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Abstract. Generating a supersingular elliptic curve such that nobody
knows its endomorphism ring is a notoriously hard task, despite several
isogeny-based protocols relying on such an object. A trusted setup is
often proposed as a workaround, but several aspects remain unclear.
In this work, we develop the tools necessary to practically run such a
distributed trusted-setup ceremony.

Our key contribution is the first statistically zero-knowledge proof
of isogeny knowledge that is compatible with any base field. To prove
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statistical ZK, we introduce isogeny graphs with Borel level structure
and prove they have the Ramanujan property. Then, we analyze the
security of a distributed trusted-setup protocol based on our ZK proof in
the simplified universal composability framework. Lastly, we develop an
optimized implementation of the ZK proof, and we propose a strategy
to concretely deploy the trusted-setup protocol.

Keywords: Isogenies · Ramanujan Graphs · Zero-knowledge Proofs ·
Trusted Setup

1 Introduction

Be it foundationally or for efficiency, most of isogeny-based cryptography is built
upon supersingular elliptic curves [15,17,22,27,28,37,42]. At the heart of it, lies
the supersingular isogeny graph: a graph whose vertices represent supersingular
elliptic curves (up to isomorphism) and whose edges represent isogenies (up to
isomorphism) of some fixed small prime degree between them. A foundational
hard problem for isogeny-based cryptography is then: given two supersingular
elliptic curves, find a path in the supersingular isogeny graph connecting them.

An endomorphism is an isogeny from a curve E to itself, and their col-
lection forms the endomorphism ring End(E). In recent years, the connection
between finding isogeny paths and computing endomorphism rings of supersingu-
lar curves has become increasingly important [32,35,58,59]. It is now established
that, assuming the generalized Riemann hypothesis, there exists probabilistic
polynomial time algorithms for these two problems:

1. Given supersingular elliptic curves E0, E1 along with descriptions of their
endomorphism rings, compute an isogeny path E0 → E1;

2. Given a supersingular elliptic curve E0 along with a description of its endo-
morphism ring, and given an isogeny path E0 → E1, compute a description
of the endomorphism ring of E1.

These algorithms—and variants—have successfully been used both construc-
tively [22,27,37] and for cryptanalysis [28,32,34,35,49,51].

Without the additional information above, computing the endomorphism
ring of an arbitrary supersingular curve remains a hard problem, both for classi-
cal and quantum computers. Given the importance of this problem, it is natural
to ask whether it is possible to sample supersingular curves such that computing
their endomorphism ring is a hard problem, crucially, even for the party who
does the sampling. We shall call these objects Supersingular Elliptic Curves of
Unknown Endomorphism Ring, or Secuer1 in short.

Applications. Generating a Secuer has turned out to be a delicate task, and
no such curve has ever been generated. Yet, several isogeny-based schemes can

1 The British spelling is Secure.
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only be instantiated with a Secuer. This is the case, for example, of isogeny-
based verifiable delay functions [28] and delay encryption [12]. The so-called
CGL hash function based on supersingular curves [17] has been shown to be
broken by the knowledge of the endomorphism ring [32], and one possible fix is
to instantiate it with a Secuer. Other protocols which require a Secuer include
hash proof systems, dual mode PKE [1], oblivious transfer [44], OPRF [4], and
commitment schemes [54].

Contributions. We analyze and put into practice a protocol for distributed
generation of Secuers. Our main technical contribution is a key ingredient of
the protocol: a new proof of isogeny knowledge (two curves E0 and E1 being
public, a party wishes to prove that they know an isogeny E0 → E1 without
revealing it). Our proof is similar to the SIDH proof of knowledge [23,25], but
extends it in a way that makes it compatible with any base field, any walk length,
and has provable statistical zero-knowledge (unlike any previous proof of isogeny
knowledge). In particular, its statistical security makes it fully immune to the
recent attacks [14,46,52].

To prove statistical security, we analyze supersingular �-isogeny graphs with
level structure, a generalization of isogeny graphs that was recently considered
in [3,27]. We prove that these graphs, like classic isogeny graphs, possesses the
Ramanujan property, a fact that is of independent interest. Using the property,
we analyze the mixing behavior of random walks, which lets us give very precise
parameters to instantiate the proof of knowledge at any given security level.

To show that the resulting protocol is practical, we implement it on top
of Microsoft’s SIDH library2 and benchmark it for each of the standard SIKE
primes [41]. We must stress that SIDH-style primes are possibly the most favor-
able to our protocol, in terms of practical efficiency.

Finally, we sketch a roadmap to run the distributed generation protocol for
the SIKE primes in a real world setting with hundreds of participants.

Limitations. We must point out that our new proof of knowledge is not well
adapted to a secure distributed generation protocol in the case where one wants
to generate a Secuer defined over a prime field Fp, instead of Fp2 , such as
in [1,44]. Different proofs of knowledge [8,24] could be plugged in the distributed
protocol for the Fp case, however their practical usability is dubious.

1.1 Generating a SECUER

The cornerstone of isogeny-based cryptography is the endomorphism ring prob-
lem: if it could be solved efficiently, then all of supersingular isogeny-based cryp-
tography would be broken [32,35,58], leaving only ordinary isogeny-based cryp-
tography [21,26,55] standing.

Definition 1 (Endomorphism ring problem). Given a supersingular curve
E/Fp2 , compute its endomorphism ring End(E). That is, compute an integral

2 https://github.com/microsoft/PQCrypto-SIDH.

https://github.com/microsoft/PQCrypto-SIDH
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basis for a maximal order O of the quaternion algebra ramified at p and ∞, as
well as an explicit isomorphism O � End(E).

For any p, there exists a polynomially sized subset of all supersingular curves
for which the endomorphism ring can be computed in polynomial time [16,45],
but the problem is believed to be exponentially hard in general, even for quantum
computers. A related problem, commonly encountered in isogeny protocols, is
finding paths in supersingular isogeny graphs.

Definition 2 (Isogeny �-walk problem). Given two supersingular curves
E,E′/Fp2 of the same order, and a small prime �, find a walk from E to E′

in the �-isogeny graph.

Such walks are always guaranteed to exist, as soon as they have length in
O(log(p)) [17,43,47,50].

The two problems are known to be polynomial time equivalent, assuming
GRH [59]. Indeed, given End(E) and End(E′), it is easy to compute a path
E → E′. Reciprocally, given End(E) and a path E → E′, it is easy to compute
End(E′); and, by random self-reducibility, we can always assume that one of
End(E) or End(E′) is known.

Our goal is to generate a Secuer: a curve for which the endomorphism ring
problem is hard, and consequently one for which it is hard to find a path to any
other given curve.

What Does Not Work. The supersingular elliptic curves over a finite field
k of characteristic p are those such that #E(k) = 1 mod p. Any supersingular
curve is isomorphic to one defined over a field with p2 elements, thus, without
loss of generality, we are only interested in supersingular curves defined over Fp2 .
Among the p2 isomorphism classes of elliptic curves over Fp2 , only ≈ p/12 of
them correspond to supersingular curves.

The standard way to construct supersingular curves is to start from a curve
with complex multiplication over a number field, and then reduce modulo p.
Complex multiplication elliptic curves have supersingular reduction modulo 50%
of the primes, thus this technique quickly produces supersingular curves for
almost all primes. For example, the curve y2 = x3 + x, which has complex
multiplication by the ring Z[i] of Gaussian integers, is supersingular modulo p
if and only if p = 3 mod 4. Most isogeny-based protocols are instantiated using
precisely this curve as starting point. These curves are not Secuers, though,
because from the information on complex multiplication one can compute the
endomorphism ring in polynomial time [16,45].

As p grows, the curves with computable3 complex multiplication form only a
negligible fraction of all supersingular curves in characteristic p, so we may still
hope to get a Secuer if we can sample a supersingular curve at random from the

3 Deuring showed that any supersingular curve can be lifted in several ways to a
curve with complex multiplication, but for almost all curves computing such lifts
has complexity exponential in log(p).
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whole set. The natural way to do so is to start from a well known supersingular
curve, e.g. E0 : y2 = x3 + x, take a random walk E0 → E1 in the isogeny graph,
and then select the arrival curve E1. But, by virtue of the reductions mentioned
above, any E1 constructed this way cannot be called a Secuer either.

Several other techniques have been considered for generating Secuers, how-
ever all attempts have failed so far [10,48].

Distributed Generation of Secuers. An obvious solution that has been
proposed for schemes that need a Secuer is to rely on a trusted party to start
from a special curve E0 and to perform an isogeny walk to a random curve E1.
Although E1 is not a Secuer, if the trusted party keeps the walk E0 → E1

secret, no one else will be able to compute End(E1).
Of course, relying on a trusted third party is undesirable. The natural next

step is to turn this idea into a distributed protocol with t parties generating a
sequence of walks E0 → E1 → E2 → · · · → Et. First, suppose that the sequence
was generated honestly: the i-th party indeed generated a random isogeny from
the previous curve Ei−1 to a new curve Ei. Then it is sufficient for a single party
to honestly discard their isogeny, for no path to be known by anyone from E0

to Et. Then, Et is a Secuer for all practical purposes.
To make this protocol secure against active adversaries, an additional ingre-

dient is needed. As it is, the last party could cheat as follows: instead of gen-
erating an isogeny Et−1 → Et, they could reboot the chain by generating an
isogeny E0 → Et, and submitting that instead. They could then compute the
endomorphism ring of Et. If only the curves Ei along the path are revealed, it
is impossible to detect such misbehavior. To prevent this, each party needs to
prove that they know their component of the walk: an isogeny Ei−1 → Ei (as
first discussed in [12]). To this end, we develop a statistically zero-knowledge
proof of isogeny knowledge.

