xi ∈ Z

mi
p . We refer to slotted FE (Definition 2.3) for FIP

m1,m2,G as slotted
IPFE. Note that when m1 = 0, slotted IPFE corresponds to secret-key function-
hiding IPFE.
8 This condition implies selective security (or semi-adaptive security more precisely).
9 In general, this condition is necessary since the adversary can publicly encrypt (x, e)

for all x ∈ Xpub × Xpriv1 and decrypt the ciphertexts with its own secret keys. In
this paper, however, we handle only function classes where this condition is always
satisfied as long as the public parts of f �,0 and f �,1 are the same. Thus, we can
ignore this condition in this paper.
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We define FE for unbounded quadratic functions (UQF) and its extension to
the combination with ABPs (ABP◦UQF). Our goal in this paper is to construct
FE (not slotted FE) schemes for the two functionalities. We formally define the
two functionalities as follows.

Definition 2.5 (Unbounded Quadratic Functional Encryption). Let
G = (p,G1, G2, GT , g1, g2, e) be bilinear groups, Xpub × Xpriv = {(x1, x2) ∈
2[p] × ⋃

i∈[p] Z
i
p | |x1| = |x2|} where |x1| denotes the cardinality of x1, and |x2|

denotes the length of x2. Let F = {(f1, f2) ∈ 2[p] × ⋃
i∈[p] Z

i2

p | |f1|2 = |f2|}. A
function family FUQF

G
= F consists of functions f : Xpub×Xpriv → GT ∪{⊥}. Each

f ∈ FUQF
G

is specified by (Sk, c) ∈ F where Sk ⊆ [p], c = (ci.j)i.j∈Sk
∈ (Zp)Sk×Sk

and defined as

f((Sc,x)) =

{
[
∑

i,j∈Sk
ci,jxixj ]T Sk ⊆ Sc

⊥ otherwise

where Sc ⊆ [p],x = (xi)i∈Sc
∈ Z

Sc
p . Note that Sc is the public input while x is a

private input. We refer to FE for FUQF
G

with the ciphertext-size being linear in
|Sc| as unbounded quadratic functional encryption.

Definition 2.6 (Functional Encryption for ABP ◦ UQF). Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups, q = p − 1, Xpub × Xpriv = {((x1, x2), x3)
∈ (Zn

p × 2[q]) × ⋃
i∈[q] Z

i
p | |x2| = |x3|} where |x2| denotes the cardinality of x2,

and |x3| denotes the length of x3. Let F = {(f1, f2) ∈ 2[q] × ⋃
i∈[q] F

ABP
n,i2 | |f1|2 =

OutLen(f2)} where |f1| denotes the cardinality of f1, and OutLen(f2) denotes
the output length of f2. A function family FABP◦UQF

n,G = F consists of functions
f : Xpub × Xpriv → GT ∪ {⊥}. Each f ∈ FABP◦UQF

n,G is specified by (Sk, fABP) ∈ F

where Sk ⊆ [q], fABP ∈ FABP
n,|Sk|2 and defined as

f((u, Sc,x)) =

{
[
∑

i,j∈Sk
fABP

i,j (u)xixj ]T Sk ⊆ Sc

⊥ otherwise

where u ∈ Z
n
p , Sc ⊆ [q],x = (xi)i∈Sc

∈ Z
Sc
p and fABP

i,j (u) is the (i, j)-th element
of fABP(u). Note that u, Sc are the public inputs while x is a private input. We
refer to FE for FABP◦UQF

n,G with the ciphertext-size being linear in |Sc| and |u| as
FE for ABP ◦ UQF.

Our scheme computes function values as an exponent of a group element
where the discrete log problem is hard. Thus, we require the exponent to be in
a polynomial range if the decrypter needs to obtain the function value as a Zp

element. Note that this restriction is common in all previous FE schemes for
inner product or quadratic functions based on cyclic groups.
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3 Predicate Slotted Inner Product Functional Encryption

In this section, we define a new primitive called predicate slotted IPFE and show
how to construct it. We use it as a building block of our unbounded slotted IPFE
scheme that we present in Sect. 4.

3.1 Definitions

Definition 3.1 (Predicate Slotted IPFE). Let G be bilinear groups, Xpub =
Z

d
p,Xpriv1 = Gm1

1 ,Xpriv2 = Gm2
1 ,Fpub = Z

d
p ×Gm1

2 ,Fpriv = Gm2
2 . A function family

FPIP
d,m1,m2,G = Fpub×Fpriv consists of functions f : Xpub×Xpriv1×Xpriv2 → GT ∪{⊥}.

Each f ∈ FPIP
d,m1,m2,G is specified by ((v, [y1]2), [y2]2) ∈ Fpub × Fpriv where v ∈

Z
d
p,yi ∈ Z

mi
p and defined as

f(u, [x1]1, [x2]1) =

{
[〈x1,y1〉 + 〈x2,y2〉]T if 〈u,v〉 = 0
⊥ if 〈u,v〉 �= 0

where u ∈ Z
d
p,xi ∈ Z

mi
p . We refer to slotted FE (Definition 2.3) for FPIP

d,m1,m2,G

as predicate slotted IPFE.

3.2 Predicate Slotted IPFE from Slotted IPFE

We construct a partially hiding slotted FE scheme for FPIP
d,m1,m2,G from a partially

hiding FE scheme for FIP
kd+m1,2m2+1,G in a generic way. Note that k is a parameter

for the MDDHk assumption.

Construction. Let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen, iDec) be a partially hid-
ing slotted FE scheme for FIP

kd+m1,2m2+1,G with slot-mode correctness for e =
[02m2+1]1. Then, our partially hiding slotted FE scheme pFE = (pSetup, pEnc,
pSlotEnc, pKeyGen, pDec) for FPIP

d,m1,m2,G with slot-mode correctness for e =
[0m2 ]1 is constructed as follows.

pSetup(1λ): It outputs (pPK, pMSK) = (iPK, iMSK) ← iSetup(1λ).
pEnc(pMSK, (u, [x1]1, [x2]1)): It outputs pCT as follows:

z ← Z
k
p, x̃1 = (z ⊗ u,x1) ∈ Z

kd+m1
p , x̃2 = (x2, 0m2 , 0) ∈ Z

2m2+1
p

iCT ← iEnc(iMSK, ([x̃1]1, [x̃2]1)), pCT = (u, iCT).

pSlotEnc(u, [x1]1): It outputs pCT as follows:

z ← Z
k
p, x̃1 = (z ⊗ u,x1) ∈ Z

kd+m1
p , iCT ← iSlotEnc([x̃1]1), pCT = (u, iCT).

pKeyGen(pMSK, (v, [y1]2, [y2]2)): It outputs pSK as follows:

a ← Z
k
p, ỹ1 = (a ⊗ v,y1) ∈ Z

kd+m1
p , ỹ2 = (y2, 0m2 , 0) ∈ Z

2m2+1
p

iSK ← iKeyGen(iMSK, ([ỹ1]1, [ỹ2]1)), pSK = (v, iSK).
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pDec(pCT, pSK): If 〈u,v〉 �= 0, it outputs ⊥. Otherwise, outputs iDec(iCT, iSK).

Correctness. Since 〈z ⊗ u,a ⊗ v〉 = 〈z,a〉 · 〈u,v〉, iDec(iCT, iSK) outputs
[〈x̃1, ỹ1〉 + 〈x̃2, ỹ2〉]T = [〈x1,y1〉 + 〈x2,y2〉]T if 〈u,v〉 = 0. This follows from the
correctness of iFE.

Slot-Mode Correctness. Thanks to slot-mode correctness of iFE,
iSlotEnc([x̃1]1) and iEnc(iMSK, ([x̃1]1, [02m2+1]1)) are identically distributed for
all correctly generated (iMSK, iPK) and x̃1 ∈ Z

kd+m1
p . Hence, pSlotEnc(u, [x1]1)

and pEnc(pMSK, (u, [x1]1, [0m2 ]1)) are identically distributed for all correctly
generated (pMSK, pPK), u ∈ Z

d
p, and x1 ∈ Z

m1
p .

Security. Due to space constraints, we present the security analysisn in the full
verion [31].

4 Unbounded Slotted Inner Product Functional
Encryption

In this section, we define a new primitive called unbounded slotted IPFE and
show how to construct it. We use it as a building block of our FE schemes for
unbounded quadratic functions (Sect. 5) and ABP ◦ UQF (Sect. 6).

4.1 Definitions

Definition 4.1 (Unbounded Slotted IPFE). Let G be bilinear groups,
Xpub×Xpriv1×Xpriv2 = {(x1, x2, x3) ∈ 2[p]×⋃

i∈[p](G
m1
1 )i×Gm2

1 | |x1| = |x2|/m1},
where |x1| denotes the cardinality of x1, and |x2| denotes the length of x2. Let
Fpub × Fpriv = {((f1, f2), f3) ∈ (2[p] × ⋃

i∈[p](G
m1
2 )i) × Gm2

2 | |f1| = |f2|/m1}. A
function family FUIP

m1,m2,G = Fpub × Fpriv consists of functions f : Xpub × Xpriv →
GT ∪ {⊥}. Each f ∈ FUIP

m1,m2,G is specified by ((Sk, [y]2), [y0]2) ∈ Fpub × Fpriv

where Sk ⊆ [p],y = (yi)i∈Sk
∈ (Zm1

p )Sk ,y0 ∈ Z
m2
p and defined as

f(Sc, [x]1, [x0]1) =

{
[
∑

i∈Sk
〈xi,yi〉 + 〈x0,y0〉]T if Sk ⊆ Sc

⊥ otherwise

where Sc ⊆ [p],x = (xi)i∈Sc
∈ (Zm1

p )Sc ,x0 ∈ Z
m2
p . Note that Sc is the public

input while [x]1 is a private input for the first slot, and [x0]1 is a private input
for the second slot. We refer to slotted FE (Definition 2.3) for FUIP

m1,m2,G as
unbounded slotted IPFE.

4.2 Unbounded Slotted IPFE from Predicate Slotted IPFE

Construction. Let k be the parameter of the MDDHk assumption. Let pFE =
(pSetup, pEnc, pSlotEnc, pKeyGen, pDec) be a partially hiding slotted FE scheme
for FPIP

2,m1+k,1,G with slot-mode correctness for e = [0]1. Let iFE = (iSetup, iEnc,
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iSlotEnc, iKeyGen, iDec) be a partially hiding slotted FE scheme for FIP
k,m2+1,G

with slot-mode correctness for e = [0m2+1]1. Then, our partially hiding slot-
ted FE scheme uFE = (uSetup, uEnc, uSlotEnc, uKeyGen, uDec) for FUIP

m1,m2,G with
slot-mode correctness for e = [0m2 ]1 is constructed as follows.

uSetup(1λ): It runs (pPK, pMSK) ← pSetup(1λ), (iPK, iMSK) ← iSetup(1λ), and
outputs (uPK, uMSK) = ((pPK, iPK), (pMSK, iMSK)).

uEnc(uMSK, (Sc, [x]1, [x0]1)): It chooses z ← Z
k
p and outputs uCT as follows:

ui = (1, i), x̃i = (xi, z, 0), pCTi ← pEnc(pMSK, (ui, [x̃i]1)) for i ∈ Sc

x̃0 = (z,x0, 0), iCT ← iEnc(iMSK, [x̃0]1), uCT = (Sc, {pCTi}i∈Sc
, iCT).

uSlotEnc(Sc, [x]1): It chooses z ← Z
k
p and outputs uCT as follows:

ui = (1, i), x̃i = (xi, z), pCTi ← pSlotEnc(ui, [x̃i]1) for i ∈ Sc

iCT ← iSlotEnc([z]1), uCT = (Sc, {pCTi}i∈Sc
, iCT).

uKeyGen(uMSK, (Sk, [y]2, [y0]2)): It chooses ai ← Z
k
p for all i ∈ Sk, sets a0 =

−∑
i∈Sk

ai, and outputs uSK as follows:

vi = (i,−1), ỹi = (yi,ai, 0), pSKi ← pKeyGen(pMSK, (vi, [ỹi]2)) for i ∈ Sk

ỹ0 = (a0,y0, 0), iSK ← iKeyGen(iMSK, [ỹ0]2), uSK = (Sk, {pSKi}i∈Sk
, iSK).

uDec(uCT, uSK): If Sk �⊆ Sc, it outputs ⊥. Otherwise, outputs iDec(iCT, iSK) +∑
i∈Sk

pDec(pCTi, pSKi).

Correctness. Thanks to the correctness of iFE and pFE, uDec(uCT, uSK) out-
puts [

∑
i∈Sk

(〈xi,yi〉+〈z,ai〉)+〈x0,y0〉+〈z,a0〉]T = [
∑

i∈Sk
〈xi,yi〉+〈x0,y0〉]T .

Slot-Mode Correctness. Thanks to slot-mode correctness of pFE,
pSlotEnc(ui, [x̃1]1) and pEnc(pMSK, (ui, [(x̃1, 0)]1)) are identically distributed
for all correctly generated (pMSK, pPK), ui ∈ Z

2
p, and x̃1 ∈ Z

m1+k
p . Simi-

larly, iSlotEnc([z]1) and iEnc(iMSK, ([(z, 0m2+1)]1)) are identically distributed for
all correctly generated (iMSK, iPK) and x ∈ Z

k
p. Hence, uSlotEnc(Sc, [x]1) and

uEnc(uMSK, (Sc, [x]1, [0m2 ]1)) are identically distributed for all correctly gener-
ated (uMSK, uPK), Sc ⊆ [p], and x ∈ (Zm1

p )Sc .

4.3 Security Analysis

For security, we have the following theorem.

Theorem 4.1. If pFE and iFE are IND-partially hiding, and the MDDHk

assumption holds in G, then uFE is IND-1-partially hiding.

Proof. We prove Theorem 4.1 via a series of hybrid games Hβ
1 ,Hβ

2 ,Hβ
f . We show

that Hβ
s ≈c Hβ

1 ≈c Hβ
2 ≈c Hβ

f , where Hβ
s for β ∈ {0, 1} is the original security

game (described in Eq. (2.2)). Especially, the oracles cO and kO works as Fig. 1
in Hβ

s . In the hybrid sequence, the behavior of the oracles is gradually changed.
Each hybrid is defined as follows.
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cO(β, ·)
Input: Sc ∈ Xpub, ([x

0]1, [x
1]1) ∈ X 2

priv1, ([x
0
0]1, [x

1
0]1) ∈ X 2

priv2

z ← Z
k
p, ui = (1, i)

x̃i = (xβ
i , z, 0), pCTi ← pEnc(pMSK, (ui, [x̃i]1))

x̃0 = (z,xβ
0 , 0), iCT ← iEnc(iMSK, [x̃0]1)

Output: uCT = (Sc, {pCTi}i∈Sc , iCT)

kO(β, ·)
Input: (Sk, [y]2) ∈ Fpub, ([y

0
0]2, [y

1
0]2) ∈ F2

priv

ai ← Z
k
p, a0 = − ∑

i∈Sk
ai, vi = (i, −1)

ỹi = (yi,ai, 0), pSKi ← pKeyGen(pMSK, (vi, [ỹi]2))

ỹ0 = (a0,y
β
0 , 0), iSK ← iKeyGen(iMSK, [ỹ0]2)

Output: uSK = (Sk, {pSKi}i∈Sk , iSK).

Fig. 1. The behavior of cO and kO in Hβ
s .

Hβ
1 : This game is the same as Hβ

s except that
– for the query to cO, it chooses z ← Z

k
p and sets x̃i, x̃

j
0 as

x̃i = (0m1 , 0k, 1), x̃0 = (0k, 0m2 , 1)

– for the �-th query to kO on (S�
k, [y�]2, ([y

�,0
0 ]2, [y

�,1
0 ]2)), it chooses a�

i ← Z
k
p

for i ∈ S�
k and sets a�

0 = −∑
i∈Sk

a�
i and

ỹ�
i =

{
(y�

i ,a
�
i , 〈xβ

i ,y�
i 〉 + 〈z,a�

i〉) (i ∈ Sc)
(y�

i ,a
�
i , 0) (i �∈ Sc)

ỹ�
0 = (a�

0,y
�,0
0 , 〈z,a�

0〉 + 〈xβ
0 ,y�,β

0 〉)

Hβ
2 : This game is the same as Hβ

1 except the following: in each query to kO, it
samples t�i ← Zp for i ∈ S�

k ∪ {0} so that
∑

i∈S�
k∪{0} t�i = 0 if S�

k ⊆ Sc, and
otherwise it just randomly samples t�i ← Zp for i ∈ (Sc ∩ S�

k) ∪ {0}. Then, it
sets

ỹ�
i =

{
(y�

i ,a
�
i , 〈xβ

i ,y�
i 〉 + t�i) (i ∈ Sc)

(y�
i ,a

�
i , 0) (i �∈ Sc)

, ỹ�
0 = (a�

0,y
�,0
0 , t�0 + 〈xβ

0 ,y�,β
0 〉)

Hβ
f : This game is the same as Hβ

2 except the following: it sets

ỹ�
i =

{
(y�

i ,a
�
i , 〈x0

i ,y
�
i 〉 + t�i) (i ∈ Sc)

(y�
i ,a

�
i , 0) (i �∈ Sc)

, ỹ�
0 = (a�

0,y
�,0
0 , t�0 + 〈x0

0,y
�,0
0 〉)

Observe that the adversary does not obtain the information on β in Hβ
f , and

thus its advantage is 0. Due to the space constraints, the rest of the proof is
given in the full version [31]. ��

5 Unbounded Quadratic Functional Encryption

In this section, we present our FE scheme for unbounded quadratic functions
defined in Definition 2.5.
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5.1 Construction

Let k be the parameter of the MDDHk assumption. Let uFE = (uSetup, uEnc,
uSlotEnc, uKeyGen, uDec) be a partially hiding slotted FE scheme for FUIP

k,1,G with
slot-mode correctness for e = [0]1. Let H : [p] → Gk

2 be a hash function modeled
as a random oracle. Then, our partially hiding FE scheme qFE = (qSetup, qEnc,
qKeyGen, qDec) for FUQF

G
is constructed as follows.

qSetup(1λ): It runs (uPK, uMSK) ← uKeyGen(1λ) outputs (qPK, qMSK) = (uPK,
uMSK).

qEnc(Sc,x = (xi)i∈Sc
): First, it defines vectors as follows:

[ai]2 = H(i), zi ← Z
k
p, bi = (xi, zi, 0), b̃i = (xi,ai, 0)

di = zi, d = (di)i∈Sc
.

Then, it outputs qCT as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode
correctness for e = [0k+2]1, or equivalently standard function-hiding IPFE
scheme with the vector length being k + 2.

(iPK, iMSK) ← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)
uCT ← uSlotEnc(Sc, [d]1), qCT = (iPK, {iCTi, iSKi}i∈Sc

, uCT)

qKeyGen(qMSK, (Sk, c = (ci,j)i,j∈Sk
)) It outputs qSK as follows:

[aj ]2 = H(j), d̃i =
∑

j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

uSK ← uKeyGen(uMSK, (Sk, [d̃]2, [0]2)), qSK = uSK

qDec(qCT, qSK) If Sk �⊆ Sc, it outputs ⊥. Otherwise, it outputs [z]T as follows:

[z1]T =
∑

i,j∈Sk

ci,j iDec(iCTi, iSKj), [z2]T = uDec(uCT, uSK)

[z]T = [z1 − z2]T .

Correctness. Due to the correctness of iFE and uEF, we have

z1 =
∑

i,j∈Sk

(ci,jxixj + ci,j〈zi,aj〉), z2 =
∑

i,j∈Sk

ci,j〈zi,aj〉

Hence, we have z =
∑

i,j∈Sk
ci,jxixj .
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5.2 Security

For security, we have the following theorem.

Theorem 5.1. If iFE is IND-partially hiding, uFE is IND-1-partially hiding,
and the MDDHk assumption holds in G, then qFE is SIM-partially-hiding.

Proof. First, we show our simulation algorithms. Note that our simulation algo-
rithm for key key generation takes a G2 element instead of a GT element, which
follows [21,33].

qSetup∗(1λ): It runs (uPK, uMSK) ← uKeyGen(1λ) outputs (qPK∗, qMSK∗) =
(uPK, uMSK).

qEnc∗(qMSK∗, Sc): First, it defines vectors as follows:

[ai]2 = H(i), zi ← Z
k
p, bi = (0, zi, 0), b̃i = (0,ai, 0)

di = zi, d = (di)i∈Sc
.

Then, it outputs qCT∗ as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode
correctness for e = [0k+2]1.

(iPK, iMSK) ← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)
uCT ← uEnc(uMSK, (Sc, [d]1, [1]1)), qCT∗ = (iPK, {iCTi, iSKi}i∈Sc

, uCT)

qKeyGen∗(qMSK∗, (Sk, c = (ci,j)i,j∈Sk
, Sc, [α]2 or ⊥)): It outputs qSK∗ as fol-

lows:

[aj ]2 = H(j), d̃i =
∑

j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

uSK ←
{
uKeyGen(uMSK, (Sk, [d̃]2, [−α]2)) Sk ⊆ Sc

uKeyGen(uMSK, (Sk, [d̃]2, [0]2)) otherwise
, qSK∗ = uSK

We prove Theorem 5.1 via a series of hybrid games Hη for η ∈ [smax] ∪ {f}
where smax is the maximum size of the challenge index set Sc. We show that
Hs ≈c H1 ≈c · · · ≈c Hsmax ≈c Hf , where Hs is the real game. Each hybrid is
defined as described in Fig. 2, where qEnc and qKeyGen are replaced with q̃Encη

and ˜qKeyGenη. They work as follows for η ∈ [smax].

q̃Encη(qMSK, x̃): Let Sc = (s1, . . . , s|Sc|). First, it defines vectors as follows:

[ai]2 = H(i), zi ← Z
k
p

bi =

{
(0, zi, 0) (i ≤ sη)
(xi, zi, 0) (i > sη)

, b̃i = (xi,ai, 0) (5.1)

di = zi, d = (di)i∈Sc
(5.2)
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Hs

qPK, qMSK ← qSetup(1λ)

x̃ = (Sc,x) ← A(1λ, qPK)

qCT ← qEnc(x̃)

β ← AqKeyGen(qMSK,·)(qCT)

Hη

qPK, qMSK ← qSetup(1λ)

x̃ = (Sc,x) ← A(1λ, qPK)

qCT ← q̃Encη(qMSK, x̃)

β ← A ˜qKeyGenη(qMSK,x̃,·)(qCT)

Fig. 2. Hybrids for qFE.

Then, it outputs qCT as follows:

(iPP, iMSK) ← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)
uCT ← uEnc(uMSK, (Sc, [d]1, [1]1)), qCT = (iPP, {iCTi, iSKi}i∈Sc

, uCT)

˜qKeyGenη(qMSK, x̃, (Sk, c)): Let Sc,η = (s1, . . . , sη) where si is the i-th element
of the challenge index set Sc. It outputs qSK as follows:

[aj ]2 = H(j), d̃i =
∑

j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

d̂ =

⎧
⎨

⎩

−∑
i∈Sc,η∩Sk

j∈Sk

ci,jxixj Sk ⊆ Sc

0 otherwise

uSK ← uKeyGen(uMSK, (Sk, [d̃]2, [d̂]2)), qSK = uSK

Hf is the same as Hsmax except that q̃Encη sets b̃i = (0,ai, 0) in Eq. (5.1).
Observe that the adversary’s view in Hf is equivalent to that in the simulated
game. Thanks to Lemmata 5.1 and 5.2, Theorem 5.1 holds. ��
Lemma 5.1. Hsmax ≈c Hf if iFE is IND-partially hiding.

Proof. For all i ∈ [|Sc|], let b0
i and b̃0

i be bi and b̃i defined in Hsmax . Similarly,
let b1

i and b̃1
i be bi and b̃i defined in Hf . Then, it is not hard to see that

〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ [|Sc|]. Hence, the difference between Hsmax and

Hf can be reduced to partially hiding security of iFE. ��
Lemma 5.2. Let Hs = H0. For η ∈ [smax], we have Hη−1 ≈c Hη if iFE and uFE
are IND-partially hiding and the MDDHk assumption holds in G.

Proof. We define intermediate hybrids Ĥη,1, Ĥη,2, Ĥη,3 and prove that Hη−1 ≈c

Ĥη,1 ≈c Ĥη,2 ≈c Ĥη,3 ≈c Hη. Ĥη,i for i ∈ {1, 2, 3} is the same as Hη−1 except that
˜qEncη−1, ˜qKeyGenη−1 are replaced by q̂Encη,i, ̂qKeyGenη,i, respectively, which

work as follows:
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q̂Encη,1(qMSK, x̃): It is the same as ˜qEncη−1 except that it defines vectors as
follows:

bi =

⎧
⎪⎨

⎪⎩

(0, zi, 0) (i < sη)
(0, 0, 1) (i = sη)
(xi, zi, 0) (i > sη)

, b̃i = (xi,ai, 〈zsη
,ai〉 + xsη

xi) (5.3)

di =

{
0 i = sη

zi i �= sη

, d = (di)i∈Sc
(5.4)

̂qKeyGenη,1(qMSK, x̃, (Sk, c)): It is the same as ˜qEncη−1 except that, if and only
if Sk ⊆ Sc, it defines uSK as follows:

uSK ← uKeyGen(uMSK, (Sk, [d̃]2, [d̂ +
∑

i∈Sk

csη,i〈zsη
,ai〉]2))

where csη,i = 0 if sη �∈ Sk.
q̂Encη,2(qMSK, x̃): It is the same as q̂Encη,1 except that it defines vectors as

follows:
r = (ri)i∈Sc

← Z
Sc
p , b̃i = (xi,ai, ri + xsη

xi)

̂qKeyGenη,2(qMSK, x̃, (Sk, c)): Let r = (ri)i∈Sc
be the random vector chosen in

q̂Encη,2. It is the same as ̂qKeyGenη,1 except that, if and only if Sk ⊆ Sc, it
defines uSK as follows:

uSK ← uKeyGen(uMSK, (Sk, [d̃]2, [d̂ +
∑

i∈Sk

csη,iri]2))

q̂Encη,3(qMSK, x̃): It is the same as q̂Encη,2 except that it defines vectors as
follows:

r = (ri)i∈Sc
← Z

Sc
p , b̃i = (xi,ai, ri +���xsη

xi)

̂qKeyGenη,3(qMSK, x̃, (Sk, c)): Let r = (ri)i∈Sc
be the random vector chosen in

q̂Encη,3. It is the same as ̂qKeyGenη,2 except that, if and only if Sk ⊆ Sc, it
defines uSK as follows:

uSK ← uKeyGen(uMSK, (Sk, [d̃]2, [d̂ +
∑

i∈Sk

csη,i(ri−xsη
xi)]2))

Lemma 5.2 immediately follows from Lemmata 5.3 to 5.6. ��
Lemma 5.3. For η ∈ [smax], we have Hη−1 ≈c Ĥη,1 if iFE and uFE are IND-(1-
)partially hiding.

Proof. First, we consider the case of η ≥ 2. Let b0
i , b̃

0
i be bi, b̃i defined in Hη−1,

i.e., Eq. (5.1), and b1
i , b̃

1
i be bi, b̃i defined in Ĥη,1, i.e., Eq. (5.3). Then, it is not
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hard to see that we have 〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ Sc. Thus, we can reduce

the indistinguishability between the 0-side and 1-side to partially-hiding security
of iFE.

Let d0
i be di defined in Hη−1, i.e., Eq. (5.2), and d1

i be di defined in Ĥη,1,
i.e., Eq. (5.4). Then, for � ∈ [qk] where qk is the number of queries to the key
generation oracle, we have

∑

i∈S�
k

〈d0
i , d̃

�
i〉 + d̂ =

∑

i∈S�
k

〈d1
i , d̃

�
i〉 + d̂ +

∑

i∈S�
k

csη,i〈zsη
,ai〉 if S�

k ⊆ Sc

where csη,i = 0 if sη �∈ Sk. Thus, we can reduce the indistinguishability between
the 0-side and 1-side to the partially function-hiding property of uFE.

Next, we consider the case of η = 1, which can be similarly proven to the
case of η ≥ 2. A main difference is that we need to first change uSlotEnc(Sc, [d]1)
in qEnc to uEnc(uMSK, (Sc, [d]1, [0]1)), which are identically distributed by the
slot-mode correctness of uFE. The remaining proof is almost the same as the
case of η ≥ 2. ��
Lemma 5.4. Let qr be the maximum number of queries to the random oracle
H in the security game. For all η ∈ [smax], we have Ĥη,1 ≈c Ĥη,2 if the MDDHk

assumption holds in G.

Proof. We can construct an adversary B against an MDDHk problem from a
distinguisher A of the two hybrids as follows.

1. B obtains a Uqr,k-MDDH instance (G, [A]2, [kδ]2), where A ∈ Z
qr×k
p , k0 =

Az, k1 ← Z
qr
p .

2. B simulates the random oracle H as follows: when H is queried on i ∈ [p] as
the j-th fresh query to H, it returns [ai]2 where ai is the j-th row of A. B
also defines ki as the j-th entry of kδ.

3. B runs (uPK, uMSK) ← uSetup(1λ) and gives qPK = (G, uPK) to A. It sets
qMSK = uMSK.

4. When A outputs x̃, B computes qCT in the same way as q̂Encη,1 except that
it defines b̃i = (xi,ai, ki + xsη

xi).
5. When A queries to the key generation oracle on (Sk, c), B computes qSK

in the same way as ̂qKeyGenη,1 except that it computes uSK as uSK ←
uKeyGen(uMSK, (Sk, [d̃]2, [d̂ +

∑
i∈Sk

csη,iki]2)) if Sk ⊆ Sc.
6. B outputs what A outputs.

It is not hard to see that A’s view corresponds to Ĥη,1 if δ = 0 and Ĥη,2

otherwise. ��
Lemma 5.5. For η ∈ [smax], Ĥη,2 and Ĥη,3 are identically distributed.

Proof. For i ∈ Sc, by implicitly defining ri = r′
i − xsη

xi where r′
i ← Zp, it is

obvious that A’s views in Ĥη,2 and Ĥη,3 are identical since the distribution of ri

is not changed from the original definition. ��
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Lemma 5.6. For η ∈ [smax], we have Ĥη,3 ≈c Hη if iFE and uFE are IND-(1-
)partially hiding and the MDDHk assumption holds in G.

This lemma can be proven similarly to Lemmata 5.3 to 5.4.

5.3 Bounded Variable-Length Scheme Without Random Oracles

The scheme in Sect. 5.1 is easily modified into a bounded variable-length scheme
that does not rely on random oracles. Note that the functionality of the scheme is
the same as Definition 2.5 except that Sc and Sk is subsets of a fixed polynomial-
sized set [n′] instead of [p]. The modification is simple: the setup algorithm ran-
domly chooses [a1]2, . . . , [an′ ]2 from Gk

2 and publish these. The encryption and
key generation algorithms use them instead of computing by the hash function
on the fly.

6 Functional Encryption for ABP ◦ UQF

In this section, we present our FE scheme for unbounded quadratic functions
defined in Definition 2.6.

6.1 Partial Garbling Scheme for FABP
n,n ′

We use the following partial garbling scheme for FABP
n,n′ [23] for the construction

of our FE scheme.

Syntax. A partial garbling scheme for FABP
n,n′ consists of the four algorithms.

Note that lgen and rec are deterministic algorithms while pgb and pgb∗ are
probabilistic algorithms.

lgen(f): It takes f ∈ FABP
n,n′ and outputs L1, . . . ,Lt ∈ Z

(n+1)×(t−1)
p where t

depends on f .
pgb(f,u,x; t): Let u′� = (u, 1). It takes f ∈ FABP

n,n′ ,u ∈ Z
n
p ,x ∈ Z

n′
p , and a

random tape t ∈ Z
t−1
p . It then outputs

(u′�L1t, . . . ,u′�Lmt, x1 + u′�Lm+1t, . . . , xn′ + u′�Ltt) ∈ Z
t
p

where m = t − n′ and (L1, . . . ,Lt) = lgen(f).
pgb∗(f,u, μ; t): It takes μ ∈ Zp and f,u, t as above and outputs

(u′�L1t + μ,u′�L2t, . . . ,u′�Ltt) ∈ Z
t
p

where (L1, . . . ,Lt) = lgen(f).
rec(f,u): It takes f,u ∈ Z

n
p and outputs df,u ∈ Z

t
p.
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The concrete description of lgen, rec that satisfies the following properties is
found in [3, Appendix A]. We slightly modify the format of the output of lgen
from [3] for convenience in our construction, but note that they are essentially
the same.

Correctness. The garbling scheme is correct if for all f ∈ FABP
n,n′ ,u ∈ Z

n
p ,x ∈

Z
n′
p , t ∈ Z

t−1
p , we have

〈pgb(f,u,x; t), rec(f,u)〉 = 〈f(u),x〉.

Security. The garbling scheme is secure if for all f ∈ FABP
n,n′ ,u ∈ Z

n
p ,x ∈ Z

n′
p ,

the following distributions are statistically close:

pgb(f,u,x; t) and pgb∗(f,u, 〈f(u),x〉; t)
where the random tape is chosen over t ← Z

t−1
p .

Linearlity. Observe that pgb and pgb∗ are an affine functions in t and μ,
respectively. This means that t in pgb and μ in pgb∗ can be group elements of
order p.

6.2 Construction

Let k be the parameter of the MDDHk assumption, n be the input length of
arithmetic branching programs in FABP◦UQF

n,G . Let uFE = (uSetup, uEnc, uSlotEnc,
uKeyGen, uDec) be a partially hiding slotted FE scheme for FUIP

k(n+1),1,G with
slot-mode correctness for e = [0]1. Let (lgen, pgb, pgb∗, rec) be a partial garbling
scheme defined in the above. Let H : [p] → Gk

2 be a hash function modeled as
a random oracle. Then, our partially hiding FE scheme aFE = (aSetup, aEnc,
aKeyGen, aDec) for FABP◦UQF

n,G is constructed as follows.

aSetup(1λ): It runs (uPK, uMSK) ← uKeyGen(1λ) outputs (aPK, aMSK) = (uPK,
uMSK).

aEnc(u, Sc,x = (xi)i∈Sc
): First, it defines vectors as follows:

[ai]2 = H(i), zi, z̃ ← Z
k
p, bi = (xi, zi, 0), b̃i = (xi,ai, 0)

di =

{
(zi, 0kn) (i ∈ Sc)
(u, 1) ⊗ z̃ (i = p)

, d = (di)i∈Sc∪{p}. (6.1)

Then, it outputs aCT as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode
correctness for e = [0k+2]1, or equivalently standard function-hiding IPFE
scheme with the vector length being k + 2.

