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Abstract. We construct succinct non-interactive arguments (SNARGs)
for bounded-depth computations assuming that the decisional Diffie-
Hellman (DDH) problem is sub-exponentially hard. This is the first
construction of such SNARGs from a Diffie-Hellman assumption. Our
SNARG is also unambiguous: for every (true) statement x, it is compu-
tationally hard to find any accepting proof for x other than the proof
produced by the prescribed prover strategy.

We obtain our result by showing how to instantiate the Fiat-Shamir
heuristic, under DDH, for a variant of the Goldwasser-Kalai-Rothblum
(GKR) interactive proof system. Our new technical contributions are (1)
giving a TC0 circuit family for finding roots of cubic polynomials over a
special family of characteristic-2 fields (Healy-Viola, STACS 2006) and
(2) constructing a variant of the GKR protocol whose invocations of
the sumcheck protocol (Lund-Fortnow-Karloff-Nisan, STOC 1990) only
involve degree 3 polynomials over said fields.

Along the way, since we can instantiate the Fiat-Shamir heuristic
for certain variants of the sumcheck protocol, we also show the exis-
tence of (sub-exponentially) hard problems in the complexity class PPAD,
assuming the sub-exponential hardness of DDH. Previous PPAD hard-
ness results required either bilinear maps or the learning with errors
assumption.

1 Introduction

Succinct non-interactive arguments (SNARGs) [Mic94] are short, easy to verify,
and computationally sound proofs that a statement x belongs to a potentially
complex language L. In principle, one could hope to construct extremely efficient
SNARGs for all NP languages; indeed, in the random oracle model, there exists a
non-interactive1 argument system for any L decidable in non-deterministic time
T (n) with proof size poly(λ, log T ) and verification time poly(λ, log T ) + Õ(n),
1 As is common, we consider arguments in the common reference string (CRS) model,

where the reference string is set up in advance. Throughout this paper, our reference
strings will be uniformly random without loss of generality.
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where n = |x| and λ is a security parameter [Mic94]. Unfortunately, there are
significant concerns about whether it is possible to construct such arguments
based on falsifiable and preferably standard computational assumptions [Bar01,
GK03,GW11,BBH+19].

In this work, we consider SNARGs for a restricted class of languages: those
computable by logspace-uniform circuit families of bounded depth D (and
arbitrary polynomial size S). These were first studied in the interactive set-
ting by Goldwasser, Kalai, and Rothblum [GKR08], who constructed (statis-
tically sound) interactive proofs of size D · poly log(S) and verification time
D · poly log(S) + Õ(n). (We will henceforth refer to this as the GKR protocol.)
Recently, a work of Jawale, Kalai, Khurana, and Zhang [JKKZ21] showed how to
convert this proof system into a SNARG by instantiating the Fiat-Shamir heuris-
tic [FS87,BR93] for the GKR protocol in the standard model (building upon
[CCH+19]). Their SNARG is proved secure under the sub-exponential hardness
of the learning with errors (LWE) assumption. Aside from [JKKZ21], SNARGs for
(even unbounded depth) deterministic computation are now known from bilinear
maps [KPY19,WW22,KLVW23], the polynomial hardness of LWE [CJJ22], and
a combination of the decisional Diffie-Hellman (DDH) and Quadratic Residuosity
(QR) assumptions [HJKS22,KLVW23].

SNARGs from DDH. In this work, we ask if SNARGs can be built from the DDH
assumption alone. We answer this question in the affirmative for SNARGs for
bounded-depth computations.

Theorem 1.1. Assuming the sub-exponential hardness of DDH, there exist
SNARGs for logspace-uniform depth-D, size-S computations. The SNARGs have
proof size poly(λ, logS) · D and verification time poly(λ, logS) · (D + n). The
prover runs in time poly(λ, S).

As stated, our SNARGs achieve only non-adaptive soundness: that is, sound-
ness holds for fixed inputs x to the circuit C.2 By complexity leveraging (setting
λ = n1/ε for an appropriate constant ε independent of S), we can achieve sound-
ness that is adaptive with respect to the input x, at the cost of a communication
complexity and verification time that are poly(n, logS) · D.

Moreover, our SNARGs are unambiguous [RRR16,CHK+19a], which means
that they satisfy a form of soundness even for true statements: for x ∈ L, it is
computationally hard to find an accepting proof for x other than the honestly
generated proof guaranteed to exist by completeness. Unambiguous SNARGs
were previously constructed in [KPY20,JKKZ21] but only known using either
bilinear maps or LWE.

On a slightly more technical level, we show that (unambiguous) SNARGs
for bounded depth can be built from a weaker generic primitive than was

2 We note that the circuit C itself is always fixed in the protocol description.
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known before: (lossy) correlation-intractable hash functions [CGH98,CCH+19,
JKKZ21] supporting the complexity class TC0. Previous work relied on a stronger
form of correlation intractability (CI) supporting functions in P (or, implicitly,
NC). Since CI for TC0 was constructed based on DDH in [JJ21], this essentially
implies Theorem 1.1. We discuss this in more detail in our technical overview
(Sect. 1.1).

Hardness in PPAD from DDH. Closely tied to unambiguous SNARGs is the
problem of showing the cryptographic hardness of the complexity class PPAD
[Pap94,CHK+19a]. PPAD is a complexity class arising from computational game
theory that famously includes finding a Nash equilibrium of bimatrix games as
a complete problem [DGP09,CDT09]. The work of Choudhuri et al. [CHK+19a]
showed that instantiating the Fiat-Shamir heuristic for (many variants of) the
sumcheck protocol [LFKN90] suffices to establish PPAD-hardness.

In this work, towards instantiating Fiat-Shamir for the GKR protocol, we
show how to instantiate Fiat-Shamir for variants of the sumcheck protocol that
can be plugged into the framework of [CHK+19a]. Thus, we obtain PPAD-
hardness from the sub-exponential DDH assumption.

Theorem 1.2. Assuming that DDH is sub-exponentially hard, the complexity
class PPAD contains problems that are sub-exponentially hard on average.

Again, we prove Theorem 1.2 by showing that lossy correlation intractable
hash functions for TC0 suffice to construct the non-interactive sumcheck proto-
col.

In the rest of this introduction, we give a brief overview of our techniques for
proving Theorem 1.1 and Theorem 1.2.

1.1 Technical Overview

We begin by discussing our contributions on applying the Fiat-Shamir heuristic
to the sumcheck protocol [LFKN90]. We first recall the sumcheck protocol.

The Sumcheck Protocol. In the sumcheck protocol, the prover and verifier
begin with a degree3-d polynomial f(x1, . . . , xn) in n variables over some finite
field F. The prover wants to convince the verifier of the value of the sum
y =

∑
a∈{0,1}n f(a), where the sum is taken over F. This is accomplished by

the following interactive protocol:

– The prover sends the univariate polynomial

g(x) =
∑

a2,...,an∈{0,1}
f(x, a2, . . . , an).

3 Here and below, by “degree” we refer to individual degree: a multivariate polynomial
has individual degree ≤ d if it has degree ≤ d in each variable.
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– The verifier checks that g(0)+ g(1) = y. If so, it samples a uniformly random
β ← F and sends β to the prover.

– The prover and verifier recursively execute the sumcheck protocol with respect
to the polynomial fβ(x2, . . . , xn) = f(β, x2, . . . , xn) and value yβ = g(β).

– In the base case, the verifier simply evaluates f(β1, . . . , βn), which it can do
given a circuit for f .

As shown in [CCH+19,JKKZ21], this protocol satisfies what is called unam-
biguous round-by-round soundness. Concretely, what this means (for this proto-
col) is that once the polynomial g is fixed by the prover, if g is not the correct
“partial sum” polynomial, then with high probability over the choice of β, the
prover and verifier will recurse on a false statement. Note also that if the state-
ment (f, y) is false but g is the correct polynomial w.r.t. f , then the verifier will
immediately reject.

Removing Interaction via Fiat-Shamir. In this work, we want a non-interactive
variant of the sumcheck protocol, which we obtain by instantiating the Fiat-
Shamir heuristic [FS87,BR93] for the sumcheck protocol. Concretely, this means
that we will have n hash functions h1, . . . , hn sampled from a hash family H, and
the i-th verifier challenge βi is instead computed as a hash hi(f, y, g1, β1, . . . , gi)
of the transcript so far.