1.2 Proof of Isogeny Knowledge

State-of-the-Art. Protocols to prove knowledge of an isogeny have been mostly
studied for signatures. The first such protocol is the SIDH-based proof of knowl-
edge of [25]. Its security proof was found to be flawed and then fixed, either by
changing the assumptions [38] or by changing the protocol [23]. However, these
protocols are now fully broken by the recent polynomial time attacks on SIDH-
like protocols [14,46,52]. These attacks can be avoided by relying on ternary
challenges [9,23].

CSIDH-based proofs of knowledge were first introduced in [24], and then
improved in [8] for the parameter set CSIDH-512. These are limited to isogeny
walks between curves defined over a prime field Fp, and tend to be prohibitively
slow outside of the specially prepared parameter set CSIDH-512.

Finally, De Feo and Burdges propose an efficient proof of knowledge tailored
to finite fields used in delay protocols [12]. However the soundness of this pro-
tocol is only conjectural, and, being based on pairing assumptions, is broken by
quantum computers.
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In summary, no general purpose, quantum-safe, zero-knowledge proof of
knowledge of an isogeny walk between supersingular curves defined over Fp2

exists in previous literature.

Overview of Our Method. Our main technical contribution is a new proof
of knowledge that ticks all the boxes above: it is compatible with any base field,
any walk length, it has provable statistical zero-knowledge, and is practical—as
illustrated by our implementation. The idea is the following. Two elliptic curves
E0 and E1 being public, some party, the prover, wishes to convince the verifier
that they know an isogeny φ : E0 → E1 (of degree, say, 2m, large enough so it
is guaranteed that such an isogeny exists). First, the prover secretly generates
a random isogeny walk ψ : E0 → E2 of degree, say, 3n. Defining φ′ with kernel
ψ(ker(φ)), and ψ′ with kernel φ(ker(ψ)), one obtains the following commutative
diagram, known as “SIDH square” in the literature:

E0 E1

E2 E3

φ

ψ ψ′

φ′

(1)

Now, the prover publishes a hiding and binding commitment to E2 and E3.
The verifier may now ask the prover to reveal one of the three isogenies ψ, φ′,
or ψ′, by drawing a random chall ∈ {−1, 0, 1} (and open the commitment(s)
corresponding to the relevant endpoints). For the prover to succeed with over-
whelming probability, they must know all three answers, so they must know an
isogeny from E0 to E1: the composition ψ′ ◦ φ′ ◦ ψ : E0 → E1. This is the idea
behind the soundness of the protocol.

So far, this protocol is more or less folklore and superficially similar to [23,
§5.3]. But does it leak any information? Whereas previous protocols only
achieved computational zero-knowledge, we provide a tweak that achieves sta-
tistical zero-knowledge: there is a simulator producing transcripts that are sta-
tistically indistinguishable from a valid run of the protocol. The simulator starts
by choosing the challenge chall first, then it generates an isogeny that is statis-
tically indistinguishable from either ψ, φ′, or ψ′, according to the value of chall.
Simulating ψ (or ψ′) is straightforward: generate a random isogeny walk ψ̃ (or
ψ̃′) of degree 3n from E0 (or from E1). The isogeny ψ̃ is a perfect simulation
of ψ. Simulating φ′ seems trickier. An obvious approach is to first generate a
random E2 (for instance, by simulating ψ : E0 → E2), then generate a random
walk isogeny φ̃′ : E2 → E3 of degree 2m. While this may seem too naive, we in
fact prove that when deg(ψ) is large enough, the distribution of φ̃′ is statisti-
cally close to a honestly generated φ′. The key is a proof that the isogeny graph
enriched with so-called level structure has rapid mixing properties.

Isogeny Graphs with Level Structure. The isogeny φ′ is essentially char-
acterized by its source, E2, and its kernel ker(φ′), a (cyclic) subgroup of order



Supersingular Curves You Can Trust 411

deg(φ′). We are thus interested in random variables of the form (E,C), where E
is an elliptic curve, and C a cyclic subgroup of E, of order some integer d (not
divisible by p). We call such a pair (E,C) a level d Borel structure.

The simulator proposed above essentially generates φ̃′ as a uniformly random
level 2m Borel structure (E,C) = (E2, ker(φ̃′)). On the other hand, a honestly
generated φ′ corresponds to a pair (ψ(E0), ψ(ker φ)), and ψ is a uniformly ran-
dom isogeny walk of degree 3n. This process corresponds to a random walk
of length n in the 3-isogeny graph with level 2m structure, with starting point
(E0, ker φ). We prove the following result.

Theorem 3. Let G = G(p, d, �) the supersingular �-isogeny graph with level d
Borel structure. The adjacency matrix A of G is diagonalizable, with real eigen-
values, and has the Ramanujan property, i.e. the integer �+1 is an eigenvalue of
A of multiplicity one, while all the other eigenvalues are contained in the Hasse
interval [−2

√
�, 2

√
�].

As a consequence, we prove that random walks quickly converge to the sta-
tionary distribution, so φ̃′ and φ′ are statistically indistinguishable.

Paper outline. We start in Sect. 2 with a few technical preliminaries on elliptic
curves, isogenies, and proofs of knowledge. Section 3 is dedicated to the proof of
Theorem 3. This section can be read independently from the rest. The reader
only interested in applications, and willing to accept Theorem 3 (and its con-
sequence on non-backtracking random walks, Theorem 11, page 14), can safely
skip to the following section. This theoretical tool at hand, we then describe and
analyse the new proof of isogeny knowledge in Sect. 4. We describe the protocol
to generate a Secuer in Sect. 5, and prove its security. Finally, we report on our
implementation in Sect. 6.

2 Preliminaries

2.1 General Notations

We write x ← χ to represent that an element x is sampled at random from a
set/distribution X . The output x of a deterministic algorithm A is denoted by
x = A and the output x′ of a randomized algorithm A′ is denoted by x′ ← A′. For
a, b ∈ N such that a, b ≥ 1, we denote by [a, b] (resp. [a]) the set of integers lying
between a and b, both inclusive (the set of integers lying between 1 and a, both
inclusive). We refer to λ ∈ N as the security parameter, and denote by poly(λ),
polylog(λ) and negl(λ) any generic (unspecified) polynomial, poly-logarithmic or
negligible function in λ, respectively.4 For probability distributions X and Y, we
write X ≈ Y if the statistical distance between X and Y is negligible.

4 A function f : N → N is said to be negligible in λ if for every positive polynomial p,
f(λ) < 1/p(λ) when λ is sufficiently large.
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2.2 Elliptic Curves, Isogenies and “SIDH Squares”

We assume the reader has some familiarity with elliptic curves and isogenies.
Throughout the text, p shall be a prime number, Fp and Fp2 the finite fields
with p and p2 elements respectively. Unless specified otherwise, all elliptic curves
will be supersingular and defined over Fp2 . We write E[d] for the subgroup of
d-torsion points of E over the algebraic closure.

Unless specified otherwise, all isogenies shall be separable. If G is a finite
subgroup of E, we write φ : E → E/G for the unique (up to post-composition
with an isomorphism of E/G) separable isogeny with kernel G. If G is cyclic,
we say the isogeny is cyclic. We denote by φ̂ the dual isogeny to φ. Separable
isogenies and their duals can be computed and/or evaluated in time poly(#G)
using any of the algorithms in [7,56], however in some cases, e.g. when #G only
contains small factors, this cost may be lowered to as little as polylog(#G).

Given separable isogenies φ : E0 → E1 and ψ : E0 → E2 of coprime degrees,
we obtain the commutative diagram in (1) by defining φ′ : E2 → E2/ψ(ker(φ))
and ψ′ : E1 → E1/φ(ker(ψ)). Again, E3 is only defined up to isomorphism. In
categorical parlance, this is the pushout of φ and ψ, but cryptographers may
know it better through its use in the SIDH key exchange. We refer to these
commutative diagrams as SIDH squares or SIDH ladders (see Sect. 4.2 for more
details).

2.3 Proofs of Knowledge

Our main technical contribution is a Σ-protocol to prove knowledge of an isogeny
of given degree between two supersingular elliptic curves. Recall a Σ-protocol for
an NP-language L is a public-coin three-move interactive proof system consisting
of two parties: a verifier and a prover. The prover is given a witness w for an
element x ∈ L, his goal is to convince the verifier that he knows w.

Definition 4 (Σ-protocol). A Σ-protocol ΠΣ for a family of relations {R}λ

parameterized by security parameter λ consists of PPT algorithms (P1,P2,V)
where V is deterministic and we assume P1,P2 share states. The protocol proceeds
as follows:

1. The prover, on input (x,w) ∈ R, returns a commitment com ← P1(x,w)
which is sent to the verifier.

2. The verifier flips λ coins and sends the result to the prover.
3. Call chall the message received from the verifier, the prover runs resp ←

P2(chall) and returns resp to the verifier.
4. The verifier runs V (x, com, chall, resp) and outputs a bit.

A transcript (com, chall, resp) is said to be valid, or accepting, if V (x, com,
chall, resp) outputs 1. The main requirements of a Σ-protocol are:

Correctness: If the prover knows (x,w) ∈ R and behaves honestly, then the
verifier outputs 1.
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nnn-special soundness: There exists a polynomial-time extraction algorithm
that, given a statement x and n valid transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi �= challj for all 1 ≤ i < j ≤ n, outputs a witness w such that
(x,w) ∈ R with probability at least 1 − ε for soundness error ε.

A special sound Σ-protocol for R is also called a Proof of Knowledge (PoK)
for R. Our Σ-protocol will have the peculiar property that the relation used to
prove correctness turns out to be a subset of the one used to prove soundness.
This will require extra care when proving security in Sect. 5.

