
Maliciously-Secure MrNISC in the Plain
Model

Rex Fernando1(B), Aayush Jain1, and Ilan Komargodski2

1 Carnegie Mellon University, Pittsburgh, PA, USA
rex1fernando@gmail.com, aayushja@andrew.cmu.edu

2 School of Computer Science and Engineering, Hebrew University of Jerusalem
and NTT Research, Jerusalem 91904, Israel

ilank@cs.huji.ac.il

Abstract. We study strong versions of round-optimal MPC. A recent
work of Benhamouda and Lin (TCC ’20) identified a version of secure mul-
tiparty computation (MPC), termed Multiparty reusable Non-Interactive
Secure Computation (MrNISC), that combines at the same time several
fundamental aspects of secure computation with standard simulation secu-
rity into one primitive: round-optimality, succinctness, concurrency, and
adaptivity. In more detail, MrNISC is essentially a two-round MPC pro-
tocol where the first round of messages serves as a reusable commitment
to the private inputs of participating parties. Using these commitments,
any subset of parties can later compute any function of their choice on
their respective inputs by broadcasting one message each. Anyone who
sees these parties’ commitments and evaluation messages (even an outside
observer) can learn the function output and nothing else. Importantly, the
input commitments can be computed without knowing anything about
other participating parties (neither their identities nor their number) and
they are reusable across any number of computations.

By now, there are several known MrNISC protocols from either
(bilinear) group-based assumptions or from LWE. They all satisfy semi-
malicious security (in the plain model) and require trusted setup assump-
tions in order to get malicious security. We are interested in maliciously
secure MrNISC protocols in the plain model, without trusted setup. Since
the standard notion of polynomial simulation is un-achievable in less than
four rounds, we focus on security with super-polynomial-time simulation
(SPS).

Our main result is the first maliciously secure SPS MrNISC in the
plain model. The result is obtained by generically compiling any semi-
malicious MrNISC and the security of our compiler relies on several well-
studied assumptions of an indistinguishability obfuscator, DDH over Z

∗
p

and asymmetric pairing groups, and a time-lock puzzle (all of which need
to be sub-exponentially hard). As a special case, we obtain the first 2-
round maliciously secure SPS MPC based on well-founded assumptions.
This MPC is also concurrently self-composable and its first message is
short (i.e., its size is independent of the number of the participating par-
ties) and reusable throughout any number of computations. Prior to our
work, for two round maliciously secure MPC, neither concurrent MPC
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nor reusable MPC nor MPC with first message independent in the num-
ber of parties was known from any set of assumptions. Of independent
interest is one of our building blocks: the first construction of a one-
round non-malleable commitment scheme from well-studied assumptions,
avoiding keyless hash functions and non-standard hardness amplification
assumptions. The full version of this paper can be found at [26].

1 Introduction

In this work, we study the round complexity of cryptographic protocols, giving
special attention to secure multi-party computation (MPC). MPC allows a group
of mutually distrusting parties P1, . . . , Pn, each with private input xi, to compute
the evaluation of some function f(x1, . . . , xn) without revealing their inputs to
each other [12,21,30].

Round complexity is a fundamental measure of both the efficiency and power
of cryptographic protocols. The importance of this measure is strongly grounded
in practice: while the bandwidth of modern networks has constantly been increas-
ing, there is a physical lower bound on their latency, imposed by distance and
the speed of light. The round complexity of a protocol can also affect its secu-
rity properties. One very useful property of fully non-interactive and quasi-non-
interactive1 arguments is that proofs can be posted to some public bulletin board,
like a blockchain, and then any party can later independently verify its validity,
even if the original prover is offline. This enables arguments to be recursively
composed, which has been used to achieve fundamental new results in the areas
of succinct arguments [15], and also to achieve new space and communication
efficient secure multi-party computation protocols [25].

The round complexity of MPC protocols in particular has been well-studied
over the last few decades. The original MPC construction of [30] was highly
round-inefficient, taking a number of rounds proportional to the depth of the
circuit for the functionality being computed. Since then, a long line of work
[2,11,19,22,23,29,34,35,42] has made dramatic improvements, with recent works
finally achieving four rounds [2,19,22,23]. This was shown to be optimal by the
works of [29,34], which showed that achieving secure computation in three rounds
within the standard regime of black-box polynomial-time simulation is impossible.

In the classical definition of simulation security for MPC protocols, the parties
are assumed to run the protocol in an isolated environment, separate from other
parties and other executions of protocols. While this definition is simple and ele-
gant, the ubiquity of the internet means that this assumption is not very realistic.
The notion of concurrent security fixes this by allowing an adversary to spawn
an arbitrary number of parties and executions of a protocol. Unfortunately, the
work of [8] showed that concurrent security is impossible in any number of rounds
within the standard regime of black-box polynomial-time simulation.

1 By quasi-non-interactive we refer to “non-interactive” protocols that require a
trusted setup such as a common reference string.
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The exciting work of [40] introduced a very useful relaxation of standard
polynomial-time simulation, called super-polynomial-time simulation (SPS). In
this new definition, the simulator is allowed to run for slightly longer than
polynomial-time. This has been used, among other things, to achieve concurrent
security for MPC protocols by the works of [20,28,37], sidestepping the impossi-
bility result of [8]. In 2017, the work of [7] constructed a concurrent MPC protocol
in three rounds, thus bypassing both the lower bounds of [29,34] and [8] at once.
For several years, this has been the state of the art in terms of the round complex-
ity of both MPC and concurrent-secure MPC in the plain model. A very recent
work [1] partially advanced the state of the art in terms of round complexity, giving
a two-round standalone-secure MPC protocol in the plain model. However, their
security proof relies on ad-hoc (exponentially strong) assumptions that are novel
to their work, and they do not achieve concurrent security.2

An important question, then, is whether concurrent-secure MPC, or even
standalone MPC, can be achieved in two rounds in the plain model, without
setup, relying on well-studied assumptions. In this work, we study this question.

MrNISC. Going one step further, it is natural to ask whether MPC can be done
in one round, with each party sending a single simultaneous message. However,
one can very easily show that this is impossible, via the following argument,
commonly referred to as the residual function attack. Consider the case of two
parties P1 and P2, and say that P1 sends its message m1. Then P2 should be
able to compute and send her message m2, so that both parties learn f(x1, x2).
However, this means that P2 can compute m′

2 for any other x′
2 in her head, and

learn f(x1, x2) as well. She can do this for arbitrarily many x′
2. This means that

parties are able to learn much more than is allowed by a secure MPC protocol.
This simple argument also extends to the case of protocols with trusted setup,
showing that one-round protocols are also impossible in this case.

This raises the question, how close can we get to a non-interactive protocol
without running into this impossibility? We study this question via a recent new
strong version of MPC, identified by a recent work by Benhamouda and Lin [14]
and termed Multiparty reusable Non-Interactive Secure Computation (MrNISC).
MrNISC requires the following general structure:

1. Input encoding : at any time, a party can publish an encoding of its input
noninteractively, independent of the number of parties.

2. Computation encoding : At any time, any subset I of parties can jointly com-
pute a function f on their inputs xI = {xi}i∈I by broadcasting a single public
message. Each party’s message is only dependent on the input encodings of
the parties in I.

Parties are allowed to join the system at any time by publishing their input
encoding, even after an arbitrary number of computation sessions have occurred.

2 We discuss this work further in Sect. 1.3.
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In this way, MrNISC achieves essentially the best-possible form of non-
interactivity for MPC protocols without running into the aforementioned impos-
sibility: once parties have committed to their input, any subset of parties can
compute an arbitrary function on their committed inputs via a single round. Note
that MrNISC is a strict generalization of two-round concurrent-secure MPC.

Several MrNISC protocols have been constructed in the semi-malicious
regime, where security only holds for adversaries who follow the protocol specifi-
cation.3 Benhamouda and Lin [14] constructed such a protocol for all efficiently
computable functionalities relying on the DDH assumption in asymmetric bilin-
ear groups. In two concurrent follow-up works, Ananth et al. [3] and Benhamouda
et al. [13] obtained MrNISC protocols relying on Learning With Errors (LWE).
However, it was unknown whether it is possible to construct MrNISC in the plain
model which satisfies the full malicious version of security, where adversaries can
deviate arbitrarily from the protocol specification.

1.1 Our Results

In this paper, we give the first affirmative answer to the above question. Specifi-
cally, relying on commonly-used, well-established assumptions, we obtain a mali-
ciously secure SPS MrNISC in the plain model, without any trusted setup. In
particular, this implies a concurrently secure SPS MPC in two rounds from the
same assumptions. We state our (informal) theorem below.

