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Abstract. In this paper we consider two-round secure computation pro-
tocols which use different communication channels in different rounds:
namely, protocols where broadcast is available in neither round, both
rounds, only the first round, or only the second round. The prior works
of Cohen, Garay and Zikas (Eurocrypt 2020) and Damg̊ard, Magri, Ravi,
Siniscalchi and Yakoubov (Crypto 2021) give tight characterizations of
which security guarantees are achievable for various thresholds in each
communication structure .

In this work, we introduce a new security notion, namely, selec-
tive identifiable abort, which guarantees that every honest party either
obtains the output, or aborts identifying one corrupt party (where honest
parties may potentially identify different corrupted parties). We inves-
tigate what broadcast patterns in two-round MPC allow achieving this
guarantee across various settings (such as with or without PKI, with or
without an honest majority).

Further, we determine what is possible in the honest majority setting
without a PKI, closing a question left open by Damg̊ard et al. We show
that without a PKI, having an honest majority does not make it pos-
sible to achieve stronger security guarantees compared to the dishonest
majority setting. However, if two-thirds of the parties are guaranteed to
be honest, identifiable abort is additionally achievable using broadcast
only in the second round.

We use fundamentally different techniques from the previous works to
avoid relying on private communication in the first round when a PKI is
not available, since assuming such private channels without the availabil-
ity of public encryption keys is unrealistic. We also show that, somewhat
surprisingly, the availability of private channels in the first round does
not enable stronger security guarantees unless the corruption threshold
is one.
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1 Introduction

It is known that secure computation is possible in two rounds (whereas one
round is clearly not enough). However, most known two-round protocols either
only achieve the weakest security guarantee (selective abort) [1], or achieve the
best-possible guarantee in their setting by making use of a broadcast channel
in both rounds [4,12,15]. Implementing broadcast via a protocol among the
parties makes no sense in this setting, as the resulting protocol would require
much more than two rounds. However, broadcast can also be done using physical
assumptions or external services such as blockchains. This typically means that
broadcast is expensive and/or slow, so it is important to try to minimize the
usage of broadcast (while achieving as strong a security guarantee as possible).

Before discussing previous work in this direction and our contribution, we
establish some useful terminology.

1.1 Terminology

In this work, we categorize protocols in terms of (a) the kinds of communication
required in each round, (b) the security guarantees they achieve, (c) the setup
they require, and (d) the corruption threshold t they support. We will use short-
hand for all of these classifications to make our discussions less cumbersome.

Communication Structure. We refer to protocols that use two rounds of broad-
cast as BC-BC; protocols that use broadcast in the first round only as BC-P2P;
protocols that use broadcast in the second round only as P2P-BC; and protocols
that don’t use broadcast at all as P2P-P2P.

Note that, when no PKI is available, it is not realistic to assume private
channels in the first round since it is unclear how such private channels would
be realized in practice without public keys. Therefore, in what follows, “P2P”
in the first round refers to open peer-to-peer channels which an adversary can
listen in on 1 – unless we explicitly state otherwise. We do assume the availability
of private channels in the second round, since one can broadcast (or send over
peer-to-peer channels) an encryption under a public key received in the first
round.

Security Guarantees. There are six notions of security that a secure computation
protocol could hope to achieve, described informally below.

Selective Abort (SA): A secure computation protocol achieves selective abort
if every honest party either obtains the output, or aborts.

Selective Identifiable Abort (SIA): A secure computation protocol achieves
selective identifiable abort if every honest party either obtains the output, or
aborts identifying one corrupt party (where the corrupt party identified by
different honest parties may potentially be different).

1 We do assume that the peer-to-peer channels are authenticated.
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Unanimous Abort (UA): A secure computation protocol achieves unanimous
abort if either all honest parties obtain the output, or they all (unanimously)
abort.

Identifiable Abort (IA): A secure computation protocol achieves identifiable
abort if either all honest parties obtain the output, or they all (unanimously)
abort, identifying one corrupt party.

Fairness (FAIR): A secure computation protocol achieves fairness if either all
parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.

Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

All the notions above, except SIA have been studied previously. This new
notion that we introduce here is strictly stronger than selective abort and
incomparable with unanimous abort but weaker than identifiable abort (which
demands that all honest parties must be in agreement). Selective abort is the
weakest notion of security, and is implied by all the others; guaranteed output
delivery is the strongest, and implies all the others. Notably, fairness and identi-
fiable abort are incomparable; selective identifiable abort and unanimous abort
are incomparable as well.

We believe the notion of SIA is an interesting conceptual contribution. Unlike
SA security where an honest party who aborts would only know that someone
misbehaved but has no idea who, SIA guarantees that the honest party learns
the identity of someone, who behaved incorrectly. This gives the honest party an
option of taking some action against this (locally identified) corrupt party, such
as refusing to collaborate in other contexts, withholding payment etc. One may
also consider a setting where misbehavior due to a technical error is much more
likely than a malicious attack. This could be the case, for instance, if parties are
considered reliable and with a good level of system security, implying that the
weak point is rather the software running the protocol. In such a case, SIA can
be used to help find where the error was in case of an abort, whereas SA will
give you no such help.

Of course, it would be preferable to achieve IA rather than SIA; but this
may not be possible in all settings. The partial identifiability offered by SIA can
be quite useful in such settings (where SIA is possible and IA is not), since SIA
does not allow anyone to accuse anyone, in particular, honest players will never
accuse each other. This means that, in an honest majority setting, if a party
has a conflict with more than t parties, then that party is definitely corrupt.
Therefore, if several secure computations are done in a setting where SIA is
possible (and IA is not), we can accumulate the conflicts, and may eventually
be able to identify a corrupt party such that everyone agrees (namely if that
party has a conflict with more than t parties). This will not completely prevent
adversarial behavior, but it may limit the number of honest parties that are
forced to abort. Such scenarios highlight why SIA is a useful notion to study.
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Setup. The following forms of setup, from strongest to weakest, are commonly
considered in the MPC literature:

Correlated randomness (CR), where the parties are given input-independent
secrets which may be correlated,

A public key infrastructure (PKI), where each party has an independent
honestly generated2 public-secret key pair where the public key is known to
everyone, and

A common reference string (CRS), where no per-party information is avail-
able, but a single trusted reference string is given.

We focus primarily on protocols that only use a CRS, which is the weakest
form of setup (except for the extreme case of no setup at all). To make our
prose more readable, when talking about e.g. a secure computation protocol
that achieves security with identifiable abort given a CRS and uses broadcast
in the second round only, we will refer to it as a P2P-BC, IA, CRS protocol. If
we additionally want to specify the corruption threshold t to be x, we call it a
P2P-BC, IA, CRS, t ≤ x protocol.

1.2 Prior Work

Cohen, Garay and Zikas [7] initiated the study of two-round secure computation
with broadcast available in one, but not both, rounds. They showed that, in
the P2P-BC setting, UA is possible even given a dishonest majority, and that it
is the strongest achievable guarantee in this setting. They also showed that, in
the BC-P2P setting, SA is the strongest achievable security guarantee given a
dishonest majority.

The subsequent work by Damg̊ard, Magri, Ravi, Siniscalchi and Yakoubov
[9] continued this line of inquiry, focusing on the honest majority setting. They
showed that given an honest majority, in the P2P-BC setting IA is achiev-
able (but fairness is not), and in the BC-P2P setting, the strongest security
guarantee—GOD—is achievable.

The constructions of Cohen et al. do not explicitly use a PKI, but they do
rely on private communication in the first round, which in practice requires a
PKI, as discussed above. The constructions of Damg̊ard et al. rely on a PKI even
more heavily. The natural open question therefore is: what can be done assuming
no PKI—only a CRS, and no private communication in the first round?

We note that the recent work of Goel, Jain, Prabhakaran and Raghunath [14]
considers instead the plain model or the availability only of a bare PKI (where it
is assumed that corrupt parties may generate their public key maliciously). They
show that in plain model, in the absence of private channels, no secure compu-
tation is possible even given an honest majority. Further, given broadcast (in
both rounds) IA is impossible in the plain model, while the strongest guarantee
of GOD is feasible in the bare PKI model. Our model is incomparable to that
2 Throughout this paper, we use the term ‘PKI’ to refer to a ‘trusted PKI’, where the

PKI keys are assumed to be honestly generated for all parties.
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of Goel et al. since we consider the availability of a CRS, and communication
patterns where broadcast is limited to one of the two rounds.