Special Honest Verifier Zero-Knowledge (SHVZK): There exists a
polynomial-time simulator that, given a statement x and a challenge chall, out-
puts a valid transcript (com, chall, resp) that is indistinguishable from a real
transcript.

Definition 5. A Σ-protocol (P1,P2,V) is computationally special honest verifier
zero-knowledge if there exists a probabilistic polynomial time simulator Sim such
that for all probabilistic polynomial time stateful adversaries A

Pr

⎡
⎣A(com, chall, resp) = 1

∣∣∣∣∣∣
(x,w, chall) ← A(1λ);
com ← P1(x,w);
resp = P2(chall)

⎤
⎦

≈ Pr
[
A(com, chall, resp) = 1

∣∣∣∣
(x,w, chall) ← A(1λ);
(com, resp) ← Sim(x, chall)

]
.

If the above indistinguishability holds statistically against all unbounded adver-
saries A, the protocol is said to be statistically SHVZK.

2.4 Non-Interactive Zero-Knowledge Proofs

In this paper, we consider non-interactive zero-knowledge (NIZK) proofs in the
random oracle model that satisfy correctness, computational extractability and
statistical zero-knowledge.

Definition 6. (NIZK proofs.) Let R be a relation and let the language L be
a set of statements {st ∈ {0, 1}n} such that for each statement st ∈ L, there
exists a corresponding witness wit such that (st,wit) ∈ R. A non-interactive
zero-knowledge (NIZK) proof system for R is a tuple of probabilistic polynomial-
time (PPT) algorithms NIZK = (PNIZK,VNIZK) defined as follows (we assume
that all algorithms in the description below have access to a common random
oracle; we omit specifying it explicitly for ease of exposition):

– PNIZK(st,wit): A PPT algorithm that, given a statement st ∈ {0, 1}n and a
witness wit such that (st,wit) ∈ R, outputs a proof Π.

– VNIZK(st,Π): A deterministic algorithm that, given a statement st ∈ {0, 1}n

and a proof Π, either outputs 1 (accept) or 0 (reject).
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The following correctness and security properties should be satisfied:

Correctness. For any (st,wit) ∈ R, letting Π = PNIZK(st,wit), we must have
VNIZK(st,Π) = 1.

Computational Extractability. There exists an efficient PPT extractor
ExtNIZK such that for any security parameter λ ∈ N and for any polynomially
bounded cheating prover P ∗ where: (i) ExtNIZK has rewinding access to P ∗, and
(ii) PNIZK, ExtNIZK and P ∗ all have access to a common random oracle, letting
(st,Π) ← P ∗(1λ) and wit = ExtNIZK(st,Π), if VNIZK(st,Π) = 1, we must have
Pr[(st,wit) ∈ R] > 1 − negl(λ).

Statistical Zero-knowledge. There exists an efficient PPT simulator SimNIZK

such that for any security parameter λ ∈ N and for any non-uniform unbounded
“cheating” verifier V ∗ = (V ∗

1 , V ∗
2 ) where PNIZK, V ∗

1 and V ∗
2 all have access to a

common random oracle, and such that SimNIZK is allowed programming access
to the same random oracle, we have

∣∣∣Pr [V ∗
2 (st,Π, ξ) = 1 ∧ (st ∈ L)] − Pr

[
V ∗
2 (st, Π̂, ξ) = 1 ∧ (st ∈ L)

]∣∣∣ ≤ negl(λ),

where (st,wit, ξ) ← V ∗
1 (1λ), Π ← PNIZK(st,wit), and Π̂ ← SimNIZK(st).

3 Isogeny Graphs and Expansion

Let p be a prime and d an integer not divisible by p. An elliptic curve with
level d Borel structure is a pair (E,C), where E is an elliptic curve defined
over a field of characteristic p and C is an order d cyclic subgroup of E[d]. We
say that two such pairs (E1, C1) and (E2, C2) are isomorphic if there exists an
isomorphism φ : E1 → E2 such that φ(C1) = C2. An automorphism of (E,C) is
an isomorphism (E,C) → (E,C). They form the group Aut(E,C).

Let � be a prime not dividing pd. The supersingular �-isogeny graph with
level d structure G = G(p, d, �) is defined as follows. The set of vertices of G
is a complete set V = V (p, d) = {(Ei, Ci)} of representatives of the set of iso-
morphism classes of supersingular elliptic curves with a level d Borel structure
defined over Fp2 . We note that each such class over Fp2 admits a model defined
over Fp2 : Each isomorphism class of supersingular elliptic curves has a repre-
sentative E such that #E(Fp2) = (p + 1)2 and thus the p2-Frobenius acts as a
scalar multiplication [−p], so the kernel of any �-isogeny is Gal(Fp2)-invariant.

Now, the set of edges from (E,C) to (E′, C ′) in G is the set of degree �
isogenies from E to E′ which map C to C ′, modulo the action of Aut(E′, C ′)
(by postcomposition). The number of edges is independent of the representative
of the isomorphism classes. When d = 1, we recover the usual definition of the
supersingular �-isogeny graph.

This graph is directed. The out-degree of each vertex is � + 1, however the
in-degree is not always � + 1, hence the adjacency matrix of the graph is not
always symmetric.
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3.1 Generalities on the Graph and Its Adjacency Matrix

Let V = {(Ei, Ci)} for i = 1, . . . , n be the vertex set of G =
G(p, d, �). On the complex vector space C

V , we introduce the Hermitian form
Q((Ei, Ci), (Ej , Cj)) = wiδij , where δij is the Kronecker symbol and wi :=
1
2 |Aut(Ei, Ci)|. Denote by ‖ · ‖Q the associated norm. We will compare ‖ · ‖Q

with the L1 and L2 norms on C
V . The set Ω of probability distributions on V

is the set of vectors with real positive entries and L1 norm equal to 1. Consider
also the vector E =

∑n
i=1

1
wi

(Ei, Ci), and s the probability distribution obtained
normalizing E . The following result contains a number of general facts about the
adjacency matrix of G, which will be used later on.

Theorem 7. 1. The adjacency matrix A of G is self-adjoint with respect to Q;
in particular it is diagonalizable with real eigenvalues and eigenvectors;

2. The vector E is a left-eigenvector of eigenvalue � + 1 of A;
3. The vector u with all entries equal to 1 is a right-eigenvector of A; in par-

ticular its orthogonal complement S with respect to the L2 scalar product is
preserved by right multiplication by A;

4. K := inf{ ‖v‖Q : v ∈ C
V and ‖v‖L1 = 1} =

(
(p−1)d

12

∏
q(1+ 1

q )
)−1/2

, where
the product index q runs over the prime divisors of d;

5. M := sup{ ‖π − s‖Q : π ∈ Ω} ≤ √
3.

Proof. The proof is given in the full version [5]. ��

3.2 Proof of Theorem 3

We now prove that G = G(p, d, �) has the Ramanujan property. This follows from
the first three items of Theorem 7 combined with the following result, whose
proof heavily relies on the theory of modular forms. An immediate consequence
is that G is connected and not bipartite, a different proof of which can be found
in [39, Theorem 5.3.3].

Theorem 8. Let S ⊂ C
V be the subspace of vectors

∑
i vi(Ei, Ci) such that∑

i vi = 0, as in Theorem 7. The eigenvalues of the action of A on S are all
contained in the Hasse interval [−2

√
�, 2

√
�].

To prove Theorem 8, we assume standard notations and results about quadratic
forms and modular forms, such as the ones from [31,40,53]. Given two elliptic
curves with level structure (Ei, Ci) and (Ej , Cj), we denote by Λij the lattice
of isogenies φ : Ei → Ej such that φ(Ci) ⊂ Cj . The degree defines a quadratic
form deg on Λij . This quadratic module has rank four, level dp and determinant
d2p2. We can thus define the theta series

Θij(τ) =
1

|Aut(Ej , Cj)|
∑

φ∈Λij

qdeg(φ) , with q = e2πiτ .

This function is in M2(Γ0(dp)), the space of modular forms of weight two for
the modular group Γ0(dp), by [40, Theorem 4.2] (observe that in loc. cit. the
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exponential is one because Q(h) is an integer; moreover, we choose P = 1) or
[53, Chapter IX, Theorem 5, page 218]. The above construction extends to an
Hermitian pairing

Θ : CV ⊗ C
V → M2(Γ0(dp)) : ((αi)i ⊗ (βj)j) �−→

∑
i,j

αiβjΘij .

We call this pairing the Brandt pairing, even though there is a little ambiguity5

in this set-up. The Brandt pairing is non-degenerate: let v =
∑

ci(Ei, Ci), then
the coefficient of q of Θ(v, v) is the Hermitian norm of the vector of coefficients
(. . . , ci, . . . ). We will prove the following two key propositions.

Proposition 9. The Brandt pairing intertwines the adjacency matrix A of G
and the Hecke operator T�; in symbols T�Θ(w, v) = Θ(wA, v) for all w, v ∈ C

V .

Proposition 10. For every three elliptic curves with level structure (E1, C1),
(E2, C2) and (E3, C3), we have a cusp form

Θ((E1, C1), (E3, C3)) − Θ((E2, C2), (E3, C3)).

The combination of these two results tells that the spectrum of the action of A
restricted to S is contained into the spectrum of the action of the Hecke operator
T� on the space of cusp modular forms of weight two for Γ0(dp). The Ramanujan
Conjecture, proved by Eichler, predicts that this second spectrum is contained
in the Hasse interval, and hence proves Theorem 8.