Theorem 1.1 (Main Result, informal). Assume the existence of an indis-
tinguishability obfuscation (iO) scheme which is subexponentially-secure, subex-
ponential DDH (over both asymmetric pairing groups4 and Z

∗
p), and subexponen-

tial time-lock puzzles. Then there exists a malicious-secure MrNISC in the plain
model, with a super-polynomial simulator.

Key ideas. Our result is obtained via a generic compiler which takes any
subexponentially-secure semi-malicious secure MrNISC and upgrades it to mali-
cious security. As mentioned above, the work of [14] showed that such a semi-
malicious-secure MrNISC exists assuming subexponential DDH over asymmetric
pairing groups. Our transformation relies heavily on the idea of multiple axes
of hardness [38], where there are multiple ways to measure the hardness of a
problem, such as circuit size and circuit depth. This allows one to define pairs
of problems (A,B) where A is simultaneously harder than B (with respect to
one axis) and easier than B (with respect to the other). Time-lock puzzles are a
well-known way to achieve such scenarios based on circuit size and depth.

Implications for (Classical) MPC. As mentioned, it is possible to view an
MrNISC as a standard MPC. Specifically, we get the following:
3 Semi-malicious security allows the adversary to choose arbitrary randomness for the

parties, but otherwise requires honest behavior.
4 DDH assumption over asymmetric pairing groups is also referred to as the SXDH

assumption. We will interchangeably use SXDH wherever we specifically require
DDH over assymetric pairing groups.
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– Our MrNISC implies the first concurrent two-round maliciously secure SPS
MPC. Indeed, at any point in time, parties can join the protocol by publishing
their input encodings and even start evaluation phases. This could happen
even after some of the other parties published their input encodings and par-
ticipated in several evaluation phases. The only previously known malicious
(SPS) concurrent MPC required three rounds [7].

– Our MrNISC implies the first 2-round maliciously secure SPS MPC with a
short and reusable first message, based on any assumption. Namely, the
first round message is not only independent of the function to be computed
(which is necessary for reusability), but it is actually generated independently
of the number of participating parties. All prior MPC protocols with this
property only satisfy semi-malicious security in the plain model [3,9,10,13,
14].

– Our MrNISC implies the first 2-round maliciously secure SPS MPC based on
well-studied, falsifiable assumptions.

Notable Building Blocks

In the course of obtaining our main result, we achieve two intermediate results,
in the areas of zero-knowledge and non-malleable commitments.

First, we give a new definition of two-round zero knowledge, called reusable
statistical zero-knowledge with sometimes-statistical soundness. This new type of
argument that satisfies both statistical zero knowledge and a weakened form of
statistical soundness. (Note that it is well-known that achieving both statistical
zero knowledge and full statistical soundness is impossible for all statements in
NP unless the polynomial-time hierarchy collapses [41].) We also require a strong
form of reusability. We show the following:

Theorem 1.2 (Informal). Assume the existence of a subexponentially-secure
indistinguishability obfuscation (iO) scheme, subexponential DDH (over both Z

∗
p

and assymetric pairing groups), and subexponential time-lock puzzles. Then there
exists a reusable statistical ZK argument with sometimes-statistical soundness as
defined in Definition 5.4.

Second, we give a new one-round non-malleable commitment in the
simultaneous-message model under better assumptions than were previously
known. This commitment satisfies a strong definition of security called CCA-
non-malleability. We prove the following theorem:

Theorem 1.3 (Informal). Assume the existence of a subexponentially-secure
indistinguishability obfuscation (iO) scheme, subexponential SXDH, and subexpo-
nential time-lock puzzles. Then, there exists a subexponentially-secure one-round
CCA commitment scheme supporting a super-polynomial number of tags.

Non-interactive non-malleable commitments were first constructed by the
work of [39], using very strong and non-standard assumptions. In particular,
their assumption incorporates a strong form of non-malleability into it. The
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works of [18,27] were able to obtain constructions based on different assumptions,
including (among other things) a rather new assumption called keyless multi-
collision-resistant hash functions [16]. This assumption, which is described in
more detail below, is still somewhat strong as we do not have any instantiation
of it besides using cryptographic hash functions. In contrast, our commitment
scheme relies solely on well-established assumptions which have a long history
of study.

Our construction is based heavily on and improves upon the work of [36],
which achieves a weakened version of one-round non-malleable commitments. In
order to achieve our main result, we need full CCA-non-malleable commitments
which work in one round, so the construction of [36] will not suffice as-is. We
elaborate on this in Sect. 2.

Putting Things Together

Our compiler makes use of these two new tools in order to upgrade security of
a semi-malicious MrNISC scheme. Informally, we achieve the following:

Theorem 1.4 (The Compiler, Informal).
Assume the existence of subexponential variants of the following:

– a reusable two-round statistical zero knowledge argument with sometimes-
statistical soundness,

– a one-round non-malleable commitment,
– a non-interactive perfectly-binding commitment,
– a pseudorandom function,
– a witness encryption scheme for NP,
– and finally, a semi-malicious MrNISC scheme.

Then, there exists a malicious-secure MrNISC scheme in the plain model,
with super-polynomial simulation.

1.2 On the Necessity of iO

We make use of an obfuscation scheme when constructing both our zero knowl-
edge scheme as well as our non-malleable commitment scheme. Also, it is directly
used to get the witness encryption scheme. We do not know if iO can be avoided
in constructing MrNISC in the plain model.

As mentioned above, constructions of one-round non-malleable commitments
exist from other assumptions than iO [18,39], however these constructions rely
on assumptions that are problematic for various reasons. The only known route
to avoid these assumptions is via iO [36] but even then previous work failed to
achieve one-round protocols.

We now discuss the need in a witness encryption scheme. Intuitively, it seems
that some sort of witness encryption for a specific language is required when
upgrading security for a semi-malicious MrNISC scheme in the plain model,
for the following reason. Since one-round zero knowledge is impossible without



104 R. Fernando et al.

setup [31], honest parties are forced to send their second-round semi-malicious
MrNISC messages without knowing whether the first round is honest. Sending
these messages in the clear would violate security, so the parties must somehow
send a “locked” version of their second-round such that they are only revealed
conditioned on the first round being honest. Since these messages must be pub-
licly unlockable, this means that the second round is some form of witness encryp-
tion. We explain this in more detail in Sect. 2. It is an interesting open question
whether it is possible to build a witness encryption scheme for this specific type
of statement without relying on iO.

1.3 Related Work

A recent work of Agarwal, Bartusek, Goyal, Khurana, and Malavolta [1] gave the
first two-round standalone maliciously secure MPC in the plain model. Although
an exciting first step, the result is nonstandard in several ways. First, they require
the existence of several primitives (including semi-malicious MPC) which are
exponentially secure in the number of parties. Their construction also requires a
special type of non-interactive non-malleable commitment. Notably, neither the
non-interactive commitments of [18,32] nor the weakly non-interactive commit-
ments of [36], nor our new one-round non-malleable commitment scheme can
be used to instantiate this (because they strongly rely on exponential full secu-
rity and non-interactivity). The authors of [1] propose two instantiations which
work for their construction. One instantiation relies on factoring-based adap-
tive one-way functions [39],5 a strong assumption that incorporates a strong
non-malleability flavor. Another instantiation relies on an exponential variant
of the “hardness amplifiability” assumption of [18], along with keyless multi-
collision resistant hash functions [17]. Both of these assumptions are still highly
non-standard:

1. A keyless multi-collision resistant hash function is a single publicly known
function for which (roughly) collisions are “incompressible”, namely, it is
impossible to encode significantly more than k collisions using only k bits of
information. While keyless hash functions are formally a plain-model assump-
tion, there is no known plain-model instantiation based on standard assump-
tions. The only known instantiation is either in the random oracle model, or
by heuristically assuming that some cryptographic hash function, like SHA-
256, is such.

2. Hardness amplification assumptions postulate (roughly) that the XOR of inde-
pendently committed random bits cannot be predicted with sufficiently large
advantage. There are concrete (contrived) counter examples for this type of
assumptions showing that they are generically false [24], although they cer-
tainly might hold for specific constructions.

5 An adaptive one-way function is a non-falsifiable hardness assumption postulating
the existence of a one-way function f that is hard to invert on a random point
y = f(x) even if you get access to an inversion oracle that inverts it on every other
point y′ �= y.