To the best of our knowledge, the notion of selective identifiable abort is not
discussed in previous work.

1.3 Our Contributions

We summarize the contributions of our work in two broad categories, described
below.

1.3.1 Introduction of SIA
We introduce and formalize a new security notion of MPC protocols, that we
refer to as selective identifiable abort (SIA). Further, we investigate the feasibil-
ity of two-round SIA MPC protocols with different broadcast patterns for various
settings – with or without PKI, and with or without honest majority. As it turns
out, SIA is an interesting notion because it can be achieved in cases where previ-
ously only weaker or incomparable notions were known to be possible. Notably,
for the P2P-P2P or BC-P2P and t < n/3 settings, SIA can be achieved and is
the best possible guarantee, where previously only selective abort was known.
Note that, with only selective abort, stopping honest players from getting the
output is basically without consequences for the adversary, while with SIA, each
honest player will identify at least one corrupt player.

In the following we explain all the results on SIA in more detail: In The-
orem 3, we show that any BC-BC (respectively P2P-BC) protocol (with some
additional properties) can be transformed to an SIA protocol for the same cor-
ruption threshold where the second round communication is over peer-to-peer
channels. Plugging in the appropriate IA protocols to this theorem yields sev-
eral positive results, summarized in Table 1 (for the CRS setting) and Sect. 1.4.3
(for the PKI setting). Namely, we obtain that when we assume only a CRS and
no private communication in the first round, SIA is achievable in the P2P-P2P
setting with t < n

3 and in the BC-P2P setting with t < n; finally when a PKI is
available, SIA is also possible in the P2P-P2P setting with t < n

2 .
In light of the above, what remains to be investigated are patterns where

broadcast is not available in the first-round, for settings with only a CRS and
honest majority (n

2 > t ≥ n
3 ); and settings with PKI and dishonest majority

(n
2 ≤ t < n).

In the CRS only setting, we show that P2P-BC, SIA is impossible to achieve
even with an honest majority (Theorem 4, this result holds even when the first-
round communication is private). Finally, we observe that the impossibility of
P2P-BC, IA, PKI protocols for t < n in [7] can be extended to SIA as well
(elaborated in the full version [10]).

1.3.2 Complete Characterization of Two-Round MPC in the CRS
Model with Honest Majority
Assuming only a CRS and no private communication in the first round, we give
a complete characterization of what can be done in two rounds with respect to
all the other security guarantees and different broadcast patterns.
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In a nutshell, we show that assuming only a CRS, an honest majority does not
give much of an advantage over a dishonest majority: regardless of the corruption
threshold, IA continues to remain impossible in the P2P-BC setting (directly
follows from impossibility of SIA in this setting, Theorem 4) and in the BC-P2P
setting, UA continues to remain impossible (Theorem 5)3. The latter extends
the impossibility result of Patra and Ravi [20], which holds for n ≤ 3t (but does
not hold for t > 1 and any n).

However, if at least two thirds of the parties are honest, in the P2P-BC setting
IA is additionally possible (Theorem 2). To show this we give a construction
based on a new primitive called one-or-nothing secret sharing with intermediaries
(adapted from one-or-nothing secret sharing [9]), which may be of independent
interest.

Most of our lower bounds hold even given private communication in the first
round; however, our constructions do not require it. This shows that surprisingly,
in most cases, having private communication in the first round cannot help
achieve stronger guarantees.

The one exception is the case where the adversary can only corrupt one
party (that is, t = 1); for t = 1 and n ≥ 4, guaranteed output delivery can be
achieved given private channels in the first round [17,18] even when broadcast is
completely unavailable. However, we show that without private channels in the
first round fairness (and thus also guaranteed output delivery) is unachievable,
even if broadcast is available in both rounds and the adversary corrupts only one
participant4. We also show that without private channels in the first round, if
broadcast is unavailable in the second round, unanimous abort is unachievable.

Finally, we make a relatively simple observation, showing that the positive
results from Cohen et al. still hold, even without private communication in the
first round.

We summarize our findings in Table 1, and the special case of t = 1 in Table 2.

1.4 Technical Overview

In Sect. 1.4.1, we summarize our lower bounds; in Sect. 1.4.2, we summarize our
constructions. These results assume a setup with CRS only. Lastly, in Sect. 1.4.3,
we summarize the results related to SIA, when PKI is available.

3 Given an additional round of communication instead of a PKI, things look different;
Badrinarayanan et al. [2] study broadcast-optimal three-round MPC with GOD given
an honest majority and CRS, and show that GOD is achievable in the BC-BC-P2P
setting.

4 This strengthens the fairness impossibility result of Gordon et al. [15] which holds
for n ≤ 3t.



Minimizing Setup in Broadcast-Optimal Two Round MPC 135

Table 1. Feasibility and impossibility for two-round MPC with different guarantees
and broadcast patterns when only a CRS is available (but no PKI or correlated ran-
domness). The R1 column describes whether broadcast is available in round 1; the
R2 column describes whether broadcast is available in round 2. In our constructions,
round 1 communications are not private; negative results hold even with private round
1 communications. Arrows indicate implication: the possibility of a stronger security
guarantee implies the possibility of weaker ones in the same setting, and the impos-
sibility of a weaker guarantee implies the impossibility of stronger ones in the same
setting. Beige table cells are lower bounds; green table cells are upper bounds.

Without PKI, in Two Rounds
Broadcast
Pattern

t
Selective
Abort
(SA)

Selective
Identifiable
Abort
(SIA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

BC BC

n
2

≤ t <
n

✓ ✓ ✓ ✓[7] w.m.c ✗[6] ✗

P2P BC ✓ ✗[7] (see
[10] for
details)

✓[7] w.m.c ✗ ✗ ✗

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗[7] ✗ ✗ ✗

P2P P2P ✓[7]
w.m.c

✗ ✗ ✗ ✗ ✗

BC BC

n
3

≤ t <
n
2

✓ ✓ ✓ ✓[7] w.m.c ✗[15,20] ✗

P2P BC ✓ ✗Theorem 4 ✓[7] w.m.c ✗ ✗ ✗

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗[20] ✗ ✗[15,20] ✗

P2P P2P ✓[7]
w.m.c

✗ ✗ ✗[8] ✗ ✗[19]

BC BC

t < n
3

✓ ✓ ✓ ✓[7] w.m.c ✗ for t > 1
[13]

✗ for t > 1

P2P BC ✓ ✓ ✓[7] w.m.c ✓ Theorem 2 ✗ for t > 1 ✗ for t > 1

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗ for t > 1
(Theo-
rem 5)

✗ for t > 1 ✗ for t > 1
[13]

✗ for t > 1

P2P P2P ✓[7]
w.m.c

✓

Theorem 2,
last round

P2P (Theo-
rem 3)

✗ for t > 1
[9]

✗ for t > 1 ✗ for t > 1 ✗ for t > 1
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Table 2. Feasibility and impossibility for two-round MPC with different guarantees
and broadcast patterns when only a CRS is available, when t = 1. We refer to Table 1
for the cases already covered therein.

The t = 1 Case
Broadcast
Pattern

t
Selective
Abort
(SA)

Selective
Identifiable
Abort (SIA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

Without Private Channels in Round 1:

BC BC

t = 1, n > 1

Table 1 Table 1 Table 1 Table 1 ✗Cor 2 [10] ✗

P2P BC Table 1 Table 1 Table 1 Table 1 ✗ ✗

BC P2P Table 1 Table 1 ✗Cor 1 [10] ✗ ✗Cor 1, 2 [10] ✗

P2P P2P Table 1 Table 1 ✗ ✗ ✗ ✗

With Private Channels in Round 1:

Any
t = 1, n = 4 ✓ ✓ ✓ ✓[17] ✓ ✓[17]

t = 1, n ≥ 5 ✓ ✓ ✓ ✓[18] ✓ ✓[18]

1.4.1 Lower Bounds
We present several lower bounds, some of which hold even when private channels
are available in the first round. This is in contrast to our constructions which
avoid the use of private channels before the parties had a chance to exchange
public keys.

With Private Channels. In Sect. 4, we present two main lower bounds that hold
even if private channels are available in the first round.