We refer to [30, Theorem 8.2] for a proof of the Ramanujan Conjecture. In
loc. cit. this result is proven only for eigenvectors of T� which are new-forms. An
eigenvector which is an old form will come from an embedding ι : S2(Γ0(m)) →
S2(Γ0(dp)) with m that divides dp. Since � is coprime with dp, the map ι is T�-
equivariant (cf. [31, proof of Proposition 5.6.2]), so we can still deduce our result
from [30, Theorem 8.2]. It is worth recalling that [30, Theorem 8.2] is stronger
than what we need, as it applies to modular forms of every weight.

Proof of Proposition 9. We prove that both sides have the same q-expansions.
For a power series F ∈ C[[q]], denote an(F ) the coefficient of qn. By definition

an(Θ((Ei, Ci), (Ej , Ci))) = |Aut(Ej , Cj)|−1 · |Homn((Ei, Ci), (Ej , Cj))| ,
where Homn((Ei, Ci), (Ej , Cj)) is the set of degree n isogenies in Λij . For f ∈
M2(Γ0(dp)), we have an(T�f) = an�(f) + �an/�(f) (see e.g. [31, Proposition
5.2.2]), where an/�(f) is set to zero in the case n/� �∈ Z. In particular,

an(T� Θ((Ei,Ci), (Ej ,Cj))) =

= |Aut(Ej , Cj)|−1
(
|Homn�((Ei, Ci), (Ej , Cj))| + �|Homn/�((Ei, Ci), (Ej , Cj)|

)

(2)
5 Rather than using the condition φ(Ci) ⊂ Cj , we could have defined Λij using φ(Ci) =

Cj . The second definition does not give a lattice but still permits to define a pairing.
This second pairing generalizes to all level structures, so it might deserve better the
name of Brandt pairing. However, the second pairing gives a more complicated proof
in the Borel case, so we have opted for the first one.
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On the other side,

an(Θ((Ei, Ci)A, (Ej , Cj))) =
∑
C

an(Θ((Ei/C, πC(Ci)), (Ej , Cj))) =

= |Aut(Ej , Cj)|−1
∑
C

|Homn((Ei/C, πC(Ci)), (Ej , Cj))|
(3)

where C varies among the cyclic non-trivial subgroups of Ei[�] of cardinality �,
and πC is the projection Ei → Ei/C. For each C let

FC : Homn((Ei/C, πC(Ci)), (Ej , Cj)) −→ Homn�((Ei, Ci), (Ej , Cj))
f �−→ f ◦ πC ,

and let F be the disjoint union of the above maps. The map F is surjective: if
α : (Ei, Ci) → (Ej , Cj) has degree n�, then ker(α)∩Ei[�] �= {0}, hence there exists
a cyclic non-trivial C ⊂ ker(α)∩Ei[�], and we can write α = f ◦πC . In particular,
let us compute the cardinality of the fiber F−1(α) for α in the codomain. Each
FC is injective, hence |F−1(α)| is equal to the number of subgroups C such
that F−1

C (α) is not empty, that is the number of subgroups C contained in
ker(α) ∩ Ei[�]. Hence

|F−1(α)| =

{
� + 1 if α = �β for some β ∈ Homn/�((Ei, Ci), (Ej , Cj)),
1 otherwise

By (3), the domain of F has size exactly |Aut(Ej , Cj)| · an(Θ(A(Ei, Ci),
(Ej , Cj))), hence the proposition follows from (2) together with the above for-
mula summed over α in the codomain. ��
Proof of Proposition 10. We have to show that, for any two pairs (E,C) and
(E′, C ′) and any cusp of X0(dp), the residue r of Θ((E,C), (E′, C ′))dτ does not
depend on (E,C) and (E′, C ′) at the cusp but only on p, d and the cusp.

By the discussion in [31, Section 3.8, page 103] each cusp can be represented
as ( a

c ) with c dividing dp, and r is equal to a0(Θ((E,C), (E′, C ′))|M ) for M any
matrix in SL2(Z) of the form ( a b

c δ ).
By [53, Chapter IX, Equation (21), page 213], we have

r =
1

c2pd

∑
ν,λ∈Λ/cΛ

e

(
(a − 1) deg(λ) + deg(λ + ν) + (δ − 1) deg(ν)

c

)

where e(z) = e2πiz, and Λ is the lattice of isogenies from (E,C) to (E′, C ′) which
map C into C ′. The above formula tells us that r only depends on M and on the
quadratic form deg : Λ/cΛ → Z/cZ. Writing c = c0p

ε with c0 dividing N and
ε = 0, 1 and using the Chinese remainder theorem we can split the quadratic
form in two parts

Λ/cΛ = Λ/c0Λ × Λ/pεΛ
deg × deg

−−−−−−−−→ Z/c0Z × Z/pε
Z ∼= Z/cZ .
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The quadratic module (Λ/c0Λ,deg) is (non-canonically) isomorphic to a
Borel subalgebra of the algebra (End((Z/c0Z)⊕2),det). An isomorphism can be
obtained mapping it to Hom(E[c0], E′[c0]), and then choosing a symplectic basis.

If ε = 0 we are done, otherwise ε = 1. Since [Hom(E,E′) : Λ] = d is prime
to p, we have Λ/p = Hom(E,E′)/p = (Hom(E,E′) ⊗ Zp)/p, and the quadratic
Zp-module Hom(E,E′) ⊗ Zp does not depend on the pair because, by the Deur-
ing correspondence (see [57, Theorem 42.3.2.]) and by [57, Lemma 19.6.6], it is
isomorphic to λOp with the reduced norm, where Op is the maximal order in the
non-ramified quaternions over Qp, and λ is an element of norm prime to p. ��

3.3 Mixing Time of Non-backtracking Walks

We finally analyze the behavior of random walks in G = G(p, d, �), which we will
ultimately use to prove statistical indistinguishability of distribution arising from
our proof of knowledge. First, observe that Theorem 7 item 2 shows that the
probability distribution s introduced in Subsect. 3.1 is the stationary distribution
on G. This is nearly the uniform distribution: all curves are equally likely, with
the possible exception of the two curves with extra automorphisms, j = 1728
and j = 0, which are respectively twice and thrice less likely.

We are going to determine the speed at which random walks converge to
the stationary distribution. We focus on non-backtracking walks, which are the
most useful for cryptographic protocols, but, because the graph is directed, we
need some care to define them. Edges of G are equivalence classes of isogenies,
so we choose a representative for each class. For an edge α we define its dual
edge as the chosen representative β for the class Aut(E,C)α̂, so that βα = u�
for u ∈ Aut(E,C). Notice that the dual of β (as an edge) might be different
from α, but this is not relevant for us. We say that a random walk on G is
non-backtracking walk if an edge is never followed by its dual.

With this “duality”, we have that isogenies of degree a power of � and with
cyclic kernel (up to the equivalence α ∼ β iff ker α = ker β) correspond to
non-backtracking walks.

Theorem 11 (Mixing time). Let π be a probability distribution on G, and
π(k) the distribution obtained after a non-backtracking random walk of length k.
Then we have

dTV (π(k), s) ≤ 1
2
K−1M

(� + 1)(k + 1) − 2

(� + 1)
√

�k
,

where K and M are as in Theorem 7 and dTV denotes the total variation dis-
tance.

Proof. This follows from [2] for the case of undirected graphs. In the full ver-
sion [5] we adapt the proof to the graph G(p, d, �). ��
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4 Proof of Knowledge

Our goal is to provide a PoK of an isogeny walk φ : E0 → E1 between two super-
singular curves defined over Fp2 that can be seamlessly plugged in a distributed
Secuer generation protocol. For this, we need the following properties:

1. Compatible with any pair of curves (E0, E1); this rules out [36,37], which is
restricted to a special starting curve E0, and [24] and derivatives, which are
restricted to curves defined over Fp.

2. Statistically ZK, so that the security of the final Secuer does not hinge on
computational assumptions brought in by the PoK; this rules out all other
isogeny-based PoKs in the literature.

3. Post-quantum secure, possibly relying on as few additional assumptions as
possible; this rules out many generic ZK proof systems.

4. Possibly compatible with any walk length and any base field Fp2 .
5. Usable in practice for cryptographically sized finite fields.

Our new PoK inherits from the SIDH-based Σ-protocol of De Feo, Jao and
Plût [25], and from the recent developments of De Feo, Dobson, Galbraith and
Zobernig [23]. The common theme to all of them is to construct random SIDH
squares (see (1)) on top of the secret isogeny φ : E0 → E1 and to reveal some,
but not all of the edges ψ,ψ′, φ′ in response to a challenge. The reason these
protocols are not statistically ZK is that the side φ′ is strongly correlated to the
parallel side φ (often unique given E2) and can thus easily be distinguished by
an unbounded adversary.

Our first idea is to make the walk ψ long enough that the distribution of
(E2, φ

′) becomes statistically close to the uniform distribution on supersingular
curves with isogenies of degree deg(φ). To prove it, we will use the properties of
isogeny graphs with level structure analyzed in Sect. 3.

But making ψ longer is easier said than done. SIDH-based protocols are
constrained in the lengths of φ and ψ by the form of the prime p: typically,
p + 1 = 2a3b and then deg(φ) = 2a and deg(ψ) = 3b. Our second idea is to glue
several SIDH squares together to make longer walks (see Fig. 2). We call these
larger diagrams SIDH ladders.

A valuable side-effect of gluing SIDH squares together is that we can free
ourselves from the constraints on p. All we need is that isogenies of a small
prime degree � coprime to deg(φ) can be computed efficiently, then we stack
vertically sufficiently many SIDH squares to make deg(ψ) = �n as large as we
need. In practice, we will take deg(φ) = 2m, deg(ψ) = 3n, and the protocol will
be most efficient for SIDH primes, but in full generality our protocol works for
any base field and any isogeny degree.