Maliciously-Secure MrNISC in the Plain Model 105

The specific variant used by Agarwal et al. is novel to their work. It assumes
exponential hardness amplification against PPT adversaries, i.e., that there
exists a constant δ > 0 such that for large enough �, the XOR of � indepen-
dently committed random bits cannot be predicted by a PPT adversary with
advantage better than 2−�δ. This assumption (similarly to [39]’s adaptive
one-way functions) also incorporates a non-malleability flavor.

Because of this, there is no way to instantiate the protocol of [1] relying on
any well-studied assumptions, or even on assumptions not specifically formulated
in order to achieve non-malleable commitments. These drawbacks unfortunately
seem inherent in the techniques used by [1]. Our work uses a completely different
approach from their work, and is thus able to achieve a strictly stronger result,
without using ad-hoc assumptions.

2 Technical Overview

In this section, we give an overview of our constructions and the main ideas
needed to prove their security. We start by reviewing the syntax of MrNISC, as
defined by Benhamouda and Lin [14].
Model and syntax. A MrNISC consists of an input encoding phase done with-
out coordination with other parties in the system (i.e., without even knowing
they exist), and an evaluation phase in which only relevant parties participate
by publishing exactly one message each. In other words, MrNISC is a strict
generalization of 2-round MPC with the following properties:

– there is no bound on the number of parties;
– multiple evaluation phases can take place with the same input encodings;
– parties can join at any point in time and publish their input encoding, even

after multiple evaluation phases occurred.

We assume all parties have access to a broadcast channel that parties use to
transmit messages to all other parties. The formal syntax of an MrNISC consists
of three polynomial-time algorithms (Encode,Eval,Output), where Encode and
Eval are probabilistic, and Output is deterministic. The allowed operations for a
party Pi are:

– Input Encoding phase: each party Pi computes mi,1, σi,1 ← Encode(1λ, xi),
where xi is Pi’s private input, mi,1 is Pi’s round 1 message, and σi,1 is Pi’s
round 1 private state. It broadcasts mi,1 to all other parties.

– Function Evaluation phase: any set of parties I can compute an arity-
|I| function f on their respective inputs as follows. Each party Pi for i ∈ I
computes mi,2 ← Eval(f, σi,1, I, {mj,1}j∈I), where f is the function to com-
pute, xi is Pi’s private input, σi,1 is the private state of Pi’s input encoding,
{mj,1}j∈I are the input encodings of all parties in I, and the output mi,2 is
Pi’s round 2 message. It broadcasts mi,2 to all parties in I
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– Output phase: upon completion of the evaluation phase by each of the
participating parties, anyone can compute y ← Output({mi,1,mi,2}i∈I) which
should be equal to f({xj}j∈I).

Security. For security, we require that an attacker does not learn any informa-
tion beyond what is absolutely necessary, which is the outputs of the compu-
tations. Formally, for every “real-world” adversary that corrupts the evaluator
and a subset of parties, we design an “ideal world” adversary (called a simulator)
that can simulate the view of the real-world adversary using just the outputs
of the computations. As in all previous works on MrNISC (including [3,13,14]),
we assume static corruptions, namely that the adversary commits on the cor-
rupted set of parties at the very beginning of the game. However, all previous
works only achieved semi-malicious security (unless trusted setup assumptions
are introduced). This notion of security, introduced by Asharov et al. [4], only
considers corrupted parties that follow the protocol specification, except letting
them choose their inputs and randomness arbitrarily. In contrast, we consider
the much stronger and more standard notion of malicious security, which allows
the attacker to deviate from the specification of the protocol arbitrarily.

More precisely, in malicious security, the adversary can behave arbitrarily
in the name of the corrupted parties. Specifically, after the adversary commits
on the corrupted set of parties, it can send an arbitrary round 1 message for a
corrupted party, ask for a round 1 message of any honest party (with associated
private input), ask an honest party to send the round 2 message corresponding
to an evaluation of an arbitrary function on the round 1 message of an arbitrary
set of parties, and send an arbitrary round 2 message of a malicious party cor-
responding to an evaluation of an arbitrary function on the round 1 message
of an arbitrary set of parties. The simulator needs to simulate the adversary’s
view with the assistance of an ideal functionality that can provide only the out-
puts of the computations that are being performed throughout the adversary’s
interaction.

Typically, protocols are called maliciously secure if for every polynomial-time
adversary, there is a polynomial-time simulator for which the real-world experi-
ment and the ideal-world experiment from above are indistinguishable. However,
as mentioned, it is impossible to achieve such a notion of malicious security for
MPC (let alone MrNISC) in merely two rounds unless trusted setup assumptions
are introduced. Therefore, we settle for super-polynomial time simulation (SPS),
which means that the simulator can run in super-polynomial time. In contrast,
the adversary is still assumed to run in polynomial time.

We refer to Sect. 4 for the precise definition.

Terminology. For the sake of brevity, we will sometimes refer to the input
encoding phase as round 1, and the function evaluation phase as round 2.
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2.1 The MrNISC Protocol

To obtain our main result, we will start with a semi-malicious-secure MrNISC
protocol [13,14] and introduce modifications to achieve malicious security. Recall
that semi-malicious security only guarantees security when the adversary follows
the honest protocol specification exactly, except that it can arbitrarily choose
corrupted parties’ randomness. We would like to use the following high-level
approach used by many classical MPC protocols. During the input encoding
phase, we require each party to commit to its input and randomness in addition
to publishing a semi-malicious input encoding, and then to prove using zero-
knowledge that all of its semi-malicious MrNISC messages were generated by
following the prescribed protocol using that committed input and randomness.
However, a problem arises when using this strategy with 2-round protocols. (Note
that MrNISC requires that evaluation can be carried out in two rounds; in this
way, it is a strict generalization of 2-round MPC.) This problem comes from
the fact that zero-knowledge in the plain model requires at least two rounds.
Assuming we use such a 2-round ZK scheme, honest parties would need to send
their second-round MrNISC messages before finding out whether the first-round
MrNISC messages were honest. This completely breaks security—if any party
publishes semi-malicious messages based on a non-honest transcript, the semi-
malicious protocol can make no security guarantees about these messages.

We need some way of overcoming this problem. That is, we need a way to
publish second-round messages so that they are only revealed if the first round
is honest. To this end, we are going to use witness encryption as a locking
mechanism: we “lock” the round 2 message of the underlying (semi-malicious)
MrNISC and make sure that it can be unlocked only if all involved parties’ proofs
verify. More precisely, party i does:

1. Round 1 message: Commit to its input and randomness and publish a round 1
message using the underlying MrNISC with the committed input/randomness
pair. At the same time, generate a verifier’s first-round ZK message for the
other parties.

2. Round 2 message: Compute a round 2 message using the underlying MrNISC
with randomness derived from the secret state. Generate a zero-knowledge
proof that this was done correctly. Publish a witness encryption hiding the
aforementioned round 2 message that could be recovered by supplying valid
proofs that all other parties’ first-round messages were created correctly.

With this template in mind, even before starting to think about what a
security proof will look, it is already evident that there are significant challenges
in realizing the building blocks. Here are the three main challenges.

Challenge 1: The ZK argument system. The first challenge arises from
trying to use ZK arguments as witnesses for the witness encryption scheme.
Recall that witness encryption allows an encryptor to encrypt a message with
respect to some statement Φ, and only if Φ is false, then the message is hidden.
Witness encryption (WE) crucially only can provide security when Φ is false; in
particular, if Φ is true, even if it is computationally hard to find a witness for
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Φ, no guarantees are made about the encrypted message being hidden. Thus, it
seems like we would need a statistically-sound ZK argument, i.e., a ZK proof: if
the verifier’s first-round message is honest, with high probability, there should
not exist an accepting second-round ZK message.

It is well-known that to achieve ZK in two rounds, it is necessary to have a
simulator that runs in super-polynomial time (i.e., an SPS simulator). In every
such known two-round ZK, the simulator works by brute-forcing some trapdoor
provided in round 1, and giving proof that “either the statement is true or I found
the trapdoor.” Because of the existence of this trapdoor, it would be impossible
to make any such ZK argument statistically sound: an unbounded-time machine
can always find the trapdoor and prove false statements. So it seems like the ZK
scheme needs to satisfy two contradictory requirements: be statistically sound,
and be a two-round scheme (which appears to preclude statistical soundness).