Following the bad challenge function paradigm of [CCH+19], we call a chal-
lenge βi bad for (f, y, g1, β1, . . . , gi) if (1) gi is not the correct polynomial
g∗

i =
∑

ai+1,...,an
f(β1, . . . , βi−1, x, a2, . . . , an) and (2) the resulting recursive

claim (fβ1,...,βi
, gi(βi)) is true. In the case of the sumcheck protocol, the set

of all bad β is precisely the set of roots of the polynomial gi(x) − g∗
i (x). Note

that there are at most d such roots, as gi(x) − g∗
i (x) is a nonzero polynomial

of degree at most d. Thus, letting F
(i)
1 , . . . , F

(i)
d denote functions where F

(i)
j

maps (f, β1, . . . , βi−1, gi) to the jth root of gi − g∗
i in F (if one exists), we know

by [CCH+19] that the resulting non-interactive protocol is sound if each hi is
correlation-intractable (CI) [CGH98,CCH+19] for F

(i)
1 , . . . , F

(i)
d .

Recall that a hash function family H is CI for a relation R (generalizing
the case of a function f) if given h ← H it is computationally hard to find
an input α such that (α, h(α)) ∈ R. There has been much recent progress on
constructing CI hash functions based on standard cryptographic assumptions
(e.g. [CCH+19,PS19,BKM20,JJ21,HLR21]). The construction relevant to us in
this work is that of [JJ21], which built a CI hash function family supporting
functions computable in the complexity class TC0 (constant-depth threshold
circuits) based on sub-exponential DDH.

Thus, in order to use the [JJ21] hash function family, we ask: what is the
computational complexity of the bad challenge functions F

(i)
j ?

Naïvely, it is not even clear that the F
(i)
j functions are in P, because

even computing the polynomial g∗
i (as a function of f, β1, . . . , βi−1) seems to

require time 2n−i. However, following [JKKZ21], if the functions h1, . . . , hi−1

are lossy [PW08], we can guess the challenges β1, . . . , βi−1 in advance and non-
uniformly hard-wire the polynomial g∗

i in our security reduction (incurring a
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sub-exponential security loss from guessing β1, . . . , βi−1). That is, we will actu-
ally define each hi to be the composition of a [JJ21] hash function with a lossy
trapdoor function family (LTDF). The resulting composition will still be CI
for TC0 circuits provided that inversion of a LTDF can be computed in TC0,
which we observe (see Sect. 2.2) is possible for a simple modification of standard
constructions [PW08,FGK+10].

1.1.1 The Circuit Complexity of Root-Finding

Finally, we arrive at the first of two main challenges in this work. With the
setup so far, we have reduced the problem to achieving correlation intractability
for a circuit class that has the power to find roots of univariate polynomials
over a field F (and some additional TC0 operations). If root-finding over finite
fields were known to be in TC0, we would be done! Unfortunately, standard root-
finding algorithms [Ber70,Rab80,CZ81] are not known to be implementable in
TC0. Indeed, it is clear that some care is required: if p is a large (size 2λ) prime,
finding roots of even degree 1 polynomials over Fp is at least as hard as computing
mod p inverses a �→ a−1 (mod p), which is not known to be in TC0.

Thus, it is clear that to have any hope of root-finding in TC0, one must
carefully choose the field F. In this work, we make use of a special characteristic-
2 field ensemble K = {Kn} studied by Healy and Viola, henceforth referred to
as the Healy-Viola field ensemble, over which many field operations (including
the inversion map a �→ a−1) are known to be in TC0 [HV06]. In this work, we
show:

Lemma 1.1 (informal, see Theorem 3.4). There is a TC0 circuit family that
finds all roots of cubic (degree d = 3) univariate polynomials over the Healy-
Viola field ensemble.

We emphasize that the algorithm in Lemma 1.1 only finds roots that lie in the
ground field K, not (necessarily) roots that lie in extensions4 of K. Combining
Lemma 1.1 with our discussion so far, we obtain the following result:

Theorem 1.3 (informal). Fiat-Shamir for degree-3 sumcheck protocols over
the Healy-Viola field ensemble is sound using hash functions that are Lossy CI
for TC0, and is therefore instantiable under sub-exponential DDH.

That is, by carefully instantiating the field ensemble and designing a special-
purpose root-finding algorithm, we show how to use the Jain-Jin hash function
family [JJ21] to achieve a non-interactive sumcheck for degree three polynomials.
This is a very limited form of non-interactive sumcheck, but we next show how
to leverage this limited form of sumcheck to prove Theorems 1.1 and 1.2. Finally,
at the end of this overview we sketch a proof of Lemma 1.1, which is one of our
main technical contributions.

4 In fact, our algorithm finds all roots that lie in the unique degree-2 extension of K
but not its algebraic closure.
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1.1.2 PPAD Hardness with Degree-2 Sumchecks

First, we show that PPAD-hardness can be established making use of our non-
interactive sumcheck protocol for polynomials of degree as low as 2!

To employ the framework of [CHK+19a], all that we require is that our
sumcheck protocol can be used to prove membership in a NP-hard language. In
[CHK+19a], this is accomplished by using sumcheck over a large characteristic
field as an argument system for #SAT.

Since our non-interactive sumcheck works over a characteristic-2 field, we
instead start with ⊕SAT, the computational problem of counting the parity of
the number of satisfying assignments of a SAT formula. This problem is also NP-
hard under randomized reductions [VV85]. Given such a SAT formula φ, this
parity can then be expressed as a sumcheck problem over K:

⊕SAT(φ) =
∑

a1,...,an∈{0,1}
φ(a1, . . . , an).

Moreover, φ can be arithmetized so that it is represented by a polynomial-size
arithmetic circuit over F2 ⊂ K. In order for our non-interactive sumcheck proto-
col to be applicable, we would need the individual degree of this arithmetization
to be at most 3. Given that we are doing a “standard” arithmetization, what is
the individual degree of φ? If φ is a CNF, this is nothing more than the maximum
number of clauses that an individual variable appears in.

Conveniently, it is known that ⊕SAT on arbitrary formulas reduces to ⊕SAT
on CNFs (which are not 3-regular) where each variable occurs in at most three
clauses [Tov84]. This suffices to establish Theorem 1.2 by invoking Theorem 1.3
and [CHK+19a] with respect to a degree-3 sumcheck protocol.

Note on Adaptivity. In order to obtain Theorem 1.2, following [JKKZ21], we
need a non-interactive sumcheck protocol satisfying a form of soundness referred
to as “prefix-adaptive soundness” (an intermediate notion between non-adaptive
and adaptive soundness). Our non-interactive sumcheck protocol satisfies this
form of soundness exactly as in [JKKZ21].

Variable-Extended Formulations. While we have already proved Theorem 1.2,
we will give a slightly different second proof, since this will be a crucial step
in proving Theorem 1.1. Specifically, we will prove Theorem 1.2 by invoking
a degree 2 (rather than 3) sumcheck protocol. To do this, we start with the
sumcheck problem above with respect to (the standard poly-size arithmetization
of) φ. The individual degree of φ may be very large; nevertheless, we will show
that ⊕SAT(φ) can be expressed as a different degree 2 sumcheck.

We accomplish this using a Cook–Levin style reduction, in which we intro-
duce new variables y1, . . . , ym that are supposed to represent a wire assignment
of the NAND-circuit computing φ. Concretely, consider the polynomial f in
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n + m variables defined as

f(x1, . . . , xn, y1, . . . , ym)

= ym ·
∏

(i,j,k)∈Gates(φ)

(yi + yjyk)
n∏

i=1

⎛

⎝xi

∏

j∈Si

yj + (1 − xi)
∏

j∈Si

(1 − yj)

⎞

⎠ ,

where for every i ∈ [n], Si ⊂ [m] is defined to be the subset of leaf vertices in φ
that are assigned the input xi. In words, f (arithmetically) checks that (i) the
output wire ym is 1, (ii) each NAND gate is computed correctly, and (iii) the leaf
variables were all assigned with respect to a consistent x ∈ {0, 1}n. For boolean
inputs, f(x1, . . . , xn, y1, . . . , ym) is thus either zero or equal to φ(x1, . . . , xn)
(which happens for one “consistent” assignment to y). Therefore,

∑

a1,...,an∈{0,1}
φ(a1, . . . , an) =

∑

a1,...,an∈{0,1}
b1,...,bm∈{0,1}

f(a1, . . . , an, b1, . . . , bm),

so computing ⊕SAT(φ) reduces to an f -sumcheck. Finally, note that f has indi-
vidual degree 2! Indeed, it is linear in the xi, quadratic in the non-leaf yj (as
they are each used in two gates of φ), and quadratic in the leaf yj (each is used
in one gate of φ and has a linear dependence in the “input encoding” part of f).

