
Carmit Hazay
Martijn Stam (Eds.)

LN
CS

 1
40

05

42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Lyon, France, April 23–27, 2023, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2023

Lecture Notes in Computer Science 14005
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Carmit Hazay · Martijn Stam
Editors

Advances in Cryptology –
EUROCRYPT 2023
42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Lyon, France, April 23–27, 2023
Proceedings, Part II

Editors
Carmit Hazay
Bar-Ilan University
Ramat Gan, Israel

Martijn Stam
Simula UiB
Bergen, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30616-7 ISBN 978-3-031-30617-4 (eBook)
https://doi.org/10.1007/978-3-031-30617-4

© International Association for Cryptologic Research 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8951-5099
https://orcid.org/0000-0002-5319-4625
https://doi.org/10.1007/978-3-031-30617-4

Preface

The 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Eurocrypt 2023, was held in Lyon, France between April
23–27 under the auspices of the International Association for Cryptologic Research. The
conference had a record number of 415 submissions, out of which 109 were accepted.

Preparation for the academic aspects of the conference started in earnest well over a
year ago, with the selection of a program committee, consisting of 79 regular members
and six area chairs. The area chairs played an important part in enabling a high-quality
reviewprocess; their rolewas expanded considerably from last year and, for the first time,
properly formalized. Each area chair was in charge of moderating the discussions of the
papers assigned under their area, guiding PCmembers and reviewers to consensus where
possible, and helping us in making final decisions. We created six areas and assigned
the following area chairs: Ran Canetti for Theoretical Foundations; Rosario Gennaro
for Public Key Primitives with Advanced Functionalities; Tibor Jager for Classic Public
Key Cryptography; Marc Joye for Secure and Efficient Implementation, Cryptographic
Engineering, andReal-WorldCryptography;GregorLeander for SymmetricCryptology;
and finally Arpita Patra for Multi-party Computation and Zero-Knowledge.

Prior to the submission deadline, PC members were introduced to the reviewing
process; for this purpose we created a slide deck that explained what we expected from
everyone involved in the process and how PC members could use the reviewing system
(HotCRP) used by us. An important aspect of the reviewing process is the reviewing
form, which we modified based on the Crypto’22 form as designed by Yevgeniy Dodis
and Tom Shrimpton. As is customary for IACR general conferences, the reviewing
process was two-sided anonymous.

Out of the 415 submissions, four were desk rejected due to violations of the Call
for Papers (non-anonymous submission or significant deviations from the submission
format). For the remaining submissions, the review process proceeded in two stages. In
the first stage, every paper was reviewed by at least three reviewers. For 109 papers a
clear, negative consensus emerged and an early reject decision was reached and commu-
nicated to the authors on the 8th of December 2022. This initial phase of early rejections
allowed the program committee to concentrate on the delicate task of selecting a program
amongst the more promising submissions, while simultaneously offering the authors of
the rejected papers the opportunity to take advantage of the early, full feedback to improve
their work for a future occasion.

The remaining 302 papers progressed to an interactive discussion phase, which was
open for two weeks (ending slightly before the Christmas break). During this period, the
authors had access to their reviews (apart from some PC only fields) and were asked to
address questions and requests for clarifications explicitly formulated in the reviews. It
gave authors and reviewers the opportunity to communicate directly (yet anonymously)
with each other during several rounds of interaction. For some papers, the multiple
rounds helped in clarifying both the reviewers’ questions and the authors’ responses.

vi Preface

For a smaller subset of papers, a second interactive discussion phase took place in the
beginning of January allowing authors to respond to new, relevant insights by the PC.
Eventually, 109 papers were selected for the program.

The best paper award was granted to the paper “An Efficient Key Recovery Attack
on SIDH” by Wouter Castryck and Thomas Decru for presenting the first efficient key
recovery attack against the Supersingular Isogeny Diffie-Hellman (SIDH) problem. Two
further, related papers were invited to the Journal of Cryptology: “Breaking SIDH in
Polynomial Time” by Damien Robert and “A Direct Key Recovery Attack on SIDH”
by Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski.

Accepted papers written exclusively by researchers who were within four years
of PhD graduation at the time of submission were eligible for the Early Career Best
Paper Award. There were a number of strong candidates and the paper “Worst-Case
Subexponential Attacks on PRGs of Constant Degree or Constant Locality” by Akın
Ünal was awarded this honor.

The program further included two invited talks: Guy Rothblum opened the pro-
gram with his talk on “Indistinguishable Predictions and Multi-group Fair Learning”
(an extended abstract of his talk appears in these proceedings) and later during the con-
ference Vadim Lyubashevsky gave a talk on “Lattice Cryptography: What Happened
and What’s Next”.

First and foremost, we would like to thank Kevin McCurley and Kay McKelly for
their tireless efforts in the background, making the whole process so much smoother for
us to run. Thanks also to our previous co-chairs Orr Dunkelman, Stefan Dziembowski,
Yevgeniy Dodis, Thomas Shrimpton, Shweta Agrawal and Dongdai Lin for sharing the
lessons they learned and allowing us to build on their foundations. We thank Guy and
Vadim for accepting to give two excellent invited talks. Of course, no program can be
selected without submissions, so we thank both the authors of accepted papers, as well
as those whose papers did not make it (we sincerely hope that, notwithstanding the dis-
appointing outcome, you found the reviews and interaction constructive). The reviewing
was led by our PC members, who often engaged expert subreviewers to write high-
quality, insightful reviews and engage directly in the discussions, and we are grateful to
both our PC members and the subreviewers. As the IACR’s general conferences grow
from year to year, a very special thank you to our area chairs, our job would frankly
not have been possible without Ran, Rosario, Tibor, Marc, Gregor, and Arpita’s tireless
efforts leading the individual papers’ discussions. And, last but not least, we would like
to thank the general chairs: Damien Stehlé, Alain Passelègue, and BenjaminWesolowski
who worked very hard to make this conference happen.

April 2023 Carmit Hazay
Martijn Stam

Organization

General Co-chairs

Damien Stehlé ENS de Lyon and Institut Universitaire de France,
France

Alain Passelègue Inria, France
Benjamin Wesolowski CNRS and ENS de Lyon, France

Program Co-chairs

Carmit Hazay Bar-Ilan University, Israel
Martijn Stam Simula UiB, Norway

Area Chairs

Ran Canetti Boston University, USA

(for Theoretical Foundations)

Rosario Gennaro Protocol Labs and CUNY, USA

(for Public Key Primitives with Advanced Functionalities)

Tibor Jager University of Wuppertal, Germany

(for Classic Public Key Cryptography)

Marc Joye Zama, France

(for Secure and Efficient Implementation, Cryptographic Engineering, and Real-World
Cryptography)

Gregor Leander Ruhr-Universität Bochum, Germany

(for Symmetric Cryptology)

Arpita Patra Google and IISc Bangalore, India

(for Multi-party Computation and Zero-Knowledge)

viii Organization

Program Committee

Masayuki Abe NTT Social Informatics Laboratories and Kyoto
University, Japan

Adi Akavia University of Haifa, Israel
Prabhanjan Ananth UC Santa Barbara, USA
Gilad Asharov Bar-Ilan University, Israel
Marshall Ball New York University, USA
Christof Beierle Ruhr University Bochum, Germany
Mihir Bellare UC San Diego, USA
Tim Beyne KU Leuven, Belgium
Andrej Bogdanov Chinese University of Hong Kong, China
Xavier Bonnetain Inria, France
Joppe Bos NXP Semiconductors, Belgium
Chris Brzuska Aalto University, Finland
Ignacio Cascudo IMDEA Software Institute, Spain
Nishanth Chandran Microsoft Research India, India
Chitchanok Chuengsatiansup The University of Melbourne, Australia
Michele Ciampi The University of Edinburgh, UK
Ran Cohen Reichman University, Israel
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Bernardo David IT University of Copenhagen, Denmark
Christoph Dobraunig Intel Labs, Intel Corporation, Hillsboro, USA
Léo Ducas CWI Amsterdam and Leiden University,

Netherlands
Maria Eichlseder Graz University of Technology, Austria
Pooya Farshim IOHK and Durham University, UK
Serge Fehr CWI Amsterdam and Leiden University,

Netherlands
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque Université Rennes 1 and Institut Universitaire de

France, France
Steven Galbraith University of Auckland, New Zealand
Chaya Ganesh IISc Bangalore, India
Si Gao Huawei Technologies Co., Ltd., China
Daniel Genkin GeorgiaTech, USA
Craig Gentry TripleBlind, USA
Benedikt Gierlichs KU Leuven, Belgium
Rishab Goyal UW-Madison, USA
Vipul Goyal NTT Research and CMU, USA
Viet Tung Hoang Florida State University, USA
Andreas Hülsing Eindhoven University of Technology, Netherlands

Organization ix

Antoine Joux CISPA, Helmholtz Center for Cybersecurity,
Germany

Karen Klein ETH Zurich, Switzerland
Markulf Kohlweiss University of Edinburgh and IOHK, UK
Jooyoung Lee KAIST, Korea
Gaëtan Leurent Inria, France
Shengli Liu Shanghai Jiao Tong University, China
Yunwen Liu Cryptape Technology Co., Ltd., China
Stefan Lucks Bauhaus-Universität Weimar, Germany
Hemanta Maji Purdue, USA
Alexander May Ruhr University Bochum, Germany
Nele Mentens Leiden University, Netherlands and KU Leuven,

Belgium
Tal Moran Reichman University, Israel
Michael Naehrig Microsoft Research, USA
Ngoc Khanh Nguyen EPFL, Switzerland
Emmanuela Orsini Bocconi University, Italy and KU Leuven,

Belgium
Jiaxin Pan NTNU, Norway
Omkant Pandey Stony Brook University, USA
Anat Paskin-Cherniavsky Ariel University, Israel
Chris Peikert University of Michigan and Algorand, Inc., USA
Léo Perrin Inria, France
Giuseppe Persiano Università di Salerno, Italy
Thomas Peters UCLouvain, Belgium
Christophe Petit Université libre de Bruxelles, Belgium and

University of Birmingham, UK
Krzysztof Pietrzak ISTA, Austria
Bertram Poettering IBM Research Europe – Zurich, Switzerland
Bart Preneel KU Leuven, Belgium
Divya Ravi Aarhus University, Denmark
Christian Rechberger TU Graz, Austria
Ron Rothblum Technion, Israel
Carla Ràfols Universitat Pompeu Fabra, Spain
Paul Rösler FAU Erlangen-Nürnberg, Germany
Yu Sasaki NTT Social Informatics Laboratories, NIST

Associate, Japan
Dominique Schröder FAU Erlangen-Nürnberg, Germany
Omri Shmueli Tel Aviv University, Israel
Janno Siim Simula UiB, Norway
Daniel Slamanig AIT Austrian Institute of Technology, Austria
Yifan Song Tsinghua University, China

x Organization

Qiang Tang The University of Sydney, Australia
Serge Vaudenay EPFL, Switzerland
Fernando Virdia Intel Labs, Switzerland
Meiqin Wang Shandong University, China
Mor Weiss Bar-Ilan University, Israel
David Wu UT Austin, USA

Additional Reviewers

Behzad Abdolmaleki
Damiano Abram
Hamza Abusalah
Leo Ackermann
Amit Agarwal
Ghous Amjad
Benny Applebaum
Gal Arnon
Thomas Attema
Benedikt Auerbach
Lukas Aumayr
Gennaro Avitabile
Melissa Azouaoui
Saikrishna Badrinarayanan
Karim Baghery
Kunpeng Bai
Shi Bai
David Balbás
Manuel Barbosa
Khashayar Barooti
James Bartusek
Andrea Basso
Balthazar Bauer
Carsten Baum
Michiel van Beirendonck
Josh Benaloh
Fabrice Benhamouda
Ward Beullens
Amit Singh Bhati
Ritam Bhaumik
Alexander Bienstock
Alexander Block
Jonathan Bootle
Cecilia Boschini

Katharina Boudgoust
Christina Boura
Zvika Brakerski
Lennart Braun
Marek Broll
Ileana Buhan
Matteo Campanelli
Federico Canale
Anne Canteaut
Gaëtan Cassiers
Wouter Castryck
Pyrros Chaidos
André Chailloux
T.-H. Hubert Chan
Anirudh Chandramouli
Rohit Chatterjee
Hao Chen
Long Chen
Mingjie Chen
Yanbo Chen
Yanlin Chen
Yilei Chen
Yu Long Chen
Wei Cheng
Céline Chevalier
James Chiang
Wonhee Cho
Wonseok Choi
Wutichai Chongchitmate
Hien Chu
Valerio Cini
Christine Cloostermans
Andrea Coladangelo
Daniel Collins

Organization xi

Sandro Coretti-Drayton
Craig Costello
Elizabeth Crites
Miguel Cueto Noval
Jan-Pieter D’Anvers
Sourav Das
Alex Davidson
Gabrielle De Micheli
Cyprien Delpech de Saint Guilhem
Patrick Derbez
Lalita Devadas
Siemen Dhooghe
Jesus Diaz
Khue Do
Jelle Don
Rafael Dowsley
Avijit Dutta
Sébastien Duval
Christoph Egger
Tariq Elahi
Lynn Engelberts
Felix Engelmann
Muhammed F. Esgin
Thomas Espitau
Andre Esser
Simona Etinski
Prastudy Fauzi
Patrick Felke
Hanwen Feng
Rex Fernando
Tako Boris Fouotsa
Danilo Francati
Sapir Freizeit
Paul Frixons
Rachit Garg
Sanjam Garg
Aymeric Genêt
Marios Georgiou
Satrajit Ghosh
Niv Gilboa
Valerie Gilchrist
Emanuele Giunta
Aarushi Goel
Eli Goldin
Junqing Gong

Alonso González
Lorenzo Grassi
Jiaxin Guan
Zichen Gui
Aurore Guillevic
Aditya Gulati
Aldo Gunsing
Chun Guo
Divya Gupta
Felix Günther
Hosein Hadipour
Mohammad Hajiabadi
Shai Halevi
Peter Hall
Shuai Han
Patrick Harasser
David Heath
Lena Heimberger
Alexandra Henzinger
Julia Hesse
Minki Hhan
Dennis Hofheinz
Maya-Iggy van Hoof
Sam Hopkins
Akinori Hosoyamada
Kristina Hostáková
Martha Norberg Hovd
Yu-Hsuan Huang
Loïs Huguenin-Dumittan
Kathrin Hövelmanns
Yuval Ishai
Muhammad Ishaq
Tetsu Iwata
Michael John Jacobson, Jr.
Aayush Jain
Samuel Jaques
Jinhyuck Jeong
Corentin Jeudy
Ashwin Jha
Mingming Jiang
Zhengzhong Jin
Thomas Johansson
David Joseph
Daniel Jost
Fatih Kaleoglu

xii Organization

Novak Kaluderovic
Chethan Kamath
Shuichi Katsumata
Marcel Keller
John Kelsey
Erin Kenney
Hamidreza Khorasgani
Hamidreza Khoshakhlagh
Seongkwang Kim
Elena Kirshanova
Fuyuki Kitagawa
Bor de Kock
Konrad Kohbrok
Lisa Kohl
Sebastian Kolby
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Alexis Korb
Matthias Krause
Hugo Krawczyk
Toomas Krips
Mike Kudinov
Péter Kutas
Thijs Laarhoven
Yi-Fu Lai
Baptiste Lambin
Nathalie Lang
Abel Laval
Laurens Le Jeune
Byeonghak Lee
Changmin Lee
Eysa Lee
Seunghoon Lee
Sihyun Lee
Dominik Leichtle
Jannis Leuther
Shai Levin
Chaoyun Li
Yanan Li
Yiming Li
Xiao Liang
Jyun-Jie Liao
Benoît Libert

Wei-Kai Lin
Yao-Ting Lin
Helger Lipmaa
Eik List
Fukang Liu
Jiahui Liu
Qipeng Liu
Xiangyu Liu
Chen-Da Liu-Zhang
Satya Lokam
Alex Lombardi
Patrick Longa
George Lu
Jinyu Lu
Xianhui Lu
Yuan Lu
Zhenliang Lu
Ji Luo
You Lyu
Reinhard Lüftenegger
Urmila Mahadev
Mohammad Mahmoody
Mohammad Mahzoun
Christian Majenz
Nikolaos Makriyannis
Varun Maram
Laurane Marco
Ange Martinelli
Daniel Masny
Noam Mazor
Matthias Meijers
Fredrik Meisingseth
Florian Mendel
Bart Mennink
Simon-Philipp Merz
Tony Metger
Pierre Meyer
Brice Minaud
Kazuhiko Minematsu
Victor Mollimard
Tomoyuki Morimae
Nicky Mouha
Tamer Mour
Marcel Nageler
Mridul Nandi

Organization xiii

María Naya-Plasencia
Patrick Neumann
Hai Nguyen
Ky Nguyen
Phong Q. Nguyen
Ryo Nishimaki
Olga Nissenbaum
Anca Nitulescu
Ariel Nof
Julian Nowakowski
Adam O’Neill
Sai Lakshmi Bhavana Obbattu
Miyako Ohkubo
Eran Omri
Claudio Orlandi
Michele Orrù
Elisabeth Oswald
Omer Paneth
Guillermo Pascual-Perez
Kenneth G. Paterson
Sikhar Patranabis
Alice Pellet-Mary
Maxime Plancon
Antigoni Polychroniadou
Alexander Poremba
Bernardo Portela
Eamonn Postlethwaite
Emmanuel Prouff
Kirthivaasan Puniamurthy
Octavio Pérez Kempner
Luowen Qian
Tian Qiu
Willy Quach
Håvard Raddum
Srinivasan Raghuraman
Justin Raizes
Sebastian Ramacher
Hugues Randriambololona
Shahram Rasoolzadeh
Simon Rastikian
Joost Renes
Nicolas Resch
Alfredo Rial Duran
Doreen Riepel
Silvia Ritsch

Melissa Rossi
Mike Rosulek
Yann Rotella
Lawrence Roy
Roozbeh Sarenche
Amirreza Sarencheh
Pratik Sarkar
Arish Sateesan
Christian Schaffner
Carl Richard Theodor Schneider
Markus Schofnegger
Peter Scholl
André Schrottenloher
Gregor Seiler
Sruthi Sekar
Nicolas Sendrier
Meghna Sengupta
Jinrui Sha
Akash Shah
Siamak Shahandashti
Moni Shahar
Shahed Sharif
Laura Shea
Abhi Shelat
Yaobin Shen
Sina Shiehian
Jad Silbak
Alice Silverberg
Luisa Siniscalchi
Tomer Solomon
Karl Southern
Nicholas Spooner
Sriram Sridhar
Srivatsan Sridhar
Akshayaram Srinivasan
François-Xavier Standaert
Uri Stemmer
Lukas Stennes
Patrick Steuer
Christoph Striecks
Patrick Struck
Chao Sun
Erkan Tairi
Akira Takahashi
Abdullah Talayhan

xiv Organization

Titouan Tanguy
Stefano Tessaro
Emmanuel Thomé
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Mehdi Tibouchi
Tyge Tiessen
Bénédikt Tran
Andreas Trügler
Daniel Tschudi
Aleksei Udovenko
Jonathan Ullman
Dominique Unruh
Vinod Vaikuntanathan
Daniele Venturi
Michiel Verbauwhede
Javier Verbel
Gilles Villard
Mikhail Volkhov
Satyanarayana Vusirikala
Benedikt Wagner
Roman Walch
Hendrik Waldner
Alexandre Wallet
Michael Walter
Mingyuan Wang
Yuyu Wang
Florian Weber
Hoeteck Wee
Puwen Wei
Charlotte Weitkaemper

Weiqiang Wen
Benjamin Wesolowski
Daniel Wichs
Wessel van Woerden
Ke Wu
Keita Xagawa
Hanshen Xiao
Jiayu Xu
Yingfei Yan
Xiuyu Ye
Kevin Yeo
Eylon Yogev
Albert Yu
Aaram Yun
Alexandros Zacharakis
Thomas Zacharias
Michal Zajac
Greg Zaverucha
Runzhi Zeng
Cong Zhang
Lei Zhang
Ren Zhang
Xinrui Zhang
Yuqing Zhao
Yu Zhou
Dionysis Zindros
Giorgos Zirdelis
Lukas Zobernig
Arne Tobias Ødegaard
Morten Øygarden

Sponsoring Institutions

– Platinum Sponsor: Université Rennes 1 and PEPR Quantique, Zama
– Gold Sponsor: Apple, Cryptolab, ENS de Lyon, ENS PSL, Huawei, Sandbox AQ,

Thales, TII
– Silver Sponsor: Algorand Foundation, ANSSI, AWS, PQShield
– Bronze Sponsor: Cosmian, CryptoExperts, CryptoNext Security, IBM, Idemia, Inria,

LIP

Contents – Part II

Multi-party Computation

New Ways to Garble Arithmetic Circuits . 3
Marshall Ball, Hanjun Li, Huijia Lin, and Tianren Liu

Actively Secure Half-Gates with Minimum Overhead Under Duplex
Networks . 35

Hongrui Cui, Xiao Wang, Kang Yang, and Yu Yu

Black-Box Reusable NISC with Random Oracles . 68
Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan

Maliciously-Secure MrNISC in the Plain Model . 98
Rex Fernando, Aayush Jain, and Ilan Komargodski

Minimizing Setup in Broadcast-Optimal Two Round MPC 129
Ivan Damgård, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov

Sublinear-Communication Secure Multiparty Computation Does Not
Require FHE . 159

Elette Boyle, Geoffroy Couteau, and Pierre Meyer

Actively Secure Arithmetic Computation and VOLE with Constant
Computational Overhead . 190

Benny Applebaum and Niv Konstantini

SuperPack: Dishonest Majority MPC with Constant Online
Communication . 220

Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song,
and Chenkai Weng

Detect, Pack and Batch: Perfectly-Secure MPC with Linear
Communication and Constant Expected Time . 251

Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

An Incremental PoSW for General Weight Distributions . 282
Hamza Abusalah and Valerio Cini

xvi Contents – Part II

(Zero-Knowledge) Proofs

Witness-Succinct Universally-Composable SNARKs . 315
Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi,
Akira Takahashi, and Daniel Tschudi

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 347
Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk,
and Nicholas Spooner

Proof-Carrying Data from Arithmetized Random Oracles 379
Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor,
and Nicholas Spooner

Supersingular Curves You Can Trust . 405
Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo,
Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison,
Lorenz Panny, Sikhar Patranabis, and Benjamin Wesolowski

On Valiant’s Conjecture: Impossibility of Incrementally Verifiable
Computation from Random Oracles . 438

Mathias Hall-Andersen and Jesper Buus Nielsen

SNARGs and PPAD Hardness from the Decisional Diffie-Hellman
Assumption . 470

Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan

HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom
Gates . 499

Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang

Spartan and Bulletproofs are Simulation-Extractable (for Free!) 531
Quang Dao and Paul Grubbs

Complete Characterization of Broadcast and Pseudo-signatures
from Correlations . 563

Varun Narayanan, Vinod M. Prabhakaran, Neha Sangwan,
and Shun Watanabe

Privacy-Preserving Blueprints . 594
Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Author Index . 627

Multi-party Computation

New Ways to Garble Arithmetic Circuits

Marshall Ball1, Hanjun Li2(B), Huijia Lin2, and Tianren Liu3

1 New York University, New York, USA
marshall@cs.nyu.edu

2 University of Washington, Seattle, USA
{hanjul,rachel}@cs.washington.edu

3 Peking University, Beijing, China
trl@pku.edu.cn

Abstract. The beautiful work of Applebaum, Ishai, and Kushilevitz
[FOCS’11] initiated the study of arithmetic variants of Yao’s garbled cir-
cuits. An arithmetic garbling scheme is an efficient transformation that
converts an arithmetic circuit C : Rn → Rm over a ring R into a garbled
circuit ̂C and n affine functions Li for i ∈ [n], such that ̂C and Li(xi)
reveals only the output C(x) and no other information of x. AIK pre-
sented the first arithmetic garbling scheme supporting computation over
integers from a bounded (possibly exponentially large) range, based on
Learning With Errors (LWE). In contrast, converting C into a Boolean
circuit and applying Yao’s garbled circuit treats the inputs as bit strings
instead of ring elements, and hence is not “arithmetic”.

In this work, we present new ways to garble arithmetic circuits, which
improve the state-of-the-art on efficiency, modularity, and functionality.
To measure efficiency, we define the rate of a garbling scheme as the
maximal ratio between the bit-length of the garbled circuit | ̂C| and that
of the computation tableau |C|� in the clear, where � is the bit length of
wire values (e.g., Yao’s garbled circuit has rate O(λ)).

– We present the first constant-rate arithmetic garbled circuit for
computation over large integers based on the Decisional Compos-
ite Residuosity (DCR) assumption, significantly improving the effi-
ciency of the schemes of Applebaum, Ishai, and Kushilevitz.

– We construct an arithmetic garbling scheme for modular computa-
tion over R = Zp for any integer modulus p, based on either DCR or
LWE. The DCR-based instantiation achieves rate O(λ) for large p.
Furthermore, our construction is modular and makes black-box use
of the underlying ring and a simple key extension gadget.

– We describe a variant of the first scheme supporting arithmetic
circuits over bounded integers that are augmented with Boolean
computation (e.g., truncation of an integer value, and comparison
between two values), while keeping the constant rate when garbling
the arithmetic part.

To the best of our knowledge, constant-rate (Boolean or arithmetic) gar-
bling was only achieved before using the powerful primitive of indistin-
guishability obfuscation, or for restricted circuits with small depth.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 3–34, 2023.
https://doi.org/10.1007/978-3-031-30617-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_1

4 M. Ball et al.

1 Introduction

Garbled circuits, introduced by Yao [18], enable a “Garbler” to efficiently trans-
form a Boolean circuit C : {0, 1}n → {0, 1}m into a garbled circuit ̂C and a
pair of keys ki

0,k
i
1 for every input bit. In particular, the input keys are short, of

length polynomial in the security parameter only, independent of the complexity
of the circuit. An input x ∈ {0, 1}n to the circuit can be encoded by choosing
the right keys corresponding to each input bit Lx = {ki

xi
}i∈[n], referred to as

the input labels. The garbled circuit and input labels (̂C,Lx) together reveal the
output of the computation y = C(x), and hide all other information of x. Yao’s
seminal result [18] constructed garbled circuit using Pseudo-Random Generators
(PRGs), which in turn can be based on one-way functions. Since its conception,
garbled circuits has found a wide range of applications, and is recognized as one
of the most fundamental and useful tools in cryptography.

The Arithmetic Setting. While there have been remarkable optimizations
and analytical improvements in the intervening years, the currently most widely
applied approaches to garbling circuits still largely follow Yao’s paradigm from
the 1980s1. Yao’s idea involves encrypting the truth tables of gates in the circuit,
which becomes inefficient or even infeasible when the truth tables are large. A
longstanding open question is designing arithmetic garbling, namely, variants of
garbled circuits that apply naturally to arithmetic circuits without “Booleaniz-
ing” the computation, meaning bit-decomposing the inputs and intermediate
values and garbling the Boolean circuit implementation of arithmetic opera-
tions. To achieve arithmetic garbling, fundamentally new techniques different
from the mainstream encrypted truth-table methods must be developed.

The work of Applebaum, Ishai, and Kushilevitz (AIK) [5] initiated the study
of arithmetic garbling. They first formalized the notion of Decomposable Affine
Randomzed Encoding (DARE) as follows:

Arithmetic garbling (i.e., DARE) is an efficient transformation Garble
that converts an arithmetic circuit C : Rn → Rm over a ring R into a garbled
circuit ̂C, along with 2n key vectors ki

0,k
i
1 ∈ R�, such that ̂C together with

the input labels Lx = {Li = ki
0xi + ki

1} computed over the ring R, reveal
C(x) and no additional information about x ∈ Rn.

The main difference between arithmetic and Boolean garbling is that the input
encoding procedure of the former consists of affine functions over the ring R, and
does not require the bit-representation of the inputs. There are natural informa-
tion theoretic methods for garbling arithmetic formulas and branching programs

1 There have been alternative approaches that rely on strong primitives such as a
combination of fully homomorphic encryption and attribute-based encryption [9,11,
15], or indistinguishabilty obfuscation [2]. These approaches however are much more
complex than Yao’s garbling and less employed in applications. See Sect. 1.2 for more
discussion.

New Ways to Garble Arithmetic Circuits 5

over any ring R [4,13]. But garbling general (unbounded depth) arithmetic cir-
cuits is significantly more challenging. AIK proposed the first construction sup-
porting bounded integer computation – namely computation over integers R = Z

from a bounded (but possibly exponential) range [−B,B] – based on the Learn-
ing With Errors (LWE) assumption. In addition, they presented an alternative
construction that generically reduce arithmetic garbled circuits to Yao’s Boolean
garbled circuits, via a gadget that converts integer inputs into their bit repre-
sentation using the Chinese Remainder Theorem (CRT). Though general, the
CRT-based solution does not satisfy many desiderata of arithmetic garbling, in
particular, it still relies on bit-decomposing the inputs and garbling the Boolean
circuit implementation of arithmetic operations. So far, the AIK LWE-based
construction gives the only known scheme that can garble to general arithmetic
circuits without “Booleanizing” them.

1.1 Our Results

Despite its importance, little progress were made on arithmetic garbling in the
past decade after the work of AIK. In this paper, we revisit this topic and
present new ways of arithmetic garbling. Our contributions include 1) a signif-
icantly more efficient arithmetic garbling scheme for bounded integer compu-
tations, achieving constant rate, 2) the first scheme supporting modular arith-
metic computation mod p that makes only black-box calls to the implementation
of arithmetic operations, and 3) a new way of mixing arithmetic garbling with
Boolean garbling. Finally, we diversify the assumptions, showing the Decisional
Composite Residuosity (DCR) assumption is also sufficient, in addition to LWE.

Part 1: Constant-Rate Garbling Scheme for Bounded Arithmetic. To
highlight our efficiency improvement for bounded integer garbling, we define the
rate of a garbling scheme to be the maximal ratio between the bit-length of
the produced garbled circuit | ̂C| and input encoding, and the bit-length of the
tableau of the computation in the clear |C|� (i.e., the bit length of merely writing
down all the input and intermediate computation values). Let � be bit length of
wire values. For a B-bounded integer computation, � = �log(2B + 1)�.

rate = max
C,x

| ̂C| + |Lx|
|C|�

For example, the rate of Yao’s garbling for Boolean circuits is O((|C′|+|x|)kSKE)
|C′|×(�=1) =

O(kSKE), where kSKE is the key length of the symmetric key encryption (or
PRF) used. For arithmetic garbling, the Boolean baseline of applying Yao’s
garbling on the Boolean circuit implementation of the arithmetic circuit achieves
a rate of O(log �·kSKE), when implementing integer addition/multiplication using
the most asymptotically efficient algorithms of complexity O(� log �) [12]2. The

2 Note that this approach is entirely impractical for any reasonable length input due
to the astronomical constants involved in fast multiplication.

6 M. Ball et al.

Table 1. Comparison of Arithmetic Garbling for Bounded Integer Computation.

Garbling Scheme Assumption Rate Input Label Size

Boolean Baseline OWFs O(kSKE log �) O(n�kSKE)

AIK - CRT-based [5] OWF O(kSKE log �) O(n�6kSKE)

AIK - LWE-based [5] LWE O(kLWE) Õ(n�kLWE)

This work DCR O(1 + kDCR
�

) O(n(kDCR + �))

CRT-based construction by AIK reduces arithmetic garbling to Yao’s Boolean
garbling and achieves the same asymptotic rate O(log � · kSKE) when the circuit
size is sufficient large. However, the size of the input labels is O(n�6kSKE) where
n is the number of input elements, which is prohibitive even for relatively small
range, say 10-bit, integer computation. The AIK LWE-based construction, on
the other hand, has a larger rate of O(kLWE) where kLWE is the LWE dimension,
which must be larger than �1+ε for some constant ε ∈ (0, 1). See Table 1 for a
summary.

We show that arithmetic garbling can actually be significantly more effi-
cient than the Boolean baseline. Based on the Decisional Composite Residuosity
(DCR) assumption over Paillier groups Z∗

Nr+1 for N = pq with primes p, q
and integer r ≥ 1 [10,16], we present a scheme producing garbled circuits of
size | ̂C| = O(|C|(� + kDCR)), and input label of size |Lx| = O(n(� + kDCR)),
where kDCR = log N is the bit-length of the modulus N . As such, the rate
is just a constant O(1) when the integer values are sufficiently large, namely
� = Ω(kDCR). To the best of our knowledge, this is the first garbling scheme for
general unbounded depth circuits (in any model of computation) that achieve a
constant rate, without relying on the strong primitive of iO (see Sect. 1.2 for a
more detailed comparison).

Theorem 1 (Informal, Arithmetic Garbling for Bounded Integer Computa-
tion). Assume the DCR assumption over Z∗

Nr+1 for N = pq with primes p, q
and r a sufficiently large positive integer. Let kDCR = �log N�, B ∈ N, and
� = �(log 2B + 1)�. There is an arithmetic garbling scheme for B-bounded inte-
ger computation, where the size of the garbled circuit is | ̂C| = O(|C|(� + kDCR))
(i.e., rate O(1 + kDCR

�)), and the length of input label is O(n(� + kDCR)) bits.

Part 2: Arithmetic Garbled Circuit over Zp. Beyond bounded integer com-
putations, can we support other important models of arithmetic computation?
We consider modular arithmetic computation over a finite ring R = Zp (where p
is not necessarily a prime), which arises naturally in applications, in particular,
in cryptosystems.

It turns out that the AIK CRT-based garbling scheme can be adapted to
support Zp-computation3. However, as mentioned above, this solution does not
3 This scheme reduces to Yao’s garbling by first decomposing the input elements into

a bit representation using CRT. As such, this approach works as long as the inputs

New Ways to Garble Arithmetic Circuits 7

satisfy many desiderata of arithmetic garbling, in particular, it makes non-black-
box use of the Boolean circuit implementation of arithmetic operations. Though
integer multiplication and mod-p reduction are basic operations, there are
actually many different algorithms (such as, Karasuba, Tom-Cook, Schönhage-
Strassen, Barrett Reduction, Montgomery reduction to name a few), software
implementation, and even hardware implementation. It is preferable to avoid
applying cryptography to these algorithms/implementation, and have a modu-
lar design that can reap the benefits of any software/hardware optimization.

We present an arithmetic garbling scheme for Zp-computations, which makes
only black-box call to the implementation of arithmetic operations.

Theorem 2 (Informal, Arithmetic Garbling Scheme for Modular Computa-
tion). Let p ∈ N and � = �log p�. There are arithmetic garbling schemes for
computation over Zp that make only black-box use of implementation of arith-
metic operations over Zp, as described below.

– Assume DCR. The size of the garbled circuit is O(|C|(� + kDCR)kDCR) and
the length of input labels is O(n�kDCR) bits (i.e., rate O(kDCR + k2

DCR
�)).

– Assume LWE with dimension kLWE, modulus q, and noise distribution χ that
is poly(kLWE)-bounded, such that log q = O(�) + ω(log kLWE). The size of the
garbled circuit is |C| · � · Õ(kLWE) and the length of input labels is Õ(n�kLWE)
bits (i.e., rate Õ(kLWE)).

We note that being black-box in the implementation of arithmetic operations,
is different from being black-box in the ring. The latter has stringent conditions
so that a construction that is black-box in the ring can automatically be applied
to any ring. Unfortunately, Applebaum, Avron, and Brzuska [3] showed that
such garbling is impossible for general circuits. Nevertheless, being black-box
in the implementation of arithmetic operations already provides some of the
benefits of a modular design. The garbler does not need to choose which algo-
rithm/implementation of arithmetic operations to use, and evaluation can work
with any algorithm/implementation.

Part 3: Mixing Bounded Integer and Boolean Computation. Many nat-
ural computational tasks mix arithmetic and Boolean computation. For example,
a simple neural network component is a (fixed-point) linear functions fed into
a ReLU activation functions, where ReLU(z) = max(0, z) is much more efficient
using (partially) Boolean computation. Even natural arithmetic computational
tasks can benefit from (partial) boolean computation. Take the example of fast
exponentiation: given (x, y) one can efficiently compute xy if one has access to
the bits of y, y�, . . . , y0 using the fact that xy = x

∑�
i=0 yi2

i

=
∏

i:yi=1 x2i

.
This motivates us to consider the following mixed model of computation,

represented by a circuit consisting of three types of gates: 1) arithmetic operation
gates +/−/× : R2 → R, 2) Boolean function gates, g : {0, 1}r → {0, 1}r′

, where
g is implemented using a Boolean circuit, and 3) the bit decomposition gate,

are integers from a bounded range and the computation can be implemented using
Boolean circuits.

8 M. Ball et al.

bits : R → {0, 1}�, that maps a ring element to its bit representation. Naturally,
a Boolean function gate can only take input from the bit decomposition gate or
other Boolean function gates (otherwise, there is no restriction on how gates are
connected).

We gave a construction for mixed bounded integer and Boolean computation.
Our scheme naturally uses Yao’s garbled circuit to garble the Boolean function
gates, and arithmetic garbled circuit (from Theorem 1 or AIK) to garble the
arithmetic operation gates over bounded integers. Finally, we design a new gad-
get for bit decomposition, based on either DCR or LWE.

The bit decomposition gadget is an arithmetic garbling scheme for func-
tions of form BD{cj ,dj} that maps an integer x ∈ [−B,B] to � labels, where
the j’th label is cjbits(x)j +dj . This means given the garbled circuit ̂BD and
input label ax + d, the output labels are revealed and nothing else.

Our scheme puts together the above three components in a modular and black-
box way. In terms of efficiency, the size of the garbled circuit naturally depends
on the number of gates of each type. More specifically, garbling the Boolean
computation gates incurs an rate of O(kSKE) inherited from Yao’s garbled circuit,
whereas the arithmetic operation gates can be garbled with close to constant rate
if using our DCR-based scheme in Theorem 1. Our bit decomposition gadget
produces a garbled circuit of size O(�2 · kDCR) for sufficiently large integers
� = Ω(kDCR) if based on DCR, and of size �2 · Õ(kLWE) if based on LWE, where
kLWE is the LWE dimension. Recall that the AIK CRT-based scheme also relies
on performing bit decomposition, however, at a much larger cost of O(�6kSKE).

Theorem 3 (Informal, Arithmetic Garbling Schemes for Mixed Computation).
Let B ∈ N and � = �log 2B + 1�. There are arithmetic garbling schemes for
mixed B-bounded integer and Boolean computation as described below.

– Assume DCR. The size of the garbled circuit is O(sbkDCR + ma(� + kDCR) +
mb(�+kDCR)2 ·kDCR), where sb is the total circuit size of all Boolean function
gates, ma the number of arithmetic operation gates, and mb the number of
bit-decomposition gates. The length of input label is O(n(� + kDCR)) bits.

– Assume LWE with dimension kLWE, modulus q, and noise distribution χ that
is poly(kLWE)-bounded, such that log q = O(�) + ω(log kLWE). The size of the
garbled circuit is sbO(λ) + ma · � · Õ(kLWE) + mb · �2 · Õ(kLWE). The length of
input label is O(n�kLWE) bits, where ε is a fixed constant (Fig. 2).

Potential for Concrete Efficiency Improvement. The primary goal of
this work is designing new arithmetic garbling with good asymptotic efficiency.
Though we do not focus on optimizing concrete efficiency, our DCR-based
schemes do show potential towards practical garbling. Our concrete analysis
demonstrates that when the input domains are large, � ∼ kDCR = 4096 bits,
the size of garbled circuits produced by our constant-rate bounded integer gar-
bling scheme is significantly smaller than that of the Boolean baseline using the
state-of-the-art Boolean garbling scheme of [17] – the garbling size of addition
is ∼100× smaller, and the size of multiplication is ∼500× smaller. See Sect. 5.

New Ways to Garble Arithmetic Circuits 9

Table 2. Summary of Our Garbling Schemes.

Computation Assumption Rate Input Label Size

Bounded Arithmetic DCR O(1 + kDCR/�) O(n(kDCR + �))

Mod p DCR O(kDCR + k2
DCR/�) O(nkDCR�))

Mod p LWE Õ(kLWE) Õ(n�kLWE)

Mixed DCR O((� + kDCR)kDCR)* O(n(� + kDCR))

Mixed LWE Õ(�kLWE)* O(n�kLWE)

*Rate of Mixed Computation Schemes depends on relative frequency of gate
types. Numbers here conservatively assume all gates are the most expensive type.

1.2 Related Works

We briefly survey approaches to garbling Boolean circuits that achieve good rate.
AIK showed that their LWE-based scheme when applied to constant-degree

polynomials represented as a sum of monomials has constant-rate. The work of
[2] yields a garbling scheme with size O(|C|)+poly(λ) and input size O(n+m+
poly(λ)), assuming subexponentially secure indistinguishability obfuscation and
rerandomizable encryption.

The work of [9,11] presents a O(|C| + poly(λ, d))-size garbling of Boolean
circuits, with input labels of size O(nm poly(λ, d)) where d is the circuit depth,
n is the input length, m is the output length, and λ the security parameter. One
significant advantage of their scheme is that the circuit description is given in
the clear. We analyze the sizes of garbled circuits and input labels when using
their scheme to garble a B-bounded integer computation (C, x) of depth d, in
particular, spelling out the exponent in the poly term. For simplicity of notation,
we set the input length n, output length m, wire-value bit length log B = �, and
the size of a FHE bit encryption all to O(k).

[9,11]: |C̃| + |Lx| > |C| + Õ(k3d6 + k6d4)

Our DCR-based scheme: |C̃| + |Lx| = O(|C|k)

In comparison, the garbling of [9,11] has smaller size when k and d are
sufficiently small comparing with |C|, achieving even sub-constant rate O(|C|/k).
However, our garbled circuits are smaller when k and d are larger, achieving a
constant rate for all k and d. The term Õ(k3d6 + k6d4) associated with [9,11] is
prohibitive, even for small k, d such as 100, whereas the complexity of our scheme
does not have such large exponents. Our scheme is also simpler than [9,11], which
combines ABE, FHE, and Yao’s garbled circuit in an intricate way.

The works of [7,8] generalized FreeXOR [14], a technique that allows one
to garble XOR gates at zero cost, to general arithmetic setting. They present a
scheme for bounded integer computation where addition is for free. They also
present a gadget (similar to our bit decomposition gadget) that converts inte-
gers to a primorial-mixed-radix representation, which has similar advantage as a
Boolean representation (e.g. cheap comparisons). Leveraging free addition, they

10 M. Ball et al.

show that their scheme has concrete performance benefit for certain bounded
arithmetic computations, in comparison to directly applying Boolean garbling
to arithmetic circuits. However, their construction is not arithmetic; in particu-
lar, the input encoding requires a “bit representation” of the inputs.

Finally, the work of [6] describes a method for generically shortening the
length of input labels to |Lx| = n�+o(n�) – that is, rate-1 input labels. However,
the transformation does not preserve decomposability, which is a property that
each input element xi is encoded separately Li(xi). Many applications of garbling
rely on decomposability, e.g., in 2PC, the party holding xi can use OT/OLE to
obtain Li(xi). The encoding of our schemes, AIK, and Yao’s garbled circuits all
satisfy decomposability, and our DCR-based bounded integer garbling has the
shortest input encoding (see Table 3).

1.3 Technical Overview

We start with reviewing the modular design paradigm of AIK, which is the basis
of our approach.

As an arithmetic analog of Yao’s Boolean garbled circuits, the AIK garbling
shares a similar high-level structure. Like Yao’s scheme, AIK’s scheme associates
each wire value, xi, with a wire label, Li, (which hides/encrypts the wire value).4

Also like Yao’s scheme, the Garbler generates “garbled tables” that enable an
evaluator holding a wire label for each input wire to a gate in the circuit to
derive the corresponding output wire label. However, unlike in Yao’s scheme,
the tables do not directly correspond to encryptions of the output wire labels
under all possible input label pairs.

Instead, AIK builds bounded arithmetic garbled circuits in two steps: (1)
they construct an information-theoretically secure garbling scheme for low depth
arithmetic circuits over a ring R (via black-box use of R), (2) they then construct
a key extension gadget for bounded arithmetic computation that allows them
to efficiently circumvent the depth restriction (the key extension gadget makes
non-black-box use of R, but the overall garbling scheme makes use of the key
extension gadget in a black-box way).

To begin, let us recall how AIK construct (1) the information-theoretic
scheme. This scheme does away with garbled gate information entirely, at the
expense of long input labels whose structure depends explicitly on the circuit
being garbled. In particular, for every wire of the circuit, the Garbler generates
two keys ki

0,k
i
1 which are vectors in R. During evaluation, for every wire, the

evaluator should obtain a label Li = ki
0xi + ki

1 corresponding to the correct
value of the wire as follows:

– Input Labels: For each input wire, its label is given to the evaluator.
– Garbled Gate: For every gate xi = g(xj1 , xj2), the invariant is that given

the labels Lj1 ,Lj2 corresponding to inputs xj1 and xj2 , the evaluator can

4 In Yao’s scheme, these labels may be chosen independently and uniformly at random.
In the arithmetic setting, this is infeasible as the domain may be exponentially large.

New Ways to Garble Arithmetic Circuits 11

Arithmetic Operation Gadgets

Gadget for Addition xi = xj1 + xj2 : At garbling time, given a pair of keys
(ki

0,k
i
1) for the output wire i, it produces a pair of keys (kj1

0 ,kj1
1) and (kj2

0 ,kj2
1)

for each input wire (and no garbled table) as follows:

Set kj1
0 = kj2

0 = ki
0 Sample additive shares kj1

1 + kj2
1 = ki

1 .

At evaluation time, the output label can be obtained as follows

Lj1 + Lj2 = (kj1
0 xj1 + kj1

1) + (kj2
0 xj2 + kj2

1) = ki
0(xj1 + xj2) + ki

1 = Li .

Gadget for Multiplication xi = xj1 × xj2 : At garbling time, given output keys
(ki

0,k
i
1), it produces input key pairs (kj1

0 ,kj1
1) and (kj2

0 ,kj2
1) (and no garbled

table) as follows:

kj1
0 := (ki

0, sk
i
0), kj1

1 := (r,u) , kj2
0 := (1, r), kj2

1 := (s, sr − ki
1 − u) .

where s is a random scalar and r,u are random vectors.
At evaluation time, given input labels Lj1 = (ki

0xj1 + r, ski
0xj1 + u) and Lj2 =

(xj2 + s, rxj2 + sr − ki
1 − u), the output label can be obtained as follows:

Li = Lj1
leftL

j2
left − Lj1

right − Lj2
right .

Fig. 1. AIK Arithmetic Operation Gadgets

learn a label Li corresponding to the output xi for each output wire, and
no other information. This is achieved using the arithmetic computation
gadget described in AIK, which are essentially information theoretically
secure DARE (Decomposable Affine Randomized Encoding) for functions
f+,ki

0,ki
1
(xj1 , xj2) = ki

0(xj1 +xj2)+ki
1 and f×,ki

0,ki
1
(xj1 , xj2) = ki

0(xj1 ×xj2)+
ki

1. They are summarized in Fig. 1.5

Remark: Having separate gadgets for addition and multiplication leaks the type
of gate. There also exists an universal garbling gadget for arithmetic opera-
tion, which hides the gate operation, so that only the topology of the circuit
is revealed.

– Outputs: For each output wire, the evaluator learns Li = ki
0xi + ki

1, which
reveals the output xi by setting ki

0 = 1 and ki
1 = 0.

The above paradigm gives an information-theoretic arithmetic garbling
scheme, however, only for logarithmic depth circuits. Its major issue is that
the key-length increases exponentially in the depth of the circuit, because 1) the
key-length of the input wires of a multiplication gate is twice the key-length of

5 Note that while the evaluator can efficiently evaluate the garbled circuit from the
bottom-up (inputs to outputs), the garbler (as described here) proceeds from the
top-down: generating labels for the output wires and then recursively generating
increasingly complex keys for the wire layers below.

12 M. Ball et al.

its output wire, and 2) the key-length of input wires of any gate grows linearly
with the fan-out that gate. On the flip side, this scheme has constant overhead
for constant depth circuits.

To go beyond low-depth circuits, AIK introduced a key-extension gadget—a
DARE for functions fKE,c,d(x) = c · x + d. It ensures that given the input label
a ·x+b and garbled table, the evaluator can obtain a new longer label c ·x+d,
and no other information. Now to support arbitrary depth circuit, AIK uses the
arithmetic operation gadgets to handle the computation gates, and whenever the
key length |c|, |d| becomes too long, it uses the key-extension gadget to shrink
the key length down |a|, |b| < |c|, |d|.

It may seem counter-intuitive that a key “extension” gadget would be used to
“shrink” keys, so let us discuss how this works in slightly more detail. First, recall
that the information-theoretic DARE gadgets described in Fig. 1 derive (possibly
longer) labels for the inputs to a gate from the output labels corresponding to
that gate. Next, we break each wire i into two sub wires: the part that comes
out of the preceding gate, iout, and the part that goes into the next gate, iin

(for higher fan-out there will other iin wires). By breaking up all wires in this
manner, we can garble gates in parallel (as opposed to from the top-down) by
independently and locally (a) sampling the (short) labels Liout

, and (b) locally
applying the gadgets from Fig. 1 to derive (long) input labels Ljin

1 ,Ljin
2 . At this

point each wire value is now associated with two labels: a short output label
and long input label(s). The key extension gadget allows the evaluator to derive
the long input portion(s) from the short input label portion (using some extra
information: the gabled table).

Therefore, this paradigm reduces the problem of constructing constant-
overhead arithmetic garbling for bounded integer computation (Theorem 1) and
arithmetic garbling for modular computation (Theorem 2) to the problem of
designing (efficient) key-extension gadgets for the respective model of computa-
tion.

Abstract Key-Extension Gadget. Instead of describing AIK’s gadget, we will
instead introduce an abstract approach to constructing key-extension gadgets
(that also captures AIK’s key-extension gadget). Instantiating this approach
has encounter significant technical barriers (discussed at length below), but we
believe the high level paradigm is nonetheless instructive.

Recall that to construct a key-extension gadget the garbler knows short keys
(a,b) corresponding to short wire labels of the form Sx = a · x + b as well as
long keys (c,d) corresponding to long wire labels of the form Lx = c ·x+d. The
garbler’s task is to output some succinct information, tb, so that an evaluator
holding a short wire label Sx can derive the long wire label corresponding to
the same value Lx without learning anything about the other wire labels Ly (for
y 	= x).

As a warm up, observe that the Yao’s approach can be adapted to give an
efficient key extension gadget for small domains. In particular for the boolean
case of x ∈ {0, 1}, the garbler can simply set tb to consist of two (one-time sym-
metric key) encryptions: Encb(d) = EncS0(L0) and Enca+b(c + d) = EncS1(L1)

New Ways to Garble Arithmetic Circuits 13

(randomly permuted). Using tb the evaluator can simply decrypt the relevant
ciphertext (using the short label as a key) to derive the long label corresponding
to the same value. Semantic security implies that the evaluator learns nothing
about the other label.

Unfortunately, it is not clear how to extend Yao’s approach to large
arithmetic domains (with succinct garbled tables). Instead, it seems we need
a stronger arithmetic properties from the encryption scheme. In particular,
assume we have an encryption scheme, (Enc,Dec), which is linearly homomor-
phic in both the key and message space: there are operations �,� such that
x � Enca(c) � Encb(d) = Encax+b(cx + d).

Given such an encryption scheme, consider the case that the wire value x
is public (we will relax this assumption momentarily). Then note that given a
garbled table, tb, comprised of just two cipher texts Enca(c) and Encb(d) the
evaluator can use x,Sx to derive a long label Lx by homomorphically evaluat-
ing x � Enca(c) � Encb(d) = Encax+b(cx + d) = EncSx

(Lx) and decrypting.
We need to additionally show that the evaluator learns nothing about the other
output labels. In more detail, observe that we can simulate the view of eval-
uator holding Sx,Lx, x which is comprised of 3 cipher texts: (1) Enca(c), (2)
Encb(d), and (3) EncSx

(Lx). First, note that given Lx, x, one can derive cipher-
text (2) from ciphertexts (1) and (3) (and x) by simply homorphically computing
EncSx

Lx) � Enca(c) � x = Encb(d). Armed with this observation we can invoke
semantic security and simply simulate (given Sx,Lx, x) by encrypting (3) hon-
estly, replacing (1) with a random encryption, and homomorphically evaluating
(2) from the other two ciphertexts.

There are two issues with this approach: the first (which we have already
mentioned) is that the wire label is public, the second (and more subtle issue)
is that we are implicitly assuming that encryption scheme has a key space that
is identical to the message space which is in fact the ring R we wish to compute
over. We will describe a generic approach to dealing with the first issue here,
but leave the second issue to the specific settings and implementations below.

We observe that one can effectively assume the wire label is public without
loss of generality. The idea is that instead of extending the wire value x directly,
we will mask x with a random value, r, that is known to the garbler to get
x′ = x + r. Note that x′ can be safely output by the garbled circuit while
statistically hiding x. Then we can use our key extension gadget to extend x′.
Then once we have a long label Lx′ we can easily use another gadget to remove
r (known to the garbler).6

Key Extension Gadget for Bounded Integer Computation. Our first key
extension gadget relies on the Paillier extension of the Paillier encryption [10,16].
This gadget is very efficient: the input label only consists of O(1) ring elements
and the table size is proportional to the output label size.

We use a one-time secure version of the Paillier encryption. To generate the
public parameters, sample two large safe primes and let N be the product of the
6 Similar ideas are found in the well-known “half-gates” construction [19] of Zahur,

Rosulek, and Evans for garbling boolean circuits comprised of XOR and AND gates.

14 M. Ball et al.

two safe primes. Choose a small integer ζ ≥ 1, and the ciphertexts are vectors
modulo N ζ+1. The group Z∗

Nζ+1 contains a hard subgroup of unknown order
(i.e., the 2N ζ ’th residue subgroup, the order of which is hard to compute given
N) and an easy subgroup of order N ζ generated by 1 + N , in which discrete
logarithm is easy. The public parameters are (N, ζ,g), where g = (g1, g2, . . . , gψ)
are randomly-sampled generators of the “hard” subgroup. The one-time use key
s is an integer sampled uniformly from {0, . . . , N}. The encryption algorithm
takes a message vector m ∈ Z

ψ
Nζ of dimension at most ψ as the input message,

and generates a ciphertext as follows:

Enc(s,m) = gs · (1 + N)m = (gs
1 · (1 + N)m1 , . . . , gs

ψ · (1 + N)mψ) .

The Decisional Composite Residuosity (DCR) assumption implies that the
ciphertext is pseudorandom. Indeed, the secret key can only be used once; in
fact, the encryption algorithm is deterministic.

For our application, the following properties of the Paillier encryption are
important:

– Small Keys: the secret key s is an integer upper bounded by N which is much
smaller than the message space modulus Nζ .

– Linear Homomorphism: for any keys s1, s2 ∈ Z and messages m1,m2 ∈ Z
ψ
Nζ ,

Enc(s1,m1) · Enc(s2,m2) = Enc(s1 + s2
︸ ︷︷ ︸

over Z

,m1 + m2
︸ ︷︷ ︸

over Z
Nζ

).

In particular, given ciphertexts Enc(s1, c),Enc(s2,d) and x, one can homo-
morphically compute Enc(s1x + s2, cx + d).

– Integer Keys: To decrypt the output ciphertext produced by the homomorphic
evaluation, we need the key s1x+s2. Importantly, since the order of the hard
group is unknown, we can only hope to use the key s1x + s2 computed over
Z.

The above observations immediately suggest a näıve construction of key
extension gadget: Let Enc(s1, c),Enc(s2,d) be the garbled table, and (x, s1x+s2)
computed over Z be the input label. Decryption gives c·x+d mod Nζ as desired.
However, such a näıve construction faces two problems:

– Input label over Z. The output label is in ring ZNζ . We will set N ζ
 B
to be sufficiently large so that a B-bounded computation can be “embeded”
in computation modulo Nζ . As such, arithmetic operations can be garbled
using AIK arithmetic operation gadgets in Fig. 1 with modulus N ζ . However,
a problem is that to decrypt Paillier encryption, the input label s1x+s2 must
be computed over Z. To close the gap, we crucially rely on the fact that in
bounded integer computation, every wire value x is bounded. We can also
sample s1, s2 from a bounded range so that s1x + s2 < Nζ . Therefore, the
input label can be (x, s1x + s2) mod N ζ = (x, s1x + s2) over Z.

– Leakage. In the näıve construction, x is revealed. To hide x, we replace x
by y = x + r, a one-time pad of x. Let (y, s1y + s2) be the input label,
let Enc(s1, c),Enc(s2,d − rc) be the table. The evaluator homomorphically
computes Enc(s1y + s2, cy + d − rc), then decrypts cy + d − rc = cx + d.

New Ways to Garble Arithmetic Circuits 15

For clarity, we sketch how this works. Say the wire value x is guaranteed to
be bounded by −B ≤ x ≤ B. Sample r ← {−B′, . . . , B′} for some B′
 B, thus
r + x statistically hides x. Sample s1 ← {0, . . . , N}. Sample s2 ← {0, . . . , B′′}
for some B′′
 NB′, so that s1(r + x) + s2 statistically hides s1(r + x), which
in turn preserves semantic security for encryptions under s1.7 Choose ζ so that
N ζ > 2B′′. Overall, the gadget consists of the following:

Input Key: a = (1, s1) b = (r, s1r + s2)

Input Label: Lin = (r + x, s1(r + x) + s2)
Garbled Table: Enc(s1, c) Enc(s2,d − rc) .

We observe that the garbled table has “constant-rate”, which is the key leading to
constant-rate garbled circuit. More precisely, the size of the above garbled table
is |c|(ζ + 1) log N . When the integer bound B is sufficiently large, it suffices to
set the modulus N to be a constant times longer than B, i.e., log N = O(log B).
In addition, the dimension of the output key |c| is proportional to the fan out k
of the wire with value x. Therefore, the garbled table has size |c|(ζ + 1) log N =
O(k log B), incurring a constant overhead. See Sect. 4 for more details.

Key Extension Gadget for Modulo-p Computation. There are two bar-
riers when we try to extend the previous key extension gadget to the modulo-p
computation setting.

– Arbitrary Message Ring Zp. In the Paillier encryption, the message is a vector
over ring ZNζ . It supports linear homomorphic evaluation modulo N ζ , where
N is the product of two randomly sampled primes. But we need to perform
computation modulo p, where p is an arbitrary integer specified by the given
arithmetic circuit.

– The Input Label over Z. The AIK arithmetic operations gadgets now uses
keys and labels over Zp. However, as discussed above, to decrypt Paillier
encryption, we need the input label s1y + s2 to be computed over Z, where
y now equals to (r + x) mod p). In the previous setting, we get around this
problem easily because the wire value x is bounded, and hence computing
s1y + s2 modulo N ζ is the same as computing it over the integers. Now, the
wire value x could be an arbitrary element in Zp, certainly s1y + s2 mod p is
very different from s1y + s2 over Z. We need a new technique to recover the
latter.

To overcome the first barrier, we construct another encryption scheme on
top of Paillier encryption, such that the message space is over Zp. The new
encryption scheme is defined as

Enc(s,m) = Enc(s, �m · Nζ

p �) , Dec(s, c) = �Dec(s, c) · p
Nζ � .

7 We do not need protect s2 because the corresponding ciphertext can be simulated
using the ciphertext encrypted under s1 and the output label cx + d.

16 M. Ball et al.

The new scheme satisfies a weaker form of linear homomorphism. Notice that
for any m1,m2 ∈ Zp,

�m1 · Nζ

p � + �m2 · Nζ

p � = �(m1 + m2) · Nζ

p � + e

for some e ∈ {−1, 0, 1}. Therefore, for any s1, s2 ∈ Z and m1,m2 ∈ Zψ
p ,

Enc(s1,m1) · Enc(s2,m2) = Enc(s1 + s2
︸ ︷︷ ︸

overZ

,m1 + m2
︸ ︷︷ ︸

modulo p

) · (1 + N)e

for some e ∈ {−1, 0, 1}ψ, and it can be correctly decrypted to m1 + m2 given
key s1 + s2, by simply decrypting according to Paillier and rounding the result
to the nearest multiple of N ζ/p. The homomorphic evaluation can be extended
to any linear function f(x1, . . . , x�) = c1x1 + · · · + c�x�. For any s1, . . . , s� ∈ Z

and m1, . . . ,m� ∈ Zψ
p ,

Dec

(

f(s1, . . . , s�),
�

∏

i=1

Enc(si,mi)ci

)

= f(m1, . . . ,m�)

as long as |f |1 =
∑

i |ci| Nζ

p . Otherwise, if the magnitude of the coefficients
are large, then the accumulation of the rounding error may break correctness.

In the main body, we also present an alternative construction of linear homo-
morphic encryption scheme based on the LWE assumption.

Now, using such a linear homomorphic encryption scheme (whose message
space is over Zp), we construct our key extension gadget: Sample random r ∈ Zp

and let y = x + r mod p be the one-time pad of x. Sample random s1 ∈ {0, 1}�,
s2 ∈ {0, . . . , �p/2�}�. We set the input label as

Lin = (y, s1y + (1 − s1) · �p/2� + s2) mod p .

Also define

sres = s1y + (1 − s1) · �p/2� + s2 mod p ,

s′
res = s1y + (1 − s1) · �p/2� + s2 (over Z) .

Then Lin = (y, sres) and sres = s′
res mod p.

Our key observation is that, given Lin = (y, sres), one can recover s′
res.

Let sres,i (resp. s′
res,i, s1,i, s2,i) denote the i-th coordinate of sres

(resp. s′
res, s1, s2). Then

s′
res,i = s1,iy + (1 − s1,i) · �p/2� + s2,i =

{

y + s2,i, if s1,i = 1 ,

�p/2� + s2,i, if s1,i = 0 .
(1)

As illustrated by Fig. 2,

– In case y < p/2, we have 0 ≤ s′
res,i < p, thus s′

res,i = sres,i.

New Ways to Garble Arithmetic Circuits 17

Fig. 2. The range of s′
res,i, conditioning on s1,i and y

– In case y > p/2, we have �p/2� ≤ s′
res,i < �p/2� + p, thus s′

res,i can also be
recovered from sres,i.

Therefore,

s′
res,i =

{

sres,i + p, if y > p/2 and sres,i < �p/2� ,

sres,i, otherwise.

Since the evaluator can recover s′
res = s1y + (1 − s1) · �p/2� + s2, if the table

consists of

“Enc(s1, c)” and “Enc((1 − s1) · �p/2� + s2,d − rc),”

then the evaluator can homomorphically compute Enc(s′
res, cx + d) and decrypt

it to get cx + d.
To formalize this idea, there are a few problems we have to overcome.

Problem 1: Format Mismatch. In the linear homomorphic encryption scheme,
the key should be an integer sampled from a large interval. While s1 is a vector
consisting of 0’s and 1’s. To close the gap, we introduce a linear function Lin :
Z� → Z to compress the length and to increase the magnitude. For example, if
we let Lin(s1, s2, . . . , s�) = s1+2s2+22s3+23s4+. . . , then Lin(s1) is the uniform
distribution over {0, . . . , 2� − 1} since s1 is sampled uniformly from {0, 1}�.

Let the table be

Enc
(

Lin(s1), c
)

, Enc
(

Lin((1 − s1) · �p/2� + s2),d − rc
)

.

The evaluator homomorphically computes Enc(Lin(s′
res), cx +d) and decrypts it

to get cx + d.
After the introduction of Lin, the construction satisfies the correctness

requirement. From now on, we will focus on the privacy issues.
Problem 2: the Leakage of s1. As shown by Eq. (1) and illustrated in Fig. 2,

s1,i = 1 =⇒ s′
res,i is uniform in [y, y + p/2) ,

s1,i = 0 =⇒ s′
res,i is uniform in [p/2, p) .

Therefore, s1,i is hidden only if s′
res,i ∈ [y, y + p/2) ∩ [p/2, p). Otherwise, when

s′
res,i /∈ [y, y + p/2) ∩ [p/2, p), the value of s1,i is leaked by s′

res,i. For example, in
the most extreme case when y = 0, the value of s1 is completely leaked by s′

res.

18 M. Ball et al.

We will later discuss how to repair the construction when y is close to zero.
For now, let us assume y ∈ (p/4, 3p/4). Under such assumption, for each i, there
is a ≥ 50% chance that s1,i is not revealed by s′

res.
For privacy of the encryption scheme, we require that Lin(s1) is “sufficiently

random” conditioning on s′
res. In the full version we construct a (seeded) linear

function Lin, such that with overwhelming probability, Lin(s1) smudges8 the
uniform distribution over {0, . . . , N}.

As analyzed in the full version let Lin(s1, s2, . . . , s�) =
∑

i cisi, where the
coefficients c1, . . . , c� are i.i.d. sampled from {0, . . . , N}. Then as long as � ≥
log N , Lin(s1) will smudge the uniform distribution over {0, . . . , N} even if about
half of the coordinates of s1 ∈ {0, 1}� are revealed. Here Lin is essentially a
randomness extractor that is linear over Z.
Problem 3: the “Bad” Values of y. So far, we have constructed a key extension
gadget that works well when the one-time pad y = x+ r mod p is in (p/4, 3p/4),
but it has serious privacy issue if y ∈ [0, p/4) ∪ (3p/4, p).

To close the leakage, we repeat the gadget one more time. This time use a
different one-time pad ỹ = x + r + �p/2� mod p. Note that, y lies in the “bad”
region [0, p/4) ∪ (3p/4, p) if and only if ỹ is in the “good” region (p/4, 3p/4).

In greater detail, sample random r ∈ Zp and let

y = x + r mod p, ỹ = y + r + �p/2� mod p .

Sample random s1, s̃1 ∈ {0, 1}�, s2, s̃2 ∈ {0, . . . , �p/2�}�, and let

sres = s1y + (1 − s1) · �p/2� + s2 mod p ,

s̃res = s̃1ỹ + (1 − s̃1) · �p/2� + s̃2 mod p ,

s′
res = s1y + (1 − s1) · �p/2� + s2 (over Z) ,

s̃′
res = s̃1ỹ + (1 − s̃1) · �p/2� + s̃2 (over Z) .

Set Lin = (y, sres, s̃res) as the input label. Let (c1,d1), (c2,d2) be additive shar-
ings of (c,d). The table consists of

Enc
(

Lin(s1), c1

)

, Enc
(

Lin((1 − s1) · �p/2� + s2),d1 − rc1

)

,

Enc
(

Lin(s̃1), c2

)

, Enc
(

Lin((1 − s̃1) · �p/2� + s̃2),d2 − rc2

)

.

Given the table and input label, the evaluator homomorphically evaluates
Enc(Lin(s′

res), c1x+d1), Enc(Lin(s̃′
res), c2x+d2). The evaluator recovers s′

res, s̃
′
res

from the input label, and decrypts both ciphertexts to get c1x + d1, c2x + d2.
In the end, output Lout = cx + d = (c1x + d1) + (c2x + d2) mod p.

Bit Decomposition Gadget. Besides purely arithmetic computation, we also
consider a computation model that combines Boolean operations and arithmetic
operation. Garbling such mixed computation is enabled by the bit decomposition

8 Formally, Lin(s1) smudges the uniform distribution over {0, . . . , N} if Lin(s1) and
Lin(s1) + u are statistically indistinguishable, where u is sampled from {0, . . . , N}.

New Ways to Garble Arithmetic Circuits 19

gadget — a DARE for functions fBD,{cj ,dj}(x) = {cjbits(x)j + dj}. It ensures
that given ax+b and the garbled table, the evaluator can get a label cjbits(x)j +
dj for every bit in the bit representation of x.

Notice that, in order to build the bit decomposition gadget, it suffices to
design the truncation gadget. Let �x�2j :=

⌊

x/2j
⌋

denotes the integer quotient of
x divided by 2j . This operation truncates j least significant bits. The truncation
gadget is a DARE for functions fTC,c,d(x) = c · �x�2 +d. Given a label of x and
the garbled table, the evaluator can get a label for the truncated value �x�2. Once
we have the truncation gadget, the evaluator can use the truncation gadgets j
times to get a label for the truncated value �x�2j for every j. Thus the evaluator
can compute a label of the j-th bit of x via

c �x�2j−1 + d1
︸ ︷︷ ︸

a label of �x�2j−1

− 2 · (c �x�2j + d2
︸ ︷︷ ︸

a label of �x�2j

) = c · bits(x)j + (d1 − 2d2)
︸ ︷︷ ︸

a label of the j-th bit of x

.

Now the task has been reduced to designing the truncation gadget. Our
construction of the truncation gadget is inspired by the techniques used in the
key extension gadgets. The first idea is to sample random r from a sufficiently
large range, and to consider the one-time pad y = x + r. Instead of generating
the labels of bits(x)j , we construct an (imperfect) bit decomposition gadget that
generates the labels of each bits(y)j . Once evaluator has the labels of every bit
of y, it can compute the labels of every bit of x, as long as we additionally give
the evaluator a Yao’s Boolean garbled circuit, with r hard-coded inside. Thus
correspondingly, it suffices to construct an (imperfect) truncation gadget that
allows the evaluator to get c �y�2 + d.

Inspired by our key extension gadget for modulo-p computation, the gadget
table of the (imperfect) truncation gadget looks like

Enc(Lin(s1), c), Enc(Lin(�s2�2),d).

The evaluator can homomorphically evaluate Enc(Lin(s1 �y�2+�s2�2), c �y�2+d).
The input label of the truncation gadget is

(y, s1y + s2) , which equals (x + r, s1x + (s1r + s2)) .

If the evaluator can recover s1 �y�2 + �s2�2 from the input label, it can decrypts
c �y�2 + d using the key Lin(s1 �y�2 + �s2�2).

To enable the recovery, s1, s2 ∈ Z� are sampled from carefully chosen distri-
butions. s1 is sampled uniformly from {0, 1}�. s2 is sampled conditioning on s1:
for each i ≤ �,

s2,i =

{

a random integer in [0, Bsmdg), if s1,i = 1
a random odd integer in [0, Bsmdg), if s1,i = 0

20 M. Ball et al.

Fig. 3. The range of {s1,jy}2 + {s2,j}2, conditioning on s1,i and {y}2

where Bsmdg is a sufficiently large bound. We sample s1, s2 in such a way to
ensure that s1,j �y�2 + �s2,j�2 can be recovered from (y, s1,jy + s2,j).

Given (y, s1,jy + s2,j), the evaluator can compute �s1,jy + s2,j�2, which is
very close to the target value. In particular,

s1,j �y�2 + �s2,j�2 =

{

�s1,jy + s2,j�2 − 1, if both s1,jy and s2,j are odd
�s1,jy + s2,j�2 , otherwise

The evaluator can offset the error if it can tell whether both s1,jy and s2,j are
odd. We claim:

both s1,jy and s2,j are odd ⇐⇒ y is odd and s1,jy + s2,j is even, (2)

By this, the evaluator can recover s1 �y�2 + �s2�2.
The claim (2) can be proved by enumerating the possible parities of

s1,j , y, s2,j . We also provide a visualized proof of this claim. Let {z}2 := z−2 �z�2

denote the remainder of z divided by 2. The rounding error occurs if and only if
{s1,jy}2 + {s2,j}2 = 2. As shown by Fig. 3, when y is even, there is no rounding
error; when y is odd, the rounding error occurs only if s1,jy + s2,j is even.

Figure 3 also shows that s1,j is not always hidden by s1,jy +s2,j . For privacy,
we require that Lin(s1) is “sufficiently random” even conditioning on the leakage.
Such (seeded) linear function Lin is constructed in the full version.

Organization. In Sect. 2, we define three models of computations, bounded inte-
ger, modular arithmetic, and mixed computation, our garbling scheme, and the
key extension gadget. The full version also defines the arithmetic computation
and bit decomposition gadgets. In Sect. 3, we introduce a linearly homomor-
phic encryption scheme (LHE) as a tool for constructing the gadgets. In the
full version, we instantiate it under either the DCR or the LWE assumption.
In Sect. 4, we construct a key extension gadget in the bounded integer model.
The full version also constructs key extension in the modular arithmetic model,
bit decomposition in the mixed model, and the overall garbling scheme in all
three models. In Sect. 5, we compare the concrete efficiency of our scheme, in
the bounded integer model, with the scheme of [8] and the Boolean baseline
using [17]. The full version extends the comparison to the modular arithmetic
and the mixed models.

New Ways to Garble Arithmetic Circuits 21

2 Definitions

A circuit over some domain I ⊆ Z consists of connected gates that each computes
some function over I. For a circuit C with n input wires and a vector x ∈ In,
(C,x) is referred to as a computation.

In the following, we define three classes of circuits by specifying their respec-
tive domains, allowed types of gates, and admissible inputs. Each class of circuits
is also referred to as a model of computation.

Modular Arithmetic Computation. In this model, a circuit C consists of
three types of gates: addition, subtraction, and multiplication over Zp (all
with fan-in two). Its domain is simply I = Zp. That is, every input and
intermediate computation value is in Zp. For a circuit C with n inputs, all
input vectors in Zn

p are admissible.
Bounded Integer Computation. In this model, a circuit C consists of the

same arithmetic gates as above, computed over Z. Its domain is the set
of integers whose absolute values are bounded by some positive integer B,
denoted as I = Z≤B. For a circuit C, an input vector is admissiable if and
only if (C,x) is B-bounded, i.e., every input and intermediate computation
value while evaluating C(x) is in the range [−B,B].

Mixed Bounded Integer and Boolean Computation. This model extends
bounded integer computation, with domain I = Z≤B and bit length d =
�log (2B + 1)�, to include the following additional gates.
– The bit decomposition gate gBD : Z≤B → {0, 1}d is defined by gBD(x) =
bits(x)1, . . . , bits(x)d, where bits(x)i represents the ith bit x. By default,
we let bits(x)d represent the “sign” of x: for a non-negative integer x,
bits(x)d = 0, and for a negative integer x, bits(x)d = 1. The rest of the
bits represent the magnitude of x such that |x| =

∑d−1
i=1 2i−1bits(x)i.

The output of gBD can be used in two ways. First, they can be interpreted
as 0, 1 values in Z≤B, and fed into further arithmetic computations. Second,
they can be used as inputs to other Boolean computation gates g : {0, 1}d1 →
{0, 1}d2 . In general, we allow any Boolean computation gate g that can be
computed by a polynomial-size Boolean circuit. Interesting examples include
comparison and truncation.
– A comparison gate gcomp : {0, 1}d × {0, 1}d → {0, 1} is defined as

gcomp(bits(x), bits(y)) = 1 iff x > y.
– A truncation gate gΔ

trun : {0, 1}d → {0, 1}d with parameter Δ ∈ Z≤B is
defined as gcomp(bits(x)) = bits(� x

Δ�).
Formally, we define classes of polynomial-sized circuits in above-described

models: Let CArith
Zp

=
{CArith

Zp(λ),λ

}

λ
, CBI

Z≤B
=

{CBI
Z≤B(λ),λ

}

λ
, and CBI−decomp

Z≤B
=

{CBI−decomp
Z≤B(λ),λ

}

λ
contain circuits consisting of a polynomial number of gates in

respectively the modular arithmetic computation with modulus p(λ), B(λ)-
bounded integer computation, and B(λ)-bounded integer and Boolean compu-
tation model. The bound B(λ) and modulus p(λ) are bounded by 2poly(λ) for

22 M. Ball et al.

some fixed polynomial. When talking about a general model of computation, we
will use the notation C ∈ {CArith

Zp
, CBI

Z≤B
, CBI−decomp

Z≤B

}

over I ∈ {Zp,Z≤B}.

Notations for Garbling. For a model of computation C over I, our garbling
scheme introduces two more spaces: a label space L, and a ciphertext space E ,
where I ⊆ L.

Similar to prior garbling schemes [5], the garbling algorithm assigns two keys
z1, z2 ∈ L� of dimension � to each wire in a computation (C,x). If this wire has
a value x ∈ I, then the evaluator should obtain a label L = z1x + z2 computed
over L (by interpreting x ∈ I as elements in L).

For each gate in C, the garbling algorithm outputs a garbled table consisting
of some ciphertexts in E . These ciphertexts, together with labels for the input
wires, allow an evaluator to obtain a label for each of its output wires.

2.1 Definition of Garbling Schemes

Definition 1 (garbling). Let C ∈ {CArith
Zp

, CBI
Z≤B

, CBI−decomp
Z≤B

}

be a model of com-
putation over the domain I ∈ {Zp,Z≤B}. A garbling scheme for C = {Cλ}λ over
I = I(λ), with a label space L = L(λ) consists of three efficient algorithms.

– Setup(1λ) takes a security parameter λ as input, and outputs public parame-
ters pp, which define a ciphertext space E, and specify a polynomial dimension
� for keys and labels.
The rest of the algorithms have access to pp.

– Garblepp(1λ, 1�, C) takes as inputs a security parameter λ, and a circuit C ∈
Cλ with input length n. It outputs n key pairs {zi

1, z
i
2}i∈[n] ∈ L� of dimension

� specified by pp, independent of the circuit size |C|, and a garbled circuit ̂C
(consisting of many garbled tables, each further contains ciphertexts in E).

– Decpp({Li}i∈[n], ̂C) takes as inputs n labels Li ∈ L�, and a garbled circuit ̂C.
It outputs an evaluation result y ∈ I.

Correctness. The scheme is correct if for all λ ∈ N, pp ∈ Supp
(

Setup(1λ)
)

,
circuit C ∈ Cλ with n input wires, and input x = (x1, . . . , xn) ∈ In that’s
admissible to C, the following holds.

Pr

[

Decpp({Li}i∈[n], ̂C)
= C(x) (over I)

∣

∣

∣

∣

∣

{zi
1,z

i
2}i∈[n], ̂C ← Garblepp(1λ, C),

Li = zi
1xi + zi

2 (over L)

]

= 1.

Security. A simulator Sim for the garbling scheme has following syntax.

– Sim(1λ, pp, C, y) takes as inputs a security parameter λ, public parameters pp,
a circuit C ∈ Cλ, and an evaluation result y ∈ I. It outputs n simulated labels
{˜Li}i∈[n] and a simulated garbled circuit ˜C.

New Ways to Garble Arithmetic Circuits 23

The garbling scheme is secure if there exists an effcient simulator Sim such
that for all sequence of circuits {Cλ}λ where each Cλ ∈ Cλ has n = n(λ) inputs,
and sequence of admissible inputs {xλ}λ where xλ = (x1,λ, . . . , xn,λ) ∈ In, the
following indistinguishability holds. (We surpress the index λ below.)

{

pp,Sim(1λ, pp, C, y)
}

≈c

{

pp, {Li}i∈[n], ̂C
}

.

∣

∣

∣

∣

∣

∣

∣

pp ← Setup(1λ),

{zi
1, z

i
2}i∈[n], ̂C ← Garblepp(1λ, C),

Li = zi
1xi + zi

2, y = C(x)

Recall that in bounded integer computations (i.e., C = CBI
Z≤B

or CBI−decomp
Z≤B

), an
input x is admissible to a circuit C if and only if (C,x) is B-bounded. In modular
arithmetic computations (i.e., C = CArith

Zp
) all inputs are admissible.

2.2 Definition of Garbling Gadgets

Our garbling scheme garbles a circuit in a gate-by-gate fashion. To handle dif-
ferent types of gates, we introduce different garbling gadgets. In addition to
the arithmetic computation gates, bit decomposition gates, and general Boolean
computation gates as introduced earlier, we also consider the following key exten-
sion gates, which are artificially added to every circuit at garbling time.

Key Extension Gate has one input and one output wire and implements the
identity function f(x) = x. Inserting this gate anywhere in a circuit does not
change the function computed. However, garbling the key extension gate has
the following effect during evaluation: Given a short label for the input wire
zin
1 x + zin

2 of dimention �, the evaluator can obtain a much longer label for
the output wire zout

1 x + zout
2 of some dimension �′ > �.

Our key extension gadget for handling the above gate is exactly the “key
shrinking” gadget in [5], and is the technical core of this work. We define it
formally below. The analogous definitions of the arithmetic computation, bit
composition, and Boolean computation gadgets are deferred to the full version.

Gadgets Share Setup of Garbling Scheme. Each gadget is defined with
respect to a garbling scheme for some model of computation C over a domain I
and a label space L. The gadget depends on the public parameters pp generated
by the Setup algorithm of the garbling scheme, which specifies a ciphertext space
E , and a key dimension � ∈ N. Its algorithms all have random access to pp.

Key Extension Gadget. The key extension gadget consists of three algo-
rithms, KeyGen, Garble, and Dec. To handle a key extension gate, we assume
each of its output wires is already assigned an output key pair. Their concatena-
tion form a long “target” key pair zout

1 , zout
2 . At garbling time, the garbler uses

KeyGen,Garble to generate a short key pair zin
1 , zin for the input wire, and a

garbled table tb. At evaluation time, the evaluator uses Dec on the input label
Lin = zin

1 x+zin
2 for some value x, and the garbled table tb to recover the output

lable Lout = zout
1 x + zout

2 . We define the algorithms formally below.

24 M. Ball et al.

Definition 2 (key extension).

– KE.KeyGenpp(1λ, 1�) takes as inputs a security parameter λ, and the key
dimension � specified by pp. It samples a key pair zin

1 , zin
2 ∈ L�.

– KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2) takes as inputs a (long) key pair zout
1 , zout

2 ∈
L�′

, and a (short) key pair zin
1 , zin

2 ∈ L�. It outputs a garbled table tb (con-
sisting of many ciphertexts in E).

– KE.Decpp(Lin, tb) takes as inputs a short label Lin ∈ L� and a garbled table
tb. It outputs a long label Lout ∈ L�′

.

Correctness. The scheme is correct if for all λ ∈ N, pp ∈ Supp
(

Setup(1λ)
)

,
zout
1 , zout

2 ∈ L�′
of dimension �′ ∈ N, and x ∈ I, the following holds.

Pr

⎡

⎢

⎣

KE.Decpp(Lin, tb)

= Lout

∣

∣

∣

∣

∣

∣

∣

zin
1 , zin

2 ← KE.KeyGenpp(1λ, 1�),

tb ← KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2),

Lin = zin
1 x + zin

2 , Lout = zout
1 x + zout

2

⎤

⎥

⎦ = 1.

Security. A simulator KE.Sim for the scheme has the following syntax.

– KE.Sim(1λ, pp,Lout) takes as inputs a security parameter λ, public parameters
pp, and a long label Lout ∈ L�′

. It outputs a simulated short label ˜Lin ∈ L�

and a simulated garbled table ˜tb.

The scheme is secure if there exists an efficient simulator KE.Sim such
that for all polynomial �′ = �′(λ), sequence of key pairs {zout

1,λ , zout
2,λ}λ where

zout
1,λ , zout

2,λ ∈ L�′
, and sequence of inputs {xλ}λ where xλ ∈ I, the following

indistinguishability holds. (We suppress the index λ below.)

{

pp,KE.Sim(1λ, pp,Lout)
}

≈c

{

pp,Lin, tb
}

.

∣

∣

∣

∣

∣

∣

∣

∣

pp ← Setup(1λ), zin
1 , zin

2 ← KE.KeyGenpp(1λ, 1�),

tb ← KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2),

Lin = zin
1 x + zin

2 , Lout = zout
1 x + zout

2 .

3 Linearly Homomorphic Encryption

3.1 Definition of Basic LHE

We first define a very simple base scheme that creates noisy ciphertexts. Decryp-
tion doesn’t try to remove the noise, and simply recovers the encrypted message
with noise. The scheme allows evaluating linear functions homomorphically over
ciphertexts, which increases the level/magnitude of noise in the ciphertexts.

The base scheme can be instantiated under either the learning with error
(LWE) assumption or the decisional composite residuosity (DCR) assumption
(shown in the full version). We will then implement another scheme on top of a
base instantiation that’s tailored to the needs of our application.

New Ways to Garble Arithmetic Circuits 25

Definition 3 (noisy linearly homomorphic encryption). A noisy linearly homo-
morphic encryption scheme consists of five efficient algorithms, and is asso-
ciated with two exponentially bounded functions in the security parameter λ,
Be(λ), Bs(λ) ≤ 2poly(λ).

– Setup(1λ, 1Ψ, param) takes as inputs a security parameter λ, an upper bound
Ψ ∈ N on the dimensions of message vectors to be encrypted, and additional
parameters param. It outputs public parameters pp, which defines a key space
S = Z�s , a ciphertext space E, and a message modulus P , that satisfy certain
properties specified by param.
By default, the rest of the algorithms have random access to pp, and receive
as inputs 1λ, param in addition to other inputs, i.e., we use the simplified
notation X(x1, x2, . . .) to mean Xpp(1λ, param, x1, x2, . . .).

– KeyGen(1�s) takes the key dimension �s (specified by pp) as input, and outputs
a key s ∈ Z�s , satisfying that |s|∞ < Bs(λ).

– Enc(s,m) takes as inputs a key s ∈ Z�s , and a message vector m ∈ Zψ of
dimension ψ ≤ Ψ. It outputs a ciphertext ct ∈ E.

– Dec(s, ct) takes as inputs a key s ∈ Z�s , and a ciphertext ct ∈ E. It outputs
a (noisy) message vector m′ ∈ Z

ψ
P of dimension ψ ≤ Ψ, or the symbol ⊥ in

case of a decryption error.
– Eval(f, {cti}) takes as input a linear function f specified by d integer coeffi-

cients i.e., f(x1, . . . , xd) =
∑

i∈[d] aixi, and d ciphertexts {cti}i∈[d]. It outputs
an evaluated ciphertext ctf ∈ E.
(If cti encrypts a message vector mi ∈ Z

ψ
P of dimension ψ ≤ Ψ, under a key

si, ctf should encrypt the vector mf = f(m1, . . . ,md), evaluated coordinate-
wise over ZP , under the key sf = f(s1, . . . , sd), evaluated over Z.

Correctness w.r.t. Be. The scheme is correct if for all λ,Ψ ∈ N, param,
pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

, s ∈ Z�s , m ∈ Zψ where ψ ≤ Ψ, it holds that

Pr

[

‖e‖∞ ≤ Be

∣

∣

∣

∣

∣

ct ← Enc(s,m), m′ = Dec(s, ct),
e = m′ − m mod P

]

= 1,

where we calculate the infinity norm ‖ · ‖∞ of e ∈ Z
ψ
P by identifying it as an

integer vector over [−P/2, P/2]ψ.

One-time Security. The scheme is (one-time) secure if for all polynomial Ψ =
Ψ(λ), sequence of parameters {paramλ}λ each of bit length |paramλ| ≤ poly(λ),
and sequence of integer message vectors {m1,λ,m2,λ}λ where m1,λ,m2,λ ∈ Zψλ

of dimension ψλ ≤ Ψ(λ), ‖mi,λ‖∞ ≤ 2poly(λ), the following indistinguishability
holds. (We surpress the index λ below.)

{ct1, pp} ≈c {ct2, pp} .

∣

∣

∣

∣

∣

pp ← Setup(1λ, 1Ψ, param),

s ← KeyGen(1�s), cti ← Enc(s,mi),

Below we define two additional properties satisfied by our base instantiations
under either the LWE or the DCR assumption.

26 M. Ball et al.

Definition 4 (linear homomorphism). A LHE scheme (per Definition 3) has
linear homomorphism if for all linear function f specified by d integer coeffi-
cients, for all λ,Ψ ∈ N, param, pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

, si ∈ Z�s for
each i ∈ [d], and cti ∈ E for each i ∈ [d], such that, Dec(si, cti) outputs mi 	= ⊥
and all mi have the same dimension ψ ≤ Ψ, then the following holds:

Pr

[

Dec(sf , ctf)
= f({mi}) mod P

∣

∣

∣

∣

∣

mi = Dec(si, cti), ctf ← Eval(f, {cti}),
sf = f({si}) (over Z)

]

= 1.

Definition 5 (statistical closeness). A LHE scheme (per Definition 3) has sta-
tistical closeness if for all λ,Ψ ∈ N, param, pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

,
s ∈ Z�s , and any two distributions D1,D2 of ciphertexts over E such that, for
all i ∈ {1, 2}, Pr [Dec(s, cti) 	= ⊥ | cti ← Di] = 1, the following holds:

ΔSD (ct1, ct2) = ΔSD (Dec(s, ct1),Dec(s, ct2)) | cti ← Di, .

3.2 A Construction of Special-Purpose LHE

We next construct a special-purpose LHE scheme lhe using a basic LHE scheme
lhe defined in the previous subsection as a black-box. The special-purpose LHE
lhe is taylored to the needs of our garbling construction in the following ways:

– Arbitrary Message Space: Note that the message space ZP of the basic
LHE scheme is specified by the public parameter pp during setup time, and
may not match domain, e.g. Zp of the computation to be garbled. (For exam-
ple, in the DCR instantiation, P = Nr, where N is a randomly sampled RSA
modulus). In lhe, the setup algorithm Setup takes an arbitrary modulus p as
an additional parameter, and sets up public parameters pp with exactly Zp

as the message space. In the construction, Setup invokes the basic setup algo-
rithm Setup and makes sure that the basic modulus P is sufficiently large. lhe
then embeds the actual message space Zp in ZP .

– Exact Decryption: lhe decryption produces noisy message, where the noise
is bounded by Be, while lhe decryption produces the exact message.

– Special-Purpose Linear Homomorphism, and Noise Smudging: Rely-
ing on the linear homomorphism and statistical closeness of lhe (Definition 4,
Definition 5), we show in Lemma 2 and Lemma 1 that lhe satisfies prop-
erties tailored for our construction of garbling schemes. Roughly speaking,
it allows evaluating simple linear functions, e.g., f(x1, x2) = yx1 + x2, and
f ′(xres, x1) = xres − yx1, and we can smudge the noise in a noisy ciphertext
by homomorphically adding an encryption of the smudging noise.

Construction 1 (LHE for Zp). We construct the special purpose scheme lhe
on top of a basic scheme lhe (instantiated under either LWE or DCR in the full
version.) Let Be = Be(λ) ≤ 2poly(λ) be the fixed noise bound for lhe guaranteed
by its correctness (Definition 3).

New Ways to Garble Arithmetic Circuits 27

– Setup(1λ, 1Ψ, p, Bmax) takes as input an arbitrary message modulus p ∈ N,
and an upper bound Bmax ∈ N on noise levels in ciphertexts, and proceeds in
the following steps:

• Set Bmsg = 2p · max(Bmax, Be), and run Setup(1λ, 1Ψ, param = Bmsg) to
obtain pp, which specifies a key dimension �s, a ciphertext space E , and
a message modulus P .
Our instantiations of lhe guarantee that P ≥ Bmsg, and �s is polynomial
in λ and log Bmsg, independent of the maximal message dimension Ψ.

• Set a scaling factor Δ = �P/p�, and output pp = (pp,Δ), which specifies
a key space S = Z�s , a ciphertext space E , and a message modulus p.

Note: By our setting of Bmsg, and the guarantee that P ≥ Bmsg, we have

Δ ≥ �Bmsg/p� = 2max(Bmax, Be) . (3)

– KeyGen(1�s) directly runs s ← KeyGen(1�s), and outputs s.
– Enc(s,m) takes as input a secret key s and a message vector m ∈ Zψ. It

computes m′ = (m mod p) · Δ ∈ Z
ψ
P , and outputs ct ← Enc(s,m′). Note:

The one-time security of lhe follows directly from that of lhe.
– Dec(s, ct) first runs m′ = Dec(s, ct) to recover m′ ∈ Z

ψ
P , and then computes

mp = �m′/Δ� to recover mp ∈ Zψ
p . It outputs mp.

Note: By the correctness of lhe, we have

Dec(s,Enc(s,m)) = Dec(s,Enc(s,mp · Δ)) = mp · Δ + e ∈ Z
ψ
P ,

for some noise vector e such that ‖e‖∞ ≤ Be. As noted in Eq. (3), we have
Δ ≥ 2Be. Hence rounding by Δ recovers the correct message mp ∈ Zψ

p exactly,
i.e., the construction has correctness with noise bound Be = 0.

– Eval(f, {cti}) directly runs ctf ← Eval(f, {cti}) and outputs ctf . Note: Eval ≡
Eval, hence it can operate on ciphertexts of both lhe and lhe.

Next, relying on the linear homomorphism of lhe, we show that lhe satisfies linear
homomorphism w.r.t. linear functions of the form f(x1, x2) = yx1 + x2, which
suffices for our garbling constructions.

Lemma 1 shows how to “smudge” the noises in an evaluated lhe ciphertext
ctR by homomorphically adding a fresh lhe encryption cte of a smudging noise
vector e to it, as ct′R = Eval(+, ctR, cte). As long as the smudging noise is large
enough, the result ct′R is statistically close to homomorphically adding cte to a
fresh lhe ciphertext ct2, as ct′2 = Eval(+, ct2, cte).

Lemma 2 shows how to set the noise upper bound Bmax during Setup so that
evaluated lhe ciphertexts can still be decrypted exactly. We prove the lemmas in
the full version.

Lemma 1 (noise smudging). Suppose the underlying LHE scheme lhe in Con-
struction 1 satisfies linear homomorphism (Definition 4) and statistical closeness
(Definition 5). For all λ,Ψ, p, Bmax, α1 ∈ N, set the smudging noise level to

α2 = λω(1) max(p,Be, α1)2 .

28 M. Ball et al.

For any pp ∈ Supp
(

Setup(1λ, 1Ψ, p, Bmax)
)

, s1, s2 ∈ Z�s , m1,m2 ∈ Zψ where
ψ ≤ Ψ, and function f(xres, x1) = xres − yx1, where |y| < p, the following two
ciphertexts are statistically close, i.e., ΔSD (ct′2, ct

′
R) ≤ negl(λ).

Sampling ct′2:

– generate fresh ciphertext ct2 ← Enc(s2,m2).
– sample noise e ← [−α2, α2]ψ, and encrypt it using key 0, cte ← Enc(0, e).
– smudge noise in ct2 via ct′2 ← Eval(+, ct2, cte).

Sampling ct′R:

– generate fresh ciphertext ct1 ← Enc(s1,m1).
– sample noise e1 ← [−α1, α1]ψ, and encrypt it using key 0, cte,1 ← Enc(0, e1).
– generate additionally noisy ciphertext ct′1 ← Eval(+, ct1, cte,1).
– generate fresh ciphertext ctres ← Enc(sres,mres), where sres = ys1 + s2, and

mres = ym1 + m2 mod p.
– homomophically evaluate f(xres, x1) = xres − yx1 to obtain ctR ←

Eval(f, ctres, ct
′
1).

– smudge noise in ctR via ct′R ← Eval(+, ctR, cte), using the same cte as above.

The simpler case: The statistical closeness also holds when α1 = 0 and ct′R is
generated using ct1 directly, instead of ct′1.

Lemma 2 (homomorphic evaluation). Suppose the underlying LHE scheme
lhe in Construction 1 satisfies linear homomorphism (Definition 4). For all
λ,Ψ, p, α1, α2 ∈ N, if the maximal noise level is set sufficient large

Bmax ≥ p(p + 1 + α + 2Be) , α = max(α1, α2)

then for all pp ∈ Supp
(

Setup(1λ, 1Ψ, p, Bmax)
)

, s1, s2 ∈ Z�s , m1,m2 ∈ Zψ where
ψ ≤ Ψ, homomorphic evaluation of functions of form f(x1, x2) = yx1+x2 where
|y| < p on additionally noisy ciphertexts yields correct decryption:

Pr

⎡

⎢

⎢

⎣

Dec(ys1 + s2, ctres)

= ym1 + m2modp

∣

∣

∣

∣

∣

∣

∣

∣

∀i ∈ {1, 2}, ei, ← [−αi, αi]
ψ, cte,i ← Enc(0, ei),

cti ← Enc(si,mi), ct
′
i ← Eval(+, cti, cte,i)

ctres ← Eval(f, ct′1, ct′2)

⎤

⎥

⎥

⎦

= 1.

The simpler case: The above also holds when α1 = 0 and ct′res is generated
using ct1, instead of ct′1.

4 Key Extension for Bounded Integer Computation

In this section, we construct the key-extension gadget for B-bounded integer
computation. Our starting point is the following observation: A B-bounded com-
putation can be “embedded” in modulo-p computation as long as p > 2B:

(C, x) is B-bounded ∧ p > 2B =⇒ C(x) over Z = C(x) mod p.

New Ways to Garble Arithmetic Circuits 29

Setup Algorithm of Bounded Integer Garbling

Parameters and Tools: The computation is B-bounded. The construction uses
the scheme lhe from Construction 1, which is associated with a bound Bs on the
infinity norm of LHE keys sampled by lhe.KeyGen, and a bound Be on the decryption
noise of the scheme lhe underlying lhe. All of B, Bs, and Be are bounded by 2poly(λ).

Setup(1λ) invokes the setup algorithm of the lhe scheme

pp ← lhe.Setup(1λ, 1Ψ, p, Bmax),

and outputs pp = (pp, �), where the parameters are set as below.

– Parameters of the lhe scheme (with key dimension �s = poly(λ, log Bmax)):

message modulus p = λω(1)B · Bs (4)

smudging noise level α = λω(1) max(p, Be)
2 (5)

maximal noise level Bmax = p(p + 1 + α + 2Be)

message dimension bound Ψ = 2(�s + 1) = 2�.

– The dimension of keys/labels of the key extension gadget is set to � = �s + 1.

Fig. 4. Setup for bounded integer garbling.

Therefore, we can directly use the (information theoretic) arithmetic operation
gadget for ring Zp from AIK (recalled in the full version). What remains is to
design a key-extension gadget for Zp, i.e., a mechanism that enables expanding
a short label ax + b mod p to an arbitrarily long label cx + d mod p.

As shown in this section, the fact that every intermediate values x is bounded
tremendously simplifies the key extension gadget, especially if it is compared
with the key extension gadget for modular computation in the full version.

4.1 The Setup Algorithm

Our key extension gadget for bounded integer uses the special-purpose LHE
scheme lhe in Construction 1. The parameters of the LHE scheme is setup once
by the Setup algorithm of the entire garbling scheme, as shown in Fig. 4, and is
shared by all invocation of gadgets when garbling an arithmetic circuit.

We emphasize that the Setup algorithm depends only on the security param-
eter and the integer bound B. It’s independent of any parameters (e.g., maximal
size, fan-out, depth) of the circuit to be garbled later. As such, the public param-
eter pp is generated once and re-used for garbling many poly-sized circuits.

4.2 Length-Doubling Key Extension

We present the construction in two steps:

30 M. Ball et al.

Step 1: Length-doubling. In Construction 2, we present a basic length-
doubling key extension gadget, that is, at evaluation time, given a label
zin
1 x + zin

2 of dimension � produces a label zout
1 x + zout

2 of dimension 2�.
This construction already contains our main idea.

Step 2: Arbitrary Expansion. Next, we present a generic transformation
(in the full version) that converts a length-doubling key extension gadget,
to a full-fledged key extension gadget that produces an output-wire label of
arbitrary polynomial dimension �′ > �. At a high-level, the transformation
recursively calls the length-doubling key extension gadget in a tree fashion
till the desired output-wire label dimension �′ is reached.

Construction 2 (length-doubling key extension for bounded integers). The
algorithms below uses the parameters, p, α, Bmax, Ψ, specified in Setup (Fig. 4),
and have random access to the public parameters pp, which contains the public
parameter pp of the LHE scheme lhe and the key dimension �.

– KE.KeyGenpp(1λ, 1�): Generate a lhe secret key s1 ← lhe.KeyGen(1�s), which
is an integer vector in Z�s with ‖s1‖∞ ≤ Bs. Output input-wire keys z1, z2:

zin
1 = (s1, 1), zin

2 = (rs1 + s2, r) (over Z),

where r ← [−Bsmdg, Bsmdg] and s2 ← [−B′
smdg, B

′
smdg]

�s , with Bsmdg =
λω(1)B and B′

smdg = λω(1)BsmdgBs < p/4 (the inequality can be satisfied
because the message modulus p is set sufficient large; see Equation (4)).
Note: We make a few observations: i) the input-wire keys are p bounded, that
is, they belong to the label/key space zin

1 , zin
1 ∈ Zp as the definition requires,

and ii) a label for x equals

Lin = zin
1 x + zin

2 = (s1(x + r) + s2, x + r) mod p

= (s1(x + r) + s2
︸ ︷︷ ︸

sres

, x + r
︸ ︷︷ ︸

y

) over Z

The last equality holds because the magnitude of entries of sres and y do not
exceed p/2. The fact that the labels are effectively computed over the integers
is crucial for decoding later, and this crucially relies on the fact that values
x are B-bounded and that p can be set sufficiently larger than B.

– KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2): First recover s1, s2, r from the input-wire
keys. Then encrypt zout

1 and z′out
2 = zout

2 − rzout
1 using lhe under keys s1, s2

respectively. This is possible because zout
1 , zout

2 has dimension 2� ≤ Ψ, as set
in Fig. 4, and any integer vector of dimension �s, e.g. s2, can be used as a
secret key for lhe.

ct1 ← lhe.Enc(s1, zout
1), ct2 ← lhe.Enc(s2, z′out

2).

Finally, add a smudging noise of magnitude α (set in Equation (5)) to ct2 to
obtain ct′2, and output garbled table tb = (ct1, ct′2).

e ← [−α, α]�
′
, cte ← lhe.Enc(0, e) , ct′2 ← lhe.Eval(+, ct2, cte) .

New Ways to Garble Arithmetic Circuits 31

– KE.Decpp(Lin, tb = (ct1, ct′2)) Treat Lin as an integer vector and parse it as
Lin = (sres, y), where sres ∈ Z�s , y ∈ Z. Homomorphically evaluate the linear
function f(x1, x2) = yx1 +x2 over ct1 and ct′2, decrypt the output ciphertext
to obtain mres, and output Lout = mres as the output-wire label:

ct′res ← lhe.Eval(f, ct1, ct
′
2) , Lout = mres = lhe.Dec(sres, ct

′
res) .

Correctness. We show that the above scheme is correct, which requires that
given a correctly generated input-wire label Lin = zin

1 x + zin
2 (mod p) and gar-

bled table tb, the decoding algorithm KE.Dec recovers the correct output-wire
label Lout = zout

1 x + zout
2 (mod p). As we analyzed above Lin = (sres, y) where

sres = s1y + s2 and y = x + r are computed over the integers. By construc-
tion, KE.Dec uses sres as the secret key to decrypt the lhe ciphertext ct′res,
where ct′res is the output ciphertext obtained by homomorphically evaluating
f(x1, x2) = yx1 + x2 over ct1 and ct2 encrypting zout

1 and z′out
2 respectively. By

the special-purpose linear homomorphism of lhe, namely Lemma 2 (the simpler
case), ct′res can be decrypted using secret key f(s1, s2) = s1y+s2 computed over
the integers, which is exactly sres. Therefore,

mres = lhe.Dec(sres = (s1y + s2), ct′res) = (yzout
1 + z′out

2) mod p

= ((x + r)
︸ ︷︷ ︸

=y

zout
1 + zout

2 − rzout
1

︸ ︷︷ ︸

z′out
2

) mod p = zout
1 x + zout

2 mod p = Lout .

In order to invoke Lemma 2, we still need to verify that the prerequisite Bmax ≥
p(p + 1 + α + 2Be) is indeed satisfied. This is the case as set by Setup in Fig. 4.

The security proof of the scheme is deferred to the full version.

Lemma 3. Construction 2 is secure per Definition 2.

5 Potential for Concrete Efficiency Improvement

In this section, we compare the concrete efficiency of our bounded integer gar-
bling scheme based on the DCR assumption against the scheme of [8] (BMR),
which garbles arithmetic circuits in the bounded integer model with free addition
and subtraction, and the baseline solution that first converts arithmetic circuits
into Boolean circuits and then runs the Boolean garbling scheme of [17] (RR).
We defer the analysis and comparison for our mod-p and mixed garbling to the
full version. Note that, the concrete efficiency of our construction is not opti-
mized. The calculations and comparisons in this section are only to demonstrate
the potential towards more practical garbling schemes, for garbling arithmetic
circuits with large domains.

Concretely, for B-bounded integer garbling, we consider the Paillier modulus
N to have 4096 bits, and the bit length � = log(B) to be just slightly below
4096, specifically 3808 bits (the setting is described below). We set the statistical
security parameter κ = 80.

32 M. Ball et al.

Table 3. Comparison of garbling circuit size for bounded integer computation. The
last two lines assume the stronger small exponent assumption.

Scheme Garbled Table Size

Ours (per Mult Gate) 12 · 3 · log N 18.0 KB

[17] (per Mult Gate) 1.5 · 128 · �1.58 10.4 MB

[8] (per Mult Gate) 2 · 128 · ∑k
i=1(pi − 1) 15.0 MB

Ours (per +/− Gate) 6 · 3 · log N 9.0 KB

[17] (per +/− Gate) 1.5 · 128 · � log � 1.0 MB

[8] (per +/− Gate) Free 0 b

Ours, Improved (per Mult Gate) 12 · 2 · log N 12.0 KB

Ours, Improved (per +/− Gate) 6 · 2 · log N 6.0 KB

Under the concrete setting, the most efficient Boolean circuit implementation
for integer multiplication uses Karatsuba’s method. We conservatively count the
number of AND gates (as XOR gates in RR is free) in a multiplication circuit
as �1.58, ignoring any hidden constants, and an addition circuit as � log �.

At a high level, the BMR scheme works by decomposing a large B-bounded
integer into its Chinese Remainder Theorem (CRT) representation using the
smallest distinct primes (p1 = 2, p2 = 3, . . . , pk) whose product exceeds B. Under
the concrete setting, the number of primes is k = 394.

Size of Bounded Integer Garbling. Under standard DCR, our bounded
integer garbling significantly improves the garbling size of both addition (∼100×)
and multiplication (∼500×) gates over the Boolean baseline using RR, as shown
in Table 3. BMR supports free addition, but multiplication is more expensive
than RR.

The formula for our scheme is derived as follows. In our garbling scheme, the
garbled table for each multiplication gate consists of 12 ring elements in ZP :
according to Fig. 1, the two input wires each have a pair of keys of dimension
4 and 2 (as the label xj2 + s is available before key extension and does not
need to be regenerated). In the DCR instantiation, we set P = N3. Because
� = log B = 3808, it satisfies that N2 ≥ N22κB, which is how large the values
encrypted in Paillier encryption are. Note that this is different from how Setup
algorithm (Fig. 4) specifies the modulus P , because Setup is designed to fit both
the DCR and the LWE instantiations. The size of garbling an addition gate is
calculated the same way as multiplication, except with key dimensions 2 and 1
for the input wires.

Computation Efficiency. In both BMR and RR, the main costs are comput-
ing garbled table entries, which are 128-bit AES ciphertexts. Concretely: BMR
computes 2 · ∑k

i=1(pi − 1) ≈ 106 AES ciphertexts for each Mult gate, and has
free addition. The Boolean baseline using RR computes 1.5 · �1.58 ≈ 6.8 × 105

and 1.5 · � log � ≈ 6.8 × 104 AES ciphertexts for each Mult and Add gate respec-
tively. In our scheme, a garbled table for Mult consists of 12 ring elements in

New Ways to Garble Arithmetic Circuits 33

Table 4. Comparison of computation costs for bounded integer garbling.

Scheme Garbling Computation Cost

Ours (per Mult Gate) 12 · lsk ≈ 1.5 × 103 Mult modP

[17] (per Mult Gate) 1.5 · �1.58 ≈ 6.8 × 105 AES calls

[8] (per Mult Gate) 2 · ∑k
i=1(pi − 1) ≈ 106 AES calls

Ours (per +/− Gate) 6 · lsk ≈ 7.7 × 102 Mult modP

[17] (per +/− Gate) 1.5 · � log � ≈ 6.8 × 104 AES calls

[8] (per +/− Gate) Free Free

ZP , each a Paillier ciphertext of the form hx(1 + N)m, for some hard group
element h, secret exponent x, and message m. Thanks to algebraic properties of
Pailler, (1 + N)m can be computed cheaply without exponentiation. The main
cost comes from raising h to the exponent x. Let lsk be the bit length of x. The
DCR assumption assumes that lsk = log N = 4096. However, under the “small
exponent” assumption as introduced in [1], we can set lsk = 128, which improves
efficiency in two ways. First, it slightly reduces our garbling sizes, as we can now
set the modulus P = N2 ≥ N2lsk22κB, as shown in the last two lines of Table 3.
More importantly, it significantly improves computational efficiency. Concretely,
our scheme computes 12 · lsk ≈ 1.5 × 103 and 6 · lsk ≈ 7.7 × 102 multiplications
mod P for each Mult and Add gate respectively. A comparison is in Table 4.

Acknowledgement. The authors would like to thank the anonymous Eurocrypt
reviewers for their valuable and insightful comments.

Huijia Lin and Hanjun Li were supported by NSF grants CNS-1936825 (CAREER),
CNS-2026774, a JP Morgan AI research Award, a Cisco research award, and a Simons
Collaboration on the Theory of Algorithmic Fairness.

References

1. Abram, D., Damg̊ard, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 421–452. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15985-5 15

2. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation for turing
machines: constant overhead and amortization. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 252–279. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-63715-0 9

3. Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: extended
abstract. In: Roughgarden, T. (ed.) ITCS 2015, pp. 143–151. ACM (2015). https://
doi.org/10.1145/2688073.2688114

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE (2004). https://doi.org/10.1109/FOCS.2004.20

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE (2011). https://doi.org/10.
1109/FOCS.2011.40

https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1145/2688073.2688114
https://doi.org/10.1145/2688073.2688114
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1109/FOCS.2011.40

34 M. Ball et al.

6. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 10

7. Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural
networks are practical. IACR Cryptol. ePrint Arch, 338 (2019)

8. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 565–577. ACM Press (2016). https://doi.org/10.1145/
2976749.2978410

9. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

10. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

11. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

12. Harvey, D., Van Der Hoeven, J.: Integer multiplication in time o (n log n). Ann.
Math. 193(2), 563–617 (2021)

13. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS,
vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43948-7 54

14. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

15. Li, H., Lin, H., Luo, J.: ABE for circuits with constant-size secret keys and adaptive
security. IACR Cryptol. ePrint Arch, 659 (2022). https://eprint.iacr.org/2022/659

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

17. Rosulek, M., Roy, L.: Three halves make a whole? beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part
I. LNCS, vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0 5

18. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE (1982). https://doi.org/10.1109/SFCS.1982.38

19. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-540-70583-3_40
https://eprint.iacr.org/2022/659
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1007/978-3-662-46803-6_8

Actively Secure Half-Gates with Minimum
Overhead Under Duplex Networks

Hongrui Cui1 , Xiao Wang2 , Kang Yang3(B) , and Yu Yu1,4

1 Shanghai Jiao Tong University, Shanghai, China
{rickfreeman,yyuu}@sjtu.edu.cn

2 Northwestern University, Evanston, USA
wangxiao@cs.northwestern.edu

3 State Key Laboratory of Cryptology, Beijing, China
yangk@sklc.org

4 Shanghai Qi Zhi Institute, Shanghai, China

Abstract. Actively secure two-party computation (2PC) is one of the
canonical building blocks in modern cryptography. One main goal for
designing actively secure 2PC protocols is to reduce the communication
overhead, compared to semi-honest 2PC protocols. In this paper, we
propose a new actively secure constant-round 2PC protocol with one-
way communication of 2κ+5 bits per AND gate (for κ-bit computational
security and any statistical security), essentially matching the one-way
communication of semi-honest half-gates protocol. This is achieved by
two new techniques:
1. The recent compression technique by Dittmer et al. (Crypto 2022)

shows that a relaxed preprocessing is sufficient for authenticated
garbling that does not reveal masked wire values to the garbler.
We introduce a new form of authenticated bits and propose a new
technique of generating authenticated AND triples to reduce the
one-way communication of preprocessing from 5ρ + 1 bits to 2 bits
per AND gate for ρ-bit statistical security.

2. Unfortunately, the above compressing technique is only compatible
with a less compact authenticated garbled circuit of size 2κ + 3ρ
bits per AND gate. We designed a new authenticated garbling that
does not use information theoretic MACs but rather dual execu-
tion without leakage to authenticate wire values in the circuit. This
allows us to use a more compact half-gates based authenticated gar-
bled circuit of size 2κ + 1 bits per AND gate, and meanwhile keep
compatible with the compression technique. Our new technique can
achieve one-way communication of 2κ + 5 bits per AND gate.

Our technique of yielding authenticated AND triples can also be used to
optimize the two-way communication (i.e., the total communication) by
combining it with the authenticated garbled circuits by Dittmer et al.,
which results in an actively secure 2PC protocol with two-way commu-
nication of 2κ + 3ρ + 4 bits per AND gate.

Keywords: Actively secure 2PC · Garbled circuit · Correlated
oblivious transfer

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 35–67, 2023.
https://doi.org/10.1007/978-3-031-30617-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_2&domain=pdf
http://orcid.org/0000-0002-6203-413X
http://orcid.org/0000-0002-5991-7417
http://orcid.org/0000-0002-7453-4043
http://orcid.org/0000-0002-9278-4521
https://doi.org/10.1007/978-3-031-30617-4_2

36 H. Cui et al.

1 Introduction

Based on garbled circuits (GCs) [44], constant-round secure two-party com-
putation (2PC) has obtained huge practical improvements in recent years in
both communication [5,30,35,45] and computation [6,22,23]. However, com-
pared to passively secure (a.k.a., semi-honest) 2PC protocols, their actively
secure counterparts require significant overhead. Building upon the authenti-
cated garbling framework [29,36,37,42] and, more generally, working in the BMR
family [5,24,26,31,32], the most recent work by Dittmer, Ishai, Lu and Ostro-
vsky [16] (denoted as DILO hereafter) is able to bring down the communication
cost to 2κ + 8ρ + O(1) bits per AND gate, where κ and ρ are the computational
and statistical security parameters, respectively.

Although huge progress, there is still a gap between actively secure and pas-
sively secure 2PC protocols based on garbled circuits. In particular, the size of
a garbled circuit has been recently reduced from 2κ bits (half-gates [45]) to 1.5κ
bits (three-halves [35]) per AND gate, while even the latest authenticated gar-
bling cannot reach the communication efficiency of half-gates. It is possible to
close this gap between active and passive security using the GMW compiler [21],
and its concrete efficiency was studied in [1]. However, it requires non-black-box
use of the underlying garbling scheme and thus requires prohibitive overhead.

Bringing down the cost of authenticated garbling at this stage requires over-
coming several challenges. First of all, we need the authenticated GC itself to
be as small as the underlying GC construction. This could be achieved for half-
gates as Katz et al. [29] (denoted as KRRW hereafter) proposed an authenti-
cated half-gates construction in the two-party setting. However, when it comes
to three-halves, there is no known construction. These authenticated GCs are
usually generated in some preprocessing model, and thus the second challenge is
to instantiate the preprocessing with only constant additive overhead. Together
with recent works on pseudorandom correlation generators (PCGs) [9–11,13,43],
Katz et al. [29] can achieve O(κ) bits per AND gate, while Dittmer et al. [16] can
achieve O(ρ) bits per AND gate. However, the latest advancement by Dittmer et
al. [16] is not compatible with the optimal authenticated half-gates construction
and requires an authenticated GC of size 2κ + 3ρ bits per AND gate.

1.1 Our Contribution

We make significant progress in closing the communication gap between passive
and active GC-based 2PC protocols by proposing a new actively secure 2PC
protocol with constant rounds and one-way communication essentially the same
as the half-gates 2PC protocol in the semi-honest setting.

1. We manage to securely instantiate the preprocessing phase with O(1) bits
per AND gate. Our starting point is the compression technique by Dittmer
et al. [16], who showed that in authenticated garbling, the random masks of
the evaluator need not be of full entropy and can be compressed with entropy
sublinear to the circuit size. This observation leads to an efficient construction

Actively Secure Half-Gates with Minimum Overhead 37

Table 1. Comparing our protocol with prior works in terms of round and communica-
tion complexity. Here κ, ρ denote the computational and statistical security parameters
instantiated by 128 and 40 respectively. Round complexity is counted in the random
COT/VOLE-hybrid model. One-way communication is the greater of the two par-
ties’ communication; two-way communication is the sum of all communication. For the
KRRW and HSS protocol we take the bucket size as B = 3.

Security 2PC Correlation Rounds Communication per AND gate

Prep. Online one-way (bits) two-way (bits)

Passive Half-gates OT 1 2 2κ 2κ

Active HSS-PCG [25] OT 8 2 8κ + 11 (4.04×) 16κ + 22 (8.09×)

Active KRRW-PCG [29] COT 4 4 5κ + 7 (2.53×) 8κ + 14 (4.05×)

Active DILO [16] VOLE 7 2 2κ + 8ρ + 1 (2.25×) 2κ + 8ρ + 5 (2.27×)

Active This work COT 8 3 2κ + 5 (≈ 1×) 4κ + 10 (2.04×)

Active This work+DILO COT 8 2 2κ + 3ρ + 2 (1.48×) 2κ + 3ρ + 4 (≈ 1.48×)

from vector oblivious linear evaluation (VOLE) to the desired preprocessing
functionality. This reduces the communication overhead of preprocessing to
5ρ + 1 bits per AND gate. To further reduce their communication, we intro-
duce a new tool called “dual-key authentication”. Intuitively this form of
authentication allows two parties to commit to a value that can later be
checked against subsequent messages by both parties. Together with a new
technique of generating authenticated AND triples from correlated oblivious
transfer (COT), we avoid the ρ-time blow-up of the DILO protocol, and the
one-way communication cost is reduced to 2 bits per AND gate.

2. As mentioned earlier, the above compression technique is not compatible with
KRRW authenticated half-gates; this is because the compression technique
requires that the garbler does not learn the masked values since the entropy
of wire masks provided by the evaluator is low. We observe that the dual-
execution protocol [27,28] can essentially be used for this purpose, and it is
highly compatible with the authenticated garbling technique. In particular,
the masked value of each wire is implicitly authenticated by the garbled label.
Therefore we can perform two independent executions and check the actual
value of each wire against each other. Since every wire is checked, we are
able to eliminate the 1-bit leakage in ordinary dual-execution protocols. The
overall one-way communication is 2κ + 5 bits per AND gate.

We note that this is only a partial solution because dual execution requires both
parties to send GCs. Under full-duplex networks (e.g., most wired communica-
tion) where communication in both directions can happen simultaneously, this
effectively imposes no slow down; however, for half-duplex networks (e.g., most
wireless communication), it would not be a preferable option. Nevertheless, our
preprocessing protocol can be combined with the construction of authenticated
garbled circuits by Dittmer et al. [16] to achieve the best two-way communica-
tion of 2κ + 3ρ + 4 bits per AND gate, leading to a 1.53× improvement. We
provide a detailed comparison in Table 1.

38 H. Cui et al.

We do not compare our actively secure 2PC protocol with the protocol
(denoted by DILOv2) by Dittmer et al. [16] building on doubly authenticated
multiplication triples. Compared to DILO, the DILOv2 protocol is less efficient,
as DILOv2 requires quasi-linear computational complexity. Moreover, DILOv2
can only generate authenticated triples over F2ρ , while authenticated garbling
requires triples over F2. This incurs a ρ-time overhead when utilizing such triples.

2 Preliminaries

2.1 Notation

We use κ and ρ to denote the computational and statistical security parameters,
respectively. We use log to denote logarithms in base 2. We write x ← S to
denote sampling x uniformly at random from a finite set S. We define [a, b) =
{a, . . . , b − 1} and write [a, b] = {a, . . . , b}. We use bold lower-case letters like a
for column vectors, and bold upper-case letters like A for matrices. We let ai

denote the i-th component of a (with a1 the first entry). We use {xi}i∈S to
denote the set that consists of all elements with indices in set S. When the
context is clear, we abuse the notation and use {xi} to denote such a set. For a
string x, we use lsb(x) to denote the least significant bit (LSB) and msb(x) to
denote the most significant bit (MSB).