(iPK, iMSK) ← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)
uCT ← uSlotEnc(Sc ∪ {p}, [d]1), aCT = (u, iPK, {iCTi, iSKi}i∈Sc

, uCT)
(6.2)
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aKeyGen(aMSK, (Sk, f ∈ FABP
n,|Sk|2)): Let φ : S2

k → {m + 1, . . . , t} be the bijective
function defined as φ(μ, ν) = m + (μ − 1)|Sk| + ν (see Sect. 6.1 for how to
define m, t). It outputs aSK as follows: first it computes L1, . . . ,Lt ← lgen(f)
and chooses T ← Z

(t−1)×k
p . For j ∈ [m], μ, ν ∈ Sk, it defines

d̃j,i =

{
0 (i ∈ Sk)
vec(LjT) (i = p)

, d̃φ(μ,ν),i =

⎧
⎪⎨

⎪⎩

0 (i ∈ Sk\{μ})
(aν , 0kn) (i = μ)
vec(Lφ(μ,ν)T) (i = p)

where [aν ]2 = H(ν). It then defines d̃j = (d̃j,i)i∈Sk∪{p} for j ∈ [t]. Finally it
computes uSKj ← uKeyGen(uMSK, (Sk ∪ {p}, [d̃j ]2, [0]2)) for all j ∈ [t], and
sets aSK = (f, {uSKj}j∈[t]).

aDec(aCT, aSK): Parse aCT = (u, iPK, {iCTi, iSKi}i∈Sc
, uCT) and aSK = (f,

{uSKj}j∈[t]). If Sk �⊆ Sc, it outputs ⊥. Otherwise, it computes df,u = rec(f,u)
and outputs [δ]T as follows:

[δ0]T =
∑

i,j∈Sk

fi,j(u)iDec(iCTi, iSKj), [δi]T = uDec(uCT, uSKi)

[δ]T = [δ0 − 〈df,u, δ〉]T
where δ = (δ1, . . . , δt).

Correctness. Due to the correctness of iFE, uEF, we have

δ0 =
∑

i,j∈Sk

(fi,j(u)xixj + fi,j(u)〈zi,aj〉), δ = pgb(f,u, (〈zi,aj〉)i,j∈Sk
;Tz̃)

Hence, we have 〈df,u, δ〉 =
∑

i,j∈Sk
fi,j(u)〈zi,aj〉 and thus z =∑

i,j∈Sk
fi,j(u)xixj , which follows from the correctness of the partial garbling

scheme.

6.3 Security

For security, we have the following theorem.

Theorem 6.1. If iFE is IND-partially hiding, uFE is IND-1-partially hiding, the
partial garbling scheme is secure, and the MDDHk assumption holds in G, then
aFE is SIM-partially-hiding.

Due to space constraints, we present the proof in the full version [31].
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Abstract. We put forward two natural generalizations of predicate
encryption (PE), dubbed multi-key and multi-input PE. More in details,
our contributions are threefold.

– Definitions. We formalize security of multi-key PE and multi-input
PE following the standard indistinguishability paradigm, and mod-
eling security both against malicious senders (i.e., corruption of
encryption keys) and malicious receivers (i.e., collusions).

– Constructions. We construct adaptively secure multi-key and
multi-input PE supporting the conjunction of poly-many arbitrary
single-input predicates, assuming the sub-exponential hardness of
the learning with errors (LWE) problem.

– Applications. We show that multi-key and multi-input PE for
expressive enough predicates suffices for interesting cryptographic
applications, including non-interactive multi-party computation (NI-
MPC) and matchmaking encryption (ME).

In particular, plugging in our constructions of multi-key and multi-input
PE, under the sub-exponential LWE assumption, we obtain the first ME
supporting arbitrary policies with unbounded collusions, as well as robust
(resp. non-robust) NI-MPC for so-called all-or-nothing functions satis-
fying a non-trivial notion of reusability and supporting a constant (resp.
polynomial) number of parties. Prior to our work, both of these applica-
tions required much heavier tools such as indistinguishability obfuscation
or compact functional encryption.

Keywords: predicate encryption · non-interactive MPC ·
matchmaking encryption · LWE

1 Introduction

Predicate encryption (PE) [17,30,37] is a powerful cryptographic primitive that
enriches standard encryption with fine-grained access control to the encrypted
data. In PE, the ciphertext is associated to both a message m and an attribute1

1 Sometimes, we also refer to x as the predicate input. Throughout the paper, we use
the terms attribute and input interchangeably.
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x, whereas the secret key is associated to a predicate P, in such a way that the
decryption process reveals the message if and only if the attribute x satisfies the
predicate P (i.e., P(x) = 1). Typically, security of PE requires indistinguishability
in the presence of collusion attacks, namely, for any pair of attributes (x0, x1) and
for any pair of messages (m0,m1), ciphertexts corresponding to (x0,m0) and to
(x1,m1) are computationally indistinguishable, even for an adversary possessing
poly-many decryption keys dkP, so long as P(x0) = P(x1) = 0 (otherwise it is
easy to distinguish).

Recently, there has been a lot of progress in constructing PE supporting
expressive predicates under standard assumptions [5,12,17,30,37,38,42,43,45,
46]. In particular, Gourbunov, Vaikuntanathan and Wee [30] give a construc-
tion of selectively secure PE (with unbounded collusions) for arbitrary predi-
cates under the learning with errors (LWE) assumption. Moreover, under sub-
exponential LWE, the same construction achieves adaptive security (this requires
complexity leveraging).

1.1 Our Contributions

In this paper, we put forward two natural generalizations of PE which we dub
multi-key PE and multi-input PE. Furthermore, we construct both multi-key PE
and multi-input PE for a particular class of predicates, under the LWE assump-
tion. As we show, the class of predicates our schemes can handle is powerful
enough to yield interesting cryptographic applications, including matchmaking
encryption (ME) [10,11] for arbitrary policies and non-interactive multi-party
computation (NI-MPC) [34] satisfying a weaker (but still non-trivial) notion of
reusability. We elaborate on these contributions in Sect. 1.3.

Prior to our work, all of the above applications required much stronger tools
such as indistinguishability obfuscation (iO) [13]. While recent work made sig-
nificant progress towards basing iO on standard assumptions [35,36], these con-
structions are fairly complex and still require a careful combination of multiple
assumptions (i.e., learning parity with noise, the SXDH assumption on bilinear
groups, and the existence of pseudorandom generators computable in constant
depth). Furthermore, such constructions are not secure in the presence of a quan-
tum attacker. Candidate constructions of post-quantum iO also exist [18,28,47],
but they are based on problems whose hardness is less understood.

Multi-key PE. In multi-key PE, we consider an ensemble of predicates P =
{Pv} indexed by a value v ∈ V which is uniquely represented as a sequence
v = (v1, . . . , vn) ∈ V1 × . . . × Vn. A sender can encrypt a message under an
input x using the public-key encryption algorithm Enc(mpk, x,m). A trusted
authority generates decryption keys dkvi

(using the corresponding master secret
key mski) for each i ∈ [n], with the guarantee that, given the decryption keys
dkv1 , . . . , dkvn

, the receiver can decrypt successfully the ciphertext c (associated
to plaintext m and attributes x), so long as Pv(x) = Pv1,...,vn

(x) = 1.
Security of multi-key PE says that, for any pair of attributes (x0, x1) and for

any pair of messages (m0,m1), ciphertexts c associated to (x0,m0) and (x1,m1)
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should be computationally indistinguishable even under unbounded collusions,
where the latter essentially means that the adversary can obtain decryption
keys for (poly-many) arbitrary values v1, . . . , vn which correspond to predi-
cates indexed by any value v = (v1, . . . , vn) such that Pv(x0) = Pv(x1) = 0.
This yields so-called CPA-1-sided security. The stronger notion of CPA-2-
sided security additionally allows for predicates indexed by values v such that
Pv(x0) = Pv(x1) = 1, so long as m0 = m1. These notions mimic the correspond-
ing notions that are already established for standard PE.

Our first result is a construction of multi-key PE, from the sub-exponential
LWE assumption, supporting conjunctions of arbitrary predicates, i.e. for pred-
icates of the form Pv(x) = Pv1(x1) ∧ . . . ∧ Pvn

(xn), where x = (x1, . . . , xn) and
v = (v1, . . . , vn).

Theorem 1 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-key PE scheme supporting conjunc-
tions of n = poly(λ) arbitrary predicates with unbounded collusions.

Multi-input PE. In multi-input PE, we consider predicates P with n inputs, i.e.
predicates of the form P(x1, . . . , xn). A trusted authority produces encryption
keys eki which are associated to the i-th slot of an input for P; namely, given
a (possibly secret)2 encryption key eki, a sender can generate a ciphertext ci

which is an encryption of message mi under attribute xi. At the same time, the
authority can produce a decryption key dkP associated to an n-input predicate
P, with the guarantee that the receiver can successfully decrypt c1, . . . , cn, and
thus obtain m1, . . . ,mn, so long as P(x1, . . . , xn) = 1.

As for security, we consider similar flavors as CPA-1-sided and CPA-2-sided
security for standard PE. Namely, for any pair of sequences of attributes (x0

1, . . . ,
x0

n) and (x1
1, . . . , x

1
n) and for any pair of sequences of messages (m0

1, . . . ,m
0
n) and

(m1
1, . . . ,m

1
n), ciphertexts c1, . . . , cn corresponding to either (x0

1,m
0
1), . . . , (x

0
n,

m0
n) or (x1

1,m
1
1), . . . , (x

1
n,m1

n) should be computationally indistinguishable. Here,
we additionally consider two cases:

– In the setting with no corruptions (a.k.a. the secret-key setting), all of the
encryption keys eki are secret and cannot be corrupted (and thus all the
senders are honest).

– In the setting with adaptive corruptions, the attacker can adaptively reveal
some of the encryption keys eki (and thus corrupt a subset of the senders).

Naturally, for both of these flavors, one can define CPA-1-sided and CPA-2-sided
security with or without collusions.

Our second result is a construction of multi-input PE, from the sub-
exponential LWE assumption, supporting conjunctions of n = poly(λ) arbi-
trary predicates with wildcards, i.e. for predicates of the form P(x1, . . . , xn) =

2 This is one of the differences between multi-key PE and multi-input PE: the former
has a public-key encryption algorithm, whereas the latter could have a secret-key
encryption algorithm.
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P1(x1) ∧ . . . ∧Pn(xn) such that, for each i ∈ [n], there exists a (public) wildcard
input x�

i for which Pi(x�
i ) = 1 for every i-th predicate Pi.3 Our multi-input PE

construction retains its security only in the setting of no corruptions (i.e., the
encryption keys eki are kept secret) and no collusions (i.e., the adversary only
knows a single decryption key dkP for an adversarially chosen predicate P).

Theorem 2 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-input PE scheme supporting con-
junctions of n = poly(λ) arbitrary predicates with wildcards, without corruptions
and without collusions.

Our third result is a construction of multi-input PE, from the sub-exponential
LWE assumption, supporting the same class of predicates as above but tolerating
adaptive corruptions of up to n−1 parties. However, this particular scheme only
supports predicates with constant arity.

Theorem 3 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-input PE scheme supporting con-
junctions of n = O(1) arbitrary predicates with wildcards, under n − 1 adaptive
corruptions and without collusions.

Finally, we anticipate that all our constructions are transformations that
leverage single-input PE schemes (e.g., [30]) and lockable obfuscation [31,48] as
building blocks. Such transformations are general and achieve CPA-2-sided secu-
rity if the underlying single-input PE schemes are CPA-2-sided secure. In partic-
ular, we obtain (i) CPA-2-sided secure multi-key PE with unbounded collusions
for n = poly(λ), (ii) CPA-2-sided secure multi-input PE without corruptions and
without collusions for n = O(log(λ)),4 and (iii) CPA-2-sided secure multi-input
PE under n − 1 corruptions and without collusions for n = O(1). However, at
the time of this writing, the LWE assumption is not sufficient for CPA-2-sided
security. Indeed, even for single-input PE for arbitrary predicates, CPA-2-sided
security implies iO [15]. The current state-of-the-art constructions of iO require
much stronger assumptions compared to standard LWE.

1.2 Technical Overview

We now give a high level overview of our constructions. As explained above, both
our multi-key and multi-input PE constructions handle conjunctions of arbitrary
predicates, i.e., predicates of the form:

P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn). (1)
3 Note that, in the setting with no corruptions, assuming the presence of a (single)

wildcard x�
i for each Pi does not affect the expressiveness and the security guarantees

of multi-input PE. This is because the i-th sender can simply choose not to encrypt
x�

i , which will not permit the receiver to evaluate Pi over x�
i .

4 Note that, in case of no corruptions, our CPA-1-sided construction supports n =
poly(λ). However, to achieve CPA-2-sided security we use complexity leveraging and
this reduces n from poly(λ) to O(log(λ)).
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We start by explaining how to build multi-key PE for the above class of pred-
icates by combining single-input PE and so-called lockable obfuscation [31,48].
Informally, a lockable obfuscation scheme allows to obfuscate a circuit C under
a lock y together with a message m, in such a way that evaluating the obfus-
cated circuit, on input x, returns m if C(x) = y. As for security, an obfuscated
circuit can be simulated in a virtual black-box (VBB) fashion whenever the lock
is random and unknown to the adversary. Lockable obfuscation exists under the
standard LWE assumption.

Then, we explain how to build multi-input PE (for the same class of pred-
icates) by additionally using SKE and PKE. Here, we consider two settings:
without corruptions (a.k.a. the secret-key setting) and with corruptions. The
former assumes that all the encryption keys (each corresponding to an input)
are secret. The latter is a stronger model that allows the adversary to leak one
or more encryption keys (i.e., corruption of the senders). We achieve security
in each setting by changing the way lockable obfuscation is used. In particular,
part of the contribution of this paper is a new technique based on nested (lock-
able obfuscated) circuits that execute each other. This technique allows us to
construct a multi-input PE that can handle adaptive corruptions. We provide a
high-level overview in the remaining part of this section. For more details, we
refer the reader to Sect. 4, Sect. 5, and the full version of this work [25].

Multi-key Predicate Encryption. An n-key PE allows a sender to encrypt a mes-
sage m under an attribute x, by running c ←$ Enc(mpk, x,m). Similarly to single-
input PE, a receiver can correctly decrypt c if it has a decryption key for a
predicate Pv, within a family P of predicates indexed by values v ∈ V, such that
Pv(x) = 1. The main difference between single-input PE and n-key PE is that in
the latter the receiver must have n independent decryption keys (dkv1 , . . . , dkvn

)
that uniquely represent the predicate Pv(·) = Pv1,...,vn

(·), i.e., the decryption
key associated to a particular predicate is decomposed into n decryption keys.
Each decryption key dkvi

is generated by the authority via KGen(mski, vi) where
(msk1, . . . ,mskn) are the master secret keys generated during the setup. Hence,
once obtained (dkv1 , . . . , dkvn

) from the authority, the receiver can decrypt the
ciphertext c (encrypted under attribute x) by executing Dec(dkv1 , . . . , dkvn

, c).
The message is returned if the predicate Pv1,...,vn

(x) = 1, where Pv1,...,vn
(·) is

the predicate represented by the combination of the n decryptions keys dkv1 , . . . ,
dkvn

. The security of n-key PE is analogous to that of single-input PE, where
the validity of the adversary A is defined with respect to the (poly-many) tuples
(dkv1 , . . . , dkvn

) of n decryption keys that the adversary has access to. In par-
ticular, we consider the well-known notion of CPA-1-sided security, i.e., the
attacker cannot distinguish between Enc(mpk, x0,m0) and Enc(mpk, x1,m1) so
long as it only holds combinations of n decryption keys (dkv1 , . . . , dkvn

) such
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that Pv1,...,vn
(x0) = Pv1,...,vn

(x1) = 0 (i.e., the adversary cannot decrypt the
challenge ciphertext).5

As explained above, we focus on conjunctions of arbitrary predicates
Pv1,...,vn

(x) = Pv1,...,vn
(x1, . . . , xn) = Pv1(x1)∧· · ·∧Pvn

(xn) as defined in Eq. (1);
hence, x = (x1, . . . , xn) and each dkvi

identifies the i-th predicate of the conjunc-
tion (and, in turn, any tuple of n decryption keys uniquely identifies the global
predicate). We build an n-key PE handling this class of predicates by extending
the technique of Goyal et al. [31], that uses lockable obfuscation to transform any
CPA secure attribute-based encryption (ABE) (recall that ABE schemes only
guarantee the secrecy of the message) into a CPA-1-sided secure PE (i.e., secrecy
of both message and attribute). Let PEi = (Setupi,KGeni,Enci,Deci) for i ∈ [n]
be n single-input PE schemes, each with ciphertext expansion poly(λ) + |mi|
where |mi| is the message length supported by the i-th PE.6 In a nutshell,
our n-key PE scheme kPE = (Setup,KGen,Enc,Dec) works as follows. The setup
algorithm Setup simply executes Setupi of each PEi and outputs the master pub-
lic key mpk = (mpk1, . . . ,mpkn) and n master secret keys (msk1, . . . ,mskn). To
generate a decryption key dkvi

←$ KGen(mski, vi) (representing the i-th predicate
Pvi

(·) of the conjunction), the authority can use the key generation algorithm
of the i-th PE, i.e., dkvi

←$ KGeni(mski,Pvi
). To encrypt a message m under

an input x = (x1, . . . , xn), a sender samples a random lock y and encrypts it n
times using PE1, . . . ,PEn, i.e., c ←$ Encn(mpkn, xn,Encn−1(mpkn−1, xn−1, · · · ,
Enc1(mpk1, x1, y))). Note that, for n = poly(λ), the final ciphertext will be of
polynomial size since each underlying i-th PE scheme has poly(λ) + |mi| cipher-
text expansion where |mi| is the message length supported by i-th scheme.

The final ciphertext of the n-key PE kPE will be the obfuscation of the circuit
Cc under the lock y together with the message m (i.e., ˜C ←$ Obf(1λ,Cc, y,m)),
where Cc, on input (dkv1 , . . . , dkvn

), iteratively decrypts c and returns the last
decrypted value, i.e., y = Cc(dkv1 , . . . , dkvn

) = Dec1(dkv1 , · · · ,Decn(dkvn
, c)).

Decryption is straightforward: the receiver simply executes ˜C using its n decryp-
tion keys.

The CPA-1-sided security of our construction follows by the CPA secu-
rity (i.e., secrecy of the message) of PE1, . . . ,PEn and by the security of lock-
able obfuscation.7 Intuitively, the proof works as follows. In order to be valid,
an adversary A cannot hold a tuple of decryption keys (dkv1 , . . . , dkvn

) such
that Pv1,...,vn

(xb) = Pv1,...,vn
(xb

1, . . . , x
b
n) = 1, where xb = (xb

1, . . . , x
b
n) is the

5 Observe that the decryption keys can be interleaved. For example, starting from
(dkv1 , . . . , dkvi , . . . dkvn) representing the predicate Pv1,...,vi,...,vn , the adversary can
ask for an additional i-th decryption key dkv′

i
and rearrange the decryption keys as

(dkv1 , . . . , dkv′
i
, . . . dkvn) in order to obtain the tuple representing a different predi-

cate Pv1,...,v′
i,...,vn

�= Pv1,...,vi,...,vn .
6 By leveraging hybrid encryption, we can transform any PE into one with poly(λ) +

|m| ciphertext expansion, i.e., Enc′(mpk, x, m) = Enc(mpk, x, s)||PRG(s) ⊕ m where
s ←$ {0, 1}λ.

7 When we write CPA secure PE, without specifying 1-sided or 2-sided security, we
refer to a PE scheme that guarantees only the secrecy of the message. CPA secure
PE is the same as CPA secure ABE.
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input chosen by A during the challenge phase, and b is the challenge bit. Since
Pv1,...,vn

(xb
1, . . . , x

b
n) is a conjunction of arbitrary predicates (see Eq. (1)), this

implies that there exists an i ∈ [n] such that Pvi
(xb

i ) = 0 for every i-th decryption
key dkvi

obtained by A. We can leverage this observation together with the CPA
security of PEi to do a first hybrid in which the challenger computes the i-th
layer of the challenge ciphertext as Enci(mpki, x

b
i , 0 . . . 0). Now, since the lock y

is not encrypted anymore, we can use the security of lockable obfuscation to do
a second hybrid in which the challenge ciphertext ˜C is simulated by using the
simulator of lockable obfuscation. In this last hybrid, the challenge ciphertext
does not depend on the bit b sampled by the challenger.

Despite we focused the discussion on CPA-1-sided security, we stress that the
same construction achieves CPA-2-sided security if the underlying n single-input
PE schemes PE1, . . . ,PEn are CPA-2-sided secure, i.e., Enc(mpk, x0,m0) and
Enc(mpk, x1,m1) are indistinguishable even when Pv1,...,vn

(x0) = Pv1,...,vn
(x1)

= 1 and m0 = m1.

Multi-input Predicate Encryption. We now turn to the more challenging setting
of multi-input PE.8 Here, each of the n senders can use its corresponding encryp-
tion key to independently encrypt messages under different inputs for the pred-
icate. For this reason, the setup algorithm of n-input PE outputs n encryption
keys (ek1, . . . , ekn) and a master secret key msk. Each encryption key eki is given
to the i-th sender and allows the latter to handle the i-th slot of a multi-input pred-
icate. The i-th party encrypts a message mi under an input xi by using its encryp-
tion key eki, i.e., ci ←$ Enc(eki, xi,mi). On the other hand, a receiver can use the
decryption key dkP associated to an n-input predicate P (recall that dkP is gen-
erated by the authority via KGen(msk,P)) to execute Dec(dkP, c1, . . . , cn). Intu-
itively, the decryption algorithm returns (m1, . . . ,mn) when P(x1, . . . , xn) = 1
where (mi, xi) are the message and the input associated to the i-th ciphertext ci.

The CPA-1-sided security of n-input PE is similar to that of n-key PE, but
adapted to the multi-input setting. Informally, an adversary A must not be
able to distinguish between ciphertexts (Enc(eki, x

0
i ,m

0
i ))i∈[n] and (Enc(eki, x

1
i ,

m1
i ))i∈[n] where (x0

1, . . . , x
0
n), (x1

1, . . . , x
1
n) and (m0

1, . . . ,m
0
n), (m1

1, . . . ,m
1
n) are

chosen by A. Naturally, this is subject to the usual validity condition, informally
saying that A should not be able to decrypt (part of) the challenge ciphertext.
This condition can assume different meanings depending on whether the encryp-
tion keys are all secret or some of them are public (or can be leaked). Because of
this, we formalize security with and without corruptions. Throughout the rest
of this section, we describe how CPA-1-sided security of n-input PE changes in
these two settings, and give some intuition on our constructions for each setting.

Security in the Secret-Key Setting. Here, no corruptions are allowed and thus
the encryption keys are all secrets. Hence, an adversary A playing the CPA-
1-sided security game has adaptive oracle access to both the key generation
8 Indeed, as we discuss in Remark 1, CPA-1-sided (resp. CPA-2-sided) secure multi-

input PE for arbitrary predicates implies CPA-1-sided (resp. CPA-2-sided) secure
multi-key PE.
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oracle KGen(msk, ·) and to n encryption oracles {Enc(eki, ·, ·)}i∈[n]. The latter
oracles allow A to generate ciphertexts (associated to the i-th input/sender)
on adversarially chosen predicate inputs and messages. Since these ciphertexts
are created independently, the adversary has the power to interleave part of
the challenge ciphertext (c∗

1, . . . , c
∗
n) with the ciphertexts obtained trough the

encryption oracles. This has a huge impact on the security of the a n-input PE
scheme and on the validity condition that A must satisfy. For example, during
the challenge phase, A could choose two vectors of messages (m0

1, . . . ,m
0
n) and

(m1
1, . . . ,m

1
n) and two vectors of predicate inputs (x0

1, . . . , x
0
n) and (x1

1, . . . , x
1
n)

such that for every predicate P (submitted to oracle KGen(m, ·)) we have
P(x0

1, . . . , x
0
n) = P(x1

1, . . . , x
1
n) = 0. Although the vector (c∗

1, . . . , c
∗
n) can not

be directly decrypted, A could still be able to decrypt part of it by leverag-
ing the encryption oracles. In more details, A could: (i) adversarially choose
x′

i such that P(x0
1, . . . , x

′
i, . . . x

0
n) = 1 and P(x1

1, . . . , x
′
i, . . . x

1
n) = 0; (ii) submit

(x′
i,m

′
i) to oracle Enc(eki, ·, ·) and obtain c′

i;and (iii) simply decrypt the vector
(c∗

1, . . . , c
′
i, . . . , c

∗
n). When b = 0 (resp. b = 1), the adversary knows that the

challenge ciphertext must (resp. must not) decrypt successfully. This allows it
to easily win the CPA-1-sided security experiment of n-input PE. As a con-
sequence, the condition defining when A is valid depends on both the queries
submitted to KGen(msk, ·) and to the oracles {Enc(eki, ·, ·)}i∈[n]. More precisely,
for every decryption key dkP corresponding to a predicate P, for every vector of
ciphertexts obtained by interleaving the challenge ciphertext (c∗

1, . . . , c
∗
n) with

the ciphertexts generated trough any of the n encryption oracles, we must have
that P is not satisfied. This is formalized by the following condition: ∀P ∈ QKGen,
∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], it holds that

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n ) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n ) = 0, (2)

where QKGen are the queries submitted to oracle KGen(msk, ·), (x0
1, . . . , x

0
n), (x1

1,
. . . , x1

n) are the predicate inputs chosen by A during the challenge phase, and
Qb

i = {x
(1,b)
i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xb

i} is the ordered list composed of the ki

predicate inputs submitted to oracle Enc(eki, ·, ·) and the challenge input xb
i for

b ∈ {0, 1}, i ∈ [n] (observe that Q0
i and Q1

i are identical except for the last
element). The formal security definition appears in Sect. 4.

Construction in the Secret-Key Setting. We propose a construction of n-input
PE for conjunctions of arbitrary predicates (see Eq. (1)) with wildcards from
single-input PE, lockable obfuscation, and SKE. In particular, we start from
single-input PE for arbitrary predicates. Actually, it will suffice that the under-
lying PE itself supports the predicates P(x1, . . . , xn) as defined in Eq. (1), where
we view (x1, . . . , xn) as a single input chosen by the sender. In addition, the
predicate must have a (efficiently computable) wildcard input (x�

1, . . . , x
�
n) such

that x�
i satisfies every i-th predicate of the conjunction, i.e., Pi(x�

i ) = 1. As we
will describe next, the n − 1 subset of wildcards (x�

1, . . . , x
�
i−1, x

�
i+1, . . . , x

�
n) will
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permit the i-th sender to put a “don’t care” placeholder on the slots of the other
senders. This will allow the construction to deal with multiple inputs without
compromising the evaluation of the predicate.

The main intuition behind our construction is to evaluate the conjunction of
the predicates inside lockable obfuscation in such a way that, as soon as one of
the predicates (of the conjunction) is not satisfied, both the messages and the
predicate inputs remain hidden (even if another predicate Pi is satisfied). To
accomplish that, we need to create a link between the independently generated
ciphertexts (each produced by different senders). This is done by leveraging an
SKE scheme as follows.

In a nutshell, the i-th secret encryption key has the form eki = (mpk, ki, ki+1)
where mpk is the master public key of the single-input PE, and ki for i ∈ [n] is
a secret key for the SKE (we also let ekn+1 = k1). In order to encrypt a message
mi under an input xi, the i-th sender samples a random lock yi and encrypts
(yi, ki+1) via the single-input PE, using the input made by all the wildcards x�

j

except for the position j = i, where, instead, the sender places its real input xi,
i.e., c

(1)
i ←$ Enc(mpk, (x�

1, . . . , x
�
i−1, xi, x

�
i+1, . . . , x

�
n), (yi, ki+1)). The final cipher-

text ci will be ci = (˜Ci, c
(2)
i ), where c

(2)
i ←$ Enc(ki, c

(1)
i ) and ˜Ci is the obfuscation

of the circuit C
c
(2)
i ,ki+1

under the lock yi and message mi. Similarly to the case of
multi-key PE, the latter circuit is responsible for the decryption. In particular,
upon input the ciphertexts (c(2)i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1)—note the order of the

ciphertexts—and the decryption key dkP for P(x1, . . . , xn), the circuit C
c
(2)
i ,ki+1

acts as follows:

1. Set k = ki+1 where ki+1 is the secret key hardcoded into the circuit.
2. For c

(2)
j ∈ {c(2)i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1} do:

(a) Decrypt c
(2)
j using the secret key k, i.e., c

(1)
j = Dec(k, c(2)j ).

(b) Decrypt c
(1)
j using dkP in order to get (yj , kj+1). If c

(1)
j decrypts correctly,

kj+1 is the secret key used to encrypt the next ciphertext c
(2)
j+1.

(c) Set k = kj+1.
3. Compute (yi, ki+1) = Dec(dkP,Dec(k, c

(2)
i )), where c

(2)
i is the ciphertext hard-

coded into the circuit.
4. Return yi (note that if none of the decryptions fails then yi is the lock used

to obfuscate the circuit).

By the above description, decryption is immediate: Upon input (ci)i∈[n], the
receiver computes mi = ˜Ci(c

(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1, dkP) where ci = (˜Ci, c

(2)
i )

and dkP is the decryption key of the underlying single-input PE for a pred-
icate P(x1, . . . , xn). We highlight that the combination of the SKE with the
PE wildcards is what allows our construction to correctly implement the pred-
icates of Eq. (1). This is because, when c

(1)
i correctly decrypts under the key

dkP (Item 2b), we are guaranteed that Pi(xi) = 1 (recall that xi is the input
of the i-th sender). In particular, the latter holds as, in any other slot, the i-th
sender has used the wildcards. By repeating this argument, we can conclude
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that P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) is satisfied if the execution of each
C

c
(2)
i ,ki+1

goes as expected. We refer the reader to the full version [25] for the
formal construction.

As for security, we show that our construction satisfies CPA-1-sided security
in the presence of no collusions (i.e., the adversary can submit a single query to
the oracle KGen) if the underlying PE is CPA-1-sided secure, SKE is CPA secure,
and the lockable obfuscation is secure. Roughly, the proof works as follows. Let
P

∗ be the only predicate submitted to KGen by the adversary. Starting from A’s
validity condition, we infer that, for any choice of the challenge bit b ∈ {0, 1},
then attacker A must maintain one of the following two conditions:

(i) either P∗
1(x

b
1) = . . . = P

∗
n(xb

n) = 0 (i.e., all the predicates of the conjunctions
are false);

(ii) or (if at least one predicate P
∗
i is satisfied, i.e., P

∗
i (x

b
i ) = 1) there exists

j �= i such that, for every xj ∈ Qb
j , it holds that P

∗
j (xj) = 0 where Qb

j

is the ordered list composed of predicate inputs submitted to the oracle
Enc(ekj , ·, ·) and the challenge input xb

j (see Eq. (2)).9

When the first condition is satisfied, we can leverage the CPA-1-sided security
of the single-input PE to show that the every lock yi (encrypted using the PE),
and every input xi (encrypted in c

(2)
i ), is completely hidden to the adversary. The

latter allows us to use the security of lockable obfuscation to move to a hybrid
experiment in which all the (obfuscated) circuits are simulated (including the
messages).

On the other hand, when the second condition is satisfied, we can transition
to a hybrid experiment (this time by leveraging the security of the underlying
PE scheme) in which Enc(ekj , ·, ·) computes c

(1)
j by encrypting the all-zero string

(instead of (yj , kj+1)). Thus, we can use the security of lockable obfuscation to
move to another hybrid in which Enc(ekj , ·, ·) simulates all the obfuscations. At
this point, the symmetric key kj+1 is not used anymore. Hence, we can use the
security of SKE to transition to another hybrid in which Enc(ekj+1, ·, ·) computes
c
(2)
j+1 by encrypting the all-zero string (instead of c

(1)
j+1 that, in turn, contains the

lock yj+1 and the symmetric key kj+2). After this hybrid, we can again use
the security of lockable obfuscation to simulate all the obfuscations computed
by Enc(ekj+1, ·, ·), and so on. By repeating these last two hybrids, we reach an
experiment whose distribution does not depend on the challenge bit. The formal
construction appears in the full version of this work [25].

We highlight that our scheme is not secure in the presence of collusions. In
particular, the fact that the adversary can obtain a single decryption key dkP
is crucial in order to get the validity condition (ii), i.e., for every b ∈ {0, 1}
there exists a j such that for every predicate (submitted to KGen(msk, ·)) we
have Pj(xb

j) = 0. In fact, in the case of collusions, the adversary can ask for two
decryption keys dkP and dkP′ such that for every b ∈ {0, 1}:
9 If this condition is not satisfied, the adversary has obtained through the encryption

oracles a set of ciphertexts that can be interleaved with one (or more) parts of the
challenge ciphertext in order to satisfy the predicate P

∗.
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P1(xb
1) = 0 and P2(xb

2) = . . . = Pn(xb
n) = 1

P
′
1(x

b
1) = 1 and P

′
2(x

b
2) = . . . = P

′
n(xb

n) = 0.