Our first lower bound (Theorem 4) shows that P2P-BC, SIA, CRS protocol
is impossible when n ≤ 3t. To show this, we consider a hypothetical 3-party
P2P-BC, SIA, CRS protocol where an adversary who controls just one party,
say P behaves inconsistently over the first-round peer-to-peer channels and then
chooses to act in the second round based on the information sent to one of
the honest parties, say P ′. Then, SIA guarantees that P ′ must compute the
output even though she finds the pair of remaining parties in conflict, as she
cannot decide whom to blame. This makes the protocol vulnerable to an attack
by potentially corrupt P ′ who can simulate this kind of conflict in her head
by recomputing the messages of P based on inputs of her choice. Infact, this
argument can be extended for n ≤ 3t.

Our second lower bound (Theorem 5) shows that BC-P2P, UA, CRS protocol
is impossible when t > 1. To show this, we argue that in any hypothetical BC-
P2P, UA, CRS protocol, an adversary who is able to control just two parties
is able to perform an even more powerful attack: after execution, she is able
to recompute the function output locally on corrupt party inputs of her choice
(together with the same fixed set of honest party inputs). This is called a residual
function attack. This completes the overview of the lower bounds that hold when
private channels are present.

When t = 1, we show that the availability of private channels makes a dif-
ference. When private channels are available in the first round, the strongest
guarantee—guaranteed output delivery—is known to be achievable as long as
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n ≥ 4 [17,18]. However, we show in the full version [10] and outline below that
without private channels in the first round, the landscape is quite different.

Without Private Channels. In this setting, an adversary can observe all messages
sent by an honest party P in the first round; so, those first-round messages
cannot suffice to compute the function on P ’s input—P ’s second-round messages
are crucially necessary for this. If P ’s first-round messages were enough, the
adversary would be able to mount a residual function attack: given P ’s first-
round messages, the adversary would be able to compute the function on P ’s
input (along with inputs of her choice on behalf of the other parties) in her head,
by simulating all the other parties. However, if we aim for either unanimous abort
(without use of broadcast in the second round) or fairness, we can also argue
that P ’s second-round messages cannot be necessary. If we would like to achieve
unanimous abort without use of broadcast in the second round, it is important
that the adversary not be able to break unanimity by sending different second-
round messages to different parties. If we would like to achieve fairness, it is
similarly important that the adversary not be able to deny the honest parties
access to the output by withholding her second-round messages. So, to achieve
either of those goals, the second-round message both must and cannot matter;
we thus rule out BC-P2P, UA, CRS protocols (Cor 1 in [10]) and BC-BC, FAIR,
CRS protocols (Cor 2 in [10]) when no private channels are available in the first
round.

1.4.2 Upper Bounds
Feasibility of P2P-BC, IA, CRS when t < n

3 In Sect. 3.2, we present our main
positive result, which is a P2P-BC, IA, CRS, t < n

3 construction (Fig. 2). Our
construction builds on the construction of Damg̊ard et al. [9] (which, in turn,
builds on the construction of Cohen et al. [7]). Like those prior works, we take a
protocol that requires two rounds of broadcast, and compile it. Since broadcast is
only available in the second round, the key is to ensure that a corrupt party can’t
break the security of the underlying protocol by sending inconsistent messages to
different honest parties in the first round. The solution is to delay computation
of the second round messages until parties are sure they agree on what was said
in the first round.

Following previous work, we do this by having each party G garble her second-
message function (which takes as input all the first-round messages that party
expects to receive) and broadcast that garbled circuit in the second round. G
additionally secret shares all of the labels for her garbled circuit. We can get
identifiable abort from this if we make sure that one of two things happen: (a)
sufficiently many parties receive a given first-round message bit coming from
a sender S, implying that the label corresponding to that bit is reconstructed
(unanimously, over broadcast); or (b) someone is unanimously identified as a
cheater. (Of course, two labels for the same input wire should never be recon-
structed, since this would compromise the security of the garbled circuit scheme.)
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To achieve this, Damg̊ard et al. introduce (and use in their construction) the
notion of one-or-nothing secret sharing. Unfortunately, this primitive crucially
relies on a PKI: in the second round, each player must be able to prove that she
received a certain message from S in the first round (or abstain if she received
nothing). Given a PKI, this can be done by having S sign her first-round mes-
sages. Of course, without a PKI, this cannot work as there is no time to agree
on public keys.

Therefore, without a PKI, we need a different approach. The approach we
use is instead to check in the second round whether there is sufficient consensus
among the parties about what S sent in the first round, and only reconstruct the
corresponding labels if this is the case. To this end, we define a new primitive in
the CRS model called one-or-nothing secret sharing with intermediaries. In such
a scheme, each garbler G performs two layers of Shamir sharing: first, each label
is shared, creating for each party R a share sR. Second, each sR is shared among
all parties. Everyone now acts as intermediaries, and passes their sub-shares of sR
on to R in the second round. This ensures that a corrupt G cannot fail to deliver
a share to R, since G cannot fail to communicate with more than t intermedi-
aries without being identified. Simultaneously, each participant R broadcasts a
message enabling the public recovery of only the label share corresponding to
what she received from S in the first round. Enough shares for a given label are
only recoverable if enough participants received the same bit from S, implicitly
implementing the consensus check we mentioned above.

There is one final caveat we need to take care of: the standard network
model assumes peer-to-peer “open” channels where the adversary can observe
all messages sent. With a PKI, we can make use of private channels (even in
the first round), by using public-key encryption (PKE). However, in the absence
of a PKI, this makes little sense, so we should not use private channels in the
first round. Under this constraint we cannot send shares of secrets in the first
round. So, we need to figure out a way for G to send sub-shares of R’s share sR
to intermediaries, and for intermediaries to pass these sub-shares on to R, in a
single round of broadcast.

The approach we use is as follows: in the second round, for each sub-share of
sR intended for intermediary I, G will broadcast an encryption c of that sub-share,
under a public key received from I in the first round. Simultaneously, I passes on
all of sub-shares to R by broadcasting transfer keys. Depending on which value
should be decrypted, R broadcasts the relevant decryption key which enables the
recovery of the corresponding plaintext. We informally refer to this approach as
transferrable encryption, where a party is able to transfer decryption capabilities
to another, even without first seeing the ciphertext in question.

Our construction of one-or-nothing secret sharing with intermediaries relies
on a CPA-secure PKE scheme and non-interactive zero-knowledge (NIZK) proof
system. This is used as a building block in our P2P-BC, IA, CRS, 3t < n
construction (formalized in Fig. 2) following the above blueprint.

Modifying Prior P2P-BC Constructions. The work of Cohen et al. gives a con-
struction in the P2P-BC and P2P-P2P settings that uses only a CRS (not a
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PKI); however, they use private communication in the first round. We observe
that we can modify their construction in a straightforward way to only use public
peer-to-peer communication in the first round, which is more realistic without a
PKI. Their construction is a compiler, and in the first round, two things are sent:
messages from the underlying construction; and (full-threshold) secret shares of
garbled circuit labels, which need to be communicated privately, and which are
then selectively published in the second round. Let’s pick an underlying con-
struction that uses public communication only (e.g. the construction of [12]).
Now, to avoid private communication in the first round, we modify the proto-
col to delay secret sharing until the second round. Instead, the only additional
thing the parties do in the first round is exchange public encryption keys. Like
in our construction (described above), it might look like delaying secret sharing
poses a problem, since the share recipients need to broadcast the relevant shares
to enable output recovery, but if they only receive their shares in the second
(last) round, they don’t have time to do this. So, we have the share sender G
encrypt each share meant for receiver R under a one-time public key belonging
to R. Simultaneously, R will publish the corresponding secret key if and only
if she wishes to enable the reconstruction of that label.5 In this way, the same
guarantees can be achieved without using private communication in the first
round.

Feasibility Results for SIA. In Sect. 3.3, we argue that a BC-BC protocol (respec-
tively a P2P-BC) Πbc that securely computes f with identifiable abort can be
turned into an SIA protocol Π (with the same corruption threshold) where the
second round is run over peer-to-peer channels, as long as Πbc satisfies the fol-
lowing two properties: 1) the simulator can extract inputs from the first-round;
2) it is efficient to check whether a given second-round of the protocol is correct.