For an extension field F2κ of a binary field F2, we fix some monic, irreducible
polynomial f(X) of degree κ and then write F2κ ∼= F2[X]/f(X). Thus, every
element x ∈ F2κ can be denoted uniquely as x =

∑
i∈[0,κ) xi ·Xi with xi ∈ F2 for

all i ∈ [0, κ). We could view elements over F2κ equivalently as vectors in F
κ
2 or

strings in {0, 1}κ, and consider a bit x ∈ F2 as an element in F2κ . Depending on
the context, we use {0, 1}κ, Fκ

2 and F2κ interchangeably, and thus addition in F
κ
2

and F2κ corresponds to XOR in {0, 1}κ. We also define two macros to convert
between F2κ and F

κ
2 .

– x ← B2F(x): Given x = (x0, ..., xκ−1) ∈ F
κ
2 , output x :=

∑
i∈[0,κ) xi · Xi ∈

F2κ .
– x ← F2B(x): Given x =

∑
i∈[0,κ) xi·Xi ∈ F2κ , output x = (x0, ..., xκ−1) ∈ F

κ
2 .

A Boolean circuit C consists of a list of gates in the form of (i, j, k, T), where
i, j are the indices of input wires, k is the index of output wire and T ∈ {⊕,∧}
is the type of the gate. In the 2PC setting, we use IA (resp., IB) to denote the
set of circuit-input wire indices corresponding to the input of PA (resp., PB). We
also use W to denote the set of output-wire indices of all AND gates, and O to
denote the set of circuit-output wire indices in the circuit C. We denote by Cand

the set of all AND gates in the form of (i, j, k, T).
Our protocol in the two-party setting is proven secure against static and

malicious adversaries in the standard simulation-based security model [12,20].
We recall the security model, a relaxed equality-check functionality FEQ and the
coin-tossing functionality FRand as well as the summary of the notations and
macros used in our protocols in the full version [14].

Actively Secure Half-Gates with Minimum Overhead 39

2.2 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) [7,34] to
authenticate bits or field elements in F2κ . Specifically, let Δ ∈ F2κ be a global
key. We adopt [x] = (K[x],M[x], x) to denote that an element x ∈ F (where
F ∈ {F2,F2κ}) known by one party can be authenticated by the other party
who holds Δ ∈ F2κ and a local key K[x] ∈ F2κ , where an MAC tag M[x] =
K[x]+x ·Δ ∈ F2κ is given to the party holding x. For a vector x ∈ F

�, we denote
by [x] = ([x1], ..., [x�]) a vector of authenticated values. We refer to ([x], [y], [z])
with z = x · y as an authenticated multiplication triple. If x, y, z ∈ {0, 1}, this
tuple is also called authenticated AND triple. For a constant value c ∈ F2κ , it is
easy to define [c] = (c · Δ, 0κ, c). It is well-known that IT-MACs are additively
homomorphic. That is, given public coefficients c0, c1, . . . , c� ∈ F2κ , two parties
can locally compute [y] := c0 +

∑�
i=1 ci · [xi].

When applying IT-MACs into 2PC, secret values are authenticated by either
PA or PB. We use subscripts A and B in authenticated values to distinguish which
party (PA or PB) holds the secret values. For example, [x]A = (KB[x],MA[x], x)
denotes that PA holds (x,MA[x]) and PB holds (ΔB,KB[x]). In the case that
other global keys are used, we explicitly add a subscript to keys and MAC
tags. For example, when G ∈ F2κ is used and held by PB, we write [x]A,G =
(KB[x]G,MA[x]G, x) and MA[x]G = KB[x]G +x ·G. When the context is clear, we
will omit the subscripts A and B for the sake of simplicity.
Batch Opening of Authenticated Values. In the following, we describe the
known procedure [15,34] to open authenticated values in a batch. Here we always
assume that PA holds the values and MAC tags, and PB holds the global and
local keys. In this case, we write [x] instead of [x]A. For the case that PB holds
the values authenticated by PA, these procedures can be defined similarly. We
first define the following procedure (denoted by CheckZero) to check that all
values are zero in constant small communication.

– CheckZero([x1], . . . , [x�]): On input authenticated values [x1], . . . , [x�], PA con-
vinces PB that xi = 0 for all i ∈ [1, �] as follows:
1. PA sends h := H(MA[x1], . . . ,MA[x�]) to PB, where H : {0, 1}∗ → {0, 1}κ

is a random oracle.
2. PB computes h′ := H(KB[x1], . . . ,KB[x�]) and checks that h = h′. If the

check fails, PB aborts.

Following previous works [15,38], we have the following lemma.

Lemma 1. If Δ ∈ F2κ is sampled uniformly at random, then the probability
that there exists some i ∈ [1, �] such that xi �= 0 and PB accepts in the CheckZero
procedure is bounded by 2

2κ .

The above lemma can be relaxed by allowing that Δ is sampled uniformly from
a set R ⊂ F2κ . In this case, the success probability for a cheating party PA is
at most 1

|R| + 1
2κ . Based on the CheckZero procedure, we define the following

batch-opening procedure (denoted by Open):

40 H. Cui et al.

Functionality FL
bCOT

This functionality is parameterized by an integer L ≥ 1. Running with a sender
PA, a receiver PB and an ideal adversary, it operates as follows.

Initialize. Upon receiving (init, sid, Δ1, ..., ΔL) from PA and (init, sid) from PB

where Δi ∈ F2κ for all i ∈ [1, L], store (sid, Δ1, ..., ΔL) and then ignore all subse-
quent (init, sid) commands.

Extend. Upon receiving (extend, sid, �) from PA and PB, do the following:

– For i ∈ [1, L], if PA is honest, sample KA[u]Δi ← F
�
2κ ; otherwise, receive

KA[u]Δi ∈ F
�
2κ from the adversary.

– If PB is honest, sample u ← F
�
2 and compute MB[u]Δi := KA[u]Δi+u·Δi ∈ F

�
2κ

for i ∈ [1, L]. Otherwise, receive u ∈ F
�
2 and MB[u]Δi ∈ F

�
2κ for i ∈ [1, L] from

the adversary, and recomputes KA[u]Δi := MB[u]Δi +u·Δi ∈ F
�
2κ for i ∈ [1, L].

– For i ∈ [1, L], output (sid,KA[u]Δi) to PA and (sid,u,MB[u]Δi) to PB.

Fig. 1. Functionality for block correlated oblivious transfer.

– Open([x1], . . . , [x�]): On input authenticated values [x1], . . . , [x�] defined over
field F2κ , PA opens these values as follows:
1. PA sends (x1, . . . , x�) to PB, and then both parties set [yi] := [xi] + xi for

each i ∈ [1, �].
2. PA runs CheckZero([y1], . . . , [y�]) with PB. If PB does not abort, it outputs

(x1, . . . , x�).

2.3 Correlated Oblivious Transfer

Our 2PC protocol will adopt the standard functionality [10,43] of correlated
oblivious transfer (COT) to generate random authenticated bits. This func-
tionality (denoted by FCOT) is shown in Fig. 1 by setting a parameter L = 1,
where the extension phase can be executed multiple times for the same session
identifier sid. Based on Learning Parity with Noise (LPN) [8], the recent pro-
tocols [9,10,13,43] with sublinear communication and linear computation can
securely realize the COT functionality in the presence of malicious adversaries.
In particular, these protocols can generate a COT correlation with amortized
communication cost of about 0.1 ∼ 0.4 bits.

We also generalize the COT functionality into block COT (bCOT) [16],
which allows to generate authenticated bits with the same choice bits and dif-
ferent global keys. Functionality FL

bCOT shown in Fig. 1 is the same as the stan-
dard COT functionality, except that L vectors (rather than a single vector) of
authenticated bits [u]B,Δ1 , . . . , [u]B,ΔL

are generated. Here the vector of choice
bits u is required to be identical in different vectors of authenticated bits. It
is easy to see that FCOT is a special case of FL

bCOT with L = 1. The pro-
tocol that securely realizes functionality FL

bCOT is easy to be constructed by
extending the LPN-based COT protocol as described above. Specifically, we set
Δ = (Δ1, . . . ,ΔL) ∈ F

L
2κ

∼= F2κL as the global key in the LPN-based COT pro-
tocol, and the resulting choice-bits are authenticated over extension field F2κL .

Actively Secure Half-Gates with Minimum Overhead 41

Functionality FDVZK

This functionality runs with a prover P and a verifier V, and operates as follows:

– Upon receiving (dvzk, sid, �, {[xi], [yi], [zi]}i∈[1,�]) from P and V where
xi, yi, zi ∈ F2κ for all i ∈ [1, �], if there exists some i ∈ [1, �] such that one of
[xi], [yi], [zi] is not valid, output (sid, false) to V and abort.

– Check that zi = xi · yi ∈ F2κ for all i ∈ [1, �]. If the check passes, then output
(sid, true) to V, else output (sid, false) to V.

Fig. 2. Functionality for DVZK proofs of authenticated multiplication triples.

Note that the protocol to generate block COTs still has sublinear communica-
tion, if L is sublinear to the number of the resulting COT correlations.

While the COT functionality outputs random authenticated bits, we can
convert them into chosen authenticated bits via the following procedure (denoted
by Fix), which is also used in the recent DVZK protocol [4].

– ([x]B,Δ1 , . . . , [x]B,ΔL
) ← Fix(sid,x): On input a session identifier sid of

FbCOT, and a vector x ∈ F
�
2 from PB, two parties PA and PB execute the

following:
1. Both parties call FL

bCOT on input (extend, sid, �) to obtain ([r]B,Δ1 , . . . ,
[r]B,ΔL

) with a random vector r ∈ F
�
2 held by PB, where FL

bCOT has been
initialized by sid and (Δ1, . . . ,ΔL).

2. PB sends d := x ⊕ r to PA.
3. For each i ∈ [1, L], both parties set [x]B,Δi

:= [r]B,Δi
⊕ d.

For a field element x ∈ F2κ , PA and PB can run x ← F2B(x), ([x]B,Δ1 ,
. . . , [x]B,ΔL

) ← Fix(sid,x) and ([x]B,Δ1 , . . . , [x]B,ΔL
) ← B2F([x]B,Δ1 , . . . ,

[x]B,ΔL
) to obtain the corresponding authenticated values. Note that B2F only

involves the operations multiplied by public elements X, . . . ,Xκ−1 ∈ F2κ , and
thus ([x]B,Δ1 , . . . , [x]B,ΔL

) can be computed locally by running B2F. For sim-
plicity, we abuse the Fix notation, and use ([x]B,Δ1 , . . . , [x]B,ΔL

) ← Fix(sid, x) to
denote the conversion procedure. The Fix procedure is easy to be generalized to
support that the values are defined over any field F such as F = F2ρ . The Fix
procedure is totally similar for generating authenticated bits [x]A,Δ1 , . . . , [x]A,ΔL

from random authenticated bits, where here PB holds (Δ1, . . . ,ΔL). When the
context is clear, we just write ([x]Δ1 , . . . , [x]ΔL

) ← Fix(sid,x) for simplicity. We
further extend Fix to additionally allow to input vectors of random authenticated
bits instead of calling FL

bCOT, which is denoted by [x] ← Fix(x, [r]) for the case
of L = 1.

2.4 Designated-Verifier Zero-Knowledge Proofs

Based on IT-MACs, a family of streamable designated-verifier zero-knowledge
(DVZK) proofs with fast prover time and a small memory footprint has been
proposed [2–4,17,18,38–41]. While these DVZK proofs can prove arbitrary cir-
cuits, we only need them to prove a simple multiplication relation. Specifically,

42 H. Cui et al.

given a set of authenticated triples {([xi], [yi], [zi])}i∈[1,�] over F2κ , these DVZK
protocols can enable a prover P to convince a verifier V that zi = xi · yi for all
i ∈ [1, �]. This is modeled by an ideal functionality shown in Fig. 2. In this func-
tionality, an authenticated value [x] is input by two parties P and V, meaning
that P inputs (x,M) and V inputs (K,Δ). We say that [x] is valid, if M = K+x·Δ.
Using the recent DVZK proofs, this functionality can be non-interactively real-
ized in the random-oracle model using constant small communication (e.g., 2κ
bits in total [41]).

3 Technical Overview

In this section, we give an overview of our techniques. The detailed protocols
and their formal proofs are described in later sections. Firstly, we recall the basic
approach in the state-of-the-art solution [16].

3.1 Overview of the State-of-the-Art Solution

Recently, Dittmer, Ishai, Lu and Ostrovsky [16] constructed the state-of-the-art
2PC protocol with malicious security (denoted by DILO) from simple VOLE
correlations.1 For one-way communication, this protocol takes 5ρ + 1 bits to
generate a single authenticated AND triple and 2κ + 3ρ bits per AND gate to
produce one distributed garbled circuit. Their approach is outlined as follows.

In the framework of authenticated garbling [36], for each AND gate (i, j, k,∧),
the garbler PA and evaluator PB need to generate one authenticated triple
([ai], [bi], [aj], [bj], [âk], [b̂k]) such that âk ⊕ b̂k = (ai ⊕ bi) ∧ (aj ⊕ bj). Let b ∈ F

n
2

(resp., bI ∈ F
m
2) be the vector of random masks {bi} held by PB on the output

wires of all AND gates (resp., on all circuit-input wires associated with the PB’s
input), where n is the number of all AND gates and m is the number of all
circuit-input gates. The key observation by Dittmer et al. [16] is that only eval-
uator PB can compute masked wire values (i.e., the XOR of actual wire values
and random masks), and thus b is unnecessary to be uniformly random if the
masked wire values are not revealed to PA. In particular, when these masked
wire values are not revealed by PB, a malicious garbler PA can only guess some
masked wire values by performing a selective-failure attack. This means that for
each masked wire value, PA can guess correctly with probability 1/2, and the
protocol execution will abort for an incorrect guess. In this case, PA can guess
at most ρ − 1 masked wire values, and otherwise the protocol will abort with
probability at least 1 − 1/2ρ. The core idea of DILO is to compress vector b by
defining b = M ·b∗, where M ∈ F

n×L
2 is a public matrix such that any ρ rows of

M are linearly independent, b∗ ∈ F
L
2 is a uniform vector and L = O(ρ log(n/ρ)).

Since IT-MACs are additively homomorphic, two parties only need to generate
[b∗] (instead of [b]) for a much shorter vector b∗, and then compute [b] := M·[b∗].
1 VOLE is an arithmetic generalization of COT, and enables PA to obtain (Δ,K[u]) ∈
F × F

� and PB to get (u,M[u]) ∈ F
� × F

� such that M[u] = K[u] + u · Δ, where F is
a large field such as F = F2ρ .

Actively Secure Half-Gates with Minimum Overhead 43

Dittmer et al. [16] assume that bI is uniform and authenticated AND triples
related to bI are generated using the previous approach such as [29]. Therefore,
we only show how to generate compressed authenticated AND triples, where
random masks held by PB are compressed. Two parties can first generate com-
pressed authenticated AND triple ([ai], [bi], [aj], [bj], [âk], [b̂k]) for each AND gate
with ΔA ← F2ρ , and then convert them into that with Δ′

A ← F2κ using extra
2 bits of communication per AND gate, where a ρ-bit global key can guarantee
that communication only depends on ρ rather than κ and Δ′

A ∈ F2κ is required
for garbled circuits. In the following, we give an overview of Dittmer et al. ’s
approach on how to generate circuit-dependent compressed authenticated AND
triples {([ai], [bi], [aj], [bj], [âk], [b̂k])} with ΔA,ΔB ∈ F2ρ .

1. PA and PB generates a vector of authenticated bits [b∗] with a uniform b∗ ∈ F
L
2

by calling FCOT. Then, both parties define [b] := M · [b∗].
2. Both parties compute authenticated bit [bi,j] for each AND gate (i, j, k,∧)

via running the Fix procedure with input {bi,j} where bi,j := bi · bj .
3. PB samples ΔB, γ ← F2ρ . Then, both parties initializes two functionalities

FL+2
bCOT and FL+2

bVOLE with the same global keys (b∗
1 · ΔB + γ, . . . , b∗

L · ΔB +
γ,ΔB +γ, γ), where FL+2

bVOLE is the same as FL+2
bCOT except that the outputs are

VOLE correlations over F2ρ instead of COT correlations. Here γ is necessary
to mask b∗

i · ΔB. In particular, a consistency check in DILO lets PB send a
hashing of values related to b∗

i · ΔB to the malicious party PA, which may
leak the bit b∗

i to PA. This attack would be prevented by using a uniform γ
to mask b∗

i · ΔB. Given [a]b∗
i ΔB+γ and [a]γ for any bit a held by PA, it is easy

to locally compute [ab∗
i]ΔB

from the additive homomorphism of IT-MACs.
Similarly, given [a]ΔB+γ and [a]γ , two parties can locally compute [a]ΔB

.
4. PA and PB calls FL+2

bCOT to generate the vectors of authenticated bits [a], [â]
as well as [aib

∗]ΔB
for each i ∈ [1, n], where a ∈ F

n
2 (resp., â ∈ F

n
2) is used

as the vector of random masks {ai} (resp., {âk}) held by PA on the output
wires of all AND gates. Then, they can locally compute [aibj]ΔB

and [ajbi]ΔB

for each AND gate (i, j, k,∧) by calculating M · [aib
∗]ΔB

. Both parties run
the Fix procedure with input {ai,j} to obtain {[ai,j]}, where ai,j = ai ∧ aj for
each AND gate (i, j, k,∧).

5. PA and PB call FL+2
bVOLE to get a vector of authenticated values [ã] with a

uniform vector ã ∈ F
n
2ρ . Both parties run the Fix procedure with input (ΔA ·

a,ΔA · â, {ΔA · ai,j},ΔA) to obtain authenticated values [ΔA · a], [ΔA · â],
{[ΔA · ai,j]} and [ΔA]ΔB

. The Fix procedure corresponds to calling FL+2
bVOLE,

and also outputs [ΔAaib
∗]ΔB

for each i ∈ [1, n] and [ΔA]b∗
i ΔB

for each i ∈ [1, L]
to both parties. Note that [ΔA]ΔB

and [ΔA]b∗
i ΔB

can be written as [ΔB] and
[b∗

i ΔB] respectively, where we also use [B∗
i] to denote [b∗

i ΔB]. Furthermore, PA

and PB can locally compute [ΔAaibj]ΔB
and [ΔAajbi]ΔB

for each AND gate
(i, j, k,∧) by computing M · [ΔAaib

∗]ΔB
for each i ∈ [1, n].

6. Parties PA and PB call FDVZK to prove the following relations:
– For each AND gate (i, j, k,∧), given ([bi], [bj], [bi,j]), prove bi,j = bi ∧ bj .
– For each AND gate (i, j, k,∧), given ([ai], [aj], [ai,j]), prove ai,j = ai ∧ aj .
– For each i ∈ [1, L], given ([b∗

i], [ΔB], [B∗
i]), prove B∗

i = b∗
i · ΔB.

44 H. Cui et al.

7. PB also executes an efficient verification protocol to convince PA that the
same global keys are input to different functionalities FL+2

bCOT and FL+2
bVOLE. It is

unnecessary to check the consistency of ΔA ·a,ΔA · â, {ΔA ·ai,j},ΔA input to
Fix w.r.t. FL+2

bVOLE. The resulting VOLE correlations on these inputs are used
to compute the MAC tags of PB on its shares. If these inputs are incorrect,
this only leads to these MAC tags, which will be authenticated by PA, being
incorrect. This is harmless for security.

8. For each AND gate (i, j, k,∧), PA and PB locally compute [b̃k]ΔB
:= [ai,j] +

[aibj]+[ajbi]+[âk] and [B̃k]ΔB
:= [ΔAai,j]+[ΔAaibj]+[ΔAajbi]+[ΔAâk]+[ãk],

where all values are authenticated under ΔB. Then, PA sends a pair of MAC
tags (MA[b̃k],MA[B̃k]) to PB, who computes the following over F2κ

b̃k := (KB[b̃k] + MA[b̃k]) · Δ−1
B and B̃k := (KB[B̃k] + MA[B̃k]) · Δ−1

B .

It is easy to see that b̃k = ai,j ⊕ aibj ⊕ ajbi ⊕ âk ∈ {0, 1} and B̃k = (ai,j +
aibj + ajbi + âk) · ΔA + ãk ∈ F2ρ , where the randomness ãk ∈ F2ρ is crucial
to prevent that B̃k directly reveals ΔA in the case of b̃k = 1. We observe that
both parties now obtain an authenticated bit [b̃k]ΔA

by defining its local key
KA[b̃k] = ãk and MAC tag MB[b̃k] = B̃k.

9. For each AND gate (i, j, k,∧), PA and PB locally compute an authenticated
bit [b̂k]ΔA

:= [b̃k]ΔA
⊕ [bi,j]ΔA

. Now, both parties obtain an authenticated
triple ([ai], [bi], [aj], [bj], [âk], [b̂k]) for each AND gate (i, j, k,∧).

3.2 Our Solution for Generating Authenticated AND Triples

In the DILO protocol [16], the one-way communication cost of generating the
authenticated triple ([ai], [bi], [aj], [bj], [âk], [b̂k]) for each AND gate (i, j, k,∧) is
brought about by producing an authenticated bit [̃bk] under ΔA that is in turn
used to locally compute [b̂k] with b̂k = b̃k ⊕ bibj . DILO generates the authenti-
cated bit [b̃k] = (KA[b̃k],MB[b̃k], b̃k) under ΔA by computing authenticated values
on b̃k and MB[b̃k] under ΔB. Specifically, we have the following two parts:

– PB computes the bit b̃k from the authenticated bit on b̃k under ΔB and
corresponding MAC tag sent by PA in communication of ρ + 1 bits.

– PB computes the MAC tag MB[b̃k] by generating the authenticated value on
MB[b̃k] under ΔB and corresponding MAC tag sent by PA in communication
of 4ρ bits.

We observe that the communication cost of the first part can be further reduced
to only 2 bits by setting lsb(ΔB) = 1. In particular, PA can send the LSB xk of
the MAC tag w.r.t. [b̃k]ΔB

to PB who can compute b̃k by XORing xk with the
LSB of the local key w.r.t. [b̃k]ΔB

. The authentication of {b̃k} can be done in a
batch by hashing the MAC tags on these bits. However, the communication cost
of the second part is inherent due to the DILO approach of generating the MAC
tag MB[b̃k]. This leaves us a challenge problem: how to generate authenticated
bit [b̃k]ΔA

without the ρ-time blow-up in communication.

Actively Secure Half-Gates with Minimum Overhead 45

The crucial point for solving the above problem is to generate the MAC tag
MB[b̃k] with constant communication per triple. In a straightforward way, PA and
PB can run the Fix procedure to generate [b̃k]ΔA

by taking one-bit communication
after PB has obtained b̃k. However, PA has no way to check the correctness of
b̃k implied in [b̃k]ΔA

, where [b̃k]ΔB
generated by both parties only allow PB to

check the correctness of b̃k. We introduce the notion of dual-key authentication to
allow both parties to check the correctness of b̃k, where the bit b̃k is authenticated
under global key ΔA ·ΔB and thus no party can change the bit b̃k without being
detected. We present an efficient approach to generate the dual-key authenticated
bit 〈b̃k〉 with communication of only one bit. By checking the consistency of all
values input to the block-COT functionality, we can guarantee the correctness
of 〈b̃k〉, i.e., b̃k is a valid bit authenticated by both parties. When setting lsb(ΔA ·
ΔB) = 1, PB can obtain the bit b̃k by letting PA send one-bit message to PB (see
below for details). By using Fix, PA and PB can generate [b̃k] under ΔA. Now,
PB can check the correctness of b̃k obtained, and PA can verify the correctness
of b̃k implied in [b̃k], by using the correctness of 〈b̃k〉. Particularly, we propose a
batch-check technique that enables both parties to check the correctness of {b̃k}
in all triples with essentially no communication. In addition, we present two new
checking protocols to verify the correctness of global keys and the consistency of
values across different functionalities (see below for an overview). Overall, our
techniques allow to achieve one-way communication of only 2 bits per triple, and
are described below.

Dual-key Authentication. We propose the notion of dual-key authentication,
meaning that a bit is authenticated by two global keys ΔA,ΔB ∈ F2κ held
by PA and PB respectively. In particular, a dual-key authenticated bit 〈x〉 =
(DA[x],DB[x], x) lets PA hold DA[x] and PB hold DB[x] such that DA[x]+DB[x] =
x ·ΔA ·ΔB ∈ F2κ , where x ∈ {0, 1} can be known by either PA or PB, or unknown
for both parties. From the definition, we have that dual-key authenticated bits
are also additively homomorphic, which enables us to use the random-linear-
combination approach to perform consistency checks associated with such bits.
We are also able to generalize dual-key authenticated bits to dual-key authen-
ticated values in which x is defined over any field F and DA[x],DB[x],ΔA,ΔB

are defined over an extension field K with F ⊆ K. This generalization may be
useful for the design of subsequent protocols. A useful property is that 〈x〉 can
be locally converted into [xΔA]ΔB

or [xΔB]ΔA
and vice versa.

We consider that the bit x is shared as (a, b) with x = a ∧ b, where PA holds
a ∈ {0, 1} and PB holds b ∈ {0, 1}. Without loss of generality, we focus on
the case that a is a secret bit. The bit b can be either a secret bit or a public
bit 1, where the former means that no party knows x and the latter means
that only PA knows x. The DILO protocol [16] implicitly generates a dual-key
authenticated bit by running Fix(aΔA) w.r.t. global keys bΔB + γ, γ to obtain
[aΔA]bΔB

= 〈ab〉 = 〈x〉, which incurs ρ-time blow-up in communication (even
if a allows to be a random bit). Our approach can reduce the communication
cost to at most one bit. In particular, we first let PA and PB generate a dual-key
authenticated bit 〈b〉 = (α, β) with α + β = b · ΔA · ΔB ∈ F2κ , where PA gets α

46 H. Cui et al.

and PB obtains β. Then, both parties initialize functionality FbCOT with a global
key β. If a ∈ {0, 1} allows to be random, both parties call FbCOT to generate [a]β
without communication. Otherwise, both parties run Fix with input a to generate
[a]β in communication of one bit. Given [a]β = (KB[a]β ,MA[a]β , a), PA and PB

can locally compute a dual-key authenticated bit 〈a〉 by letting PA compute
DA[x] := MA[a]β + a · α ∈ F2κ and PB set DB[x] := KB[a]β ∈ F2κ . We have that
DA[x] + DB[x] = (MA[a]β + KB[a]β) + a · α = a · (α + β) = a · b · ΔA · ΔB ∈ F2κ .
To guarantee correctness of 〈x〉, we need to check the consistency of β input to
FbCOT and a input to Fix, which will be shown below.

Sampling Global Keys with Correctness Checking. As described above, we need
to generate two global keys ΔA and ΔB such that lsb(ΔA · ΔB) = 1, which
allows one party to get the bit x = lsb(DA[x]) ⊕ lsb(DB[x]) from a dual-key
authenticated bit 〈x〉. To do this, we let PA sample ΔA ← {0, 1}κ such that
lsb(ΔA) = 1. Then, we let PB sample ΔB ← {0, 1}κ, and make PA and PB run
the Fix procedure w.r.t. ΔA with input ΔB to generate [ΔB]ΔA

(i.e., 〈1〉), where
α0 ⊕β0 = ΔAΔB. PA and PB can exchange lsb(α0) and lsb(β0) to decide whether
lsb(α0)⊕ lsb(β0) = 0. If yes, then lsb(ΔAΔB) = lsb(α0)⊕ lsb(β0) = 0. In this case,
we let PB update ΔB as ΔB ⊕1, which makes ΔAΔB be updated as ΔAΔB ⊕ΔA,
where lsb(ΔAΔB ⊕ ΔA) = lsb(ΔAΔB) ⊕ lsb(ΔA) = 1. Since ΔB is changed as
ΔB ⊕ 1, α0 needs to be updated as α0 ⊕ ΔA in order to keep correct correlation.

While we adopt the KRRW authenticated garbling [29] in dual executions,
some bit of global keys ΔA,ΔB ∈ {0, 1}κ is required to be fixed as 1. We often
choose to define lsb(ΔA) = 1 and lsb(ΔB) = 1. While lsb(ΔA) = 1 has been
satisfied, lsb(ΔB) = 1 does not always hold, as PB may flip ΔB depending on if
lsb(α0)⊕ lsb(β0) = 0. Thus, we let PB set msb(ΔB) = 1 for ease of remembering.
More importantly, msb(ΔB) = 1 has no impact on setting lsb(ΔAΔB) = 1.

To achieve active security, we need to guarantee that ΔA ·ΔB �= 0 in the case
that either PA or PB is corrupted. This can be assured by checking ΔA �= 0 and
ΔB �= 0. We choose to check lsb(ΔA) = 1 and msb(ΔB) = 1 to realize the checking
of ΔA �= 0 and ΔB �= 0. To enable PB to check lsb(ΔA) = 1, both parties can
generate random authenticated bits [r1]B, . . . , [rρ]B, and then PA sends lsb(KA[ri])
for i ∈ [1, ρ] to PB who checks that lsb(KA[ri]) ⊕ lsb(MB[ri]) = ri for all i ∈
[1, ρ]. A malicious PA can cheat successfully if and only if it guesses correctly
all random bits r1, . . . , rρ, which happens with probability 1/2ρ. The correctness
check of msb(ΔB) = 1 can be done in a totally similar way. Furthermore, we need
also to check lsb(ΔAΔB) = 1, and otherwise a selective failure attack may be
performed on secret bit b̃k. We first let PB check lsb(ΔAΔB) = 1 by interacting
with PA. We make PA and PB generate random dual-key authenticated bits
〈s1〉, . . . , 〈sρ〉. Then, the check of lsb(ΔAΔB) = 1 can be done similarly, by letting
PA send lsb(DA[si]) to PB who checks that lsb(DA[si]) ⊕ lsb(DB[si]) = si for all
i ∈ [1, ρ]. To produce 〈s1〉, . . . , 〈sρ〉, PA and PB can call FCOT to generate random
authenticated bits [s1]ΔA

, . . . , [sρ]ΔA
, and then run the Fix procedure w.r.t. ΔA on

input (s1ΔB, . . . , sρΔB) to generate [s1ΔB]ΔA
, . . . , [sρΔB]ΔA

that are equivalent
to 〈s1〉, . . . , 〈sρ〉. Then, the correctness of the input (s1ΔB, . . . , sρΔB) needs to be
verified by PA via letting PB prove that ([si]ΔA

, [ΔB]ΔA
, [siΔB]ΔA

) for all i ∈ [1, ρ]

Actively Secure Half-Gates with Minimum Overhead 47

satisfy the multiplication relationship using FDVZK. Due to the dual execution,
PA needs also to symmetrically check lsb(ΔAΔB) = 1 by interacting with PB.

Generating Compressed Authenticated AND Triples. As described above, for
generating a compressed authenticated AND triple ([ai], [bi], [aj], [bj], [âk], [b̂k]),
the crucial step is to generate a dual-key authenticated bit 〈b̃k〉 with b̃k =
b̂k ⊕ bibj . From the definition of b̃k, we know that 〈b̃k〉 = 〈ai,j〉⊕〈aibj〉⊕〈ajbi〉⊕
〈âk〉. We use the above approach to generate the dual-key authenticated bits
〈ai,j〉, 〈âk〉 and 〈aib

∗〉 for i ∈ [1, n] that can be locally converted to 〈aibj〉, 〈ajbi〉
by multiplying a public matrix M. Then, we combine all the dual-key authenti-
cated bits to obtain 〈b̃k〉. From lsb(ΔAΔB) = 1, we can let PA send lsb(DA[b̃k])
to PB who is able to recover b̃k = lsb(DA[b̃k]) ⊕ lsb(DB[b̃k]). By running the Fix
procedure with input b̃k, both parties can generate [b̃k], which can be in turn
locally converted into [b̂k]. More details are shown as follows.

1. As in the DILO protocol [16], we let PA and PB obtain [b∗] and {[bi,j]} by call-
ing FCOT and running Fix with input bi,j = bibj . Then, both parties compute
[b] := M · [b∗] to obtain [bi], [bj] for each AND gate (i, j, k,∧).

2. PA and PB have produced 〈1〉 = (α0, β0) such that α0 + β0 = ΔA · ΔB ∈ F2κ .
For each i ∈ [1, L], both parties can further generate a dual-key authenticated
bit 〈b∗

i 〉 = (αi, βi) with αi + βi = b∗
i · ΔA · ΔB ∈ F2κ by running Fix w.r.t. ΔA

with input B∗
i = b∗

i ΔB. The communication to generate 〈b∗
1〉, . . . , 〈b∗

L〉 is Lκ
bits and logarithmic to the number n of AND gates due to L = O(ρ log(n/ρ)).

3. PB and PA initialize FL+1
bCOT with global keys β1, . . . , βL,ΔB, and then

call FL+1
bCOT to generate [a]β1 , . . . , [a]βL

and [a]ΔB
. For each tuple

([ai]β1 , . . . , [ai]βL
), we can convert it to 〈aib

∗〉. By multiplying the public
matrix M, both parties can obtain 〈aibj〉 and 〈ajbi〉 for each AND gate
(i, j, k,∧). From [a]ΔB

, both parties directly obtain [ai], [aj] for each AND
gate (i, j, k,∧).

4. PB and PA initialize F2
bCOT with global keys β0,ΔB, and then call F2

bCOT to
generate [â]β0 and [â]ΔB

. Both parties further run the Fix procedure with
input ai,j = ai ∧ aj to generate [ai,j]β0 and [ai,j]ΔB

, where [ai,j]ΔB
will be

used to prove validity of ai,j . The parties can convert [â]β0 and {[ai,j]β0} into
〈âk〉 and 〈ai,j〉 for each AND gate (i, j, k,∧).

5. Both parties can locally compute 〈b̃k〉 := 〈ai,j〉 ⊕ 〈aibj〉 ⊕ 〈ajbi〉 ⊕ 〈âk〉. Then,
PA can send lsb(DA[b̃k]) to PB, who computes b̃k := lsb(DA[b̃k]) ⊕ lsb(DB[b̃k])
due to lsb(ΔAΔB) = 1. Both parties run Fix on input b̃k to generate [b̃k].

6. PA and PB can locally compute [b̂k] := [b̃k] ⊕ [bi,j]. Now, the parties hold
([ai], [bi], [aj], [bj], [âk], [b̂k]) for each AND gate (i, j, k,∧).

Consistency Check. We have shown how to generate compressed authenticated
AND triples. Below, we show how to verify their correctness. We only need to
guarantee the consistency of all Fix inputs, all global keys input to the bCOT
functionality and all bits sent by PA to PB. When all messages and inputs are
consistent, no malicious party can break the correctness of all triples. Specifically,
we present the following checks to guarantee the consistency.

48 H. Cui et al.

1. Check the correctness of the following authenticated AND triples:
– ([bi], [bj], [bi,j]) s.t. bi,j = bi ∧ bj for each AND gate (i, j, k,∧).
– ([ai], [aj], [ai,j]) s.t. ai,j = ai ∧ aj for each AND gate (i, j, k,∧).
– ([b∗

i], [ΔB], [B∗
i]) s.t. B∗

i = b∗
i · ΔB for each i ∈ [1, L].

2. The keys β0, β1, . . . , βL input to functionality FbCOT are consistent to the
values defined in 〈1〉, 〈b∗

1〉, . . . , 〈b∗
L〉.

3. PA needs to check that two global keys Δ
(1)
B and Δ

(2)
B respectively input to

functionalities FL+1
bCOT and F2

bCOT are consistent with ΔB defined in 〈1〉.
4. PA checks that the bit b̃k defined in [b̃k] is consistent to that defined in 〈b̃k〉,

and PB checks that b̃k computed by itself is consistent to that defined in 〈b̃k〉.
The first two checks guarantee the correctness of 〈b̃k〉 and [bi,j], the third check
verifies the consistency of the global keys in [ai], [aj], [âk], and the final check
assure the consistency of bits authenticated between 〈b̃k〉 and [b̃k]. Check 1 can
be directly realized by calling functionality FDVZK.

For Check 2, for each i ∈ [0, L], we let PA and PB run the Fix procedure
w.r.t. βi on input Δ′

A to generate [Δ′
A]βi

, which can be locally converted into
[βi]Δ′

A
, where Δ′

A ∈ F2κ is sampled uniformly at random by PA.2 For i ∈ [0, L], we
present a new protocol to verify the consistency of βi in the following equations:

αi + βi = b∗
i · ΔA · ΔB,

K′
A[βi] + M′

A[βi] = βi · Δ′
A,

where b∗
0 is defined as 1. We first multiply two sides of the first equation by

Δ−1
A , and obtain αi ·Δ−1

A +βi ·Δ−1
A = b∗

i ·ΔB. We rewrite the resulting equation
as KA[βi] + MB[βi] = βi · Δ−1

A where KA[βi] = αi · Δ−1
A and MB[βi] = b∗

i · ΔB.
Below, we can adapt the known techniques [16,18] to check the consistency of
βi authenticated under different global keys (i.e., [βi]Δ−1

A
and [βi]Δ′

A
) in a batch

(see Sect. 4.3 for details).
For Check 3, we make PA and PB run the Fix procedure w.r.t. Δ

(1)
B (resp.,

Δ
(2)
B) on input Δ′

A to obtain [Δ(1)
B]Δ′

A
(resp., [Δ(2)

B]Δ′
A
). Authenticated values

[Δ(1)
B]Δ′

A
and [Δ(2)

B]Δ′
A

are equivalent to 〈1(1)B 〉 and 〈1(2)B 〉 where Δ
(1)
B Δ′

A and

Δ
(2)
B Δ′

A are used as the global keys in dual-key authentication. Both parties
can invoke a relaxed equality-check functionality FEQ (shown in the full ver-
sion [14]) to check 1(1)B − 1(2)B = 0. Using the checking technique by Dittmer et
al. [16], we can also check the consistency of the values authenticated between
[Δ(1)

B]Δ′
A

and [ΔB]ΔA
generated during the sampling phase.

For Check 4, we use a random-linear-combination approach to perform the
check in a batch. Specifically, we can let PA and PB call FCOT to generate [r]B and
then obtain [r]B ← B2F([r]B), where r ∈ F2κ is uniform. Then, both parties run
Fix w.r.t. ΔA on input rΔB to generate [rΔB]ΔA

(i.e., 〈r〉). We can let the parties
call a standard coin-tossing functionality FRand to sample a random element
2 An independent global key Δ′

A is necessary to perform the consistency check, and
otherwise a malicious PB will always pass the check if ΔA is reused.

Actively Secure Half-Gates with Minimum Overhead 49

χ ∈ F2κ . Then, both parties can locally compute 〈y〉 :=
∑

χk · 〈b̃k〉 + 〈r〉 and
[y]B :=

∑
χk · [b̃k]B + [r]B. Then, PB can open [y]B that allows PA to get y

in an authenticated way. Finally, both parties can use FEQ to verify that the
opening of 〈y〉 − y · 〈1〉 is 0. Since χ is sampled uniformly at random after all
authenticated values are determined, the consistency check will detect malicious
behaviors except with probability at most n/2κ.

3.3 Our Solution for Dual Execution Without Leakage

While the evaluator’s random masks are compressed, the state-of-the-art con-
struction of authenticated garbling based on half-gates by Katz et al. [29] is no
longer applied. The circuit authentication approach in [29] requires the evalu-
ator to reveal all masked wire values, which is prohibitive for the compression
technique. Therefore, based on the technique [36], Dittmer et al. [16] designed a
new construction of authenticated garbling without revealing masked wire val-
ues. However, this construction incurs extra communication overhead of 3ρ − 1
bits per AND gate, compared to the half-gates-based construction [29].

In duplex networks, communication cost is often measured by one-way com-
munication. This allows us to adopt the idea of dual execution [33] to perform
the authentication of circuit evaluation. In the original dual execution [33], the
semi-honest Yao-2PC protocol [44] is executed two times with the same inputs
in parallel by swapping the roles of parties for the second execution, and then
the correctness of the output is verified by checking that the two executions have
the same output bits. However, an inherent problem of the above method is that
selective failure attacks are allowed to leak one-bit information of the input by
the honest party, even though there exists a protocol to check the consistency
of inputs in two executions. For example, suppose that PA is honest and PB

is malicious. When PA is a garbler and PB is an evaluator, both parties com-
pute an output f(x, y) where x is the PA’s input and y is the PB’s input. After
swapping the roles, they compute another output g(x, y) with g �= f , as garbler
PB is malicious. If the output-equality check passes, then g(x, y) = f(x, y), else
g(x, y) �= f(x, y). In both cases, this leaks one-bit information on the input x.

In the authenticated garbling framework, we propose a new technique to
circumvent the problem and eliminate the one-bit leakage. Together with our
technique to generate compressed authenticated AND triples, we can achieve
the cost of one-way communication that is almost the same as the semi-honest
half-gates protocol [45]. Specifically, we let PA and PB execute the protocol, which
combines the sub-protocol of generating authenticated AND triples as described
above with the construction of distributed garbling [29], for two times with same
inputs in the dual-execution way. For each wire w in the circuit, we need to check
that the actual values zw and z′

w in two executions are identical. We perform
the checking by verifying zw · (ΔA ⊕ ΔB) = z′

w · (ΔA ⊕ ΔB). Since ΔA ⊕ ΔB is
unknown for the adversary, the probability that zw �= z′

w but the check passes is
negligible. Our approach allows two parties to check the correctness of all wire
values in the circuit, and thus prevents selective failure attacks.

50 H. Cui et al.

In more detail, for each wire w, let Λw and (aw, bw) be the masked value and
wire masks in the first execution and (Λ′

w, a′
w, b′

w) be the values in the second
execution. Thus, PA and PB need to check that Λw ⊕aw ⊕ bw = Λ′

w ⊕a′
w ⊕ b′

w for
each wire w, where the output wires of XOR gates are unnecessary to be checked
as they are locally computed. Below, our task is to check that (Λw ⊕ aw ⊕ bw) ·
(ΔA ⊕ΔB) = (Λ′

w ⊕a′
w ⊕ b′

w) · (ΔA ⊕ΔB) holds for each wire w. By two protocol
executions, both parties hold ([aw], [bw], [a′

w], [b′
w]) for each wire w. When PA is

a garbler and PB is an evaluator, PA holds a garbled label Lw,0 and PB holds
(Λw, Lw,Λw

). Since Lw,Λw
= Lw,0 ⊕ΛwΔA has the form of IT-MACs, we can view

(Lw,0, Lw,Λw
, Λw) as an authenticated bit [Λw]B, where Lw,0 is considered as the

local key and Lw,Λw
plays the role of MAC tag. Similarly, when PA is an evaluator

and PB is a garbler, two parties hold an authenticated bit [Λ′
w]A. Following the

known observation (e.g., [29]), for any authenticated bit [y]B, PA and PB have an
additive sharing of y · ΔA = KA[y] ⊕ MB[y]. Therefore, for all cross terms, both
parties can obtain their additive shares, and then can compute two values that
are checked to be identical. In particular, both parties can compute the additive
shares of all cross terms: ZA

w,1⊕ZB
w,1 = ΛwΔA, ZA

w,2⊕ZB
w,2 = Λ′

wΔB, ZA
w,3⊕ZB

w,3 =
awΔB, ZA

w,4 ⊕ ZB
w,4 = a′

wΔB, ZA
w,5 ⊕ ZB

w,5 = bwΔA, ZA
w,6 ⊕ ZB

w,6 = b′
wΔA. Then,

for each wire w, PA and PB can respectively compute

V A
w = (⊕i∈[1,6]Z

A
w,i) ⊕ awΔA ⊕ Λ′

wΔA ⊕ a′
wΔA

V B
w = (⊕i∈[1,6]Z

B
w,i) ⊕ bwΔB ⊕ ΛwΔB ⊕ b′

wΔB,

such that V A
w = V B

w . Without loss of generality, we assume that only PB obtains
the output, and thus only PB needs to check the correctness of all masked values.
In this case, we make PA send the hash value of all V A

w to PB, who can check its
correctness with V B

w for each wire w.

Optimizations for Processing Inputs. Dittmer et al. [16] consider that the wire
masks (i.e., bI) on all wires in IB held by evaluator PB is uniformly random and
authenticated AND triples associated with bI are generated using the previous
approach (e.g., [29]). This will require an independent preprocessing protocol,
and also brings more preprocessing communication cost. We solve the problem
by specially processing the input of evaluator PB. In particular, instead of making
PB send masked value Λw := yw ⊕bw for each w ∈ IB to PA where yw is the input
bit, we use an OT protocol to transmit Lw,Λw

to PB. This allows to keep masked
wire values Λw := yw ⊕ bw for all w ∈ IB secret. In this case, we can compress
the wire masks using the technique as described in Sect. 3.2 and adopt the same
preprocessing protocol to handle bI . Since L is logarithm to the length n of vector
b (now n = |W| + |IB|), this optimization essentially incurs no more overhead
for the preprocessing phase. Furthermore, our preprocessing protocol to generate
authenticated AND triples has already invoked functionality FCOT. Therefore,
we can let two parties call FCOT to generate random COT correlations in the
preprocessing phase, and then transform them to OT correlations in the standard
way. This essentially brings no more communication for the preprocessing phase,
due to the sublinear communication of the recent protocols instantiating FCOT.

Actively Secure Half-Gates with Minimum Overhead 51

Our optimization does not increase the rounds of online phase. As a trade-off,
this optimization increases the online communication cost by |IB| · κ bits.

In the second protocol execution (i.e., PA as an evaluator and PB as a garbler),
we make a further optimization to directly guarantee that the masked values on
all circuit-input wires are XOR of actual values and wire masks. In this case, it is
unnecessary to check the correctness of masked values on all circuit-input wires
between two protocol executions. The key idea is to utilize the authenticated
bits and messages on circuit-input wires generated/sent during the first protocol
execution along with the authenticated bits produced in the second protocol
execution to generate the masked values on the wires in IA ∪ IB. Due to the
security of IT-MACs, we can guarantee the correctness of these masked values
in the second execution. We postpone the details of this optimization to Sect. 5.

4 Preprocessing with Compressed Wire Masks

In this section we introduce the compressed preprocessing functionality Fcpre

(shown in Fig. 3) for two party computation as well as an efficient protocol Πcpre

(shown in Fig. 5 and Fig. 6) to realize it. In a modular fashion we first introduce
the sub-components which are called in the main preprocessing protocol. The
security of the protocol is also argued similarly: we first prove in separate lem-
mas the respective security properties of sub-components and then utilize these
lemmas to prove the main theorem.

4.1 Dual-Key Authentication

In this subsection we define the format of dual-key authentication and list some
of its properties that we utilize in the upper level preprocessing protocol.

Definition 1. We use the notation 〈x〉 := (DA[x],DB[x], x) to denote the dual-
key authenticated value x, where PA,PB holds DA[x],DB[x] subject to DA[x] +
DB[x] = xΔAΔB and ΔA,ΔB are the IT-MAC keys of PA,PB respectively.

We remark that for any x ∈ F2κ the IT-MAC authentication [xΔA]ΔB
can be

locally transformed to 〈x〉, which we summarize in the following macro (the case
for [ΔB]ΔA

can be defined analogously). In particular, by computing [ΔB]ΔA
we

implicitly have 〈1〉, i.e., authentication of the constant 1 ∈ F2κ .

– 〈x〉 ← Convert1[·]→〈·〉([xΔB]ΔA
): Set DA[x] := MA[xΔB] and DB[x] :=

KB[xΔB].

For the ease of presentation, we also define the following macro that gen-
erates dual key authentication of cross terms 〈xy〉 assuming the existence of
〈y〉 := (α, β) and [x]A,β = (KB[x]β ,MA[x]β , x). The correctness can be verified
straightforwardly.

– 〈xy〉 ← Convert2[·]→〈·〉([x]A,β , 〈y〉): Given IT-MAC [x]A,β and dual-key
authentication 〈y〉, PA and PB locally compute the following steps:

52 H. Cui et al.

Functionality Fcpre

This functionality is parameterized by a Boolean circuit C consisting of a list of
gates in the form of (i, j, k, T). Let n := |W| + |IB| (resp., m := |W| + |IA|) be the
number of all AND gates as well as circuit-input gates corresponding to the input
of PB (resp., PA), and L = �ρ log 2en

ρ
+ log ρ

2
� be a compression parameter. It runs

with parties PA, PB and the ideal-world adversary S, and operates as follows:

Initialize. Sample two global keys ΔA, ΔB ∈ F2κ as follows:

– If PA is honest, sample ΔA ← F2κ such that lsb(ΔA) = 1. Otherwise, receive
ΔA ∈ F2κ with lsb(ΔA) = 1 from S.

– If PB is honest, sample ΔB ← F2κ such that lsb(ΔAΔB) = 1 and msb(ΔB) = 1.
Otherwise, receive ΔB ∈ F2κ with msb(ΔB) = 1 from S, and then re-sample
ΔA ← F2κ such that lsb(ΔAΔB) = 1 and lsb(ΔA) = 1.

– Store (ΔA, ΔB), and output ΔA and ΔB to PA and PB, respectively.

Macro. AuthA(x, �) (this is an internal subroutine only)

– If PB is honest, sample KB[x] ← F
�
2κ ; otherwise, receive KB[x] ∈ F

�
2κ from S.

– If PA is honest, compute MA[x] := KB[x] + x · ΔB ∈ F
�
2κ . Otherwise, receive

MA[x] ∈ F
�
2κ from S, and recompute KB[x] := MA[x] + x · ΔB ∈ F

�
2κ .

– Send (x,MA[x]) to PA and KB[x] to PB.

AuthB(x, �) can be defined similarly by swapping the roles of PA and PB.

Preprocess the circuit with compressed wire masks. Sample M ← F
n×L
2 ,

and then execute as follows:

– For w ∈ IA, set bw = 0 and define [bw]; for w ∈ IB, set aw = 0 and define [aw].
– If PA is honest, sample a ← F

m
2 ; otherwise, receive a ∈ F

m
2 from S. Then,

execute AuthA(a, m) to generate [a]. For each wire w ∈ IA ∪ W, define aw as
the wire mask held by PA.

– If PB is honest, sample b∗ ← F
L
2 ; otherwise, receive b∗ ∈ F

L
2 from S. Run

AuthB(b∗, L) to generate [b∗], and then compute [b] := M · [b∗] with b ∈ F
n
2 .

For each wire w ∈ IB ∪ W, define bw as the wire mask held by PB.
– In a topological order, for each gate (i, j, k, T), do the following:

• If T = ⊕, compute [ak] := [ai] ⊕ [aj] and [bk] := [bi] ⊕ [bj].
• If T = ∧, execute as follows:

1. If PA is honest, then sample âk ← {0, 1}, else receive âk ∈ {0, 1} from
S.

2. If PB is honest, then compute b̂k := (ai⊕bi)∧(aj ⊕bj)⊕âk. Otherwise,
receive b̂k ∈ {0, 1} from S, and re-compute âk := (ai ⊕ bi) ∧ (aj ⊕
bj) ⊕ b̂k.

Let â and b̂ be the vectors consisting of bits âk and b̂k for k ∈ W. Run
AuthA(â) and AuthB(b̂) to generate [â] and [b̂], respectively.

– Output M and ([a], [â], [b∗], [b̂]) to PA and PB.

Fig. 3. Compressed preprocessing functionality for authenticated triples.

• PA outputs DA[xy] := α · x + MA[x]β ∈ F2κ .
• PB outputs DB[xy] := KB[x]β .

Actively Secure Half-Gates with Minimum Overhead 53

In our protocol we utilize the following properties of dual key authentication.
Since they are straightforward we only provide brief explanation and refrain from
providing detailed description.

Claim. The dual-key authentication is additively homomorphic. In particular,
given 〈x1〉 := (DA[x1],DB[x1]) and 〈x2〉 := (DA[x2],DB[x2]), PA,PB can locally
compute 〈x1 + x2〉 := (DA[x1] + DA[x2],DB[x1] + DB[x2]).

The additive homomorphism of dual-key authentication implies that given
public coefficients c0, c1, . . . , c� ∈ F2κ , two parties can locally compute 〈y〉 :=
c0 +

∑�
i=1 ci · 〈xi〉.

We define the zero-checking macro CheckZero2 which ensures soundness for
both parties. We note that this is simply the equality checking operations.

– CheckZero2(〈x1〉, ...〈x�〉): On input dual-key authenticated values 〈x1〉, ...〈x�〉
both parties check xi = 0 for i ∈ [1, �] as follows:
1. PA computes hA := H(DA[x1], ...,DA[x�]), and PB sets hB := H(DB[x1], ...,

DB[x�]), where H : {0, 1}∗ → {0, 1}κ is a random oracle.
2. Both parties call functionality FEQ to check hA = hB. If FEQ outputs false,

the parties abort.

Notice that the additive homomorphic and zero-checking properties allow us to
check that a dual-key authenticated value 〈x〉 matches a public value x′ assuming
the existence of 〈1〉 = (DA[1],DB[1]) by calling CheckZero2(〈x〉 − x′〈1〉). Similar
to CheckZero we have the following soundness lemma of CheckZero2.

Lemma 2. If ΔA,ΔB ∈ F2κ is sampled uniformly at random and are non-zero,
then the probability that there exists some i ∈ [1, �] such that xi �= 0 and PA or
PB accepts in the CheckZero2 procedure is bounded by 2

2κ .

4.2 Global-Key Sampling

We require ΔA �= 0, ΔB �= 0, and lsb(ΔAΔB) = 1 in the preprocessing phase
to facilitate dual-key authentication. Considering the requirement of half-gates
garbling, we have the constraints lsb(ΔA) = 1, msb(ΔB) = 1, and lsb(ΔAΔB) = 1
in Fcpre. We design the protocol Πsamp in Fig. 4 and argue in Lemma 3 that the
key constraints are satisfied.

Lemma 3. The protocol Πsamp satisfies the following properties:

– The outputs satisfy that lsb(ΔA) = 1, msb(ΔB) = 1, and lsb(ΔAΔB) = 1 in
the honest case.

– If lsb(ΔA) �= 1 then PB aborts except with probability 2−ρ. Conditioned on
ΔA �= 0, if lsb(ΔAΔB) �= 1 then PB aborts except with probability 2−ρ.

– If msb(ΔB) �= 1 then PA aborts except with probability 2−ρ. Conditioned on
ΔB �= 0, if lsb(ΔAΔB) �= 1 then PB aborts except with probability 2 ·2−κ +2−ρ.

54 H. Cui et al.

Protocol Πsamp

PA samples ΔA ← F2κ such that lsb(ΔA) = 1. PB samples Δ̃B ← F2κ such that
msb(Δ̃B) = 1. Then, PA and PB execute the following steps.

1. PA and PB call functionality FCOT on respective input (init, sid0, ΔA) and
(init, sid0), and then call FCOT on the same input (extend, sid0, ρ) to generate
random authenticated bits [u]B.

2. Then PA convinces PB that lsb(ΔA) = 1 by sending a ρ-bit vector m0
A :=

(lsb(KA[u1]), . . . , lsb(KA[uρ])) to PB, who checks that m0
A = (lsb(MB[u1]) ⊕

u1, . . . , lsb(MB[uρ]) ⊕ uρ) holds.
3. PB runs Fix(sid0, Δ̃B) to generate [Δ̃B]ΔA . Then, PA sends m1

A = lsb(KA[Δ̃B])
to PB, and PB sends m1

B = lsb(MB[Δ̃B]) to PA in parallel. If m1
A ⊕ m1

B = 0,
both parties compute [ΔB]ΔA := [Δ̃B]ΔA ⊕ 1 where ΔB = Δ̃B ⊕ 1; otherwise,
the parties set [ΔB]ΔA := [Δ̃B]ΔA .

4. PA and PB calls FCOT on respective input (init, sid′
0) and (init, sid′

0, ΔB), and
then call FCOT on the same input (extend, sid′

0, ρ) to generate random authen-
ticated bits [v]A.

5. Then PB convinces PA that msb(ΔB) = 1 by sending a ρ-bit vector m0
B :=

(msb(KB[v1]), . . . ,msb(KB[vρ])) to PA, who checks that m0
B = (msb(MA[v1]) ⊕

v1, . . . ,msb(MA[vρ]) ⊕ vρ) holds.
6. PA and PB execute the following steps to mutually check that lsb(ΔA ·ΔB) = 1.

(a) Both parties call FCOT on the same input (extend, sid0, ρ) to generate
random authenticated bits [x]B, as well as run Fix(sid0, ΔB · x) to gen-
erate [ΔB · x]B. PB proves to PA that a set of authenticated triples
{([xi]B, [ΔB]B, [xiΔB]B)}i∈[1,ρ] is valid by calling FDVZK, and PA aborts if
it receives false from FDVZK.

(b) Both parties set 〈x〉 := Convert1[·]→〈·〉([ΔB · x]B). Then, PA sends m2
A :=

(lsb(DA[x1]), . . . , lsb(DA[xρ])) to PB, who checks that m2
A = (lsb(DB[x1]) ⊕

x1, . . . , lsb(DB[xρ]) ⊕ xρ).
(c) The parties run Fix(sid′

0, ΔA) to generate [ΔA]A.
(d) Both parties call FCOT on the same input (extend, sid′

0, ρ) to generate
random authenticated bits [y]A, as well as run Fix(sid′

0, ΔA · y) to gen-
erate [ΔA · y]A. PB proves to PA that a set of authenticated triples
{([yi]A, [ΔA]A, [yiΔA]A)}i∈[1,ρ] is valid by calling FDVZK, and PB aborts if
it receives false from FDVZK.

(e) Both parties set 〈y〉 := Convert1[·]→〈·〉([ΔA · y]A). Then, PB sends m2
B :=

(lsb(DB[y1]), . . . , lsb(DB[yρ])) to PA, who checks that m2
B = (lsb(DA[y1]) ⊕

y1, . . . , lsb(DA[yρ]) ⊕ yρ).
(f) Both parties locally compute two dual-key authenticated bits 〈1B〉 :=

Convert1[·]→〈·〉([ΔB]B) and 〈1A〉 := Convert1[·]→〈·〉([ΔA]A).
(g) The parties run CheckZero2(〈1B〉 − 〈1A〉), and abort if the check fails.

7. PA outputs (ΔA, α0) and PB outputs (ΔB, β0), such that lsb(ΔA) = 1,
msb(ΔB) = 1, lsb(ΔA · ΔB) = 1 and α0 + β0 = ΔA · ΔB ∈ F2κ .

Fig. 4. Sub-protocol for sampling global keys.

Actively Secure Half-Gates with Minimum Overhead 55

Proof. For the honest case since PA and PB follow the protocol instruction when
sampling keys, the constraints on ΔA and ΔB are satisfied automatically. More-
over, notice that lsb(ΔAΔ̃B) = lsb(KA[Δ̃B]) ⊕ lsb(MB[Δ̃B]) and lsb(ΔA) = 1. If
the parties discover in step 6b that lsb(ΔAΔ̃B) = 0, PB sets ΔB := Δ̃′

B ⊕ 1 and
lsb(ΔAΔB) = lsb(ΔAΔ̃B + ΔA) = 1.

For the case of a corrupted PA, notice that lsb(KA[r])⊕lsb(MB[r]) = r·lsb(ΔA)
and lsb(DA[r]) ⊕ lsb(DB[r]) = r · lsb(ΔAΔB) for r ∈ F2. If lsb(ΔA) = 0 then PA

passing the test is equivalent to m0
A ⊕ (lsb(KA[u1]), ..., lsb(KA[uρ])) = u which

happens with 2−ρ probability since u is sampled independently from the left-
hand side of the equation. Conditioned on ΔA �= 0, the second test passes when
lsb(ΔAΔB) = 0 except with 2−ρ probability from similar argument.

For the case of a corrupted PB, the checks in step 5 and step 6e are equivalent
to the corrupted PA case. Thus the soundness of the first check is 2−ρ. Also
Lemma 2 guarantees that inconsistent ΔB will be detected except with 2 · 2−κ

probability. By union bound the soundness of the second check is 2 · 2−κ + 2−ρ.

4.3 Consistency Check Between Values and MAC Tags

In our protocol to generate dual-key authentication, we need a party (e.g., PB)
to use the MAC tags (denoted as {βi}) of some existing IT-MAC authenti-
cated values as the global keys of another FbCOT instance (denoted as {β′

i}).
We enforce this constraint by checking equality between values authenticated by
different keys. Our first observation is that the MAC tags are already implicitly
authenticated by Δ−1

A .

Authentication Under Inverse Key. We define the Invert macro to locally convert
[x]B = (KA[x],MB[x], x) to [y]B,Δ−1

A
:= (KA[y]Δ−1

A
,MB[y]Δ−1

A
, y). We note that

this technique appeared previously in the certified VOLE protocols [18].

– [y]B,Δ−1
A

← Invert([x]B): On input [x]B for x ∈ F2κ , PA and PB execute the
following:

• PB outputs y := MB[x] and MB[y]Δ−1
A

:= x.

• PA outputs KA[y]Δ−1
A

:= KA[x] · Δ−1
A ∈ F2κ .

We demonstrate the correctness of the Invert macro as follows.

Lemma 4. Let [x]B = (α, β, x) where x ∈ F2κ then the MAC tag of PB, β, is
implicitly authenticated by Δ−1

A , i.e., the inverse of PA’s global key over F2κ .

This claim can be verified by multiplying both side of the equation by Δ−1
A .

β
︸︷︷︸
MB[x]

= α︸︷︷︸
KA[x]

+x · ΔA =⇒ x︸︷︷︸
MB[β]Δ−1

A

= α · Δ−1
A︸ ︷︷ ︸

KA[β]Δ−1
A

+β · Δ−1
A .

56 H. Cui et al.

Random Inverse Key Authentication. Notice that in the Invert macro, if we
require the input [x] to be uniformly random, i.e., x ← F2κ , then the output
value y := MA[x] = xΔA − KB[x] is also uniformly random in the view of PA.
Using this method we can generate random F2κ elements authenticated by Δ−1

A .

Equality Check Across Different Keys. We recall a known technique to verify
equality between two values authenticated by respective independent keys [16],
which we summarize in the EQCheck macro. We recall its soundness in Lemma
5 and prove it in the full version [14]. In the following, we assume that FCOT has
been initialized with (sid, ΔA) and (sid′, Δ′

A).

– EQCheck({[yi]ΔA
}i∈[1,�], {[y′

i]Δ′
A
}i∈[1,�]): On input two sets of authenticated

values under different keys ΔA,Δ′
A, PA and PB check that yi = y′

i for all
i ∈ [1, �] as follows:
1. Let [yi]ΔA

= (ki,mi, yi) and [y′
i]Δ′

A
= (k′

i,m
′
i, y

′
i). Two parties PA

and PB run Fix(sid, {m′
i}i∈[1,�]) to obtain a set of authenticated values

{[m′
i]ΔA

}i∈[1,�], and also run Fix(sid′, {mi}i∈[1,�]) to get another set of
authenticated values {[mi]Δ′

A
}i∈[1,�].

2. For each i ∈ [1, �], PA computes Vi := ki · Δ′
A + k′

i · ΔA + KA[mi]Δ′
A

+
KA[m′

i]ΔA
∈ F2κ , and PB computes Wi := MB[mi]Δ′

A
+ MB[m′

i]ΔA
∈ F2κ .

3. PB sends h := H(W1, . . . ,W�) to PA, who verifies that h = H(V1, . . . , V�).
If the check fails, PA aborts.

Lemma 5. If ΔA and Δ′
A are independently sampled from F2κ , then the prob-

ability that there exists some i ∈ [1, �] such that yi �= y′
i and PA accepts in the

EQCheck procedure is bounded by 3
2κ .

The Consistency Check. The observation in Lemma 4 suggests that the MAC
tags {βi} are already implicitly authenticated by Δ−1

A . Moreover, by calling
Fix(Δ′

A), PA and PB can acquire {[Δ′
A]β′

i
} and locally convert them to {[β′

i]Δ′
A
}.

Since ΔA and Δ′
A are independent, we can apply EQCheck to complete our goal.

We list the differences that inverse key authentication induces to EQCheck.
Recall that FCOT has been initialized with (sid, ΔA) and (sid′, Δ′

A).

– EQCheck({[βi]Δ−1
A

}i∈[1,�], {[β′
i]Δ′

A
}i∈[1,�]): On input two sets of authenticated

values under different keys Δ−1
A ,Δ′

A, PA and PB check that βi = β′
i for all

i ∈ [1, �] as follows:
1. PA and PB call FCOT on the same input (extend, sid, �κ) to get authen-

ticated bits [r1]ΔA
, . . . , [r�]ΔA

with ri ∈ F
κ
2 . Then, for i ∈ [1, �], both

parties define [ri]ΔA
:= B2F([ri]ΔA

) with ri ∈ F2κ , and set [si]Δ−1
A

:=
Invert([ri]ΔA

).
2. PA and PB run EQCheck({[βi]Δ−1

A
}i∈[1,�], {[β′

i]Δ′
A
}i∈[1,�]) as described

above, except that they use random authenticated values [si]Δ−1
A

for

i ∈ [1, �] to generate chosen authenticated values under Δ−1
A in the Fix

procedure.

Actively Secure Half-Gates with Minimum Overhead 57

It is straightforward to verify the soundness is not affected by changing to the
inverse key. Thus we omit the proof of the following lemma.

Lemma 6. If ΔA and Δ′
A are independently sampled from F2κ , then the prob-

ability that there exists some i ∈ [1, �] such that βi �= β′
i and PA accepts in the

EQCheck procedure is bounded by 3
2κ .

4.4 Circuit Dependent Compressed Preprocessing

We now describe the protocol to realize the functionality Fcpre. Following the
conventions of previous works, we defer all consistency checks to the end of the
protocol. Notice that step 1 to step 5 corresponds to the circuit-independent
phase (where we only require the scale rather than the topology information
of the circuit) while the rest is the circuit-dependent phase (where the entire
circuit is known). The protocol is shown in Fig. 5 and Fig. 6. We then analyze
its security in Theorem 1. The proof is presented in the full version [14].

Theorem 1. Protocol Πcpre shown in Figs. 5 and 6 securely realizes function-
ality Fcpre (Fig. 3) against malicious adversaries in the (FCOT,FbCOT,FDVZK,
FEQ,FRand)-hybrid model.

Consistency Checks. We explain the rationale of the consistency checks in Πcpre.

– The FDVZK in step 11 checks that the Fix inputs of PA in step 6 and those of
PB in step 6 and step 3 are well-formed.

– The CheckZero2 and EQCheck in step 12 ensure to PA that the multiple
instances of ΔB in Πsamp (Fig. 4) and Πcpre (step 4 and step 5 in Fig. 5) are
identical. Also, PB can make sure that Δ′

A in step 4 and step 5 of Πcpre (Fig. 5)
are identical.

– PB checks that the message in step 9 of Πcpre from PA are correct. To do this,
PB checks its locally computed value against the dual-key authenticated value,
which is unalterable. Moreover, we reduce the communication using random
linear combination. This is done in step 14 and step 15 of Πcpre (Fig. 6).

– PA checks that the Fix inputs of PB in step 10 of Πcpre (Fig. 6) are correct. This
is done by checking the IT-MAC authenticated values against the dual-key
authenticated ones in step 16 of Πcpre (Fig. 6).

Optimization Based on Fiat-Shamir. In the protocol Πcpre, both parties choose
random public challenges by calling functionality FRand. Based on the Fiat-
Shamir heuristic [19], both parties can generate the challenges by hashing the
protocol transcript up until this point, which is secure in the random oracle
model. This optimization can save one communication round, and has also been
used in previous work such as [10,43].

58 H. Cui et al.

Protocol Πcpre

Inputs: A Boolean circuit C that consists of a list of gates of the form (i, j, k, T).
Let n = |W| + |IB|, m = |W| + |IA|, L = �ρ log 2en

ρ
+ log ρ

2
� and t = |W|.

Initialize: PA and PB execute sub-protocol Πsamp (Figure 4) to obtain (ΔA, α0)
and (ΔB, β0) respectively, such that lsb(ΔA) = 1, msb(ΔB) = 1, lsb(ΔA · ΔB) = 1
and α0 +β0 = ΔA · ΔB ∈ F2κ . Thus, both parties hold 〈1〉 (i.e., [ΔB]ΔA). After the
sub-protocol execution, FCOT was initialized by session identifier sid0 and ΔA.

Generate authenticated AND triples: PA and PB execute as follows:

1. PB samples a matrix M ← F
n×L
2 and sends it to PA.

2. Both parties call FCOT on input (extend, sid0, L) to generate random authen-
ticated bits [b∗] where b∗ ∈ F

L
2 and compute [b] := M · [b∗] with b ∈ F

n
2 .

3. Both parties run Fix(sid0, {b∗
i ΔB}i∈[1,L]) to generate authenticated values

[b∗
i ΔB]B. The parties locally run 〈b∗

i 〉 ← Convert1[·]→〈·〉([b
∗
i ΔB]ΔA). Let αi, βi ∈

F2κ such that αi + βi = b∗
i · ΔA · ΔB for each i ∈ [1, L].

4. PB and PA call FL+1
bCOT on respective inputs (init, sid1, β1, ..., βL, ΔB) and

(init, sid1). Then, both parties send (extend, sid1, m) to FL+1
bCOT, which returns

([a]β1 , . . . , [a]βL , [a]ΔA) where a ∈ F
m
2 . Then, PA samples Δ′

A ← F2κ , and then
two parties run Fix(sid1, Δ

′
A) to obtain ([Δ′

A]β1 , . . . , [Δ′
A]βL , [Δ′

A]ΔB). PA and

PB set 〈1(1)
B 〉 := Convert1[·]→〈·〉([ΔB]Δ′

A
) where [ΔB]Δ′

A
is equivalent to [Δ′

A]ΔB ,

and define [βi]Δ′
A

= [Δ′
A]βi for i ∈ [1, L].

5. PB and PA call F2
bCOT on respective input (init, sid2, β0, ΔB) and (init, sid2).

Then, both parties send (extend, sid2, t) to F2
bCOT, which returns ([â]β0 , [â]ΔB)

to the parties. PA and PB run Fix(sid2, Δ
′
A) to get [Δ′

A]β0 and [Δ′
A]ΔB , and

then locally convert to [β0]Δ′
A

and [ΔB]Δ′
A
. Then, both parties set 〈1(2)

B 〉 :=

Convert1[·]→〈·〉([ΔB]Δ′
A

).

6. For w ∈ IA, PA and PB set [bw] = [0]; for w ∈ IB, both parties set [aw] = [0].
For each wire w ∈ IA ∪ W, two parties define [aw] in [a] as the authenticated
bit on wire w; for each wire w ∈ IB ∪W, define [bw] in [b] as the authenticated
bit on wire w. In a topological order, for each gate (i, j, k, T), PA and PB do
the following:

– If T = ⊕, compute [ak] := [ai] ⊕ [aj] and [bk] := [bi] ⊕ [bj].
– If T = ∧, PA computes ai,j := ai ∧ aj , and PB computes bi,j := bi ∧ bj .

7. Both parties run Fix(sid0, {bi,j}(i,j,∗,∧)∈Cand
) to generate a set of authenticated

bits {[bi,j]}, and also execute Fix(sid2, {ai,j}(i,j,∗,∧)∈Cand
) to generate a set of

authenticated bits {[ai,j]}.
8. For i ∈ [1, n], j ∈ [1, L], PA and PB set 〈aib

∗
j 〉 := Convert2[·]→〈·〉([ai]βj , 〈b∗

j 〉).
Then, both parties collect these dual-key authenticated bits to obtain 〈aib

∗〉,
and compute 〈aibj〉 and 〈ajbi〉 for each AND gate (i, j, k, ∧) from M · 〈aib

∗〉
for i ∈ [1, n]. Further, both parties set 〈âk〉 := Convert2[·]→〈·〉([âk]β0 , 〈1〉) and
〈ai,j〉 ← Convert2[·]→〈·〉([ai,j]β0 , 〈1〉).

Fig. 5. The compressed preprocessing protocol for a Boolean circuit C.

Communication Complexity. As recent PCG-like COT protocols have commu-
nication complexity sublinear to the number of resulting correlations, we can
ignore the communication cost of generating random COT correlations when

Actively Secure Half-Gates with Minimum Overhead 59

Protocol Πcpre, continued

9. For each AND gate (i, j, k, ∧), PA and PB locally compute 〈b̃k〉 := 〈ai,j〉 ⊕
〈aibj〉 ⊕ 〈ajbi〉 ⊕ 〈âk〉. Then, for each k ∈ W, PA sends lsb(DA[b̃k]) to PB, who
computes b̃k := lsb(DA[b̃k]) ⊕ lsb(DB[b̃k]). For each AND gate (i, j, k, ∧), PB

computes b̂k := b̃k ⊕ bi,j .
10. Both parties run Fix(sid0, {b̂k}k∈W) to obtain [b̂k] for each k ∈ W.

Consistency check: PA and PB perform the following consistency-check steps:

11. Let [B∗
i] = [b∗

i ΔB]ΔA produced in the previous phase. Both parties call FDVZK

to prove the following statements hold:
– For each AND gate (i, j, k, ∧), for ([bi], [bj], [bi,j]), bi,j = bi ∧ bj .
– For each AND gate (i, j, k, ∧), for ([ai], [aj], [ai,j]), ai,j = ai ∧ aj .
– For each i ∈ [1, L], for ([b∗

i], [ΔB], [B∗
i]), B∗

i = b∗
i · ΔB.

12. PA and PB call FCOT on respective input (init, sid3, Δ′
A) and

(init, sid3). Then they run [ΔB]Δ′
A

:= Fix(sid3, ΔB) and 〈1(3)
B 〉 :=

Convert1[·]→〈·〉([ΔB]Δ′
A
). PA and PB run CheckZero2(〈1(1)

B 〉 − 〈1(2)
B 〉, 〈1(2)

B 〉 −
〈1(3)

B 〉) and EQCheck([ΔB]ΔA , [ΔB]Δ′
A
) to check that Δ′

A, ΔB are con-
sistent when it is used in different functionalities. Both parties run
[βi]Δ−1

A
← Invert([b∗

i ΔB]ΔA) for each i ∈ [0, L], and then execute

EQCheck({[βi]Δ−1
A

}i∈[0,L], {[βi]Δ′
A
}i∈[0,L]).

13. PA and PB call FCOT on input (extend, sid0, κ) to generate a vector of random
authenticated bits [r]B with r ∈ F

κ
2 , and run [r]B ← B2F([r]B) where r =∑

i∈[0,κ) ri · Xi ∈ F2κ . Then both parties run Fix(sid0, r · ΔB) to obtain [r ·
ΔB]ΔA . The parties execute 〈r〉 ← Convert1[·]→〈·〉([r · ΔB]ΔA).

14. PA and PB call FRand to sample a random element χ ∈ F2κ .
15. PA convinces PB that b̃k is correct (and thus b̂k is correct) for k ∈ W as follows.

(a) Both parties compute 〈y〉 :=
∑

k∈W χk · 〈b̃k〉 + 〈r〉. Then PB sends y to
PA.

(b) The parties execute CheckZero2(〈y〉 − y · 〈1〉).
16. PB convinces PA that [b̂k] is correct for k ∈ W as follows:

(a) For each AND gate (i, j, k, ∧), PA and PB compute [b̃k]B := [b̂k]B ⊕ [bi,j]B.
(b) Both parties compute [y]B :=

∑
k∈W χk · [b̃k]B + [r]B.

(c) PA and PB run CheckZero([y]B − y).

Output: PA and PB output a matrix M along with ([a], [â], [b∗], [b̂]).

Fig. 6. The compressed preprocessing protocol for a Boolean circuit C, continued.

counting the communication amortized to every triple. Our checking protocols
only introduce a negligibly small communication overhead. Therefore, the Fix
procedure brings the main communication cost where Fix is used to transform
random COT to chosen COT. Also, since parameter L is logarithmic to the
number n of triples, we only need to consider the Fix procedures related to n.

This includes IT-MAC generation of ai,j (from PA to PB in step 6 of Fig. 5),
bi,j (from PB to PA in the same step), b̂k (from PB to PA in step 10 of Fig. 6).
In addition, for each triple, PA needs to send lsb(D[b̃k]) to PB in step 9 of Fig. 6.
Overall, the one-way communication cost is 2 bits per triple.

60 H. Cui et al.

5 Authenticated Garbling from COT

Now we describe the online phase of our two-party computation protocol. We first
introduce a generalized distributed garbling syntax which can be instantiated
by different schemes and then introduce the complete Boolean circuit evaluation
protocol Π2PC.

5.1 Distributed Garbling

We define the format of distributed garbling using two macros Garble and Eval,
assuming that the preprocessing information is ready. Notice that these two
macros can be instantiated by different garbling schemes. In our main protocol
that optimizes towards one-way communication we instantiate it using the dis-
tributed half-gates garbling [29] whereas we use the optimized WRK garbling of
Dittmer et al. [16] for the version that optimizes towards two-way communica-
tion. We recall the respective schemes in the full version [14].

– Garble(C): PA and PB perform local operations as follows:
• PA computes and outputs (GCA, {Lw,0, Lw,1}w∈IA∪IB∪W∪O).
• PB computes and outputs GCB.

– Eval(GCA,GCB, {(Λw, Lw,Λw
)}w∈IA∪IB

): PB evaluates the garbled circuit and
obtain {Λw, Lw,Λw

}w∈W∪O.

The addition of evaluator’s random masks is to decouple the abort probability
with the real input values (recall that the Eval function only requires masked
values). The following definition captures this security property.

Definition 2. For a distributed garbling scheme with preprocessing defined by
Garble and Eval, consider the event Bad where the evaluator aborts or outputs
masked wire value Λw that is incorrect (wrt. the input values of Eval and the
masks of preprocessing). We call a distributed garbling scheme to be ε-selective
failure resilience, if conditioned on the garbled circuit GCA,GCB, the evaluator’s
candidate input wire labels {(Lw,0, Lw,1)}w∈IB

and the garbler’s input wire masked
values and labels {(Λw, Lw)}w∈IA

, for any two pairs of PB’s inputs y,y′, we have

|Pr[Bad|y] − Pr[Bad|y′]| ≤ ε ,

where Pr[Bad|y] denotes the probability that the event Bad happens when the
evaluator’s input value is y and with aforementioned conditions.

With uncompressed preprocessing the DILO-WRK and KRRW distributed
garbling (recalled in the full version [14].) has 0-selective failure resilience [29,36]
since the inputs Λw to Eval are completely masked and independent of the real
input. In Lemma 9 we show that for the DILO-WRK and KRRW schemes,
replacing the evaluator’s mask to ρ-wise independent randomness induces 2−ρ-
selective failure resilience.

The next lemma states that after evaluating the garbled circuit the garbler
and evaluator implicitly holds the authentication of the masked public wire val-
ues (color/permutation bits). To the best of our knowledge we are the first to
apply this observation in the consistency check of authenticated garbling.

Actively Secure Half-Gates with Minimum Overhead 61

Lemma 7. After running Eval, the evaluator holds the ‘color bits’ Λw for every
wire w ∈ W. The garbler PA and evaluator PB also hold KA[Λw],MB[Λw] subject
to MB[Λw] = KA[Λw] + ΛwΔA.

Proof. We can define the following values using only wire labels:

Λw := (Lw,0 ⊕ Lw,Λw
) · Δ−1

A , MB[Λw] := Lw,Λw
, KA[Λw] := Lw,0 .

It is easy to verify MB[Λw] = KA[Λw] + Λw · ΔA, which implies that [Λw]B :=
(Lw,0, Lw,Λw

, Λw) is a valid IT-MAC.

5.2 A Dual Execution Protocol Without Leakage

We describe a malicious secure 2PC protocol with almost the same one-way
communication as half-gates garbling. We achieve this by adapting the dual
execution technique to the distributed garbling setting. Intuitively, our observa-
tion in Lemma 7 allows us to check the consistency of every wire of the circuit.
Together with some IT-MAC techniques to ensure input consistency, our proto-
col circumvents the one-bit leakage of previous dual execution protocols [27,28].

In the following descriptions, we denote the actual value induced by the input
on each wire w of the circuit C by zw. The masked value on that wire is denoted
as Λw := zw ⊕aw ⊕ bw which is revealed to the evaluator during evaluation. The
protocol is described in Fig. 7 and Fig. 8.

Intuitions of Consistency Checking. The security of the semi-honest garbled
circuit guarantees that when the garbled circuit is correctly computed, then
except with negligible probability the evaluator can only acquire one of the two
labels (corresponding to the execution path) for each wire in the circuit. Thus, we
can check the color bits of the honest party against the labels that the corrupted
party acquires (in the separate execution) to verify consistency.

Using the notations from Lemma 7, let Λ̄w := (Lw,Λw
⊕ Lw,0) · Δ−1

A , Λ̄′
w :=

(L′
w,Λ′

w
⊕L′

w,0)·Δ−1
B for w ∈ W. Our goal is to check the following equations where

the left-hand (resp. right-hand) side is the evaluation result of PA (resp. PB).

Λ̄′
w ⊕ a′

w ⊕ b′
w = Λw ⊕ aw ⊕ bw for the corrupted PA case, (1)

Λ′
w ⊕ a′

w ⊕ b′
w = Λ̄w ⊕ aw ⊕ bw for the corrupted PB case. (2)

Multiplying the first equation by ΔB, the second by ΔA and do summation3

gives the Ṽ A
w , Ṽ B

w values in the consistency checking.

(aw + a′
w + Λ′

w)ΔA + MA[aw + a′
w]

+MA[Λ̄′
w] + KA[bw + b′

w + Λ̄w] =
(bw + b′

w + Λw)ΔB + MB[bw + b′
w]

+MB[Λ̄w] + KB[aw + a′
w + Λ̄′

w]

3 We define aw, a′
w, bw, b′

w by the MAC tag and keys to implicitly authenticate them.

62 H. Cui et al.

Protocol Π2PC

Inputs: In the preprocessing phase, PA and PB agree on a Boolean circuit C with
circuit-input wires IA ∪ IB, output wires of all AND gates W and circuit-output
wires O. In the online phase, PA holds an input x ∈ {0, 1}|IA| and PB holds an input

y ∈ {0, 1}|IB|; PB will receive the output z = C(x, y). Let H : {0, 1}2κ → {0, 1}κ

and H′ : {0, 1}∗ → {0, 1}κ be two random oracles.

Preprocessing: PA plays the role of a garbler and PB acts as an evaluator, and
two parties execute as follows:

1. Both parties call Fcpre to obtain a matrix M and vectors of authenticated bits
([a], [â], [b∗], [b̂]). The parties locally compute [b] := M · [b∗].

2. Following a predetermined topological order, PA and PB use ([a], [â], [b], [b̂]) to
obtain authenticated masks [aw], [bw] for each wire w and other authenticated
bits that will be used in the construction of authenticated garbling.

3. Using the authenticated bits from the previous step and the KRRW gar-
bling scheme, PA and PB run Garble to generate a distributed garbled circuit
(GCA, GCB), and PA sends GCA to PB. For each wire w, two garbled labels
Lw,0, Lw,1 ∈ {0, 1}κ are generated and satisfy Lw,1 = Lw,0 ⊕ ΔA. PA knows the
label Lw,0 for each wire w as well as ΔA.

Online: In the following steps, PA securely transmits one label on each circuit-
input wire to PB, and PB evaluates the circuit.

4. For each w ∈ IA, PA computes a masked value Λw := xw ⊕ aw ∈ {0, 1}, and
then sends (Λw, Lw,Λw) to PB.

5. PA and PB call FCOT on respective input (init, sid, ΔA) and (init, sid), and then
send (extend, sid, |IB|) to FCOT, which returns random authenticated bits [r]B
to the parties.

6. For each w ∈ IB, PB computes Λw := yw ⊕ bw and then sends dw := Λw ⊕ rw

to PA. Both parties set [Λw]B := [rw]B ⊕ dw. For each w ∈ IB, PA sends
mw,0 := H(KA[Λw], w‖1) ⊕ Lw,0 and mw,1 := H(KA[Λw] ⊕ ΔA, w‖1) ⊕ Lw,1 to
PB, who computes Lw,Λw := mw,Λw ⊕ H(MB[Λw], w‖1).

7. PB runs Eval(GCA, GCB, {(Λw, Lw,Λw)}w∈IA∪IB) to obtain (Λw, Lw,Λw) for
each wire w ∈ W ∪ O. For each w ∈ W, both parties define [Λw]B =
(Lw,0, Lw,Λw , Λw).

Fig. 7. Actively secure 2PC protocol in the Fcpre-hybrid model.

Communication Complexity. In our dual execution protocol, PA and PB sends
(2κ + 1)t + (κ + 1)|IA| + 2κ|IB| + κ + |O| and (2κ + 1)t + (κ + 2)|IB| + 2κ|IA|
bits respectively. Therefore the amortized one-way communication is 2κ+1 bits
per AND gate. Since we need to call Fcpre twice in Π2PC, we conclude that the
amortized one-way (resp. two-way) communication in the (FCOT, FbCOT, FDVZK,
FEQ, FRand)-hybrid model is 2κ + 5 (resp. 4κ + 10) bits.

For the second version that combines Πcpre and the optimized WRK online
protocol, the amortized one-way (resp. two-way) communication is 2κ + 3ρ + 2
(resp. 2κ + 3ρ + 4) bits in the same hybrid model.

Actively Secure Half-Gates with Minimum Overhead 63

Protocol Π2PC, continued

Dual execution and consistency check:

8. Re-using the initialization procedure of functionality Fcpre (i.e., the same
global keys ΔA and ΔB are adopted), PA and PB execute the preprocessing
phase as described above again by swapping the roles (i.e., PA is an evaluator
and PB is a garbler). Thus, for each w ∈ W, PA and PB hold [a′

w] and [b′
w].

For each wire w, PB has also the label L′
w,0.

9. Swapping the roles (i.e., PA is the evaluator and PB is the garbler), PA and PB

execute the online phase as described above again, except for the following
differences of processing inputs:
(a) For each w ∈ IB, PA and PB run Open([bw] ⊕ [b′

w] ⊕ [rw]B ⊕ dw) that
enables PA to obtain the masked value Λ′

w = yw ⊕ b′
w, and PB sends

L′
w,Λ′

w
to PA.

(b) For each w ∈ IA, both parties set [Λ′
w]A := [aw] ⊕ [a′

w] ⊕ Λw, and then
garbler PB sends m′

w,0 := H(KB[Λ′
w], w‖2)⊕L′

w,0 and m′
w,1 := H(KB[Λ′

w]⊕
ΔB, w‖2)⊕L′

w,1 to PA, who computes L′
w,Λ′

w
:= m′

w,Λ′
w

⊕H(MA[Λ′
w], w‖2).

After the 2th execution of online phase, PA and PB obtain [Λ′
w]A for all w ∈ W.

10. PA and PB check that (Λw ⊕aw ⊕bw) ·(ΔA⊕ΔB) = (Λ′
w ⊕a′

w ⊕b′
w) ·(ΔA⊕ΔB)

holds by performing the following steps.
(a) For each w ∈ W, PA and PB respectively compute

V A
w = (aw ⊕ a′

w ⊕ Λ′
w)ΔA ⊕ MA[aw] ⊕ MA[a′

w] ⊕ MA[Λ′
w] ⊕ KA[bw]

⊕ KA[b′
w] ⊕ KA[Λw],B = (bw ⊕ b′

w ⊕ Λw)ΔB

⊕ MB[bw] ⊕ MB[b′
w] ⊕ MB[Λw] ⊕ KB[aw] ⊕ KB[a′

w] ⊕ KB[Λ′
w].

(b) PA computes h := H′(V A
1 , . . . , V A

t), and then sends it to PB who checks
that h = H′(V B

1 , . . . , V B
t). If the check fails, PB aborts.

Output processing: For each w ∈ O, PA and PB run Open([aw]) such that PB

receives aw, and then PB computes zw := Λw ⊕ (aw ⊕ bw).

Fig. 8. Actively secure 2PC protocol in the Fcpre-hybrid model, continued.

5.3 Security Analysis

We first give two useful lemmas about the equality checking (following the proofs
of [17,29,36]) refer to the full version [14] for their proofs. We state the security
of our 2PC protocol in Theorem 2 and prove it in the full version [14].

Lemma 8. After the equality check, except with probability 2+poly(κ)
2κ , PB either

aborts or evaluates the garbled circuit exactly according to C(x,y), where we
canonically define the circuit input x,y using the messages in step 4, step 6,
and the randomness from the preprocessing phase.

Lemma 9. For the DILO-WRK and KRRW distributed garbling schemes (see
details in the full version [14].) by sampling the wire masks a,a′, b, b′ using
the compressed preprocessing functionality Fcpre (recall that b := M · b∗,a′ :=
M · (a∗)′ are compressed randomness), the resulting schemes have 2−ρ-selective
failure resilience.

64 H. Cui et al.

Theorem 2. Protocol Π2PC shown in Fig. 7 and Fig. 8 securely realizes func-
tionality F2PC in the presence of malicious adversary in the Fcpre-hybrid model
and the random oracle model.

Acknowledgements. Kang Yang is supported by the National Key Research and
Development Program of China (Grant No. 2022YFB2702000), and by the National
Natural Science Foundation of China (Grant Nos. 62102037, 61932019, 62022018).
Yu Yu is supported by the National Natural Science Foundation of China (Grant
Nos. 62125204 and 92270201), the National Key Research and Development Program
of China (Grant No. 2018YFA0704701), and the Major Program of Guangdong Basic
and Applied Research (Grant No. 2019B030302008). Yu Yu also acknowledges the sup-
port from the XPLORER PRIZE. Xiao Wang is supported by DARPA under Contract
No. HR001120C0087, NSF award #2016240, #2236819, and research awards from Meta
and Google. The views, opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views or policies of the Depart-
ment of Defense or the U.S. Government. We thanks anonymous reviewers for their
helpful comments.

References

1. Abascal, J., Sereshgi, M.H.F., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Is the
classical GMW paradigm practical? the case of non-interactive actively secure 2PC.
In: ACM Conference on Computer and Communications Security (CCS) 2020, pp.
1591–1605. ACM Press (2020). https://doi.org/10.1145/3372297.3423366

2. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to
brie: efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: ACM
Conference on Computer and Communications Security (CCS) 2021, pp. 192–211.
ACM Press (2021). https://doi.org/10.1145/3460120.3484812

3. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: efficient vector-
OLE and zero-knowledge proofs over Z2k . In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 329–358. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15985-5 12

4. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’Cheese: zero-
knowledge proofs for Boolean and arithmetic circuits with nested disjunctions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
92–122. Springer, Cham (2021)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 503–513. ACM Press (1990). https://doi.org/10.1145/100216.100287

6. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE Symposium on Security and Privacy (S&P) 2013,
pp. 478–492 (2013). https://doi.org/10.1109/SP.2013.39

7. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

8. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

https://doi.org/10.1145/3372297.3423366
https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1145/100216.100287
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/3-540-48329-2_24

Actively Secure Half-Gates with Minimum Overhead 65

9. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp.
603–633. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 21

10. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM Conference on Computer and Communications Security
(CCS) 2019, pp. 291–308. ACM Press (2019). https://doi.org/10.1145/3319535.
3354255

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

13. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84252-9 17

14. Cui, H., Wang, X., Yang, K., Yu, Y.: Actively Secure Half-Gates with Minimum
Overhead under Duplex Networks. Cryptology ePrint Archive, Paper 2023/278
(2023). https://eprint.iacr.org/2023/278

15. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 167–187. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 6

16. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Authenticated garbling from simple
correlations. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS,
vol. 13510, pp. 57–87. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15985-5 3

17. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
two multiplications for the price of one. In: ACM Conference on Computer and
Communications Security (CCS) 2022, pp. 829–841. ACM Press (2022). https://
doi.org/10.1145/3548606.3559385

18. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applica-
tions. In: 2nd Conference on Information-Theoretic Cryptography (2021)

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

20. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge, UK (2004)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: 19th Annual ACM
Symposium on Theory of Computing (STOC), pp. 218–229. ACM Press (1987).
https://doi.org/10.1145/28395.28420

22. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Yu.: Better Concrete security for half-
gates garbling (in the multi-instance setting). In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 793–822. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 28

23. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: IEEE Symposium on Security and Privacy (S&P)
2020, pp. 825–841 (2020). https://doi.org/10.1109/SP40000.2020.00016

https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-030-84252-9_17
https://eprint.iacr.org/2023/278
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1109/SP40000.2020.00016

66 H. Cui et al.

24. Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits
with constant communication overhead in the plain model. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70503-3 1

25. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 21

26. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. J. Cryptology 33(4), 1732–1786 (2020). https://doi.
org/10.1007/s00145-020-09355-y

27. Hazay, C., Shelat, A., Venkitasubramaniam, M.: Going beyond dual execution:
MPC for functions with efficient verification. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 328–356.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 12

28. Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest
protocols with dual execution. In: IEEE Symposium on Security and Privacy (S&P)
2012, pp. 272–284 (2012). https://doi.org/10.1109/SP.2012.43

29. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 13

30. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

31. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 16

32. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

33. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

34. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

35. Rosulek, M., Roy, L.: Three halves make a whole? beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part
I. LNCS, vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0 5

36. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: ACM Conference on Computer and Communi-
cations Security (CCS) 2017, pp. 21–37. ACM Press (2017). https://doi.org/10.
1145/3133956.3134053

https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/s00145-020-09355-y
https://doi.org/10.1007/s00145-020-09355-y
https://doi.org/10.1007/978-3-030-45388-6_12
https://doi.org/10.1109/SP.2012.43
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3134053

Actively Secure Half-Gates with Minimum Overhead 67

37. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation.
In: ACM Conference on Computer and Communications Security (CCS) 2017, pp.
39–56. ACM Press (2017). https://doi.org/10.1145/3133956.3133979

38. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for Boolean and arithmetic circuits.
In: IEEE Symposium on Security and Privacy (S&P) 2021, pp. 1074–1091 (2021).
https://doi.org/10.1109/SP40001.2021.00056

39. Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: efficient conversions for
zero-knowledge proofs with applications to machine learning. In: USENIX Security
Symposium 2021, pp. 501–518. USENIX Association (2021)

40. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: interactive zero-
knowledge proofs with sublinear communication. In: ACM Conference on Com-
puter and Communications Security (CCS) 2022, pp. 2901–2914. ACM Press
(2022). https://doi.org/10.1145/3548606.3560667

41. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: efficient and affordable zero-
knowledge proofs for circuits and polynomials over any field. In: ACM Conference
on Computer and Communications Security (CCS) 2021, pp. 2986–3001. ACM
Press (2021). https://doi.org/10.1145/3460120.3484556

42. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. In: ACM Conference on Computer and Communica-
tions Security (CCS) 2020, pp. 1627–1646. ACM Press (2020). https://doi.org/10.
1145/3372297.3417285

43. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for corre-
lated OT with small communication. In: ACM Conference on Computer and Com-
munications Security (CCS) 2020, pp. 1607–1626. ACM Press (2020). https://doi.
org/10.1145/3372297.3417276

44. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 162–167.
IEEE (1986). https://doi.org/10.1109/SFCS.1986.25

45. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-662-46803-6_8

Black-Box Reusable NISC with Random
Oracles

Yuval Ishai1, Dakshita Khurana2, Amit Sahai3,
and Akshayaram Srinivasan4(B)

1 Technion, Haifa, Israel
2 UIUC, Champaign, USA
3 UCLA, Los Angeles, US

4 Tata Institute of Fundamental Research, Mumbai, India

akshayaram@berkeley.edu

Abstract. We revisit the problem of reusable non-interactive secure
computation (NISC). A standard NISC protocol for a sender-receiver
functionality f enables the receiver to encrypt its input x such that any
sender, on input y, can send back a message revealing only f(x, y). Secu-
rity should hold even when either party can be malicious. A reusable
NISC protocol has the additional feature that the receiver’s message can
be safely reused for computing multiple outputs f(x, yi). Here security
should hold even when a malicious sender can learn partial information
about the honest receiver’s outputs in each session.

We present the first reusable NISC protocol for general functions f
that only makes a black-box use of any two-message oblivious transfer
protocol, along with a random oracle. All previous reusable NISC proto-
cols either made a non-black-box use of cryptographic primitives (Cachin
et al. ICALP 2002) or alternatively required a stronger arithmetic vari-
ant of oblivious transfer and were restricted to f in NC1 or similar classes
(Chase et al. Crypto 2019). Our result is obtained via a general compiler
from standard NISC to reusable NISC that makes use of special type of
honest-majority protocols for secure multiparty computation.

Finally, we extend the above main result to reusable two-sided NISC,
in which two parties can encrypt their inputs in the first round and then
reveal different functions of their inputs in multiple sessions. This exten-
sion either requires an additional (black-box) use of additively homo-
morphic commitment or alternatively requires the parties to maintain a
state between sessions.

1 Introduction

Consider the following minimal setting for secure computation. There are two
parties, a sender and a receiver, and two rounds of interaction. In the first round,
the receiver encrypts its input x and sends the resulting message π1 to the sender.
In the second round, the sender uses the message π1 and its input y to compute a
message π2. Based on π2 and its secret randomness, the receiver should compute

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 68–97, 2023.
https://doi.org/10.1007/978-3-031-30617-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_3

Black-Box Reusable NISC with Random Oracles 69

the output f(x, y), for some predetermined f , but should not learn additional
information about the sender’s input y.

When the parties are semi-honest, the problem is relatively easy to solve
by using garbled circuits [Yao86], under the (minimal) assumption that a two-
message oblivious transfer (OT) protocol exists. When security needs to hold
against malicious parties, the problem becomes more challenging, and is referred
to as non-interactive secure computation (NISC) [IKO+11].

NISC is a powerful general-purpose tool for computing on encrypted data. For
instance, NISC enables users (acting as receivers) to safely post their encrypted
sensitive data on the internet, such that any other user (acting as a sender) can
perform a secure computation with them, say to determine whether their profiles
match, by sending a single message. However, despite a significant amount of
research, all of the existing solutions to NISC are unsatisfactory in either of the
following ways:

– Non-black-Box Use of Cryptography. The most natural approach for protect-
ing NISC protocols against malicious parties is by using non-interactive zero-
knowledge (NIZK) proofs for enforcing honest behavior [CCKM00,HK07,
ASH+20]. However, this NIZK-based approach is typically quite impractical,
resulting in orders of magnitude of slowdown compared to the semi-honest
baseline. A good explanation for this is the fact that such NISC protocols
make a non-black-box use of the underlying cryptographic primitives, requir-
ing their explicit representation rather than just making an oracle use of their
input-output relation.

– Limited Reusability. Motivated by the inefficiency of non-black-box protocols,
several works obtained practical NISC protocols that make a black-box use
of cryptographic primitives, typically only a two-message OT protocol and a
pseudorandom generator1 [IKO+11,AMPR14,MR17,DILO22]. In fact, when
cast in the “OT-hybrid” model, where the parties can make parallel calls
to an ideal OT oracle, these protocols are secure against a computationally
unbounded malicious sender. Furthermore, they can efficiently achieve full
information-theoretic security for functions f in NC1 and similar classes. A
subtle but important vulnerability of these protocols is that they are not fully
reusable: If the same receiver message is used in multiple sessions to generate
malformed sender messages, supposedly for computing f(x, y1), f(x, y2), . . .,
then even a partial leakage of the receiver’s outputs can lead to a total break
of security. For example, in the case of zero-knowledge proofs, if the sender
can learn whether the receiver accepts several malformed proofs of true state-
ments, it can make the receiver accept a false statement. This limitation was
shown in [CDI+19] to be inherent for NISC in the OT-hybrid model with a
computationally unbounded sender: There are explicit functions f for which
no such NISC protocol can be reusable.

– Restricted Functionality. To circumvent the above impossibility, Chase et
al. [CDI+19] (with subsequent efficiency improvement in [DIO21]) suggested

1 Since a pseudorandom generator can be constructed from an OT protocol in a black-
box way, OT alone suffices.

70 Y. Ishai et al.

the use of an arithmetic variant of OT, called oblivious linear evaluation
(OLE), instead of standard OT. Their main positive result is an information-
theoretic reusable NISC protocol for arithmetic branching programs in the
OLE-hybrid model, efficiently capturing f in NC1 and similar classes. Beyond
the limitation on f , the reusable flavor of OLE required by the protocol of
Chase et al. [CDI+19] is only known from the DCR assumption [Pai99] (or
alternatively requires preprocessing) and is considerably more expensive to
realize than OT. While it was shown in [CDI+19] how to bootstrap from
branching program to circuits, this step requires a non-black-box use of a
pseudorandom generator.

The above state of affairs suggests the following open question:

Is there a general-purpose reusable NISC protocol that only makes a black-
box use of a two-message OT protocol?

Shouldn’t this be Impossible? Recall that the impossibility result from [CDI+19]
rules out protocols that make parallel calls to an ideal OT oracle and achieve
reusable security against a computationally unbounded sender. Then how can
we hope to achieve the goals above? Our key idea for bypassing this impossibility
result is to make black-box use of the next-message functions and receiver output
function of a two-message OT protocol. Note that this is different than making
black-box use of an ideal OT functionality because it allows for “explaining” the
message produced by one of the next-message functions of the OT protocol by
revealing the inputs and randomness used to produce that message. Nevertheless,
except for the fact that we have to settle for computational security against a
malicious sender, this still allows our protocol to make use of any off-the-shelf
two-message OT protocol when instantiating our approach.

1.1 Our Contribution

Our main result is an affirmative answer to the above question in the random
oracle model. This gives the first reusable NISC protocol for general functions f
that only makes a black-box use of cryptography. In fact, we show the following
more general result.

Theorem 1 (Reusable NISC from NISC, Informal). There is a reusable
NISC protocol for f in the random oracle model that makes a black-box use of
any (non-reusable) NISC protocol for a related f ′.

The theorem is proved via a compiler from standard NISC to reusable NISC
that makes use of special type of honest-majority MPC protocols. Note that stan-
dard NISC can be constructed from any two-message malicious OT in a black-
box way [IKO+11]. Since two-message malicious OT can obtained in a black-box
way from two-message semi-honest OT in the random oracle model [IKSS22a],
we can base our protocol on semi-honest OT. While in this work we focus on fea-
sibility and do not attempt to optimize concrete efficiency, an optimized variant

Black-Box Reusable NISC with Random Oracles 71

of our construction is likely to yield reusable NISC protocols with good concrete
efficiency.

Finally, we extend the above main result to a reusable two-sided variant
of NISC, in which two parties can encrypt their inputs (x, y) and then reveal
different functions fi of their inputs in multiple sessions.2 This extension makes
a black-box use of a “reusable commit-and-prove” primitive which requires the
commitments to the secret input to be reusable across different sessions with
the verifier. We show how to construct such a primitive by making a black-
box use of an additively homomorphic commitment scheme. Alternatively, we
can construct this primitive unconditionally in the random oracle model if the
parties can maintain an updatable state between sessions.

Theorem 2 (Reusable Two-Sided NISC from NISC, Informal). Assume
black-box access to a (non-reusable) one-sided NISC protocol and a non-
interactive reusable commit-and-prove protocol. Then, there exists a reusable
(two-sided) NISC protocol in the random oracle model.

2 Technical Overview

In this section, we give a high-level overview of the key ideas behind our construc-
tion of a black-box reusable NISC protocol in the random oracle model. Later,
we explain the additional challenges in extending these ideas to the two-sided
setting and discuss our approaches to overcome them.

Reusable NISC Protocol. Recall that a non-interactive secure computation
(NISC) protocol for a two-party functionality f is a two-message protocol
between a receiver and a sender that delivers the output of f to the receiver. A
NISC protocol is said to be reusable if the message from the honest receiver is
fixed once and for all and the adversarial sender can execute multiple sessions
with the honest receiver. In each such session, the adversarial sender generates
a new second round message in the protocol and can learn the output com-
puted by the honest receiver.3 It can then adaptively decide to continue with
the next session or stop the execution. We require the view of the adversarial
sender, together with the output of the honest receiver, to be simulatable in an
ideal world where the parties only have access to a trusted functionality that
implements f .

2 In fact, our result applies to a more general notion of two-sided NISC that strictly
generalizes both the above notion and standard (one-sided) NISC.

3 In the actual definition, we consider a more general situation where the adversary
can learn some partial information about the output, such as whether the receiver
aborts. This makes reusable security nontrivial even for functionalities such as OLE,
where the receiver’s output reveals its input. However, for the sake of this overview,
we make the simplifying assumption that the entire receiver output is given to the
adversary.

72 Y. Ishai et al.

Impossibility in the OT- Hybrid Model. Before we explain our solution, let us
first recall the intuition, already discussed in [IKO+11], for why reusable security
is challenging for “natural” NISC protocols. Let’s consider an honest receiver
who has generated the first round message by making several calls to the OT
oracle by acting as the OT receiver. We concentrate on one such call where
the receiver’s choice bit is b. A malicious sender who tries to break the security
of the protocol can make a guess b′ for this bit and give two sender messages
(m0,m1) such that mb′ is correctly generated as per the protocol specification
but m1−b′ is malformed. It provides these two messages as the sender input to
the OT oracle. Now, if the guess b′ was correct, the honest receiver does not
notice this and continues to compute the output. On the other hand, if the
guess was incorrect, then the receiver obtains the malformed sender’s message.
For natural NISC protocols, this makes the receiver abort. Thus, depending on
whether the receiver aborts or not, the sender learns the value of the receiver’s
choice bit b in this OT execution. This is not a major problem in the single-use
NISC setting, as there are standard ways to secret-share the receiver’s input so
that the receiver’s abort event is uncorrelated with its actual input. However,
this has a devastating effect in the case of reusable security. Specifically, for each
one of the OT executions with the receiver, the sender can learn its choice bit
one-at-a-time by mounting the above attack across different sessions. Once the
sender does this, there is no hope of protecting the privacy of the receiver’s input.
Chase et al. [CDI+19] extended this argument to arbitrary protocols, showing
that information-theoretic reusable NISC in the OT-hybrid model is impossible.
This applies even to simple functionalities, such as the OLE4 functionality, for
which efficient information-theoretic protocols in the OT-hybrid model exist in
the non-reusable NISC setting.

Main Goals. Somewhat surprisingly, Chase et al. showed that this impossibility
result can be circumvented if we replace OT-hybrid with the OLE-hybrid model.
Specifically, they proved that even after many sessions with an honest receiver,
a malicious sender cannot obtain any advantage over an ideal execution. Intu-
itively, unlike the case of OT, each receiver’s input to the OLE oracle can only be
guessed with negligible probability. This allows the receiver to detect every cheat-
ing attempt of the sender with overwhelming probability, thereby preventing the
sender from gaining significant information about the OLE inputs. Chase et al.
built on this idea and gave a construction of a reusable NISC in the OLE-hybrid
model. This positive result showed that if we implement the OLE functional-
ity using a two-message OLE protocol with reusable receiver security5 in either
4 OLE is the arithmetic analogue of OT which takes in a field element x from the

receiver, and two field elements (a, b) from the sender and outputs ax + b to the
receiver.

5 In reusable receiver security game, we fix the first round message from the honest
receiver and the corrupted sender could generate multiple second round messages.
We require the joint distribution of the view of the sender and the receiver’s output
in each of the sender executions to be indistinguishable to an ideal world where the
parties have access to the ideal OLE functionality.

Black-Box Reusable NISC with Random Oracles 73

the CRS/RO model, then we have a reusable NISC protocol with same kind of
setup. Unfortunately, such a two-message OLE protocol [CDI+19] is only known
from the DCR assumption [Pai99] and makes heavy use of expensive public-key
cryptography. Furthermore, Chase et al.’s construction for computing circuits
(in contrast to the information-theoretic construction for branching programs)
made non-black-box use of a PRG. Given the above state of the art, the two
main goals of our work are:

1. Explore new approaches to bypass the impossibility in the OT-hybrid model
without resorting to the more expensive OLE primitive.

2. Obtain reusable NISC for circuits while only making a black-box use of cryp-
tography.

Our Approach: Making Black-Box Use of Two-Message OT. The key approach
we take to bypass this impossibility result is to settle for computational security
against a malicious sender, while only making a black-box use of a two-message
OT protocol. Before we explain the technical ideas in our construction, let us first
explain how black-box use of a two-message OT is different from treating the
OT functionality as an oracle (as it is done in the OT-hybrid model). In the OT-
hybrid model, the receiver and the sender have access to an OT functionality. The
OT functionality takes a choice bit b from the receiver and two messages (m0,m1)
from the sender and provides mb to the receiver. The only interface that this
model provides is to receive the private inputs from the parties and give outputs.
In particular, there is no way to “connect” the inputs that the parties provide
to this oracle with the other components in the protocol. On the other hand, in
the black-box two-message OT setting6, we model the oblivious transfer using
the cryptographic algorithms that implement this functionality. Specifically, we
model a two-message OT protocol as a tuple of algorithms (OT1,OT2, outOT)).
OT1 is run by the receiver and takes the receiver’s choice bit b and outputs
the first round message otm1. OT2 is run by the sender and takes the receiver’s
message otm1, the sender’s private input (m0,m1) and outputs the second round
message otm2. outOT is run by the receiver and takes otm2 and the receiver’s
private random tape and outputs mb. Note that the interface that is provided
by these oracles is to take inputs and randomness from the parties and provide
the protocol messages that they need to send to the other parties. We model
these messages as handles and importantly, these handles can be “opened” to
the other party. Specifically, the parties can send the input and randomness used
in generating these handles to the other party which can then check if this handle
was generated correctly by querying the oracles. In other words, one can treat
these handles as commitments to the sender and the receiver inputs to the OT
functionality. As a result, we can use these commitments as a “link” between
the inputs provided by the parties to the OT oracle and the rest of the protocol.
In particular, this opens up new avenues to prove that the messages given to

6 We restrict ourselves to the case of a two-message OT protocol as this gives a two-
message NISC protocol.

74 Y. Ishai et al.

these handles are well-formed and hence, do not give rise to an input-dependent
abort. Such a mechanism was impossible to achieve in the OT-hybrid model.

Challenges. Can we use this observation to upgrade any NISC protocol in the
black-box OT model to have security in the reusable setting? Unfortunately,
this does not seem to be the case and let us explain why. Almost all known
black-box constructions of NISC use a two-message OT protocol to implement a
mechanism called as the watchlists [IPS08]. Roughly, the watchlist mechanism is
a sophisticated cut-and-choose technique that delivers the input and randomness
used by one of the parties in a subset of the executions privately to the other
party. Each party then checks if the other party behaved honestly in the set
of watched executions and if any deviation is detected, the party aborts. If the
set of watched executions are chosen randomly and privately, then this check
ensures that a majority of the unwatched executions are emulated honestly. Once
this is ensured, all these works have developed clever approaches to robustly
combine the outputs from the rest of the executions to compute the output of
the functionality. For this to succeed, it is important that watched executions are
hidden from the corrupted party before it generates its protocol message. This is
typically done by implementing some version of a k-out-of-m OT functionality
where one party choose a random subset of size k as part of its watchlist and the
functionality delivers the input and randomness of the other party corresponding
to each execution in this set. This k-out-of-m OT functionality is implemented
via a black-box access to a 1-out-of-2 OT. Specifically, the receiver chooses a
random subset of size k and computes an encoding of this set. Each bit of the
encoding is used as the choice bit in an execution of an 1-out-of-2 OT protocol.
Regrettably, this technique makes these constructions to again suffer from the
same problem as the one described earlier. In particular, we observe that the
sender can mount a similar selective failure attack (as in the OT-hybrid model)
to learn encoding of the random subset sampled by the receiver one bit at a
time. Once the sender learns this encoding, it can easily break the privacy of the
receiver’s input and cheat in all other executions that are not watched.

At a high-level what this attack shows is that we cannot hope to achieve
reusable security by relying on any mechanism that hides a part of the receiver’s
randomness via an 1-out-of-2 OT. All such mechanisms are bound to be broken
in the reusable setting as a malicious sender can learn this secret randomness
bit-by-bit. In other words, we need a technique where the randomness used in
generating the set of watched executions to come solely from the sender’s side.
This is a bit counter-intuitive as it seems to give the sender the power to fix this
secret randomness to any value. Once the sender knows this value it can trivially
cheat in the other unopened executions and break the security of the protocol.

Random Oracles to the Rescue. We overcome this conundrum by using random
oracles to sample the set of watched executions. Specifically, we pass the sender’s
message through a random oracle and this gives a subset of the executions to
be opened. The correlation-intractability of the random oracle guarantees that
the sender does not have the power to fix this set of opened executions to any

Black-Box Reusable NISC with Random Oracles 75

value of its choice. Importantly, we can ensure that this property holds even
in the reusable setting as we can treat the output to every (new) query made
to the random oracle as an independently chosen random subset. This idea of
using random oracles to sample the set of watched executions is due to Ishai
et al. [IKSS22a]. However, their motivation was to remove the use of malicious-
secure OTs from the watchlist mechanism whereas our motivation is to obtain a
construction in the reusable setting. Coincidentally, the random oracle paradigm
used in their work lends itself nicely to solve the above mentioned issue in the
reusable setting. This leads to a natural question of whether this idea alone is
sufficient to achieve reusability. Unfortunately, this does not seem to be the case
and specifically, the protocol from [IKSS22a] is not reusable.

Overview of [IKSS22a]. Before we see why the protocol from [IKSS22a] is not
reusable, let us first give a high-level overview of this protocol. The protocol is
based on the IPS compiler [IPS08] which makes use of three main ingredients.
The first, called the outer protocol, is a 2-round, 2-client (namely, the receiver
and the sender), m-server MPC protocol for computing the function f . The outer
protocol should be secure against malicious adversaries that corrupt either one
of the clients and t = Ω(m) servers, and has the following interaction pattern. In
the first round, the clients send a message to each one of the servers using their
private inputs. The servers perform some local computation on these messages
and send the result of this computation to the receiver in the second round.
The receiver then decodes these messages to learn the output of f . The second
ingredient, called the inner protocol, is a semi-honest secure 2-party protocol for
computing the next message function of the servers in the outer protocol. The
third ingredient is the watchlist mechanism that is implemented using a random
oracle. Let now explain how the compiled protocol works.

The sender and the receiver in the compiled protocol generate the first round
messages to be sent to each of the servers in the outer protocol. They then
start running m executions of the inner protocol where the i-th execution is
computing the next message function of the i-th server. The private inputs that
the clients use in the i-th inner protocol execution corresponds to the messages
that they send to the i-th server in the outer protocol. The output of the inner
protocol corresponds to the second round messages sent by the servers in the
outer protocol and the receiver decodes these messages to learn the output of
the functionality. To ensure that a majority of the inner protocol executions are
performed correctly, the watchlist mechanism is used. Specifically, the parties
after generating their respective messages to each of the m executions pass these
messages to a random oracle that outputs a set K. The parties send their private
inputs and randomness for each inner protocol execution in the set K. This is
verified by the other party. This ensures that a malicious adversary cannot cheat
in a large fraction of the inner protocol executions as otherwise the set K that is
output by the random oracle will have a non-empty intersection with the cheating
executions. Hence, we can now rely on the security of the outer protocol against
a small fraction of the server corruptions to show that the compiled protocol is
secure against malicious adversaries.

76 Y. Ishai et al.

Key Challenge. To make the above construction reusable secure, we need each
of the components used in the compiler to be secure in the reusable setting. As
discussed earlier, the watchlist mechanism implemented by the random oracle
paradigm is serendipitously suitable for the reusable setting. The inner protocol
which is only required to be semi-honest secure is also trivially secure in the
reusable setting. The key challenge we face is to make the outer protocol secure
in the reusable setting.

2.1 Constructing a Reusable Outer Protocol

Let us first specify the security properties that a reusable outer protocol needs
to satisfy.

Security Property. Consider an adversary that corrupts the sender client and a
subset of the servers. The honest receiver generates the first round messages to
the servers (using its private input) and this message is fixed. The adversary is
now allowed to interact with the honest receiver and the servers in many sessions.
In each session, the adversary generates a fresh first round sender message to the
servers. The honest servers use the fixed receiver’s message and the fresh sender
message to compute the second round message in the protocol. The adversary
sends an arbitrary second round message from the corrupted servers. It obtains
the output computed by the honest receiver in this session and adaptively decides
whether to continue with one more session or abort. We require the view of the
adversary to be simulatable in the ideal world where the parties have access to
the ideal functionality.

The Case of Constant-Degree Polynomials and Branching Programs. Before
explaining our construction of a reusable outer protocol for computing general
circuits, let us first start with a simple case of computing constant degree poly-
nomials. Later, we explain how to extend this construction to securely evaluate
branching programs.

Let (p1, . . . , p�) be a set of constant-degree polynomials. For the sake of this
overview, let us assume that all these polynomials have degree 3. The work
of Ishai et al. [IKSS22a] noted that it is not necessary for the outer protocol
to satisfy security against stronger malicious adversaries but it is sufficient to
start with an outer protocol that is secure against weaker pairwise verifiable
adversaries. Pairwise verifiable adversaries are constrained to generate the first
round message on behalf of the corrupted clients such that the messages sent
to the honest servers pass a pairwise consistency check. Our first observation is
that this also extends to the case of reusable security. Specifically, it is sufficient
to construct an outer protocol that is reusable secure against pairwise verifiable
senders.

Let us first explain the construction of the outer protocol for computing
degree-3 polynomials given in [IKSS22a]. In the first round, the clients generate a
secret sharing of their private inputs using a 3-multiplicative, pairwise verifiable

Black-Box Reusable NISC with Random Oracles 77

secret sharing scheme7 and send the shares to the servers. The servers then
locally compute the degree-3 polynomials on these shares to compute the shares
of the outputs. This step relies on the fact that the shares are 3-multiplicative.
The servers then send the output shares to the receiver.8 We note that this is
protocol is already secure in the reusable setting. This is because the first round
message from the receiver to the servers consists of a secret sharing of its private
input and this secret sharing can be reused across multiple sessions.

To construct a reusable protocol for securely evaluating branching programs,
we make use of randomized encodings [IK00,AIK04]. It is known from these
works that branching programs admit a statistically secure degree-3 randomized
encoding. Thus, the task of constructing a reusable outer protocol for the case of
branching programs reduces to constructing a reusable outer protocol for com-
puting degree-3 polynomials. However, to generate the randomized encoding we
need to additionally secret share the randomness used in computing it. A stan-
dard way to do this is for the clients to sample randomness r1 and r2 respectively
and send the shares in the first round. The servers locally compute the shares
of r1 + r2 and use them to generate the randomized encoding. However, since
the first round message from the receiver is fixed once and for all, it means that
we need to reuse the receiver’s share of the randomness across multiple sessions.
Will this affect security? Fortunately, this does not affect the security as the
shares of the output are revealed to the receiver and not to the sender. This
means that we can fix r1 to be the all zeroes string and the sender can be tasked
with generating a fresh sharing of the randomness in each session to generate
the randomized encoding.

Extending to Circuits. All known constructions of randomized encodings for cir-
cuits require a PRG [Yao86,IK00,AIK04]. Näıvely incorporating the PRG com-
putation inside the functionality would require non-black-box use of the PRG.
Hence, previous NISC protocols for circuits needed to introduce clever mecha-
nisms to ensure that the overall protocol is making black-box use of a PRG. An
additional property we need from the outer protocol is that the servers cannot
perform any cryptographic operations. This is because the server computations
in the IPS compiler are emulated using the inner protocol and if the server
computes any cryptographic operations, then functionality that is computed by
the inner protocol requires the code of this operation. Therefore, constructions
of the outer protocols given in [IPS08,IKSS21,IKSS22a,IKSS22b] required the
PRG computations to be done by the clients and the result of these computa-
tions to be secret-shared between the servers. Once this is done, the servers can
perform a constant degree computation on these shares along with the shares of
the input and the randomness to compute a secret sharing of the randomized
encoding. Of course, the clients could cheat and send shares of incorrect PRG

7 The standard Shamir secret sharing using bivariate polynomials satisfies this prop-
erty.

8 We note that the servers have to additionally re-randomize these shares but we
ignore this step to keep the exposition simple.