Challenge 2: Non-malleability attacks. Since the security of the underlying
semi-malicious MrNISC holds only if the adversary knows some randomness for
its messages, we need all parties to prove that they know the input and ran-
domness corresponding to their messages. We are aiming for a protocol that can
be evaluated in two rounds, so this necessitates using a non-malleable commit-
ment (to prevent an attacker from, say copying the round 1 message of some
other party). Unfortunately, non-interactive non-malleable commitments with-
out setup are only known from very strong non-standard assumptions, such as
adaptive one-way functions [39], hardness amplifiability [1,18], and/or keyless
hash functions [17,18,38]. These are very strong and non-standard assumptions,
for some of which we have no plain-model instantiation, except heuristic ones.
Thus, we want to achieve a secure MrNISC protocol (in the plain model) without
such strong assumptions.

Challenge 3: Adaptive reusability of the primitives. We emphasize that
we are building an MrNISC protocol, which significantly strengthens standalone
two-round MPC. Because of this, our ZK argument and commitment schemes
must satisfy strong forms of reusability. There are several challenges in ensuring
both the ZK argument and non-malleable commitment scheme satisfy the types
of reusability that we need, and we introduce several new ideas to solve these
challenges. We will elaborate on this challenge below after we describe our ideas
for solving challenges 1 and 2.

Solving Challenge 1: How Do We Get a “statistically-Sound” SPS
ZK?

We now discuss how to achieve the seemingly contradictory requirements of
getting a 2-round SPS ZK argument which has a statistical soundness property
that would allow it to be a witness for the WE scheme. Our key idea is to relax
the notion of statistical soundness to one that is obtainable in two rounds but
still sufficient to use with WE.

Imagine we have a WE scheme where the distinguishing advantage of an
adversary is tiny (say, subexponential in λ). It would then suffice to have a ZK
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protocol that is statistically sound a negligible fraction of the time, as long as it
is quite a bit larger than the distinguishing advantage of the WE. In more detail,
consider a hypothetical zero-knowledge protocol with the following properties:

– The first round between a computationally-bounded verifier and a prover
fully specifies one of the two possible “modes”: a statistical ZK mode and a
perfectly sound mode.

– The perfectly sound mode occurs with some negligible probability ε, and in
this mode, no accepting round 2 message exists for any false statement

– In the statistical ZK mode (which occurs with overwhelming probability 1 −
ε), the second message is simulatable by an SPS machine and a simulated
transcript is statistically indistinguishable from a normal transcript.

– Furthermore, it is computationally difficult for a malicious prover to distin-
guish between the two modes.

If we had such a ZK protocol, it would enable us to argue hiding of the witness
encryption scheme whenever the first round of the protocol is not honest. The
idea of this argument is as follows. Suppose an adversary could learn something
about the second-round messages from their witness encryptions in some world
where the first round was not honest. In that case, it should also be able to
do so even in the perfectly-sound mode (otherwise, it would distinguish the
modes). But in this mode, proofs for false statements do not exist; thus, the
witness encryption provides full security. Even though this mode happens with
negligible probability, it is still enough to contradict witness encryption security,
whose advantage is much smaller.

To construct this new ZK scheme, we use ideas that are inspired by the
extractable commitment scheme of Kalai, Khurana, and Sahai [33]. This com-
mitment scheme has the property that it is extractable with some negligible tun-
able probability but is also statistically hiding. This commitment was used in the
works of [6] to get a two-round statistical zero-knowledge argument with super-
polynomial simulation. To instantiate our new “sometimes perfectly-sound” ZK
argument, we use the protocol of [6] as a starting point, but we will need to make
significant modifications. Namely, to force a well-defined perfect soundness mode,
we will make the first round of this protocol a “simultaneous-message” round,
where both the prover and the verifier send a message. We elaborate further
on this and other key ideas used in our construction in the full version of the
paper [26].

We note an important subtlety in this new definition and our construction.
Namely, the statistical ZK and perfect soundness properties only hold with
respect to the second round. If the verifier is unbounded-time, then after seeing
a first-round prover’s message, it can send a first-round verifier’s message that
forces perfect soundness all the time and thus disallows any prover from giving a
simulated proof. On the other hand, if the prover is unbounded-time, then after
seeing a first-round verifier’s message, it can send a first-round prover’s message,
which causes the probability ε of the perfect soundness mode to be 0. Thus the
frequency of perfect soundness mode and the ability of the simulator to give a
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simulated proof depend on the first round being generated by computationally
bounded machines.

Solving Challenge 2: How Do We Avoid Non-interactive Non-
malleability?

To solve challenge two, we must somehow get a non-malleable commitment
(NMC) scheme which can be executed in the first round without using strong
assumptions such as keyless hash functions, hardness amlifiability, or adaptive
one-way functions. Recall that unfortunately, all known instantiations of non-
interactive NMCs (for a super-polynomial number of tags) currently require the
use of (some combination of) these strong assumptions, so it seems at first glance
that avoiding them would require making substantial progress on the difficult
and well-studied question of non-interactive NMCs.

Our approach to solving this problem is inspired by the exciting work of Khu-
rana [36], which builds a new type of commitment that works as follows. The
commitment phase is similar to a non-interactive commitment in that the only
communication from the committer is a first-round message C. The role of the
receiver is slightly different: The receiver chooses a random string τ internally,
and it is both C and τ together that truly defines the commitment (and, corre-
spondingly, the underlying value being committed to). Consequently, to compute
an opening, the committer must receive a τ from the receiver. Non-malleability
(and binding) hinges upon the fact that the τ chosen by the receiver is chosen
after seeing the commitment. (See the left diagram below for an illustration of
this scheme.) Crucially, this commitment can be constructed from well-founded
assumptions (indistinguishability obfuscation, time-lock puzzles, and OWPs),
bypassing the need for the strong assumptions discussed earlier (Fig. 1).

Fig. 1. The diagram on the left depicts the communication pattern of Khurana’s [36]
commitment scheme, whereas the diagram on the right depicts ours. The key difference
is that in our scheme, the receiver’s message and the sender’s messages can be sent
simultaneously, while in [36] the receiver’s message must be sent after the sender’s
message.

We would like to use this commitment scheme in our protocol. There are two
main issues that arise.

– First, to use this scheme, we would need the commitment phase to happen
entirely in the first round. Namely, the receiver must publish τ simultaneously
while the committer is publishing C. (See the right-hand diagram above.) In
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particular, in the security proof, we need to handle the case of malicious
committers who publish C after seeing the round-1 τ .

– Second, our goal is to have every party use this commitment to commit to
their input and randomness for the protocol. Recall that in the scheme of [36],
a well-defined commitment (Cj , τi) consists of both the committer’s message
Cj and the receiver’s random string τi. Although honest parties Pj will always
provide commitments Cj which are consistent across all τi, it is perfectly
plausible for a corrupted party to publish some Cj where different τi yield
commitments (Cj , τi) to different values.

Solving the first issue involves identifying some technical challenges in the
security proof of [36] and making changes to the protocol to avoid these issues.
Because of this issue, the non-malleable commitment of [36] is really a two round
commitment scheme. In this paper, relying on the axis of hardness given by
a time-lock puzzle that we additionally use as an assumption, we construct a
truly one round non-malleable commitment scheme, in the simultaneous message
model. For the second issue, we use a surprisingly simple idea of adding a stan-
dard (potentially malleable) perfectly biding commitment scheme (e.g., Blum’s
commitment) at the MrNISC protocol level, we can use this NMC scheme even
though it does not satisfy the standard notion of binding. A more detailed tech-
nical overview of the non-malleable commitment scheme, as well as the formal
construction, can be found in the full version of the paper [26].

Solving Challenge 3: How Do We Get Reusability?

We now describe the challenges which arise when trying to get the type of
reusability required by MrNISC. The main problem is to ensure that all of the
building blocks we use (i.e., the ZK scheme and the NMC scheme) support the
reuse of their first-round message. It turns out that the non-malleable commit-
ment we described in the previous section can be adapted to this reusable set-
ting without much modification. However, several challenges arise when adapting
the sometimes-statistically-sound ZK scheme, which we discussed earlier, to the
reusable setting. We focus on these challenges here.

Recall that the ZK scheme is a simultaneous message protocol, so a transcript
consists of three messages of the form (zk1,P , zk1,V , zk2,P ), a round-1 message of
the prover and the verifier, and a round-2 message of the prover. What we need
is for any prover to be able to publish a single zk1,P in round 1, which can be
used in many different sessions with respect to many different zk1,V messages.
In addition, we require a very strong form of reusability: even if a malicious
verifier sees an entire transcript (zk1,P , zk1,V , zk2,P ), and then chooses a new
verifier’s first-round message zk′

1,V , zero-knowledge should still hold when the
prover publishes a proof with respect to zk′

1,V and the prover’s original message
zk1,P . Similarly, a verifier should be able to publish a single zk1,V which can be
used in many different sessions with respect to many different zk1,P messages,
and the soundness properties of the ZK scheme should still hold.
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Note that it is not immediately clear whether this reusability for ZK argu-
ments are implied by a corresponding non-reusable version of ZK arguments.
This turns out not to be the case. To satisfy reusability, we end up having to make
several changes to our (non-reusable) sometimes-perfectly-sound ZK scheme. We
again describe this in more detail in the full version of the paper [26].