The protocol Π works in the same way as Πbc, except that the second round
is sent over peer-to-peer channels. Intuitively, the only advantage that the adver-
sary has in Π is to send inconsistent last round messages. However, we argue
that this cannot lead to a pair of honest parties obtaining two different non-⊥
outputs. This is because of our assumption that the simulator of Πbc extracts
input from the first round messages (and say receives the output y from the
ideal functionality). This means that no matter what second round messages
the adversary sends in Πbc, the output can never be y′ �= ⊥ such that y′ �= y.
More specifically, the adversary’s second round messages in Πbc can only deter-
mine whether all the honest parties learn y or all the honest parties learn the
identity of a cheater (can be potentially chosen by the adversary during the
second broadcast round in Πbc, say, by making a corrupt party stop sending
messages or sending invalid messages in the second round). Since these second
round messages are now sent over peer-to-peer channels instead (but it is pos-
sible to efficiently check their validity), we can conclude that each honest party
5 Note that the full power of our one-or-nothing secret sharing with intermediaries is

not necessary here; in our construction, we only require two levels of sharing and
intermediaries in order to achieve identifiable abort, while this construction aims
only for selective and unanimous abort in the two different settings respectively.
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in Π would either learn the output y or the identity of a cheater (depending on
the version of the second round message the adversary sends privately). It may
be the case that honest parties learn different cheaters or some of them learn
the output y while others don’t; however, this suffices for SIA guarantee.

In Sect. 3.3 we give candidate constructions of BC-BC protocol (respectively
a P2P-BC) with identifiable abort, that have the additional properties described
above and can thereby be used to yield the BC-P2P (respectively P2P-P2P) SIA
upper bounds.

1.4.3 Completing the Picture of SIA with PKI
Given that the notion of selective identifiable abort is introduced in this work,
we also investigate how it affects the landscape when a PKI is available. This
setting was studied by Damg̊ard et al. [9] for the case of honest majority and
Cohen et al. [7] for the case of dishonest majority.

The case of BC-BC is already settled by Cohen et al., who give an IA con-
struction (stronger than SIA) for t < n, relying just on CRS. Next, we note
that our observation in Sect. 3.3 lets us transform the above into an SIA pro-
tocol (with the same corruption threshold) where the second round is run over
peer-to-peer channels; settling the case of BC-P2P setting.

In the P2P-BC setting, we observe that the impossibility of P2P-BC, IA, PKI
protocols for t < n in Cohen et al. can be extended to SIA as well (see full version
[10] for details). However, assuming an honest majority (t < n

2 ), feasibility of
SIA follows directly from the P2P-BC, IA, PKI construction of Damg̊ard et al..
Applying the observation in Sect. 3.3 to this IA construction of Damg̊ard et al.,
let us achieve SIA for P2P-P2P setting with the same threshold.

This settles the question of feasibility of two-round SIA with various broad-
cast patterns in the PKI setting.

1.5 Broadcast Complexity

In the previous two works, no attempt was made to minimize the broadcast over-
head of the compilers. They all require the broadcast of garbled second-message
functions, the size of which often scales with the complexity of the function
computed, which is potentially large. We observe that a generic broadcast opti-
mization (which is folklore, and has appeared in some previous work [5,11,16])
can be applied to any message which is already known to the sender in the first
round, but need not be broadcast until the second round. Using this optimiza-
tion, the size of the additional broadcasts that our compiler—and the compilers
of Cohen et al. and Damg̊ard et al.—becomes independent of the size of the
function being computed.

The broadcast optimization is quite straightforward. It enables reliable
broadcast of arbitrarily long messages, while only sending fixed-length messages
over the broadcast channel in the second round. The dealer sends its message
to all the recipients over peer-to-peer channels in the first round. Each recipi-
ent then echos the message it received over peer-to-peer channels in the second
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round. Finally, in the second round, each party also broadcasts a hash of the mes-
sage. If there exists a majority of parties who broadcast the same hash h, then
each honest party outputs a pre-image of h. (Each party must have received
a pre-image of h because at least one of the broadcasters of h must be hon-
est.) Otherwise, honest parties blame the dealer. Only hashes are sent over the
broadcast channel, and the size of those hashes is independent of the size of the
message.

Finally, we note that when applying this optimization to our construction,
and that of Cohen et al. and Damg̊ard et al., garbled circuits which were pre-
viously not broadcast until the second round are now sent (over peer-to-peer
channels) in the first round. This necessitates the use of adaptive garbled cir-
cuits6.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [7]. As in their work, we state our results in a
stand-alone setting.7

Real-World. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input.

The protocol is executed in rounds (i.e., the protocol is synchronous). Each
round consists of the send phase and the receive phase, where parties can respec-
tively send the messages from this round to other parties and receive messages
from other parties. In every round parties can communicate either over a broad-
cast channel or a fully connected peer-to-peer (P2P) network. If peer-to-peer
communication occurs in the first round without a PKI, we assume these chan-
nels are “open”; that is, the adversary sees all messages sent.8 In other cases,
we assume that these channels can be private, since communications can be
encrypted using public keys that are either available via a PKI or exchanged in
the first round. In all cases, we assume the channels to be ideally authenticated.

6 Adaptive garbling schemes [3] remain secure against an adversary who obtains the
garbled circuit and then selects the input.

7 We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes. We also give the formal definition of the
new security notion of selective identifiable abort (sl-idabort).

8 Some of our negative results hold even if private peer-to-peer channels are available
in the first round. However, our positive results do not make use of such channels.
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During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, and
the adversary outputs an arbitrary function of the corrupt parties’ view. The
view of a party during the execution consists of its input, random coins and the
messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-World. We describe ideal world executions with selective abort (sl-abort),
selective identifiable abort (sl-idabort), unanimous abort (un-abort), identifiable
abort (id-abort), fairness (fairness) and guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort,
sl-idabort,id-abort, fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function and let I ⊆ [n], of size at most t, be the set of indices of the cor-
rupt parties. Then, the joint ideal execution of f under (S, I) on input vector
x = (x1, . . . , xn), auxiliary input aux to S and security parameter λ, denoted
IDEALtypef,I,S(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and S result-
ing from the following ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi

to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′

i be the value actually sent as the input
of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′

1, . . . , x
′
n). If there are no corrupt parties or type = god, proceed to step 4..

(a) If type ∈ {sl-abort, un-abort, sl-idabort,id-abort}: The trusted party sends
{yi}i∈I to S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will not
get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing all
parties to obtain the output.) It sends (abort,J ) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ I.

(c) If type = sl-idabort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) For each party j in J , the adversary
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selects a corrupt party i∗j ∈ I who will be blamed by party j. It sends
(abort,J , {j, i∗j}j∈J ) to the trusted party.

(d) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = sl-idabort, we let abortmsg = {abortmsgj}j∈J =

(⊥, i∗j )j∈J .
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party sends yj to every party Pj, j ∈ [n] \ J .
If type = sl-idabort, the trusted party then sends abortmsgj to each
party Pj, j ∈ J ; otherwise, the trusted party sends abortmsg to every
party Pj, j ∈ J

Note that, if type = god, we will never be in this setting, since S was not
allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3 Consider type ∈ {sl-abort, un-abort, sl-idabort, id-abort, fairness,
god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π
t-securely computes the function f with type security if for every PPT real-world
adversary A with auxiliary input aux, there exists a PPT simulator S such that
for every I ⊆ [n] of size at most t, for all x ∈ ({0, 1}∗)n, for all large enough
λ ∈ N, it holds that

REALΠ,I,A(aux)(x, λ)
c≡ IDEALtypef,I,S(aux)(x, λ).

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

– frst-msgi(xi, ri) → (msg1i→1, . . . ,msg1i→n) produces the first-round messages
of party Pi to all parties. Note that a party’s message to itself can be consid-
ered to be its state.
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– snd-msgi(xi, ri,msg11→i, . . . ,msg1n→i) → (msg2i→1, . . . ,msg2i→n) produces the
second-round messages of party Pi to all parties.

– outputi(xi, ri,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i) → yi produces the
output returned to party Pi.

We implicitly assume that all of these algorithms also take a CRS as input
when one is available.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message—msg1i . Similarly, when the second round is over broad-
cast channels, we consider snd-msgi to return only msg2i .

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 Upper Bounds

We begin with a description of our new primitive, one-or-nothing secret sharing
with intermediaries, which is used as a building block in our IA construction.
Next, we present our positive results for IA and SIA.

3.1 One-or-Nothing Secret Sharing with Intermediaries

Damg̊ard et al. [9] introduce one-or-nothing secret sharing, which allows a dealer
to share a vector of secrets in such a way that during reconstruction, at most
one of the secrets is recovered (the share holders essentially vote on which one).
The correctness guarantee is that if sufficiently many share holders vote for a
certain index, and no-one votes against that index (though some parties may
equivocate), the value at that index is recovered; the security guarantee is that
if at least one party votes for a certain index, the adversary learns nothing
about the values at any other index. Damg̊ard et al. present two versions of this
primitive: the default version, and a non-interactive version, where parties can
vote even if they have not received a share from the dealer. This is done by
assuming the dealer shares secret keys with each party, which can be realized
via non-interactive key exchange, using a PKI.