78 Y. Ishai et al.

computations. While there are mechanisms to mitigate this in the single-use
setting, unfortunately, this creates serious issues in the reusable setting.

Specifically, consider a malicious adversary that corrupts the sender client
and a subset of the servers. The malicious sender client cannot be forced to
evaluate the PRGs correctly and hence, could send incorrect sharing of the PRG
computations. At a high-level, this means that some entries in the garbled gate
table are incorrectly computed. This could force an abort if these particular
entries are decrypted in the garbled circuit evaluation. Hence, we need to make
sure that the abort event is uncorrelated with the receiver’s input. In the single-
use setting this was mitigated using a specific garbled circuit construction due
to Beaver et al. [BMR90]. In this construction, the value that is carried by each
wire is masked with a random bit and thus, we only decrypt the garbled gate
entries corresponding to these masked values. This random masking makes it is
possible to argue that the abort event is uncorrelated with the receiver’s private
input. Unfortunately, in the reusable setting, these masks need to be reused as
the receiver’s first round message is fixed across sessions and hence, this offers no
security. Thus, we need a brand new approach to prevent such input-dependent
aborts in the reusable setting.

Our Approach: Weakening the Outer Protocol. This problem seems incredibly
hard to solve as there are no black-box mechanisms which can force a malicious
client to secret share the correct PRG evaluations. In hindsight, this was also
the main reason for why the work of Chase et al. [CDI+19] could not provide
a black-box construction for the case of circuits. Instead of dealing with this
problem at the outer protocol level, we design new mechanisms to deal with
this problem in the protocol compiler. (These mechanisms will only apply to
our random oracle based compiler, and do not apply to the “plain” OLE-hybrid
model considered in [CDI+19].) Specifically, we consider an outer protocol that is
only secure against adversaries that compute the PRGs correctly. We call such
adversaries as verifiable adversaries. Next, we give the details about our new
protocol compiler that uses this weaker outer protocol to construct a reusable
NISC.

2.2 A New Protocol Compiler

Our goal is to design a protocol compiler that starts with an outer protocol
satisfying reusable security against verifiable adversaries and transforms it into
a two-message reusable NISC protocol. In this technical overview, we will only
concentrate on proving the reusable security against a malicious sender. Security
against malicious receivers follows via standard techniques.

Let us assume that only the sender client needs to compute the PRG evalua-
tions and secret-share them in the outer protocol (in fact, our construction will
satisfy this property). Of course, we cannot force the sender client to open all
the shares of the PRG computations as this would completely ruin the security
of the randomized encoding. Our goal is to design a black-box mechanism that

Black-Box Reusable NISC with Random Oracles 79

forces the sender to generate correct sharing of the PRG computations without
compromising on the randomized encoding security.

We overcome this by adding one more layer of cut-and-choose. Specifically,
instead of emulating one execution of the outer protocol (which consists of m
servers), we emulate n (for n = O(λ)) such executions (each containing m
servers). In total, we perform n · m executions of the inner protocol. Recall that
each message sent by the client to a server in the outer protocol consists of two
parts: the share of the client’s private input and, if the client was the sender,
it additionally consists of the share of the PRG evaluation. In each of the n
executions of the outer protocol, we fix the client’s shares of the private input
to be the same. The sender generates independent PRG evaluations for every
execution and generates the shares of these evaluations. If all the emulations are
done correctly, then each execution of the outer protocol would be computing
a randomized encoding of the function on the same private inputs but using
independently chosen random strings. We need to make sure the following two
conditions hold: (i) the shares of the private input that the parties use in each
execution of the outer protocol are the same, and (ii) the PRG computations and
their sharing are performed correctly. Instead of requiring these two conditions
to hold exactly, we relax the requirement and ensure that they hold for a large
fraction. Specifically, we will make sure that for a large fraction of the servers,
the first round messages sent by the malicious sender are the same across all exe-
cutions and for a large fraction of the executions, the PRG computations and
their shares are generated correctly by the sender. We now explain why these
two relaxations are sufficient to argue the security of the compiled protocol. The
first relaxation does not create any problems we can rely on the security of the
outer protocol to additionally corrupt these inconsistent servers (which comprise
of a small fraction) and ensure that these inconsistencies do not affect the output
obtained by the honest receiver. The second relaxation is a bit more subtle. Note
that if the PRG computations are correct, then the receiver’s output consists
of the evaluation of a properly generated garbled circuit using the same private
inputs but using an arbitrary randomness. It follows from the perfect correctness
of the garbled circuit evaluation that all these evaluations provide the output of
f applied on the private inputs of the clients. Thus, a majority of these values
are going to be the same (corresponding to the correct output) and hence, we
can correct the errors caused due to incorrect PRG evaluations by computing
the majority function locally on all the n outputs.

These two relaxations are ensured via two applications of the random oracle
based cut-and-choose paradigm. Specifically, we ask the sender to pass its second
round message (corresponding to each one of the m · n executions of the inner
protocol) to two random oracles. The first random oracle outputs a subset L1

of the servers [m] and the second random oracle outputs a subset L2 of the
executions [n]. For each server in the set L1, the sender client opens up the
private input and randomness used in generating the inner protocol messages
for this server in each of the n executions. The honest receiver checks if these
messages are correctly generated and if the share of the private input used in each
one of the n executions are identical. For each execution in the set L2, the sender

80 Y. Ishai et al.

client opens up the shares of the PRG computations sent to all the servers. The
receiver checks if the shares correspond to a correct PRG evaluation. The first
check ensures that for a majority of the servers, the malicious sender client is
using the same share of the private input and these servers are emulated honestly.
The second check ensures that except for a small fraction of the executions, the
sender client emulates a verifiable adversary and we can rely on the security of
the outer protocol against this weaker class to argue the security of the overall
protocol. A pictorial representation of the protocol appears in Fig. 2.

Additional Requirement from the Outer Protocol. An astute reader who is famil-
iar with the IPS compiler might have noticed the following major challenge
in achieving reusable security. An adversarial sender could potentially cheat in
a small number of server emulations, such that this number is small enough
to escape the watchlist mechanism with non-negligible probability. To be more
concrete, assume that the server only cheats in a single execution. Then, the
probability that this execution is a part of the watchlist (that is generated using
the random oracle) is roughly k/m = O(1). Though the number of such cheating
sessions are small and are not sufficient to break the privacy of the outer protocol,
they could decide if the honest receiver outputs ⊥ or obtains the correct output.
Hence, in the simulation, it is important to compute the same output that an
honest receiver obtains in these cheating server emulations. To achieve this, we
corrupt those cheating servers and learn the share that an honest receiver sent
to these cheating servers. We then use this share to compute the output that an
honest receiver would have obtained by decrypting the cheating sender message.
This is possible if the inner protocol satisfied a special property called output
equivocation [IKSS22b]. It was recently shown in [IKSS22b] that any NISC pro-
tocol with security against malicious senders satisfies output equivocation.

The above simulation technique does not create an issue in the single-use set-
ting. In particular, we can corrupt the servers corresponding to these cheating
executions in the outer protocol and obtain the private share sent by the honest
receiver and continue with the simulation. However, this causes a serious problem
in the reusable setting. Specifically, in each one of the reuse sessions, the adversar-
ial sender client could cheat in a different set of the server executions and cumula-
tively learn all the private shares of the honest receiver. If this happens, the mali-
cious sender can learn the private input of the receiver in its entirety.

To deal with this issue, we require the outer protocol to satisfy a stronger
property called as error correction [IKSS22a]. Informally, this property requires
that the output of the receiver’s decoding function depends only on the messages
sent from the honest servers and is independent of the messages sent by the
corrupt servers. If this property holds, then in each reuse session, we can replace
the output of the inner protocol in those cheating executions with a default value
and apply the receiver’s decoding function on these outputs. It follows from the
error correction property that the output of the honest receiver remains the same
after we perform this replacement. This helps in proving that an adversarial
sender cannot break receiver privacy by cheating in a different set of executions
in each reuse session. We use similar techniques as in [IKSS22a] to add this

Black-Box Reusable NISC with Random Oracles 81

extra error correction property. We note that this property was added to the
outer protocol in [IKSS22a] to construct a protocol compiler that only makes
use of a semi-honest secure inner protocol. However, in our work, we rely on the
error correction property to obtain security in the reusable setting.

2.3 Extension to the Two-Sided Setting

Let us first state the requirements from a two-sided NISC protocol.

Two-Sided Reusable NISC. We say that a NISC protocol is two-sided if the
communication channel is bi-directional and the output of f is delivered to
both the parties at the end. In a bit more detail, we model f as (f0, f1). For
each β ∈ {0, 1}, fβ takes in offline inputs xoff

0 from P0, xoff
1 from P1, a com-

mon public online input xon
pub, and an online private input xon

1−β from P1−β and
delivers fβ((xoff

0 , xoff
1), xon

pub, x
on
1−β) to Pβ . The first round message of the protocol

depends only on the offline private inputs and the second round message is gen-
erated depending on the online inputs. A two-sided NISC protocol is said to be
reusable if an adversary corrupts either one of the parties and fixes the first round
of interaction once and for all. It then interacts with the other party in multiple
sessions. In every session, the honest party generates a second round message
using (adaptively chosen) online private inputs and the adversary generates an
arbitrary second round message. The adversary learns the output computed by
the honest party in this session and adaptively decides whether to continue
with one more session or stop. We require the view of the adversary in the real
world to be simulatable in an ideal world with access to a trusted functionality
that does the following. The parties send their offline inputs to the function-
ality in the beginning and interact with the functionality in multiple sessions.
In every session, the parties send their online inputs to the functionality and
it computes the output of f and delivers the result. We note that this way of
modelling the two-sided functionality strictly generalizes the one-sided NISC
setting. It also generalizes the prior works on reusable two-round secure compu-
tation [BGMM20,BL20,AJJM20,BJKL21,AJJM21,BGSZ22] where the parties
commit to their private inputs in the first round and can compute a sequence
of functions fi on the committed inputs by sending different second round mes-
sages. We also note that a stricter model where the functionality takes in private
online inputs from both the parties (instead of just one as in our case) is impos-
sible to achieve against rushing adversaries.

Additional Challenges. In the two-sided setting, we face some additional chal-
lenges. Specifically, we cannot hope to run two instances of the one-sided protocol
in the opposite directions to get a two-sided variant. This is because an adversar-
ial client could use two different offline private inputs when acting as the sender
and the receiver and learn two different outputs. This will break the security of
the two-sided NISC protocol. Therefore, we need an additional mechanism to
ensure that the malicious parties are forced to use the same input in those two
executions.

82 Y. Ishai et al.

Problem with the Standard Approach. A standard approach to do this is to give
a zero-knowledge proof that the adversary is using the same input in both the
sessions, one where it is acting as the sender and the other where it is acting as
the receiver. However, as we are interested in giving a black-box construction,
we must be careful with the exact zero-knowledge proof that is used.

A black-box way to prove that the adversary used the same offline private
input in both the executions is to commit to these two inputs and then prove that
the committed values are equal using a black-box commit-and-prove protocol.
Such a non-interactive black-box commit-and-prove protocol can be constructed
in the random oracle model based on the “MPC-in-the-head” approach of Ishai
et al. [IKOS07]. In this approach, the prover generates a secret sharing of the
committed values and runs an MPC protocol in its head that reconstructs these
two values from the shares and checks equality. It generates the view of each
party in the MPC protocol and commits to the view of these virtual parties.
The prover then passes these commitments through a random oracle to obtain
a set of executions to be opened. The verifier checks if the opened views are
consistent and if yes, accepts the proof if the output of the MPC protocol is 1.
However, this approach does not directly translate to the reusable setting. This
is because the commitments to the offline private input when the honest party
acts as the receiver are generated in the first round. In particular, the honest
party generates a secret sharing of this private input in the commit-and-prove
protocol once and commits to these shares in the first round. For every new
second round message in the protocol, we need to generate a fresh secret sharing
of the sender offline inputs and prove that these shares correspond to the same
value that was used in the receiver side. This means that for such reuse session,
we need to generate a fresh proof of consistency and this could imply opening
a different subset of the shares of the commitment generated in the first round.
After a certain number of reuse sessions, we could open all the shares and this
affects the privacy of the honest receiver’s input.

A Reusable Black-Box Commit-and-Prove. To deal with this issue, we need a
reusable variant of the commit-and-prove protocol. In this variant, the commit-
ments to the secret values are generated once and fixed across multiple sessions.
These fixed set of commitments allow a prover to prove in zero-knowledge that
these secret values satisfy potentially different predicates in each session. The
standard commit-and-prove protocols may not satisfy this reusability property.
In this work, we give a construction of a reusable commit-and-prove protocol
using additively homomorphic commitments. Specifically, we generate a com-
mitment to the secret values using these homomorphic commitments. For each
proof, we use the homomorphism property to generate a fresh secret sharing of
the committed values. That is, we generate commitments to randomness and use
the additive homomorphism to generate a linear secret sharing of the committed
values using the committed randomness. Using these fresh sharings, we can now
run an MPC protocol in the head to show that the reconstruction of the newly
generated shares satisfy the predicate of interest. Specifically, for each reuse ses-
sion, we generate a fresh set of secret shares and the problem mentioned above

Black-Box Reusable NISC with Random Oracles 83

does not arise. In the full version, we give a construction such a commit-and-
prove in the random oracle model (without any additional assumptions) in a
weaker setting where the prover and verifier maintain a state that is updated at
the end of every proof execution. This construction is based on proactive MPC
protocols which allow an adversary to corrupt a different subset of the parties
across different time epochs.

Organization. In Sect. 3, we give the formal definitions of reusable NISC and
reusable two-sided NISC. In Sect. 4, we give the definition of reusable verifiable
client-server protocol and we give the construction in full version. In Sect. 5,
we give the construction of our black-box reusable NISC protocol. In Sect. 6,
we give the definition of a reusable commit-and-prove protocol and give the
construction of such a protocol in the full version. In Sect. 7, we state the main
theorem regarding construction of our reusable two-sided NISC protocol and
give the construction and the proof of security in the full version.

3 Definitions

In this section, we give the definition of reusable NISC and its two-sided version.

3.1 Reusable NISC Protocol

Let f be a two-party functionality between a receiver and a sender. Let x be
the private input of the receiver and y be the private input of the sender. A
NISC protocol9 (Π1,Π2, outΠ) between the receiver and the sender is a two-
message, malicious-secure protocol that securely computes the ideal functionality
f and delivers the output to the receiver. Specifically, in this protocol, Π1 is run
by the receiver using its private input x to generate the first round message.
Π2 is run by the sender on its private input y and the receiver’s first round
message to compute the second round message in the protocol. outΠ is run by
the receiver on the sender’s message and its private random tape to compute the
output of f . The security is modelled using the standard real-ideal paradigm.
For completeness, we provide this definition in the full version.

A reusable NISC protocol is one where the first round message from the
receiver is fixed once and for all and the sender can send multiple second round
messages (potentially using different inputs). The receiver computes the output
of f on its fixed input and the fresh sender input for each execution. For security,
we require this protocol to satisfy standard security against malicious receivers
and reusable security against malicious senders. In the reusable security game,
the adversarial sender is allowed to generate an a priori unbounded polynomial
number of second round messages (in an adaptive manner). We now give the
formal definition of a reusable NISC protocol.
9 As our main results are in the random oracle model, we can avoid an explicit setup

phase that samples the CRS uniformly and instead use the random oracle’s output
on some default input as the CRS.

84 Y. Ishai et al.

Definition 1 (Reusable NISC Protocol). A NISC protocol (Π1,Π2, outΠ)
for computing a two-party function f is a reusable NISC protocol if it satisfies
standard security against malicious receivers and the following reusable sender
security. For any PPT adversary A that corrupts the sender, there exists a PPT
simulator SimΠ,S such that for all non-uniform PPT (stateful) environments Z,
the following two distributions are computationally indistinguishable:

– Real Execution. The environment Z provides the private input x to the
honest receiver and auxiliary input z to A. The honest receiver generates the
first round message in the protocol using x and this message is delivered to
A. Repeat the following until A outputs a special command stop:
1. Z provides an input y to the adversary and A generates an arbitrary

second round message in the protocol.
2. The honest receiver computes the output of the protocol using outΠ on the

adversarial sender message and its private random tape.
3. This output is forwarded to Z which sends some auxiliary information to

A.
4. A either outputs stop or continues to the next iteration.

We call each iteration where the adversary generates a second round message
as a session. The output of the real execution corresponds to the output of the
honest party in each session and the output of A at the end of all sessions.

– Ideal Execution. This corresponds to the ideal world interaction where
SimΠ,S and the honest receiver have access a trusted functionality that imple-
ments f . The environment Z delivers the private input x to the honest receiver
and auxiliary input z to SimΠ,S. The receiver forwards x to the ideal function-
ality. SimΠ,S can interact with the ideal functionality in an a priori unbounded
polynomial number of sessions. In each session,
1. Z sends a private input y to SimΠ,S. SimΠ,S sends an arbitrary input to

the ideal functionality or a special instruction to the ideal functionality to
deliver ⊥ to the honest receiver.

2. The trusted functionality returns the output to the receiver depending on
SimΠ,S’s instruction and this is forwarded to Z.

3. Z sends some auxiliary information to SimΠ,S.
4. SimΠ,S decides whether to continue with one more session or stop.

The output of the ideal execution corresponds to the output of the honest party
in each session and the output of SimΠ,S at the end of all sessions.

3.2 Reusable Two-Sided NISC

A two-sided NISC protocol for computing a function f = (f0, f1) is two-round
protocol between P0 and P1 such that P0 gets the output of f0 and P1 gets the
output of f1. For each β ∈ {0, 1}, fβ takes in (xoff

0 , xoff
1) which are the offline

inputs of the parties, a common public online input xon
pub, and a private online

input xon
1−β and delivers the output to Pβ .

A two-sided NISC protocol is given by a tuple of algorithms (Π1,Π2, outΠ).
Π1 takes the index β ∈ {0, 1} of the party, its offline private input xoff

β and

Black-Box Reusable NISC with Random Oracles 85

produces the first round message sent by Pβ which is given by π
(β)
1 . Π2 takes the

index β ∈ {0, 1} of the party, the public online input xon
pub, the online private input

xon
β , the first round message generated by the other party π

(1−β)
1 and produces

the second round message π
(β)
2 of Pβ . outΠ takes in the index β ∈ {0, 1} of the

party, its private random tape, and the second round message π
(1−β)
2 generated

by P1−β and produces the output of fβ applied on ((xoff
0 , xoff

1), xon
pub, x

on
1−β). As

in the one-sided setting, the security is modelled using the standard real-ideal
security paradigm.

We say that a two-sided NISC is reusable if the parties can fix the first round
message once and for all and send fresh second round message that depends
only on the online private input. The parties use outΠ to learn the output of
the function computed on their fixed offline private inputs and the new online
inputs. We require this protocol to satisfy the following security property.

Definition 2 (Reusable Two-Sided NISC Protocol). A two-sided NISC
protocol (Π1,Π2, outΠ) is a reusable NISC protocol for computing f = (f0, f1) if
for any PPT adversary A that corrupts P1−β for some β ∈ {0, 1}, there exists a
PPT simulator SimΠ such that for all non-uniform PPT (stateful) environments
Z, the following two distributions are computationally indistinguishable:

– Real Execution. For each b ∈ {0, 1}, the environment delivers the private
offline input xoff

b to Pb and provides auxiliary input z to A. Pβ uses this to
generate the first round message in the protocol. The adversary A receives this
first round message and sends the first round message on behalf of corrupt
P1−β. Repeat the following until A outputs a special command stop:
1. The environment Z provides an online input (xon

pub, x
on
b) to Pb for each

b ∈ {0, 1}.
2. Pβ generates the second round message using the online inputs and this

is delivered to A. Pβ then receives the second round message sent by A.
3. The honest Pβ computes the output of the protocol using outΠ on the

adversarial second round message and its private random tape.
4. The output computed by the receiver is delivered to Z who sends some

auxiliary information to A.
5. A either outputs stop or continues to the next iteration.

We call each iteration described above as a session. The output of the real
execution corresponds to the output of honest Pβ in each session and the
output of A at the end of all sessions.

– Ideal Execution. This corresponds to the ideal world interaction where SimΠ

(corrupting P1−β) and the honest Pβ have access a trusted functionality that
implements f . For each b ∈ {0, 1}, the environment delivers the private offline
input xoff

b to Pb and auxiliary input z to SimΠ . Pβ sends this to the ideal
functionality. SimΠ sends an arbitrary offline input on behalf of P1−β. SimΠ

interacts with the ideal functionality in an a priori unbounded polynomial
number of sessions. In each session,
1. The environment delivers an online input (xon

pub, x
on
b) to Pb for each b ∈

{0, 1}. Pβ forwards this to the ideal functionality.

86 Y. Ishai et al.

2. The ideal functionality computes f1−β on the fixed offline inputs and the
new online input and delivers this output to SimΠ .

3. SimΠ can send a special instruction to the ideal functionality to deliver ⊥
to the honest receiver or sends an online input (xon

pub, x
on
1−β). If xon

pub �= xon
pub,

then the trusted functionality delivers ⊥ to the receiver. Else, the trusted
functionality returns either the output of fβ or ⊥ to the honest receiver
depending on the instruction from SimΠ .

4. The output delivered to the receiver is forwarded to Z. Z sends some
auxiliary information SimΠ .

5. SimΠ then decides to continue with one more execution or stop.
The output of the ideal execution corresponds to the output of honest Pβ in
each session and the output of SimΠ at the end of all sessions.

4 Reusable Verifiable Client-Server Protocol

In this section, we define and construct a reusable verifiable client-server pro-
tocol. This protocol will be used as the main building block in the subsequent
sections to construct a black-box reusable (two-sided) NISC. We require this
protocol to satisfy the following properties.

– Reusability: This property requires that the first round message sent by
the receiver to be reusable. To be more precise, the receiver sends a single
first round message (depending on its private input) to each of the servers
and this message is fixed once and for all. The sender can generate multiple
(a priori unbounded polynomial number of) first round messages for different
choices of its private input. The servers use the fixed first round message from
the receiver and the fresh first round message from the sender to compute a
second round message in the protocol. The receiver uses this second round
message to compute the output of the functionality on its fixed private input
and the (fresh) sender input.

– Error Correction: Consider an adversary that corrupts the sender and cer-
tain number of servers. This property requires that the output of the receiver’s
decoding algorithm to remain the same for any choice of second round message
sent by the corrupted servers. In other words, the output computed by the
receiver is uniquely determined by the messages sent by the honest servers.
This property also implies that we can substitute the second round message
sent by the adversarial servers with some default values without affecting the
receiver’s output.

– Security against Verifiable Adversaries. As noted in [IKSS22a], there are
barriers in obtaining the error correction property against standard malicious
adversaries. Hence, [IKSS22a] defined a weaker class of adversaries called pair-
wise verifiable adversaries. Pairwise verifiable adversaries generate the first
round message on behalf of the adversarial client to the honest servers such
that it passes some pairwise consistency check. They constructed a protocol
that had this error correction property against this weaker class. However,

Black-Box Reusable NISC with Random Oracles 87

we are unable to construct a protocol that satisfies both reusability as well
as error correction against pairwise verifiable adversaries. Hence, we further
weaken the pairwise verifiable adversaries to verifiable adversaries which gen-
erate the first round message in the protocol in a much more restricted way.
Specifically, if the adversary corrupts a sender client then there is a predicate
P ′ such that the first round messages sent to all the honest servers by the
adversary satisfy this predicate.10. In other words, there is some global predi-
cate P ′ (instead of pairwise local predicate) that the adversarial sender mes-
sages must satisfy. On the other hand, if the adversary corrupts the receiver
client then the first round messages sent by the receiver should satisfy some
pairwise consistency check w.r.t. to a predicate P (this property is identi-
cal to the pairwise verifiable case). It is clear that verifiability restricts the
adversarial power even more than pairwise verifiability.

4.1 Definition

We start by describing the syntax of a reusable verifiable client-server protocol.

Syntax. A reusable verifiable client-server protocol between two clients, the
receiver R and a sender S and a set of m servers is given by a tuple of algorithms
(ShareR,ShareInpS ,ShareRandS ,Eval,Dec) with the following syntax.11

– ShareR takes the private input x of the receiver and outputs the first round
message {msgR,inp,i}i∈[m] to be sent to each of the m servers. Recall that this
algorithm is only run once and the messages sent to the servers are reused
across different iterations with the sender.

– ShareInpS takes the private input y of the sender and generates
{msgS,inp,i}i∈[m]. ShareRandS takes a uniform random string from the sender
and generates {msgS,rand,i}i∈[m]. The first round message from the sender to
the i-th server consists of {msgS,inp,i,msgS,rand,i}. We could have included
msgS,rand,i as part of msgS,inp,i instead of computing it as an output of
ShareRandS . However, we choose to split it into two separate algorithms as
this presentation is more suitable to be used in our reusable (two-sided) NISC
constructions. Looking ahead, we would require the first part of the sender
message {msgS,inp,i}i∈[m] to satisfy local consistency check and the second
part {msgS,rand,i}i∈[m] to satisfy global consistency check (see Footnote 10).

– The Eval algorithm takes in the identity i of the server, the first round mes-
sages sent by the clients to this server and outputs the second round message
msg2,i to be sent to the receiver.

– The Dec algorithm takes in {msg2,i}i∈[m] and computes the output.

10 We are little imprecise here and this global predicate acts only on a part of the
sender’s message and not on the whole message. To be more specific, the sender’s
message consists of two parts. We want the first part to satisfy local consistency and
the second part to satisfy global consistency.

11 We implicitly assume that all the algorithms take in the unary encoding of the
security parameter 1λ as part of their inputs.

88 Y. Ishai et al.

Verifiable Adversary. Before stating the security properties, we start with the
definition of a verifiable adversary. A verifiable adversary A corrupts either one of
the clients and a set T of the servers. If the adversary corrupts a client k ∈ {R,S},
then {msgk,inp,i}i∈[m]\T satisfies a pairwise consistency predicate P . If k = S,
then we additionally require {msgk,rand,i}i∈[m]\T to satisfy a global consistency
predicate P ′. We note that only the randomness part {msgS,rand,i}i∈[m]\T is
required to satisfy the global consistency predicate and it is sufficient for the
input part {msgS,inp,i}i∈[m]\T to only satisfy a pairwise consistency check. This
property will again be crucially used in the construction of a reusable (two-sided)
NISC protocol.

Definition 3 (Pairwise vs Global Predicate). Let P be a pairwise predicate
that takes a client index k ∈ {R,S}, two server indices i, j ∈ [m], the first round
message (msgk,inp,i,msgk,inp,j) sent by the client k to the servers i and j and
outputs 1/0. Let P ′ be a global predicate that takes a set H ⊆ [m], and the
second part of the first round message {msgS,rand,i}i∈H sent by the sender S to
the servers in H and outputs 1/0.

Definition 4 (Verifiable Adversary). An adversary A corrupting the client
k and the set T of the servers is said to be verifiable w.r.t. the pairwise predicate
P and global predicate P ′ if it satisfies the following:

– If k ∈ {R,S}, then for any two honest servers i, j ∈ [m] \ T ,
P (k, i, j,msgk,inp,i,msgk,inp,j) = 1 where msgk,inp,i and msgk,inp,j are gener-
ated by A in the protocol execution.

– If k = S, then the output of the predicate P ′([m]\T, {msgS,rand,i}i∈[m]\T) = 1
where {msgS,rand,i}i∈[m]\T is generated by A in the protocol execution.

Security Definition. We are now ready to state the security properties that a
reusable verifiable client-server protocol needs to satisfy.

Definition 5 (Reusable Verifiable Client-Server Protocol). Let f be
a two-party functionality. A protocol Φ = (ShareR,ShareInpS ,ShareRandS ,
Eval,Dec) is a reusable verifiable client-server protocol for computing f against
t server corruptions if there exists a pairwise predicate P and a global predicate
P ′ such that:

1. Error Correction: Informally, this requires that the output of Dec to be
uniquely determined by the messages sent by the honest servers. Formally,
for any verifiable adversary A (see Definition 4) w.r.t. P and P ′ corrupting
the sender client S and a subset T (where |T | ≤ t) of the servers and for any
two sets of second round messages {msg2,j}j∈T and {msg2,j}j∈T , we have:

Dec({msg2,j}j �∈T , {msg2,j}j∈T) = Dec({msg2,j}j �∈T , {msg2,j}j∈T)

where {msg2,j}j �∈T consists of the second round messages generated by the
honest servers (i.e., [m] \ T) in the interaction with A. In other words, the
output of Dec remains the same for any choice of second round messages sent
by the corrupted servers.

Black-Box Reusable NISC with Random Oracles 89

Furthermore, consider a setting where the verifiable adversary A generates
multiple first round sender messages that all have the same {msgS,inp,j}j �∈T

but potentially different {msgS,rand,j}j �∈T . Consider the second round mes-
sages generated by the servers for each of these sender messages. For each
set of these second round server messages (corresponding to each new sender
message), we require the output of Dec to be the same. In other words, if
a verifiable adversary generates multiple sender messages using the same
{msgS,inp,i}i�∈T , then the output of Dec remains the same.

2. Security Against Verifiable Receivers: For any (PPT) verifiable adver-
sary A (see Definition 4) w.r.t. P and P ′ corrupting the receiver client and
(adaptively) corrupting a set T of upto t servers, there exists an (PPT) ideal
world simulator SimΦ,R such that for any choice of private input y of the hon-
est sender client, the following two distributions are computationally indis-
tinguishable:
– Real Execution. The verifiable adversary A interacts with the honest

parties (the honest sender client and set of uncorrupted servers) in the
protocol. The output of the real execution consists of the output of the
verifiable adversary A.

– Ideal Execution. This corresponds to the ideal world interaction where
SimΦ,R and the honest sender client have access to the trusted party imple-
menting f . The honest sender client sends its input y to f and SimΦ,R

sends an arbitrary input. The trusted functionality returns the output of
f to SimΦ,R. The output of the ideal execution corresponds to the output
of SimΦ,R.

3. Reusable Security against Verifiable Senders: For any (PPT) verifi-
able adversary A (see Definition 4) w.r.t. P and P ′ corrupting the sender
client and a set of servers defined as below, there exists an ideal world (PPT)
simulator SimΦ,S such that for all non-uniform PPT (stateful) environments
Z, the following two distributions are computationally indistinguishable:
– Real Execution. Z delivers the private input x to the honest receiver

and auxiliary input z to A. The receiver uses this private input to generate
the first round message in the protocol. The adversary A corrupts a set
T1 of the servers and gets the first round messages sent by the honest
receiver to T1. Repeat the following until adversary A outputs a special
command stop:
(a) Z delivers the private input y to A. A adaptively corrupts a set T of

the servers and sends the first round message to the servers [m]\ (T ∪
T1). Note that adversary does not receive the first round messages sent
by the honest receiver to the servers indexed by T . Further, this set T
could be different across each execution but we require that |T∪T1| ≤ t.
We additionally require the adversary to be verifiable w.r.t. to the
predicates P and P ′ where the set of corrupted servers is given by
T ∪ T1.

(b) For each server in [m] \ (T ∪ T1), we run Eval on the first round
message sent by the honest receiver and the first round message sent

90 Y. Ishai et al.

by the adversary in the previous step. The adversary sends arbitrary
second round messages from the corrupted servers given by T ∪ T1.

(c) We run Dec on the second round messages sent by the servers (both
honest and the corrupt) and send this output to Z.

(d) Z sends some auxiliary information to A.
(e) A outputs the special symbol stop or decides to continue to the next

iteration.
We call each iteration described above as a session. The output of the real
execution corresponds to the output of the receiver in each session and the
output of A at the end of all the executions.

– Ideal Execution. This corresponds to the ideal world interaction where
SimΦ,S and the honest receiver client have access to the trusted party that
implements f . The environment delivers an input x to the receiver and
auxiliary input z to SimΠ . The receiver sends this to f . SimΦ,S interacts
with the ideal functionality in an a priori unbounded polynomial number
of sessions. In each session,
(a) Z sends the private input y to SimΦ,S. SimΦ,S sends an arbitrary input

to the ideal functionality.
(b) The trusted functionality returns the output delivered to the receiver

to Z.
(c) Z sends some auxiliary information to SimΦ,S.
(d) SimΦ,S decides whether to continue with one more execution or stop.
The output of the ideal execution corresponds to the output of the receiver
in each session and the output of SimΦ,S at the end of all executions.

We give the construction of reusable outer protocol in the full version.

5 Black-Box Reusable NISC

In this section, we give a construction of a black-box resusable NISC protocol.
Specifically, we give a black-box transformation from a (non-reusable) NISC
protocol to a reusable NISC protocol in the random oracle model. The main
theorem we will prove in this section is:

Theorem 3 Assume black-box access to a (non-reusable) NISC protocol. Then,
there exists a reusable NISC protocol in the random oracle model.

5.1 Construction

We first define a weaker variant of reusable security. In this variant, the resuable
security needs to hold only against a weaker class of adversarial senders called
as explainable senders [HIK+11]. Intuitively, an explainable sender is required
to give an explanation on how it generates the second round message in the
protocol. This explanation consists of its private input and the random tape. If
this explanation is invalid, we replace the output of the honest receiver with ⊥.
We give the formal definition of this variant below.

Black-Box Reusable NISC with Random Oracles 91

Definition 6 (Reusable Security Against Explainable Senders). This
requirement is the same as the one given in Definition 2 except that in the real
execution, the malicious adversary that corrupts the sender has to output an
explanation of how it generated the second round message in each iteration. This
explanation comprises of its input y and a random tape r that it used to generate
the second round message. If this explanation is valid, we run the receiver’s
output decoding algorithm on the adversarial sender message and provide the
output to the adversary. If the explanation is invalid, we replace the output of
the receiver in that particular iteration with ⊥.

We observe that any (non-reusable) NISC protocol satisfies reusable security
against explainable senders. This follows directly from the perfect correctness
of evaluation algorithm and indistinguishability-based security of the receiver’s
message against semi-malicious senders (which is implied by security against
malicious senders).

Proposition 1 Any NISC protocol satisfies standard security against malicious
receivers and reusable security against explainable senders.

We are now ready to describe our construction.

Building Blocks. The construction uses the following building blocks:

1. A reusable verifiable client-server protocol (ShareR,ShareInpS ,ShareRandS ,
Eval,Dec) w.r.t. pairwise predicate P and global predicate P ′ for comput-
ing f against t = 4λ server corruptions (see Definition 5). Let m = 20λ + 1
be the number of servers in this protocol (which follows the bounds on the
pairwise verifiable 3-multiplicative, t-error-correctable secret sharing). Our
construction given in the full version ensures that Eval algorithm does not
compute any cryptographic operations.

2. A NISC protocol (Πi,1,Πi,2, outΠi
) for computing Eval(i, ·, ·) (i.e., the com-

putation done by the i-th server) for each i ∈ [m]. As we are working in the
random oracle model, the CRS can be sampled as the output of the random
oracle on some default value. From observation 1, we infer that this protocol
satisfies reusable security against explainable senders and standard security
against malicious receivers.

3. A straight-line extractable non-interactive commitment (Com,Open) in the
random oracle model (see [Pas03]). We require this commitment to be com-
putationally hiding and statistically binding.

4. Let n = 4λ. Two hash functions H1 : {0, 1}∗ → ({0, 1}km)m and H2 :
{0, 1}∗ → ({0, 1}kn)n that are modelled as random oracles. Here, km and
kn are the number of random bits to needed to toss a biased coin that out-
puts 1 with probability pm = λ

2m and pn = λ
2n respectively. We model the

output of hash functions H1 and H2 as subsets of [m] and [n] respectively
where each element of the set is included independently with probability pm

and pn respectively.

92 Y. Ishai et al.

– Round-1: The receiver on private input x does the following:
1. It computes (msgR,inp,1, . . . , msgR,inp,m) ← ShareR(x).
2. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape ri,j to be used in the protocol Πi.
(b) It computes πi,j,1 := Πi,1(msgR,inp,i; ri,j), ai ← Com(msgR,inp,i) and

bi,j ← Com(ri,j).
3. It computes K1 = H1(tagR, {πi,j,1, ai, bi,j}i∈[m],j∈[n]) where tagR ← {0, 1}λ

and interprets K1 as a subset of [m].
4. It sends ({πi,j,1, ai, bi,j}i∈[m],j∈[n], tagR, {Open(ai), Open(bi,j)}i∈K1,j∈[n]) as

the first round message.
– Round-2: The sender on private input y does the following:

1. Check Phase:
(a) It recomputes K1 as in step-3 of round-1 and checks if the openings are

valid.
(b) For each i ∈ K1 and for each j ∈ [n], it checks if πi,j,1 =

Πi,1(msgR,inp,i; ri,j).
(c) For each i, i′ ∈ K1, it checks if msgR,inp,i and msgR,inp,i′ pass the pairwise

consistency check P .
2. If any of the above checks fail, it aborts.
3. Else, it computes (msgS,inp,1, . . . , msgS,inp,m) ← ShareInpS(x).
4. For each j ∈ [n], it independently runs ShareRandS to obtain

(msgS,rand,1,j , . . . , msgS,rand,m,j).
5. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape si,j to be used in the protocol Πi.
(b) It computes πi,j,2 := Πi,2(πi,j,1, (msgS,inp,i, msgS,rand,i,j); si,j) and ,i,j ←

Com(πi,j,2).
(c) It computes ci ← Com(msgS,inp,i), di,j ← Com(si,j), and ei,j ←

Com(msgS,rand,i,j).
1. It computes L1 = H1(tagS , {,i,j , ci, di,j , ei,j}i∈[m],j∈[n]) and L2 =

H2(tagS{,i,j , ci, di,j , ei,j}i∈[m],j∈[n]) where tagS ← {0, 1}λ and interprets L1

as a subset of [m] and L2 as a subset of [n].
2. It sends

(a) {,i,j , ci, di,j , ei,j}i∈[m],j∈[n], tagS .
(b) {Open(,i,j), Open(ci), Open(di,j), Open(ei,j)}i∈L1,j∈[n].
(c) {Open(ei,j)}i∈[m],j∈L2 and {Open(,i,j)}i∈[m],j �∈L2 .

– Output Computation: The receiver does the following:
1. Check Phase:

(a) It recomputes L1 and L2 as in Step-6 of round-2 and checks if all the
openings are valid.

(b) Using the openings to the commitments ,i,j , ci, di,j and ei,j given by the
sender,

i It checks if for each i ∈ L1 and j ∈ [n] that πi,j,2 =
Πi,2(πi,j,1, (msgS,inp,i, msgS,rand,i,j); si,j).

ii For each i, i′ ∈ L1, it checks if msgS,inp,i and msgS,inp,i′ pass the pair-
wise consistency check P .

iii For each j ∈ L2, it checks if {msgS,rand,i,j}i∈[m] pass the global predi-
cate check P ′.

2. If any of the above checks fail, it aborts.
3. Else, for each j ∈ [n] \ L2,

(a) It computes msg2,i,j ← outΠi
(πi,j,2, ri,j) for each i ∈ [m].

(b) It computes αj = Dec({msg2,i,j}i∈[m]).
4. o/p Majority({αj}j∈[n]\L2).

Fig. 1. Construction of Reusable Black-Box NISC Protocol

Black-Box Reusable NISC with Random Oracles 93

Fig. 2. Pictorial Representation of the Protocol. For each i ∈ K1, the
receiver opens (msgR,inp,i, {ri,j}j∈[n]). Similarly, for each i ∈ L1, the sender
opens (msgS,inp,i, {msgS,rand,i,j , si,j}j∈[n]). For each j ∈ L2, the sender opens
(msgS,rand,1,j , . . . ,msgS,rand,m,j).

Description of Protocol. The formal description of the protocol is given in Fig. 1.
A pictorial representation of our construction is given in Fig. 2.

Proof of Security. We defer the proof of security to the full version.

6 Non-interactive Reusable Commit-and-Prove

In this section, we define and construct a non-interactive reusable commit-and-
prove protocol. This protocol will be used as a key building block in the next
section to construct a two-sided reusable NISC protocol.

6.1 Definition

Syntax. A non-interactive reusable commit-and-prove protocol is given by a tuple
of algorithms (Com,Open,Extract,Prove,Verify) with the following syntax.12

– Com : It takes a message x as input and outputs a commitment , to this
message. We require this commitment to be computationally hiding and sta-
tistically binding.

– Open : It comprises of the openings to the commitments.
– Extract : It takes as input a commitment , and outputs the message inside

this commitment.
12 We implicitly assume that all these algorithms have access to a random oracle and

hence, do not include an explicit setup phase. We also assume that all the algorithms
take 1λ as an additional input.

94 Y. Ishai et al.

– Prove : It takes as input a sequence of commitments (,1 , . . . , ,n), a function f
and their openings (Open(,1), . . . ,Open(,n)) as input and outputs a proof π.

– Verify : It takes a sequence of commitments (,1 , . . . , ,n), a function f and a
proof π as input and outputs 1/0 indicating whether the proof is accepting
or rejecting.

We now state the properties that such a commit-and-prove protocol must satisfy.

Definition 7 (Non-Interactive Reusable Commit-and-Prove). A tuple
of algorithms (Com,Open,Extract,Prove,Verify) is said to be a non-interactive
reusable commit-and-prove protocol if it satisfies the following properties:

– (Com,Open) is a computationally hiding and statistical binding commitment
scheme. Extract is a straight-line extractor for the commitment scheme.

– Completeness. We require that:

Pr[Verify(X,Prove(X,Open(,1), . . . ,Open(,n))) = 1] = 1

where (,1 , . . . , ,n) be a sequence of commitments to the messages (x1, . . . , xn),
f be a function such that f(x1, . . . , xn) = 1 and X = (,1 , . . . , ,n , f).

– Soundness. Let P ∗ be a non-uniform PPT prover. We require the probability
that P ∗ wins the following soundness game to be negligible.

• (,1 , . . . , ,n , f, π) ← P ∗(1λ).
• Let (x1, . . . , xn) be the output of Extract on inputs ,1 , . . . , ,n respectively.
• If f(x1, . . . , xn) = 0 and Verify(,1 , . . . , ,n , f, π) = 1, then the prover wins

this game.
– Resuable Zero-Knowledge. There exists a PPT simulator Sim such that

for every non-uniform PPT verifier V ∗, we have:

Real(V ∗) ≈c Ideal(Sim, V ∗)

where Real and Ideal experiments are described in Fig. 3.

We defer the construction and proof of security to the full version.

7 Black-Box Reusable Two-Sided NISC

In this section, we give a construction of a black-box reusable two-sided NISC.
The main theorem we show here is:

Theorem 4. Assume black-box access to:

1. A (non-reusable) one-sided NISC protocol.
2. A non-interactive reusable commit-and-prove protocol satisfying Definition 7.

Then, there exists a reusable (two-sided) NISC protocol in the random oracle
model.

Black-Box Reusable NISC with Random Oracles 95

We give the proof of this theorem in the full version.

Real(V ∗)

1. (x1, . . . , x�, n) ← V ∗(1λ).
2. ,i ← Com(xi) for all i ∈ [�].
3. Set ,i = ⊥ for all i ∈ [� + 1, n] and

π = ⊥.
4. Run until V ∗ outputs a special sym-

bol stop :
(a) (n′, x�+1, . . . , xn′ , f) ←

V ∗(,1 , . . . ,
,n , π).

(b) Update the value of n with n′.
(c) Compute ,i ← Com(xi) for all

i ∈ [� + 1, n].
(d) Set X = (,1 , . . . , ,n , f) and w =

(Open(,1), . . . ,Open(,n)).
(e) If f(x1, . . . , xn) = 1, compute

π ← Prove(X, w).
5. Output the final view of V ∗.

Ideal(Sim, V ∗)

1. (x1, . . . , x�, n) ← V ∗(1λ).
2. ,i ← Com(xi) for all i ∈ [�].
3. Set ,i = ⊥ for all i ∈ [� + 1, n] and

π = ⊥.
4. Run until V ∗ outputs a special sym-

bol stop :
(a) (n′, x�+1, . . . , xn′ , f) ←

V ∗(,1 , . . . ,
,n , π).

(b) Update the value of n with n′.
(c) Compute ,i ← Com(xi) for all

i ∈ [� + 1, n].
(d) Set X = (,1 , . . . , ,n , f) and w =

(Open(,1), . . . ,Open(,n)).
(e) If f(x1, . . . , xn) = 1, compute

π ← Sim(1λ, X).
5. Output the final view of V ∗.

Fig. 3. Descriptions of Real and Ideal experiments.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754),
BSF grant 2018393, ISF grant 2774/20, and a Google Faculty Research Award. D. Khu-
rana was supported in part by DARPA SIEVE award and a gift from Visa Research.
A. Sahai was supported in part from a Simons Investigator Award, DARPA SIEVE
award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox
Faculty Research Award, a Google Faculty Research Award, and an Okawa Foun-
dation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through Award HR00112020024. A. Srinivasan
was supported in part by a SERB startup grant and Google India Research Award.

References

AIK04. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

AJJM20. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic
encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64375-1 2

AJJM21. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Unbounded multi-party com-
putation from learning with errors. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 754–781. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77886-6 26

https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-77886-6_26

96 Y. Ishai et al.

AMPR14. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure com-
putation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 22

ASH+20. Abascal, J., Sereshgi, M.H.F., Hazay, C., Ishai, Y., Venkitasubramaniam,
M.: Is the classical GMW paradigm practical? The case of non-interactive
actively secure 2PC. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS
’20: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1591–1605. ACM (2020)

BGMM20. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC
from DDH. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 320–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2 12

BGSZ22. Bartusek, J., Garg, S., Srinivasan, A., Zhang. Y.: Reusable two-round MPC
from LPN. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) KC, vol.
13177, LNCS, pp. 165–193. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-97121-2 72022

BJKL21. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable
non-interactive secure computation from LWE. In: Canteaut, A., Standaert,
F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 25

BL20. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable
non-interactive secure computation from LWE. In: Canteaut, A., Standaert,
F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 25

BMR90. Beaver, D., Micali, S., Rogaway. P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

CCKM00. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure compu-
tation and secure autonomous mobile agents. In: Montanari, U., Rolim,
J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 43

CDI+19. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky,
R., Vaikuntanathan, V.: Reusable non-interactive secure computation. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 15

DILO22. Dittmer, Y.I., Lu, S., Ostrovsky. R.: Authenticated garbling from simple
correlations. IACR Cryptol. ePrint Arch., page 836 (2022)

DIO21. Dittmer, S., Ishai, Y., Ostrovsky. R.: Line-point zero knowledge and its
applications. In: Tessaro, S. (ed.) ITC 2021, vol.199 of LIPIcs, pp. 5:1–
5:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

HIK+11. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box
constructions of protocols for secure computation. SIAM J. Comput. 40(2),
225–266 (2011)

HK07. Horvitz, O., Katz, J.: Universally-composable two-party computation in
two rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
111–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 7

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/978-3-030-97121-2_72022
https://doi.org/10.1007/978-3-030-97121-2_72022
https://doi.org/10.1007/978-3-030-77886-6_25
https://doi.org/10.1007/978-3-030-77886-6_25
https://doi.org/10.1007/3-540-45022-X_43
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-540-74143-5_7
https://doi.org/10.1007/978-3-540-74143-5_7

Black-Box Reusable NISC with Random Oracles 97

IK00. Ishai, Y., Kushilevitz. E.: Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In: 41st FOCS, pp.
294–304. IEEE Computer Society Press, November 2000

IKO+11. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 23

IKOS07. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai. A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

IKSS21. Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: On the round complexity
of black-box secure MPC. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 214–243. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84245-1 8

IKSS22a. Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: Round-optimal black-
box protocol compilers. In: Dunkelman, O., Dziembowski, S. (eds) EURO-
CRYPT 2022, Part I, vol. 13275 of LNCS, pp. 210–240. Springer, Heidel-
berg, May/June 2022. https://doi.org/10.1007/978-3-031-06944-4 8

IKSS22b. Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: Round-optimal black-box
secure computation from two-round malicious OT. In: TCC (2022)

IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

MR17. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online
and batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 15

Pai99. Paillier, P.: Public-key cryptosystems based on composite degree residu-
osity classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp.
223–238. Springer, Heidelberg (1999)

Pas03. Pass, R.: On deniability in the common reference string and random
oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 19

Yao86. Chi-Chih Yao. A.: How to generate and exchange secrets (extended
abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press,
October 1986

https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-030-84245-1_8
https://doi.org/10.1007/978-3-030-84245-1_8
https://doi.org/10.1007/978-3-031-06944-4_8
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19

Maliciously-Secure MrNISC in the Plain
Model

Rex Fernando1(B), Aayush Jain1, and Ilan Komargodski2

1 Carnegie Mellon University, Pittsburgh, PA, USA
rex1fernando@gmail.com, aayushja@andrew.cmu.edu

2 School of Computer Science and Engineering, Hebrew University of Jerusalem
and NTT Research, Jerusalem 91904, Israel

ilank@cs.huji.ac.il

Abstract. We study strong versions of round-optimal MPC. A recent
work of Benhamouda and Lin (TCC ’20) identified a version of secure mul-
tiparty computation (MPC), termed Multiparty reusable Non-Interactive
Secure Computation (MrNISC), that combines at the same time several
fundamental aspects of secure computation with standard simulation secu-
rity into one primitive: round-optimality, succinctness, concurrency, and
adaptivity. In more detail, MrNISC is essentially a two-round MPC pro-
tocol where the first round of messages serves as a reusable commitment
to the private inputs of participating parties. Using these commitments,
any subset of parties can later compute any function of their choice on
their respective inputs by broadcasting one message each. Anyone who
sees these parties’ commitments and evaluation messages (even an outside
observer) can learn the function output and nothing else. Importantly, the
input commitments can be computed without knowing anything about
other participating parties (neither their identities nor their number) and
they are reusable across any number of computations.

By now, there are several known MrNISC protocols from either
(bilinear) group-based assumptions or from LWE. They all satisfy semi-
malicious security (in the plain model) and require trusted setup assump-
tions in order to get malicious security. We are interested in maliciously
secure MrNISC protocols in the plain model, without trusted setup. Since
the standard notion of polynomial simulation is un-achievable in less than
four rounds, we focus on security with super-polynomial-time simulation
(SPS).

Our main result is the first maliciously secure SPS MrNISC in the
plain model. The result is obtained by generically compiling any semi-
malicious MrNISC and the security of our compiler relies on several well-
studied assumptions of an indistinguishability obfuscator, DDH over Z

∗
p

and asymmetric pairing groups, and a time-lock puzzle (all of which need
to be sub-exponentially hard). As a special case, we obtain the first 2-
round maliciously secure SPS MPC based on well-founded assumptions.
This MPC is also concurrently self-composable and its first message is
short (i.e., its size is independent of the number of the participating par-
ties) and reusable throughout any number of computations. Prior to our
work, for two round maliciously secure MPC, neither concurrent MPC

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 98–128, 2023.
https://doi.org/10.1007/978-3-031-30617-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_4&domain=pdf
http://orcid.org/0000-0002-1647-2112
https://doi.org/10.1007/978-3-031-30617-4_4

Maliciously-Secure MrNISC in the Plain Model 99

nor reusable MPC nor MPC with first message independent in the num-
ber of parties was known from any set of assumptions. Of independent
interest is one of our building blocks: the first construction of a one-
round non-malleable commitment scheme from well-studied assumptions,
avoiding keyless hash functions and non-standard hardness amplification
assumptions. The full version of this paper can be found at [26].

1 Introduction

In this work, we study the round complexity of cryptographic protocols, giving
special attention to secure multi-party computation (MPC). MPC allows a group
of mutually distrusting parties P1, . . . , Pn, each with private input xi, to compute
the evaluation of some function f(x1, . . . , xn) without revealing their inputs to
each other [12,21,30].

Round complexity is a fundamental measure of both the efficiency and power
of cryptographic protocols. The importance of this measure is strongly grounded
in practice: while the bandwidth of modern networks has constantly been increas-
ing, there is a physical lower bound on their latency, imposed by distance and
the speed of light. The round complexity of a protocol can also affect its secu-
rity properties. One very useful property of fully non-interactive and quasi-non-
interactive1 arguments is that proofs can be posted to some public bulletin board,
like a blockchain, and then any party can later independently verify its validity,
even if the original prover is offline. This enables arguments to be recursively
composed, which has been used to achieve fundamental new results in the areas
of succinct arguments [15], and also to achieve new space and communication
efficient secure multi-party computation protocols [25].

The round complexity of MPC protocols in particular has been well-studied
over the last few decades. The original MPC construction of [30] was highly
round-inefficient, taking a number of rounds proportional to the depth of the
circuit for the functionality being computed. Since then, a long line of work
[2,11,19,22,23,29,34,35,42] has made dramatic improvements, with recent works
finally achieving four rounds [2,19,22,23]. This was shown to be optimal by the
works of [29,34], which showed that achieving secure computation in three rounds
within the standard regime of black-box polynomial-time simulation is impossible.

In the classical definition of simulation security for MPC protocols, the parties
are assumed to run the protocol in an isolated environment, separate from other
parties and other executions of protocols. While this definition is simple and ele-
gant, the ubiquity of the internet means that this assumption is not very realistic.
The notion of concurrent security fixes this by allowing an adversary to spawn
an arbitrary number of parties and executions of a protocol. Unfortunately, the
work of [8] showed that concurrent security is impossible in any number of rounds
within the standard regime of black-box polynomial-time simulation.

1 By quasi-non-interactive we refer to “non-interactive” protocols that require a
trusted setup such as a common reference string.

100 R. Fernando et al.

The exciting work of [40] introduced a very useful relaxation of standard
polynomial-time simulation, called super-polynomial-time simulation (SPS). In
this new definition, the simulator is allowed to run for slightly longer than
polynomial-time. This has been used, among other things, to achieve concurrent
security for MPC protocols by the works of [20,28,37], sidestepping the impossi-
bility result of [8]. In 2017, the work of [7] constructed a concurrent MPC protocol
in three rounds, thus bypassing both the lower bounds of [29,34] and [8] at once.
For several years, this has been the state of the art in terms of the round complex-
ity of both MPC and concurrent-secure MPC in the plain model. A very recent
work [1] partially advanced the state of the art in terms of round complexity, giving
a two-round standalone-secure MPC protocol in the plain model. However, their
security proof relies on ad-hoc (exponentially strong) assumptions that are novel
to their work, and they do not achieve concurrent security.2

An important question, then, is whether concurrent-secure MPC, or even
standalone MPC, can be achieved in two rounds in the plain model, without
setup, relying on well-studied assumptions. In this work, we study this question.

MrNISC. Going one step further, it is natural to ask whether MPC can be done
in one round, with each party sending a single simultaneous message. However,
one can very easily show that this is impossible, via the following argument,
commonly referred to as the residual function attack. Consider the case of two
parties P1 and P2, and say that P1 sends its message m1. Then P2 should be
able to compute and send her message m2, so that both parties learn f(x1, x2).
However, this means that P2 can compute m′

2 for any other x′
2 in her head, and

learn f(x1, x2) as well. She can do this for arbitrarily many x′
2. This means that

parties are able to learn much more than is allowed by a secure MPC protocol.
This simple argument also extends to the case of protocols with trusted setup,
showing that one-round protocols are also impossible in this case.

This raises the question, how close can we get to a non-interactive protocol
without running into this impossibility? We study this question via a recent new
strong version of MPC, identified by a recent work by Benhamouda and Lin [14]
and termed Multiparty reusable Non-Interactive Secure Computation (MrNISC).
MrNISC requires the following general structure:

1. Input encoding : at any time, a party can publish an encoding of its input
noninteractively, independent of the number of parties.

2. Computation encoding : At any time, any subset I of parties can jointly com-
pute a function f on their inputs xI = {xi}i∈I by broadcasting a single public
message. Each party’s message is only dependent on the input encodings of
the parties in I.

Parties are allowed to join the system at any time by publishing their input
encoding, even after an arbitrary number of computation sessions have occurred.

2 We discuss this work further in Sect. 1.3.

Maliciously-Secure MrNISC in the Plain Model 101

In this way, MrNISC achieves essentially the best-possible form of non-
interactivity for MPC protocols without running into the aforementioned impos-
sibility: once parties have committed to their input, any subset of parties can
compute an arbitrary function on their committed inputs via a single round. Note
that MrNISC is a strict generalization of two-round concurrent-secure MPC.

Several MrNISC protocols have been constructed in the semi-malicious
regime, where security only holds for adversaries who follow the protocol specifi-
cation.3 Benhamouda and Lin [14] constructed such a protocol for all efficiently
computable functionalities relying on the DDH assumption in asymmetric bilin-
ear groups. In two concurrent follow-up works, Ananth et al. [3] and Benhamouda
et al. [13] obtained MrNISC protocols relying on Learning With Errors (LWE).
However, it was unknown whether it is possible to construct MrNISC in the plain
model which satisfies the full malicious version of security, where adversaries can
deviate arbitrarily from the protocol specification.

1.1 Our Results

In this paper, we give the first affirmative answer to the above question. Specifi-
cally, relying on commonly-used, well-established assumptions, we obtain a mali-
ciously secure SPS MrNISC in the plain model, without any trusted setup. In
particular, this implies a concurrently secure SPS MPC in two rounds from the
same assumptions. We state our (informal) theorem below.

Theorem 1.1 (Main Result, informal). Assume the existence of an indis-
tinguishability obfuscation (iO) scheme which is subexponentially-secure, subex-
ponential DDH (over both asymmetric pairing groups4 and Z

∗
p), and subexponen-

tial time-lock puzzles. Then there exists a malicious-secure MrNISC in the plain
model, with a super-polynomial simulator.

Key ideas. Our result is obtained via a generic compiler which takes any
subexponentially-secure semi-malicious secure MrNISC and upgrades it to mali-
cious security. As mentioned above, the work of [14] showed that such a semi-
malicious-secure MrNISC exists assuming subexponential DDH over asymmetric
pairing groups. Our transformation relies heavily on the idea of multiple axes
of hardness [38], where there are multiple ways to measure the hardness of a
problem, such as circuit size and circuit depth. This allows one to define pairs
of problems (A,B) where A is simultaneously harder than B (with respect to
one axis) and easier than B (with respect to the other). Time-lock puzzles are a
well-known way to achieve such scenarios based on circuit size and depth.

Implications for (Classical) MPC. As mentioned, it is possible to view an
MrNISC as a standard MPC. Specifically, we get the following:
3 Semi-malicious security allows the adversary to choose arbitrary randomness for the

parties, but otherwise requires honest behavior.
4 DDH assumption over asymmetric pairing groups is also referred to as the SXDH

assumption. We will interchangeably use SXDH wherever we specifically require
DDH over assymetric pairing groups.

102 R. Fernando et al.

– Our MrNISC implies the first concurrent two-round maliciously secure SPS
MPC. Indeed, at any point in time, parties can join the protocol by publishing
their input encodings and even start evaluation phases. This could happen
even after some of the other parties published their input encodings and par-
ticipated in several evaluation phases. The only previously known malicious
(SPS) concurrent MPC required three rounds [7].

– Our MrNISC implies the first 2-round maliciously secure SPS MPC with a
short and reusable first message, based on any assumption. Namely, the
first round message is not only independent of the function to be computed
(which is necessary for reusability), but it is actually generated independently
of the number of participating parties. All prior MPC protocols with this
property only satisfy semi-malicious security in the plain model [3,9,10,13,
14].

– Our MrNISC implies the first 2-round maliciously secure SPS MPC based on
well-studied, falsifiable assumptions.

Notable Building Blocks

In the course of obtaining our main result, we achieve two intermediate results,
in the areas of zero-knowledge and non-malleable commitments.

First, we give a new definition of two-round zero knowledge, called reusable
statistical zero-knowledge with sometimes-statistical soundness. This new type of
argument that satisfies both statistical zero knowledge and a weakened form of
statistical soundness. (Note that it is well-known that achieving both statistical
zero knowledge and full statistical soundness is impossible for all statements in
NP unless the polynomial-time hierarchy collapses [41].) We also require a strong
form of reusability. We show the following:

Theorem 1.2 (Informal). Assume the existence of a subexponentially-secure
indistinguishability obfuscation (iO) scheme, subexponential DDH (over both Z

∗
p

and assymetric pairing groups), and subexponential time-lock puzzles. Then there
exists a reusable statistical ZK argument with sometimes-statistical soundness as
defined in Definition 5.4.

Second, we give a new one-round non-malleable commitment in the
simultaneous-message model under better assumptions than were previously
known. This commitment satisfies a strong definition of security called CCA-
non-malleability. We prove the following theorem:

Theorem 1.3 (Informal). Assume the existence of a subexponentially-secure
indistinguishability obfuscation (iO) scheme, subexponential SXDH, and subexpo-
nential time-lock puzzles. Then, there exists a subexponentially-secure one-round
CCA commitment scheme supporting a super-polynomial number of tags.

Non-interactive non-malleable commitments were first constructed by the
work of [39], using very strong and non-standard assumptions. In particular,
their assumption incorporates a strong form of non-malleability into it. The

Maliciously-Secure MrNISC in the Plain Model 103

works of [18,27] were able to obtain constructions based on different assumptions,
including (among other things) a rather new assumption called keyless multi-
collision-resistant hash functions [16]. This assumption, which is described in
more detail below, is still somewhat strong as we do not have any instantiation
of it besides using cryptographic hash functions. In contrast, our commitment
scheme relies solely on well-established assumptions which have a long history
of study.

Our construction is based heavily on and improves upon the work of [36],
which achieves a weakened version of one-round non-malleable commitments. In
order to achieve our main result, we need full CCA-non-malleable commitments
which work in one round, so the construction of [36] will not suffice as-is. We
elaborate on this in Sect. 2.

Putting Things Together

Our compiler makes use of these two new tools in order to upgrade security of
a semi-malicious MrNISC scheme. Informally, we achieve the following:

Theorem 1.4 (The Compiler, Informal).
Assume the existence of subexponential variants of the following:

– a reusable two-round statistical zero knowledge argument with sometimes-
statistical soundness,

– a one-round non-malleable commitment,
– a non-interactive perfectly-binding commitment,
– a pseudorandom function,
– a witness encryption scheme for NP,
– and finally, a semi-malicious MrNISC scheme.

Then, there exists a malicious-secure MrNISC scheme in the plain model,
with super-polynomial simulation.

1.2 On the Necessity of iO

We make use of an obfuscation scheme when constructing both our zero knowl-
edge scheme as well as our non-malleable commitment scheme. Also, it is directly
used to get the witness encryption scheme. We do not know if iO can be avoided
in constructing MrNISC in the plain model.

As mentioned above, constructions of one-round non-malleable commitments
exist from other assumptions than iO [18,39], however these constructions rely
on assumptions that are problematic for various reasons. The only known route
to avoid these assumptions is via iO [36] but even then previous work failed to
achieve one-round protocols.

We now discuss the need in a witness encryption scheme. Intuitively, it seems
that some sort of witness encryption for a specific language is required when
upgrading security for a semi-malicious MrNISC scheme in the plain model,
for the following reason. Since one-round zero knowledge is impossible without

104 R. Fernando et al.

setup [31], honest parties are forced to send their second-round semi-malicious
MrNISC messages without knowing whether the first round is honest. Sending
these messages in the clear would violate security, so the parties must somehow
send a “locked” version of their second-round such that they are only revealed
conditioned on the first round being honest. Since these messages must be pub-
licly unlockable, this means that the second round is some form of witness encryp-
tion. We explain this in more detail in Sect. 2. It is an interesting open question
whether it is possible to build a witness encryption scheme for this specific type
of statement without relying on iO.

1.3 Related Work

A recent work of Agarwal, Bartusek, Goyal, Khurana, and Malavolta [1] gave the
first two-round standalone maliciously secure MPC in the plain model. Although
an exciting first step, the result is nonstandard in several ways. First, they require
the existence of several primitives (including semi-malicious MPC) which are
exponentially secure in the number of parties. Their construction also requires a
special type of non-interactive non-malleable commitment. Notably, neither the
non-interactive commitments of [18,32] nor the weakly non-interactive commit-
ments of [36], nor our new one-round non-malleable commitment scheme can
be used to instantiate this (because they strongly rely on exponential full secu-
rity and non-interactivity). The authors of [1] propose two instantiations which
work for their construction. One instantiation relies on factoring-based adap-
tive one-way functions [39],5 a strong assumption that incorporates a strong
non-malleability flavor. Another instantiation relies on an exponential variant
of the “hardness amplifiability” assumption of [18], along with keyless multi-
collision resistant hash functions [17]. Both of these assumptions are still highly
non-standard:

1. A keyless multi-collision resistant hash function is a single publicly known
function for which (roughly) collisions are “incompressible”, namely, it is
impossible to encode significantly more than k collisions using only k bits of
information. While keyless hash functions are formally a plain-model assump-
tion, there is no known plain-model instantiation based on standard assump-
tions. The only known instantiation is either in the random oracle model, or
by heuristically assuming that some cryptographic hash function, like SHA-
256, is such.

2. Hardness amplification assumptions postulate (roughly) that the XOR of inde-
pendently committed random bits cannot be predicted with sufficiently large
advantage. There are concrete (contrived) counter examples for this type of
assumptions showing that they are generically false [24], although they cer-
tainly might hold for specific constructions.

5 An adaptive one-way function is a non-falsifiable hardness assumption postulating
the existence of a one-way function f that is hard to invert on a random point
y = f(x) even if you get access to an inversion oracle that inverts it on every other
point y′ �= y.

Maliciously-Secure MrNISC in the Plain Model 105

The specific variant used by Agarwal et al. is novel to their work. It assumes
exponential hardness amplification against PPT adversaries, i.e., that there
exists a constant δ > 0 such that for large enough �, the XOR of � indepen-
dently committed random bits cannot be predicted by a PPT adversary with
advantage better than 2−�δ. This assumption (similarly to [39]’s adaptive
one-way functions) also incorporates a non-malleability flavor.

Because of this, there is no way to instantiate the protocol of [1] relying on
any well-studied assumptions, or even on assumptions not specifically formulated
in order to achieve non-malleable commitments. These drawbacks unfortunately
seem inherent in the techniques used by [1]. Our work uses a completely different
approach from their work, and is thus able to achieve a strictly stronger result,
without using ad-hoc assumptions.

2 Technical Overview

In this section, we give an overview of our constructions and the main ideas
needed to prove their security. We start by reviewing the syntax of MrNISC, as
defined by Benhamouda and Lin [14].
Model and syntax. A MrNISC consists of an input encoding phase done with-
out coordination with other parties in the system (i.e., without even knowing
they exist), and an evaluation phase in which only relevant parties participate
by publishing exactly one message each. In other words, MrNISC is a strict
generalization of 2-round MPC with the following properties:

– there is no bound on the number of parties;
– multiple evaluation phases can take place with the same input encodings;
– parties can join at any point in time and publish their input encoding, even

after multiple evaluation phases occurred.

We assume all parties have access to a broadcast channel that parties use to
transmit messages to all other parties. The formal syntax of an MrNISC consists
of three polynomial-time algorithms (Encode,Eval,Output), where Encode and
Eval are probabilistic, and Output is deterministic. The allowed operations for a
party Pi are:

– Input Encoding phase: each party Pi computes mi,1, σi,1 ← Encode(1λ, xi),
where xi is Pi’s private input, mi,1 is Pi’s round 1 message, and σi,1 is Pi’s
round 1 private state. It broadcasts mi,1 to all other parties.

– Function Evaluation phase: any set of parties I can compute an arity-
|I| function f on their respective inputs as follows. Each party Pi for i ∈ I
computes mi,2 ← Eval(f, σi,1, I, {mj,1}j∈I), where f is the function to com-
pute, xi is Pi’s private input, σi,1 is the private state of Pi’s input encoding,
{mj,1}j∈I are the input encodings of all parties in I, and the output mi,2 is
Pi’s round 2 message. It broadcasts mi,2 to all parties in I

106 R. Fernando et al.

– Output phase: upon completion of the evaluation phase by each of the
participating parties, anyone can compute y ← Output({mi,1,mi,2}i∈I) which
should be equal to f({xj}j∈I).

Security. For security, we require that an attacker does not learn any informa-
tion beyond what is absolutely necessary, which is the outputs of the compu-
tations. Formally, for every “real-world” adversary that corrupts the evaluator
and a subset of parties, we design an “ideal world” adversary (called a simulator)
that can simulate the view of the real-world adversary using just the outputs
of the computations. As in all previous works on MrNISC (including [3,13,14]),
we assume static corruptions, namely that the adversary commits on the cor-
rupted set of parties at the very beginning of the game. However, all previous
works only achieved semi-malicious security (unless trusted setup assumptions
are introduced). This notion of security, introduced by Asharov et al. [4], only
considers corrupted parties that follow the protocol specification, except letting
them choose their inputs and randomness arbitrarily. In contrast, we consider
the much stronger and more standard notion of malicious security, which allows
the attacker to deviate from the specification of the protocol arbitrarily.

More precisely, in malicious security, the adversary can behave arbitrarily
in the name of the corrupted parties. Specifically, after the adversary commits
on the corrupted set of parties, it can send an arbitrary round 1 message for a
corrupted party, ask for a round 1 message of any honest party (with associated
private input), ask an honest party to send the round 2 message corresponding
to an evaluation of an arbitrary function on the round 1 message of an arbitrary
set of parties, and send an arbitrary round 2 message of a malicious party cor-
responding to an evaluation of an arbitrary function on the round 1 message
of an arbitrary set of parties. The simulator needs to simulate the adversary’s
view with the assistance of an ideal functionality that can provide only the out-
puts of the computations that are being performed throughout the adversary’s
interaction.

Typically, protocols are called maliciously secure if for every polynomial-time
adversary, there is a polynomial-time simulator for which the real-world experi-
ment and the ideal-world experiment from above are indistinguishable. However,
as mentioned, it is impossible to achieve such a notion of malicious security for
MPC (let alone MrNISC) in merely two rounds unless trusted setup assumptions
are introduced. Therefore, we settle for super-polynomial time simulation (SPS),
which means that the simulator can run in super-polynomial time. In contrast,
the adversary is still assumed to run in polynomial time.

We refer to Sect. 4 for the precise definition.

Terminology. For the sake of brevity, we will sometimes refer to the input
encoding phase as round 1, and the function evaluation phase as round 2.

Maliciously-Secure MrNISC in the Plain Model 107

2.1 The MrNISC Protocol

To obtain our main result, we will start with a semi-malicious-secure MrNISC
protocol [13,14] and introduce modifications to achieve malicious security. Recall
that semi-malicious security only guarantees security when the adversary follows
the honest protocol specification exactly, except that it can arbitrarily choose
corrupted parties’ randomness. We would like to use the following high-level
approach used by many classical MPC protocols. During the input encoding
phase, we require each party to commit to its input and randomness in addition
to publishing a semi-malicious input encoding, and then to prove using zero-
knowledge that all of its semi-malicious MrNISC messages were generated by
following the prescribed protocol using that committed input and randomness.
However, a problem arises when using this strategy with 2-round protocols. (Note
that MrNISC requires that evaluation can be carried out in two rounds; in this
way, it is a strict generalization of 2-round MPC.) This problem comes from
the fact that zero-knowledge in the plain model requires at least two rounds.
Assuming we use such a 2-round ZK scheme, honest parties would need to send
their second-round MrNISC messages before finding out whether the first-round
MrNISC messages were honest. This completely breaks security—if any party
publishes semi-malicious messages based on a non-honest transcript, the semi-
malicious protocol can make no security guarantees about these messages.

We need some way of overcoming this problem. That is, we need a way to
publish second-round messages so that they are only revealed if the first round
is honest. To this end, we are going to use witness encryption as a locking
mechanism: we “lock” the round 2 message of the underlying (semi-malicious)
MrNISC and make sure that it can be unlocked only if all involved parties’ proofs
verify. More precisely, party i does:

1. Round 1 message: Commit to its input and randomness and publish a round 1
message using the underlying MrNISC with the committed input/randomness
pair. At the same time, generate a verifier’s first-round ZK message for the
other parties.

2. Round 2 message: Compute a round 2 message using the underlying MrNISC
with randomness derived from the secret state. Generate a zero-knowledge
proof that this was done correctly. Publish a witness encryption hiding the
aforementioned round 2 message that could be recovered by supplying valid
proofs that all other parties’ first-round messages were created correctly.

With this template in mind, even before starting to think about what a
security proof will look, it is already evident that there are significant challenges
in realizing the building blocks. Here are the three main challenges.

Challenge 1: The ZK argument system. The first challenge arises from
trying to use ZK arguments as witnesses for the witness encryption scheme.
Recall that witness encryption allows an encryptor to encrypt a message with
respect to some statement Φ, and only if Φ is false, then the message is hidden.
Witness encryption (WE) crucially only can provide security when Φ is false; in
particular, if Φ is true, even if it is computationally hard to find a witness for

108 R. Fernando et al.

Φ, no guarantees are made about the encrypted message being hidden. Thus, it
seems like we would need a statistically-sound ZK argument, i.e., a ZK proof: if
the verifier’s first-round message is honest, with high probability, there should
not exist an accepting second-round ZK message.

It is well-known that to achieve ZK in two rounds, it is necessary to have a
simulator that runs in super-polynomial time (i.e., an SPS simulator). In every
such known two-round ZK, the simulator works by brute-forcing some trapdoor
provided in round 1, and giving proof that “either the statement is true or I found
the trapdoor.” Because of the existence of this trapdoor, it would be impossible
to make any such ZK argument statistically sound: an unbounded-time machine
can always find the trapdoor and prove false statements. So it seems like the ZK
scheme needs to satisfy two contradictory requirements: be statistically sound,
and be a two-round scheme (which appears to preclude statistical soundness).

Challenge 2: Non-malleability attacks. Since the security of the underlying
semi-malicious MrNISC holds only if the adversary knows some randomness for
its messages, we need all parties to prove that they know the input and ran-
domness corresponding to their messages. We are aiming for a protocol that can
be evaluated in two rounds, so this necessitates using a non-malleable commit-
ment (to prevent an attacker from, say copying the round 1 message of some
other party). Unfortunately, non-interactive non-malleable commitments with-
out setup are only known from very strong non-standard assumptions, such as
adaptive one-way functions [39], hardness amplifiability [1,18], and/or keyless
hash functions [17,18,38]. These are very strong and non-standard assumptions,
for some of which we have no plain-model instantiation, except heuristic ones.
Thus, we want to achieve a secure MrNISC protocol (in the plain model) without
such strong assumptions.

Challenge 3: Adaptive reusability of the primitives. We emphasize that
we are building an MrNISC protocol, which significantly strengthens standalone
two-round MPC. Because of this, our ZK argument and commitment schemes
must satisfy strong forms of reusability. There are several challenges in ensuring
both the ZK argument and non-malleable commitment scheme satisfy the types
of reusability that we need, and we introduce several new ideas to solve these
challenges. We will elaborate on this challenge below after we describe our ideas
for solving challenges 1 and 2.

Solving Challenge 1: How Do We Get a “statistically-Sound” SPS
ZK?

We now discuss how to achieve the seemingly contradictory requirements of
getting a 2-round SPS ZK argument which has a statistical soundness property
that would allow it to be a witness for the WE scheme. Our key idea is to relax
the notion of statistical soundness to one that is obtainable in two rounds but
still sufficient to use with WE.

Imagine we have a WE scheme where the distinguishing advantage of an
adversary is tiny (say, subexponential in λ). It would then suffice to have a ZK

Maliciously-Secure MrNISC in the Plain Model 109

protocol that is statistically sound a negligible fraction of the time, as long as it
is quite a bit larger than the distinguishing advantage of the WE. In more detail,
consider a hypothetical zero-knowledge protocol with the following properties:

– The first round between a computationally-bounded verifier and a prover
fully specifies one of the two possible “modes”: a statistical ZK mode and a
perfectly sound mode.

– The perfectly sound mode occurs with some negligible probability ε, and in
this mode, no accepting round 2 message exists for any false statement

– In the statistical ZK mode (which occurs with overwhelming probability 1 −
ε), the second message is simulatable by an SPS machine and a simulated
transcript is statistically indistinguishable from a normal transcript.

– Furthermore, it is computationally difficult for a malicious prover to distin-
guish between the two modes.

If we had such a ZK protocol, it would enable us to argue hiding of the witness
encryption scheme whenever the first round of the protocol is not honest. The
idea of this argument is as follows. Suppose an adversary could learn something
about the second-round messages from their witness encryptions in some world
where the first round was not honest. In that case, it should also be able to
do so even in the perfectly-sound mode (otherwise, it would distinguish the
modes). But in this mode, proofs for false statements do not exist; thus, the
witness encryption provides full security. Even though this mode happens with
negligible probability, it is still enough to contradict witness encryption security,
whose advantage is much smaller.

To construct this new ZK scheme, we use ideas that are inspired by the
extractable commitment scheme of Kalai, Khurana, and Sahai [33]. This com-
mitment scheme has the property that it is extractable with some negligible tun-
able probability but is also statistically hiding. This commitment was used in the
works of [6] to get a two-round statistical zero-knowledge argument with super-
polynomial simulation. To instantiate our new “sometimes perfectly-sound” ZK
argument, we use the protocol of [6] as a starting point, but we will need to make
significant modifications. Namely, to force a well-defined perfect soundness mode,
we will make the first round of this protocol a “simultaneous-message” round,
where both the prover and the verifier send a message. We elaborate further
on this and other key ideas used in our construction in the full version of the
paper [26].

We note an important subtlety in this new definition and our construction.
Namely, the statistical ZK and perfect soundness properties only hold with
respect to the second round. If the verifier is unbounded-time, then after seeing
a first-round prover’s message, it can send a first-round verifier’s message that
forces perfect soundness all the time and thus disallows any prover from giving a
simulated proof. On the other hand, if the prover is unbounded-time, then after
seeing a first-round verifier’s message, it can send a first-round prover’s message,
which causes the probability ε of the perfect soundness mode to be 0. Thus the
frequency of perfect soundness mode and the ability of the simulator to give a

110 R. Fernando et al.

simulated proof depend on the first round being generated by computationally
bounded machines.

Solving Challenge 2: How Do We Avoid Non-interactive Non-
malleability?

To solve challenge two, we must somehow get a non-malleable commitment
(NMC) scheme which can be executed in the first round without using strong
assumptions such as keyless hash functions, hardness amlifiability, or adaptive
one-way functions. Recall that unfortunately, all known instantiations of non-
interactive NMCs (for a super-polynomial number of tags) currently require the
use of (some combination of) these strong assumptions, so it seems at first glance
that avoiding them would require making substantial progress on the difficult
and well-studied question of non-interactive NMCs.

Our approach to solving this problem is inspired by the exciting work of Khu-
rana [36], which builds a new type of commitment that works as follows. The
commitment phase is similar to a non-interactive commitment in that the only
communication from the committer is a first-round message C. The role of the
receiver is slightly different: The receiver chooses a random string τ internally,
and it is both C and τ together that truly defines the commitment (and, corre-
spondingly, the underlying value being committed to). Consequently, to compute
an opening, the committer must receive a τ from the receiver. Non-malleability
(and binding) hinges upon the fact that the τ chosen by the receiver is chosen
after seeing the commitment. (See the left diagram below for an illustration of
this scheme.) Crucially, this commitment can be constructed from well-founded
assumptions (indistinguishability obfuscation, time-lock puzzles, and OWPs),
bypassing the need for the strong assumptions discussed earlier (Fig. 1).

Fig. 1. The diagram on the left depicts the communication pattern of Khurana’s [36]
commitment scheme, whereas the diagram on the right depicts ours. The key difference
is that in our scheme, the receiver’s message and the sender’s messages can be sent
simultaneously, while in [36] the receiver’s message must be sent after the sender’s
message.

We would like to use this commitment scheme in our protocol. There are two
main issues that arise.

– First, to use this scheme, we would need the commitment phase to happen
entirely in the first round. Namely, the receiver must publish τ simultaneously
while the committer is publishing C. (See the right-hand diagram above.) In

Maliciously-Secure MrNISC in the Plain Model 111

particular, in the security proof, we need to handle the case of malicious
committers who publish C after seeing the round-1 τ .

– Second, our goal is to have every party use this commitment to commit to
their input and randomness for the protocol. Recall that in the scheme of [36],
a well-defined commitment (Cj , τi) consists of both the committer’s message
Cj and the receiver’s random string τi. Although honest parties Pj will always
provide commitments Cj which are consistent across all τi, it is perfectly
plausible for a corrupted party to publish some Cj where different τi yield
commitments (Cj , τi) to different values.

Solving the first issue involves identifying some technical challenges in the
security proof of [36] and making changes to the protocol to avoid these issues.
Because of this issue, the non-malleable commitment of [36] is really a two round
commitment scheme. In this paper, relying on the axis of hardness given by
a time-lock puzzle that we additionally use as an assumption, we construct a
truly one round non-malleable commitment scheme, in the simultaneous message
model. For the second issue, we use a surprisingly simple idea of adding a stan-
dard (potentially malleable) perfectly biding commitment scheme (e.g., Blum’s
commitment) at the MrNISC protocol level, we can use this NMC scheme even
though it does not satisfy the standard notion of binding. A more detailed tech-
nical overview of the non-malleable commitment scheme, as well as the formal
construction, can be found in the full version of the paper [26].

Solving Challenge 3: How Do We Get Reusability?

We now describe the challenges which arise when trying to get the type of
reusability required by MrNISC. The main problem is to ensure that all of the
building blocks we use (i.e., the ZK scheme and the NMC scheme) support the
reuse of their first-round message. It turns out that the non-malleable commit-
ment we described in the previous section can be adapted to this reusable set-
ting without much modification. However, several challenges arise when adapting
the sometimes-statistically-sound ZK scheme, which we discussed earlier, to the
reusable setting. We focus on these challenges here.

Recall that the ZK scheme is a simultaneous message protocol, so a transcript
consists of three messages of the form (zk1,P , zk1,V , zk2,P), a round-1 message of
the prover and the verifier, and a round-2 message of the prover. What we need
is for any prover to be able to publish a single zk1,P in round 1, which can be
used in many different sessions with respect to many different zk1,V messages.
In addition, we require a very strong form of reusability: even if a malicious
verifier sees an entire transcript (zk1,P , zk1,V , zk2,P), and then chooses a new
verifier’s first-round message zk′

1,V , zero-knowledge should still hold when the
prover publishes a proof with respect to zk′

1,V and the prover’s original message
zk1,P . Similarly, a verifier should be able to publish a single zk1,V which can be
used in many different sessions with respect to many different zk1,P messages,
and the soundness properties of the ZK scheme should still hold.

112 R. Fernando et al.

Note that it is not immediately clear whether this reusability for ZK argu-
ments are implied by a corresponding non-reusable version of ZK arguments.
This turns out not to be the case. To satisfy reusability, we end up having to make
several changes to our (non-reusable) sometimes-perfectly-sound ZK scheme. We
again describe this in more detail in the full version of the paper [26].

Putting Things Together

We now have the main pieces that we will use to construct a malicious-secure
MrNISC: the two-round sometimes-statistically-sound ZK, receiver-assisted one-
round CCA-secure commitment, and the underlying semi-malicious MrNISC.
Significant challenges arise when attempting to combine these pieces in the way
described earlier to get a malicious MrNISC protocol. To see this, it will be
convenient to briefly mention the approach we take for the security proof.

A simplified version of the sequence of hybrids we use is as follows. First,
we extract the value underlying the commitments and check if anyone acted
dishonestly. If so, we switch the honest parties’ witness encryptions to encrypt 0
rather than the actual round 2 messages (this is hybrid 1). Second, we simulate
the ZK proof (this is hybrid 2). Third, we switch the underlying value in the
commitment to 0 (this is hybrid 3). Once the commitments are independent
of the true input, we can use the simulator of the underlying MrNISC (this is
hybrid 4). The last hybrid is identical to our simulator.

To make the transitions between the hybrids possible, we need to set the
hardness of every primitive carefully. Each hybrid indistinguishability induces
some hardness inequality for the involved primitives. Unfortunately, the inequal-
ities seem to be in contradiction to each other. Observe that for the first indis-
tinguishability (between hybrid 0 and hybrid 1), we need our ZK argument’s
soundness properties to hold against adversaries who can run the CCA extrac-
tor. That is,

Textractor � Tsound.

For the transition between hybrid 2 to 3, we need to guarantee that the security
of the commitment scheme holds even against an adversary that can run the ZK
simulator. That is,

TZKSim � Textractor.

Together, the above two inequalities imply that it is necessary to have
TZKSim � Tsound. But this is impossible, at least using the techniques we use
in constructing the ZK argument. Our simulator works by brute-forcing the
verifier’s zk1,V message to obtain some secret and produces proofs with this
knowledge. In other words, whoever has the secret can produce accepting proofs
without knowing a witness—this is essentially an upper bound on the soundness
of the scheme, i.e., Tsound � TZKSim, which means that our inequalities cannot
be satisfied at the same time.

To solve this problem, we introduce another axis of hardness, namely, circuit
depth. In particular, assume that it is possible to run the ZK simulator in some
super-polynomial depth d. To do this, we would have to construct a ZK argument

Maliciously-Secure MrNISC in the Plain Model 113

where the secret embedded in zk1,V is extractable in depth d. Further, assume
that in polynomial depth, it is extremely hard to extract the secret from zk1,V

(much harder than size d). We can use such a ZK argument to solve the problem
above. Namely, we can restrict the reduction for hybrids 0 and 1 to run in
polynomial depth, and in this complexity class, it holds that Textractor � Tsound.
For the reduction for hybrids 2 and 3, we will allow the depth to be d, in which
case the inequality TZKSim � Textractor is satisfied.

So we have reduced this problem to constructing a ZK argument which is sim-
ulatable in some super-polynomial depth d and whose soundness holds against
size much larger than d as long as the depth is restricted to be polynomial. It
turns out that it is possible to modify our original ZK argument to satisfy this
property. We describe how to do this in the full version [26].

Several more minor technical issues arise when putting things together. One
such problem is that of “simulation soundness,” that is, we need to guarantee
that the adversary cannot give valid ZK arguments for false statements even if
it sees simulated arguments from the honest parties. We solve this issue using
techniques from the work of [7]. At a very high level, if we use a ZK argument
where the simulated proofs are indistinguishable from normal proofs even to an
adversary who is powerful enough to run the simulator itself, and if we commit
to the witnesses using a non-malleable commitment, it is possible to design a
sequence of hybrids that guarantees simulation soundness.

This and other minor technical details result in a construction and sequence
of hybrids that are slightly more involved than the simplified version presented
in this overview. We refer the reader to Sect. 6 for details.

3 Preliminaries

For any distribution X , we denote by x ← X the process of sampling a value
x from the distribution X . For a set X we denote by x ← X the process of
sampling x from the uniform distribution over X. For an integer n ∈ N we
denote by [n] the set {1, .., n}. A function negl : N → R is negligible if for
every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for
all λ > Nc. Throughout, when we refer to polynomials in security parameter,
we mean constant degree polynomials that take positive value on non-negative
inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity.

Throughout this paper, all machines are assumed to be non-uniform. We will
use λ to denote the security. We will use PPT as an acronym for “probabilistic
(non-uniform) polynomial-time”. In addition, we use the notation T1 � T2 (or
T2 � T1) if for all polynomials p, p(T1) < T2 asymptotically.

The statistical distance between two distributions X and Y over a discrete
domain Ω is defined as Δ(X,Y) = (1/2) ·

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

(C, ε)-indistinguishability. By C we denote an abstract class of adversaries,
where each adversary A ∈ C grows in some complexity measure (i.e. size, depth,

114 R. Fernando et al.

etc.) based on the security parameter λ. Security definitions will always hold
with respect to some class of adversaries which we will specify.

Definition 3.1 ((C, ε)-Indistinguishability). Let ε : N → (0, 1) be a func-
tion. We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N

are (C, ε)-indistinguishable if for any adversary A ∈ C, for any polynomial poly,
and any λ ∈ N,

∣
∣
∣
∣ Pr
x←Xλ

[
A

(
1λ, x

)]
− Pr

y←Yλ

[
A

(
1λ, y

)]
∣
∣
∣
∣ ≤ ε(λ).

We use the shorthand X ≈(C,ε) Y to denote this. If A is unbounded time then
we say that Y and X are statistically indistinguishable and we write X ≈(∞,ε)

Y, or alternately Δ(X ,Y) ≤ ε. (This corresponds to the standard definition of
statistical distance.)

4 MrNISC Syntax and Security

We define the syntax of MrNISC and formalize security notions for malicious
adversaries as well as semi-malicious adversaries, following the general framework
given by Benhamouda and Lin [14].

We assume all parties have access to a broadcast channel, which any party
can transmit a message to all other parties. We consider protocols given in the
form of three polynomial-time algorithms (Encode,Eval,Output), where Encode
and Eval are probabilistic, and Output is deterministic, for which we define the
syntax as follows:

– Input Encoding phase: each party Pi computes mi,1 ← Encode(1λ, xi; ri,1),
where xi is Pi’s private input, and the output mi,1 is Pi’s round 1 message.

– Function Evaluation phase: any set of parties I can compute an arity-
|I| function f on their respective inputs as follows. Each party Pi for i ∈ I
computes mi,2 ← Eval(f, xi, ri,1, I, {mi,1}i∈I ; ri,2), where f is the function to
compute, xi is Pi’s private input, ri,1 is the randomness which Pi used to
generate its input encoding, {mi,1}i∈I are the input encodings of all parties
in I, and the output mi,2 is Pi’s round 2 message.

– Output phase: Anyone can compute y ← Output({mi,1,mi,2}i∈I).

Malicious Security. We follow the standard real/ideal paradigm in the follow-
ing definition. An MrNISC scheme is malicious-secure for every PPT adversary A
in the real world there exists an ideal-world adversary S (the “simulator”) such
that the outputs of the following two experiments ExptRealA (λ) and ExptIdealA,S (λ)
are indistinguishable.

In the following, for ease of exposition, we assume that each party sends at
most one computation encoding for any (f, I) pair, and that parties ignore any
subsequent computation encodings.

Maliciously-Secure MrNISC in the Plain Model 115

Real Experiment ExptRealA (λ, z).The experiment initializes the adversary A
with security parameter 1λ and auxiliary input z. In addition, the experiment
initializes an empty list honest outputs. A chooses the number of parties M and
the set of honest parties H ⊆ [M]. A then submits queries to the experiment in
an arbitrary number of iterations until it terminates. In every iteration k, it can
submit one query of one of the following four types.

– Corrupt Input Encoding: The adversary A can corrupt a party i /∈ H
and send an arbitrary first message m∗

i,1 on its behalf.
– Honest Input Encoding: The adversary A can choose an input xi for

honest party i and ask a party i ∈ H to send its first message by running
m∗

i,1 ← Encode(1λ, xi; ri,1), where ri,1 is freshly chosen randomness. This m∗
i,1

is sent to the adversary.
– Honest Computation Encoding: The adversary A can ask an honest party

i ∈ H to evaluate a function f on the inputs of parties I. If all first messages
of parties in I are already published, party i computes and publishes m∗

i,2 ←
Eval(f, xi, I, ri,1, {m∗

i,1}i∈I ; ri,2). Otherwise, the party instead publishes ⊥.
– Corrupt Computation Encoding: The adversary can send an arbitrary

function evaluation encoding m∗
i,2 to the honest parties on behalf of some

corrupted party i /∈ H with respect to some function f and set I. If all parties
in I have sent their Eval messages for (f, I), the experiment adds the honest
parties’ output (f, I,Output({m∗

i,1,m
∗
i,2}i∈I)) to the list honest outputs.

The output of the real experiment is defined to be (viewA, τ, honest outputs),
where viewA is the output of A at the end of the computation, i.e. an arbitrary
function of its view, τ is the transcript of queries sent by A along with the
experiment’s responses, and honest outputs is the list defined above.

Ideal Experiment ExptIdealA,S (λ, z). The ideal experiment initializes A with secu-
rity parameter 1λ and auxiliary input z. After A chooses the number of parties
M and the set H � [M], the experiment initializes S with 1λ, M , and H. In
addition, the experiment initializes an empty list honest outputs. Subsequently,
the adversary can make the same queries as in the real world, which are handled
as follows:

– Corrupt Input Encoding: When A sends a first message m∗
i,1 on behalf of

some party i /∈ H, the experiment forwards this encoding to S, who responds
with an extracted input xi. S also has the option to declare that Pi’s input
is ⊥, which means that S was not able to extract an input from m∗

i,1 (for
example, if the adversary sends a bogus string as its message). The experiment
then sends xi (if it is not ⊥) to the ideal functionality to be used as the input
for party i.

– Honest Input Encoding: When the adversary A chooses honest input xi

and asks party i ∈ H to send its first message, the experiment sends xi to the
ideal functionality to be used as the input for party i. The experiment then
sends the index i (but not xi) to the simulator S, who generates a simulated
honest input encoding m̃i,1. This encoding is forwarded back to A.

116 R. Fernando et al.

– Honest Computation Encoding: When the adversary A asks an honest
party i ∈ H for a function evaluation encoding with respect to function f
and parties I, assuming all parties in I have published input encodings, the
experiment forwards this request to S. If this is the last honest computation
encoding generated with respect to f and I, and all corrupted parties in
j ∈ I \ H have sent first messages m∗

j,1 from which non-⊥ inputs have been
extracted, then the experiment queries the ideal functionality on (f, I) to
obtain the output y, which it forwards to the simulator as well. The simulator
must then generate a simulated function evaluation encoding m̃i,2 on behalf of
party i, regardless of whether it receives y or not. This encoding is forwarded
to A.

– Corrupt Computation Encoding: When the adversary sends a function
evaluation encoding m∗

i,2 on behalf of some corrupted party corresponding
to some (f, I), the experiment forwards (f, I, i,m∗

i,2) to the simulator. If all
parties have sent computation encodings, the simulator chooses whether to
allow the honest parties to learn the output corresponding to (f, I). If so, the
experiment adds (f, I, y) to the list honest outputs; otherwise, the experiment
adds (f, I,⊥) to honest outputs.

The output of the ideal experiment is defined to be (v̂iew, τ, honest outputs),
where v̂iew is the output of A at the end of the experiment, τ is the transcript of
queries made by A along with the experiment’s responses, and honest outputs is
the list defined above. In addition, at any point in the experiment, S may choose
to abort; in this case, the output of the experiment is whatever S outputs at
that point.

Definition 4.1 ((Cadv, Csim, ε)-Maliciously Secure MrNISC). We say that
an MrNISC protocol Π is (Cadv, Csim, ε)-maliciously secure if for every Cadv adver-
sary (A,D) there exists a Csim ideal-world adversary S (i.e., the simulator) such
that for every string z,

∣
∣
∣ Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣
∣ < ε(λ).

The standard notion of security requires for every polynomial p(·) the exis-
tence of a polynomial q(·) for which the protocol is (p, q, ε)-maliciously secure,
where ε(·) is a negligible function. However, since we are interested in two-round
protocols, it is known that the standard polynomial notion of security is impos-
sible. Therefore, we focus on the relaxed notion of super-polynomial security
(SPS): there is a sub-exponential function q(·) such that for all polynomials p(·),
the protocol is (p, q, ε)-maliciously secure.

The Semi-malicious Case. We define a variant of the above security definition,
which closely mirrors the definition of semi-malicious secure multiparty computa-
tion [5]. A semi-malicious MrNISC adversary is modeled as an algorithm which,
whenever it sends a corrupted input or computation encoding on behalf of some
party Pj , must also output some pair (x, r) which explains its behavior. More

Maliciously-Secure MrNISC in the Plain Model 117

specifically, all of the protocol messages sent by the adversary on behalf of Pj up
to that point, including the message just sent, must exactly match the honest
protocol specification for Pj when executed with input x and randomness r. Note
that the witnesses given in different rounds need not be consistent. We also allow
the adversary to “abort” a function evaluation in two different scenarios. First,
instead of sending a Corrupt Input Encoding message for Pj , the adversary
can send (j,⊥) to the experiment. In this case, the experiment will respond with
⊥ for all Honest Computation Encoding requests for (f, I), and when all
parties in I have been queried, it will add (f, I,⊥) to honest outputs. Second,
instead of sending a Corrupt Computation Encoding message on behalf of
Pj the adversary can again send (j, f, I,⊥). Again, after receiving such a query,
the experiment will respond with ⊥ for all Honest Computation Encoding
requests for (f, I), and when all parties in I have been queried, it will add (f, I,⊥)
to honest outputs.

I have published computation encodings for (f, I). In this sense, the adver-
sary may abort any individual function evaluation. Whenever an adversary
aborts a Corrupt Input Encoding message on behalf of party Pj , it must
abort any subsequent Corrupt Computation Encoding messages for Pj .

Definition 4.2 ((Cadv, Csim, ε)-Semi-Malicious Secure MrNISC). We say
that an MrNISC protocol Π is (Cadv, Csim, ε)-semi-malicious secure if for every
Cadv semi-malicious adversary (A,D) there exists Csim ideal-world adversary S
(i.e., the simulator) such that for every string z,

∣
∣
∣ Pr

[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣
∣ < ε(λ).

5 Main Building Blocks

In this section, we give formal definitions for our new notion of reusable
sometimes-statistically-sound zero-knowledge arguments along with the receiver-
assisted one-round CCA-secure commitments, both of which we make use of in
our MrNISC protocol.

5.1 Reusable Statistical ZK Arguments with Sometimes-
Statistical Soundness

We define statistical zero-knowledge arguments with a specific communication
pattern. The protocol that we need has a “simultaneous message” first round,
where both the prover and verifier will simultaneously send a message. The
syntax is the following:

1. The (honest) prover P = (ZKProve1,ZKProve2) and verifier V = (ZKVerify1,
ZKVerify2) are each composed of two uniform PPT algorithms.

2. ZKProve1 and ZKVerify1 get as input only the security parameter λ. ZKProve1
outputs a message zk1,P and a state σP . ZKVerify1 outputs a message zk1,V

and a state σV . The first round transcript is denoted τ1 = (zk1,P , zk1,V).

118 R. Fernando et al.

3. ZKProve2 gets σP , zk1,V , the instance x, and a witness w. It outputs a mes-
sage zk2,P .

4. ZKVerify2 gets the instance x and τ = (τ1, zk2,P), and outputs 0/1.

Looking ahead, we shall consider two-round ZK protocols as above with
super-polynomial simulation (SPS), i.e., the simulator can run longer than the
soundness bound. Further, we will also require that for a given prover and a
verifier, the first message is reusable for proving multiple statements. We denote
〈P (w), V 〉(1λ, x) the output of the interaction between P and V , where P gets
as input the witness w, and both P and V receive the instance x as a common
input.

Definition 5.1 (Reusable Statistical Zero-Knowledge Arguments with
Sometimes-Statistical Soundness). Let L be a language in NP with a
polynomial-time computable relation RL. A protocol between P and V is a
(Csound, CS , Czk, εsound,1, εsound,2, εS)-reusable statistical zero-knowledge argument
with sometimes-statistical soundness if it satisfies Definitions 5.2 to 5.4 below.

Definition 5.2 (Perfect Completeness). Let L be a language in NP with a
polynomial-time computable relation RL. A protocol between P and V satisfies
perfect completeness if for every security parameter 1λ and (x,w) ∈ RL, it holds
that Pr

[
〈P (w), V 〉(1λ, x) = 1

]
= 1,

where the probability is over the random coins of P and V .

Additionally, we need a refined soundness property, defined next.

Definition 5.3 ((Csound, εsound,1, εsound,2)-statistical soundness). Consider
any prover P ∗ ∈ Csound and a polynomial p(·), where on input the security param-
eter 1λ, P ∗ outputs an instance x ∈ {0, 1}p \ L. We require that there exists a

“soundness mode indicator” machine E that on input (τ1, stateV) outputs either
0 or 1 such that the following properties hold.

– Frequency of Soundness Mode. For every prover P ∗ ∈ Csound,
Pr [E(τ1, stateV) = 1] ≥ εsound,1(λ),
where the probability is over the coins of the prover and the verifier in round
1.

– Perfect Soundness Holds During Soundness Mode. For every prover
P ∗ ∈ Csound and every round-1 state (τ1, stateP ∗ , stateV) of the protocol, if
E(τ1, stateV) = 1 then for all second-round messages zk2,P sent by the prover
corresponding to some false statement x �∈ L, the verifier rejects on input
(x, τ1, zk2,P , stateV).

– Indistinguishability of Soundness Mode. For every prover P ∗ ∈ Csound,
it holds that

{(τ1, stateP ∗) | E(τ1, stateV) = 1}
≈(Csound,εsound,2)

{(τ1, stateP ∗) | E(τ1, stateV) = 0}.

Maliciously-Secure MrNISC in the Plain Model 119

The full MrNISC protocol needs a powerful version of zero knowledge, as
follows:

Definition 5.4 ((CS , Czk, εS)-Adaptive Reusable Statistical Zero-
Knowledge). We say a zero knowledge scheme satisfies (CS , Czk, εS,1, εS,2)-
adaptive reusable statistical zero-Knowledge if there exists a (uniform) simulator
ZKSim ∈ CS which takes as input the round-one transcript τ1, the honest prover’s
state σP , and a statement x such that the following holds. Consider an adversary
V ∗ ∈ Czk that takes as input 1λ and an honestly generated prover’s first round
message zk1,P , and plays the following game exptbV ∗,zk:

1. V ∗ may adaptively issue queries of the form (x,w, zk∗
1,V). The challenger

responds as follows:
– f (x,w) /∈ RL, the challenger responds with ⊥.
– If (x,w) ∈ RL and b = 0, the challenger responds with the honest prover’s

second message ZKProve2(σp, zk
∗
1,V , x, w).

– If (x,w) ∈ RL and b = 1, the challenger responds with the simulated
prover’s message ZKSim(σp, zk

∗
1,V , x).

2. At the end of the game, V ∗ outputs an arbitrary function of its view, which
is used as the output of the experiment.

It must hold that expt0V ∗,zk ≈(∞,εS) expt
1
V ∗,zk.

An overview and complete details of our construction of the reusable SZK
argument with sometimes-statistical soundness can be found in the full version
of the paper [26].

5.2 One-Round Simultaneous-Message CCA-Non-
malleable Commitments

In the following, we define the syntax and required security properties of the
commitment scheme which we use in the main MrNISc construction in Sect. 6.
This commitment is a simultaneous-message one-round commitment, where both
committer and receiver send a message during the single round. The receiver’s
message is a uniform random string τ , and the committer’s message is some obfus-
cated program P. The committed value is only fixed when both P and τ are fixed.
To reflect this, in the definition of syntax below, ComputeOpening, VerifyOpening,
and CCAVal take both the committer’s message P and the receiver’s message τ
as input.

Let T = {Tλ}λ∈N be the tag space which is [T (λ)], where T = 2poly(λ). The
modified syntax is as follows.

Definition 5.5 (Syntax of one-round simultaneous-message CCA-non-
malleable commitments). With respect to the tag space T , the NMC consists
of the following algorithms.

120 R. Fernando et al.

CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment
algorithm takes as input the security parameter λ, a tag tag ∈ Tλ, and a
message m ∈ {0, 1}∗, and outputs a commitment P.
ComputeOpening(τ, tag,P,m, r) : The polynomial time deterministic algo-
rithm
ComputeOpening takes as input a string τ ∈ {0, 1}�t , a tag tag ∈ Tλ, a com-
mitment P, a message m ∈ {0, 1}∗, and the randomness r used to commit. It
outputs an opening σ ∈ {0, 1}∗. Above �t = �t(λ, n) is a polynomial associated
with the scheme.
VerifyOpening(τ, tag,P,m, σ) : The polynomial-time deterministic algorithm
VerifyOpening takes a string τ ∈ {0, 1}�t , a tag tag ∈ Tλ, a commitment P, a
message m ∈ {0, 1}∗, and an opening σ. It outputs a value in {0, 1}.

Such a scheme is said to be a one-round simultaneous-message CCA-non-
malleable commitment if it satisfies the following properties:

Definition 5.6 (Correctness of Opening). Let λ ∈ N be the security param-
eter, and consider any tag ∈ Tλ, any message m ∈ {0, 1}∗, any τ ∈ {0, 1}�t , any
P ← CCACommit(1λ, tag,m; r). Then, Pr[VerifyOpening(τ, tag,P,m, σ) = 1] = 1,

where σ = ComputeOpening(τ, tag,P,m, r).

Definition 5.7 (Extraction). There exists an (inefficient) algorithm CCAVal
with the following properties. For any λ ∈ N and any message m ∈ {0, 1}∗, tag
tag ∈ Tλ, commitment P, and τ ∈ {0, 1}�t(λ), it holds that

(
∃σ : VerifyOpening(τ, tag,P,m, σ) = 1

)
⇐⇒ CCAVal(τ, tag,P) = m.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now specify the CCA security property.

Definition 5.8 ((C, ε)-CCA security). We define the following security game
played between the adversary A ∈ C and the challenger. We denote it by
exptA,CCA(1λ):

1. The challenger manages a list L that is initially empty. The contents of the
list are visible to the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.
3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -queries. Challenger
samples τ ′ ← {0, 1}�t and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-queries
for any τ ∈ L, any tag �= tag∗, and any commitment P. The challenger
computes CCAVal(τ, tag,P) and sends the result to the adversary.

4. The adversary submits two messages m0,m1 ∈ Mλ. The challenger samples
b ← {0, 1}, and computes P∗ ← CCACommit(1λ, tag∗,mb). The adversary
gets P∗ from the challenger.

Maliciously-Secure MrNISC in the Plain Model 121

5. The adversary repeats Step 3.
6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1

if b′ = b and 0 otherwise.

The one-round (simultaneous-message) CCA-secure commitment scheme CCA
scheme satisfies (C, ε)-CCA security if for all adversaries A ∈ C:

∣
∣
∣
∣
∣
Pr[exptA,CCA(1λ) = 1] − 1

2

∣
∣
∣
∣
∣
≤ ε.

Our NMC construction is an extension of [36]. It takes the same form as
that of [36], namely, the committer publishes a message P , and the receiver
publishes a random τ . We change the internals of the construction, though, to
allow the receiver to publish τ during the first round, simultaneously while the
committer is publishing P . We show that with our modifications, even a rushing
committer who chooses P based on τ cannot break security. Thus we achieve
a (simultaneous-message) one-round NMC which satisfies the full CCA security
definition given above, relying on iO and other standard assumptions. We refer
to the full version of the paper [26] for details.

6 Malicious-Secure MrNISC

In this section, we give the formal construction and proof of security for our
MrNISC protocol.

Required Primitives and Parameters. We make use of the following primi-
tives in our construction.

– Commitment: A non-interactive perfectly binding commitment (NICommit).
– Pseudo-Random Function A pseudo-random function (PRF).
– Witness Encryption: We use witness encryption We use circuit SAT as our
NP language.

– Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness: We
use a SPS ZK argument (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2) satisfy-
ing Definitions 5.1, 5.3 and 5.4.

– One-round CCA commitments: We use one-round (simultaneous-message)
CCA commitments as in Definitions 5.5 to 5.8.

– Semi-malicious MrNISC : We use an underlying semi-malicious MrNISC pro-
tocol (SM.Encode,SM.Eval,SM.Output), satisfying the security notion given
in Definition 4.2.

Complexity Hierarchy. In order to argue security, we require that the primi-
tives we use are secure against adversaries of varying complexities. In particular,
we require the following complexity hierarchy to hold with respect to the primi-
tives. Let T1, T2, T3, T4, T5 be functions over λ, such that

T1 � T2 � T3 � T4 � T5,

122 R. Fernando et al.

where T � T ′ means that p(T) < T ′ asymptotically for all polynomials p. We
require the following:

– The ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical
zero knowledge (Definition 5.4) where CS is the class of circuits of size poly(T1)
and depth T1 (i.e. the simulator runs in size poly(T1) and depth T1), and
Czk is the class of circuits of size p(T3) for all polynomials p, and εS is any
negligible function (i.e. statistical zero knowledge holds as long as the verifier’s
first-round message is generated by a machine in Czk.

– The CCA non-malleable commitment scheme satisfies (C, ε)-CCA security,
where C is the class of circuits of size p(T1) for all polynomials p, and ε is any
negligible function.

– The CCA non-malleable commitment scheme’s extractor CCAVal is a circuit
of size T2 and polynomial depth.

– The perfectly-binding commitment scheme is hiding against adversaries of
size p(T2) for all polynomials p, and is extractable by a circuit of size T3.

– The ZK argument scheme satisfies (Csound, εsound,1, εsound,2)-statistical sound-
ness, where Csound is the class of circuits of size p(T5) and polynomial depth
for all polynomials p (refer to Definition 5.3 for details on the meaning of
Csound), and εsound,1 = 1/T4, and εsound,2 is any negligible function.

– The witness encryption scheme satisfies (C, ε)-security, where C is the class of
circuits of size p(T5) for all polynomials p, and ε = 1/T5.

– The pseudo-random function is secure against adversaries of size p(T5) for all
polynomials p.

– The semi-malicious MrNISC protocol is secure against adversaries of size
p(T5) for all polynomials p.

The Relation Φzk,i,j

Hardwired: The function f and the set I, Pi’s tag tagi, Pi’s CCA non-malleable
commitment nmci, Pi’s perfectly binding commitment comi, Pi’s first round semi-
malicious MPC message m̂i,1, Pj ’s string τj , Pi’s commitment comi,m̂i,2 to its semi-
malicious evaluation encoding m̂i,2, and the transcript ρsm,1 of the semi-malicious
input encodings of all parties from I.

Input/Witness: Wzk,i = (xi, ri,SM,1, Ki, ri,com, σi,j,CCA, m̂i,2).

Computation: Verify the following steps.

1. VerifyOpening(τj , tagi, nmci, (xi, ri,SM,1, Ki, ri,com), σi,j,CCA) = 1
2. comi = NICommit(1λ, (xi, ri,SM,1, Ki); ri,com)
3. m̂i,1 = SM.Encode(1λ, xi, ri,SM,1)
4. m̂i,2 = SM.Eval(f, xi, ri,SM,1, I, ρsm,1; PRFKi(f, I, 1))
5. comi,m̂i,2 = NICommit(1λ, m̂i,2; PRFKi(f, I, 2))

Output 1 if all the above checks succeed, otherwise output 0.

Maliciously-Secure MrNISC in the Plain Model 123

The Relation ΦWE,i

Hardwired: The function f , the set I, the set of tags of all parties, Pi’s first-
round verifier zk messsage zk1,i,V , Pi’s string τi, the first-round prover zk messages,
commitments and semi-malicious encodings {zk1,j,P , m̂j,1, comj , nmcj}j∈I\{i}
included in the input encodings of all other parties in I.

Witness:
WWE,i = ({zk2,j→i,P , comj,m̂j,2}j �=i).

Computation: For every j ∈ I \ {i},

1. Let
Φzk,j = Φzk,j [f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

be the circuit described in page 122, with the values

[f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

hardcoded.
2. Compute ZKVerify2(Φzk,j , zk1,i,V , zk1,j,P , zk2,j→i,P).

Output 1 if all the above checks succeed, otherwise output 0.

Protocol. We give the protocol below, described in terms of the behavior of
party Pi during the input encoding phase, the evaluation phase, and the output
computation phase. In particular, we give this behavior by implementing the
Encode, Eval and Output algorithms defined in Section 4. Assume that each party
Pi has input xi and a public identity denoted by tagi ∈ Tλ. Note that the Output
algorithm is public and can be performed without Pi’s private input or state.
Throughout the protocol description, we deal with PPT algorithms as follows. If
a PPT algorithm P is invoked on some input x without any randomness explicitly
given (i.e., we write P (x)), we implicitly assume that it is supplied with freshly
chosen randomness. In some cases we will need to explicitly manipulate the
randomness of algorithms, in which case we will write P (x; r).

– Input Encoding Encode(1λ, tagi, xi): The input encoding algorithm takes
as input 1λ, where λ is the security parameter, along with Pi’s tag tagi and
private input xi, and does the following.
1. Compute the input encoding m̂i,1 ← SM.Encode(1λ, xi; ri,SM,1) from the

semi-malicious protocol, where ri,SM,1
$←− {0, 1}∗ is freshly chosen random-

ness.
2. Choose a PRF key Ki.
3. Compute a perfectly binding commitment

comi ← NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

of the input and the semi-malicious encoding randomness, where ri,com
$←−

{0, 1}∗ is freshly chosen randomness.
4. Compute a CCA-non-malleable commitment

nmci ← CCACommit(1λ, tagi, (xi, ri,SM,Ki, ri,com); ri,CCA)

124 R. Fernando et al.

of the same values committed to in the perfectly binding commitment,
along with the randomness used for generating the perfectly binding com-
mitment, where ri,CCA

$←− {0, 1}∗ is freshly chosen randomness.

5. Compute a random string τi
$←− {0, 1}�.

6. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V) ← ZKVerify1(1
λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P) ← ZKProve1(1λ).

7. Output mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,V , zk1,i,P).
– Function Evaluation Eval(f, tagi, xi, ri,1, I, ρ1): The function evaluation

algorithm takes as input the function f to be evaluated, the set I of par-
ticipating parties, Pi’s private input xi, the randomness ri,1 which Pi used to
generate its input encoding, and the input encoding transcript ρ1, and does
the following:
1. Parse ρ1 = {m̂k,1, comk, nmck, τk, zk1,k,V , zk1,k,P }k∈[n] to obtain (ri,SM,1,

ri,com, ri,CCA, σzk,1,i,V , σzk,1,i,P) from ri,1.
2. Compute the semi-malicious function evaluation encoding

m̂i,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi
(f, I, 1))

of the underlying semi-malicious protocol, using the transcript ρsm,1 =
{m̂k,1}k∈I of the semi-malicious input encodings of all parties from I,
where the randomness is chosen using the PRF key committed to during
the input encoding phase.

3. Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2;PRFKi
(f, I, 2)) of

the encoding m̂i,2 using randomness derived from the PRF key committed
to during the input encoding phase.

4. For each Pj , j ∈ I \ {i}:
• Compute an opening

σi,j,CCA ← ComputeOpening(τj , tagi, nmci, (xi, ri,SM,1, Ki, ri,com), ri,CCA)

for the non-malleable-commitment nmci with respect to τj .
• Compute a

round two ZK prover’s message zk2,i→j,P ← ZKProve2(Φzk,i,j ,Wzk,i,
σzk,1,i,P , zk1,j,V), where Φzk,i,j is the circuit SAT instance defined on
page 6. Here Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2) is the wit-
ness for generating this prover message.

5. Compute a witness encryption WEi ← WE.Encrypt(1λ, ΦWE,i, rcom,i,m̂i,2)
where the circuit ΦWE,i is described on page 26, and the plaintext
rcom,i,m̂i,2 = PRFKi

(f, I, 2) is the opening for comi,m̂i,2 .
6. Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P }j∈I\{i},WEi).

Maliciously-Secure MrNISC in the Plain Model 125

– Output Computation Output({mj,1,mj,2}j∈I): The output computation
algorithm takes as input the input encoding mj,1 and the function evaluation
encoding mj,2 of every party Pj for j ∈ I and does the following:
1. Parse

mj,1 = (m̂j,1, comj , nmcj , τj , zk1,j,v, zk1,j,p)

and
mj,2 = (comj,m̂j,2 , {zk2,j→k,P }k∈I\{j},WEj)

for each j ∈ I.
2. For each j, k ∈ I, j �= k:

• Run ZKVerify2(Φzk,j,k, zk1,k,v, zk1,j,p, zk2,j→k,p), where Φzk,j,k is
described on page 25. If the verification fails, abort and output ⊥.

3. For each j ∈ I:
• Compute the decryption rcom,j,m̂j,2 ← WE.Decrypt(WEj ,WWE,j) of

the opening rcom,j,m̂j,2 to the commitment comj,m̂j,2 , using the witness
WWE,j = ({zk2,k→j,P , comj,m̂j,2}k 	=j). If the decryption fails, abort
and output ⊥.

• Open comj,m̂j,2 to Pj ’s semi-malicious function evaluation encoding
m̂j,2 using rcom,j,m̂j,2 .

4. Compute the output y ← Output({m̂j,1, m̂j,2}j∈I) using the values m̂j,2

obtained from decrypting the witness encryptions along with the semi-
malicious input encodings m̂j,2.

5. Output y.

Correctness. Correctness of the protocol follows directly from correctness of
the underlying primitives.

We refer to the full version [26] for the proof of security.

Acknowledgement. Rex Fernando is supported in part by a Simons Investigator
Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
and an Okawa Foundation Research Grant. This material is based upon work supported
by the Defense Advanced Research Projects Agency through Award HR00112020024.
Ilan Komargodski is the incumbent of the Harry & Abe Sherman Senior Lectureship at
the School of Computer Science and Engineering at the Hebrew University, supported
in part by an Alon Young Faculty Fellowship, by a grant from the Israel Science
Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel Binational
Science Foundation and the US National Science Foundation (BSF-NSF Grant No.
2020643).

References

1. Agarwal, A., Bartusek, J.,Goyal, V., Khurana, D., Malavolta, G.: Two-round mali-
ciously secure computation with super-polynomial simulation. In: TCC, pp. 654–
685 (2021)

126 R. Fernando et al.

2. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

3. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Unbounded multi-party computation
from learning with errors. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 754–781. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6 26

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

5. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. Cryptology ePrint Archive,
Report 2011/613 (2011). https://eprint.iacr.org/2011/613

6. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 22

7. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal
concurrent MPC via strong simulation. In: TCC, pp. 743–775 (2017)

8. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS, pp. 345–354 (2006)

9. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from
DDH. In: TCC, pp. 320–348 (2020)

10. Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y.: Reusable two-round MPC from
LPN. In: PKC, pp. 165–193 (2022)

11. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513. ACM Press (1990)

12. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

13. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-
interactive secure computation from LWE. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6 25

14. Benhamouda, F., Lin, H.: Mr NISC: multiparty reusable non-interactive secure
computation. In: TCC, pp. 349–378 (2020)

15. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC, pp. 111–120 (2013)

16. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC, pp. 671–684, June 2018

17. Bitansky, N., Y., Kalai, T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC, pp. 671–684 (2018)

18. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: TCC, pp. 209–234 (2018)

19. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: TCC, pp. 645–677 (2017)

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-030-77886-6_26
https://doi.org/10.1007/978-3-030-77886-6_26
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2011/613
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-77886-6_25

Maliciously-Secure MrNISC in the Plain Model 127

20. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions, pp. 541–550. IEEE Computer Society
Press (2010)

21. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

22. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: TCC, pp. 291–319
(2020)

23. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: TCC, pp. 678–710 (2017)

24. Dodis, Y., Jain, A., Moran, T., Wichs, D.: Counterexamples to hardness amplifi-
cation beyond negligible. In: TCC, pp. 476–493 (2012)

25. Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively par-
allel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T. (eds.)
Advances in Cryptology–CRYPTO 2022. CRYPTO 2022. Lecture Notes in Com-
puter Science, vol. 13507, pp. 688-718. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15802-5 24

26. Fernando, R., Jain, A., Komargodski, I.: Maliciously-secure MrNISC in the plain
model. Cryptology ePrint Archive, Report 2021/1319 (2021). https://eprint.iacr.
org/2021/1319

27. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-
malleable commitments. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12698, pp. 159–185. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77883-5 6

28. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 99–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 8

29. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

31. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems.
J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

32. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 18

33. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and
more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78372-7 2

34. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28628-8 21

https://doi.org/10.1007/978-3-031-15802-5_24
https://doi.org/10.1007/978-3-031-15802-5_24
https://eprint.iacr.org/2021/1319
https://eprint.iacr.org/2021/1319
https://doi.org/10.1007/978-3-030-77883-5_6
https://doi.org/10.1007/978-3-030-77883-5_6
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-540-28628-8_21

128 R. Fernando et al.

35. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 36

36. Khurana, D.: Non-interactive distributional indistinguishability (NIDI) and non-
malleable commitments. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12698, pp. 186–215. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77883-5 7

37. Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction
of composable multi-party computation protocol. In: TCC, pp. 343–367 (2014)

38. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: FOCS, pp. 576–587 (2017)

39. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

40. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

41. Sahai, A., Vadhan, S.P.: A complete promise problem for statistical zero-knowledge.
In: FOCS, pp. 448–457 (1997)

42. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS, pp. 531–540 (2010)

https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/978-3-030-77883-5_7
https://doi.org/10.1007/978-3-030-77883-5_7
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/3-540-39200-9_10

Minimizing Setup in Broadcast-Optimal
Two Round MPC

Ivan Damg̊ard1, Divya Ravi1, Luisa Siniscalchi2(B), and Sophia Yakoubov1

1 Aarhus University, Aarhus, Denmark
{ivan,divya,sophia.yakoubov}@cs.au.dk

2 Technical University of Denmark, Kongens Lyngby, Denmark
luisi@dtu.dk

Abstract. In this paper we consider two-round secure computation pro-
tocols which use different communication channels in different rounds:
namely, protocols where broadcast is available in neither round, both
rounds, only the first round, or only the second round. The prior works
of Cohen, Garay and Zikas (Eurocrypt 2020) and Damg̊ard, Magri, Ravi,
Siniscalchi and Yakoubov (Crypto 2021) give tight characterizations of
which security guarantees are achievable for various thresholds in each
communication structure .