In general, we say that the above transformation produces a “variable-
extended formulation” of a boolean formula φ (see Definition 5.1), and this is a
key step in proving Theorem 1.1.

1.1.3 SNARGs via Degree 3 Sumchecks

Armed with our new approach of constructing variable-extended formulations of
sumcheck polynomials, we proceed to sketch our proof of Theorem 1.1. We prove
Theorem 1.1 by choosing a suitable variant of the [GKR08] protocol, modifying it
to rely only on degree 3 sumchecks, and then (essentially5) applying Theorem 1.3.

At a high level, the [GKR08] protocol proves that C(x) = y for a logspace-
uniform depth D, size S circuit C by iteratively producing pairs of claims about
a multilinear extension encoding of each layer Li of the computation tableau
of the circuit (when evaluated on input x). That is, each Li = Li(x) ∈ {0, 1}S

is a string containing the value of all level i vertices in the evaluation of C(x),
and Li is interpreted as a function �i : {0, 1}log S → {0, 1}, which can then be
extended to a multilinear function �̂i : Klog S → K. The GKR protocol begins
with an evaluation claim about �̂D (the end of the computation) and ends with
a pair of evaluation claims about �̂0; since the input layer of C has only width
n (rather than, say, S/D) �̂0 can be evaluated in O(n) field operations and thus
can be checked by the verifier.
5 The variant of [GKR08] that we use actually runs pairs of sumcheck protocols in

parallel with shared verifier randomness (as is done in [Mei13,JKKZ21]), but this
detail does not substantially change the proof.
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The key step is to understand how to reduce claims about �̂i to claims about
�̂i−1; this boils down to the “sumcheck-friendly” equation which writes �i(a) as

∑

b,c∈{0,1}log S

[

χ
(i)
add(a, b, c)

(
�i−1(b) + �i−1(c)

)
+ χ

(i)
mult(a, b, c)

(
�i−1(b)�i−1(c)

)
]

,

where χadd, χmult are the gate indicator functions that take as input three wire
labels (a, b, c) for the circuit and indicates whether an addition (respectively,
multiplication) gate is present at these three wires. This equation can then be
extended multilinearly to a similar equation relating �̂i to �̂i−1.

Given this summary of the GKR protocol, the key question for us is as follows:
what is the degree of the sumcheck polynomials? By inspection, it turns out that
this degree is one more than the degree of the arithmetizations of χadd, χmult.
Naively, their degree may be up to O(logS) (i.e., the number of leaves in the
boolean formulas for χadd, χmult), but by using variable-extended formulations
of these polynomials, we can reduce this degree to 2 (at the cost of adding
O(logS) auxiliary variables to the sumcheck). Note that it is crucial for prover
efficiency that we only add O(logS) (rather than poly logS) new variables, as
the prover’s running time is exponential in this number of variables. We show
that an appropriate extended formulation exists making use of an analysis due
to Goldreich [Gol18] of χadd, χmult.

In total, this results in a GKR protocol variant relying on degree 3 sumchecks
over K, and thus we can instantiate Fiat-Shamir for this protocol based on sub-
exponential DDH.

1.1.4 Cubic Root Finding: Proving Lemma 1.1

Finally, we sketch a proof of Lemma 1.1, which states that roots of cubic poly-
nomials over Healy-Viola fields K can be computed in TC0. We will not resort
to general-purpose root-finding algorithms [Ber70,Rab80,CZ81] (which all have
a high-depth iterative nature) but instead turn to explicit formulae for roots of
low degree polynomials. We show that these explicit formulae can be converted
into low-depth algorithms.

First, let us consider the degenerate cases of linear and quadratic polynomials.

– Root-finding for linear polynomials is equivalent to solving a linear equation
over K, which reduces to multiplication and inversion over K. These opera-
tions were shown to be in TC0 in [HV06].

– Since K has characteristic 2, root-finding for quadratic polynomials reduces
to finding roots of polynomials of the form x2 + c and x2 + x + c.6 Then:

• The polynomial x2 + c always has a double root of c|K|/2,7 which can be
computed in TC0 via low-depth exponentiation [HV06].

6 This follows from the fact that az2+bz+c = 0 ⇐⇒ (a/b·z)2+(a/b·z)+a/b2 ·c = 0.
7 This is the case since in characteristic 2 fields, −α = α for all α.
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• The polynomial x2 + x + c has roots given by an explicit formula as a
function of c related to its orbit {c, c2, c4, . . . , c2

n−1} under the Frobenius
map α �→ α2. The form depends on the order of two dividing log |K|
(which turns out to be 1 for the Healy–Viola fields) and is given implicitly
in our proof of Theorem 3.3.

Passing to a Quadratic Extension of K. We note that [CJJ21] also proves that
quadratic root-finding in K is in TC0 with a different approach; however, we
give a more powerful algorithm that actually finds roots of this polynomial in an
explicit quadratic extension L ⊃ K (even when no roots in K exist). This more
powerful algorithm is necessary to prove the cubic case of Lemma 1.1.

In order for this to make sense, we must be able to construct L in a way
so that operations in L are similarly efficient to operations in K. Fortunately,
we are able to do this with a careful construction, noting that one way to con-
struct a quadratic extension of K is to add to it a solution to the equation
x2 + x + ω = 0, where ω is an explicit cube root of unity in K. Since ω alone
generates a constant-size field, this greatly simplifies the problem of giving effi-
cient algorithms for operations over L. We show in Theorem 3.2 that all of the
relevant field operations on L are in TC0, which requires opening up the [HV06]
construction and extending their analysis to L.

The Cubic Case. Finally, we compute roots of cubic polynomials over K using an
algorithmic variant of the cubic formula [Lag70] over characteristic 2 fields. At a
high level, the characteristic 2 cubic formula reduces computing roots of a cubic
polynomial (given its coefficients), modulo basic operations, to the following
tasks:

1. Finding roots of a related quadratic polynomial defined over K.
2. Computing the cube root map α �→ α1/3 (modulo cube roots of unity).
3. Solving a constant-size linear system involving these cube roots.

In Sect. 3, we show that all of these procedures are computable in TC0 and thus
roots of all cubic polynomials can be computed in TC0.

One important subtlety is that the roots computed in (1) above are not nec-
essarily in K, but in the quadratic extension L; relatedly, (2) requires computing
cube roots of elements of L. One must be careful to argue that (in our setting)
the cubic formula algorithm does not have to pass into a degree 6 (or degree 3)
extension of K, which we have not explicitly constructed.

For a full explanation/proof of Lemma 1.1, we refer the reader to Sect. 3
(Theorem 3.4).

1.2 Related Work

Fiat-Shamir in the Standard Model. Over the last few years, a line of
work including [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,BKM20,JJ21,
HLR21,CJJ21,CJJ22,HJKS22] and many others has studied the instantiability
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of the Fiat-Shamir heuristic using concrete, efficiently computable hash function
families. Starting with the work of [CCH+19], there have been instantiations
based on standard cryptographic assumptions (initially the learning with errors
assumption [CCH+19,PS19]). The work of [JJ21] constructed NIZKs for NP
under the sub-exponential DDH assumption by building a hash family that is
correlation-intractable for TC0 functions from sub-exponential DDH. Beginning
with the works of [CCH+19,JKKZ21], applying Fiat-Shamir to the [GKR08]
protocol (to construct SNARGs in the standard model) has been explicitly stud-
ied, including a construction based on sub-exponential LWE [JKKZ21]. Finally,
more recently the Fiat-Shamir approach has been used to build succinct batch
arguments for NP [CJJ21,CJJ22,HJKS22] which in turn imply SNARGs for P
[CJJ22,KVZ21].

SNARGs Without Fiat-Shamir. There have additionally been constructions of
SNARGs for P that do not rely on the Fiat-Shamir heuristic [KPY19,GZ21,
WW22,KLVW23], all of which currently rely on some form of cryptographic
bilinear maps.