4.1 Protocol Description and Analysis

Let E0, E1 be supersingular curves defined over a finite field Fp2 , and let
φ : E0 → E1 be a cyclic separable isogeny of smooth degree d. Let � be a
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small prime not dividing pd. Let C(m; r) be a statistically hiding and computa-
tionally binding commitment scheme. Our Σ-protocol is described in Fig. 1; it
depends on a parameter n, controlling the length of the �-isogeny walks, that we
will determine in Definition 15. The prover consists of two stateful algorithms
(P1,P2): the former is randomized and produces a commitment (com2, com3),
the latter receives a ternary challenge chall ∈ {−1, 0, 1} and produces a deter-
ministic response resp. The verifier is a deterministic algorithm that receives(
(com2, com3), chall, resp

)
and outputs a bit indicating whether or not the proof

is accepted.

P1(E0, E1, φ, n):
1: Sample a random cyclic isogeny

ψ : E0 → E2 of degree �n;
2: Construct the SIDH ladder

(E0, E1, E2, E3, φ
′, ψ′) on (φ, ψ);

3: Sample random strings r2, r3;
4: return

(
C(E2; r2),C(E3; r3)

)
.

P2(chall):
1: if chall == −1 then
2: return (ψ, E2, r2);
3: else if chall == 1 then
4: return (ψ′, E3, r3);
5: else if chall == 0 then
6: return (φ′, E2, r2, E3, r3).

V(E0, E1, d, n, (com2, com3), chall, resp):
1: if chall == −1 then
2: (ψ, E2, r2) = resp;
3: Check com2 = C(E2; r2);
4: Check ψ is an �n-isogeny E0 → E2;
5: else if chall == 1 then
6: (ψ′, E3, r3) = resp;
7: Check com3 = C(E3; r3);
8: Check ψ′ is an �n-isogeny E1 → E3;
9: else if chall == 0 then

10: (φ′, E2, r2, E3, r3) = resp;
11: Check com2 = C(E2; r2);
12: Check com3 = C(E3; r3);
13: Check φ′ is a cyclic d-isogeny

E2 → E3.

Fig. 1. Interactive proof of knowledge of a cyclic isogeny φ : E0 → E1 of degree d.

Proposition 12. The Σ-protocol in Fig. 1 is correct for the relation

Rd = {((E0, E1), φ) | φ : E0 → E1 is a cyclic d-isogeny}.

Assuming the commitment C is computationally binding, it is 3-special sound
for the relation

R� = {((E0, E1), χ) | χ : E0 → E1 is a cyclic �2id-isogeny for some 0 ≤ i ≤ n}.

More precisely, there is a probabilistic polynomial time algorithm that, given three
successful transcripts of the protocol with same commitments and distinct chal-
lenges, either recovers a witness χ : E0 → E1, or opens one of the commitments
C(Ei; ri) to two distinct values (breaking the binding property).

Proof. Correctness. Suppose that the prover P = (P1,P2) and the verifier V
follow the protocol. First note that, since the degree d of φ is smooth, the SIDH
ladder in P1 can be constructed as described in Sect. 4.2. Then it is clear that
the commitments open successfully, and the verifier accepts the transcript for
any challenge.
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3-Special Soundness. Given three accepting transcripts (com,−1, resp−1),
(com, 0, resp0) and (com, 1, resp1), recover (φ′, E2, r2, E3, r3) = resp0 where
φ′ : E2 → E3 is an isogeny. If the curves in resp−1 and resp1 are not equal
to E2 and E3 respectively, then we can open one of the commitments C(E2; r2)
or C(E3; r3) to two distinct outputs. Otherwise, we have resp−1 = (ψ,E2, r2)
and resp1 = (ψ′, E3, r3) where ψ : E0 → E2 and ψ′ : E1 → E3 are isogenies.
Therefore χ′ = ψ̂′ ◦ φ′ ◦ ψ is an isogeny from E0 to E1 of degree �2nd. Factoring
out the non-cyclic part of χ′, we extract a cyclic isogeny χ : E0 → E1 of degree
�2id such that χ′ = [�2(n−i)] ◦ χ for some 0 ≤ i ≤ n; however, like in the original
SIDH PoK [23,38], we cannot guarantee that i = 0. ��

We are now going to define the simulator for proving ZK. Simulating chall =
±1 is easy, however how well we can simulate the case chall = 0 depends on the
parameter n given to P1. The opening (E2, φ

′ : E2 → E3) can be equivalently
viewed as the curve with level d Borel structure (E2, ker(φ′)). Our goal is to have
this opening distributed like a “random” vertex in the graph G = G(p, d, �). To
this effect, we define two sequences D1(k) and D2(k) of probability distributions
on G, and we show that they converge as k grows.

Definition 13. Let φ : E0 → E1 be a cyclic separable isogeny of degree d. Define

D1(k) =
{
(E0/K, τ(ker(φ))

∣∣ K ← CE(�k), τ : E0 → E0/K
}
,

D2(k) =
{
(E0/K,C)

∣∣ K ← CE(�k), C ← CE0/K(d)
}
,

(4)

where CE(f) is the uniform distribution on the cyclic subgroups of order f of E,
up to Aut(E).

Lemma 14. Keep notations as above, fix a positive real number ε, and let k be
a positive integer such that

τ(p, d, �, k) = 1
4 (p − 1)1/2

(
1 +

√
d

∏
q|d

q prime

(1+ 1
q )1/2

)
·
(
k + �−1

�+1

)
· �−k/2 ≤ ε ,

then dTV (D1(k),D2(k)) ≤ ε, where dTV is the total variation distance between
the two distributions, also known as statistical distance.

Proof. We bound the statistical distance of each of D1(k) and D2(k) from the
stationary distribution of G(p, d, �), as determined in Theorem 7, then we con-
clude with the triangle inequality. For D1(k), we can directly apply Theorem 11.
The argument for D2(k) is slightly more involved and is presented in the full
version [5]. ��
Definition 15. Given p, d, � and m, define

n(p, d, �,m) = min
{
k ∈ Z | τ(p, d, �, k) ≤ 2−m

}
.

Proposition 16. Let λ be a security parameter and let n = n(p, d, �, λ). The
Σ-protocol of Fig. 1 is statistically SHVZK for the relation Rd defined in Propo-
sition 12, assuming the commitment C is statistically hiding.
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Proof. We simulate the honest prover for each of the three challenges as follows.

chall = −1. Sample a random isogeny ψ : E0 → E2 of degree �n, and ran-
dom strings r2, r3. Set com2 = C(E2; r2) and set com3 = C(⊥; r3). Return
(com2, com3), chall, (ψ,E2, r2).

The isogeny ψ is distributed exactly like in the real protocol, thus this tran-
script is valid. Because C is statistically hiding, an adversary cannot distinguish
com3 from a real commitment.

chall = 1. This is nearly identical to the above. The simulator samples ψ′ :
E1 → E3 of degree �n and random strings r2, r3. It sets com2 = C(⊥; r2) and
com3 = C(E3; r3), and returns (com2, com3), chall, (ψ′, E3, r3).

Because � is coprime to d, if ψ is uniformly distributed so is ψ′. Then, the
transcript is indistinguishable from a real one as before.

chall = 0. Sample a random isogeny ψ : E0 → E2 of degree �n, and then a random
isogeny ρ : E2 → E3 of degree d. Sample random strings r2, r3 and set com2 =
C(E2; r2) and com3 = C(E3; r3). Return (com2, com3), chall, (ρ,E2, r2, E3, r3).

Thanks to Lemma 14, the statistical distance between the simulated
(E2, ker(ρ)) and (E2, ψ(ker(φ))) is negligible. Because ρ is uniquely determined
from ker(ρ), and the real response φ′ by ψ(ker(φ)), an adversary has negligible
probability of distinguishing the transcript output by the simulator. ��

4.2 Executing the Protocol

The protocol we just described crucially depends on the ability to construct
a commutative square with sides of degrees d and �n. The SIDH setting has
p + 1 = d · �n so that the square can be constructed by simply pushing a single
kernel point for ψ through φ and vice versa. We refer to such a square as an SIDH
square. For more general choices of �n and d, the kernels are typically generated
by points defined over very large extension fields, requiring superpolynomial
space. We efficiently construct such “larger” squares by gluing together several
SIDH squares in what we call SIDH ladders, as depicted in Fig. 2.

For simplicity, we shall present the case d = (2a)w and �n = (3b)h, where 2a

and 3b are the side lengths of an SIDH square, and w and h are positive integers
defining the width and height of the ladders in units of SIDH squares. However,
the technique generalizes easily to any coprime d and �n, as long as isogenies of
degrees d and � can be efficiently computed.

First, notice that there always exist some choice of a and b such that points
(and hence kernel subgroups) of orders 2a and 3b can be represented efficiently.
This is clear if the prime p is a SIDH prime where 2a3b | (p+1), but for a generic
prime p, one can set a = b = 1: Points of order 2 and 3 are defined over a small
extension field and can thus be efficiently represented. Moreover, any isogeny of
degree (3b)h is the composition of h isogenies of degree 3b each, which can be
stored as a sequence of h kernel generators which are efficiently representable.

This means that the prover can generate the isogeny ψ : E0 → E2 in step 2
of P1 by generating a random kernel K1,0 on E0, computing the isogeny ψ1,0 :
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E0 → E0/K1,0 =: E1,0, generating a random kernel K2,0 on E1,0 such that
K2,0 ∩ker ψ̂1,0 = {0} to prevent backtracking, and repeating the process h times
to obtain a chain of h isogenies ψi,0 : Ei−1,0 → Ei,0. The curve E2 is the
codomain of the last isogeny ψh,0, i.e., E2 = Eh,0.