Putting Things Together

We now have the main pieces that we will use to construct a malicious-secure
MrNISC: the two-round sometimes-statistically-sound ZK, receiver-assisted one-
round CCA-secure commitment, and the underlying semi-malicious MrNISC.
Significant challenges arise when attempting to combine these pieces in the way
described earlier to get a malicious MrNISC protocol. To see this, it will be
convenient to briefly mention the approach we take for the security proof.

A simplified version of the sequence of hybrids we use is as follows. First,
we extract the value underlying the commitments and check if anyone acted
dishonestly. If so, we switch the honest parties’ witness encryptions to encrypt 0
rather than the actual round 2 messages (this is hybrid 1). Second, we simulate
the ZK proof (this is hybrid 2). Third, we switch the underlying value in the
commitment to 0 (this is hybrid 3). Once the commitments are independent
of the true input, we can use the simulator of the underlying MrNISC (this is
hybrid 4). The last hybrid is identical to our simulator.

To make the transitions between the hybrids possible, we need to set the
hardness of every primitive carefully. Each hybrid indistinguishability induces
some hardness inequality for the involved primitives. Unfortunately, the inequal-
ities seem to be in contradiction to each other. Observe that for the first indis-
tinguishability (between hybrid 0 and hybrid 1), we need our ZK argument’s
soundness properties to hold against adversaries who can run the CCA extrac-
tor. That is,

Textractor � Tsound.

For the transition between hybrid 2 to 3, we need to guarantee that the security
of the commitment scheme holds even against an adversary that can run the ZK
simulator. That is,

TZKSim � Textractor.

Together, the above two inequalities imply that it is necessary to have
TZKSim � Tsound. But this is impossible, at least using the techniques we use
in constructing the ZK argument. Our simulator works by brute-forcing the
verifier’s zk1,V message to obtain some secret and produces proofs with this
knowledge. In other words, whoever has the secret can produce accepting proofs
without knowing a witness—this is essentially an upper bound on the soundness
of the scheme, i.e., Tsound � TZKSim, which means that our inequalities cannot
be satisfied at the same time.

To solve this problem, we introduce another axis of hardness, namely, circuit
depth. In particular, assume that it is possible to run the ZK simulator in some
super-polynomial depth d. To do this, we would have to construct a ZK argument
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where the secret embedded in zk1,V is extractable in depth d. Further, assume
that in polynomial depth, it is extremely hard to extract the secret from zk1,V

(much harder than size d). We can use such a ZK argument to solve the problem
above. Namely, we can restrict the reduction for hybrids 0 and 1 to run in
polynomial depth, and in this complexity class, it holds that Textractor � Tsound.
For the reduction for hybrids 2 and 3, we will allow the depth to be d, in which
case the inequality TZKSim � Textractor is satisfied.

So we have reduced this problem to constructing a ZK argument which is sim-
ulatable in some super-polynomial depth d and whose soundness holds against
size much larger than d as long as the depth is restricted to be polynomial. It
turns out that it is possible to modify our original ZK argument to satisfy this
property. We describe how to do this in the full version [26].

Several more minor technical issues arise when putting things together. One
such problem is that of “simulation soundness,” that is, we need to guarantee
that the adversary cannot give valid ZK arguments for false statements even if
it sees simulated arguments from the honest parties. We solve this issue using
techniques from the work of [7]. At a very high level, if we use a ZK argument
where the simulated proofs are indistinguishable from normal proofs even to an
adversary who is powerful enough to run the simulator itself, and if we commit
to the witnesses using a non-malleable commitment, it is possible to design a
sequence of hybrids that guarantees simulation soundness.

This and other minor technical details result in a construction and sequence
of hybrids that are slightly more involved than the simplified version presented
in this overview. We refer the reader to Sect. 6 for details.

3 Preliminaries

For any distribution X , we denote by x ← X the process of sampling a value
x from the distribution X . For a set X we denote by x ← X the process of
sampling x from the uniform distribution over X. For an integer n ∈ N we
denote by [n] the set {1, .., n}. A function negl : N → R is negligible if for
every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for
all λ > Nc. Throughout, when we refer to polynomials in security parameter,
we mean constant degree polynomials that take positive value on non-negative
inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity.

Throughout this paper, all machines are assumed to be non-uniform. We will
use λ to denote the security. We will use PPT as an acronym for “probabilistic
(non-uniform) polynomial-time”. In addition, we use the notation T1 � T2 (or
T2 � T1) if for all polynomials p, p(T1) < T2 asymptotically.

The statistical distance between two distributions X and Y over a discrete
domain Ω is defined as Δ(X,Y ) = (1/2) ·

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

(C, ε)-indistinguishability. By C we denote an abstract class of adversaries,
where each adversary A ∈ C grows in some complexity measure (i.e. size, depth,
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etc.) based on the security parameter λ. Security definitions will always hold
with respect to some class of adversaries which we will specify.

Definition 3.1 ( (C, ε)-Indistinguishability). Let ε : N → (0, 1) be a func-
tion. We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N

are (C, ε)-indistinguishable if for any adversary A ∈ C, for any polynomial poly,
and any λ ∈ N,

∣
∣
∣
∣ Pr
x←Xλ

[
A

(
1λ, x

)]
− Pr

y←Yλ

[
A

(
1λ, y

)]
∣
∣
∣
∣ ≤ ε(λ).

We use the shorthand X ≈(C,ε) Y to denote this. If A is unbounded time then
we say that Y and X are statistically indistinguishable and we write X ≈(∞,ε)

Y, or alternately Δ(X ,Y) ≤ ε. (This corresponds to the standard definition of
statistical distance.)

4 MrNISC Syntax and Security

We define the syntax of MrNISC and formalize security notions for malicious
adversaries as well as semi-malicious adversaries, following the general framework
given by Benhamouda and Lin [14].

We assume all parties have access to a broadcast channel, which any party
can transmit a message to all other parties. We consider protocols given in the
form of three polynomial-time algorithms (Encode,Eval,Output), where Encode
and Eval are probabilistic, and Output is deterministic, for which we define the
syntax as follows:

– Input Encoding phase: each party Pi computes mi,1 ← Encode(1λ, xi; ri,1),
where xi is Pi’s private input, and the output mi,1 is Pi’s round 1 message.

– Function Evaluation phase: any set of parties I can compute an arity-
|I| function f on their respective inputs as follows. Each party Pi for i ∈ I
computes mi,2 ← Eval(f, xi, ri,1, I, {mi,1}i∈I ; ri,2), where f is the function to
compute, xi is Pi’s private input, ri,1 is the randomness which Pi used to
generate its input encoding, {mi,1}i∈I are the input encodings of all parties
in I, and the output mi,2 is Pi’s round 2 message.

– Output phase: Anyone can compute y ← Output({mi,1,mi,2}i∈I).

Malicious Security. We follow the standard real/ideal paradigm in the follow-
ing definition. An MrNISC scheme is malicious-secure for every PPT adversary A
in the real world there exists an ideal-world adversary S (the “simulator”) such
that the outputs of the following two experiments ExptRealA (λ) and ExptIdealA,S (λ)
are indistinguishable.

In the following, for ease of exposition, we assume that each party sends at
most one computation encoding for any (f, I) pair, and that parties ignore any
subsequent computation encodings.
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Real Experiment ExptRealA (λ, z).The experiment initializes the adversary A
with security parameter 1λ and auxiliary input z. In addition, the experiment
initializes an empty list honest outputs. A chooses the number of parties M and
the set of honest parties H ⊆ [M ]. A then submits queries to the experiment in
an arbitrary number of iterations until it terminates. In every iteration k, it can
submit one query of one of the following four types.