In this work, we introduce a new security notion, namely, selec-
tive identifiable abort, which guarantees that every honest party either
obtains the output, or aborts identifying one corrupt party (where honest
parties may potentially identify different corrupted parties). We inves-
tigate what broadcast patterns in two-round MPC allow achieving this
guarantee across various settings (such as with or without PKI, with or
without an honest majority).

Further, we determine what is possible in the honest majority setting
without a PKI, closing a question left open by Damg̊ard et al. We show
that without a PKI, having an honest majority does not make it pos-
sible to achieve stronger security guarantees compared to the dishonest
majority setting. However, if two-thirds of the parties are guaranteed to
be honest, identifiable abort is additionally achievable using broadcast
only in the second round.

We use fundamentally different techniques from the previous works to
avoid relying on private communication in the first round when a PKI is
not available, since assuming such private channels without the availabil-
ity of public encryption keys is unrealistic. We also show that, somewhat
surprisingly, the availability of private channels in the first round does
not enable stronger security guarantees unless the corruption threshold
is one.

Keywords: Secure computation · Round complexity · Minimal setup

S. Yakoubov—Funded in part by the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant
agreement No 669255 (MPCPRO) and No 803096 (SPEC).

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 129–158, 2023.
https://doi.org/10.1007/978-3-031-30617-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_5

130 I. Damg̊ard et al.

1 Introduction

It is known that secure computation is possible in two rounds (whereas one
round is clearly not enough). However, most known two-round protocols either
only achieve the weakest security guarantee (selective abort) [1], or achieve the
best-possible guarantee in their setting by making use of a broadcast channel
in both rounds [4,12,15]. Implementing broadcast via a protocol among the
parties makes no sense in this setting, as the resulting protocol would require
much more than two rounds. However, broadcast can also be done using physical
assumptions or external services such as blockchains. This typically means that
broadcast is expensive and/or slow, so it is important to try to minimize the
usage of broadcast (while achieving as strong a security guarantee as possible).

Before discussing previous work in this direction and our contribution, we
establish some useful terminology.

1.1 Terminology

In this work, we categorize protocols in terms of (a) the kinds of communication
required in each round, (b) the security guarantees they achieve, (c) the setup
they require, and (d) the corruption threshold t they support. We will use short-
hand for all of these classifications to make our discussions less cumbersome.

Communication Structure. We refer to protocols that use two rounds of broad-
cast as BC-BC; protocols that use broadcast in the first round only as BC-P2P;
protocols that use broadcast in the second round only as P2P-BC; and protocols
that don’t use broadcast at all as P2P-P2P.

Note that, when no PKI is available, it is not realistic to assume private
channels in the first round since it is unclear how such private channels would
be realized in practice without public keys. Therefore, in what follows, “P2P”
in the first round refers to open peer-to-peer channels which an adversary can
listen in on 1 – unless we explicitly state otherwise. We do assume the availability
of private channels in the second round, since one can broadcast (or send over
peer-to-peer channels) an encryption under a public key received in the first
round.

Security Guarantees. There are six notions of security that a secure computation
protocol could hope to achieve, described informally below.

Selective Abort (SA): A secure computation protocol achieves selective abort
if every honest party either obtains the output, or aborts.

Selective Identifiable Abort (SIA): A secure computation protocol achieves
selective identifiable abort if every honest party either obtains the output, or
aborts identifying one corrupt party (where the corrupt party identified by
different honest parties may potentially be different).

1 We do assume that the peer-to-peer channels are authenticated.

Minimizing Setup in Broadcast-Optimal Two Round MPC 131

Unanimous Abort (UA): A secure computation protocol achieves unanimous
abort if either all honest parties obtain the output, or they all (unanimously)
abort.

Identifiable Abort (IA): A secure computation protocol achieves identifiable
abort if either all honest parties obtain the output, or they all (unanimously)
abort, identifying one corrupt party.

Fairness (FAIR): A secure computation protocol achieves fairness if either all
parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.

Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

All the notions above, except SIA have been studied previously. This new
notion that we introduce here is strictly stronger than selective abort and
incomparable with unanimous abort but weaker than identifiable abort (which
demands that all honest parties must be in agreement). Selective abort is the
weakest notion of security, and is implied by all the others; guaranteed output
delivery is the strongest, and implies all the others. Notably, fairness and identi-
fiable abort are incomparable; selective identifiable abort and unanimous abort
are incomparable as well.

We believe the notion of SIA is an interesting conceptual contribution. Unlike
SA security where an honest party who aborts would only know that someone
misbehaved but has no idea who, SIA guarantees that the honest party learns
the identity of someone, who behaved incorrectly. This gives the honest party an
option of taking some action against this (locally identified) corrupt party, such
as refusing to collaborate in other contexts, withholding payment etc. One may
also consider a setting where misbehavior due to a technical error is much more
likely than a malicious attack. This could be the case, for instance, if parties are
considered reliable and with a good level of system security, implying that the
weak point is rather the software running the protocol. In such a case, SIA can
be used to help find where the error was in case of an abort, whereas SA will
give you no such help.

Of course, it would be preferable to achieve IA rather than SIA; but this
may not be possible in all settings. The partial identifiability offered by SIA can
be quite useful in such settings (where SIA is possible and IA is not), since SIA
does not allow anyone to accuse anyone, in particular, honest players will never
accuse each other. This means that, in an honest majority setting, if a party
has a conflict with more than t parties, then that party is definitely corrupt.
Therefore, if several secure computations are done in a setting where SIA is
possible (and IA is not), we can accumulate the conflicts, and may eventually
be able to identify a corrupt party such that everyone agrees (namely if that
party has a conflict with more than t parties). This will not completely prevent
adversarial behavior, but it may limit the number of honest parties that are
forced to abort. Such scenarios highlight why SIA is a useful notion to study.

132 I. Damg̊ard et al.

Setup. The following forms of setup, from strongest to weakest, are commonly
considered in the MPC literature:

Correlated randomness (CR), where the parties are given input-independent
secrets which may be correlated,

A public key infrastructure (PKI), where each party has an independent
honestly generated2 public-secret key pair where the public key is known to
everyone, and

A common reference string (CRS), where no per-party information is avail-
able, but a single trusted reference string is given.

We focus primarily on protocols that only use a CRS, which is the weakest
form of setup (except for the extreme case of no setup at all). To make our
prose more readable, when talking about e.g. a secure computation protocol
that achieves security with identifiable abort given a CRS and uses broadcast
in the second round only, we will refer to it as a P2P-BC, IA, CRS protocol. If
we additionally want to specify the corruption threshold t to be x, we call it a
P2P-BC, IA, CRS, t ≤ x protocol.

1.2 Prior Work

Cohen, Garay and Zikas [7] initiated the study of two-round secure computation
with broadcast available in one, but not both, rounds. They showed that, in
the P2P-BC setting, UA is possible even given a dishonest majority, and that it
is the strongest achievable guarantee in this setting. They also showed that, in
the BC-P2P setting, SA is the strongest achievable security guarantee given a
dishonest majority.

The subsequent work by Damg̊ard, Magri, Ravi, Siniscalchi and Yakoubov
[9] continued this line of inquiry, focusing on the honest majority setting. They
showed that given an honest majority, in the P2P-BC setting IA is achiev-
able (but fairness is not), and in the BC-P2P setting, the strongest security
guarantee—GOD—is achievable.

The constructions of Cohen et al. do not explicitly use a PKI, but they do
rely on private communication in the first round, which in practice requires a
PKI, as discussed above. The constructions of Damg̊ard et al. rely on a PKI even
more heavily. The natural open question therefore is: what can be done assuming
no PKI—only a CRS, and no private communication in the first round?

We note that the recent work of Goel, Jain, Prabhakaran and Raghunath [14]
considers instead the plain model or the availability only of a bare PKI (where it
is assumed that corrupt parties may generate their public key maliciously). They
show that in plain model, in the absence of private channels, no secure compu-
tation is possible even given an honest majority. Further, given broadcast (in
both rounds) IA is impossible in the plain model, while the strongest guarantee
of GOD is feasible in the bare PKI model. Our model is incomparable to that
2 Throughout this paper, we use the term ‘PKI’ to refer to a ‘trusted PKI’, where the

PKI keys are assumed to be honestly generated for all parties.

Minimizing Setup in Broadcast-Optimal Two Round MPC 133

of Goel et al. since we consider the availability of a CRS, and communication
patterns where broadcast is limited to one of the two rounds.

To the best of our knowledge, the notion of selective identifiable abort is not
discussed in previous work.

1.3 Our Contributions

We summarize the contributions of our work in two broad categories, described
below.

1.3.1 Introduction of SIA
We introduce and formalize a new security notion of MPC protocols, that we
refer to as selective identifiable abort (SIA). Further, we investigate the feasibil-
ity of two-round SIA MPC protocols with different broadcast patterns for various
settings – with or without PKI, and with or without honest majority. As it turns
out, SIA is an interesting notion because it can be achieved in cases where previ-
ously only weaker or incomparable notions were known to be possible. Notably,
for the P2P-P2P or BC-P2P and t < n/3 settings, SIA can be achieved and is
the best possible guarantee, where previously only selective abort was known.
Note that, with only selective abort, stopping honest players from getting the
output is basically without consequences for the adversary, while with SIA, each
honest player will identify at least one corrupt player.

In the following we explain all the results on SIA in more detail: In The-
orem 3, we show that any BC-BC (respectively P2P-BC) protocol (with some
additional properties) can be transformed to an SIA protocol for the same cor-
ruption threshold where the second round communication is over peer-to-peer
channels. Plugging in the appropriate IA protocols to this theorem yields sev-
eral positive results, summarized in Table 1 (for the CRS setting) and Sect. 1.4.3
(for the PKI setting). Namely, we obtain that when we assume only a CRS and
no private communication in the first round, SIA is achievable in the P2P-P2P
setting with t < n

3 and in the BC-P2P setting with t < n; finally when a PKI is
available, SIA is also possible in the P2P-P2P setting with t < n

2 .
In light of the above, what remains to be investigated are patterns where

broadcast is not available in the first-round, for settings with only a CRS and
honest majority (n

2 > t ≥ n
3); and settings with PKI and dishonest majority

(n
2 ≤ t < n).

In the CRS only setting, we show that P2P-BC, SIA is impossible to achieve
even with an honest majority (Theorem 4, this result holds even when the first-
round communication is private). Finally, we observe that the impossibility of
P2P-BC, IA, PKI protocols for t < n in [7] can be extended to SIA as well
(elaborated in the full version [10]).

1.3.2 Complete Characterization of Two-Round MPC in the CRS
Model with Honest Majority
Assuming only a CRS and no private communication in the first round, we give
a complete characterization of what can be done in two rounds with respect to
all the other security guarantees and different broadcast patterns.

134 I. Damg̊ard et al.

In a nutshell, we show that assuming only a CRS, an honest majority does not
give much of an advantage over a dishonest majority: regardless of the corruption
threshold, IA continues to remain impossible in the P2P-BC setting (directly
follows from impossibility of SIA in this setting, Theorem 4) and in the BC-P2P
setting, UA continues to remain impossible (Theorem 5)3. The latter extends
the impossibility result of Patra and Ravi [20], which holds for n ≤ 3t (but does
not hold for t > 1 and any n).

However, if at least two thirds of the parties are honest, in the P2P-BC setting
IA is additionally possible (Theorem 2). To show this we give a construction
based on a new primitive called one-or-nothing secret sharing with intermediaries
(adapted from one-or-nothing secret sharing [9]), which may be of independent
interest.

Most of our lower bounds hold even given private communication in the first
round; however, our constructions do not require it. This shows that surprisingly,
in most cases, having private communication in the first round cannot help
achieve stronger guarantees.

The one exception is the case where the adversary can only corrupt one
party (that is, t = 1); for t = 1 and n ≥ 4, guaranteed output delivery can be
achieved given private channels in the first round [17,18] even when broadcast is
completely unavailable. However, we show that without private channels in the
first round fairness (and thus also guaranteed output delivery) is unachievable,
even if broadcast is available in both rounds and the adversary corrupts only one
participant4. We also show that without private channels in the first round, if
broadcast is unavailable in the second round, unanimous abort is unachievable.

Finally, we make a relatively simple observation, showing that the positive
results from Cohen et al. still hold, even without private communication in the
first round.

We summarize our findings in Table 1, and the special case of t = 1 in Table 2.

1.4 Technical Overview

In Sect. 1.4.1, we summarize our lower bounds; in Sect. 1.4.2, we summarize our
constructions. These results assume a setup with CRS only. Lastly, in Sect. 1.4.3,
we summarize the results related to SIA, when PKI is available.

3 Given an additional round of communication instead of a PKI, things look different;
Badrinarayanan et al. [2] study broadcast-optimal three-round MPC with GOD given
an honest majority and CRS, and show that GOD is achievable in the BC-BC-P2P
setting.

4 This strengthens the fairness impossibility result of Gordon et al. [15] which holds
for n ≤ 3t.

Minimizing Setup in Broadcast-Optimal Two Round MPC 135

Table 1. Feasibility and impossibility for two-round MPC with different guarantees
and broadcast patterns when only a CRS is available (but no PKI or correlated ran-
domness). The R1 column describes whether broadcast is available in round 1; the
R2 column describes whether broadcast is available in round 2. In our constructions,
round 1 communications are not private; negative results hold even with private round
1 communications. Arrows indicate implication: the possibility of a stronger security
guarantee implies the possibility of weaker ones in the same setting, and the impos-
sibility of a weaker guarantee implies the impossibility of stronger ones in the same
setting. Beige table cells are lower bounds; green table cells are upper bounds.

Without PKI, in Two Rounds
Broadcast
Pattern

t
Selective
Abort
(SA)

Selective
Identifiable
Abort
(SIA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

BC BC

n
2

≤ t <
n

✓ ✓ ✓ ✓[7] w.m.c ✗[6] ✗

P2P BC ✓ ✗[7] (see
[10] for
details)

✓[7] w.m.c ✗ ✗ ✗

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗[7] ✗ ✗ ✗

P2P P2P ✓[7]
w.m.c

✗ ✗ ✗ ✗ ✗

BC BC

n
3

≤ t <
n
2

✓ ✓ ✓ ✓[7] w.m.c ✗[15,20] ✗

P2P BC ✓ ✗Theorem 4 ✓[7] w.m.c ✗ ✗ ✗

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗[20] ✗ ✗[15,20] ✗

P2P P2P ✓[7]
w.m.c

✗ ✗ ✗[8] ✗ ✗[19]

BC BC

t < n
3

✓ ✓ ✓ ✓[7] w.m.c ✗ for t > 1
[13]

✗ for t > 1

P2P BC ✓ ✓ ✓[7] w.m.c ✓ Theorem 2 ✗ for t > 1 ✗ for t > 1

BC P2P ✓ ✓[7] w.m.c,
last round

P2P (Theo-
rem 3)

✗ for t > 1
(Theo-
rem 5)

✗ for t > 1 ✗ for t > 1
[13]

✗ for t > 1

P2P P2P ✓[7]
w.m.c

✓

Theorem 2,
last round

P2P (Theo-
rem 3)

✗ for t > 1
[9]

✗ for t > 1 ✗ for t > 1 ✗ for t > 1

136 I. Damg̊ard et al.

Table 2. Feasibility and impossibility for two-round MPC with different guarantees
and broadcast patterns when only a CRS is available, when t = 1. We refer to Table 1
for the cases already covered therein.

The t = 1 Case
Broadcast
Pattern

t
Selective
Abort
(SA)

Selective
Identifiable
Abort (SIA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

Without Private Channels in Round 1:

BC BC

t = 1, n > 1

Table 1 Table 1 Table 1 Table 1 ✗Cor 2 [10] ✗

P2P BC Table 1 Table 1 Table 1 Table 1 ✗ ✗

BC P2P Table 1 Table 1 ✗Cor 1 [10] ✗ ✗Cor 1, 2 [10] ✗

P2P P2P Table 1 Table 1 ✗ ✗ ✗ ✗

With Private Channels in Round 1:

Any
t = 1, n = 4 ✓ ✓ ✓ ✓[17] ✓ ✓[17]

t = 1, n ≥ 5 ✓ ✓ ✓ ✓[18] ✓ ✓[18]

1.4.1 Lower Bounds
We present several lower bounds, some of which hold even when private channels
are available in the first round. This is in contrast to our constructions which
avoid the use of private channels before the parties had a chance to exchange
public keys.

With Private Channels. In Sect. 4, we present two main lower bounds that hold
even if private channels are available in the first round.

Our first lower bound (Theorem 4) shows that P2P-BC, SIA, CRS protocol
is impossible when n ≤ 3t. To show this, we consider a hypothetical 3-party
P2P-BC, SIA, CRS protocol where an adversary who controls just one party,
say P behaves inconsistently over the first-round peer-to-peer channels and then
chooses to act in the second round based on the information sent to one of
the honest parties, say P ′. Then, SIA guarantees that P ′ must compute the
output even though she finds the pair of remaining parties in conflict, as she
cannot decide whom to blame. This makes the protocol vulnerable to an attack
by potentially corrupt P ′ who can simulate this kind of conflict in her head
by recomputing the messages of P based on inputs of her choice. Infact, this
argument can be extended for n ≤ 3t.

Our second lower bound (Theorem 5) shows that BC-P2P, UA, CRS protocol
is impossible when t > 1. To show this, we argue that in any hypothetical BC-
P2P, UA, CRS protocol, an adversary who is able to control just two parties
is able to perform an even more powerful attack: after execution, she is able
to recompute the function output locally on corrupt party inputs of her choice
(together with the same fixed set of honest party inputs). This is called a residual
function attack. This completes the overview of the lower bounds that hold when
private channels are present.

When t = 1, we show that the availability of private channels makes a dif-
ference. When private channels are available in the first round, the strongest
guarantee—guaranteed output delivery—is known to be achievable as long as

Minimizing Setup in Broadcast-Optimal Two Round MPC 137

n ≥ 4 [17,18]. However, we show in the full version [10] and outline below that
without private channels in the first round, the landscape is quite different.

Without Private Channels. In this setting, an adversary can observe all messages
sent by an honest party P in the first round; so, those first-round messages
cannot suffice to compute the function on P ’s input—P ’s second-round messages
are crucially necessary for this. If P ’s first-round messages were enough, the
adversary would be able to mount a residual function attack: given P ’s first-
round messages, the adversary would be able to compute the function on P ’s
input (along with inputs of her choice on behalf of the other parties) in her head,
by simulating all the other parties. However, if we aim for either unanimous abort
(without use of broadcast in the second round) or fairness, we can also argue
that P ’s second-round messages cannot be necessary. If we would like to achieve
unanimous abort without use of broadcast in the second round, it is important
that the adversary not be able to break unanimity by sending different second-
round messages to different parties. If we would like to achieve fairness, it is
similarly important that the adversary not be able to deny the honest parties
access to the output by withholding her second-round messages. So, to achieve
either of those goals, the second-round message both must and cannot matter;
we thus rule out BC-P2P, UA, CRS protocols (Cor 1 in [10]) and BC-BC, FAIR,
CRS protocols (Cor 2 in [10]) when no private channels are available in the first
round.

1.4.2 Upper Bounds
Feasibility of P2P-BC, IA, CRS when t < n

3 In Sect. 3.2, we present our main
positive result, which is a P2P-BC, IA, CRS, t < n

3 construction (Fig. 2). Our
construction builds on the construction of Damg̊ard et al. [9] (which, in turn,
builds on the construction of Cohen et al. [7]). Like those prior works, we take a
protocol that requires two rounds of broadcast, and compile it. Since broadcast is
only available in the second round, the key is to ensure that a corrupt party can’t
break the security of the underlying protocol by sending inconsistent messages to
different honest parties in the first round. The solution is to delay computation
of the second round messages until parties are sure they agree on what was said
in the first round.

Following previous work, we do this by having each party G garble her second-
message function (which takes as input all the first-round messages that party
expects to receive) and broadcast that garbled circuit in the second round. G
additionally secret shares all of the labels for her garbled circuit. We can get
identifiable abort from this if we make sure that one of two things happen: (a)
sufficiently many parties receive a given first-round message bit coming from
a sender S, implying that the label corresponding to that bit is reconstructed
(unanimously, over broadcast); or (b) someone is unanimously identified as a
cheater. (Of course, two labels for the same input wire should never be recon-
structed, since this would compromise the security of the garbled circuit scheme.)

138 I. Damg̊ard et al.

To achieve this, Damg̊ard et al. introduce (and use in their construction) the
notion of one-or-nothing secret sharing. Unfortunately, this primitive crucially
relies on a PKI: in the second round, each player must be able to prove that she
received a certain message from S in the first round (or abstain if she received
nothing). Given a PKI, this can be done by having S sign her first-round mes-
sages. Of course, without a PKI, this cannot work as there is no time to agree
on public keys.

Therefore, without a PKI, we need a different approach. The approach we
use is instead to check in the second round whether there is sufficient consensus
among the parties about what S sent in the first round, and only reconstruct the
corresponding labels if this is the case. To this end, we define a new primitive in
the CRS model called one-or-nothing secret sharing with intermediaries. In such
a scheme, each garbler G performs two layers of Shamir sharing: first, each label
is shared, creating for each party R a share sR. Second, each sR is shared among
all parties. Everyone now acts as intermediaries, and passes their sub-shares of sR
on to R in the second round. This ensures that a corrupt G cannot fail to deliver
a share to R, since G cannot fail to communicate with more than t intermedi-
aries without being identified. Simultaneously, each participant R broadcasts a
message enabling the public recovery of only the label share corresponding to
what she received from S in the first round. Enough shares for a given label are
only recoverable if enough participants received the same bit from S, implicitly
implementing the consensus check we mentioned above.

There is one final caveat we need to take care of: the standard network
model assumes peer-to-peer “open” channels where the adversary can observe
all messages sent. With a PKI, we can make use of private channels (even in
the first round), by using public-key encryption (PKE). However, in the absence
of a PKI, this makes little sense, so we should not use private channels in the
first round. Under this constraint we cannot send shares of secrets in the first
round. So, we need to figure out a way for G to send sub-shares of R’s share sR
to intermediaries, and for intermediaries to pass these sub-shares on to R, in a
single round of broadcast.

The approach we use is as follows: in the second round, for each sub-share of
sR intended for intermediary I, G will broadcast an encryption c of that sub-share,
under a public key received from I in the first round. Simultaneously, I passes on
all of sub-shares to R by broadcasting transfer keys. Depending on which value
should be decrypted, R broadcasts the relevant decryption key which enables the
recovery of the corresponding plaintext. We informally refer to this approach as
transferrable encryption, where a party is able to transfer decryption capabilities
to another, even without first seeing the ciphertext in question.

Our construction of one-or-nothing secret sharing with intermediaries relies
on a CPA-secure PKE scheme and non-interactive zero-knowledge (NIZK) proof
system. This is used as a building block in our P2P-BC, IA, CRS, 3t < n
construction (formalized in Fig. 2) following the above blueprint.

Modifying Prior P2P-BC Constructions. The work of Cohen et al. gives a con-
struction in the P2P-BC and P2P-P2P settings that uses only a CRS (not a

Minimizing Setup in Broadcast-Optimal Two Round MPC 139

PKI); however, they use private communication in the first round. We observe
that we can modify their construction in a straightforward way to only use public
peer-to-peer communication in the first round, which is more realistic without a
PKI. Their construction is a compiler, and in the first round, two things are sent:
messages from the underlying construction; and (full-threshold) secret shares of
garbled circuit labels, which need to be communicated privately, and which are
then selectively published in the second round. Let’s pick an underlying con-
struction that uses public communication only (e.g. the construction of [12]).
Now, to avoid private communication in the first round, we modify the proto-
col to delay secret sharing until the second round. Instead, the only additional
thing the parties do in the first round is exchange public encryption keys. Like
in our construction (described above), it might look like delaying secret sharing
poses a problem, since the share recipients need to broadcast the relevant shares
to enable output recovery, but if they only receive their shares in the second
(last) round, they don’t have time to do this. So, we have the share sender G
encrypt each share meant for receiver R under a one-time public key belonging
to R. Simultaneously, R will publish the corresponding secret key if and only
if she wishes to enable the reconstruction of that label.5 In this way, the same
guarantees can be achieved without using private communication in the first
round.

Feasibility Results for SIA. In Sect. 3.3, we argue that a BC-BC protocol (respec-
tively a P2P-BC) Πbc that securely computes f with identifiable abort can be
turned into an SIA protocol Π (with the same corruption threshold) where the
second round is run over peer-to-peer channels, as long as Πbc satisfies the fol-
lowing two properties: 1) the simulator can extract inputs from the first-round;
2) it is efficient to check whether a given second-round of the protocol is correct.

The protocol Π works in the same way as Πbc, except that the second round
is sent over peer-to-peer channels. Intuitively, the only advantage that the adver-
sary has in Π is to send inconsistent last round messages. However, we argue
that this cannot lead to a pair of honest parties obtaining two different non-⊥
outputs. This is because of our assumption that the simulator of Πbc extracts
input from the first round messages (and say receives the output y from the
ideal functionality). This means that no matter what second round messages
the adversary sends in Πbc, the output can never be y′ �= ⊥ such that y′ �= y.
More specifically, the adversary’s second round messages in Πbc can only deter-
mine whether all the honest parties learn y or all the honest parties learn the
identity of a cheater (can be potentially chosen by the adversary during the
second broadcast round in Πbc, say, by making a corrupt party stop sending
messages or sending invalid messages in the second round). Since these second
round messages are now sent over peer-to-peer channels instead (but it is pos-
sible to efficiently check their validity), we can conclude that each honest party
5 Note that the full power of our one-or-nothing secret sharing with intermediaries is

not necessary here; in our construction, we only require two levels of sharing and
intermediaries in order to achieve identifiable abort, while this construction aims
only for selective and unanimous abort in the two different settings respectively.

140 I. Damg̊ard et al.

in Π would either learn the output y or the identity of a cheater (depending on
the version of the second round message the adversary sends privately). It may
be the case that honest parties learn different cheaters or some of them learn
the output y while others don’t; however, this suffices for SIA guarantee.

In Sect. 3.3 we give candidate constructions of BC-BC protocol (respectively
a P2P-BC) with identifiable abort, that have the additional properties described
above and can thereby be used to yield the BC-P2P (respectively P2P-P2P) SIA
upper bounds.

1.4.3 Completing the Picture of SIA with PKI
Given that the notion of selective identifiable abort is introduced in this work,
we also investigate how it affects the landscape when a PKI is available. This
setting was studied by Damg̊ard et al. [9] for the case of honest majority and
Cohen et al. [7] for the case of dishonest majority.

The case of BC-BC is already settled by Cohen et al., who give an IA con-
struction (stronger than SIA) for t < n, relying just on CRS. Next, we note
that our observation in Sect. 3.3 lets us transform the above into an SIA pro-
tocol (with the same corruption threshold) where the second round is run over
peer-to-peer channels; settling the case of BC-P2P setting.

In the P2P-BC setting, we observe that the impossibility of P2P-BC, IA, PKI
protocols for t < n in Cohen et al. can be extended to SIA as well (see full version
[10] for details). However, assuming an honest majority (t < n

2), feasibility of
SIA follows directly from the P2P-BC, IA, PKI construction of Damg̊ard et al..
Applying the observation in Sect. 3.3 to this IA construction of Damg̊ard et al.,
let us achieve SIA for P2P-P2P setting with the same threshold.

This settles the question of feasibility of two-round SIA with various broad-
cast patterns in the PKI setting.

1.5 Broadcast Complexity

In the previous two works, no attempt was made to minimize the broadcast over-
head of the compilers. They all require the broadcast of garbled second-message
functions, the size of which often scales with the complexity of the function
computed, which is potentially large. We observe that a generic broadcast opti-
mization (which is folklore, and has appeared in some previous work [5,11,16])
can be applied to any message which is already known to the sender in the first
round, but need not be broadcast until the second round. Using this optimiza-
tion, the size of the additional broadcasts that our compiler—and the compilers
of Cohen et al. and Damg̊ard et al.—becomes independent of the size of the
function being computed.

The broadcast optimization is quite straightforward. It enables reliable
broadcast of arbitrarily long messages, while only sending fixed-length messages
over the broadcast channel in the second round. The dealer sends its message
to all the recipients over peer-to-peer channels in the first round. Each recipi-
ent then echos the message it received over peer-to-peer channels in the second

Minimizing Setup in Broadcast-Optimal Two Round MPC 141

round. Finally, in the second round, each party also broadcasts a hash of the mes-
sage. If there exists a majority of parties who broadcast the same hash h, then
each honest party outputs a pre-image of h. (Each party must have received
a pre-image of h because at least one of the broadcasters of h must be hon-
est.) Otherwise, honest parties blame the dealer. Only hashes are sent over the
broadcast channel, and the size of those hashes is independent of the size of the
message.

Finally, we note that when applying this optimization to our construction,
and that of Cohen et al. and Damg̊ard et al., garbled circuits which were pre-
viously not broadcast until the second round are now sent (over peer-to-peer
channels) in the first round. This necessitates the use of adaptive garbled cir-
cuits6.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [7]. As in their work, we state our results in a
stand-alone setting.7

Real-World. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input.

The protocol is executed in rounds (i.e., the protocol is synchronous). Each
round consists of the send phase and the receive phase, where parties can respec-
tively send the messages from this round to other parties and receive messages
from other parties. In every round parties can communicate either over a broad-
cast channel or a fully connected peer-to-peer (P2P) network. If peer-to-peer
communication occurs in the first round without a PKI, we assume these chan-
nels are “open”; that is, the adversary sees all messages sent.8 In other cases,
we assume that these channels can be private, since communications can be
encrypted using public keys that are either available via a PKI or exchanged in
the first round. In all cases, we assume the channels to be ideally authenticated.

6 Adaptive garbling schemes [3] remain secure against an adversary who obtains the
garbled circuit and then selects the input.

7 We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes. We also give the formal definition of the
new security notion of selective identifiable abort (sl-idabort).

8 Some of our negative results hold even if private peer-to-peer channels are available
in the first round. However, our positive results do not make use of such channels.

142 I. Damg̊ard et al.

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, and
the adversary outputs an arbitrary function of the corrupt parties’ view. The
view of a party during the execution consists of its input, random coins and the
messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-World. We describe ideal world executions with selective abort (sl-abort),
selective identifiable abort (sl-idabort), unanimous abort (un-abort), identifiable
abort (id-abort), fairness (fairness) and guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort,
sl-idabort,id-abort, fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function and let I ⊆ [n], of size at most t, be the set of indices of the cor-
rupt parties. Then, the joint ideal execution of f under (S, I) on input vector
x = (x1, . . . , xn), auxiliary input aux to S and security parameter λ, denoted
IDEALtypef,I,S(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and S result-
ing from the following ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi

to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′

i be the value actually sent as the input
of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′

1, . . . , x
′
n). If there are no corrupt parties or type = god, proceed to step 4..

(a) If type ∈ {sl-abort, un-abort, sl-idabort,id-abort}: The trusted party sends
{yi}i∈I to S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will not
get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing all
parties to obtain the output.) It sends (abort,J) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ I.

(c) If type = sl-idabort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) For each party j in J , the adversary

Minimizing Setup in Broadcast-Optimal Two Round MPC 143

selects a corrupt party i∗j ∈ I who will be blamed by party j. It sends
(abort,J , {j, i∗j}j∈J) to the trusted party.

(d) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = sl-idabort, we let abortmsg = {abortmsgj}j∈J =

(⊥, i∗j)j∈J .
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party sends yj to every party Pj, j ∈ [n] \ J .
If type = sl-idabort, the trusted party then sends abortmsgj to each
party Pj, j ∈ J ; otherwise, the trusted party sends abortmsg to every
party Pj, j ∈ J

Note that, if type = god, we will never be in this setting, since S was not
allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3 Consider type ∈ {sl-abort, un-abort, sl-idabort, id-abort, fairness,
god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π
t-securely computes the function f with type security if for every PPT real-world
adversary A with auxiliary input aux, there exists a PPT simulator S such that
for every I ⊆ [n] of size at most t, for all x ∈ ({0, 1}∗)n, for all large enough
λ ∈ N, it holds that

REALΠ,I,A(aux)(x, λ)
c≡ IDEALtypef,I,S(aux)(x, λ).

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

– frst-msgi(xi, ri) → (msg1i→1, . . . ,msg1i→n) produces the first-round messages
of party Pi to all parties. Note that a party’s message to itself can be consid-
ered to be its state.

144 I. Damg̊ard et al.

– snd-msgi(xi, ri,msg11→i, . . . ,msg1n→i) → (msg2i→1, . . . ,msg2i→n) produces the
second-round messages of party Pi to all parties.

– outputi(xi, ri,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i) → yi produces the
output returned to party Pi.

We implicitly assume that all of these algorithms also take a CRS as input
when one is available.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message—msg1i . Similarly, when the second round is over broad-
cast channels, we consider snd-msgi to return only msg2i .

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 Upper Bounds

We begin with a description of our new primitive, one-or-nothing secret sharing
with intermediaries, which is used as a building block in our IA construction.
Next, we present our positive results for IA and SIA.

3.1 One-or-Nothing Secret Sharing with Intermediaries

Damg̊ard et al. [9] introduce one-or-nothing secret sharing, which allows a dealer
to share a vector of secrets in such a way that during reconstruction, at most
one of the secrets is recovered (the share holders essentially vote on which one).
The correctness guarantee is that if sufficiently many share holders vote for a
certain index, and no-one votes against that index (though some parties may
equivocate), the value at that index is recovered; the security guarantee is that
if at least one party votes for a certain index, the adversary learns nothing
about the values at any other index. Damg̊ard et al. present two versions of this
primitive: the default version, and a non-interactive version, where parties can
vote even if they have not received a share from the dealer. This is done by
assuming the dealer shares secret keys with each party, which can be realized
via non-interactive key exchange, using a PKI.

Unfortunately, this non-interactive one-or-nothing secret sharing tool
(referred to as 1or0) does not extend to a setting where no PKI is available.
In the absence of PKI, the main challenge is to ensure that the share intended
for a party, say P , gets delivered (so that her share corresponding to the secret
at the index she votes for can be recovered). We achieve this by modeling the
fact that other parties can be intermediaries who aid this share transfer. For
the setting where only a CRS is available, we propose a new variant of one-or-
nothing secret sharing: namely, one-or-nothing secret sharing with intermediaries
(referred to as 1or0wi).

In order to simplify the presentation of our P2P-BC, IA, CRS construction,
we define one-or-nothing secret sharing with intermediaries as a maliciously-
secure primitive. The first round of our protocol is reserved for the exchange

Minimizing Setup in Broadcast-Optimal Two Round MPC 145

of public keys, so sharing and reconstruction must take place in a single round.
The definitions of one-or-nothing secret sharing with intermediaries capture the
fact that keys may not have been exchanged consistently, but demand that
reconstruction succeeds if blame cannot be assigned. We discuss the syntax,
definitions and construction of one-or-nothing secret sharing with intermediaries
below.

3.1.1 Syntax
A one-or-nothing secret sharing scheme [9] consists of four algorithms: setup,
share, vote, and reconstruct. setup returns a shared secret key belonging
to the dealer and one of the receivers; these keys are then used within share,
and again in vote. To make our one-or-nothing secret sharing with interme-
diaries secure against malicious adversaries, we move to a public-key syntax,
which makes it easier to check parties’ behavior using zero knowledge proofs.
We change setup to return a common reference string crs; keys are then pro-
duced by keygen, which creates a key pair for one of the receivers. share, vote
and reconstruct now all expect the receivers’ public keys as input. The syntax
of reconstruct is modified to support cheater identification; if sufficiently many
(at least n−t) parties vote for the same value, then either the secret correspond-
ing to this value will be reconstructed, or a cheating party will be identified. We
present the syntax of the maliciously-secure one-or-nothing secret sharing with
intermediaries below.

setup(1λ) → crs is an algorithm which takes as input the security parameter
and generates the common reference string.

keygen(crs) → (sk, pk) is an algorithm which takes as input the common refer-
ence string and generates a key pair.

share(crs, pk1, . . . , pkn, z(1), . . . , z(l)) → s is an algorithm run by the dealer D
which takes as input all the parties’ public keys, and the l values that are
being shared. It outputs a single share s.

vote(crs, ski, pk1, . . . , pkn, vi) → si is an algorithm run by party i which takes
as input party i’s secret key, all the parties’ public keys, and a vote vi, where
vi ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if party i
is unsure which value it wants to vote for. It returns a ballot si.
Note that, to allow share and vote to be executed in a single round, vote
does not take as input the share s.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) → {z(v),⊥,⊥i} is an algo-
rithm which takes as input the output of share run by the dealer D, the
outputs of vote run by each of the n parties, as well as their votes, and
outputs the value z(v) which received a majority of votes, or ⊥, or ⊥i where
i denotes the identity of a cheater.

3.1.2 Security
We require one-or-nothing secret sharing with intermediaries to satisfy pri-
vacy and identifiability, described below. Notice that identifiability naturally

146 I. Damg̊ard et al.

implies correctness. Our definitions of privacy and identifiability both assume
that corrupt parties might provide honest parties, including the dealer, with
inconsistent or incorrect public keys. Below, we denote the set of n parties as
{D,P1, . . . , Pn−1}, where D denotes the dealer.

Informal Definition 1 (1or0wi: Privacy) Informally, this property requires
that when fewer than n − 2t honest parties produce their ballot using v, then the
adversary learns nothing about z(v).

The one-or-nothing secret sharing of Damg̊ard et al. [9] additionally required
contradiction-privacy. This guaranteed the privacy of all secrets when a pair of
honest parties produce ballots for different indices. Notably, our one-or-nothing
secret sharing with intermediaries does not have this property; however, when
n > 3t, the privacy property implies that at most one secret is reconstructed.9

Informal Definition 2 (1or0wi: Identifiability) Informally, this property
requires that when at least n − t parties produce their ballot using the same
v, either reconstruct returns z(v) or a corrupt party is identified.

It is easy to see that the identifiability property defined above implies cor-
rectness (i.e. when all algorithms are executed honestly, if at least n − t parties
produce their ballot using the same v, reconstruct returns z(v)).

We refer to the full version [10] for the formal definitions of privacy and
identifiability.

3.1.3 Construction
Both the one-or-nothing secret sharing scheme of Damg̊ard et al. [9] and our
construction of one-or-nothing secret sharing with intermediaries make use of
two layers of Shamir secret sharing. However, Damg̊ard et al. crucially differ in
the way in which the sub-shares for reconstructing a given value are transferred
by the shareholders. Because without a PKI a dealer might not communicate
reliably/verifiably to all share recipients (as either she or they might be corrupt),
in order to achieve identifiability in such scenarios, we introduce a new tool which
we informally call transferrable encryption.

Transferrable encryption allows a sender to encrypt a message to an interme-
diary, who, even before seeing the ciphertext, can transfer the ability to decrypt
to another receiver. This can be achieved, for instance, simply by having the
intermediary encrypt her (single-use) secret decryption key to the receiver.

We now informally describe the one-or-nothing secret sharing with interme-
diaries algorithms keygen, share, vote, and reconstruct:
9 If we consider the more general case of t′ ≤ t corruptions, the adversary would learn

the secret at an index v only if at least (n − t − t′) honest parties vote for v (as
these along with the t′ ballots known on behalf of the corrupt parties would allow
the secret to be reconstructed). Therefore, for the adversary to learn secrets at two
different indices, there must exist two disjoint sets of at least (n− t− t′). This could
happen only if 2(n− t− t′) ≤ n− t′, which implies n ≤ 2t+ t′ ≤ 3t (as t′ ≤ t); which
contradicts our assumption of n > 3t.

Minimizing Setup in Broadcast-Optimal Two Round MPC 147

1. Informally, keygen generates many single-use public-key encryption key pairs
for each party i, designated for transference of decryption power to different
parties j. Each party i will end up with a key pair (sk(v)j→i, pk

(v)
j→i) for every

party j and shared value index v.
2. In the share algorithm the dealer threshold secret shares each secret z(v) as

s
(v)
1 , . . . , s

(v)
n , and then threshold secret shares each s

(v)
i as s

(v)
i→1, . . . , s

(v)
i→n.

Then, the dealer broadcasts an encryption of each sub-share s
(v)
i→j under a

key pk
(v)
i→j belonging to party j; later, during vote, party j will act as an

intermediary, and forward that share to party i.
3. vote is divided into two sub-steps (the first of which is independent of the

party’s vote):
(a) Each party j broadcasts transfer keys for each index v and each other

party i that can be applied to the encryption of s
(v)
i→j (under party j’s

public key pk
(v)
i→j) to make it decryptable using party i’s secret decryption

key sk
(v)
i→i. (Such a transfer key can simply be an encryption of sk

(v)
i→j

under party i’s public key pk
(v)
i→i.)

(b) To vote for the reconstruction of z(v), each party i broadcasts her relevant
secret decryption key sk

(v)
i→i.

4. Finally, the reconstruct algorithm decrypts all the shares made available
through the broadcast of the relevant decryption keys, and reconstructs z(v)

if at least n − t votes supported v; otherwise, a cheating party is identified.

Finally, to achieve security against an active adversary, each party provides a
non-interactive zero-knowledge proof (NIZK) to ensure that each step is honestly
computed. Therefore, the setup algorithm is also tasked with providing the CRSs
required for the NIZKs.

More formally, let PKE = (keygen, enc, dec) be a public key encryption
scheme with CPA security, and let NIZK = (setupZK, prove, verify, simP,
extract) be a non-interactive zero-knowledge proof system for the following
relations:

Rkeygen =

⎧
⎪⎪⎨

⎪⎪⎩

φ = pk

w = (sk, r)
(sk, pk) ← PKE.keygen(1λ; r)

⎫
⎪⎪⎬

⎪⎪⎭

,

Rshare =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ = {pk(v)
i→j , c

(v)
i→j}v∈[l],i,j∈[n]

w =

⎛

⎜
⎜
⎜
⎝

{z(v), r(v), {r
(v)
i ,

{r
(v)
i→j}j∈[n]}i∈[n]}v∈[l]

⎞

⎟
⎟
⎟
⎠

{
(s

(v)
1 , . . . , s

(v)
n) ← Shamir.share(z(v); r(v))

}

v∈[l]

∧{
(s

(v)
i→1, . . . , s

(v)
i→n) ← Shamir.share(s

(v)
i ; r

(v)
i)

}

v∈[l],i∈[n]

∧{
c
(v)
i→j ← PKE.enc(pk

(v)
i→j , s

(v)
i→j ; r

(v)
i→j)

}

v∈[l],i,j∈[n]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

148 I. Damg̊ard et al.

Rvote =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ =

⎛

⎜
⎜
⎜
⎝

{pk(v)
j→j , pk

(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n],

vi, sk
(vi)
i→i

⎞

⎟
⎟
⎟
⎠

w =

(

{sk(v)
j→i, r̄

(v)
j→i, r

(v)
j }v∈[l],j∈[n]

)

{
(sk

(v)
j→i, pk

(v)
j→i) ← PKE.keygen(1λ; r̄

(v)
j→i)

}

j∈[n],v∈[l]

∧{
tk

(v)
j→i ← PKE.enc(pk

(v)
j→j , sk

(v)
j→i; r

(v)
j)

}

v∈[l],j∈[n]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Figure 1 describes our one-or-nothing secret sharing with intermediaries
(1or0wi) scheme.

Figure 1: Construction of 1or0wi

setup(1λ) : Set up and output the common reference strings
crskeygen ← setupZK(1λ,Rkeygen),
crsshare ← setupZK(1λ,Rshare), and
crsvote ← setupZK(1λ,Rvote)

for the zero knowledge proof system. Return crs =
(crskeygen, crsshare, crsvote).

keygen(crs), run by party i:
1. For each j ∈ [n] and v ∈ [l], (sk(v)j→i, pk

(v)
j→i) ←

PKE.keygen(1λ; r̄(v)j→i).

2. For each j ∈ [n] and v ∈ [l], π
(v)
j→i ← NIZK.prove(crskeygen, φ =

pk
(v)
j→i, w = (sk(v)j→i, r̄

(v)
j→i)).

3. Let ski = ({sk(v)j→i, r̄
(v)
j→i}j∈[n],v∈[l]), and pki =

({pk(v)j→i, π
(v)
j→i}j∈[n],v∈[l]).

4. Output (ski, pki).

share(crs, pk1, . . . , pkn, z(1), . . . , z(l)), run by the dealer D (where pki =
{pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l], compute (s(v)1 , . . . , s
(v)
n) ←

Shamir.share(z(v); r(v)) as the threshold sharing of z(v) with
threshold (n − t − 1).

2. For each i ∈ [n] and v ∈ [l], compute (s(v)i→1, . . . , s
(v)
i→n) ←

Shamir.share(s(v)i ; r(v)i) as the threshold sharing of s
(v)
i with

threshold (n − 2t − 1).
3. For each i, j ∈ [n] and v ∈ [l], compute c

(v)
i→j ←

PKE.enc(pk(v)i→j , s
(v)
i→j ; r

(v)
i→j).

4. Set
– φshare = ({pk(v)i→j , c

(v)
i→j}v∈[l],i,j∈[n]) and

– wshare = ({z(v), r(v), {r
(v)
i , {r

(v)
i→j}j∈[n]}i∈[n]}v∈[l]).

Compute πshare ← prove(crsshare, φshare, wshare).

Minimizing Setup in Broadcast-Optimal Two Round MPC 149

5. Set s = (φshare, πshare) and output s.

vote(crs, ski, pk1, . . . , pkn, vi), run by party i (where pki =
{pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l] and ski = {sk(v)j→i, r̄

(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l] and j ∈ [n], let tk
(v)
j→i ←

PKE.enc(pk(v)j→j , sk
(v)
j→i; r

(v)
j).

2. Set
– φvote,i = ({pk(v)j→j , pk

(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n], vi, sk

(vi)
i→i)

a

– wvote,i = ({sk(v)j→i, r̄
(v)
j→i, r

(v)
j }v∈[l],j∈[n]).

Compute πvote,i ← prove(crsvote, φvote,i, wvote,i).
3. Set si = (φvote,i, πvote,i) and output si.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) (where s =
({pk(v)i→j , c

(v)
i→j}v∈[l],i,j∈[n], πshare), pki = {pk(v)j→i, π

(v)
j→i}j∈[n],v∈[l] and

si = (φvote,i = ({pk(v)j→j , pk
(v)
j→i, tk

(v)
j→i}v∈[l],j∈[n], vi, sk

(vi)
i→i), πvote,i)):

Identify the winning vote:

1. If there does not exist a v ∈ {1, . . . , l} such that at least (n − t)
parties vote for v, output ⊥. Let Svote ⊆ [n] be the set of parties i
such that vi = v.
Verify the zero knowledge proofs:

2. For i, j ∈ [n], if NIZK.verify(crskeygen, φ = pk
(v)
j→i, π

(v)
j→i) = reject

(where pk
(v)
j→i, π

(v)
j→i are taken from pki), return ⊥i.

3. If NIZK.verify(crsshare, φshare, πshare) = reject (where φshare,
πshare are taken from s), return ⊥D.

4. For i ∈ [n], if NIZK.verify(crsvote, φvote,i, πvote,i) = reject (where
φvote,i, πvote,i are taken from si), return ⊥i.
Check the consistency of the share, ballots and keys:

5. For i ∈ [n], let S′
i ⊆ [n] be the set of parties j ∈ [n] such that (a)

pk
(v)
i→i is the same in pki and sj , and (b) pk

(v)
j→j is the same in pkj

and si. If |S′
i| < n − t, return ⊥i.

6. Let SD ⊆ [n] be the set of parties i such that {pk(v)j→i}j∈[n] is the
same in pki and s. If |SD| < n − t, return ⊥D.

7. For i ∈ Svote, let Si = S′
i ∩ SD. Note that |Si| ≥ n − 2t.

For j ∈ Si, we have a ciphertext tk
(v)
i→j (contained in sj), a

secret key sk
(v)
i→i (contained in si) and a ciphertext c

(v)
i→j (con-

tained in s). Let sk
(v)
i→j ← PKE.dec(sk(v)i→i, tk

(v)
i→j). Let s

(v)
i→j ←

PKE.dec(sk(v)i→j , c
(v)
i→j).

8. For each i ∈ Svote, let s
(v)
i ← Shamir.reconstruct({s

(v)
i→j}j∈Si

).

9. Output z(v) ← Shamir.reconstruct({s
(v)
i }i∈Svote

).

150 I. Damg̊ard et al.

Maliciously secure one-or-nothing secret sharing with intermediaries
when n > 3t.

a any string m(⊥) is to be interpreted as ⊥.

Theorem 1. The construction in Fig. 1 is a maliciously secure one-or-nothing
secret sharing with intermediaries when n > 3t if PKE is a public key encryption
scheme with CPA security, and NIZK is a secure non-interactive zero-knowledge
proof system.

The proof appears in the full version [10]

3.2 IA Feasibility Result: P2P-BC, IA, 3t < n

Our upper bounds are based on those of Cohen et al. [7] and Damg̊ard et al.
[9]. They take a BC-BC protocol Πbc, and compile it to the P2P-BC setting.
The primary challenge here is making sure that corrupt parties cannot break
security by sending different messages to honest parties in the first round. Our
compiler makes sure that if corrupt party first-round messages are consistent
enough, honest party second-round messages are produced on the same set of
first-round messages; otherwise, a corrupt party is unanimously identified. To
achieve this, we (and the prior works) have each party garble her second-message
function, which has her own input hardcoded, and takes as input all the first-
round messages she receives. Each party also secret-shares all of the labels for her
own garbled circuit. In the second round, over broadcast, parties echo the first-
round messages they received, distribute their garbled circuit, and contribute to
label reconstruction (for everyone’s garbled circuits) corresponding to the first-
round messages they received. If there aren’t n− t parties who all echo the same
first-round message from a given Pi, honest parties abort blaming Pi; if there
aren’t n− t parties who all contribute valid ballots for Pj ’s labels, honest parties
abort blaming Pj . Note that if an (identifiable) abort happens, reconstruction is
allowed to fail.

Using Shamir secret sharing with threshold s = 3n
5 , this leads to a P2P-BC,

IA, CRS protocol with t < n
5 . The reason we have corruption threshold t = n

5
and sharing threshold s = 3n

5 is that we have two constraints:

1. In order to prevent the adversary from learning two labels for the same wire
by sending different first-round messages to two subsets of the honest parties,
we need s ≥ t + n−t

2 .
2. In order to ensure that even after (a) t parties echo a different message from

party m and (b) a different t parties give bad label shares we still have enough
shares to reconstruct, we need s < n − 2t. (If only t parties have inconsistent
claims with the message sender and a different t parties have inconsistent
claims with the label share dealer, we have no idea who to blame, so we have
to reconstruct!)

Minimizing Setup in Broadcast-Optimal Two Round MPC 151

We get

t +
n − t

2
≤ s < n − 2t

⇒ t + n < 2n − 4t

⇒ 5t < n.

However, 5t < n does not match the lower bound from Theorem 4.
To match the lower bound we need a more sophisticated mechanism of shar-

ing such that all parties can contribute valid shares of each label, or someone is
unanimously identified as a cheater. In Sect. 3.1 we construct exactly such a prim-
itive, which we call one-or-nothing secret sharing with intermediaries (1or0wi).
Intuitively, our one-or-nothing secret sharing with intermediaries achieves this
goal by having each dealer use all of the parties as intermediaries to all share
recipients; if sufficiently many intermediaries don’t succeed in helping the dealer
G give a share to a recipient P , then either the dealer or the recipient can be
identified as corrupt, since they are in conflict with more than t intermediaries
(we refer to Sect. 3.1 to a more detailed description of how this works).

We are now ready to describe our final protocol with identifiable abort for
threshold 3t < n. In the first round (which is over public peer-to-peer channels),
the parties send their first-round messages of Πbc along with the public keys
produced by the key generation algorithm of 1or0wi. In the second round (which
is over broadcast), the parties execute the following steps:

1. They compute a garbling of the second-message function of Πbc;
2. they use 1or0wi to share the labels of their garbled circuit;
3. they use 1or0wi to vote for the labels of the garbled circuits of the other

participants based on the first-round messages of Πbc (received in the peer-
to-peer round); and

4. they echo the first-round messages of Πbc received in the first round.

Before computing the output, each party Pi performs some validations on the
echoed messages. Namely, Pi checks that (a) all the parties generated their bal-
lots for each garbled circuit based on the first-round messages that they echoed,
and (b) all the parties have mutual successful communication with at least n− t
others in the first round. If there is a party Pj that does not pass these checks,
party Pi identifies Pj as a cheater. If all of the parties pass the checks, then party
Pi invokes the reconstruct algorithm of 1or0wi. If reconstruct blames party
Pj , Pi aborts and identifies that party as a cheater. Otherwise, Pi reconstructs
labels for all the garbled circuits, uses the garbled circuits to obtain the second-
round messages of Πbc, and uses those second-round messages to complete the
protocol and obtain the computation output.

Roughly speaking, the identifiable abort property is guaranteed since the one-
or-nothing secret sharing with intermediaries is secure against active adversaries.
Therefore, if the two validations (a) and (b) succeed, we can rely on the properties
of 1or0wi to guarantee that Πbc is executed or a malicious party is identified.

152 I. Damg̊ard et al.

More formally our protocol is described in Fig. 2 and we assume that the
parties have access to the following tools:

Tools.
– A BC-BC, IA, CRS protocol i.e. a two-round broadcast protocol Πbc

achieving security with identifiable abort. (This could, for instance, be
the protocol described by Cohen et al. [7].)
Πbc is represented by the set of functions {frst-msgi, snd-msgi,
outputi}i∈[n].

– A garbling scheme (garble, eval, simGC) .
– A one-or-nothing secret sharing with intermediaries
1or0wi = (setup, keygen, share, vote, reconstruct) (defined in
Sect. 3.1).

Notation. Let Ci(xi, ri,msg11, . . . ,msg1n) denote the boolean circuit that takes
Pi’s input xi, randomness ri and the first round messages msg11, . . . ,msg1n,
and outputs msg2i . For simplicity assume that (xi, ri) consists of z bits, and
each first round message is � bits long, so each circuit has L = z + n · � input
bits. Note that Ci is public. Let g be the size of a garbled Ci.

Figure 2: Π id-abort
p2pbc with n > 3t

Private input. Every party Pi has a private input xi ∈ {0, 1}∗ and
randomness ri ∈ {0, 1}∗.

Setup.
– CRS setup for one-or-nothing secret sharing with intermediaries:

crs ← setup(1λ).
– Setup for Πbc (which includes CRS when instantiated using the

protocol of [7]). a

First Round. Each party Pi does the following:
1. Let (ski, pki) ← keygen(1λ), where pki =

{
pk

(1)
i =

(pk(1,1)
i , . . . , pk

(1,L)
i), . . . , pk(n)i = (pk(n,1)

i , . . . , pk
(n,L)
i)

}
is a vector

of nL public keys with the corresponding vector of secret keys ski =
{
sk

(1)
i = (sk(1,1)

i , . . . , sk
(1,L)
i), . . . , sk(n)i = (sk(n,1)

i , . . . , sk
(n,L)
i)

}

(We abuse notation slightly by assuming that keygen(1λ) outputs
a vector of public keys and secret keys; we do this for simplicity)

2. Let msg1i ← frst-msgi(xi, ri) be Pi’s first round message in Πbc.
3. Send (pki,msg1i) to Pj for j ∈ [n].

Second Round. Each party Pi does the following:
We specify multiple broadcast messages separately for clarity; however, they are all sent

simultaneously as a single round of communication.

1. Let pkj→i = {pk(1)j→i, . . . , pk
(n)
j→i} denote the pkj received privately

from Pj (j ∈ [n]), where pk
(k)
j→i = (pk(k,1)

j→i , . . . , pk
(k,L)
j→i) for k ∈ [n].

2. Compute (GCi,Ki) ← garble(1λ, Ci;Ri), where Ki =
{K

(0)
i,l ,K

(1)
i,l }l∈[L].

Minimizing Setup in Broadcast-Optimal Two Round MPC 153

3. For every l ∈ [z +1, . . . , L], let si,l ← share(crs, pk(i,l)1→i, . . . , pk
(i,l)
n→i,

K
(0)
i,l ,K

(1)
i,l). Broadcast {si,l}l∈[z+1,...,L].

4. Let (νi,z+1, . . . , νi,L) denote the bits comprising
(msg11→i, . . . ,msg1n→i), where msg1j→i refers to msg1j received
from Pj in Round 1.

5. For each k ∈ [n] and l ∈ [z + 1, L]: Compute and broadcast s
(k)
i,l ←

vote(crs, sk(k,l)
i , pk

(k,l)
1→i , . . . , pk

(k,l)
n→i, νi,l).

Broadcast own garbled circuit:

6. Let (νi,1, . . . , νi,z) denote the bits corresponding to (xi, ri).
7. For l ∈ [z], let Ki,l = K

(νi,l)
i,l .

8. Broadcast (GCi, {Ki,l}l∈[z]).
Echo first-round messages:

9. Broadcast (msg11→i, . . . ,msg1n→i).
Let msg1i = msg1i→i denote the party’s own first-round message.

Output Computation. Each party Pi does the following:
If there is a party who did not generate ballots for each garbled circuit based on

the first-round messages that she echoed, blame that party:

1. For j ∈ [n] : Check if {msg1k→j}k∈[n] broadcast by Pj is consistent

with {s(k)j,l }k∈[n],l∈[z+1,L]
b . Output abortj if the check fails. Else,

set (νj,z+1, . . . , νj,L) as the bits comprising (msg11→j , . . . ,msg1n→j).
If there is a party who did not have mutual successful communication with at least

n − t others in the first round, blame that party:

2. For j ∈ [n] : If there does not exist a set |Sj | ≥ n− t such that, for
k ∈ Sj , msg1j→k = msg1j holds; output abortj .
Decrypt the shares:

3. For k ∈ [n] (whose garbled circuit we will now consider):
(a) For l ∈ [z + 1, L], compute Kk,l ←

reconstruct(crs, sk,l, (pk
(k,l)
1 , v1,l, s

(k)
1,l), . . . ,

(pk(k,l)
n , vn,l, s

(k,l)
n,l). If reconstruct returns ⊥id, output

abortid. Else, continue.
(b) Evaluate msg2k ← eval(GCk, (Kk,1, . . . ,Kk,L)). If the evalua-

tion fails, output abortk.
4. Output y ← outputi(xi, ri,msg11, . . . ,msg1n,msg21, . . . ,msg2n).

P2P-BC, IA, t < n
3 secure computation in the CRS model.

a For simplicity (to avoid introducing additional notation), we assume
implicitly that the set of functions {frst-msgi, snd-msgi, outputi}i∈[n] of
Πbc use the relevant setup information.
b Note that in our construction of one-or-nothing secret sharing with
intermediaries, it is possible to retrieve the corresponding vote directly
from the ballot s

(k)
j,l .

154 I. Damg̊ard et al.

Theorem 2 (P2P-BC, ID, CRS, n > 3t). Let f be an efficiently computable
n-party function and let n > 3t. Let Πbc be a BC-BC, ID, CRS protocol that
securely computes f with the additional constraint that the straight-line simula-
tor can extract inputs from corrupt parties’ first-round messages. Assuming that
(garble, eval, simGC) is a secure garbling scheme, and (setup, keygen, share,
vote, reconstruct) is a secure one-or-nothing secret sharing with intermedi-
aries. Then, Π id-abort

p2pbc securely computes f with identifiable abort over two rounds,
the first of which is over peer-to-peer channels, and the second of which is over
a broadcast and peer-to-peer channels.

3.3 Feasibility Results for SIA

Our positive results for SIA rely on the following theorem (we defer its proof to
the full version [10]).

Theorem 3. Let Πbc be a BC-BC protocol (respectively a P2P-BC) that securely
computes f with identifiable abort security against t corruptions with the addi-
tional properties that the simulator can extract inputs from the first-round mes-
sages and it is efficient to check whether a given second-round message is correct.
Then Πbc securely computes f with selective identifiable-abort security against t
corruptions when the second round is run over peer-to-peer channels instead.

4 Lower Bounds

Our impossibility results for the setting where the first-round is over private
peer-to-peer channels appear below. Our impossibility for the setting with public
peer-to-peer channels in the first round appear in the full version [10].

Theorem 4 (P2P-BC, SIA, CRS, n ≤ 3t). There exist functions f such
that no n-party two-round protocol can compute f with selective identifiable abort
against t ≥ n

3 corruptions while making use of broadcast only in the second round
(i.e. where the first round is over peer-to-peer channels10 and second round uses
both broadcast and peer-to-peer channels).

In our proof, we use the function fot. Let the input of P1, P2 be a pair of
strings x1 = (z0, z1), x2 = (z′

0, z
′
1) where z0, z1, z′

0, z
′
1 ∈ {0, 1}λ, and the input

of Pn be a choice bit xn = c ∈ {0, 1}. The input of other parties is ⊥ (i.e. xi = ⊥
for i ∈ [n] \ {1, 2, n}). fot allows everyone to learn (zc, z′

c).

Proof. We prove Theorem 4 by contradiction. Let Π be an n-party protocol
computing fot that achieves identifiable abort against t ≥ n

3 corruptions by
using broadcast in the second round only.

For simplicity, we assume n = 3 and t = 1. We analyze the following scenarios
in an execution of Π.
10 The peer-to-peer channels can be private or “open”.

Minimizing Setup in Broadcast-Optimal Two Round MPC 155

Scenario 1: The adversary does the following on behalf of P3.
Round 1. Compute and send messages based on input x3 = 0 and x3 =

1 to P1 and P2 respectively. (It is possible for the adversary to send
inconsistent first-round messages as the first round is communicated over
peer-to-peer channels.)

Round 2. Discard the first-round message from P2 and send messages based
on input x3 = 0. In other words, P3 pretends as if she behaved honestly
using input x3 = 0 and did not receive a peer-to-peer message from P2

in the first round.
Scenario 2: Consider an adversary who corrupts P2. Suppose the input of honest

P3 is x3 = 0. The adversary behaves as follows on behalf of P2:
Round 1. Behave honestly as per protocol specifications, except that the

peer-to-peer message to P3 is not sent.
Round 2. Pretend to have received first round messages from P3 based on

x3 = 1. In more detail, the adversary drops the first round peer-to-peer
message received from P3 and replaces it by locally computing P3’s first
round message based on input x3 = 1 and some randomness (that the
adversary can sample locally on behalf of P3). Note that the adversary
can do this without being caught, due to the absence of PKI or correlated
randomness.

Claim. Π is such that P1 in Scenario 1 learns the output (z0, z′
0) with all but

negligible probability.

Proof. First, we observe that the view of honest P1 in Scenario 1 is distributed
identically to her view in Scenario 2. This is because in both scenarios, P1

observes the following conflict between P2 and P3: P3 claims to have not received
the first-round peer-to-peer message from P2 while P2 claims to have received
first-round peer-to-peer message from P3 based on x3 = 1. Therefore, to satisfy
the guarantees of SIA, it must hold that either P1 aborts in both scenarios or
obtains the output in both scenarios. The former is not possible, since P1 would
identify the same cheater in both scenarios, which means that she would identify
an honest party in one of the two scenarios (as the corrupt party is different in
the two scenarios). We can thus infer from selective identifiable abort security
guarantee of Π that both the above scenarios result in P1 receiving an output,
with all but negligible probability.

The output obtained by P1 in Scenario 2 must include z0 as it should be
computed with respect to the input x3 = 0 of honest P3 and input (z0, z1)
of honest P1. Therefore, the output obtained by P1 in Scenario 1 should also
include z0 (with all but negligible probability). Infact, we can argue that the
output obtained by P1 in Scenario 1 should in fact be (z0, z′

0) (with all but
negligible probability) to be consistent with the ideal realization of f . This is
because the simulator in Scenario 1 can induce an output comprising of z0 only
by invoking the ideal functionality with x3 = 0 on behalf of corrupt P3, which
fixes the output of P1 to include z′

0 as per the definition of f .

We can thus conclude that the output obtained by honest P1 in Scenario 1
must be (z0, z′

0). Next, we consider another Scenario, say Scenario 3 –

156 I. Damg̊ard et al.

Scenario 3: Adversary corrupts P1 but behaves honestly throughout the pro-
tocol. Suppose the input of honest P3 is x3 = 1.

First, it follows from the correctness of the protocol that since all parties
including the corrupt parties behaved honestly in Scenario 3, the output com-
puted must be in fact (z1, z′

1) computed on honest inputs, which is obtained by
all (including the adversary). Next, we show an attack by the adversary con-
trolling P1 that allows her to obtain z′

0 as well, which violates security (as an
adversary corrupting P1 is not allowed to learn both inputs of honest P2 i.e. z′

0

and z′
1, as per the ideal computation of f). The main idea is that the adversary

simulates in her head Scenario 1, where there was a conflict between P3 and P2.
In the above execution of Scenario 3, let mi→j denotes the peer-to-peer first-

round message sent by Pi to Pj and bi denotes the second-round broadcast
message sent by Pi (it is without loss of generality to assume that the second-
round messages are over broadcast; since private communication in the second
round can be realized by exchanging public keys in the first round).

Round 1: On behalf of P3, the adversary chooses input x3 = 0 and some chosen
randomness, say r3. Using these values, the adversary recomputes the outgo-
ing first-round peer-to-peer message from P3 to P1, say m3→1. However, the
other first-round peer-to-peer messages i.e. m3→2,m2→3,m2→1,m1→2 and
m1→3 are fixed to be the same as what were received during the execution
of Scenario 3.

Round 2: Next, the adversary recomputes the second-round broadcast message
of P3, say b3 as follows: Compute the broadcast message based on protocol
specifications when P3 did not receive any first-round peer-to-peer message
from P2. Note that this message can be computed using input x3 = 0, ran-
domness r3 and the first-round peer-to-peer message m1→3 received by P3

from P1 (which the adversary knows). The broadcast message of P1, say b1
is recomputed based on honest input and randomness of P1, the above simu-
lated first-round peer-to-peer message m3→1 and m2→1. Lastly, the broadcast
message of P2 is fixed to b2 (same as received in the execution).

We observe that the above simulation in her head, allows the adversary to
obtain a view that is identically distributed to the view of honest P1 in Scenario
1. This is because both the simulation as well as Scenario 1 involve the messages
m3→1, b1 and b3 being based on x3 = 0. We thus infer that the adversary should
be able to compute the output of Scenario 1 as well.

Since the output of Scenario 1 is (z0, z′
0), we can conclude that the adversary

of Scenario 3 learns both z′
0 (via the simulation in her head) and z′

1 (via the
output of the execution) which violates security, since this is not allowed as per
the ideal computation of f .

Lastly, we note that the above proof can be extended to n ≤ 3t using player
partitioning technique (An n-party protocol Π ′ tolerating t ≥ n/3 corruptions
can be transformed into a 3-party protocol Π tolerating 1 corruption, by making
a party in Π emulate the protocol steps of t parties in Π’).

Minimizing Setup in Broadcast-Optimal Two Round MPC 157

Theorem 5 (BC-P2P, UA, CRS, t > 1). There exist functions f such that
no n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions while making use of broadcast only in the first round (i.e. where the
first round uses both broadcast and peer-to-peer channels10 and second round uses
only peer-to-peer channels).

The proof appears in the full version [10]

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
MPC with malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11477, pp. 532–561. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 19

2. Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity of
fully secure solitary mpc with honest majority. Cryptology ePrint Archive, Report
2021/241 (2021). https://eprint.iacr.org/2021/241

3. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

4. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

5. Chen, M., Cohen, R., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A.:
Multiparty generation of an RSA modulus. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 64–93. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-56877-1 3

6. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th Annual ACM Symposium on Theory of Computing,
pp. 364–369. ACM Press, Berkeley, CA, USA, 28–30 May 1986. https://doi.org/
10.1145/12130.12168

7. Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 828–858. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 28

8. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 25

9. Damg̊ard, I., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-optimal
two round MPC with an honest majority. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 155–184. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1 6

10. Damg̊ard, I., Ravi, D., Siniscalchi, L., Yakoubov, S.: Minimizing setup in broadcast-
optimal two round MPC. Cryptology ePrint Archive, Report 2021/241 (2022).
https://eprint.iacr.org/2022/293

https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-17656-3_19
https://eprint.iacr.org/2021/241
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-030-84245-1_6
https://eprint.iacr.org/2022/293

158 I. Damg̊ard et al.

11. Ganesh, C., Patra, A.: Broadcast extensions with optimal communication and
round complexity. In: Giakkoupis, G. (ed.) 35th ACM Symposium Annual on Prin-
ciples of Distributed Computing. pp. 371–380. Association for Computing Machin-
ery, Chicago, IL, USA, 25–28 July 2016. https://doi.org/10.1145/2933057.2933082

12. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

13. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

14. Goel, A., Jain, A., Prabhakaran, M., Raghunath, R.: On communication models
and best-achievable security in two-round MPC. In: TCC, p. 690 (2021)

15. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

16. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

17. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

18. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

19. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

20. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

https://doi.org/10.1145/2933057.2933082
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-319-96881-0_15

Sublinear-Communication Secure
Multiparty Computation Does Not

Require FHE

Elette Boyle1,2, Geoffroy Couteau3, and Pierre Meyer1,3(B)

1 Reichman University, Herzliya, Israel
eboyle@alum.mit.edu

2 NTT Research, Sunnyvale, USA
3 Université Paris Cité, CNRS, IRIF, Paris, France

{couteau,pierre.meyer}@irif.fr

Abstract. Secure computation enables mutually distrusting parties to
jointly compute a function on their secret inputs, while revealing nothing
beyond the function output. A long-running challenge is understanding
the required communication complexity of such protocols—in particular,
when communication can be sublinear in the circuit representation size of
the desired function. Significant advances have been made affirmatively
answering this question within the two-party setting, based on a variety
of structures and hardness assumptions. In contrast, in the multi-party
setting, only one general approach is known: using Fully Homomorphic
Encryption (FHE). This remains the state of affairs even for just three
parties, with two corruptions.

We present a framework for achieving secure sublinear-communication
(N +1)-party computation, building from a particular form of Function
Secret Sharing for only N parties. In turn, we demonstrate implications
to sublinear secure computation for various function classes in the 3-
party and 5-party settings based on an assortment of assumptions not
known to imply FHE.

Keywords: Foundations · Secure Multiparty Computation · Function
Secret Sharing · Private Information Retrieval

1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a
function on their secret inputs, while revealing nothing beyond the function
output. Since the seminal feasibility results of the 1980s [6,18,29,41], a major
challenge in the area has been if and when it is possible to break the “circuit-size
barrier.” This barrier refers to the fact that all classical techniques for secure com-
putation required a larger amount of communication than the size of a boolean

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-30617-4_6.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 159–189, 2023.
https://doi.org/10.1007/978-3-031-30617-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_6
https://doi.org/10.1007/978-3-031-30617-4_6

160 E. Boyle et al.

circuit representing the function to be computed. In contrast, insecure computa-
tion only requires exchanging the inputs, which are usually considerably smaller
than the entire circuit.

This challenge eluded the field for nearly two decades, aside from partial
results that either required exponential computation [4,36], or were limited to
very simple functions (such as point functions [20,21,35] or constant-depth cir-
cuits [3]). This changed with the breakthrough result of Gentry [27] on fully
homomorphic encryption (FHE). FHE is a powerful primitive supporting com-
putation on encrypted data, which can be used to build asymptotically optimal-
communication protocols in the computational setting [2,24].

In the years after, significant progress has been made toward broadening the
set of techniques and class of assumptions under which sublinear-communication
secure computation can be built. A notable such approach is via homomor-
phic secret sharing (HSS) [11]. HSS can be viewed as a relaxation of FHE,
where homomorphic evaluation can be distributed among two parties who do
not interact with each other, but which still suffices for low-communication
secure computation. Following this approach (explicitly, building forms of HSS
for NC1), sublinear-communication secure protocols have been developed based
on the Decisional Diffie-Hellman (DDH) assumption [11], Decision Composite
Residuosity (DCR) [26,37,40], and further algebraic structures, including a class
of assumptions based on class groups of imaginary quadratic fields [1]. It was
extended to a flavor of the Learning Parity with Noise (LPN) assumption (via
HSS for log log-depth circuits) by [23]. Othogonally to these approaches, which
rely on computational assumptions, [22] built sublinear-communication secure
computation under an assumption of correlated randomness.

Very recently, a work of [9] demonstrated an alternative approach to sublinear
secure computation through a certain form of rate-1 batch oblivious transfer
(OT), resulting in protocols based on a weaker form of LPN plus Quadratic
Residuosity.

However, aside from the original approach via FHE, all of the above tech-
niques are strongly tied to the two-party setting, as opposed to the general setting
of multiple parties, where all but one can be corrupt.

More concretely, while N -party HSS with security against (N − 1) collud-
ing parties would directly imply the desired result, actually achieving such a
primitive for rich function classes (without tools already implying FHE) beyond
N = 2, is a notable open challenge in the field. The 2-party setting provides spe-
cial properties leveraged within HSS constructions; e.g., given an additive secret
sharing of 0, it implies the two parties hold identical values. These properties
completely break down as soon as one steps to three parties with security against
two. This separation can already be showcased for very simple function classes,
such as HSS for equality test (equivalently, “distributed point functions” [10,28]),
where to this date an exponential gap remains between the best constructions
in the 2-party versus 3-party setting [10]. For N ≥ 3, there are constructions of
N -party FSS for all polynomial-time computable functions, but only from LWE,
by using additive-function-sharing spooky encryption (AFS-spooky encryp-
tion) [25], or from subexponentially secure indistinguishability obfuscation [10].

Sublinear-Communication Secure Multiparty Computation 161

Additionally, [14] turns this FSS from spooky encryption into additive HSS.
In addition, approaches from the 2-party batch OT primitive seem also to be
strongly tied to two parties.

Despite great progress in the two-party setting—and the fundamental nature
of the question—to date, sublinear secure computation results for 3 or more
parties remain stuck in the “2009 era”: known only for very simple functions
(e.g., constant-degree computations), or based on (leveled) FHE.

1.1 Our Results

We present a new framework for achieving secure computation with low com-
munication. Ultimately our approach yields new sublinear secure computation
protocols for various circuit classes in the 3-party and 5-party settings, based on
an assortment of assumptions not known to imply FHE.

General Framework. Our high-level approach centers around Function Secret
Sharing (FSS) [10], a form of secret sharing where the secret object and shares
comprise succinct representations of functions. More concretely, FSS for function
class F allows a client to split a secret function f ∈ F into function shares
f1, . . . , fN such that any strict subset of fi’s hide f , and for every input x in the
domain of f it holds that

∑N
i=1 fi(x) = f(x). (This can be seen as the syntactic

dual of HSS, where the role of input and function are reversed; we refer the reader
to e.g. [14] for discussion.1) N -party FSS/HSS for sufficiently rich function classes
is known to support low-communication N -party secure computation, but lack
of multi-party FSS constructions effectively leaves us stuck at N = 2.

The core conceptual contribution of this work is the following simple frame-
work, which enables us to achieve (N + 1)-party secure computation by using a
form of FSS for only N parties.

Proposition 1 ((N + 1)-PC from N-FSS framework, informal). For any
ensemble of polynomial-size circuits C = {Cλ}, consider an N -party FSS scheme
for the class of “partial evaluation” functions {Cλ(·, x1, . . . , xN)}λ,x1,...,xN

, and
define the following sub-computation functionalities:

– FFSS
SD : N -party secure FSS share distribution, where each party Pi holds input

xi (and λ), and learns the ith FSS key fi for the function Cλ(·, x1, . . . , xN).
– FFSS

OE : Two-party oblivious FSS evaluation, where party Pi holds an FSS key
fi, party P0 holds input x0, and P0 learns the ith output fi(x0).

Then there exists a (N + 1)-party protocol for securely computing C making one
call to FFSS

SD and N calls to FFSS
OE .

Once expressed in this form, the resulting (N +1)-party protocol becomes an
exercise: Roughly, it begins by having parties 1, . . . , N jointly execute FFSS

SD on
their inputs x1, . . . , xN to each receive a function share fi of the secret function
f(x0) := Cλ(x0, x1, . . . , xN), and then each run a pairwise execution of FFSS

OE

1 Indeed, we will refer to both notions, using each when more conceptually convenient.

162 E. Boyle et al.

together with the remaining party P0 in order to obliviously communicate the
ith output share fi(x). Given these shares, P0 can compute the final output as
∑N

i=1 fi(x0). (See the Technical Overview for more detailed discussion.)
The communication of the resulting protocol will be dominated by the exe-

cutions of FFSS
SD ,FFSS

OE . Of course, the technical challenge thus becomes if and
how one can construct corresponding FSS schemes which admit secure share
distribution and oblivious evaluation with low communication.

Instantiating the Framework. We demonstrate how to instantiate the above
framework building from known constructions of Homomorphic Secret Sharing
(HSS) combined with a version of low-communication PIR.

We first identify a structural property of an FSS scheme which, if satis-
fied, then yields a low-communication procedure for oblivious share evaluation,
through use of a certain notion of “correlated” (batch) Symmetric Private Infor-
mation Retrieval (SPIR). Loosely, correlated SPIR corresponds to a primitive
where a client wishes to make correlated queries into m distinct size-S databases
held by a single server. Without correlation between queries, the best-known
PIR constructions would require m · polylog(S) communication. However, it was
shown in [9] that if the m index queries (each logS bits) are given by various
subsets of a fixed bit string of length n � m logS held by the client, then (using
the rate-1 batch OT constructions from [17]) this batch SPIR can be performed
with significantly lower communication.

We then demonstrate that FSS schemes with the necessary structural prop-
erty can be realized from existing constructions of HSS. Loosely speaking, the
FSS evaluation procedure will be expressible as a polynomial (which depends
on x1, . . . , xN) evaluated on the final input x0, and the HSS will enable the N
parties to compute additive secret shares of the coefficients of this corresponding
polynomial.

We further extend the approach to support an underlying HSS scheme satis-
fying only a weaker notion of correctness, with inverse-polynomial (Las Vegas)
error. In such scheme, homomorphic evaluation may fail with noticeable prob-
ability (over the randomness of share generation), in a manner identifiable to
one or more parties. This is the notion satisfied by the 2-party HSS construc-
tions from Decisional Diffie-Hellman [11], or Learning With Errors with only a
polynomial-size modulus [16,25]. This error must be removed in our construction
while incurring minimal additional interaction. We demonstrate how to do so,
using (standard) Private Information Retrieval [21] and punctured pseudoran-
dom functions [8,15,33]. Note that the former is implied by correlated SPIR, and
the latter implied by any one-way function, so that these tools do not impose
additional assumptions in the statement below.

Theorem 2 (Sublinear MPC, informal). For any ensemble of polynomial-
size circuits C = {Cλ} of size s, depth log log s, and with n inputs and m outputs,
if there exists the following:

– Correlated Symmetric Batch PIR, for m size-s databases where queries come
from n bits, with communication O(n + m + poly(λ) + comm(s)) for some
function comm.

Sublinear-Communication Secure Multiparty Computation 163

– (Las Vegas) N -party Homomorphic Secret Sharing with compact shares (size
O(n) for input size n), for the class of log log-depth boolean circuits.

Then there exists a secure (N+1)-party computation protocol for C with commu-
nication O(n+m+poly(λ)+N ·comm(s)). In particular, sublinearity is achieved
when N · comm(s) ∈ o(s).

Remark 3 (Compiling Sublinear MPC from Passive to Active Security). In this
work, we focus on security against semi-honest adversaries. However, all our
results extend immediately to the malicious setting, using known techniques.
Indeed, to get malicious security while preserving sublinearity, one can just use
the seminal GMW compiler [29] with zero-knowledge arguments, instantiating
the ZKA with (interactive) succinct arguments [36]. Using Kilian’s PCP-based
4-move argument [34], which has polylogarithmic communication, this can be
done using any collision-resistant hash function. The latter are implied by all
assumptions under which we base sublinear MPC, hence our results generalise
directly to the malicious setting. This observation was made in previous works
on sublinear-communication secure computation (e.g. [9,11,23]).

Remark 4 (Beyond Boolean circuits). The above approach can be extended to
arithmetic circuits over general fields F, by replacing the correlated SPIR with an
analogous form of (low-communication) correlated oblivious polynomial evalua-
tion (OPE). We discuss and prove this more general result in the main body, but
focus here on the Boolean setting, as required instantiations of such correlated-
OPE beyond constant-size fields are not yet currently known.

Resulting Constructions. Finally, we turn to the literature to identify construc-
tions of the required sub-tools, yielding resulting sublinear secure computation
results from various mathematical structures and computational assumptions.

Corollary 5 (Instantiating the framework, informal). There exists secure
3-party computation for evaluating Boolean circuits of size s and depth log log s
with n inputs and m outputs, with communication complexity O(n + m +

√
s ·

poly(λ) · (n + m)2/3) based on the Learning Parity with Noise (LPN) assump-
tion for any inverse-polynomial error rate, together with any of the following
additional computational assumptions:

– Decisional Diffie-Hellman (DDH)
– Learning with Errors with polynomial-size modulus (poly-modulus LWE)
– Quadratic Residuosity (QR) + superpolynomial LPN2

This can be extended under the same assumptions to secure 3-party compu-
tation of general “layered” (in fact, only locally synchronous3) circuits of depth d

2 Superpolynomial hardness of LPN with a small inverse-superpolynomial error rate,
but few samples, as assumed in [23].

3 A circuit is layered [31] if all gates and inputs are arranged into layers, such that any
wire only connects one layer to the next, but each input may occur multiple times
at different layers. A layered circuit is locally synchronous [5] if each input occurs
exactly once (but at an arbitrary layer). A locally synchronous circuit is synchronous
[32] if all inputs are in the first layer.

164 E. Boyle et al.

and size s with communication O(s/ log log s+d1/3 ·s2(1+ε)/3 ·poly(λ)), for arbi-
trary small constant ε. The latter is sublinear in s whenever d = o(s1−ε/poly(λ)),
i.e., the circuit is not too “tall and skinny.”

If we further assume the existence of a constant-locality PRG with some
polynomial stretch and the super-polynomial security of the Decisional Composite
Residuosity (DCR) assumption, then the above extends to the 5-party setting,
both for loglog-depth boolean circuits and for layered boolean circuits.

More concretely, the required notion of correlated SPIR was achieved in [9],
building on [17], from a selection of different assumptions. The required HSS
follows for N = 2 from DDH from [11], LWE with polynomial-size modulus
from [16,25], DCR from [37,40], and from superpolynomial LPN from [23]. It
holds for N = 4 from DCR from [19] (with some extra work, complexity lever-
aging, and restrictions; see technical section). Note that combining the works of
[17,37] seems to implicitly yield rate-1 batch OT from DCR, and in turn corre-
lated SPIR [9]: if true, the assumptions for sublinear-communication five-party
MPC can be simplifed to constant-locality PRG, LPN, and superpolynomial
DCR (without the need for DDH, LWE, or QR). Since this claim was never
made formally, we do not use it.

A beneficial consequence of our framework is that future developments within
these areas can directly be plugged in to yield corresponding new constructions
and feasibilities.

1.2 Technical Overview

General Framework. Recall the secure computation framework via homomor-
phic secret sharing (HSS). Given access to an N -party HSS scheme supporting
homomorphic evaluation of the desired circuit C, the parties begin by jointly
HSS-sharing their inputs via a small secure computation. Each party can then
homomorphically evaluate the circuit C on its respective HSS share without
interaction, resulting in a short output share that it exchanges with all other
parties. The parties can then each reconstruct the desired output by combin-
ing the evaluated shares (for standard HSS, this operation is simply addition).
The resulting MPC communication cost scales only with the complexity of HSS
share generation plus exchange of (short) output shares, but remains otherwise
independent of the complexity of C.

In theory, this approach provides sublinear secure computation protocols for
any number of parties N . In practice, however, we simply do not have HSS
constructions for rich function classes beyond N = 2 with security against col-
lusion of two or more corrupted parties, crucial for providing the corresponding
MPC security. This remains a standing open question that has received notable
attention, and unfortunately seems to be a challenging task.

A natural question is whether the above framework can somehow be modified
to extend beyond the number of parties N supported by the HSS, for example
to N ′ = N + 1. The issue with the above approach is that parties cannot afford
to secret share their input to any N -subset in which they do not participate, as

Sublinear-Communication Secure Multiparty Computation 165

all parties within this subset may be corrupt, in which case combining all HSS
shares reveals the shared secrets.

Instead, suppose that only the N parties share their inputs amongst each
other. In this case, there is no problem with all N shareholding parties being
corrupt, as this reveals only their own set of inputs. But, we now have a challenge:
how to involve the final party’s input into the computation?

In the HSS framework, parties each homomorphically evaluated the public C
on shares. Suppose, on the other hand, the HSS supports homomorphic evalua-
tion of the class of functions Cx0 := C(x0, ·, . . . , ·). Or, more naturally, consider
a dual view: Where the N parties collectively generate shares of a secret func-
tion C(·, x1, . . . , xN) with their inputs hardcoded, which accepts a single input
x0 and outputs C(x0, . . . , xN). That is, using function secret sharing (FSS).

Of course, normally in FSS we think of the input on which the function is
to be evaluated (in this case, x0) as a public value, which each shareholder will
know. Here, this clearly cannot be the case. Instead, we consider a modified
approach, where each of the N FSS shareholders will perform a pairwise obliv-
ious evaluation procedure, with the final (N + 1)st party P0. That is, the ith
shareholder holds the ith function key FSS ki, which defines a share evaluation
function “fi”= FSS.Eval(i, ki, ·). As a result of the oblivious evaluation, party
P0 will learn the evaluation yi = FSS.Eval(i, ki, x0) of this function on its secret
input x0, and neither party will learn anything beyond this; in particular, P0

does not learn ki, and Pi does not learn x0. At the conclusion of this phase,
party P0 learns exactly the set of N output shares, and can reconstruct the final
output C(x0, · · · , xN) = y1 + · · · + yN and send to all parties.

The corresponding high-level protocol template is depicted in Fig. 1. Here,
FFSS

SD represents an ideal N -party functionality for N -FSS share generation
(defined formally in Fig. 2 of Sect. 3), where each party provides its input xi

and receives its FSS share ki. FFSS
OE represents an ideal two-party functionality

for oblivious FSS share evaluation (defined formally in Fig. 3 of Sect. 3), where
Pi and P0 respectively provide inputs ki and x0, and P0 learns the evaluation
FSS.Eval(i, ki, x0).

Consider the (passive) security of the proposed scheme against up to N cor-
ruptions. If the corrupted parties are (any subset of) those holding FSS shares,
then since the parties execute a secure computation for share generation, their
view is restricted to a subset of FSS key shares (ki)i∈T , which hides any honest
parties’ inputs (xi)i∈[N]\T by the security of the FSS. (Note if all N shareholding
parties are corrupt, then this statement holds vacuously, as no honest parties’
inputs were involved.) If the corrupted parties include P0 together with a (neces-
sarily strict) subset of FSS shareholders, then their collective view consists of a
strict subset of FSS keys (ki)i∈T together with evaluated output shares (yi)i∈[N].
However, the security of the FSS combined with the additive reconstruction of
output shares implies this reveals nothing beyond the function output.4

4 Note that in fact we do not need FSS with additive reconstruction, but rather any
form of reconstruction will suffice, as long as the output shares provide this property
of revealing nothing beyond the function output. We formalize this property, and
prove it holds for additive reconstruction, in the full version of the paper.

166 E. Boyle et al.

Fig. 1. Template for (N + 1)-party sublinear secure computation of C from N -party
additive FSS.

Now, in order for this framework to provide low communication, it must be
the case that we have an FSS scheme for the relevant partial-evaluation function
class {fα1,...,αN

= C(·, α1, . . . , αN)}, for which the following two steps can be
performed succinctly:

– Secure N -party FSS share generation, and
– Oblivious evaluation by P0 of each function share.

We next address approaches for how each of these pieces can be achieved.

Oblivious Evaluation for “Loglog-depth” FSS via PIR. Consider first the pairwise
oblivious FSS evaluation procedure, where P0 holds x0, party Pi holds FSS key
ki, and P0 should learn FSS.Eval(i, ki, x0).

Since this is reduced to a 2-party functionality, a natural first place to
look would be for FSS schemes where FSS.Eval(i, ki, ·) is within a function
class already admitting low-communication 2-party secure computation. Unfor-
tunately, this is more challenging than it sounds. While sublinear-communication
2PC exists for general layered circuits from a variety assumptions, recall that
the sublinearity will be here in the complexity not of C, but of FSS.Eval, almost
certainly a more complex computation.

Indeed, the idea of increasing the number of parties by homomorphically eval-
uating an HSS.Eval has previously been considered in the related setting of HSS,
and hit similar limitations. For example, relatively strong HSS schemes based

Sublinear-Communication Secure Multiparty Computation 167

on DDH or DCR support homomorphic evaluation (and thus secure computa-
tion with very low communication) of NC1; but, the corresponding operations
required to actually compute HSS.Eval itself lies outside of NC1. In [13], this was
addressed by instead securely computing a (low-depth) randomized encoding of
the evaluation operation, effectively squashing the depth of the computation
to be securely performed. This enabled them to achieve low round complex-
ity, but resulted in large communication (scaling with the size of the entire
HSS.Eval circuit). Recently, it was shown by Chillotti et al. [19] that for the
specific DCR-based HSS construction of [37,40], HSS.Eval for homomorphically
evaluating a constant-degree computation can be computed within NC1. How-
ever, this only gives low-communication secure computation for constant-degree
functions, which will not suffice for overall sublinearity.

Instead, we take a different approach, going beyond black-box use of existing
sublinear 2PC results. While the full FSS.Eval(i, ki, x0) computation itself may
be complex, suppose it is the case that it can be decomposed into two parts:
(1) some form of precomputation, depending only on i and ki, followed by (2)
computation on x0, which is of low complexity. More concretely, consider the
output of part (1) to be a new circuit CEval whose input is x0 and output is
FSS.Eval(i, ki, x0), and suppose it is the case that CEval has low log log(s) depth
(where s is the size of the original circuit C the parties wish to compute in the
MPC). Note that while CEval has low depth, its identity depends on the secret
ki (of Pi), so that black-box secure computation of CEval does not apply.

On the other hand, opening the box of one such recent secure computa-
tion protocol, we identify that an intermediate tool developed actually has
stronger implications. The tool is correlated batch symmetric PIR, for short
correlated SPIR [9], which as discussed above, enables low-communication of
several batched instances of (single-server) SPIR whose queries are correlated.
In this case, the m “databases” will be defined implicitly by the m output bits
of the circuit CEval. Because CEval is log log s depth as a function of its input x0

(and circuits are taken to be fan-in 2), each computed output bit depends on at
most log s bits of x0, and as such can be represented as a size-s database indexed
by the corresponding log s input bits. Oblivious evaluation of CEval on x0 can
then be achieved by P0 making m batch queries into these databases, where the
collective query bits are all derived from various bits of the single string x0.

As a brief aside: Extending to larger arithmetic spaces, the role of correlated
SPIR here can be replaced by an analogous version of correlated Oblivious Poly-
nomial Evaluation (OPE). Here, a log log s depth arithmetic circuit CEval can be
expressed as a secret multivariate polynomial in x0 of size poly(s), where each
monomial depends on at most log s elements of the arithmetic vector x0. Unfor-
tunately, we are not presently aware of tools for achieving low-communication
correlated OPE beyond constant-size fields. However, we include this in the tech-
nical exposition, in case such techniques are later developed. We note that the
final steps in our instantiation (described in the following) do hold over larger
arithmetic spaces under certain computational assumptions.

168 E. Boyle et al.

“Loglog-depth” FSS from HSS. Consider an ensemble C = {Cλ} of Boolean cir-
cuits of size s and depth log log s. The remaining goal is to obtain FSS for the
corresponding class of partial-evaluation functions {Cλ(·, x1, . . . , xN)} for which
the FSS evaluation CEval is (log log s)-depth, as discussed above.

From the structure of Cλ, the evaluation of Cλ(x0, . . . , xN) on all inputs can
be expressed as a poly(s)-size multivariate polynomial in the bits xi[j] of the xi,
where each monomial is of degree at most log s. When viewed as a function of just
x0, we thus have poly(s)-many monomials in the bits of x0 whose coefficients pj

are each formed by the product of at most log s bits from the inputs x1, . . . , xN .
That is,

∑
j pj

∏
�∈Sj

x0[�], where each |Sj | ≤ log s is a publicly known set.

If the N parties can somehow produce additive secret shares {p
(i)
j }i∈[N] of

each one of these coefficients pj , then this would constitute the desired FSS
evaluation: Indeed, the ith share evaluation FSS.Eval(i, ki, x0) would be com-
putable as y(i) =

∑
j p

(i)
j

∏
�∈Sj

x0[�], satisfying
∑N

i=1 y(i) =
∑

j pj

∏
�∈Sj

x0[�] =
Cλ(x0, . . . , xN). Further, each FSS.Eval(i, ki, ·) is expressible as a (log log s)-
depth circuit in x0—as required from the previous discussion.

The question is how to succinctly reach a state where the N parties hold these
coefficient secret shares. Of course, direct secure computation is not an option, as
even the output size is large, poly(s). However, this is not a general computation.
Suppose we have access to an HSS scheme supporting homomorphic evaluation of
log log s depth operations. Such constructions are known to exist from a variety
of assumptions (as discussed after Corollary 5). Then, if the parties HSS share
their respective inputs x1, . . . , xN , they can locally evaluate additive shares of
the corresponding (log s)-products pj .

The corresponding FFSS
SD operation will thus correspond to the HSS.Share pro-

cedure of the HSS scheme on the parties’ collective inputs. If the HSS scheme
has a compact sharing procedure, then this will be computable with sufficiently
low communication. Note that vanilla usage of some HSS schemes will not pro-
vide the required compactness (e.g., including structured ciphertexts of the input
bits); however, using standard hybrid encryption tricks this can be facilitated.

“Loglog-depth” FSS from Las Vegas HSS. An additional challenge arises, how-
ever, when the underlying HSS scheme we attempt to use provides correctness
only up to inverse-polynomial error. This is the case, for example, in known 2-
party HSS schemes for NC1 from DDH [11] or from LWE with polynomial-size
modulus [16,25]. In these schemes, the inverse-polynomial error rate δ can be
chosen as small as desired, but shows up detrimentally as 1/δ in other scheme
parameters (runtime for the DDH scheme; modulus size for LWE).

This means with noticeable probability, the shares of at least one of the
coefficients pj from above will be computed incorrectly. Even worse, as typical
in these settings, the parties cannot learn or reveal where errors truly occurred,
as this information is dependent on the values of the secret inputs. This remains
a problem even if the HSS scheme is “Las Vegas,” in the sense that for every error
at least one of the parties will identity that a potential-error event has occurred
(i.e., will evaluate output share as ⊥). Even then, the flagging party must not

Sublinear-Communication Secure Multiparty Computation 169

learn whether an error truly took place, and the other party must not learn that
a potential error was flagged.

We present a method for modifying the HSS-based FSS sharing procedure
from above, to remove the error in the required homomorphic evaluations, while
hiding from the necessary parties where these patches took place. We focus on
the 2-party case, and further assume the HSS has a succinct protocol (communi-
cation linear in the input size, up to an additive poly(λ) term) for distributing the
shares of the HSS, where homomorphic evaluation can take place across different
sets of shared values. This is the case for known Las Vegas HSS schemes.

This procedure can be viewed as a modification to either the Share or Eval
portion of the FSS. By viewing it as part of FSS.Share, we automatically fit
into the framework of the previous sections. Namely, this can be viewed as a
new FSS.Share (or FFSS

SD) procedure with relatively large computational com-
plexity (comparable to the truth table of the shared function), but which we
show admits a low-communication secure computation procedure. We describe
the sharing procedure directly via the achieving protocol; the corresponding
FSS.Share procedure can be inferred.

First, note that by taking the inverse-polynomial error rate δ to be sufficiently
small, we can guarantee with high probability that the total number of potential-
error flags ⊥ obtained by any party is at most the security parameter, λ. The
sharing protocol begins by HSS sharing the inputs (s0, s1) ← HSS.Share(x1, x2)
as usual. Then, each party homomorphically evaluates all required values corre-
sponding to shares of each of the coefficients pj . For each party Pi (i ∈ {1, 2}),
denote these values in an array Ti, which contains at most λ positions in which
Ti[j] = ⊥. For each such position j∗, FFSS

SD sets Ti[j∗] = 0, and must now “patch”
the missing value. Consider this procedure for party P1 (P2 will be reversed).

In order to compute the correct output (i.e., coefficient pj) in this position,
the parties run a small-scale secure protocol that HSS shares the index position
j∗ of each ⊥ symbol of P1. This enables them to homomorphically re-evaluate
shares of the corresponding coefficient term pj∗ , in a way that hides the index
j∗ from P2 (note that this computation, with index selection, remains within
NC1). In fact, by re-evaluating this computation λ-many times, then with over-
whelming probability, at least one is error-free. By running a small-scale secure
computation on these shares, we can assume that the parties hold additive shares
of the correct value pj∗ .

It would seem the remaining step is for P1 to somehow learn the correct value
pj∗ offset by P2’s share T2[j∗], while keeping j∗ hidden from P2. However, the
situation is somewhat more sticky. The problem is that in the original HSS eval-
uation, P1 learns not only ⊥, but also a candidate output share. By receiving the
correct output share (pj∗ −T2[j∗]), party P1 would learn whether or not an error
actually occurred, leaking sensitive information. This means that inherently, P2

must also modify its share in position j∗ as part of the correction procedure.
But, this must be done in a way that both hides the identity of j∗, and also does
not affect the secret sharing across the two parties in other positions.

170 E. Boyle et al.

This will be done in two pieces: (1) P1 will learn (T2[j∗]− r), for some secret
mask r chosen by P2; and (2) they will both perform some operation on their
local Ti array that offsets the value shared in position j∗ by exactly (pj∗ −T2[j∗])
while preserving the values shared in all other j′ 	= j∗.

The first of these tasks can be performed by executing a standard single-
server polylogarithmic symmetric PIR protocol, where P1 acts as client with
query index j∗, and P2 acts as server with the r-shifted database T ′

2[j] = T2[j]−r,
for random r of its choice.

The second task will be performed by a low-communication private incre-
ment procedure using distributed point functions (DPF): namely, FSS for the
class of point functions (equivalently, compressed secret shares of a secret unit
vector). Actually, since party P1 knows the identity of j∗, a weaker tool of punc-
tured PRFs suffice; however, we continue with DPF terminology for notational
convenience (both are implied by one-way functions). More concretely, the par-
ties will run a small-scale secure computation protocol on inputs j∗, (T2[j∗]− r)
(held by P1), the additive shares of pj∗ , and r (held by P2), which outputs
short DPF key shares k1, k2 to the respective parties, with the property that
DPF.Eval(1, k1, j) +DPF.Eval(2, k2, j) = 0 for every j 	= j∗, and = (pj∗ − T2[j∗])
for j = j∗. Each party thus modifies its Ti array by offsetting each position j
with the jth DPF evaluation, yielding precisely the required effect.

This procedure is performed for every flag position j∗, and for each party
P1, P2. (Note that the parties should always perform the above steps λ times,
sometimes on dummy values, in order to hide the true number of flagged posi-
tions.) The final resulting scheme provides standard FSS correctness guaran-
tees, removing the inverse-polynomial error, and thus can be plugged into the
approach from above. As mentioned, the new resulting FFSS

SD functionality is
now a complex procedure, with runtime scaling as the entire truth table size
of the shared function. But, the above-described protocol provides a means for
securely emulating FFSS

SD with low communication: scaling just as λ-many small-
scale secure computations and PIR executions.

2 Preliminaries

2.1 Assumptions

We assume familiarity with the following computational assumptions, and refer
to the full version for more details: Quadratic Residuosity (QR) [30], Learning
With Errors (LWE) [39], Learning Parity with Noise (LPN) [7], Decisional Diffie-
Hellman (DDH), and Decision Composite Residuosity (DCR) [38].

2.2 Function Secret Sharing and Homomorphic Secret Sharing

We follow the function secret sharing definition of [12], for the specific leakage
function which reveals the input and output domain sizes (1n, 1m) of the secret
function.

Sublinear-Communication Secure Multiparty Computation 171

Definition 6 (Function Secret Sharing (FSS)). An N -party Function
Secret-Sharing (FSS) scheme (with additive reconstruction) for a function family
F is a pair of algorithms FSS = (FSS.Gen,FSS.Eval) with the following syntax
and properties:

– Gen(1λ, f̃) is a probabilistic polynomial-time key generation algorithm, which
on input 1λ (a security parameter) and f̃ ∈ {0, 1}� (the description of some
function f : {0, 1}n → {0, 1}m ∈ F), outputs an N -tuple of keys (k1, . . . , kN).
Each key is assumed to contain 1n and 1m.

– Eval(i, ki, x) is a deterministic polynomial-time evaluation algorithm, which
on input i ∈ [N] (the party index), ki (a key defining fi : {0, 1}n → {0, 1}m),
and x ∈ {0, 1}n (an input for fi), outputs a value yi ∈ {0, 1}m (the value of
fi(x), the ith share of f(x)).

– Correctness: For all λ ∈ N, all f ∈ F (described by f̃), and all x ∈ {0, 1}n,

Pr
[

y1 + · · · + yN = f(x) : (k1, . . . , kN) $← FSS.Gen(1λ, f̃)
yi ← FSS.Eval(i, ki, x), i = 1 . . . N

]

= 1 .

– Security: For every set of corrupted parties D � [N], there exists a proba-
bilistic polynomial-time algorithm SimFSS (a simulator), such that for every
sequence of functions f1, f2, · · · ∈ F (described by f̃1, f̃2, . . .), the outputs of
the following experiments RealFSS and IdealFSS are computationally indistin-
guishable:

• RealFSS(1λ) : (k1, . . . , kN) $← Gen(1λ, f̃λ); Output (ki)i∈D.
• IdealFSS(1λ) : Output SimFSS(1λ, 1N , 1n, 1m).

We consider also the dual notion of Homomorphic Secret Sharing [11], in
which the roles of input and function are reversed, as well as a weaker variant
with only Las Vegas inverse-polynomial correctness error.

3 General Template for (N + 1)-Party Sublinear Secure
Computation from N -Party FSS

In this section we present a generic template for building (N+1)-party sublinear
secure computation from an N -party additive function secret sharing scheme (for
a well-chosen function class) with two specific properties. We require of the FSS
scheme that there exist low-communication protocols to realise the following
tasks:

– N-Party Share Distribution: N servers generate FSS shares of some function
of their inputs; the ideal functionality FFSS

SD is provided in Fig. 2.
– Two-Party Oblivious Share Evaluation: A client obliviously evaluates an FSS

share held by a server; the ideal functionality FFSS
OE is provided in Fig. 3.

Theorem 7 proves that the protocol provided in Fig. 5 is an (N + 1)-party
secure computation scheme in the (FFSS

SD ,FFSS
OE)-hybrid model. This template

achieves sublinear secure computation provided FFSS
SD and FFSS

OE can be realised
with low enough communication. A high level overview of the protocol is provided
in Fig. 1.

172 E. Boyle et al.

3.1 Requirements of the FSS Scheme

We start by isolating in the properties we require of the FSS scheme to fit our
template for sublinear secure computation, and show that they are satisfied by
any additive FSS scheme. At a high level, we require that given a strict subset
of the FSS keys, together with the evaluated output shares of all keys on some
known input x, it should be computationally hard to recover any information
about the secret shared function f beyond its evaluation f(x). For the formali-
sation of this property, as well as the proof that additivity suffices, we refer to
the full version of the paper.

3.2 The Secure Computation Protocol

We define the ideal functionalities FFSS
SD (Fig. 2) for N -party FSS share distribu-

tion, and FFSS
OE (Fig. 3) for 2-party oblivious evaluation of FSS shares. We then

introduce in Fig. 5 the generic template for secure computation from additive
FSS in the (FFSS

SD ,FFSS
OE)-hybrid model.

Functionality FSS Share Distribution FFSS
SD

Parameters: The ideal functionality FFSS
SD is parameterised by a number

of parties N , a function class C = {fα1,...,αN
}(α1,...,αN)∈F�1×···×F�N , and an

additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for C.

FFSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) where xi ∈ {0, 1}�i from each party
Pi (for 1 ≤ i ≤ N).

Output: Run (k1, . . . , kN) $← FSS.Gen(1λ, f̃x1,...,xN
), where f̃x1,...,xN

is a
description of fx1,...,xN

; Output ki to each party Pi (for 1 ≤ i ≤ N).

Fig. 2. Ideal functionality FFSS
SD for the generation of FSS keys of a distributed function.

Theorem 7 (Template for (N+1)-Party Sublinear MPC from N-Party
FSS). Let N ≥ 2. Let C : F

n → F
m be an arithmetic circuit with n = �0 + �1 +

· · · + �N inputs over a finite field F, and let FSS = (FSS.Gen,FSS.Eval) be an
(additive) FSS scheme for the following function family of “partial evaluations
of C”:

{
gα1,...,αN

: F
�0 → F

m

x �→ C(x, α1, . . . , αN) : (α1, . . . , αN) ∈ F
�1 × · · · × F

�N

}

.

Sublinear-Communication Secure Multiparty Computation 173

Functionality Oblivious Evaluation of FSS Shares FFSS
OE

Parameters: The ideal functionality FFSS
SD is parameterised by a number

of parties N , and an additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for
some function class C.

FFSS
OE interacts with two parties, Alice (“the client”) and Bob (“the server”),

in the following manner.

Input: Wait to receive (Client, x) from Alice and (Server, i, ki) from
Bob, and record (i, ki, x).

Output: Run yi ← FSS.Eval(i, ki, x); Output yi to Alice.

Fig. 3. Ideal functionality FFSS
OE for the two-party oblivious evaluation of FSS shares.

Functionality FSFE(C)

The functionality is parameterised with a number N and an arithmetic
circuit C with n = �0+�1+· · ·+�N inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (0 ≤ i ≤ N),
where xi ∈ F

�i , and set x ← x0‖x1‖ . . . ‖xN .

Output: Compute y ← C(x); Output y to all parties P0, P1, . . . , PN .

Fig. 4. Ideal functionality FSFE(C) for securely evaluating an arithmetic circuit C
among N + 1 parties.

The protocol ΠC provided in Fig. 5 UC-securely implements the (N+1)-party
functionality FSFE(C) in the (FFSS

SD (C),FFSS
OE (C))-hybrid model, against a static

passive adversary corrupting at most N out of (N +1) parties. The protocol uses
N ·m · log |F| bits of communication, and additionally makes one call to FFSS

SD (C)
and N calls to FFSS

OE (C).

We refer the reader to the full version of the paper for the proof of Theorem 7.

174 E. Boyle et al.

Protocol ΠC

Parties: P0, P1, . . . , PN

Parameters: The protocol is parameterised with a number of parties (N+
1), an arithmetic circuit C : F

n → F
m with n = �0 + �1 + · · · + �N , and an

additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for the following function
family of “partial evaluations of C”:
{

gα1,...,αN
: F

�0 → F
m

x �→ C(x, α1, . . . , αN) : (α1, . . . , αN) ∈ F
�1 × · · · × F

�N

}

.

(sid1, . . . , sidN) are N distinct session ids.

Hybrid Model: The protocol is defined in the (FFSS
SD ,FFSS

OE)-hybrid model.

Input: Each party Pi holds input xi ∈ F
�i .

The Protocol:

1. Each party Pi for i 	= 0 sends (input, i, xi) to FFSS
SD (C), and waits to

receive ki.
2. For each i = 1, . . . , N :

(a) Party P0 sends (sidi, Client, x0) to FFSS
OE (C) and Pi sends

(sidi, Server, i, ki) to FFSS
OE (C)

(b) Party P0 waits to receive (sidi, yi) from FFSS
OE (C).

3. Party P0 sets y ← y1 + · · · yN , and sends y to all parties.
4. Every party outputs y.

Fig. 5. (Sublinear) secure computation protocol in the (FFSS
SD , FFSS

OE)-hybrid.

4 Oblivious Evaluation of LogLog-Depth FSS from PIR

In the previous section we provided a generic template for (N+1)-party sublinear
secure computation from N -party additive function secret sharing for which
FFSS

SD and FFSS
OE can be securely realised with low communication. In this section

we introduce the notion of loglog-depth for (additive) FSS schemes, and show
that this property allows FFSS

OE to be securely realised with low communication
using correlated symmetric PIR (corrSPIR), a primitive introduced in [9] (and
which can be instantiated from standard assumptions using the rate-1 batch OT
from [17]).

Sublinear-Communication Secure Multiparty Computation 175

4.1 LogLog-Depth FSS

A depth-d, n-input, m-output arithmetic circuit with gates of fan-in at most
two over a finite field F can be associated with the degree-(≤ 2d) n-variate
m-output5 polynomial with coefficients in F that it computes. In all generality,
a degree-2d n-variate polynomial can have up to nbn,2d =

∑2d

k=0

(
k+n−1

n−1

)
different

monomials (which can be verified using a stars-and-bars counting argument). In
this section we will only be interested in circuits whose representation as a poly-
nomial is the sum of poly(λ) monomials (where λ is the security parameter). A
sufficient condition is for it to have n = poly(λ) inputs and depth d ≤ log log(n);
we refer to this property as a circuit being “of loglog-depth”. Indeed, because we
only consider circuits whose gates have fan-in at most two, if a circuit has depth
d then it is 2d-local (i.e. each of its m outputs is a function of only at most 2d

inputs). Therefore each of its outputs is computed by a polynomial with at most
nb2d,2d ≤ 22

d+2d

monomials, which is poly(λ) if d = log log n = log log λ + O(1).
We extend in Definition 8 the above notion of “loglog-depth” circuits to

“loglog-depth” FSS schemes.

Definition 8 (LogLog-Depth FSS). Let F be a class of functions with n
inputs and m outputs over a finite field F. We say that an N -party FSS scheme
FSS = (FSS.Gen,FSS.Eval) for F whose evaluation algorithm FSS.Eval is explic-
itly described as an arithmetic circuit, has loglog-depth (alternatively, FSS is a
loglog-depth function secret sharing scheme) if for every party index i ∈ [N] and
every key ki ∈ Supp([FSS.Gen]i) the circuit FSS.Eval(i, ki, ·) (which has hardcoded
i and ki) has depth log log(n).

Throughout this section we will be using “loglog-depth” circuits and FSS
schemes, but it should be noted that all of our results go through if this is replaced
everywhere with the more obtuse notion of “circuits (resp. FSS evaluation) whose
polynomial representation has a polynomial number of coefficients”.

When considering “loglog-depth”, which in particular are “log-local” circuits,
we will be interested in the log-sized subsets of the inputs on which each output
depends. We say that an FSS scheme is (S1, . . . , Sm)-local if the jth output of
FSS.Eval, which takes as input a party index i, a key ki, and an input x, only
depends on (i, ki, x[Sj]). In other words, an FSS scheme is (S1, . . . , Sm)-local if
its evaluation algorithm is (S1, . . . , Sm)-local in its last input. We refer to the
full version of this paper for a more complete treatment. We emphasize that a
loglog-depth circuit or FSS scheme is always log-local, but that the converse is
not necessarily true if F 	= F2.

4.2 Oblivious Evaluation of LogLog-Depth FSS from PIR

We first discuss the notion of PIR we need, then show how it can be leveraged
to build oblivious evaluation of any loglog-depth FSS scheme.
5 An m-output (multivariate) polynomial can be seen as a tuple of m (multivariate)

polynomials.

176 E. Boyle et al.

4.2.1 Correlated PIR
We refer to [9] for the definition of the ideal functionality for batch SPIR with
correlated “mix and match” queries (FcorrSPIR), which we extend in the full ver-
sion of this paper from the boolean to the arithmetic setting as batch Oblivious
(Multivariate) Polynomial Evaluation with correlated “mix and match” queries
(FcorrOPE).

In the boolean world, this corresponds to a batched form of SPIR, query-
ing into k size-N databases, where the queries are not independent. Rather,
the queried indices can be reconstructed via a public function that “mixes and
matches” individual bits of a single bitstring α = (α1, . . . , αw) of length w <
k logN , in a public manner. What this means is that each of the (n = logN)-bit
queries to a single database can be obtained by concatenating n of the bits αi,
possibly permuted. In the arithmetic world, this corresponds to batch multivari-
ate OPE, where each database corresponds to a polynomial, and the evaluation
inputs are various subvectors of some joint input vector, comprised of w field
elements. More specifically, the input to a single d-variate polynomial (in the
batch to be obliviously evaluated) is a size-d ordered subset of the joint inputs.

We will be interested in how many times a given bit of entropy (resp. input)
αi appears within the k queries (resp. input)–counted by the occurrence function
ti below–, as well as how many times it appears in specific index position j′ ∈
[n] within the k queries (resp. input)–denoted below by ti,j′–. To the best of
our knowledge, there are no protocols realising corrOPE over superpolynomial-
size fields without FHE, and the only protocol realising corrSPIR without FHE
requires introducing this notion of “balance between the queried bits”.

We refer to [9] for the formalisation of “mix and match” functions, (the
ideal functionality for) batch SPIR with correlated “mix and match” queries
(FcorrSPIR), and to the full version of this paper for the (ideal functionality for)
batch Oblivious (Multivariate) Polynomial Evaluation with correlated “mix and
match” queries (FcorrOPE).

4.2.2 Oblivious Evaluation of LogLog-Depth FSS from PIR
Let FSS = (FSS.Gen,FSS.Eval) be a loglog-depth, (S1, . . . , Sm)-local FSS scheme
(Definition 8). Because FSS has loglog-depth, the polynomial representation of
FSS.Eval has m · poly(n) coefficients. Furthermore, each of its local evaluation
algorithms FSS.Evalj depends only on the inputs indexed by Sj . Therefore obliv-
iously evaluating FSS.Eval can be done by using batch OPE with correlated “mix
and match” inputs: the m polynomials in the batch are the FSS.Evalj(i, ki, ·),
where ki is known only to the server Pi. This protocol is formalised in Fig. 6.

Note that this notion of corrOPE, as defined in the full version of the paper,
requires the polynomials in the batch be represented as a vector of coefficients.
For this reason we impose that FSS be loglog-depth, so this vector be polynomial-
size.

Sublinear-Communication Secure Multiparty Computation 177

Protocol Oblivious Evaluation of Partial Function Shares ΠOE

Parties: P0 (the client) and Pi (the server).

Parameters:

– Let N be a number, and let C = C1‖ . . . ‖Cm be a loglog-depth circuit (def-
inition 8) with n = �0 + �1 + · · · + �N inputs and m outputs over F such
that the following function family C is (S1, . . . , Sm)-local , where S1, . . . , Sm

is some family of (log / log log)-sized subsets of [n]:

C =

{
gα1,...,αN : F

�0 → F
m

x �→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ F

�1 × · · · × F
�N

}
.

We assume that each of the Si is ordered in such a way that the function
MixAndMatch associated with (S1, . . . , Sm) is polylog-balanceda (c.f. full ver-
sion).

– FSS = (FSS.Gen,FSS.Eval) is an (S1, . . . , Sm)-local (additive) FSS scheme for
C, whose local evaluation algorithms (c.f. full version) are (FSS.Evalj)j∈[m].

Hybrid Model: The protocol is defined in the FcorrOPE-hybrid model (the
subsets characterising MixAndMatch, and in turn corrOPE, are (S1, . . . , Sm)).

Input: P0 holds input x0 ∈ {0, 1}�0 , and Pi holds ki.

The Protocol:

– First Round:
1. P0 sends (receiver, x0) to FcorrOPE

2. Pi sends (sender, (cj)j∈[m]) to FcorrOPE where cj is the vector of coeffi-
cients of FSS.Evalj(i, ki, ·)
// For the case F = F2 (i.e. when using FcorrSPIR), the databases can be
more simply described as the truth tables of the FSS.Evalj(i, ki, ·) for
j ∈ [m], i.e. (FSS.Evalj(i, ki, x

′))
x′∈{0,1}|Sj | .

3. Second Round:
4. P0 waits to receive (yi,1, . . . , yi,m) from FcorrOPE

5. P0 outputs (yi,1, . . . , yi,m)

a By [9, Lemma 9], such orderings exist and furthermore can be found in expected
constant time by random shuffling. Alternatively, since a random ordering of
(S1, . . . , Sm) works with high probability, the protocol could be modified so
that P0 samples a PRG key and sends it to P1, and both use the resulting
pseudorandomness to order (S1, . . . , Sm). This additional step incurs only a
small additive overhead in communication, and the resulting protocol is still
sublinear.

Fig. 6. Two-party protocol for obliviously evaluating shares of an additive loglog-depth
FSS scheme.

178 E. Boyle et al.

Lemma 9 (Oblivious Share Evaluation for LogLog-Depth FSS
Schemes). Let N ≥ 2. Let C : F

n → F
m be a loglog-depth arithmetic cir-

cuit with n = �0 + �1 + · · · + �N inputs over a finite field F, and let C be the
family of “partial evaluations of C”:

{
gα1,...,αN

: F
�0 → F

m

x �→ C(x, α1, . . . , αN) : (α1, . . . , αN) ∈ F
�1 × · · · × F

�N

}

.

If FSS is an additive loglog-depth, (S1, . . . , Sm)-local FSS scheme (Definition
8) for C and corrSPIR is a two-round batch SPIR protocol (characterised by
(S1, . . . , Sm)), then the protocol ΠOE provided in Fig. 6 UC-securely imple-
ments the two-party functionality FFSS

OE against a static, passive adversary in
the FcorrOPE-hybrid model.

The proof of Lemma 9 is given in the full version of the paper.