Unfortunately, this non-interactive one-or-nothing secret sharing tool
(referred to as 1or0) does not extend to a setting where no PKI is available.
In the absence of PKI, the main challenge is to ensure that the share intended
for a party, say P , gets delivered (so that her share corresponding to the secret
at the index she votes for can be recovered). We achieve this by modeling the
fact that other parties can be intermediaries who aid this share transfer. For
the setting where only a CRS is available, we propose a new variant of one-or-
nothing secret sharing: namely, one-or-nothing secret sharing with intermediaries
(referred to as 1or0wi).

In order to simplify the presentation of our P2P-BC, IA, CRS construction,
we define one-or-nothing secret sharing with intermediaries as a maliciously-
secure primitive. The first round of our protocol is reserved for the exchange
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of public keys, so sharing and reconstruction must take place in a single round.
The definitions of one-or-nothing secret sharing with intermediaries capture the
fact that keys may not have been exchanged consistently, but demand that
reconstruction succeeds if blame cannot be assigned. We discuss the syntax,
definitions and construction of one-or-nothing secret sharing with intermediaries
below.

3.1.1 Syntax
A one-or-nothing secret sharing scheme [9] consists of four algorithms: setup,
share, vote, and reconstruct. setup returns a shared secret key belonging
to the dealer and one of the receivers; these keys are then used within share,
and again in vote. To make our one-or-nothing secret sharing with interme-
diaries secure against malicious adversaries, we move to a public-key syntax,
which makes it easier to check parties’ behavior using zero knowledge proofs.
We change setup to return a common reference string crs; keys are then pro-
duced by keygen, which creates a key pair for one of the receivers. share, vote
and reconstruct now all expect the receivers’ public keys as input. The syntax
of reconstruct is modified to support cheater identification; if sufficiently many
(at least n−t) parties vote for the same value, then either the secret correspond-
ing to this value will be reconstructed, or a cheating party will be identified. We
present the syntax of the maliciously-secure one-or-nothing secret sharing with
intermediaries below.

setup(1λ) → crs is an algorithm which takes as input the security parameter
and generates the common reference string.

keygen(crs) → (sk, pk) is an algorithm which takes as input the common refer-
ence string and generates a key pair.

share(crs, pk1, . . . , pkn, z(1), . . . , z(l)) → s is an algorithm run by the dealer D
which takes as input all the parties’ public keys, and the l values that are
being shared. It outputs a single share s.

vote(crs, ski, pk1, . . . , pkn, vi) → si is an algorithm run by party i which takes
as input party i’s secret key, all the parties’ public keys, and a vote vi, where
vi ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if party i
is unsure which value it wants to vote for. It returns a ballot si.
Note that, to allow share and vote to be executed in a single round, vote
does not take as input the share s.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) → {z(v),⊥,⊥i} is an algo-
rithm which takes as input the output of share run by the dealer D, the
outputs of vote run by each of the n parties, as well as their votes, and
outputs the value z(v) which received a majority of votes, or ⊥, or ⊥i where
i denotes the identity of a cheater.

3.1.2 Security
We require one-or-nothing secret sharing with intermediaries to satisfy pri-
vacy and identifiability, described below. Notice that identifiability naturally
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implies correctness. Our definitions of privacy and identifiability both assume
that corrupt parties might provide honest parties, including the dealer, with
inconsistent or incorrect public keys. Below, we denote the set of n parties as
{D,P1, . . . , Pn−1}, where D denotes the dealer.

Informal Definition 1 (1or0wi: Privacy) Informally, this property requires
that when fewer than n − 2t honest parties produce their ballot using v, then the
adversary learns nothing about z(v).

The one-or-nothing secret sharing of Damg̊ard et al. [9] additionally required
contradiction-privacy. This guaranteed the privacy of all secrets when a pair of
honest parties produce ballots for different indices. Notably, our one-or-nothing
secret sharing with intermediaries does not have this property; however, when
n > 3t, the privacy property implies that at most one secret is reconstructed.9

Informal Definition 2 (1or0wi: Identifiability) Informally, this property
requires that when at least n − t parties produce their ballot using the same
v, either reconstruct returns z(v) or a corrupt party is identified.

It is easy to see that the identifiability property defined above implies cor-
rectness (i.e. when all algorithms are executed honestly, if at least n − t parties
produce their ballot using the same v, reconstruct returns z(v)).

We refer to the full version [10] for the formal definitions of privacy and
identifiability.

3.1.3 Construction
Both the one-or-nothing secret sharing scheme of Damg̊ard et al. [9] and our
construction of one-or-nothing secret sharing with intermediaries make use of
two layers of Shamir secret sharing. However, Damg̊ard et al. crucially differ in
the way in which the sub-shares for reconstructing a given value are transferred
by the shareholders. Because without a PKI a dealer might not communicate
reliably/verifiably to all share recipients (as either she or they might be corrupt),
in order to achieve identifiability in such scenarios, we introduce a new tool which
we informally call transferrable encryption.

Transferrable encryption allows a sender to encrypt a message to an interme-
diary, who, even before seeing the ciphertext, can transfer the ability to decrypt
to another receiver. This can be achieved, for instance, simply by having the
intermediary encrypt her (single-use) secret decryption key to the receiver.

We now informally describe the one-or-nothing secret sharing with interme-
diaries algorithms keygen, share, vote, and reconstruct:
9 If we consider the more general case of t′ ≤ t corruptions, the adversary would learn

the secret at an index v only if at least (n − t − t′) honest parties vote for v (as
these along with the t′ ballots known on behalf of the corrupt parties would allow
the secret to be reconstructed). Therefore, for the adversary to learn secrets at two
different indices, there must exist two disjoint sets of at least (n− t− t′). This could
happen only if 2(n− t− t′) ≤ n− t′, which implies n ≤ 2t+ t′ ≤ 3t (as t′ ≤ t); which
contradicts our assumption of n > 3t.
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1. Informally, keygen generates many single-use public-key encryption key pairs
for each party i, designated for transference of decryption power to different
parties j. Each party i will end up with a key pair (sk(v)j→i, pk

(v)
j→i) for every

party j and shared value index v.
2. In the share algorithm the dealer threshold secret shares each secret z(v) as

s
(v)
1 , . . . , s

(v)
n , and then threshold secret shares each s

(v)
i as s

(v)
i→1, . . . , s

(v)
i→n.

Then, the dealer broadcasts an encryption of each sub-share s
(v)
i→j under a

key pk
(v)
i→j belonging to party j; later, during vote, party j will act as an

intermediary, and forward that share to party i.
3. vote is divided into two sub-steps (the first of which is independent of the

party’s vote):
(a) Each party j broadcasts transfer keys for each index v and each other

party i that can be applied to the encryption of s
(v)
i→j (under party j’s

public key pk
(v)
i→j) to make it decryptable using party i’s secret decryption

key sk
(v)
i→i. (Such a transfer key can simply be an encryption of sk

(v)
i→j

under party i’s public key pk
(v)
i→i.)

(b) To vote for the reconstruction of z(v), each party i broadcasts her relevant
secret decryption key sk

(v)
i→i.

4. Finally, the reconstruct algorithm decrypts all the shares made available
through the broadcast of the relevant decryption keys, and reconstructs z(v)

if at least n − t votes supported v; otherwise, a cheating party is identified.

Finally, to achieve security against an active adversary, each party provides a
non-interactive zero-knowledge proof (NIZK) to ensure that each step is honestly
computed. Therefore, the setup algorithm is also tasked with providing the CRSs
required for the NIZKs.