If the width w of the ladder is one, the prover can now recursively push
the kernel G of the isogeny φ = φ0,1 through the isogenies ψi,0 to obtain its
image Gi on each curve Ei,0. Each horizontal isogeny φ0,i has kernel Gi, and
the prover can compute the kernel of the right-side vertical isogeny ψ′

i,0 as the
image of the kernel of ψi,0 under the isogeny φi−1,1. Since each square composed
of (Ei,0, Ei+1,0, E

′
i,0, E

′
i+1,0) is a commutative diagram, so is the larger square

(E0, E1, E2, E3). In the general case where w > 1, the prover can use a similar
approach for the horizontal isogeny φ as used for the vertical isogeny ψ: The
isogeny φ can be written as the composition of w isogenies φ0,w◦. . .◦φ0,1 of degree
2a and their kernels can be mapped through the vertical isogenies. In other words,
the prover can glue horizontally w compatible ladders, one for each factor φ0,i of
φ. The right descending isogenies of each ladder are used as the left descending
isogenies of the next one. This allows the prover to compute w×h SIDH squares
in such a way that the curves (E0, E1, E2, E3) and the isogenies between them
form a commutative diagram. This is illustrated in Fig. 2. For the challenges
chall = ±1, the prover reveals the isogenies ψi,0 of the leftmost squares, or the
isogenies ψi,w of the rightmost squares. For the challenge chall = 0, the prover
responds with the isogenies φh,i of the bottom squares.

E0 E0,1

E2 Eh,1

φ0,1

ψ2,0

ψ1,0

ψh,0

E2,0

E1,0

Eh−1,0

ψ2,1

ψ1,1

ψh,1

E2,1

E1,1

Eh−1,1

φ2,1

φ1,1

φh−1,1

φh,1

E0,w−1 E1

Eh,w−1 E3

φ0,w

ψ2,w−1

ψ1,w−1

ψh,w−1

E2,w−1

E1,w−1

Eh−1,w−1

ψ2,w

ψ1,w

ψh,w

E2,w

E1,w

Eh−1,w

φ2,w

φ1,w

φh−1,w

φh,w

Fig. 2. An SIDH ladder.

Verification consists of evaluating (depending on the challenge) either w or h
isogenies of degree 2a or 3b, which can be done efficiently. Generating the proof
is slower, as the prover needs to fill in all the w × h SIDH squares that make
up the ladder. The proving complexity is thus quadratic in w and h, while
the verification complexity is linear in w and h. However, the complexity of
computing an SIDH square with degrees 2a or 3b is only quasilinear in a and b
using sparse strategies [25]; thus, maximizing the size of SIDH squares improves
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performance, which explains why SIDH primes are the most efficient scenario for
this proof. If the degree of the isogenies and the size of the underlying field are
kept constant, in the SIDH setting we have that 2a3b | (p + 1) for large values
of a and b (in the order of several hundreds), and thus w and h can be small.
For a generic prime, the prover might need to set a = b = 1 and work with
large values of w and h, incurring a quadratic cost, besides possibly having to
compute points over an extension field of degree bounded by a small constant.

Remark 17. Above, we assumed that the degree of the witness φ was d = (2a)w.
As mentioned before, this can be generalized to any witness φ of smooth degree
d = d1 . . . dw as far as the di-torsion groups are accessible (ideally, one should
have E0[di] ⊆ E0(Fp2)). In this case, one factors φ as φ = φ0,w ◦ . . . ◦ φ0,1 where
each isogeny φ0,i has degree di, and constructs compatible ladders for each φ0,i.

5 Distributed SECUER Setup and Its Security

In this section, we formally describe the distributed Secuer setup protocol
and prove its security under a security definition using the simplified universal
composability (SUC) framework due to Canetti, Cohen, and Lindell [13] in the
real/ideal world paradigm. Our security definitions consider a dishonest majority
corruption model, wherein the adversary can corrupt up to t − 1 of the t par-
ticipating parties in the distributed Secuer setup protocol. The protocol uses
a non-interactive version of the Σ-protocol described in Sect. 4. We begin by
formally describing this non-interactive zero-knowledge (NIZK) PoK protocol.

5.1 The NIZK Protocol

We transform the Σ-protocol of Sect. 4 into a NIZK using the standard Fiat-
Shamir heuristic [33] for transforming interactive PoK protocols into NIZK
proofs, albeit with the difference that soundness and zero-knowledge hold for
slightly different languages.

The NIZK Construction. Let E0, E1 be supersingular curves defined over
a finite field Fp2 , let φ : E0 → E1 be a separable isogeny of smooth degree d
and let C(m; r) be a statistically hiding and computationally binding commit-
ment scheme. Additionally, let Σ = (P1,P2,V) be the interactive PoK protocol
described in Sect. 4, let λ ∈ N be the security parameter, let � be a small prime
not dividing dp, let n = n(p, d, �, λ), and let N = poly(λ) be a fixed polynomial.
Finally, let H : {0, 1}∗ → {−1, 0, 1}N be a random oracle. The NIZK proof
system consists of a pair of algorithms NIZK = (PNIZK,VNIZK) as described in
Fig. 3. The prover algorithm PNIZK is randomized and produces a proof Π. The
verifier algorithm VNIZK is deterministic; it receives the proof Π and outputs a
bit b ∈ {0, 1} indicating whether or not the proof is accepted.
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PNIZK(E0, E1, φ, n, N):
1: For each i ∈ [N ], sample (com2,i, com3,i) ← P1(E0, E1, φ, n).
2: Set (chall1, . . . , challN ) = H

(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
.

3: For each i ∈ [N ], set respi = P2(challi).
4: return Π =

({(com2,i, com3,i, respi)}i∈[N ]

)
.

VNIZK(E0, E1, Π, N):
1: Parse Π as

({(com2,i, com3,i, respi)}i∈[N ]

)
.

2: Compute (chall1, . . . , challN ) = H
(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
.

3: For each i ∈ [N ], compute bi = V(E0, E1, (com2,i, com3,i), challi, respi).
4: Output b = ∧i∈[N ]bi.

Fig. 3. The NIZK.

Correctness, Extractability and ZK. Correctness follows immediately from
the correctness of the underlying Σ-protocol. We state and prove the following
propositions for extractability and ZK.

Proposition 18. Assuming that Σ = (P1,P2,V) satisfies 3-special soundness
with respect to the relation R� (described in Proposition 12) and that H is a
random oracle, the NIZK NIZK = (PNIZK,VNIZK) satisfies extractability (and
hence soundness) with respect to the relation R�.

Proof. We provide an informal proof overview. We begin by noting that Σ is a
public-coin protocol, and that there exists a probabilistic polynomial-time algo-
rithm that extracts a witness from 3 accepting transcripts corresponding to N
parallel executions of Σ w.r.t. the same statement. Consequently, we can invoke
the generalized forking lemma of [11] to argue the existence of a probabilis-
tic polynomial-time witness-extraction algorithm for NIZK. This completes the
proof of extractability (and hence, soundness) for NIZK. ��
Proposition 19. Assuming that Σ = (P1,P2,V) is statistically SHVZK for the
relation Rd (described in Proposition 16) and that H is a random oracle, the
NIZK NIZK = (PNIZK,VNIZK) is statistically ZK for the relation Rd.

Proof. We again provide an informal proof overview. Let SimΣ be a ZK simu-
lator that simulates an accepting transcript for the underlying Σ-protocol (as
described in the proof of ZK for Σ). We construct a ZK simulator SimNIZK that
simulates an accepting proof as follows:

1. SimNIZK simulates the random oracle H as follows: it maintains a local table
consisting of tuples of the form (x, y) ∈ {0, 1}∗ × {−1, 0, 1}N . On receiving
a query x ∈ {0, 1}∗ from the adversary A, it looks up this table to check
if an entry of the from (x, y) exists. If yes, it responds with y. Otherwise,
it responds with a uniformly sampled y ← {−1, 0, 1}N , and programs the
random oracle as H(x) := y by adding the entry (x, y) to the table.

2. For each i ∈ [N ], SimNIZK internally invokes the simulator SimΣ for the under-
lying Σ-protocol to obtain the i-th accepting transcript of the form

((com2,i, com3,i), challi, respi) .
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3. At this point, SimNIZK aborts if the adversary A has already issued a random
oracle query on the input x =

(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
.

4. Otherwise, SimNIZK programs the random oracle as

H
(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
:= (chall1, . . . , challN ),

and outputs the simulated proof as Π =
({(com2,i, com3,i, respi)}i∈[N ]

)
.

We note that SimNIZK runs in polynomial time as long as SimΣ runs in poly-
nomial time. Additionally, if SimNIZK does not abort, it outputs a simulated proof
that is distributed in a statistically indistinguishable manner from the distribu-
tion of a real proof, assuming that SimΣ outputs a simulated accepting transcript
with distribution statistically indistinguishable from a real accepting transcript
for Σ. Finally, SimNIZK aborts with only negligible probability, since the adversary
A guesses ((com2,i, com3,i), challi, respi) for each i ∈ [n] with at most negligible
probability. This completes the proof of statistical ZK for NIZK. ��

5.2 Our Distributed SECUER setup protocol

We now move to the distributed Secuer setup protocol. Let P1, . . . , Pt be a set
of t participating parties and let E0 be some fixed starting curve. In a nutshell,
the idea is to have the parties act sequentially: each Pi at its own turn performs
a secret random walk Ei−1 → Ei and broadcasts Ei and a NIZK PoK of the
secret walk. We claim that, as long as one party is honest, the final curve Et is
a Secuer.

To get any security guarantee, we need to carefully set the parameters of
the random walk Ei−1 → Ei. The natural choice is to fix some small prime q,
not dividing �p, and to take a random walk long enough that the distribution
of Ei is negligibly far from the stationary distribution on the q-isogeny graph
G(p, 1, q). For example we may set q = 2 and � = 3, then Theorem 11 provides
a precise bound to set the length δ = n(p, 1, q, λ) of the q-walk as a function of
the security parameter, and ultimately the parameter n(p, qδ, �, λ) of the PoK.