Note that these are valid queries for the CPA-1-sided security experiment of
n-input PE (the ciphertext cannot be decrypted). However, such a unique j for
every predicate (as per condition (ii)) does not exist. When this happens, we
are not able to conclude the proof by making a reduction to the security of
single-input PE (the reduction will make an invalid set of queries to the KGen
oracle of the single-input PE, making it invalid for the CPA-1-sided security of
the single-input PE).10

Lastly, we stress that since we start from a single-input PE supporting con-
junctions of arbitrary predicates with wildcards, we end up with an n-input PE
for conjunctions of arbitrary predicates (see Eq. (1)) with wildcards. We high-
light that wildcards do not play any role in the security proof of our secret-key
construction. In other words, wildcards are required for functionality (correct-
ness) and not for security. Indeed, in the secret-key setting (i.e., no corruptions),
wildcards can be easily removed. This is because we can transform any secure
multi-input PE for P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) with a single wild-
card (x�

1, . . . , x
�
n) into a secure multi-input PE for the same class of predicates

P(x1, . . . , xn) without the wildcard. This can be done by requiring the senders
not to encrypt the corresponding wildcard, i.e., for each i ∈ [n], Enc(eki, x

�
i ,mi)

outputs ⊥ whenever xi = x�
i . We stress that this only works in the case of no

corruptions. In fact, as we will discuss later, in case of corruption, wildcards play
a role in the security of our corruption-resilient multi-input PE scheme, e.g., an
adversary can encrypt wildcards on its own using the leaked encryption keys.

Security Under Corruptions. Next, let us explain how to define security of multi-
input PE in the presence of corruptions. Here, the adversary has the possibility
to corrupt a subset of the senders and leak their encryption keys eki. We model
this by introducing an additional corruption oracle Corr(·) that, upon input an
index i ∈ [n], returns eki. Note that, once obtained eki, the adversary A has
the possibility to produce arbitrary ciphertexts on any message and predicate
input, without interacting with the challenger during the CPA-1-sided security
game. As usual, the validity condition heavily depends on the queries submitted
to both the encryption oracles and the corruption oracle. More precisely, the
validity condition now says that, for every decryption key dkP, for every vec-
tor of ciphertexts that can be obtained by interleaving the challenge ciphertext
(c∗

1, . . . , c
∗
n) with both the ciphertexts obtain trough any of the (uncorrupted)

encryption oracles and the ones that A may autonomously produce by using the
leaked encryption keys (trough oracle Corr(·)), we have that P is not satisfied.
Hence, the validity condition is identical to that of the secret-key setting (see
Eq. (2)), except that:
10 As we discuss in the full version [25], our construction remains secure if we consider a

weaker form of collusion in which the adversary can only obtain multiple decryption
keys for predicates P such that there is a unique j for all predicates (submitted to
KGen) that satisfies the validity condition (ii).
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– If the i-th encryption key eki has been corrupted/leaked, then Qb
i of Eq. 2

corresponds to the i-th predicate input space. This is because the adversary
can produce a valid ciphertext on any input xi.

– Else (i.e., the i-th encryption key eki is still secret), Qb
i is defined as usual,

i.e., it is the ordered list of predicate inputs submitted to oracle Enc(eki, ·, ·)
and challenge input xb

i .

See Sect. 4 for the formal definition.

A Simple Attack. Before explaining our construction in details, let us show
why the previous construction is not secure under corruptions. For simplic-
ity, we focus on the 2-input setting. Suppose an adversary A has a single
decryption key dkP for P(x1, x2) = P1(x1) ∧ P2(x2) and a vector of ciphertexts
(c∗

1, c
∗
2) = ((˜C1, c

(2)
1 ), (˜C2, c

(2)
2 )) encrypted under the predicate input (x1, x2)

such that P1(x1) = 0 and P2(x2) = 1. Note that this ciphertext should not
decrypt under dkP, since the conjunction of P1 and P2 evaluates to 0. If A can
obtain ek2, then it can easily determine the message m2 (and thus the bit b).
Indeed, once A gets ek2 = (mpk, k2, k1), it can compute a malicious ciphertext
c̃
(1)
1 (using the single-input PE) by encrypting (ỹ, k2) (where ỹ is a random

lock) under the predicate input composed by (x′
1, x

′
2) such that P1(x′

1) = 1 and
P2(x′

2) = 1. Then, it can compute c̃
(2)
1 ←$ Enc(k1, c̃

(1)
1 ) and execute ˜C2(c̃

(2)
1 , dkP)

to get m2. Note that by definition the execution of ˜C2 outputs the correct mes-
sage, since P1(x�

1) ∧ P2(x2) = 1 and c̃
(2)
1 contains the correct secret encryption

key k2, allowing the circuit to correctly end the computation. Also, note that
this attack does not violate the validity condition. This is because P1(x1) = 0,
and A does not use the oracle Enc(ek1, ·, ·) at all. Hence, any interleaving of
the ciphertexts will involve the predicate input x1 that, in turn, will make the
conjunction P(x1, x

′
2) = P1(x1)∧P2(x′

2) unsatisfied for every choice of the input
predicate x′

2.
In light of the above attack, we can identify what we need to do in order

to extend our techniques to handle corruptions: First, following the proof of
the previous construction, it is important to hide the (plain) single-input PE
ciphertext that a particular sender produces (e.g., in the secret-key setting we
re-encrypt c

(1)
i using SKE). As we have described for the secret-key setting, this

allows us to claim that everything remains hidden whenever one of the predicate
Pi of the conjunction is not satisfied (even if a different Pj is satisfied).11 Second,
the leakage of one (or more) encryption keys should not allow to produce a
malicious ciphertext on behalf of the uncorrupted senders (or simply decrypt
the ciphertexts of other parties). Otherwise, the attacker can follow a strategy
similar to the one above to break security.

11 The secret-key construction achieves this by linking multiple PE ciphertexts via
SKE, and including the secret key ki+1 into the PE ciphertext.
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Construction Under Corruptions. In order to achieve the above properties, we
propose a new technique based on nested (lockable obfuscated) circuits that
can be executed one inside the other. This technique permits to make available
secret information (e.g., secret keys) only during nested execution. For the sake
of clarity, we first present our approach for the case of two inputs. As an initial
attempt to deal with corruptions, we replace the SKE in our previous construc-
tion with a PKE, so that the encryption key ek1 (resp. ek2) is now composed of
(mpk, sk1, pk1, pk2) (resp. (mpk, sk2, pk2, pk1)) where (ski, pki) is a secret/public
key pair. Each (ski, pki) is associated to the i-th sender (indeed, note that eki con-
tains also the secret key ski). From the perspective of the first sender, in order to
encrypt a message m1 under the input x1, it samples two random locks (yin

1 , yout
1 )

and encrypts them (using the single-input PE) as before using the wildcard x�
2,

i.e., c
(0)
1 ←$ Enc(mpk, (x1, x

�
2), (y

in
1 , yout

1 )).12 At this point, the PE ciphertext c
(0)
1

is re-encrypted twice using pk1 and pk2, i.e., c
(i)
1 ←$ Enc(pki, c

(i−1)
1 ) for i ∈ [2].

Intuitively, the two layers of PKE have the role of hiding the PE ciphertexts
(that in turn contain the locks) even when the adversary leaks all encryption
keys except one. The final ciphertext is composed by the two obfuscations ˜C

out
1 ,

˜C
in
1 of the circuits Cout

sk1,c
(2)
1

, Cin

sk1,c
(2)
1

, respectively. The former is obfuscated under

the lock yout
1 and message m1, whereas the latter is obfuscated under the lock

yin
1 and message sk1. The ciphertext produced by the second sender, is identi-

cal, except that it uses sk2 (instead of sk1) and that c
(0)
2 is computed using the

predicate input (x�
1, x2) (instead of (x1, x

�
2)).

The crux of our nesting technique comes from the definition of the cir-
cuits C

out

ski,c
(2)
i

. More precisely, the outer circuit C
out

sk1,c
(2)
1

will take as input the

obfuscation ˜C
in
2 of the inner circuit C

in

sk2,c
(2)
2

and a decryption key dkP. Then,

in order to securely check the conjunction inside the lockable obfuscation,
C

out

sk1,c
(2)
1

will execute ˜C
in
2 (sk1, dkP). At this point, ˜C

in
2 has everything it needs

to check the satisfiability of P2(·). It removes the PKE layers from c
(2)
2 by

computing c
(0)
2 = Dec(sk2,Dec(sk1, c

(2)
2 )). Then, it decrypts the PE ciphertext

(yin
2 , yout

2 ) = Dec(dkP, c
(0)
2 )—observe that the decryption succeeds if P2(x2) = 1—

and returns yin
2 . By correctness of lockable obfuscation, if the computation of

C
in

sk2,c
(2)
2

(sk1, dkP) goes as intended, then ˜C
in
2 (sk1, dkP) will output sk2 (the mes-

sage attached to the obfuscation). Once obtained sk2, the computation of Cout

sk1,c
(2)
1

can continue and perform a similar computation to check the satisfiability of P1(·)
except that, if the PE ciphertext c

(0)
1 decrypts correctly, it returns yout

1 . If all the
decryptions (performed by C

out

sk1,c
(2)
1

and C
in

sk2,c
(2)
2

) succeed, the execution of the

obfuscation ˜C
out
1 of Cout

sk1,c
(2)
1

will output m1. A symmetrical argument holds for

C
out

sk2,c
(2)
2

and C
in

sk1,c
(2)
1

, releasing m2.

12 Recall that wildcards must be efficiently computable.
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We show that the above 2-input PE construction is CPA-1-sided secure under
1 corruption (i.e., one encryption key remains secret) and no collusions if the
underlying single-input PE is CPA secure, PKE is CPA secure, and the lockable
obfuscation is secure. The high level intuition is that ski remains unknown to
the adversary if Pi(·) = 0 (unless the adversary invokes the oracle Corr(i)). This
is reflected by the proof technique that is sketched below.

Let dkP∗ be the decryption key obtained by A for the predicate P
∗(·, ·) =

P
∗
1(·) ∧ P

∗
2(·) (recall the presence of wildcards), and let QCorr be the queries

submitted to the corruption oracle. Starting from the validity condition, we can
infer that for any choice of the challenge bit b ∈ {0, 1} we have:

(i) either P
∗
1(x

b
1) = P

∗
2(x

b
2) = 0;

(ii) or (i.e., there exists an i ∈ [2] such that predicate Pi is satisfied) j �∈ QCorr

such that j �= i and, for every xj ∈ Qb
j , P

∗
j (xj) = 0 (recall that xb

j ∈ Qb
j).

Observe that this second condition holds because of the following:
– If there is xj ∈ Qb

j such that P
∗
j (xj) = 1, A can use the correspond-

ing ciphertext to decrypt the i-th part of the challenge ciphertext since
P

∗
i (x

b
i ) = 1.

– If j ∈ QCorr, A can simply use ekj to encrypt a random message under the
wildcard x�

j (that always exists by design of our construction) and, again,
decrypt the i-th part of the challenge ciphertext. Note that, contrarily
from our secret-key construction, wildcards play an important role in
the security of our multi-input PE construction under corruptions (if an
encryption key ekj gets leaked then a malicious adversary can always
encrypt itself the j-th wildcards x�

j , satisfying the j-th predicate Pj).
Hence, in the corruption setting, wildcards are used for both functionality
and security.

By leveraging the above two conditions, the security of our scheme follows by
using a similar argument to that of the secret-key setting. In particular, when the
first condition is satisfied, we can show that the locks (yin

1 , yout
1 ) and (yin

2 , yout
2 )

(used to encrypt the challenge) are completely hidden. This, in turn, allows
us to use the security of lockable obfuscation and simulate the obfuscations of
(Cout

sk1,c
(2)
1

,Cin

sk1,c
(2)
1

), (Cout

sk2,c
(2)
2

,Cin

sk2,c
(2)
2

), and the corresponding messages.

On the other hand, when the second condition is satisfied, we can move to
a hybrid (by leveraging the security of single-input PE) in which Enc(ekj , ·, ·)
computes c

(0)
j by encrypting the all-zero string (instead of (yin

j , yout
j )). Then, we

can use the security of lockable obfuscation to transition to another hybrid in
which Enc(ekj , ·, ·) simulates all the obfuscations. At this point, the secret key
skj of the uncorrupted j-th sender is not used anymore (recall that j �∈ QCorr).
Hence, we can leverage the security of the PKE to remove the locks (yin

i , yout
i )

chosen by the i-th sender (recall i �= j). In more details, we do another hybrid
in which the j-th PKE layer c

(j)
i of the challenge ciphertext is an encryption

of zeroes (instead of c
(j−1)
i that, in turn, encrypts the locks (yin

i , yout
i )). After

this hybrid, we can again use the security of lockable obfuscation to simulate
all the obfuscations (and the corresponding attached messages) that compose
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the i-th component of the ciphertext. The distribution of this last hybrid does
not depend on the challenge bit b since all the ciphertexts are simulated by the
simulator of the lockable obfuscation scheme.

To sum up, we can observe that encrypting c
(0)
i (the PE ciphertext that

contains the locks) with the public keys (pk1, pk2) of both senders is crucial in
order for our proof to work independently of which encryption key the adversary
decides to leak. So long as at least one encryption key eki remains hidden, then
there is a PKE layer that cannot be decrypted by the adversary. This allows the
proof to go through.

Generalizing the Nesting Technique to (n > 2) Inputs. By carefully modifying the
definition of the outer and inner circuits, we can generalize the above technique
to the case of n > 2. The structure of the encryption keys and of the encryption
algorithm is similar to the case n = 2:

– Each encryption key eki is of the form (mpk, ski, pk1, . . . , pkn).
– To compute the i-th encryption of (xi,mi), the sender computes the ini-

tial PE ciphertext as c
(0)
i ←$ Enc(mpk, (x�

1, . . . , xi, . . . , x
�
n), (yin

i , yout
i )). Then,

it re-encrypts n times the ciphertext c
(0)
i using (pk1, . . . , pkn), i.e., c

(v)
i ←$

Enc(pkv, c
(v−1)
i ) for v ∈ [n]. As usual, the final ciphertext ci = (˜Cout

i , ˜C
in
i ) is

composed of the obfuscations of Cout

ski,c
(n)
i

and C
in

ski,c
(n)
i

.

We now turn on the crucial point: the definition of the outer and inner circuits.
Again, for the sake of clarity, we only describe the outer circuit Cout

sk1,c
(n)
1

and of the

inner circuits (Cin

sk2,c
(n)
2

, . . . ,Cin

skn,c
(n)
n

) generated by the corresponding senders.

The remaining circuits are defined similarly. First off, the input space of these
circuits is a follows:

– C
out

sk1,c
(n)
1

takes as input the n − 1 obfuscations of the circuits (Cin

sk2,c
(n)
2

, . . . ,

C
in

skn,c
(n)
n

) and a decryption dkP. These obfuscations are the inner circuits that
needs to be executed in order to return the message m1 attached to the
obfuscation of Cout

sk1,c
(n)
1

.

– On the other hand, Cin

ski,c
(n)
i

, for i ∈ [n]\{1}, takes as input a tuple of n secret

keys (sk1, . . . , skn) (where some can be set to ⊥), a decryption key dkP, and
the obfuscations of (Cin

ski+1,c
(n)
i+1

, . . . ,Cin

skn,c
(n)
n

). Intuitively, these obfuscations

are the remaining inner circuits that we need to still execute in order to
complete the nested execution.

Intuitively, the decryption of m1 requires the nested execution of these circuits
(starting from the outer one) in order to get all the secret keys required to
decrypt the PE ciphertext. This is achieved as follows.
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The outer circuit Cout

sk1,c
(n)
1

starts the nested execution by invoking the obfusca-

tion of Cin

sk2,c
(n)
2

upon input (sk1,⊥, . . . ,⊥), dkP, and the remaining obfuscations

of (Cin

sk3,c
(n)
3

, . . . ,Cin

skn,c
(n)
n

). In turn, Cin

sk2,c
(n)
2

will do a similar thing: It executes

the next obfuscated circuit Cin

sk3,c
(n)
3

upon input (sk1, sk2,⊥, . . . ,⊥), dkP, and the

remaining obfuscations (Cin

sk4,c
(n)
4

, . . . ,Cin

skn,c
(n)
n

). This process is repeated until

C
in

skn,c
(n)
n

is executed upon input (sk1, . . . , skn−1,⊥) and dkP. At this point, all

the secret keys are know (observe that skn is hardcoded). From c
(n)
n , we can

remove the n PKE layers, decrypt the PE ciphertext and, in turn, return yin
n if

the PE ciphertext decrypts correctly (i.e., Pn(·) is satisfied). Once C
in

skn,c
(n)
n

ter-

minates, the secret key skn is released and C
in

skn−1,c
(n)
n−1

performs the computation

required to check if Pn−1(·) is satisfied. Indeed, Cin

skn−1,c
(n)
n−1

has been executed on

input (sk1, . . . , skn−2,⊥,⊥), it has skn−1 harcoded, and the execution of Cin

skn,c
(n)
n

has released skn. Hence, after the correct termination of Cin

skn,c
(n)
n

, all secret keys
are known.

It may seems that this argument can be iterated. However, there is a prob-
lem. Even if Cin

skn−1,c
(n)
n−1

correctly terminates, the circuit Cin

skn−2,c
(n)
n−2

that invokes

it does not have access to the secret key skn. This is because the latter circuit
receives as input (sk1, . . . , skn−3,⊥,⊥,⊥), it has skn−2 hardcoded, and the cir-
cuit C

in

skn−1,c
(n)
n

has returned skn−1. As a consequence, Cin

skn−2,c
(n)
n−2

must re-run

C
in

skn,c
(n)
n

on input (sk1, . . . , skn−1,⊥) in order to get skn and decrypt every PKE
layer. This needs to be done at any level of the nested execution, yielding an
asymptotic running time of O(nn). Hence, this technique only works assuming
n = O(1), i.e. for O(1)-input predicates. The formal construction is described
in Sect. 5.2.

On Achieving CPA-2-Sided Secure Multi-input PE. Until now, we only focused
the discussion on achieving CPA-1-sided security. Our multi-input constructions
achieve CPA-2-sided security if the underlying single-input PE is CPA-2-sided
secure (we highlight that, in our secret-key multi-input PE construction, we
need to reduce the n-arity from poly(λ) to O(log(λ)) since we use complexity
leveraging). We just recall here that, already for the simple notion of single-input
PE for arbitrary predicates, CPA-2-sided security implies iO [15].

1.3 Applications

Finally, we explore applications of multi-key and multi-input PE. This question
is particularly relevant given the fact that we are only able to obtain multi-
key and multi-input PE supporting conjunctions of arbitrary predicates (with
wildcards). Luckily, we can show that this class of predicates is already expressive
enough to yield interesting cryptographic applications which previously required
much stronger assumptions. We refer the reader to the full version [25] for more
details.



Multi-key and Multi-input Predicate Encryption from Learning with Errors 589

Matchmaking Encryption (ME). ME is a natural generalization of ABE in which
both the sender and the receiver can specify their own attributes and access
policies. Previous work showed how to obtain CPA-2-sided (i.e., mismatch and
match) secure ME for arbitrary policies with unbounded collusions using iO
[10,11], or for very restricted policies (i.e., for identity matching) using bilinear
maps [20,26] (and ROM [10]). To this end, our CPA-1-sided secure multi-key PE
scheme (from the sub-exponential LWE assumption) for conjunction of arbitrary
predicates implies the weaker (and non-trivial) notion of CPA-1-sided secure ME
(i.e., mismatch only). We stress that the seminal work of ME [10,11] defined ME
in the setting of CPA-2-sided security (i.e., mismatch and match).

Non-interactive MPC (NI-MPC). NI-MPC [14,34] allows n parties to evaluate
a function f(v1, . . . , vn) on their inputs using a single round of communication
(i.e., each party sends a single message ci ←$ Enc(crs, eki, vi)). This is achieved by
assuming a trusted setup (that may depend on the function itself) that generates
(possibly correlated) strings (e.g., common reference string crs and encryption
keys eki) that can be later used by the parties to perform function evaluation.
Security is formalized using an indistinguishability-based definition: an adversary
A cannot distinguish between (Enc(crs, eki, v

0
i ))i∈[n] and (Enc(crs, eki, v

1
i ))i∈[n], so

long as any combination of the messages known by the adversary (including the
ones it can compute using the encryption key eki of a corrupted party) yields the
same function’s evaluation.13 Previous works [14,29,32,33] showed that NI-MPC
implies iO even if we consider very weak security models, like the non-reusable
1-robust (i.e., one malicious party) setting with n = 2 parties, or the reusable
0-robust (i.e., no malicious parties) setting with n = poly(λ) parties.14

We show that CPA-1-sided multi-input PE supporting predicates P(x1, . . . ,
xn) tolerating k corruptions and no collusions implies k-robust NI-MPC for the
following class of functions:

fP((x1,m1), . . . , (xn,mn)) =

{

(m1, . . . ,mn) if P(x1, . . . , xn) = 1
⊥ otherwise.

The resulting NI-MPC satisfies a weaker notion of reusability without session
identifiers (i.e., messages produced in different rounds can be interleaved by
design) specifically tailored for all-or-nothing functions, which we name CPA-1-
sided reusability. In a nutshell, CPA-1-sided reusable NI-MPC guarantees secu-
rity even if the same setup is reused multiple times, so long as fP outputs ⊥ (i.e.,
P is not satisfied) for any combination of the honest messages and the ones the

13 Note that security of NI-MPC for general functions is formalized by an
indistinguishability-based definition [14,32]. This is because simulation-based NI-
MPC implies virtual black-box (VBB) obfuscation that is known to be impossible
for certain classes of functions [13].

14 Reusable NI-MPC remains secure even when the same setup is used over multiple
rounds. On the other hand, non-reusable NI-MPC does not permit to reuse the same
setup, i.e., after each round the setup algorithm needs to be executed.
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adversary can maliciously compute using the encryption key eki of a corrupted
party.

By plugging in our results, we obtain either CPA-1-sided reusable (n − 1)-
robust NI-MPC with n = O(1), or CPA-1-sided reusable 0-robust NI-MPC with
n = poly(λ) where the predicate P of the function fP is a conjunctions of arbitrary
predicates (i.e., P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn)) with wildcards under
the LWE assumption. Note that a CPA-1-sided reusable NI-MPC for fP where
P(x1, . . . , xn) = P1(x1)∧ . . .∧Pn(xn) can be used to implement a voting protocol
with message passing, i.e., only when each parties’ vote xi satisfies its dedicated
set of requirements Pi(·) (i.e., Pi(xi) = 1 for every i ∈ [n]) the messages are
revealed to all the participants. Until this condition is not satisfied, everything
remains secret.

We stress that, nonetheless CPA-1-sided reusability is a weakening of the
standard reusability definition, our flavor of reusability is still non-trivial to
achieve in the setting of general functions. This is because we can build null
iO (and, in turn, witness encryption) [19,31,48] from CPA-1-sided reusable NI-
MPC using the same constructions of iO from (standard) reusable NI-MPC, i.e.,
CPA-1-sided reusable (resp. CPA-1-sided non-reusable) 0-robust (resp. 1-robust)
NI-MPC for n = poly(λ) parties (resp. n = 2 parties) and general functions
implies null iO.

1.4 Relation with Witness Encryption (WE)

We observe that both multi-input and multi-key schemes imply witness encryp-
tion (WE) [27], if the former support arbitrary predicates (or any predicate that
implements a desired NP relation). Brakerski et al. [19] have shown that n-input
ABE (i.e., predicate inputs can be public), secure in the secret-key setting and
without collusions, implies WE for NP and n-size witnesses. Similarly, we can
build WE from multi-key ABE (i.e., a multi-key scheme where predicate inputs
can be public) using a similar construction except that we substitute the multi-
ple inputs with the multiple decryption keys of multi-key ABE. Unfortunately,
we cannot use here our constructions of multi-key and multi-input since they
only support conjunctions of arbitrary predicates (we stress that CPA-1-sided
and CPA-2-sided security are not required for constructing WE).

We also observe that arbitrary predicates are not needed if we consider secu-
rity under corruptions. Indeed, 2-input ABE for conjunctions of arbitrary pred-
icates P(x1, x2) = P1(x1) ∧ P2(x2) without wildcards under 1 corruption and no
collusions, implies WE for any relation. Even in this case, our O(1)-input scheme
under corruptions fails to imply WE. This is because our construction supports
conjunctions of arbitrary predicates each one having a wildcard (in other words,
the wildcard is a trivial witness for any statement). We provide more details in
the full version of this work [25].
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From these observations, we can identify two plausible approaches that could
lead to a construction of WE from standard assumptions: (i) enlarging the class
of predicates of our secret-key n-input or n-key constructions, or (ii) supporting
conjunctions of arbitrary predicates (without wildcards) in the setting of 2-input
ABE with security under 1 corruption.

2 Related Work

Multi-input PE is a special case of multi-input FE [29]. It is well known that
so-called compact FE (supporting arbitrary functions) implies multi-input FE
[9,15], which in turn implies iO. Constructions of multi-input FE from standard
assumptions, in turn, exist for restricted functions [1–4,6,7,16,21,22,24,39,44].
Multi-input PE can also be seen as stronger form of multi-input ABE [19], the
difference being that the attributes are not private in the case of ABE. Previously
to our work, all (provably secure) constructions of n-input ABE with n > 2
required iO (the only exception is the concurrent work of Agrawal et al. [8],
which we discuss in the next paragraph).

The multi-input and multi-key settings have also been considered in the
context of fully-homomorphic encryption [23,40,41].

Concurrent and Independent Work. The independent and concurrent work of
Agrawal, Yadav, and Yamada [8] proposes two constructions of secret-key (i.e.,
no corruptions) 2-input key-policy ABE for NC1 with unbounded collusions
(recall that, in the ABE setting, only the secrecy of the messages is guaranteed,
i.e., inputs can be public). The first construction is based on LWE and pairings,
and it is provably secure in the generic group model. The second construction
is based on function-hiding inner-product FE, a variant of the non-falsifiable
KOALA knowledge assumption (which is proven to hold under the bilinear
generic group model), and LWE. However, this second construction achieves
a weaker selective flavor of security in which the adversary has to submit both
the challenge and the decryption key queries before the setup phase. Addition-
ally, they propose two heuristic constructions. The first is a 2-input ABE for
P from lattices, and the second is a 3-input ABE for NC1 from pairings and
lattices. However, the security of these heuristic constructions remains unclear.

In comparison, our work directly focuses on the PE setting (i.e., CPA-1-sided
security) and provides the first secret-key n-input PE that supports n = poly(λ)
inputs, with (adaptive) CPA-1-sided security (i.e., secrecy of both inputs and
messages) based solely on LWE. However, our construction only supports a
restricted class of predicates (i.e., conjunctions of arbitrary predicates with wild-
cards) and it is secure only in the case of no collusions. Furthermore, differently
from [8], we move away from the secret-key setting and propose a second con-
struction of n-input PE (still for conjunctions of arbitrary predicates) that sup-
ports n = O(1) inputs and can tolerate n−1 corruptions (i.e., up to n−1 encryp-
tion keys can be adaptively revealed by the adversary). Finally, we propose the
notion of multi-key PE (not covered in [8]), and give the first construction of
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CPA-1-sided secure n-key PE for n = poly(λ), with unbounded collusions and
still supporting conjunctions of arbitrary predicates, based on LWE.

Regarding the techniques, we highlight that both our work and that of [8]
introduce (albeit different) nesting techniques based on lockable obfuscation. In
particular, the nesting technique of [8] permits to transform any secret-key n-
input ABE into a secret-key n-input PE (achieving CPA-1-sided security). We
stress that their approach only works in the secret-key setting. In contrast, we
propose a different nesting technique which yields n-input PE for n = O(1) while
tolerating n − 1 corruptions. It is important to note that our nesting technique
is not generic, but it is specifically tailored to work with the class of predicates
considered in this work.

Turning to applications, we highlight that the multi-input schemes of [8] fail
to imply ME, since their constructions are all in the secret-key setting (whereas
ME requires a public-key encryption algorithm). As for NI-MPC, the construc-
tions in [8] can be used to obtain a CPA-1-sided 0-robust reusable NI-MPC for
all-or-nothing functions defined over arbitrary predicates, but only in the case
of 2 parties (3 parties if we consider also the heuristic constructions).

3 Preliminaries

We assume the reader to be familiar with standard cryptographic notation and
definitions. The preliminaries can be found in the full version [25].

4 Multi-key and Multi-input Predicate Encryption

We provide the formal definitions of multi-key PE and multi-input PE. In the full
version [25], we build ME from multi-key PE and CPA-1-sided reusable robust
NI-MPC for all-or-nothing functions from multi-input PE.

Multi-key PE. Formally, an n-key PE with message space M, input space X ,
and predicate space P = {Pv1,...,vn

(x)}(v1,...,vn)∈V indexed by V = V1 × . . .×Vn,
is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs
the master public key mpk and the n master secret key (msk1, . . . ,mskn).

KGen(mski, vi): Let i ∈ [n]. The randomized key generator takes as input the i-th
master secret key mski and the i-th index vi ∈ Vi. The algorithm outputs the
i-th secret decryption key dkvi

for the predicate index vi.
Enc(mpk, x,m): The randomized encryption algorithm takes as the master public

key mpk, an input x ∈ X , and a message m ∈ M. The algorithm produces a
ciphertext c.

Dec(dkv1 , . . . , dkvn
, c): The deterministic decryption algorithm takes as input n

secret decryption keys (dkv1 , . . . , dkvn
) for the n indexes (v1, . . . , vn) ∈ V and

a ciphertext c. The algorithm outputs a message m.
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Fig. 1. Game defining CPA-t-sided security of n-key PE.

Correctness is intuitive: given the decryption keys (dkv1 , . . . , dkvn
) for (v1,

. . . , vn) ∈ V, the decryption algorithm returns the message m (encrypted under
the input x) with overwhelming probability, whenever Pv1,...,vn

(x) = 1. See [25]
for the formal definition.

As for security, we adapt the standard CPA-1-sided and CPA-2-sided secu-
rity of PE to the n-key setting. In particular, an adversary (with oracle access
to KGen(mski, ·) for i ∈ [n]) cannot distinguish between Enc(mpk, x0,m0) and
Enc(mpk, x1,m1) except with non-negligible probability. When considering CPA-
1-sided security, the adversary is valid only if it cannot decrypt the challenge
ciphertext, i.e., it asks to the n key generation oracles indexes (v1, . . . , vn) such
that Pv1,...,vn

(x0) = Pv1,...,vn
(x1) = 0. Analogously, the CPA-2-sided security

captures the indistinguishability of Enc(mpk, x0,m0) and Enc(mpk, x1,m1) even
when the adversary can decrypt the challenge ciphertext, i.e., Pv1,...,vn

(x0) =
Pv1,...,vn

(x1) = 1 and m0 = m1. These security definitions are formalized below.

Definition 1 (CPA-1-sided and CPA-2-sided security of n-key PE). Let
t ∈ [2]. We say that a n-key PE Π is CPA-t-sided secure if for all valid PPT
adversaries A = (A0,A1):

∣

∣

∣

∣

P
[

GCPA-t-kPE
Π,A (λ) = 1

] − 1
2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-t-kPE
Π,A (λ) is depicted in Fig. 1. Adversary A is called valid if

∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn,·), we have

Case t = 1: Pv1,...,vn
(x0) = Pv1,...,vn

(x1) = 0.

Case t = 2: Either Pv1,...,vn
(x0) = Pv1,...,vn

(x1) = 0

or Pv1,...,vn
(x0) = Pv1,...,vn

(x1) ∧ m0 = m1.

Multi-input PE. Formally, an n-input PE with message space M = M1 ×
. . . × Mn, input space X = X1 × . . . × Xn, and predicate space P, is composed
of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs
the encryption keys (ek1, . . . , ekn) and the master secret key msk.
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KGen(msk,P): The randomized key generator takes as input the master secret
key msk and a predicate P ∈ P. The algorithm outputs a secret decryption
key dkP for predicate P.

Enc(eki, xi,mi): Let i ∈ [n]. The randomized encryption algorithm takes as input
an encryption key eki, an input xi ∈ Xi, and a message mi ∈ Mi. The
algorithm produces a ciphertext ci linked to xi.

Dec(dkP, c1, . . . , cn): The deterministic decryption algorithm takes as input a
secret decryption key dkP for predicate P ∈ P and n ciphertexts (c1, . . . , cn).
The algorithm outputs n messages (m1, . . . ,mn).

Correctness states that ciphertexts (c1, . . . , cn), each linked to an input xi, cor-
rectly decrypt with overwhelming probability if P(x1, . . . , xn) = 1. See the full
version of this work [25] for the formal definition.

Security with and without Corruptions. The CPA-1-sided and CPA-2-sided secu-
rity of n-input PE capture the infeasibility in distinguishing between ciphertexts
(Enc(ek1, x0

1,m
0
1), . . . ,Enc(ekn, x0

n,m0
n)) and (Enc(ek1, x1

1,m
1
1), . . . ,Enc(ekn, x1

n,
m1

n)). This is modeled by an adversary having oracle access to a key genera-
tion oracle KGen(msk, ·) (allowing it to get decryption keys dkP on predicates
of its choice) and n encryption oracles Enc(ek1, ·, ·), . . . ,Enc(ekn, ·, ·) (allowing
it to get encryptions of arbitrary messages and inputs). Differently from the
n-key setting, we consider different models of security with respect to whether
the encryption keys are secret (i.e., no corruptions) or public/leaked (i.e., the
adversary has the possibility to get one or more encryption keys of its choice).
The corruption of an encryption key is captured by giving access to a corruption
oracle Corr(·) to the adversary that, on input i ∈ [n], it returns eki. Intuitively,
the knowledge of eki impacts the validity condition that the adversary must
satisfy (e.g., the challenge ciphertext cannot be decrypted). Indeed, eki would
allow the adversary to produce arbitrary i-th ciphertexts on arbitrary i-th inputs
xi and potentially decrypt part of the challenge ciphertext. Concretely, as for
CPA-1-sided security, the validity of the adversary can be defined as follows:

– No corruptions (a.k.a. the secret-key setting). If all the encryption keys
(ek1, . . . , ekn) are secret the validity conditions of CPA-1-sided security is
straightforward. It intuitively states that for every dkP (obtained through
oracle KGen(msk, ·)) and any tuple of ciphertexts (c1, . . . , cn) (each linked to
an input xi) obtained through the interleaving of part of the challenge cipher-
text with the ciphertexts generated by invoking oracles {Enc(eki, ·, ·)}i∈[n], we
must have that P(x1, . . . , xn) = 0 (otherwise part of the challenge ciphertext
can be decrypted).