More formally, let PKE = (keygen, enc, dec) be a public key encryption
scheme with CPA security, and let NIZK = (setupZK, prove, verify, simP,
extract) be a non-interactive zero-knowledge proof system for the following
relations:

Rkeygen =

⎧
⎪⎪⎨

⎪⎪⎩

φ = pk

w = (sk, r)
(sk, pk) ← PKE.keygen(1λ; r)

⎫
⎪⎪⎬

⎪⎪⎭

,

Rshare =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ = {pk(v)
i→j , c

(v)
i→j}v∈[l],i,j∈[n]

w =

⎛

⎜
⎜
⎜
⎝

{z(v), r(v), {r
(v)
i ,

{r
(v)
i→j}j∈[n]}i∈[n]}v∈[l]

⎞

⎟
⎟
⎟
⎠

{
(s

(v)
1 , . . . , s

(v)
n ) ← Shamir.share(z(v); r(v))

}

v∈[l]

∧{
(s

(v)
i→1, . . . , s

(v)
i→n) ← Shamir.share(s

(v)
i ; r

(v)
i )

}

v∈[l],i∈[n]

∧{
c
(v)
i→j ← PKE.enc(pk

(v)
i→j , s

(v)
i→j ; r

(v)
i→j)

}

v∈[l],i,j∈[n]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,
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Rvote =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ =

⎛

⎜
⎜
⎜
⎝

{pk(v)
j→j , pk

(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n],

vi, sk
(vi)
i→i

⎞

⎟
⎟
⎟
⎠

w =

(

{sk(v)
j→i, r̄

(v)
j→i, r

(v)
j }v∈[l],j∈[n]

)

{
(sk

(v)
j→i, pk

(v)
j→i) ← PKE.keygen(1λ; r̄

(v)
j→i)

}

j∈[n],v∈[l]

∧{
tk

(v)
j→i ← PKE.enc(pk

(v)
j→j , sk

(v)
j→i; r

(v)
j )

}

v∈[l],j∈[n]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Figure 1 describes our one-or-nothing secret sharing with intermediaries
(1or0wi) scheme.

Figure 1: Construction of 1or0wi

setup(1λ) : Set up and output the common reference strings
crskeygen ← setupZK(1λ,Rkeygen),
crsshare ← setupZK(1λ,Rshare), and
crsvote ← setupZK(1λ,Rvote)

for the zero knowledge proof system. Return crs =
(crskeygen, crsshare, crsvote).

keygen(crs), run by party i:
1. For each j ∈ [n] and v ∈ [l], (sk(v)j→i, pk

(v)
j→i) ←

PKE.keygen(1λ; r̄(v)j→i).

2. For each j ∈ [n] and v ∈ [l], π
(v)
j→i ← NIZK.prove(crskeygen, φ =

pk
(v)
j→i, w = (sk(v)j→i, r̄

(v)
j→i)).

3. Let ski = ({sk(v)j→i, r̄
(v)
j→i}j∈[n],v∈[l]), and pki =

({pk(v)j→i, π
(v)
j→i}j∈[n],v∈[l]).

4. Output (ski, pki).

share(crs, pk1, . . . , pkn, z(1), . . . , z(l)), run by the dealer D (where pki =
{pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l], compute (s(v)1 , . . . , s
(v)
n ) ←

Shamir.share(z(v); r(v)) as the threshold sharing of z(v) with
threshold (n − t − 1).

2. For each i ∈ [n] and v ∈ [l], compute (s(v)i→1, . . . , s
(v)
i→n) ←

Shamir.share(s(v)i ; r(v)i ) as the threshold sharing of s
(v)
i with

threshold (n − 2t − 1).
3. For each i, j ∈ [n] and v ∈ [l], compute c

(v)
i→j ←

PKE.enc(pk(v)i→j , s
(v)
i→j ; r

(v)
i→j).

4. Set
– φshare = ({pk(v)i→j , c

(v)
i→j}v∈[l],i,j∈[n]) and

– wshare = ({z(v), r(v), {r
(v)
i , {r

(v)
i→j}j∈[n]}i∈[n]}v∈[l]).

Compute πshare ← prove(crsshare, φshare, wshare).
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5. Set s = (φshare, πshare) and output s.

vote(crs, ski, pk1, . . . , pkn, vi), run by party i (where pki =
{pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l] and ski = {sk(v)j→i, r̄

(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l] and j ∈ [n], let tk
(v)
j→i ←

PKE.enc(pk(v)j→j , sk
(v)
j→i; r

(v)
j ).

2. Set
– φvote,i = ({pk(v)j→j , pk

(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n], vi, sk

(vi)
i→i)

a

– wvote,i = ({sk(v)j→i, r̄
(v)
j→i, r

(v)
j }v∈[l],j∈[n]).

Compute πvote,i ← prove(crsvote, φvote,i, wvote,i).
3. Set si = (φvote,i, πvote,i) and output si.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) (where s =
({pk(v)i→j , c

(v)
i→j}v∈[l],i,j∈[n], πshare), pki = {pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l] and

si = (φvote,i = ({pk(v)j→j , pk
(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n], vi, sk

(vi)
i→i), πvote,i)):

Identify the winning vote:

1. If there does not exist a v ∈ {1, . . . , l} such that at least (n − t)
parties vote for v, output ⊥. Let Svote ⊆ [n] be the set of parties i
such that vi = v.
Verify the zero knowledge proofs:

2. For i, j ∈ [n], if NIZK.verify(crskeygen, φ = pk
(v)
j→i, π

(v)
j→i) = reject

(where pk
(v)
j→i, π

(v)
j→i are taken from pki), return ⊥i.

3. If NIZK.verify(crsshare, φshare, πshare) = reject (where φshare,
πshare are taken from s), return ⊥D.

4. For i ∈ [n], if NIZK.verify(crsvote, φvote,i, πvote,i) = reject (where
φvote,i, πvote,i are taken from si), return ⊥i.
Check the consistency of the share, ballots and keys:

5. For i ∈ [n], let S′
i ⊆ [n] be the set of parties j ∈ [n] such that (a)

pk
(v)
i→i is the same in pki and sj , and (b) pk

(v)
j→j is the same in pkj

and si. If |S′
i| < n − t, return ⊥i.

6. Let SD ⊆ [n] be the set of parties i such that {pk(v)j→i}j∈[n] is the
same in pki and s. If |SD| < n − t, return ⊥D.

7. For i ∈ Svote, let Si = S′
i ∩ SD. Note that |Si| ≥ n − 2t.

For j ∈ Si, we have a ciphertext tk
(v)
i→j (contained in sj), a

secret key sk
(v)
i→i (contained in si) and a ciphertext c

(v)
i→j (con-

tained in s). Let sk
(v)
i→j ← PKE.dec(sk(v)i→i, tk

(v)
i→j). Let s

(v)
i→j ←

PKE.dec(sk(v)i→j , c
(v)
i→j).

8. For each i ∈ Svote, let s
(v)
i ← Shamir.reconstruct({s

(v)
i→j}j∈Si

).

9. Output z(v) ← Shamir.reconstruct({s
(v)
i }i∈Svote

).
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Maliciously secure one-or-nothing secret sharing with intermediaries
when n > 3t.

a any string m(⊥) is to be interpreted as ⊥.

Theorem 1. The construction in Fig. 1 is a maliciously secure one-or-nothing
secret sharing with intermediaries when n > 3t if PKE is a public key encryption
scheme with CPA security, and NIZK is a secure non-interactive zero-knowledge
proof system.

The proof appears in the full version [10]

3.2 IA Feasibility Result: P2P-BC, IA, 3t < n

Our upper bounds are based on those of Cohen et al. [7] and Damg̊ard et al.
[9]. They take a BC-BC protocol Πbc, and compile it to the P2P-BC setting.
The primary challenge here is making sure that corrupt parties cannot break
security by sending different messages to honest parties in the first round. Our
compiler makes sure that if corrupt party first-round messages are consistent
enough, honest party second-round messages are produced on the same set of
first-round messages; otherwise, a corrupt party is unanimously identified. To
achieve this, we (and the prior works) have each party garble her second-message
function, which has her own input hardcoded, and takes as input all the first-
round messages she receives. Each party also secret-shares all of the labels for her
own garbled circuit. In the second round, over broadcast, parties echo the first-
round messages they received, distribute their garbled circuit, and contribute to
label reconstruction (for everyone’s garbled circuits) corresponding to the first-
round messages they received. If there aren’t n− t parties who all echo the same
first-round message from a given Pi, honest parties abort blaming Pi; if there
aren’t n− t parties who all contribute valid ballots for Pj ’s labels, honest parties
abort blaming Pj . Note that if an (identifiable) abort happens, reconstruction is
allowed to fail.

Using Shamir secret sharing with threshold s = 3n
5 , this leads to a P2P-BC,

IA, CRS protocol with t < n
5 . The reason we have corruption threshold t = n

5
and sharing threshold s = 3n

5 is that we have two constraints:

1. In order to prevent the adversary from learning two labels for the same wire
by sending different first-round messages to two subsets of the honest parties,
we need s ≥ t + n−t

2 .
2. In order to ensure that even after (a) t parties echo a different message from

party m and (b) a different t parties give bad label shares we still have enough
shares to reconstruct, we need s < n − 2t. (If only t parties have inconsistent
claims with the message sender and a different t parties have inconsistent
claims with the label share dealer, we have no idea who to blame, so we have
to reconstruct!)
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We get

t +
n − t

2
≤ s < n − 2t

⇒ t + n < 2n − 4t

⇒ 5t < n.