– Corrupt Input Encoding: The adversary A can corrupt a party i /∈ H
and send an arbitrary first message m∗

i,1 on its behalf.
– Honest Input Encoding: The adversary A can choose an input xi for

honest party i and ask a party i ∈ H to send its first message by running
m∗

i,1 ← Encode(1λ, xi; ri,1), where ri,1 is freshly chosen randomness. This m∗
i,1

is sent to the adversary.
– Honest Computation Encoding: The adversary A can ask an honest party

i ∈ H to evaluate a function f on the inputs of parties I. If all first messages
of parties in I are already published, party i computes and publishes m∗

i,2 ←
Eval(f, xi, I, ri,1, {m∗

i,1}i∈I ; ri,2). Otherwise, the party instead publishes ⊥.
– Corrupt Computation Encoding: The adversary can send an arbitrary

function evaluation encoding m∗
i,2 to the honest parties on behalf of some

corrupted party i /∈ H with respect to some function f and set I. If all parties
in I have sent their Eval messages for (f, I), the experiment adds the honest
parties’ output (f, I,Output({m∗

i,1,m
∗
i,2}i∈I)) to the list honest outputs.

The output of the real experiment is defined to be (viewA, τ, honest outputs),
where viewA is the output of A at the end of the computation, i.e. an arbitrary
function of its view, τ is the transcript of queries sent by A along with the
experiment’s responses, and honest outputs is the list defined above.

Ideal Experiment ExptIdealA,S (λ, z). The ideal experiment initializes A with secu-
rity parameter 1λ and auxiliary input z. After A chooses the number of parties
M and the set H � [M ], the experiment initializes S with 1λ, M , and H. In
addition, the experiment initializes an empty list honest outputs. Subsequently,
the adversary can make the same queries as in the real world, which are handled
as follows:

– Corrupt Input Encoding: When A sends a first message m∗
i,1 on behalf of

some party i /∈ H, the experiment forwards this encoding to S, who responds
with an extracted input xi. S also has the option to declare that Pi’s input
is ⊥, which means that S was not able to extract an input from m∗

i,1 (for
example, if the adversary sends a bogus string as its message). The experiment
then sends xi (if it is not ⊥) to the ideal functionality to be used as the input
for party i.

– Honest Input Encoding: When the adversary A chooses honest input xi

and asks party i ∈ H to send its first message, the experiment sends xi to the
ideal functionality to be used as the input for party i. The experiment then
sends the index i (but not xi) to the simulator S, who generates a simulated
honest input encoding m̃i,1. This encoding is forwarded back to A.
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– Honest Computation Encoding: When the adversary A asks an honest
party i ∈ H for a function evaluation encoding with respect to function f
and parties I, assuming all parties in I have published input encodings, the
experiment forwards this request to S. If this is the last honest computation
encoding generated with respect to f and I, and all corrupted parties in
j ∈ I \ H have sent first messages m∗

j,1 from which non-⊥ inputs have been
extracted, then the experiment queries the ideal functionality on (f, I) to
obtain the output y, which it forwards to the simulator as well. The simulator
must then generate a simulated function evaluation encoding m̃i,2 on behalf of
party i, regardless of whether it receives y or not. This encoding is forwarded
to A.

– Corrupt Computation Encoding: When the adversary sends a function
evaluation encoding m∗

i,2 on behalf of some corrupted party corresponding
to some (f, I), the experiment forwards (f, I, i,m∗

i,2) to the simulator. If all
parties have sent computation encodings, the simulator chooses whether to
allow the honest parties to learn the output corresponding to (f, I). If so, the
experiment adds (f, I, y) to the list honest outputs; otherwise, the experiment
adds (f, I,⊥) to honest outputs.

The output of the ideal experiment is defined to be (v̂iew, τ, honest outputs),
where v̂iew is the output of A at the end of the experiment, τ is the transcript of
queries made by A along with the experiment’s responses, and honest outputs is
the list defined above. In addition, at any point in the experiment, S may choose
to abort; in this case, the output of the experiment is whatever S outputs at
that point.

Definition 4.1 ((Cadv, Csim, ε)-Maliciously Secure MrNISC). We say that
an MrNISC protocol Π is (Cadv, Csim, ε)-maliciously secure if for every Cadv adver-
sary (A,D) there exists a Csim ideal-world adversary S (i.e., the simulator) such
that for every string z,

∣
∣
∣ Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣
∣ < ε(λ).

The standard notion of security requires for every polynomial p(·) the exis-
tence of a polynomial q(·) for which the protocol is (p, q, ε)-maliciously secure,
where ε(·) is a negligible function. However, since we are interested in two-round
protocols, it is known that the standard polynomial notion of security is impos-
sible. Therefore, we focus on the relaxed notion of super-polynomial security
(SPS): there is a sub-exponential function q(·) such that for all polynomials p(·),
the protocol is (p, q, ε)-maliciously secure.

The Semi-malicious Case. We define a variant of the above security definition,
which closely mirrors the definition of semi-malicious secure multiparty computa-
tion [5]. A semi-malicious MrNISC adversary is modeled as an algorithm which,
whenever it sends a corrupted input or computation encoding on behalf of some
party Pj , must also output some pair (x, r) which explains its behavior. More
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specifically, all of the protocol messages sent by the adversary on behalf of Pj up
to that point, including the message just sent, must exactly match the honest
protocol specification for Pj when executed with input x and randomness r. Note
that the witnesses given in different rounds need not be consistent. We also allow
the adversary to “abort” a function evaluation in two different scenarios. First,
instead of sending a Corrupt Input Encoding message for Pj , the adversary
can send (j,⊥) to the experiment. In this case, the experiment will respond with
⊥ for all Honest Computation Encoding requests for (f, I), and when all
parties in I have been queried, it will add (f, I,⊥) to honest outputs. Second,
instead of sending a Corrupt Computation Encoding message on behalf of
Pj the adversary can again send (j, f, I,⊥). Again, after receiving such a query,
the experiment will respond with ⊥ for all Honest Computation Encoding
requests for (f, I), and when all parties in I have been queried, it will add (f, I,⊥)
to honest outputs.

I have published computation encodings for (f, I). In this sense, the adver-
sary may abort any individual function evaluation. Whenever an adversary
aborts a Corrupt Input Encoding message on behalf of party Pj , it must
abort any subsequent Corrupt Computation Encoding messages for Pj .

Definition 4.2 ( (Cadv, Csim, ε)-Semi-Malicious Secure MrNISC). We say
that an MrNISC protocol Π is (Cadv, Csim, ε)-semi-malicious secure if for every
Cadv semi-malicious adversary (A,D) there exists Csim ideal-world adversary S
(i.e., the simulator) such that for every string z,

∣
∣
∣ Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣
∣ < ε(λ).

5 Main Building Blocks

In this section, we give formal definitions for our new notion of reusable
sometimes-statistically-sound zero-knowledge arguments along with the receiver-
assisted one-round CCA-secure commitments, both of which we make use of in
our MrNISC protocol.

5.1 Reusable Statistical ZK Arguments with Sometimes-
Statistical Soundness

We define statistical zero-knowledge arguments with a specific communication
pattern. The protocol that we need has a “simultaneous message” first round,
where both the prover and verifier will simultaneously send a message. The
syntax is the following:

1. The (honest) prover P = (ZKProve1,ZKProve2) and verifier V = (ZKVerify1,
ZKVerify2) are each composed of two uniform PPT algorithms.

2. ZKProve1 and ZKVerify1 get as input only the security parameter λ. ZKProve1
outputs a message zk1,P and a state σP . ZKVerify1 outputs a message zk1,V

and a state σV . The first round transcript is denoted τ1 = (zk1,P , zk1,V ).
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3. ZKProve2 gets σP , zk1,V , the instance x, and a witness w. It outputs a mes-
sage zk2,P .

4. ZKVerify2 gets the instance x and τ = (τ1, zk2,P ), and outputs 0/1.

Looking ahead, we shall consider two-round ZK protocols as above with
super-polynomial simulation (SPS), i.e., the simulator can run longer than the
soundness bound. Further, we will also require that for a given prover and a
verifier, the first message is reusable for proving multiple statements. We denote
〈P (w), V 〉(1λ, x) the output of the interaction between P and V , where P gets
as input the witness w, and both P and V receive the instance x as a common
input.

Definition 5.1 (Reusable Statistical Zero-Knowledge Arguments with
Sometimes-Statistical Soundness). Let L be a language in NP with a
polynomial-time computable relation RL. A protocol between P and V is a
(Csound, CS , Czk, εsound,1, εsound,2, εS)-reusable statistical zero-knowledge argument
with sometimes-statistical soundness if it satisfies Definitions 5.2 to 5.4 below.

Definition 5.2 (Perfect Completeness). Let L be a language in NP with a
polynomial-time computable relation RL. A protocol between P and V satisfies
perfect completeness if for every security parameter 1λ and (x,w) ∈ RL, it holds
that Pr

[
〈P (w), V 〉(1λ, x) = 1

]
= 1,

where the probability is over the random coins of P and V .