Multi-key and Multi-input Predicate Encryption from Learning with Errors 595

Fig. 2. Game defining CPA-t-sided security of n-input PE in the �-corruptions setting.
Oracle Corr(j) returns ekj for j ∈ [n].

– With corruptions. If some of the encryption keys are known by the adversary
(i.e., obtained through the corruption oracle Corr(·)) then the validity condi-
tion now changes according to which keys have been obtained. This is because
the adversary can now autonomously compute arbitrary ciphertext (for a par-
ticular slot i) using the leaked i-th encryption key eki. Taking into account
this observation, the validity of CPA-1-sided security with corruptions says
that any tuple of ciphertexts (c1, . . . , cn) that can be obtained by interleav-
ing part of the challenge ciphertexts with both the ones generated through
oracles {Enc(eki, ·, ·)}i∈[n] and the ones that can be autonomously generated
using the leaked encryption keys, we must have that P(x1, . . . , xn) = 0.

The validity of CPA-2-sided security (with and without corruptions) can be
easily obtained by adapting the above discussion. Below, we provide the formal
definition.

Definition 2 (�-Corruptions CPA-1-sided and CPA-2-sided security of
n-input PE). Let t ∈ [2]. We say that an n-input PE Π is CPA-t-sided secure
in the �-corruptions setting if for all valid PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P
[

G�-CPA-t-iPE
Π,A (λ) = 1

] − 1
2

∣

∣

∣

∣

≤ negl(λ),

where game G�-CPA-t-iPE
Π,A (λ) is depicted in Fig. 2. Let Qi = {x|∃(x,m) ∈

QEnc(eki,·,·)} for i ∈ [n] \ QCorr and Qi = Xi for i ∈ QCorr. Moreover, let Qd
i

(for d ∈ {0, 1}) be the ordered list composed of the predicate inputs Qi and the
challenge input xd

i , i.e., Qd
i = {x

(1,d)
i , . . . , x

(ki,d)
i , x

(ki+1,d)
i = xd

i } where ki = |Qi|
and x(j,d) ∈ Qi for j ∈ [ki].15 Adversary A is called valid if |QCorr| ≤ � and

15 Observe that Q0
i and Q1

i are identical except for the last element.
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∀P ∈ QKGen, ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

Case t = 1: P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n ) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n ) = 0.

Case t = 2: Either

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n ) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n ) = 0

or

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n ) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n ) ∧ m0
j = m1

j .

Through the paper, for t ∈ [2], we say that Π is CPA-t-sided secure in the
�-corruptions setting and without collusions if |QKGen| = 1 (i.e., the adversary
asks for a single decryption key). If |QCorr| = 0 (i.e., no corruptions), we say that
Π is CPA-t-sided secure in the secret-key setting. In case of both restrictions, we
say that Π is CPA-t-sided secure in the secret-key setting and without collusions
(i.e., |QCorr| = 0 and |QKGen| = 1).

Remark 1 (Relation with multi-key PE). In the full version of this work [25], we
show that CPA-t-sided secure (n+1)-input PE tolerating 1 corruption, naturally
implies CPA-t-sided secure n-key PE.16 We stress that such a relation holds only
if the (n + 1)-input PE supports arbitrary predicates. On the other hand, if we
consider restricted classes of predicates (as studied in this work), the above
implication does not to hold anymore, making multi-input and multi-key PE
incomparable.17

Also, we discuss the relation between the multi-key and multi-input settings
when considering a weaker definition of security. In particular, if we drop the
secrecy of the predicate inputs, i.e., only the the messages remain secret (which
is equivalent to ABE), then we can show that multi-key ABE implies multi-input
ABE only in the presence of no corruptions.

5 Constructions

In this section, we give different constructions of multi-key and multi-input PE
(see also Sect. 1.2) for predicates P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn).
16 If we restrict the n-key PE’s encryption algorithm to be secret-key (i.e., Enc(ek, ·, ·)

where ek is kept secret) then we can start from a secret-key (n + 1)-input PE, i.e.,
0 corruptions.

17 This is also reflected by the results achieved in this paper. For example, our multi-
key PE construction for conjunctions of arbitrary predicates tolerates unbounded
collusions whereas our multi-input PE constructions (for the same class of predicates
with wildcards) are significantly more complex and are secure only in the case of no
collusions.
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Fig. 3. Definition of the circuit Cc of Construction 1.

In particular, in Sect. 5.1 we give a construction of n-key PE from single-
input PE and lockable obfuscation for n = poly(λ). This construction is secure
against unbounded collusions.

In Sect. 5.2, we give a construction of O(1)-input PE, that is CPA-1-side
secure without collusions and in the (n − 1)-corruptions setting, from single-
input PE, lockable obfuscation, and PKE. It leverages a new nesting execution
technique of (lockable obfuscated) circuits. Our secret-key n-input PE construc-
tion for n = poly(λ) is deferred to full version [25].

Both multi-input constructions support conjunctions of arbitrary predicates
with wildcards, i.e., for every i ∈ [n], there exists (possibly unique) a wildcard
x�

i such that for every i-th predicate Pi we have Pi(x�
i ) = 1 (in [25] we discuss

how to remove the wildcard when no corruptions are in place).
Also, our constructions are generic and achieve CPA-2-sided security if

the underlying single-input PE is CPA-2-sided secure (our CPA-2-sided secure
secret-key multi-input PE construction (see [25]) supports n = O(log(λ))).

5.1 Multi-key PE from PE and Lockable Obfuscation

Construction 1. Consider the following primitives:

1. For i ∈ [n], a PE scheme PEi = (Setupi,KGeni,Enci,Deci) with message
space Mi, input space Xi, and predicate space Pi = {Pv(x)}v∈Vi

indexed by
Vi. Without loss of generality, we assume that PEi has ciphertext space Yi,
M1 = {0, 1}m(λ), and Mi = Yi−1 for every i ∈ [n] \ {1}. In order to do not
incur into an exponential ciphertext growth (e.g., for n = poly(λ)), each i-th
PE scheme must have a ciphertext expansion of poly(λ) + |mi| where |mi| is
the length of the messages mi ∈ Mi supported by the i-th PE scheme (this can
be obtained generically from any PE scheme by leveraging hybrid encryption,
i.e., Enci(mpk, x, s)||PRG(s) ⊕ mi where s ←$ {0, 1}λ).

2. A lockable obfuscation scheme LOBF = (Obf,Eval) with message space M for
the family of circuits Cn,s,d(λ) = {Cc} as defined in Fig. 3, where n(λ), s(λ),
d(λ) depends on the schemes PE1, . . . ,PEn used, and the circuits Cn,s,d(λ).

We build a n-key PE scheme Π with message space M, input space X =
X1 × . . . × Xn, and predicate space P = {Pv1,...,vn

(x1, . . . , xn) = Pv1(x1) ∧ . . . ∧
Pvn

(xn)}(v1,...,vn)∈V indexed by V = V1 × . . . × Vn (and Pvi
∈ Pi for i ∈ [n]), as

follows:
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Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm
outputs mpk = (mpk1, . . . ,mpkn) and msk1, . . . ,mskn where (mpki,mski)
←$ Setupi(1λ) for i ∈ [n].

KGen(mski, vi): Let i ∈ [n]. Upon input the i-th master secret key mski and the
i-th predicate index vi ∈ Vi, the randomized key generator outputs dkvi

←$

KGeni(msk1,Pvi
) where Pvi

∈ Pi.
Enc(mpk, x,m): Upon input the master public key mpk = (mpk1, . . . ,mpkn), an

input x = (x1, . . . , xn) ∈ X , and a message m ∈ M, the randomized encryp-
tion proceeds as follows:
1. Sample y ←$ {0, 1}s(λ) and let c0 = y.
2. For i ∈ [n], compute ci ←$ Enci(mpki, xi, ci−1).
Finally, it outputs c = ˜C where ˜C ←$ Obf(1λ,Ccn , y,m).

Dec(dkv1 , . . . , dkvn
, c): Upon input n decryption keys dkv1 , . . . , dkvn

and a cipher-
text c = ˜C, the deterministic decryption algorithm outputs m = Eval(˜C, (dkv1 ,
. . . , dkvn

)).

Correctness follows from the correctness of the underlying schemes. We estab-
lish the following result whose proof is deferred to full version [25].

Theorem 4. Let n = poly(λ), PE1, . . . ,PEn and LOBF be as above. If LOBF is
secure and

1. each PE1, . . . ,PEn is CPA secure, then the n-key PE scheme Π from Con-
struction 1 is CPA-1-sided secure (Definition 1).

2. each PE1, . . . ,PEn is CPA-2-sided secure, then the n-key PE scheme Π
from Construction 1 is CPA-2-sided secure (Definition 1).

We stress that CPA secure single-input PE (see the above theorem) guarantees
only the secrecy of the message (whereas predicate inputs can be public). This
is equivalent to the notion of single-input ABE.

5.2 Multi-input PE from PE, Lockable Obfuscation and PKE

Corruption Setting. We present our construction of n-input PE that is CPA-1-
sided secure in the (n−1)-corruptions setting without collusions. This construc-
tion handles constant-arity (i.e., n ∈ O(1)) since the decryption running time
is O(nn). It is based on CPA secure single-input PE, lockable obfuscation, and
PKE and it leverages the nested execution technique described in Sect. 1.2. Also,
the same construction achieves CPA-2-sided security if the initial single-input
PE is CPA-2-sided secure.

Construction 2 (n-input PE in the corruption setting). Consider the following
primitives:

1. A PE scheme PE = (Setup1,KGen1,Enc1,Dec1) with message space M1 =
{0, 1}m3(λ)+m4(λ), input space X1 = X1,1 × . . . × X1,n, and predicate space
P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧ Pn(xn)}. Without loss of generality,
we assume that PE has ciphertext space Y1 and there exists a (single) wild-
card input (x�

1, . . . , x
�
n) ∈ X1 such that ∀(P1(x1) ∧ . . . ∧ Pn(xn)) ∈ P1,∀i ∈

[n],Pi(x�
i ) = 1.
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Fig. 4. Definitions of the circuits C
in
c,sk,i and C

out
c,sk,i supported by the lockable obfusca-

tion schemes LOBF3 and LOBF4 of Construction 2.

2. For i ∈ [n], a PKE scheme PKE2,i = (KGen2,i,Enc2,i,Dec2,i) with message
space M2,i. Without loss of generality, we assume that PKEi has ciphertext
space Y2,i and secret-key space K2,i. Moreover, we assume that M2,1 = Y1,
and M2,i = Y2,i−1 for every i ∈ [n] \ {1}.

3. A lockable obfuscation scheme LOBF3 = (Obf3,Eval3) with message space
M3 = (K2,1∪. . .∪K2,n)×{0, 1}�log2(n)�+1 for the family of circuits C in

n3,s3,d3
(λ)

= {Cin
c,sk,i} defined in Fig. 4, where n3(λ), s3(λ), d3(λ) depends on the schemes

PE,PKE2,1, . . . ,PKE2,n used, and the circuits C in
n3,s3,d3

(λ).
4. A lockable obfuscation scheme LOBF4 = (Obf4,Eval4) with message space

M4 for the family of circuits Cout
n4,s4,d4

(λ) = {Cout
c,sk,i} defined in Fig. 4, where

n4(λ), s4(λ), d4(λ) depends on the schemes PE,PKE2,1, . . . ,PKE2,n, LOBF3

used, and the circuits Cout
n4,s4,d4

(λ).



600 D. Francati et al.

We build a n-input PE scheme with message space M =

n
︷ ︸︸ ︷

M4 × . . . × M4, input
space X = X1, and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧
Pn(xn)} with wildcard (i.e., there exists a (single) wildcard (x�

1, . . . , x
�
n) ∈ X

such that ∀(P1(x1) ∧ . . . ∧ Pn(xn)) ∈ P, ∀i ∈ [n], Pi(x�
i ) = 1), as follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algo-
rithm outputs (ek1, . . . , ekn) and msk where (mpk,msk) ←$ Setup1(1λ), eki =
(mpk, ski, pk1, . . . , pkn), and (ski, pki) ←$ KGen2,i(1λ) for i ∈ [n].

KGen(msk,P): Upon input the master secret key msk and a predicate P ∈ P, the
randomized key generator algorithm outputs dkP ←$ KGen1(msk,P).

Enc(eki, xi,mi): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ski,
pk1, . . . , pkn), an input xi ∈ X1,i, and a message mi ∈ M4, the random-
ized encryption algorithm samples (yin

i , yout
i ) ←$ {0, 1}s3(λ)+s4(λ) and proceeds

as follows:
1. Compute c

(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (yin

i , yout
i )) where xj = x�

j for j ∈
[n] \ {i}.

2. For j ∈ [n], compute c
(j)
i ←$ Enc2,j(pkj , c

(j−1)
i ).

Finally, it outputs ci = (˜Cout
i , ˜C

in
i ), where ˜C

out
i ←$ Obf4(1λ,Cout

c
(n)
i ,ski,i

, yout
i ,mi)

and ˜C
in
i ←$ Obf3(1λ,Cin

c
(n)
i ,ski,i

, yin
i , (ski, i)).

Dec(dkP, c1, . . . , cn): Upon input a decryption key dkP for predicate P ∈ P,
and n ciphertexts (c1, . . . , cn) such that ci = (˜Cout

i , ˜C
in
i ) for i ∈ [n]. The

deterministic decryption algorithm returns (m1, . . . ,mn) where mi = Eval4(
˜C
out
i , (˜Cin

1 , . . . , ˜C
in
i−1,

˜C
in
i+1, . . . ,

˜C
in
n , dkP)) for i ∈ [n].

Correctness follows from the one of the underlying primitives (see also Fig. 4
for the definitions of Cin

c,sk,i and C
out
c,sk,i). Moreover, decryption is polynomial time

when n ∈ O(1). Below, we establish the following result whose proof is deferred
to full version [25].

Theorem 5. Let n = O(1), PE, PKE2,1, . . . ,PKE2,n, LOBF3, and LOBF4 be as
above. If each PKE2,i (for i ∈ [n]) is CPA secure, both LOBF3 and LOBF4 are
secure, and

1. PE is CPA secure without collusions, then the n-input PE scheme Π
from Construction 2 is CPA-1-sided secure in the (n − 1)-corruptions set-
ting without collusions (Definition 2).

2. PE is CPA-2-sided secure without collusions, then the n-input PE scheme Π
from Construction 2 is CPA-2-sided secure in the (n − 1)-corruptions setting
without collusions (Definition 2).

As for Theorem 4, CPA secure single-input PE (see the above theorem) guaran-
tees only the secrecy of the message (whereas predicate inputs can be public).
This is equivalent to the notion of single-input ABE.
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Abstract. A broadcast, trace and revoke system generalizes broadcast
encryption as well as traitor tracing. In such a scheme, an encryptor can
specify a list L ⊆ N of revoked users so that (i) users in L can no longer
decrypt ciphertexts, (ii) ciphertext size is independent of L, (iii) a pirate
decryption box supports tracing of compromised users. The “holy grail”
of this line of work is a construction which resists unbounded collusions,
achieves all parameters (including public and secret key) sizes independent
of |L| and |N |, and is based on polynomial hardness assumptions. In this
work we make the following contributions:
1. Public Trace Setting: We provide a construction which (i) achieves

optimal parameters, (ii) supports embedding identities (from an expo-
nential space) in user secret keys, (iii) relies on polynomial hardness
assumptions, namely compact functional encryption (FE) and a key-
policy attribute based encryption (ABE) with special efficiency prop-
erties, and (iv) enjoys adaptive security with respect to the revocation
list. The previous best known construction by Nishimaki, Wichs and
Zhandry (Eurocrypt 2016) which achieved optimal parameters and
embedded identities, relied on indistinguishability obfuscation, which
is considered an inherently subexponential assumption and achieved
only selective security with respect to the revocation list.

2. Secret Trace Setting: We provide the first construction with opti-
mal ciphertext, public and secret key sizes and embedded identities
from any assumption outside Obfustopia. In detail, our construction
relies on Lockable Obfuscation which can be constructed using LWE
(Goyal, Koppula, Waters and Wichs, Zirdelis, Focs 2017) and two ABE
schemes: (i) the key-policy scheme with special efficiency properties by
Boneh et al. (Eurocrypt 2014) and (ii) a ciphertext-policy ABE for P
which was recently constructed by Wee (Eurocrypt 2022) using a new
assumption called evasive and tensor LWE. This assumption, intro-
duced to build an ABE, is believed to be much weaker than lattice
based assumptions underlying FE or iO – in particular it is required
even for lattice based broadcast, without trace.
Moreover, by relying on subexponential security of LWE, both our con-
structions can also support a super-polynomial sized revocation list, so
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long as it allows efficient representation and membership testing. Ours
is the first work to achieve this, to the best of our knowledge.

Keywords: Broadcast · Trace and Revoke · Revocable Predicate
Encryption · Revocable Mixed Functional Encryption · Optimal
Parameters

1 Introduction

Traitor Tracing. Traitor tracing (TT) schemes were first proposed by Chor,
Fiat, and Naor [23] to enable content providers to trace malicious users who
exploit their secret keys to construct illegal decryption boxes. More formally, a
TT system is a public key encryption system comprising N users for some large
polynomial N . Each user i ∈ [N ] is provided with a unique secret key ski for
decryption, and there is a common public key pk which is used by the content
distributor to encrypt content. If any collection of users attempts to create and
sell a new decoding box that can be used to decrypt the content, then the tracing
algorithm, given black-box access to any such pirate decoder, is guaranteed to
output an index i ∈ [N ] of one of the corrupt users, which in turn allows to hold
them accountable. The literature has considered both public and secret tracing,
where the former requires knowledge of a secret key to run the trace procedure
and the latter does not suffer from this restriction.

Broadcast Encryption. Broadcast Encryption [26] (BE) introduced by Fiat
and Naor, is also an N user system which supports an encrypted broadcast
functionality. In BE, a content provider can transmit a single ciphertext over a
broadcast channel so that only an authorized subset S ⊆ N of users can decrypt
and recover the message. More formally, each user i ∈ [N ] is provided with a
unique decryption key ski and a ciphertext ctm for a message m also encodes
an authorized list S so that ski decrypts ctm if and only if i ∈ S. Evidently,
public key encryption provides a trivial construction of BE with ciphertext of
size O(N) – thus, the focus in such schemes is to obtain short ciphertext, ideally
logarithmic in N .

Broadcast, Trace and Revoke. Naor and Pinkas [43] suggested a meaningful
interleaving of these two functionalities so that traitors that are identified by the
TT scheme can be removed from the set of authorized users in a BE scheme. To
capture this, they defined the notion of “Broadcast, Trace and Revoke” (or sim-
ply “Trace and Revoke”, which we denote by TR) where the content provider in a
broadcast encryption scheme includes a list L of revoked users in the ciphertext,
and ski works to decrypt ctL if i /∈ L. Moreover, it is required that revocation
remain compatible with tracing, so that if an adversary builds a pirate decoder
that can decrypt ciphertexts encrypted with respect to L, then the tracing algo-
rithm should be able to output a corrupt non-revoked user who participated in
building the illegal decoder. Trace and revoke systems provide a functionality
which is richer than a union of BE and TT, since the traitor traced by the latter
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must belong to the set of non-revoked users for the guarantee to be meaningful.
As such, TT schemes have been challenging to construct even given TT and BE
schemes.

The Quest for Optimal Parameters. All the above primitives have been
researched extensively over decades, resulting in a long sequence of beautiful con-
structions, non-exhaustively [6,14–17,33,34,40,44,48]. A central theme in this line
of work is to achieve optimal parameters, namely optimal sizes for the cipher-
text, public key and secret key (and understanding tradeoffs thereof), while still
supporting unbounded collusion resistance. Towards this, the powerful hammer
of indistinguishability obfuscation (iO) [10] yielded the first feasibility results for
traitor tracing [16] as well as trace and revoke [44] while multilinear maps [24,27]
led to the first construction for broadcast encryption [15]. Though there has been
remarkable progress in the construction of iO from standard assumptions, with
the breakthrough work of Jain, Lin and Sahai [38,39] finally reaching this goal, iO
is an inherently subexponential assumption [29] because the challenger is required
to check whether two circuits are functionally equivalent, which can take exponen-
tial time in general. Indeed, all known constructions of iO assume subexponential
hardness of the underlying algebraic assumptions. To address this limitation, a
sequence of works [3,18,28,29,41] has sought to replace iO by polynomially hard
assumptions such as functional encryption in different applications.

Optimal TT, BE and TR from Polynomial Assumptions: For traitor trac-
ing, the first construction from standard assumptions was finally achieved by
the seminal work of Goyal, Koppula and Waters [33] in the secret trace setting,
from the Learning With Errors (LWE) assumption. For broadcast encryption,
this goal was achieved by Agrawal and Yamada [6] from LWE and the bilin-
ear GGM. In the standard model, Agrawal, Wichs and Yamada [5] provided a
construction from a non-standard knowledge assumption on pairings, while Wee
[48] provided a construction from a new assumption on lattices, called Evasive
and Tensor LWE. For trace and revoke, the only construction without iO that
achieves collusion resistance and optimal parameters is by Goyal, Vusirikala and
Waters (GVW) [36] from positional witness encryption (PWE) which is a poly-
nomial hardness assumption. However, their construction incurs an exponential
loss in the security proof, requiring the underlying PWE to satisfy subexponential
security. Moreover, although PWE is not an inherently subexponential assump-
tion as are iO and witness encryption (WE), we do not currently know of any
constructions of PWE that rely on standard polynomial hardness assumptions.
In particular, [38,39] do not imply PWE from polynomial hardness.

Pathway via Secret Tracing. Both the iO and PWE based constructions
of TR [36,44] achieve public tracing. Taking a lesson from TT, where optimal
parameters were achieved from standard assumptions only in the secret trace
setting [33], a natural approach towards optimal TR from better assumptions
is to weaken the tracing algorithm to be secret key. This approach has been
explored in a number of works – the current best parameters are achieved by
Zhandry [51] who obtains the best known tradeoff in ciphertext, public key and
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secret key size. In particular, Zhandry [51] showed that all parameters can be
of size O(N1/3) by relying on the bilinear generic group model (GGM). Note
that the generic group model is a strong assumption, and indeed a construction
secure in this model cannot be considered as relying on standard assumptions,
since several non-standard assumptions on pairings are secure in the GGM. Prior
to [51], Goyal et al. [35] provided a construction from LWE and Pairings, but
their overall parameters are significantly worse – while their ciphertext can be
arbitrarily small, O(N ε), their public key is O(N) and secret key is O(N c) for
some large constant c1.

Thus, a central open question in TR is:

Can we construct collusion resistant Trace and Revoke with optimal param-
eters from concrete polynomial assumptions?

Embedding Identities. Traditionally, it was assumed that tracing the index
i ∈ [N ] of a corrupt user is enough, and there is an external mapping, maintained
by the content distributor or some other party which associates the number i to
the identity of the user, i.e. name, national identity number and such, which is
then used to ensure accountability. The work of Nishimaki, Wichs and Zhandry
(henceforth NWZ) [44] argued that this assumption is problematic since it implies
that a user must trust the content provider with her confidential information.
Storing such a map is particularly worrisome in the setting of public tracing
since the user either cannot map the recovered index to an actual person, or the
index-identity map must be stored publicly.

NWZ provided an appealing solution to the above conundrum – they sug-
gest that identifying information be embedded in the key of the user, so that
if a coalition of traitors constructs a pirate decoder, the tracing algorithm can
directly retrieve the identifying information from one of the keys that was used
to construct the decoder and no one needs to keep any records associating users
to indices. Notably, the identities can live in an exponential sized space, which
introduces significant challenges in the tracing procedure. Indeed, handling an
exponential space in the tracing procedure is the key contribution of NWZ.
They also provided constructions of traitor tracing as well as trace and revoke
with embedded identities, denoted by EITT and EITR respectively, from various
assumptions.

1.1 Prior Work: Embedded Identity Trace and Revoke

In the public trace setting, the only work that achieves embedded identity trace
and revoke (EITR) with full collusion resistance is that of NWZ. However, while it
takes an important first step, the construction by NWZ suffers from the following
drawbacks:

1 Zhandry [51] states that the secret size in [35] is O(N2) but in fact the exponent
is much larger due to the usage of arithmetic computations in NC1, which blows up
the circuit size associated with the ABE secret keys.



Broadcast, Trace and Revoke with Optimal Parameters 609

1. Reliance on Subexponential Hardness Assumption. The construction relies
on indistinguishability obfuscation [10], which appears to be an inherently
subexponential assumption as discussed above.

2. Selective Security in Revocation List: Despite relying on adaptive security of
functional encryption, the notion of security achieved by their construction
is selective – the adversary must announce the revocation list before making
any key requests or seeing the challenge ciphertext.

In the secret trace setting, the work of Kim and Wu [40] achieves EITR from
the subexponential Learning With Errors (LWE) assumption. However, their
construction incurs a ciphertext size that grows with the size of the revocation
list. Additionally, while they can achieve adaptive security with respect to the
revocation list, this is either by incurring an exponential loss in the security
proof, or by assuming sub-exponential security for an ingredient scheme.

1.2 Our Results

In this work, we provide the first constructions with optimal parameters from
polynomial assumptions, which additionally support embedded identities from
an exponential space. We detail our contributions below.

Public Trace Setting. We provide a construction of Trace and Revoke with
public tracing which overcomes the limitations of NWZ – (i) it relies on polyno-
mial hardness assumptions, namely functional encryption and “special” attribute
based encryption, both of which can be constructed using standard polynomial
hardness assumptions [13,38,39] (ii) it enjoys adaptive security in the revocation
list.

A detailed comparison with prior work is provided in Table 1.

Table 1. State of the art with Public Traceability.

Work |CT| |SK| |PK| Trace Space Sel/Adp Asspn Identities

[44] 1 1 1 Exp Selective Subexp (iO) Yes

[36] 1 1 1 Poly Adaptive Subexp (subexp PWE) No

This 1 1 1 Exp Adaptive Poly (FE and Special ABE) Yes

Our Assumptions. Functional Encryption (FE) and Attribute Based Encryption
(ABE) are generalizations of Public Key Encryption. In FE, a secret key cor-
responds to a circuit C and a ciphertext corresponds to an input x from the
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domain of C. Given a function key skC and a ciphertext ctx, the decryptor can
learn C(x) and nothing else. It has been shown that FE implies iO [8,12] albeit
with exponential loss. The aforementioned work of Jain, Lin and Sahai [38,39]
provides a construction of compact FE from polynomial hardness assumptions,
namely LPN, PRG in NC0 and pairings. ABE is a special case of FE in which the
input can be divided into a public and private part (x,m) and the circuit C in
the secret key skC is only evaluated on the public part x in the ciphertext ctx,m.
The private message m is revealed by decryption if and only if C(x) = 1. While
FE implies ABE in general, we require our underlying ABE to satisfy special effi-
ciency properties, which is not generically implied by FE. However, the desired
ABE can be instantiated using the construction of Boneh et al. [13] which is
based on LWE.

Secret Trace Setting. In the secret trace setting, we achieve the optimal size
of O(log N) for ciphertext, public and secret key by relying on Lockable Obfus-
cation (LO) [32,50] and two special ABE schemes – one, the key-policy scheme
with special efficiency properties by Boneh et al. [13] which is based on LWE,
and two, a ciphertext-policy ABE for P which was recently constructed by Wee
[48] using the new evasive and tensor LWE assumptions. Along the way, we show
that a small modification to the TR construction by Goyal et al. [35] yields a
ciphertext of size O(log N) as against their original O(N ε), from LWE and pair-
ings. However, this construction retains the large public and secret keys of their
construction, which depend at least linearly on N . Our results are summarized
in Table 2.

Our Assumptions. We remark that while FE has now been constructed from
standard assumptions [38,39], the reliance of these constructions on pairings
makes it insecure in the post-quantum regime. From lattices, constructions of
FE rely on strong, non-standard assumptions which are often subject to attack
[1,4,25,30,37,49]. Hence, there is an active effort in the community [46–48] to
construct advanced primitives from the hardness of weaker assumptions in the
lattice regime. The new assumptions by Wee, also independently discovered by
Tsabary [46], are formulated for designing ciphertext-policy ABE which is much
weaker than FE since ABE is an all or nothing primitive in contrast to FE. As
such, these are believed to be much weaker than lattice based assumptions that
have been introduced in the context of FE or iO. In particular, based on the
current state of art, evasive LWE is required even for broadcast encryption in
the lattice regime, and is therefore necessary for the generalization of broadcast
encryption studied in this work.

Super-polynomial Revoke List. Lastly, by relying on subexponential security
of LWE, both our constructions can support a super-polynomial sized revocation
list, so long as it allows efficient representation and membership testing. Ours is
the first work to achieve this, to the best of our knowledge.
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Table 2. State of the Art with Secret Traceability. The column |CT| captures the
dependence of ciphertext size on N and L where N denotes the number of users and
L denotes the length of the revocation list. Parameters that are logarithmic in N , L or
polynomial in the security parameter are represented as 1. Here, 0 < a < 1 and ε > 0
can be chosen arbitrarily. c is a large constant.

Work |CT| |SK| |PK| Trace Space Asspn Identities

[35] N ε Npoly N Poly LWE and Pairings No

[51] Na N1−a N1−a Poly GGM Pairings No

[40] L 1 1 Exp Subexp LWE Yes

This 1 1 1 Exp Evasive Tensor LWE Yes

Modified [35] 1 Nc N Poly LWE and Pairings No

1.3 Technical Overview

We proceed to give an overview of our techniques. We begin by defining the
notion of revocable predicate encryption (RPE) in both the public and secret
setting, then describe the ideas used to instantiate this primitive. Finally we out-
line how to upgrade public/secret RPE to build trace and revoke with embedded
identities with public/secret tracing.

Revocable Predicate Encryption. NWZ introduced the notion of revocable
functional encryption (RFE) and used it to construct EITR with public tracing.
Subsequently, Kim and Wu [40] adapted this notion to the secret key setting,
under the name of revocable predicate encryption (RPE) and used it to construct
EITR with secret tracing. In this work, we extend Kim and Wu’s notion of RPE
to the public key setting and use it to construct EITR with public tracing. Our
notion of RPE in the public setting is similar to but weaker than RFE2 – it only
supports “all or nothing” decryption in contrast to RFE. This weaker notion
nevertheless suffices to construct EITR and moreover admits constructions from
weaker assumptions.

In RPE, the key generation algorithm takes as input the master secret key msk,
a label lb ∈ L and an attribute x ∈ X . It outputs a secret key sklb,x. The encryption
algorithm takes as input the encryption key ek, a function f , a message m ∈ M,
and a revocation list L ⊆ L. It outputs a ciphertext ct. Decryption recovers m if
f(x) = 1 and lb /∈ L. In the public variant of RPE, ek is a public key, while in the
secret variant, ek is a secret key. In the secret variant, the scheme is also required
to support a public “broadcast” functionality, i.e. there exists a public encryption

2 Syntactically, RPE is “ciphertext-policy” while RFE is “key-policy”, i.e. the function
is emdedded in the ciphertext in RPE as against the key in RFE.
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algorithm that allows anyone to encrypt a message with respect to the “always-
accept” policy, i.e. a policy that evaluates to true for all inputs. This is analogous
to the primitive of “mixed FE” introduced by [33].

In terms of security, we require RPE to satisfy message hiding and function
hiding. At a high level, message hiding stipulates that an adversary cannot dis-
tinguish between encryptions of (f,m0) and (f,m1) as long as every key query
for (lb, x) satisfies f(x) = 0 or lb ∈ L. Function hiding stipulates that an adver-
sary cannot distinguish between encryptions of (f0,m) and (f1,m) as long as
every key query for (lb, x) satisfies f0(x) = f1(x) or lb ∈ L.

Before we describe our constructions, we highlight the chief difficulties that
are inherent to designing RPE:

1. Independence of parameter sizes from |L|. A key requirement in TR schemes is
that the ciphertext size should be independent of the length of the revocation
list L – this constraint must also be satisfied by the underlying RPE, in both
the secret and public setting. In our work, we insist that even the public
and secret keys satisfy |L| independence. This constraint is inherited from
broadcast encryption, and is challenging to satisfy. Further, note that L must
be unbounded – its length cannot be fixed during setup, which introduces
additional difficulties.

2. Encrypted Computation. While the revocation list L need not be hidden by
the ciphertext, the function f3 in the ciphertext is required to be hidden,
as formalized by our function hiding requirement. Yet, this hidden function
must participate in computing f(x) where x is provided in the key. This
requirement makes TR schemes worryingly close to collusion resistant func-
tional encryption, an “obfustopia” primitive which we want to avoid in the
secret trace setting.

Constructing Public Revocable Predicate Encryption. We proceed to
describe the main ideas in constructing public RPE.

Overview of NWZ. The work of NWZ addresses the challenge of making the
ciphertext size independent of |L| by using a somewhere statistically binding
(SSB) hash and hides the function f by using a functional encryption scheme,
where f is encrypted in the ciphertext. However, they must additionally rely
on iO – at a high level, this is because they require the decryptor to compute
the SSB opening π and then run SSB verification on it (details of how SSB
algorithms work are not relevant for this overview). In turn, the reason they
need the decryptor to compute the opening π is because this needs both the
set L and the label lb, which are available only to the decryptor – note that
the encryptor has only L and the key generator has only lb. Now, since the
decryptor has to compute π and run SSB verification, and since the program
that computes SSB verification has some secrets, the decryptor is allowed to
3 For the informed reader, this function encodes the “index” and function hiding

corresponds to “index hiding” in the literature.
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obtain obfuscation of this program. To implement this idea, they nest iO inside
a compact FE scheme so that FE decryption outputs an iO which is then run by
the decryptor on openings that it computes.