5 LogLog-Depth FSS from Compact and Additive HSS

In this section we show how to use compact and additive HSS to build a loglog-
depth FSS scheme whose share distribution FFSS

SD can be realised in low commu-
nication. When combined with Sects. 3 to 4, this yields sublinear secure com-
putation from compact and additive HSS. In the full version of this paper, we
show how to extend this construction to use the weaker primitive of Las-Vegas
HSS. We note that this extension forms a non-trivial technical contribution of
our work, which we defer to the full version due to lack of space, and focus this
edition of the paper on the simplest version of our template.

5.1 An Overview of the Construction

Let C : F
n → F

m be a log log-depth arithmetic circuit with n = �0+�1+ · · ·+�N

inputs over a finite field F, and let C be the family of “partial evaluations of C”:
{

gα1,...,αN
: F

�0 → F
m

x �→ C(x, α1, . . . , αN) : (α1, . . . , αN) ∈ F
�1 × · · · × F

�N

}

.

Our goal in this section is to provide a construction of a loglog-depth FSS scheme
for C such that FFSS

SD can be realised with low communication, and we do so by
using compact and additive single-function HSS for any function in a well-chosen
function class (that of {coefsc1,...,cN

: (c1, . . . , cN) ∈ F
�1 × · · · × F

�N }, as defined
below).

We provide in Fig. 7 a construction of loglog-depth additive FSS for C from
single-function additive HSS for the following function coefs:

coefs : F
�1 × · · · × F

�N → F
�

(α1, . . . , αN) �→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the
Cj(X,α1, . . . , αN), for j ∈ [m] (which are polynomials in X, whose coefficients

Sublinear-Communication Secure Multiparty Computation 179

are themselves polynomials in α1, . . . , αN). Because C has loglog-depth (Defini-
tion 8), there are at most m · n · (1 + o(1)) such coefficients. Furthermore, the
key generation algorithm of the FSS scheme for C essentially boils down to a
single call to the share generation algorithm of the HSS scheme for coefs. There-
fore, we also need to provide an HSS scheme for coefs whose share generation
can be distributed using low communication. We use a transformation akin to
hybrid encryption in order to ensure this last property: we mask the inputs using
pseudorandom generators, and reduce the problem of generating HSS shares of
the inputs to that of distributing HSS shares of the keys, which can be done
generically using oblivious transfer.

More precisely, for i ∈ [N] let Gi : {0, 1}λ → F
�i be a PRG and consider the

function family {coefsc1,...,cN
: (c1, . . . , cN) ∈ F

�1 × · · · × F
�N }, where:

coefsc1,...,cN
: F

λ × · · · × F
λ → F

�

(K1, . . . ,KN) �→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the
Cj(X, c1 − G1(K1), . . . , cN − GN (KN)), j ∈ [m] (which are polynomials in X,
whose coefficents are polynomials in the bits of K1, . . . ,KN).

We provide in the full version of this paper the construction of an HSS scheme
for coefs whose share generation can be distributed using low communication
(along with a corresponding protocol), assuming the existence of compact and
additive single-function HSS for any function in {coefsc1,...,cN

}.
While this assumption relating to the existence of HSS for {coefsc1,...,cN

}
may not seem standard, it is weaker than each of the following assumptions:

1. HSS for NC1 and polynomial-stretch PRGs in NC1;
2. Single-function HSS for any log log-depth circuit and constant-depth PRGs

with some fixed polynomial-stretch.

5.2 Defining the LogLog-Depth FSS Scheme

Observation 1 (Parsing Additive Shares). Let x ∈ {0, 1}n and let I ⊆ [n]. If
(x(1), . . . ,x(m)) are additive shares of x, then ([x(1)]I , . . . , [x(m)]I) are additive
shares of [x]I , where [·]I denotes the subvector induced by the set of coordinates
I.

180 E. Boyle et al.

LogLog-Depth FSS Scheme from Additive HSS

Parameters: Let N ≥ 2 be a number of parties, and let C = C1‖ . . . ‖Cm be a
loglog-depth circuit with n = �0+ �1+ · · ·+ �N inputs and m outputs over F such
that the following function family is (S1, . . . , Sm)-local, where S1, . . . , Sm is some
family of (logn/ log log n)-sized subsets of [n]:

C =

{
gα1,...,αN : F

�0 → F
m

x �→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ F

�1 × · · · × F
�N

}
.

Let HSS = (HSS.Share,HSS.Eval) be an N -party additive (single-function) HSS
scheme for the function:

coefs : F
�1 × · · · × F

�N → F
�

(α1, . . . , αN) �→ (p0, p1, . . .)

where (p0, p1, . . .) are the coeffi-
cients of the polynomial represen-
tation of all the Cj(X, α1, . . . , αN),
j ∈ [m] (which are polynomials
in X, whose coefficients are them-
selves polynomials in α1, . . . , αN).

// Note that since C has loglog-depth and C is (S1, . . . , Sm)-local, each of
the m polynomials has degree |Sj | and |Sj | variables, and there are therefore
at most

∑m
j=1

(|Sj |+|Sj |
|Sj |

)
= m ·n ·(1+o(1)) coefficients, regardless of (α1, . . . , αN).

FSS.Gen(1λ, g̃α1,...,αN):

1. Parse g̃α1,...,αN to retrieve (α1, . . . , αN)

2. (k1, . . . , kN)
$← HSS.Share(1λ, i, (α1, . . . , αN))

3. Output (k1, . . . , kN)

FSS.Evalj(i, ki, x
′): // x′ ∈ F

|Sj | should be seen as an Sj-subset of some larger
x ∈ F

�0 (i.e. x′ = x[Sj]), input of FSS.Eval.

1. (p0,i, p1,i, . . .)
$← HSS.Eval(i, ki)

2. Parse (p0,i, p1,i, . . .) to retrieve shares (q0,i, q1,i, . . .) of the coefficients of
Cj(·, α1, . . . , αN) (c.f. observation 1).

3. yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . .)
ᵀ

4. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j ← FSS.Evalj(i, ki, x[Sj])
2. Output (yi,j)j∈[m]

Fig. 7. LogLog-Depth FSS Scheme from “Single-Function” Additive HSS for every
LogLog-Depth Circuit.

Sublinear-Communication Secure Multiparty Computation 181

Lemma 10 (LogLog-Depth FSS Scheme from “Single-Function” Additive
HSS). Let N ≥ 2 be a number of parties, and let C = C1‖ . . . ‖Cm be a loglog-
depth circuit with n = �0 + �1 + · · · + �N inputs and m outputs over F such that the
following function family is (S1, . . . , Sm)-local , where S1, . . . , Sm is some family of
(logn/ log log n)-sized subsets of [n]:

C =

{
gα1,...,αN : F

�0 → F
m

x �→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ F

�1 × · · · × F
�N

}
.

Let HSS = (HSS.Share,HSS.Eval) be an N-party (single-function) additive HSS
scheme for the function:

coefs : F
�1 × · · · × F

�N → F
�

(α1, . . . , αN) �→ (p0, p1, . . .)

where (p0, p1, . . .) are the
coefficients of the polyno-
mial representation of all the
Cj(·, α1, . . . , αN), j ∈ [m].

Then the construction of Fig. 7 is an N-party additive loglog-depth and
(S1, . . . , Sm)-local FSS scheme for C.

The proof of Lemma 10 is deferred to the full version of the paper.

5.3 Securely Realising FFSS
SD in Low Communication

The FSS scheme FSS = (FSS.Gen,FSS.Eval) of Fig. 7 is parameterised by an additive
single-function HSS scheme for the function coefs. We provide in the full version of the
paper such an HSS scheme with the additional property that it yields FSS for which
FFSS

SD can be securely realised in low communication.
As explained in the overview of Sect. 5.1, we use a standard hybrid encryption trick

in order to build HSS for coefs from HSS for {coefsc1,...,cN }. This allows us to securely
distribute the shares of HSS for coefs (and hence the keys of the FSS scheme of Fig. 7)
by using generic secure computation to distribute the shares of HSS for {coefsc1,...,cN }
(which can be done in complexity poly(λ+N)). We refer to the full version of the paper
for the details.

Lemma 11 (FFSS
SD for the LogLog-Depth FSS scheme of fig. 7 can be realised

with low communication). Let N ≥ 2 be a number of parties, and let C =
C1‖ . . . ‖Cm be a loglog-depth circuit with n = �0 + �1 + · · · + �N inputs and m outputs
over F such that the following function family is (S1, . . . , Sm)-local, where S1, . . . , Sm

is some family of (log / log log)-sized subsets of [n]:

C =

{
gα1,...,αN : F

�0 → F
m

x �→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ F

�1 × · · · × F
�N

}
.

For i ∈ [N], let Gi : {0, 1}λ → F
�i be a constant-depth PRG.

182 E. Boyle et al.

Let HSS = (HSS.Share,HSS.Eval) be an N-party compact and additive HSS scheme
for any function in {coefsc1,...,cN : (c1, . . . , cN) ∈ F

�1 × · · · × F
�N }, where:

coefsc1,...,cN : F
λ × · · · × F

λ → F
�

(K1, . . . , KN) �→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of
the polynomial representation of all the
Cj(X, c1 − G1(K1), . . . , cN − GN (KN)),
j ∈ [m] (which are polynomials in X).

Then the protocol ΠSD provided in the full version of the paper UC-securely imple-
ments the N-party functionality FFSS

SD in the FHSS
SD -hybrid model against a static, passive

adversary. Furthermore, assuming oblivious transfer, there exists a protocol (in the real
world) using (N ·λ)O(1)+N(N −1) ·n · log |F| bits of communication which UC-securely
implements the N-party functionality FFSS

SD against a static, passive adversary.

6 Instantiations

In Sect. 6.1, we combine the results of Sects. 3 to 5 and achieve sublinear secure com-
putation from generic assumptions (HSS and forms of PIR/OLE). In Sect. 6.2, we
build four-party compact and additive HSS for loglog-depth correlations from stan-
dard assumptions (DCR and constant-locality PRGs). In Sect. 6.3, we show how to
combine all the above (as well as existing constructions of 2-party HSS) in order to
build sublinear secure 3- and 5-party computation from standard assumptions not pre-
viously known to imply it (in particular, they are not known to imply FHE).

6.1 Sublinear-Communication Secure Multiparty Computation
from PIR and Additive HSS

Section 4 established that FFSS
OE for local FSS schemes can be based on batch OPE

(with correlated inputs) and Sect. 5 builds local FSS schemes (such that FFSS
SD can be

realised with low communication) from additive HSS (with or without errors). Plugging
these two constructions into the template of Sect. 3 yields sublinear secure multiparty
computation from batch OPE and additive HSS.

Theorem 12 (Sublinear-Communication Secure (N+1)-Party Computation
of Shallow Circuits). Let N ≥ 2 be a number of parties, and let C : F

n → F
m be

a depth-d (d ≤ log log n − log log log n) arithmetic circuit with n = �0 + �1 + · · · + �N

inputs over F. Assuming the existence of:

– A family of PRGs Gi : {0, 1}λ → F
�i for i ∈ [N],

– An N-party compact and additive single-function HSS scheme for any function in
the class {coefsα1,...,αN : (α1, . . . , αN) ∈ F

�1 × · · · × F
�N }, where coefsx1,...,xN is the

function which, on input (K1, . . . , KN) ∈ ({0, 1}λ)N , computes the (polynomially
many) coefficients of the representation of Cj(·, α1 − G1(K1), . . . , αN − GN (KN))
as �0-variate polynomials for j = 1 to m,

– A protocol for UC-securely realising
FcorrOPE using communication CommcorrOPE(k, Nvar, deg, w), where k is the number
of OPEs in the batch, Nvar is the number of variables of each polynomial, deg is the
degree of each polynomial, and w is the size of the joint input vector,

Sublinear-Communication Secure Multiparty Computation 183

There exists a protocol using (N + λ)O(1) + N · [(N − 1) · n + m] · log |F| + N ·
CommcorrOPE(m, 2d, 2d, n) bits of communication to securely compute C amongst (N+1)
parties (that is, to UC-securely realise FSFE(C)) in the presence of a semi-honest adver-
sary statically corrupting any number of parties.

Proof. The proof of Theorem 12 is obtained by combining the results of Sects. 3 to
5. Our starting point is the generic template of Theorem 7 in the (FFSS

SD , FFSS
OE)-hybrid

model, which uses N ·m · log |F| bits of communication and makes a single call to FFSS
SD ,

and N to FFSS
OE . We use the FSS scheme of lemmas 10 to 11, for which, by Lemma 9,

each call to FFSS
OE can be implemented using communication CommcorrOPE(m, 2d, 2d, n)

and the single call to FFSS
SD can be implemented using communication (N · λ)O(1) +

N(N − 1) · n · log |F|. 	

6.2 Four-Party Additive HSS from DCR

In this section, we build a 4-party compact homomorphic secret sharing scheme for
the class of loglog-depth circuits. Our starting point is the (non compact) 4-party HSS
for constant degree polynomials recently described in [19]. At a high level, the scheme
works by nesting a 2-party HSS scheme inside another 2-party HSS scheme. Concretely,
let HSSin and HSSout be two 2-party HSS schemes. Then, the following is a 4-party HSS:

– HSS.Share(x) : run (x(0), x(1)) ← HSS.Sharein(x). For b = 0, 1, run (x(b,0), x(b,1)) ←
HSS.Shareout(x

(b)). Output (x(0,0), x(0,1), x(1,0), x(1,1)).
– HSS.Eval(i, f, x(i)) : parse i as (b, c) ∈ {0, 1}2. Define Gin(f) : x(b,c) →

HSSin.Eval(b, f, x(b,c)) and run y(i) ← HSSout.Eval(c, Gin(f), x
(b,c)).

Therefore, to get 4-party HSS for a function class F , we need (1) a 2-party HSSin

for F , and (2) a 2-party HSS.out for the class F ′ = Gin(F). We refer to the full version
of the paper for how to obtain these two building blocks, and now state the resulting
theorem in Theorem 13.

Theorem 13 (Four-Party Additive HSS for Constant-Depth Circuits from
DCR). Assuming the superpolynomial hardness of DCR and the existence of PRGs
with constant locality, there exists a four-party HSS scheme for the class of loglog-depth
circuits with nin inputs; the HSS scheme has share size nin(1 + o(1)). Furthermore,
there exists a protocol with communication complexity nin · (4 + o(1)) (for large enough
nin) for securely realising the four-party functionality FHSS

SD for the generation of HSS
shares of the concatenation of the parties inputs.

6.3 Sublinear-Communication Secure Multiparty Computation
from New Assumptions

Combining Sect. 6.1 with instantiations of corrSPIR and additive HSS from the litera-
ture (and Sect. 6.2) yields sublinear-communication secure 3- and 5-party computation
of shallow boolean circuits from a variety of assumptions. Layered boolean circuits are
boolean circuits whose gates can be arranged into layers such that any wire connects
adjacent layers. It is well-known from previous works [11,22,23] that sublinear proto-
cols for low-depth circuits translate to sublinear protocols for general layered circuits:
the parties simply cut the layered circuit into low-depth “chunks”, and securely evaluate
it chunk-by-chunk. For each chunk, a sublinear secure protocol is invoked to compute
the low-depth function which maps shares of the values on the first layer to shares of
the values on the first layer of the next chunk.

184 E. Boyle et al.

Theorem 14 (Secure (N + 1)-Party Computation with Sublinear Commu-
nication from New Assumptions).

– 3-PC of Shallow Circuits: Let C : {0, 1}n → {0, 1}m be a size-s, depth-d (d ≤
log log s− log log log s) boolean circuit. Let ε ∈ (0, 1). Assuming the Learning Parity
with Noise (LPN) assumption with dimension dim = poly(λ), number of samples
num = (n+m)1/3 ·λO(1), and noise rate ρ = numε−1 (for some constant 0 < ε < 1)
together with any of the following additional computational assumptions:

• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-

rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).
There exists a 3-party protocol with communication complexity λO(1) + O(n + m +

2d+2d · poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3)) to securely compute C
(that is, to UC-securely realise FSFE(C)) in the presence of a semi-honest adversary
statically corrupting any number of parties. In particular, if d ≤ (log log s)/4 the
communication complexity is λO(1) + O(n + m +

√
s · poly(λ) · polylog(n) · ((n +

m)2/3 + (n + m)(1+2ε)/3)) (for some arbitrarily small constant 0 < δ < 1/2), which
is sublinear in the circuit-size, as detailed in Remark 15.

– 3-PC of Layered Boolean Circuits: Let C : {0, 1}n → {0, 1}m be a size-
s, depth-d layered boolean circuit. Let ε ∈ (0, 1). Assuming the Learning Parity
with Noise (LPN) assumption with dimension dim = poly(λ), number of samples
num = ((s/d)2/sε)1/3 ·poly(λ), and noise rate ρ = num−1/2 together with any of the
following additional computational assumptions:

• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-

rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).
There exists a 3-party protocol with communication complexity O(n + m + d1/3 ·
s2(1+ε)/3 · poly(λ) + s/(log log s)) to securely compute C (that is, to UC-securely
realise FSFE(C)) in the presence of a semi-honest adversary statically corrupting
any number of parties. In particular, if d = o(s1−ε/poly(λ)) (i.e. the circuit is not
too “tall and skinny”) the communication complexity is O(n + m + s

log log s
), which

is sublinear in the circuit-size.
– 5-PC of Shallow Circuits: Let ε ∈ (0, 1). Assuming the existence of a constant-

locality PRG with polynomial stretch, there exists a constant c ≥ 3 such that for
any boolean circuit C : {0, 1}n → {0, 1}m of size s and depth d (d ≤ (log log s −
log log log s)/2c), assuming the superpolynomial Decision Composite Residuosity
(DCR) assumption, the Learning Parity with Noise (LPN) assumption with dimen-
sion dim = poly(λ), number of samples num = (n + m)1/3 · λO(1), and noise rate
ρ = numε−1 (for some constant 0 < ε < 1), as well as any of the following compu-
tational assumptions:

• Decisional Diffie-Hellman (DDH)
• Learning with Errors with polynomial-size modulus (poly-modulus LWE)
• Quadratic Residuosity (QR) and Superpolynomial F2-LPN (i.e. assuming the

security against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ,
2λlog λ samples, and rate λ/(2λlog λ)).

Sublinear-Communication Secure Multiparty Computation 185

There exists a 5-party protocol with communication complexity λO(1) + O(n + m +

2d/2c+2d/2c

·poly(λ)·polylog(n)·((n+m)2/3+(n+m)(1+2ε)/3)) to securely compute C
(that is, to UC-securely realise FSFE(C)) in the presence of a semi-honest adversary
statically corrupting any number of parties. In particular, if d ≤ (log log s)/2c+2 the
communication complexity is λO(1) + O(n + m +

√
s · poly(λ) · polylog(n) · ((n +

m)2/3 + (n + m)(1+2ε)/3)) (for some arbitrarily small constant 0 < ε < 1/2), which
is sublinear in the circuit-size, as detailed in Remark 15.

– 5-PC of Layered Boolean Circuits: Let ε ∈ (0, 1). Assuming the existence of a
constant-locality PRG with polynomial stretch, there exists a constant c ≥ 3 such that
for any layered boolean circuit C : {0, 1}n → {0, 1}m of size s and depth d, assuming
the superpolynomial Decision Composite Residuosity (DCR) assumption, assuming
the Learning Parity with Noise (LPN) assumption with dimension dim = poly(λ),
number of samples num = ((s2c/d)2/sε)1/3 · poly(λ), and noise rate ρ = num−1/2

together with any of the following additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-

rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).
There exists a 5-party protocol with communication complexity O(n + m + d1/3 ·
s2(1+ε)/3 · poly(λ) + s/(log log s)) to securely compute C (that is, to UC-securely
realise FSFE(C)) in the presence of a semi-honest adversary statically corrupting
any number of parties. In particular, if d = o(s1−ε/poly(λ)) (i.e. the circuit is not
too “tall and skinny”) the communication complexity is O(n + m + s

log log s
), which

is sublinear in the circuit-size.

Note that combining the works of [17,37] seems to implicitly yield rate-1 batch
OT from DCR, and in turn correlated SPIR [9]: if true, the assumptions for sublinear-
communication five-party MPC can be simplifed to constant-locality PRG, LPN, and
superpolynomial DCR (without the need for DDH, LWE, or QR). Since this claim was
never made formally, we do not use it.

The proof of Theorem 14 is deferred to the full version of the paper. We conclude
by remarking that while this may not be immediately apparent due to the complicated
expressions, the above communication complexities do indeed qualify as “sublinear in
the circuit-size”.

Remark 15 (The Expressions of Theorem 14 are Sublinear in the Circuit Size). Recall
that a protocol for securely computing a size-s circuit with n inputs and m outputs
is sublinear in the circuit-size if its communication complexity is of the form λO(1) +
poly(n + m) + o(s), where poly is some fixed polynomial. The communication of our
protocols for loglog-depth circuits, both in the 3- and the 5-party case, are sublinear
in the circuit-size. For 3PC and 5PC of loglog-depth circuits, the expression is the
following:

λO(1) + O(n + m +
√

s · poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3)).

where ε ∈ (0, 1) is some constant tied to the strength of the LPN assumption. Because
we view s as an arbitrarily large polynomial in the security parameter (in other words
we are interested in an asymptotic notion of sublinearity), there exists an arbitrarily

186 E. Boyle et al.

small constant δ ∈ (0, 1
2
) such that poly(λ) ≤ sδ. Therefore the complexity can be

simplified as:

λO(1) + O(n + m + s
1
2+δ · polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3)).

Whenever sδ ≥ polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3), the above expression is
λO(1) + O(n + m + s1+2δ). Whenever sδ < polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3),
the entire expression is already some fixed polynomial in n + m. Therefore, our final
complexity is of the form λO(1) + polyδ(n + m) + s

1
2+2δ.

Acknowledgments. We thank the anonymous reviewers of Eurocrypt 2023 for their
helpful comments and careful proofreading, which helped to improve the paper. Elette
Boyle and Pierre Meyer were supported by AFOSR Award FA9550-21-1-0046, a Google
Research Award, and ERC Project HSS (852952). Geoffroy Couteau was supported by
the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001
(project SCENE), and by the France 2030 ANR Project ANR22-PECY-003 Secure-
Compute.

References

1. Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. Cryptology ePrint Archive
(2022)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_29

3. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with applica-
tions to database search problems. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218_24

4. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communi-
cation overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3_5

5. Belaga, E.G.: Locally synchronous complexity in the light of the trans-box method.
In: Fontet, M., Mehlhorn, K. (eds.) STACS 1984. LNCS, vol. 166, pp. 129–139.
Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12920-0_12

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press (1988). https://doi.org/10.1145/62212.62213

7. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_24

8. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0_15

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-12920-0_12
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15

Sublinear-Communication Secure Multiparty Computation 187

9. Boyle, E., Couteau, G., Meyer, P.: Sublinear secure computation from new assump-
tions. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part II. LNCS, vol. 13748,
pp. 121–150. Springer, Heidelberg (Nov 2022). https://doi.org/10.1007/978-3-031-
22365-5_5

10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6_12

11. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_19

12. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 1292–1303. ACM Press (2016). https://doi.org/10.
1145/2976749.2978429

13. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6_6

14. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018, vol. 94, pp. 1–21. LIPIcs (2018).
https://doi.org/10.4230/LIPIcs.ITCS.2018.21

15. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

16. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1

17. Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-OT with optimal rate. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol.
13276, pp. 157–186. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-07085-3_6

18. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (1988). https://
doi.org/10.1145/62212.62214

19. Chillotti, I., Orsini, E., Scholl, P., Smart, N.P., Leeuwen, B.V.: Scooby: improved
multi-party homomorphic secret sharing based on FHE. SCN 2022 (2022). https://
eprint.iacr.org/2022/862

20. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: 29th ACM STOC, pp. 304–313. ACM Press (1997). https://doi.
org/10.1145/258533.258609

21. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS, pp. 41–50. IEEE Computer Society Press (1995). https://doi.org/
10.1109/SFCS.1995.492461

22. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3_17

23. Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure computation
under Quasi-polynomial LPN. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-

https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://eprint.iacr.org/2022/862
https://eprint.iacr.org/2022/862
https://doi.org/10.1145/258533.258609
https://doi.org/10.1145/258533.258609
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17

188 E. Boyle et al.

CRYPT 2021. LNCS, vol. 12697, pp. 842–870. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77886-6_29

24. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4

25. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4

26. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing
from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec
2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68637-0_23

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009). https://doi.org/10.
1145/1536414.1536440

28. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (1987). https://doi.org/10.1145/28395.28420

30. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM
Press (1982). https://doi.org/10.1145/800070.802212

31. Gál, A., Jang, J.T.: The size and depth of layered boolean circuits. Inf. Process.
Lett. 111(5), 213–217 (2011). https://doi.org/10.1016/j.ipl.2010.11.023

32. Harper, L.H.: An log lower bound on synchronous combinational complexity (1977)
33. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-

dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013, pp. 669–684. ACM Press (2013). https://doi.org/10.1145/
2508859.2516668

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press (1992). https://doi.org/
10.1145/129712.129782

35. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE
Computer Society Press (1997). https://doi.org/10.1109/SFCS.1997.646125

36. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: 33rd ACM STOC, pp. 590–599. ACM Press (2001). https://doi.
org/10.1145/380752.380855

37. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic secret
sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77870-5_24

38. Paillier, P.: Public-key cryptosystems based on composite degree Residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005). https://doi.org/10.1145/1060590.1060603

https://doi.org/10.1007/978-3-030-77886-6_29
https://doi.org/10.1007/978-3-030-77886-6_29
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/800070.802212
https://doi.org/10.1016/j.ipl.2010.11.023
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1145/380752.380855
https://doi.org/10.1145/380752.380855
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/1060590.1060603

Sublinear-Communication Secure Multiparty Computation 189

40. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and appli-
cations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
687–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_23

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press (1986). https://doi.org/10.
1109/SFCS.1986.25

https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Actively Secure Arithmetic Computation
and VOLE with Constant Computational

Overhead

Benny Applebaum(B) and Niv Konstantini

Tel Aviv University, Tel Aviv, Israel
bennyap@post.tau.ac.il

Abstract. We study the complexity of two-party secure arithmetic com-
putation where the goal is to evaluate an arithmetic circuit over a finite
field F in the presence of an active (aka malicious) adversary. In the pas-
sive setting, Applebaum et al. (Crypto 2017) constructed a protocol that
only makes a constant (amortized) number of field operations per gate.
This protocol uses the underlying field F as a black box, makes black-box
use of (standard) oblivious transfer, and its security is based on arith-
metic analogs of well-studied cryptographic assumptions. We present an
actively-secure variant of this protocol that achieves, for the first time,
all the above features. The protocol relies on the same assumptions and
adds only a minor overhead in computation and communication.

Along the way, we construct a highly-efficient Vector Oblivious Linear
Evaluation (VOLE) protocol and present several practical and theoretical
optimizations, as well as a prototype implementation. Our most efficient
variant can achieve an asymptotic rate of 1/4 (i.e., for vectors of length
w we send roughly 4w elements of F), which is only slightly worse than
the passively-secure protocol whose rate is 1/3. The protocol seems to
be practically competitive over fast networks, even for relatively small
fields F and relatively short vectors. Specifically, our VOLE protocol has
3 rounds, and even for 10K-long vectors, it has an amortized cost per
entry of less than 4 OT’s and less than 300 arithmetic operations. Most
of these operations (about 200) can be pre-processed locally in an offline
non-interactive phase. (Better constants can be obtained for longer vec-
tors.) Some of our optimizations rely on a novel intractability assumption
regarding the non-malleability of noisy linear codes, that may be of inde-
pendent interest.

Our technical approach employs two new ingredients. First, we present
a new information-theoretic construction of Conditional Disclosure of
Secrets (CDS) and show how to use it in order to immunize the VOLE
protocol of Applebaum et al. against active adversaries. Second, by using
elementary properties of low-degree polynomials, we show that, for some

Supported by the Israel Science Foundation grant no. 2805/21. The full version of this
paper appears in [10].
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 190–219, 2023.
https://doi.org/10.1007/978-3-031-30617-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_7&domain=pdf
http://orcid.org/0000-0003-4792-369X
https://doi.org/10.1007/978-3-031-30617-4_7

Actively Secure Arithmetic MPC with Constant Overhead 191

simple arithmetic functionalities, one can easily upgrade Yao’s garbled-
circuit protocol to the active setting with a minor overhead while pre-
serving the round complexity.

Keywords: Foundations · Protocols · Secure Computation

1 Introduction

Secure multiparty protocols (MPC) allow a set of parties to jointly compute a
function over their inputs while keeping those inputs private. In many situations,
the underlying sensitive data is numerical, and the computation can be naturally
expressed as a sequence of arithmetic operations such as addition, subtraction,
and multiplication.1 This calls for secure arithmetic computation, namely secure
computation of functions defined by arithmetic operations. It is convenient to
represent such a function by an arithmetic circuit, which is similar to a stan-
dard Boolean circuit except that gates are labeled by addition, subtraction, or
multiplication. It is typically sufficient to consider such circuits that evaluate
the operations over a large finite field F, since arithmetic computations over the
integers or (bounded precision) reals can be reduced to this case. Computing
over finite fields (as opposed to integers or reals) can also be a feature, as it is
useful for applications in threshold cryptography (see, e.g., [31]).

It is always possible to reduce arithmetic computation to Boolean compu-
tation by implementing each arithmetic operation by Boolean circuit. However,
this approach leads to a large blow-up in the circuit size.2 Thus we strive for
“purely arithmetic” solutions that avoid such an emulation. Specifically, follow-
ing [5], we strive for a protocol that achieves a constant computational overhead.
That is, we would like to securely evaluate any arithmetic circuit C over any
finite field F, with a computational cost (on a RAM machine) that is only a
constant times bigger than the cost of performing |C| field operations with no
security at all. Here we make the standard convention of viewing the size of C
also as a security parameter, namely the view of any adversary running in time
poly(|C|) can be simulated up to a negligible error in |C|.

1.1 ADINZ: Constant Overhead with Passive Security

In [5] (hereafter referred to as ADINZ) it was shown that it is possible to realize
2-party arithmetic MPC with constant computational overhead in the presence
of a passive (aka semi-honest) adversary. Specifically, ADINZ introduced the
Vector Oblivious Linear Evaluation (VOLE) functionality in which the sender
holds a pair of vectors a, b ∈ F

w and the receiver holds a scalar x ∈ F and

1 More complex numerical computations can typically be efficiently reduced to these
simple ones, e.g., by using suitable low-degree approximations.

2 For example, for the case of finite fields with n-bit elements, the size of the best
known Boolean multiplication circuits is ω(n log n).

192 B. Applebaum and N. Konstantini

gets as an output the vector xa + b, and showed how to (1) realize VOLE of
width w with complexity of O(w) and (2) how to use VOLE to realize batch
Oblivious Linear Evaluation (batch-OLE) of length n with complexity O(n).
The latter functionality takes a pair of vectors c,d ∈ F

n from the sender and a
vector y ∈ F

n from the receiver and delivers to the receiver the vector y � c +
d where � stands for entry-wise multiplication. Both the VOLE functionality
and batch-OT functionality naturally extend the Oblivious Linear Evaluation
(OLE) functionality [40,44] that corresponds to the case where w = 1 or n = 1.
Moreover, OLE, VOLE, and batch-OLE can be viewed as the arithmetic versions
of oblivious transfer (OT), string-OT, and batch-OT, respectively. Indeed, just
like in the binary setting, securely computing an �-size arithmetic circuit reduces
via an arithmetic-GMW construction [40] to the task of securely computing
batch-OLE of length �. Based on this reduction, ADINZ constructed a constant-
overhead MPC protocol for general arithmetic circuits.

The security of the ADINZ protocols is based on arithmetic analogs of well-
studied cryptographic assumptions. Concretely, for the VOLE protocol, it suffices
to assume the existence of a linear-time computable “code” over F for which
noisy codewords are pseudorandom. Since a conservative choice of constant-
rate noise suffices, one can instantiate this LPN-type assumption based on an
arithmetic variant of Alekhnovich’s assumption [2] or based on the codes of Druk
and Ishai [25]. The batch-OLE protocol is based on an arithmetic version of a
NC0 polynomial-stretch PRG [3,9,11,38]. (See [53] for security analysis of these
two assumptions in the arithmetic setting.)

TheADINZprotocolsalsoenjoyseveralusefulproperties.Theymakeonlyblack-
box access of the fieldF and their arithmetic complexity (the number of field opera-
tions) grows linearlywith the circuit size of theunderlying functionality and is inde-
pendent of the size ofF.3 Inaddition, all protocolsmakea black-box useof a standard
OT channel. In fact, in the hybrid-OT model, they achieve information-theoretic
privacy against a corrupted VOLE/batch-OLE sender.4 As advocated in [39,40],
designing protocols in the OT-hybrid model yield several advantages such as native
pre-processing [14], simple amortization via OT-extension [12,14,34], and the abil-
ity to rely on different concrete implementations (including UC-secure ones) under
a variety of computational or physical assumptions. Moreover, black-box usage is
typically a necessary condition for obtaining practical efficiency. Indeed, the VOLE
protocolofADINZmakesonlylight-weightlinear-algebraicoperationsandoperates
in a constant number of rounds, and a prototype implementation appeared in [5]. It
shouldbementionedthat in thepast fewyears theVOLEprimitivehas turnedoutto
bean importantbuildingblockwithnumerousapplications suchas securecomputa-
tion of linear algebraic computations [43], round-efficient secure arithmetic compu-
tationviaarithmeticgarbling [8], securekeywordsearchandset intersection [26,30],
zero-knowledgeproofs for arithmetic circuits [13,17,19,23,51], andnon-interactive
secure computation [19,23]. (See [5,17,40] and references therein.)

3 Theprotocoladditionallyusesstandard“bit-operations” whosecomplexityisdominated
by the field operations.

4 We mention that the aforementioned assumptions are not known to imply OT.

Actively Secure Arithmetic MPC with Constant Overhead 193

1.2 Actively Secure Arithmetic MPC with Constant Overhead?

Unfortunately, the ADINZ protocols are only passively secure, and, as we will
later see, an active adversary can completely break the privacy of both pro-
tocols (the VOLE protocol and the batch-OLE). One can probably construct
an actively-secure protocol by combining ADINZ with constant-overhead arith-
metic zero-knowledge proofs via an arithmetic version of the GMW-compiler [32].
The elegant work of Bootle et al. [15] provides such a zero-knowledge protocol.
However, this approach inherently makes a non-BB use of the underlying OT
protocol. Also, the protocol of [15] has a super-constant round complexity.

For the special case of VOLE, the breakthrough results of Boyle et al. [17,
18] yield an actively-secure realization with constant overhead. However, their
protocols are based on strong LPN-type assumptions with sub-constant noise
rate. The protocol can be based on OT in a black-box way [18] at the expense of
further strengthening the underlying intractability assumption to a leaky LPN
assumption and by making additional use of correlation robust hash functions.

To summarize, to the best of our knowledge, it is currently unknown how
to realize batch-OT (or general arithmetic MPC) with active security, constant
overhead, and black-box access to OT, regardless of the underlying assumption.
For VOLE, the only known constructions either make a non-BB use of OT or
rely on relatively strong intractability assumptions such as leaky-LPN with sub-
constant noise and correlation robust hash functions. Our goal in this work is to
avoid these limitations and derive an actively-secure arithmetic MPC protocol
with constant overhead that enjoys all the features of the ADINZ protocol.

2 Our Contribution

We resolve the above question in the affirmative by presenting actively-secure
variants of the ADINZ protocols for VOLE, batch-OLE, and general arithmetic
secure computation, that enjoy all the additional features and are based on the
same assumptions. While our main focus is theoretical, we also present several
practical optimizations to the VOLE protocol that make use of less conservative
intractability assumptions. Details follow.

2.1 The VOLE Protocols

Just like [5], we rely on the existence of fast pseudorandom matrix M ∈ F
m×k

where m > k is a fixed polynomial in k (say m = k3). Here “fast” means the
mapping u �→ M · u can be computed by making only O(m) arithmetic opera-
tions, and “pseudorandom” means that if we take a random vector in the image
of M , and add a random μ-sparse noise vector to it, the resulting vector is com-
putationally indistinguishable from a truly random vector over F

m. The noise
rate μ can be taken to be a constant, e.g., 1/4. There are several candidates for
such fast pseudorandom matrices (see the discussion after Assumption 3). We
prove the following theorem.

194 B. Applebaum and N. Konstantini

Theorem 1 (informal). Based on the fast pseudorandom matrix assumption,
the VOLE functionality of width w can be realized with active security in the
OT-hybrid model with arithmetic complexity of O(w) and with perfect security
against an active adversary that corrupts the Sender and computational security
against the Receiver.

This protocol (and all the protocols constructed in this work) makes black-
box use of the underlying field and is therefore fully arithmetic in the sense of [40].
(One can also derive the stronger form of arithmetic MPC of [4] by instantiating
the OT channel with an “arithmetic OT”). In addition, all the protocols that are
constructed in this work admit a straight-line black-box simulator. In the 2-party
setting, the existence of such simulators implies that the protocol is UC-secure
as follows from [41, Theorem 1.5] and [42].

As already mentioned, Theorem 1 is the first to achieve constant overhead
and black-box dependency in the OT based on a conservative constant-rate noise
LPN-type assumption. Moreover, to the best of our knowledge, this is the first
construction that achieves constant overhead and statistical Sender security in
the OT-hybrid model, regardless of the underlying assumption,

Remark 1 (Realizing the OT-Channels with Constant Overhead) . For the sake
of communication/computational complexity, we charge every bit that is passed
over the OT channel as a single bit/bit-operation. As already observed in [5,38],
when each OT message is sufficiently long compared to the security parameter
(which is the case in our protocols), such OT-channels can be realized securely
based on an arbitrary OT protocol with the aid of a linear-time computable
linear-stretch PRG. The existence of the latter follows from the binary version
of the fast pseudorandom matrix assumption (see [5,7,38]). In particular, by
using any UC-secure OT protocol in the CRS setting (e.g., [46]), we derive UC-
secure implementations of our protocols in the standard model. (See the full
version for more details.)

Optimizations: VOLE1 and VOLE2. Motivated by the rich applications of
VOLE, we present several optimizations for the protocol. At the extreme, we
present a VOLE protocol (VOLE1) that can achieve an asymptotic rate of 1/4
(i.e., the communication is dominated by sending roughly 4w elements of F),
which is only slightly worse than the passively-secure protocol whose rate is
1/3. Assuming that the OT consumes 2 rounds, VOLE1 has 3 rounds of com-
putation. The protocol is provably secure against a computationally-unbounded
sender, provably secure against a passive receiver, but only heuristically secure
against an active receiver. That is, we conjecture that it achieves security against
an active receiver, but do not have a security reduction to a clean intractabil-
ity assumption. As a compromise, we introduce another protocol VOLE2 that
slightly downgrades the asymptotic rate of 1/5, has 6 rounds, but can be proved
secure based on a new, yet plausible, intractability assumption.5

5 In fact, even our most conservative protocol (VOLE3) that proves Theorem 1 has
an assymptotic rate of 1/5 and its amortized computational complexity is roughly
the same. However, VOLE3 achieves this only over significantly longer vectors.

Actively Secure Arithmetic MPC with Constant Overhead 195

The Correlated Noisy-Codeword Hardness Assumption. Our assumption intu-
itively asserts that given a random noisy codeword c sampled from a code T
with noise pattern e, it is hard to efficiently generate a new noisy codeword d
whose noise pattern e′ is non-trivially correlated with the noise pattern e in the
following sense. The new noise vector e′ is “far” from being a scalar multiple
of e but it agrees with the original noise vector e with respect to the set of
non-noisy coordinates I = {i : ei = 0} of e, i.e., d[I] is in the span of T [I].
Observe that such a noisy codeword can be generated by sampling a vector in
the column span of (T |c) and then modifying � entries with the hope that all
these entries fall out of the set of clean coordinates I. Such an attack succeeds
with probability μ�, and our assumption states that one cannot do much better
than this. (See Sect. 6 for a formal statement.) We believe that this assumption
may be of independent interest and provide some evidence towards its validity
in the full version [10].

Implementation and Concrete Complexity. The computational overhead of
VOLE1 and VOLE2 are essentially the same. In the full version [10], we ana-
lyze the concrete complexity of these protocols when instantiated with the same
building blocks that were used in the passive setting of [5], suggest several practi-
cal optimizations, and present an implementation of the protocols. We show that
the computational overhead compared to the passive version is minor (less than
20%). Furthermore, even for relatively short vectors of length 10000, our proto-
cols have an amortized cost per VOLE entry of fewer than 4 OTs and less than
300 arithmetic operations (additions and multiplications). We use novel tech-
niques (e.g., sparse LU-decomposition) to push most of these operations (about
200) to a non-interactive offline phase that can be pre-processed locally based
only on the public parameters and local random tape. As a result, this prepro-
cessing can be applied even before each party knows who will be her partner for
the computation. The protocol is also very cheap for the receiver and requires in
the online phase less than 10 arithmetic operations and 4 OT’s per VOLE entry.
(The sender’s online amortized computation consists of 4 OT’s and less than
80 arithmetic operations per entry.) Such a receiver-efficient protocol is espe-
cially useful for applications like VOLE-based zero-knowledge proofs (e.g., [23])
in which the verifier plays the receiver and the prover plays the VOLE sender.

We believe that our protocol may be practically competitive over fast net-
works even for relatively small fields F and relatively short vectors. (Think for
example, of an arithmetic zero-knowledge for a circuit that contains few 10K’s
gates, which, by [23], translates into a single VOLE of comparable length.)
When comparing our protocols to the alternative compressed-VOLE-based solu-
tion [17,18], we see that the latter achieves a better rate of 1/2, but its amor-
tization point seems to “kick in” only for longer vectors (due to the use of an
“internal-MPC” protocol for securely realizing “short VOLE-correlations”). Thus,
this approach is in a sense complementary to ours, and it will be interesting to

196 B. Applebaum and N. Konstantini

study the combination of the two.6 We also expect that additional optimizations
of our implementation and the underlying building blocks will further improve
the computational cost.

2.2 The Batch-OLE Protocol

The ADINZ [5] protocol for batch-OLE is based on the existence of pseudo-
random generator (PRG) G : Fk → F

n with polynomial stretch, e.g., n = k2,
that is computable by a constant-depth (NC0) arithmetic circuit.7 Candidate
constructions are studied in [5,53]. We prove the following theorem.

Theorem 2 (informal). Assuming the existence of an NC0 arithmetic PRG
with polynomial stretch, the batch-OLE functionality of length n can be realized
with active security in the VOLE-hybrid model with arithmetic complexity of
O(n) and by making a single call to an ideal k-length O(n/k)-width VOLE where
the batch-OLE receiver (resp., sender) plays the role of the VOLE receiver (resp.,
sender). The protocol is perfectly secure against an active adversary that corrupts
the receiver and computationally secure against an adversary that actively cor-
rupts the sender. Moreover, the protocol has a constant number of rounds.

Here the k-length O(n/k)-width VOLE functionality consists of k copies of
O(n/k)-width VOLE. The protocol has 4 rounds (counting VOLE as a 2-round
protocol). In [27] it is shown that the task of securely computing an arithmetic
circuit C with active security reduces to batch-OLE of length O(|C|) with con-
stant computational overhead while preserving information-theoretic security.
Combining this with Theorems 2 and 1, we derive the following corollary.

Corollary 1. Assuming a fast pseudorandom matrix and an NC0 PRG with
polynomial stretch, any two-party functionality that is computable by an arith-
metic circuit C can be realized with arithmetic complexity of O(|C|) in the OT-
hybrid model while providing information-theoretic security for one party and
computational security for the other party. The protocol makes black-box use of
the underlying field.

The corollary extends to any constant number of parties via standard reductions
(e.g., [27]).

6 The current implementations of the compressed-VOLE-based solution are either
restricted to the binary field [18] or achieve passive security [48] and so we cannot
compare the actual performance of our implementation against a compressed-VOLE-
based implementation. Indeed, to the best of our knowledge, it seems that our work
provides the first implementation of actively-secure VOLE over large fields.

7 The exact level of stretch is not important since one can transform a given PRG
with a polynomial stretch of n = kc for some c > 1, to a PRG with a stretch of
n = kc′

for an arbitrary constant c′ > c while increasing the depth of the circuit by
a constant factor (see, e.g., [3]).

Actively Secure Arithmetic MPC with Constant Overhead 197

2.3 Technical Overview of the VOLE Protocols

We briefly present some of the main technical ideas behind our constructions
starting with the VOLE protocols.

The Passive-VOLE Protocol. The VOLE protocol of ADINZ17 is based on a
protocol for “reverse VOLE” (RVOLE) functionality in which Bob holds a vector
a ∈ F

w, Alice holds a vector b ∈ F
w and a scalar x ∈ F and the goal is to

deliver the value of xa + b to Bob. Roughly, Bob sends to Alice an encryption
c = E(a) ∈ F

m of a which is based on the fast pseudorandom matrix. (E also
depends on some random field elements that are omitted for simplicity.) This
encryption is “almost-linear” and so Alice can homomorphically compute a new
ciphertext d = E(xa + b) ∈ F

m by applying linear operations over c. However,
this ciphertext cannot be sent to Bob since it leaks information about x and
b. In particular, if Bob sees a coordinate of d that was “noisy” in the original
ciphertext c he can efficiently extract the private input of Alice. (See the full
version [10].) To fix the problem, we let Bob read only the entries of d for which
c is non-noisy.8 Of course, Bob has to hide these locations, and so, for each entry
i ∈ [m], the parties invoke a standard 1-out-of-2 (or even all-or-nothing [47]) OT-
channel where Alice sends the pair (di,⊥) and Bob’s selection bit determines
whether to read di or to receive a ⊥ symbol. While in the passive setting Bob
can be trusted to read only the clean locations, an actively corrupt Bob can
simply read all the entries of the vector d, and completely recover Alice’s input.

Securing the Protocol Against Active Bob via CDS. Let us denote by T the
matrix that corresponds to the linear part of the encryption E, i.e., T maps a
plaintext of length w (and a vector of k random field elements) to a vector of
length m whose noisy version corresponds to a ciphertext. Our first observation
is that the above protocol remains secure if and only if the entries I ⊂ [m]
that Bob reads in the OTs satisfy the following condition: (*) The ciphertext c
restricted to I is in the span of T [I], the sub-matrix of T whose rows are indexed
by I. (As a sanity check, observe that when Bob is honest the set I of “clean”
coordinates satisfies the condition.) At this point, it is natural to try and extend
the protocol with some form of zero-knowledge proof in which Bob proves that
I satisfies the above condition. However, since I corresponds to Bob’s input to
the OTs (specifically, Bob’s “selection bits”) such a proof system seems to lead
to a non-BB use of the OTs. To avoid this complication, we take an alternative
route and make use of a special-tailored Conditional Disclosure of Secret (CDS)
Protocol [28].

Roughly speaking, in such a protocol Alice chooses a random secret s and,
for each index i ∈ [m], Alice sends over the ith OT-call a pair of field elements
8 This information suffices to recover the plaintext xa + b since the encryption inter-

nally employs a suitable error-correcting code. Indeed, [5] show how to combine
a fast pseudorandom matrix with a linear-time error-correcting code and derive a
linear-time encodable code that is pseudorandom under random noise but can be
decoded in linear-time in the presence of random erasures.

198 B. Applebaum and N. Konstantini

(di,zi), and Bob has to choose whether to learn di or zi. For a selection vec-
tor I, Bob learns the vectors (di)i∈I and (zi)i�∈I . By design, the latter vector
reveals the secret s if and only if I satisfies the (*) condition. Thus the CDS
protocol effectively limits the query access to the OT’s, and turns it into so-
called a generalized OT (GOT) [29,35,49,50].9 Below, we present such a CDS
protocol that achieves a constant computational overhead for both the sender
and the receiver and information-theoretic security. Given such a protocol, we
can immunize the RVOLE protocol by letting Alice re-encrypt her ciphertext
d under the secret s. This approach yields only computational security since
the key s, which is a single field element, is shorter than the vector d. (A CDS
with longer secrets would lead to a super-constant computational overhead.) To
achieve information-theoretic security, we note that it suffices to use s to encrypt
the scalar x of the RVOLE protocol. That is, Alice invokes the modified RVOLE
protocol (with the CDS mechanism) over the inputs x+ s and b. We show that
if Bob’s selection strategy I satisfies the (*) condition, we can extract his inputs
and perfectly simulate his view based on xa + b. If Bob’s strategy I does not
satisfy (*), he learns the vector b but x remains completely hidden, and we can
perfectly simulate his view by sending a = 0w to the ideal RVOLE functionality.
We refer to the resulting protocol as the modified-RVOLE protocol (See Sect. 5).

Constructing the CDS. Our construction of the CDS is linear-algebraic in nature.
As a starting point, we employ the following standard fact: Fix a matrix T and
a vector c. Suppose that we “encrypt” a secret s by sampling a random row
vector z in the co-kernel of T , and publishing the “ciphertext” s + 〈z, c〉. If c is
spanned by T the ciphertext equals to s, on the other hand, if c is not spanned
by T , the ciphertext information theoretically hides s. Thus, linear independence
is translated into secrecy. We can extend this idea to the CDS setting where we
wish to reveal the secret iff c[I] is in the span of T [I] for a subset I. To do
this we reveal, for each i /∈ I, the ith entry of our randomizer, zi, and send
the ciphertext s + 〈z, c〉 in the clear. Given this information, one can map the
ciphertext to s+ 〈z[I], c[I]〉 which is decryptable if and only if c[I] ∈ span(T [I]).
While the above construction achieves privacy and correctness, it is not clear
whether it achieves constant computational overhead. Indeed, we do not know
how to sample a random vector in the co-kernel of T in linear time. Fortunately,
there is a simple fix. To achieve a linear-time construction, we uniformly sample
z from the entire space (without limiting to the co-kernel) and append to the
CDS the value z · T as a public value. Since right multiplication in T can be
done in linear time, we can also left-multiply by T in linear time (following the
“generalized transposition principle” [16,38]) and so this variant can be realized
with constant computational overhead. It is not hard to show that correctness

9 GOT allows Bob to retrieve a subset of the messages of Alice that are “authorized”
according to some predicate P . Previous constructions were either based on decom-
posable randomized encoding (aka private-simultaneous messages protocols) [35] or
on secret-sharing [29,49,50]. We generalize these approaches by using CDS which is
strictly weaker than both primitives.

Actively Secure Arithmetic MPC with Constant Overhead 199

and privacy still hold. (See the full version [10] for a formal definition of CDS
and for details about the construction.)

Securing the Protocol Against Active Alice? We move on and consider an
actively-corrupted Alice. Clearly, even if Alice deviates from the protocol and
does not compute the vector d properly, her view is still simulatable since all that
she sees is a semantically-secure ciphertext c. However, such misbehavior may
lead Bob to abort and it is not fully clear how to simulate this case. Specifically,
let us assume that Alice misbehaves and generates a vector d /∈ colspan (T |c).
The simulator detects this and can send an “abort” to the ideal functionality.
However, in the real execution, Bob aborts only if his I-partial view is inconsis-
tent, namely, if d[I] /∈ colspan ((T |c)[I]) where I = I(e) is the set of non-noisy
coordinates in e. To make the problem concrete, consider a malicious Alice that
honestly computes d and then adds noise to the first coordinate of d. In this case,
the above simulator sends an abort, but in the real protocol, Bob aborts only
if the first coordinate is in I(e) which happens with constant probability 1 − μ.
We present several solutions to this problem with different levels of efficiency.

1. The first solution is heuristic: We simply assume that the protocol is secure as
it is. As evidence, we can prove this statement for the original RVOLE proto-
col (without the CDS) based on a variant of the Correlated Noisy-Codeword
Hardness Assumption (See the full version [10].). By using a straightforward
reduction from VOLE to RVOLE [5], this leads to the VOLE1 protocol (See
Sect. 5.)

2. In the second solution, we first employ the modified-RVOLE protocol over
random vectors a′ and b′ (this guarantees the ability to perfectly simulate an
“abort” event), then use a small sub-protocol in which Alice proves that her
CDS secret is independent of Bob’s input (based on a simple commitment),
and finally, we shift the vectors back to the real inputs vectors a and b
by exploiting the linearity of the VOLE functionality. To prove security we
still need to extract Alice’s input in the event that the protocol does not
abort. For this, we rely on the aforementioned “Correlated Noisy-Codeword”
intractability assumption. In a nutshell, we show that under this assumption,
the simulator who is given a malformed ciphertext d either identifies that Bob
would abort in the real execution or successfully extracts an effective input for
Alice. Thus the security of the protocol can be based on the Correlated Noisy-
Codeword assumption and on the fast pseudorandom matrix assumption. We
refer to the resulting protocol as VOLE2 and note that it adds only a minor
computational and communication overhead over RVOLE1 (See Sect. 6).

3. Finally, our most conservative solution (VOLE3) relies solely on the fast
pseudorandom matrix assumption. The starting point is again the modified-
RVOLE protocol. We begin by observing that there exist efficient tests that
determine whether Alice’s ciphertext d is “valid” and whether Alice’s vector
of CDS messages z is “valid”. Furthermore, when d and z are both valid,
we can extract a unique effective input for Alice and properly simulate the
protocol. We also note that there exists a strategy for Bob that detects (with

200 B. Applebaum and N. Konstantini

probability 0.5) whether Alice cheats. Indeed, in the OT phase Bob can toss
a coin and ask with probability 1/2 to receive the vector d (by using I = 1m)
and with probability 1/2 the vector z (by using I = 0m) and check valid-
ity. When running in this “detection mode” Bob effectively gives up on the
computation and just verifies whether Alice misbehaves or not. Note that
Bob’s decision is taken only in the OT phase and is hidden from Alice, and
so effectively Alice first “commits” to strategy (cheat or not), and only then
Bob decides whether to “call her bluff”. Furthermore, even when Bob acts
as a detector, we can fully simulate his view (since the protocol is actively-
secure against any deviation of Bob). We will exploit these observations to
obtain a “silent” cut-and-choose version of the protocol. Specifically, we realize
W -width VOLE based on many calls to the modified-RVOLE protocol over
shorter vectors of width w
 W . Ignoring some technical details, we “sacri-
fice” a small fraction of these calls for cheating-detection10, and glue together
the remaining copies via a linear-time computable linear exposure-resilient
function [20] (also known as perfect deterministic extractors for bit-fixing
sources). Such functions can be constructed based on linear-time encodable
codes (See Sect. 7).

2.4 Technical Overview of the Batch-OLE Protocol

The ADINZ passive batch-OLE protocol relies on an arithmetic analog of
Beaver’s OT extension [14]. Given an arithmetic PRG G : Fk → F

n, the idea
is to realize a pseudorandom batch-OLE in which Alice holds the vectors c and
d of length n, Bob holds a seed of a PRG x of length k and the functionality
stretches the seed x to a pseudorandom vector y = G(x) of length n, and deliv-
ers to Bob the value y � c + d where � stands for entry-wise multiplication.
The latter functionality fG is realized by using an arithmetic variant of Yao’s
protocol. Specifically, Alice prepares an arithmetic decomposable affine random-
ized encoding (DARE) [6,36] (aka arithmetic garbled-circuit) of fG and sends
the “keys” that correspond to her entries. Bob recovers the keys of his inputs by
making k calls to VOLE of width w = O(n/k) and recovers the output. When
the PRG is computable in NC0 the protocol can be realized with constant
computational overhead. Clearly, the protocol is insecure in the presence of an
actively corrupted Alice who can send a malformed encoding that corresponds
to a different function. This well-known problem is extensively studied in the
binary setting. We note that our concrete setting admits a simple and highly
efficient solution.

Specifically, we strongly exploit the following properties: (1) We only care
about the case where Bob’s input x is chosen at random; (2) When Bob decodes
the, possibly malformed, DARE (or the garbled circuit), each output of the com-
putation can be written as a low-degree polynomial whose degree corresponds to
10 Interestingly, this detection is performed “silently”: To test a session Bob just plays

this session in a “detection mode”. In contrast, in typical cut-and-choose-based solu-
tions, Bob asks Alice to “open” a session. In fact, in our protocol we can even hide
from Alice which sessions were tested by Bob.

Actively Secure Arithmetic MPC with Constant Overhead 201

the degree of fG which is very small (constant) compared to the field size |F|.11
(3) The function fG is linear in Alice’s inputs.

Equipped with these observations, we run an extended variant of the
passively-secure protocol in which Alice holds the pair (c,d) and another random
pair of vectors (c′,d′) of similar length, and Bob learns y�c+d and y�c′+d′.
Let us focus, for simplicity on the first output of fG. By applying the decoder,
Bob learns the values z1 and z′

1 which are supposedly equal to y1 · c1 + d1 and
to y1 ·c′

1+d′
1 where y1 = G(x). Assuming that Alice behaves properly, Bob can

now compute the value of y1 ·L(c1, c′
1)+L(d1,d

′
1) for any linear combination L.

The idea is to challenge Alice with a random non-trivial L and ask her to send
c = L(c1, c′

1) and d = L(d1,d
′
1), and let Bob check whether L(z1, z′

1) = cy1 + d,
and abort if the test fails.

First, observe that Alice’s additional messages do not leak any information
(since c′

1 and d′
1 mask the values of c1 and d1). Next, by using simple linear-

algebraic arguments, we show that if Alice deviates from the protocol she will
get caught except with probability O(D/|F|) where D is the degree of the PRG
G. To see this, assume that Alice sends malformed garbled circuits for Bob’s
first outputs of fG. This means that Bob computes z1 = Q(x) and z′

1 = Q′(x)
for some degree-D multivariate polynomials Q(·) and Q′(·) that are not both
in the span of {G1(·), 1} (e.g., there are no scalars c1,d1 for which Q(x) =
c1G(x) + d1). Consequently, if we take a random linear combination L of Q(·)
and Q′(·), the resulting polynomial L(Q,Q′) almost surely falls out of the span
of {G1(·), 1}. In this case, no matter how the scalars c, d are chosen by Alice, the
polynomial L(Q(·), Q′(·)) will not be equal to the polynomial cG1(·) + d. Since
both polynomials are of degree at most D, they will disagree over a random
point x, except with probability D/|F|, and so Bob will almost surely catch the
cheating (See Sect. 8 for more details).

As already mentioned this analysis crucially relies on the low-degree feature
of the decoding procedure (property 2) to ensure that Q and Q′ are of degree
D. To the best of our knowledge, this is the first time that this feature is being
employed.

3 Preliminaries

3.1 Linear Algebraic Notations

We define some linear-algebraic notation. Below F denotes some finite field and
m ∈ N is a positive integer.

Selective matrix-vector entries. For a vector d ∈ F
m and a 0-1 vector I =

(I1, . . . , Im) ∈
{
0, 1

}m, we define the vector d[I] ∈ F
m such that its ith entry

is di if Ii = 1 and 0 otherwise. This notation can be used for both row and
column vectors, and can be naturally extended to matrices as follows. For a

11 Indeed, here we assume that the field is sufficiently large. In contrast, the VOLE1
and VOLE2 protocols can be realized over small fields as well.

202 B. Applebaum and N. Konstantini

m × k matrix M whose rows are denoted by M1, . . . ,Mm ∈ F
k, and a binary

vector I ∈
{
0, 1

}m, we let M [I] ∈ F
m×k denote the matrix whose ith row is

Mi if Ii = 1 and 0k otherwise. Note that this operator is linear and can be
written in the following matrix form:

d[I] =

⎛

⎜
⎝

I1 . . . 0
...

. . .
...

0 . . . Im

⎞

⎟
⎠ · d M [I] =

⎛

⎜
⎝

I1 . . . 0
...

. . .
...

0 . . . Im

⎞

⎟
⎠ · M

Vector of clean coordinates. Let e ∈ F
m denote a vector (typically viewed as

a noise vector). We define the vector I(e) ∈
{
0, 1

}m such that its ith entry
is 1 iff ei = 0. Note that by our notations e[I(e)] = 0m.

Matrix-vector concatenation. Let M be a matrix of dimensions m × k and
a vector c ∈ F

m. We define M |c to be the result matrix that is obtained by
concatenating the column vector c to the matrix M from the right side.

Bernoulli vector. Let BERm(p) for real number p ∈ [0, 1] be the distribution
of binary vectors I = (I1, ..., Im) of length m with i.i.d entries such that for
any i: Ii takes a value of 1 with probability p.

Family of Finite Fields. We always assume that our functionalities are implicitly
parameterized by a family of finite fields whose size may grow with the security
parameter. Throughout the paper, we fix this family F = {Fk}k∈N and assume
that it is efficiently computable, that is, one should be able to compute all field
operations in poly(k) time (including the ability to add/subtract/multiply/divide
and to sample a random field element). Note that this requirement implies that
|Fk| ≤ 2poly(k) and so field elements can be represented by poly(k)-bit strings.
In fact, for our protocols, we only need black-box access to the field operations,
and the ability to send field elements either directly or over an OT channel.
By default, we also assume that the field is sufficiently large, e.g., exponentially
large in the security parameter. For sufficiently large width parameter w (e.g.,
cubic in k), our protocols for width-w VOLE require O(w) field operations, and
at most O(w log |Fk|) Boolean operations. Accordingly, the overall complexity is
dominated by the arithmetic complexity O(w) which is optimal. Indeed, even
in an insecure implementation, w arithmetic operations are needed for w-width
VOLE.

It should be mentioned that the assumption regarding the field size is mainly
needed for achieving linear-time efficiency and most of our protocols (or close
variants of them) remain secure even when the field is of small constant-size (the
error is always negligible in the security parameter). See Remark 2.

4 The ADINZ Protocol

The ADINZ [5] protocol for VOLE is based on a gadget (“encoder”) that allows
fast encoding and decoding under erasures but semantically hides the encoded
messages in the presence of noise. This gadget is mainly based on a public matrix

Actively Secure Arithmetic MPC with Constant Overhead 203

M ∈ F
m×k
k with the following (LPN-style) pseudorandomness property: If we

take a random vector in the image of M , and add a sparse noise to it, the
resulting vector is computationally indistinguishable from a truly random vector
over F

m(k)
k . The noise distribution that is being used in the ADINZ protocol

corresponds to an additive noise vector e ∈ F
m(k)
k where each coordinate of e is

assigned independently with the value of zero with probability 1− μ and with a
uniformly chosen non-zero element from Fk with probability μ. We let D(Fk)mμ
denote the corresponding noise distributions for such vectors of length m. For
concreteness, the reader may think of μ as a small constant, say 1/4, however μ
can also be chosen so that it tends to 0 when the security parameter k tends to
infinity. The properties of the ADINZ gadget are summarized in the following
assumption.

Assumption 3 (Fast pseudorandom matrix). There exists a noise rate
μ = μ(k) < 1/2 and an efficient randomized algorithm M that given a security
parameter 1k and a fields family representation F, samples a m×k (m = O(k3))
matrix M over Fk such that the following holds:

1. (Linear-time computation) The mapping fM : r → Mr can be computed in
time that linear in the output length m, i.e., by performing O(m) arithmetic
operations.

2. (Noisy-codeword is pseudorandom) The following ensembles are computation-
ally indistinguishable:

{(M,Mr + e)}k∈N ≈c {(M,u)}k∈N

where M ← M(1k,F), r ← F
k
k,e ← D(Fk)mμ and u ← F

m
k .

3. (Linear independence) If we sample M ← M(1k,F) and keep each of the first
u = O(k log2 k) rows independently with probability 1 − μ (and remove all
other rows), then, except with negligible probability in k, the resulting matrix
has full rank of k.

Concrete instantiations of this matrix-ensemble M (e.g., based on sparse matri-
ces or on the Druk-Ishai ensemble [25]) are discussed in [5]. The ADINZ
encoder also makes use of a (non-cryptographic) linear error correcting code
Ecc : Fw

k → F
v
k which encodes vectors of length w into vectors of length v over

the field Fk, with constant rate R and linear time encoding and decoding, such
that decoding is possible with high success probability from a constant fraction
of erasures μ′ which is slightly larger than the noise rate μ. (For μ = 1

4 we can
take μ′ = 1

3). Such codes are known to exist and can be efficiently constructed
given a black-box access to Fk. The code Ecc and the matrix M are combined
together into the so-called protocol’s encoder:

ADINZ Protocol’s Encoder. Given k ∈ N, m = O(k3), w = O(k3), r ∈ F
k
k and

a ∈ F
w
k , let M be a m × k fast pseudorandom matrix. We define the encoding

gadget Er (a) to be:
Er (a) = M · r + 0u ◦ Ecc(a)

204 B. Applebaum and N. Konstantini

where Ecc : Fw
k → F

v
k, u = 2k log2 k, v = m − u and ◦ denotes concatenation

(so 0u ◦ Ecc(a) is a vector of length m). Equivalently, for an information vector
a ∈ F

w
k and randomness vector r ∈ F

k
k, we can write the encoder as

Er (a) = T ·
(

r
a

)
,

where the encoder matrix is

T =

⎛

⎝Mm×k

0u×w

Eccv×w

⎞

⎠ (1)

and Eccv×w ∈ F
v×w
k is the generating matrix of the error correcting code.

By exploiting Assumption 3 and the features of the error correcting code, the
encoder E satisfies the following properties:

1. (Fast and Linear) The mapping Er (a) can be computed by making only
O(m) arithmetic operations. Moreover, it is a linear function of r and a and
so Er (a) + Er ′(a′) = Er+r ′(a + a′).

2. (Hiding under errors) For any message a ∈ F
w
k and r ← F

k
k,e ← D(Fk)μm the

vector Er (a) + e is pseudorandom. Namely: for any ensemble {ak}k∈N
the

following ensembles are computationally indistinguishable:

{(M,Er (ak) + e)}k∈N ≈c

{
(M,u)

}

k∈N

where M ← M(1k,F), r ← F
k
k,e ← D(Fk)mμ and u ← F

m
k . In particular, a

noisy codeword computationally “hides” a.
3. (Fast decoding under erasures) Given a random vector I ← BERm(1 − μ)

and a code d[I] = Er (a)[I] (i.e. each coordinate is erased independently with
probability μ) it is possible to recover the vector a, with negligible error
probability, by making only O(m) arithmetic operations. We first recover r
by solving the linear system dtop[Itop] = Mtop[Itop]r (where “top” means top
u coordinates) via Gaussian elimination in O(m) arithmetic operations. By
Assumption 3 (property 3.) the system is likely to have a unique solution.
Then we compute M [Ibot]r in time O(m), subtract from d[Ibot] to get the
vector Ecc(a))[Ibot] and recover a by erasure decoding in time O(m).

Remark 2 (On the choice of parameters) . Some of the above requirements are
tailored to achieve a VOLE of width w with an asymptotic computational com-
plexity of O(w) field operations. This includes the choice of the values of m,w,
and u, the requirements for the “fast” computation of E and “fast” decoding
under erasures, and the assumption that the field size is exponential in the secu-
rity parameter. All these requirements can be waived without affecting the secu-
rity of the protocols. (Assuming that the pseudorandomness assumption holds.)
In particular, for concrete settings, it may be better to set these parameters
differently as done in our implementations (See the full version [10]).

Actively Secure Arithmetic MPC with Constant Overhead 205

In the full version [10] we show that the ADINZ protcol is vulnerable against
actively corrupt receiver and prove that it is secure against an active sender
under a new intractability assumption. (These parts will not be used in our
subsequent protocols.)

5 RVOLE Protocol Against Actively-Corrupted Receiver

In this section, we construct a protocol for RVOLE, which is actively secure
against Bob and passively secure against Alice. The protocol is based on the
ADINZ protocol. We will later use this protocol as a building block of an actively
secure VOLE protocol of width w over the field family F. Our protocol relies on
CDS for span membership. Formally, let fT,c :

{
0, 1

}m →
{
0, 1

}
be a predi-

cate that receives a vector I ∈
{
0, 1

}m and accepts iff c[I] ∈ colspan (T [I]).
A CDS for fT,c is a pair of algorithms Enc(I, S;R) and Dec(I, z) such that
for an input I, secret S and randomizer R the “ciphertext” z = Enc(I, S;R)
perfectly hides S if fT,c(I) = 0, and, otherwise, Dec(I, z) outputs S. In addi-
tion, the encoding function can be decomposed to an offline part that does not
depend on I and m “online” parts each depending on a single bit of I, i.e.,
Enc(I, S;R) = (Enc0(S;R),Enc1(I1, S;R), . . . ,Enck(Im, S;R)). We also require
that, both Enc(I, S;R) and Dec, are computable by O(m) arithmetic operations
over F. Construction of such a CDS with unconditional information-theoretic
security appears in the full version [10].

Protocol 4 (modified RVOLE protocol). To initialize the protocol Bob
samples the matrix M ← M(1k,F) and sends it to Alice.

1. Bob: Given an input a ∈ F
w
k , Bob samples vectors r ← F

k
k and e ← D(Fk)mμ ,

sets I = I(e) and sends the vector: c = Er (a) + e to Alice.
2. Alice: Given the inputs b ∈ F

w
k , x ∈ Fk, and Bob’s message c ∈ F

m
k , samples

a random vector: r′ ← F
k
k and a field element x′ ← F and computes the vector

d = x′c + Er ′(b).
3. Alice: Samples randomness R for the span membership CDS and sets the

secret Δ = x − x′, and for each i ∈ [m] Alice computes two possible CDS
messages zi,0 = Enci(0,Δ;R) and zi,1 = Enci(1,Δ;R). In addition, Alice
computes the CDS offline message by z0 = Enc0(Δ;R) and sends z0 to Bob.

4. Alice and Bob: Invoke m-batch OT where the ith entry of Alice is the pair

(zi,1, di) and zi,0

and Bob uses the vector I as its selection vector.
5. Bob:

– Collects all the z-part of the OT messages into a vector z =
(z0, (zi,Ii)i∈[m]), and applies the CDS decoder to recover the CDS secret
Δ = Dec(I,z). If decoding fails Bob aborts.

– If d[I] is not in colspan ((T |c)[I]), Bob aborts. Otherwise, Bob employs the
decoding-under-erasures property of the gadget E (property 3.), computes
the vector v′ (supposedly x′a + b), shifts it by Δa and outputs the result
v = v′ + Δa (supposedly, xa + b).

206 B. Applebaum and N. Konstantini

The original ADINZ protocol is obtained by removing the blue parts and
setting x′ = x and outputting v′. As always, we assume the existence of an ideal
m-batch OT channel. Through the analysis of Protocol 4, we assume that all
the protocol’s length parameters: m,w, v and u are polynomial functions of the
security parameter k.

Remark 3 (About the set-up). In this protocol (and all the subsequent ones) the
set-up step in which the matrix is sampled can be done once and for all. This is
reflected in the security proofs which work even if the simulators receive M as
an external input.

Lemma 1. Under Assumption 3, the Protocol 4 realizes the RVOLE function-
ality of width w over F in the OT-hybrid model with arithmetic complexity of
O(w) (ignoring the initialization cost) and with the following guarantees:

1. Computational security against a passive adversary that corrupts Alice.
2. Computational privacy against an active adversary that corrupts Alice.
3. Perfect security against a passive adversary that corrupts Bob.
4. Perfect security against an active adversary that corrupts Bob and deviates

from the protocol.

Proof (sketch). The complexity bound follows from the complexity of the ADINZ
encoder and from the complexity of the CDS encoder and decoder. One can easily
verify that correctness holds when both parties are honest and that Alice’s only
incoming message is pseudorandom and is therefore simulatable regardless of
Alice’s behavior. This implies items 1 and 2. To simulate Bob, we collect c and
I as chosen by (a possibly malicious) Bob, and check if c[I] is in colspan (T [I]).
If the check passes we can extract Bob’s effective input a′ by solving the linear

system c[I] = T [I]·
(

r
a′

)
, and if the check fails we set a′ to be the all-zero vector.

Given v = xa′ + b from the ideal functionality, we generate the CDS message
of Alice just like in the real protocol by using some x̂ and b̂ that are consistent
with the output v. It can be shown that this simulator perfectly emulates the
real distribution. (See the full version [10] for details.) ��

Some comments are in place:

1. (Computationally-unbounded Bob) The information-theoretic security
against Bob holds even if the ideal OT channel is replaced with an OT pro-
tocol that provides statistical privacy for the sender (e.g., [1,45]).

2. (Full security against active Alice) We do not know if Protocol 4 provides full
security against an actively corrupt Alice and leave this as an open question.
It seems reasonable to assume that the protocol achieves full security. Under
this assumption, one can plug Protocol 4 to the standard RVOLE-to-VOLE
transformation [5] and derive an actively-secure VOLE protocol. We refer to
this protocol as VOLE1.

Actively Secure Arithmetic MPC with Constant Overhead 207

3. (Concrete communication complexity of CDS) Our concrete CDS communi-
cates n+1 = k+w+1 field elements in the offline message z0 and leaves the
1-messages zi,1 empty. Accordingly, each of the OT messages is just a single
field element. Moreover, by resorting to computationally-private CDS (and
exploiting PRGs), we can use an economic variant of the CDS in which each
of the 0-messages, z1, . . . , zm, is of length k independently of the field size.
As a result, the total communication complexity of the OT messages can be
reduced to m log |Fk| + m · k. Furthermore, this can be done while keeping
the computational complexity linear.12

4. (On the achievable rate) Based on the aforementioned optimized CDS, Pro-
tocol 4 communicates m field elements from Bob to Alice, n+1 = k+w field
elements from Alice to Bob in the offline CDS message, and m field elements
plus O(mk) bits over the OT-channel. Overall, the number of field elements
that are communicated is 2m+n+1 = 2(u+v)+w+k+1 = (2v+w)(1+o(1))
where the last equality holds since k = o(w) and u = o(v). Recall that v is the
length of the code produced by Ecc, which needs to be at least approximately
1

1−μw to allow successful decoding of w field elements values from a noisy
codeword with a fraction of μ random erasures. Therefore, the communica-
tion rate of the protocol, measured as the length of the protocol’s output w,
divided by the communication complexity, approaches to:

w

2v + w
=

1 − μ

3 − μ
.

If Assumption 3 holds for any constant error rate μ > 0 then we can obtain
a rate approaching 1

3 − ε for any constant ε > 0. Furthermore, by choosing a
non-constant erasure fraction of μ = 1

f(k) for f(k) that tends to infinity with k

(for example f(k) = 1
log k) we get an asymptotic rate of 1/3, namely, in order

to realize an RVOLE functionally of size w by our protocol 3w fields elements
should be communicated (where w and k tend to infinity).13 The reduction
to VOLE increases the communication by w additional field elements and so
the rate of the VOLE1 protocol is 1−μ

2(2−μ) which approaches to 1/4 for a small
noise rate. Recall that the communication rate of the passively-secure ADINZ
VOLE protocol approaches 1/3.

6 Actively-Secure VOLE Under Correlated
Noisy-Codewords

In this section, we realize the VOLE functionality directly while achieving active
security against both Alice and Bob. For this, we introduce an additional, new,

12 The computational complexity and communication complexity of batch-OT are mea-
sured as the total bit-length of the sent messages; see the full version [10] for a
justification for this convention.

13 In the context of binary codes, LPN-style assumptions with sub-constant μ are quite
standard.

208 B. Applebaum and N. Konstantini

“Correlated Noisy-Codeword” intractability assumption. We will also have to
slightly modify the parameters of the ADINZ encoding matrix. Recall that the
ADINZ encoding matrix T is defined as follows:

T =

⎛

⎝Mm×k

0u×w

Eccv×w

⎞

⎠ ,

where m = Ω(k3), u = Ω(k log2 k) and v = O(m). For technical reasons we will
need to slightly strengthen the linear-independence requirements of the matrix
T as follows. Except with negligible probability over the choice of M and Ecc
it must hold that: (a) If we sample a random subset of the first u rows of M
by taking each row independently with probability 1/ log1.5 k then the resulting
matrix has full rank (all the columns are linearly independent); (b) The error-
correcting code Ecc can correct up to O(log1.1 k) errors and, as before, can
recover from say 1.2μv arbitrary erasures. (The constant 1.2 can be replaced
with any constant larger than 1.).

6.1 The Correlated Noisy-Codeword Hardness Assumption

The following intractability assumption intuitively asserts that given a noisy
codeword c = Tv+e of T , it is hard to efficiently generate a new noisy codeword
d = Tv′+e′ whose noise is non-trivially correlated with e in the following sense.
The new noise vector e′ agrees with the original noise vector e with respect to the
set of non-noisy coordinates I = I(e), i.e., d[I] ∈ colspan (T [I]), but e′ is “far”
from being a scalar multiple of e. That is, ρ (d, colspan (T |c)) = � where ρ (d, S) is
the minimal Hamming distance between a vector d and a set of vectors S ⊂ F

m.
Observe that such a noisy codeword can be generated by sampling a vector in
the column span of (T |c) and then modifying � entries with the hope that all
these entries fall out of the set of clean coordinates I. Such an attack succeeds
with probability μ�, the following assumption states that this is essentially the
best that one can hope for up to polynomial speed-ups.14

Assumption 5 (Correlated noisy codeword). For a distribution T over
matrices in F

m×n
k where m(k), n(k) are some polynomials in the security param-

eter k, and for a constant noise rate of μ < 1/2, the Correlated Noisy-Codeword
assumption asserts that for every efficient adversary A∗ there exists some neg-
ligible ε(k) and constant C such that for every integer � ≤ m:

Pr
d←A∗

(c)
[d[I] ∈ colspan (T [I]) ∧ ρ (d, colspan (T |c)) = �] ≤ exp(−C�) + ε(k)

where T ← T and c = Tv + e for v ← F
n
k , e ← D(Fk)mμ and I = I(e).

14 The concrete formulation that is taken here is chosen for the sake of simplicity. More
refined and conservative versions (e.g., that assume better speed-ups and consider
sub-constant noise regimes) can be adopted as well.

Actively Secure Arithmetic MPC with Constant Overhead 209

For our purposes, it suffices to assume the “super-logarithmic version of
Assumption 5” that asserts that for every super-logarithmic function �(k) =
ω(log k) the success probability in the above game is negligible in k. (Note that
this variant follows from the above formulation.) We conjecture that every matrix
distribution whose noisy codewords are pseudorandom also satisfies this assump-
tion, and provide some evidence for this in the full version [10]. From now, we
will always use the super-logarithmic version of the assumption with respect to
the distribution T that corresponds to the ADINZ encoding matrix.

We will make use of the following simple observation whose proof is deferred
to the full version [10].

Lemma 2. There exists a probabilistic polynomial-time algorithm G that given
the matrix T and the vectors c,d ∈ F

m
k outputs a vector u ∈ F

n+1
k with the

following guarantee. Except with negligible probability in k over the choice of
(T, c) (which are distributed as in Assumption 5) and the randomness of G, if d
is �-close to colspan (T |c) for � = O(log1.1 k) then the algorithm outputs u such
that (T |c) · u is �-close to d.

6.2 The VOLE2 Protocol

We present our VOLE protocol and prove security under Assumption 5. The
protocol employs an ideal-commitment functionality, aka commitment channel,
which is a 2-phase ideal functionality of the following form. In the commit phase,
the functionality takes an input x from a sender (e.g., a field element), and
delivers a commit message to the receiver. At a later phase, the sender can
de-commit by sending an “open” message to the functionality which delivers to
the receiver the committed message x. Such an ideal commitment channel can
be constructed based on OT-channel [21,22] perfect security against the receiver
and statistical security against the sender the communication and computational
complexity of k OT-calls and k field additions (where k is the statistical security
parameter).

Protocol 6 (VOLE2 protocol). To initialize the protocol Bob samples the
matrix M ← M(1k,F) and sends it to Alice.

1. Alice and Bob: Hold inputs x ∈ Fk and a, b ∈ F
w
k respectively. The parties

invoke Protocol 4 for RVOLE where Bob’s input is a random vector a′ ← F
w
k ,

and Alice’s input is x and a random vector b′ ← F
w
k . Let x′ denote the random

field element that is being sampled by Alice in the protocol and let Δx = x−x′

denote the secret that Alice delivers via the CDS.
2. Alice: Sends Δx over an ideal commitment channel which delivers a “commit”

message to Bob.
3. Bob: If Bob aborts during Protocol 4 then he aborts the entire execution.

Otherwise, Bob recovers from the protocol the vector v′ (supposedly x′a′ +b′)
and the CDS secret Δx (supposedly x − x′). Bob sends Δx to Alice.

4. Alice: Verifies that Bob’s message equals to Δx, and aborts if the check fails.
If the check passes, Alice decommits by sending an “open” message to the
commitment channel which delivers the committed value, Δx to Bob.

210 B. Applebaum and N. Konstantini

5. Bob: Verifies that the decommitted value equals to Δx, and aborts if the check
fails. If the check passes, Bob sends to Alice the vectors v = v′ + Δxa′ + b
(supposedly, xa′ + b′ + b) and Δa = a − a′.

6. Alice: Computes the vector w = xΔa + v − b′ (supposedly, xa + b) and
outputs the result.

In the full version [10] we prove that the protocol is computationally secure
against an actively corrupt Alice, and statistically secure against an actively
corrupt Bob. By replacing the commitment with k calls to OT, we derive the
following lemma.

Lemma 3. Suppose that Assumptions 3 and 5 hold. Then protocol 6 for hon-
est parties realizes the VOLE functionality of width w over F with arithmetic
complexity of O(w) (ignoring the initialization cost) in the OT-hybrid model.
The protocol is statistically-secure against an active sender Bob with negligible
deviation error and computationally secure against an active receiver Alice.

Some comments are in place:

1. (Unbounded sender) Here too, the protocol achieves information-theoretic
security against the sender even if the ideal channels are replaced by an OT
protocol that provides statistical privacy for the sender and by a commitment
scheme that is statistically hiding. (The latter reduces to the former by using
the OT-to-Commitment transformation.

2. (Working over small fields) The statistical error is exponentially-small in the
bit-length of the field element Δx. (This essentially corresponds to the case
where Bob guesses the value of Δx despite playing dishonestly in the RVOLE
protocol in a way that keeps the CDS secret hidden). Thus, when the field
is small the error is only 1/|Fk|. Nevertheless, even when the field is small,
one can easily get a negligible error at a minor cost by randomly padding the
element Δx to length k.

3. (On the achievable rate of Protocol 6) The communication of Protocol 6
(VOLE2) consists of (2v+w)(1+o(1)) field elements in Step 1 (when invoking
the RVOLE Protocol), 2k field elements to commit (via k OT calls) and
to de-commit, and additional 2w + 1 elements. Since k = o(w), the total
communication complexity is (2v +3w)(1 + o(1)). Recall that v is the length
of the code produced by Ecc, which needs to be at least approximately 1

1−μw
to allow successful decoding of w field elements values from a noisy codeword
with fraction of μ random erasures. Therefore, the communication rate of the
protocol, measured as the length of the protocol’s output w, divided by the
communication complexity, approaches to

w

2v + 3w
=

1 − μ

5 − 3μ
.

If Assumption 3 holds for any constant error rate μ > 0 then the rate of
RVOLE2 approaches to 1

5 − ε for any constant ε > 0.

Actively Secure Arithmetic MPC with Constant Overhead 211

4. (Comparison to VOLE1) In terms of communication we pay an amortized
cost of an extra field element per each VOLE entry compared to VOLE1,
which, in turn, pays an extra field element compared to the passively-secure
ADINZ protocol. In terms of computation, VOLE2 has a negligible overhead
compared to VOLE1 which consists of a single commitment (for the entire
VOLE), and, an amortized cost of 1/R field multiplication and 2/R field
additions per VOLE entry where R = w/v is the rate of the error-correcting
code.15

7 Actively-Secure VOLE Under Fast Pseudorandom
Matrix

In this section, we describe a VOLE protocol with full active security based on
the modified-RVOLE protocol (Protocol 4). Following the outline in Sect. 2.3,
we begin with some useful observations.

7.1 Useful Observations

More CDS Properties. We will make use of the fact that our concrete CDS sends
messages only on “zero” inputs. (That is, our CDS is effectively a secret sharing
scheme for the negated predicate.) Let z = (z0, z1,0, . . . , zm,0) be a (possibly
malformed) full vector of CDS messages. We say that z is valid if for every
input I that satisfies the underlying predicate f , the CDS decoder recovers the
same secret. We say that z is honestly generated if it is generated by invoking
the CDS message generator honestly on some random tape and some secret. (By
perfect correctness, an honestly generated CDS is always valid.) We assume the
existence of an efficient tester T that rejects every invalid z, and accepts every
honestly generated z. (That is T is allowed to accept a vector that is not honestly
generated as long as it is valid.) Furthermore, if T accepts then it should be able
to recover the secret. Our CDS construction satisfies these properties.

Closer Look at Cheating Alice. Fix some strategy A∗ for a malicious Alice in
Protocol 4. Formally, this is a deterministic mapping that takes Alice’s inputs
(x, b), the public matrix M , and Bob’s message c and outputs a CDS message
vector z = (z0, (zi,0)i∈[m]) and a vector d (to be placed on the 1-inputs of the
OT). If either z is invalid or d is invalid in the sense that d /∈ colspan ((T |c)), we
say that A∗ cheats on (x, b,M, c). In the full version [10] we show that when Alice
does not cheat, her “effective input” can be extracted given her OT messages,
and use this to prove the following lemma. Let us denote Protocol 4 by Π.

15 Recall that VOLE1 is obtained by combining the RVOLE-to-VOLE transforma-
tion with Protocol 4 for RVOLE. Accordingly, the latter protocol achieves provable
active security against the Sender, provable passive security against the Receiver,
and heuristic active security against the Receiver.

212 B. Applebaum and N. Konstantini

Lemma 4. There exists a simulator Sim′(x, b) that makes a black-box use of A∗

and simulates Π whenever A∗ does not cheat. Formally, for every sequence of
inputs ((xk, bk),ak) it holds that the ensemble

[RealA∗,Π((xk, bk),ak) | A∗ doesn’t cheat]

is computationally indistinguishable from the ensemble
[
IdealSim,fk

(ak, bk) | Sim doesn’t fail
]
.

The next crucial observation is that there exists a strategy for Bob that
detects (with probability 0.5) whether Alice cheats. Indeed, as explained in the
introduction, in the OT phase Bob can toss a coin and ask with probability 1/2
to receive the vector d (by using I = 1m) and with probability 1/2 the vector
z (by using I = 0m) and check validity. When running in this “detection mode”
Bob effectively gives up on the computation and just verifies whether Alice
misbehaves or not. Note that Bob’s decision is taken only in the OT phase and
is hidden from Alice, and so effectively Alice first “commits” to strategy (cheat
or not), and only then Bob decides whether to “call her bluff”. Furthermore, even
when Bob acts as a detector, we can fully simulate his view (since the protocol
is actively-secure against any deviation of Bob). We will exploit this property to
obtain a “silent” cut-and-choose version of the protocol as follows.

7.2 The VOLE3 Protocol

Let Π denote Protocol 4 instantiated with width w(k) = O(k3) and recall that
Π makes a call to an m = m(k)-batch OT channel. The new protocol (hereafter
denoted as VOLE3) realizes VOLE with width W = W (k) (for some value
that will be determined later) by making t = t(k) calls to Π, and by “opening”
p = p(k) sessions for detecting a potential cheating by Alice. In addition to
these parameters, we let s = s(k) = t(k)− p(k) denote the number of remaining
“un-opened” sessions, and let � = �(k) be a leakage parameter. The product �p/t
should be polynomial in the security parameter k and, for efficiency purposes, s
should be Ω(t). For example, set t = k, p = � = k0.9 and s = k − k0.9. Again, we
make use of ideal commitments which can be realized based on OT channels.

Linear-time resilient functions. We will need a linear mapping Ext : F
sw →

F
(1−β)sw where β = β(k) < 1 is bounded away from 1, with the following prop-

erties: (1) Ext should be computable in linear arithmetic time (i.e., by making
O(sw) operations); and (2) The distribution Ext(X) should be uniform when-
ever the input X is uniform except for at most �′ = �(k)w + 1 = o(sw) entries
that may be arbitrarily fixed. Formally, for every �′-subset L ⊂ [sw] and fixing
(Xi)i∈L ∈ F

�′
if (Xi)i/∈L is uniform over F

sw−�′
, the output Ext(X1, . . . , Xsw) is

uniform over F(1−β)sw. Such functions are known as �′-resilient functions [20] and
can also be viewed as perfect deterministic extractors for bit-fixing sources. One
can realize such functions, with the desired parameters, based on linear-time

Actively Secure Arithmetic MPC with Constant Overhead 213

encodable error-correcting codes with rate 1 − β and distance �′ + 1 (see [20]
and [24, Theorem 3.1.7]). The width of VOLE3 is taken to be the output length
of Ext, i.e., W (k) = (1 − β)sw.

Protocol 7 (VOLE3 Protocol). Upon initialization, bob samples M ←
M(1k,F) and sends it to Alice. The input of Bob is a pair of vectors g,f ∈ F

W
k

and the input of Alice is x ∈ Fk.

1. Bob: Invokes t independent parallel sessions of Π with the matrix M as a
public parameter, where the jth private input is a random vector aj ← F

w
k .

For each such session j ∈ [t], Bob computes the first-round message cj as in
Step 1 of Π, and sends cj. Let Ij denote the (vector representation of the)
set of clean coordinates in cj.

2. Alice: Samples x∗ ← Fk. For every j ∈ [t], Alice sets her inputs for the jth
session to be (xj , bj) where xj = x∗ and bj ← F

w
k , she samples a random tape

for the jth session, sends the corresponding offline CDS message zi,0 to Bob,
and computes the vectors (zj ,dj) that will be sent in the OT phase of the jth
session (by following Steps 2 and 3 of Π). Here we view Alice’s input to the
m-batch-OT as a pair of m-long vectors.

3. OT-phase: Bob samples a random p-subset P ⊂ [t] of sessions that will
be “opened”. For each j ∈ [t] in parallel, the parties invoke the m-batch OT
channel of the jth session. Alice’s input is (zj ,dj). If j �∈ P Bob’s input is Ij;
Otherwise, Bob samples a random bit σj ← {0, 1} and uses a trivial selection
vector I ′

j := σm
j ∈ {0m, 1m}.

4. Bob: If cheating is detected in one of the “opened copies” j ∈ P (i.e., if the
received vector is invalid), Bob aborts. Otherwise, let S = [t] \ P denote the
set of unopened copies. For every j ∈ S, Bob recovers the output vj ∈ F

w
k of

the jth session just like in Step 5. in Π (hereafter referred to as Π5). If the
output is “abort” Bob sets vj = 0w.

5. Sub-protocol: To verify that Alice’s inputs (xj)j∈S are all equal, the parties
do:
– Bob: Computes the sum δ of all the last elements of the vectors (aj ∈

F
w
k)j∈S, i.e., δ :=

∑
j∈S aj [w] and sends to Alice the pair (S, δ). (Bob

challenges Alice to compute the sum
∑

j∈S vj [w].)
– Alice: Sends λ = x∗δ +

∑
j∈S bj [w] over the ideal commitment channel

which delivers a “commit” message to Bob.
– Bob: Given a “commit” message, sends the value λ′ :=

∑
j∈S vj [w].

– Alice: decommits by sending an “open” message to the commitment chan-
nel if λ′ = λ, else Alice aborts.

– Bob: Halts with an abort symbol if Alice does not open the commitment
or if the decommitment λ �= λ′, and continues otherwise.

6. Alice: Sends Δ = x − x∗.
7. Bob: Aligns the results of the unopened sessions vectors by setting

uj := vj + Δaj , ∀j ∈ S,

214 B. Applebaum and N. Konstantini

concatenates the vectors (aj)j∈S to a single vector aS ∈ F
sw
k and the vectors

(uj)j∈S to a single vector uS ∈ F
sw
k , and extracts the vectors

a′ := Ext(aS), u′ := Ext(uS).

Bob sends to Alice the vectors α := f − a′ and h := u′ + g.
8. Alice: Concatenates (bj)j∈S to a vector bS ∈ F

sw
k , extracts b′ := Ext(bS),

and outputs h + xα − b′.

The protocol has an arithmetic complexity of O(tw) = O(sw) = O(W),
as required. The communication complexity is dominated by the complexity of
Steps 1–3 and Step 7 which is t · CΠ(w) + 2W = tO(w) +O(W) = O(W) where
CΠ(w) is the communication complexity of Π over width w. (The communication
in Steps 4–6 consists of O(s) bits and O(k) field elements for realizing the com-
mitment channel via OT). By employing extractors that shrink their input by a
factor of 1− β for arbitrarily small constant β (e.g., based on the codes of [33]),
we can take W = (1 − β)(1 − o(1))tw. Recalling that CΠ(w) approaches to 3w,
the total communication of VOLE3 approaches to t3w+2W = 5W/(1−β−o(1)),
i.e., the asymptotic rate approaches to 1/5. The simulators for Alice and Bob
appear in the full version [10], leading to Theorem 1.

8 Batch-OLE

Let n(k) be a polynomial in k and let G : Fk → F
n be a function that can

be computed by a constant-depth bounded fan-in arithmetic circuit (aka NC0

arithmetic circuit). We assume that G is input-regular in the sense that each
input affects at most O(n/k) outputs. Let fG : F

n × F
n × F

k → F
n be the

mapping
(c,d,x) �→ G(x) � c + d,

where c,d ∈ F
n, x ∈ F

k and � stands for entry-wise multiplication. We will
be interested in computing the Generalized Affine Functionality FG which takes
the vectors c,d ∈ F

n from Alice (the sender) and delivers to the receiver Bob a
random vector x ∈ F

k together with the outcome of fG(c,d,x). The functional-
ity FG is corruption-aware and it allows a malicious Bob to choose x arbitrarily.
Throughout, we assume, wlog, that, for every i ∈ [n], the output of Gi(·) is a
non-constant function (i.e., for some x, x′, it holds that Gi(x) �= Gi(x′)).
Realizing. FG. In the passive setting, it is easy to realize FG by using an arith-
metic variant of Yao’s protocol [52] where the garbled circuit is replaced with
fully-decomposable randomized encoding (DARE). (See the full version [10] for
background on DARE; for now, the reader can think of DARE as arithmetic
garbled circuit.) In fact, this protocol also provides active security against the
receiver Bob. We will show how to cheaply upgrade the protocol and provide
active security against the sender as well. Our protocol employs DARE for
f = fG. By [8,37] there exists a DARE f̂ which can be encoded and decoded by
an O(n)-size arithmetic circuit. Since f̂ is decomposable we can write it as

f̂(x, c,d; r) = (f̂0(c,d; r), (f̂i(xi; r))i∈[k]).

Actively Secure Arithmetic MPC with Constant Overhead 215

(That is, we collapse the c-dependent outputs and the d-dependent outputs to
a single “block”.) Furthermore, for every i ∈ [k] the function f̂i(xi; r) can be
written as xiai + bi where the vectors (ai, bi) are sampled by a “key-sampling”
mapping Ki : r �→ (ai, bi). By padding, we may assume that the key generation
functions K1, . . . ,Kk have uniform output length of w, and since G is an input-
regular NC0 function, it holds that w = O(n/k). Moreover, recall that given
(r, c,d) we can collectively compute f̂0(r, c,d), (Ki(r))i∈[k] by O(n) arithmetic
operations. We denote the randomness complexity of the DARE by ρ. We realize
FG by Protocol 8 which employs an ideal batch-VOLE of width 2w and length
k (that is, k parallel calls to VOLE of width 2w), and performs 2 additional
rounds of interaction. In the full version [10] we prove the following lemma.

Lemma 5. Protocol 8 realizes FG with information-theoretic active security in
a constant number of rounds by making a single call to an ideal k-length O(n/k)-
width VOLE, communicating O(n) field elements, and performing O(n) arith-
metic operations. The protocol is perfectly secure against an active adversary that
corrupts Bob (receiver) and statistically secure against an adversary that actively
corrupts Alice (the sender) where the statistical deviation is O(D/|F|) = negl(k)
where D = O(1) is the degree of G.

Protocol 8 (GA Protocol). Let X denote the uniform distribution over F
k.

Given an input c,d ∈ F
n for Alice and an empty input for Bob, the protocol

proceeds as follows.

1. Alice: selects randomness r ← F
ρ for the encoding, and sets v0 = f̂0(c,d; r)

and (ai, bi) = Ki(r) for every i ∈ [k]. In addition, Alice samples random
c′,d′ ∈ F

n and r′ ← F
ρ, and sets v′

0 = f̂0(c′,d′; r) and (a′
i, b

′
i) = Ki(r′) for

every i ∈ [k].
2. The parties invoke k-length of O(n/k)-width VOLE as follows. Bob samples

x ← X, and plays the role of the receiver with the input x = (x1, . . . , xk).
Alice plays the role of the sender and sets her inputs to be the 2w-length
vectors (ai ◦a′

i) and (bi ◦ bi) for every i ∈ [k] where ◦ denotes concatenation.
For every i ∈ [k], the functionality delivers to Bob the vectors vi = xiai + bi,
v′

i = xia
′
i + b′

i.
In addition, Alice sends to Bob the vectors v0 and v′

0.
3. Bob: decodes the vectors z,z′ ∈ F

n by setting z = Dec((vi)0≤i≤k) and z′ =
Dec((v′

i)0≤i≤k) where Dec is the decoder of the DARE. In addition, Bob sends
to Alice a random non-zero field element α ← F

∗.
4. Alice: sends to Bob the n-length vectors γ = c + αc′ and δ = d + αd′.
5. Bob: outputs (x,z) if z + αz′ = G(x) � γ + δ, and, otherwise, aborts.

Constructing Batch-OLE. One can easily construct batch-OLE of length n based
on a single call to the FG functionality where G is a PRG (see [5]). If G : Fk → F

n

is an NC0 PRG with, say quadratic stretch n = k2, we can further realize
FG using the above protocol with constant computational overhead. Note that
the protocol assumes that G is input-regular. This requirement is satisfied by
natural PRG candidates in NC0, and, in fact, it can be fully waived (see the
full version [10]).

216 B. Applebaum and N. Konstantini

On the Cncrete Cmplexity of the Protocol. The complexity of the protocol is
dominated by the parameters of the PRG G and the cost of the DARE for
fG. Assuming that G : Fk → F

n is a d-local regular PRG whose DARE can
be computed and decoded by T arithmetic operations, Protocol 8 has a com-
plexity of 2T plus 4n additions and 4n multiplications. The value of T depends
on the locality d and the exact choice of the predicate that computes Gi, and
deserves further study. Recall that Protocol 8 essentially realizes “pseudrandom”
batch-OLE. This can be upgraded to a “standard” batch-OLE with an additional
overhead of 2n multiplications and 5n additions.

Acknowledgement. We are grateful to Ivan Damgård and Yuval Ishai for early dis-
cussions that influenced this work. We also thank YI for explaining various aspects
of [17,18]. We thank the reviewers of Eurocrypt2023 for their comments.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (May 2001). https://doi.org/10.1007/3-540-44987-6_8

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307. IEEE Computer Society Press (October 2003). https://doi.
org/10.1109/SFCS.2003.1238204

3. Applebaum, B.: Cryptographic hardness of random local functions. Comput. Com-
plex. 25(3), 667–722 (2015). https://doi.org/10.1007/s00037-015-0121-8

4. Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography. J. ACM 64(2),
10:1–10:74 (2017). https://doi.org/10.1145/3046675

5. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7_8

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. SIAM J. Comput.
36(4), 845–888 (2006). https://doi.org/10.1137/S0097539705446950

7. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in nc0. Comput. Complex. 17(1), 38–69 (2008). https://doi.org/10.1007/
s00037-007-0237-6

8. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
J. Comput. 43(2), 905–929 (2014). https://doi.org/10.1137/120875193

9. Applebaum, B., Kachlon, E.: Sampling graphs without forbidden subgraphs and
unbalanced expanders with negligible error. In: Zuckerman, D. (ed.) 60th FOCS.
pp. 171–179. IEEE Computer Society Press (November 2019). https://doi.org/10.
1109/FOCS.2019.00020

10. Applebaum, B., Konstantini, N.: Actively secure arithmetic computation and vole
with constant computational overhead. Cryptology ePrint Archive, Paper 2023/270
(2023). https://eprint.iacr.org/2023/270, https://eprint.iacr.org/2023/270

11. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. pp.
1087–1100. ACM Press (June 2016). https://doi.org/10.1145/2897518.2897554

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1007/s00037-015-0121-8
https://doi.org/10.1145/3046675
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1007/s00037-007-0237-6
https://doi.org/10.1007/s00037-007-0237-6
https://doi.org/10.1137/120875193
https://doi.org/10.1109/FOCS.2019.00020
https://doi.org/10.1109/FOCS.2019.00020
https://eprint.iacr.org/2023/270
https://eprint.iacr.org/2023/270
https://doi.org/10.1145/2897518.2897554

Actively Secure Arithmetic MPC with Constant Overhead 217

12. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5_26

13. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac′n′Cheese: zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 92–122. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84259-8_4

14. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: 28th ACM STOC. pp. 479–488. ACM Press (May 1996). https://doi.
org/10.1145/237814.237996

15. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12

16. Bordewijk, J.L.: Inter-reciprocity applied to electrical networks. Appl. Sci. Res.
Sect. A 6(1), 1–74 (1957)

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM
Press (October 2018). https://doi.org/10.1145/3243734.3243868

18. Boyle, E.,et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019. pp. 291–308. ACM Press (November 2019). https://doi.org/10.1145/3319535.
3354255

19. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

20. Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem of t-resilient functions (preliminary version). In: 26th FOCS.
pp. 396–407. IEEE Computer Society Press (October 1985). https://doi.org/10.
1109/SFCS.1985.55

21. Crépeau, C.: Equivalence between two Flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2_30

22. Crépeau, C., Kilian, J.: Weakening security assumptions and oblivious transfer. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 2–7. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2_1

23. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its appli-
cations. In: Tessaro, S. (ed.) ITC 2021. LIPIcs, vol. 199, pp. 5:1–5:24. Schloss
Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.ITC.2021.5

24. Druk, E.: Linear time encodable codes and cryptography. Master’s thesis, Technion
(2013)

25. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov
bound and their cryptographic applications. In: Naor, M. (ed.) ITCS 2014. pp.
169–182. ACM (January 2014). https://doi.org/10.1145/2554797.2554815

26. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

27. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)

https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1007/3-540-48184-2_30
https://doi.org/10.1007/0-387-34799-2_1
https://doi.org/10.4230/LIPIcs.ITC.2021.5
https://doi.org/10.1145/2554797.2554815
https://doi.org/10.1007/978-3-540-30576-7_17

218 B. Applebaum and N. Konstantini

46th ACM STOC, pp. 495–504. ACM Press (May/June 2014). https://doi.org/10.
1145/2591796.2591861

28. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: 30th ACM STOC, pp. 151–160. ACM
Press (May 1998). https://doi.org/10.1145/276698.276723

29. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_22

30. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set inter-
section. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_6

31. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1_8

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC. pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420

33. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Trans. Inf. Theory 51(10), 3393–3400 (2005). https://doi.org/
10.1109/TIT.2005.855587

34. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

35. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS
1997, Ramat-Gan, Israel, 17–19 June 1997, Proceedings, pp. 174–184. IEEE Com-
puter Society (1997). https://doi.org/10.1109/ISTCS.1997.595170

36. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press (November 2000). https://doi.org/10.1109/SFCS.
2000.892118

37. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., et al. (eds.) ICALP 2002. LNCS,
vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45465-9_22

38. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp.
433–442. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374438

39. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

40. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

41. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure proto-
cols and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010).
https://doi.org/10.1137/090755886, https://doi.org/10.1137/090755886

42. Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: 44th FOCS, pp. 394–403. IEEE Computer Society Press (October
2003). https://doi.org/10.1109/SFCS.2003.1238213

https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/276698.276723
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1145/28395.28420
https://doi.org/10.1109/TIT.2005.855587
https://doi.org/10.1109/TIT.2005.855587
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1109/ISTCS.1997.595170
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1137/090755886
https://doi.org/10.1137/090755886
https://doi.org/10.1109/SFCS.2003.1238213

Actively Secure Arithmetic MPC with Constant Overhead 219

43. Mohassel, P., Weinreb, E.: Efficient secure linear algebra in the presence of covert
or computationally unbounded adversaries. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5_27

44. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC, pp. 245–254. ACM Press (May 1999). https://doi.org/10.1145/301250.
301312

45. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM (January 2001)

46. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5_31

47. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. p. 187 (2005), http://eprint.iacr.org/2005/187

48. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019, pp. 1055–1072. ACM Press (November 2019).
https://doi.org/10.1145/3319535.3363228

49. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized
oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77444-0_31

50. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptogr.
58(1), 11–21 (2011). https://doi.org/10.1007/s10623-010-9378-8

51. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24–27 May 2021, pp. 1074–1091. IEEE (2021). https://doi.org/10.1109/
SP40001.2021.00056

52. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press (October 1986). https://doi.
org/10.1109/SFCS.1986.25

53. Zichron, L.: Locally computable arithmetic pseudorandom generators. Master’s
thesis, Tel Aviv University (2017), available from Applebaum’s home page

https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1145/301250.301312
https://doi.org/10.1145/301250.301312
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://eprint.iacr.org/2005/187
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1007/978-3-540-77444-0_31
https://doi.org/10.1007/s10623-010-9378-8
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

SUPERPACK: Dishonest Majority MPC
with Constant Online Communication

Daniel Escudero1, Vipul Goyal2,3, Antigoni Polychroniadou1, Yifan Song4,
and Chenkai Weng5(B)

1 J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA
{daniel.escudero,antigoni.polychroniadou}@jpmorgan.com

2 NTT Research, Palo Alto, CA, USA
3 Carnegie Mellon University, Pittsburgh, PA, USA

vipul@cmu.edu
4 Tsinghua University, Beijing, China

yfsong1995@gmail.com
5 Northwestern University, Evanston, IL, USA

ckweng@u.northwestern.edu

Abstract. In this work we present a novel actively secure dishonest
majority MPC protocol, SuperPack, whose efficiency improves as the
number of honest parties increases. Concretely, let 0 < ε < 1/2 and
consider an adversary that corrupts t < n(1− ε) out of n parties. Super-
Pack requires 6/ε field elements of online communication per multipli-
cation gate across all parties, assuming circuit-dependent preprocessing,
and 10/ε assuming circuit-independent preprocessing. In contrast, most
of previous works such as SPDZ (Damgård et al., ESORICS 2013) and
its derivatives perform the same regardless of whether there is only one
honest party, or a constant (non-majority) fraction of honest parties. The
only exception is due to Goyal et al. (CRYPTO 2022), which achieves
58/ε + 96/ε2 field elements assuming circuit-independent preprocessing.
Our work improves this result substantially by a factor of at least 25 in
the circuit-independent preprocessing model.

Practically, we also compare our work with the best concretely effi-
cient online protocol Turbospeedz (Ben-Efraim et al., ACNS 2019), which
achieves 2(1 − ε)n field elements per multiplication gate among all par-
ties. Our online protocol improves over Turbospeedz as n grows, and as
ε approaches 1/2. For example, if there are 90% corruptions (ε = 0.1),
with n = 50 our online protocol is 1.5× better than Turbospeedz and
with n = 100 this factor is 3×, but for 70% corruptions (ε = 0.3) with
n = 50 our online protocol is 3.5× better, and for n = 100 this factor
is 7×.

Our circuit-dependent preprocessing can be instantiated from
OLE/VOLE. The amount of OLE/VOLE correlations required in our
work is a factor of ≈ εn/2 smaller than these required by Le Mans
(Rachuri and Scholl, CRYPTO 2022) leveraged to instantiate the pre-
processing of Turbospeedz.

Our dishonest majority protocol relies on packed secret-sharing and
leverages ideas from the honest majority TurboPack (Escudero et al.,

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 220–250, 2023.
https://doi.org/10.1007/978-3-031-30617-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_8

SuperPack: Dishonest Majority MPC 221

CCS 2022) protocol to achieve concrete efficiency for any circuit topol-
ogy, not only SIMD. We implement both SuperPack and Turbospeedz
and verify with experimental results that our approach indeed leads to
more competitive runtimes in distributed environments with a moder-
ately large number of parties.

1 Introduction

Secure multiparty computation (MPC) protocols enable a set of parties
P1, . . . , Pn to securely compute a function on their private inputs while leak-
ing only the final output. MPC protocols remain secure even if t out of the n
parties are corrupted. There are honest majority protocols, which are designed
to tolerate at most a minority of corruptions, or in other words, they assume
that t < n/2. On the other hand, protocols in the dishonest majority setting
accommodate t ≥ n/2. Honest majority MPC protocols can offer information-
theoretic security (that is, they do not need to depend on computational assump-
tions, which also makes them more efficient), or guaranteed output delivery (that
is, all honest parties are guaranteed to receive the output of the computation).
However, dishonest majority protocols tolerate a larger number of corruptions
at the expense of relying on computational assumptions and sacrificing fairness
and guarantee output delivery.

Communication complexity is a key measure of efficiency for MPC. Over the
last few decades, great progress has been made in the design of communication-
efficient honest majority protocols [4,7,9,13,15,18,20,23,24]. In particular, the
recent work [15] shows that it is possible to achieve constant communication com-
plexity among all parties (i.e., O(1)) per multiplication gate in the online phase
while maintaining linear communication complexity in the number of parties
(i.e., O(n)) per multiplication gate in the offline phase — which is independent
of the private inputs.

Dishonest majority protocols provide the best security guarantees in terms
of collusion sizes since security will be ensured even if all parties but one jointly
collude against the remaining honest party. It is known that in this setting
public key cryptography tools are needed. In the seminar work of Beaver [1] it
was shown how to push most of the “heavy crypto machinery” to an offline phase,
hence allowing for a more efficient online phase that can even be information-
theoretically secure, or at least use simpler cryptographic tools such as PRGs and
hash functions for efficiency. This approach eventually led to the seminal works
of BeDOZa [5] and SPDZ [12,14], which leveraged the Beaver triple technique
from [1] together with message authentication codes to achieve a concretely
efficient online phase with linear linear communication complexity in the number
of parties per gate. The online phase in SPDZ has been very influential, and there
is a large body of research that has focused solely on improving the offline phase,
leaving the SPDZ online phase almost intact.

Despite the progress of designing MPC in the dishonest majority setting, it
remains unclear whether we can achieve a sub-linear communication complexity

222 D. Escudero et al.

in the number of parties per multiplication gate without substantially sacrificing
the offline phase1. This motivates us to study the following question:

“If a small constant fraction of parties are honest, can we build concretely
efficient dishonest majority MPC protocols that achieve constant online commu-
nication among all parties per multiplication gate with comparable efficiency as
the state-of-the-art in the honest majority setting?”

To be concretely efficient, we refer to protocols that do not rely on heavy
Cryptographic tools such as FHE. In particular, we restrict the online phase
to be almost information-theoretic except the black-box use of PRGs or hash
functions. Perhaps surprisingly, it is not clear what benefits can be achieved if
assume instead of all-but-one corruption, but a constant fraction of parties are
honest. In fact, in the case that there are n − t > 1 honest parties — unless
these constitute a majority — the best one can do to optimize communication
is removing (n − t − 1) parties so that, in the new set, there is at least one
honest party, which is the only requirement for dishonest majority protocols to
guarantee security. To the best of our knowledge, the only exception to this is
[22], which considers the corruption threshold t = n(1−ε) for a constant ε in the
circuit-independent preprocessing model and achieves 58/ε+96/ε2 elements per
multiplication gate among all parties in the malicious security setting2. Despite
the constant communication complexity per multiplication gate achieved in [22],
it requires hundreds or even thousands of parties to outperform SPDZ [14].

Given the above state-of-affairs, we see that existing dishonest majority pro-
tocols are either not very flexible in terms of the amount of corruptions — 50%
corruptions are as good as 99%, and having more honest parties do not provide
any substantial benefit — or not concretely efficient at all.

1.1 Our Contribution

In this work, we answer the above question affirmatively: we design the first
concretely efficient dishonest majority MPC protocol SuperPack that achieves
constant online communication among all parties per multiplication gate with
comparable efficiency as the state-of-the-art in the honest majority setting [15].
SuperPack tolerates any number of corruptions and becomes more efficient as the
number of honest parties increases, or put differently, it becomes more efficient
as the percentage of corrupted parties decreases.

More concretely, we show the following theorem.

Theorem 1 (Informal). Let n be a positive integer, ε ∈ (0, 1/2) be a con-
stant, and κ be the security parameter. For an arithmetic circuit C that com-
putes an n-ary functionality F , there exists an n-party protocol that computes C

1 An example is [10] which achieves slightly sub-linear communication complexity in
the circuit size at the cost of increasing the preprocessed data size to be quadratic
in the circuit size.

2 The work [22] does not analyze the concrete cost of their malicious protocol. We
obtain this number by counting the amount of communication in their construction.
We note that the protocol in [22] also needs to interact for addition gates. Our
reported number assumes that the amount of addition gates is the same as the
amount of multiplication gates.

SuperPack: Dishonest Majority MPC 223

with computational security against a fully malicious adversary who can control
at most t = n(1 − ε) corrupted parties. The protocol has total communication
O(6|C|n + 45|C|/ε) elements (ignoring the terms that are independent of the
circuit size or only related to the circuit depth3) with splitting cost:

– Online Phase: 6/ε per multiplication gate across all parties.
– Circuit-Dependent Preprocessing Phase: 4/ε per multiplication gate across all

parties.
– Circuit-Independent Preprocessing Phase: 6n + 35/ε per multiplication gate

across all parties.

Our construction has the following features:

Online phase (Section 4). The online phase requires circuit-dependent pre-
processing (meaning, this preprocessing does not depend on the inputs but it
depends on the topology of the underlying circuit). It relies on information-
theoretic tools and as it is typical we also introduce PRGs to further improve
the efficiency.

Circuit-dependent offline phase (Section 5). The circuit-dependent prepro-
cessing is instantiated using circuit-independent preprocessing (meaning, it
may depend on the amount of certain types of gates of the circuit, but not
on its topology) in a simple and efficient manner. Again, the protocol makes
use of information-theoretical tools together with PRGs to further improve
the efficiency.

Circuit-independent offline phase (Section 6). The circuit-independent pre-
processing is instantiated by a vector oblivious linear evaluation (VOLE) func-
tionality and an oblivious linear evaluation (OLE) functionality. These two
functionalities are realized by protocols in Le Mans [25], which can achieve
sub-linear communication complexity in the amount of preprocessed data. In
addition, we manage to reduce the amount of preprocessed data by a factor
of εn/2 compared with that in [25]. More discussion can be found in Sect. 2.

Comparison to Best Previous Works. When comparing with [22], which achieves
58/ε + 96/ε2 elements per multiplication gate among all parties in the circuit-
independent preprocessing phase, our protocol achieves a factor of at least 25
improvement in the same setting, and a factor of at least 40 improvement in
the circuit-dependent preprocessing phase. Since [22] does not realize the circuit-
independent preprocessing phase, we do not compare the cost in the circuit-
independent preprocessing phase.

Since our goal is to optimize the online phase of dishonest majority proto-
cols where there is a constant fraction of honest parties, we take as a baseline
for comparison the existing dishonest majority protocol with the best concrete

3 The only term that is related to the circuit depth is in the form of O(n ·Depth). This
is because of the use of packed secret sharing which requires to evaluate at least O(n)
gates per layer. A similar term also occurs in previous works that use packed secret
sharings [2,11,15,17,21,22].

224 D. Escudero et al.

efficiency in the online phase. This corresponds to the Turbospeedz protocol [3],
which is set in the circuit-dependent preprocessing model. To instantiate the
preprocessing, we utilize the state-of-the-art [25]. Details on this protocol are
given in the full version of this paper. The resulting protocol has the follow-
ing communication complexity: 2(1 − ε)n in the online phase, 4(1 − ε)n in the
circuit-dependent offline phase, and 6(1 − ε)n in the circuit-independent offline
phase when instantiated using Le Mans [25] (ignoring the calls to the VOLE and
OLE functionalities). Again, the VOLE and OLE functionalities can be properly
instantiated with sub-linear communication complexity in the preprocessed data
size. And our protocol even reduce this size by a factor of εn/2.

The communication complexity of our protocol and its comparison with
respect to Turbospeedz is given in Table 1. We see that our online phase is
better than Turbospeedz by a factor of (nε(1 − ε))/3. Some observations about
this expression:

– (Fixing the ratio ε). Given a factor ε, meaning there is an ε×100% percentage
of honest parties and (1− ε)× 100% percentage of corrupt parties, our online
phase is better as long as the total number of parties n is at least the constant
term 3/(ε(1− ε)), with the improvement factor increasing as n increases past
this threshold. Furthermore, this term goes down as ε approaches 1/2, mean-
ing that the more honest parties/less corruptions, the smaller n needs to be
for our online phase to be better. For example, if ε = 0.1 (90% corruptions)
we see improvements with n ≥ 34; if ε = 0.2 (80% corruptions) then n ≥ 19;
and if ε = 0.3 (70% corruptions) then n ≥ 15.

– (Fixing the number of honest parties). Given a fixed number of honest parties
h, our online protocol is

(
h
4

) × better than prior work regardless of the total
number of parties n, as long as n ≥ 4h. This is proven in the full version
of this paper. This motivates the use of our protocol over prior solutions for
any number of parties, as long as a minimal support of honest parties can be
assumed.

Regarding the complete offline phase (ignoring calls to Fprog
OLE and FnVOLE),

our complexity is 6n + 39/ε, while in Turbospeedz it is 10(1 − ε)n. In the limit
as n → ∞, our offline protocol is approximately a factor of 10(1 − ε)/6 times
better than Turbospeedz/Le Mans, which ranges between 10/6 ≈ 1.6 for ε = 0,
to 5/6 ≈ 0.83 for ε = 1/2. As a result, in the limit, our offline phase is only
1/0.83 = 1.2× less efficient than that of Turbospeedz (and for ε close to zero it
can be even up to 1.6 better), which is a reasonable cost taking into account the
benefits in the online phase. A more thorough discussion on the communication
complexity and its implications is given in the full version of this paper.

Implementation and Experimental Results. Finally, we implement all of our
protocol—except for the OLE/VOLE functionalities—and verify that, experi-
mentally, our protocol outperforms Turbospeedz by the expected amount based
on the communication measures when the runtimes are not computation bound.
For example, in a 100 mbps network our online phase is more than ≈ 4.5× better
than that of Turbospeedz for 80 parties, where 60% of them are corrupted. If

SuperPack: Dishonest Majority MPC 225

Table 1. Communication complexity in terms of field elements per multiplication gate
of SuperPack, and comparison to the previous work with the best concrete efficiency
in the online phase, which is Turbospeedz [3] (with its offline phase instantiated by Le
Mans [25]), referred to as Turbospeedz∗. The cost of the calls to Fprog

OLE and FnVOLE in
the circuit-independent offline phase is ignored.

Online CD Offline CI Offline

SuperPack 6/ε 4/ε 6n + 35/ε

Turbospeedz∗ 2(1 − ε)n 4(1 − ε)n 6(1 − ε)n

the network is too fast, then computation becomes a more noticeable bottleneck,
and our improvements are less noticeable. This is discussed in Sect. 7.

2 Overview of the Techniques

In this section we provide an overview of our SuperPack protocol. Recall that
in our setting we have t < n(1 − ε). Let F be a finite field with |F| ≥ 2κ, where
κ is the security parameter. We consider packed Shamir secret sharing, where k
secrets x = (x1, . . . , xk) are turned into shares as [x]d = (f(1), . . . , f(n)), where
f(x) is a uniformly random polynomial over F of degree at most d constrained
to f(0) = x1, . . . , f(−(k − 1)) = xk. It also holds that [x]d1 ∗ [y]d2 = [x ∗y]d1+d2 ,
where the operator ∗ denotes point-wise multiplication. In our protocol we would
like to be able to multiply degree-d sharings by degree-(k − 1) sharings (which
corresponds to multiplying by constants), so we would like the sum of these
degrees to be at most n−1 so that the n parties determine the underlying secrets.
For this, we take d+(k−1) = n−1. On the other hand, we also want the secrets
of a degree-d packed Shamir sharing to be private against t corrupted parties,
which requires d ≥ t+k−1. Together, these imply n = t+2(k−1)+1 = t+2k−1,
and k = n−t+1

2 ≥ ε·n+2
2 .