Additionally, we need a refined soundness property, defined next.

Definition 5.3 ((Csound, εsound,1, εsound,2)-statistical soundness). Consider
any prover P ∗ ∈ Csound and a polynomial p(·), where on input the security param-
eter 1λ, P ∗ outputs an instance x ∈ {0, 1}p \ L. We require that there exists a

“soundness mode indicator” machine E that on input (τ1, stateV ) outputs either
0 or 1 such that the following properties hold.

– Frequency of Soundness Mode. For every prover P ∗ ∈ Csound,
Pr [E(τ1, stateV ) = 1] ≥ εsound,1(λ),
where the probability is over the coins of the prover and the verifier in round
1.

– Perfect Soundness Holds During Soundness Mode. For every prover
P ∗ ∈ Csound and every round-1 state (τ1, stateP ∗ , stateV ) of the protocol, if
E(τ1, stateV ) = 1 then for all second-round messages zk2,P sent by the prover
corresponding to some false statement x �∈ L, the verifier rejects on input
(x, τ1, zk2,P , stateV ).

– Indistinguishability of Soundness Mode. For every prover P ∗ ∈ Csound,
it holds that

{(τ1, stateP ∗) | E(τ1, stateV ) = 1}
≈(Csound,εsound,2)

{(τ1, stateP ∗) | E(τ1, stateV ) = 0}.
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The full MrNISC protocol needs a powerful version of zero knowledge, as
follows:

Definition 5.4 ((CS , Czk, εS)-Adaptive Reusable Statistical Zero-
Knowledge). We say a zero knowledge scheme satisfies (CS , Czk, εS,1, εS,2)-
adaptive reusable statistical zero-Knowledge if there exists a (uniform) simulator
ZKSim ∈ CS which takes as input the round-one transcript τ1, the honest prover’s
state σP , and a statement x such that the following holds. Consider an adversary
V ∗ ∈ Czk that takes as input 1λ and an honestly generated prover’s first round
message zk1,P , and plays the following game exptbV ∗,zk:

1. V ∗ may adaptively issue queries of the form (x,w, zk∗
1,V ). The challenger

responds as follows:
– f (x,w) /∈ RL, the challenger responds with ⊥.
– If (x,w) ∈ RL and b = 0, the challenger responds with the honest prover’s

second message ZKProve2(σp, zk
∗
1,V , x, w).

– If (x,w) ∈ RL and b = 1, the challenger responds with the simulated
prover’s message ZKSim(σp, zk

∗
1,V , x).

2. At the end of the game, V ∗ outputs an arbitrary function of its view, which
is used as the output of the experiment.

It must hold that expt0V ∗,zk ≈(∞,εS) expt
1
V ∗,zk.

An overview and complete details of our construction of the reusable SZK
argument with sometimes-statistical soundness can be found in the full version
of the paper [26].

5.2 One-Round Simultaneous-Message CCA-Non-
malleable Commitments

In the following, we define the syntax and required security properties of the
commitment scheme which we use in the main MrNISc construction in Sect. 6.
This commitment is a simultaneous-message one-round commitment, where both
committer and receiver send a message during the single round. The receiver’s
message is a uniform random string τ , and the committer’s message is some obfus-
cated program P. The committed value is only fixed when both P and τ are fixed.
To reflect this, in the definition of syntax below, ComputeOpening, VerifyOpening,
and CCAVal take both the committer’s message P and the receiver’s message τ
as input.

Let T = {Tλ}λ∈N be the tag space which is [T (λ)], where T = 2poly(λ). The
modified syntax is as follows.

Definition 5.5 (Syntax of one-round simultaneous-message CCA-non-
malleable commitments). With respect to the tag space T , the NMC consists
of the following algorithms.
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CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment
algorithm takes as input the security parameter λ, a tag tag ∈ Tλ, and a
message m ∈ {0, 1}∗, and outputs a commitment P.
ComputeOpening(τ, tag,P,m, r) : The polynomial time deterministic algo-
rithm
ComputeOpening takes as input a string τ ∈ {0, 1}�t , a tag tag ∈ Tλ, a com-
mitment P, a message m ∈ {0, 1}∗, and the randomness r used to commit. It
outputs an opening σ ∈ {0, 1}∗. Above �t = �t(λ, n) is a polynomial associated
with the scheme.
VerifyOpening(τ, tag,P,m, σ) : The polynomial-time deterministic algorithm
VerifyOpening takes a string τ ∈ {0, 1}�t , a tag tag ∈ Tλ, a commitment P, a
message m ∈ {0, 1}∗, and an opening σ. It outputs a value in {0, 1}.

Such a scheme is said to be a one-round simultaneous-message CCA-non-
malleable commitment if it satisfies the following properties:

Definition 5.6 (Correctness of Opening). Let λ ∈ N be the security param-
eter, and consider any tag ∈ Tλ, any message m ∈ {0, 1}∗, any τ ∈ {0, 1}�t , any
P ← CCACommit(1λ, tag,m; r). Then, Pr[VerifyOpening(τ, tag,P,m, σ) = 1] = 1,

where σ = ComputeOpening(τ, tag,P,m, r).

Definition 5.7 (Extraction). There exists an (inefficient) algorithm CCAVal
with the following properties. For any λ ∈ N and any message m ∈ {0, 1}∗, tag
tag ∈ Tλ, commitment P, and τ ∈ {0, 1}�t(λ), it holds that

(
∃σ : VerifyOpening(τ, tag,P,m, σ) = 1

)
⇐⇒ CCAVal(τ, tag,P) = m.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now specify the CCA security property.

Definition 5.8 ((C, ε)-CCA security). We define the following security game
played between the adversary A ∈ C and the challenger. We denote it by
exptA,CCA(1λ):

1. The challenger manages a list L that is initially empty. The contents of the
list are visible to the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.
3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -queries. Challenger
samples τ ′ ← {0, 1}�t and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-queries
for any τ ∈ L, any tag �= tag∗, and any commitment P. The challenger
computes CCAVal(τ, tag,P) and sends the result to the adversary.

4. The adversary submits two messages m0,m1 ∈ Mλ. The challenger samples
b ← {0, 1}, and computes P∗ ← CCACommit(1λ, tag∗,mb). The adversary
gets P∗ from the challenger.
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5. The adversary repeats Step 3.
6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1

if b′ = b and 0 otherwise.

The one-round (simultaneous-message) CCA-secure commitment scheme CCA
scheme satisfies (C, ε)-CCA security if for all adversaries A ∈ C:

∣
∣
∣
∣
∣
Pr[exptA,CCA(1λ) = 1] − 1

2

∣
∣
∣
∣
∣
≤ ε.

Our NMC construction is an extension of [36]. It takes the same form as
that of [36], namely, the committer publishes a message P , and the receiver
publishes a random τ . We change the internals of the construction, though, to
allow the receiver to publish τ during the first round, simultaneously while the
committer is publishing P . We show that with our modifications, even a rushing
committer who chooses P based on τ cannot break security. Thus we achieve
a (simultaneous-message) one-round NMC which satisfies the full CCA security
definition given above, relying on iO and other standard assumptions. We refer
to the full version of the paper [26] for details.

6 Malicious-Secure MrNISC

In this section, we give the formal construction and proof of security for our
MrNISC protocol.

Required Primitives and Parameters. We make use of the following primi-
tives in our construction.

– Commitment: A non-interactive perfectly binding commitment (NICommit).
– Pseudo-Random Function A pseudo-random function (PRF ).
– Witness Encryption: We use witness encryption We use circuit SAT as our
NP language.

– Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness: We
use a SPS ZK argument (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2) satisfy-
ing Definitions 5.1, 5.3 and 5.4.

– One-round CCA commitments: We use one-round (simultaneous-message)
CCA commitments as in Definitions 5.5 to 5.8.

– Semi-malicious MrNISC : We use an underlying semi-malicious MrNISC pro-
tocol (SM.Encode,SM.Eval,SM.Output), satisfying the security notion given
in Definition 4.2.

Complexity Hierarchy. In order to argue security, we require that the primi-
tives we use are secure against adversaries of varying complexities. In particular,
we require the following complexity hierarchy to hold with respect to the primi-
tives. Let T1, T2, T3, T4, T5 be functions over λ, such that

T1 � T2 � T3 � T4 � T5,
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where T � T ′ means that p(T ) < T ′ asymptotically for all polynomials p. We
require the following:

– The ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical
zero knowledge (Definition 5.4) where CS is the class of circuits of size poly(T1)
and depth T1 (i.e. the simulator runs in size poly(T1) and depth T1), and
Czk is the class of circuits of size p(T3) for all polynomials p, and εS is any
negligible function (i.e. statistical zero knowledge holds as long as the verifier’s
first-round message is generated by a machine in Czk.