Trading iO for ABE. Above, note that the usage of iO is caused by the usage
of SSB, which in turn is used to compress L. However, compression of a list
has been achieved by much weaker primitives than iO in the literature of broad-
cast encryption – in particular, the construction of optimal broadcast encryption
by Agrawal and Yamada uses the much weaker primitive of ABE (with special
efficiency properties) to achieve this. However, ABE does not permit hiding any-
thing other than a message, in particular, an ABE ciphertext cannot encrypt our
function f since we desire f to participate in computation. ABE only permits
computation on public values, and using ABE to encode f would force f to be
public which we cannot allow.

In order to get around this difficulty, we leverage the power of functional
encryption (FE), which permits encrypted computation and exactly fills the gap
over ABE that we require. A natural candidate for RPE would be to simply use FE
to encrypt f , L and m, and encode x and lb in the secret key for a functionality
which tests that lb /∈ L, that f(x) = 1 and outputs m if so. Indeed, this approach
using FE is folklore, and was explicitly discussed by NWZ. Yet, they end up with
a construction that additionally uses SSB, iO, a puncturable PRF and secret key
encryption scheme because of the requirement of size independence from |L| –
we do not have candidates for FE with ciphertext size independent of the public
attributes. In short, ABE gives us L compactness (in some cases by encoding L
in the secret key [13] and in some cases by encoding L in the ciphertext [9]) but
does not hide f , whereas FE gives the opposite.

Synthesis of ABE and FE. We address this conundrum by combining the two
primitives in a way that lets us get the best of both. In particular, we use ABE
to check that lb /∈ L and use FE to compute f(x). Evidently, the two steps
cannot be performed independently in order to resist mix and match attacks so
we use nesting, i.e. we use FE to generate ABE ciphertexts. Here, care is required,
because ABE encryption takes L as input and done naively, this strategy will
again induce a size dependence on L. We address this challenge by using the
special ABE by Boneh et al. [13] which enjoys succinct secret keys and encoding
L in the ABE secret key. In more detail, we let the RPE encryption generate
ABE.sk(CL) for a circuit CL which takes as input lb and checks that lb /∈ L.
Additionally, it generates an FE ciphertext for the function f and message m.
The RPE key generator computes an FE key for a function which has (lb, x)
hardwired and takes as input a function f , checks whether f(x) = 1 and if
so, generates a fresh ABE ciphertext with attribute lb and message m. Thus
the decryptor can first compute FE decryption to recover the ABE ciphertext
ABE.ct(lb,m) and then use ABE decryption with ABE.sk(CL) to output m if
and only if lb /∈ L. It is easy to verify that this construction achieves optimal
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parameters – this is because ABE has optimal parameters and we used FE only
for a simple functionality that does not involve L.

Putting it All Together. The above description is over-simplified and ignores
technical challenges such as how to leverage indistinguishability based security
of FE, how to generate the randomness used for ABE encryption and such others
– we refer the reader to Sect. 3 for details. However, even having filled in these
details, we get only a selectively secure RPE. Substantial work and several new
ideas are required for adaptive security, as we discuss next.

Adaptive Security. Next, we outline our ideas to achieve adaptive security,
namely where the revocation list L is chosen adaptively by the adversary. Note
that to avoid complexity leveraging, we are required to rely only on the selec-
tive security of the underling ABE – this creates multiple technical difficulties
which are resolved by very carefully using specific algebraic properties of our
ingredients.

Leveraging Late Generation of ABE. Our first observation is that full adaptive
security of ABE may be unnecessary, since in our construction of RPE, the gen-
eration of the ABE instance is deferred until the generation of the challenge
ciphertext, at which time the set of revoked users is known. This intuition turns
out to be true, but via a complicated security proof as we outline next. Below, we
consider the case of function hiding in the RPE ciphertext, the case of message
hiding is similar.

Recall that function hiding says that two ciphertexts encoding (fb,m,L),
where b ∈ {0, 1} should be indistinguishable so long as for any requested key
sklb,x it holds that f0(x) = f1(x) or lb ∈ L. Note that the adversary is permitted
to query for keys that allow decryption of the ciphertexts, i.e. f0(x) = f1(x) = 1.

Embedding ABE CTs in FE keys. In order to use ABE security to prove RPE
security, a first (by now standard) step is to use the “trapdoor technique” [7,
19,20], which allows us to hardwire ABE ciphertexts into FE secret keys. In
the security game with the ABE challenger, the reduction submits the label
lb associated with each RPE secret key as its challenge attribute and embeds
the returned ABE ciphertext into the FE key. Here we immediately run into a
difficulty, since in the RPE setting some ABE ciphertexts are decryptable by
the adversary and we cannot leverage ABE security. Moreover, we cannot even
hope to guess which keys will correspond to decryptable ABE ciphertexts since
there are an unbounded polynomial number of key queries in the RPE security
game. The same difficulty is faced by NWZ and is the main reason why their
construction does not achieve adaptive security in the revocation list.

Polynomial Function Space Suffices for TR. To overcome this hurdle, we lever-
age the serendipitous fact that for the purpose of constructing TR, it suffices to
construct RPE whose function space (recall that functions are encoded in the
ciphertext) is only of polynomial size. This observation, which was implicitly
present in [34], is abstracted and used explicitly in our proof. In particular, we
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can assume that the reduction algorithm knows the challenge functions (f0, f1)
at the beginning of the game, since it can simply guess them. Now, given the
secret key query (lb, x), the reduction checks whether f0(x) = f1(x). If yes, then
there is no need to use ABE security, for the ABE ciphertexts in this case will
encode the same message, and will hence be independent of the challenge bit.
On the other hand, if f0(x) �= f1(x), then we have by the admissibility condition
that lb ∈ L, even when L is not known. In this case, the reduction can use the
security of the ABE without any difficulty.

Additional Hurdles Stemming from ABE Selective Security. We now highlight
another challenge in the proof. For concreteness, let us consider the second key
query (lb(2), x(2)), which we assume is a pre-challenge query, and assume that
f0(x(2)) �= f1(x(2)). Hence, by the above discussion, we are required to use ABE

security for the ciphertexts with attribute lb(2). However, according to the selec-
tive definition, the reduction is required to choose the challenge attribute at the
very start of the game, without even seeing the public parameters. At the same
time, the reduction is required to simulate the ABE ciphertext for the first key
query, before receiving the second key query from the adversary, that is, without
seeing the ABE parameters, leading to an apparent impasse.

We address this issue by considering the following two cases separately: for
the first query (lb(1), x(1)), we have (1) f0(x(1)) �= f1(x(1)) or (2) f0(x(1)) =
f1(x(1)). In first case, it is tempting to think that one can simply use a hybrid
argument to change the ABE ciphertext associated with each key query satisfying
f0(x(i)) �= f1(x(i)) for i ∈ [2]. However, this does not work as is, since the ABE
ciphertext may leak information about the ABE public key. To address this, we
rely on the pseudorandomness of ciphertexts in our ABE [13] due to which we are
guaranteed that the ciphertext does not reveal any information about the public
parameters, enabling the hybrid strategy above. To handle the second case, we
change the way in which the ABE ciphertext for the first key is generated. In more
detail, we stop hardwiring the the ABE ciphertext into the first key and instead
generate it directly using ABE parameters. This removes the aforementioned
problem since we no longer need to embed the ABE ciphertext or public key into
the first FE key. To enable this idea, we introduce additional branch of trapdoor
mode for the construction to separate the paths of computation for the cases
f0(x) = f1(x) and f0(x) �= f1(x). To handle post-challenge queries, we need to
address additional challenges, which we do not describe here. We refer the reader
to Sect. 3 for details.

Handling Super-polynomial Revocation List. Our construction (also the secret
version, described next) organically supports super-polynomially large revoca-
tion list, something that was not known before, to the best of our knowledge. In
more detail, let L be a list of super-polynomial size, such that L can be repre-
sented as a string of polynomial length and there exists a circuit CL of polynomial
size which takes as input some string lb and checks whether lb ∈ L or not. Note
that any super-polynomially large list must have efficient representation in order
to even allow various algorithms to read it. Then, the key generation of [13] can
naturally encode the circuit CL as before and the construction works as before.
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A subtlety that arises with super-polynomial L is that when we deal with post
challenge key queries in the proof, we have to deal with the ABE queries in the
order of key first and ciphertext later. With polynomial size L, this does not
pose a problem because when the adversary chooses L, all the labels for which
we use ABE security are in L and we can perform a hybrid argument over these
labels. However, this is not possible for super polynomial L, which requires to
rely on subexponentially secure LWE. Please see the full version of the paper [2]
for details.

Instantiating Public RPE. Overall, armed with the above ideas, we get a public
RPE from compact FE and efficient ABE supporting exponential sized identity
space and adaptive security in the revocation list L. Currently, we only know
how to instantiate our desired ABE from LWE [13], whereas FE can be instan-
tiated in multiple different ways. A natural candidate would be the FE from
standard assumptions [38,39] which relies on pairings, LPN and low depth PRG
– in this case, our RPE will require the extra assumption of LWE. Another option
is to instantiate FE with a post-quantum candidate [1,25,30,42,49] from non-
standard strengthenings of LWE – this has the advantage that the ABE does not
incur any extra assumption in the final construction. For super-polynomial L,
we need subexponential hardness of LWE in either pathway to instantiation, as
discussed above.

Alternative Construction Based on Laconic OT. Here, we sketch an alternative
construction of RPE based on laconic OT (LOT) [22] that works when the num-
ber N of possible labels is polynomially bounded (i.e., the identity space is of
polynomial size). Since LOT is known to be possible from various assumptions,
this diversifies the assumptions that we need to rely on. The basic idea is to
replace ABE with LOT. In more detail, the encryptor chooses LOT parameters
instead of ABE parameters and computes the digest of the list of recipients (or
equivalently, the list of revoked users), which is represented as a binary string of
length N with 1 for non-revoked identities. The digest, whose size is independent
of N , is then embedded into the FE ciphertext. Then, FE decryption yields LOT
encryption of the message for the label lb ∈ [N ], which is the label associated
with the secret key, instead of ABE ciphertext. The LOT ciphertext is encrypted
so that it can be decrypted only when the lb-th bit of the binary string rep-
resenting the list of recipients is 1. We note that this idea does not extend for
identities from exponentially large space and cannot therefore support embedded
identities any more.

Revocable Predicate Encryption in Private Setting. For private revocable
predicate encryption, our starting point is the work of Goyal et al. [35], who show
how to combine “broadcast mixed FE” (called BMFE) together with ABE to
achieve RPE (via a different abstraction which they call AugBE). They construct
BMFE by adding the broadcast functionality to the primitive of mixed FE defined
by [33]. They embed BMFE ciphertext into an ABE ciphertext to achieve RPE,
where BMFE is constructed from LWE and ABE is instantiated using pairings.
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Supporting Exponential Identity Space. To begin, we upgrade their notion of
BMFE to support an exponential space of identities (which we refer to as labels)
towards the goal of embedded identity trace and revoke. We refer to our notion
as Revocable Mixed FE (denoted by RMFE) and construct it from LWE. Both
[35] and our work start with a mixed FE scheme and add broadcast to it, but
their construction builds upon the scheme based on constrained PRFs [21] while
ours begins with the scheme based on Lockable Obfuscation (LO), also from
[21]. Our construction of RMFE deviates significantly from theirs, and achieves
significantly better secret key size – O(log N) as against O(N) – in addition to
supporting exponential instead of polynomial space. We describe this construc-
tion next.

Mixed FE. The notion of mixed FE was introduced by Goyal, Koppula and
Waters in the context of traitor tracing [33]. Identifying and constructing this
clever primitive is the key insight that enables [33] to construct traitor tracing
with optimal parameters from LWE. Mixed FE is, as the name suggests, a mix
of public and secret key FE. Thus, it has a secret as well as a public encryp-
tion procedure. The secret encryption procedure takes as input a function f and
computes ctf . This is decryptable by a key skx to recover f(x). The adversary
can make one query to the encryption oracle in addition to getting the challenge
ciphertext for challenge (f0, f1). It can also make an unbounded number of key
requests so long as f0(x) = f1(x). The public encryption algorithm computes a
ciphertext for the “always accept” function, i.e. a function which evaluates to
1 for any input x. It is required that the public ciphertext be indistinguishable
from the secret ciphertext.

One of the constructions of mixed FE suggested by [21] uses a secret key FE
scheme (SKFE) to construct the secret encryption algorithm and leverages the
power of lockable obfuscation (LO) to construct the public encryption procedure.
Recall that in a lockable obfuscation scheme [32,50] there exists an obfuscation
algorithm Obf that takes as input a program C, a message m and a (random)
“lock value” α and outputs an obfuscated program P̃ . One can evaluate the
obfuscated program on any input x to obtain as output m if P (x) = α and ⊥
otherwise. Intuitively, the idea of [21] is to wrap the FE ciphertext using LO and
to define the public key encryption algorithm as outputting a simulated version
of the LO obfuscated circuit, which is publicly sampleable.

In more detail, the construction works as follows. The secret key for a user
with input x is an SKFE secret key SKFE.sk(x). The secret ciphertext of MFE
for function f is constructed as follows.

1. First, SKFE ciphertext SKFE.ct(Hf,α) is generated, where α is a freshly chosen
random value and Hf,α is a circuit that takes as input x and outputs α if
f(x) = 0 and 0 otherwise.

2. Then, LO with lock value α and any message m �= ⊥ is used to obfuscate the
circuit SKFE.Dec(SKFE.ct(Hf,α), ·), namely the circuit that takes as input an
SKFE secret key and decrypts the hardwired ciphertext using this.
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The decryption result of MFE is defined as 1 if the evaluation result of the LO
circuit on the given input SKFE secret key is ⊥ and 0 otherwise. Correctness
follows from correctness of SKFE and LO. In particular, if f(x) = 0, then SKFE
decryption outputs α, which unlocks the LO to give m, otherwise ⊥. By def-
inition, MFE decryption will output 1 if LO outputs ⊥ which happens when
f(x) = 1, and 0 otherwise.

Revocable Mixed FE. RMFE augments MFE so that the encryption algorithms
(both secret and public) now include a revocation list L and the secret key
additionally includes a label lb. A secret key sklb,x decrypts a secret ciphertext
ctf,L to recover f(x) if lb /∈ L and 1 otherwise. For a public ciphertext ctL, the
output of decryption is always 1 regardless of which secret key is being used. For
security, we need two properties: function hiding and mode hiding. For function
hiding, we require that a secret ciphertext ctf0,L is indistinguishable from ctf1,L

if for all queries, either f0(x) = f1(x) or lb ∈ L. For mode hiding, we require
that a secret ciphertext ctf,L is indistinguishable from a public ciphertext ctL.
Recall that L is not required to be hidden, but we require that the parameters
do not depend on |L|.

To extend MFE to RMFE, we retain the idea of letting the secret ciphertext
be an LO obfuscated circuit and public ciphertext be the simulated LO. To
incorporate the list L, we must ensure that the LO lock value α is recovered
only when f(x) = 0 and lb /∈ L. To do so, we consider two subsystems such that
one system outputs partial decryption result α1 only when f(x) = 0 and the
second system outputs partial decryption result α2 only when lb /∈ L such that
α = α1 +α2. We must ensure that α1 and α2 are user specific decryption results
to avoid collusion attacks.

Note that the second subsystem, which entails L, should be constructed so
that the hardwired values inside the circuit do not depend on |L|, but still control
access to the value α2 depending on L. To satisfy these apparently conflicting
requirements, we make use of the unique algebraic properties of the ABE con-
struction by Boneh et al. [13], as described below. For the first subsystem, we
use SKFE.

In more detail, our candidate scheme is as follows.

1. Secret Key: The RMFE secret key consists of ABE.ct(lb,K) and
SKFE.ct((x,K,R)) where K and R are user specific random strings, lb is
used as an attribute and K is the plaintext for ABE encryption.

2. Ciphertext: To generate RMFE ciphertext, the secret key encryption proce-
dure is as follows:

– It first generates ABE.sk(CL), where CL is a circuit that takes as input a
label lb and outputs 1 only when lb /∈ L.

– It also generates SKFE.sk(Hf,α), where Hf,α takes as input (x,K,R) and
outputs K ⊕ α if f(x) = 0 and R if f(x) = 1.

– Now, consider the circuit CC[ABE.sk(CL),SKFE.sk(Hf,α)], which takes as
an input the pair (ABE.ct, SKFE.ct), decrypts both ABE and SKFE cipher-
texts using their respective keys, and then outputs the XOR between the
decryption results.
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– The final ciphertext is an LO of CC[ABE.sk(CL),SKFE.Enc(Hf,K,α)] with
lock value α and any arbitrary message m �= ⊥.

By key compactness of [13], the size of ABE.sk(CL) is independent of |L|. A
subtle point here is that ABE decryption is happening inside the LO and this
depends on L. If the LO must process L, then the size of the LO and hence
ciphertext blows up with L! Fortunately, the algebraic structure of the ABE
scheme we use [13] again comes to our rescue. At a high level, ABE decryption
can be divided into an “L-dependent” step which results in a short processed
ciphertext, followed by an “L-independent” step. Importantly, the L-dependent
step does not depend on the ABE secret key which is hardwired in the LO and
hence inaccessible, and can hence be performed outside the LO by the decryptor!
The resultant short processed ciphertext can then be provided as input to the
LO preventing the problematic size blowup.

RMFE Proof Overview. Next we outline some of the ideas developed for the secu-
rity proof. For ease of understanding, we limit ourselves to the simpler setting
where the adversary does not have access to the encryption oracle. This restric-
tion can be removed using combinatorial tricks, similar to [21]. For security, we
must argue two properties – mode indistinguishability and function hiding. The
former can be established by relying on security of SKFE and LO analogously
to the MFE proof in [21]. Hence, we focus on function hiding for the rest of the
overview, which is subtle and requires several new ideas.

For function hiding, we must make use of the security of ABE and SKFE.
Intuitively, security of SKFE guarantees that the values encoded in SKFE cipher-
texts and secret keys are hidden, beyond what is revealed by decryption.4 First
note that given a key for (lb, x) such that f0(x) = f1(x), no information about
the challenge bit is revealed by decryption, since the decryption results of SKFE
are the same for both cases. The case with f0(x) �= f1(x) is more challenging.
Let us assume f0(x) = 0 and f1(x) = 1. In this case, the decryption result of
the challenge ciphertext is R or K ⊕ α depending on the value of the challenge
bit. Since both are random strings, it is tempting to conclude that they do not
reveal any information of the challenge bit.

However, in reality, information about K is encoded in the ciphertext
ABE.ct(lb,K) and creates a correlation which must be handled. Indeed, a com-
putationally unbounded attacker can learn the challenge bit by breaking open
the ABE ciphertext, recovering K and then correlating it with the decryption
result of SKFE. Hence, security of ABE must play a role and fortunately, we
show that security of ABE suffices to overcome this difficulty. Recall that our
security definition of RMFE requires that if f0(x) �= f1(x), then it should hold
that lb ∈ L. This means that the ciphertext ABE.ct(lb,K) is computationally
indistinguishable from ABE.ct(lb, 0), since the only ABE secret key available to
the adversary is ABE.sk(CL). Now, in the adversary’s view, both K ⊕ α and R
are random strings that are independent from other parameters. Therefore, the

4 We note that we need message and function hiding security for the underlying
SKFE, while [21] only needs message hiding security.
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adversary cannot obtain any information of the challenge bit from the decryption
result in this case as well. For more details, please see Sect. 4.

Comparison with the BMFE by Goyal et al. [35]. We observe that both our
RMFE as well as the BMFE by [35] rely solely on LWE. However, our secret key
is ABE.ct(lb,K) and SKFE.ct((x,K,R)), which has optimal size, being clearly
independent of N and L. In contrast their secret key depends linearly on N .
We also observe that our RMFE can support an exponentially large space of
identities, while their BMFE does not.

Combining RMFE and ABE to get RPE. Finally, we nest our RMFE inside an
outer ABE scheme to obtain RPE. This step is very similar to [35], but we need
to use a different ABE scheme. In particular, in the construction of RPE in [35],
a key policy ABE (kpABE) is used to encrypt the message m with attributes as
the RMFE ciphertext along with the list L. The RPE secret key for (x, lb) is a
kpABE secret key for a the RMFE decryption circuit RMFE.Dec(RMFE.sk, ·, ·).

An obvious difficulty here is that encoding the attribute (L,RMFE.ct) in the
ABE ciphertext can cause the ciphertext size to depend on the size of L. To avoid
this blowup, [35] use a special kpABE which has the property that the ciphertext
size is independent of the size of the attribute. They instantiate this kpABE with
the scheme [9] which uses pairings5. However, we cannot use [9,45] because of
the following two reasons:

1. First, the ABE scheme by [9] only supports NC1. However, our circuit
RMFE.Dec(RMFE.sk, ·, ·) does not fit into NC1

6.
2. Furthermore, even if the above problem could be resolved, using [9] is prob-

lematic since their ABE has secret and public keys at least as large as O(|L|).
While the scheme of [35] also suffers from this blow-up, our goal is to obtain
short keys, independent of |L|.

The first problem cannot be resolved even if we use the ABE schemes for
circuits [13,31], since their ciphertext size also depends on |L|. To instantiate
our ABE, we use recent construction of compact cpABE from evasive and tensor
LWE [48], whose parameter sizes depend only on the input length of the circuit
and are independent of its size. Armed with the above ideas, we suggest the
following RPE:

1. The encryption algorithm of RPE, given m, f, L computes RMFE ciphertext
encoding (f, L) and then computes cpABE.Enc(RMFE.Dec(RMFE.ct, ·, L),m).

2. The key generation algorithm RPE given (lb, x), computes RMFE secret key
for (lb, x) and outputs cpABE.sk(RMFE.sk).

5 In fact, one could instead use the kpABE constructed by [45]. This enjoys the same
efficiency properties and is based on the standard DLIN assumption as against the
q-type assumption of [9].

6 The informed reader may wonder whether we can solve this issue by using prepro-
cessing as in [35] but this does not work due to technical reasons.
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Correctness of RPE follows from correctness of cpABE and RMFE while opti-
mality of parameters follows from the efficiency of the underlying schemes. In
particular, observe that all parameters are independent of |L|. Also note that
evasive and tensor LWE are required only to instantiate cpABE with the desired
efficiency. If future work standardizes the assumptions underlying the cpABE,
our construction will inherit these assumptions. For more details, we refer the
reader to the full version of the paper [2, Sect. 6].

Instantiating Secret RPE. Currently, the only two suitable ABE schemes that we
know to instantiate our compiler are the LWE based kpABE by Boneh et al. [13]
and the evasive and tensor LWE based cpABE by Wee [48]. These two ABEs
give us a secret RPE scheme supporting exponential identities and with optimal
parameters, from evasive and tensor LWE. Note that this construction does not
achieve adaptive security in the revoke list. Nevertheless, it is the first construc-
tion of optimal RPE, even without embedded identities, from any assumption
outside Obfustopia. Note that the usage of a non-standard assumption outside
of obfustopia (in particular, only from lattice techniques) is somewhat inher-
ent given that even broadcast encryption without tracing requires non-standard
assumption if we instantiate it only from lattices. We are hopeful that future
improvements in cpABE will yield a construction from completely standard
assumptions.

Trace and Revoke with Optimal Ciphertext from LWE and Pairings.
Along the way, we observe that the broadcast and trace construction provided
by Goyal et al. [35], without embedded identities, can be easily modified to
achieve at least optimal ciphertext size, from the same assumptions. At a high
level, they construct a broadcast mixed FE from LWE with optimal ciphertext
size and then nest this inside the kpABE by [9], which enjoys ciphertext size
independent of the attribute length, and can support computation in NC1. Since
their BMFE decryption does not fit into NC1, they preprocess the ciphertext so
that part of the decryption is performed “outside”, namely, they group log N
matrix tuples into c groups of (log N)/c tuples each. Then they precompute all
possible 2(log N)/c = N1/c subset-products within each group. Due to this, BMFE
decryption only needs to multiply together c of the preprocessed matrices, which
can be done in NC1 so long as c is constant. Unfortunately, this step increases
their ciphertext size to O(N ε) for any ε > 0 though the BMFE ciphertext size
was optimal.

We observe that they are “under-using” the ciphertext size independence of
[9] – in particular, while the attribute length has indeed been blown up to O(N ε),
this does not affect the ciphertext size of [9]. Moreover, while the attribute
must also be provided outside in the clear, this part can be compressed, i.e.
the preprocessing which expands the attribute to size N ε can be performed by
the decryptor directly by grouping and multiplying matrices as described above,
and there is no need for the encryptor to provide this expanded form. Thus,
their scheme tweaked with this simple modification already achieves ciphertext
of optimal size, though with large secret key O(N c) for some large constant c.
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Trace and Revoke from Revocable Predicate Encryption. It remains
to show how to construct the final goal of trace and revoke with embedded
identities. As discussed earlier, we follow [40,44] and use the abstraction of RPE
to build trace and revoke. However, to embed identities in our trace and revoke
schemes, we deviate from these works and instead build upon ideas developed
by [34] (henceforth GKW) in the context of traitor tracing.

Embedded Identity Traitor Tracing (EITT) by GKW. The work of Goyal, Kop-
pula and Waters [34] provided an alternative approach for embedding identities
in traitor tracing schemes. A well known approach for constructing Traitor Trac-
ing systems suggested by Boneh, Sahai and Waters [11] is via the intermediate
primitive of Private Linear Broadcast Encryption (PLBE), which allows to con-
struct a tracing algorithm that performs a linear search over the space of users
to recover the traitor. Since the number of users was polynomial, this algorithm
could be efficient. However, if we allow arbitrary identities to correspond to user
indices then the space over which this search must be performed becomes expo-
nential even if the number of users is polynomial, and the trace algorithm is
no longer efficient. The main new idea in NWZ that enables them to handle
exponentially large identity spaces is to replace a linear search over indices by
a clever generalization of binary search, which efficiently solves an “oracle jump
problem” which in turn suffices for tracing.

Goyal, Koppula and Waters (GKW) provided an alternate route to the prob-
lem of embedding identities. Instead of using PLBE and generalizing the search
procedure, they instead extend the definition of PLBE to support embedded
identities, denoted by EI-PLBE, and then used this to get a full fledged EITT
scheme. This approach has the notable advantage that even if the space of
identities is exponential, it can use the fact that the number of users is only
polynomial and hence rely on only selective security of the underlying primi-
tives. In particular, they demonstrate a “nested” tracing approach, where the
tracing algorithm works in two steps: first, it outputs a set of indices that corre-
spond to the users that are traitors, and then it uses each index within this set
to recover the corresponding identity. Additionally, GKW provide a sequence of
(increasingly stronger) TT primitives with embedded identities, namely, indexed
EITT, bounded EITT and finally unbounded EITT where unbounded EITT sat-
isfies the most general notion of embedded identity traitor tracing. They also
provide generic transformations between these notions, which allows to focus on
the weakest notion for any new instantiation.

Embedded Identity Trace and Revoke (EITR). We adapt the approach of GKW
and show how to use their nested approach to trace embedded identities even in
the more challenging setting of trace and revoke. As in their case, this lets us use
polynomial hardness assumptions in obtaining EITR, in contrast to NWZ. We
also define indexed, bounded and unbounded EITR and provide transformations
between them. Our definitions as well as transformations are analogous to GKW
albeit care is required to incorporate the revoke list L in each step and adapt the
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definitions and proofs of security accordingly. We then construct indexed EITR
using RPE, and obtain unbounded EITR via our generic conversions.

We note that our framework unifies the approaches of Kim and Wu [40] who
used the framework of RPE in the context of TR and that of GKW who used the
framework of EI-PLBE in the context of TT, to obtain EITR. This unification
yields a clean abstraction which can be used for both public and secret key
settings. We believe this framework is of independent interest. We refer the
reader to Sects. 7, 8, 9 and 10 in the full version [2] for details. An overview of
our constructions is provided in Fig. 1.

Fig. 1. Overview of our constructions. Solid lines represent the implications shown by
our work and are based on new techniques. Dashed lines represent the implications
that are new but based on techniques developed in [34]. The constructions in dashed
boxes are provided in the respective sections of the full version of our paper [2].

Organization of the paper. We define RPE in Sect. 2 and construct public-key
RPE in Sect. 3. We provide our construction of RMFE in Sect. 4. Due to space
constraints, our construction of secret-key RPE using RMFE is deferred to the full
version [2]. We also refer the reader to the full version [2] for preliminaries, def-
initions of indexed-EITR, bounded-EITR and unbounded-EITR and conversions
between them [2, Sect. 8, Sect. 9, Sect. 10], and the mechanism for supporting
super-polynomial sized revocation list [2, Sect. 11].

2 Revocable Predicate Encryption

We define revocable predicate encryption (RPE), in both public and secret key
setting. Since the two notions differ only in the encryption algorithm, we present
them here in a unified way.

Definition 2.1. A RPE scheme for an attribute space X = {Xλ}λ∈[N], a func-
tion family F = {Fλ}λ∈[N] where Fλ = {f : Xλ → {0, 1}}, a label space
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L = {Lλ}λ∈[N] and a message space M = {Mλ}λ∈[N] has the following proba-
bilistic polynomial time algorithms:

Setup(1λ) → (mpk,msk). The setup algorithm takes the security parameter λ as
input and it outputs a master public key mpk and a master secret key msk.

KeyGen(msk, lb, x) → sklb,x
7. The key generation algorithm takes as input the

master secret key msk, a label lb ∈ Lλ and an attribute x ∈ Xλ. It outputs
a secret key sklb,x.

Enc(ek, f,m,L) → ct. The encryption algorithm takes as input the encryption
key ek, a function f , a message m ∈ Mλ, and a revocation list L ⊆ Lλ. It
outputs a ciphertext ct.

Dec(sklb,x, ct, L) → m′. The decryption algorithm takes the secret key sklb,x, a
ciphertext ct, and a revocation list L and it outputs m′ ∈ Mλ ∪ {⊥}.

In public-key RPE, we take ek = mpk in the Enc algorithm, and in secret-key
RPE, we take ek = msk. Furthermore, there is an additional algorithm in the
secret key setting defined as follows:

Broadcast(mpk,m,L) → ct. On input the master public key, a message m, and
a revocation list L ⊆ Lλ, the broadcast algorithm outputs a ciphertext ct.

Definition 2.2 (Correctness). A revocable predicate encryption scheme is
said to be correct if there exists a negligible function negl(·) such that for all
λ ∈ N, label lb ∈ Lλ, attributes x ∈ Xλ, predicates f ∈ Fλ such that f(x) = 1,
all messages m ∈ Mλ and any set of revoked users L ⊆ Lλ such that lb /∈ L, if we
set (mpk,msk) ← Setup(1λ) and sklb,x ← KeyGen(msk, lb, x), then the following
holds

Pr [ Dec(sklb,x, ct, L) = m ] ≥ 1 − negl(λ),

for ct ← Enc(ek, f,m,L) (Encryption correctness) and ct ← Broadcast(mpk,
m,L) (Broadcast correctness).

Security. In the following security definitions, we assume for simplicity that the
adversary does not make key queries for same input (lb, x) more than once.

Definition 2.3 (q-query Message Hiding). Let q(·) be any fixed polynomial.
A RPE scheme satisfies q-query message hiding property if for every PPT adver-
sary A, there exists a negligible function negl(·) such that for every λ ∈ N, all
messages m ∈ Mλ and any subset of revoked users L ⊆ Lλ, the following holds

Pr

⎡
⎢⎢⎣ β′ = β :

(mpk,msk) ← Setup(1λ);
(f,m0,m1, L) ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(mpk);
β ← {0, 1}; ctβ ← Enc(ek, f,mβ , L);
β′ ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(ctβ)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to the encryption oracle Enc(ek, ·, ·, ·),
and A is admissible if and only if for all the key queries (lb, x) to the
KeyGen(msk, ·, ·) oracle, either f(x) = 0 or lb ∈ L.
7 We want to point out that the secret key sklb,x does not hide the corresponding

label lb and attribute x and we assume these to be included in the secret key.
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Definition 2.4 (q-query Selective Message Hiding). This is the same as
the Definition 2.3 except that A outputs the revocation list L in the beginning of
the game, before the Setup algorithm is run.

Definition 2.5 (q-query Very Selective Message Hiding). This is the
same as the Definition 2.4 except that A outputs all the key queries (lb, x) to the
KeyGen(msk, ·, ·) oracle in the beginning of the game, before the Setup algorithm
is run.

Definition 2.6 (q-query Function Hiding). Let q(·) be any fixed polyno-
mial. A RPE scheme satisfies q-query function hiding property if for every PPT
adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
all messages m ∈ Mλ and any subset of revoked users L ⊆ Lλ, the following
holds

Pr

⎡
⎢⎢⎣ β′ = β :

(mpk,msk) ← Setup(1λ);
(f0, f1,m,L) ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(mpk);
β ← {0, 1}; ctβ ← Enc(ek, fβ ,m,L);
β′ ← AKeyGen(msk,·,·),Enc(ek,·,·,·)(ctβ)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to the encryption oracle Enc(ek, ·, ·, ·),
and A is admissible if and only if for all the key queries (lb, x) to the
KeyGen(msk, ·, ·) oracle, either f0(x) = f1(x) or lb ∈ L.

Definition 2.7 (q-query Selective Function Hiding). This is the same as
the Definition 2.6 except that A outputs the revocation list L in the beginning of
the game, before the Setup algorithm is run.

The following security notion is defined only for secret-key RPE scheme.

Definition 2.8 (q-query Selective Broadcast Security). Let q(·) be any
fixed polynomial. A RPE scheme satisfies q-query selective broadcast security if
there exists a negligible function negl(·) such that for every PPT adversary A,
for every λ ∈ N, all messages m ∈ Mλ and any subset of revoked users L ⊆ Lλ,
the following holds

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

β′ = β :

L ← A(1λ);
(mpk,msk) ← Setup(1λ);
f,m ← AKeyGen(msk,·,·),Enc(msk,·,·,·)(mpk);
β ← {0, 1}; ct0 ← Enc(msk, f,m,L);
ct1 ← Broadcast(mpk,m,L);
β′ ← AKeyGen(msk,·,·),Enc(msk,·,·,·)(ctβ)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to the encryption Enc(msk, ·, ·, ·) oracle
and A is admissible if and only if f(x) = 1,∀x ∈ Xλ.