At a high level, our technical contributions can be summarized as two aspects:

1. First, we lift the online protocol of TurboPack [15] from the honest majority
setting to the dishonest majority setting. Our starting point is the observa-
tion that the passive version of the online protocol from TurboPack [15]
also works for a dishonest majority by setting the parameters correctly. To
achieve malicious security, however, the original techniques do not work. This
is because in TurboPack, all parties will prepare a degree-t Shamir sharing
for each wire value in the circuit. In the honest majority setting, a degree-t
Shamir sharing satisfies that the shares of honest parties can fully determine
the secret, and the most that malicious parties can do is to change their
local shares and cause the whole sharing inconsistent (in the sense that the
shares do not lie on a degree-t polynomial). Malicious parties however cannot
change the secret by changing their shares. This property unfortunately does
not hold in the dishonest majority setting.

226 D. Escudero et al.

Instead, in our case, we rely on a different type of redundancy widely used
in the dishonest majority setting: We make use of message authentication
codes, or MACs, to ensure that corrupted parties cannot change the secrets
by changing their local shares without being caught. While a similar technique
has also been used in [22], their way of using MACs increases the online com-
munication complexity by a factor of at least 2 compared with their passive
protocol.
We will show how to use MACs in a way such that the online communication
complexity remains the same as our passive protocol.

2. Second, we have to reinvent the circuit-independent preprocessing protocol
for SuperPack as the corresponding protocol from TurboPack highly relies
on the assumption of honest majority, plus that we also need the preprocessed
sharings to be authenticated due to the larger corruption threshold.
The main preprocessing data we need to prepare is referred to as Packed
Beaver Triples, which are first introduced in [22]. At a high level, a packed
Beaver triple contains three packed Shamir sharings ([a], [b], [c]) such that
a, b are random vectors in F

k and c = a∗b. To prepare such a packed Beaver
triple, a direct approach would be first preparing standard Beaver triples using
additive sharings and then transform them to packed Shamir sharings. In this
way, we may reuse the previous work of generating standard Beaver triples
in a black box way. However, this idea requires us to not only pay the cost of
preparing standard Beaver triples, but also pay the cost of doing the sharing
transformation. The direct consequence is that the overall efficiency of our
protocol will be worse than that of the state-of-the-art [25] in the dishonest
majority setting. (And this is the approach used in TurboPack [15].)
We will show how to take the advantage of the constant fraction of honest
parties in the circuit-independent preprocessing phase by carefully using the
techniques of [25] in our setting.

In the following, we will start with a sketch of the modified passive version
of TurboPack, which is suitable in our setting.

2.1 Starting Point: TURBOPACK

Our starting point is the observation that the passive version of the online pro-
tocol from TurboPack [15], which is set in the honest majority setting, also
works for a dishonest majority by setting the parameters correctly. We focus
mostly on multiplication gates. So we ignore details regarding input and output
gates.

Preprocessing. We consider an arithmetic circuit whose wires are indexed by
certain identifiers, which we denote using lowercase Greek letters α, β, γ, etc.
Our work is set in the client-server model where there are input and output gates
associated to clients, who will be in charge of providing input/receiving output.
Each multiplication layer of the circuit is split into batches of size k. Similarly,
each input and output layer assigned to a given client are split into batches of

SuperPack: Dishonest Majority MPC 227

size k. The invariant in TurboPack is the following. First, every wire α that
is not the output of an addition gate has associated to it a uniformly random
value λα. If a wire γ is the output of an addition gate with input wires α with
wire β, then λγ is defined (recursively) as λα + λβ .

The parties are assumed to have the following (circuit-dependent) prepro-
cessing material: For every group of k multiplication gates with input wires α,β
and output wires γ, the parties have [λα]n−k, [λβ]n−k, and [λγ]n−1 (The degree
of the last sharing is chosen to be n− 1 on purpose). In addition, all parties also
hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1) for this gate (Again, the
degree of the last sharing is chosen to be degree-(n − 1) on purpose).

Main Invariant. The main invariant in TurboPack is that for every wire α,
P1 knows the value μα = vα − λα, where vα denotes the actual value in wire α
for a given choice of inputs. Notice that this invariant preserves the privacy of
all intermediate wires, since P1 only learns a masked version of the wire values,
and the masks, the λα’s, are uniformly random and they are kept private with
packed Shamir sharings of degree n−k = t+(k−1). We now discuss how, in the
original TurboPack work, this invariant is maintained throughout the circuit
execution. We only focus on (groups of) multiplication gates. Addition gates can
be processed locally. Groups of input gates with wires α make use of a simple
protocol in which the client who owns the gates learns the corresponding masks
λα , and sends μα = vα − λα to P1. Groups of output gates are handled in a
similar way.

Maintaining the Invariant for Multiplication Gates. Consider a group of multi-
plication gates in a given circuit level, having input wires α,β, and output wires
γ. Assume that the invariant holds for the input wires, meaning that P1 knows
μα = vα − λα and μβ = vβ − λβ . Recall that the parties have the prepro-
cessed sharings [λα]n−k, [λβ]n−k, and [λγ]n−1. To maintain the invariant, P1

must learn μγ = vγ − λγ , where vγ = vα ∗ vβ . This is achieved by using the
techniques of packed Beaver triples introduced in [22]. Recall that all parties also
hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1). All parties proceeds as
follows:

1. All parties locally compute the packed Shamir sharing [λα − a]n−k =
[λα]n−k − [a]n−k and let P1 learn λα − a. Similar step is done to let P1

learn λβ − b.
2. P1 computes vα − a = μα + (λα − a) and computes vβ − b similarly. Then,

P1 distributes shares [vα − a]k−1 and [vβ − b]k−1 to the parties.
3. Using the received shares and the shares obtained in the preprocessing phase,

the parties compute locally

[vγ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1.

and [μγ]n−1 = [vγ]n−1 − [λγ]n−1.

228 D. Escudero et al.

4. The parties send their shares [μγ]n−1 to P1, who reconstructs μγ . It is easy
to see that μγ = vα ∗ vβ − λγ .

Note that the first step can be completely moved to the circuit-dependent
preprocessing phase since both [λα]n−k and [a]n−k are preprocessed data. With
this optimization, the online protocol only requires all parties to communicate
3n elements for k = εn/2 multiplication gates, which is 6/ε elements per gate
among all parties.

2.2 Achieving Active Security

There are multiple places where an active adversary can cheat in the previous
protocol, with the most obvious being distributing incorrect (or even invalid)
[vα−a]k−1 and [vβ−b]k−1 at a group of multiplication gates, either by corrupting
P1, or by sending incorrect shares in previous gates to P1. This is prevented in
TurboPack by explicitly making use of the honest majority assumption: Using
the degree-(k − 1) packed Shamir sharings distributed by P1, the parties will be
able to obtain a certain “individual” (i.e. non-packed) degree-t Shamir sharing for
each wire value. As we discussed above, a degree-t Shamir sharing in the honest
majority setting allows honest parties to fully determine the secret. This enables
the use of distributed zero-knowledge techniques [6] to check the correctness of
the computation.

In our case where t ≥ n/2, these techniques cannot be used. Instead, we rely
on a different type of redundancy widely used in the dishonest majority setting,
namely, we make use of message authentication codes, or MACs, to ensure the
parties cannot deviate from the protocol execution when performing actions like
reconstructing secret-shared values. We observe that the use of MACs has the
following two advantages:

– With MACs, corrupted parties cannot change the secrets of a degree-(n −
k) packed Shamir sharing without being detected except with a negligible
probability.

– In addition to adding verifiability to packed Shamir sharings, we show how
to allow all parties to directly compute MACs of the secret values that are
shared by P1 using degree-(k − 1) packed Shamir sharings. This allows us to
directly verify whether vα −a and vβ −b are correct without doing distributed
zero-knowledge like [15].

Before we describe our approach, let us introduce some notation. We use
[x|i]t to denote a Shamir secret sharing of degree t, where the secret is in position
−(i − 1). I.e., the corresponding polynomial f(x) satisfies that f(−(i − 1)) = x.
We also use 〈x〉 to denote an additive secret sharing of x. Observe that from a
Shamir sharing of x (or a packed Shamir sharing that contains x), all parties can
locally obtain an additive sharing of x by locally multiplying suitable Lagrange
coefficients.

To achieve active security, we need the parties to hold preprocessing data of
the following form:

SuperPack: Dishonest Majority MPC 229

– Shares of a global random key Δ ∈ F in the form ([Δ|1]t, . . . , [Δ|k]t).
– For every group of k multiplication gates with input wires α,β and out-

put wires γ, recall that all parties hold a fresh packed Beaver triple
([a]n−k, [b]n−k, [c]n−1). They additionally hold [Δ · a]n−k, [Δ · b]n−k, and
{〈Δ · ci〉}k

i=1, and also {〈Δ · λγi
〉}k

i=1.

With these at hand, the new invariant we maintain to ensure active security
is that (1) as before, P1 learns μα and λα − a for every group of input wires α
of multiplication gates, but in addition (2) the parties have shares 〈Δ · μαi

〉 and
〈Δ · (λαi

− ai)〉 for all i ∈ {1, . . . , k}. In this way, the first part of the invariant
enables the parties to compute the circuit, while the second ensures that P1

distributed correct values.

Maintaining the New Invariant. Consider a group of multiplication gates with
input wires α,β, and output wires γ. Assume that the invariant holds for the
input wires, meaning that P1 knows μα = vα − λα and μβ = vβ − λβ as well
as λα −a and λβ − b, and also the parties have {(〈Δ ·μαi

〉, 〈Δ · (λαi
− ai)〉)}k

i=1

and {(〈Δ · μβi
〉, 〈Δ · (λβi

− bi)〉)}k
i=1.

The parties preserve the invariant as follows.

– For (1), we follow the passive protocol described above and reconstruct μγ

to P1.
– For (2), to be able to compute 〈Δ · μα′

i
〉 for some wire α′

i in the next layer, it
is sufficient to let all parties hold 〈Δ · μγi

〉 for all i ∈ {1, . . . , k}. To this end,
we try to follow the procedure of computing [μγ]n−1. Recall that

[μγ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ]n−1.

1. For [vα −a]k−1∗ [b]n−k and [vβ −b]k−1∗ [a]n−k, since all parties also hold
[Δ ·a]n−k and [Δ ·b]n−k, they may locally compute [vα −a]k−1∗ [Δ ·b]n−k

and [vβ −b]k−1 ∗ [Δ ·a]n−k and convert them locally to 〈Δ · (vαi
−ai) · bi〉

and 〈Δ · (vβi
− bi) · ai〉.

2. For [c]n−1 and [λγ]n−1, all parties already hold 〈Δ · ci〉 and 〈Δ · λγi
〉.

3. The problematic part is to obtain 〈Δ · (vαi
− ai) · (vβi

− bi)〉. There we
use the degree-t Shamir sharing [Δ|i]t as follows. We note that

[Δ · (vαi
− ai) · (vβi

− bi)|i]n−1 = [Δ|i]t ∗ [vα − a]k−1 ∗ [vβ − b]k−1.

This follows from the multiplication of the underlying polynomials and
the fact that n− 1 = t+2(k − 1). From [Δ · (vαi

−ai) · (vβi
− bi)|i]n−1, all

parties can locally compute an additive sharing of Δ · (vαi
−ai) · (vβi

−bi).
Summing all terms up, all parties can locally obtain 〈Δ · μγi

〉.
– For (2), to be able to compute 〈Δ · (λα′

i
− a′

i)〉 for some wire α′
i in the next

layer, it is sufficient to show how to obtain 〈Δ · λα′
i
〉 since all parties can

obtain 〈Δ ·a′
i〉 from [Δ ·a′]n−k prepared in the preprocessing data. Note that

all parties already hold 〈Δ ·λγi
〉 for the current layer. By following the circuit

topology, they can locally compute 〈Δ · λα′
i
〉 for the next layer.

230 D. Escudero et al.

Checking the Correctness of the Computation. All parties together hold additive
sharings 〈Δ · μαi

〉 and 〈Δ · (λαi
− ai)〉, they compute 〈Δ · (vαi

− ai)〉. On the
other hand, all parties hold a degree-(k − 1) packed Shamir sharing [vα − a]k−1.

It is sufficient to check the following two points:

– The sharing [vα − a]k−1 is a valid degree-(k − 1) packed Shamir sharing. I.e.,
the shares lie on a degree-(k − 1) polynomial. The check is done by opening
a random linear combination of all degree-(k − 1) packed Shamir sharings
distributed by P1.

– The secrets of [vα −a]k−1 are consistent with the MACs {〈Δ · (vαi
−ai)〉}k

i=1.
This is done by using [vα −a]k−1 and {[Δ|i]t}k

i=1 to compute another version
of MACs: {〈Δ · (vαi

− ai)〉}k
i=1, and then check whether these two versions

have the same secrets inside.

Both of these two checks are natural extensions of the checks done in SPDZ [14].
We thus omit the details and refer the readers to Sect. 4.4 for more details.

2.3 Instantiating the Circuit-Dependent Preprocessing

The preprocessing required by the parties is summarized as follows.

– A circuit-independent part, which are the global key [Δ|1]t, . . . , [Δ|k]t and a
fresh packed Beaver triple with authentications per group of multiplication
gates ([a]n−k, [Δ · a]n−k), ([b]n−k, [Δ · b]n−k), ([c]n−1, {〈Δ · ci〉}k

i=1).
– A circuit-dependent part that consists of [λα]n−k, [λβ]n−k, ([λγ]n−1, {〈Δ ·

λγi
〉}k

i=1). Also P1 needs to obtain λα − a and λβ − b.

For the circuit-independent part, we will focus more on the preparation of
the packed Beaver triples with authentications in the next section since the
size of [Δ|1]t, . . . , [Δ|k]t is independent of the circuit size. As for the circuit-
dependent part, we essentially follow the same idea in TurboPack [15] including
the preprocessing data we need from a circuit-independent preprocessing, with
the only exception that the preprocessing data should be authenticated. We refer
the readers to [15] and Sect. 5 for more details.

On the Necessity of a Circuit-Dependent Preprocessing. At a first glance, it may
appear that if the circuit only contain multiplication gates, then there is no need
to have a circuit-dependent preprocessing phase since all λ values are uniform.
We stress that this is not the case. This is because each wire α is served as an
output wire in a previous layer and then served as an input layer in a next layer.
We need all parties to hold two packed Shamir sharings that contain λα, one
for a previous layer where α is an output wire, and the other one for a next
layer where α is an input wire. In particular, the positions of λα depend on the
circuit topology since we need the two input packed Shamir sharings of a group
of multiplication gates to have their secrets correctly aligned.

SuperPack: Dishonest Majority MPC 231

2.4 Instantiating the Circuit-Independent Preprocessing

Next, we focus on the preparation of authenticated packed Beaver triples:

([a]n−k, [Δ · a]n−k), ([b]n−k, [Δ · b]n−k), ([c]n−1, {〈Δ · ci〉}k
i=1),

where c = a ∗ b.
To this end, we make use of two functionalities FnVOLE and Fprog

OLE from [25].
In [25], these two functionalities are used to efficiently prepare Beaver triples
using additive sharings. At a high level,

1. All parties first use FnVOLE to prepare authenticated random additive sharings.
In particular,

– All parties receive an additive sharing 〈Δ〉 = (Δ1, . . . , Δn) from FnVOLE,
where Δ is served as the MAC key. (Here Δi is the i-th share of 〈Δ〉.)

– Each party Pi receives a vector ui, which is served as the additive shares
held by Pi. We denote the additive sharings by 〈u1〉, . . . , 〈um〉.

– For every ordered pair (Pi, Pj), they together hold an additive sharing of
ui ·Δj . From these, all parties locally transform them to additive sharings
〈Δ · u1〉, . . . , 〈Δ · um〉.

2. After using FnVOLE to prepare two vectors of additive sharings, say (〈a1〉, 〈b1〉),
. . . , (〈am〉, 〈bm〉) together with their MACs, every ordered pair of parties
(Pi, Pj) invokes Fprog

OLE to compute additive sharings of ai
� · bj

� for all 	 ∈
{1, . . . , m}. (Here ai

� is the i-th share of 〈a�〉 and bj
� is the j-th share of 〈b�〉.)

These allow all parties to obtain additive sharings of c = (a1 · b1, . . . , am · bm).
Note that the MACs of 〈c1〉, . . . , 〈cm〉 are not computed in this step.

3. Finally, all parties authenticate 〈c1〉, . . . , 〈cm〉 by using random additive shar-
ings (〈r1〉, . . . , 〈rm〉) with authentications which can be prepared using Step
1.

As we discussed above, one direct solution would be using the above app-
roach in a black box way and then transforming additive sharings to packed
Shamir sharings. However, the direct consequence is that we need to not only
pay the same cost as that in [25], but pay the additional cost for the sharing
transformation as well. In the following we discuss how to take the advantage of
the constant fraction of honest parties when preparing packed Beaver triples.

Obtaining Authenticated Shares ([a]n−k, [Δ · a]n−k). We first discuss how the
parties can obtain [a]n−k and [Δ · a]n−k (and also [b]n−k and [Δ · b]n−k).

Our main observation is that the shares of a random degree-(n − 1) packed
Shamir sharing are uniformly distributed. This is because a random degree-(n−1)
packed Shamir sharing corresponds to a random degree-(n−1) polynomial, which
satisfies that any n evaluations are uniformly distributed. On the other hand,
the shares of a random additive sharing are also uniformly distributed. Thus, we
may naturally view the random additive sharings prepared in FnVOLE as degree-
(n − 1) packed Shamir sharings. Concretely, for each random additive sharing
(u1, . . . , un), let u denote the secrets of the degree-(n−1) packed Shamir sharing
when the shares are (u1, . . . , un). Then we may view that all parties hold the

232 D. Escudero et al.

packed Shamir sharing [u]n−1. To obtain a degree-(n−k) packed Shamir sharing
of u, we simply perform a sharing transformation via the standard “mask-open-
unmask” approach following from the known techniques [13].

Now the problem is to prepare the MACs for u. We observe that in FnVOLE,
for every ordered pair of parties (Pi, Pj), Pi, Pj together hold an additive sharing
of ui · Δj . Since each secret u� in u is a linear combination of (u1, . . . , un), all
parties can locally compute an additive sharing of u� ·Δj for each j ∈ {1, . . . , n}
and then compute an additive sharing of Δ · u�. To obtain the MACs [Δ · u]n−k,
we will perform a sharing transformation again via the standard “mask-open-
unmask” approach following from the known techniques [13,22].

In this way, to obtain a pair of authenticated sharings ([a]n−k, [Δ ·a]n−k), we
only need to perform once the transformation from additive sharings to packed
Shamir sharings. In addition, we essentially obtain such a pair of authenticated
sharing from the same data that is only for one authenticated additive sharing
in [25]. As a result, the amount of preprocessing data we need from FnVOLE is
reduced by a factor of k = εn/2.

Authenticated Product ([c]n−1, {〈Δ · ci〉}k
i=1). Once the parties have obtained

([a]n−k, [Δ · a]n−k) and ([b]n−k, [Δ · b]n−k), they need to obtain ([c]n−1, {〈Δ ·
ci〉}k

i=1), where c = a ∗ b.
To this end, we need to reuse the degree-(n − 1) packed Shamir sharings

[a]n−1 and [b]n−1 output by FnVOLE. As that in [25], every ordered pair of parties
(Pi, Pj) invokes Fprog

OLE to compute additive sharings of ai · bj , where ai is the i-
th share of [a]n−1 and bj is the j-th share of [b]n−1. From additive sharings
of {ai · bj}i,j , all parties can locally compute an additive sharing of each c� =
a� · b� for all 	 ∈ {1, . . . , k}. Finally, we obtain [c]n−1 with authentications by
using random sharings ([r]n−1, {〈Δ·r�〉}k

�=1) and follow the standard “mask-open-
unmask” approach. Note that ([r]n−1, {〈Δ·r�〉}k

�=1) can be directly obtained from
FnVOLE by properly interpreting the output of FnVOLE as we discussed above.

Thus, to prepare the authenticated product ([c]n−1, {〈Δ · ci〉}k
i=1), we only

need to perform once the transformation from additive sharings to packed Shamir
sharings. Again the amount of preprocessing data we need from Fprog

OLE is also
reduced by a factor of k = εn/2.

Remarks About Our Techniques. Note that we essentially follow the same steps
as those in [25] but interpreting the output differently, and then perform sharing
transformations to obtain sharings in the desired form. We would like to point
out that following the same steps as those in [25] is crucial since in [25], FnVOLE

only outputs random seeds to parties and the parties need to compute their
shares by locally expanding the seeds using a proper PRG. And the same seeds
are fed in Fprog

OLE to compute the product sharings. Only in this way together
with proper realizations of FnVOLE and Fprog

OLE , [25] can achieve sub-linear com-
munication complexity in preparing Beaver triples (without authenticating the
product sharing 〈c〉). Thus, to be able to properly use the functionalities in [25],
we should follow a similar pattern to that in [25].

SuperPack: Dishonest Majority MPC 233

Verification of Packed Beaver Triples. We note that the packed Beaver triples we
obtained may be incorrect. This is because the invocations of Fprog

OLE are between
every pair of parties and the functionality Fprog

OLE does not force the same party to
use the same input across different invocations. Also when the product sharings
are authenticated, corrupted parties may introduce additive errors. The same
issues also appear in [25].

To obtain correct packed Beaver triples with authentications, our idea is to
extend the technique of sacrificing [12] and use one possibly incorrect packed
Beaver triple to check another possibly incorrect packed Beaver triple. To
improve the concrete efficiency, we show that it is sufficient to have the sac-
rificed packed Beaver triple prepared in the form:

([ã]n−1, {〈Δ · ãi〉}k
i=1), ([b̃]n−1, {〈Δ · b̃i〉}k

i=1), ([c̃]n−1, {〈Δ · c̃i〉}k
i=1).

I.e., we do not need to do any sharing transformation for the first two pairs of
sharings and only need to authenticate the product sharing. We defer the details
to the full version of this paper due to space constraints.

3 Preliminaries

The Model. We consider the task of secure multiparty computation in the
client-server model, where a set of clients C = {C1, . . . , Cm} provide inputs to a
set of computing parties P = {P1, P2, . . . , Pn}, who carry out the computation
and return output to the clients. Clients are connected to parties, and parties
are connected to each other using a secure (private and authentic) synchronous
channel. The communication complexity is measured by the total number of bits
via private channels.

We focus on functions which can be represented as an arithmetic circuit C
over a finite field F with input, addition, multiplication, and output gates.4 The
circuit C takes inputs (x1, . . . ,xm) and returns (y1, . . . ,ym), where xi ∈ F

Ii

and yi ∈ F
Oi , for i ∈ {1, . . . , m}. We use the convention of labeling wires by

means of greek letters (e.g. α, β, γ), and we use vα to denote the value stored
in a wire labeled by α for a given execution. We use κ to denote the security
parameter, and we assume that |F| ≥ 2κ. We assume that the number of parties
n and the circuit size |C| are bounded by polynomials of the security parameter
κ.

We study the dishonest majority setting where the adversary corrupts a
majority of the parties, but we focus on the case where the number of corruptions
may not be equal to n − 1. Instead, the adversary corrupts t < n(1 − ε) parties
for some constant 0 < ε < 1/2. For security we use Canetti’s UC framework [8],
where security is argued by the indistinguishability of an ideal world, modeled by

4 In this work, we only focus on deterministic functions. A randomized function can be
transformed into a deterministic function by taking as input an additional random
tape from each party. The XOR of the input random tapes of all parties is used as
the randomness of the randomized function.

234 D. Escudero et al.

a functionality (denoted in this work by the letter F and some subscript), and
the real world, instantiated by a protocol (denoted using the letter Π and some
subscript). Protocols can also use procedures, denoted using the lowercase letter
π and some subscript, which are like protocols except they are not intended to
instantiate a given functionality, and instead they are used as “macros” inside
other protocols that instantiate some functionality. The details on the security
definition will be included in the full version of this paper.

We denote by FMPC the functionality that receives inputs from the clients,
evaluates the function f , and returns output to the clients. This is given in
detail in the full version of this paper. Security with unanimous abort, where
all honest parties may jointly abort in the computation, is the best that can be
achieved in the dishonest majority setting. Here we achieve security with selective
abort, where the adversary can choose which honest parties abort, which can be
compiled to unanimous abort using a broadcast channel [19]. To accommodate
for aborts, every functionality in this work implicitly allows the adversary to
send an abort signal to a specific honest party. We do not write this explicitly.

Packed Shamir Secret Sharing. In our work, we make use of packed Shamir
secret sharing, introduced by Franklin and Yung [16]. This is a generalization of
the standard Shamir secret sharing scheme [26]. Let n be the number of parties
and k be the number of secrets to pack in one sharing. A degree-d (d ≥ k − 1)
packed Shamir sharing of x = (x1, . . . , xk) ∈ F

k is a vector (w1, . . . , wn) for
which there exists a polynomial f(·) ∈ F[X] of degree at most d such that
f(−i + 1) = xi for all i ∈ {1, 2, . . . , k}, and f(i) = wi for all i ∈ {1, 2, . . . , n}.
The i-th share wi is held by party Pi. Reconstructing a degree-d packed Shamir
sharing requires d + 1 shares and can be done by Lagrange interpolation. For a
random degree-d packed Shamir sharing of x, any d−k+1 shares are independent
of the secret x. If d − (k − 1) ≥ t, then knowing t of the shares does not leak
anything about the k secrets. In particular, a sharing of degree t+(k − 1) keeps
hidden the underlying k secret.

In our work, we use [x]d to denote a degree-d packed Shamir sharing of
x ∈ F

k. In the following, operations (addition and multiplication) between two
packed Shamir sharings are coordinate-wise, and ∗ denotes element-wise product.
We recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ F
k, [x + y]d =

[x]d + [y]d.
– Multiplicativity: Let ∗ denote the coordinate-wise multiplication operation.

For all d1, d2 ≥ k−1 subject to d1+d2 < n, and for all x,y ∈ F
k, [x∗y]d1+d2 =

[x]d1 ∗ [y]d2 .

Note that the second property implies that, for all x, c ∈ F
k, all parties can

locally compute [c ∗ x]d+k−1 from [x]d and the public vector c. To see this, all
parties can locally transform c to a degree-(k − 1) packed Shamir sharing [c]k−1.
Then, they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x]d+k−1 = [c]k−1 ∗ [x]d. We simply write [c ∗ x]d+k−1 = c ∗ [x]d to denote
this procedure.

SuperPack: Dishonest Majority MPC 235

When the packing parameter k = 1, a packed Shamir sharing degrades to a
Shamir sharing. Generically, a Shamir sharing uses the default evaluation point
0 to store the secret. In our work, we are interested in using different evaluation
points in different Shamir secret sharings. Concretely, for all i ∈ {1, . . . , k}, we
use [x|i]d to represent a degree-d Shamir sharing of x such that the secret is stored
at the evaluation point −i + 1. If we use f to denote the degree-d polynomial
corresponding to [x|i]d, then f(−i + 1) = x.

In this work, we choose the packing parameter to be k = (n−t+1)/2 (assume
for simplicity that this division is exact), or equivalently n = t + 2k − 1 =
t+2(k − 1)+1. This implies not only that a sharing of degree t+(k − 1) (which
keeps the privacy of k secrets) is well defined as there are more parties than the
degree plus one, but also if a sharing of such degree is multiplied by a degree-
(k−1) sharing, the resulting degree-(t+2(k−1)) sharing is also well defined. Also,
we observe that with these parameters, a sharing of degree at most 2(k − 1) is
fully determined by the honest parties’ shares since n− t = 2(k−1)+1, which in
particular means that such sharings can be reconstructed to obtain the correct
underlying secrets (i.e. the secrets determined by the honest parties’ shares).
Finally, recall that t < n(1 − ε). We assume that t + 1 = (1 − ε)n for simplicity,
and in this case it can be checked that k = ε

2 · n + 1 = Θ(n).

Some Functionalities. For our protocols we assume the existence of two widely
used functionalities. One is FCoin, which upon being called provides the parties
with a uniformly random value r ∈ F. This can be easily implemented by having
the parties open some random shared value 〈r〉, and if more coins are needed
these can be expanded with the help of a PRG. The second functionality is
FCommit, which enables the parties to commit to some values of their choice
without revealing them to the other parties. At a later point, the parties can
open their committed values with the guarantee that these opened terms are
exactly the same that were committed to initially. This can be instantiated with
the help of a hash function, modeled as a random oracle (cf. [12]).

4 Online Protocol

We begin by describing the online phase of SuperPack.

4.1 Circuit-Dependent Preprocessing Functionality

In order to securely compute the given function, our online phase must make
use of certain circuit-dependent preprocessing, which is modeled in Functionality
FPrepMal below.

236 D. Escudero et al.

Functionality 1: FPrepMal

1. Assign Random Values to Wires in C: FPrepMal receives the circuit C from
all parties. Then FPrepMal assigns random values to wires in C as follows.
(a) For each output wire α of an input gate or a multiplication gate, FPrepMal

samples a uniform value λα and associates it with the wire α.
(b) Starting from the first layer of C to the last layer, for each addition gate with

input wires α, β and output wire γ, FPrepMal sets λγ = λα + λβ .
2. Settling Authentication Keys: FPrepMal samples a random value Δ. Then

FPrepMal samples k random degree-t Shamir sharings ([Δ|1]t, . . . , [Δ|k]t) and dis-
tributes the shares to all parties.

3. Preparing Packed Beaver Triples with Authentications: For each group
of k multiplication gates, FPrepMal samples a random packed Beaver triple with
authentications as follows:
(a) FPrepMal samples two random vectors a, b ∈ F

k
p and computes Δ · a, Δ · b.

Then FPrepMal samples two pairs of random degree-(n − k) packed Shamir
sharings �a�n−k = ([a]n−k, [Δ · a]n−k), �b�n−k = ([b]n−k, [Δ · b]n−k).

(b) FPrepMal computes c = a ∗ b and Δ · c. Then FPrepMal samples a random
degree-(n − 1) packed Shamir sharing [c]n−1. For all i ∈ {1, . . . , k}, FPrepMal

samples a random additive sharing 〈Δ · ci〉.
FPrepMal distributes the shares of (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1)) to all
parties.

4. Distributing λα − a and λβ − b to P1: For each group of multiplication gates,
let α, β denote the batch of first input wires and that of the second input wires
respectively. Let (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1) be the packed Beaver
triple with authentications associated with these gates.
FPrepMal receives two vectors of additive errors δα , δβ from the adversary, com-
putes λα − a + δα and λβ − b + δβ , and sends them to P1. Here λα and λβ are
the random values associated with the wires α and β.
FPrepMal also samples random additive sharings {〈Δ·(λαi−ai)〉, 〈Δ·(λβi

−bi)〉}k
i=1

and distributes the shares to all parties.
5. Preparing Authenticated Packed Sharings for Multiplication Gates: For

each group of multiplication gates with output wires γ , FPrepMal samples
– A random degree-(n − 1) packed Shamir sharing [λγ]n−1,
– k additive sharings {〈Δ · λγi 〉}k

i=1,
and distributes the shares to honest parties.

6. Preparing Random Sharings for Input and Output Gates: For each group
of k input gates or output gates, FPrepMal prepares the following random sharings.
(a) Let α be the output wires of these k input gates or the input wires of these

k output gates. FPrepMal samples
– A random degree-(n − 1) packed Shamir sharing [λα]n−1,
– k additive sharings {〈Δ · λαi 〉}k

i=1,
and distributes the shares to honest parties.

(b) FPrepMal also prepares a random packed Beaver triple with authentications
(�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1) in the same way as Step 3. Later, we
will view b as an authentication key and c as the MAC of a. This allows the
input holder to verify the correctness of a.

Corrupted Parties: When FPrepMal prepares random sharings, corrupted parties can
choose their shares. FPrepMal then samples the random sharings based on the secret it
generated and the shares chosen by the corrupted parties.

SuperPack: Dishonest Majority MPC 237

4.2 Input Gates

In this section, we give the description of the procedure πInput. This proce-
dure enables P1 to learn μα = vα − λα for every input wire α, where vα is
the input provided by the client owning the input gate. In addition, the par-
ties output shares of the MAC of this value, namely {〈Δ · μαi

〉}k
i=1. Recall

that in FPrepMal, we prepared a packed Beaver triple with authentications
(�a�n−k, �b�n−k, ([c]n−1, {〈Δ·ci〉}k

i=1) for each group of input gates. Here b serves
as the MAC key and c serves as the MAC of a so that the client can verify that
he receives the correct a in πInput. The description of πInput appears below.

Procedure 1: πInput

1. For each group of input gates that belongs to Client, let α denote the
batch of output wires of these input gates. All parties receive from FPrepMal

– A random degree-(n − 1) packed Shamir sharing [λα]n−1 with MACs
{〈Δ · λαi〉}k

i=1.
– A packed Beaver triple with authentications
(�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1).
Let vα denote the inputs held by Client.

2. All parties send to Client their shares of [λα]n−1, [a]n−k, [b]n−k, [c]n−1.
3. Client reconstructs the secrets λα , a, b, c and checks whether c = a ∗ b.

If not, Client aborts. Otherwise, Client computes μα = vα − λα and
[vα − a]2k−2.

4. Client sends μα to P1 and distributes the shares of [vα − a]2k−2 to all
parties.

5. For all i ∈ {1, . . . , k}, all parties locally compute 〈Δ · μαi〉 as follows:
(a) Recall that all parties hold [Δ|i]t generated in FPrepMal. All parties

locally compute [Δ · (vαi − ai)|i]n−1 = [Δ|i]t ∗ [vα − a]2k−2. Then all
parties locally transform it to an additive sharing 〈Δ · (vαi − ai)〉.

(b) Recall that all parties hold [Δ · a]n−k. All parties locally transform it
to an additive sharing 〈Δ · ai〉.

(c) Recall that all parties hold 〈Δ · λαi〉. All parties locally compute 〈Δ ·
μαi〉 = 〈Δ · (vαi − ai)〉 + 〈Δ · ai〉 − 〈Δ · λαi〉.

4.3 Computing Addition and Multiplication Gates

After receiving the inputs from all clients, all parties start to evaluate the circuit
gate by gate. We will maintain the invariant that for each output wire α of an
input gate or a multiplication gate, P1 learns μα in clear. In the procedure, P1

distributes shares of certain values, which may be incorrect. To prevent cheating,
the parties get additive shares of the MAC of these values, which are used in a
verification step in the output phase to check for correctness.

238 D. Escudero et al.

Procedure 2: πMult

The procedure is executed for a group of k multiplication gates with input wires
α and β, and output wires γ.

1. All parties hold
– A packed Beaver triple with authentications
(�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1).
– A random degree-(n − 1) packed Shamir sharing [λγ]n−1 with MACs

{〈Δ · λγi〉}k
i=1.

– Additive sharings {〈Δ · (λαi − ai)〉, 〈Δ · (λβi − bi)〉}k
i=1.

And P1 learns
– μα = vα − λα , μβ = vβ − λβ from the previous layers;
– λα − a, λβ − b received from FPrepMal.

2. P1 locally computes vα −a = μα +λα −a. Similarly, P1 locally computes
vβ − b. Then P1 distributes shares of [vα − a]k−1 and [vβ − b]k−1 to all
parties.

3. For all i ∈ {1, . . . , k}, all parties locally compute 〈θαi〉 and 〈θβi〉 as follows.
(a) Recall that all parties have computed additive sharings of the MACs

of the μ values for output wires of multiplication gates and input gates
in previous layers. By using these additive sharings, all parties locally
compute 〈Δ · μαi〉, 〈Δ · μβi〉.

(b) Recall that all parties hold 〈Δ · (λαi − ai)〉, 〈Δ · (λβi − bi)〉. They
locally compute 〈Δ · (vαi − ai)〉 = 〈Δ · μαi〉 + 〈Δ · (λαi − ai)〉 and
〈Δ · (vβi − bi)〉 = 〈Δ · μβi〉 + 〈Δ · (λβi − bi)〉.

(c) Also recall that all parties hold [Δ|i]t. All parties locally com-
pute [Δ|i]t ∗ [vα − a]k−1 and transform it to an additive sharing
〈Δ · (vαi − ai)〉. Similarly, all parties locally compute [Δ|i]t∗[vβ −b]k−1

and transform it to an additive sharing 〈Δ · (vβi − bi)〉.
(d) All parties locally compute 〈θαi〉 = 〈Δ · (vαi − ai)〉 − 〈Δ · (vαi − ai)〉

and 〈θβi〉 = 〈Δ · (vβi − bi)〉 − 〈Δ · (vβi − bi)〉.
4. All parties locally compute [μγ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα −

a]k−1 ∗ [b]n−k + [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ]n−1.
5. For all i ∈ {1, . . . , k}, all parties locally compute an additive sharing 〈Δ ·

μγi〉 as follows.
(a) Recall that all parties hold [Δ|i]t from FPrepMal. All parties locally com-

pute [Δ|i]t ∗ [vα − a]k−1 ∗ [vβ − b]k−1 and transform it to an additive
sharing 〈Δ · (vαi − ai) · (vβi − bi)〉.

(b) Recall that all parties hold [Δ ·a]n−k and [Δ ·b]n−k. All parties locally
compute [vα −a]k−1∗ [Δ ·b]n−k+[vβ −b]k−1∗ [Δ ·a]n−k and transform
it to an additive sharing 〈Δ · ((vαi − ai) · bi + (vβi − bi) · ai)〉.

(c) Recall that all parties hold 〈Δ · ci〉 and 〈Δ · λγi〉. All parties locally
compute 〈Δ · μγi〉 = 〈Δ · (vαi − ai) · (vβi − bi)〉 + 〈Δ · ((vαi − ai) · bi +
(vβi − bi) · ai)〉 + 〈Δ · ci〉 − 〈Δ · λγi〉.

6. P1 collects the whole sharing [μγ]n−1 from all parties and reconstructs μγ .

SuperPack: Dishonest Majority MPC 239

4.4 Output Gates and Verification

At the end of the protocol, all parties together check the correctness of the
computation. We first transform the output sharings to sharings that can be
conveniently checked by clients. However, before reconstructing these outputs
to the clients, the parties jointly verify the correctness of the computation by
checking that (1) the sharings distributed by P1 in πMult have the correct degree
≤ k−1, and (2) the underlying secrets are correct, for which the MACs computed
in the online phase are used.

Due to space constraints, we describe the procedure πOutput in detail in the
full version of this paper, including the computation of the output gates, the
verification of the computation (degree and MAC check), and the reconstruction
of the outputs.

4.5 Full Online Protocol

Our final online protocol makes use of the procedures πInput (Procedure 1,
Sect. 4.2) to let the clients distribute their inputs, πMult (Procedure 2, Sect. 4.3)
to process each group of k multiplication gates, and πOutput (Sect. 4.4) to verify
the correctness of the computation and reconstruct output to the clients. πOutput

and the online protocol ΠOnline are presented in detail in the full version. We
prove the following:

Theorem 2. Let c denote the number of servers and n denote the number of
parties (servers). For all 0 < ε ≤ 1/2, protocol ΠOnline instantiates Function-
ality FMPC in the FPrepMal-hybrid model, with statistical security against a fully
malicious adversary who can control up to c clients and t = (1 − ε)n parties
(servers).

Communication Complexity of ΠOnline. Let I and O be the number of input
wires and output wires, and assume that each client owns a number of input and
output gates that is a multiple of k. We assume for simplicity that n divides
each of these terms, and also that n divides the number of multiplication gates
in each layer. Let us also denote by |C| the number of multiplication gates in the
circuit C. The total communication complexity is given by 4

ε · (I + O) + 6
ε · |C|,

ignoring small terms that are independent of I, O and |C|.

5 Circuit-Dependent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality for the circuit-
dependent preprocessing phase, FPrepMal, presented as Functionality 1. Recall
that k = (n − t + 1)/2. For simplicity, we only focus on the scenario where
t ≥ n/2.

We realize FPrepMal by using a circuit-independent functionality, FPrepIndMal,
which is described below.

240 D. Escudero et al.

Functionality 2: FPrepIndMal

1. Setting Authentication Keys: FPrepIndMal samples a random value
Δ. Then FPrepIndMal samples k random degree-t Shamir sharings
([Δ|1]t, . . . , [Δ|k]t) and distributes the shares to all parties.

2. Preparing Random Packed Sharings: For each output wire α of an
input gate or a multiplication gate in the circuit C, FPrepIndMal samples a
random value as λα and computes λα · 1, where 1 = (1, . . . , 1) ∈ F

k. Then
FPrepIndMal samples

– a random degree-(n − k) packed Shamir sharing [λα · 1]n−k,
– and a random additive sharing 〈Δ · λα〉,

and distributes the shares to all parties.
3. Preparing Packed Beaver Triples with Authentications: For each

group of k multiplication gates, FPrepIndMal samples a random packed Beaver
triple with authentications as follows:
(a) FPrepIndMal samples two random vectors a, b ∈ F

k
p and computes Δ·a, Δ·

b. Then FPrepIndMal samples two pairs of random degree-(n − k) packed
Shamir sharings �a�n−k = ([a]n−k, [Δ · a]n−k), �b�n−k = ([b]n−k, [Δ ·
b]n−k).

(b) FPrepIndMal computes c = a ∗ b and Δ · c. Then FPrepIndMal samples a ran-
dom degree-(n−1) packed Shamir sharing [c]n−1. For all i ∈ {1, . . . , k},
FPrepIndMal samples a random additive sharing 〈Δ · ci〉.

FPrepIndMal distributes the shares of (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k
i=1)

to all parties.
4. Preparing Random Masked Sharings for Multiplication Gates:

For each group of k multiplication gates, FPrepIndMal sets o(1) = o(2) =
o(3) = 0 ∈ F

k. Then FPrepIndMal samples three random degree-(n−1) packed
Shamir sharings [o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1 and distributes the shares to

all parties.
5. Preparing Random Sharings for Input and Output Gates: For each

group of k input gates or output gates, FPrepIndMal prepares the following
random sharings.
(a) FPrepIndMal prepares a random degree-(n − 1) packed Shamir sharing of

0 ∈ F
k, denoted by [o]n−1, in the same way as Step 4.

(b) FPrepIndMal also prepares a random packed Beaver triple with authenti-
cations (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1) in the same way as Step
3. Later, we will view b as an authentication key and c as the MAC of
a. This allows the input holder to verify the correctness of a.

Corrupted Parties: When FPrepIndMal prepares random sharings, corrupted
parties can choose their shares. FPrepIndMal then samples the random sharings
based on the secret it generated and the shares chosen by the corrupted parties.

To instantiate the circuit-dependent preprocessing functionality FPrepMal

using the circuit-independent preprocessing FPrepIndMal, we follow the idea in [15].
We describe the protocol ΠPrepMal below.

SuperPack: Dishonest Majority MPC 241

Protocol 3: ΠPrepMal

1. All parties invoke FPrepIndMal.
2. Setting Authentication Keys: All parties use {[Δ|i]t}k

i=1 generated in
FPrepIndMal.

3. Preparing Packed Beaver Triples with Authentications: All parties
use the packed Beaver triples with authentications prepared in FPrepIndMal.

4. Distributing λα − a and λβ − b to P1: In FPrepIndMal, for each output
wire α of an input gate or a multiplication gate, all parties obtain a random
degree-(n − k) packed Shamir sharing with authentication in the form of
([λα · 1]n−k, 〈Δ · λα〉). All parties locally compute ([λα · 1]n−k, 〈Δ · λα〉) for
every wire α in the circuit.
For each group of multiplication gates, let α, β denote the batch
of first input wires and that of the second input wires respec-
tively. Let (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1) be the packed
Beaver triple with authentications associated with these gates. Let
([o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1) be the random degree-(n−1) packed Shamir

sharings of 0 prepared in FPrepIndMal. All parties run the following steps:
(a) All parties locally compute [λα − a]n−1 =

(∑k
i=1 ei ∗ [λαi · 1]n−k

)
−

[a]n−k + [o(1)]n−1 and send their shares to P1.
(b) P1 reconstructs λα − a.
(c) For all i ∈ {1, . . . , k}, all parties locally transform [Δ · a]n−k to an

additive sharing 〈Δ · ai〉. Then all parties locally compute 〈Δ · (λαi −
ai)〉 = 〈Δ·λαi〉−〈Δ·ai〉. All parties locally refresh the obtained additive
sharing.a As a result, all parties hold a random additive sharing of
Δ · (λαi − ai).

(d) Repeat the above steps for λβ − b using [o(2)]n−1.
5. Preparing Authenticated Packed Sharings for Multiplication

Gates: For each group of multiplication gates with output wires γ,
let ([o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1) be the random degree-(n − 1) packed

Shamir sharings of 0 prepared in FPrepIndMal. Recall that all parties hold
{([λγi · 1]n−k, 〈Δ · λγi〉)}k

i=1.
All parties locally compute [λγ]n−1 =

(∑k
i=1 ei ∗ [λγi · 1]n−k

)
+ [o(3)]n−1.

6. Preparing Random Sharings for Input and Output Gates: For
each group of k input gates or output gates, let α denote the output wires
of these k input gates or the input wires of these k output gates. Recall
that all parties obtain [o]n−1 and (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1) in
FPrepIndMal.
Also recall that all parties hold {[λαi ·1]n−k, 〈Δ·λαi〉}k

i=1. All parties locally
compute [λα]n−1 =

(∑k
i=1 ei ∗ [λαi · 1]n−k

)
+ [o]n−1.

a We will discuss how parties locally refresh an additive sharing in the full
version.

Lemma 1. Protocol ΠPrepMal securely computes FPrepMal in the FPrepIndMal-hybrid
model against a malicious adversary who controls t out of n parties.

242 D. Escudero et al.

Lemma 1 is proven in the full version of this paper.

Communication Complexity of ΠPrepMal. The only communication in Pro-
tocol ΠPrepMal (ignoring calls to ΠPrepIndMal) happens in Step 4a. This amounts
to 2(n − 1) shares sent to P1, per group of k multiplication gates, so 2n−2

k =
4n−4
ε·n+2 ≤ 4

ε per multiplication gate.

6 Circuit-Independent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality FPrepIndMal for
the circuit-independent preprocessing phase. Recall that k = (n − t + 1)/2. For
simplicity, we only focus on the scenario where t ≥ n/2. Due to space constrains,
part of the procedures we use to instantiate FPrepIndMal appear in the full version
of this paper. Here, we focus on the fundamental aspects of the instantiation.
Recall that FPrepIndMal is in charge of generating the following correlations:

1. The global random key [Δ|1]t, . . . , [Δ|k]t;
2. Shamir sharings [λα · 1]n−k and additive sharings 〈Δ · λα〉 for every wire α;
3. A tuple (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1)) and shares of zero [o(1)]n−1,
[o(2)]n−1, [o(3)]n−1 for every group of k multiplication gates;

4. A tuple (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k
i=1)) and a share of zero [o]n−1 for

every group of k input or output gates.

In this section we will focus our attention on how to generate the packed
Beaver triples (�a�n−k, �b�n−k, ([c]n−1, {〈Δ · ci〉}k

i=1)). All of the remaining cor-
relations are discussed in full detail in the full version of this paper.

Building Blocks: OLE and VOLE. It is known that protocols in the dis-
honest majority setting require computational assumptions. In our work, these
appear in the use of oblivious linear evaluation. Here, we make use of two func-
tionalities, FnVOLE and Fprog

OLE , which sample OLE correlations as follows. We
consider an expansion function Expand : S → F

m
p with seed space S and out-

put length m, ultimately corresponding to the amount of correlations we aim at
generating.

– Fprog
OLE is a two-party functionality such that, on input seeds sa from party PA

and sb from party PB , samples v ← F
m
p , and outputs w = u ∗ x − v to PA

and v to PB. Here, u = Expand(sa) and v = Expand(sb). Notice that in this
functionality the parties can choose their inputs (at least, choose their seeds).

– FnVOLE is an n-party functionality that first distributes Δi ← F to each party
Pi in an initialize phase, and then, to sample m correlations, the functionality
sends si, (wi

j ,v
i
j)j �=i to each party Pi, where si is a uniformly random seed,

vi
j ← F

m
p , and wi

j = ui · Δj − vj
i , and ui = Expand(si). Notice that in this

functionality, the parties do not choose their inputs (seeds), but rather, the
functionality samples the seeds and sends them to the parties.

SuperPack: Dishonest Majority MPC 243

The functionalities above are presented in full detail in the full version of
this paper. At a high level, FnVOLE is used to generate authenticated sharings
of a uniformly random value, and Fprog

OLE , which allows the parties to set theit
inputs, is used to secure multiply two already-shared secret values. FnVOLE can
be instantiated using pseudo-random correlator generators, as suggested in [25].
On the other hand, for Fprog

OLE we can use the implementation from [25]. As we
are using exactly the same functionalities as in [25], we refer the reader to that
work for instantiations and complexity measures.

Omitted Procedures. For our triple generation protocol we will make use of
a series of procedures that are described in full detail in the full version of this
paper. These procedures are the following:

– πRandSh: this procedure generates sharings (under some secret-sharing scheme,
which will be clear from context) of uniformly random values. For this, the
trick of using a Vandermonde matrix for randomness extraction from [13] is
used.

– πDegReduce: this procedure takes as input a sharing [u]n−1 and outputs [u]n−k.
This is achieved by using the trick of masking with a random value [r]n−1,
opening, and unmasking with [r]n−k. This random pair is generated using
πRandSh.

– πAddTran: this procedure takes as input sharings (〈Δ · u1〉, . . . , 〈Δ · uk〉) and
converts them to [Δ · u]n−k. Once again, the trick of masking with a ran-
dom sharing 〈r1〉, . . . , 〈rk〉, opening, and unmasking with [r], is used. The
sharing [r] is obtain using πRandSh, and each 〈ri〉 can be derived from it non-
interactively.

– πMACKey: this procedure enables the parties to obtain individual Shamir shar-
ings of the global MAC key [Δ|1]t, . . . , [Δ|k]t, starting from additive shares of
it 〈Δ〉 which are obtained using FnVOLE. This is done by using the standard
trick of masking with a random value 〈r〉, opening, and unmasking with each
[r|i]t. These random sharings are obtained using πRandSh.

– πAuth: this procedure takes as input sharings (〈u1〉, . . . , 〈uk〉) to ([u]n−1, {〈Δ ·
ui〉}k

i=1). The trick here is to mask with 〈r1〉, . . . , 〈rk〉, open, and adding
[r]n−1 to obtain [u]n−1. The authenticated part can be obtained by first
multiplying locally by each [Δ|i]t and then adding each 〈Δ · ri〉. The pair
([r]n−1, {〈Δ · ri〉}k

i=1) is produced using πRandSh.

Preparing Packed Beaver Triples with Authentications. The procedure
to generate packed Beaver triples with authentications, πTriple, is described below.
This protocol calls πDegReduce twice, πAddTran twice, and πAuth once per triple.

244 D. Escudero et al.

Procedure 4: πTriple

Initialization: All parties run the following initialization step only once.

1. Each Pi calls FnVOLE with input Init and receives Δi.
2. All parties invoke πRandSh to prepare random sharings {[r|i]t}k

i=1 and then
invoke πMACKey and obtain {[Δ|i]t}k

i=1.

Generation:

1. Each Pi calls FnVOLE twice with input Extend and receives the seeds
si

a, si
b. Use the outputs to define degree-(n − 1) packed Shamir sharings

{[a�]n−1}m
�=1, {[b�]n−1}m

�=1, where m is the output length of the expan-
sion function defined in FnVOLE, such that the i-th shares of {[a�]n−1}m

�=1

are Expand(si
a), and the i-th shares of {[b�]n−1}m

�=1 are Expand(si
b). All

parties locally compute and refresh {(〈Δ · a�,1〉, . . . , 〈Δ · a�,k〉)}m
�=1 and

{(〈Δ · b�,1〉, . . . , 〈Δ · b�,k〉)}m
�=1.

2. Every ordered pair (Pi, Pj) calls Fprog
OLE with Pi sending si

a and Pj sending
sj

b. Fprog
OLE sends back ui,j to Pi and vj,i to Pj such that ui,j + vj,i =

Expand(si
a)∗Expand(sj

b). All parties locally compute {(〈c�,1〉, . . . , 〈c�,k〉)}m
�=1

where c� = a� ∗ b�.
3. All parties invoke πRandSh to prepare m random sharings in the form of

([r]n−k, [r]n−1). For all � ∈ {1, . . . , m}, consume a pair of random sharings
([r]n−k, [r]n−1) and invoke πDegReduce to transform [a�]n−1 to [a�]n−k.
Repeat this step for {[b�]n−1}m

�=1.
4. All parties invoke πRandSh to prepare m random sharings in the form of

[r]n−k. For all � ∈ {1, . . . , m}, consume a random sharing [r]n−k and invoke
πAddTran to transform (〈Δ · a�,1〉, . . . , 〈Δ · a�,k〉) to [Δ · a�]n−k.
Repeat this step for {(〈Δ · b�,1〉, . . . , 〈Δ · b�,k〉)}m

�=1.
5. All parties follow Step 1 to prepare m random sharings with authenti-

cations in the form of ([r]n−1, {〈Δ · ri〉}k
i=1). For all � ∈ {1, . . . , m}, con-

sume a random sharing ([r]n−1, {〈Δ ·ri〉}k
i=1) and invoke πAuth to transform

(〈c�,1〉, . . . , 〈c�,k〉) to ([c�]n−1, {〈Δ · c�,i〉}k
i=1).

We remark that the triples produced by πTriple may not be correct, but this
can be checked by running a verification step in which the parties generate an
extra triple and “sacrifice” it in order to check for correctness. This is described
in the full version, where three procedures πSacrifice, πCheckZero and πVerifyDeg to
perform this check are introduced.

Communication Complexity of πTriple. This is derived as follows

– (Step 3) Two calls to πRandSh to generate two pairs ([r]n−k, [r]n−1), which
costs 2n, and two calls to πDegReduce, which costs 2(2n − k). These sum up to
6n − 2k

– (Step 4) Two calls to πRandSh to generate [r]n−k and two calls to πAddTran.
These add up to 2(n/2) + 2(k · (n − 2) + n + 1).

– (Step 5) One call to πAuth, which is k · (n − 2) + n + 1.

The above totals k · (3n − 8) + 10n + 3.

SuperPack: Dishonest Majority MPC 245

Remark 1 (On the output size of Fprog
OLE and FnVOLE). We make the crucial obser-

vation that, in order to obtain m packed multiplication triples, we require the
Expand function used in Functionalities Fprog

OLE and FnVOLE to output m field
elements. However, since each such packed triple is used for a group of k multi-
plication gates, this effectively means that, if there are |C| multiplication gates
in total, we only require Expand to output |C|/k ≈ 2|C|/(εn) correlations. In
contrast, as we will see in the full version of this paper, the best prior work Tur-
bospeedz [3], when instantiated with the preprocessing from Le Mans [25], would
require |C| correlations from the FnVOLE and Fprog

OLE . As a result, we manage to
reduce by a factor of k the expansion requirements on VOLE/OLE techniques,
which has a direct effect on the resulting efficiency since this allows us to choose
better parameters for the realizations of Fprog

OLE and FnVOLE. We do not explore
these concrete effects in efficiency as it goes beyond the scope of our work, but
we refer the reader to [25] where an instantiation of Fprog

OLE and a discussion on
PCG-based FnVOLE is presented.

Final Circuit-Independent Preprocessing Protocol. In the full version of
this paper, we present the final protocol, ΠPrepIndMal, that puts together the pieces
we have discussed so far, together with the techniques to generate the remain-
ing correlations, in order to instantiate Functionality FPrepIndMal. The proof of
the lemma below will be available in the full version. We also analyze the com-
munication complexity of ΠPrepIndMal and conclude that, per multiplication gate
(ignoring terms that are independent of the circuit size), 6n + 35

ε elements are
required.

Lemma 2. Protocol ΠPrepIndMal securely computes FPrepIndMal in the {Fprog
OLE ,

FnVOLE, FCommit, FCoin}-hybrid model against a malicious adversary who con-
trols t out of n parties.

7 Implementation and Experimental Results

We have fully implemented the three phases of SuperPack, ΠOnline, ΠPrepMal

and ΠPrepIndMal, only ignoring the calls to the Fprog
OLE and FnVOLE functionalities

for the implementation of ΠPrepIndMal. In this section we discuss our experimental
results.

Implementation Setup. We implement SuperPack by using as a baseline the
code of TurboPack [15].56 As TurboPack, our program is written in C++
with no dependencies beyond the standard library. Our implementation includes
fully functional networking code. However, for the experiments, we deploy the
protocol as multiple processes in a single machine, and emulate real network
conditions using the package netem7, which allows us to set bandwidth and
5 TurboPack is available at https://github.com/deescuderoo/turbopack.
6 SuperPack is available at https://github.com/ckweng/SuperPack.
7 https://wiki.linuxfoundation.org/networking/netem.

https://github.com/deescuderoo/turbopack
https://github.com/ckweng/SuperPack
https://wiki.linuxfoundation.org/networking/netem

246 D. Escudero et al.

Table 2. Running times in seconds of SuperPack across its three different phases,
for different circuit widths, number of parties, and values of ε. Each cell is a triple
corresponding to the runtimes of the online phase, circuit-dependent offline phase, and
circuit-independent offline phase (ignoring OLE calls), respectively. All the circuits
have depth 10.

Width # Parties Percentage of corrupt parties
90% 80% 70% 60%

100 16 0.63, 0.07, 1.22 0.56, 0.06, 1.26 0.33, 0.06, 1.25 0.34, 0.06, 1.26
32 0.47, 0.11, 2.86 0.47, 0.11, 2.90 0.75, 0.11, 2.86 0.62, 0.09, 2.87
48 0.35, 0.18, 5.77 0.63, 0.16, 6.41 0.68, 0.15, 6.33 0.68, 0.13, 6.01

1k 16 0.44, 0.21, 2.10 0.45, 0.16, 2.14 0.45, 0.20, 2.1 0.66, 0.16, 2.15
32 0.50, 0.69, 8.38 0.61, 0.63, 9.08 0.58, 0.54, 9.05 0.64, 0.62, 8.78
48 0.59, 1.46, 21.31 0.97, 1.15, 25.93 0.90, 1.05, 24.70 0.69, 1.01, 24.20

10k 16 1.74, 2.03, 14.10 1.49, 1.64, 13.36 1.45, 1.64, 13.39 1.28, 1.43, 12.44
32 2.36, 6.25, 70.71 2.03, 5.60, 73.98 2.26, 4.80, 70.47 2.32, 4.45, 67.16
48 3.24, 12.48, 196.97 3.19, 10.39, 238.32 3.49, 9.49, 227.80 4.14, 7.87, 201.17

100k 16 11.84, 15.39, 147.03 9.60, 12.46, 140.01 9.63, 12.56, 140.18 8.74, 10.68, 129.89
32 19.84, 64.61, 714.02 17.46, 46.56, 749.22 18.39, 38.70, 716.26 19.18, 35.03, 682.54
48 27.62, 124.22, 1978.42 27.56, 103.55, 2374.39 31.55, 92.74, 2256.70 36.98, 78.55, 1998.26

latency constraints. We use the same machine as in [15] for the experiments,
namely an AWS c5.metal instance with 96 vCPUs and 192 GiB of memory. For
our protocol, we use a finite field F = Fp where p = 261 − 1. We explore how the
performance of our protocol is affected by the parameters including the number
of parties n, the width and depth of the circuit, the network bandwidth and the
values of ε such that t = n(1 − ε) is the threshold for corrupted parties.

End-to-End Runtimes. We first report the running times of our SuperPack
protocol for each of the three phases: circuit-independent preprocessing, circuit-
dependent preprocessing, and online phase. The results are given in Table 2. In
our experiments, we show the running time of our protocol for different param-
eters. We throttle the bandwidth to 1Gbps and network latency to 1ms to sim-
ulate a LAN setting. We generate four generic 10-layer circuits of widths 100,
1k, 10k and 100k. For each circuit, we benchmark the SuperPack protocol of
which the number of parties are chosen from {16, 32, 48}. After fixing the circuit
and parties, the percentage of corrupt parties varies from 60%, 70%, 80% and
90%. Generally the running time increases as the width and number of parties
increase. As demonstrated in Table 2, the majority of running time is incurred by
the circuit-independent preprocessing. For n = 48 and width larger than 1k, the
online phase only occupies less than 5% of the total running time. Furthermore,
it is important to observe that the runtimes of the online and circuit-dependent
offline phases do not grow at the same rate as the runtimes for the circuit-
independent offline phase. This is consistent with what we expect: as can be
seen from Table 1, the communication in the first two phases is independent of
the number of parties for a given ε, which is reflected in the low increase rate
in runtimes for these phases (there is still a small but noticeable growth, but

SuperPack: Dishonest Majority MPC 247

this is not surprising since even though communication is constant, computation
is not). In contrast, the communication in the circuit-independent offline phase
depends linearly on the number of parties, which impacts runtimes accordingly.

Experimental Comparison to Turbospeedz. Now we compare the online phase
of our protocol and compare it against that of Turbospeedz [3],8 for a varying
number of parties n and parameter ε. We fix the circuit to have width 100k and
depth 10, but we vary the bandwidth in {500, 100, 50, 10}mbps. The results are
given in Table 3. Notice that we report the improvement factor of our online
phase with respect to that of Turbospeedz. The concrete runtimes will be avail-
able in the full version. We also report the communication factors between our
protocol and Turbospeedz, for reference.

Table 3 shows interesting patterns. First, as expected (and as analyzed theo-
retically in the full version), our improvement factor with respect to Turbospeedz
improves (i.e. increases) as the number of parties grows—since in this case com-
munication in Turbospeedz grows but in our case remains constant—or as the
percentage of corruptions decreases—since in this case we can pack more secrets
per sharing. Now, notice the following interesting behavior. The last rows next
to the “comm. factor” rows represent the improvement factor of our online phase
with respect to Turbopeedz, in terms of communication. In principle, this is the
improvement factor we would expect to see in terms of runtimes. However, we
observe that the expected factor is only reasonably close to the experimental
ones for low bandwidths such as 10, 50 and 100 mbps. For the larger bandwidth
of 500 mbps, we see that the experimental improvement factors are much lower
than the ones we would expect, and in fact, there are several cases where we
expect our protocol to be even slightly better, and instead it performs worse.

The behavior above can be explained in different ways. First, we notice that
it is not surprising that our improvement factor increases as the bandwidth
decreases, since in this case the execution of the protocol becomes communica-
tion bounded, and computation overhead becomes negligible. In contrast, when
the bandwidth is high, communication no longer becomes a bottleneck, and com-
putation plays a major role. Here is where our protocol is in a slight disadvantage:
in SuperPack, the parties (in particular P1) must perform polynomial interpo-
lation in a regular basis, while in Turbospeedz these operations correspond to
simple field element multiplications, which are less expensive. We remark that
our polynomial interpolation is very rudimentary, and a more optimized imple-
mentation (e.g. using FFTs) may be the key to bridging the gap between our
protocol and Turbospeedz, even for the case when bandwidth is large. Finally,
we remark that SuperPack remains the best option even with high bandwidth
when the fraction of honest parties is large enough.

8 We implemented the online phase of Turbospeedz in our framework for a fair com-
parison.

248 D. Escudero et al.

Table 3. Improvement factors of our online protocol with respect to the online phase in
Turbospeedz, for a varying number of parties, ε and network bandwidth. The network
delay is 1ms for the simulation of LAN network. The number represents how much
better (or worse) our online phase is with respect to that of Turbospeedz. The circuits
have depth 10 and width 10k. In the final five rows we show the corresponding factors
but measuring communication complexity, instead of runtimes.

Bandwidth # Parties Percentage of corrupt parties
90% 80% 70% 60%

500 mbps 16 0.51 0.44 0.42 0.50
32 0.55 0.68 0.68 0.72
48 0.58 0.87 1.00 1.14
64 0.75 0.92 1.30 1.22
80 0.95 1.27 1.57 1.40

100 mbps 16 0.97 1.08 1.05 1.20
32 1.43 1.67 1.88 1.95
48 1.51 2.38 2.78 3.07
64 2.08 2.95 3.37 3.47
80 2.51 3.88 4.57 4.56

50 mbps 16 1.08 1.31 1.31 1.45
32 1.57 1.99 2.43 2.44
48 1.73 2.88 3.43 3.76
64 2.24 3.60 4.55 4.34
80 2.76 4.51 5.30 5.59

10 mbps 16 1.10 1.40 1.39 1.53
32 1.58 2.00 2.53 2.68
48 1.81 3.04 3.61 3.94
64 2.31 3.60 4.73 5.28
80 2.91 4.56 5.73 6.22

Comm. factor 16 0.48 0.85 1.12 1.28
32 0.96 1.71 2.24 2.56
48 1.44 2.56 3.36 3.84
64 1.92 3.41 4.48 5.12
80 2.4 4.27 5.6 6.4

Acknowledgments. This paper was prepared in part for information purposes by
the Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates
(“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any security, financial instrument,

SuperPack: Dishonest Majority MPC 249

financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2022 JP Morgan Chase & Co. All rights reserved.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization, pp. 420–432
(1992). https://doi.org/10.1007/3-540-46766-1_34

2. Beck, G., Goel, A., Jain, A., Kaptchuk, G.: Order-C secure multiparty computation
for highly repetitive circuits, pp. 663–693 (2021). https://doi.org/10.1007/978-3-
030-77886-6_23

3. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online SPDZ!
Improving SPDZ using function dependent preprocessing, pp. 530–549 (2019).
https://doi.org/10.1007/978-3-030-21568-2_26

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), pp. 1–10
(1988). https://doi.org/10.1145/62212.62213

5. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation, pp. 169–188 (2011). https://doi.org/10.1007/978-3-
642-20465-4_11

6. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs, pp. 67–97 (2019). https://doi.
org/10.1007/978-3-030-26954-8_3

7. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via
distributed zero-knowledge proofs, pp. 244–276 (2020). https://doi.org/10.1007/
978-3-030-64840-4_9

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols, pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

9. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries,
pp. 34–64 (2018). https://doi.org/10.1007/978-3-319-96878-0_2

10. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model, pp. 473–503 (2019). https://doi.org/10.1007/
978-3-030-17656-3_17

11. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation
and the computational overhead of cryptography, pp. 445–465 (2010). https://doi.
org/10.1007/978-3-642-13190-5_23

12. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits, pp.
1–18 (2013). https://doi.org/10.1007/978-3-642-40203-6_1

13. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty compu-
tation, pp. 572–590 (2007). https://doi.org/10.1007/978-3-540-74143-5_32

14. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption, pp. 643–662 (2012). https://doi.org/10.1007/
978-3-642-32009-5_38

15. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y.: TurboPack: honest majority
MPC with constant online communication, pp. 951–964 (2022). https://doi.org/10.
1145/3548606.3560633

16. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract), pp. 699–710 (1992). https://doi.org/10.1145/129712.129780

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/129712.129780

250 D. Escudero et al.

17. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits, pp. 721–741 (2015). https://
doi.org/10.1007/978-3-662-48000-7_35

18. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: Proceedings of
the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 495–504.
STOC 2014, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2591796.
2591861

19. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005). https://doi.org/10.1007/s00145-005-0319-z

20. Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS: efficient
and scalable MPC in the honest majority setting, pp. 244–274 (2021). https://doi.
org/10.1007/978-3-030-84245-1_9

21. Goyal, V., Polychroniadou, A., Song, Y.: Unconditional communication-efficient
MPC via hall’s marriage theorem, pp. 275–304 (2021). https://doi.org/10.1007/
978-3-030-84245-1_10

22. Goyal, V., Polychroniadou, A., Song, Y.: Sharing transformation and dishonest
majority MPC with packed secret sharing, pp. 3–32 (2022). https://doi.org/10.
1007/978-3-031-15985-5_1

23. Goyal, V., Song, Y.: Malicious security comes free in honest-majority MPC. Cryp-
tology ePrint Archive, Report 2020/134 (2020). https://eprint.iacr.org/2020/134

24. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority, pp. 259–276 (2017).
https://doi.org/10.1145/3133956.3133999

25. Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest majority,
pp. 719–749 (2022). https://doi.org/10.1007/978-3-031-15802-5_25

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-031-15985-5_1
https://doi.org/10.1007/978-3-031-15985-5_1
https://eprint.iacr.org/2020/134
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

Detect, Pack and Batch: Perfectly-Secure
MPC with Linear Communication

and Constant Expected Time

Ittai Abraham1, Gilad Asharov2, Shravani Patil3(B), and Arpita Patra3

1 VMware Research, 5 Sapir St., 4685209 Herzliya, Israel
iabraham@vmware.com

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Gilad.Asharov@biu.ac.il

3 Indian Institute of Science, Bangalore, India
{shravanip,arpita}@iisc.ac.in

Abstract. We prove that perfectly-secure optimally-resilient secure
Multi-Party Computation (MPC) for a circuit with C gates and depth
D can be obtained in O((Cn+n4+Dn2) log n) communication complex-
ity and O(D) expected time. For D � n and C ≥ n3, this is the first
perfectly-secure optimal-resilient MPC protocol with linear communi-
cation complexity per gate and constant expected time complexity per
layer.

Compared to state-of-the-art MPC protocols in the player elimina-
tion framework [Beerliova and Hirt TCC’08, and Goyal, Liu, and Song
CRYPTO’19], for C > n3 and D � n, our results significantly improve
the run time from Θ(n + D) to expected O(D) while keeping communi-
cation complexity at O(Cn log n).

Compared to state-of-the-art MPC protocols that obtain an expected
O(D) time complexity [Abraham, Asharov, and Yanai TCC’21], for
C > n3, our results significantly improve the communication complexity
from O(Cn4 log n) to O(Cn log n) while keeping the expected run time
at O(D).

One salient part of our technical contribution is centered around a new
primitive we call detectable secret sharing. It is perfectly-hiding, weakly-
binding, and has the property that either reconstruction succeeds, or
O(n) parties are (privately) detected. On the one hand, we show that
detectable secret sharing is sufficiently powerful to generate multiplica-
tion triplets needed for MPC. On the other hand, we show how to share
p secrets via detectable secret sharing with communication complexity
of just O(n4 log n + p log n). When sharing p ≥ n4 secrets, the commu-
nication cost is amortized to just O(1) per secret.

Our second technical contribution is a new Verifiable Secret Shar-
ing protocol that can share p secrets at just O(n4 log n + pn log n) word
complexity. When sharing p ≥ n3 secrets, the communication cost is
amortized to just O(n) per secret. The best prior required O(n3) com-
munication per secret.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 251–281, 2023.
https://doi.org/10.1007/978-3-031-30617-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_9

252 I. Abraham et al.

1 Introduction

In the setting of secure multiparty computation (MPC), n distrustful parties
jointly compute a function on their inputs while keeping their inputs private.
Security should be preserved even in the presence of an external entity that
controls some parties and coordinates their behavior. We consider in this paper
the most demanding setting: perfect security with optimal resilience. Perfect
security means that the adversary is all-powerful and that the protocol has zero
probability of error. Optimal resilience means that the number of corruptions is
at most t < n/3. Such protocols come with desirable properties: They guarantee
adaptive security (with some caveats [5,17]) and remain secure under universal
composition [34].

The seminal protocols of Ben-Or, Goldwasser, and Wigderson [13], and
Chaum, Crépeau and Damg̊ard [19] led the foundations of this setting. Since
then, there are, in general, two families of protocols:

1. Efficient but slow: These protocols [12,30,32] ([12] test-of-time award) have
O(n log n) communication complexity per multiplication gate. Still, the run-
ning time of these protocols is at least Θ(n) rounds, even if the depth of the
circuit is much smaller D � n. Specifically:

Theorem 1.1. For an arithmetic circuit with C multiplication gates and
depth D there exists a perfectly-secure, optimally-resilient MPC protocol with
O(n5 log n + Cn log n) bits communication complexity and Ω(n + D) expected
number of rounds.

The protocol requires O(n3 log n + Cn log n) bits of point-to-point communi-
cation and n sequential invocations of broadcast of O(log n) bits each, with
Ω(n + D) rounds. Using the broadcast implementation of [1], this becomes the
complexity of Theorem 1.1. Alternatively, using the implementation of [15,23],
the protocol can be more efficient, but even more slower: O(n3 log n + Cn log n)
bits communication complexity and Ω(n2 + D) number of rounds.

2. Fast but not efficient: This line of protocols [2,7,13,19,24,29] run at O(D)
expected number of rounds, but require Ω(n4 log n) communication complex-
ity per multiplication gate.

Theorem 1.2. For an arithmetic circuit with C multiplication gates and
depth D there exists a perfectly-secure, optimally-resilient MPC protocol with
Ω(Cn4 log n) communication complexity and O(D) expected number of rounds.

In the broadcast hybrid model, the protocol requires O(n3 log n) bits of commu-
nication complexity over point-to-point channels and O(n3 log n) bits broadcast,
in O(D) number of rounds. Theorem 1.2 reports the communication complexity
using the broadcast implementation of [1]. Using [15,23] for implementing the
broadcast, the number of rounds is increased to Ω(n + D).

Detect, Pack and Batch 253

Our Main Result

Our main result is that the best of both families is possible to achieve simultane-
ously. For the first time, we provide a perfectly-secure, optimally-resilient MPC
protocol that has both O(n log n) communication complexity per multiplication
gate and O(D) expected time complexity.

Theorem 1.3 (Main Result). For a circuit with C multiplication gates and
depth D there exists a perfectly-secure, optimally-resilient MPC protocol with
O((Cn+Dn2+n4) log n) communication complexity and O(D) expected number
of rounds.

In the broadcast-hybrid model, the total communication complexity over point-
to-point is O((Cn + Dn2 + n4) log n), and each party has to broadcast at most
O(n2 log n) bits. Using [1] for implementing the broadcast, we obtain Theo-
rem 1.3. Compared to [12,30], for D � n, our result provides up to an O(n)
improvement in round complexity while keeping the same linear communication
complexity (and also improving the communication complexity for C ∈ o(n4)).
Compared to [2], for C > n3, our result provides an O(n3) improvement(!) in
the communication complexity while keeping the same O(D) expected round
complexity.

We remark that in many practical settings, a large set of parties may want
to compute a shallow depth circuit in a robust manner. For instance, consider
a network with 200ms latency and channels of 1Gbps, and consider a highly
parallel circuit with 1M gates, depth D = 10, and n = 200 parties. Then, the
round complexity of our protocol is O(D), which results in a delay of 10·200ms =
2 s. The delay associated with the communication complexity is smaller: each
party sends or receives (C + Dn + n3) log n bits, which over 1Gbps channel
results in a delay of 0.08 s. In [30], the delay due to the round complexity is
O(n + D), which results in a delay of 210 · 200ms = 42 s, and each party sends
or receives (C + n4) log n bits which over 1Gbps results in a delay of ≈ 14 s. If
we use [15,23] to implement the broadcast, then the round complexity becomes
O(n2 + D) which is ≈ 8000 s. The improvement in the round complexity is
significant in this scenario. Of course, these are only coarse estimations that do
not even take into account the hidden constants in the O notation.

Main Technical Result

Our main result is obtained via several advances in building blocks for perfectly
secure optimally resilient MPC. In our view, the most important and technically
involved contribution is a new primitive called Detectable Secret Sharing. This is
a secret sharing with the following properties: (1) Secrecy: The corrupted parties
cannot learn anything about the secrets after the sharing phase for an honest
dealer; (2) Binding: After the sharing phase (even if the dealer is corrupted),
the secret is well defined by the shares of the honest parties; (3) Reconstruc-
tion or detection: Reconstruction ends up in the well-defined secret, or it might
fail (even if the dealer is honest). However, in the case of failure, there is a

254 I. Abraham et al.

(private) detection of O(n) corrupted parties. Moreover, successful sharing and
reconstruction are guaranteed if the dealer has already detected more than t/2
corrupted parties before the respective phases.

We show that despite the possible failure of the reconstruction, Detectable
Secret Sharing suffices for obtaining our end result for MPC. Most importantly,
we obtain a highly efficient construction for this primitive:

Theorem 1.4 (informal). There exists a detectable secret sharing protocol that
allows sharing p secrets (of log n bits each) with malicious security and opti-
mal resilience with O(n4 log n + p log n) communication complexity and expected
constant number of rounds.

For p ≥ n4, this is O(1) field elements per secret (which is also a field element)!
This matches packed semi-honest secret sharing as in [28]. The theorem holds
for a single dealer; for n dealers, each sharing p secrets in parallel, we get O(1)
field elements per secret starting from p ≥ n3.

Stated differently, we show a detectable secret sharing protocol that can pack
O(n2) secrets (of size log n each) at the cost of O(n2 log n) communication com-
plexity for private channels and each party broadcasts at most O(n log n) bits,
with a strictly constant number of rounds. There are at least two striking features
of our new detectable secret sharing: packing, and batching. First, to the best of
our knowledge, this is the first protocol in the malicious setting that can pack
O(n2) secrets at the cost of O(n2) communication complexity – so an amortized
cost of O(1) per secret over point-to-point channels. Second, our scheme allows
batching – m independent instances with the same dealer require O(mn2 log n)
over point-to-point channels but just O(n log n) broadcast per party in all m
instances combined. To the best of our knowledge, this is the first protocol that
requires a fixed broadcast cost independent of the batching parameter m. By
setting m = p/n2 and combining with the recent broadcast implementation of
Abraham, Asharov, Patil, and Patra [1], we obtain Theorem 1.4 in the point-to-
point channel model and no broadcast.

Note that this primitive is formally incomparable with weak-secret sharing
[36] (where reconstruction needs the help of the dealer but is guaranteed to
succeed when the dealer is honest). On the one hand, our notion seems weaker
as there is no guaranteed validity (no guaranteed reconstruction in case of an
honest dealer). On the other hand, it is not strictly weaker since our notion
ensures mass detection in case of a reconstruction failure. For comparison, the
best known weak-secret sharing [2] requires O(n4 log n) for sharing O(n) secrets
(i.e., O(n3) per secret).

Verifiable Secret Sharing. We also derive (and use) a “strong” secret sharing
(i.e., honest parties always succeed to reconstruct), i.e., in the standard verifiable
secret sharing [20] setting:

Theorem 1.5 (informal). There exists a protocol that allows to secret share p
secrets (of log n bits each) with malicious security and optimal resilience with
O(n4 log n+p ·n log n) communication complexity and expected constant number
of rounds.

Detect, Pack and Batch 255

For p ≥ n3, this is an overhead of O(n) per secret. Previously, the best
known [1] in this setting packs O(n) secrets with O(n4 log n) communication
complexity (an overhead of O(n3) per secret). This is an improvement of O(n2)
over the state-of-the-art. In comparison, the starting point is the VSS of BGW
and Feldman [13,26] requires O(n2 log n) point-to-point and O(n2 log n) broad-
cast, for sharing just a single secret. This results in O(n4 log n) communication
complexity over point-to-point channels and no broadcast, for sharing just a
single secret (an overhead of O(n4)).

Detection. The line of work of [12,30,32] in perfectly-secure MPC is based
on the player elimination framework (introduced by Hirt, Maurer and Przy-
datek [32]). The protocol identifies a set of parties in which it is guaranteed
that one of the players among the set is corrupted, excludes the entire set, and
restarts some part of the protocol. The important aspect here is that all parties
agree on the set, and that honest parties are also “sacrificed” along the way. In
each iteration, the number of parties being excluded is constant. This is a slow
process that leads to the O(n) rounds overhead.

Instead of globally eliminating a set of parties, our approach is to have each
party maintain a local set of conflicted parties, with no global agreement among
parties on who is malicious. Each party can decide which parties to mark as
conflicted while it shares its own secret(s). When an honest party marks enough
corrupt parties as conflicted, its sharing will always be successful. Moreover,
whenever there is a failure in sharing or reconstruction, then there is a mass
detection – O(n) corruptions are identified, either publicly or privately.

To elaborate further, our MPC protocol uses three kinds of detections: (a)
global detection – wherein a set of parties is excluded from the computation.
Unlike [12,30,32], in our case, honest parties are never discarded; (b) public
individual detection – wherein each party has its own conflict set that is publicly
known to all. While a similar mechanism, referred to as ‘dispute control’ has been
used in [11,14,31], these works achieve statistical security in the honest majority
setting with O(n) rounds overhead similar to the player-elimination framework;
(c) private (local) detection – wherein each party has its private conflict set that
it excludes from its local computation. Specifically, an honest party may locally
identify a set conflicts (with corrupted parties) without a mechanism to prove
that it has done so honestly. In our protocol, it can identify O(n) such conflicts
simultaneously in case private reconstruction towards it fails. This allows an
honest party to locally discard the communication from O(n) corrupt parties,
eventually ensuring a successful reconstruction.

1.1 Related Work

Broadcast. Our communication complexity takes into account the cost of
broadcast. In the setting of perfect security, there are two families of proto-
cols for implementing the broadcast: once again – efficient and slow, or fast but
less efficient. The former [15,23] takes O(n) rounds and O(n2 + pn) for broad-
casting a message of p bits. The latter [1] (built upon Feldman and Micali [25],

256 I. Abraham et al.

and Katz and Koo [33]) takes O(1) expected number of rounds and O(n4 + pn)
communication complexity for broadcasting a message of size p bits, i.e., this
is optimal for p > n3 log n. Note that when broadcasting a message of size p,
then since each party is supposed to receive p bits, the minimal possible com-
munication complexity is pn. Moreover, n parties broadcasting messages of size
p bits each takes O(n4 +pn2), i.e., optimal for p > n2 log n. We also remark that
containing strict O(1) number of rounds is impossible [27].

Shunning. Our notion of detectable secret sharing can be viewed as a syn-
chronous analog of the notion of shunning, in which parties either succeed in
their asynchronous verifiable secret sharing or some detection event happens.
In the context of asynchronous verifiable secret sharing, shunning was first sug-
gested by Abraham, Dolev, and Halpern [3] and later improved and extended
to shunning O(n) parties by Bangalore, Choudhury, and Patra [8,9]. However,
unlike our detectable secret sharing, none of these works attain O(1) amortized
communication cost per secret.

2 Technical Overview

In this section, we provide a technical overview of our work. We start in Sect. 2.1
with an overview of our main technical result – our detectable and verifiable
secret sharing schemes. In Sect. 2.2 we overview our MPC result. Most of the
building blocks are based on previous works, and we highlight in the overview the
steps where we made significant improvements. In Sect. 2.3 we overview another
step in the protocol, triplet secret sharing.

2.1 Detectable and Verifiable Secret Sharing

We start this overview with the most basic verifiable secret sharing protocol –
the one by BGW [13]. See also [4,6] for further details. To share a secret s, the
dealer chooses a bivariate polynomial S(x, y) =

∑t
k=0

∑t
�=0 sk,� · xky� of degree

t in both x and y under the constraint that S(0, 0) = s0,0 = s. The share of each
party Pi is the pair of degree-t univariate polynomials S(x, i), S(i, y). The goal
of the verification step is to verify that the shares of all honest parties indeed lie
on a unique bivariate polynomial S(x, y). Let us briefly recall the sharing phase:

1. Sharing: The dealer sends the share (fi(x), gi(y)) = (S(x, i), S(i, y)) to each
party Pi.

2. Pairwise checks: Pi sends to each Pj the two points (fi(j), gi(j)) = (S(j, i),
S(i, j)) = (gj(i), fj(i)). If Pi did not receive from Pj the points it expects to
see (i.e., that agree with fi(x), gi(y)), then it publicly broadcasts a complaint
complaint(i, j, fi(j), gi(j)).

Detect, Pack and Batch 257

3. Publicly resolving the complaints: The dealer checks all complaints; if
some party Pi publicly complains with values that are different than what
the dealer has sent it, then the dealer makes the share of Pi public – i.e., it
broadcasts reveal(i, S(x, i), S(i, y)).

4. If a party Pj sees that (1) all polynomials that the dealer made public agree
with its private shares; (2) its share was not made public; (3) if two parties
Pk and P� both complaint on each other, then the dealer must open one of
them. If all those conditions hold, then Pj is happy with its share, and votes
to accept the dealer. If the shares of Pj were made public, then it re-assigns
fj(x), gj(y) to the publicly revealed ones.

5. If 2t + 1 parties votes to accept the shares, then each party output its share.
Otherwise, the dealer is discarded.

Observe that if the dealer is honest, then during the verification phase the cor-
rupted parties do not learn anything new. Specifically, a party always broadcasts
a complaint with the values that it received from the dealer, and the dealer makes
a share public only if the public complaint does not contain the values that it has
sent that party. Therefore, an honest dealer never makes the shares of an honest
party public. Moreover, all honest parties are happy, and accept the shares.

If the dealer is corrupted, then 2t + 1 parties that voted to accept the dealer
implies that we have a set J ⊆ [n] of at least t+1 honest parties that are happy
with their shares and that their shares were never made public. The shares of
those t + 1 honest parties fully determine a bivariate polynomial of degree-t in
both variables. If some honest party Pj initially held a share that does not agree
with this bivariate polynomial, i.e., does not agree with some Pk for k ∈ J , then
it must be that Pj and Pk both publicly complained, and that the share of Pj

was made public with some new share that agrees with S (if it does not agree
with S, then at least one party in J would have not voted to accept). Therefore,
at the end, all honest parties hold shares of a well-defined bivariate polynomial.

To reconstruct the bivariate polynomial, each party sends to each other party
its pair of polynomials. Since the underlying polynomial is of degree-t, the adver-
sary controls at most t parties, we must have n − t ≥ 2t + 1 correct points and
at most t errors. The Reed-Solomon decoding procedure guarantees that the t
errors can be identified and corrected.

Our Improvements. The above scheme for verifiable secret sharing requires
O(n2 log n) communication over the point-to-point channels, and also the broad-
cast of O(n2 log n) bits. This results in total communication complexity of O(n4

log n) over point-to-point for sharing a single secret. The work of [1] has the
same complexity for sharing O(n) secrets.

For the same communication complexity, we show how to do detectable secret
sharing for O(n4) secrets or to do (standard) verifiable secret sharing for O(n3)
secrets. Looking ahead, we improve the basic scheme in the following aspects,
each giving a factor of O(n2) improvement for our detectable secret sharing:

(1) Packing: The bivariate polynomial S(x, y) in the basic construction
contains only a single secret, located at S(0, 0). This is the best possible when
sharing a bivariate polynomial of degree-t in both x and y: The t shares of the

258 I. Abraham et al.

corrupted parties, together with the secret, fully determine the bivariate poly-
nomial. In our detectable secret sharing scheme, the dealer shares a bivariate
polynomial of degrees greater than t in both x and y. This allows planting O(n2)
secrets. The verification that all parties hold shares on the same bivariate poly-
nomial is much more challenging because the degrees of all the univariate poly-
nomials are greater than t. Nevertheless, we obtain binding with asymptotically
the same cost as the basic scheme, therefore we already obtain an improvement
of O(n2) over the basic scheme.

Moreover, once the degree in both dimensions is greater than t, then recon-
struction might fail because the underlying codeword is of degree greater than
t, and the parties cannot necessarily correct the errors if the adversary does not
provide correct shares. Nevertheless, Reed-Solomon decoding guarantees that
the honest parties can (efficiently) identify whether there is a unique decoding
or not. We use this property to also detect sufficiently many corrupted parties.
This suffices for constructing a detectable secret sharing scheme.

For (standard) verifiable secret sharing, we must make the degree in at least
one of the dimensions to be at most t, to allow to always succeed in correcting
errors. This allows us to pack “only” O(n) secrets and not O(n2).

(2) Batching: The verification step of [13] requires broadcasting O(n2) field
elements by the dealer, and O(n) field elements by each party. Hence m inde-
pendent instances (with the same dealer) require broadcasting of O(mn2) field
elements. First, we balance the protocol such that each party broadcasts at most
O(n) field elements, including the dealer. Second, by designing a sharing protocol
that is tailored for achieving cheap batching, the broadcast cost for m indepen-
dent instances remains the same as a single instance, i.e., it requires each party
to broadcast O(n log n) bits in all m executions combined. By setting m = O(n2)
and implementing the broadcast over point-to-point, we get a detectable secret
sharing of O(n4) secrets (each is a field element of size O(log n)) at the cost of
O(n4 log n) communication over the point-to-point channels. This is the second
O(n2) improvement over the basic scheme.

Our Batched and Packed Detectable Secret Sharing Protocol. For our
discussion, assume that the dealer first chooses a polynomial S(x, y) of degree
t + t/4 in x and degree t + t/4 in y. We will use different parameters in the
actual construction later,1 but we choose t + t/4 for simplicity of exposition
in this overview. Like the basic scheme, the view of the adversary consists of
the pair of the univariate polynomials S(x, i), S(i, x), for every i ∈ I, where
I ⊆ [n] is the set of indices of the corrupted parties (of cardinality at most t).
This means that the adversary receives at most 2t(t + t/4 + 1) − t2 values, and
therefore the dealer can still plant (t/4 + 1)2 ∈ O(n2) secrets in S(x, y), which
is fully determined by (t + t/4 + 1)2 values. Concretely, it can plant for every
a ∈ {0, . . . , t/4} and b ∈ {0, . . . , t/4} a secret at location S(−a,−b).

Looking ahead, to allow batching, the dealer will choose m different bivari-
ate polynomials S1(x, y), . . . , Sm(x, y), and all the parties will verify all the m

1 Our actual parameters are further optimized to pack more secrets.

Detect, Pack and Batch 259

instances simultaneously. To accept the shares, all instances must end up suc-
cessfully. We follow the following two design principles:

1. Broadcast is expensive; Each broadcast must be utilized in all m
instances, not just in one instance.

2. Detection: Whenever a party is detected as an obstacle for achieving
agreement (a foe), we should make it a “friend”, or more precisely,
we neutralize its capacity to obstruct further, and utilize it to achieve
agreement on a later stage.

We focus on sharing of one instance for now, while keeping these design principles
in mind. Along the way, we also discuss how to keep the broadcasts of the dealer
low for all m instances simultaneously, and we will show how to reduce the
broadcasts of other parties later on. We follow a similar structure to that of the
basic scheme:

1. Sharing: The dealer sends fi(x), gi(y) to each party Pi.
2. Pairwise checks: Each pair of parties exchange sub-shares. In case of a

mismatch, a party broadcasts a complaint complaint(i, j, fi(j), gi(j)).

The dealer now has to resolve the complaints. In the basic protocol, when the
dealer identifies party Pi as corrupted, the dealer simply broadcasts the “cor-
rect” (S(x, i), S(i, y)) so that everyone can verify that the shares are consistent.
However, this leads to O(n2) values being broadcasted, and O(mn2) values in
the batched case. Instead, in our protocol, the dealer just marks Pi as corrupted
and adds it to a set CONFLICTS ⊂ [n] which is initially empty. It broadcasts the
set CONFLICTS. This set should be considered as “parties that had false com-
plaints” from an honest dealer’s perspective. There are three cases to consider:

1. The dealer is discarded: This might happen, e.g., if two parties complained
on each other and none of them is in CONFLICTS. In this case, it is clear that
the dealer is corrupted, and all parties can just discard it.

2. If the dealer is not discarded and |CONFLICTS| > t/4, then we have large
conflict. The dealer identified a large set of conflicts (note that if the dealer is
honest, then CONFLICTS contains only corrupted parties). Instead of publicly
announcing the polynomials fi(x), gi(y) of the identified corrupted parties, the
dealer simply restarts the protocol. In the new iteration, the shares of parties
in CONFLICTS are publicly set to 0. That is, it chooses a new random bivariate
polynomial S(x, y) that hides the same secrets as before, this time under the
additional constraints that S(x, i) = S(i, y) = 0 for every i ∈ CONFLICTS.
The dealer does not broadcast the shares of parties in CONFLICTS; all the par-
ties know that they are 0s. When each party receives its new pair of shares
fj(x), gj(y), it also verifies that fj(i) = gj(i) = 0, and if not, it raises a
complaint. Parties in CONFLICTS cannot raise any complaints. Furthermore,
observe that the outcome of “large conflict” might occur only O(1) times; if the
dealer tries to exclude more than t parties total, then the dealer is publicly dis-
carded.

260 I. Abraham et al.

When batching over m instances, we choose the shares of the set CONFLICTS to
be 0 in all instances. Thus, the dealer uses a broadcast of O(n log n) bits, i.e., the
set CONFLICTS, and by restarting the protocol it made the shares of parties in
CONFLICTS public in all m executions. Thus, we get the same effect as broad-
casting m|CONFLICTS| pairs of polynomials (i.e., broadcasting O(m ·n2 log n)
bits). This follows exactly our first design principle.

3. If |CONFLICTS| ≤ t/4 then the dealer proceeds with the protocol. It has to
reconstruct the f and g polynomials of all parties in CONFLICTS.

Before we proceed, let’s highlight what guarantees we have so far: when the
dealer is honest, then all the parties in CONFLICTS are corrupted. Moreover, if in
some iteration there were more than t/4 identified conflicts by the dealer, those
corrupted parties are eliminated, and they have shares that all parties know (i.e.,
0) and are consistent with the shares of the honest parties. This turns a “foe”
into a “friend”, as our second design principle.

When the dealer is corrupted, then all parties that are not in CONFLICTS
have shares that define a unique bivariate polynomial, and we have binding.
Specifically, if the shares of two honest parties do not agree with each other, then
they both complain on each other, and the dealer must include one of them in
CONFLICTS. Therefore, all honest parties that are not in CONFLICTS (assuming
that the dealer was not publicly discarded) hold shares that are consistent with
each other. Moreover, there is one more important property: Honest parties
that were excluded in previous iterations (and now their shares are 0) also hold
shares that are consistent with the honest parties that are not in CONFLICTS.
In particular, if we indeed proceed, then there are at most t/4 honest parties
who do not hold shares on the polynomial. This means that there are 2t+1−t/4
honest parties that have shares on the bivariate polynomial – not only do we have
binding, but we also have some redundancy! This redundancy will be crucial for
our next step as we show below.

However, there might still be up to t/4 honest parties (in CONFLICTS) that
do not have shares on the correct polynomial. The rest of the protocol is devoted
to reconstructing their shares. We call this phase reconstruction of the shares of
honest parties in CONFLICTS. However, before proceeding to the reconstruction,
we first describe how to batch over m instances.

Batching Complaints. Consider sharing m instances simultaneously with the
same dealer. In the above description, we already described how the dealer’s
broadcast is just the set CONFLICTS, which require O(n log n) bits, independent
of m. However, the broadcast of other parties depends on m. Specifically:

1. A party Pi broadcasts complaint(i, j, fi(j), gi(j)) when it receives a wrong
share from some party Pj .

2. A party Pi broadcast complaint if the share it received do not agree with the
parties that are publicly 0. Recall that in that case, the dealer must include
Pi in CONFLICTS.

It suffices to complain in only one of the instances, say the one with the lexico-
graphically smallest index. This follows our first design principle. If two parties

Detect, Pack and Batch 261

Pi and Pj do not agree in � < m of the instances, they will both file a joint
complaint with the same minimal index. Thus, we have a joint complaint, and
in order to not be discarded, the dealer must include either i or j in CONFLICTS.
Thus, we still have the guarantee that if two honest parties are not in CONFLICTS
then their shares must be consistent, now in all m executions.

Likewise, if some party Pi receives from the dealer private shares where on
points of some parties that were excluded it does not receive 0s, it essentially
requires to be part of CONFLICTS. Thus, there is no need to make m requests,
it suffices to make just one such request.

Reconstruction of the Shares of Honest Parties in CONFLICTS. Going
back to the last step of the sharing process, each party Pj in CONFLICTS wishes
to reconstruct its pair of polynomials (fj(x), gj(y)). Towards that end, each party
Pk that is not in CONFLICTS sends to Pj , privately, the values (fj(k), gj(k)).
Pj therefore is guaranteed to receive 2t + 1 − t/4 correct points. However, the
polynomials are of degree t + t/4, and we need 2t + t/4 + 1 “correct values” to
eliminate t errors. This means that if the adversary introduces more than t/2
incorrect values, Pj does not have unique decoding. In this case, Pj broadcasts
a complaint complaint(j), insisting that its shares be publicly reconstructed. As
we will see, when batching over m executions, it is enough to make one public
complaint in one execution, say the lexicographically smallest one, let’s denote
it as β ∈ [m]. Resolving this instance will help to resolve all other m instances.

Upon receiving complaint(j, β), each party Pk broadcasts reveal(k, j, fk(j),
gk(j)) for the βth instance. Thus, we will have at least 2t+1− t/4 correct values
that are public. Moreover, corrupted parties might now reveal values that are
different than what they have previously sent privately, and we might already
have unique decoding. In any case, with each value that was broadcasted and is
wrong, the dealer adds the identity of the party that broadcasted the wrong value
into a set Bad. It then broadcasts the set Bad, and all parties can check that when
excluding parties in Bad then all other values define a unique polynomial, and
all public points (excluding Bad) lie on this polynomial. Otherwise, the dealer is
publicly discarded. Note that it is enough to broadcast one set Bad for all party
j ∈ CONFLICTS and for all m instances. If |Bad| > t/2, we restart the protocol,
again giving shares 0 to parties in Bad (as long as the total number of parties
that the dealer excluded does not exceed t).

At this point, if we did not restart and the dealer was not discarded, then it
must be that Pj can reconstruct its polynomials fj(x), gj(y) in all m instances.
First, in the βth instance (that was publicly resolved), we know that we have
2t + 1 − t/4 public points that are “correct” and that the dealer could have
excluded at most t/2 parties. Therefore, there are more than t + t/4 + 1 correct
points even if the dealer excludes up to t/2 honest parties (recall that it cannot
exclude more than t/2). Those correct points uniquely determine a polynomial
of degree t+ t/4, and therefore, since all points after excluding parties in Bad lie
on one unique polynomial, it must be that this polynomial is the correct one.

Using the information learned in the resolved instance party Pj can uniquely
decode all other m instances. Specifically, there is no unique decoding in a par-

262 I. Abraham et al.

ticular instance only if Pj received more than t/2 wrong private shares. When
going publicly, some parties might announce different values than what they
first told Pj privately. Pj can compare between the polynomial reconstructed
in the βth instance to the initial values it received privately from the parties,
and identify all parties that sent it wrong shares. Denote this set as localBadj .
It must hold that this set contains more than t/2 corrupted parties. Now, in
each one of the other instances, ignore all parties in localBadj . This implies that
the remaining values are of distance at most t/2 from a correct word, i.e., they
contain at most t/2 errors. Moreover, it is guaranteed that honest parties are
not eliminated, and we still have at least 2t + 1 − t/4 correct points. Therefore,
Pj guarantees to have unique decoding in all m instances.

Detectable and Robust Reconstruction. So far, we described the sharing
procedure. While we do not use the reconstruction of detectable secret shar-
ing directly (we will use private reconstruction, and parties never reconstruct
all secrets), we briefly describe it for completeness. To reconstruct polynomials
S1(x, y), . . . , Sm(x, y) that were shared with the same dealer, we follow a similar
step as reconstruction towards parties in CONFLICTS, but with reconstructing
all polynomials: Each party sends (privately) the f -shares, the parties try to
privately reconstruct gi-polynomials for all i ∈ [n], and interpolate the bivariate
polynomials from the gi-polynomials. If some party does not succeed in uniquely
reconstructing some gi-polynomial, then it asks to go public. For each party Pj ,
it is enough to publicly reconstruct one gi-polynomial that it did not succeed
to reconstruct privately, and from that, Pj can reconstruct all other shares (by
ignoring the new privately detected parties).

However, as before, the adversary can cause the reconstruction to fail. When
it does so, the dealer is guaranteed to detect more than t/2 corruptions. More-
over, if the dealer already detected at least t/2 corruptions during the sharing
phase, then those parties cannot fail the reconstruction, and reconstruction is
guaranteed. Note that the cost of the reconstruction is O(mn2 log n) over point-
to-point channels, plus each party has to broadcast at most O(n log n) bits,
again, independent of m.

Reconstruction for VSS. Recall that for VSS, we set the degree of y in
each bivariate polynomial to t. This implies that all parties can reconstruct
all g-polynomials using Reed-Solomon error correction and we never have to
resolve complaints publicly. Moreover, the adversary can never cause any fail-
ure. The cost is therefore O(mn2 log n) over point-to-point channels, and VSS
robust reconstruction is always guaranteed.

We refer the reader to Sect. 4 for our packed secret sharing scheme for a single
polynomial, and to Sect. 5 for the batched version.

2.2 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the
parties generate Beaver triplets [10], and an online phase in which the parties
compute the circuit while consuming those triples.

Detect, Pack and Batch 263

Beaver triplets generation. Our goal is to distribute shares of random secret
values a, b and c, such that c = ab. If the circuit contains C multiplication gates,
then we need C such triplets. Towards that end, we follow the same steps as
in [22], and generate such triplets in two stages:

1. Triplets with a Dealer: Each party generates shares of ai, bi, ci such that
ci = ai ·bi. We generate all the triplets in parallel using expected O(1) rounds.
We will elaborate on this step below in Sect. 2.3. Our main contribution is
in improving this step. In our protocol, each party acts as a dealer to gener-
ate mn triplets. This step requires an overall cost of O(n4 log n + mn3 log n)
point-to-point communication for all the parties together. Later, these mn2

triplets will be used for generating O(mn2) triplets overall. Looking ahead,
we will use m = C/n2 and this step costs O(n4 log n + Cn log n).
Previously, the best known [22] used O(n3 log n) point-to-point and
O(n3 log n) broadcast for generating just a single triplet for one dealer. That
is, for O(mn2) triplets this is O(mn5 log n) broadcast which costs at least
Ω(mn6 log n) over point-to-point. We therefore improve in a factor of O(n3).

2. Triplets with No Dealer: Using triplet extraction of [22], we can extract
from a total of C triplets with a dealer, O(C) triplets where no party knows
the underlying values. That is, if n parties generate C/n triplets each, then
we have a total of C triplets and we can extract from it O(C) triplets. This
step costs O(n2 log n + Cn log n).

Putting it all together, for generating C triplets we pay a total of O(n4 log n +
Cn log n) and constant expected number of rounds.

The MPC protocol then follows the standard structure where each party
shares its input, and the parties evaluate the circuit gate-by-gate, or more
exactly, layer-by-layer. In each multiplication gate, the parties have to consume
one multiplication triple. Using the method of [22], if the ith layer of the circuit
contains Ci multiplications (for i ∈ [D], where D is the depth of the circuit),
the evaluation costs O(n2 log n + Ci · n log n). Summing over all layers, this is∑

i∈[D](n
2 + nCi) log n = (Dn2 + Cn) log n. Together with the generation of the

triplets, we get the claimed O((Cn + Dn2 + n4) log n) cost as in Theorem 1.3.
We refer the readers to the full version for further details on our MPC protocol.

2.3 Multiplication Triplets with a Dealer

As mentioned, a building block which we improve in a factor of O(n3) over the
state-of-the-art is multiplication triplets with a dealer. The goal is that given
a dealer, to distribute shares of secret values a, b, c such that for every i it
holds that ci = aibi. Towards this end, the dealer plants a into some bivariate
polynomial A(x, y) using our verifiable secret sharing scheme. It plants b into
B(x, y) and c into C(x, y) in a similar manner. Note that we use verifiable secret
sharing here, since we want to output the triplets shared via degree-t polynomials
(which is utilized by our MPC protocol). So we can plant only O(n) values
in each one of them. Then, the dealer has to prove, using a distributed zero-
knowledge protocol, that indeed ci = aibi for every i. The zero-knowledge proof

264 I. Abraham et al.

uses sharing and computations on the coefficients of the polynomials used for
sharing a, b, c, i.e., if we shared O(M) triplets, then the zero-knowledge involves
sharing of O(Mn) values. However, since the dealer is involved in the sharing
and the reconstruction of those values, we do not need full-fledged secret sharing
scheme, and we can use the lighter detectable secret sharing. This scheme enables
us to share O(Mn) values at the same cost of “strong” verifiable secret sharing
of O(M) values.

In a more detail, after verifiable sharing A,B and C each of degree t + t/4
in x and t in y, the dealer needs to prove that for every a ∈ {0, . . . , t/4} it holds
that C(−a, 0) = A(−a, 0)·B(−a, 0). Towards that end, for every a ∈ {0, . . . , t/4}
it considers the polynomial

E−a(y) = A(−a, y) · B(−a, y) − C(−a, y) = e−a,0 + e−a,1y + . . . + e−a,2ty
2t

and its goal is to show that the degree-2t polynomial E−a(y) evaluates to 0
on each y ∈ {0, . . . ,−t/4}. The dealer secret-shares all the coefficients (e−a,k)
for a ∈ {0, . . . , t/4} and k ∈ {0, . . . , 2t} using our detectable secret sharing
scheme, by packing them into several bivariate polynomials E(x, y) with degree
t + t/4 in both x and y. Note that there are O(n2) coefficients to share, and
each polynomial E(x, y) can pack (t/4 + 1)2 secrets.2 Thus, we actually share a
constant number (precisely 8) of polynomials to share all the coefficients.

Using linear combinations over the shares, the reconstruction protocol pri-
vately reconstructs towards Pj (for each j ∈ [n]) the evaluation of E−a(y) on j,
i.e., E−a(j), for each a ∈ {0, . . . , t/4}. This is performed in a similar man-
ner to the reconstruction of shares of honest parties in CONFLICTS in our
detectable secret sharing protocol. Each Pj can then verify that E−a(j) =
A(−a, j) ·B(−a, j)−C(−a, j), and if not, it can raise a public complaint. Parties
can then open the shares of Pj on A,B,C publicly, and also the value E−a(j).
If indeed E−a(j) 	= A(−a, j) · B(−a, j) − C(−a, j), then the dealer is discarded.

Moreover, again using linear evaluations over the shares and reconstruction,
the parties can obtain E−a(0) for every a ∈ {0, . . . , t/4} and verify that it equals
0. If indeed E−a(j) = A(−a, j) · B(−a, j) − C(−a, j) for 2t + 1 such js, then
E−a(y) = A(−a, y) ·B(−a, y)−C(−a, y) as those are two polynomials of degree
2t that agree on 2t + 1 points. Moreover, if indeed E−a(0) = 0 for every a ∈
{0, . . . , t/4}, then C(−a, 0) = A(−a, 0) · B(−a, 0) for every a ∈ {0, . . . , t/4}, as
required.

The above description is a bit oversimplified. Recall that the coefficients of
E are shared using only detectable secret sharing. This means that the private
reconstruction towards some Pj might fail. In that case, Pj will ask to perform
public reconstruction, and the adversary learns E−a(j) on a point j 	∈ I. This
is a leakage because the reconstruction was meant to be private and becomes
public. The good news is that the outcome of each such public reconstruction
is that party Pj identifies at least t/2 corruptions in localBadj , and all the later
reconstructions towards it must succeed.
2 Again, in the actual construction we will use different dimensions, but we keep using

a bivariate polynomial with degree t + t/4 in both x and y for simplicity.

Detect, Pack and Batch 265

As a result, the adversary may learn up to n−t reconstructions that it was not
supposed to learn. Whenever this occurs, we cannot use the entire polynomials
that are involved (which pack O(n) triplets). If a “pack” of triplets requires a
public reconstruction, we discard the whole “pack”. On the positive side, this
can happen at most once per party. Moreover, since the multiplication triplets
are just random and do not involve secret inputs, we can just sacrifice them.
This means that for generating m “packs” of triplets, we need to start with
batching O(m + n) “packs” of triplets. This additional overhead does not affect
the overall complexity, but it makes the functionalities and the protocol a bit
more involved. We refer the reader to Sect. 6 for further details.

Organization. The rest of this paper is organized as follows. After some Pre-
liminaries (Sect. 3) we focus on our packed (Sect. 4) and batched (Sect. 5) secret
sharing. We then discuss our multiplication triplets with a dealer (Sect. 6), and
conclude with the MPC protocol in Sect. 7. Due to lack of space, the proofs and
some constructions are deferred to the full version.

3 Preliminaries

Network model and definitions. We consider a synchronous network model
where the parties in P = {P1, . . . , Pn} are connected via pairwise private and
authenticated channels. Additionally, for some of our protocols we assume the
availability of a broadcast channel, which allows a party to send an identical
message to all the parties. The distrust in the network is modelled as a com-
putationally unbounded active adversary A which can maliciously corrupt up to
t out of the n parties during the protocol execution and make them behave in
an arbitrary manner. We prove security in the stand-alone model for a static
adversary. We provide the definitions (which are standard) in the full version.
Owing to the results of [18], this guarantees adaptive security with inefficient
simulation. We derive universal composability [16] using [34].

Our protocols are defined over a finite field F where |F| > n + t/2 + 1. We
denote the elements by {−t/2,−t/2 + 1, . . . , 0, 1 . . . , n}. We use 〈v〉 to denote
the degree-t Shamir-sharing of a value v among parties in P.

Bivariate Polynomials and Secret Embedding. A degree (l,m)-bivariate
polynomial over F is of the form S(x, y) =

∑l
i=0

∑m
j=0 bijx

iyj where bij ∈ F. The
polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith f and g univariate
polynomials of S(x, y) respectively. In our protocol, we use (t+t/2, t+d)-bivariate
polynomials where d ≤ t/4, and the ith f and g univariate polynomials are
associated with party Pi for every Pi ∈ P.

We view a list of (t/2 + 1)(d + 1) secrets SECRETS as a (t/2 + 1) × (d + 1)
matrix. We then say that the set SECRETS is embedded in a bivariate polynomial
S(x, y) of degree (t + t/2) in x and (t + d) in y if for every a ∈ {0, . . . , t/2} and
b ∈ {0, . . . , d} it holds that S(−a,−b) = SECRETS(a, b).

Simultaneous Error Correction and Detection of Reed-Solomon
Codes. We require the following coding-theory related results. Let C be an

266 I. Abraham et al.

Reed-Solomon (RS) code word of length N , corresponding to a k-degree poly-
nomial (containing k + 1 coefficients). Assume that at most t errors can occur
in C. Let C̄ be the word after introducing error in C in at most t positions. Let
the distance between C and C̄ be s where s ≤ t. Then there exists an efficient
decoding algorithm that takes C̄ and a pair of parameters (e, e′) as input, such
that e + e′ ≤ t and N − k − 1 ≥ 2e + e′ hold and gives one of the following as
output:

1. Correction: output C if s ≤ e, i.e. the distance between C and C̄ is at most e;
2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices, rather it simply indicates
error correction fails due to the presence of more than correctable (i.e. e) errors.
The above property of RS codes is traditionally referred to as simultaneous error
correction and detection. In fact the bounds, e + e′ ≤ t and N − k − 1 ≥ 2e + e′,
are known to be necessary. We cite:

Theorem 3.1 ([21,35]). Let C be an Reed-Solomon (RS) code word of length
N , corresponding to a k-degree polynomial (containing k + 1 coefficients). Let
C̄ be a word of length N such that the distance between C and C̄ is at most t.
Then RS decoding can correct up to e errors in C̄ to reconstruct C and detect
the presence of up to e + e′ errors in C̄ if and only if N − k − 1 ≥ 2e + e′ and
e + e′ ≤ t.

A couple of corollaries follows from the above theorem that we will use in
our work, see the full version for details.

Parallel Broadcast. In our MPC, we use parallel broadcast that relates to the
case where n parties wish to broadcast a message of size L bits in parallel, as
captured in the following functionality.

Functionality 3.2: Fparallel
BC

The functionality is parameterized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.
2. The functionality sends to all parties the message {Mi}i∈[n].

The work of [1] presents an instantiation with the following security and com-
plexity. Also note that, when some party has smaller message than L bits, it can
pad with default values to make an L bit message.

Detect, Pack and Batch 267

Theorem 3.3 ([1]). There exists a perfectly-secure parallel broadcast with opti-
mal resilience of t < n/3, which allows n parties to broadcast messages of size
L bits each, at the cost of O(n2L) bits communication, plus O(n4 log n) expected
communicating bits. The protocols runs in constant expected number of rounds.

4 Packed Secret Sharing

In this section we present our secret sharing scheme. In the introduction, we
mentioned that we have two variants: regular verifiable secret sharing, and a
novel detectable secret sharing. The protocol presented in this section fits the
two primitives, where the difference is obtained by using different parameters in
the bivariate polynomial, as we will see shortly. In this section, we still do not
“batch” over multiple polynomials; the dealer share just a single polynomial.
In Sect. 5 we provide details on the batched version. The packed secret sharing
protocol consists of the following building blocks:

1. The dealer chooses a bivariate polynomial S(x, y) of degree 3t/2 in x and
degree t + d in y, where its secret are embedded in S. We should think of d
as 0 or t/4. Unlike presented in Sect. 2.1, we have two different parameters
for x and y. Looking ahead, for verifiable secret sharing, we use d = 0. For
detectable secret sharing, we can use d ∈ [1, t/4] (packing O((d+1)n) secrets).

2. The dealer tries to share S(x, y) using a functionality called FShareAttempt (see
Functionality 4.1). At the end of this functionality, the sharing attempt might
have the following three outcomes: (a) discard – the dealer is discarded; (b)
(detect,CONFLICTS) - a large set of conflicts was detected and the protocol
will be restarted; (c) proceed, in which case all parties also receive a set
CONFLICTS (of size at most t/2−d) of parties that still did not receive shares.
All honest parties not in CONFLICTS hold shares that define unique bivariate
polynomial of the appropriate degree. See Sect. 4.1 for further details.

3. The goal is now to let parties in CONFLICTS to learn their shares. Since
the degrees of the bivariate polynomial is not symmetric, we first reconstruct
the g-share (of degree t + d < 3t/2), and then the f -share (of degree 3t/2).
Reconstruction of g-polynomial is described in Sect. 4.2. The reconstruction
of f -polynomial is similar, and is discussed in Sect. 4.3.

We first present the different building blocks, and then in Sect. 4.4 we pro-
vide the protocol (and functionality) for packed secret sharing, that uses those
building blocks.

4.1 Sharing Attempt

We start with the description of the functionality.

268 I. Abraham et al.

Functionality 4.1: Sharing Attempt– FShareAttempt

The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. All the honest parties send to FShareAttempt a set ZEROS ⊂ [n]. For an honest dealer, it
holds that ZEROS ⊆ I. FShareAttempt sends the set ZEROS to the adversary.

2. The dealer sends a polynomial S(x, y) to FShareAttempt. When either the polynomial is not
of degree at most 3t/2 in x and at most t + d in y, or for some i ∈ ZEROS it holds that
S(x, i) �= 0 or S(i, y) �= 0, FShareAttempt executes Step 4c to discard the dealer.

3. For every i ∈ I, FShareAttempt sends (S(x, i), S(i, x)) to the adversary. It receives back
a set CONFLICTS such that CONFLICTS ∩ ZEROS = ∅.3 If the dealer is honest, then
CONFLICTS ∪ ZEROS ⊆ I. If |CONFLICTS ∪ ZEROS| > t for a corrupt dealer, then
FShareAttempt executes Step 4c to discard the dealer.

4. Output:
(a) Detect: If |CONFLICTS| > t/2 − d, then send (detect,CONFLICTS) to all parties.
(b) Proceed: Otherwise, send (proceed, S(x, i), S(i, y),CONFLICTS) for every i �∈

CONFLICTS and (proceed, ⊥, ⊥,CONFLICTS) to every i ∈ CONFLICTS.
(c) Discard: send discard to all parties.

Protocol 4.2: Sharing Attempt– ΠShareAttempt

Common Input: The description of a field F, parameter d < t.

Input: All parties input ZEROS ⊂ [n]. The dealer inputs a polynomial S(x, y) with degree
3t/2 in x and t+d in y, such that for every i ∈ ZEROS it holds that S(x, i) = 0 and S(i, y) = 0.

The protocol:

1. (Dealing shares): The dealer sends (fi(x), gi(y)) = (S(x, i), S(i, y)) to Pi for i �∈ ZEROS.
Each Pi for i ∈ ZEROS sets (fi(x), gi(y)) = (0, 0).

2. (Pairwise Consistency Checks):
(a) Each i �∈ ZEROS sends (fi(j), gi(j)) to every j �∈ ZEROS. Let (fji, gji) be the values

received by Pi from Pj .
(b) Each i �∈ ZEROS broadcasts complaint(i, j, fi(j), gi(j)) if (a) fji �= gi(j) or gji �= fi(j)

for any j �∈ ZEROS. For j ∈ ZEROS, Pi broadcasts complaint(i, j, fi(j), gi(j)) if
fi(j) �= 0 or gi(j) �= 0.

3. (Conflict Resolution):
(a) The dealer sets CONFLICTS = ∅. For each complaint(i, j, u, v) such that u �= S(j, i)

or v �= S(i, j), the dealer adds i to CONFLICTS. The dealer broadcasts CONFLICTS.
(b) Discard the dealer if any one of the following does not hold: (i) |ZEROS ∩

CONFLICTS| = ∅; (ii) |CONFLICTS ∪ ZEROS| ≤ t (iii) if some Pi broadcasted
complaint(i, j, ui, vi) and Pj broadcasted complaint(j, i, uj , vj) with ui �= vj or
vi �= uj , then CONFLICTS should contain either i or j (or both); (iv) if some Pi broad-
casted complaint(i, j, u, v) with j ∈ ZEROS and u �= 0 or v �= 0, then i ∈ CONFLICTS.

4. (Output): Each Pi outputs discard when the dealer is discarded and
(detect,CONFLICTS) when |CONFLICTS| > t/2 − d.
Else, it outputs (proceed, ⊥, ⊥,CONFLICTS) when i ∈ CONFLICTS, and
(proceed, fi(x), gi(y),CONFLICTS) otherwise.

3 To ease understanding and notion, we sometimes expect to receive from the adver-
sary some sets or inputs that satisfy some conditions. We do not necessarily ver-
ify the conditions in the functionality, and this is without loss of generality. For
instance, in this step we require that the adversary sends a set CONFLICTS such
that CONFLICTS ∩ ZEROS = ∅. Instead, we can enforce that this is the case by
resetting: CONFLICTS = CONFLICTS \ ZEROS.

Detect, Pack and Batch 269

Lemma 4.3. Protocol 4.2, ΠShareAttempt, perfectly-securely computes Functionality 4.1,
FShareAttempt, in the presence of a malicious adversary, controlling at most t < n/3.

4.2 Reconstruction of g-polynomials in CONFLICTS

When invoking this functionality, we are guaranteed that the shares of the honest
parties define a unique bivariate polynomial, and that the number of parties that
are not in CONFLICTS is at least (n−t/2)+d. The goal of this step is to reconstruct
the g-polynomials for the parties in CONFLICTS, while the possible outcomes are:
(i) the dealer is discarded; (ii) the dealer detects additional t/2 parties that it
will make ZEROS in the next iteration; (iii) the protocol succeeds and all honest
parties hold gj(y) as output.

Functionality 4.4: Reconstruction of g-Polynomials – Frec-g

1. Input:4All honest parties send to the functionality Frec-g the sets ZEROS ⊂ [n] and
CONFLICTS ⊂ [n], each honest j �∈ CONFLICTS sends (fi(x), gi(y)). Let S(x, y) be the
unique bivariate polynomial of degree at most 3t/2 in x and at most t+d in y that satisfies
fj(x) = S(x, j) and gj(y) = S(j, y) for every j �∈ CONFLICTS. Moreover, it holds that
n − |CONFLICTS| ≥ 2t + 1 + t/2 + d.