However, 5t < n does not match the lower bound from Theorem 4.
To match the lower bound we need a more sophisticated mechanism of shar-

ing such that all parties can contribute valid shares of each label, or someone is
unanimously identified as a cheater. In Sect. 3.1 we construct exactly such a prim-
itive, which we call one-or-nothing secret sharing with intermediaries (1or0wi).
Intuitively, our one-or-nothing secret sharing with intermediaries achieves this
goal by having each dealer use all of the parties as intermediaries to all share
recipients; if sufficiently many intermediaries don’t succeed in helping the dealer
G give a share to a recipient P , then either the dealer or the recipient can be
identified as corrupt, since they are in conflict with more than t intermediaries
(we refer to Sect. 3.1 to a more detailed description of how this works).

We are now ready to describe our final protocol with identifiable abort for
threshold 3t < n. In the first round (which is over public peer-to-peer channels),
the parties send their first-round messages of Πbc along with the public keys
produced by the key generation algorithm of 1or0wi. In the second round (which
is over broadcast), the parties execute the following steps:

1. They compute a garbling of the second-message function of Πbc;
2. they use 1or0wi to share the labels of their garbled circuit;
3. they use 1or0wi to vote for the labels of the garbled circuits of the other

participants based on the first-round messages of Πbc (received in the peer-
to-peer round); and

4. they echo the first-round messages of Πbc received in the first round.

Before computing the output, each party Pi performs some validations on the
echoed messages. Namely, Pi checks that (a) all the parties generated their bal-
lots for each garbled circuit based on the first-round messages that they echoed,
and (b) all the parties have mutual successful communication with at least n− t
others in the first round. If there is a party Pj that does not pass these checks,
party Pi identifies Pj as a cheater. If all of the parties pass the checks, then party
Pi invokes the reconstruct algorithm of 1or0wi. If reconstruct blames party
Pj , Pi aborts and identifies that party as a cheater. Otherwise, Pi reconstructs
labels for all the garbled circuits, uses the garbled circuits to obtain the second-
round messages of Πbc, and uses those second-round messages to complete the
protocol and obtain the computation output.

Roughly speaking, the identifiable abort property is guaranteed since the one-
or-nothing secret sharing with intermediaries is secure against active adversaries.
Therefore, if the two validations (a) and (b) succeed, we can rely on the properties
of 1or0wi to guarantee that Πbc is executed or a malicious party is identified.



152 I. Damg̊ard et al.

More formally our protocol is described in Fig. 2 and we assume that the
parties have access to the following tools:

Tools.
– A BC-BC, IA, CRS protocol i.e. a two-round broadcast protocol Πbc

achieving security with identifiable abort. (This could, for instance, be
the protocol described by Cohen et al. [7].)
Πbc is represented by the set of functions {frst-msgi, snd-msgi,
outputi}i∈[n].

– A garbling scheme (garble, eval, simGC) .
– A one-or-nothing secret sharing with intermediaries
1or0wi = (setup, keygen, share, vote, reconstruct) (defined in
Sect. 3.1).

Notation. Let Ci(xi, ri,msg11, . . . ,msg1n) denote the boolean circuit that takes
Pi’s input xi, randomness ri and the first round messages msg11, . . . ,msg1n,
and outputs msg2i . For simplicity assume that (xi, ri) consists of z bits, and
each first round message is � bits long, so each circuit has L = z + n · � input
bits. Note that Ci is public. Let g be the size of a garbled Ci.

Figure 2: Π id-abort
p2pbc with n > 3t

Private input. Every party Pi has a private input xi ∈ {0, 1}∗ and
randomness ri ∈ {0, 1}∗.

Setup.
– CRS setup for one-or-nothing secret sharing with intermediaries:

crs ← setup(1λ).
– Setup for Πbc (which includes CRS when instantiated using the

protocol of [7]). a

First Round. Each party Pi does the following:
1. Let (ski, pki) ← keygen(1λ), where pki =

{
pk

(1)
i =

(pk(1,1)
i , . . . , pk

(1,L)
i ), . . . , pk(n)i = (pk(n,1)

i , . . . , pk
(n,L)
i )

}
is a vector

of nL public keys with the corresponding vector of secret keys ski =
{
sk

(1)
i = (sk(1,1)

i , . . . , sk
(1,L)
i ), . . . , sk(n)i = (sk(n,1)

i , . . . , sk
(n,L)
i )

}

(We abuse notation slightly by assuming that keygen(1λ) outputs
a vector of public keys and secret keys; we do this for simplicity)

2. Let msg1i ← frst-msgi(xi, ri) be Pi’s first round message in Πbc.
3. Send (pki,msg1i ) to Pj for j ∈ [n].

Second Round. Each party Pi does the following:
We specify multiple broadcast messages separately for clarity; however, they are all sent

simultaneously as a single round of communication.

1. Let pkj→i = {pk(1)j→i, . . . , pk
(n)
j→i} denote the pkj received privately

from Pj (j ∈ [n]), where pk
(k)
j→i = (pk(k,1)

j→i , . . . , pk
(k,L)
j→i ) for k ∈ [n].

2. Compute (GCi,Ki) ← garble(1λ, Ci;Ri), where Ki =
{K

(0)
i,l ,K

(1)
i,l }l∈[L].
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3. For every l ∈ [z +1, . . . , L], let si,l ← share(crs, pk(i,l)1→i, . . . , pk
(i,l)
n→i,

K
(0)
i,l ,K

(1)
i,l ). Broadcast {si,l}l∈[z+1,...,L].

4. Let (νi,z+1, . . . , νi,L) denote the bits comprising
(msg11→i, . . . ,msg1n→i), where msg1j→i refers to msg1j received
from Pj in Round 1.

5. For each k ∈ [n] and l ∈ [z + 1, L]: Compute and broadcast s
(k)
i,l ←

vote(crs, sk(k,l)
i , pk

(k,l)
1→i , . . . , pk

(k,l)
n→i, νi,l).

Broadcast own garbled circuit:

6. Let (νi,1, . . . , νi,z) denote the bits corresponding to (xi, ri).
7. For l ∈ [z], let Ki,l = K

(νi,l)
i,l .

8. Broadcast (GCi, {Ki,l}l∈[z]).
Echo first-round messages:

9. Broadcast (msg11→i, . . . ,msg1n→i).
Let msg1i = msg1i→i denote the party’s own first-round message.

Output Computation. Each party Pi does the following:
If there is a party who did not generate ballots for each garbled circuit based on

the first-round messages that she echoed, blame that party:

1. For j ∈ [n] : Check if {msg1k→j}k∈[n] broadcast by Pj is consistent

with {s(k)j,l }k∈[n],l∈[z+1,L]
b . Output abortj if the check fails. Else,

set (νj,z+1, . . . , νj,L) as the bits comprising (msg11→j , . . . ,msg1n→j).
If there is a party who did not have mutual successful communication with at least

n − t others in the first round, blame that party:

2. For j ∈ [n] : If there does not exist a set |Sj | ≥ n− t such that, for
k ∈ Sj , msg1j→k = msg1j holds; output abortj .
Decrypt the shares:

3. For k ∈ [n] (whose garbled circuit we will now consider):
(a) For l ∈ [z + 1, L], compute Kk,l ←

reconstruct(crs, sk,l, (pk
(k,l)
1 , v1,l, s

(k)
1,l ), . . . ,

(pk(k,l)
n , vn,l, s

(k,l)
n,l ). If reconstruct returns ⊥id, output

abortid. Else, continue.
(b) Evaluate msg2k ← eval(GCk, (Kk,1, . . . ,Kk,L)). If the evalua-

tion fails, output abortk.
4. Output y ← outputi(xi, ri,msg11, . . . ,msg1n,msg21, . . . ,msg2n).