Remark 2.9. In the public-key RPE scheme, the adversary A can itself simulate
the encryption oracle Enc(ek, ·, ·, ·), as ek = mpk in this setting. Therefore, in
public-key setting, we refer to the security definitions without imposing the q-
query bound on the encryption oracle.
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Remark 2.10. We note that when the message space is binary, function space
Fλ is polynomially small and q is a constant, the weaker security definitions
where adversary outputs the challenge function f , the challenge message m and
the SK-Enc query functions {f̄i}i∈[q] at the beginning of the game, before the
Setup(1λ) algorithm is run, is equivalent to the definitions where the adversary
outputs f,m, {f̄i}i∈[q] adaptively. First, the functions can be guessed with poly-
nomial loss. Furthermore, if we restrict the message space to be binary, we can
guess the challenge message as well. To extend the message space, we can encrypt
each bit by parallel systems.

3 Public-key RPE from FE and LWE

In this section we provide our construction of a public key RPE scheme RPE =
(RPE.Setup,RPE.KeyGen,RPE.Enc,RPE.Dec) for an attribute space X = {Xλ}λ,
a function family F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}}, a label space
L = {Lλ}λ and a message space M = {Mλ}λ from polynomial hardness
assumptions. We assume that |Fλ| and |Mλ| are bounded by some polynomial
in λ. The restriction on |Fλ| is sufficient for our purpose and the restriction on
|Mλ| can be removed by running the scheme in parallel.
Our construction uses the following building blocks:

1. A Sel-INDr secure key-policy ABE scheme kpABE = (kpABE.Setup,
kpABE.Enc, kpABE.KeyGen, kpABE.Dec) for circuit class C�(λ),d(λ) with
parameter succinctness and key compactness ([2, Theorem 2.18]). Here �(λ)
is the input length and is the length of labels in our setting and the depth
of the circuit is d(λ) ∈ ω(log λ) to support unbounded revocation list. The
message space of the scheme kpABE is M = {Mλ}λ and CT kpABE denotes
the ciphertext space. We assume that uniform sampling from CT kpABE is effi-
ciently possible without any parameter.

2. A (fully) compact, selectively secure, public-key functional encryption scheme
FE = (FE.Setup, FE.Enc, FE.KeyGen, FE.Dec) that supports polynomial sized
circuits. We assume that the message space is sufficiently large so that it can
encrypt an ABE master public key, a (description of) function f ∈ Fλ, a PRF
key, two secret keys of SKE, and a trit mode ∈ {0, 1, 2}.

3. A PRF F : {0, 1}λ × X → {0, 1}t where t is the length of the randomness
used in kpABE encryption ([2, Def. 2.1]).

4. A symmetric key encryption schemes SKE = (SKE.KeyGen, SKE.Enc,
SKE.Dec) with pseudorandom ciphertexts ([2, Def. 2.3]). We let CT SKE denote
the ciphertext space of SKE.8 We assume that uniform sampling from CT SKE

is efficiently possible without any parameter.

We describe our construction below.
8 We note that we use the same ciphertext space for simplicity even though messages

with different lengths are going to be encrypted. To have the same ciphertext space,
we can, for example, pad short messages to be some fixed length, which is possible
when the message length is bounded by some polynomial.
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RPE.Setup(1λ) → (RPE.mpk,RPE.msk). The setup algorithm does the following:
– Generate (FE.mpk,FE.msk) ← FE.Setup(1λ).
– Output RPE.mpk = FE.mpk and RPE.msk = FE.msk.

RPE.KeyGen(RPE.msk, lb, x) → RPE.sklb,x. The key generation algorithm does
the following:
– Sample random values γ1, γ2, δ ← CT SKE.
– Construct a circuit Re-Enc[lb, x, γ1, γ2, δ] which has the label lb, attribute

x, γ1, γ2 and δ hardwired, as defined in Fig. 2.
– Compute FE.sklb,x ← FE.KeyGen(FE.msk,Re-Enc[lb, x, γ1, γ2, δ]).
– Output RPE.sklb,x = FE.sklb,x.

RPE.Enc(RPE.mpk, f,m,L) → RPE.ct. The encryption algorithm does the fol-
lowing:
– Parse RPE.mpk = FE.mpk.
– Sample a PRF key K ← {0, 1}λ.
– Generate (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ).
– Compute FE.ct ← FE.Enc(FE.mpk, (kpABE.mpk, f,m,K, 0,⊥,⊥)).
– Construct a circuit CL, with revocation list L hardwired defined as fol-

lows:
On input a label lb ∈ Lλ,

CL(lb) = 1 if and only if lb /∈ L. (3.1)

Compute kpABE.skL ← kpABE.KeyGen(kpABE.msk, CL).
– Output RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct).

RPE.Dec(RPE.sklb,x,RPE.ct, L) → m′. The decryption algorithm does the fol-
lowing:
– Parse RPE.ct = (kpABE.mpk, kpABE.skL,FE.ct) and RPE.sklb,x =

FE.sklb,x.
– Compute ct′ = FE.Dec(FE.sklb,x,FE.ct).
– Construct circuit CL from L and compute

m′ = kpABE.Dec(kpABE.mpk, kpABE.skL, CL, ct′, lb).
– Output m′.

Correctness and Security. We prove that our construction of RPE satisfies
correctness and both function hiding and message hiding security via the follow-
ing theorems.

Theorem 3.1. Suppose FE and kpABE schemes are correct. Then the above
construction satisfies the encryption correctness (Definition 2.2).

Theorem 3.2. Assume that F is a secure PRF, SKE is correct and secure, FE
and kpABE are secure as per Definition [2, Def. 2.6] and [2, Def. 2.15], respec-
tively. Furthermore, assume |Fλ| ≤ poly(λ) and |Mλ| ≤ poly(λ). Then the RPE
constructed above is function hiding (Definition 2.6).
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Function Re-Enc[lb, x, γ1, γ2, δ]

Hardwired values: A label lb, an attribute x, and SKE ciphertexts γ1, γ2, and δ.

Inputs: A kpABE master public key kpABE.mpk, a function f ∈ Fλ, a message
m ∈ Mλ , a PRF key K, a trapdoor mode mode ∈ {0, 1, 2} and SKE keys SKE.key1
and SKE.key2.

Output : A kpABE ciphertext.

1. Parse the input as (ABE.mpk, f, m, K, mode, SKE.key1, SKE.key2).

2. Set m̃ =

{
m if f(x) = 1

0 if f(x) = 0.

3. Compute kpABE.ctlb = kpABE.Enc(kpABE.mpk, lb, m̃; F (K, (lb, x))).
4. Compute flag = SKE.Dec(SKE.key2, δ).
5. Compute outi = SKE.Dec(SKE.keyi, γi) for i ∈ {1, 2}.
6. If mode = 0, output kpABE.ctlb.
7. If mode = 1, output out1.

8. If mode = 2, output

{
out2 if flag = 1

kpABE.ctlb if flag = 0.

Fig. 2. Function to compute kpABE ciphertexts depending on various conditions.

Theorem 3.3. Assume that F is a secure PRF, SKE is correct and secure, FE
and kpABE are secure as per Definitions [2, Def. 2.6] and [2, Def. 2.15], respec-
tively. Furthermore, assume |Fλ| ≤ poly(λ) and |Mλ| ≤ poly(λ). Then the con-
struction for RPE satisfies message hiding property as defined in Definition 2.3.

Due to space constraints, we provide the proofs in the full version.

Efficiency. Here we argue that our construction achieves optimal parameters.
Namely, we show that the size of each parameter is independent of |L|. For
details, please see the full version.

3.1 Alternate Construction Using LOT

The construction is similar to the above except that we use LOT in place of ABE,
which brings in the following changes in the KeyGen, Enc, and Dec algorithms:

– We use LOT = (LOT.crsGen, LOT.Hash, LOT.Send, LOT.Receive) instead of
kpABE.

– The function in Fig. 2, for which FE key is generated now takes as input
LOT objects crs and digest, instead of kpABE.mpk and computes LOT.ctlb =
LOT.Send(crs, digest, lb, 0, m̃;F (K, (lb, x))), instead of kpABE.ctlb.
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– The encryption algorithm changes as follows:
RPE.Enc(RPE.mpk, f,m,L) → RPE.ct. The encryption algorithm does the
following:

• Parse RPE.mpk = FE.mpk and sample a PRF key K ← {0, 1}λ.
• Generate crs ← LOT.crsGen(1λ).
• Compute (digest, D̂) ← LOT.Hash(crs,D), where D is a binary vector of

length N (the no. of users) and is 1 at positions corresponding to non-
revoked labels, i.e. D[lb′] = 1 iff lb′ �∈ L.

• Compute FE.ct ← FE.Enc(FE.mpk, (crs, digest, f,m,K, 0,⊥,⊥)).
• Output RPE.ct = (crs,FE.ct).

– The algorithm for decryption also changes accordingly as follows:
RPE.Dec(RPE.sklb,x,RPE.ct, L) → m′. The decryption algorithm does the fol-
lowing:

• Parse RPE.ct = (crs,FE.ct) and RPE.sklb,x = FE.sklb,x.
• Define D from L as described in the encryption algorithm and compute

(digest, D̂) ← LOT.Hash(crs,D).
• Compute LOT.ct′ = FE.Dec(FE.sklb,x,FE.ct).
• Compute m′ = LOT.ReceiveD̂(crs, LOT.ct′, lb).
• Output m′.

We provide the proofs for correctness and security in the full version.

4 Revocable Mixed Functional Encryption

4.1 Definition

A revocable mixed functional encryption (RMFE) scheme with input domain
X = {Xλ}λ∈[N], a function family F = {Fλ}λ∈[N] where Fλ = {f : Xλ → {0, 1}},
a label space L = {Lλ}λ∈[N] has the following syntax.

Setup(1λ) → (mpk,msk). The setup algorithm takes as input the security param-
eter λ and outputs a master public key mpk and a master secret key msk.

KeyGen(msk, lb, x) → sklb,x. The key generation algorithm takes as input the
master secret key msk, a label lb ∈ Lλ and an input x ∈ Xλ. It outputs a
secret key sklb,x.

PK-Enc(mpk, L) → ct. The public key encryption algorithm takes as input the
master public key mpk and a revocation list L ⊆ Lλ and outputs a ciphertext
ct.

SK-Enc(msk, f, L) → ct. The secret key encryption algorithm takes as input the
master secret key msk, a function f ∈ Fλ and a revocation list L ⊆ Lλ, and
outputs a ciphertext ct.

Dec(sklb,x, L, ct) → {0, 1}. The decryption algorithm takes the secret key sklb,x,
a revocation list L ⊆ Lλ and a ciphertext ct and outputs a bit.
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Definition 4.1 (Correctness). A RMFE scheme is said to be correct if there
exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N, the following
holds

Pr

[
Dec(sklb,x, L, ct) = 1 :

(mpk,msk) ← Setup(1λ);
sklb,x ← KeyGen(msk, lb, x);
ct ← PK-Enc(mpk, L)

]
≥ 1 − negl1(λ).

lb /∈ L ⇒ Pr

[
Dec(sklb,x, L, ct) = f(x) :

(mpk, msk) ← Setup(1λ);
sklb,x ← KeyGen(msk, lb, x);
ct ← SK-Enc(msk, f, L)

]
≥ 1 − negl2(λ).

Security. Here we define the security requirements of RMFE scheme.

Definition 4.2 (q-query Mode Hiding). Let q(·) be any fixed polynomial. A
RMFE scheme satisfies q-query mode hiding security if for every PPT adversary
A, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

⎡
⎢⎢⎢⎢⎣

β′ = β :

(mpk,msk) ← Setup(1λ);
f, L ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(mpk);
β ← {0, 1}; ct0 ← SK-Enc(msk, f, L);
ct1 ← PK-Enc(mpk, L);
β′ ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(ctβ)

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to the SK-Enc(msk, ·, ·) oracle and is
admissible only if for all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle,
f(x) = 1.

Definition 4.3 (q-query Selective Function Hiding). Let q(·) be any fixed
polynomial. A RMFE scheme satisfies q-query selective function hiding security
if for every PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈ N,

Pr

⎡
⎢⎢⎢⎢⎣

β′ = β :

L ← A(1λ);
(mpk,msk) ← Setup(1λ);
(f0, f1) ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(mpk);
β ← {0, 1}; ctβ ← SK-Enc(msk, fβ , L);
β′ ← AKeyGen(msk,·,·),SK-Enc(msk,·,·)(ctβ)

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to the SK-Enc(msk, ·, ·) oracle and for
all the key queries (lb, x) to the KeyGen(msk, ·, ·) oracle, either f0(x) = f1(x) or
lb ∈ L.

Remark 4.4. We note that when the function space Fλ is polynomially small
and q is a constant, a variant of Definition 4.3 where the adversary outputs
the challenge functions (f0, f1) and the SK-Enc query functions {f̄i}i∈[q] at the
beginning of the game, before the Setup(1λ) algorithm is run, is equivalent to
Definition 4.3 where the adversary adaptively outputs the challenge functions
(f0, f1) and can make SK-Enc queries adaptively, with polynomial loss. Similar
comment also applies to Definition 4.2. We will use these simplifications in the
security proofs.
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4.2 Construction

In this section we give a construction of 1-query secure RMFE scheme, with input
space X = {Xλ}λ, a function family F = {Fλ}λ where Fλ = {f : Xλ → {0, 1}}
and a label space L = {Lλ}λ. We assume that the size of |Fλ| is bounded by
some polynomial in λ, which will suffice for our purpose.
Our scheme uses the following building blocks:

1. A 2-bounded semi-adaptive simulation based function-message private ([2,
Def. 2.11]) SKFE scheme SKFE = (SKFE.Setup, SKFE.KeyGen, SKFE.Enc,
SKFE.Dec) that supports the function class F . This can be instantiated from
one-way functions ([2, Lemma 2.12]).

2. A key-policy ABE scheme kpABE = (kpABE.Setup, kpABE.Enc,
kpABE.KeyGen, kpABE.Dec) for the circuit class C�(λ),d(λ) with message space
{0, 1}λ satisfying Sel-IND security ([2, Def. 2.14]) and efficiency proper-
ties described in [2, Theorem 2.18]. We set �(λ) = �lb + log(λ) + 1 and
d(λ) = ω(log λ), where �lb is the label length.9 This can be instantiated from
the LWE assumption ([2, Theorem 2.18]).

3. A lockable obfuscation scheme LO = (LO.Obf, LO.Eval) with lock space
{0, 1}λ that supports circuits of the form CC defined in Fig. 3. As we will
analyze later, the circuit is of fixed polynomial size in λ and |f |, where |f | is
the description size of the function f ∈ F . This can be instantiated from the
LWE assumption ([2, Theorem 2.25].).

Below we describe our construction of a 1-query secure RMFE scheme RMFE =
(RMFE.Setup,RMFE.KeyGen,RMFE.PK-Enc,RMFE.SK-Enc,RMFE.Dec).

RMFE.Setup(1λ) → (RMFE.mpk,RMFE.msk). The setup algorithm does the fol-
lowing:
– Generate SKFE.msk ← SKFE.Setup(1λ).
– Generate (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ).
– Output

RMFE.mpk = kpABE.mpk and RMFE.msk = (SKFE.msk, kpABE.mpk,
kpABE.msk).

RMFE.KeyGen(RMFE.msk, lb, x) → RMFE.sklb,x. The key generation algorithm
does the following:
– Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk).
– For all j ∈ [λ], b ∈ {0, 1}, sample Kj,b, Rj,b ← {0, 1}λ.

Denote K = {Kj,b}j∈[λ],b∈{0,1} and R = {Rj,b}j∈[λ],b∈{0,1}.
– Compute

SKFE.ct ← SKFE.Enc(SKFE.msk, (x,K,R)).

– For all j ∈ [λ], b ∈ {0, 1}, compute

kpABE.ctlb,j,b ← kpABE.Enc(kpABE.mpk, (lb, j, b),Kj,b).

9 Concretely, we can choose d(λ) = Θ(log λ log log λ) for example.
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– Output RMFE.sklb,x = (SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.
ctlb,j,b}j∈[λ],b∈{0,1}).

RMFE.PK-Enc(RMFE.mpk, L) → RMFE.ct. The public key encryption algorithm
does the following:
– Computes a simulated code RMFE.ct ← LO.Sim(1λ, 1|CC|)10.
– It outputs RMFE.ct as the ciphertext.

RMFE.SK-Enc(RMFE.msk, f, L) → RMFE.ct. The secret key encryption algo-
rithm does the following:
– Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk), and sample a

tag z ← {0, 1}λ and a lock value α ← {0, 1}λ.
– For all

j ∈ [λ], compute kpABE.skL,j,zj
← kpABE.KeyGen(kpABE.msk, CL,j,zj

),
where the function CL,j,zj

has L, j and zj hardwired and is defined as
follows :
On input (lb, i, b) ∈ Lλ × [λ] × {0, 1},

CL,j,zj
(lb, i, b) =

{
1 if (lb /∈ L) ∧ (i = j) ∧ (b = zj)
0 otherwise.

(4.1)

– Compute SKFE.sk ← SKFE.KeyGen(SKFE.msk, Pf,z,α), where the func-
tion Pf,z,α has f, z, α hardwired and is defined as follows :
On input x ∈ Xλ,K = {Kj,b}j∈[λ],b∈{0,1}, R = {Rj,b}j∈[λ],b∈{0,1},

Pf,z,α(x,K,R) =

{⊕
j Kj,zj

⊕ α if f(x) = 0⊕
j Rj,zj

if f(x) = 1.
(4.2)

– Construct function CC[SKFE.sk, {kpABE.skL,j,zj
}j∈[λ]], with SKFE.sk and

{kpABE.skL,j,zj
}j∈[λ] hardwired and is defined as in Fig. 3.

– Output RMFE.ct ← LO.Obf(CC[SKFE.sk, {kpABE.skL,j,zj
}j∈[λ]], α).

RMFE.Dec(RMFE.sklb,x,RMFE.ct, L) → {0, 1}. The decryption algorithm does
the following:
– Parse RMFE.sklb,x =

(SKFE.ct, kpABE.mpk, {(lb, j, b), kpABE.ctlb,j,b}j∈[λ],b∈{0,1})
and RMFE.ct = C̃C, where C̃C is regarded as an obfuscated circuit of
LO.

– For all j ∈ [λ], b ∈ {0, 1}, compute

kpABE.off lb,j,b ← kpABE.Decoff(kpABE.mpk, CL,j,b, (lb, j, b)).

– Compute

y = LO.Eval
(
C̃C, (SKFE.ct, {kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1})

)
.

– Output 1 if y = ⊥, else output 0.

Remark 4.5. We note that by performing the part of the ABE decryption that
uses CL,j,b, outside of CC , we do not need to provide CL,j,b (or L) as input to CC.
Instead, we provide {kpABE.off lb,j,b}j∈[λ],b∈{0,1} whose size is independent of the
size of CL,j,b (and thus that of L). This helps us in getting succinct ciphertext.

10 Here, CC represents the maximum possible size of CC[·, ·] circuit defined in Fig. 3.
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Function CC[SKFE.sk, {kpABE.skL,j,zj}j∈[λ]]

Hardwired values: A SKFE secret key SKFE.sk and kpABE keys
{kpABE.skL,j,zj}j∈[λ].

Inputs: A SKFE ciphertext SKFE.ct and kpABE ciphertexts
{kpABE.ctlb,j,b, kpABE.off lb,j,b}j∈[λ],b∈{0,1}.

Output : A binary string α∗ ∈ {0, 1}λ.

1. For all j ∈ [λ], compute mj = kpABE.Decon(kpABE.skL,j,zj , kpABE.ctlb,j,zj ,
kpABE.off lb,j,zj ).
Let M0 =

⊕
j mj

2. Compute M1 = SKFE.Dec(SKFE.sk, SKFE.ct).
3. Output M1 ⊕ M0.

Fig. 3. Compute and Compare function CC

Correctness and Security. We prove the correctness and security via the
following theorems.

Theorem 4.1. Suppose kpABE, LO and SKFE are correct and LO is secure ,
then the above construction of RMFE satisfies correctness as defined in Defini-
tion 4.1.

Theorem 4.2. Assume that SKFE and LO are secure as per Definitions [2,
Def. 2.11] and [2, Def. 2.24], respectively. Furthermore, assume |Fλ| ≤ poly(λ).
Then the RMFE construction satisfies 1-query mode hiding security as per Defi-
nition 4.2.

Theorem 4.3. Assume SKFE is secure ([2, Def. 2.11]), kpABE satisfies Sel-IND
security ([2, Def. 2.14]). Furthermore, assume |Fλ| ≤ poly(λ). Then, the RMFE
construction satisfies 1-query function hiding as defined in Definition 4.3.

Due to space constraints, we prove these theorems in the full version.

Efficiency. Here we argue that our construction achieves optimal parameters.
Namely, we show that the sizes of the parameters are independent of |L|. For
details, please see the full version.

Acknowledgements. We thank the reviewers of Eurocrypt 2023 for helpful com-
ments, especially for suggesting the alternative construction of RPE based on FE and
laconic OT. This work was supported in part by the DST “Swarnajayanti” fellowship,
Cybersecurity Center of Excellence, IIT Madras, National Blockchain Project and the
Algorand Centres of Excellence programme managed by Algorand Foundation. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of sponsors. The fourth
author was partially supported by JST AIP Acceleration Research JPMJCR22U5 and
JSPS KAKENHI Grant Number 19H01109, Japan.



634 S. Agrawal et al.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new tech-
niques for bootstrapping and instantiation. In: Eurocrypt (2019). https://doi.org/
10.1007/978-3-030-17653-2 7

2. Agrawal, S., Kumari, S., Yadav, A., Yamada, S.: Trace and revoke with optimal
parameters from polynomial hardness. Cryptology ePrint Archive (2022). https://
eprint.iacr.org/2022/1347.pdf

3. Agrawal, S., Maitra, M.: Fe and iO for turing machines from minimal assumptions.
In: Beimel, A., Dziembowski, S. (eds.) Theory of Cryptography. TCC 2018. LNCS,
vol. 11240. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 18

4. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Eurocrypt (2020)

5. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and
pairings in the standard model. In: TCC (2020). https://doi.org/10.1007/978-3-
030-64375-1 6

6. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
In: EUROCRYPT (2020). https://doi.org/10.1007/978-3-030-45721-1 2

7. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: CRYPTO (2015). https://doi.org/10.
1007/978-3-662-48000-7 32

8. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: CRYPTO (2015). https://doi.org/10.1007/978-3-662-47989-6 15

9. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

10. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: CRYPTO
(2001). https://doi.org/10.1007/3-540-44647-8 1

11. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007). https://
doi.org/10.1109/SP.2007.11

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

13. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: EUROCRYPT (2014). https://doi.org/10.1007/978-
3-642-55220-5 30

14. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: CRYPTO (2005). https://doi.org/10.1007/
11535218 16

15. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: CRYPTO (2014). https://doi.org/10.1007/978-3-662-44371-
2 12

16. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Algorithmica 79(4), 1233–1285 (2017).
https://doi.org/10.1007/978-3-662-44371-2 27

17. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: CRYPTO (2006). https://doi.org/10.1007/11818175 17

18. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://eprint.iacr.org/2022/1347.pdf
https://eprint.iacr.org/2022/1347.pdf
https://doi.org/10.1007/978-3-030-03810-6_18
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/11818175_17


Broadcast, Trace and Revoke with Optimal Parameters 635

Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

19. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. J. Cryptol. 31(1), 202–225 (2018). https://doi.org/10.1007/s00145-017-
9255-y

20. Caro, A.D., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: CRYPTO
(2013). https://doi.org/10.1007/978-3-642-40084-1 29

21. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing
from LWE made simple and attribute-based. In: TCC (2018). https://doi.org/10.
1007/978-3-030-03810-6 13
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Abstract. We present a pairing-based traitor tracing scheme for N
users with

|pk| = |ct| = O(N1/3), |sk| = O(1).

This is the first pairing-based scheme to achieve |pk| · |sk| · |ct| = o(N).
Our construction relies on the (bilateral) k-Lin assumption, and achieves
private tracing and full collusion resistance. Our result simultaneously
improves upon the sizes of pk, ct in Boneh–Sahai–Waters [Eurocrypt ’06]
and the size of sk in Zhandry [Crypto ’20], while further eliminating the
reliance on the generic group model in the latter work.

1 Introduction

Traitor tracing schemes [13] enable a content distributor to generate secret keys
for different users, any of whom can decrypt some protected content (e.g., a
cable TV stream). However, if any group of “traitors” get together and publish
some program capable of decrypting the content, then it is possible to use this
program to “trace” and identify at least one of the traitors and therefore hold
them accountable. We would like to design traitor tracing schemes with short
parameters, namely short public key pk, ciphertext overhead ct and secret key
sk that depend minimally on the total number of users N .
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In this work, we focus on pairing-based traitor tracing schemes, where the
most efficient schemes achieve |pk| · |sk| · |ct| = Θ(N), with the classic result
of Boneh, Sahai, and Waters (BSW) [6] achieving |pk| = |ct| = O(N1/2),
|sk| = O(1) as well as a recent work by Zhandry [30] achieving |pk| = |ct| =
|sk| = O(N1/3).

In view of the state of the art for pairing-based traitor tracing, Zhandry put
forth the following conjecture, which captures the community’s intuition about
the optimal trade-offs for pairing-based traitor tracing:

For any a, b, c ≥ 0 such that a + b + c = 1, there exists a pairing-
based traitor tracing scheme with |pk| = O(Na), |sk| = O(N b),
|ct| = O(N c).

He also proved the conjecture for (1) b = 0, c ≥ a and (2) b, c ≥ a [30]. In light
of this conjecture, we consider two open problems in this work. The first is a
special case of Zhandry’s conjecture:

Does there exist a traitor tracing scheme with
|pk| = O(N2/3), |ct| = O(N1/3), |sk| = O(1) from pairings?

Such a scheme would inherit the short ciphertexts and short keys of the afore-
mentioned pairing-based schemes in [6,30]. We note that minimizing secret key
size is important in settings where the decryption devices have limited long-
term cryptographic storage, and perhaps even more important than minimizing
ciphertext overhead, since the total ciphertext size is often dominated by the
size of the payload (megabytes) and not the ciphertext overhead coming from
the traitor tracing scheme (kilobytes).

The next question challenges the optimality of Zhandry’s conjecture:
Does there exist a traitor tracing scheme with

|pk| · |sk| · |ct| = O(N1−δ) for some δ > 0 from pairings?

An affirmative answer would indicate that the trade-off suggested in Zhandry’s
conjecture is far from optimal, and more importantly, that our intuition about
pairing-based traitor tracing is in fact flawed!

Traitor Tracing Beyond Pairings. Before we go on to describe our results,
we note that from LWE (or obfuscation), we have “optimal” traitor tracing
schemes achieving |pk| + |sk| + |ct| = poly(log N) [9,12,19]. Nonetheless, we
believe there is still tremendous value in obtaining better pairing-based schemes.
From a theoretical perspective, we want (i) good traitor tracing from different
assumptions; (ii) to understand what’s the best parameters we can get from pair-
ings, as also considered in [30]; and (iii) to develop new tracing techniques, and
indeed, the LWE-based schemes with poly(log N) parameters rely crucially on
ideas first developed in earlier pairing-based schemes. From a practical perspec-
tive, pairing-based cryptographic schemes are more widely deployed than lattice-
based ones (e.g., in blockchain-type applications, and with better libraries, etc.)
and for moderately small values of N that arise in applications, could poten-
tially achieve better concrete efficiency than the asymptotically more efficient
LWE-based schemes.
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Scheme |pk| |ct| |sk| Assumption Tracing

folklore + IBE [30] 1 N 1 IBE public

BN08 [5] ∗† 1 κ N2κ2 IBE private

BP08 [4] ∗ 1 κ N2κ IBE private

BSW06 [6]
√

N
√

N 1 composite private

BW06 [8]
√

N
√

N
√

N composite public

PLBE + W20 [29]
√

N
√

N 1 bi-k-Lin public

Z20 [30]
3
√

Nκ4 3
√

Nκ4 3
√

Nκ4 GGM private

this work (§ 3) 3
√

Nκ 3
√

Nκ κ bi-k-Lin private

Fig. 1. Comparison with prior pairing-based traitor tracing schemes for N users, where
size L means Θ(L) group elements plus O(L) bits. Here, κ denotes the statistical
security parameter, with statistical error 2−Ω(κ). In the “Assumption” column, “bi-
k-Lin” (bilateral k-Lin) is a strengthening of the k-Linear assumption in prime-order
groups (equivalent to k-Linear for symmetric bilinear groups), “composite” stands for
assumptions in composite-order symmetric bilinear groups (e.g., subgroup membership
assumption), and “GGM” stands for generic group model. ∗ IBE is used to compress
pk [30]. † Threshold elimination compiler [30] is applied.

1.1 Our Results

We answer both open problems in the affirmative: we present a pairing-based
traitor tracing scheme for N users with

|pk| = |ct| = O(N1/3), |sk| = O(1).

This is the first pairing-based scheme to achieve |pk| · |sk| · |ct| = o(N). Our
construction relies on the (bilateral) k-Lin assumption, and achieves private
tracing and full collusion resistance. Our result simultaneously improve upon
the sizes of pk, ct in [6] and the size of sk in [30], while further eliminating the
reliance on the generic group model (GGM) in the latter work. As in Zhandry’s
work, the O(·) terms hides factors polynomial in the security parameter. See
Fig. 1 for comparison with prior works.

1.2 Technical Overview

We proceed to provide a brief overview of our scheme and a technical comparison
with Zhandry’s construction [30]. In this overview, for any positive integer N ,
we define [N ] = {1, 2, . . . , N} and [0, N ] = {0, 1, . . . , N}. Note that [0] = ∅.

Recap: PLBE and BSW Traitor Tracing. An N private linear broadcast
encryption (N -PLBE) [6] is a type of anonymous broadcast encryption where
we can revoke decryption capabilities for the first z users. In particular,

– key generation produces a key sk for each user identity i ∈ [N ];
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– encryption takes as input a private index z ∈ [0, N ] and a message m to
produce a ciphertext ct;

– decryption returns m if i > z, or equivalently, i /∈ [z].

The security requirements for PLBE are as follows:

– message-hiding: the message m is hidden given unauthorized keys;
– index-hiding: encryptions of (z − 1,m) and (z,m) are computationally indis-

tinguishable given all secret keys for identities i �= z.

Starting from an N -PLBE, BSW traitor tracing scheme [6] with identity space
[N ] works as follows:

– The public key and secret keys are the same as for PLBE;
– An encryption of m is a PLBE encryption of m with z = 0.

Correctness is straight-forward: every secret key satisfies i > 0, or equivalently,
i /∈ [0] = ∅, and is authorized to recover m.

Given a decoder D with distinguishing advantage ε, we can identify a traitor
i∗ ∈ [N ] with probability negligibly close to 1 as follows: for i = 0, 1, . . . , N ,
revoke the decryption capabilities of the first i users by feeding the decoder
PLBE encryption of (i,m). We know that the advantage of D is ε for i = 0 (by
the fact that decoder is “good”) and negligible for i = N (by message-hiding).
Therefore, there exists i∗ ∈ [N ] such that there is a significant drop –at least
roughly ε/N– in the distinguishing advantage of the decoder from i∗ − 1 to i∗;
index-hiding ensures that i∗ is a traitor.

The state of the art for N -PLBE achieves parameter sizes

|pk| = O(N1/2), |ct| = O(N1/2), |sk| = O(1)

from the bilateral k-Lin, via functional encryption for quadratic functions [3,29].
The resulting traitor tracing scheme achieves the same parameter sizes.

Our Starting Point: Revocable PLBE. We will explain our traitor tracing
scheme using a generalization of PLBE which we refer to as (N1, N2) revocable
private linear broadcast encryption ((N1, N2)-rPLBE). In an (N1, N2)-rPLBE,

– key generation takes as input a user identity (i1, i2) ∈ [N1] × [N2] to produce
a key sk;

– encryption takes as input a private index z ∈ [0, N1], a private set S ⊆
[N1] × [N2] of size at most N2, and a message m to produce a ciphertext ct;

– decryption returns m if (i1, i2) /∈ ([z] × [N2]) ∪ S.

This allows us to revoke the decryption capability of the first z ·N2 users as well
as additional (at most) N2 users in the set S. We call them index-revocation and
set-revocation, respectively. Accordingly, the security requirements for rPLBE
are generalized as follows:

– message-hiding: the message m is hidden given only unauthorized keys.
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– index-hiding: encryptions of (z − 1, S,m) and (z, S,m) are indistinguishable,
even given secret keys for all identities in {(i1, i2) ∈ [N1] × [N2] : i1 �= z} ∪ S.

– set-hiding: encryptions of (z, S0,m) and (z, S1,m) with S0 ⊂ S1 are indistin-
guishable, even given secret keys for all identities (i1, i2) �∈ S1 \ S0.

Note that PLBE corresponds to the special case N2 = 1 and S = ∅ during
encryption. In this case, the identity is of the form (i1, 1); index-hiding reduces
to that for PLBE; set-hiding becomes dummy since we always have S0 = S1 = ∅.

Tracing Using rPLBE. Starting from an (N1, N2)-rPLBE, we build a traitor
tracing scheme with identity space [N1] × [N2] as follows:

– The public key and secret keys are the same as for rPLBE;
– An encryption of m is a rPLBE encryption of m with z = 0, S = ∅.

Correctness is straight-forward.
Given a decoder D with distinguishing advantage ε, our goal is to identify a

traitor (i∗1, i
∗
2) ∈ [N1] × [N2] with probability negligibly close to 1. The tracing

strategy proceeds in two steps:

Step 1: Identifying i∗1 via Index-Revocation. For i1 = 0, 1, . . . , N1, we revoke the
decryption capabilities of the first i1 · N2 users by feeding the decoder rPLBE
encryptions of (i1, ∅,m). As with BSW traitor tracing with PLBE, there exists
i∗1 ∈ [N1] such that there is a significant drop –at least roughly ε/N1– in the
distinguishing advantage of the decoder from i∗1 − 1 to i∗1, upon which we know
that one of the users in {i∗1} × [N2] is a traitor by index-hiding security (applied
to z = i∗1, S = ∅).