2. Frec-g sends (ZEROS,CONFLICTS, (S(x, i), S(i, y))i∈I) to the adversary. If the dealer is
corrupted, then Frec-g sends S(x, y) as well.

3. It receives back from the adversary a message M .
4. Output:

(a) If M = discard and the dealer is corrupted, then Frec-g sends discard to all parties.
(b) If M = (detect,Bad) with Bad ∩ (ZEROS ∪ CONFLICTS) = ∅ and |Bad| > t/2, and

with Bad ⊆ I in the case of an honest dealer, then Frec-g sends (detect,Bad) to all
parties.

(c) If M = proceed, then Frec-g sends:
for each j ∈ CONFLICTS the output (proceed, ⊥, S(j, y)), and
for each j �∈ CONFLICTS send (proceed, S(x, j), S(j, y)).

4 If not all honest parties send shares that lie on the same bivariate polynomial, or not
all send inputs that satisfy the input assumptions as described, then no security is
guaranteed. This can be formalized as follows. If the input assumptions do not hold,
then the functionality sends to the adversary all the inputs of all honest parties, and
lets the adversary to singlehandedly determine all outputs of all honest parties. This
makes the protocol vacuously secure (since anything can be simulated).

270 I. Abraham et al.

Protocol 4.5: Reconstruct g-Polynomials in CONFLICTS – Πrec-g

Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not in
CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and it is guaranteed that all the shares

of honest parties lie on the same bivariate polynomial S(x, y) with degree at most 3t/2 in x
and t + d in y.
The protocol:

1. Every party sets HAVE-SHARES = [n] \ (ZEROS ∪ CONFLICTS).
2. For every j ∈ CONFLICTS:

(a) Each party Pi for i ∈ HAVE-SHARES sends (i, fi(j)) to Pj .
(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i ∈ ZEROS, consider

(i, ui) with ui = 0. Given all (i, ui)i�∈CONFLICTS, Pj looks for a codeword of a polyno-
mial of degree t+ d with a distance of at most t/2 from all the values it received (see
Theorem 3.1). If there is such codeword, set gj(y) to be the unique Reed-Solomon
reconstruction. If there is no such a unique codeword, then Pj broadcasts complaint(j)
and every party Pi for i ∈ HAVE-SHARES broadcasts reveal(i, j, fi(j)).

3. The dealer sets Bad = ∅. For each reveal(i, j, u) message broadcasted, the dealer verifies
that u = fi(j). If not, then it adds i to Bad. The dealer broadcasts Bad.

4. The parties go to Step 6a if one of the following is not true: (i) |ZEROS ∪ CONFLICTS ∪
Bad| ≤ t; (ii) Bad ⊂ HAVE-SHARES. The parties go to Step 6b if |Bad| > t/2.

5. Otherwise, for every j ∈ CONFLICTS, if complaint(j) was broadcasted, then the parties
consider all the points Rj = {(i, ui)} such that reveal(i, j, ui) was broadcasted in Step 2b,
and i ∈ HAVE-SHARES \ Bad, or ui = 0 if i ∈ ZEROS. They verify if Rj defines a unique
polynomial of degree t + d. If not, they go to Step 6a. Otherwise, Pj sets gj(y) to be that
unique polynomial.

6. Output:
(a) Discard the dealer: Output discard.
(b) Detect: Output (detect,Bad).
(c) Proceed: Each party j ∈ CONFLICTS outputs (proceed, ⊥, gj(y)). All other parties

Pj with j �∈ CONFLICTS output (proceed, fj(x), gj(y)).

Lemma 4.6. Protocol 4.5, Πrec-g, perfectly securely computes Functionality 4.4, Frec-g, in
the presence of a malicious adversary, controlling at most t < n/3. The protocol requires the
transmission of O(n2 log n) bits over point-to-point channels, and each party broadcasts at
most O(n log n) bits.

4.3 Reconstruction of f-polynomials in CONFLICTS

The goal of this step is to make each party in CONFLICTS to receive its f-share.
This is performed in a similar manner to that of reconstruction of g. This time,
all honest parties hold shares of g, and thus each party in CONFLICTS receives
at least 2t + 1 correct values on each its f polynomial. The f-polynomial is of
degree 3t/2, and therefore we fail to reconstruct if the adversary introduces more
than t/2 errors. In that case, we will have detection, in a similar manner to the
reconstruction of g. The full details of the functionality (denoted by Frec-f), and
the protocol (denoted by Πrec-f), as well as the proof of the following lemma are
given in the full version.

Lemma 4.7. The Protocol Πrec-f, perfectly securely computes the Frec-f functionality, in the
presence of a malicious adversary, controlling at most t < n/3.

Detect, Pack and Batch 271

4.4 Putting Everything Together: Packed Secret Sharing

We view a list of (t/2 + 1)(d + 1) secrets SECRETS as a (t/2 + 1) × (d + 1) matrix.

Functionality 4.8: Packed Secret Sharing – FPSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

– Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the dealer is honest
then it is guaranteed that ZEROS ⊆ I.

– Honest dealer: The dealer sends SECRETS to FPSS. The functionality sends ZEROS
to the adversary, which replies with (fi(x), gi(y))i∈I under the constraint that fi(x) =
gi(y) = 0 for every i ∈ ZEROS. The functionality chooses a random bivariate polynomial
S(x, y) of degree 3t/2 in x and t + d in y under the constraints that (i) SECRETS is
embedded in S (see Section 3 for the meaning of embedding); (ii) S(x, i) = fi(x) for every
i ∈ I; (iii) S(i, y) = gi(y).

– Corrupted dealer: The functionality sends ZEROS to the adversary, which replies with
S(x, y). FPSS that verifies that S(x, y) is of degree 3t/2 in x and degree t+d in y, and that
for every i ∈ ZEROS it holds that fi(x) = gi(y) = 0. If not, FPSS replaces S(x, y) = ⊥.

– Output: FPSS sends to each party Pj the pair of polynomials S(x, j), S(j, y).

We claim that there is always a bivariate polynomial that can be recon-
structed. Specifically, consider for simplicity the case where |I| = t:

1. A bivariate polynomial of degree 3t/2 in x and degree t + d in y is determined
by (3t/2 + 1)(t + d + 1) values.

2. The adversary sends t pairs of polynomials of degree 3t/2 and t + d. The f

polynomials define t(3t/2+1) values. Each g polynomial is already determined
in t coordinates, and therefore we have a total of t(t + d + 1 − t) = t(d + 1).

3. SECRETS determines (t/2 + 1) · (d + 1) values.

Therefore, the number of constraints that we have is (t/2 + 1)(d + 1) + t(3t/2 + 1) +

t(d + 1), which is exactly (3t/2 + 1)(t + d + 1), the total number of variables in the
bivariate polynomial.

272 I. Abraham et al.

Protocol 4.9: Packed Secret Sharing in the (FShareAttempt,Frec-g,Frec-f)-hybrid model
– ΠPSS

Input: The dealer holds SECRETS. All honest parties hold the same set ZEROS.

The protocol:

1. Dealing the shares:
(a) The dealer chooses a random bivariate polynomial S(x, y) of degree at most 3t/2 in

x and degree t + d in y that embeds SECRETS, under the constraint that for every
i ∈ ZEROS it holds that S(x, i) = 0 and S(i, y) = 0.

(b) All parties invoke Functionality 4.1, FShareAttempt, where the dealer inputs S(x, y) and
all parties input ZEROS:

i. If the output is discard, then proceed to Step 4a.
ii. If the output is (detect,CONFLICTS) then set ZEROS = ZEROS∪CONFLICTS.

If |ZEROS| > t then proceed to Step 4a. Otherwise, go back to Step 1a.
iii. If the output is (proceed, fi(x), gi(y),CONFLICTS), then proceed to the next

step. Note that it must hold that (a) for parties i ∈ CONFLICTS, fi(x) = gi(y) =
⊥ and (b) n − |CONFLICTS| ≥ n − (t/2 − d).

2. Reconstruct the g-polynomials: The parties invoke Functionality 4.1, Frec-g, where
each party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)).
(a) If the output is discard, then proceed to Step 4a.
(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t then

discard and proceed to Step 4a. Otherwise, go back to Step 1a.
(c) Otherwise, the output is (proceed, fi(x), gi(y)) where every party Pi with i ∈

CONFLICTS has gi(y) �= ⊥, then proceed to the next step.
3. Reconstruct the f-polynomials: The parties invoke Functionality Frec-f, where each

party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)). Note that for parties in CONFLICTS
it holds that fi(x) = ⊥.
(a) If the output of the functionality is discard, then proceed to Step 4a.
(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t then

discard and go to Step 4a. Otherwise, go back to Step 1a.
(c) Otherwise, let (proceed, fi(x), gi(y)) be the output, where now all parties have

fi(x) �= ⊥ and gi(y) �= ⊥. Go to Step 4b.
4. Output:

(a) Discard: All parties output ⊥.
(b) Successful: Output fi(x), gi(y).

Lemma 4.10. Let t < n/3 and d ≤ t/4. Protocol 4.9, ΠPSS, perfectly securely computes
Functionality 4.8, FPSS, in the (FShareAttempt,Frec-g,Frec-f)-hybrid model, in the presence of a
malicious adversary, controlling at most t < n/3.

Communication and Efficiency Analysis. We conclude the following lemma,
proven in the full version:
Lemma 4.11. Let t < n/3 and d ≤ t/4. There exists a protocol that implements Function-
ality 4.8, has a communication complexity of O(n2 log n) bits over point-to-point channels
and O(n2 log n) bits broadcast for sharing O((d + 1)n) values (i.e., O(n(d + 1) log n) bits)
simultaneously in O(1) rounds. Every party broadcasts at most O(n log n) bits.

5 Batched and Packed Secret Sharing

In this section, we suggest how to keep the broadcast unchanged when running
m instances of the packed secret sharing with the same dealer. That is, if one

Detect, Pack and Batch 273

instance requires O(n2 log n) bits communicated over point-to-point channels and
each party (including the dealer) broadcasts O(n log n) bits, we have a protocol
that requires O(mn2 log n) bits communicated over point-to-point channels and
each party still has to broadcast at most O(n log n) bits (and a total of O(n2 log n)).
We review the changes necessary for each one of the sub-protocols of packed
secret sharing.

Sharing attempt and Batched Complaints. Here the dealer inputs m bivariate
polynomials, but there is one set ZEROS ⊂ [n]. It is assumed that all bivariate
polynomials have 0 shares for the parties in ZEROS.

At Step 2b in Protocol 4.2, every Pi checks consistency in all instances but
raises a complaint for only one of them, say, the minimum index of the instance. A
complaint now looks like complaint(i, j, fi(j), gi(j), α) where α ∈ {1, . . . , m}. Moreover,
if a party broadcasts complaint(i, j, ui, vi) for j ∈ ZEROS, then the dealer must add
Pi to CONFLICTS. Thus, there is no need for Pi to broadcast such a complaint in
each instance that it sees inconsistency with Pj for j ∈ ZEROS, but it is enough
to do it in only one of the instances.

This keeps the broadcast cost O(n2 log n) bits among all m instances combined
(as opposed O(mn2 log n) when running them simultaneously in a black-box man-
ner).

Note that when the dealer is honest, honest parties never complain on one
another, and this holds in all m invocations. Moreover, if the dealer is corrupted
and two honest parties have to file a joint complaint, then both will have the
exact same minimal index, and the dealer must have to add one of them into
CONFLICTS, exactly as we have in single instance.

Batched reconstruction of g polynomials in CONFLICTS. Here the change in the
protocol is more delicate than the previous case, and we provide a full modeling
and proof. Specifically, In Step 2b of Protocol 4.2, a party Pj may fail to recon-
struct gj in multiple instances. However, it is enough to pick one instance β (say,
the one with minimum index) and complains publicly with β. Now, rest of the
public verification happens with respect to βth invocation. If parties publicly
reveal values that are different than what they revealed privately, then the party
knows that those parties are corrupted and can try to reconstruct the polyno-
mials without those shares. In particular, the only case when a party cannot
uniquely reconstruct is when the the adversary introduces more than t/2 errors.
However, if the public reconstruction of g in the βth execution is successful, it can
recognize t/2 misbehaving parties by comparing the polynomial that was pub-
licly reconstruct to the shares sent to it privately. Note that it is possible that
a corrupted party sends some share to Pj privately but makes some other value
public. Pj knows for sure that such party is corrupt, even though Bad that the
dealer broadcasts can even be empty. Once Pj recognizes more than t/2 errors, it
can eliminate them in all other private reconstructions, remaining with less than
t/2 errors in all the m executions. The functionality (denoted as Fbatched

rec-g) and the
full specification of the protocol (denoted as Πbatched

rec-g) are given in the full version,
as well as the proof of the following lemma:

274 I. Abraham et al.

Lemma 5.1. Protocol Πbatched
rec-g , perfectly-securely computes Fbatched

rec-g in the presence of a mali-
cious adversary, controlling at most t < n/3.

Batched reconstruction of f-polynomials in CONFLICTS. This follows the exact
same lines as the reconstruction of g polynomials. Specifically, if the local recon-
struction is not unique, then it is enough to pick one instance γ ∈ [m] and open
it publicly. The public verification happens with respect to the γth instance. Pj

will then be able to reconstruct f�
j for every � ∈ [m].

5.1 Sharing

To conclude, we realize the following functionality putting together the batched
version of protocols for the sharing attempt, reconstruction of g and f polyno-
mials. Referring the protocol as Πbatched

PSS , we culminate at the following theorem.

Functionality 5.2: Batched and Packed Secret Sharing – Fbatched
PSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

– Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the dealer is honest
then it is guaranteed that ZEROS ⊆ I.

– Honest dealer: The dealer sends (SECRETS�)�∈[m] to Fbatched
PSS . The functionality sends

ZEROS to the adversary, who sends back (f�
i (x), g�

i (y))i∈I,�∈[m] such that f�
i (k) = g�

k(i)
for every i, k ∈ I and � ∈ [m]. Moreover, for every i ∈ ZEROS, fi(x) = gi(y) = 0. For
every � ∈ [m], the functionality chooses a random bivariate polynomial S�(x, y) of degree
3t/2 in x and t + d in y under the constraints that (i) SECRETS� is embedded in S�; (ii)
S�(x, i) = f�

i (x) for every i ∈ I; (iii) S�(i, y) = g�
i (y).

– Corrupted dealer: For every � ∈ [m], the dealer sends S�(x, y) to Fbatched
PSS that verifies

that S�(x, y) is of degree 3t/2 in x and degree t+d in y, and for every i ∈ ZEROS it holds
that fi(x) = gi(y) = 0. If not, Fbatched

PSS replaces S�(x, y) = ⊥.
– Output: Fbatched

PSS sends to each party Pj the polynomials (S�(x, j), S�(j, y))�∈[m].

Theorem 5.3. Πbatched
PSS securely computes Fbatched

PSS (Functionality 5.2). It requires a com-
munication complexity of O(mn2 log n) bits over-point-to-point channels and O(n2 log n) bits
broadcast for sharing O((d + 1)mn) values (i.e., O((d + 1)mn log n) bits) simultaneously in
O(1) rounds. Each party broadcasts at most O(n log n) bits.

5.2 Reconstruction

We present the reconstruction protocols for our batched and packed secret shar-
ing. As mentioned in the introduction, for our detectable secret sharing, we get
a detectable reconstruction, a weaker form of robust reconstruction. For the case
of d = 0, we get robust reconstruction, and so verifiable secret sharing. We start
with fully specifying the functionality.

Detect, Pack and Batch 275

Functionality 5.4: Detectable Reconstruction for Batched and Packed Secret
Sharing – Fbatched

PSS-Rec

The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. Input: All honest parties send ZEROS ⊂ [n]. When the dealer is honest, ZEROS ⊆ I.
Each honest party Pj sends (fk

j (x), gk
j (y)) for each k ∈ [m] and j �∈ I. For each k, let

Sk(x, y) be the unique bivariate polynomial of degree 3t/2 in x and t+d in y that satisfies
fk

j (x) = Sk(x, j) and gk
j (y) = Sk(j, y) for every j �∈ I.

2. Send ZEROS and S1(x, y), . . . , Sm(x, y) to the adversary. If d = 0 then go to Step 4c.
3. Receive back from the adversary a message M .
4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.
(b) If M = (detect,Bad) with |Bad| > t/2 and Bad ∩ ZEROS = ∅, and in case of an

honest dealer Bad ⊆ I , then send (detect,Bad) to all parties.
(c) If M = proceed then send to each j the output (proceed, S1(x, y), . . . , Sm(x, y)).

Note that if the dealer is honest then discard cannot occur. Moreover, if the dealer
is honest and |ZEROS| > t/2, the (detect,Bad) cannot occur, as |Bad ∪ ZEROS| ≤ t

and so we cannot have |Bad| > t/2. In that case, we always succeed to reconstruct.
On the other hand, if the dealer is honest and |ZEROS| ≤ t/2, the adversary might
cause to a failure. In that case, we are guaranteed to have a mass detection.

The protocol. To reconstruct shared polynomials S1(x, y), . . . , Sm(x, y), the recon-
struction protocol follows a similar structure of that of Protocol Πbatched

rec-g :

1. Each party Pi holds (f�
i , g�

i (y))�∈[m] and a set ZEROS ⊂ [n].
2. Each party now sends all its polynomials f1

i (x), . . . , fm
i (x) over the private

channel to all other parties.
3. The parties try to reconstruct polynomials g�

1(y), . . . , g�
n(y) using the polyno-

mials f�
1(x), . . . , f�

n(x) (and taking 0 for the parties in ZEROS). E.g., reconstruct
g�

j(y) by considering (k, f�
k(j))k �∈ZEROS and adding (k, 0) for k ∈ ZEROS. Try to

correct at most t/2 errors, for every � ∈ [m] (see Theorem 3.1). If some party
fails to decode some polynomial g�

j(y), then it broadcast complaint(j, �). Note
that it is enough to broadcast just a single complaint, say the one with the
lexicographically smallest j, �.

4. We will have a public reconstruction of g�
j(y): Each party broadcasts its point

on that polynomial, and the dealer broadcasts a set Bad if there are any wrong
values broadcasted. The parties output (detect,Bad) if |Bad| > t/2. The parties
check that when excluding all points in Bad then all points lie on a single
polynomial g�

j(y).
5. Using the public reconstruction, the party Pj can now locate t/2 corruptions

and reconstruct (see full version) all polynomials g�
1(y), . . . , g�

n(y) for every � ∈
[m]. All parties can now find unique bivariate polynomials S�(x, y) satisfying
S�(i, y) = g�

i (y) for every i ∈ [n]. The parties output those polynomials.

There are few properties that we would like to highlight with respect to the
above protocol:

276 I. Abraham et al.

1. Note that when d = 0, then we can simply run Reed-Solomon decoding in
Step 3 and always succeed to reconstruct as Reed Solomon decoding returns
unique decoding when there are at most t errors. Thus, there is no need for
public resolution.

2. There are at most n complaints, which lead to each party broadcasting at
most O(n log n) bits to resolve all complaints.

Conclusion: Detectable Secret Sharing. While we provide functionality-based
modeling and proofs, the verifiable secret sharing literature is also full of prop-
erty based definitions, and some readers might find such modeling helpful. We
provide here such properties for completeness. From combining Functionali-
ties 5.2 and 5.4, when using d > 0 we obtain a two-phase protocol for parties
P = {P1, . . . , Pn} where a distinguished dealer P ∗ ∈ P holds initial SECRETS, and
all honest parties hold the same set ZEROSP ∗ ⊆ [n] (where no honest party is in
ZEROSP ∗ if P ∗ is honest) such that the following properties hold:

– Secrecy: If the dealer is honest during the first phase (the sharing phase), then
at the end of this phase, the joint view of the malicious parties is independent
of the dealer’s input SECRETS.

– Reconstruction or detection – corrupted dealer: At the end of the sharing
phase, the joint view of the honest parties define values SECRETS′ such that
at the end of the reconstruction phase – all honest parties will output either
SECRETS′, or discard the dealer, or t/2 new values will be added to ZEROSP ∗ .

– Reconstruction or detection – honest dealer: At the end of the sharing phase,
the joint view of the honest parties define values SECRETS′ = SECRETS that
the dealer used as input for the sharing phase. At the end of the reconstruc-
tion phase, all honest parties will output SECRETS, or t/2 new indices, all of
corrupted parties, will be added to ZEROSP ∗ . If ZEROSP ∗ initially contained
more than t/2 values during the sharing phase, then the output of the second
phase is always SECRETS.

When |SECRETS| ∈ Ω(n2), the protocol uses O(n4 log n + |SECRETS| log n) communi-
cation complexity for both sharing and reconstruction.

Conclusion: Verifiable Secret Sharing. From combining Functionalities 5.4
and 5.4, when using d = 0 we obtain a verifiable secret sharing: A two-phase
protocol for parties P = {P1, . . . , Pn} where a distinguished dealer P ∗ ∈ P holds
initial secrets s1, . . . , st is a Verifiable Secret Sharing Protocol tolerating t malicious parties

and the following conditions hold for any adversary controlling at most t parties:

– Validity: Each honest party Pi outputs the values si,1, . . . , si,t at the end of the
second phase (the reconstruction phase). Furthermore, if the dealer is honest
then (si,1, . . . , si,t) = (s1, . . . , st).

– Secrecy: If the dealer is honest during the first phase (the sharing phase) then
at the end of this phase, the joint view of the malicious parties is independent
of the dealer’s input s1, . . . , st.

Detect, Pack and Batch 277

– Reconstruction: At the end of the sharing phase, the joint view of the honest
parties defines values s′

1, . . . , s′
t such that all honest parties will output s′

1, . . . , s′
t

at the end of the reconstruction phase.

When |SECRETS| ∈ Ω(n), the protocol uses O(n4 log n + |SECRETS| · n log n) commu-
nication complexity for both sharing and reconstruction.

6 Packed and Batched Verifiable Triple Sharing

Packed verifiable triple sharing (VTS) allows a dealer to verifiably share t/2 + 1

multiplication triples at the cost of incurring O(n2) elements of communication
over point-to-point channels as well as broadcast. Precisely, VTS outputs each
element of the triples to be Shamir-shared via a degree-t polynomial. In the
full version, we show how to implement such packed verifiable triple sharing.
We will also present the batched version, denoted as Πbatched

PVTS , where O(mn) shared
triplets are prepared with O(mn2) elements of communication over point-to-point
channels and the same broadcast as needed for one instance (i.e. O(n2)). This
is an important contribution of this work that utilizes our both verifiable secret
sharing and detectable secret sharing constructions, and we refer the reader to
the full version for further details.

7 The MPC Protocol

We now describe our complete MPC protocol as a composition of the building
blocks, the PSS (Sects. 4, 5) and the VTS (Sect. 6) protocols, as well as other
building blocks from the literature (e.g., triplets extractor (ΠtripleExt) and batch
Beaver multiplication (ΠbBeaver), see full version). The protocol ΠMPC and the
corresponding functionality FMPC are provided below. At a high level, the protocol
is divided into the following two phases:

1. Beaver triple generation: In this phase, parties generate C number of degree-t
Shamir-shared multiplication triples where, C denotes the number of multi-
plication gates in the circuit. Towards that, each party first generates triples
using our VTS protocol. Subsequently, a triple extraction protocol “merges”
the triples generated by all parties and “extracts” random triples (not known
to any party) which will be consumed in the second phase. For sufficiently
large circuits, specifically for circuits of size Ω(n3), this phase incurs an amor-
tized cost of O(n log n) bits point-to-point communication per triple.

2. Circuit computation: Upon sharing of inputs by the input holding parties, in this
phase the computation of the circuit proceeds by parties performing shared
evaluation of the circuit. Since our sharing is linear, the linear operations
of addition and multiplication by a constant are local. For multiplication of
shared values, parties consume the Beaver triples generated in the prior phase.
This is followed by the reconstruction of the outputs to the designated parties
to complete the circuit evaluation.

278 I. Abraham et al.

Functionality 7.1: MPC – FMPC

Input: Each Pi holds input xi ∈ F ∪ {⊥}.
Common Input: An n-party function f(x1, . . . , xn).

1. Each Pi sends xi to the functionality. For any Pi, if xi is outside the domain or Pi did
not send any input, set xi to a predetermined default value.

2. Compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every i ∈ [n].

Protocol 7.2: MPC – ΠMPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n = 2h + 1. Let m = � C

h+1−t
.

Input: Parties hold their inputs (belonging to F ∪ {⊥}) to the circuit.
(Beaver triple generation:)

1. Each Pi chooses m + n(t/2 + 1) random multiplication triples and executes Πbatched
PVTS

(Section 6) batching � m
(t/2+1)

+n instances each with t/2+1 triples. Let (〈aj
i 〉, 〈bj

i 〉, 〈cj
i 〉)

for j ∈ [m] denote the triples shared by Pi.
2. Parties execute m instances of ΠtripleExt with (〈aj

i 〉, 〈bj
i 〉, 〈cj

i 〉) for every i ∈ [n] as the input
for the jth instance. Let (〈ai〉, 〈bi〉, 〈ci〉) for i ∈ [C] denote the random multiplication
triples generated.

(Circuit computation:)

1. (Input) Each party Pi holding ki inputs to the circuit executes Πbatched
PSS (Section 5)

batching � ki
t/2+1

 instances to share its inputs.

2. (Linear Gates) Parties locally apply the linear operation on their respective shares of
the inputs.

3. (Multiplication Gates) Let (〈ai〉, 〈bi〉, 〈ci〉) be the multiplication triple associated with
the ith multiplication gate with shared inputs (〈xi〉, 〈yi〉). Parties invoke ΠbBeaver with
{〈xi〉, 〈yi〉, 〈ai〉, 〈bi〉, 〈ci〉} for all gates i at the same layer of the circuit and obtain the
corresponding 〈zi〉 as the output sharing for every gate i.

4. (Output) For each output gate j with the associated sharing 〈vj〉, parties execute ΠRec

towards every party Pi who is supposed to receive the output vj .

Theorem 7.3. Let t < n/3. Protocol 7.2 securely implements FMPC (Functionality 7.1) and
has a communication complexity of O((Cn+Dn2+n4) log n) bits over point to point channels
and O(n3 log n) bits broadcast for evaluating a circuit with C gates and depth D in expected
O(D) rounds. Every party broadcasts O(n2 log n) bits.

Acknowledgements. Gilad Asharov is sponsored by the Israel Science Foundation
(grant No. 2439/20), by JPM Faculty Research Award, and by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 891234. Shravani Patil would like to acknowledge the support of
DST National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020–
2025. Arpita Patra would like to acknowledge the support of DST National Mission on
Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020–2025, Google India Faculty
Award, and JPM Faculty Research Award.

Detect, Pack and Batch 279

References

1. Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically free broadcast in
constant expected time via packed vss. In: TCC (2022). https://doi.org/10.1007/
978-3-031-22318-1 14

2. Abraham, I., Asharov, G., Yanai, A.: Efficient perfectly secure computation with
optimal resilience. In: Theory of Cryptography (2021). https://doi.org/10.1007/
978-3-030-90453-1 3

3. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial
protocol for asynchronous byzantine agreement with optimal resilience. In: PODC
2008 (2008). https://doi.org/10.1145/1400751.1400804

4. Anirudh, C., Choudhury, A., Patra, A.: A survey on perfectly-secure verifiable
secret-sharing. Cryptology ePrint Archive (2021)

5. Asharov, G., Cohen, R., Shochat, O.: Static vs. adaptive security in perfect MPC: a
separation and the adaptive security of BGW. In: 3rd Conference on Information-
Theoretic Cryptography, ITC 2022 (2022)

6. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure mul-
tiparty computation. J. Cryptol. 30(1), 58–151 (2015). https://doi.org/10.1007/
s00145-015-9214-4

7. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t<n/3.
In: Advances in Cryptology - CRYPTO 2011 (2011). https://doi.org/10.1007/978-
3-642-22792-9 14

8. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous
byzantine agreement revisited. In: 2018 ACM Symposium on Principles of
Distributed Computing, PODC. ACM (2018). https://doi.org/10.1145/3212734.
3212735

9. Bangalore, L., Choudhury, A., Patra, A.: The power of shunning: Efficient asyn-
chronous byzantine agreement revisited*. J. ACM (2020)

10. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Annual International Cryptology Conference (1991). https://doi.org/10.1007/3-
540-46766-1 34

11. Beerliova-Trubiniova, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4–7 2006, Proceedings 3, pp. 305–328
(2006). https://doi.org/10.1007/11681878 16

12. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Theory of Cryptography Conference (2008). https://doi.org/
10.1007/978-3-540-78524-8 13

13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Annual ACM Symposium on Theory of Computing (1988). https://doi.org/10.
1145/62212.62213

14. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Advances in Cryptology-
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
19–23 August 2012. Proceedings, pp. 663–680 (2012). https://doi.org/10.1007/978-
3-642-32009-5 39

15. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Com-
puter science (1992)

https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1145/1400751.1400804
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39

280 I. Abraham et al.

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001). https://doi.org/10.1109/SFCS.2001.959888

17. Canetti, R., Damgaard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6 17

18. Canetti, R., Damgard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptol. 17(3), 153–207 (2004).
https://doi.org/10.1007/s00145-004-0135-x

19. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing
(1988). https://doi.org/10.1145/62212.62214

20. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science (1985). https://doi.org/
10.1109/SFCS.1985.64

21. Choudhury, A.: Protocols for Reliable and Secure Message Transmission. Ph.D.
thesis, Citeseer (2010)

22. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Trans. Inf. Theory. 63, 428–468 (2016)

23. Coan, B.A., Welch, J.L.: Modular construction of nearly optimal byzantine agree-
ment protocols. In: ACM Symposium on Principles of distributed computing
(1989). https://doi.org/10.1145/72981.73002

24. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: International Conference on the Theory
and Applications of Cryptographic Techniques (2000). https://doi.org/10.1007/3-
540-45539-6 22

25. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th
Annual ACM Symposium on Theory of Computing (1988). https://doi.org/10.
1145/62212.62225

26. Feldman, P.N.: Optimal algorithms for Byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

27. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. (1982)

28. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th Annual ACM Symposium on Theory of Comput-
ing (1992). https://doi.org/10.1145/129712.129780

29. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: ACM Symposium
on Principles of Distributed Computing (1998). https://doi.org/10.1145/277697.
277716

30. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Annual International Cryptology Conference
(2019). https://doi.org/10.1007/978-3-030-26951-7 4

31. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Advances in Cryptology-CRYPTO 2020: 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17–21, 2020, Proceedings, Part II, pp. 618–646 (2020). https://doi.org/10.1007/
978-3-030-56880-1 22

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/s00145-004-0135-x
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1145/72981.73002
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22

Detect, Pack and Batch 281

32. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation.
In: International Conference on the Theory and Application of Cryptology and
Information Security (2000). https://doi.org/10.1007/3-540-44448-3 12

33. Katz, J., Koo, C.: On expected constant-round protocols for byzantine agreement.
In: Annual International Cryptology Conference (2006). https://doi.org/10.1007/
11818175 27

34. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: 38th Annual ACM Symposium on Theory of
Computing (2006). https://doi.org/10.1145/1132516.1132532

35. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.
Elsevier (1977)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority (extended abstract). In: ACM Symposium on Theory of Computing
(1989). https://doi.org/10.1145/73007.73014

https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1145/73007.73014

An Incremental PoSW for General
Weight Distributions

Hamza Abusalah1(B) and Valerio Cini2

1 IMDEA Software Institute, Madrid, Spain
hamza.abusalah@imdea.org

2 Austrian Institute of Technology, Vienna, Austria

valerio.cini@ait.ac.at

Abstract. A proof of sequential work (PoSW) scheme allows the prover
to convince a verifier that it computed a certain number of computational
steps sequentially. Very recently, graph-labeling PoSW schemes, found
applications in light-client blockchain protocols, most notably bootstrap-
ping. A bootstrapping protocol allows a light client, with minimal infor-
mation about the blockchain, to hold a commitment to its stable prefix.

An incremental PoSW (iPoSW) scheme allows the prover to non-
trivially increment proofs: given χ, π1 and integers N1, N2 such that π1

is a valid proof for N1, it generates a valid proof π for N1 + N2.
In this work, we construct an iPoSW scheme based on the skiplist-

based PoSW scheme of Abusalah et al. and prove its security in the ran-
dom oracle model by employing the powerful on-the-fly sampling tech-
nique of Döttling et al. Moreover, unlike the iPoSW scheme of Döttling
et al., ours is the first iPoSW scheme which is suitable for construct-
ing incremental non-interactive arguments of chain knowledge (SNACK)
schemes, which are at the heart of space and time efficient blockchain
light-client protocols. In particular, our scheme works for general weight
distributions, which we characterize as incrementally sampleable distri-
butions. Our general treatment recovers the distribution underlying the
scheme of Döttling et al. as well as the distribution underlying SNACK-
enabled bootstrapping application as special cases. In realizing our gen-
eral construction, we develop a new on-the-fly sampling technique.

1 Introduction

Proofs of Work (PoW) was introduced by Dwork and Naor [8], and in the past
years has become very popular in the context of cryptocurrencies. A PoW scheme
allows a prover to convince a verifier that a certain amount of computation was
performed. However, this says nothing about whether the computation was done
sequentially or in parallel.

A Proof of Sequential Work [12] (PoSW) is an (interactive) proof system in
which the prover, on common inputs an integer parameter N and a statement
χ, computes a proof that convinces the verifier that N sequential computational
steps have been performed since χ was received.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 282–311, 2023.
https://doi.org/10.1007/978-3-031-30617-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_10

An Incremental PoSW for General Weight Distributions 283

A simple PoSW scheme based on a random oracle τ : {0, 1}∗ → {0, 1}λ is a
hash chain: the prover computes yi := τ(χ, yi−1) for i ∈ [N] := {1, . . . , N} and
y0 := τ(χ) and defines its proof π := yN . The verifier verifies π by recomputa-
tion. From basic properties of random oracles, any accepting proof must have
been computed, with overwhelming probability, in N sequential steps even by a
massively parallel adversarial prover. From the prover’s perspective, this scheme
is optimal: the prover does exactly N sequential steps and keeps constant size (λ
bits) memory during its computation. However, the verifier needs to recompute
the proof, and hence, spend as much resources as the honest prover. There-
fore, for the applicability of PoSW schemes, one would also require succinctness,
beyond completeness and soundness. Succinctness requires that the proof size as
well as the verifier’s running time are poly-logarithmic in N .

Beyond classical applications of PoSW schemes for time stamping, where a
prover wants prove to future verifiers that it stamped a certain message some
time in the past, we have now more applications in the blockchain arena. The
first such application uses a special form of a PoSW scheme which has unique
proofs. Chia [6], in an effort to designing sustainable blockchains, combines in its
mining process proofs of space [1,9] and verifiable delay functions [4], which are
a subclass of PoSW with unique proofs. While generating these proofs requires
large space and sequential time resources, they must be efficiently and publicly
verifiable.

Recently, (graph-labeling) PoSW schemes found applications in light-client
blockchain protocols, most notably bootstrapping [2]. A light-client, which has
minimal information about the blockchain in question, say its genesis block,
is said to have securely bootstrapped if it ends up, after potentially talking
to multiple provers, holding a commitment to the honest stable-prefix of the
blockchain. The light client must be efficient in the sense that its verification
time is at most poly-logarithmic in the length of the blockchain.

In the above applications, different classes of PoSW schemes are assumed.
When the sequential computation is used in mining1 as in Chia, the PoSW is
required to have unique proofs. This subclass of PoSW schemes is called veri-
fiable delay functions VDFs [4,10,13,14]. The subclass used for bootstrapping
application is called graph-labeling PoSW schemes [2,3,5,7,12]. It is not known
how to use VDFs to solve the bootstrapping problem, nor how to use graph-
labeling PoSW to get unique proofs, which is what is needed in the mining
application.

In this work, we focus on the class of graph-labeling PoSW schemes, however,
the same question that we address here in terms of incrementality is relevant
for VDFs; in fact these are called continuous VDFs [10]. One main motivation

1 In Chia, the mining resource is space, and entities that dedicate space and produce
PoSpace proofs are called farmers, while entities that finalize the PoSpace-mined
blocks by producing a VDF computation are called time lords. While PoSpace farm-
ers compete on their PoSpace proofs, a single time lord suffices for each block. It is
important to notice that farmers don’t compute VDFs.

284 H. Abusalah and V. Cini

of making this choice is that GL-PoSW schemes can be used to provide efficient
solutions to blockchain light-client bootstrapping [2].

1.1 Graph-Labeling PoSW Schemes

A Graph-Labeling PoSW scheme is a PoSW scheme for a weighted graph family
Γ = ((GN , ΩN))N≥0, where GN = ([N]0, EG) is a DAG on [N]0 := {0, . . . , N}
and ΩN : [N] → [0, 1] is a weigh function, i.e.,

∑N
i=1 ΩN (i) = 1. We refer

to weight functions as probability distribution when convenient. All existing
GL-PoSW schemes [2,3,5,7,12] are in the random oracle model. The prover,
upon receiving a statement χ from the verifier, uses χ to refresh a random
oracle τ : {0, 1}∗ → {0, 1}λ to compute a labeling L : [N]0 → {0, 1}λ of GN ,
where the label of i ∈ [N]0 is simply defined as L(i) := τ(χ, i, L(Parents(i))),
where Parents(i) denotes the (ordered) set of nodes with outgoing edges directed
towards i. The prover then sends to the verifier a (vector) commitment φ to the
labeling L. The verifier then engages with the prover in a challenge response
protocol in which for each challenge i ∈ [N] drawn by the verifier according to
distribution induced by ΩN , the prover responds with protocol- and challenge-
specific labels and openings from L, which the verifier then checks for consistency.
(A part of the prover’s response to challenge i is a φ-opening at position i.)

Completeness, (α, ε)-soundness, and succinctness are required. Complete-
ness stipulates that the verifier always accepts honest proofs, and succinct-
ness requires that for any honestly generated proof π, it holds that |π| ∈
poly(λ, log N), and the running time of the verifier is upper-bonded by
poly(λ, log N), where λ is a security parameter. Now (α, ε)-soundness guaran-
tees that except with probability ε, the verifier rejects any proof generated by a
prover which made less that αN sequential queries to τ(·).

Such an interactive protocol is then made non-interactive in the ROM by
applying the Fiat-Shamir [11] transform. The GL-PoSW scheme of [7] is defined
and constructed non-interactively, but otherwise it follows the above design tem-
plate.

The first PoSW scheme [12] is a GL-PoSW whose underlying graph GN is
depth robust, has the disadvantage of large space requirement ≈ λN bits during
the prover’s computation.

The high space requirement was addressed in [5], where they design a simple
tree-based DAG GN , which when used in the above design template, allows for a
practically efficient GL-PoSW, where the prover requires much less space � λN
bits. Moreover, they show general space-time tradeoffs of the prover strategy,
that we will discuss shortly.

In [3], another practically efficient GL-PoSW scheme that uses a skiplist
DAG as its underlying graph was proposed. The scheme uses a slightly dif-
ferent, but essentially the same labeling strategy: instead of defining L(i) :=
τ(χ, i, L(Parents(i))), it is computed using a permutation whose input is selected
among L(Parents(i)). The permutation-based labeling gives the PoSW the addi-
tional feature of reversibility : given L(i) of any i ∈ [N], one can efficiently

An Incremental PoSW for General Weight Distributions 285

compute L(i − 1). Reversibility comes at the cost of having labels of larger size:
for parameter N , it holds that |L(i)| = λ · log N .

Motivated by applications of GL-PoSW schemes in designing light-client
blockchain applications, a variant of the skiplist PoSW scheme is proposed in [2].
This scheme is identical to the original skiplist construction, except that labels
are defined as L(i) := τ(χ, i, L(Parents(i))) for a random oracle τ . The result-
ing scheme is no longer reversible as in [3] . However, it has the advantage of
smaller labels |L(i)| = λ. Having constant size labels is important in the design
of blockchains which allow for light-client protocols, where in the ith block of
the respective blockchain, a PoSW label L(i) is stored, and having a constant
size label for an ever-growing blockchain saves a lot of otherwise wasted storage.
(For more details on such augmented blockchains, see [2].)

For simplicity, we refer to the scheme from [5] as the tree construction TC,
and to both schemes from [3] and [2] as the skiplist construction SC.

Space-Efficient Provers. In all these schemes, a prover sequentially computing
the labeling L of the PoSW underlying graph GN , which would take N sequential
invocations to its random oracle τ , and storing all labels L, would be able to
compile a convincing proof π out of L. However, if the prover does actually
spend N sequential computations in computing L but stored nothing beyond
L(N), then it may need to spend another N sequential queries to be able to
compile a convincing proof π. This issue can be seen as either a space-efficiency
or soundness slack issue: while honest provers with essentially no storage need
to spend 2N steps, soundness is quantified over malicious provers doing < αN
sequential computation for α ∈ (0, 1]

This space issue was raised in both [12] and [5], where in the former it was left
open, and in the latter, a general space-time tradeoff of the prover’s strategy was
given. Roughly speaking, for space ≈ √

N an honest prover can spend ≈ N +
√

N
and convince the verifier that it did N sequential steps.

1.2 Incremental PoSW

This gap between the number of sequential steps of the honest and malicious
provers, was essentially closed by Döttling, Lai and Malavolta [7], who give a vari-
ant of TC PoSW, call it ITC, in which the prover uses space up to poly(λ, log N)
and spends N sequential steps to convince the verifier that it did N sequential
steps. In doing so, they introduce the notion of an incremental PoSW. This
is a non-interactive GL-PoSW scheme (P,V, Inc), in which, in addition to the
prover/verifier algorithms, there is an additional Inc algorithm that given χ, π1

and integers N1, N2 such that π1 is a valid proof for N1, it generates a valid
proof π for N1 + N2. To avoid trivialities, one requires that π is asymptotically
succinct, even if the incrementation is applied arbitrarily many times, and that
the running time of Inc is essentially independent2 of N1. This condition avoids
the trivial solution, in which either Inc computes a proof π2 from π1 onwards

2 By essentially independent we mean that the dependency is at most poly-logarithmic.

286 H. Abusalah and V. Cini

and defines π := (π1, π2), or simply ignores π1 and computes π from scratch for
N1 + N2.

The starting point for ITC is TC. Recall that TC is an interactive GL-PoSW
whose underlying weighted DAG is (GN = ([N]0, EG), ΩN), where GN is a tree-
like DAG with a single sink N and ΩN is such that ΩN (i) := 1/N for every
i ∈ [N]. The prover P computes, using a random oracle τ(·), the labeling L of
GN and sends φL := L(N) to V, which in return selects t challenges i1, . . . , it
according the distribution induced by ΩN , which in this case would be the uni-
form distribution, and sends them to P, which responds by openings to these
challenges. Finally V accepts if and only if the openings are consistent with φL,
which serves as a commitment to L.

This construction is then made non-interactive using the Fiat-Shamir trans-
form: P computes challenges by using enough random bits from applying the
random oracle τ(χ, φL, ·) appropriately many times, say on inputs 1, 2, . . ., and
then uses these random bits to deterministically generate t challenges. However,
inherent to this approach, is that P only learns its challenges at the end of the
computation, and by then, it either must have stored all L and can then open
the challenges efficiently, or it recomputes the missing labels among L that are
needed to answer the challenges. In between these two extremes there are general
space-time tradeoffs that the prover can employ as we discussed above.

ITC is an alternative approach towards making TC non-interactive and incre-
mental at the same time. ITC employs the clever on-the-fly sampling technique:
as P is labeling GN , in topological order, it learns some potential challenges from
its already computed labels, and it learns with certainty what labels it already
computed will not be part of its final challenges. This allows P to discard the
labels of such useless nodes, and hence keep only the essential labels in memory.
By the time P computes L(N), it learns its final t challenges, for which it already
stored their respective openings.

1.3 Incremental PoSWs for Incremental SNACKs

On Light-Client Blockchain Protocols. Recently, [2] show how GL-PoSW
schemes can be generically used to augment blockchains such that they would
then allow for efficient light-client secure bootstrapping. In their terminology,
a full miner holding the entirety of a PoSW-augmented blockchain provides
the light client with a succinct non-interactive argument of chain knowledge
(SNACK) proof. The SNACK proof, in addition to some blockchain suffix blocks,
allows the light client to hold a commitment to a stable prefix of the blockchain.
For this application, a standalone GL-PoSW suffices: in the SNACK construction
of [2], any GL-PoSW is used generically to augment a blockchain such that the
augmented blockchain becomes SNACK-friendly, i.e., one can generate SNACK
proofs for the augmented blockchain efficiently.

However, if the PoSW is incremental in the construction of [2], then the full
node miner, having produced or obtained a valid SNACK proof for an augmented
blockchain of length N , will be able to increment its SNACK proof for the

An Incremental PoSW for General Weight Distributions 287

blockchain when it grows into any length N ′ > N , and hence allows the full
node to bootstrap light clients without storing the first N blocks of the N ′-long
blockchain. (The genesis block is always assumed to be stored by all parties.)
This allows full nodes to become space-efficient, which is a great advantage given
the massive sizes of the ever-growing blockchains.

The ITC Scheme and Light-Client Blockchain Protocols. In [2], it is shown
how to build a SNACK system from any GL-PoSW scheme. Furthermore, if
the underlying GL-PoSW is incremental, then so is the overlying SNACK. The
standalone (non-incremental) SNACK can be used to provide efficient solutions
to the blockchain light-client bootstrapping problem. Additionally, if the SNACK
is incremental, it is suggested in [2] that such an incremental SNACK would make
the prover of these light-client protocols even more efficient; the prover becomes
space-efficient.

SNACKs are defined with respect to a family of weighted DAG (GN =
([N]0, EG), ΩN)N≥0. The underlying weighted DAG of the SNACK is inher-
ited from the underlying GL-PoSW. For the SNACK application of light-client
bootstrapping, ΩN : [N] → [0, 1] doesn’t induce the uniform distribution over
[N]. Roughly speaking, ΩN (i) ∼ 1/(N − i), which is far from uniform over
[N]. This motivates designing incremental PoSW schemes with general weight
distributions.

On Defining Incremental PoSWs. For the light-client blockchain applica-
tion, an honest prover that increments any valid SNACK proof should make the
verifier accept, regardless of how the SNACK proof it incremented was gener-
ated. This means that we need the same guarantees from the underlying iPoSW:
any valid PoSW proof that is honestly incremented will make the verifier accept.
This is also a natural requirement on incrementality, when the iPoSW is used in
a distributed fashion: there are multiple parties that compute and increment; one
party may increment another’s computation and if the incrementation was done
honestly on a valid proof, then the resulting proof must also verify regardless of
how the proof of the previous party was generated.

1.4 Our Contributions

Motivated by the recent connection between light-client blockchain applications
and GL-PoSW schemes [2], we advance the current understanding by

– strengthening the definition of iPoSW of [7] such that it becomes useful for
light-client blockchain applications. The iPoSW definition of [7] only requires
that honestly incrementing an honestly generated proof, rather than any valid
proof, makes the verifier accept. For the usability of iPoSW in distributed
applications, like incremental SNACKs and blockchains, we strengthen their
definition as highlighted above. We also observe that their construction, ITC,
achieves our stronger definition.

– constructing an iPoSW scheme whose underlying weighted graph family
(GN , ΩN)N≥0 is such that GN is the simple skiplist GN = ([N]0), EN) and

288 H. Abusalah and V. Cini

whose distribution ΩN is any arbitrary t-incrementally sampleable distribu-
tion. In particular, both the uniform and the SNACK distributions are t-
incrementally sampleable distribution. Therefore, our iPoSW is the first and
only iPoSW that can be used to construct an incremental SNACK, which in
turn, can be used to construct the first space-efficient prover in blockchain
light-client bootstrapping [2]. Along the way, we give a simple characteriza-
tion of t-incrementally sampleable distributions. Technically, we also devise a
new on-the-fly-sampling technique that works for all such distributions.

In a bit more detail. We first give a standalone iPoSW scheme based on
the skiplist graph (Sect. 5). The scheme uses the same distribution ΩN as in [7]
and can be thought of as a general-purpose iPoSW. To prove security, we use
and adapt the same on-the-fly-sampling strategy of [7]. Informally speaking, and
on a very high level, the on-the-fly sampling works by randomly and without
replacement sampling a set S of t elements from two sets S0 and S1, each con-
tains t elements and a certain fraction of which is inconsistent. One then uses
a Hoeffding bound to reason about the fraction of inconsistent elements in S in
relation to the corresponding fractions of the original sets S0, S1. Fortunately,
the same Hoeffding bound can be used when sampling randomly with or without
replacement.

When moving to general probability distributions, one can still apply a gen-
eral Hoeffding bound when sampling with replacement from a general probabil-
ity distribution, i.e., when the random variables of the samples are independent.
However, when sampling is done without replacement, then we are not aware of
appropriate Hoeffding-like bounds that one can apply generically.

Therefore, we devise a new sampling strategy. Our sampling follows the Pois-
son binomial distribution, and informally, given S0 and S1 whose elements are
sampled from Ωt, we sample S such that each si ∈ S0 ∪ S1 is added to S with
probability pi that is proportional to Ω2t(si). Instead of having |S| exactly t, we
have that |S| is on expectation t. We show that this sampling strategy works for
all t-incrementally sampleable distributions.

In Sect. 6, we use this new on-the-fly sampling technique to construct an
iPoSW which works for any t-incrementally sampleable distribution. When
applying the new technique, new challenges arise: the verifier no longer can
verify the consistency of the on-the-fly sampled elements. We solve this problem
by making the prover commit to, and give away, as part of its proof, extra sets
that allow the verifier to check the consistency of the sampled challenges. This
change increases the proof size slightly.

1.5 A High-Level Technical Overview

In this section, we only give the high-level overview of our skiplist-based iPoSW
(Sect. 5) when ΩN is the uniform distribution and we sample without replace-
ment. The general case when ΩN is any t-incrementally sampleable distribution
and our on-the-fly sampling follows the Poisson binomial distribution is given in
Sect. 6.2.

An Incremental PoSW for General Weight Distributions 289

Let’s first review the interactive SC construction. Figure 1 shows the skiplist
graph GN = ([N], EG) for N = 16. We only show how P, which has the labeling
L of G16, answers its challenges. For example, let v ∈ [16] be a challenge, then
P locates the unique shortest path from the source 0 to the sink 16 which passes
through v. Then it answers with the labels on this path and the labels of the
parents of the nodes on the path. V simply checks the consistency of the labels
on the path. As the path is of length O(log N) and each node has O(log N)
parents, the opening for a single challenge is of size O(λ log2 N). In contrast, the
opening for a path in TC is O(λ log N).

Our incremental (non-interactive) PoSW ISC is then obtained by employing
the on-the-fly sampling technique of [7]. For simplicity of exposition, we show
how the challenges are on-the-fly sampled, however, without showing the corre-
sponding openings of these challenges. In Sect. 5, we give a more comprehensive
overview of the construction, including how to incrementally re/combine partial
openings to full openings of the final challenges.

Fig. 1. Evolution of the stored challenges during the protocol. The elements of the list
Lv,i are actually full openings of challenges. To ease readability, we have only drawn
the corresponding challenge nodes. An example for G16, t = 2.

The on-the-fly sampling is illustrated in Fig. 1 for an example graph G16 and
t = 2. In general, the technique works as follow: let t = 2c for some integer c
be the number of challenge nodes/openings to be produced by the end of the
protocol. For every v ∈ [N] that is a multiple of t, we will construct a list
Lv,0 which contains all the nodes w ∈ [v − t + 1 : v]. This list consists of all

290 H. Abusalah and V. Cini

potential challenges defined by v at “level” 0. If v ∈ [N] is also a multiple of
2t, the sets Lv−t,0 and Lv,0 are merged into a unique set, denoted by Lv,1, with
t elements, in the following way: L(v) is used as input to a random oracle to
obtain random coins rv,1. Using these random coins, we sample at random (and
without replacement) a subset of size t from the set Lv−t,0∪Lv,0. Such randomly
sampled subset of size t will be stored as Lv,1, and the sets Lv−t,0 and Lv,0 can
be erased from memory. The set Lv,1 will consist of t challenge nodes assigned
to v at “level” 2. In a similar way, whenever v is a multiple of 2it for integer i,
random coins rv,i are produced from L(v) to obtain a random subset Lv,i of size t
from the set Lv−2i−1t,i−1∪Lv,i−1. After obtaining Lv,i, the sets Lv−2i−1t,i−1, and
Lv,i−1 are erased from memory. In the last step of the algorithm, the set LN,n−c

will be produced, where N = 2n. This, together with φL := L(N), constitutes
the proof to be verified.

Extra care is needed when proving soundness of the resulting ISC scheme,
in which the prover learns partial information about its challenges, even before
sending the commitment φL. The overall proof strategy is similar to proof of
ITC from [7]. The intuition of why the on-the-fly sampling is sound comes from
the observation that at each resampling node v, the samples are derived from
randomness that depends on L(v), and L(v) serves as a commitment to all
potential nodes from which the resampling takes place. The security proof then
goes through a series of hybrid games, in which two consecutive games differ
by a resampling-related bad event, which happens with a negligible probability.
The analysis of the last hybrid game boils down to the original analysis of the
SC scheme.

As mentioned before, when moving to general weight distributions, our
on-the-fly sampling procedure follows the Poisson binomial distribution. This
change introduces a novel issue: the number of final challenges (and thus their
total weight) is not fixed in advanced as before, and more critically, the inter-
mediate sets used in the sampling procedures are not implicitly defined. On the
one hand, it can be shown using Hoeffding-like bounds, that the number of chal-
lenges (and their total weight) must be concentrated around the expected value
with overwhelming probability. By modifying the verifier so that it additionally
checks such constraints, it is possible to rule out such malicious behavior, and
fix the first issue. On the other hand, by having the prover commit to the inter-
mediate sets, and give, as part of its proof, the opening of the intermediate sets
used in sampling the final challenge set, the verifier can check the correctness of
the on-the-fly sampled challenges, and thus fix the second issue as well. A more
elaborate overview is given in Sect. 6.

An Incremental PoSW for General Weight Distributions 291

2 Preliminaries

2.1 Notations

For integers m,n > 0, define [n] := {1, . . . , n}, [n]0 := [n] ∪ {0}, and [m : n] :=
{m,m + 1, . . . , n}. For a DAG G = (V,E) and v ∈ V , we let Parents(v) :=
(v1, . . . , vk) be the parents of v given in reverse topological ordering.3

For a distribution D, we denote by d
$← D sampling d according to D (in

case D is a set, the uniform distribution is implied).
We define the notion of (oracle-based) graph labeling which appeared in

previous work on GL-PoSW schemes, say [5,12].

2.2 Graph Labeling

Definition 1 (Oracle-based graph labeling). Let GN = ([N]0, EN) be a
DAG and τ : {0, 1}∗ → {0, 1}λ an oracle. We define the τ -labeling Lτ : [N]0 →
{0, 1}λ of GN recursively as

Lτ (i) :=

{
τ(i) if Parents(i) = ∅
τ
(
i, Lτ (i1), . . . , Lτ (ik)

)
else, i.e., Parents(i) = (i1, . . . , ik)

(1)

When τ is clear from the context, we simply write L.

To formalize consistency of labels in this context, [2] define the notion of
consistent strings, which is stronger than prior definitions in the literature [3,
5,12]. Intuitively, to each vertex i a value yi is associated, which represents the
concatenation of the labels of the parents of i. In order to reason about the label
of the last node as well, a dummy vertex is introduced for it, that is, we add
vertex N + 1 and an edge (N,N + 1).

Definition 2 (Consistent strings [2]). Let τ : {0, 1}∗ → {0, 1}λ be an oracle.
For a DAG GN = ([N]0, EN), let G+

N = ([N + 1]0, E+
N) with E+

N = EN ∪
{(N,N + 1)}. Furthermore, ∀i ∈ [N +1]0, let pi be the number of parents of i in
G+

N and yi := (i, yi[1], . . . , yi[pi]) ∈ ([N]0 × ({0, 1}λ)pi). We say yi is consistent
with yi′ w.r.t. GN , and denote it by yi ≺ yi′ if (i, i′) ∈ E+

N and if i is the j-
th parent of i′ in G+

N (in reverse topological order), then the j-th block in the
decomposition of yi′ is equal to τ(yi), i.e., yi′ [j] = τ(yi).

3 The Skiplist PoSW Scheme

3.1 Construction

In this section, we review the interactive GL-PoSW scheme of [2]. The scheme is
reminiscent to the PoSW scheme from [3]. The scheme follows the same design
template introduced earlier and we give a formal definition only for the non-
interactive incremental GL-PoSW schemes later in Sect. 4.
3 Although any fixed ordering suffices, it would be convenient for our construction to

consider the reverse topological ordering.

292 H. Abusalah and V. Cini

Definition 3 (The Skiplist graph [2,3]). Let GN = ([N]0, EN) be a DAG
with

En =
{
(i, j) ∈ ([N]0)2 : ∃k ≥ 0 s.t. (j − i) = 2k ∧ 2k|i} .

Definition 4 (Labeled Paths). Let GN = ([N]0, EN) be a skiplist graph as
in Def. 3 and Lτ a labeling over its vertices for an oracle τ : {0, 1} → {0, 1}λ.
For integers i1, . . . , ij s.t. 0 ≤ i1 < · · · < ij ≤ N , define Path(i1, . . . , ij) as the
unique shortest path from i1 to ij passing through i1, . . . , ij. Furthermore, define

Path+(i1, . . . , ij) := (Parents(v))v∈Path(i1,...,ij)

Path∗(i1, . . . , ij) := (v, L(Parents(v)))v∈Path(i1,...,ij)

and a predicate Consistent over labeled paths as follow:

Consistent (Path∗(i1, . . . , ij)) ∈ {0, 1}: output 1 iff

∀yi := (vi, ·), yi′ := (vi′ , ·) ∈ Path∗(i1, . . . , ij) s.t. (vi, vi′) ∈ EN :

yi ≺ yi′ where ≺ is as in Def. 2.

To illustrate, consider G8 , then

Path(0, 3, 8) = (0, 2, 3, 4, 8)

Path+(0, 3, 8) = ((), (1, 0), (2), (3, 2, 0), (7, 6, 4, 0))
Path∗(0, 3, 8) = ((0), (2, L(1), L(0)), (3, L(2)), (4, L(3), L(2), L(0)),

(8, L(7), L(6), L(4), L(0))).

Furthermore, Consistent(Path∗(0, 3, 8)) = 1 as

y0 ≺ y2, y0 ≺ y4, y0 ≺ y8, y2 ≺ y3, y2 ≺ y4, y3 ≺ y4, y4 ≺ y8.

Note that Path∗ contains redundant labels. This results in an increase in the
proof size in the skiplist-based PoSW scheme. However, we keep it as is for the
simplicity of exposition. In practical realizations, it is straightforward to remove
the redundancy and modify the verification algorithm accordingly.

Now we describe the PoSW scheme from [2] in Fig. 2. Formally the PoSW
is defined for a graph family (ΓN := (GN , ΩN))N∈N where GN is a skiplist as
in Def. 3 and a weight function ΩN : [N] → [0, 1] where

∑
i∈[N] ΩN (i) = 1.

Besides, the PoSW scheme is parameterized by a security parameter t ∈ N that
determines the number of challenges the verifier samples from ΩN .

In [2], interactive GL-PoSW schemes were defined. Their definition general-
izes existing definitions of PoSW in a few directions. First, the protocol’s under-
lying graph is a weighted DAG Γn := (GN , ΩN) where GN is a DAG on [N]0
vertices, and the the verifier’s challenges are drawn according to a weigh func-
tion ΩN : [N]0 → [0, 1] where

∑
i∈[N]0

ΩN (i) = 1. Second, they define knowledge
soundness in addition to the classical notion of soundness. In Theorem 1, we

An Incremental PoSW for General Weight Distributions 293

Fig. 2. t ∈ N is a parameter of the scheme, and (GN , ΩN) is s.t. GN is a skiplist DAG as
in Def. 3 and ΩN : [N] → [0, 1] is a weight function, i.e., it satisfies

∑
i∈[N] ΩN (i) = 1.

restate their main theorem about the classical, rather than knowledge, sound-
ness guarantees of the PoSW construction depicted in Fig. 2.

Towards generalizing PoSW to arbitrary weight functions, the weight of a
sequence of parallel oracle queries to τ(·) is defined. A parallel query is a sequence
of simultaneous queries to τ , i.e. a sequence ((x1, i1), . . . , (xm, im)) which is
answered by (τ(i1, x1), . . . , τ(im, xm)). Intuitively, the weight of such a sequence
is the sum of the respective “heaviest” nodes in each parallel query.

Definition 5 (Sequential weight [2]). Let Q = (Q1, . . . , Q�) be a sequence of
parallel queries to an oracle τ . We define the sequential weight of Q with respect
to a weight function ΩN : [N] → [0, 1] where

∑
i∈[N] ΩN (i) = 1 as

Ωseq(Q) :=
�∑

i=1

max{ΩN (j) : Qi contains a query to τ(j, ·)} .

The honest P in Fig. 2 defines a sequence Q = (Q1, . . . , QN) of queries with
Qi := {(i, L(Parents(i)))} and it therefore holds that Ωseq(Q) = 1. To capture
the sequential work of malicious provers, the notion of τ -sequence is defined.

Sequentiality of random oracles is formulated in terms of RO-sequences,
which appeared in slightly different formulations and bounds in [2,3,5,12]. Below
we adopt the formulation from [2].

Definition 6 (τ-sequences [2]). Let GN = ([N]0, EN) be a DAG and τ :
{0, 1}∗ → {0, 1}λ be a random oracle. We call a sequence of strings s :=

294 H. Abusalah and V. Cini

(yi1 , . . . , yi�+1) with yi�+1 ∈ {0, 1}λ and yij
∈ ([N]0 × ({0, 1}λ)|Parents(ij)|) a τ -

sequence of length � if ∀j ∈ [�], yij
≺ yij+1 w.r.t. GN .(≺ is as in Def. 2.)

For a weight function ΩN : [N] → [0, 1], the weight of a τ -sequence s =
(yi1 , . . . , yi�+1) is defined as ΩN (s) :=

∑�
j=1 Ω(ij).

Note the honest Q above can be made into a τ -sequence s := (y0, . . . , yN , yN+1)
where ∀i ∈ [N]0, yi := (i, L(Parents(i))) and yN+1 := τ(yN). Note the weight of
s is defined to ignore the last index N +1 and hence is equal

∑N
i=1 Ω(i) = 1. Fur-

thermore, note if Path∗(0, i, N) is such that Consistent(Path∗(0, i, N)) = 1, then
by definition (Path∗(0, i, N), φL) constitutes a τ -sequence. Lemma 1 shows that,
except with negligible probability, no malicious prover which makes a sequence
of parallel queries Q with Ωseq(Q) < α can produce a τ -sequence of weight α.

Lemma 1. (Sequentiality of τ [2]). Let ΓN = (GN , ΩN) be a weighted DAG
and τ : {0, 1}∗ → {0, 1}λ a random oracle. Let P̃τ(·) be a malicious prover that
makes (parallel) queries to τ(·) of sequential weight < α and makes q oracle
queries in total. Then the probability that P̃τ(·) outputs a τ -sequence of weight α
can be bounded by

Pr
[
s ← P̃τ(·) : s is a τ -sequence ∧ ΩN (s) = α

]
≤ 1

2λ
+

q2

2λ
=

q2 + 1
2λ

.

Now we state the theorem that shows the PoSW scheme in Fig. 2 is secure.

Theorem 1. ([2]). Consider a malicious prover P̃ against V from Fig. 2. If P̃
makes a sequence Q of parallel queries to τ of sequential weight Ωseq(Q) < α ∈
(0, 1] and a total number of queries q, then P̃ can make V accept with probability
at most ε := αt + 3 · q2/2λ.

3.2 Prover Efficiency and Space-Time Tradeoffs

In this section, we give general space-time tradeoffs on the prover’s strategy in
the interactive PoSW from [2]. These tradeoffs pave the way to the incremental
non-interactive PoSW scheme we give in Sect. 5. For space constraints, we give
the proofs of the lemmas of this section in the full version of the paper.

The following lemma shows that the prover can label the skiplist graph in
small space complexity.

Lemma 2. Let GN be the skiplist graph from Def. 3 and τ : {0, 1}∗ → {0, 1}λ

an oracle. Then GN for N = 2n can be τ -labeled in topological order using at
most (n + 1)λ bits of memory

Let N = 2n and the level of a node denote its in-degree. In GN , we have
only the source node 0 with level 0, only the sink node N with level n + 1, and
for every i ∈ [n], we have 2n−i nodes with level i. For simplicity of exposition,
we treat the source node differently and assume that its label is always known.
When storing labels of nodes of level m and greater, the prover needs to store
the labels of

∑n
i=m 2n−i + 1 = 2n−m+1 nodes. Recomputing the labels of the

An Incremental PoSW for General Weight Distributions 295

remaining nodes can be done by making 2m−1 − 1 queries sequentially; this can
be done assuming 2n−m+1 parallel processors by partitioning 2n into intervals of
length 2m−1. To compute how many (sequential) queries are required to compute
all the labels necessary to correctly reply to some challenge i ∈ [N], we need to
first analyze how many nodes’ labels will be needed in answering that challenge.

Lemma 3. Le GN be the graph from Def. 3 with N = 2n, and let k ∈ [n + 1].
If a challenge hits a k-level node, then the prover can convince the verifier by
providing the labels of φn(k) := 2 + 1

2 (n − k + 2)(n + k − 1) vertices.

The following lemma says that, when storing labels of all nodes of level
greater than or equal to m, given ρ(n,m, k) parallel processors, it is possible to
reply to the challenge query making only 2m−1 − 1 sequential hash queries.

Lemma 4. If a challenge hits a k-level node, k ∈ [n + 1], of a graph with N =
2n + 1 nodes, where n ≥ 2, then a prover storing the labels of all nodes of level
greater than or equal to m, for m ∈ [n+1], will have to make ρ(n,m, k)·(2m−1−1)
many queries, where

ρ(n,m, k) :=

⎧
⎪⎨

⎪⎩

0 if m = 0,
n − k + 2 if m < k,
n − m + 2 otherwise.

4 Incremental Proofs of Sequential Work

We provide a definition of incremental proofs of sequential work that is stronger
than the definition given by [7]. In fact, their construction as well as ours achieve
the stronger definition. Our definition is stronger in the sense that it guarantees
that honestly incrementing any valid proof, regardless of how it is generated,
makes the verifier accept.

This issue is particularly important in the context of graph-labeling proofs
of sequential work schemes as these are not proofs of correctness of the sequen-
tial computation, but rather are proofs of sequential computation. Consider any
graph-labeling PoSW with underlying graph GN and a prover that follows the
honest prover strategy except for a randomly chosen i ← [N], it sets L(i) = 0λ

and continues the computation correctly. Such a prover has an overwhelming
probability of convincing the verifier, although the proof was not honestly gen-
erated, and with overwhelming probability the proof will be different from the
honestly generated proof. However, this is not a problem of the concept of a
PoSW, as still the malicious prover did N − 1 computational steps sequentially.

Definition 7 (Incremental PoSW). Let Γ = (ΓN = (GN , ΩN))N∈N be a
family of weighted DAGs such that for all N , GN has a unique sink N . A tuple
of oracle aided PPT algorithms (Pτ(·), Incτ(·),Vτ(·) := (Vτ(·)

0 ,V
τ(·)
1)) for an oracle

τ : {0, 1}∗ → {0, 1}λ is an incremental (non-interactive) proof of sequential work
w.r.t. τ if the following properties hold:

296 H. Abusalah and V. Cini

Completeness: For every λ,N ∈ N, every (χ,N, state) ← V
τ(·)
0 (1λ, N) and

– honestly generated π ← Pτ(·)(1λ, 1N , χ) or
– honestly incremented π ← Incτ(·)(1λ, 1N ′′

, χ,N ′, π′) for integers N ′, N ′′

s.t. N = N ′ + N ′′ and π′ is accepting4 proof for parameter N ′, i.e.,
V

τ(·)
1 (state, χ,N ′, π′) = 1,

it holds that Pr
[
V

τ(·)
1 (state, χ,N, π) = 1

]
≥ 1 − negl(λ).

(α, ε)-Soundness: For every λ,N ∈ N and every PPT adversary P̃τ(·) which
makes a sequence Q of parallel queries to τ of sequential weight Ωseq(Q) < α:

Pr

[
(χ,N, state) ← V

τ(·)
0 (1λ, N);

π ← P̃τ(·)(1λ, 1N , χ)
: V

τ(·)
1 (state, χ,N, π) = 1

]

≤ ε(λ).

Succinctness: For every λ,N ∈ N and every honestly generated proof π
for parameter N , we have |π| ≤ poly(λ, log N) and Vτ(·) runs in time
poly(λ, log N).

Remark 1. For Incτ(·) to be non-trivial, note that Incτ(·) runs in time that is
essentially independent of N ′; it gets N ′ in binary.

Remark 2. For some applications, standard (α, ε)-soundness might not be
enough, and knowledge soundness might be required. It is straightforward to
define knowledge soundness for Def. 7 exactly the same way knowledge sound-
ness of GL-PoSW from [2] is defined.

5 A Skiplist-Based Incremental PoSW Scheme

In this section, we construct an incremental GL-PoSW scheme based on the
skiplist graph GN , ΩN where ΩN is defined as ∀i ∈ [N] : ΩN (i) = 1/N . A
construction of an iPoSW for more general families of weight distributions ΩN

is given in Sect. 6.
In Sect. 5.2, we will give a high-level overview of our construction, using

some concrete example to better explain our design. A formal description of the
algorithms can be found in Sect. 5.3. The security proof is in Sect. 5.5.

5.1 Parameters

Our iPoSW scheme depends on the following parameters and objects.

– A time parameter N of the form N = 2n, for some integer n ∈ N.
– A computational security parameter λ.
– A statistical security parameter t.

4 We consider Incτ(·) to be honest regardless of how π′ was generated. In contrast, [7]
defines honest Incτ(·) only over honestly generated π′.

An Incremental PoSW for General Weight Distributions 297

– Let τ : {0, 1}∗ → {0, 1}λ be a random oracle, we define two oracles, τ�, τr as

τ�(·) := τ(0, χ, ·) τr(·) := τ(1, χ, ·) (2)

– (i1, . . . , it) := Sample(r): on input random coins r, uniformly sample
(i1, . . . , it) from all possible such sequences

(
2t
t

)
. Since

(
2t
t

)
< (2t·e

t)t = (2e)t,
where log2(2e) ≈ 2.44, random coins of size 3t are sufficient to sample statis-
tically close to a uniform subset.

Remark 3. Suppose that we have two sets S1, S2 with t elements each, where in
S1 the elements are indexed from 1 to t, and in S2 from t + 1 to 2t. Moreover,
suppose that there are M1 elements having a specific feature in S1 and M2

having the same feature in S2. Then, using Sample, one can sample a subset
from S1 ∪ S2 of size t, where the distribution of the cardinality of elements with
this same specific feature is described by a random variable X distributed as
Hypergeometric(2t,M1 + M2, t).

For simplicity of exposition, we assume that t = 2c for some c ∈ N. Our con-
struction can be easily adapted to the more general case where t is arbitrary.

5.2 A High-Level Overview

Before formally describing the algorithms defining the iPoSW scheme, we give
an intuition of how they work.

We start by describing the PoSW scheme upon which we build. The scheme is
described in Fig. 2. In such interactive protocol, the first step is performed by the
verifier V, which samples a random statement χ with enough min entropy and
sends it to the prover P, which in turn uses χ to refresh the common random
oracle τ(·) as τ�(·) := τ(0, χ, ·) and computes a τ�-labeling L of GN . Then P
sends φL := L(N) to V. As shown in [2], φL constitutes a (position-binding)
commitment to L.5 After receiving φL, V samples t challenge nodes and sends
them to P, which in turn sends to V valid openings for all the received challenges.
In the last step of the interaction, V checks the consistency of the openings and
accepts or rejects accordingly.

This protocol can be made non-interactive using the Fiat-Shamir heuristic:
the challenges chosen by V are now produced by P itself by querying a ran-
dom oracle τr(·) := τ(χ, 1, ·) on (φL, 1), . . . , (φL, t). Now V, besides verifying
the consistency of the openings, must also verify the correctness of the received
challenges, by recomputing them based on φL and τr(·).

Using this protocol, in order to compute a proof, the prover has to either
remember the N labels for the entire GN graph, or recompute the labels required
in the proof, once the challenge nodes are fixed, which may require up to N
sequential invocations to τ�. Alternatively, it is possible to have general space-
time trade-offs, as shown in Lemma 4: the prover upon spending N sequential

5 This is reminiscent to the fact that a Merkle tree’s root commits to its leaves (and
internal nodes).

298 H. Abusalah and V. Cini

invocation to τr, could store ≈ 2n−m labels from L, and perform an additional
≈ 2m−1 sequential computation using ρ(n,m, k) ≤ n−m+2 parallel processors,
for any m ∈ [n + 1]. For example, taking m = n/2, yields a protocol where
the prover uses ≈ √

N memory, and ≈ N +
√

N/2 sequential work, while using
≈ (log N)/2 processors.

Still, there is a concrete substantial gap between, on the one hand, the sequen-
tial work the honest prover has to actually perform and, on the other hand, the
sequential work it is able to convince the verifier of. For example, a memory-
efficient prover, i.e., one where m = n, has to perform 2N sequential queries to
τr in order to show it did N sequential queries. For large values of N , this gap
becomes considerable; say N steps would take approximately a year to compute,
then to generate a proof of that, one would need another year.

As first observed by Döttling, Lai and Malavolta in [7], at the core of this
slack is the fact that the challenge nodes are determined solely by φL. Therefore,
the prover has to label the entire graph before knowing which labels it has to
recompute and include in the proof.

The problem was first tackled by [7], who introduced the idea of letting the
prover choose the challenge nodes on the fly : the prover chooses the random chal-
lenges as it labels the graph, and eventually discards some of them as the graph
gets labeled. This allows the prover to compute a valid proof using a single pass
over the graph. However, since now the prover knows partial information about
the possible challenges while labeling the graph, soundness of the so obtained
protocol has to be carefully studied.

We adapt the on-the-fly sampling technique of [7] to the skiplist-based PoSW
scheme. Let t be the number of challenge nodes/openings to be produced by the
end of the protocol (for ease of notation we will consider t = 2c to be a power
of 2). For each node v in [N] which is a multiple of t, we will construct a list
Lv,0 which contains all the nodes w ∈ [v − t + 1, v]. This list will represent the
challenge node assigned to v at “level” 0.

When v is also a multiple of 2t, the sets Lv−t,0 and Lv,0 are merged into a
unique set, denoted by Lv,1, with t elements, in the following way: L(v) is used as
input to the random oracle τr to obtain random coins rv,1. Using these random
coins, we sample a subset Lv,1 of size t uniformly at random from Lv−t,0 ∪ Lv,0.
Once Lv,1 is stored, Lv−t,0 and Lv,0 are erased from memory. The set Lv,1

consists of t challenge nodes assigned to v at “level” 2. In a similar way, whenever
v is a multiple of 2it, random coins rv,i are produced from the labeling of v, to
obtain a random subset Lv,i of size t from the set Lv−2i−1t,i−1 ∪ Lv,i−1. After
obtaining Lv,i, the sets Lv−2i−1t,i−1, and Lv,i−1 are erased from memory.

In the last step of the algorithm, the set LN,n−c will be produced. This,
together with φL = L(N), constitute the proof to be verified.

We depict the sampling process pictorially for graph G16 and parameter
t = 2, i.e., n = 4, and c = 1, in Fig. 1. The prover algorithm P labels all nodes of
the graph in topological order. Once it has labeled the first 2 nodes, it creates
the set L2,0, which contains the nodes 1 and 2 as possible challenges. It then
continues to label the graph. When it reaches node 4, it first creates the set

An Incremental PoSW for General Weight Distributions 299

L4,0, which contains the nodes 3 and 4 as possible challenges. From the union of
these two sets, a random subset of 2 elements is chosen to obtain the set L4,1.
In the last step of the protocol, lists L16,0, L14,0, L12,1, and L8,2 are merged in
succession to finally obtain L16,3.

As already anticipated, in the actual protocol the lists Lw,j , for nodes w ∈ [N]
and j ∈ [n − c] contain more than simple challenge nodes. Each element in Lw,j

is an opening (a labeled path) for a challenge node in [w − 2jt + 1 : w] with
respect to GN |[w−2jt:w], where G|V ′ , with V ′ ⊂ V , denotes the subgraph of G
induced by the vertex set V ′, i.e., the graph G′ with vertex set V ′ and edge set
consisting of those edges both of whose endpoints are in V ′.

Given Lv−2i−1t,i−1 and Lv,i−1 with openings (labeled paths), rather than
challenges, we show how to construct Lv,i. As before, using L(v) we extract
randomness to sample a random subset of size t from Lv−2i−1t,i−1 ∪ Lv,i−1.
Moreover, suppose that the first element sampled in this way is Lv,i−1[b], for some
b ∈ [t]. Now Lv,i−1[b] is an opening of some challenge node in [v − 2i−1t + 1 : v]
with respect to GN |[v−2i−1t:v]. Since elements in Lv,i have to be valid openings of
some challenge node in [v−2it+1 : v] with respect to GN |[v−2it:v], simply adding
Lv,i−1[b] to Lv,i won’t work. Instead, we extend Lv,i−1[b] to a valid opening over
the whole subgraph GN |[v−2it:v]. This can be done, using the structure of the
skiplist graph and the definition of shortest path, by simply pre-appending the
missing labeled edge (v − 2i−1t, L(Parents(v − 2i−1t))) to Lv,i−1[b]. Similarly,
any element in Lv−2i−1t,i−1 can be extended to a valid opening in GN |[v−2it:v] by
appending (v, L(Parents(v)) to it. This step of the algorithm is formally described
by (4) in the scheme description.

The prover’s final proof is π = (φL,LN,n−c, IN,n−c). For each b ∈ [t], the veri-
fier checks that (1) LN,n−c[b] is consistent with φL (2) that LN,n−c[b] is internally
consistent, and (3) that the challenge in LN,n−c[b] is consistent with the on-the-
fly-sampling. The first two checks are similar to the base PoSW scheme. To check
(3), algorithm Check of Fig. 3 is run: on input Lv,i[b] and Iv,i[b], it recomputes
the randomness rv,i used to sample elements from Lv−2i−1t,i−1[b] and Lv,i−1[b],
checks if this is consistent with what is stored in Iv,i[b], and determines whether
Lv,i[b] was selected from Lv−2i−1t,i−1[b] or from Lv,i−1[b]. If Lv,i[b] was obtained
by extending some element of Lv−2i−1t,i−1[b] to GN |[v−2it,v], then it must be the
case that the last two nodes are exactly v − 2i−1t and v. If this is not the case,
the algorithm returns immediately 0. Otherwise, (v, L(Parents(v)), gets removed
from it, and Check is run recursively on the so obtained opening.

5.3 Scheme Description

Pτ(·)(1λ, 1N , N):

1. Traverse the graph Gn = (V = [N]0, E) in topological order, starting from 0.
At every node v ∈ [N]0 which is traversed, do the following:
(a) Compute L(v) according to (1).
(b) If t | v and v ∈ [N], write v = 2k ·h · t, with h odd and k ∈ N0. For j ∈ [t]:

Lv,0[j] := Path∗(v − t, v − t + j, v), Iv,0[j] := j. (3)

300 H. Abusalah and V. Cini

If k ≥ 1, do the following for i ∈ [k]:
i. Compute rv,i := τr(v, i, L(v)).
ii. Choose a random t-subset Sv,i of [2t] via Sv,i := Sample(rv,i).
iii. Set u := v − 2i−1 · t.
iv. For j ∈ [t], write Sv,i[j] = at + b with a ∈ {0, 1} and b ∈ [t], and set

Lv,i[j] :=

{
(Lu,i−1[b], (v, L(Parents(v)))) if a = 0
((u,L(Parents(u))),Lv,i−1[b]) if a = 1

(4)

Iv,i[j] :=

{
Iu,i−1[b], j if a = 0
Iv,i−1[b], j if a = 1

v. Store Lv,i and Iv,i in memory. Note that by design, Lv,i[j] satisfies

Consistent(Lv,i[j]) = 1. (5)

vi. Erase Lu,i−1, Lv,i−1, Iu,i−1, and Iv,i−1 from memory.
2. Terminate and output π := (φL := L(N),LN,n−c, IN,n−c).

Incτ(·)(1λ, 1N ′
, N, π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c).
2. Compute N + N ′ = N ′′ and check that N ′′ = 2n′′

for some n′′ ∈ N,
3. Execute the algorithm Pτ(·)(1λ, 1N ′′

χ) starting from step 1.(a) with a slight
change: traverse the graph G2n′′ starting from N + 1.

Vτ(·)(1λ, 1N , π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c).
2. For all i ∈ [t] :

(a) parse LN,n−c[i] as yi = (yi1 , . . . , yik
), for some k ∈ N.

(b) bi := 1 iff the following hold
i. τ�(yik

) = φL and
ii. Consistent(yi) = 1 where Consistent is as in Def. 4.
iii. Check(LN,n−c[i], IN,n−c[i], 0, N, n − c) = 1, where the algorithm

GCheck is described in Fig. 3.
3. Return

∧t
i=1 bi

An Incremental PoSW for General Weight Distributions 301

Fig. 3. Description of the Check algorithm.

5.4 Efficiency Analysis

We now discuss the efficiency of our scheme in terms of proof size, computation,
and communication.

Proof Size. The proof consists of the sink-label φL and two lists, LN,n−c and
IN,n−c, with t elements each. Each entry in LN,n−c is a path of the form
Path∗(0, i, N) for some i ∈ [N]. By Lemma 3, it therefore consists of at most
2 + n(n+1)

2 = O(n2) labels and n + 1 = O(n) indices. Each entry in IN,n−c is a
tuple of n − c indices in [t], which can therefore be represented using log t bits
each. Since each label can be stored using λ bits, we get that the entire proof
has size at most O(t · (λ · n2 + n)) = O(t · λ · n2).

Prover Efficiency. The prover traverses the N nodes of the skiplist graph GN

in topological order. By the same argument used in [7], the challenges τr(·) can
be evaluated in parallel by computing rv,i := τr(v, i, L(Parents(v))), instead of
rv,i := τr(v, i, L(v)), This is possible as both τ� and τr are random oracles. With
such modification, τ� and τr can be evaluated in parallel, thus the parallel com-
plexity is not increased by the evaluation of τr. Therefore, the parallel complexity
of the prover is bounded by the time needed for O(N) sequential calls to the
random oracle.

As far as the memory complexity of the prover is concerned, by Lemma 2 we
know that the labeling of the skiplist graph GN can be computed using (n+1)λ
bits of memory. In our construction, the prover algorithm is moreover storing at
most n+1 lists Lv,i, where at most 2 of them at any point share the same “level”
i. Using Lemma 3 to compute the memory required to store all such lists, one
obtains that the memory complexity of the prover is bounded by O(t · λ · n3).

302 H. Abusalah and V. Cini

Verifier Efficiency. The verifier need to check, for each opening of a challenge
node that i) the opening is consistent with φL, ii) that the labels of the opening
are consistent, and that iii) the opening is consistent with the randomness used
while generating the proof. Each opening can be checked in parallel. Checking
consistency of each label in a given opening can also be done in parallel. The
runtime of the verifier is dominated by the runtime of the Check algorithm, which
uses O(n) time to verify that the opening is consistent with the randomness used
in the proof. Therefore, the parallel time needed overall is O(n log t).

5.5 The Security Proof

Theorem 2. Let Π := (Pτ(·),Vτ(·), Incτ(·)) be as in Sect. 5.3 and q be an upper
bound on the total number of queries to τ(·), then Π is an (α, ε)-soundness
incremental PoSW scheme, as per Def. 7, with any α ∈ (0, 1] and

ε =
1 + q2

2λ
+

q(q − 1)
2λ+1

+ q · e−2t·(1−α
n)2 .

We remark that the weighted skiplist DAG (GN , ΩN) over which Π works is
such that ΩN is defined as ∀i ∈ [N] : ΩN (i) = 1/N . This induces the uniform
distribution over the [N] challenges.

Proof. (of Theorem 2) Completeness and succinctness are clear from the dis-
cussion in Sect. 5.4. We analyze soundness. The soundness guarantees of our
construction rely on the soundness guarantees of the original interactive PoSW
construction from Sect. 5.3 modulo a number of hybrids that reflect the more
power the adversary P̃ has in the security experiment of the incremental PoSW
scheme. This power comes from the fact that P̃ gets to know some of its possible
challenges early on during its computation. More precisely, before computing
the label of the sink node which defines the set of challenges, P̃ gets to know
that some nodes would not belong to its challenges. We will show that this extra
power gives P̃ only a negligible advantage over the interactive counterpart PoSW.
We start by describing the hybrid games, the last of which, almost corresponds
to the security experiment in the interactive PoSW scheme.

Exp
τ(·)
P̃,0

(1λ, 1N) ∈ {0, 1}: Sample χ ← {0, 1}λ, run π ← P̃τ(·)(1λ, 1N , χ), and

observe its queries Qτ�
∪ Qτr

where Qτ�
:= {(x, y) : y = τ�(x)} and Qτr

:=
{(x, y) : y = τr(x)} and τ�, τr are as in (2). Use Qτ�

to build the query graph
QG := (V,E).

The query graph has as vertices the queries in Qτ�
and an edge is added

between two vertices if and only if these two vertices have a corresponding edge
in the skiplist graph GN := ([N]0, EN) and that the queries are consistent on
that edge. Formally, let V,E := ∅, then we populate them as follows:

For every vi := (xi, yi), vj := (xj , yj) ∈ Qτ�
,

add vi, vj to V and the edge (vi, vj) to E iff xi ≺ xj w.r.t. the skiplist graph
GN and the operator ≺ as in Def. 2. If (xj = (N,x′

j), yj) ∈ V for some x′
j , then

An Incremental PoSW for General Weight Distributions 303

check whether yj = φL and if not, remove vj from V and all its incoming edges;
note that yj = φL implies that xj ≺ φL.

If π is invalid output 0, otherwise let π := (φL,LN,n−c, IN,n−c) be a valid
proof: ∀i ∈ [t], parse LN,n−c[i] as zi = (zi1 , . . . , zik

) for some k ∈ N. As π is a
valid proof, it holds that Consistent(zi) = 1 and that τ�(zik

) = φL. By definition
of Consistent, this means that

si := (zi1 , . . . , zik
, φL) , (6)

forms a τ�-sequence according to Def. 6.
Finally define the output of the experiment to be 1 if and only if π is valid and

∀i ∈ [t], si is extractable from QG. Formally, we say that si := (zi1 , . . . , zik
, φL)

is extractable from QG if

∀j ∈ [k − 1], (zij
, yij

) ∈ V and that (zik
, φL) ∈ V . (7)

Exp
τ(·)
P̃,1

(1λ, 1N) ∈ {0, 1}: This experiment is identical to Exp
τ(·)
P̃,0

(1λ, 1N) except

that Expτ(·)
P̃,1

(1λ, 1N) doesn’t check the winning condition above that requires that

∀i ∈ [t], si is extractable from QG, i.e., Expτ(·)
P̃,1

(1λ, 1N) = 1 iff π is valid.

Proposition 1. Let q upper-bounds the total number of queries P̃τ(·) makes to
τ : {0, 1} → {0, 1}λ, then

∣
∣
∣Pr

[
Exp

τ(·)
P̃,0

(1λ, 1N) = 1
]

− Pr
[
Exp

τ(·)
P̃,1

(1λ, 1N) = 1
]∣
∣
∣ ≤ 1

2λ
+

q(q − 1)
2λ+1

. (8)

The proof of Proposition 1 boils down to either finding a collision under τ�

from at most q queries, or that P̃ can guess the output of τ�. The latter happens
with probability 1/2λ and the former with probability q(q−1)/2λ+1. The formal
proof is given in the full version of the paper.

Recall that t = 2c for some integer c and N = 2n and that t | N . We define
the challenge sampling set D and the challenge re-sampling set C as follow. These
two sets will define a series of games that the security proof will go through.

D := {(v, 0) : ∀v ∈ [N] s.t. t | v}
C := {(v, 1), . . . , (v, k) : ∀v ∈ [N] s.t. v = 2k · h · t for odd h and k ≥ 1}

Examples of such (ordered) sets would be

D = {(t, 0), (2t, 0), (3t, 0), (4t, 0), (5t, 0), . . .}
C = {(2t, 1), (4t, 1), (4t, 2), (6t, 1), . . . , (N, 1), . . . , (N,n − c − 1), (N,n − c)}

For β := (v, i) ∈ D ∪ C, the prover algorithm from Sect. 5.3 implicitly defines
a set of associated t challenges, call it chal(β), and computes for each such set,
the corresponding set of labeled paths, denoted as Lβ . This is formally described
in (3) and (4), however, for readability’s sake, we elaborate upon it below. For

304 H. Abusalah and V. Cini

β := (v, 0) ∈ C, the prover algorithm defines chal(β) := {v, v − 1, . . . , v − t + 1}
and no resampling is needed. However, for β := (v, i) ∈ C, i.e., i ≥ 1, chal(β) is
resampled from chal(β0) and chal(β1) where by construction6 β0 := (v, i−1) and
β1 := (u, i − 1). The resampling is according to the hypergeometric distribution
as done by Sample.

For β ∈ D∪C, we define functions δ, γ, η : D∪C → [0, 1], event badβ , security
experiment Exp

τ(·)
P̃,β

, and neighbor : D ∪ C → D ∪ C.

– γ(β): the fraction of inconsistent nodes among all possible nodes that could
have been included into chal(β). (Inconsistent in the sense that if vi ∈ chal(β)
and its corresponding path in Lβ is Path∗

vi
, then Consistent(Path∗

vi
) = 0.)

For example, for β = (N,n − c), it holds that γ(β) equals the number of all
inconsistent nodes among [N] divided by N .

– δ(β): the faction of inconsistent nodes in chal(β). We will be interested in
analyzing how close δ(β) is to γ(β).

– For α from Theorem 2, define

η(β) :=
i

n − c
· (1 − α) . (9)

– Event badβ is defined whenever a re/sampling takes place, i.e., when τr(β, ·)
is called

badβ := 1 ⇔ δ(β) < γ(β) − η(β) . (10)

– neighbor(β) := β′: Let C∗ ⊆ C be the (ordered) set on whose elements P̃ issued
resampling queries, i.e., τr(β, ·) is a resampling query on β ∈ C∗. If β is the
first such element in C∗, then set β′ = 1, and otherwise β′ is defined to be
the previous element in C∗.

– Exp
τ(·)
P̃,β

(1λ, 1N) ∈ {0, 1}: this is identical to its neighboring Exp
τ(·)
P̃,β′(1

λ, 1N)
except it outputs 0 if badβ = 1.

Proposition 2. For every β ∈ D ∪C and β′ := neighbor(β), the following holds
∣
∣
∣Pr

[
Exp

τ(·)
P̃,β

(1λ, 1N) = 1
]

− Pr
[
Exp

τ(·)
P̃,β′(1

λ, 1N) = 1
]∣
∣
∣ ≤ e−2t·(1−α

n−c)2 . (11)

Before proving Proposition 2, we make a few observations. For the first β ∈ C∗,
it holds that Exp

τ(·)
P̃,β′ = Exp

τ(·)
P̃,1

, and the last experiment corresponds to β =
(N,n − c) ∈ C. As the total number of such experiments is at most q, and the
distance between each neighboring experiments is bounded by Proposition 2, it
then holds by a simple union bound that

∣
∣
∣Pr

[
Exp

τ(·)
P̃,1

(1λ, 1N) = 1
]

− Pr
[
Exp

τ(·)
P̃,(N,n−c)

(1λ, 1N) = 1
]∣
∣
∣ ≤ q · e−2t·(1−α

n−c)2 .

(12)
Observe that for the final game with β = (N,n − c) corresponds to the sink

vertex GN . If badβ = 0, then the soundness analysis is similar to the analysis

6 See Sect. 5.3 and/or Fig. 1.

An Incremental PoSW for General Weight Distributions 305

of the interactive PoSW given in [2], and recalled in Sect. 5.3. More concretely,
by definition it follows that η(β) = (1 − α). Now if P̃ made Qτ�

queries of
sequential weight Ωseq(Qτ�

) < α, then by Lemma 1, except with probability
ετ�

:= 1/2λ + q2/2λ, this must mean that γ(β) > (1 − α), which then implies
that δ(β) > 0, which implies, that V rejects the proof, as the proof will contain
at least one inconsistent path. Therefore,

Pr
[
Exp

τ(·)
P̃,(N,n−c)

(1λ, 1N) = 1
]

≤ ετ�
:=

1
2λ

+
q2

2λ
. (13)

Before bounding the final probability, we observe that in the probability ετ�

above, 1/2λ accounts for guessing the output of τ�. And as we accounted for
such event in analyzing Proposition 1, we conclude that the probability ε in
Theorem 2 can be upper bounded by summing the probability in (8), (11), (12),
(13) and subtracting 1/2λ. This concludes the proof. ��
Proof of Proposition 2. The proof makes use of the following lemma, which
is simply a restatement from [7].

Lemma 5. Let t be an integer, b ∈ {0, 1}, δb ∈ [0, 1], and sets Ub s.t. |Ub| = t,
U0 ∩ U1 = ∅ and Ub contains elements that are either consistent or inconsistent
with δb being the fraction of inconsistent elements in Ub, and

δb ≥ γb − ηb , (14)

for some global values γb, ηb ∈ [0, 1].
We sample from U0∪U1 without replacement in t draws a set U , with |U | = t,

and let X be the random variable indicating the number of inconsistent elements
in U . Then an arbitrary η ∈ [0, 1], we have

Pr
[

X ≤ t ·
(

γ0 + γ1
2

− η

)]

≤ e−2t·(η− η0+η1
2)2 . (15)

The proof of Lemma 5 uses a Hoeffding bound and is given in the full version
of the paper.

Proof. (of Proposition 2). The proof amounts to bounding the probability of
badβ . We have two cases: If β = (v, 0) ∈ D, then by definition, badβ = 0 as
η(β) = 0 and δ(β) = γ(β). If β = (v, i) ∈ C, then we resample t elements
according to Sample from chal(β0) ∪ chal(β1) for some β0 = (v, i − 1) and β1 =
(u, i − 1) for which badβ0 = badβ1 = 0, for otherwise we would not be in this
game. Then we have that γb := γ(βb), δb := δ(βb), ηb := η(βb) satisfy

δb ≥ γb − ηb = γb − i − 1
n − c

· (1 − α) . (16)

Now applying Lemma 5 on Ub := chal(βb), η := η(β) and noting that γ :=
γ(β) := (γ0 + γ1)/2, we get

Pr[badβ = 1] = Pr[t · δ(β) < t · (γ − η)] ≤ e
−2t·

(
i·(1−α)

n−c
− (i−1)·(1−α)

n−c

)2

= e−2t·(1−α
n−c)2 .

��

306 H. Abusalah and V. Cini

6 Incremental PoSW for General Distributions

In this section, we give our skiplist-based iPoSW for general weight distribu-
tions. We characterize these distributions as t-incrementally sampleable distri-
butions. The construction is similar to the construction of Sect. 5, except that,
we devise and use a new on-the-fly sampling technique, which samples according
to the Poisson Binomial distribution. The need for the new sampling technique
is motivated by applying Hoeffding-like tail bounds when sampling from general
distributions, rather than sampling without replacement uniformly at random
as is the case for the construction from Sect. 5 and that of [7]. The new sampling
technique introduces a small modification to the main construction: the prover
now needs to additionally give out, as part of its proof, subsets that are used for
the resampling algorithm. These are needed for the verifier to validate the consis-
tency of the resampling. Moreover, the verifier will have to check that number of
nodes (and their weight) of such subsets is within appropriate intervals centered
around their expectation.

Our on-the-Fly Sampling Technique. Let Ω := {Ω2i·t : [2i · t] → [0, 1]}i≥0 be
a family of (weight) distributions, U0 ⊆ [2i · t] and U1 ⊆ [2i · t + 1 : 2i+1 · t]
sets sampled according to t · Ω2i·t. (Technically, as the domains of Ω2i·t and U1

mismatch, we think of the 2i · t-shifted U1 as being sampled from t · Ω2i·t.)
The goal of the on-the-fly sampling is to sample W from U := U0 ∪ U1 such

that W is distributed according to t·Ω2i+1·t. That is, instead of directly sampling
W from [2i+1 · t] according to t · Ω2i+1·t, the on-the-fly sampling allows one to
first sample each U0 and U1 individually according to t · Ω2i·t, and then sample
W from U . For the sampling of W from U to be possible, it necessary that every
u ∈ U is at least as probable in Ω2i·t as in Ω2i+1·t. This is reflected in conditions
2 and 3 in Def. 8. Furthermore, technically, it must be that t ·Ω2i·t ≤ 1 for every
i. This is implied by conditions 1, 2 and 3 in Def. 8.

The t factor in the sampling process above is stipulated by the security of
iPoSW schemes, which requires the prover to open t challenges. This corresponds
to requiring that W has t samples. Our technique ensures this on expectation.

GSample (Fig. 4) formalizes how W is sampled from U . Note in Fig. 4, W
consists of indices of elements from U , rather than the actual elements.

6.1 Incrementally Sampleable Distributions

We characterize weight distributions that can be on-the-fly sampled. These are
t-incrementally sampleable (weight) distributions.

Definition 8. For t ∈ N+ and a family of weight functions Ω := {Ω2i·t : [2i ·
t] → [0, 1]}i≥0, we say Ω is t-incrementally sampleable if the following hold:

1. ∀j ∈ [t] : t · Ωt(j) ≤ 1
2. ∀i ≥ 0,∀j ∈ [2i · t] : Ω2i+1·t(j) ≤ Ω2i·t(j)
3. ∀i ≥ 0,∀j ∈ [2i · t + 1 : 2i+1 · t] : Ω2i+1·t(j) ≤ Ω2i·t(j − 2i · t)

An Incremental PoSW for General Weight Distributions 307

It is immediate to see that the uniform distribution on [N] is t-incrementally
sampleable for any t ≤ N . Another distribution that is of particular interest to
the application of our incremental PoSW to incremental SNACKs is the SNACK
distribution of [2]. For a fixed positive integer � and every positive integer m,
the SNACK distribution Ωm : [m] → [0, 1] is defined as

Ωm(j) = Sm · 1
m + � − j

where Sm :=

⎛

⎝
m∑

j=1

1
m + � − j

⎞

⎠

−1

. (17)

Lemma 6. The SNACK distribution Ω := {Ω2i·t}i≥0 where Ω2i·t is as in (17)
is t-incrementally sampleable for � ≥ t · St.

The proof is elementary and is given in the full version of the paper.

6.2 Scheme Description

Our iPoSW scheme for t-sampleable distributions is in spirit similar to the
iPoSW scheme from Sect. 5. The main difference is that we employ our new
on-the-fly sampling technique. This has correctness and security consequences
that we address.

Recall that the on-the-fly sampling technique from Sect. 5 always produces W
of size exactly t from intermediate sets U0 and U1 which are implicitly defined.
This allows the verifier V to check the correctness of W . In contrast, our on-the-
fly sampling produces W whose size is t on expectation, and more critically, the
intermediate sets U0 and U1 are not implicitly defined, and hence, the prover P
has to give U0 and U1 for V to verify the correctness of W . This results in an
increase in the proof size: for each challenge v, P gives log N pairs of sets with
total expected size 2 · t · log2 N . The increased proof size is still succinct though.

This could potentially allow a malicious prover P̃ to manipulate the sets U0

and U1 such that the challenges in W don’t include challenges in U0 ∪ U1 that
the adversary can’t correctly answer. To get around this issue, P commits to
the sampling sets across the execution of the protocol. This ensures that the
sets in different challenges are fixed and consistent with each other. However,
this doesn’t rule out that P̃ would not gain any advantage by committing to
manipulated sets. We address this issue in the security proof by showing that
except with a negligible probability, P̃ gains no advantage in cheating on the
sampling sets.

We give the formal construction with similar parameters as in Sect. 5.1 and
the following additional parameters: tmin := (1 − ζ) · t and tmax := (1 + ζ) · t for
ζ ∈ (0, 1) , ωmin,d,Ω ∈ (0, 1) and ωmax,d,Ω ∈ (0, 1) for d ∈ N.

Pτ(·)(1λ, 1N , N,Ω):

1. Traverse the graph Gn = (V = [N]0, E) in topological order, starting from 0.
At every node v ∈ [N]0 which is traversed, do the following:
(a) Compute L(v) according to (1).

308 H. Abusalah and V. Cini

(b) If t | v and v ∈ [N], write v = 2k ·h · t, with h odd and k ∈ N0. For j ∈ [t]:

Lv,0[j] := Path∗(v − t, v − t + j, v), Iv,0[j] := j (18)

Uv,0[j] := v − t + j, Uv,0[j] := ⊥
If k ≥ 1, do the following for i ∈ [k]:
i. Compute u := v − 2i−1 · t
ii. Compute h0 := |Uu,i−1|, h1 := |Uv,i−1|
iii. Compute rv,i := τr(v, i, L(v), Uu,i−1, Uv,i−1).
iv. Choose a subset Sv,i from [h0 + h1] as

Sv,i := GSample(i, Ω, t, Uu,i−1, Uv,i−1; rv,i) with GSample in Fig. 4.
v. For j ∈ [|Sv,i|], do the following

a :=

{
0 if Sv,i[j] ≤ h0

1 if Sv,i[j] > h0

and b := Sv,i[j] − h0 · a

Lv,i[j] :=

{
(Lu,i−1[b], (v, L(Parents(v)))) if a = 0
((u,L(Parents(u))),Lv,i−1[b]) if a = 1

(19)

Iv,i[j] :=

{
Iu,i−1[b], j if a = 0
Iv,i−1[b], j if a = 1

Uv,i[j] :=

{
Uu,i−1[b], Uu,i−1, Uv,i−1 if a = 0
Uv,i−1[b], Uu,i−1, Uv,i−1 if a = 1

Uv,i[j] :=

{
Uu,i−1[b] if a = 0
v, i − 1[b] if a = 1

vi. Store Lv,i, Iv,i, Uv,i, and Uv,i in memory. Note that by design, Lv,i[j]
satisfies Consistent(Lv,i[j]) = 1.

vii. For x ∈ {u, v}, erase from memory Lx,i−1, Ix,i−1, Ux,i−1, and Ux,i−1.
2. Terminate and output π := (φL := L(N),LN,n−c, IN,n−c,UN,n−c, UN,n−c).

Incτ(·)(1λ, 1N ′
, N, π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c,UN,n−c, UN,n−c).
2. Compute N + N ′ = N ′′ and check that N ′′ = 2n′′

for some n′′ ∈ N,
3. Execute the algorithm Pτ(·)(1λ, 1N ′′

χ) starting from step 2 with a slight
change: traverse the graph G2n′′ starting from N + 1.

Vτ(·)(1λ, 1N , π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c,UN,n−c, UN,n−c).
2. If |LN,n−c| �= |UN,n−c|, return 0.
3. Let s := |LN,n−c|. For all i ∈ [s] :

(a) Parse LN,n−c[i] as yi = (yi1 , . . . , yik
), for some k ∈ N.

(b) bi := 1 iff the following hold

An Incremental PoSW for General Weight Distributions 309

i. τ�(yik
) = φL

ii. Consistent(yi) = 1 where Consistent is as in Def. 4,
iii. GCheck(LN,n−c[i], IN,n−c[i],UN,n−c[i], UN,n−c, 0, N, n− c) = 1, where

the algorithm GCheck is described in Fig. 5, and
4. Return

∧s
i=1 bi

Fig. 4. Algorithm GSample

6.3 Theorem Statement and Proof Outline

The main difference in the constructions of Sect. 5 and 6 is that we apply the new
on-the-fly sampling technique as employed in GSample in Fig. 4 to two sets U0 and
U1 to obtain W . A second difference is that, while in Sect. 5, the sampling sets
U0, U1 are implicitly defined, and hence are assumed to be given to the verifier
V, they are explicitly provided by the prover P in the main construction. Modulo
these differences, the two constructions are essentially identical. In Theorem 3
below, the bound q · ε0 comes from analyzing our on-the-fly sampling, and the
bound q · ε1 comes form the analysis of a new scenario where a malicious prover
commits to sampling sets that are maliciously chosen.

Theorem 3. Let Π := (Pτ(·),Vτ(·), Incτ(·)) be as in Sect. 6 and q be an upper
bound on the total number of queries to τ(·), then Π is an (α, ε)-soundness
incremental PoSW scheme, as per Def. 7, with any α ∈ (0, 1] and

ε =
1 + q2

2λ
+

q(q − 1)
2λ+1

+ q · (ε0 + ε1) (21)

where ε0, ε1 ∈ (0, 1) depend on the underlying t-incrementally sampleable weight
distribution Ω. For uniform Ω, we have

ε0 ≤ e
− t·(1−α)2·ζ2(n−c)+4

(n−c)2·(2−ζ)2(n−c)+3 and ε1 ≤ 2−ζ·t .

In the full version, we give concrete ε0, ε1 for any t-incrementally sampleable
Ω, as well as concrete upper bounds for the SNACK distribution.

310 H. Abusalah and V. Cini

Fig. 5. Description of the GCheck algorithm.

Acknowledgements. Parts of this work were done while the first author was
at TU Wien and was supported by the Vienna Science and Technology Fund
(WWTF)[10.47379/VRG18002]. The first author was also partially funded by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program under project PICOCRYPT (grant agreement No. 101001283),
by the Spanish Government under project PRODIGY (TED2021-132464B-I00), and
by the Madrid Regional Government under project BLOQUES (S2018/TCS-4339).
The last two projects are co-funded by European Union EIE, and NextGenera-
tionEU/PRTR funds.

The research of the second author was in part funded by the Austrian Science Fund
(FWF) and netidee SCIENCE grant P31621-N38 (PROFET).

An Incremental PoSW for General Weight Distributions 311

References

1. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond
Hellman’s time-memory trade-offs with applications to proofs of space. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 357–379. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 13

2. Abusalah, H., Fuchsbauer, G., Gazi, P., Klein, K.: Snacks: leveraging proofs of
sequential work for blockchain light clients. In: Agrawal, S., Lin, D. (eds.) Advances
in Cryptology - ASIACRYPT 2022–28th International Conference on the The-
ory and Application of Cryptology and Information Security, Taipei, Taiwan, 5–
9 December 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol.
13791, pp. 806–836. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22963-3 27

3. Abusalah, H., Kamath, C., Klein, K., Pietrzak, K., Walter, M.: Reversible proofs
of sequential work. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 277–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17656-3 10

4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

5. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 15

6. Cohen, B., Pietrzak, K.: The chia network blockchain, July 2019. https://www.
chia.net/assets/ChiaGreenPaper.pdf

7. Döttling, N., Lai, R.W.F., Malavolta, G.: Incremental proofs of sequential work. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 292–323.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 11

8. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

9. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

10. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

12. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential
work. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 373–388. ACM, January 2013.
https://doi.org/10.1145/2422436.2422479

13. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019, vol.
124, pp. 60:1–60:15. LIPIcs, January 2019. https://doi.org/10.4230/LIPIcs.ITCS.
2019.60

14. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/978-3-031-22963-3_27
https://doi.org/10.1007/978-3-031-22963-3_27
https://doi.org/10.1007/978-3-030-17656-3_10
https://doi.org/10.1007/978-3-030-17656-3_10
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-78375-8_15
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://doi.org/10.1007/978-3-030-17656-3_11
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1007/978-3-030-17659-4_13

(Zero-Knowledge) Proofs

Witness-Succinct Universally-Composable
SNARKs

Chaya Ganesh1 , Yashvanth Kondi2, Claudio Orlandi2 , Mahak Pancholi2,
Akira Takahashi3(B) , and Daniel Tschudi4

1 Indian Institute of Science, Bengaluru, India
chaya@iisc.ac.in

2 Aarhus University, Aarhus, Denmark
{ykondi,orlandi,mahakp}@cs.au.dk

3 University of Edinburgh, Edinburgh, Scotland
takahashi.akira.58s@gmail.com
4 Concordium, Zug, Switzerland

dt@concordium.com

Abstract. Zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zkSNARKs) are becoming an increasingly fundamental tool
in many real-world applications where the proof compactness is of
the utmost importance, including blockchains. A proof of security for
SNARKs in the Universal Composability (UC) framework (Canetti,
FOCS’01) would rule out devastating malleability attacks. To retain
security of SNARKs in the UC model, one must show their simulation-
extractability such that the knowledge extractor is both black-box and
straight-line, which would imply that proofs generated by honest provers
are non-malleable. However, existing simulation-extractability results on
SNARKs either lack some of these properties, or alternatively have to
sacrifice witness succinctness to prove UC security.

In this paper, we provide a compiler lifting any simulation-extractable
NIZKAoK into a UC-secure one in the global random oracle model,
importantly, while preserving the same level of witness succinctness.
Combining this with existing zkSNARKs, we achieve, to the best of our
knowledge, the first zkSNARKs simultaneously achieving UC-security
and constant sized proofs.

The authors would like to thank abhi shelat for helpful discussions about an early
version of this work. We thank anonymous reviewers of Eurocrypt 2023 for valuable
comments and suggestions.
The work described in this paper has received funding from: the Concordium Blockhain
Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM); the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No 803096 (SPEC); Core Research Grant CRG/2020/004488,
SERB, Department of Science and Technology; Infosys Young Investigator Award,
Infosys Foundation, Bangalore; the Protocol Labs Research Grant Program PL-RGP1-
2021-064.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 315–346, 2023.
https://doi.org/10.1007/978-3-031-30617-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_11&domain=pdf
http://orcid.org/0000-0002-2909-9177
http://orcid.org/0000-0003-4992-0249
http://orcid.org/0000-0001-8556-3053
http://orcid.org/0000-0001-6188-1049
https://doi.org/10.1007/978-3-031-30617-4_11

316 C. Ganesh et al.

1 Introduction

The UC framework and UC Secure NIZKs. The Universal Composability
(UC) framework [28] allows for the modular design and analysis of complex cryp-
tographic protocols, and guarantees security in the presence of arbitrarily many
sessions running concurrently. The environment Z (representing everything that
is external to the execution of the protocol of interest) interacts with the pro-
tocol, at the conclusion of which it outputs a decision bit, indicating whether it
thinks it has interacted with a “real-life” adversary A and parties running the
protocol, or with an “ideal-process” adversary (or simulator) Sim and parties
accessing the so-called ideal functionality F specifying the ideal outcome of a
given protocol.

This paper focuses on non-interactive zero-knowledge proofs (NIZK) [16,17]
in the UC framework. In the standalone setting, security of NIZKs is guaranteed
by showing standard properties separately such as completeness, zero-knowledge,
and (knowledge) soundness under some setup assumptions, like a common ref-
erence string (CRS) or the Random Oracle Model (ROM). However, several
restrictions and stronger properties come into play once the NIZK functionality
is to be realized in the UC model. A common methodology to design NIZKs in
the ROM is to start with an interactive argument which is proven ZK/knowl-
edge sound, and then compile this interactive argument into a non-interactive
proof. This means that NIZKs that are proven secure using rewinding (either
for ZK or for extraction) are at odds with UC, because the environment Z is
an interactive distinguisher between the real execution protocol and the ideal
process, and therefore a simulator Sim in the security proof cannot rewind Z.
Thus, straight-line simulation and extraction are required for a NIZK to be UC
secure. Informally, a proof system is straight-line extractable if one can efficiently
extract a valid witness without interacting with any successful prover. On top
of extraction being straight-line, by definition, UC simulators must be able to
obtain a witness having only black-box access to Z, i.e., without knowing the
concrete code of Z.

Another important ingredient to realize UC security is non-malleability (NM)
[37], which is often referred to as simulation-extractability in context of UC
(NI)ZK [73,35,72,46,56,38]. Essentially, a malleability attack allows an adver-
sary to maul existing proofs observed during the protocol execution, and to forge
a proof on some statement for which they do not know the corresponding witness.
Preventing such attacks is crucial in the UC model: as Z may ask uncorrupted
provers or simulator to produce proofs on arbitrary statement-witness pairs, the
ability to maul such proofs will induce the simulation to fail (i.e., Sim fails to
extract a witness) and thus helps Z distinguish the real execution from the ideal
one. The non-malleable NIZK construction of [35] was shown to be UC secure
in [31]. Subsequently, [54,50] constructed UC secure NIZKs in the presence of
adaptive adversaries, and [50] proved that simulation-extractability is necessary
for UC. In sum, black-box extraction (BBE), straight-line extraction (SLE) and
simulation-extractability (SIMEXT) are the properties a NIZK must satisfy in
order to be UC secure.

Witness-Succinct Universally-Composable SNARKs 317

We now discuss UC security for SNARKs (succinct non-interactive argu-
ments1 of knowledge) where the communication is sublinear (ideally polyloga-
rithmic or constant2) in the size of the non-deterministic witness used to verify
the relation. A SNARK is circuit-succinct if the proof size is sublinear only in the
size of the circuit representing the statement; if it is sublinear in the length of the
witness too, it is witness-succinct. Many SNARK constructions in the literature
rely on knowledge assumptions to prove witness extraction, i.e. their extractors
rely on examining the concrete code of the adversary in order to extract a wit-
ness. As discussed earlier, this is a barrier to achieving UC security, as simulation
in the UC framework can not depend on the code of the environment.

One simple folklore method to obtain UC-secure circuit-succinct NIZK given
a SNARG (a SNARK that only guarantees soundness, not proof-of-knowledge)
and a (perfectly correct) public key encryption scheme is the following: a public
key pk serves as a common reference string, given which the prover computes
a ciphertext ct to encrypt the witness w under randomness r. The prover then
computes a SNARG π that proves that the message encrypted by ct is indeed
a witness to the statement, and outputs (ct, π). This tuple now constitutes a
straight-line extractable NIZK, as the extractor (given sk) can simply decrypt
ct to obtain w—intuitively this w must be a valid witness since ct is a perfectly
binding commitment to w, and so if w is not a valid witness then π would be
proving a false theorem. Notice that this proof additionally inherits the circuit
succinctness property of the SNARG, as ct is of size O(|w|) and π is the SNARG
itself. This approach was described by De Santis et al. [35] in the context of
lifting ordinary NIZK to simulation-sound NIZK, and implemented as part of
the C∅C∅ framework for circuit-succinct UC NIZK by Kosba et al. [63], with
optimizations for concrete efficiency using the state-of-the-art SNARKs at the
time. C∅C∅ further proposed an optimized method to obtain non-malleability,
by additionally proving that the encrypted string is a valid signature on the
statement. Putting all these features together, C∅C∅ serves as the first generic
UC lifting compiler preserving circuit succinctness.

A major limitation of this technique is that it is inherently limited to pro-
ducing proofs that are at least as large as the witness, by virtue of the witness
having to be ‘decryptable’ from the ciphertext. Constructing witness-succinct
proofs that enjoy black-box straight-line extraction appears to require a fun-
damentally different approach. Indeed, Kosba et al. remarked that there is “no
known UC-secure zero-knowledge proof construction that is circuit and witness-
succinct, even under non-standard assumptions” [63, pg. 2], and left open the
question of whether such an object is even feasible to construct. Given this, one
may ask:

Is it possible to obtain UC-secure witness-succinct NIZKs
under well-studied setup assumptions?

1 Argument systems are proofs where soundness is computational. For proofs to be
shorter than the length of the witness, restricting to arguments is necessary [48,49].

2 Polynomial only in the security parameter.

318 C. Ganesh et al.

The requirement of “well-studied” setup assumptions is meant to capture
those forms of setup that have generally accepted realizations. In this work,
we consider the common reference string (CRS) model, and the random oracle
model (ROM) to fall within the scope of well-studied setup. For SNARKs in par-
ticular, there is already established infrastructure to generate the CRSs required
(via so called “powers of tau” ceremonies implemented by major blockchains such
as ZCash, FileCoin, etc. [21]). There are also established heuristics to instantiate
the ROM in practice with carefully chosen hash functions, and the ROM itself is
arguably amongst the oldest and most comprehensively studied idealized mod-
els [10].
Models we do not Consider. Several SNARK constructions are known to
be secure with non-black-box extraction under knowledge assumptions, or in
idealized models such as the Generic Group Model (GGM) or Algebraic Group
Model (AGM). The UC-AGM framework [1] allows to model the AGM and alge-
braic adversaries in a composable fashion. However, doing so requires the use
of algebraic environments making it incompatible with standard UC. The other
related alternative model is considered in [60] where they formally define the con-
cept of knowledge-respecting distinguishing environments, enabling the usage of
primitives relying on knowledge assumptions in larger protocols. However, their
entire formalization is built on top of a different compositional framework [68]
than UC. Similar to the UC-AGM framework, distinguishers in their model are
globally assumed to explain how they computed each knowledge-implying object
they output, making themselves weaker than environments in the standard UC.
Succinct Arguments of Knowledge with a CRS Alone. Folklore has long
held that NIZKs in the CRS model with black-box straight-line extraction cannot
be witness-succinct, as the witness must be ‘decryptable’ from the proof string
as in the simple approach described earlier. Indeed, all pairing based efficient
SNARKs that are witness-succinct in the standard model with a CRS (like [47,
70]) are not black-box extractable3. The intuition is that for a language whose
witnesses have enough entropy, an argument that is too “short” cannot contain
enough information about a witness: this makes extraction impossible for an
extractor that does not have any additional power, like access to the prover’s
randomness (like in non-black-box extractors) or the ability to rewind the prover
(like in interactive arguments and resulting NIZKs compiled in the ROM). We
refer the reader to the recent work of Campanelli et al. [27] for a formal treatment
of this. Given that black-box extraction is necessary for UC security, we consider
it justified to consider UC security in the ROM in light of this impossibility.
Succinct Arguments of Knowledge in the ROM. There are several witness-
succinct proof systems in the ROM in the literature such as the classical Prob-
abilistically Checkable Proofs (PCP) based approach of Kilian [61], Micali’s CS
proofs [69], and the recent works on Interactive Oracle Proofs [15]. However
to our knowledge, there are no witness-succinct proof systems in the ROM that

3 Pairing based constructions like PLONK, Sonic, Marlin are not black-box extractable
as well, but they are also in the ROM in addition to requiring a CRS.

Witness-Succinct Universally-Composable SNARKs 319

Table 1. Known properties of existing (witness-succinct) zkSNARKs compared to
example instantiation of our compilation. “BBE” stands for black-box knowledge
extraction; “SLE” for straight-line knowledge extractor; “SIMEXT” for simulation-
extractability. We say a proof system is “transparent” if no trusted generation of CRS
is required. Note that the assumptions for the last row are derived from an example
instantiation of [2, Theorem 4] where they adapt [52] as an underlying SNARK.