Cryptographic Hardness of PPAD. Establishing hardness in PPAD based on
cryptographic assumptions has also received considerable attention, including
[BPR15,GPS16,CHK+19a,CHK+19b,EFKP20,LV20,KPY20,BCH+22]. Pre-
viously, PPAD-hardness was known under the following sets of assumptions:

– Polynomially secure functional encryption [BPR15,GPS16], which can be
built by a particular combination of three concrete assumptions [JLS21],

– Super-polynomial hardness of a falsifiable assumption on bilinear maps
[KPY20],

– The sub-exponential LWE assumption [JKKZ21], and
– A combination of (polynomially-secure) LWE and the (polynomial) hardness

of iterated squaring modulo a composite [BCH+22].

2 Preliminaries

2.1 Cryptographic Groups

Let G = {Gλ} be a group ensemble, indexed by a security parameter λ, such
that group operations (and testing equality) can be computed in time poly(λ).

Definition 2.1 (Decisional Diffie-Hellman Assumption). We say that the
decisional Diffie-Hellman (DDH) assumption with time T and advantage μ holds
for G if any T (λ)-time algorithm A(·) has advantage at most μ in distinguishing
a random “DDH-tuple” (g, gx, gy, gxy) from a tuple (g, gx, gy, gz) (for uniformly
random x, y, z).

In this paper, we work exclusively with cryptographic groups satisfying the fol-
lowing conditions:8

8 These groups will be used to instantiate the lossy trapdoor function component
of a lossy CI hash family; the CI component does not have to satisfy all of these
properties (but DDH must still be sub-exponentially hard).
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1. Iterated group multiplication g1, g2, . . . , gt �→ ∏t
i=1 gi can be computed by a

poly(λ, t)-size, low-depth circuit family. As in [JJ21], there are two flavors of
results: one requires TC0 circuits (which exist for, e.g., subgroups of Z

×
q ),

while the other requires threshold circuits (with unbounded fanin) of depth
o(log λ) (which exist for standard elliptic curve groups [JJ21]). In the latter
case, we will use complexity leveraging: re-define the group security parameter
to be κ = poly log λ, so that DDH remains polynomially hard and iterated
multiplication can be computed in depth o(log log λ).

2. The DDH assumption holds with inverse-subexonential μ = 2−λε

for some
constant ε > 0. If iterated multiplication requires superconstant-depth thresh-
old circuits, then we require the assumption to hold for T = 2λε

(so that we
can complexity leverage as above), while if iterated multiplication has TC0

circuits, then we only require the assumption to hold for T = poly(λ).
3. Letting M denote a uniformly random n(λ)×n(λ) matrix (for n(λ) = poly(λ))

modulo N = |G|, we have that M is invertible with probability 1 − negl(λ).
This holds immediately for prime-order groups or groups with order N that
have no polynomial-size prime divisors.

As discussed in [JJ21], properties (1) and (2) are satisfied (that is, DDH is
plausible) by common examples such as (subgroups of) Z

×
q or groups of Fq-

points of elliptic curves.

2.2 Lossy Trapdoor Functions

Lossy trapdoor functions were first defined and constructed in an influential
work of Peikert and Waters [PW08]. Loosely speaking, a lossy trapdoor function
family contains two types of functions: injective ones and lossy ones, such that
one cannot distinguish between a random injective function in the family and
a random lossy function in the family. An injective function can be generated
together with a trapdoor, which allows one to efficiently invert the function,
whereas a lossy function “loses” most information about its preimage, since its
image is much smaller than its domain.

Definition 2.2 ((T, ω)-Lossy Trapdoor Family)
A quadruple (InjGen, LossyGen,Eval, Inv) of PPT algorithms is said to be a

(T, ω)-lossy trapdoor function family if there exist polynomials n = n(λ), n′ =
n′(λ), s = s(λ) and t = t(λ) for which the following syntax and properties are
satisfied:

– Syntax.
• InjGen(1λ) takes as input a security parameter 1λ and outputs a pair
(k, td), where k ∈ {0, 1}s is a key corresponding to an injective function
and td ∈ {0, 1}t is a corresponding trapdoor.

• LossyGen(1λ) takes as input a security parameter 1λ and outputs a key
k ∈ {0, 1}s corresponding to a lossy function.

• Eval(k, x) takes as input a key k ∈ {0, 1}s and an element x ∈ {0, 1}n and
outputs an element y ∈ {0, 1}n′

.
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• Inv(k, td, y) takes as input a key k ∈ {0, 1}s, a trapdoor td ∈ {0, 1}t, and
an element y ∈ {0, 1}n′

, and outputs an element x ∈ {0, 1}n ∪ {⊥}.
– Properties. The following properties hold:

• Injective Mode. For every λ ∈ N and every k ∈ InjGen(1λ) the
function Eval(k, ·) is injective. Furthermore, for every x ∈ {0, 1}n(λ),
Pr[Inv(k, td,Eval(k, x)) = x] = 1.9

• ω-Lossiness. For every λ ∈ N and every k ∈ LossyGen(1λ) the function
Eval(k, ·) has an image of size 2n(λ)−ω(λ).

• T -Security. There exists a negligible function μ such that for every
poly(T )-size adversary A and for every λ ∈ N,

∣
∣
∣ Pr
k←G.LossyGen(1λ)

[A(k) = 1] − Pr
k←G.InjGen(1λ)

[A(k) = 1]
∣
∣
∣ = μ(T (λ))

Theorem 2.1 [PW08,FGK+10]. Assuming the sub-exponential hardness of
DDH, for every constant 0 < δ < 1 and every polynomial n(λ), there exists a
constant 0 < ε < 1 for which there exists a (T, ω)-lossy trapdoor function family
for ω(λ) = n(λ) − λδ and T = 2λε

.
Moreover, after a td-independent preprocessing step, inversion of this func-

tion family has threshold circuits of depth O(d), provided that large fan-in mul-
tiplication over the DDH group can be computed in depth d.

Proof. We slightly modify the construction due to [FGK+10] in order to obtain
TC0 inversion:

– The public key is of the form gM , where g is a generator for an order p group
where DDH is hard and M is a k × k matrix with entries in {0, 1, . . . , p −
1}. In injective mode, M is a uniformly random invertible matrix. In lossy
mode, M is a uniformly random rank 1 matrix. Injective and lossy modes are
computationally indistinguishable under the DDH assumption.

– The input x is an element of {0, 1}n. To evaluate the function, one computes
fgM (x) = gMx by evaluating the matrix-vector product “in the exponent.”

– The trapdoor in injective mode is as follows:

td =
[
aij

]
ij
= M−1,

To invert, we compute f−1
td (gz) = gM−1z, where the matrix-vector product

M−1z =

⎛

⎝
∑

j

aijzj

⎞

⎠

i

is computed by exponentiating gzj �→ gaijzj and then computing k different
k-fold products. Algorithmically, this is done as follows:

9 Following [JKKZ21], we require perfect correctness for simplicity only.
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• First compute gj,� = g2
�zj for all 0 ≤ j ≤ log p. This does not require td

and is thus considered a preprocessing step.
• Given {gj,�}, td =

[
aij

]
ij

, compute (for all i, in parallel)

gxi =
∏

j,�

g
aij [�]
j,� ,

where aij [�] denotes the �th bit of aij . xi can then be recovered by checking
whether the group element is idG or g. Since this online step consists
of many parallel iterated product operations, its threshold circuit depth
essentially matches that of iterated group multiplication.

– Finally, we observe that in lossy mode, fgM maps a domain of size pk to a
range of size p, thus achieving the desired amount of lossiness for p = 2λ and
k = λ1/δ.

2.3 Correlation-Intractable Hash Families

In this section, we recall the notion of a correlation-intractable (CI) hash family
originally defined in [CGH98]. We start by recalling the notion of a hash family.

Definition 2.3. A hash family H consists of two algorithms (H.Gen,H.Hash),
and parameters n = n(λ) and m = m(λ), such that:

– H.Gen is a PPT algorithm that takes as input a security parameter 1λ and
outputs a key k.

– H.Hash is a polynomial time computable (deterministic) algorithm that takes
as input a key k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an
element y ∈ {0, 1}m(λ).

In what follows when we refer to a hash family, we usually do not mention
the parameters n and m explicitly.