– The CCA non-malleable commitment scheme satisfies (C, ε)-CCA security,
where C is the class of circuits of size p(T1) for all polynomials p, and ε is any
negligible function.

– The CCA non-malleable commitment scheme’s extractor CCAVal is a circuit
of size T2 and polynomial depth.

– The perfectly-binding commitment scheme is hiding against adversaries of
size p(T2) for all polynomials p, and is extractable by a circuit of size T3.

– The ZK argument scheme satisfies (Csound, εsound,1, εsound,2)-statistical sound-
ness, where Csound is the class of circuits of size p(T5) and polynomial depth
for all polynomials p (refer to Definition 5.3 for details on the meaning of
Csound), and εsound,1 = 1/T4, and εsound,2 is any negligible function.

– The witness encryption scheme satisfies (C, ε)-security, where C is the class of
circuits of size p(T5) for all polynomials p, and ε = 1/T5.

– The pseudo-random function is secure against adversaries of size p(T5) for all
polynomials p.

– The semi-malicious MrNISC protocol is secure against adversaries of size
p(T5) for all polynomials p.

The Relation Φzk,i,j

Hardwired: The function f and the set I, Pi’s tag tagi, Pi’s CCA non-malleable
commitment nmci, Pi’s perfectly binding commitment comi, Pi’s first round semi-
malicious MPC message m̂i,1, Pj ’s string τj , Pi’s commitment comi,m̂i,2 to its semi-
malicious evaluation encoding m̂i,2, and the transcript ρsm,1 of the semi-malicious
input encodings of all parties from I.

Input/Witness: Wzk,i = (xi, ri,SM,1, Ki, ri,com, σi,j,CCA, m̂i,2).

Computation: Verify the following steps.

1. VerifyOpening(τj , tagi, nmci, (xi, ri,SM,1, Ki, ri,com), σi,j,CCA) = 1
2. comi = NICommit(1λ, (xi, ri,SM,1, Ki); ri,com)
3. m̂i,1 = SM.Encode(1λ, xi, ri,SM,1)
4. m̂i,2 = SM.Eval(f, xi, ri,SM,1, I, ρsm,1; PRFKi(f, I, 1))
5. comi,m̂i,2 = NICommit(1λ, m̂i,2; PRFKi(f, I, 2))

Output 1 if all the above checks succeed, otherwise output 0.
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The Relation ΦWE,i

Hardwired: The function f , the set I, the set of tags of all parties, Pi’s first-
round verifier zk messsage zk1,i,V , Pi’s string τi, the first-round prover zk messages,
commitments and semi-malicious encodings {zk1,j,P , m̂j,1, comj , nmcj}j∈I\{i}
included in the input encodings of all other parties in I.

Witness:
WWE,i = ({zk2,j→i,P , comj,m̂j,2}j �=i).

Computation: For every j ∈ I \ {i},

1. Let
Φzk,j = Φzk,j [f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

be the circuit described in page 122, with the values

[f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

hardcoded.
2. Compute ZKVerify2(Φzk,j , zk1,i,V , zk1,j,P , zk2,j→i,P ).

Output 1 if all the above checks succeed, otherwise output 0.

Protocol. We give the protocol below, described in terms of the behavior of
party Pi during the input encoding phase, the evaluation phase, and the output
computation phase. In particular, we give this behavior by implementing the
Encode, Eval and Output algorithms defined in Section 4. Assume that each party
Pi has input xi and a public identity denoted by tagi ∈ Tλ. Note that the Output
algorithm is public and can be performed without Pi’s private input or state.
Throughout the protocol description, we deal with PPT algorithms as follows. If
a PPT algorithm P is invoked on some input x without any randomness explicitly
given (i.e., we write P (x)), we implicitly assume that it is supplied with freshly
chosen randomness. In some cases we will need to explicitly manipulate the
randomness of algorithms, in which case we will write P (x; r).

– Input Encoding Encode(1λ, tagi, xi): The input encoding algorithm takes
as input 1λ, where λ is the security parameter, along with Pi’s tag tagi and
private input xi, and does the following.
1. Compute the input encoding m̂i,1 ← SM.Encode(1λ, xi; ri,SM,1) from the

semi-malicious protocol, where ri,SM,1
$←− {0, 1}∗ is freshly chosen random-

ness.
2. Choose a PRF key Ki.
3. Compute a perfectly binding commitment

comi ← NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

of the input and the semi-malicious encoding randomness, where ri,com
$←−

{0, 1}∗ is freshly chosen randomness.
4. Compute a CCA-non-malleable commitment

nmci ← CCACommit(1λ, tagi, (xi, ri,SM,Ki, ri,com); ri,CCA)
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of the same values committed to in the perfectly binding commitment,
along with the randomness used for generating the perfectly binding com-
mitment, where ri,CCA

$←− {0, 1}∗ is freshly chosen randomness.

5. Compute a random string τi
$←− {0, 1}�.

6. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V ) ← ZKVerify1(1
λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P ) ← ZKProve1(1λ).

7. Output mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,V , zk1,i,P ).
– Function Evaluation Eval(f, tagi, xi, ri,1, I, ρ1): The function evaluation

algorithm takes as input the function f to be evaluated, the set I of par-
ticipating parties, Pi’s private input xi, the randomness ri,1 which Pi used to
generate its input encoding, and the input encoding transcript ρ1, and does
the following:
1. Parse ρ1 = {m̂k,1, comk, nmck, τk, zk1,k,V , zk1,k,P }k∈[n] to obtain (ri,SM,1,

ri,com, ri,CCA, σzk,1,i,V , σzk,1,i,P ) from ri,1.
2. Compute the semi-malicious function evaluation encoding

m̂i,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi
(f, I, 1))

of the underlying semi-malicious protocol, using the transcript ρsm,1 =
{m̂k,1}k∈I of the semi-malicious input encodings of all parties from I,
where the randomness is chosen using the PRF key committed to during
the input encoding phase.

3. Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2;PRFKi
(f, I, 2)) of

the encoding m̂i,2 using randomness derived from the PRF key committed
to during the input encoding phase.

4. For each Pj , j ∈ I \ {i}:
• Compute an opening

σi,j,CCA ← ComputeOpening(τj , tagi, nmci, (xi, ri,SM,1, Ki, ri,com), ri,CCA)

for the non-malleable-commitment nmci with respect to τj .
• Compute a

round two ZK prover’s message zk2,i→j,P ← ZKProve2(Φzk,i,j ,Wzk,i,
σzk,1,i,P , zk1,j,V ), where Φzk,i,j is the circuit SAT instance defined on
page 6. Here Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2) is the wit-
ness for generating this prover message.

5. Compute a witness encryption WEi ← WE.Encrypt(1λ, ΦWE,i, rcom,i,m̂i,2)
where the circuit ΦWE,i is described on page 26, and the plaintext
rcom,i,m̂i,2 = PRFKi

(f, I, 2) is the opening for comi,m̂i,2 .
6. Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).
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– Output Computation Output({mj,1,mj,2}j∈I): The output computation
algorithm takes as input the input encoding mj,1 and the function evaluation
encoding mj,2 of every party Pj for j ∈ I and does the following:
1. Parse

mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

and
mj,2 = (comj,m̂j,2 , {zk2,j→k,P }k∈I\{j},WEj)

for each j ∈ I.
2. For each j, k ∈ I, j �= k:

• Run ZKVerify2(Φzk,j,k, zk1,k,v, zk1,j,p, zk2,j→k,p), where Φzk,j,k is
described on page 25. If the verification fails, abort and output ⊥.

3. For each j ∈ I:
• Compute the decryption rcom,j,m̂j,2 ← WE.Decrypt(WEj ,WWE,j) of

the opening rcom,j,m̂j,2 to the commitment comj,m̂j,2 , using the witness
WWE,j = ({zk2,k→j,P , comj,m̂j,2}k 	=j). If the decryption fails, abort
and output ⊥.

• Open comj,m̂j,2 to Pj ’s semi-malicious function evaluation encoding
m̂j,2 using rcom,j,m̂j,2 .

4. Compute the output y ← Output({m̂j,1, m̂j,2}j∈I) using the values m̂j,2

obtained from decrypting the witness encryptions along with the semi-
malicious input encodings m̂j,2.

5. Output y.

Correctness. Correctness of the protocol follows directly from correctness of
the underlying primitives.

We refer to the full version [26] for the proof of security.
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