Remark 20. For increased efficiency, we may choose to perform shorter q-walks
Ei−1 → Ei of length logq(p). This length approximates the diameter of the
supersingular q-isogeny graph; hence, it ensures that the secret isogeny can reach
almost any curve in the graph.

Under mild assumptions, this choice would still yield a secure protocol, but
it would also make the security proof somewhat more involved. For this reason,
we shall stick here to the more conservative choice of walking long enough to
ensure nearly stationary distribution of Ei.

We formally describe the protocol (referred to as ΓSecuer henceforth). Assume
that E0 is known to all the parties at the start. Let NIZK = (PNIZK,VNIZK) be
the non-interactive proof as described above. The protocol ΓSecuer proceeds in
t rounds while only using broadcast channels of communication, where round-i
for each i ∈ [t] is as follows:
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– Party Pi performs a q-isogeny walk starting at curve Ei−1 and ending at curve
Ei (where Ei−1 and Ei are both supersingular curves defined over Fp2), such
that party Pi knows a separable isogeny φi : Ei−1 → Ei of degree qδ, where
δ = n(p, 1, q, λ).

– Party Pi generates Πi ← PNIZK(Ei−1, Ei, φi, n,N), where n = n(p, qδ, �, λ),
and broadcasts (Ei,Πi) to all other parties.

– Each party Pj for j ∈ [t] \ {i} verifies the NIZK proof Πi by computing
bi = VNIZK(Ei−1, Ei,Πi, N). If bi = 0 (i.e., the proof is invalid), Pj aborts.

At the end of round-t, all parties output Et to be the final output curve.

Correctness. Correctness of ΓSecuer follows immediately from the correctness
guarantees of the NIZK.

5.3 Proof of Security for ΓSECUER

We now present the proof of security for ΓSecuer using the simplified universal
composability (SUC) framework [13] in the real/ideal world paradigm. We con-
sider a dishonest majority corruption model, wherein the adversary can corrupt
up to (t − 1) of the t participating parties.

The Ideal Functionality. Intuitively, the ideal functionality for distributed
Secuer setup should simply take as input the initial curve E0 and output a
Secuer Et. It is however not obvious how to model the property of being a
Secuer in the plain SUC model: a game based definition, stating that an adver-
sary who can compute End(Et) can be used to break some other assumption,
appears to be more appropriate.

Thus, we prove security in two steps. First, we prove that ΓSecuer securely
emulates a less-than-ideal functionality F∗

Secuer (described in Fig. 4) that
enforces that: (a) for each i ∈ [t], if a corrupt party Pi outputs a curve Ei,
it must know a valid isogeny φi : Ei−1 → Ei, and (b) for each i ∈ [t], if an hon-
est party Pi outputs a curve Ei, then the corresponding isogeny φi : Ei−1 → Ei

is hidden from the adversary. This step relies on the extractability and ZK prop-
erties of the NIZK protocol described above. Next, we prove that, assuming the
hardness of the endomorphism ring problem in the F∗

Secuer-hybrid model, the
output curve Et is a Secuer, i.e. that the (malicious) adversary cannot compute
End(Et).

Theorem 21. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability and
zero-knowledge, and assuming the hardness of the endomorphism ring prob-
lem (Definition 1) and GRH, the output Et of the protocol ΓSecuer is a Secuer
if at least one party Pi∗ for some i∗ ∈ [t] is honest.
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F∗
Secuer(E0, i ∈ [t])

– Let Hi ⊆ [i − 1] be the set of honest parties, and let Ci ⊆ [i − 1] be the set of
corrupt parties among the first (i − 1) parties P1, . . . , P(i−1).

– For each j ∈ Hi, F∗
Secuer receives as input from Pj a tuple of the form (Ej , φj).

– For each j′ ∈ Ci, F∗
Secuer receives as input from the simulator Sim a tuple of the

form (Ej′ , φj′).
– If for any j ∈ [i − 1], φj is not an isogeny from the curve Ej−1 to the curve Ej ,

F∗
Secuer outputs ⊥ and aborts.

– Otherwise, F∗
Secuer takes a random walk starting from the (i − 1)-th curve Ei−1

and ending in a curve Ei such that F∗
Secuer knows φi : Ei−1 → Ei, where φi is

a separable isogeny of degree d.
– Finally, F∗

Secuer outputs (Ei, φi) to the party Pi, and outputs Ei to the simulator
Sim and to all parties Pj for j 	= i.

Fig. 4. The Ideal functionality F∗
Secuer

Secure Emulation of F∗
Secuer. We now prove that ΓSecuer securely emulates

the less-than-ideal functionality F∗
Secuer. Our proof is in the real/ideal world

paradigm defined formally as follows.

The Real World. The following entities engage in the real protocol ΓSecuer: (i)
a set H ⊆ [t] of honest parties, (ii) a real-world adversary A controlling a set
C ⊂ [t] of corrupt parties, and (iii) the environment E that provides E0 to each
party, interacts with the real-world adversary A, receives the final output curve
Et from the honest parties, and eventually outputs a bit b ∈ {0, 1}.

The Ideal World. The following entities interact with the functionality F∗
Secuer:

(i) A set H ⊆ [t] of honest parties, where for each i ∈ H, party Pi directly
forwards its secret isogeny to F∗

Secuer, (ii) an ideal-world simulator Sim that
sends inputs to F∗

Secuer on behalf of a set C ⊂ [t] of corrupt parties, and (iii)
the environment E that provides each party with the starting curve E0, interacts
with the simulator Sim, receives the final output curve Et from the functionality,
and eventually outputs a bit b ∈ {0, 1}.

For any t-party Secuer setup protocol ΓSecuer, any adversary A, any sim-
ulator Sim, and any environment E , we define the following random variables:

– realΓSecuer,A,E : denotes the output of the environment E after interacting with
the adversary A during a real-world execution of ΓSecuer.

– idealF∗
Secuer,Sim,E : denotes the output of the environment E after interacting

with the simulator Sim in the ideal world.

Theorem 22. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability and
zero-knowledge, for any security parameter λ ∈ N and any probabilistic polyno-
mial time (PPT) adversary A, there exists a PPT simulator Sim such that, for
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any PPT environment E, we have
∣∣Pr [realΓSecuer,A,E = 1] − Pr

[
idealF∗

Secuer,Sim,E = 1
]∣∣ ≤ negl(λ).

Proof. We prove this theorem by constructing a PPT simulator Sim that simu-
lates the view of the environment E in the ideal world. Details are given in the
full version [5]. ��

Analyzing Et in F∗
Secuer-hybrid Model. Based on the above secure emula-

tion guarantee, we now analyze the output Et of ΓSecuer in the F∗
Secuer-hybrid

model. Concretely, we state and prove the following theorem.

Theorem 23. Assuming the hardness of the endomorphism ring problem and
GRH, the output Et of F∗

Secuer(E0, t) is a Secuer if at least one party is honest.

To prove this theorem, we first prove the following lemma.

Lemma 24. Assuming the hardness of the endomorphism ring problem, the out-
put Ei of F∗

Secuer(E0, i) for i ∈ [t] is a Secuer whenever Pi is honest.

Proof. Suppose that there exists an adversary A corrupting a dishonest majority
of the parties that efficiently computes the endomorphism ring of Ei with non-
negligible probability. Also assume that A corrupts all of P1, . . . , Pi−1. We can
use A to construct an algorithm B that solves the endomorphism ring problem.
The algorithm B receives as input a uniformly random curve E∗/Fp2 , internally
runs the adversary A to emulate the outputs of the corrupt parties P1, . . . , Pi−1,
and finally feeds A with Ei := E∗. The view of the adversary A is properly simu-
lated by B, since Ei output by F∗

Secuer and E∗ provisioned by B are statistically
indistinguishable (here we use Theorem 11, which crucially follows from the hon-
est party taking a q-walk of length n(p, 1, q, λ)). Finally, B uses A to recover the
endomorphism ring of E∗ with non-negligible probability. This concludes the
proof of Lemma 24. ��

We now prove Theorem 23. We break the proof into two cases: (i) when Pt

is honest, and (ii) when Pt is corrupt. The proof for case (i) is immediate from
Lemma 24. Hence, we focus on case (ii). Let H ⊆ [t] be the set of honest parties,
and let i∗ = max ({i : Pi ∈ H}). By Lemma 24, Ei∗ must be a Secuer. Now,
suppose that Et is not a Secuer, i.e., there exists an adversary A corrupting
dishonest majority of the parties that efficiently computes the endomorphism
ring of Et with non-negligible probability. Since all of Pi∗+1, . . . , Pt are corrupt,
A knows a walk from Ei∗ to Et in the �-isogeny graph. However, since Et is not
a Secuer, A can use the reduction [59] (assuming GRH) to recover End(Ei∗),
thereby violating Lemma 24. This completes the proof of Theorem 23. ��

Finally, the proof of Theorem 21 follows immediately from the proofs of
Theorem 22 and Theorem 23, which completes the proof of security for our
distributed Secuer setup protocol ΓSecuer.
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Table 1. Parameters and corresponding secret/proof size for each of the four SIKE
finite fields.

Degree SIDH Squares Size (kB)
log(p) Reps 2-isog 3-isog Columns Rows Secret Proof

434 219 705 890 4 7 0.99 191.19
503 219 774 977 4 7 1.13 215.75
610 329 1010 1275 4 7 1.39 404.32
751 438 1280 1616 4 7 1.69 662.63

6 Implementation and Results

In this section, we report on our proof-of-concept implementation of our proof
of knowledge (Sect. 4), including a discussion of proof sizes and running times.
Moreover, we lay out concretely how one may deploy the trusted setup protocol
from Sect. 5 in the real world.