Definition 2.4 (T -Correlation Intractable [CGH98]). A hash family H =
(H.Gen,H.Hash) is said to be T -correlation intractable (T -CI) for a function
family F = {Fλ}λ∈N if the following two properties hold:

– For every λ ∈ N, every f ∈ Fλ, and every k ∈ H.Gen(1λ), the functions f
and H.Hash(k, ·) have the same domain and the same co-domain.

– For every poly(T )-size A = {Aλ}λ∈N there exists a negligible function μ such
that for every λ ∈ N and every f ∈ Fλ,

Pr
k←H.Gen(1λ)

x←A(k)

[H.Hash(k, x) = f(x)] = μ(T (λ)).

Theorem 2.2. [JJ21] Assuming sub-exponential hardness of DDH against
polynomial-time attackers, there exists a constant ε > 0 and a T -correlation
intractable hash family for TC0, for T = T (λ) = 2λε

.
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2.4 Lossy CI Hash Functions

In this section we recall the notion of a lossy CI hash family, originally defined
in [JKKZ21].

Definition 2.5 ((T, T ′, ω)-Lossy CI). A hash family

H = (H.Gen,H.LossyGen,H.Hash)

is said to be (T, T ′, ω)-lossy CI for a function family F if the following holds:

– (H.Gen,H.Hash) is a T -CI hash family for F (Definition 2.4).
– The additional key generation algorithm H.LossyGen takes as input a security

parameter λ and outputs hash key k, such that the following two properties
hold:

• T ′-Key Indistinguishability. For every poly(T ′)-size adversary A,
there exists a negligible function μ such that for every λ ∈ N

∣
∣
∣
∣ Pr
k←H.LossyGen(1λ)

[A(k) = 1] − Pr
k←H.Gen(1λ)

[A(k) = 1]
∣
∣
∣
∣ = μ(T ′(λ)).

• ω-Lossiness. For every λ ∈ N and every k ∈ H.LossyGen(1λ), denoting
by n = n(λ) the length of elements in the domain of H.Hash(k, ·),

|{H.Hash(k, x)}x∈{0,1}n(λ) | ≤ 2n(λ)−ω(λ).

Theorem 2.3. There exists a (T, T ′, ω)-lossy CI hash family for F = {Fλ}λ∈N

(Definition 2.4) assuming the existence of the following primitives:

– A (T ′, ω)-lossy trapdoor function family G (Definition 2.2), such that for every
λ ∈ N, f ∈ Fλ, and k ∈ G.Gen(1λ), the domain of G.Eval(k, ·) is equal to the
domain of f .

– A T -CI hash family H (Definition 2.4) for the function family F ′, where
the family F ′ = {F ′

λ}λ∈N is defined as follows: for each λ ∈ N, f ′ ∈ F ′
λ if

and only if there exists f ∈ Fλ, and (k, td) ∈ G.Gen(1λ) such that f ′
λ(·) =

fλ(G.Inv(k, td, ·)). In fact, this holds even when G.Inv(k, td, ·) is replaced by
the online phase of an offline/online (with respect to td) algorithm for G.Inv.

2.5 SNARGs for Bounded Depth Computations

In this section we recall the main theorem from [JKKZ21], which claims that (a
variant of) the GKR protocol has a standard model Fiat-Shamir instantiation.
The GKR protocol considered in [JKKZ21], as well as the one considered in this
work, is slightly different from the original protocol proposed in [GKR08], and
we elaborate on this protocol in Sect. 5.2. In what follows, when we refer to the
GKR protocol we refer to the protocol from [JKKZ21].

The GKR protocol is a publicly verifiable interactive proof for proving the
correctness of log-space uniform bounded depth computations. Let C be a log-
space uniform circuit of depth d and size s. The GKR protocol for proving that
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C(x) = 1 for a given input x ∈ {0, 1}n, consists of d = d(n) sub-protocols. Each
sub-protocol is a sum-check protocol with log s variables over a finite field F of
size poly(|C|). In [GKR08] and [JKKZ21] the finite field F is taken to be an
extension of GF[2]. In this work we take a particular field of size 2λ, for which
computing roots of a degree-3 univariate polynomial can be done in TC0. See
Sect. 3 for details.

In what follows, for any field ensemble F = {Fn}n∈N and any c = cn ∈ N

we let GKRF,c denote an instantiation of the GKR protocol with the field F and
where the degree of each variable in the underlying sum-check protocols inside
the GKR protocol is bounded by c. We let F = FF,c be the function family where
each f ∈ F has a degree c univariate polynomial p : F → F hardwired into it. It
takes as input a degree c polynomial p′ specified by c + 1 elements in F, and it
outputs a root of p − p′ (which is an element in F).

Theorem 2.4. [JKKZ21] Fix any field ensemble F = {Fn}n∈N and any c = cn ∈
N. Let � denote the number of rounds in each sum-check protocol in GKRF,c. Fix
any T ′(λ) ≥ λ. Assume there exists a constant ε > 0 for which there exists a
(T, T ′, ω)-lossy CI hash family for the function family FF,c, with T (λ) = 2�·λε

and ω(λ) = n(λ)− λε. Then there exists a hash family H such that applying the
Fiat-Shamir heuristic to the GKRF,c protocol with the hash family H results with
a T ′-sound SNARG scheme.

In Sect. 5 we show that any log-space uniform computation has a GKRF,c

protocol with F being any finite field ensemble of size |F| = 2λ and with c = 3.
Moreover, in Sect. 3 we show that computing a root of a degree 3 univariate
polynomial over a specific finite field ensemble F (constructed by Healy and Viola
[HV06]) can be done in TC0. This, together with Theorem 2.4 and Theorems
2.1 and 2.2, yields our SNARG construction (Theorem 5.1).

3 Root-Finding in TC0

In this section, we recall the finite field ensemble constructed by Healy and
Viola [HV06], who show that their fields admit TC0 circuits for many basic finite
field operations (addition, pairwise multiplication, large fan-in multiplication,
and exponentiation). We construct explicit degree-2 extensions of all finite fields
in this ensemble and prove that the same basic operations in the field extensions
have TC0 circuits. Finally, we show that there are TC0 circuits finding all roots
of a given quadratic or cubic equation in the original field ensemble of [HV06].

The results of this section will be used in later subsections to instantiate
the Fiat-Shamir transform and show PPAD-hardness (Sect. 4) and delegation
for bounded-depth computations (Sect. 5).

3.1 Basic Finite Field Operations

Following [HV06], we define the field ensemble {Kn}n=2·3� as follows.



SNARGs and PPAD Hardness from the DDH Assumption 485

Definition 3.1 (Healy-Viola Fields). The Healy-Viola (HV) field Kn, which
is an extension of F2 of degree n = 2 · 3�, is defined to be the polynomial ring
F2[x]/(x2·3�

+ x3�

+ 1).

Theorem 3.1 (Healy-Viola [HV06]). The field ensemble {Kn} admits a
polynomial-size10 TC0 circuit family for the following operations:

– Addition: (α1, . . . , αt) �→ ∑t
i=1 αi over K.

– (Large fan-in) Multiplication: (α1, . . . , αt) �→ ∏t
i=1 αi over K.

– Exponentiation: (α, T ) �→ αT over K. The TC0 circuit size is poly(n, log T ).

In this work, we need to extend Theorem 3.1 to hold over not just K but a
degree-2 extension L/K.

Definition 3.2 (Degree-2 field extension of HV fields). The degree-2 field
extension {Ln}n=2·3� of Kn is defined to be the polynomial ring L = K[y]/(y2 +
y + ω), where ω = x3� ∈ K.

We first show that the polynomial y2+y+ω is irreducible over K (so that L is
in fact a field), which follows by the following standard algebraic argument. Since
the polynomial has degree 2, it suffices to show that all the roots of y2 + y + ω
in a fixed algebraic closure K = F2 are not in K. We do so by arguing that,
on the one hand, any root of y2 + y + ω in the algebraic closure K has degree
exactly 4 over F2,11 and on the other hand, K does not contain any degree-4 field
elements. The latter follows from the fact that deg(K) = 2 · 3� is not divisible by
4, so it does not contain a subfield of degree 4 over F2.12

It remains to argue that any root of y2 + y + ω in the algebraic closure K

has degree exactly 4 over F2. This holds by the following analysis: we know that
ω2 + ω + 1 = 0 over K (but ω 
∈ F2), so F2[ω] has degree 2 over F2. Moreover,
y2+ y+ω is irreducible over F2[ω] � F4. Thus, any root of y2+ y+ω lies in F16

(realized as a degree 2 extension of F2[ω]) but not F4.
Having established that L is well-defined, we proceed to generalize

Theorem 3.1.