Step 2: Identifying i∗2 via Set-Revocation. Next, for i2 = 0, . . . , N2, we revoke
the decryption capabilities of the first i2 users in {i∗1} × [N2] by feeding the
decoder rPLBE encryptions of (i∗1−1, Si∗

1 ,i2 ,m) and (i∗1, Si∗
1 ,i2 ,m), where Si∗

1 ,i2 is
{(i∗1, j) : j ∈ [i2]}, and define εi2 to be the difference between the distinguishing
advantages for the two ciphertext distributions. We begin with the following
bounds on ε0 and εN2 (corresponding to i2 = 0 and i2 = N2 respectively):

(1) ε0 � ε/N1. This follows from Step 1 and the fact that Si∗
1 ,0 = ∅.

(2) εN2 is negligible. This follows from applying index-hiding to z = i∗1 and
S = Si∗

1 ,N2 , and holds even when the adversary gets the secret keys for all
possible identities since {(i1, i2) ∈ [N1]×[N2] : i1 �= i∗1}∪Si∗

1 ,N2 = [N1]×[N2].

Therefore, there exists i∗2 ∈ [N2] such that εi∗
2

− εi∗
2−1 � ε/N1N2. By set-

hiding applied to z = i∗1 − 1, S0 = Si∗
1 ,i∗

2−1, S1 = Si∗
1 ,i∗

2
and z = i∗1, S0 = Si∗

1 ,i∗
2−1,

S1 = Si∗
1 ,i∗

2
, the user (i∗1, i

∗
2) must be a traitor. Note that, for Step 2, we always

have |S| ≤ N2.

Implementing Set-Revocation and Set-Hiding. For set-revocation, we will
need to relax the syntax for (N1, N2)-rPLBE as follows (following “mixed func-
tional encryption” in [19]):
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– encrypting to arbitrary sets S requires knowledge of msk;
– encrypting to S = ∅ only requires mpk.

As a result of this relaxation, our traitor tracing scheme only achieves private
tracing, as is also the case in [19] and in Zhandry’s work [30].

One-Ciphertext Security. Consider the following construction for set-revocation
(i.e., ignoring the index-revocation) for N2 users (cf. Step 2 of our tracing) based
on any negated-IBE scheme where a key for id ∈ {0, 1}κ can decrypt a ciphertext
for id′ ∈ {0, 1}κ iff id �= id′.

– The public key consists of N2 independent public keys for negated-IBE
mpk1, . . . ,mpkN2

.
– The secret key for user i2 is a random ui2 ← {0, 1}κ, together with a negated-

IBE key for ui2 w.r.t. mpki2 . This means that ui2 is perfectly hidden from
the decoder if user i2 is honest.

– To encrypt to S ⊆ [N2], we provide N2 negated-IBE ciphertexts for identities
r1, . . . , rN2 w.r.t. mpk1, . . . ,mpkN2

respectively, where ri2 ← {0, 1}κ if i2 /∈ S,
and ri2 = ui2 if i2 ∈ S.

Correctness is straight-forward: Pr[ri2 �= ui2 : ri2 ← {0, 1}κ] = 1 − 2−κ. Set-
hiding for a single ciphertext follows from the fact that (1) if the adversary does
not see the key for user i2, then ui2 is statistically random and (2) we always
have N2 negated-IBE ciphertexts (which hides |S|).

Multi-ciphertext Security via Threshold Broadcast. In order to achieve set-hiding
for multiple ciphertexts, as is necessary for tracing, we adopt Zhandry’s “thresh-
old broadcast” technique. We will rely on an approximated version of negated-
IBE where id �= id′ (i.e., wt(id ⊕ id′) > 0) is replaced with wt(id ⊕ id′) ≥ 2κ/5
where wt(·) corresponds to Hamming weight. To revoke a user i2 ∈ S while
preserving set-hiding, we will sample ri from a carefully-designed distribution
of bit-strings close to ui in Hamming distance, where the distribution depends
adaptively on the adversary (cf. Lemma 1 in Sect. 3.2); for this reason, we will
require adaptive security w.r.t. id.

Instantiating rPLBE: Warm-Up. Next, we translate the problem of build-
ing an (N1, N2)-rPLBE to a problem about functional encryption, specifically,
that of attribute-based functional encryption (AB-FE) [1]. In AB-FE, a cipher-
text is associated with a private attribute z and a public attribute x, a key
with a function f and a predicate P , and decryption returns f(z) if P (x) is
true. Specifically, an (N1, N2)-rPLBE implementing threshold-broadcast-based
set-revocation (sketched above) would follow from AB-FE for

f comp
i1

(
z
︷ ︸︸ ︷

j1,m) =

{

m, if i1 > j1;
0, otherwise;
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P tbe
i2,u

(

x
︷ ︸︸ ︷

r1, . . . , rN2

)

=

{

1, if wt(ri2 ⊕ u) ≥ 2κ/5;
0, otherwise;

where f comp
i1

implements index-revocation and index-hiding, and P tbe
i2,u, set-

revocation. Recall that set-hiding relies on the distribution of r1, . . . , rN2 .
The recent work of Abdalla, Catalano, Gay, and Ursu (ACGU) [1] presented

an AB-FE scheme based on the k-Lin assumption for the setting where f cor-
responds to inner product and P corresponds to read-once span programs. It is
easy to see that we can implement f comp

i1
as an inner product over vectors of

length O(N1), and P tbe
i2,u as a read-once span program of size O(N2κ). Combined

with the ACGU result, we obtain an (N1, N2)-rPLBE with

|pk| = O(N1 + N2κ), |ct| = O(N1 + N2κ), |sk| = O(N2κ).

The parameter sizes are essentially the sum of those for (i) inner product FE for
vectors of length � = N1, namely |pk| = |ct| = O(�), |sk| = O(1), and (ii) ABE
for read-once span programs of size s = N2κ, namely |pk| = |ct| = |sk| = O(s).

Instantiating rPLBE: Ours. We present an (N1, N2)-rPLBE based on (bilat-
eral) k-Lin achieving shorter parameters

|pk| = O(N1/2
1 + N2κ), |ct| = O(N1/2

1 + N2κ), |sk| = O(κ),

we highlight the improvements by underlines. Setting N1 = N2/3, N2 = N1/3

yields our main result. We achieve shorter parameters as follows:

– To reduce the dependency on N1 in pk, ct to N
1/2
1 , we implement f comp

i1
using

quadratic functions over inputs of length N
1/2
1 , following [3,6].

– To reduce |sk| to O(κ), we observe that the span program computing P tbe
i2,u is

κ-local, that is, it depends only on κ bits of its input and show that for such
span programs, the ABE key size can be decreased to O(κ).

To put these two pieces together, we combine the ACGU construction which
only supports linear functions over the private attribute z with techniques from
functional encryption for quadratic functions [29].

Achieving Adaptive Security from k-Lin. We need an additional idea to
achieve adaptive security w.r.t. r’s, which is necessary for our traitor tracing
strategy. The challenge lies in the fact that current techniques for realizing ABE
adaptive security from the k-Lin assumption via dual system encryption method-
ology [27] rely on the guarantee (provided by the ABE security game) that the
predicate P is never satisfied to switch the secret key distribution in the security
proof. In the AB-FE security game, this guarantee goes away. To address this
challenge, we observe that it suffices to construct AB-FE secure under a selective
choice of z and an adaptive choice of x, since z (ignoring the payload m) comes
from a polynomial-size domain. When a key query for f, P comes along, we will
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decide whether to switch the secret key distribution depending on f(z). More
precisely, the security experiment requires that an adversary selectively specifies
z0, z1, we only switch the secret key distribution (to a “semi-functional” key) if
f(z0) �= f(z1), for which P (x) must be false.

Comparison with Zhandry’s O(N1/3) Scheme. We provide a simplified
overview of Zhandry’s traitor tracing scheme [30]. The first step is a traitor
tracing scheme for N1N2 users with parameters:

|pk| = O(N2), |ct| = O(N2κ), |sk| = O(N1 + N2κ).

The underlying scheme is a variant of an (N1, N2)-rPLBE, which is adaptively
secure in the generic group model.1

Observe that the total parameter size for this scheme is O(N1 + N2), similar
to that based on ACGU, whereas we achieve total parameter size O(N1/2

1 +N2).
The construction uses ideas from mixed bit matching encryption [18] (MBME),
which can be instantiated from inner product predicate encryption.2 In contrast,
we crucially rely on techniques from quadratic FE to achieve the square-root
dependency on N1.

The second step in [30] is to amplify this to a traitor tracing scheme for
N1N2N3 users with parameters:

|pk| = O(N2), |ct| = O(N2κ + N3), |sk| = O(N1 + N2κ).

Setting N1 = N2 = N3 = N1/3 yields a traitor tracing scheme for N users with
|pk| = |ct| = |sk| = O(N1/3).

Note that in addition to achieving better parameters and assumptions, our
approach also streamlines Zhandry’s approach, eliminating the use of MBME
and risky tracing [18] and the second step above. Moreover, our scheme sup-
ports partially public tracing, in the sense that we can publicly identify a prefix
1 In a bit more detail, the construction starts with a variant of (O(1), N2)-rPLBE with

parameters

|pk| = O(N2), |ct| = O(N2κ), |sk| = O(1),

which yields a “1/N1-risky” traitor tracing scheme for N1N2 users following [18].
That is, tracing succeeds with probability 1/N1. This is then amplified to a standard
traitor tracing scheme with a blow-up in sk.

2 In MBME, ciphertexts are associated with (z1, . . . , z�) ∈ {0, 1}� and keys with
(y1, . . . , y�) ∈ {0, 1}� and decryption is possible iff

∧�
i=1 zi ∨ yi = 1.

Security requires both attribute and function hiding. MBME for �-bit vectors can be
instantiated from attribute-hiding function-hiding inner product predicate encryp-
tion for O(�)-dimensional vectors, since

∧�
i=1 zi ∨ yi = 1 ⇐⇒ ∑�

i=1(1 − zi)(1 − yi)
?
= 0.

.
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i∗1 ∈ [N1] specifying a subset of N2 = N1/3 identities, one of which must be a
traitor (via PLBE). This could be useful in applications where identity prefixes
constitute important information, like country of origin or name of company.

Nonetheless, we stress that our results do not completely subsume those
in [30]. In particular, the latter achieves some parameter trade-offs that we
do not immediately achieve using our techniques, for instance, |pk| = O(1),
|sk| = O(N), |ct| = O(1) or |pk| = O(N1/4), |sk| = O(1), |ct| = O(N3/4). Also, we
do not present any broadcast-and-trace schemes.

1.3 Discussion

Open Problems. We conclude with several open problems:

– Combined with Zhandry’s conjecture which asserts that we should be able
to achieve full range of parameters with the same |pk| · |sk| · |ct|, our result
raises the tantalizing possibility of a pairing-based traitor tracing scheme with
total parameter size O(N2/9). In fact, it seems entirely plausible to have a
pairing-based traitor tracing scheme with total parameter size O(N1/4).

– Can we extend our techniques to broadcast with tracing following [20]? Or to
public tracing with smaller parameters than in [6]? For public tracing from
pairings, we conjecture that BSW is essentially optimal, namely we need
min(|ct|, |pk| · |sk|) = Ω(

√
N).

Organization. We provide preliminaries in Sect. 2. Our traitor tracing based
on AB-FE is given out in Sect. 3. We develop the AB-FE scheme required by
the traitor tracing in Sect. 4.

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random
from a finite set S. We use ≈s to denote two distributions being statistically
indistinguishable, and ≈c to denote two distributions being computationally
indistinguishable. We use lower-case boldfaced letters to denote row vectors and
upper-case boldfaced letters to denote matrices. We use ei to denote the ith

elementary row vector (with 1 at the i’th position and 0 elsewhere, and the total
length of the vector specified by the context). For any positive integer N , we use
[N ] to denote {1, 2, . . . , N} and [0, N ] to denote {0, 1, . . . , N}.

2.1 Prime-Order Bilinear Groups

A group generation algorithm G takes as input the security parameter 1λ and
outputs a description G := (p, G1, G2, GT, e), where p is a prime, G1, G2 and
GT are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate
bilinear map. We require that the group operations in G1, G2, GT and the
bilinear map e be computable in deterministic polynomial time in λ. Let g1 ∈ G1,
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g2 ∈ G2, and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T. We recall
the matrix Diffie–Hellman (MDDH) assumption in G1 [14]:

Assumption 1 (MDDHd
k,�). Let k, �, d ∈ N. We say that the MDDHd

k,�

assumption holds in G1 if for all p.p.t. adversary A,

Adv
MDDHd

k,�

A (λ) :=
∣

∣Pr[A(1λ, G, [A]1, [SA]1 ) = 1]

− Pr[A(1λ, G, [A]1, [C]1 ) = 1]
∣

∣

is negligible in λ, where G := (p, G1, G2, GT, e) ← G(1λ), A ← Z
k×�
p , S ← Z

d×k
p ,

C ← Z
d×�
p .

The MDDH assumption in G2 can be defined analogously. Escala et al. [14]
showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,� ∀k, d ≥ 1.

When � ≤ k, the MDDHd
k,� assumption holds unconditionally.

Assumption 2 (bilateral MDDHd
k,�). Let k, �, d ∈ N. We say that the bilat-

eral MDDHd
k,� assumption holds in G1, G2 if for all p.p.t. adversary A,

Adv
biMDDHd

k,�

A (λ) :=
∣

∣Pr[A(1λ, G, [A]1, [SA]1 , [A]2, [SA]2 ) = 1]

− Pr[A(1λ, G, [A]1, [C]1 , [A]2, [C]2 ) = 1]
∣

∣

is negligible in λ, where G := (p, G1, G2, GT, e) ← G(1λ), A ← Z
k×�
p , S ← Z

d×k
p ,

C ← Z
d×�
p .

The bilateral MDDH assumption is a strengthening of the MDDH assumption
for asymmetric bilinear groups. It cannot hold for k = 1 for reasons similar to
why DDH cannot hold in symmetric bilinear groups. An implication similar to
that due to Escala et al. [14] holds:

bilateral k-Lin ⇒ bilateral MDDH1
k,k+1 ⇒ bilateral MDDHd

k,� ∀k ≥ 2, d ≥ 1.

By the implication, we will work with (bilateral) MDDH1
k,k+1. This is sufficient

for deriving our results based on (bilateral) k-Lin.

2.2 Traitor Tracing

We follow the definition in [30]. A traitor tracing scheme with key space K
consists of four p.p.t. algorithms:
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– Gen(1λ, 1N ) → (

pk, tk, {ski}i∈[N ]

)

: The key generation algorithm takes the
security parameter 1λ and the number 1N of users as input. It outputs a public
key pk, a tracing key tk, and secret keys {ski}i∈[N ] (one for each user).

– Enc(pk) → (ct, k): The encapsulation algorithm takes pk as input and outputs
a ciphertext ct and an encapsulated key k ∈ K.

– Dec(pk, ski, ct) → k: The decapsulation algorithm takes pk, ski, ct as input
and outputs a decapsulated key k.

– TraceD(pk, tk, 11/ε) → i∗: The tracing algorithm takes pk, tk, and the error
parameter 11/ε as input. It has oracle access to a decoder D and outputs a
traitor identity i∗ ∈ [N ] or ⊥.

Correctness. We require that for all c ∈ N, there exists a negligible function
ε(λ) such that for all λ ∈ N, N ∈ [λc], i ∈ [N ],

Pr

[
(

pk, tk, {ski}i∈[N ]

)← Gen(1λ, 1N )
(ct, k) ← Enc(pk)

: Dec(pk, ski, ct) = k

]

≥ 1 − ε(λ).

Tracing Security. The scheme is secure if for all ε(λ) > 0 such that 1/ε(λ) is
polynomially bounded, all efficient adversary A wins the following game with
negligible probability:

– Launch A(1λ) and receive 1N from it. Run
(

pk, tk, {ski}i∈[N ]

)← Gen(1λ, 1N )
and send pk to A.

– A adaptively queries keys for iq ∈ [N ]. Upon this query, send skiq
to A. This

stage can be repeated as many times as A wants. Let T be the set of iq’s for
which the key is queried.

– A outputs a decoder D. Run i∗ ← TraceD(pk, tk, 11/ε(λ)). A wins if

Pr
[

b ← {0, 1}, k0 ← K, (ct, k1) ← Enc(pk) : D∗(ct, kb) = b
]− 1

2
≥ ε(λ)

and i∗ = ⊥, or if i∗ /∈ T ∪ {⊥}.

Note that tracing security implies standard semantic security, cf. [30, Remark
3].

2.3 Attribute-Based Functional Encryption

An attribute-based functional encryption (AB-FE) for

function class F = {f : Z → {0, 1}∗} and predicate P : X × Y → {0, 1}
consists of four p.p.t. algorithms:

– Setup(1λ,F ,Z,X ,Y) → (mpk,msk): The set-up algorithm takes the security
parameter 1λ and the domains F ,Z,X ,Y as input, and outputs a master
public/secret key pair (mpk,msk).
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– KeyGen(mpk,msk, f, y) → sk: The key generation algorithm takes mpk, msk,
f ∈ F , y ∈ Y as input, and outputs a secret key sk.

– Enc(mpk, z, x) → ct: The encryption algorithm takes mpk, z ∈ Z, x ∈ X as
input, and outputs a ciphertext ct.

– Dec(mpk, sk, f, y, ct, x) → d: The decryption algorithm takes mpk, sk, f, y, ct, x
as input and outputs d ∈ {0, 1}∗.

Correctness. For all λ ∈ N, F , Z, X , Y, f ∈ F , y ∈ Y, z ∈ Z, x ∈ X such that
P (x, y) = 1, we require

Pr

⎡

⎢

⎣

(mpk,msk) ← Setup(1λ,F ,Z,X ,Y)
sk ← KeyGen(mpk,msk, f, y)
ct ← Enc(mpk, z, x)

: Dec(mpk, sk, f, y, ct, x) = f(z)

⎤

⎥

⎦= 1.

Our scheme will be based on pairing, for which we require f to take values in Zp

and relax the correctness requirement so that Dec only needs to output [f(z)]T.

Indistinguishability Security with Adaptive x and Semi-adaptive z.
For all p.p.t. stateful A, we require

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b ← {0, 1}
(F ,Z,X ,Y) ← A(1λ)

(mpk,msk) ← Setup(1λ,F ,Z,X ,Y)
(z0, z1) ← A(mpk)

x ← AKeyGen(mpk,msk,·,·)()
ct ← Enc(mpk, zb, x)

: AKeyGen(mpk,msk,·,·)(ct) = b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2

to be negligible, where for each query (fq, yq) made to KeyGen by A, it is required
that fq(z0) = fq(z1) or P (x, yq) = 0.

We also consider a strengthened notion with partially adaptive z, where part
of z0, z1 can be chosen with x, after querying arbitrarily many keys.

3 Building Traitor Tracing

We define threshold broadcast, private linear broadcast encryption (TB-PLBE),
a certain kind of AB-FE, and use it to construct our traitor tracing scheme.
We provide a construction for AB-FE that can be instantiated to TB-PLBE in
Sect. 4; the instantiation can be found in Sect. 4.5.

3.1 TB-PLBE

We define TB-PLBE as an AB-FE (Sect. 2.3) for the function class

Z = [0, N1] × Zp, Fcomp
N1

=
{

f comp
i1

: [0, N1] × Zp → Zp

∣

∣ i1 ∈ [N1]
}

,
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∀i1 ∈ [N1], f comp
i1

(j1,m) =

{

m, if i1 > j1;
0, otherwise;

and the predicate

X = ({0, 1}κ)N2 , Y = [N2] × {0, 1}κ,

P tbe
N2,κ

(

(r1, . . . , rN2), (i2, u)
)

=

{

1, if wt(ri2 ⊕ u) ≥ 2κ/5;
0, otherwise.

In Setup, the functionality (Fcomp
N1

,Z,X ,Y) is represented by (1N1 , 1N2). In
KeyGen and Dec, the function f comp

i1
is represented by i1. We need a TB-PLBE

secure under adaptively chosen j1, r1, . . . , rN2 and semi-adaptively chosen m
(cf. Sect. 2.3). We will present a construction of TB-PLBE in Sect. 4 that is
secure under adaptively chosen r1, . . . , rN2 and selectively chosen j1,m based on
bi-k-Lin; the fact that N1 = poly(λ) implies security against adaptively chosen
j1 by a standard guessing argument.

Remark 1 (relation with rPLBE). We will build traitor tracing from TB-PLBE
directly in Sect. 3.2. For completeness, we briefly sketch how to implement
(N1, N2)-rPLBE (with set-revocation suitable for our tracing algorithm) as out-
lined in Sect. 1.2 from TB-PLBE which is a AB-FE for Fcomp

N1
and P tbe

N2,κ:

– The public key are the same as TB-PLBE; the secret key for user (i1, i2) ∈
[N1] × [N2] consists of a TB-PLBE key for (i1; i2, ui1,i2) where ui1,i2 is fresh
for each user.

– An encryption of (z, S,m) where S ⊆ {i∗1}× [N2] is a TB-PLBE encryption of
(z; (r1, . . . , rN2),m) where we sample ri2 uniformly for (i∗1, i2) /∈ S but sample
ri2 according to the distribution ρi∗

1 ,i2 for (i∗1, i2) ∈ S described in Sect. 3.2.

Revocation mechanisms are as follows:

– The index-revocation for z relies on the function Fcomp
N1

of TB-PLBE: i1 > z
iff (i1, i2) /∈ [z] × [N2]; index-hiding follows from the security of TB-PLBE,
namely z is hidden.

– The set-revocation S relies on the predicate P tbe
N2,κ and property of the dis-

tribution ρi1,i2 : this ensures that wt(ri2 ⊕ ui∗
1 ,i2) < 2κ/5 for all (i∗1, i2) ∈ S.

However, set-hiding require an additional property of those distributions: dis-
tributions ρi1,i2 are quite close to random distribution without the knowledge
of ui1,i2 . See Lemma 1 for the two properties of ρi1,i2 .

Note that we need the knowledge of ui1,i2 for finding ρi1,i2 (see algorithm Learn
in Lemma 1), therefore the encryption need secret key when S �= ∅ for tracing
(Step 2).
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3.2 Traitor Tracing from TB-PLBE

Traitor Tracing Scheme. Let TBPLBE be a TB-PLBE scheme as defined in
Sect. 3.1. Our traitor tracing scheme works as follows:

– Gen(1λ, 1N ) sets κ to be any ω(log λ) function that is polynomially bounded
by λ, and N1 = N2/3κ2/3, N2 = N1/3κ−1/3. Treating the identity space [N ]
as [N1] × [N2], the algorithm samples ui1,i2 ← {0, 1}κ for all i1 ∈ [N1] and
i2 ∈ [N2], runs

(tpmpk, tpmsk) ← TBPLBE.Setup(1λ, 1N1 , 1N2),
tpski1,i2 ← TBPLBE.KeyGen(tpmsk, i1, (i2, ui1,i2)),
ski1,i2 ← (tpski1,i2 , i1, (i2, ui1,i2)), ∀i1 ∈ [N1], i2 ∈ [N2],

and outputs

pk = tpmpk, tk = {ui1,i2}i1∈[N1],i2∈[N2], {ski1,i2}i1∈[N1],i2∈[N2].

– Enc(pk) samples m ← Zp and rj2 ← {0, 1}κ for j2 ∈ [N2]. It runs

tpct ← TBPLBE.Enc(tpmpk, (0,m), (r1, . . . , rN2))

and outputs ct = (tpct, r1, . . . , rN2) and k = [m]T. (Here, j1 is set to 0.)
– Dec(ski1,i2 , ct) first parses ski1,i2 into (tpski1,i2 , i1, (i2, ui1,i2)) and ct into

(tpct, r1, . . . , rN2). It outputs

TBPLBE.Dec(tpski1,i2 , i1, (i2, ui1,i2), tpct, (r1, . . . , rN2)).

– TraceD(pk, tk, 11/ε) is described later.

Correctness. The correctness follows from that of TB-PLBE scheme with the
fact that (i) 0 = j1 < i1 for all i1 ∈ [N1]; and (ii) wt(ri2 ⊕ ui1,i2) ≥ 2κ/5 with
probability 1 − 2−Ω(κ) for all i1 ∈ [N1] and i2 ∈ [N2].

Distributions and Lemma for Tracing. Given ρ = σ1 · · · σt ∈ {0, 1, 
}t for
t ≤ κ, we associated ρ with a distribution and write r ← ρ for

r = s1 · · · sκ,

{

si = σi, if i ≤ t and σi ∈ {0, 1};
si ← {0, 1}, if i > t or σi = 
.

Our tracing algorithm follows the description in the technical overview, except
u∗

i1,i2
is sampled from ρi1,i2 instead of being fixed. The distributions ρi1,i2 are

found iteratively. We rely on the following result:

Lemma 1 (implicit in [30, Sect. 8.1]). There is an algorithm LearnB(u, 11/δ)
that given u ∈ {0, 1}κ, δ > 0, and oracle access to a randomized algorithm
B with bit output, makes poly(κ, 1/δ) calls to B and runs in additional time
poly(κ, 1/δ). Its output ρ ∈ {0, 1, 
}κ satisfies the following conditions:
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– Each symbol of ρ is either the corresponding symbol in u, or is 
.
– The number of 
’s in ρ is no greater than 2κ/5.

Moreover, for all B and δ > 0,

Pr

[

u ← {0, 1}κ

ρ ← LearnB(u, 11/δ)
: Pr

r←ρ
[B(r) = 1] ≥ Pr

r←{0,1}κ
[B(r) = 1] − δ

]

= 1 − 2−Ω(κ).

The proof can be found in the full version [16]. We remark that [15,25] solves
the same problem using similar techniques in incomparable parameter regimes
that are insufficient for our application.

Tracing Algorithm. Given a decoder D and a distribution D over traitor
tracing ciphertexts and encapsulated keys, we write

εD(D) = Pr
[

b ← {0, 1}, k0 ← K, (ct, k1) ← D : D(ct, kb) = b
]− 1

2
.

Recall that K is the key space, cf. Sect. 2.2. For brevity, we represent D by
(j1; r1, . . . , rN2) used in TB-PLBE.

The algorithm TraceD(pk, tk, 11/ε) works as follows:

1. Let ξ1 = ε
10N1

. Compute estimations ε̂i1 of εi1 within additive error ξ1 for
i1 = 0, . . . , N1, where

εi1 = εD(i1; r1, . . . , rN2), r1, . . . , rN2 ← {0, 1}κ.

Recall that εD(· · ·) is defined by the probability of an efficient experiment
minus 1

2 . Perform �(κ log 2 + log(4N1 + 4))/(2ξ2
1)� independent trials of that

experiment and set ε̂i1 to be the empirical frequency minus 1
2 .

2. Pick any i∗1 ∈ [N1] such that ε̂i∗
1−1 − ε̂i∗

1
≥ 3ξ1. If there is no such i∗1, the

algorithm Trace aborts.
3. For every t < N2 and values of ρi∗

1 ,1, . . . , ρi∗
1 ,t (to be found later in Step 4),

define B[ρi∗
1 ,1, . . . , ρi∗

1 ,t](r), which has the values of ρ’s hardwired, as

b ← {0, 1}, b′ ← {0, 1}, k0 ← K, m ← Zp, k1 = [m]T,

u∗
i∗
1 ,1 ← ρi∗

1 ,1, . . . , u
∗
i∗
1 ,t ← ρi∗

1 ,t,

rt+1 = r, rt+2 ← {0, 1}κ, . . . , rN2 ← {0, 1}κ,

R = (u∗
i∗
1 ,1, . . . , u

∗
i∗
1 ,t, rt+1, . . . , rN2),

output D
(

TBPLBE.Enc(tpmpk, (i∗1 + b′,m), R), R, kb

)⊕ b ⊕ b′ ⊕ 1.

4. Let δ = ε
540N1N2

. For i2 = 1, . . . , N2, run

ρi∗
1 ,i2 ← Learn

B[ρi∗
1 ,1,...,ρi∗

1 ,i2−1](ui∗
1 ,i2 , 1

1/δ).
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5. Let ξ2 = ε
180N1N2

. Estimate ε̂i∗
1 ,i2,0, ε̂i∗

1 ,i2,1 of εi∗
1 ,i2,0, εi∗

1 ,i2,1 within additive
error ξ2 for i2 = 0, . . . , N2, where

εi∗
1 ,i2,b′ = εD(i∗1 − 1 + b′;u∗

i∗
1 ,1, . . . , u

∗
i∗
1 ,i2 , ri2+1, . . . , rN2),

u∗
i∗
1 ,1 ← ρi∗

1 ,1, . . . , u
∗
i∗
1 ,i2 ← ρi∗

1 ,i2 , ri2+1 ← {0, 1}κ, . . . , rN2 ← {0, 1}κ.

They are computed with �(κ log 2 + log(8N2 + 8))/(2ξ2
2)� independent trials.

6. Pick any i∗2 ∈ [N2] such that (ε̂i∗
1 ,i∗

2−1,0 − ε̂i∗
1 ,i∗

2−1,1)− (ε̂i∗
1 ,i∗

2 ,0 − ε̂i∗
1 ,i∗

2 ,1) ≥ 5ξ2.
If there is no such i∗2, the algorithm Trace aborts.

7. Output (i∗1, i
∗
2) as a traitor.

Tracing Security. We prove the following theorem.

Theorem 1. Assuming TBPLBE being a TB-PLBE secure under adaptively
chosen j1, r1, . . . , rN2 and semi-adaptively chosen m (cf. Sect. 2.3), our traitor
tracing scheme is secure (cf. Sect. 2.2).

Our proof uses the following lemmas which will be proved later:

Lemma 2. Assuming TBPLBE being a TB-PLBE secure under adaptively cho-
sen j1, r1, . . . , rN2 and semi-adaptively chosen m, in the tracing security game,
εN1 ≤ ε(λ)

2 with probability 1 − λ−ω(1).

Lemma 3. Assuming TBPLBE being a TB-PLBE secure under adaptively cho-
sen j1, r1, . . . , rN2 and semi-adaptively chosen m, in the tracing security game,
εi∗

1 ,N2,0 − εi∗
1 ,N2,1 ≤ ε(λ)

20N1
with probability 1 − λ−ω(1), where i∗1 is the index found

in Step 2 of Trace.

It should be noted that in the tracing security game, εN1 , εi∗
1 ,N2,0, εi∗

1 ,N2,1 depend
on the random coins of A, and more importantly, those used to set up the traitor
tracing scheme in the security game, so they are random variables (not constants)
even when A, ε, λ are fixed. Therefore, εN1 ≥ ε(λ)

2 and εi∗
1 ,N2,0 − εi∗

1 ,N2,1 ≤ ε(λ)
20N1

are events (i.e., probabilistic) and the above lemmas bound their probabilities.
Lemma 2 corresponds to the claim in the introduction that εN1 is negligible,

and Lemma 3, εi∗
1 ,N2,0 − εi∗

1 ,N2,1. They are indeed negligible with overwhelming
probability, but we only need the weakened version as stated in those lemmas.

Proof (Theorem 1). It suffices to prove the following three claims:

– Claim 1: The probability (of the conjunction event) that ε0 ≥ ε(λ) and Trace
aborts at Step 2 is λ−ω(1).3

– Claim 2: The probability that Trace aborts at Step 6 is λ−ω(1).
– Claim 3: Let i∗1 and i∗2 be the indices found in Steps 2 and 6, then ski∗

1 ,i∗
2

is queried by the adversary in the tracing security game with probability
1 − 2−Ω(κ) poly(N) (i.e., user (i∗1, i

∗
2) is not honest).4

3 As κ = ω(log λ) and N = poly(λ), any statistical error 2−Ω(κ) is absorbed by λ−ω(1)

when combined with a computational argument, and thus omitted in such case.
4 Claim 3 does not care about whether ε0 ≥ ε(λ).
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Let GoodEst be the event that all estimations are within the prescribed additive
errors:

|ε̂i1 − εi1 | ≤ ξ1 for all i1 = 0, . . . , N1,

|ε̂i∗
1 ,i2,b′ − εi∗

1 ,i2,b′ | ≤ ξ2 for all i2 = 0, . . . , N2 and b′ = 0, 1.

By the Chernoff bound, the union bound, and how the numbers of trials are set,
we have Pr[GoodEst] ≥ 1 − 2−κ. We proceed to prove the claims.

Proof of Claim 1. By Lemma 2 and our choice of ξ1, with probability 1 − λ−ω(1),

max
i1∈[N1]

{εi1−1 − εi1} ≥ 1
N1

∑

i1∈[N1]

(εi1−1 − εi1) =
ε0 − εN1

N1
≥ ε(λ) − ε(λ)

2

N1
= 5ξ1,

when ε0 ≥ ε(λ). Then, GoodEst implies

max
i1∈[N1]

{ε̂i1−1 − ε̂i1} ≥ 5ξ1 − 2ξ1 = 3ξ1.

This proves Claim 1.

Proof of Claim 2. GoodEst implies

εi∗
1−1 − εi∗

1
≥ ε̂i∗

1−1 − ε̂i∗
1

− 2ξ1 = ξ1.

Note that εi∗
1 ,0,b′ = εi∗

1−1+b′ . Together with Lemma 3 and our choice of ξ1, ξ2,
with probability 1 − λ−ω(1),

max
i2∈[N2]

{(εi∗
1 ,i2−1,0 − εi∗

1 ,i2−1,1) − (εi∗
1 ,i2,0 − εi∗

1 ,i2,1)}

≥ 1
N2

(

(εi∗
1 ,0,0 − εi∗

1 ,0,1) − (εi∗
1 ,N2,0 − εi∗

1 ,N2,1)
) ≥ ξ1 − ε(λ)

20N1

N2
= 9ξ2.

Again with GoodEst, we have

max
i2∈[N2]

{(ε̂i∗
1 ,i2−1,0 − ε̂i∗

1 ,i2−1,1) − (ε̂i∗
1 ,i2,0 − ε̂i∗

1 ,i2,1)} ≥ 9ξ2 − 4ξ2 = 5ξ2.