Parameter Selection. The base-field primes p in our proof-of-knowledge imple-
mentation are taken from the four SIKE parameter sets p434, p503, p610, and
p751. As discussed in Sect. 4.2, our proof of knowledge achieves its optimal effi-
ciency for SIDH-style primes. Moreover, those primes have been featured exten-
sively in the literature, and thus appear to be the obvious choice to demonstrate
our proof of knowledge. That said, we stress once more that our techniques are
generic and can be applied in any choice of characteristic.

We use the degree q = 2 for the random walks Ei → Ei−1, and � = 3 for the
random walks of the Σ-protocol of Fig. 1. Like Sect. 5, we set δ = n(p, 1, 2, λ)
for the length of the 2-walks, and n = n(p, 2δ, 3, λ) for the 3-walks. Lastly, the
Σ-protocol needs to be repeated several times to achieve a negligible soundness
error. Since one repetition has soundness error 2/3, the protocol needs to be
repeated −λ/log(2/3) times to achieve 2−λ soundness error. We target the same
security levels as the corresponding SIKE parameter sets, i.e., λ = 128 for p434
and p503, λ = 192 for p610, and λ = 256 for p751. The resulting conservative
parameters are summarized in Table 1.

Implementation. We developed an optimized implementation6 of our proof of
knowledge (Sect. 4.1) for the trusted-setup application (Sect. 5) based on version
3.5.1 of Microsoft’s SIDH library7. Our implementation inherits and benefits
from all lower-level optimizations contained in that library, and it supports a
wide range of platforms with optimized code for a variety of Intel and ARM
processors. Compiling our software produces two command-line tools prove and
verify, which use a simple ASCII-based interface to communicate the data
contributed to the trusted setup.

6 The source code is available at https://github.com/trusted-isogenies/SECUER-pok.
7 https://github.com/microsoft/PQCrypto-SIDH.

https://github.com/trusted-isogenies/SECUER-pok
https://github.com/microsoft/PQCrypto-SIDH


Supersingular Curves You Can Trust 431

The implementation closely follows the strategy outlined in Sect. 4.2. This
includes the choices d = (2a)w and �n = (3b)h; thus, both the witness and the
commitment isogenies are uniformly random cyclic isogenies of degree d and �n

respectively. To reduce latency, we additionally exploit parallelism: Recall that
the proof of knowledge is repeated many times to achieve a low soundness error;
indeed most of the computations are independent between those repetitions and
can thus easily be performed at the same time on a multi-core system. This
is confirmed by experimental results, where our implementation is observed to
parallelize almost perfectly when run on an eight-core processor.

Sampling purely random large-degree isogenies with code from SIDH comes
with two caveats: First, the sampling of “small” squares must avoid backtracking
between the individual squares being glued to ensure that the composition is
cyclic in the end; in both cases this is done by keeping track of the kernel of the
dual of the last prime-degree step of the previous square and avoiding points
lying above this “forbidden” kernel when choosing the next square. Besides that,
the specific isogeny formulas used in SIDH fail for the 2-torsion point (0, 0),
which can be resolved by changing to a different Montgomery model each time
this kernel point is encountered. For curves revealed in the proof, the choice of
Montgomery model should be randomized to avoid leakage. Similarly, the kernel
generators of the horizontal isogeny φ′ also need to be randomized, as Lemma 14
only distinguishes cyclic subgroups and revealing specific generators may leak.

Our software sacrifices some performance for simplicity, which aids auditabil-
ity and hence helps increase trust in the results of a trusted-setup ceremony. Some
unused optimizations: Two-isogenies are faster to compute than three-isogenies,
and since the SIDH ladder is taller than wider, swapping the role of two- and
three-isogenies in the trusted-setup application could somewhat improve the
resulting performance. For simplicity, our implementation also only uses full
SIDH squares, and thus all isogeny degrees are rounded up to the closest multi-
ple of an SIDH square; shortening the sides of some of the squares can save time.
We also did not apply all optimizations to reduce the proof size. This includes
applying SIDH-style compression techniques [20] to the points contained in the
proof, cutting their size approximately in half. Moreover, applying a slight bias
when sampling the challenges challi means smaller responses can appear more
often, at the expense of requiring slightly more repetitions; we investigated this
tradeoff and determined that the potential improvement is essentially void.

Results. We benchmarked the three algorithms (instance generation, proving,
and verification) that make up the zero-knowledge proof of knowledge. We run
our tests on an ARM Apple M1 Pro with eight cores, and we averaged the run-
ning times of 100 iterations for the parallel implementation and the running
times of 50 iterations of the single-core version. The resulting timings are shown
in Table 2. They demonstrate that the algorithm is highly practical and can real-
istically be used within a trusted setup protocol: Generating proofs of knowledge
for all four base fields takes less than five core-minutes on a modern CPU. Note
that these algorithms need to be run only once per contributor.
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Table 2. Benchmarks for instance generation, proving, and verification of our proof of
isogeny knowledge for each of the four SIKE finite fields.

Single-core Time (s) Eight-core Time (s)
log(p) Instance Prove Verify Instance Prove Verify

434 0.01 18.15 1.93 0.01 2.96 0.32
503 0.01 25.70 2.71 0.01 4.17 0.44
610 0.02 74.82 7.69 0.02 12.12 1.24
751 0.04 162.47 17.01 0.04 26.07 2.89

Real-World Deployment. We briefly discuss how we intend to deploy the
trusted setup protocol proposed in Sect. 5. The goals of such a deployment
include include a transparent setup that allows parties to trust the process,
a low bar of entry to participate in the protocol, and a secure system that can
withstand Sybil and Denial-of-Service (DoS) attacks.

Firstly, we are releasing at https://github.com/trusted-isogenies/ a set of
tools that participants can download and run to generate a valid addition to the
trusted setup, and for ceremony orchestrators to validate protocol submissions
on the server-side. To increase user trust, we also provide higher-level versions
(e.g., in SageMath) of some components. Moreover, the proof format is made
public, so that any party can—if they choose to—re-implement the algorithms
and generate a compatible proof.

Then, we propose leveraging the existing infrastructure of git and GitHub to
host our distributed protocol. Thus, each party Ei can generate a random walk
from the latest curve Ei−1 to a new curve Ei, generate a PoK of their secret
isogeny walk, and submit the new curve and the PoK to the server as a pull
request (PR). The server is a separate git repository and execution environment
maintaining the sequence of curves and the proofs, with checks that are run
automatically against submissions from parties. The repository automation ver-
ifies that the submitted PoK of the isogeny between the current curve Ei−1 at
the end of the walk (the ‘tip’ curve) and the new proposed curve Ei is valid, and
that the PR does not rewrite any previous history. If the checks pass, the PR is
rebased on top of the main branch, adding the new PoK of the latest hop, and
updating the tip curve to Ei. New parties in the protocol will generate isogeny
walks starting from the new tip curve.

If the chain of isogenies diverges, i.e. if some party submits a new curve and
PoK starting from a curve other than the tip, the new submission is rejected.
This may happen when several parties try to contribute at the same time. To
minimize the amount of wasted prover work, we parallelize verification and reject
invalid proofs as early as possible.

The configuration for the continuous integration checks is maintained in a
separate repository to prevent modification from protocol parties. Hosting the
protocol on GitHub raises the bar to Sybil attacks, as it requires all parties to
have a GitHub account with a verified email address. Using our tool requires

https://github.com/trusted-isogenies/
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generation of a GitHub personal access token to authenticate when generating
the submission, which further complicates automation/collusion.

The end result of the protocol is a public git repository whose final commit
contains a sequence of curves and valid PoKs of isogenies between them, the
last of which is the final Secuer Et, a curve with unknown endomorphism ring,
in a parsable hex encoding. Anyone can pull down this artifact and verify the
sequence of curves and proofs independently if they wish.

7 Conclusion

In this work, we analyzed a distributed Secuer generation protocol, and pro-
posed a concrete instantiation with strong security guarantees based on a novel
proof of isogeny knowledge. To demonstrate the practical feasibility of our pro-
tocol, we are going to run a distributed Secuer generation ceremony, scaling to
hundreds of participants, using the technology outlined in Sect. 6.

Our new PoK is especially well-suited for SIDH-like base fields, but can be
used reasonably well with fields Fp2 of any characteristic. Generic ZK proof
systems, such as the SumCheck protocol used in [18], would be an alternative
to our PoK. After this work was published, Cong, Lai and Levin [19] designed
an R1CS encoding of 2-isogeny walks that they fed to various generic proof
systems. Their results show that Aurora [6], in particular, can be quite com-
petitive, giving a measurable speed boost at the cost of a moderate increase in
proof size. Currently, the question of which proof system to use appears to be
context-dependent.

None of the currently known techniques are particularly well suited for prov-
ing knowledge of an isogeny walk over Fp: our PoK and generic proof systems
are much more efficient when the walks consist of isogenies of small degree such
as 2 or 3, which is not possible over Fp. SeaSign-like techniques [24,29] are at
least one order of magnitude slower than our PoK, and scale much worse. CSI-
FiSh [8] is reasonably efficient, but limited to the base field of CSIDH-512. We
think generating Secuers over Fp efficiently is an interesting open problem.

To show the security of the proof of knowledge, we developed the theory
of supersingular isogeny graphs with level structure, in particular proving that
they possess the Ramanujan property. In this work we only focused on the so-
called Borel level structure, however similar properties can be proven for more
general level structures. In a follow-up work, we will develop the general theory
of these graphs, prove bounds on their eigenvalues, and discuss consequences for
isogeny-based cryptography.
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