Theorem 3.2. The field ensemble {Ln} admits a polynomial-size TC0 circuit
family for the following operations:

– Addition: (α1, . . . , αt) �→ ∑t
i=1 αi over L.

– (Large fan-in) Multiplication: (α1, . . . , αt) �→ ∏t
i=1 αi over L.

– Exponentiation: (α, T ) �→ αT over L. The TC0 circuit size is poly(n, log T ).

Theorem 3.2 follows by a very similar approach as the proof of Theorem 3.1,
making use of some additional properties of L.
10 As usual, the circuit size will be polynomial in the description length of its input,

which will be at least n as a single field element is an n-bit string.
11 An element α in a field extension K of F2 is said to have degree d if d is the minimal

degree of a nonzero polynomial p over F2 such that p(α) = 0 (over K).
12

Fpd is a subfield of Fpn if and only if d | n.
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Proof. Note that α ∈ L is given as an explicit bivariate polynomial α0(x) +
α1(x)y for α0(x), α1(x) ∈ K. An AC0[⊕] ⊆ TC0 circuit family for addition then
follows immediately by component-wise addition. Additionally, note that since
(
α0(x) + α1(x)y

)(
β0(x) + β0(x)y

)

= α0(x)β0(x) +
(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)y2

= α0(x)β0(x) +
(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)(y + ω)

=
(
α0(x)β0(x) + α1(x)β1(x)ω

)
+

(
α1(x)β0(x) + α0(x)β1(x) + α1(x)β1(x)

)
y,

an AC0[⊕] ⊆ TC0 circuit for pairwise multiplication over L follows from the
analogous circuits over K.

Next, we consider large fan-in multiplication. Suppose we are given t field
elements α(1), . . . , α(t) ∈ Ln and we want to compute

∏
α(i) ∈ Ln. To do this,

we view each α(i) as a bivariate polynomial over Z, and compute (in TC0) the
bivariate polynomial representation of

∏
α(i). [HAB02] argues that the analogous

product for univariate polynomials can be done in (uniform) TC0, but we can
see the same holds for our bivariate polynomials via the following reduction:

– Given a bivariate polynomial α(i)(x, y), define the polynomial β(i)(z) =
α(i)(z, zn·t); the coefficients of β(i) can be computed with a TC0 circuit.

– Compute the polynomial
∏

β(i) ∈ Z[z] by invoking [HAB02].
– Map the coefficients of

∏
β(i) to the coefficients of

∏
α(i)(x, y) via the cor-

respondence zk �→ xk (mod nt) · y�k/nt�; this map can also be computed in
TC0.

Finally, we must reduce this bivariate polynomial
∏

α(i)(x, y) modulo (x2·3�

+
x3�

+ 1, y2 + y + x3�

); this can be done via the following process:

– Reduce each y exponent modulo 15 (since y15 ≡ 1, as y ∈ L is in a degree 4
extension of F2),

– Reduce each (constant) power of y modulo (y2 + y + x3�

, x2·3�

+ x3�

+ 1),
– Group terms by power of y (either y0 or y1), and
– Reduce each yj coefficient modulo x2·3�

+ x3�

+ 1.

This completes the proof that large fan-in multiplication over L is in TC0.
Finally, we consider exponentiation (α, T ) �→ αT ∈ L. T is given as input

in binary; by invoking a large fan-in multiplication solver, we can reduce to the
case where T = 2i is a power of 2. Now, note that in L, we have

α(x, y)2
i

= α
(
x2i

, y2i
)
= α

(
x2i

, y +
i−1∑

j=0

ω2j
)
,

where the first equality follows from the fact that our field has characteristic 2,
and the second equality uses the defining equation y2+y+ω = 0. The field ele-
ment g(ω) =

∑i−1
j=0 ω2j ∈ K can be computed in AC0[⊕] (e.g. invoking [HV06]),
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and α(·, ·) is linear in its second argument, so we can compute α2i ∈ L by com-
puting each expression x2i·k for k ≤ n, which by [HV06] can be done in AC0[⊕],
and invoking pairwise field element multiplication and large fan-in addition cir-
cuits.

3.2 Finding Roots of K-quadratics in L

In this section, we give a TC0 circuit family for solving the following computa-
tional problem:

Definition 3.3 ((K,L) Quadratic Root Finding). Given a quadratic poly-
nomial az2 + bz + c ∈ K[z], find all zeroes of this polynomial in L.

Theorem 3.3. (K,L) quadratic root finding admits a TC0 circuit family.

Proof. We break into cases.

– If a = 0, then this amounts to computing b−1 ∈ K, which can be done because
b−1 = b2

n−2 and exponentiation is in TC0 (Theorem 3.1).
– If a 
= 0 and b = 0, then this amounts to inverting a and computing a square

root in K, which can be done because
√

α = α2n−1
for α ∈ K.

– If a 
= 0 and b 
= 0, then (by invoking standard field operations) this reduces
to the case where a = 1 and b = 1, as

az2 + bz + c = 0 ⇐⇒ (a/b · z)2 + (a/b · z) + a/b2 · c = 0.

Thus, for the rest of the proof, we assume that a = 1 and b = 1. Moreover, it
suffices to find a single solution z∗ in L, as the other solution will be z∗+1 (since
L has characteristic 2).

Given z2+z+c = 0, since n = 2·3� is 2 mod 4, solving the equation turns out
(via standard theory of finite fields, see e.g. [BSS99] Chapter II) to be related to
the F4-trace map

TrK/F4(α) =
n/2−1∑

i=0

α22i

as follows. First, we note that for any α ∈ K, TrK/F4(α) ∈ F2[ω], as TrK/F4(α) is
invariant under the map z �→ z2

i

for all even i. Additionally, the formula above
is computable via a TC0 (in fact, AC0[⊕]) circuit family.

Next, we give a TC0 (in fact, AC0[⊕]) circuit that on input α ∈ K, outputs
β ∈ K such that β2 + β = α + TrK/F4(α). The circuit simply computes the
expression

β =
∑

0≤i≤n/2−1
i odd

α22i

+ α22i+1
.

Observe that

β2 + β =
∑

0≤i≤n/2−1
i odd

α22i

+ α22i+2
= α +TrK/F4(α),
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where the last equation uses the fact that n/2 − 1 is even.
Finally, in order to solve the equation z2 + z + α = 0, given that we can

compute β above, it suffices by additivity to be able to solve the equation z2 +
z + c = 0 for c = TrK/F4(α) ∈ F2[ω]. But this can be done by lookup table: for
c = 0 a solution is 0, for c = 1 a solution is ω, for c = ω a solution is y, and for
c = 1 + ω a solution is ω + y. This completes the proof of Theorem 3.3.

3.3 Finding Roots of Cubics in K

In this section, we give a TC0 circuit family for solving the following computa-
tional problem:

Definition 3.4 ((K,K) Cubic Root Finding). Given a cubic polynomial
az3 + bz2 + cz + d ∈ K[z], find all zeroes of this polynomial that lie in K.

Theorem 3.4. (K,K)-cubic root finding admits a TC0 circuit family.

Proof. If a = 0, then by Theorem 3.3, we know that (K,L)-quadratic root finding
can be solved in TC0, and it is easy to check membership in K (on an input
α ∈ L), so this suffices to solve (K,K)-quadratic root finding as well.

Thus, we now assume that a = 1. Note that we only want to find all roots
in K, so we may assume without loss of generality that there is at least one
root in K (or else the problem is vacuous). Under this promise, it follows that
all three roots will lie in L (since the polynomial factors into linear and quadratic
terms over K). Our algorithm will find all three of these roots (and then check
membership in K).

We find these roots by invoking (a special case of) a standard characteristic
2 variant of the cubic formula (following e.g. [Lag70]). Namely, letting α0, α1, α2

denote the three roots in L, we will find α0, α1, α2 by first solving a related
quadratic equation with coefficients in K, then taking cube roots (in L), and
then solving a linear system over L.