This proves Claim 2.

Proof of Claim 3. Let GoodLearn be the event that for all i2 ∈ [N2] such that
ski∗

1 ,i2 is not queried by the adversary,

Pr
r←ρi∗

1 ,i2

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
] ≥ Pr

r←{0,1}κ

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
]− δ.

Note that if ski∗
1 ,i2 is not queried, then ui∗

1 ,i2 is independent of the tracing security
game until Learn is invoked with it, and therefore, Lemma 1 applies. By a union
bound over Lemma 1, we have Pr[GoodLearn] = 1 − 2−Ω(κ) poly(N).
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Following the definition of B (with t = i2 − 1) in Step 3 of Trace and that of
εi∗

1 ,i2−1,b′ in Step 5, and applying the law of total probability over b′,

Pr
r←{0,1}κ

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
]

=
1
2

Pr
[

D
(

TBPLBE.Enc(tpmpk, (i∗1 + 0,m), R), R, kb

)⊕ b ⊕ 0 ⊕ 1 = 1
]

+
1
2

Pr
[

D
(

TBPLBE.Enc(tpmpk, (i∗1 + 1,m), R), R, kb

)⊕ b ⊕ 1 ⊕ 1 = 1
]

=
1
2

Pr
[

D
(

TBPLBE.Enc(tpmpk, (i∗1,m), R), R, kb

)

= b
]

+
1
2
(

1 − Pr
[

D
(

TBPLBE.Enc(tpmpk, (i∗1 + 1,m), R), R, kb

)

= b
])

=
1
2
εi∗

1 ,i2−1,0 +
1
2
(

1 − εi∗
1 ,i2−1,1

)

.

Similarly, considering t = i2 and εi∗
1 ,i2,b′ ,

Pr
r←ρi∗

1 ,i2

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
]

=
1
2
εi∗

1 ,i2,0 +
1
2
(

1 − εi∗
1 ,i2,1

)

.

Therefore,

Pr
r←ρi∗

1 ,i2

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
]− Pr

r←{0,1}κ

[

B[ρi∗
1 ,1, . . . , ρi∗

1 ,i2−1](r) = 1
]

=
−1
2
(

(εi∗
1 ,i2−1,0 − εi∗

1 ,i2−1,1) − (εi∗
1 ,i2,0 − εi∗

1 ,i2,1)
)

.

GoodLearn thus implies that for all i2 ∈ [N2] such that ski∗
1 ,i2 is not queried by

the adversary,

(εi∗
1 ,i2−1,0 − εi∗

1 ,i2−1,1) − (εi∗
1 ,i2,0 − εi∗

1 ,i2,1) ≤ 2δ.

Together with GoodEst, for all i2 ∈ [N2] such that ski∗
1 ,i2 is not queried by the

adversary,

(ε̂i∗
1 ,i2−1,0 − ε̂i∗

1 ,i2−1,1) − (ε̂i∗
1 ,i2,0 − ε̂i∗

1 ,i2,1) ≤ 2δ + 4ξ2 < 5ξ2,

i.e., except with probability 2−Ω(κ) poly(N), such i2 cannot be chosen as i∗2
by Trace. This proves Claim 3 and thus Theorem 1. ��

Proving Lemmas. To prove Lemma 2 and Lemma 3, we will use the following
trick of advantage sign correction:

Lemma 4 ([7, Exercise 2.22(a)]). Suppose the tuple of a distinguisher D
and two distributions D0,D1 follows some joint distribution. Let

ε := Pr
x←D0

[D(x) = 1] − Pr
x←D1

[D(x) = 1]

be the signed advantage of D against D0,D1, which itself is a random variable
(because D,D0,D1 are randomized). Consider

˜b ← {0, 1}, x̃ ← D
˜b, c̃ ← D(x̃), ˜D(x) := c̃ ⊕˜b ⊕ D(x),
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ε̃ := Pr
x←D0

[ ˜D(x) = 1] − Pr
x←D1

[ ˜D(x) = 1],

then E[ ε̃ ] = E[ε2].

In our reduction algorithm, ε in Lemma 4 is the signed advantage of the decoder
D against certain ciphertext distributions (D0,D1) used by Trace, and we want to
prove that ε is negligible with overwhelming probability. However, if we directly
use D as the distinguisher, depending on the sampling of D,D0,D1, the realiza-
tion of ε could be positive or negative, causing cancellation in E[ε], the advantage
of the reduction algorithm. The ·̃ components estimate the sign of ε with one
trial, and ˜D is an attempted correction of D, which is the distinguisher used by
the reduction algorithm and immune from cancellation.

We are now ready to present our proofs.

Proof (Lemma 2). Let A be an efficient adversary against tracing security. We
construct the following efficient B against TB-PLBE security:
– B launches A, receives 1N from it, picks κ,N1, N2 as specified by the traitor

tracing scheme, samples

m0 ← Zp, m1 ← Zp, ui1,i2 ← {0, 1}κ for i1 ∈ [N1], i2 ∈ [N2],

sends 1N1 , 1N2 ,m0,m1 to TB-PLBE game, and receives back tpmpk. It sends
pk = tpmpk to A. Here, m0,m1 sent to TB-PLBE game are part of the chal-
lenge plaintexts.

– When, and only when, A queries for ski1,i2 , the adversary B queries TB-PLBE
game and sends the key to A.

– When A outputs a decoder D, the adversary B samples r1, . . . , rN2 ← {0, 1}κ,
sends N2, N2 as the rest of the challenge plaintexts and r1, . . . , rN2 as the
challenge attribute, and receives back tpct.

– B samples and computes

m̃0, m̃1 ← Zp, ˜b ← Zp, r̃1, . . . , r̃N2 ← {0, 1}κ,

t̃pct ← TBPLBE.Enc
(

tpmpk, (N1, m̃˜b), (r̃1, . . . , r̃N2)
)

,

c̃ ← D(t̃pct, r̃1, . . . , r̃N2 , [m̃1]T),
c ← D(tpct, r1, . . . , rN2 , [m1]T).

It outputs c̃ ⊕˜b ⊕ c.

By Lemma 4, the advantage of B is E[ε2
N1

], which must be λ−ω(1) by TB-PLBE
security. It follows that in the tracing security game with A,

Pr

[

εN1 ≥ ε(λ)
2

]

≤ Pr

[

ε2
N1

≥ (ε(λ))2

4

]

=
4

(ε(λ))2
· (ε(λ))2

4
· Pr

[

ε2
N1

≥ (ε(λ))2

4

]

≤ (ε(λ))2

4
· E[ε2

N1
] = λ−ω(1).

��
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Proof (Lemma 3). The reduction is similar to that in the previous proof, with
the following changes:

– The selective part of the challenge plaintexts are m,m.
– After A outputs D, the reduction computes 1/ε(λ), runs Trace to obtain i∗1

and ρi∗
1 ,i2 ’s, samples u∗

i∗
1 ,i2

← ρi∗
1 ,i2 for i2 ∈ [N2], and sends i∗1 − 1, i∗1 as the

challenge plaintexts and u∗
i∗
1 ,1, . . . , u

∗
i∗
1 ,N2

as the challenge attribute.
– The ·̃ components sampled by the reduction are

m̃ ← Zp instead of m̃0, m̃1,

ũ∗
i∗
1 ,i2 ← ρi∗

1 ,i2 instead of r̃i2 ,

(i∗1 − 1 +˜b, m̃) in t̃pct instead of (N1, m̃˜b).

We verify the constraints of TB-PLBE. The constraints of ski1,i2 for all i1 �= i∗1
and all i2 are satisfied as

fi1(i
∗
1 − 1,m) = fi1(i

∗
1,m) =

{

m, if i1 > i∗1;
0, if i1 ≤ i∗1 − 1.

The constraint of ski∗
1 ,i2 for each i2,

0 = P
(

(u∗
i∗
1 ,1, . . . , u

∗
i∗
1 ,N2

), (i2, ui∗
1 ,i2)
)

=

{

1, if wt(u∗
i∗
1 ,i2

⊕ ui∗
1 ,i2) ≥ 2κ/5;

0, otherwise;

holds with probability 1 − 2−Ω(κ) by Lemma 1 and a standard Chernoff bound.
The reduction checks the constraints (for both non- ·̃ and ·̃ values) and aborts

if any of them is violated. By the analysis above, the probability of aborting is
2−Ω(κ) poly(N) = λ−ω(1), which we denote by ε′. By Lemma 4, the reduction
algorithm has advantage E[(εi∗

1 ,N2,0 − εi∗
1 ,N2,1)2] − ε′, which is λ−ω(1) by TB-

PLBE security. Let C be a polynomial upper bound5 of 20N1
ε(λ) , then

Pr
[

εi∗
1 ,N2,0 − εi∗

1 ,N2,1 ≥ ε(λ)
20N1

]

≤ Pr
[

(εi∗
1 ,N2,0 − εi∗

1 ,N2,1)2 ≥ 1
C2

]

= C2 · 1
C2

· Pr
[

(εi∗
1 ,N2,0 − εi∗

1 ,N2,1)2 ≥ 1
C2

]

≤ C2
(

E[(εi∗
1 ,N2,0 − εi∗

1 ,N2,1)2] − ε′ + ε′) = λ−ω(1).

��
5 N1 is a random variable due to the random coins of A, so it is impossible to write

N1 outside probability or expectation. For non-uniform security we may assume N1

is fixed for every λ, yet it is better to present the more general proof.



Traitor Tracing with N1/3-Size Ciphertexts and O(1)-Size Keys from k-Lin 657

4 Building Attribute-Based Functional Encryption

This section builds TB-PLBE scheme promised in Sect. 3.1. At the core is an
attribute-based functional encryption (AB-FE) for predicate P : X × Y → {0, 1}
and quadratic function class

Fquad
�1,�2

=
{

fquad
f : Z

�1
p × Z

�2
p → Zp, (z1, z2) �→ (z1 ⊗ z2)f�

∣

∣ f ∈ Z
�1�2
p

}

(1)

with Z = Z
�1
p × Z

�2
p , called AB-QFE. We combine a slightly tweaked version of

the FE scheme for quadratic functions (QFE) in [29] and a compatible attribute-
based key encapsulation mechanism (AB-KEM) for P . In the following sections,
we first introduce the two building blocks in Sect. 4.1 and Sect. 4.2; for generality,
we will work with general AB-KEM in Sect. 4.3 where we build our AB-QFE
scheme and describe AB-KEM for a certain P (i.e., local (read-once) monotone
span program) in Sect. 4.4 needed for traitor tracing in Sect. 3. We show how
to instantiate our AB-QFE to get TB-PLBE in Sect. 4.5.

4.1 Building Block: Functional Encryption for Quadratic Functions

A functional encryption scheme for function class F = {f : Z → {0, 1}∗} consists
of four p.p.t. algorithms:

– Setup(1λ,F ,Z) → (mpk,msk): The set-up algorithm takes the security
parameter 1λ and the domains F ,Z as input, and outputs a master pub-
lic/secret key pair (mpk,msk).

– KeyGen(mpk,msk, f) → sk: The key generation algorithm takes mpk, msk,
and a function f ∈ F as input, and outputs a secret key sk.

– Enc(mpk, z) → ct: The encryption algorithm takes mpk and function input
z ∈ Z as input, and outputs a ciphertext ct.

– Dec(mpk, sk, f, ct) → d: The decryption algorithm takes mpk, sk, f, ct as input
and outputs d ∈ {0, 1}∗.

Correctness. For all λ ∈ N, F , Z, f ∈ F , z ∈ Z, we require

Pr

⎡

⎢

⎣

(mpk,msk) ← Setup(1λ,F ,Z)
sk ← KeyGen(mpk,msk, f)
ct ← Enc(mpk, z)

: Dec(mpk, sk, f, ct) = f(z)

⎤

⎥

⎦ = 1.

Semi-adaptive Simulation Security. For all p.p.t. stateful A, there exists
p.p.t. stateful (S̃etup, K̃eyGen,˜Enc) such that

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

(F ,Z) ← A(1λ)

(mpk,msk) ← Setup(1λ,F ,Z)
z ← A(mpk)
ct ← Enc(mpk, z)

output AKeyGen(mpk,msk,·)(ct)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

≈c

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(F ,Z) ← A(1λ)

˜mpk ← S̃etup(1λ,F ,Z)

z ← A(˜mpk)

c̃t ← ˜Enc()

output AK̃eyGen(·,·)(c̃t)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

,
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where for each query fq ∈ F made by A, we supply fq(z) to K̃eyGen.

QFE. A functional encryption scheme for quadratic functions (QFE) is an FE
computing

(z1, z2,u) �→ (z1 ⊗ z2)f� + uv�

where z1 ∈ Z
�1
p , z2 ∈ Z

�2
p , u ∈ Z

�3
p are the function input, and f ∈ Z

�1�2
p , v ∈ Z

�3
p

are specified by the function. In this work, we consider QFE implemented using
pairing. We let KeyGen,Dec take (f , [v]2) instead of (f ,v) as the description
of the function, let Enc take (z1, z2, [u]1) instead of (z1, z2,u), and only require
that Dec output [(z1 ⊗ z2)f� + uv�]T. We also let the simulator take the function
output encoded in G2 when simulating a key, which will be convenient for the
security proof of AB-FE for quadratic functions.

IPFE. Our construction of QFE is similar to that in [29] and uses an inner-
product function encryption (IPFE) scheme which is an FE for u �→ uv�, where
u ∈ Z

�4
p is the function input and v ∈ Z

�4
p is specified by the function. Again, in a

group-based scheme, KeyGen,Dec takes [v]2, Enc takes [u]1, Dec outputs [uv�]T,
and K̃eyGen takes [uv�]2. The IPFE in [2] is first proved to be semi-adaptively
simulation-secure in [28]. Its parameter sizes are (ignoring constants)

|mpk| = �4|G1|, |ct| = �4|G1|, |sk| = |G2|.

Construction. Suppose k2-Lin holds in G2 and bilateral k12-Lin holds. Let
IPFE be a semi-adaptively simulation-secure IPFE. Our QFE is as follows:

– Setup(1λ, 1�1 , 1�2 , 1�3) samples A1 ← Z
k12×�1
p , A2 ← Z

k2×�2
p , sets the IPFE

dimension to �4 = k2�1 + k12�2 + �3, runs (impk, imsk) ← IPFE.Setup(1λ, 1�4),
and outputs

mpk =
(

[A1]1, [A1]2, [A2]2, impk
)

, msk = imsk.

– KeyGen(mpk,msk, f , [v]2) outputs

sk = isk ← IPFE.KeyGen
(

imsk,
[

(A1 ⊗ I�2)f
�, (I�1 ⊗ A2)f�, v

]

2

)

.

– Enc(mpk, z1, z2, [u]1) samples s1 ← Z
k12
p , s2 ← Z

k2
p , run

ict ← IPFE.Enc(impk, [−s1 ⊗ z2, −(s1A1 + z1) ⊗ s2, u]1)

and outputs

ct =
(

[s1A1 + z1]1, [s2A2 + z2]2, ict
)

,

– Dec(mpk, sk, f , [v]2, ct) outputs
[

(s1A1 + z1
︸ ︷︷ ︸

in ct

) ⊗ (s2A2 + z2
︸ ︷︷ ︸

in ct

) · f�]

T

· IPFE.Dec(impk, isk,
[

(A1 ⊗ I�2)f
�, (I�1 ⊗ A2)f�, v

]

2
, ict).
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The correctness is analogous to [29], we defer the details to the full version [16].
Its parameter sizes are (ignoring constants)

|mpk| = �1|G1| + (�1 + �2)|G2| + |impk| = (�1 + �2 + �3)|G1| + (�1 + �2)|G2|,
|ct| = �1|G1| + �2|G2| + |ict| = (�1 + �2 + �3)|G1| + �2|G2|,
|sk| = |isk| = |G2|.

Security. We have the following theorem. The proof is analogous to that for
QFE in [29], we defer the details to the full version [16].

Theorem 2. Assume IPFE is semi-adaptively simulation-secure, k2-Lin holds
in G2, and bilateral k12-Lin holds, our QFE scheme achieves semi-adaptive sim-
ulation security.

4.2 Building Block: Attribute-Based Key Encapsulation Mechanism

We define attribute-based key encapsulation mechanism (AB-KEM) with syn-
tactical properties compatible for constructing AB-FE for quadratic functions.
Fix the source groups G1, G2 and the target group GT, an AB-KEM for predicate
P : X × Y → {0, 1} consists of four p.p.t. algorithms:

– Setup(1λ,X ,Y) → (mpk, [A]2): The set-up algorithm takes the security
parameter 1λ and the domains X ,Y as input, and outputs a master pub-
lic key mpk and a public matrix [A]2 with A ∈ Z

�3×�5
p .

– KeyGen(mpk,k, y) → sk: The key generation algorithm takes mpk, a vector
k ∈ Z

�5
p , and y ∈ Y as input, and outputs a secret key sk.

– Enc(mpk, s, x) → ct: The encapsulation algorithm takes a vector s ∈ Z
�3
p and

x ∈ X as input, and outputs a ciphertext ct.
– Dec(mpk, sk, y, ct, x) → d: The decapsulation algorithm takes mpk, sk, y, ct, x

as input, and outputs an encapsulated key d.

Correctness. For all λ ∈ N, X , Y, k ∈ Z
�5
p , s ∈ Z

�3
p , x ∈ X , y ∈ Y such that

P (x, y) = 1, we require

Pr

⎡

⎢

⎣

(mpk, [A]2) ← Setup(1λ,X ,Y)
sk ← KeyGen(mpk,k, y)
ct ← Enc(mpk, s, x)

: Dec(mpk, sk, y, ct, x) = [sAk�]T

⎤

⎥

⎦ = 1.

Adaptive Indistinguishability. For all p.p.t. stateful A, we require

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(X ,Y) ← A(1λ)

(mpk, [A]2) ← Setup(1λ,X ,Y)

s ← Z
�3
p

x ← ANewKeykem(·)([sA]2)
ct ← Enc(mpk, s, x)

: ANewKeykem(·)(ct) = 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(X ,Y) ← A(1λ)

(mpk, [A]2) ← Setup(1λ,X ,Y)

s ← Z
�3
p

x ← ANewKey$(·)([sA]2)
ct ← Enc(mpk, s, x)

: ANewKey$(·)(ct) = 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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to be negligible under the constraint that P (x, yq) = 0 for all query yq made
by A, where NewKeykem(yq) and NewKey$(yq) run

kq ← Z
�5
p , skq ← KeyGen(mpk,kq, yq),

{

kemq ← [sAk�
q ]2, in NewKeykem;

kemq ← G2, in NewKey$;

and return (skq, [Ak�
q ]2, kemq) to A. The security notion requires that the encap-

sulated key be pseudorandom even when encoded in G2, which is stronger than
the usual requirement for KEM. This strengthening is for security reduction
from AB-FE.

Remark 2. Our formalization basically captures the setting with one key per
instance for polynomially many instances and requires that master secret key
have special structure. In more detail, mpk here is the public parameter shared
among all instances and k is the master secret key. We will show a concrete
construction for local (read-once) monotone span programs in Sect. 4.4. The
construction can be generalized to support a broader class of predicates (see
Remark 3).

4.3 AB-FE for Quadratic Functions

We present our AB-FE for quadratic functions (AB-QFE) as defined in (1). In
Setup, the functionality Fquad

�1,�2
is represented by (1�1 , 1�2); in KeyGen and Dec, the

function fquad
f is represented by f where f ∈ Z

�1�2
p . In this section, we consider

general P , as defined in (1) and Sect. 4.2, and provide concrete instance for our
use.

Construction. Let QFE be the QFE scheme and ABE an AB-KEM for predi-
cate P . Our AB-QFE for P works as follows:

– Setup(1λ, 1�1 , 1�2 ,X ,Y) runs

(qmpk, qmsk) ← QFE.Setup(1λ, 1�1 , 1�2 , 1�3),

(abmpk, [A]2) ← ABE.Setup(1λ,X ,Y),

and outputs

mpk = (abmpk, qmpk) and msk = ([A]2, qmsk).

– KeyGen(mpk,msk, f , y) samples k ← Z
�5
p , runs

absk ← ABE.KeyGen(abmpk,k, y), qsk ← QFE.KeyGen(qmsk, f , [Ak�]2),

and outputs
sk = (absk, qsk, [Ak�]2).
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– Enc(mpk, z1, z2, x) samples s ← Z
�3
p , runs

abct ← ABE.Enc(abmpk, s, x), qct ← QFE.Enc(qmpk, z1, z2, [s]1),

and outputs
ct = (abct, qct).

– Dec(mpk, sk, f , y, ct, x) checks whether P (x, y) = 0 and aborts if so. Other-
wise, P (x, y) = 1, it runs

dABE ← ABE.Dec(abmpk, absk, y, abct, x),
dQFE ← QFE.Dec(qmpk, qsk, f , [Ak�]2, qct),

and outputs dQFEd
−1
ABE.

Correctness. When P (x, y) = 1, the correctness follows from those of ABE and
QFE which imply that

dQFE = [(z1 ⊗ z2)f� + sAk�]T, dABE = [sAk�]T.

Efficiency. Our scheme inherits the efficiency from the building blocks:

|mpk| = |abmpk| + |qmpk|, |ct| = |abct| + |qct|, |sk| = |absk| + |qsk| + �3|G2|.
Here, �3 depends on the assumption used by AB-KEM.

Security. We have the following theorem.

Theorem 3. Assuming QFE is semi-adaptively simulation-secure as defined in
Sect. 4.1 and ABE achieves security as defined in Sect. 4.2, our AB-QFE scheme
achieves security as defined in Sect. 2.3.

Let (z0,1, z0,2, z1,1, z1,2) be the semi-adaptive challenge message, x be the adap-
tive challenge attribute and (fq, yq) be the q-th query. We prove Theorem 3 via
the following game sequence where we write ηq,b = (zb,1 ⊗ zb,2)f�

q for b ∈ {0, 1}.

– G0 is the real game, where the keys and the challenge ciphertext are

mpk = (abmpk, qmpk),

ct =
(

ABE.Enc(abmpk, s, x), QFE.Enc(qmpk, zb,1, zb,2, [s]1)
︸ ︷︷ ︸

qct

)

,

skq =
(

ABE.KeyGen(abmpk,kq, yq), QFE.KeyGen(qmpk, fq, [Ak�
q ]2)

︸ ︷︷ ︸

qskq

, [Ak�
q ]2
)

.

– G1 is identical to G0, except we use the simulator for QFE to generate QFE
components:

mpk = (abmpk, q̃mpk ), qct = QFE.˜Enc() ,
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qskq = QFE.K̃eyGen (fq, [Ak�
q ]2, [ηq,b + sAk�

q ]2 ).

We have G0 ≈c G1 by semi-adaptive simulation security of QFE.

– G2 is identical to G1, except we change sAk�
q in qskq to uniformly random

μq ← Zp if ηq,0 �= ηq,1:

qskq =

{

QFE.K̃eyGen(fq, [Ak�
q ]2, [ηq,b + sAk�

q ]2), if ηq,0 = ηq,1;

QFE.K̃eyGen(fq, [Ak�
q ]2, [ηq,b + μq ]2), if ηq,0 �= ηq,1.

We have G1 ≈c G2 by adaptive security of AB-KEM. Roughly speaking,
the reduction algorithm receives abmpk, [A]2, [sA]2, and abct from the
AB-KEM game. To answer an AB-QFE key query from the adversary, if
ηq,0 = ηq,1, the reduction algorithm samples kq ← Z

�5
p and computes skq using

abmpk, [A]2, [sA]2,kq, fq. Otherwise, it queries the AB-KEM game to obtain
abskq, [Ak�

q ]2, kemq, where kemq is either [sAk�
q ]2 or random, and computes

skq with [ηq,b]2 · kemq as the third argument to QFE.K̃eyGen.

The advantage is 0 in G2. To see this, note that b only appears in G2 as
({ηq,b}ηq,0=ηq,1 , {ηq,b + μq}ηq,0 �=ηq,1

) ≡ ({ηq,0}ηq,0=ηq,1 , {μ̃q}ηq,0 �=ηq,1

)

,

thus completely hidden.

4.4 AB-KEM for Local (Read-Once) Monotone Span Programs

We describe AB-KEM for local (read-once) monotone span program [10,11]; we
redo the scheme and proof in order to fit our syntax and security notion as well
as pursue optimal size.

Preliminaries. An m-local (read-once) monotone span program (roMSP) with
input length n is specified by (M, ρ), where M ∈ Z

m×t
p and ρ : [m] → [n] is injec-

tive.6 The predicate for roMSPs of input length n is

P roMSP
n,m

(

x, (M, ρ)
)

=

{

1, if e1 ∈ span {mj |xρ(j) = 1 };
0, otherwise;

where x ∈ {0, 1}n and mj is the jth row of M. We say x is accepted by (M, ρ) for
P
(

x, (M, ρ)
)

= 1. It is also worth noting that by the tight equivalence between
monotone span programs and linear secret sharing schemes (LSSS) [22], m-local
roMSPs are equivalent to LSSS where at most m parties have a share and the
size of each party’s share is at most one.
6 It is important that we do not assume ρ is the identity map by enlarging M, so that

we capture key size dependency in m, the locality. The scheme will be instantiated
for κ-local roMSPs (κ � n), which is crucial for the efficiency of our application.
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Construction. The AB-KEM for local roMSPs, denoted by ABQFEMSP, is as
follows:

– Setup(1λ, 1n) samples

A ← Z
k12×(k12+1)
p , B ← Z

k2×(k2+1)
p , Wi ← Z

(k12+1)×(k2+1)
p for i ∈ [n],

and outputs

mpk =
(

[A]1,
{

[AWi]1
}

i∈[n]
, [B]2,

{

[BW�
i ]2
}

i∈[n]

)

and [A]2.

– KeyGen
(

mpk,k, (M, ρ)
)

samples r ← Z
k2
p and T′ ← Z

(t−1)×(k12+1)
p , sets

T =
(

k
T′

)

, and outputs

sk =
(

[r · B]2,
{[

mjT + r · BW�
ρ(j)

]

2

}

j∈[m]

)

.

– Enc(mpk, s, x) outputs

ct =
(

[s · A]1, {[s · AWi]1}xi=1

)

.

– Dec(mpk, sk, (M, ρ), ct, x) checks whether P roMSP
n,m

(

x, (M, ρ)
)

= 0 and aborts
if so. Otherwise, it finds β1, . . . , βn ∈ Zp such that

∑

xρ(j)=1 βρ(j)mj = e1, and
outputs

∏

xρ(j)=1

[

βρ(j) · (

sk
︷ ︸︸ ︷

mjT + rBW�
ρ(j)) · (

ct
︷︸︸︷

sA )�
]

T
[

βρ(j) · rB
︸︷︷︸

sk

·(sAWρ(j)
︸ ︷︷ ︸

ct

)�
]

T

.

The correctness is straight-forward (cf. [10], more details can be found in the
full version [16]). The parameter sizes of the scheme are (ignoring constants)

|mpk| = n|G1| + n|G2|, �3 = �5 = 1, |ct| = wt(x)|G1|, |sk| = m|G2|,
where n,m,wt(x) are the length of x, the locality of the span program (number
of rows of M), and the Hamming weight of x.

Security. We have the following theorem. The proof basically follows that in [10]
and we defer the details to the full version [16].

Theorem 4. Assume k2-Lin holds in G2 and bilateral k12-Lin holds, our AB-
KEM for local roMSPs achieves security defined in Sect. 4.2.

Remark 3. Our construction is basically a concrete instantiation of [10] and the
proof is adapted from it. The adaptation can be generalized to support predi-
cate encoding: only step G0

4 ≡ G1
4 relies on the so-called α-privacy of predicate

encoding, other steps, which are irrelevant to the predicate, remain unchanged.
Thanks to versatile instantiations of predicate encoding (cf. Appendix A in [10]),
this allows us to cover AB-KEM (and thus AB-FE) for arithmetic branching
program. Furthermore, many existing dual-system ABE schemes in prime-order
pairing groups [17,21,23,24] can be fit into this definition with slight tweaks.
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4.5 Threshold Broadcast, Private Linear Broadcast Encryption

Putting together Sects. 4.3 and 4.4, we readily have an AB-FE for

Fquad
�1,�2

and P roMSP
n,m (2)

with
|mpk| = O(�1 + �2 + n), |ct| = O(�1 + �2 + n), |sk| = O(m).

We can obtain a TB-PLBE scheme (for message space Zp) as an AB-FE for

Fcomp
N1

and P tbe
N2,κ (3)

as defined in Sect. 3.1 by applying the following efficiently computable mappings
that reduce (3) to (2) so that

�1 = �2 = N
1/2
1 and n = 2κN2, m = κ.

This gives our TB-PLBE with shorter parameters:

|mpk| = O(N1/2
1 + κN2), |ct| = O(N1/2

1 + κN2), |sk| = O(κ).

Below, we first describe the mappings in general. In Setting Parameters for
Efficiency, we choose the optimal parameters achieving the desired efficiency.

Function Part. For any n1, n2 ∈ N satisfying n1n2 = N1, we can perform
Fcomp

N1
�→ Fquad

n1,n2
. For this, we follow [3, Sect. 6.1] and define

ηz : [0, N1] × Zp → Z
n1
p × Z

n2
p , (j1,m) �→

{

(mej11 , ej12), if j1 < N1;
(0,0), if j1 = N1;

ηf : [N1] → Z
n1n2
p , i1 �→

∑

0≤j1<i1

ej11 ⊗ ej12 ,

where j11 ∈ [n1], j12 ∈ [n2] satisfy (j11 − 1)n2 + (j12 − 1) = j1 for j1 ∈
[0, N1 − 1]. Note that, for notation convenience, j1 is the input of ηz and also
serves as a general index in the description of ηf . It is straightforward to verify
that

f comp
i1

(j1,m) = Fquad
ηf (i1)

(ηz(j1,m)).

This follows from the fact that

〈ej11 ⊗ ej12 , ej′
11

⊗ ej′
12

〉 =

{

1 if j1 = j′
1;

0 if j1 �= j′
1;

where j′
11, j

′
12 are defined analogous to j11, j12.
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Predicate Part. We will perform P tbe
N2,κ �→ P roMSP

2κN2,κ. For this, we define

ηx : ({0, 1}κ)N2 → {0, 1}2κN2 , (r1, . . . , rN2) �→ (r1, r̄1, . . . , rN2 , r̄N2),
ηy : [N2] × {0, 1}κ → {κ-local roMSP with input length 2κN2},

(i2, u) �→ (M, ρ) with M =

⎛

⎜

⎝

m1

...
mκ

⎞

⎟

⎠ ∈ Z
κ×2κ/5
p

where mθ = (1, θ, θ2, · · · , θ2κ/5−1),
ρ(θ) = 2(i2 − 1)κ + uθκ + θ, ∀θ ∈ [κ].

The construction of ηy is simply Shamir’s secret sharing [26]. We show that

P tbe
N2,κ((r1, . . . , rN2), (i2, u)) = P roMSP

2κN2,κ(ηx(r1, . . . , rN2), ηy(i2, u))

by proving that wt(ri2 ⊕ u) ≥ 2κ/5 if and only if ηx(r1, . . . , rN2) is accepted by
ηy(i2, u). To see this, first note that

(ηx(r1, . . . , rN2))ρ(θ) = (
2(i2−1)κ bits

︷ ︸︸ ︷

r1, r̄1, . . . , ri2−1, r̄i2−1, ri2 , r̄i2 , . . . )2(i2−1)κ+uθκ+θ

= (ri2 , r̄i2)uθκ+θ =

{

(ri2)θ, if uθ = 0;
(r̄i2)θ, if uθ = 1;

= (ri2)θ ⊕ uθ.

By the Vandermonde determinant, any 2κ/5 vectors among e1 and mθ’s are
linearly independent, and therefore,

ηy(i2, u) accepts ηx(r1, . . . , rN2) ⇐⇒ |{ θ | (ηx(r1, . . . , rN2))ρ(θ) = 1}| ≥ 2κ/5
⇐⇒ |{ θ | (ri2)θ ⊕ uθ = 1}| ≥ 2κ/5
⇐⇒ wt(ri2 ⊕ u) ≥ 2κ/5.

Transformation. Given those mappings and an AB-FE ABQFEMSP for Fquad
n1,n2

and P roMSP
2κN2,κ, our TBPLBE for Fcomp

N1
and P tbe

N2,κ works as follows for n1n2 = N1:

– Setup(1λ, 1N1 , 1N2 , 1κ) is

ABQFEMSP.Setup(1λ, 1n1 , 1n2 , 12κN2);

– KeyGen(tpmsk, i1, i2, ui1,i2) is

ABQFEMSP.KeyGen(tpmsk, ηf (i1), ηy(i2, ui1,i2));

– Enc(tpmpk, j1,m, r1, . . . , rN2) is

ABQFEMSP.Enc(tpmpk, ηz(j1,m), ηx(r1, . . . , rN2));

– Dec = ABQFEMSP.Dec.
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Setting Parameters for Efficiency. By definition, wt(ηx(r1, . . . , rN2)) = κN2

and the roMSP ηy(i2, u) is always κ-local. We have TB-PLBE with parameter
sizes (ignoring constants)

|tpmpk| = (n1 + n2 + κN2)|G1| + (n1 + n2 + κN2)|G2|,
|tpct| = (n1 + n2 + κN2)|G1| + n2|G2|,
|tpsk| = κ|G2|,

where n1n2 = N1 and N1N2 = N . By setting

n1 = n2 = N1/3κ1/3 and N2 = N1/3κ−2/3,

we obtain

|tpmpk| = |tpct| = N1/3κ1/3|G1| + N1/3κ1/3|G2|, |tpsk| = κ|G2|.

Security. We will need our TB-PLBE to be secure under adaptively chosen
j1, r1, . . . , rN2 and semi-adaptively chosen m. The scheme we obtain is already
adaptive in r1, . . . , rN2 and semi-adaptive in j1,m. Since j1 ∈ [0, N1] is within a
polynomial range, by a standard guessing argument, the scheme is also adaptive
in j1, at a loss of 1

N1+1 .
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