P2P-BC, IA, t < n
3 secure computation in the CRS model.

a For simplicity (to avoid introducing additional notation), we assume
implicitly that the set of functions {frst-msgi, snd-msgi, outputi}i∈[n] of
Πbc use the relevant setup information.
b Note that in our construction of one-or-nothing secret sharing with
intermediaries, it is possible to retrieve the corresponding vote directly
from the ballot s

(k)
j,l .
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Theorem 2 (P2P-BC, ID, CRS, n > 3t). Let f be an efficiently computable
n-party function and let n > 3t. Let Πbc be a BC-BC, ID, CRS protocol that
securely computes f with the additional constraint that the straight-line simula-
tor can extract inputs from corrupt parties’ first-round messages. Assuming that
(garble, eval, simGC) is a secure garbling scheme, and (setup, keygen, share,
vote, reconstruct) is a secure one-or-nothing secret sharing with intermedi-
aries. Then, Π id-abort

p2pbc securely computes f with identifiable abort over two rounds,
the first of which is over peer-to-peer channels, and the second of which is over
a broadcast and peer-to-peer channels.

3.3 Feasibility Results for SIA

Our positive results for SIA rely on the following theorem (we defer its proof to
the full version [10]).

Theorem 3. Let Πbc be a BC-BC protocol (respectively a P2P-BC) that securely
computes f with identifiable abort security against t corruptions with the addi-
tional properties that the simulator can extract inputs from the first-round mes-
sages and it is efficient to check whether a given second-round message is correct.
Then Πbc securely computes f with selective identifiable-abort security against t
corruptions when the second round is run over peer-to-peer channels instead.

4 Lower Bounds

Our impossibility results for the setting where the first-round is over private
peer-to-peer channels appear below. Our impossibility for the setting with public
peer-to-peer channels in the first round appear in the full version [10].

Theorem 4 (P2P-BC, SIA, CRS, n ≤ 3t). There exist functions f such
that no n-party two-round protocol can compute f with selective identifiable abort
against t ≥ n

3 corruptions while making use of broadcast only in the second round
(i.e. where the first round is over peer-to-peer channels10 and second round uses
both broadcast and peer-to-peer channels).

In our proof, we use the function fot. Let the input of P1, P2 be a pair of
strings x1 = (z0, z1), x2 = (z′

0, z
′
1) where z0, z1, z′

0, z
′
1 ∈ {0, 1}λ, and the input

of Pn be a choice bit xn = c ∈ {0, 1}. The input of other parties is ⊥ (i.e. xi = ⊥
for i ∈ [n] \ {1, 2, n}). fot allows everyone to learn (zc, z′

c).

Proof. We prove Theorem 4 by contradiction. Let Π be an n-party protocol
computing fot that achieves identifiable abort against t ≥ n

3 corruptions by
using broadcast in the second round only.

For simplicity, we assume n = 3 and t = 1. We analyze the following scenarios
in an execution of Π.
10 The peer-to-peer channels can be private or “open”.
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Scenario 1: The adversary does the following on behalf of P3.
Round 1. Compute and send messages based on input x3 = 0 and x3 =

1 to P1 and P2 respectively. (It is possible for the adversary to send
inconsistent first-round messages as the first round is communicated over
peer-to-peer channels.)

Round 2. Discard the first-round message from P2 and send messages based
on input x3 = 0. In other words, P3 pretends as if she behaved honestly
using input x3 = 0 and did not receive a peer-to-peer message from P2

in the first round.
Scenario 2: Consider an adversary who corrupts P2. Suppose the input of honest

P3 is x3 = 0. The adversary behaves as follows on behalf of P2:
Round 1. Behave honestly as per protocol specifications, except that the

peer-to-peer message to P3 is not sent.
Round 2. Pretend to have received first round messages from P3 based on

x3 = 1. In more detail, the adversary drops the first round peer-to-peer
message received from P3 and replaces it by locally computing P3’s first
round message based on input x3 = 1 and some randomness (that the
adversary can sample locally on behalf of P3). Note that the adversary
can do this without being caught, due to the absence of PKI or correlated
randomness.

Claim. Π is such that P1 in Scenario 1 learns the output (z0, z′
0) with all but

negligible probability.

Proof. First, we observe that the view of honest P1 in Scenario 1 is distributed
identically to her view in Scenario 2. This is because in both scenarios, P1

observes the following conflict between P2 and P3: P3 claims to have not received
the first-round peer-to-peer message from P2 while P2 claims to have received
first-round peer-to-peer message from P3 based on x3 = 1. Therefore, to satisfy
the guarantees of SIA, it must hold that either P1 aborts in both scenarios or
obtains the output in both scenarios. The former is not possible, since P1 would
identify the same cheater in both scenarios, which means that she would identify
an honest party in one of the two scenarios (as the corrupt party is different in
the two scenarios). We can thus infer from selective identifiable abort security
guarantee of Π that both the above scenarios result in P1 receiving an output,
with all but negligible probability.

The output obtained by P1 in Scenario 2 must include z0 as it should be
computed with respect to the input x3 = 0 of honest P3 and input (z0, z1)
of honest P1. Therefore, the output obtained by P1 in Scenario 1 should also
include z0 (with all but negligible probability). Infact, we can argue that the
output obtained by P1 in Scenario 1 should in fact be (z0, z′

0) (with all but
negligible probability) to be consistent with the ideal realization of f . This is
because the simulator in Scenario 1 can induce an output comprising of z0 only
by invoking the ideal functionality with x3 = 0 on behalf of corrupt P3, which
fixes the output of P1 to include z′

0 as per the definition of f .

We can thus conclude that the output obtained by honest P1 in Scenario 1
must be (z0, z′

0). Next, we consider another Scenario, say Scenario 3 –
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Scenario 3: Adversary corrupts P1 but behaves honestly throughout the pro-
tocol. Suppose the input of honest P3 is x3 = 1.

First, it follows from the correctness of the protocol that since all parties
including the corrupt parties behaved honestly in Scenario 3, the output com-
puted must be in fact (z1, z′

1) computed on honest inputs, which is obtained by
all (including the adversary). Next, we show an attack by the adversary con-
trolling P1 that allows her to obtain z′

0 as well, which violates security (as an
adversary corrupting P1 is not allowed to learn both inputs of honest P2 i.e. z′

0

and z′
1, as per the ideal computation of f). The main idea is that the adversary

simulates in her head Scenario 1, where there was a conflict between P3 and P2.
In the above execution of Scenario 3, let mi→j denotes the peer-to-peer first-

round message sent by Pi to Pj and bi denotes the second-round broadcast
message sent by Pi (it is without loss of generality to assume that the second-
round messages are over broadcast; since private communication in the second
round can be realized by exchanging public keys in the first round).

Round 1: On behalf of P3, the adversary chooses input x3 = 0 and some chosen
randomness, say r3. Using these values, the adversary recomputes the outgo-
ing first-round peer-to-peer message from P3 to P1, say m3→1. However, the
other first-round peer-to-peer messages i.e. m3→2,m2→3,m2→1,m1→2 and
m1→3 are fixed to be the same as what were received during the execution
of Scenario 3.

Round 2: Next, the adversary recomputes the second-round broadcast message
of P3, say b3 as follows: Compute the broadcast message based on protocol
specifications when P3 did not receive any first-round peer-to-peer message
from P2. Note that this message can be computed using input x3 = 0, ran-
domness r3 and the first-round peer-to-peer message m1→3 received by P3

from P1 (which the adversary knows). The broadcast message of P1, say b1
is recomputed based on honest input and randomness of P1, the above simu-
lated first-round peer-to-peer message m3→1 and m2→1. Lastly, the broadcast
message of P2 is fixed to b2 (same as received in the execution).

We observe that the above simulation in her head, allows the adversary to
obtain a view that is identically distributed to the view of honest P1 in Scenario
1. This is because both the simulation as well as Scenario 1 involve the messages
m3→1, b1 and b3 being based on x3 = 0. We thus infer that the adversary should
be able to compute the output of Scenario 1 as well.

Since the output of Scenario 1 is (z0, z′
0), we can conclude that the adversary

of Scenario 3 learns both z′
0 (via the simulation in her head) and z′

1 (via the
output of the execution) which violates security, since this is not allowed as per
the ideal computation of f .

Lastly, we note that the above proof can be extended to n ≤ 3t using player
partitioning technique (An n-party protocol Π ′ tolerating t ≥ n/3 corruptions
can be transformed into a 3-party protocol Π tolerating 1 corruption, by making
a party in Π emulate the protocol steps of t parties in Π’).
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Theorem 5 (BC-P2P, UA, CRS, t > 1). There exist functions f such that
no n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions while making use of broadcast only in the first round (i.e. where the
first round uses both broadcast and peer-to-peer channels10 and second round uses
only peer-to-peer channels).

The proof appears in the full version [10]
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