By Vieta’s identities, we know that α̂0 := α0 + α1 + α2 = b. Letting ω =
x3� ∈ K so that ω3 = 1, we will eventually also compute the linear combinations

α̂1 = α0 + ωα1 + ω2α2,

α̂2 = α0 + ω2α1 + ωα2

The map (α0, α1, α2) �→ (α̂0, α̂1, α̂2) is always (efficiently) invertible over L, so
it suffices to compute α̂1, α̂2. This is sometimes referred to as the “Lagrange
resolvent method.”

The field elements α̂1 and α̂2 have been carefully chosen to satisfy useful
symmetries when α0, α1, α2 are permuted as formal variables:

– Under the cyclic permutation (α0, α1, α2) �→ (αi, αi+1, αi+2), we have that
α̂1 �→ ωiα̂1 and α̂2 �→ ω2iα̂2.

– Under the swap permutation αi ↔ αj , we have that α̂1 �→ ωi+jα̂2 and α̂2 �→
ω2i+2jα̂1.
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The symmetries simplify even further if you consider α̂3
1 and α̂3

2 (since ω3 = 1):
under cyclic permutation, these expressions are invariant, while under a swap
permutation, they swap!

Thus, α̂3
1+α̂3

2 and α̂3
1α̂

3
2 are symmetric under all permutations of (α0, α1, α2).

The theory of symmetric polynomials therefore tells us that α̂3
1 + α̂3

2 and α̂3
1α̂

3
2

can be expressed in terms of the elementary symmetric polynomials in α0, α1, α2,
which in our case evaluate to none other than b, c, and d by Vieta’s identities.
Indeed, one can explicitly check that

(α̂1α̂2)3 = (b2 + c)3

and
α̂3
1 + α̂3

2 = bc + d,

and thus (α̂3
1, α̂

3
2) are solutions to the quadratic equation

z2 + (bc + d)z + (b2 + c)3 = 0.

By Theorem 3.3, we can hence compute α̂3
1, α̂

3
2 ∈ L with a TC0 circuit. Finally,

since α̂1, α̂2 ∈ L, we can find three candidate values for each of α̂1, α̂2, by
computing cube roots over L; this leads to nine possible root sets for our original
problem, which can then be individually checked to find the correct roots.

Thus, we have reduced the problem to computing cube roots over L. For
this problem, we use a special case of the Adleman-Manders-Miller algorithm
[AMM77]. Specifically, we note that |L| − 1 = 24·3� − 1 is congruent to 3�+1

modulo 3�+2. Then, invoking exponentiation13 in L, on any input α ∈ L we can
compute

β = α
|L|−1−3�+1

3�+2 ∈ L.

Note that
β3�+2

= α3�+1
,

and thus β3/α is a 3�+1th root of unity, the set of which is precisely S =
{1, x, x2, . . . , x3�+1−1}. We can then enumerate (in parallel) over this ≤ n-size
set to determine (the x-exponent of) β3/α and thus compute a cube root of α
provided that a cube root of β3/α exists (necessarily within S).

Putting everything together, we obtain the desired TC0 circuit family for
(K,K)-cubic root finding.

4 PPAD-Hardness from Subexponential DDH

In this section, we prove Theorem 1.2, that PPAD is hard under the sub-
exponential DDH assumption. We do this by instantiating the Fiat-Shamir
heuristic for the sumcheck protocol executed on polynomials of individual degree

13 The (large) exponent can also be computed in TC0 [HAB02], or can be nonuniformly
hard-wired for simplicity.
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2 over the Healy-Viola field ensemble. We prove that Fiat-Shamir for this proto-
col is sound under DDH by using a lossy CI hash family for TC0 (Theorem 2.3)
and appealing to TC0 algorithms for quadratic root finding (Theorem 3.3).

Definition 4.1 (⊕3SAT). A 3CNF formula φ is in the language ⊕3SAT if the
number of satisfying assignments to φ is odd.

Fact 1 ([VV85]). If NP is hard (on average) for PPT algorithms, then ⊕3SAT
is hard (on average) for PPT algorithms.

In particular, if one-way functions exist, then ⊕3SAT is hard on average.

Definition 4.2 (Sumcheck Language). An instance of the sumcheck lan-
guage consists of an arithmetic circuit f over some field F, along with a target
value y. The pair (f, y) is a YES-instance if

∑

x∈{0,1}n

f(x1, . . . , xn) = y.

In this work, we observe that if ⊕3SAT is hard on average, then there is a
hard sumcheck problem over F2 where the individual degree of f is at most two.

Lemma 4.1. If ⊕3SAT is hard-on-average, then sumcheck over F2 is hard-on-
average with respect to a distribution of (f, y) such that the individual degree of
f is at most two.

Proof. We describe a one-to-one reduction mapping ⊕3SAT formulas φ to sum-
check polynomials f , so that deciding whether φ ∈ ⊕3SAT maps to checking
whether (f, 1) is a valid sumcheck instance.

Suppose that φ is an n-variable, m-clause 3CNF:

φ(x1, . . . , xn) =
m∧

j=1

φj(xj1 , xj2 , xj3)

where each φj is an OR of three variables (xj1 , xj2 , xj3) with some negation
pattern (contained in the description of φj). Then, consider the following formula
in 3m variables:

f(z = (zj,k)j∈[m],k∈{1,2,3})

=
m∏

j=1

φj(zj,1, zj,2, zj,3)
n∏

i=1

⎛

⎝
∏

j,k:jk=i

zj,k +
∏

j,k:jk=i

(1 − zj,k)

⎞

⎠ ,

where φj can be interpreted as a multilinear polynomial in three variables over
F2. We observe that:

– f has individual degree at most 2. This is because the two products are
individually multilinear.
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– For z ∈ {0, 1}3m, f(z) = 1 if and only if for some x ∈ {0, 1}n, φ(x) = 1 and
zj,k = xjk

for all (j, k). Otherwise, f(z) = 0.

Thus, we see that
∑

x∈{0,1}n

φ(x1, . . . , xn) =
∑

y∈{0,1}3m

f(y) (mod 2).

This completes the reduction.

To conclude that PPAD is hard-on-average, we combine Lemma 4.1 with the
unambiguous non-interactive argument system for sumcheck from [JKKZ21].
[JKKZ21] implies the following result:

Theorem 4.1 ([JKKZ21], translated). Let K be a field (ensemble) of size 2λ.
Then, there exists an updatable, unambiguous non-interactive argument system
for SumcheckK for individual degree d polynomials assuming the existence of
a hash family H that is lossy CI (Definition 2.5) for a class of functions that
enumerate over all roots of a given univariate degree d polynomial over K.

By Theorem 2.2, Theorem 2.3, and Theorem 2.1, we know that there exists
a lossy CI hash family for TC0 circuits under sub-exponential DDH. Moreover,
letting {Kλ} denote the field ensemble defined in Definition 3.1, we showed
that roots of degree 2 polynomials over K can be enumerated in TC0. Thus,
by Theorem 4.1, we conclude that the claimed argument system exists under
sub-exponential DDH.

Finally, it is known that an argument system satisfying the conditions of The-
orem 4.1 (along with the hardness of the underlying sumcheck problem) implies
the hardness of PPAD [CHK+19a], so this completes the proof of Theorem 1.2.

5 Delegation for Bounded Depth Computations
from Subexponential DDH

In this section, we apply and extend our techniques to prove our main theorem
on SNARGs for bounded-depth computation.

Theorem 5.1. Assuming the sub-exponential hardness of the DDH assumption,
there exists a SNARG for any logspace uniform depth d and size s computation,
where the size of the SNARG and the crs is bounded by d · poly(λ, log s) and the
verification time is (n + d) · poly(λ, log s), where n is the length of the input.

Our SNARG is obtained by applying the Fiat-Shamir heuristic to a variant of
the GKR protocol, considered in [KPY18,JKKZ21] (building on a simplification
of the original GKR protocol due to [Gol18]).
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5.1 Variable-Extended Formulations for Boolean Functions

In this section we show how to reduce the degree of any boolean formula down to
individual degree at most 2, by adding auxiliary variables. Loosely speaking, this
is done by adding a variable corresponding to each wire in the original formula,
and computing the original formula by making a series of consistency checks.

Definition 5.1. Let f(x1, . . . , xm) be a boolean function on m variables. We say
that g(x1, . . . , xm, z1, . . . , zt) is a variable-extended formulation of f if for every
x ∈ {0, 1}m, there exists a unique z(x) ∈ {0, 1}t such that g(x, z(x)) = f(x),
and g(x, z) = 0 for all z 
= z(x).

Lemma 5.1. Let f(x1, . . . , xm) be a NAND-boolean formula of size s. Then,
there exists a variable-extended formulation g of f such that (1) t = s, and (2)
g can be computed by a F2-arithmetic circuit of size O(s) that defines a (formal)
polynomial of individual degree at most 2.

Also, the above arithmetic circuit can be constructed in time poly(s) given
the description of f .

Proof. We use a similar strategy as in Lemma 4.1. That is, we introduce s new
variables z1, . . . , zs, one for each wire of the formula computing f . We then define

g(x, z) = zs

s∏

i=1

gi(z)
m∏

j=1

g′
j(x, z),

where for every gate (i, j, k) we have gi(z) = zi + zjzk and for every input index
j we have g′

j(x, z) = xj

∏
i∈Sj

zi + (1 − xj)
∏

i∈Sj
(1 − zi), where Sj denotes the

set of leaf indices corresponding to xj . Note that g(x, z) has individual degree
2, since (1) zs appears only twice, (2) each intermediate (non-output, non-leaf)
variable only appears twice because they have fan-in 1 and fan-out 1, and (3)
the variables {xj , zi}j∈[m],i∈Sj

have degree at most 2 (they occur at most once
in the first product, while the second product is multilinear).

5.2 A GKR Protocol with Degree 3 Sumcheck Polynomials

In this section, we construct a special variant of the GKR interactive proof sys-
tem for logspace-uniform depth-d computation. Our starting point is the GKR
protocol variant described in [KPY18,JKKZ21], which makes use of observations
from [Mei13,Gol18] to simplify the protocol. In [JKKZ21], it was shown that the
Fiat-Shamir heuristic can be instantiated for this protocol using a hash function
that is “lossy correlation-intractable” for circuits that (modulo basic field oper-
ations) compute roots of univarite polynomials of polylogarithmic degree. They
then show how to construct such a lossy correlation-intractable hash functions
from the sub-exponential LWE assumption.

By using an appropriate variable-extended formulation (Lemma 5.1), we will
modify the protocol so that every sumcheck sub-protocol uses a polynomial
of individual degree at most 3. Finally, working over the field ensemble from
Definition 3.1 and using the correlation-intractable hash family of [JJ21] (and
lossy trapdoor functions from DDH [PW08]), we will deduce Theorem 5.1.
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The Protocol. Let C = {Cn}n denote a family of logspace-uniform circuits of
depth d and width w. We assume without loss of generality that C has fan-in
2 and consists of addition (mod 2) and multiplication (mod 2) gates. The key
objects of interest are the gate-indicator functions χ

(i)
add, χ

(i)
mult for each layer (i)

of the circuit. χ
(i)
add and χ

(i)
mult take as input three strings (a, b, c) ∈ {0, 1}log w

and output whether (a, b, c) is an addition (respectively, multiplication) gate in
C.

The protocol is typically defined with respect to particular low-degree exten-
sions χ̃

(i)
add, χ̃

(i)
mult of χadd, χmult. For our variant, we make use of the following

fact shown implicitly in [Gol18]:

Fact 2. Let C ′ be any family of logspace-uniform circuits of depth d and size s.
Then, there exists a family C of logspace-uniform circuits of depth d · poly log(s)
and size poly(s) such that:

– C computes the same function as C ′, and
– For all i, χ

(i)
add, χ

(i)
mult (for C) are computable by boolean formulas of size

O(logw) (i.e., the size is linear in the χadd, χmult input length). These for-
mulas can be constructed (by a uniform Turing machine) in time poly(log s).

[Gol18] only explicitly claims that the formulas have size poly log s, but the
construction in [Gol18] Sect. 3.4.2 actually (specializing to H = {0, 1}) implies
Fact 2.

Thus, we assume without loss of generality that C satisfies the conclusion of
Fact 2. Invoking Lemma 5.1, we conclude that χ

(i)
add, χ

(i)
mult have variable-extended

formulations ψ
(i)
add, ψ

(i)
mult : {0, 1}3 log w+O(log s) → {0, 1} that are computable by

F2-arithmetic circuits of size O(log s) that define polynomials of individual degree
at most 2. We let ψ̃

(i)
add, ψ̃

(i)
mult denote the corresponding individual degree 2 poly-

nomials.
We are finally ready to describe the protocol, which will use arithmetic over

an extension K of F2. Our instantiation will use the field ensemble from Defini-
tion 3.1.

– The prover and verifier, given the logspace-uniform Turing machine that con-
structs C, both compute arithmetic circuit descriptions of each ψ̃

(i)
add, ψ̃

(i)
mult.

– The prover, given the input x and circuit C, computes the following quantities:
• For every layer i of the circuit, compute the string Li = Li(C, x) ∈ {0, 1}w

consisting of all wire values in the evaluation C(x) in the ith layer of C.
• For each such i, define the function �i : {0, 1}log w → {0, 1} such that

�i(a) = (Li)a, where a is interpreted as an integer between 0 and w − 1.
Implicitly, this defines a multi-linear extension �̂i : K log w → K of �i.

– The prover and verifier recursively agree on a pair of claims of the form
“ �̂i(u1) = v1,” “ �̂i(u2) = v2” for u1, u2 ∈ K log w and v1, v2 ∈ K. They do so as
follows:

• The base case is i = d, the top (output) layer of C; the claims are (both)
that �̂d(0log w) = y (where allegedly C(x) = y).
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• Inductively, suppose that we have two claims “ �̂i(u1) = v1,” “ �̂i(u2) = v2”
about layer i. The recursion uses the fact that

�̂i(u) =
∑

a∈{0,1}log w

ÊQ(u, a)�i(a),

which can be written as
∑

a,b,c

ÊQ(u, a)
(
χ
(i)
add(a, b, c) · (�i−1(b)+ �i−1(c))+χ

(i)
mult(a, b, c)�i−1(b) · �i−1(c)

)
,

which is equal to
∑

a,b,c

z∈{0,1}t

ÊQ(u, a)
(
ψ
(i)
add(a, b, c, z) · (�i−1(b) + �i−1(c)) + ψ

(i)
mult(a, b, c, z)�i−1(b) · �i−1(c)

)
,

where ÊQ(u, a) :=
∏

j(1 + uj + aj).
• The prover and verifier then run two simultaneous sumcheck protocols

using the polynomials gu1 , gu2 , where

gu(a, b, c, z) = ÊQ(u, a)·
(
ψ̃
(i)
add(a, b, c, z) · (�̂i−1(b) + �̂i−1(c)) + ψ̃

(i)
mult(a, b, c, z)�̂i−1(b) · �̂i−1(c)

)

and the claimed outputs v1, v2. Importantly, the same verifier randomness
is used for these two sumcheck protocols.

• At the end of the interactive phase of this protocol, the verifier has a
tuple of field elements β ∈ K3 log w+O(log s) and outputs γ1, γ2 such that
(allegedly) gu1(β) = γ1 and gu2(β) = γ2. Let u′

1, u
′
2 denote the part of β

corresponding to b and c.
• Finally, the prover sends v′

1 = �̂i1(u
′
1), v

′
2 = �̂i−1(u′

2) to the verifier. Since
ÊQ, ψ̃

(i)
add, ψ̃

(i)
mult are all computable in time poly(log s), the verifier can

check that v′
1 and v′

2 are consistent with the claims output by the sum-
check protocol. This completes the recursive step, which has produced
two new claims (u′

1, v
′
1), (u

′
2, v

′
2).

– After this recursive process, the verifier has obtained two final claims
“ �̂0(u1) = v1,” “ �̂0(u2) = v2” about the multilinear extension �̂0. Since �̂0
is nothing more than the multilinear extension of the input x (thought of as a
function mapping {0, 1}log n → {0, 1}), the verifier can check these two claims
(given x) using O(n) field operations.

Crucially, ψ̃add and ψ̃mult have individual degree 2, which implies that
every polynomial gu has individual degree at most 3. This is because
ÊQ(u, a)(�̂i−1(b) + �̂i−1(c)) and ÊQ(u, a)(�̂i−1(b)�̂i−1(c)) are both multilinear
polynomials.

This completes our description of our variant of the [GKR08] protocol. By
combining Theorems 2.1, 2.2 and 2.4, the fact that this [GKR08] variant runs
(pairs of) degree 3 sumchecks, and Theorem 3.4, we conclude Theorem 5.1.
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