Scheme Assumption Model Transparent BBE SLE SIMEXT

STARK [12] ROM ROM ✓ ✓ ✓ unknown
Aurora [14] ROM ROM ✓ ✓ ✓ unknown
RedShift [59] ROM ROM ✓ ✓ ✓ unknown
Bulletproofs [22] DLOG ROM ✓ ✓ ✗ ✓ [45]
SONIC [67] AGM & q-DLOG CRS & ROM ✗ ✗ ✓ ✓ [42]
PLONK [41] AGM CRS & ROM ✗ ✗ ✓ ✓ [42]
Marlin [33] AGM CRS & ROM ✗ ✗ ✓ ✓ [42]
Groth16 [51] GGM CRS(& ROM for NM) ✗ ✗ ✓ ✓ [20]
Groth-Maller [53] XPKE & Poly CRS ✗ ✗ ✓ ✓

LAMASSU [2] q-MC & q-MK & BDH & DL CRS ✗ ✗ ✓ ✓

Ours + [53] + [57] XPKE & Poly & SDH CRS & GROM ✗ ✓ ✓ ✓

Ours + [2] + [57] q-MC & q-MK & BDH & DL & SDH CRS & GROM ✗ ✓ ✓ ✓

have been formally analyzed in the UC framework. While some of these construc-
tions [69,3,11] are black-box straight-line extractable, simulation-extractability
of these has not been shown. SNARKs in the ROM that are logarithmic in the
statement and witness size are known from conservative computational assump-
tions such as the hardness of computing discrete logarithms [19,22] in the stan-
dalone setting. Bulletproofs [22] are known to be simulation-extractable, but
currently only in the AGM+ROM [44] or in the ROM with rewinding [45]. If a
CRS is assumed in addition to ROM, then constructions like PLONK, Sonic, and
Marlin also provide constant sized (polynomial only in the security parameter)
proofs, but their simulation-extractability is only shown in AGM+ROM [42].
We indicate these properties of existing SNARKs in Table 1. Given this state of
affairs, we can refine our earlier question to the following:

Is it possible to obtain UC-secure NIZKs with constant size proofs
in the random oracle model?

Our Results. In this work, we answer the above question in the affirmative.
In particular, we give a compiler (in the ROM) that lifts any SNARK from
non-black-box to black-box straight-line extraction, with constant (i.e. Oλ(1))
overhead.

Theorem 1.1. (Informal) Given a non-black-box simulation-extractable
zkSNARK ΠR for a relation R and a succinct polynomial commitment scheme,
there exists a UC-secure, witness-succinct zkSNARK ΠUC-R in the (global ran-
dom oracle (GRO), local setup (FSetup))-hybrid model, where GRO is observable but
non-programmable as in [30] and FSetup models the setup required by the original
zkSNARK ΠR (e.g., a trusted CRS generator or the local random oracle).

320 C. Ganesh et al.

Plugging well-known SNARKs such as [53,2] into our compiler gives us as a
corollary the first constant sized UC NIZKs in the (GRO,Fcrs)-hybrid model,
from pairings under knowledge assumptions.
Remarks. There are a few qualifications to our main theorem:
– Knowledge Assumptions: Any output NIZK produced via our compiler inher-

its the knowledge assumptions used by the input SNARK. However, as knowl-
edge assumptions cannot be used directly in the UC framework (as simulation
cannot depend on the environment), the extraction strategy for our compiled
SNARK does not involve invoking the non-black-box extractor of the input
SNARK. Intuitively, we only make use of the input SNARK’s non-black-box
extractor to argue the indistinguishability of intermediate hybrid experiments
(which can depend on the environment).

– Unique Proofs: Our compiler requires polynomial commitments that support
a new ‘unique proof’ property, i.e. it is hard for an adversary to produce
two distinct proofs for the same evaluation point. This is in fact an analo-
gous notion to unique response defined for ROM-based NIZK proofs to be
simulation-extractable [38,44]. Although this is not a standard property in
the stand-alone setting, we show that it is a natural feature of common poly-
nomial commitment schemes such as KZG [57].

1.1 Technical Overview

We begin with the observation that most SNARKs already have straight-line
zero-knowledge simulators—the verifier of a non-interactive object has no secrets
and so there is nothing to be gained by rewinding or looking at its code—
and therefore simulating an honest prover’s SNARK string in the UC context
is straightforward. Moreover, a plethora of work suggest that many concretely
efficient SNARKs are already simulation extractable (see Table 1). The barrier
to using existing SNARKs in the UC context is that the only known extractors
require either looking into the code of the prover (i.e. non-black-box extraction)
or rewinding the prover. Neither of these extraction techniques can be directly
used within the UC framework, as the simulator in the UC experiment can not
rewind the environment, nor depend on its code.

Previous works have recognized the fact that even though simulation must be
straight-line in the UC framework, their proofs of indistinguishability can make
use of arguments that involve rewinding the environment [36,25]. The underlying
principle is that even though the environment can not be rewound during simu-
lation for the UC experiment, rewinding the environment can still be helpful as
an analytical tool, for example in generating intermediate hybrid distributions
between the real and ideal experiments. To our knowledge, this principle has not
been applied to the case of non-black-box simulation, i.e. generating intermediate
hybrid distributions using the code of the environment.

Our insight is that the existence of a non-black-box extractor guarantees that
in order to produce a SNARK, the environment must fundamentally ‘know’ a
witness—lifting the SNARK to a UC NIZK is then a matter of forcing the

Witness-Succinct Universally-Composable SNARKs 321

environment to use this knowledge. We describe below how we leverage this
insight, by incrementally building upon the simple approach described earlier.
Commitments Instead of Encryption. Recall that the simple approach—
where a proof consists of ciphertext ct and proof π that ct encrypts a witness—
is bottlenecked by the ciphertext having to be ‘decryptable’, which means that
|ct| ∈ Ω(|w|). If we relax the decryptability requirement, we can have ct be
a commitment instead. This is helpful, because commitments can be indepen-
dent of the size of the message committed, and therefore succinct. Obtaining
the witness from ct now becomes a matter of extracting a committed message
rather than simply decrypting a ciphertext, and forms the core of the technical
challenge.
Core Tool: Succinct, Provable, Straight-Line Extractable Commit-
ments. Straight-line extractable commitments are typically straightforward to
construct in the random oracle model—simply computing H(w, r) to commit
to w with randomness r suffices [71,25]. However H must be a random oracle
to enable straight-line extraction, meaning that one cannot prove statements
about its input. This is an issue as we need to prove that w committed to in ct
is indeed a valid witness. This issue can be solved by assuming that since H is
instantiated with a concrete hash function, it will have a circuit representation
(as is common in the literature on recursive SNARKs [23,34]) however we wish
to avoid such heuristics.

We must therefore construct a ‘provable’ commitment scheme, i.e. one that
has a meaningful circuit representation while also supporting straight-line extrac-
tion of the committed message. Our methodology for designing such a commit-
ment involves two parts (cm, πcm), where cm is a commitment string output by
a standard model commitment algorithm ,, and πcm is a straight-line extractable
proof of knowledge of its opening—notice that now it is meaningful to prove via
a SNARK that cm is a commitment to a valid witness, as , is a standard model
algorithm. Since it is straightforward to achieve |cm| ∈ Oλ(1), we will focus on
the design of πcm.

Like much of the SNARK literature, in constructing πcm we leverage the fact
that arithmetization is conducive to succinct proofs. In particular, we instruct
the prover to encode the witness w as the coefficients of a polynomial f(x),
and commit to f within cm (rather than committing to w directly). Assuming a
prime q ∈ ω(poly(λ)) is a parameter of the scheme, and d ∈ Z a parameter of the
statement, w is interpreted as a vector w ∈ F

d
q that characterize the coefficients

of the degree4 d − 1 polynomial f ∈ Fq[X]. Our straight-line extraction strategy
will be to ensure that the prover queries at least d evaluations of f to the random
oracle (i.e. enough to reconstruct w), by having the verifier check a subset of the
evaluations. Importantly, this validation of f can be performed succinctly; the
verifier need only query Oλ(1) evaluations of f , and each evaluation can be
authenticated at Oλ(1) cost. We sketch our ideas behind these principles below.
4 We remark that the actual compiler needs to inflate the degree according to the

number of revealed evaluations in order to retain zero-knowledge, but we omit this
technicality here for ease of exposition.

322 C. Ganesh et al.

Oλ(1) Verifier Queries: The prover first evaluates f at n points and commits
to each {f(i)}i∈[n]. The prover is then instructed to reveal r of the committed
evaluations—which are checked for correctness—to guarantee that the commit-
ments contain at least d − 1 correct evaluations in total, with overwhelming
probability. Assuming that r ∈ [n] is chosen at random, the parameters can be
fixed so that r ∈ Oλ(1), due to the following rough analysis: the best adversarial
assignment (for a cheating prover) of the n committed evaluations consists of
only d−1 correct (and n−d+1 ‘junk’) ones, to maximize the number of subsets
of size r that will satisfy a verifier—i.e.

(
d−1

r

)
. The total number of possible sub-

sets that the verifier could query is
(
n
r

)
, which brings the probability of success

of the best possible cheating strategy to:
(
d−1

r

)
(
n
r

) ≈ dr/r!
nr/r!

=
(

d

n

)r

Now if we fix r as say, λ (so that r ∈ Oλ(1)), notice that for any d ∈ Z the above
quantity can be upper bounded by 2−λ by setting n ≈ 2d. In general, as long as
r ∈ Ω(λ/ log λ), the same upper bound can be achieved with n ∈ poly(d, λ).

Authenticating Evaluation Openings at Oλ(1) Cost via Fischlin’s Tech-
nique [39]: We framed our description above in a PCP-like model, where the
prover writes down n evaluations of f , of which the verifier queries and checks
r of them. As n is clearly not witness-succinct, we need a method by which the
prover can commit to the n evaluations, and succinctly reveal r of them upon
request. In the PCP/IOP literature [69,15], it is common to use Merkle trees
for this task; they provide Oλ(1) sized commitments with r short (Oλ(log n)
sized) openings, and even natively support straight-line extraction. This follows
a ‘cut-and-choose’ paradigm, where the prover commits to n objects, and the
verifier checks r of them in order to guarantee that a total of at least d of the
committed objects are ‘good’. However the Oλ(log n) sized evaluation opening
is a deal breaker (in the context of achieving Oλ(1)-sized proofs) as it grows—
albeit slowly—with the witness size, and appears to be a fundamental hurdle
with such techniques.

In the context of compiling Σ-protocols to NIZKs with straight-line extrac-
tion, Fischlin [39] presented a technique based on proofs of work that shed the
Oλ(log n) cost of Merkle tree openings when checking the validity of a subset
of committed objects. At a very high level, Fischlin’s technique emulates the
combinatorial properties of the cut-and-choose approach, without the logistics
of providing explicit commitments/openings. Fischlin’s idea is that rather than
challenging the prover to reveal a (randomly chosen) r-sized subset of some com-
mitted xi values, the prover is challenged to provide any r values {xi}i∈[r] such
that H(xi) = 0 for each i, where H is a random oracle. This forces the prover to
query multiple ‘good’ xi values to H before finding r of them that hash to the
zero string, and no explicit decommitment information is necessary.

Applying Fischlin’s technique to our setting yields a protocol of the following
form. Upon fixing cm, for each i ∈ [r]: (1) the prover computes π

(i)
cm = (zi, f(zi))

with uniform zi and the corresponding evaluation proof π
(i)
ev that ensures the

Witness-Succinct Universally-Composable SNARKs 323

polynomial f committed to in cm has been correctly evaluated at zi, and (2)
store (π(i)

cm, π
(i)
ev) and go to the next iteration if H(cm, i, π

(i)
cm, π

(i)
ev) = 0 for a

random oracle H with b-bit outputs, and go to step (1) otherwise. Thanks to
the evaluation proof, π

(i)
cm is tied to a given commitment cm. In practice, succinct

evaluation proof can be easily implemented by naively invoking the underlying
SNARK prover5 or by instantiating cm with a dedicated polynomial commitment
scheme such as [57], which usually minimizes the overhead in prover’s work.
Computing such a proof is easy for an honest prover, via rejection-sampling with
random (zi, f(zi)) values until r of them that hash to zero are found. As for an
adversarial prover P ∗, the aim is to produce an accepting proof—by finding r
pre-images of 0—with d − 1 or fewer queries to the random oracle. As a loose
upper bound, the probability that P ∗ finds r successes within d − 1 queries is
at most the probability that for every i ∈ [r], P ∗ is able to find H(cm, i, ·) = 0
within d − 1 queries. For any given i, the probability that P ∗ finds H(cm, i,
·) = 0 within d queries is at most d/2b; therefore the probability that P ∗ finds
H(cm, i, ·) = 0 within d − 1 queries for every i ∈ [r] simultaneously is at most
(d/2b)r = 2−r(b−log d). The proof sketch here are implicitly assuming that a valid
evaluation proof is determined uniquely once cm, zi, and f(zi) are fixed. Our
formal analysis accounts for this subtlety and we show that [57] indeed satisfies
this property.

Assuming that r = λ ∈ Oλ(1), the above quantity is bounded by 2−λ when
b = 1+ log d ∈ Oλ(log d). The prover’s work is in expectation 2b · r = 21+log d · λ
which is in poly(λ) as well as Oλ(d), i.e. it scales linearly in the witness size. Of
course better parameters are possible; r can be improved by up to a log factor,
as we explore later in the ‘succinctness’ component of the proof of Theorem 3.1.
Putting it Together: The prover produces an Oλ(1)-sized standard model
commitment cm to a degree d polynomial f that encodes the witness, and proves
knowledge of its opening via πcm = (π(i)

cm)i∈[r] – this proof is at the heart of
forcing the environment to use the witness within the context of the protocol.
The proof πcm requires the prover to ‘work’ to find r ∈ Oλ(1) pre-images of 0 for
random oracle H, where each pre-image is an evaluation of f . The parameters for
this proof-of-work are set so that (except with negligible probability) the prover
queries more than d − 1 evaluations of f in its effort to find these r pre-images
of zero. Reading these d evaluations of f allows an extractor to reconstruct f—
which is an opening to cm. Finally, the prover gives a SNARK π to prove that
it knows an opening to cm that is the witness to a public statement (through a
suitable witness-polynomial encoding function Enc). If one were to hypothetically
run the non-black-box SNARK extractor on the environment at this point, the
opening to cm that it finds should be exactly the same as the f reconstructed
via the extractor of πcm; if not, then one would obtain two openings to cm,
in contradiction of the binding property of the commitment scheme. Therefore,

5 For this alternative instantiation, one must use a de-randomized version of the under-
lying SNARK to obtain the unique proof property, as also required by our main
compiler.

324 C. Ganesh et al.

any knowledge that the environment uses in the production of π—perhaps even
outside the protocol—is extracted in a black-box, straight-line fashion via πcm

within the context of the protocol.

1.2 Related Work

Straight-Line Extraction. Our UC-lifting technique is inspired by Fischlin’s
transform [39] based on Proof-of-Work. Kondi and shelat [62] gave an analysis
for using Fischlin’s transformation for compressing proofs in the context of signa-
ture aggregation, and showed how randomizing Fischlin’s technique is conducive
to zero-knowledge. Very recently, Lysyanskaya and Rosenbloom [66,65] present
compilers lifting Σ-protocols to UC-secure (adaptive) NIZKPoK in the global
ROM, where the straight-line extraction is realized via Fischlin’s transform.
Canetti, Sarkar, and Wang [32] realized triply adaptive UC-secure NIZK using a
straight-line extractable commitment in the CRS model. Pass [71] described
a generic way to turn Σ-protocols with special soundness into straight-line
extractable proof systems using RO-based commitment. The technique is some-
what analogous to the verifiable encryption of Camenisch and Damgård [24]
where the commitment is instantiated using public-key encryption and thus SLE
holds in the CRS model (where the decryption key serves as a private extraction
key for the knowledge extractor). The transform of Unruh [74] extended [71]
to retain security against an adversary making superposition queries to the RO
(the so-called quantum random oracle model). Recently, Katsumata [58] showed
an efficient SLE transform in the QROM tailored to lattice-based ZK proofs.
Lifting Transformations. Techniques for generically adding black-box simula-
tion extractability to any NIZK were first shown in the works of [73,35,50], opti-
mized in the C∅C∅ framework [63], and tailored to Groth16 in [5,6]. These tech-
niques augment the relation to an OR language and the trapdoor for one of the
OR clauses is used by the ZK simulator. Extractability is obtained by encrypting
the witness under a public key that is part of the CRS and additionally proving
correct encryption. The LAMASSU [2] framework extends the C∅C∅ lifting tech-
nique to work with updatable SNARKs giving a generic compiler from updatable
CRS SNARKS to SE SNARKs. TIRAMISU [9] builds on these frameworks to
additionally lift SNARKs into black-box simulation extractable ones. However,
all these lifting transformations yield SNARKs where one of either witness suc-
cinctess or blackbox extraction is lost, unlike our compiler. There are works on
lifting specific SNARKs into SE; the work of Groth and Maller [53] presents an
SE SNARK, but the simulation extractability is non-black-box. There is a line of
work on analysing the simulation extractability [20,7,8] of Groth16; all of these
are in idealized models like GGM/AGM, in addition to ROM.

2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a + 1, . . . , b}. We also use [b] as shorthand

Witness-Succinct Universally-Composable SNARKs 325

for [1, b]. If S is a set we write s ←$ S to indicate sampling s from the uniform
distribution defined over S; if A is a randomized (resp. deterministic) algorithm
we write s ← A (resp. s := A) to indicate assigning an output from A to s. The
security parameter λ is 1λ in unary. A function f(λ) is said to be negligible in
λ if for any polynomial poly(λ) it holds that f(λ) < 1/poly(λ) for sufficiently
large λ > 0. We write “f(λ) < negl(λ)” to indicate f(λ) is negligible in λ. F[X]
denotes polynomials over a finite field F. For an integer d ≥ 1, F<d[X] ⊆ F[X]
denotes polynomials of degree less than d.

2.1 UC Framework

In this work, we use the Universal Composability (UC) framework [28] for secu-
rity proofs. UC follows the simulation-based paradigm where the security of a
protocol is defined with respect to an ideal world where a trusted party, the
functionality F, does the all of the computation. Informally, a protocol securely
realizes F in the real world if for any real world adversary there exist an equiva-
lent ideal world adversary (the simulator). Equivalent meaning that any outside
observer (the environment) cannot distinguish between the real protocol execu-
tion and the ideal execution. UC’s composition theorem ensures that one can
safely compose protocols that have been proven UC-secure.
Global Random Oracle. More precisely, we use the generalized UC (GUC)
framework [29] which allows to model global functionalities that are shared
between different protocol instances. We consider a hybrid-model where parties
have access to a (non-programmable) global random oracle GRO as introduced
in [30]. We follow the simplified description from [25]. The GRO functionality can
be queried by any party and the ideal adversary with two commands: query and
observe. The environment can query GRO by spawning additional dummy par-
ties outside the context of the current protocol execution. GRO answers all new
query command by lazy sampling from the domain and stores them locally in
a list Q. A repeated query requires a simple lookup in Q. Some query queries
are marked “illegitimate” and can be observed via observe command. Next we
explain which query counts as an illegitimate one. Each party is associated with
its party identifier pid and a session identifier sid. When a party queries GRO

with the command (query, x), the query is parsed as (s, x′) where s denotes
the session identifier associated with the party. A query is marked as illegitimate
if the sid field of the query differs from the sid associated to the party making
the query. In other words, these are the queries made outside the context of the
current session execution. We formally define the functionality GRO in Fig. 1.

Remark 2.1. In [30] the random oracle allows ideal functionalities to obtain the
list of illegitimate queries. In order for the adversary to fetch those queries there
needs to be a (dummy) functionality that forwards those queries. In [25] this is
simplified by allowing the adversary to directly query the random oracle for ille-
gitimate queries. Thus, functionalities no longer need to forward the illegitimate
queries.

326 C. Ganesh et al.

Functionality 1: GRO

GRO is parametrized by the output length �(1λ).
– Query Upon receiving a query (query, x), from some party P = (pid, sid)

or from the adversary Sim do:

• Look up v if there is a pair (x, v) for some v ∈ {0, 1}�(1λ) in the (initially
empty) list Q of past queries. Else, choose uniformly v ∈ {0, 1}�(1λ)

and store the pair (x, v) in Q.

• Parse x as (s, x′). If sid �= s then add (s, x′, v) to the (initially empty)
list of illegitimate queries for SID s, that is denoted by Q|s.

• Return v to P.

– Observe Upon receiving a request (observe, sid) from the adversary Sim,
return the list Q|sid of illegitimate queries for SID sid to the adversary.

Fig. 1. Functionality for Global Random Oracle GRO [25]

Intuitively, these illegitimate queries are required for proving security of our
protocols. The ideal adversary (or the simulator) works by observing GRO queries
made by the corrupt party during the protocol execution. However, the environ-
ment can bypass this by querying GRO via additional dummy parties outside
the current session. The simulator remains oblivious to these additional parties
and thus fails in proving security. However, this behavior of the environment is
accounted for in [25] by marking such queries as illegitimate and disclosing them
to the simulator via observe command. Note that any GRO query for session
id sid made by a party (or the simulator) participating in the session identified
by sid will never be marked as illegitimate. Thus, any query made the simula-
tor itself is not recorded by the functionality and hence cannot be observed by
anyone. This is crucial for proving indistinguishability between the ideal and the
real world and we elaborate in the proof of Theorem 3.1.

Definition 2.2. (UC Security in the Global ROM [29,30]). Let F,F ′ be
m-party functionalities and Π be a protocol. We say that Π UC-realizes F in
the GRO,F ′-hybrid model if for any hybrid-model PPT adversary A, there exists
an ideal process PPT adversary Sim such that for every PPT environment Z, it
holds that:

{IDEALGRO
F,Sim,Z(x, λ, z)}x,λ,z ≈ {REALGRO

F ′,Π,A,Z(x, λ, z)}x,λ,z

where REAL is the outputs of the honest parties and the adversary A after a
real execution of protocol Π with input x = (x1, . . . , xm) for parties P1, . . . , Pm

where each xi ∈ {0, 1}∗, z ∈ {0, 1}∗ is the auxiliary input for A and λ is the
security parameter. IDEAL is the analogous distribution in an ideal execution

Witness-Succinct Universally-Composable SNARKs 327

with a trusted party that computes F for the parties and hands the output to
the designated players.

2.2 Succinct Non Interactive Zero-Knowledge Proof

A non-interactive proof system for relation R, denoted by ΠR, consists a tuple
of algorithms (PGen,OSetup,P,V).
– pp ← PGen(1λ): Takes as input the security parameter λ and outputs public

parameters pp. Once PGen is invoked we assume that all of the following
algorithms take pp as an implicit input.

– out ← OSetup(in): A stateful setup oracle that takes an input string in and
outputs out.

– π ← POSetup(x,w): Takes as input a statement x and witness w, and outputs
a proof π if (x,w) ∈ R.

– b ← VOSetup(x, π): Takes as input a statement x and proof π, and outputs a
bit b, indicating “accept” or “reject”.
We introduce the setup oracle OSetup to the notation of NIZKs to capture

the two typical setup assumptions in an abstract manner. That is, if a proof
system is instantiated in the CRS model, then OSetup internally generates crs
upon receiving a query with any input for the first time, and keeps outputting
the same crs regardless of the input. When instantiating the RO model, OSetup

is initialized with an empty query-response table and proceeds as follows. On
receiving in ∈ {0, 1}∗, if in has never been queried, sample uniform out ∈ {0,
1}�(λ), store (in, out) in the table, and return out. Otherwise, look up the table
to find out associated with in, and return out.

We define three basic security properties for ΠR in the stand-alone setting.

Definition 2.3. (Completeness). ΠR satisfies completeness if for every (x,
w) ∈ R, it holds that

Pr
[
b = 1 : pp ← PGen(1λ);π ← POSetup(x,w); b ← VOSetup(x, π)

]
= 1.

We define zero-knowledge by following the syntax of [38,44]. A zero-
knowledge simulator S is defined as a stateful algorithm with initial state st = pp
that operates in two modes. The first mode, (out, st′) ← S(1, st, in) takes care of
handling calls to the oracle OSetup on input in. The second mode, (π, st′) ← S(2,
st, x) simulates a proof for the input statement x. For convenience we define
three “wrapper” oracles. These oracles are stateful and share the internal state
st, which initially contains an empty string.
– S1(in) to denote the oracle that returns the first output of S(1, st, in);
– S2(x,w) that returns the first output of S(2, st, x) if (x,w) ∈ R and ⊥ oth-

erwise;

– S ′
2(x) that returns the first output of S(2, st, x).

328 C. Ganesh et al.

Definition 2.4. ((Unbounded) Zero-Knowledge). Let ΠR = (PGen,
OSetup,P,V) be a non-interactive proof system for relation R. ΠR is unbounded
non-interactive zero-knowledge (NIZK), if there exists a PPT simulator S with
wrapper oracles S1 and S2 such that for all PPT adversaries A it holds that
∣
∣
∣
∣
∣
Pr

[

b = 1 :
pp ← PGen(1λ);

b ← AOSetup,P(pp)

]

− Pr

[

b = 1 :
pp ← PGen(1λ);

b ← AS1,S2(pp)

]∣
∣
∣
∣
∣
< negl(λ).

Next, we define simulation extractability, which essentially guarantees that
proofs are non-malleable. We stress that the present definition is weaker than
what is necessary for realizing UC security, because the extractor algorithm
here is non-black-box , i.e., it requires looking into the code of the adversary.
The definition is an abstracted version of [53] and the schemes satisfying their
definition clearly meet the version below by instantiating S with trapdoor’d CRS
generator in mode 1 and ZK simulator in mode 2.

Definition 2.5. ((Non-black-box) Simulation Extractability). Consider
a non-interactive proof system ΠR = (PGen,OSetup,P,V) for relation R with an
NIZK simulator S. Let (S1,S ′

2) be wrapper oracles for S as defined above. ΠR
is non-black-box simulation-extractable (SIM-EXT) with respect to S, if for any
PPT adversary A, there exists a PPT extractor EA such that

Pr

[
(x, π) /∈ Q ∧ (x, w) /∈ R

∧ b = 1
:

pp ← PGen(1λ); (x, π) ← AS1,S′
2(pp);

b ← VS1(x, π);w ← EA(x, π, stateA, st)

]
< negl(λ)

where st is the final state of the simulator S, stateA is a string containing all
inputs and outputs of A, including random coins, and Q is a set of statement-
proof pairs (x, π) with x being a statement queried by A to the proof simulation
wrapper oracle S ′

2, and π being the corresponding simulated proof, respectively.

The ideal functionality FSetup that provides the setup and oracle for non-
interactive proof system ΠR = (PGen,OSetup,P,V) is described in Fig. 2.

Our final goal is to compile ΠR with the above basic security properties into
a UC-secure NIZK protocol ΠUC-R. The ideal functionality for Non-interactive
Zero-Knowledge FNIZK is defined in Fig. 3. The functionality is taken from [55]
with a minor difference being that FNIZK explicitly informs Sim of the associated
session ID.

2.3 Succinct Polynomial Commitment Scheme

The following definition is adapted from the full version of [33]. The difference
is that we omit the commitment key trimming algorithm as it is only necessary
for concrete optimization.

Witness-Succinct Universally-Composable SNARKs 329

Functionality 2: FSetup

FSetup is parametrized by a security parameter λ and a degree bound D > 0 and
runs with parties P1, . . . , PN and an ideal process adversary Sim.

– Parameters Upon receiving input (genparams, sid) from a party Pi, if no
pp has been stored, run pp ← PGen(1λ), initialize oracle OSetup with pp, and
store pp. Send (params, sid, pp) to Pi.

– Commitment Key Upon receiving input (genkey, sid) from a party Pi, if
no ck has been stored, run ck ← KGen(1λ, D) and store ck. Send (comkey,
sid, ck) to Pi.

– Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if OSetup

has not been initialized with pp. Otherwise run out ← OSetup(in) using the
current state of OSetup and send (setup, sid, out) to Pi.

Fig. 2. N -party functionality for setup FSetup

Definition 2.6. (Polynomial Commitment Scheme). A polynomial com-
mitment scheme over field F, denoted by PCS, is a tuple of algorithms (KGen,
Com,Eval,Check):
1. ck ← KGen(1λ,D): Takes as input the security parameter λ and the maximum

degree bound D and generates commitment key ck as output.

2. c ← Com(ck, f, d; ρc): Takes as input ck, the polynomial f ∈ F<d[X], the
degree bound d ≤ D, randomness ρc and outputs a commitment c. In case
the commitment scheme is deterministic ρc = ⊥.

3. π ← Eval(ck, c, d, z, y, f ; ρc): Takes as input ck, the commitment c, degree
bound d ≤ D, evaluation point z ∈ F, claimed polynomial evaluation y ∈ F,
the polynomial f , and outputs a non-interactive proof of evaluation π. The
randomness ρc must equal the one previously used in Com.

4. b ← Check(ck, c, d, z, y, π): Takes as input statement (ck, c, d, z, y) and the
proof of evaluation π and outputs a bit b.
satisfying the following properties:

Completeness. For any integer 1 ≤ d ≤ D, for all polynomials f ∈ F<d[X], for
all evaluation points z ∈ F, and any randomness ρc

Pr

⎡

⎢
⎣ b = 1 :

ck ← KGen(1λ,D); c ← Com(ck, f, d; ρc);
y := f(z);π ← Eval(ck, c, d, z, y, f ; ρc);
b ← Check(ck, c, d, z, y, π)

⎤

⎥
⎦ = 1.

Evaluation Binding. For any integer 1 ≤ d ≤ D, for all PPT adversaries A,

330 C. Ganesh et al.

Functionality 3: FNIZK

FNIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗×{0, 1}∗,
and runs with parties P1, . . . , PN and an ideal process adversary Sim. It stores
proof table Q which is initially empty.

– Proof Upon receiving input (prove, sid, ssid, x, w) from a party Pi, ignore if
(x, w) /∈ R. Otherwise, send (prove, sid, x) to Sim. Upon receiving (proof, π)
from Sim, store (x, π) in Q and send (proof, sid, ssid, π) to Pi.

– Verification Upon receiving input (verify, sid, ssid, x, π) from a party Pi, if
(x, π) is not stored in Q, then send (verify, sid, x, π) to Sim. Upon receiv-
ing (witness, w) from Sim, if (x, w) ∈ R, store (x, π) in Q. Finally, return
(verification, sid, ssid, (x, π) ∈? Q) to Pi.

Fig. 3. N -party functionality for non-interactive zero-knowledge FNIZK

Pr

⎡

⎢
⎣

y
= y′

∧ b = 1
∧ b′ = 1

:
ck ← KGen(1λ,D); (c, d, z, y, y′, π, π′) ← A(ck);

b ← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y′, π′)

⎤

⎥
⎦ ≤ negl(λ).

Succinctness. A PCS is said to be succinct if both the size of commitment c

and evaluation proof π is of size Oλ(1).

In addition to standard properties above, we need a few more special prop-
erties for our compiler to work. In a later section we show that the widely used
scheme of [57] indeed satisfy these.

Definition 2.7. (Unique Proof). For all PPT adversaries A,

Pr

⎡

⎢
⎢
⎢
⎣

π
= π′

∧ b = 1
∧ b′ = 1

:

ck ← KGen(1λ,D);
(c, d, z, y, π, π′) ← A(ck);

b ← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y, π′)

⎤

⎥
⎥
⎥
⎦

≤ negl(λ).

We define a polynomial encoding scheme, which takes a vector of field ele-
ments and outputs an appropriate randomized polynomial. An important prop-
erty, sometimes referred to as bounded independence in the literature [33, §2.3]6,
guarantees that a bounded number of evaluations do not leak any information
about the original polynomial.

Definition 2.8. (Polynomial Encoding Scheme). A polynomial encoding
scheme, denoted by PES, is a tuple of algorithms (Enc,Dec) defined over an
evaluation domain DEnc (which also determines the forbidden domain SEnc =
F \ DEnc).
6 This property is also know as k-knowledge bound in [13].

Witness-Succinct Universally-Composable SNARKs 331

– f ← Enc(w, n, 	;ρ): Takes as inputs w ∈ F
n, dimension of the vector n > 0,

evaluation bound 	 > 0, and randomness ρ ∈ F
�, and outputs a polynomial

f ∈ F<n+�[X].

– w′ ← Dec(f, n,): Takes as inputs f ∈ F<n+�[X], n > 0, and 	 > 0, and
deterministically outputs w′ ∈ F

n.
We say PES is correct if w = Dec(Enc(w, n, 	;ρ), n,) for any n > 0, 	 > 0,
w ∈ F

n, and ρ ∈ F
�. PES satisfies bounded independence if for any n > 0, 	 > 0,

and w ∈ F
n, and for ρ sampled uniformly from F

�, any set of 	 evaluations of
f ← Enc(w, n, 	;ρ) in DEnc are independently and uniformly distributed in F.

In this work, we only consider polynomial encoding schemes where the size of the
evaluation domain is exponential in the security parameter, i.e. |DEnc| ∈ O(2λ).
Below we recall some candidate encoding schemes that are implicitly employed
in many SNARK constructions.
– Coefficient Encoding PES1 = (Enc1,Dec1): PES can be instantiated using

simple coefficient encoding as in [67]. Here DEnc = F \ {0} and Enc1 outputs

f(X) =
n∑

i=1

wiX
i−1 +

�∑

i=1

ρiX
n+i−1

where w = (wi)i∈[n] and ρ = (ρi)i∈[�]. The decoding algorithm Dec1 outputs
the first n coefficients of f . It satisfies bounded independence because any set
of 	 evaluations of f are independent of the encoded vector.

– Lagrange Encoding PES2 = (Enc2,Dec2): This encoding method has been
used in e.g. [41,33,26]. Suppose a subset H ⊂ F of cardinality n and an
evaluation domain DEnc = F \ (H ∪ {0}). Assume that an input w ∈ F

n

is indexed by H, i.e., w = (w(a))a∈H . Let La,H ∈ F<n[X] for a ∈ H be
the Lagrange polynomials corresponding to H and ZH(X) =

∏
a∈H(X − a)

be a vanishing polynomial of H. Then using ρ = (ρi)i∈[�] as randomness,
Enc2(w, n, 	;ρ) outputs

f(X) =
∑

a∈H

w(a) · La,H(X) +

(
�∑

i=1

ρiX
i−1

)

· ZH(X).

The decoding algorithm Dec2 outputs (f(a))a∈H . On the one hand, PES2

satisfies correctness since f agrees with w over the forbidden domain SEnc =
H. On the other hand, up to 	 evaluations of f in DEnc reveal nothing about
the encoded vector w. Typically, the evaluation bound 	 should be set strictly
larger than the number of evaluation proofs the prover explicitly reveals,
because a commitment to the polynomial itself may leak information about
one evaluation (as in the KZG scheme). It turns out that this property helps
us show the hiding property below once combined with a suitable polynomial
commitment scheme.

Evaluation Hiding. We now define evaluation hiding. Note that this is a
stronger property than the usual hiding definition (such as the ones in [57,33]):

332 C. Ganesh et al.

essentially, evaluation hiding guarantees that the joint distribution of commit-
ment, evaluation proof, and polynomial evaluations leaks nothing about the
committed polynomial, whereas the usual PCS hiding property does allow eval-
uations to be associated with the committed polynomials. Clearly, if Enc is
deterministic PCS can never be evaluation hiding. This is why the definition
only makes sense with respect to a specific encoding scheme. Recent IOP-based
SNARKs such as [41,67,33,26] in fact exploit this property (albeit without for-
mal definition tailored to PCS) to hide evaluations of a polynomial encoding
secret witness and thus to retain perfect zero knowledge. The definition is param-
eterized by a function φ : Z+ → Z

+ calculating the expansion factor for encoding
randomness: given the number of evaluated points 	′ > 0, it determines 	 > 	′

the total number of random field elements necessary for hiding the commit-
ted polynomial even after outputting a commitment, 	′ evaluation proofs, and 	′

evaluations.

Definition 2.9. (φ-Evaluation Hiding). Let PCS=(KGen,Com,Eval,Check)
= (KGen,Com,Eval,Check)be a polynomial commitment scheme andPES = (Enc,
Dec) be a polynomial encoding scheme. We say PCS is φ-evaluation hiding with
respect to PES if for all PPT adversaries A = (A1,A2),

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ ∧ z ∈ D|z|
Enc

:

ck ← KGen(1λ,D); (w, z) ← A1(ck);
n := |w|; 	 := φ(|z|); d := n + 	;

ρw ←$F
�; b ←$ {0, 1};

f ← Enc(b · w, n, 	;ρw);
c ← Com(ck, f, d; ρc);

y := f(z);
π ← Eval(ck, c, d, z,y, f ; ρc);

b′ ← A2(c,y,π)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1
2
+ negl(λ)

where A1,A2 share the internal states, y := f(z) denotes setting yi := f(zi) for
all i ∈ [|z|], and π ← Eval(ck, c, d, z,y, f ; ρc) denotes setting πi ← Eval(ck, c, d,
zi, yi, f ; ρc) for all i ∈ [|z|].
Non-Extrapolation. We define a new property related to φ-evaluation hiding
of a PCS scheme with respect to a PES scheme. We require that, given a polyno-
mial commitment and 	′ > 0 evaluations and proofs for an encoding of all-zero
vector, no adversary can compute a valid proof for a new evaluation point. In
other words, it is hard for an adversary to extrapolate a new evaluation given
	′ evaluations even when the polynomial is fixed to be the encoding of all-zero
vector. Non-extrapolation naturally follows from evaluation hiding and binding
for many PCS plus PES schemes for the right choice of φ. We show this explicitly
for the KZG polynomial commitment scheme in Section 4.

Definition 2.10. (φ-Non-Extrapolation). Let PCS = (KGen,Com,Eval,
Check)= (KGen,Com,Eval,Check) be a polynomial commitment scheme and

Witness-Succinct Universally-Composable SNARKs 333

PES = (Enc,Dec) be a polynomial encoding scheme. We say PCS supports φ-
non-extrapolation with respect to PES if for all PPT adversaries A = (A1,A2),
and

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v = 1 ∧ z ∈ D|z|
Enc

∧ z∗ ∈ DEnc ∧ z∗ /∈ z
:

ck ← KGen(1λ,D); (n, z) ← A1(ck);
	 := φ(|z|); d := n + 	;

ρw ←$F
�;

f ← Enc(0n, n, 	;ρw);
c ← Com(ck, f, d; ρc);

y := f(z);
π ← Eval(ck, c, d, z,y, f ; ρc);

(z∗, y∗, π∗) ← A2(c,y,π);
v ← Check(ck, c, d, z∗, y∗, π∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(λ)

where A1 and A2 share the internal states, y := f(z), π are as before.

3 Succinctness-Preserving UC NIZK Compiler

In this section, we describe a generic, succinctness-preserving compiler that takes
as inputs: (1) a SIM-EXT NIZK proof system ΠR = (PGen,OSetup,P,V) for
the arithmetic circuit satisfiability relation R =

{
(C, w) : C(w) = 1

}
, and (2) a

PCS = (KGen,Com,Eval,Check) with suitable properties. The resulting protocol,
denoted by ΠUC-R, UC-realizes FNIZK in the (GRO,FSetup))-hybrid model, where
FSetup is described in Fig. 2.

Theorem 3.1. Let ΠR be a SIM-EXT NIZK proof system, for the arithmetic
circuit satisfiability relation R, with Oλ(1) size proofs. Let PCS be a polyno-
mial commitment scheme with Oλ(1) size commitments and evaluation proofs,
evaluation binding, unique proofs, φ-evaluation hiding, and φ-non-extrapolation
with respect to the encoding scheme PES = (Enc,Dec). Then, ΠUC-R described in
Fig. 4 UC-realizes FNIZK in the ((GRO,FSetup)))-hybrid model for relation R and
has proofs of size Oλ(1).

Proof. We prove the following properties.
Completeness. For a given commitment c and circuit C′, an honest prover fails
to generate a valid proof if, after trying at most T distinct evaluation points zi’s
∈ DEnc, it fails to find any preimage such that it hashes to 0b. As we will see, T
is required to be only polynomially big in λ and so the prover is guaranteed to
stop in polynomial time. For each iteration i, after fixing c, C′, zi, the values yi =
f(zi) and πi are derived uniquely. Thus, the honest prover fails in this iteration
only if for all the T number of evaluation points GRO(query, (sid, (C′, c, zi, yi, πi,
i)))
= 0b . The prover fails overall if it fails in at least one of the iterations. Let
the event of failing in iteration i be denoted by faili. For T = (λ + log(r)) · 2b,
the probability of the honest prover failing can be bounded as below.

334 C. Ganesh et al.

Protocol 1: ΠUC-R

The protocol ΠUC-R is parameterized by: security parameter λ, finite field F, evaluation domain DEnc

for PES, evaluation hiding expansion factor φ : Z+ → Z
+, number of parallel repetitions r = r(λ) > 0,

proof-of-work parameter b(λ) > 0, bound T (λ) > 0, and maximum degree bound D > 0 for PCS.
– Proof Upon receiving input (prove, sid, ssid, C, w), ignore if C(w) �= 1. Otherwise, Pi does:

1. Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).

2. Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).

3. Parse w = w ∈ F
n. Let � := φ(r) and d := n + �. If d > D, abort by outputting (proof, sid,

ssid, ⊥).

4. Generate a polynomial encoding of the witness vector: f ← Enc(w, n, �;ρw), where ρw ←$F
�.

5. Generate a commitment to the polynomial encoding: c ← Com(ck, f, d; ρc), where the random-
ness ρc is sampled uniformly from the domain specified in PCS.

6. Define the circuit C′ such that it outputs 1 on input w′ = (w, ρw, ρc) if and only if the following
conditions are met:

C(w) = 1 ∧ c = Com(ck, Enc(w, n, �;ρw), d; ρc)

7. Run ΠR.P on input pp, C′, and w′ to obtain a proof π′. Whenever P makes a call to OSetup

with input in, send (setup, sid, in) to receive a response (setup, sid, out) and forward out to P.

8. Initialize empty sets z, y, and πPCS.

9. For each iteration i ∈ [r] do:

(a) Initialize counter ctr := 0 and an empty set of used evaluation points Di.

(b) If ctr = T , abort by outputting (proof, sid, ssid, runout_eval).

(c) Sample an evaluation point: zi ←$ DEnc \Di. Update ctr := ctr+1. Update Di := Di ∪{zi}.

(d) Compute yi = f(zi) and evaluation proof πi ← Eval(ck, c, d, zi, yi, f ; ρc).

(e) Send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO. Upon receiving v from GRO, if the first b bits
of v are not 0b, go to step (b). Otherwise, store zi, yi, and πi in z, y, and πPCS, respectively.

10. Output (proof, sid, ssid, �), where � := (π′, c, z,y, πPCS).

– Verification Upon receiving input (verify, sid, ssid, C, �), Pi does:

1 Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).

2 Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).

3 Parse � = (π′, c, z,y, πPCS). Derive the witness size n from the description of C. Compute �
and d as Proof would and if d > D abort by outputting (verification, sid, ssid, 0).

4 Define the circuit C′ as Proof would.

5 Parse z = (zi)i∈[r], y = (yi)i∈[r], and πPCS = (πi)i∈[r].

6 Output (verification, sid, ssid, 1) if all of the following checks pass, otherwise output
(verification, sid, ssid, 0):

(a) ΠR.V on input pp, C′, and π′ outputs 1. Calls to OSetup by V are handled similar to the
above.

(b) For all i ∈ [r]: 1 = Check(ck, c, d, zi, yi, πi).

(c) For all i ∈ [r]: send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO, and the first b bits of the return
value vi are 0b .

Fig. 4. Protocol for UC-secure non-interactive proof in the (GRO, FSetup)-hybrid model.
ΠUC-R internally runs ΠR, PCS, and PES.

Witness-Succinct Universally-Composable SNARKs 335

Pr[fail] ≤
r∑

i=1

Pr[faili] = r ·
(
1 − 1

2b

)T

≈ elog(r) · 1
e(λ+log(r))

≤ 2−λ

Thus, an honest prover manages to find a preimage of 0b in polynomial time
except with probability 2−λ. We also remark that the completeness error
increases only additively even if the underlying proof system ΠR is statistically
complete.7 We defer the analysis in this case to the full version.
Simulation. We begin by sketching the overall simulation strategy. First, con-
sider simulation for an uncorrupted prover. We simulate the behaviors of FSetup

and π′ component of real-world proofs produced by honest provers using the
underlying NIZK simulator ΠR.S. After the first r queries to GRO are pro-
grammed to be 0b, commitments to witness-encoding polynomials are replaced
with simulated commitments to randomized polynomials encoding a dummy
witness (i.e., 0-vector). This transition is justified by the evaluation hiding prop-
erty (Definition 2.9). Then we stop programming the GRO responses in the next
hybrid. At this stage, simulation of uncorrupted provers is essentially done.

Next, we describe simulation for an uncorrupted verifier. The requirement here
is to extract a witness from whatever (C̃, �̃ = (π̃′, c̃, z̃, ỹ, π̃PCS)) submitted by
uncorrupted verifiers unless they have been created during the simulation of uncor-
rupted provers. Here, we first rule out the case where at least one of (z̃, ỹ, π̃PCS)
differs from previously simulated (z,y,πPCS) for the same statement C̃ and c̃. This
can be shown by constructing a reduction to evaluation binding, evaluation hid-
ing, or unique proof. Finally, the extraction algorithm interpolates the witness-
encoding polynomial f for c̃ by observing GRO queries and decodes f to a candi-
datewitnessw = w ∈ F

n. The analysis concludes by bounding the probability that
extracted w is invalid as follows. We run a non-black-box SIM-EXT extractor EZ of
the underlying proof system against successful Z on statement the extended circuit
C̃′, and proof π̃′ to obtain another candidate witness w′ = (w∗,ρw, ρc). This fails
in the case that π̃′ is a previously simulated proof. However, we rule this case out by
relying on non-extrapolation property. Given this, the event C̃′(w′) = 0 happens
only with negligible probability thanks to the simulation-extractability property.
Hence, assuming C̃′(w′) = 1, it also holds that C̃(w∗) = 1 by the definition of
C̃′. Then we show that w = w∗. Otherwise, one can construct another witness-
encoding polynomial f∗
= f that “explains” the same commitment c̃, breaking
evaluation binding. With this we conclude that the extracted witness w is a valid
witness as w = w∗ and C̃(w∗) = 1.

The above proof sketch describes simulation strategy for a single prover and
verifier. In the formal proof, this is extended to incorporate multiple uncorrupted
provers and verifiers in a session.

Let us turn to formal proof. Complete simulation algorithm is given in Fig. 5.
The environment Z starts a session by initializing a certain number of parties and
adversary A. In a particular session sid, the environment Z instructs the parties
with two commands: prove and verify. The real world behavior is as follows.
7 We thank an anonymous reviewer for bringing this observation to our attension.

336 C. Ganesh et al.

An honest party Pi on input (prove, sid, ssid, C, w) from Z executes the honest
prover’s algorithm in ΠUC-R to generate the proof. And on receiving (verify,
sid, ssid, C,�), it verifies by running the honest verifier’s algorithm. In the ideal
world, the honest parties forward their inputs to the functionality FNIZK. The
corrupt parties’ behavior is controlled by A in both the worlds. Within a session
sid, we assume that Z issues s1 queries of the type (prove, sid, ssid, C, w) meant
for an honest party, and s2 of the type (verify, sid, ssid, C,�) for either honest
or corrupt party. Let s = s1 + s2. Proofs for indistinguishability of hybrids are
deferred to the full version [43].

– Hyb0 : This is the real world.

– Hyb1: Replace all the honest parties with a single party B. This party is
responsible for simulating the view of the adversary and the environment
for the rest of the protocol. In particular, B acts on behalf of the honest
parties and does exactly what an honest party would do in the real world. In
addition, it intercepts the GRO queries made by any corrupt party Pi within
the session, forwards it the GRO and relays the response back to Pi. Similarly,
it intercepts all FSetup queries made by Pi in the session and relays it back
and forth between FSetup and Pi.

– Hyb2: Instead of forwarding Pi’s calls to FSetup functionality, B answers them
by executing steps in Simulation of FSetup in Sim. The rest of the execution
remains the same as before, i.e., the B executes on behalf of the honest parties
by executing the honest algorithm.

– For j ∈ [s1], Hyb2+j : For the j-th prove command with input (C, w) for an
honest party Pi from Z, replace honest prover’s algorithm with Step 1.-7. in
Simulation of uncorrupted prover (in Sim) for input C.

– For j ∈ [s2], Hyb2+s1+j : For the j-th verify command with input (C,�) for
an honest party Pi from Z, replace honest verifier’s algorithm with Step 1-12
in Simulation of uncorrupted verifier (in Sim). We assume that all the
verify commands are made only by the honest parties. This is without loss
of generality as any query that a corrupt party wants to make can instead be
routed through an honest party via the environment.

– Hyb3+s: This is the ideal world execution. Replace B with Sim, where the steps
in Sim are executed for each (prove, sid, ssid, C, w), and (verify, sid, ssid, C,
�) command (as explained in the above hybrids), and sends corresponding
(proof, sid, ssid,Pi,�) and (witness, sid, ssid,Pi, w) to FNIZK.

Succinctness. From completeness and simulation analysis we obtain the follow-
ing constraints for parameters r, b, T : T = (λ+log(r)) · 2b and λ = r(b− log(d)).
Consider the simple parameter choice r = λ. This gives, b = log(d) + 1 and T =
2d(λ+log(λ)). More generally, the parameter choices, r = O (λ/ log(λ)) = Oλ(1),
b = O (log(d) + log(λ)) = Oλ(log(d)), and T = O ((λ + log(λ/ log(λ)))λd) =
Oλ(d) satisfies the conditions.
Assume that PCS produces constant size (Oλ(1)) commitments and evaluation
proofs, and ΠR produces Oλ(1) size proofs. Later in Sect. 4 we discuss candidate

Witness-Succinct Universally-Composable SNARKs 337

schemes satisfying these constraints. The total size of the proof � is one com-
mitment c of size Oλ(1), vectors z,y consisting of r field elements, r evaluation
proofs πi of size Oλ(1), and one NIZK proof π′ for statement C′. Recall that C′ is
composed of C and the circuit that describes the Com and Enc operations. Thus,
C′ is only O (poly(λ, n)) bigger than C, where n is the witness size. Since ΠR
produces constant size proofs, proof for C′ is also of size Oλ(1). Finally, since,
r = Oλ(1), the size of � remains Oλ(1).

Remark 3.2. Here, r is independent of the degree of the polynomial. The proof
size only grows with the number of repetitions and thus remains independent
of the degree, assuming constant size PCS and NIZK ΠR proofs. However, the
prover’s computational effort increases with the increase in degree d.

4 Instantiating Our Compiler

In this section, we discuss a few candidates for PCS, PES and NIZK schemes for
instantiating our compiler.

4.1 A Candidate PCS and PES Scheme

We show that using KZG commitments [57] as the PCS scheme along with Coef-
ficient (PES1) or Lagrange (PES2) encoding scheme (§ 2.3) satisfies all necessary
conditions required to instantiate our compiler, i.e., it is succinct, has evaluation
binding, has unique proofs, is evaluation hiding, and has non-extrapolation.

We describe the polynomial commitment scheme PCSKZG = (KGen,Com,
Eval,Check). The formalization below follows the deterministic scheme of [33,
§C.2] supporting multiple degree bounds up to the maximum degree D. Note
that if d = D, one can skip computing/checking ĉ, π̂, and ŷ.
– KGen(1λ,D): Generate the parameters of a bilinear group G = (G1,G2,GT ,

q, g, h, e) where |G1| = |G2| = |GT | = q is prime, 〈g〉 = G1, 〈h〉 = G2, and
e : G1 ×G2 → GT is an efficiently computable, non-degenerate bilinear map.
The group order q also determines F := Fq and a set of supported polynomials
F<D[X]. Sample α ∈ F uniformly, and compute σ = (g, gα, . . . , gαD−1

, h, hα).
Output ck = (G, σ).

– Com(ck, f, d): On input ck, a polynomial f ∈ F<d[X], and a degree bound d ≤
D, compute a shifted polynomial f̂ = XD−d · f , and generate a commitment
as c = (gf(α), gf̂(α)) and output c.

– Eval(ck, c, d, z, f(z), f): Compute ω(X) = (f(X)−f(z))/(X −z) and ω̂(X) =
(f̂(X) − f̂(z))/(X − z) where f̂ is computed as above. Output π = (gω(α),

gω̂(α), f̂(z)).

– Check(ck, c, d, z, y,π): Parse c = (c, ĉ) and π = (π, π̂, ŷ). Accept if and only
if e(c/gy, h) = e(π, hα/hz), e(ĉ/gŷ, h) = e(π̂, hα/hz), and ŷ = zD−d · y.
The security of PCSKZG relies on the SDH assumption [18].

338 C. Ganesh et al.

Simulator: Sim

Sim is parameterized by λ,F, DEnc, φ, T, r, b, D and has access to the global functionality GRO as ΠUC-R does. It simulates
real prover’s proof for arbitrary (C, w) ∈ R, extracts a witness from a valid proof (C, �) chosen by the environment (as
long as it hasn’t been recorded by FNIZK), and simulates the local setup functionality FSetup. It internally keeps track of
the state information st of the underlying NIZK simulator ΠR.S, which is initially set to ε.
– Initialization follows [50]: We use the notation P̃i for a dummy party in the ideal process, which simply forwards

inputs and outputs between the environment Z and the ideal functionality FNIZK, and Pi for a simulated party.
Sim starts by invoking a copy of a PPT adversary A. It will run a simulated interaction of A, the parties, and the
environment. In particular, whenever A communicates with Z, Sim just passes this information along. And whenever
A corrupts a party Pi, Sim corrupts the corresponding dummy party P̃i.

– Simulation of FSetup

• Parameters Upon receiving input (genparams, sid) from a party Pi, if no pp has been stored, run pp ←
PGen(1λ), let st := pp, and store pp. Send (params, sid, pp) to Pi.

• Commitment Key This is identical to FSetup.

• Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if st has never been initialized with pp.
Otherwise run (out, st) ← ΠR.S(1, st, in) using the current state and send (setup, sid, out) to Pi.

– Handling GRO queries

1. Initialize empty set Qro.

2. Upon receiving input (query, x) from a party Pi, forward it to the GRO and forward the response v back to Pi.

3. Record x in Qro.

– Simulation of uncorrupted prover Upon receiving input (prove, sid, C) from FNIZK:

1. Derive the witness size n from the description of C. Compute � and d as Proof of ΠUC-R would and if d > D

abort by outputting (proof, ⊥).

2. Generate a polynomial encoding of dummy witness: f ← Enc(0n, n, �; ρw), where ρw ←$F�.

3. Generate a commitment to the polynomial encoding as Proof of ΠUC-R would: c ← Com(ck, f, d; ρc).

4. Define the circuit C′ as Proof of ΠUC-R would.

5. Run ΠR.S(2, st, C′) to obtain a proof-state pair (π′, st).

6. Create z, y, and πPCS as Proof of ΠUC-R would.

7. Send (proof, �) to FNIZK, where � := (π′, c, z,y, πPCS)

– Simulation of uncorrupted verifier Upon receiving input (verify, sid, C, �) from FNIZK:

1 Perform verification checks similar to Verification of ΠUC-R, but use pp and ck generated during the simulation
of FSetup. Calls to OSetup made by ΠR.V are handled by running (out, st) ← ΠR.S(1, st, in) and forwarding out to
V. If invalid, send (witness, ⊥1) to FNIZK. This will eventually cause FNIZK to output (verification, sid, ssid, 0)

to a dummy party P̃i.

2 Parse proof � as (π′, c, z,y, πPCS).

3 Query GRO on (observe, sid) and receive the set of illegitimate queries Q|sid.

4 Update Qro = Qro ∪ Q|sid.

5 Define circuit C′ as Verification of ΠUC-R would.

6 Define Qc as the set of queries in Qro of the form (query, (sid, (C′, c, ·, ·, ·, ·))) such that evaluation proof is valid.
If there are more than one queries with the same evaluation point z then, irrespective of the iteration i, include
only the very first such query in Qc.

7 In the set Qc, if for the same (c, z), there exists (y, π) and (y′, π′) such that y �= y′ or π �= π′, then set w := ⊥2

and go to 12.

8 If (C′, π′) was previously generated by ΠR.S then set w := ⊥3 and go to 12.

9 If |Qc| < d then set w := ⊥4 and go to 12.

10 Otherwise, parse Qc as tuples {(C′, c, zj , yj , πj , ij)}, where each zj is distinct. Collect polynomial evaluations
(zj , yj) and interpolate the polynomial f of degree d − 1 such that for j ∈ [d], yj = f(zj).

11 If (C, Dec(f)) /∈ R set w := ⊥5; Else, set w := Dec(f).

12 Send (witness, w) to FNIZK.

Fig. 5. Simulator for ΠUC-R.

Witness-Succinct Universally-Composable SNARKs 339

Definition 4.1. (SDH Assumption). The strong Diffie-Hellman assumption
(SDH) holds with respect to a bilinear group generator BGen if for all PPT
adversaries A and degree bound D > 0,

Pr
[

t = g
1

α+c : G ← BGen(1λ); α ←$F; σ := ({gαi}D−1
i=0 , hα); (t, c) ← A(G, σ)

]
≤ negl(λ)

Lemma 4.2. PCSKZG is perfectly unique (Definition 2.7), computationally eval-
uation binding under the SDH assumption, perfectly φ-evaluation hiding (Defini-
tion 2.9), and computationally φ-non-extrapolation (Definition 2.10) with respect
to any polynomial encoding scheme PES with bounded independence (Definition
2.8), where φ(r) := r + 1.

Proof. Unique Proof. We prove there exists unique π = (π, π̂, ŷ) for a fixed c =
(c, ĉ), d, z, and y. Due to the pairing equation, a valid π is uniquely determined
by (c/gy)

1
α−z . The same holds for π̂. Finally, a valid ŷ is uniquely determined

by zD−dy.
Evaluation Binding. Suppose the adversary outputs c = (c, ĉ), d, z, y, y′
= y,
π = (π, π̂, ŷ),π = (π′, π̂′, ŷ′) such that both proofs verify. If gz = gα, then SDH
is broken with solution (g1/z, 0). Otherwise, we have (π/π′)

1
y′−y = g

1
α−z thanks

to the pairing equation and thus SDH is broken with solution ((π/π′)
1

y′−y ,−z).8

Evaluation Hiding. Let r = |z| be the number of evaluations requested by the
adversary. Due to the bounded independence of PES, any set of φ(r) = r + 1
evaluations of encoded polynomial f in DEnc are independently and uniformly
distributed in F. The commitment c = (c, ĉ) leaks at most a single evaluation
f(α). For i ∈ [r], each proof (πi, π̂i, ŷi) leaks at most f(α) and f(zi). Overall,
the adversary observes at most r + 1 evaluations of f , whose distribution is
independent and uniform in F.
Non-Extrapolation. For KZG polynomial commitment scheme used with PES,
φ(r) := r + 1. We show the following hybrids to prove non-extrapolation.
1. Hyb0: The same as the game defined in Definition 2.10, i.e., an all-zero vector

of length n is encoded as a polynomial and the adversary A = (A1,A2) is
provided with up to r distinct evaluations plus proofs.

2. Hyb1: The challenger’s code is changed as: Instead of encoding an all-0 vector,
sample d random evaluations yi ←$F. Recall, degree of the encoded polyno-
mial is denoted by d−1. Let |z|u denote the number of distinct values in z. Let
r′ := |z|u and n′ := d− r′. Note that, when there are no repeat elements in z,
r = r′. Sample n′ evaluation points from Dn′

Enc and interpolate the polynomial
f defined by d points (zi, yi), where the first r′ zi’s are from A1, and the
rest are sampled by the challenger. Computing commitments and evaluation
proofs is same as before.

8 Since the reduction only relies on the first component of the proof the scheme even
satisfies a slightly stronger variant of evaluation binding where the adversary gets to
choose distinct degree bounds for different evaluation proofs.

340 C. Ganesh et al.

This hybrid remains indistinguishable from the previous one because of φ-
evaluation hiding of the PCS scheme. In particular, up to r + 1 distinct eval-
uations and proofs do not reveal anything about the underlying committed
polynomial. For i ∈ [r], each proof leaks at most one evaluation f(zi) and
f(α). Thus, overall the adversary learns at most r + 1 distinct evaluations
only.
Now, after the execution of Hyb1, A2 outputs a valid evaluation proof for a
new point (z∗, y∗, π∗). Let ỹ = f(z∗). Since, the committed polynomial f is
random and has degree d − 1 = n + r, and A learns at most r + 1, there
is at least one degree of freedom corresponding to which the evaluation of f
is uniformly distributed in F. This implies that the probability of y∗ = ỹ is
1/|F|, which is negligible. In case, y∗
= ỹ, the challenger obtains two different
evaluations and valid proof for the same point which contradicts evaluation
binding for the PCS scheme. Thus, A wins only with negligible probability.

4.2 Candidate NIZK Schemes

Our compiler lifts any simulation extractable SNARK (SE-SNARK) to a UC
NIZK. Plugging in any SE-SNARK therefore yields a UC NIZK under the same
assumptions. However, the security analyses of many SNARKs in the literature
are in idealized models like the Generic Group Model (GGM) or Algebraic Group
Model (AGM) [40], and such analyses do not provide any guarantees outside of
those models. As we wish to prove composition with respect to any environment
(not just algebraic ones, for instance), the most meaningful candidates to plug
into our compiler are those that provide guarantees about any adversary, even
by making use of (non-black-box) knowledge assumptions.
Immediately Compatible SE-SNARKs. Groth and Maller [53] construct
an SE-SNARK from a knowledge assumption that they formulate, called the
eXtended Power Knowledge of Exponent (XPKE) assumption. Lipmaa [64]
presents SE-SNARKs under ‘hash-algebraic’ knowledge assumptions. Abdol-
maleki et al. [2] show how to lift any zk-SNARK to an SE-SNARK (with
non-black-box extraction), and present a concrete instantiation based on the
zk-SNARK of Groth et al. [52], which in turn relies on knowledge assumptions
that they introduce. One could of course apply Abdolmaleki et al.’s approach
to any Oλ(1)-sized zk-SNARK to obtain a Oλ(1)-sized SE-SNARK under the
same knowledge assumptions. All of these SE-SNARKs are Oλ(1)-sized and can
be plugged into our compiler to obtain Oλ(1)-sized UC NIZKs with provably
secure composition with respect to any environment, under the same knowledge
assumptions.
Future Work: Alternative Instantiations. While we have been focused on
obtaining Oλ(1)-sized UC NIZKs in this paper, our compiler can be more widely
applicable. In general, given a NIZK that produces proofs of size Oλ(f(|C|+|w|))
and a polynomial commitment scheme that produces evaluation proofs of size
Oλ(g(|w|)) for some functions f, g, our compiler produces a UC NIZK (in the
ROM) where the proofs are of size Oλ(f(|C| + |w|) + g(|w|)), under the same

Witness-Succinct Universally-Composable SNARKs 341

setup and knowledge assumptions as the NIZK and polynomial commitment.
With the right input SNARKs, we can obtain witness-succinct UC NIZKs that
have benefits orthogonal to Oλ(1)-sized proofs. Consider the following:
– A ‘transparent’ input SNARK—one that does not require a structured com-

mon reference string—would result in a transparent UC NIZK with the same
succinctness upon applying our compiler. For instance, the recent work of
Arun et al. [4] gives such a constant sized transparent SNARK using class
groups, however their analysis is in the generic group model, and simulation
extractability of their construction has yet to be analyzed.

– If one were to plug in a SNARK that does not require non-black-box
knowledge assumptions, we would obtain a UC NIZK that does not either.
For instance, plugging in Bulletproofs [22] into our compiler with a trans-
parent polynomial commitment scheme (in the ROM) would result in a
Oλ(log(|C| + |w|)) sized transparent UC NIZK in the ROM alone, that does
not rely on any knowledge assumptions, and only assumes the hardness of
computing discrete logarithms. One hurdle to overcome for such an instanti-
ation is that while Bulletproofs are known to be simulation extractable in the
AGM [44], there is at present no such analysis in the random oracle model
alone (to our knowledge).
The scope of this paper is limited to the design and analysis of our general

compiler, and so we leave such custom instantiations to future work.

References

1. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries in
the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part III. LNCS, vol. 13092, pp. 311–341. Springer, Heidelberg,
December 2021. https://doi.org/10.1007/978-3-030-92078-4_11

2. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1987–2005. ACM Press, November
2020. https://doi.org/10.1145/3372297.3417228

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, Oct/Nov
2017. https://doi.org/10.1145/3133956.3134104

4. Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: transparent
constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022).
https://eprint.iacr.org/2022/419

5. Atapoor, S., Baghery, K.: Simulation extractability in groth’s zk-SNARK. Cryp-
tology ePrint Archive, Report 2019/641 (2019). https://eprint.iacr.org/2019/641

6. Baghery, K.: Subversion-resistant simulation (Knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1_3

7. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction
and randomization of Groth’s zk-SNARK. In: Borisov, N., Diaz, C. (eds.) FC 2021.

https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2019/641
https://doi.org/10.1007/978-3-030-35199-1_3

342 C. Ganesh et al.

LNCS, vol. 12674, pp. 457–475. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-662-64322-8_22

8. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of groth’s
zk-SNARK revisited. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020.
LNCS, vol. 12579, pp. 453–461. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65411-5_22

9. Baghery, K., Sedaghat, M.: Tiramisu: black-box simulation extractable NIZKs
in the updatable CRS model. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. LNCS, vol. 13099, pp. 531–551. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92548-2_28

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993. https://doi.org/
10.1145/168588.168596

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046 (2018). https://eprint.iacr.org/2018/046

12. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

13. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part II. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49099-0_2

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent Succinct Arguments for R1CS. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2_4

15. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

16. Blum, M., Feldman, P., Micali, S.: Proving security against chosen ciphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_20

17. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991) https://doi.org/10.1137/0220068

18. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3_14

19. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

20. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in the ran-
dom oracle model. Cryptology ePrint Archive, Paper 2018/187 (2018). https://
eprint.iacr.org/2018/187

21. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: Zohar, A., Eyal, I., Teague, V.,
Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018. LNCS, vol. 10958,

https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1137/0220068
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187

Witness-Succinct Universally-Composable SNARKs 343

pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-
8_5

22. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

23. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2_1

24. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_25

25. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9_11

26. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4_1

27. Campanelli, M., Ganesh, C., Khoshakhlagh, H., Siim, J.: Impossibilities in succinct
arguments: Black-box extraction and more. Cryptology ePrint Archive, Report
2022/638 (2022). https://eprint.iacr.org/2022/638

28. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001. https://doi.org/10.1109/SFCS.2001.959888

29. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

30. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 597–608. ACM
Press, November 2014. https://doi.org/10.1145/2660267.2660374

31. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002. https://doi.org/10.1145/509907.509980

32. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. Cryptology ePrint
Archive, Report 2020/1212 (2020). https://eprint.iacr.org/2020/1212

33. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1_26

34. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1_27

35. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://eprint.iacr.org/2022/638
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/509907.509980
https://eprint.iacr.org/2020/1212
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/3-540-44647-8_33

344 C. Ganesh et al.

36. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-
ments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85174-5_29

37. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991. https://doi.org/10.
1145/103418.103474

38. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7_5

39. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10

40. Fuchsbauer, G., Kiltz, E., Loss, J.: The Algebraic Group Model and its Appli-
cations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0_2

41. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

42. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes fiat-shamir zksnarks (updatable SRS) simulation extractable? In: Galdi, C.,
Jarecki, S. (eds.) SCN 2022. Lecture Notes in Computer Science, vol. 13409, pp.
735–760. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3_32

43. Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.:
Witness-succinct universally-composable snarks. Cryptology ePrint Archive, Paper
2022/1618 (2022). https://eprint.iacr.org/2022/1618

44. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp.
397–426. Springer, Heidelberg, May/June 2022. https://doi.org/10.1007/978-3-
031-07085-3_14

45. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). Cryptology ePrint
Archive, Paper 2023/147 (2023). https://eprint.iacr.org/2023/147

46. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols
Using Signatures. J. Cryptology 19(2), 169–209 (2005). https://doi.org/10.1007/
s00145-005-0307-3

47. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

48. Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

49. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complexity 11(1), 1–53 (2002)

50. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/103418.103474
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-031-14791-3_32
https://eprint.iacr.org/2022/1618
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://eprint.iacr.org/2023/147
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/11935230_29

Witness-Succinct Universally-Composable SNARKs 345

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

52. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

53. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0_20

54. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679_21

55. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/2220357.
2220358

56. Jain, A., Pandey, O.: Non-malleable zero knowledge: black-box constructions and
definitional relationships. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 435–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7_25

57. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

58. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part II. LNCS, vol. 12826, pp. 580–610. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84245-1_20

59. Kattis, A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019).
https://eprint.iacr.org/2019/1400

60. Kerber, T., Kiayias, A., Kohlweiss, M.: Composition with knowledge assumptions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
364–393. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_13

61. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

62. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. Cryptology ePrint Archive, Report
2022/393 (2022). https://eprint.iacr.org/2022/393

63. Kosba, A., et al.: C∅c∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015), https://eprint.iacr.
org/2015/1093

64. Lipmaa, H.: Simulation-extractable SNARKs revisited. Cryptology ePrint Archive,
Report 2019/612 (2019). https://eprint.iacr.org/2019/612

65. Lysyanskaya, A., Rosenbloom, L.N.: Efficient and universally composable non-
interactive zero-knowledge proofs of knowledge with security against adaptive cor-
ruptions. Cryptology ePrint Archive, Paper 2022/1484 (2022). https://eprint.iacr.
org/2022/1484

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-3-030-84245-1_20
https://eprint.iacr.org/2019/1400
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2022/393
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/1484

346 C. Ganesh et al.

66. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the
global random-oracle model. Cryptology ePrint Archive, Report 2022/290 (2022).
https://eprint.iacr.org/2022/290

67. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press, November 2019. https://doi.org/10.1145/3319535.3339817

68. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9_3

69. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000) https://doi.org/10.1137/S0097539795284959

70. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press, May 2013. https://doi.org/10.1109/SP.2013.47

71. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

72. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 533–
542. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060670

73. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999. https://doi.org/10.1109/SFFCS.1999.814628

74. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_25

https://eprint.iacr.org/2022/290
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25

Speed-Stacking: Fast Sublinear
Zero-Knowledge Proofs for Disjunctions

Aarushi Goel1, Mathias Hall-Andersen2(B), Gabriel Kaptchuk3,
and Nicholas Spooner4

1 NTT Research, Tokyo, Japan
aarushi.goel@ntt-research.com

2 Aarhus University, Aarhus, Denmark
ma@cs.au.dk

3 Boston University, Boston, USA
kaptchuk@bu.edu

4 University of Warwick, Coventry, UK

Nicholas.Spooner@warwick.ac.uk

Abstract. Building on recent compilers for efficient disjunctive compo-
sition (e.g. an OR of multiple clauses) of zero-knowledge proofs (e.g. Goel
et al. [EUROCRYPT’22]) we propose a new compiler that, when applied
to sublinear-sized proofs, can result in sublinear-size disjunctive zero-
knowledge with sublinear proving times (without meaningfully increas-
ing proof sizes). Our key observation is that simulation in sublinear-size
zero-knowledge proof systems can be much faster (both concretely and
asymptotically) than the honest prover. We study applying our compiler
to two classes of O(log n)-round protocols: interactive oracle proofs, specif-
ically Aurora [EUROCRYPT’19] and Fractal [EUROCRYPT’20], and
folding arguments, specifically Compressed Σ-protocols [CR-YPTO’20,
CRYPTO’21] and Bulletproofs [S&P’18]. This study validates that the
compiler can lead to significant savings. For example, applying our com-
piler to Fractal enables us to prove a disjunction of � clauses, each of size N ,
with only O((N +�) ·polylog(N)) computation, versus O(�N ·polylog(N))
when proving the disjunction directly. We also find that our compiler offers
a new lens through which to understand zero-knowledge proofs, evidenced
by multiple examples of protocols with the same “standalone” complexity
that each behave very differently when stacked.

1 Introduction

Zero-knowledge proofs and arguments [30] allow a prover to convince the verifier
of the validity of an NP statement without revealing anything beyond the validity
itself. Early results established that such protocols exist for all NP languages [29],
and recent work has proposed zero-knowledge proofs that are more practically
efficient [10,12,19,31,34,36,37]. Many of these efficient zero-knowledge proofs
are now being used in practice [9,23,48], and zero-knowledge proofs have become
a critical component of constructing larger cryptographic systems.

Disjunctive Zero-Knowledge. A disjunctive statement is an NP statement
consisting of a logical OR of a set of clauses. We refer to zero-knowledge proofs
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 347–378, 2023.
https://doi.org/10.1007/978-3-031-30617-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_12

348 A. Goel et al.

optimized for disjunctive statements as “disjunctive zero-knowledge”. Disjunc-
tive zero-knowledge is central to privacy-preserving systems where revealing
which clause a prover has a witness for might reveal their identity. Disjunc-
tive zero-knowledge has received a great deal of attention [1,22,24] and recently
there has been renewed interest in optimizing cryptographic protocols for dis-
junctions, both in the context of zero-knowledge [4,7,21,26,32,34,41] and secure
multiparty computation [27,33,35].

The simplest approach to disjunctive zero-knowledge is to appeal to NP-
completeness: a disjunction of NP statements is itself an NP statement which
can be proved using a proof system for NP. In practice, however, this has two
key drawbacks: first, the individual clauses may be of a special form that admits
efficient zero-knowledge proofs (e.g. a discrete-log relation) but that structure
can not be preserved under disjunction. Second, even if the clauses are general
circuits, if the clauses are distinct then the resulting circuit is as large as the
sum of the size of individual clauses. As a result, the complexity of the proof
system grows at least linearly in the number of clauses.

In light of this, one alternative approach that has been explored in the liter-
ature is to manually modify specific zero-knowledge protocols directly [4,32,34]
such that they naturally support disjunctive statements. Excitingly, recent work
has shown that manual modification can result in protocols with communication
sub-linear in the number of clauses [4,34]. However, such approaches rely strongly
on the structure of individual protocols and do not necessarily generalize.

A more robust approach is to build disjunctive compilers [1,7,22,26], generic
approaches that automatically transform large classes of zero-knowledge proto-
cols into disjunctive zero-knowledge protocols. The seminal work in this area
is [22], which proposed an approach that compiled Σ-protocols for disjunctions
by having the prover simulate the clauses for which it did not have a witness.
More recently, Baum et al. [7] and Goel et al. [26] built upon this idea to com-
pile large classes of zero-knowledge protocols into disjunctive zero-knowledge
protocols with communication complexity sub-linear in the number of clauses.

Succinct Proofs. A proof system is succinct if its communication cost is poly-
logarithmic in the size of the computation being proven. Succinct zero-knowledge
proofs are the subject of a long and active line of research ([11,12,17,25,31,39]
and many others) and in recent years have become efficient enough to use in prac-
tice. Many such proof systems support some expressive NP-complete problem,
e.g. arithmetic circuit satisfiability. This raises a natural suggestion: to prove a
disjunctive statement, one could simply construct a circuit for the disjunction
and employ a succinct proof system. The size of the resulting proof would be
only slightly larger than a proof for a single clause.

The main caveat is that, while the proof size is essentially unaffected, the
time and space complexities of the prover increase by at least a multiplicative
factor of the number of distinct clauses, compared to the cost of proving a single
clause. Since succinct proof systems typically have quite high prover complexity,
avoiding this increase would result in significant savings.

Stacking Succinct Proofs. In our work, we explore how we can apply the frame-
works developed in recent research on minimizing the communication complexity

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 349

of disjunctive zero-knowledge (specifically [26]) to achieve succinct proofs for dis-
junctions which avoid this multiplicative blowup in the prover computation time.

At the heart of our approach is the observation that succinct proof systems
often have faster simulators than provers. Intuitively, this is because the cost
of “cheating” the verifier in a zero-knowledge protocol generally scales with the
verifier’s running time, rather than the prover’s. Thus, following the approach of
Cramer, Damg̊ard and Schoenmakers, [22], the prover in a succinct proof system
can run the (more efficient) simulator for the inactive clauses instead of the (less
efficient) prover algorithm.

Taken together, we obtain succinct proof systems that can prove disjunctions
without incurring a multiplicative increase in prover complexity in the number
of clauses. We also show that in some cases, we can also avoid a similar increase
in the verifier’s complexity using batching techniques.

Set Membership vs. True Disjunctions. There is an important case in which
appealing to NP completeness is concretely efficient: specifically, if (1) the zero-
knowledge protocol supports an expressive NP-complete language, and (2) there
is a high degree of homogeneity between the clauses. If a prover wants to prove
e.g. x1 ∈ L ∨ . . . ∨ x� ∈ L, it can do so efficiently by proving the statement
“∃(i,x), st.x ∈ L ∧ x = xi (so the choice of branch is part of the NP witness).
The size of this circuit is only slightly larger than the circuit for L itself. We
refer to such statements as set membership statements.

Our results are most significant in the case of what we call true disjunctions,
i.e., where the prover wants to prove e.g. x1 ∈ L1 ∨ . . . ∨ x� ∈ L� making the
above transformation more expensive. In addition to being a more technically
challenging statement structure, true disjunctions are also important for many
applications. For example, Heath and Kolesnikov studied showing the existence
of a bug in a code base [34] in zero-knowledge, which implicitly embeds a true
disjunction. It is easy to imagine many other such applications: a prover could
want to demonstrate that a image is the product of applying one of a number
of sanctioned image modification algorithms (eg. blur, red eye, etc. . .) to some
committed photograph, or a financial institution might want to demonstrate that
a transaction satisfies one of a number of policies that would make it compliant.

1.1 Our Contributions

Framework for Prover-Efficient Succinct Disjunctive Zero-Knowledge.
We present a framework, which we refer to as speed stacking, for composing suc-
cinct proofs for disjunctions that often yield significant improvements in prover
time. We do this by extending the notion of a “stackable” Σ-protocol, introduced
by Goel et al. [26], to a more general notion of a “stackable” interactive proto-
col. At a high level, a protocol is stackable if it has a zero-knowledge simulator
which can be decomposed into a randomized, statement-independent part Srand,
and a deterministic part Sdet that completes the work of Srand for some specific
statement. We then show how to compile a stackable zero-knowledge interactive
protocol (ZK-IP) into a disjunctive zero-knowledge interactive protocol. Specif-
ically, we prove the following theorem:

350 A. Goel et al.

Theorem 1 (Informal). Let Π be a “stackable” zero-knowledge interactive
protocol for a NP relation R with associated simulator S. Then, there exists a
zero-knowledge interactive protocol Π ′ for the NP relation R′((x1, . . . ,x�),w) :=
∃i,Ri(xi,w) = 1 with communication complexity proportional to C(Π) +
O(log(�)) and prover computational complexity Time(Π) + (� − 1) · Time(S).

This theorem covers true disjunctions when R is sufficiently expressive, e.g.

R = circuit-SAT : R′(((C1,x1), . . . , (C�,x�)),w) = ∃i, Ci(xi,w) = 1.

Note that while the above is a “universal” relation, our approach does not make
use of universal circuits. As we discuss in the technical overview, while univer-
sal circuits are conceptually elegant (and sometimes achieve good asymptotic
efficiency), the associated overhead makes them impractical.

Next, we study the speed-stackability of two protocols from each of two fam-
ilies of sublinear-sized zero-knowledge proof systems: interactive oracle proofs
and folding arguments. Interestingly, we find that the concrete savings offered
by each of the four protocols we consider differ dramatically, offering anything
from significant, asymptotic speed-ups to concrete savings without asymptotic
gains to minimal speedups. In addition to the new protocols we design, these
results offer a new lens through which to study zero-knowledge proofs.

Speed Stacking Interactive Oracle Proofs. We adapt our stackability
framework to interactive oracle proofs (IOPs) [11], a generalization of interac-
tive proofs that underlies various efficient succinct argument constructions. We
show how to adapt the [11,20] transformations to convert stackable IOPs (resp.
holographic IOPs) into stackable succinct arguments (resp. with preprocessing).

We then consider the stackability of two existing IOP protocols for the rank-
one constraint satisfaction (R1CS) language. Let � be the number of clauses and
N be the maximum circuit size of a clause.

– Aurora [10] can be easily seen to be efficiently stackable by carefully exam-
ining the zero-knowledge simulator. By applying our compiler, we obtain a
stackable succinct argument where the prover runs in time OF(N(log N +
� log2 λ log log λ)). By comparison, the cost of directly proving a disjunction
using Aurora is OF(�N log(�N)).1

– Fractal [20] is not itself efficiently stackable: the verifier runs in polylog-
arithmic time after preprocessing, whereas any simulator for the original
Fractal protocol involves a linear-time statement-dependent computation.
To address this, we modify Fractal into a protocol we call Stactal, a stack-
able IOP for R1CS with polylogarithmic simulation. By applying our com-
piler, we obtain a stackable succinct argument where the prover runs in time
OF(N log N +� ·polylog(N)). In particular, proving a disjunction on � clauses
for � � N is asymptotically as efficient as proving a single clause.

Speed Stacking Folding Arguments. Finally, we show how to apply our
framework to “folding arguments” [3–5,17,19]. This class of protocols, best repre-
sented by Compressed Σ-protocols [4] and Bulletproofs [19], in which the prover
1 OF indicates that time complexity is measured in field operations.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 351

replaces a linear-sized protocol message in a zero-knowledge interactive proof
with a multi-round, privacy-free, interactive protocol with logarithmic commu-
nication complexity.

– Compressed Σ-Protocols [3,4] is a stackable ZK-IP for openings of linear
forms (after very minor modifications).
By applying our compiler, we obtain a ZK-IP for the disjunction of linear form
openings in which simulating each additional clause only requires comput-
ing one exponentiation and one group multiplication, in addition to a linear
number of field operations. We also show that our ideas extend to the circuit-
satisfiability variant of compressed Σ-protocols. We note that our results are
stronger than the set membership version of Compressed Σ-protocols pre-
sented by Attema et al. [4] in that our approach supports true disjunctions
as well.2

– Bulletproofs [19] We observe that Bulletproofs (both for range proofs and
circuit satisfiability) are stackable. However, we note that the runtime of
the simulator for bulletproofs is roughly the same as that of the prover. As
such, speed-stacking bulletproofs provides only marginal benefits over more
direct techniques. The only exception we note is proving set-membership
range proofs; because the range proof version of bulletproofs is not sufficiently
expressive to directly capture set-membership, speed-stacking is preferable to
rephrasing the statement to circuit satisfiability. This presents an interesting
contrast between Compressed Σ-protocols and Bulletproofs, which otherwise
seem to rely on very similar techniques.

2 Technical Overview

2.1 Disjunctive Templates for Zero-Knowledge

Given a sequence of statements (x1, . . . ,x�), we wish to prove in zero-knowledge
that either x1 ∈ L1, x2 ∈ L2, . . . , or x� ∈ L�. While we might have access
to appropriate and efficient zero-knowledge proof systems for each individual
language L1, . . . ,L�, it is not clear how to apply these to the disjunction, while
ensuring zero-knowledge. Let a denote the clause for which the prover has a
witness (the active clause). We will refer to the other clauses as inactive.

There are two main templates for disjunctive zero-knowledge in the literature:
(1) Statement Combination: Combine the statements to define a new L with
the relation R((x1, . . . ,x�),w) := R1(x1,w) ∨ . . . ∨ R�(x�,w). and use any
existing zero-knowledge proof protocol Π that supports general NP statements.
(2) Simulation of Inactive Clauses: Initially suggested by Cramer, Damg̊ard, and
Schoenmakers [22], this approach has been explored primarily in the context of
Σ-protocols. In this template, the prover uses the honest prover algorithm for
the active clause, and “cheats” by using the zero-knowledge simulator for each

2 We expand on the distinction between set membership and true disjunctions in the
next section.

352 A. Goel et al.

of the inactive clauses. The protocol guarantees that the prover can cheat for all
but one of the clauses.

The best choice of template depends heavily on the underlying zero-
knowledge protocol and the structure of the clauses. If the protocol is not for
an NP-complete language (e.g. Schnorr’s protocol [46]), it may be impossible to
combine the statements without protocol modifications, making the simulation
template more attractive. When statement combination is possible, the efficiency
of the combination often depends on the homogeneity of the clauses, i.e if it is
more like set membership or a true disjunctions.

Of course, this difference is qualitative, rather than quantitative. Notably, a
proof system for set membership can be used to construct a true disjunction by
using universal circuits and a set membership over the programming of the cir-
cuit. However, transformations with universal circuits are notoriously expensive:
for example, an implementation [42] of Valiant’s UC [47] shows that for a circuit
implementing AES in 33,616 gates the universal circuit capable of simulating it
has 11,794,323 gates (with 3,135,833 multiplications)—an increase of ≈ 300×.
Although there have been recent improvements on Valiant’s initial constants
[43], boolean UCs remain orders of magnitude larger than the circuits they can
simulate, and arithmetic UCs would incur even higher constants [42].

Disjunctive Templates for Succinct Proofs. We now turn our attention
to the disjunctive composition of succinct proofs for NP. We first observe that
succinctness by itself implies communication-efficient disjunctive composition via
statement combination. Specifically, if the size of the relation circuit is increased
by a multiplicative factor of �, a logarithmic-sized proof will only increase in size
by an additive factor of log(�), resulting in a proof that is only marginally larger.

While communication efficient, this approach, however, increases the run-
ning time of the prover by at least a multiplicative factor � (potentially more,
depending on the complexity of the proof system). This is of special concern
for succinct proof systems where the running time of the prover is often a bot-
tleneck. In addition, many succinct proof systems have space complexity which
grows linearly in the size of the circuit; in this case, the space requirements also
increase by a factor �.3

The use of the simulation template in the sublinear setting has not yet been
explored. We make the following initial observations:

– Faster Simulators Means Faster Prover Time: The key feature of the simu-
lation template is the use of the simulator for each of the inactive clauses.
While the runtime of a simulator is typically proportional to the runtime of
the prover in linear-sized zero-knowledge protocols, in sublinear-sized proofs
it is common to have simulators that are more efficient—either asymptoti-
cally or concretely—than the prover.4 This observation means that applying

3 We note that there do exist techniques generic techniques to minimize space com-
plexity of provers, e.g. [14,15].

4 A similar observation was recently used in a concurrent and independent work of
Kim et al. [40] for designing efficient non-malleable zero-knowledge proofs.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 353

the simulation template to sublinear-sized zero-knowledge proofs could pro-
duce disjunctive composition techniques that do not require the prover to
pay—from a computational perspective—for the inactive clauses, resulting in
significantly faster (and more space-efficient) provers than those produced by
applying the statement combination template.

– Communication Overhead Can Be Avoided: The seminal construction of [22]
yields a protocol whose communication complexity is linear in �. In a recent
work, Goel et al. [26] proposed a new instantiation of the simulation template
for Σ-protocols that can achieve the same results while only introducing an
additive term in log(�) to the proof size. At a high level, they observe that it
is possible to simulate the inactive clauses such that they share a third round
message with the active clause. When simulation is carried out in this way,
there is no need for the prover to send transcripts for each clause, removing
the communication overhead of [22].

Taken together, these observations facilitate the “the best of both worlds:”
concrete computational savings for the prover without incurring any meaningful
communication overhead. However, it is not immediately clear how to mobilize
these observations into a concrete protocol proposal. In the paragraphs that
follow, we summarize the approach of Goel et al. [26] and then proceed to discuss
sublinear-sized proofs.

2.2 Stacking Sigmas for Sublinear-Sized Proofs

The Approach of Stacking Sigmas [26]. Goel et al. [26] propose a new
instantiation of the simulation template. Their compiler applies to Σ-protocols
(three-round public coin zero-knowledge protocols) that have the following two
properties (such Σ-protocols are called stackable Σ-protocols in their work):

1. Recyclable Third Round Messages: The distribution of the third round mes-
sage (not conditioned on the first round message) across all instances must
be the same. That is, there exists an efficient randomized algorithm that can
produce a third round message from the correct distribution. Critically, this
algorithm must be independent of the statement.

2. Deterministic Transcript Completion: The protocol supports a deterministic
simulator Sdet that can produce an accepting first round message when sup-
plied with a challenge and an arbitrary third round message (from the third
round message distribution). Importantly this simulator must be determinis-
tic, as it will be run locally by both the prover and the verifier.

Their compiler is based on a 1-out-of-� partially binding commitment scheme,
a vector commitment scheme that is only binding in a single (pre-selected) index.
First the prover generates the first round message for the active clause aa hon-
estly. Instead of directly sending this message, the prover instead commits to a
vector containing aa in the ath position and zeros in all other positions such that
the binding position is a. The verifier then sends a challenge c to the prover as
normal. Next, the prover generates the third round message for the active clause

354 A. Goel et al.

za. Rather than generate a separate third round message for the inactive clauses,
the prover instead reuses za as the third round message for all clauses. To do
this, the prover uses the special deterministic simulator Sdet to produce ai such
that ai, c, za is an accepting transcript for the statement xi. The prover’s final
message consists of za along with the randomness used to open the 1-out-of-�
partially binding commitment scheme to the vector (a1, . . . , a�). The verifier is
then able to recompute the values ai independently, checks that each transcript
is accepting, and makes sure that the commitment matches.5

Stackable Zero-Knowledge Interactive Protocols. In order to apply the
simulation template to multi-round protocols, we must first extend Goel et al.’s
notion of stackability to the multi-round setting (i.e., more than three-round set-
ting). We extend the notion of recyclable messages so that it naturally applies
to multi-round protocols. Goel et al. consider the distribution of third round
messages with respect to the statement, we define a more fine-grained notion
that considers the joint distribution of parts of multiple prover messages (i.e.,
messages sent across different rounds) with respect to the statement. That is,
we let a part of each prover message be considered recyclable, in that it can be
re-used across multiple statements. In order to be considered recyclable, it must
be possible to design a randomized simulator Srand that can produce these mes-
sages independently of the statement. The deterministic simulator Sdet can then
“complete the transcript,” by computing the remaining, statement-dependent
parts of each message. We note that identifying the recyclable component of
each prover message is up to the protocol designer and it may be possible to
produce multiple recyclable message sets for any given protocol.

Stacking Multi-round Protocols. To stack multi-round zero-knowledge inter-
active protocols, we begin by partitioning each prover message of the protocol
into two parts: a recyclable part mrand,i and a deterministic completion mdet,i.
The prover then runs a modified version of the original prover for the active
clause. When the prover would send a recyclable part of a message, it sim-
ply sends the message directly. When the prover would send a non-recyclable
message, it instead uses a 1-out-of-� binding commitment scheme to commit
to a vector containing the message in the active clause’s index. In the final
round of the protocol, the prover uses the deterministic simulator to compute
the “missing” non-recyclable messages for the inactive clauses and opens all of
the commitments.

2.3 Speed-Stacking Interactive Oracle Proofs

A key technique for obtaining sublinear-sized interactive arguments is the cryp-
tographic “compilation” of interactive oracle proofs (IOPs) [11,38,44,45]. An
interactive oracle proof is an interactive proof system where the verifier, rather

5 Note that to compile the resulting protocol with Fiat-Shamir, the prover passes
the partially-binding commitment into the random oracle, as the challenge cannot
depend on first-round messages that have not yet been computed.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 355

than reading the messages it receives in their entirety, has oracle access to each
message and can query the messages at any index. IOPs can be viewed as a nat-
ural multi-round generalization of the notion of probabilistically checkable proof
(PCP) [6]. All IOPs discussed in this paper will be public-coin. A zero-knowledge
IOP additionally has an efficient simulator: given the verifier’s random tape, the
simulator computes oracle responses to the verifier’s queries which have the
same distribution as in the real interaction. Given a succinct vector commit-
ment scheme (e.g. a Merkle tree), an IOP can be transformed into a succinct
interactive argument as follows [11]: in each round, the prover simply computes
a commitment to the message and sends the commitment to the verifier; the ver-
ifier then responds with the set of query points and the prover provides opening
proofs for the responses.

In this section we give an overview of our results on the stackability of IOP-
based succinct arguments. We provide a two-part framework: we first define
a notion of stackability for IOPs, and then show how a stackable IOP can be
“compiled” into a stackable interactive argument — with some minor tweaks the
existing compiler outlined above preserves “stackability”. We show that several
interactive oracle proofs (IOPs) are stackable, specifically Aurora [10] and a
variant of Fractal [20] that we call Stactal. Finally, we outline why it is possible
to achieve prover computational savings when compiling these protocols. What
follows is an informal description of the definitions and techniques described
formally in Sect. 4. The central definition is the notion of a “stackable IOP”:

Stackable IOPs. A stackable IOP is a zero-knowledge IOP with a particular
simulation strategy: there exists a partition of the k oracles (rounds) into Rrec

and [k] \ Rrec, such (1) responses to queries for oracles in Rrec can be sampled
independently from the relation/statement. (2) while responses to queries for
oracles in [k]\Rrec can be computed deterministically from the relation/statement
and other query answers.

Intuitively a stackable IOP enables reusing the same oracles in Rrec to sim-
ulate multiple IOPs for distinct relations/statement, while communicating the
responses for the remaining (distinct) oracles in [k] \ Rrec requires no additional
communication – since the expected responses can be deterministically computed
by the verifier (by running the simulator).

Stackable IOPs to Stackable IPs. Analogously to the way that IOPs can be
compiled into arguments in the plain model, stackable IOPs can be compiled into
stackable arguments in the plain model. We show that the existing IOP to IP
compiler (outlined above) from vector commitments, can be adapted to preserve
the efficient “stackability” of the underlying IOP. In order to preserve efficient
simulation for the inactive clauses we need the vector commitment scheme to
allow committing to and opening a subvector in time that depends only on the
size of the subvector. We show that specific instantiations of Merkle trees satisfy
this requirement.

Efficiency. One of the advantages of IOPs over other sublinear-sized proofs is
that the running time of the IOP verifier can be polylogarithmic in the size of

356 A. Goel et al.

the statement. To maintain this property when applying our stacking compiler,
we also require that the (instance-dependent component of the) simulator be
similarly efficient. This is typically not a design goal for simulators, since poly-
nomial (rather than polylogarithmic) efficiency suffices for zero-knowledge. As
such, the security proofs of many existing protocols construct simulators which
are not efficient enough for us. In some cases, all that is required is a more
careful simulator construction. In others, to achieve efficient simulation we must
substantially modify the protocol itself.

Showing Stackability. Many IOP constructions share a similar basic struc-
ture, consisting of two main parts: an encoded protocol, where soundness holds
assuming that the prover’s messages are close to words in an error-correcting
code, and a proximity test, which guarantees that this condition holds. The code
of choice for most constructions is the Reed–Solomon code, the code of evalu-
ations of low-degree univariate polynomials over finite field F on some domain
L ⊆ F. Achieving zero-knowledge for protocols constructed in this way typically
involves only two techniques:

(1) Bounded independence: when the prover sends an encoding of a secret
vector v ∈ F

k, rather than directly encoding v, it chooses a random vec-
tor r ∈ F

b and encodes v‖r ∈ F
k+b. The properties of the Reed–Solomon

code guarantee that, under a mild condition on the evaluation domain L,
the answers to any set of b queries to a codeword are distributed uniformly
at random in F (that is, the code is b-wise independent). To simulate, the
simulator simply answers any verifier query uniformly at random.

(2) Masking: often the verifier needs to check some linear property P with
respect to the prover’s messages (a property P ⊆ F

� is linear if it is an F-linear
subspace of F�). Examples of such properties include the Reed–Solomon code
itself (low-degree testing), or the subcode of the Reed–Solomon code consist-
ing of polynomials whose evaluations over a set S ⊆ F sum to zero (univariate
sumcheck).
Linear properties allow for zero-knowledge via random self-reduction: to show
that f ∈ P , the prover sends a uniformly random word r ∈ P (the “mask”),
the verifier chooses a challenge α ∈ F uniformly at random, and the prover
and verifier then engage in a protocol to show that αf + r ∈ P . To simulate,
the simulator first generates a transcript showing that q ∈ P for uniformly
random q ∈ P ; it then answers queries to r by “querying” q −α ·f . Note that
this simulation strategy requires that the simulator can simulate some number
of queries to f , which is typically achieved through bounded independence as
described above.

These two techniques lend themselves to the [26] stacking approach, as follows.
Simulation for (1) is trivially instance-independent (recyclable), since the simu-
lator simply answers queries uniformly at random. For (2), observe that provided
P is an instance-independent property, and the process of sampling a protocol
transcript showing that q ∈ P is also instance-independent. Given q, queries
to the mask r can then be answered deterministically. Hence for essentially all

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 357

zero-knowledge IOP constructions, every message is fully recyclable except for
those in which the prover sends a random mask.

To demonstrate the above approach, we consider two key IOP constructions
from the literature: Aurora [10] and Fractal [20]. We start with the more com-
plicated case of Fractal:

Fractal/Stactal. Fractal is a Holographic IOP, which means it can be compiled
to a preprocessing zkSNARK in which the verifier’s running time is polyloga-
rithmic. Unfortunately Fractal is not an efficiently stackable IOP. The challenge
originates in the Fractal “holographic lincheck” which proves, for encodings of
(secret) vectors x, y, that Mx = y for a public matrix M that is “holographically”
encoded. The central problem with this lincheck is that it reduces to opening
a bivariate polynomial uM (β, α) at a random β, α ∈ F. Since this evaluation
depends (deterministically) on every nonzero entry of M , simulation requires
reading all of M to compute the correct uM (α, β). As a result, the stacked
verifier becomes inefficient. To alleviate this we introduce “Stactal”, a variant
of “Fractal” which does admit very efficient stacking. “Stactal” modifies the
lincheck protocol to allow the prover to extend the matrix M to a larger matrix
M ′ that is “padded” with random values. This introduces sufficient bounded
independence that uM ′(β, α) is uniformly random (and so independent of M).

Aurora. Aurora is naturally a stackable IOP: since the verifier in Aurora is
quasi-linear, the stacking simulator has enough “computational budget” to read
all of M . Hence, the (simpler, non-holographic) lincheck of Aurora can easily be
simulated with the same time complexity as the verifier.

2.4 Speed-Stacking Folding Arguments

The next class of sublinear-sized zero-knowledge proofs are ones based on “fold-
ing arguments”. These are interactive zero-knowledge protocols with logarithmic
round complexity. The two most prominent examples of such protocols are Com-
pressed Σ-protocols [3–5] and Bulletproofs [17,19].

Folding Technique. The central object in all folding argument based zero-
knowledge protocols is a sub-linear, interactive, logarithmic-round non zero-
knowledge protocol to demonstrate that the prover has knowledge of a witness.
The key idea used in the design of these logarithmic-round non zero-knowledge
protocols is to enable the prover (using randomness from the verifier) to “fold”
the witness in on itself, thereby reduce the size of the witness by half in each
round. This step is repeated for a logarithmic number of rounds, until the witness
is reduced to a constant size.

In order to build a sub-linear zero-knowledge protocol using the above non
zero-knowledge protocol, most existing constructions rely on the same rough
template—these constructions begin with a constant round “base” protocol con-
taining a large final round message (i.e., linear in the size of the original witness)
that achieves zero-knowledge. Finally, instead of actually sending this large final
round message, the prover uses the above (non zero-knowledge) recursive fold-
ing approach to prove knowledge of this large message over logarithmic rounds.

358 A. Goel et al.

The key observation used here is that since the “base” protocol achieves zero-
knowledge even if the large final round message is sent to the verifier in the clear,
it suffices for the prover to use the above non zero-knowledge sublinear protocol
to prove knowledge of this message.

Folding Argument Based ZK-IPs are Stackable. Most folding argument
based zero-knowledge protocols including Compressed Σ-protocols and Bullet-
proofs fall into the category of sublinear-sized proofs, with verifier runtime
roughly equivalent to the prover runtime. We observe that the folding argu-
ments we study are stackable such that the prover’s entire last round message
is recyclable.6 To see this, note that if the last round message could instead be
computed deterministically using the rest of the transcript, without access to the
witness (which is the case for non-recyclable messages), then this last round mes-
sage could also be computed by the verifier independently and there would be no
need to send this message.7 Specifically, this holds for the final round message
in the “base” protocol in both Bulletproofs [17,19] and Compressed Σ-protocols
[3–5]. Because this last round message is recyclable, we observe that the entire
folding argument—a proof of knowledge of a recyclable message—is itself recy-
clable and can be reused across clauses. We note, however, that the mere fact
that these protocols are stackable doesn’t immediately imply that there are vast
computational savings available when stacking folding arguments. Interestingly,
we find that stacking Compressed Σ-protocols offers significant computational
savings, while stacking Bulletproofs does not.

Computational Savings via Stacking. As discussed earlier, our hope to get
computational savings when stacking sublinear zero-knowledge proof systems
for disjunctions, stems from the observation that the simulator in such proofs is
typically much faster than the prover algorithm. This is because, the verifier in
most such protocols runs in sublinear time and since the job of the simulator is to
essentially “fool” the verifier into accepting a simulated proof, the work required
from a simulator is somewhat proportional to the work done by the verifier. As
a result, being able to replace the prover algorithm with the simulator for all
inactive clauses in the disjunction, can yield significant computational savings.

Folding argument based sublinear proof systems we consider, however, do
not have a sublinear-time verifier. In fact, the work done by the verifier in these
protocols is asymptotically equivalent to the work done by the prover. Hence, the
overall simulator is not asymptotically more efficient than the prover algorithm.
For computational savings, here we rely on our second observation about simula-
tors: the simulator can often be split into two parts Srand and Sdet, where Srand

is responsible to simulating the statement independent part of the transcript,
while Sdet simulates messages that are dependent on the statement/relation.
Since the messages simulated by Srand are statement independent, the result-
ing messages can be reused/recycled in all the inactive clauses, while we must

6 We formalize this claim in the full version [28].
7 We do note, however, that some protocols include deterministic messages in the final

round in order to minimize verifier computation.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 359

compute the messages simulated by Sdet separately for each clause. If Sdet is
significantly faster than Srand, we can still hope to get significant concrete com-
putational savings for the prover when stacking such protocols (even if there are
no asymptotic savings). This is where the crucial difference between Bulletproofs
and Compressed Σ-protocols appears.

In Compressed Σ-protocols, the statement/relation-dependent verifier com-
putation only consists of simple field operations, while the statement indepen-
dent verification consists of expensive group multiexponentiations. As a result
Sdet is significantly more efficient than Srand, yielding concrete computational
savings for the prover upon stacking. Unfortunately, Bulletproofs lies on the
other end of the spectrum, where the runtimes of Sdet and Srand are approx-
imately the same (i.e. up to a small constant factor). This suggests to an
interesting distinction between these two folding argument based protocols and
motivates the design of sublinear-sized zero-knowledge protocols in which the
verifier’s statement-dependent computation is much faster than the verifier’s
statement-independent verifier computation—in other words, protocols that are
more amenable to speed-stacking. We now give a brief technical overview of
Compressed Σ-protocols and Bulletproofs to further highlight this distinction
and demonstrate stackability.

Compressed Σ-Protocol. Compressed Σ-protocols [3–5] provide zero-
knowledge interactive protocols for proving knowledge of openings of linear
forms, i.e., proving that the output of a linear function f applied to a vector x
contained in a commitment P equals some publicly known value y. The “base”
protocol in Compressed Σ-protocols, performs a randomized self-reduction, in
which the problem is reduced to the task of proving a different (related) state-
ment for the same relation in a privacy-free way. To prove this related statement,
they provide a log-sized privacy-free argument.

We observe that the entire folding argument transcript can be reused during
stacking (after making very minor modifications to the protocol), but not all of
the computation can be reused. That is, the randomized simulator Srand creates
the folding argument transcript and then deterministic simulator Sdet completes
the transcript, but runs in time linear in the size of the vector x (Sdet recursively
folds the linear form to facilitate the final check). However, we observe that the
linear number of operations in Sdet are all field arithmetic, and Sdet contains only
a single group exponentiation and a single group multiplication, with no multi-
exponentations. As a result, simulating each additional inactive clause remains
significantly faster than the prover algorithm.

We note that we are able to handle disjunctions where each clause i ∈ [�] could
have a different homomorphic linear function fi and a different commitment Pi.
This is a stronger notion of disjunctions than the ones considered in [4], which
give proofs where either the homomorphism or commitment is fixed across a
disjunction of multiple clauses.
Bulletproofs. The main task in the initial “base” protocol in Bulletproofs [19]
is reduced to transforming any given relation into a privacy-free inner-product
relation. This is followed by an efficient folding argument for Rinnerprod. This
approach is used to achieve efficient zero-knowledge for range proofs and circuit

360 A. Goel et al.

Fig. 1. A roadmap for the results in our paper. Several Theorems are contained in the
full version of the paper.

satisfiability. Because the last message of the “base” protocol is recyclable, the
folding argument transcript can be reused, and we find that only two of the
messages in the “base” protocol are non-recyclable. However, simulating these
two non-recyclable messages requires performing multi-exponentiations depen-
dent on the relation function. As a result, any savings obtained from being able
to recycle the entire non zero-knowledge sublinear-sized folding argument at
the end across all inactive clauses are more-or-less eclipsed by the computation
involved in individually simulating the above two non-recyclable messages for
each inactive clause.

As such, stacking Bulletproofs for “true” disjunctions does not seem to offer
considerable savings. We do note, however, one might consider set-membership
for range proofs (i.e. ∃xi ∈ {x1, . . . , x�} st. xi ∈ Range), where appealing to NP
completeness is expensive. Because the statement dependent computation (that
must be run separately for each clause) is remarkably inexpensive (involving
only one group exponentiation and a constant number of group multiplications),
applying the compiler in this case may be valuable. While set membership for
range proofs is not particularly valuable, studying Bulletproofs illuminates fun-
damental differences between Compressed Σ-protocols and Bulletproofs, despite
their superficial similarities. Moreover, this highlights the key parameters to
keep in mind when stacking a protocol and points to new considerations when
designing new—potentially stackable—zero-knowledge proof systems.

Roadmap to Our Results. We give an overview of how we reach our technical
results in Fig. 1.

2.5 Notation

When discussing interactive protocols in this work, we will use both interactive
Turing Machine notation, ie. 〈P,V〉(x), and algorithmic notation, ie. the ith

message is computed with algorithm Pi. More formally, we assume that for zero-
knowledge interactive proofs, the interaction 〈P,V〉(x) contains an ordered list
of algorithms Pi, such that the prover computes their ith message using Pi.
We use CC(Π) to denote the communication complexity of Π, and let Time(Π)
denote the runtime of the algorithm Π. Finally, we note that our work spans
different lines of research that commonly leverage different notation for the same

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 361

concepts. Wherever possible we have made notation internally consistent, at the
cost of being inconsistent with prior work.

For an NP relation R, we denote the instance as x and the witness as w.
Let the number of clauses in the disjunction � and the index of the active clause
as a. Where applicable, we use N to denote the relevant size of x. We use
multiplicative notation for groups and group operations.

3 Stacking Zero-Knowledge Interactive-Proofs

In this section, we extend the notion of “stackability” introduced in Goel et al.
[26] to the multi-round setting proceed to give a generic compiler that can trans-
form a stackable ZK-IP into a ZK-IP for disjunctive statements. We formally
define Stackable ZK-IP in Sect. 3.1, present our stacking compiler in Sect. 3.2,
and provide a heuristic mechanism for preparing ZK-IP protocols for stacking
in the full version of our paper [28].

3.1 Defining Stackable ZK-IP

Recently, Goel et al. [26] introduced the notion of “stackability” for Σ-protocols
(i.e., three-round ZK-IPs), and showed most natural Σ-protocols are stackable.
At the heart of their approach is the observation that the simulators for com-
mon Σ-protocols can be divided into two components: a randomized, statement
independent part, which we will denote Srand,8 and a deterministic, statement
dependent part, which we denote Sdet.

We extend their intuition to the multi-round setting. Intuitively, we require
that each message in the protocol can be subdivided into two (potentially
empty) parts: a recyclable part that can be reused across multiple statements,
and a deterministically computable part. More formally, we assume that each
prover message i of a ZK-IP is a concatenation of two parts—mrand,i and
mdet,i. To satisfy stackability, we require that it is possible to generate the
messages {mrand,i}i∈[k] using a randomized, statement independent algorithm
Srand. Additionally, we require that there exists a deterministic simulator Sdet

that can simulate the remaining parts of the messages {mdet,i}i∈[k] such that
the resulting transcript matches an “honest” execution of the protocol.

Definition 1 (Stackable ZK-IP). Let Π be a ZK-IP consisting of k prover
messages and k − 1 verifier messages for a relation R. For each i ∈ [k], let
mi = (mrand,i,mdet,i) and let Mrand = (mrand,i)i∈[k] and Mdet = (mdet,i)i∈[k].
We say that Π is Stackable, if there exists a PPT simulator Srand and a
polynomial-time computable, well-behaved deterministic simulator Sdet, such
that for each C = (ci)i∈[k−1] ∈ ({0, 1}κ)k−1 and for all instance-witness pairs
(x,w) st. R(x,w) = 1, it holds that:

8 We depart from the notation introduced by Goel et al. [26], in which this first part is
instead discussed as an efficiently samplable distribution, rather than a simulator. We
note that these notions are clearly equivalent: the output of Srand defines a distribution
from which elements can be efficiently sampled (namely, by running Srand).

362 A. Goel et al.

{
(M,C) | rp $←− {0, 1}λ;∀i ∈ [k], (mrand,i‖mdet,i) ← Pi(x,w, (cj)j∈[i−1]; rp)

}

≈{
((mrand,i‖mdet,i)i∈[k], C) | Mrand ← Srand(1λ, C);Mdet := Sdet(x, C,Mrand)

}

The natural variants (perfect/statistical/computational) are defined depending
on the class of distinguishers with respect to which indistinguishability holds.

3.2 Compiler for Stacking ZK-IPs

We now present our compiler that can transform any stackable ZK-IP into a
ZK-IP for disjunctions. As discussed earlier, similar to Goel et al. [26], the main
idea behind this construction is to honestly compute the transcript of the active
clause and reuse its recyclable messages for all the inactive clauses.

Concretely, the prover starts by generating a (ck, ek) pair for the index asso-
ciated with the active clause. Subsequently, in each round it computes messages
for the active clause honestly and commits to the non-recyclable messages along
with a bunch of 0s for the inactive clause using the partially-binding vector com-
mitment scheme and commitment key ck. It sends this commitment along with
the honestly computed recyclable message to the verifier. In the last round, upon
receiving all the challenge messages from the verifier, it simulates to “complete”
the transcript of the inactive clauses and equivocates all of the previously com-
puted commitments to a commitment of these messages and sends the associated
commitment opening/randomness to the verifier. Based on the recyclable mes-
sages, the verifier also simulates the non-recyclable messages for each clause, and
checks if they were honestly committed inside the commitment. It also checks if
the resulting transcript for each clause is accepting.

Theorem 2. Let Π be a stackable ZK-IP (see Definition 1) consisting of k
prover messages and k − 1 verifier messages for the NP relation R : X × W →
{0, 1} and let (Setup,Gen,EquivCom,Equiv,BindCom) be a 1-out-of-� binding vec-
tor commitment scheme (as defined in [26]). For any pp ← Setup(1λ), the
compiled protocol Π ′ described in Fig. 2 is a stackable ZK-IP for the relation
R′ : X � × ([�] × W) → {0, 1}, where R′((x1, . . . ,x�), (a,w)) := R(xa,w).

The proof for Theorem 2 can be found in the full version [28].

Complexity Discussion. Let CC(Π) be the communication complexity of Π.
Then, the communication complexity of the Π ′ obtained from Theorem 2 is
(CC(Π) + |ck| + |com| + |r′|), where the sizes of ck, com and r′ depend on the
choice of partially-binding vector commitment scheme and are independent of
CC(Π). In the construction of partially-binding vector commitments from DLOG
due to Goel et al. [26, Corollary 1], |ck|, |r′| = Oλ(log �), and |com| = Oλ(1).
Hence the communication cost of proving a disjunction of � clauses is O(log �).

Finding recyclable messages requires manual effort. We discuss intuition for
finding these messages, along with an informal procedure, in the full-version of
our paper [28].

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 363

Stacking Compiler

Statement: x = x1, . . . ,x�

Witness: w = (a,wa)
For each i ∈ [k − 1], the Prover and Verifier take turns sending messages:

– Prover in Round i: Prover computes P′
i(x,w; rp) → mi as follows:

• Parse rp = (rp
a‖{rj}j∈[k]).

• Compute (mrand,i,a, mdet,i,a) ← Pi(xa,wa; r
p
a).

• Set vi = (vi,1, . . . , vi,�), where vi,a = mdet,i,a and ∀j ∈ [�] \ a, vi,j = 0.
• If i = 1, compute (ck, ek) ← Gen(pp, B = {a}).
• Compute (,i , auxi) ← EquivCom(pp, ek,vi; ri).
• If i = 1, send mi = (ck, ,i , mrand,i,a) to the verifier, otherwise send mi =

(,i , mrand,i,a) to the verifier.

– Verifier in Round i: Verifier samples ci
$←− {0, 1}λ and sends it to the prover.

Round k: Prover computes P′
k(x,w, {cj}j∈[k−1]; r

p) → z as follows:

– Parse rp = (rp
a‖{rj}j∈[k]).

– Compute (mrand,k,a, mdet,k,a) ← Pk(xa,wa, {cj}j∈[k−1]; r
p
a).

– For j ∈ [�] \ a, compute {mdet,i,j}i∈[k] := Sdet(xj , {cj}j∈[k−1], {mrand,i,a}i∈[k]).
– For each i ∈ [k], set v′

i = (mdet,i,1, . . . , mdet,i,�) and compute r′
i ←

Equiv(pp, ek,vi,v
′
i, auxi) (where auxi can be regenerated with ri).

– Send mk = (mrand,k,a, {r′
i}i∈[k]) to the verifier.

Verification: Verifier computes φ′(x, {mi, ci}i∈[k−1], mk) → b as follows:

– For each i ∈ [k], if i = 1, parse mi = (ck′, ,i , mrand,i,a), else parse mi =
(,i , mrand,i,a). Parse mk = (mrand,k,a, cki, mk,a, {r′

i}i∈[k])
– For j ∈ [�], compute {mdet,i,j}i∈[k] := Sdet(xi, {ci}i∈[k−1], {mrand,i,a}i∈[k]).
– For each i ∈ [k], set v′

i = (mdet,i,1, . . . , mdet,i,�).
– Compute and return:

b =
∧

i∈[k]

(
,i

?
= BindCom(pp, ck,v′

i; r
′
i)

) ∧

j∈[�]

(
φ(xj , {(mrand,i,a, mdet,i,j)}i∈[k], {ci}i∈[k−1])

)

Fig. 2. A compiler for stacking multiple instances of a stackable ZK-IP

4 Speed-Stacking Interactive Oracle Proofs

Interactive oracle proofs, originally proposed by [11,45], form the basis of a
widely-used framework for building succinct arguments. In this section we
describe how to adapt this framework to build stackable succinct arguments.

We begin this section by recalling the preliminary definition of holographic
IOPs (hIOPs), a generalization of IOPs introduced by [20] that allows for part
of the input to be preprocessed, in Sect. 4.1. We then proceed to outline the
technical machinery necessary to speed-stack two IOPs, Aurora IOP [10] Fractal
hIOP [20]. Specifically, we use a series of compilers that speed-stacks these IOPs
via several intermediary definitions. First, we define the notion of a stackable

364 A. Goel et al.

(holographic) IOP in Sect. 4.3. Next, we describe how to transform a stackable
IOP into a stackable (succinct) interactive argument, which can in-turn be speed-
stacked using the compiler in Sect. 3. Finally, in Sect. 4.5, we describe our two
constructions of stackable hIOPs, based on the Aurora IOP [10] and Fractal
hIOP [20] constructions respectively.

4.1 Holographic IOPs

Holographic IOPs were originally defined in [20]. Here we describe special prop-
erties of holographic IOPs that we will make use of in this work; for a full
definition of the model, see [28].

Public Coins and Oblivious Queries. In this work we will consider a certain
subclass of IOPs: public-coin IOPs with oblivious queries. An IOP is public coin
if each verifier message to the prover is a random string. This means that the
verifier’s randomness C consists of its messages c1, . . . , ck−1 ∈ {0, 1}∗ and possi-
bly additional randomness ck ∈ {0, 1}∗ used after the interaction (in particular,
for choosing the query set). An IOP has oblivious queries if the verifier can be
partitioned into a query algorithm VQ and a decision algorithm VD as follows.
VQ takes as input C (and nothing else) and outputs query sets (Q1, . . . , Qk). VD

takes as input (x, C,Π1|Q1 , . . . , Πk|Qk
) and outputs a bit b.

Zero-Knowledge. A public-coin holographic IOP HOL has (perfect) spe-
cial honest verifier zero-knowledge if there exists a probabilistic polynomial-
time simulator S such that for every (i,x,w) ∈ R the random variables
View(P(i,x,w),VI(i)(x;C)) and (C,S(i,x, C, VQ(C))) are identical, where:

– C = (c1, . . . , ck−1, ck) is the verifier’s (public) randomness, chosen uniformly
at random, and

– View(P(i,x,w),VI(i)(x;C)) is the view of V when interacting with P, i.e.,
it is the random variable (C,Π1|Q1 , . . . , Πk|Qk

).

4.2 Reed–Solomon Encoded Holographic IOPs

Reed–Solomon encoded IOPs (RS-IOPs) were introduced in [10] and adapted to
the holographic setting in [20, Section 4.1]. We refer the reader to [28] for a full
definition of RS-IOPs; here we give an adapted definition of zero-knowledge for
RS-IOPs that we will use later.

Zero-Knowledge. Honest-verifier zero-knowledge for RS-IOPs is trivial, since
the honest RS-IOP verifier makes no queries, and so learns nothing from the
interaction. Instead, we introduce a notion of special semi-honest verifier zero-
knowledge (SSHVZK), which guarantees zero-knowledge against verifiers that
behave honestly during the interaction, and then make a bounded number b
of arbitrary queries. Formally, an RS-IOP is SSHVZK with query bound b if
there exists a PPT simulator S such that for every (i,x,w) ∈ R, every large
enough � ∈ N and every function Q : {0, 1}� → (

L
b

)
, the random variables

ViewQ(C)(P(i,x,w),VI(i)(x)) and (C,S(i,x, C,Q(C))) are identical, where

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 365

– C = (c1, . . . , ck−1, c
∗), chosen uniformly at random, is the verifier’s (public)

randomness, (possibly) augmented to � bits with additional randomness c∗,
and

– ViewQ(C)(P(i,x,w),VI(i)(x)) = (C,Π1|Q(C), . . . , Πk|Q(C)) is the view of the
verifier in the protocol (which consists only of its own messages), augmented
with the restriction of each prover message to the set Q(C) ⊆ L.

4.3 Defining a Stackable IOP and Stackable RS-IOP

In this section we give definitions for a stackable RS-IOP and a stackable IOP,
before showing how to compile from the former to the later in Sect. 4.4. Looking
ahead, we will give modifications of Aurora IOP [10] and Fractal hIOP [20]
that are stackable RS-IOPs. The two definitions are defined in largely the same
way; the differences are analogous to the differences between an RS-IOP and
IOP. As such, we only explicitly give the definition of a stackable IOP, as the
generalization is trivial.

Recall that the simulator for a ZKIOP is required to sample answers for
exactly the points that the honest verifier queries in each round; these points
are provided to the simulator as a vector Q = (Q1, . . . , Qk), where Qi is the set
of points that the verifier queries in round i. Hence we can write the simulator’s
output as a sequence of functions Π∗

i : Qi → Σ, where Σ is the alphabet of the
IOP. Given this template, stackability for IOPs is defined similarly to stackability
for IPs (Definition 1), as follows.

Definition 2 (Stackable hIOP). We say that an k-round holographic IOP
HOL = (I,P,V) is stackable if there exists a subset of “recyclable” rounds Rrec ⊆
[k] and a pair of algorithms (Srand,Sdet) where Sdet is deterministic, such that
for all (i,x,w) ∈ R, the following algorithm is a special honest-verifier zero-
knowledge simulator for HOL:
S(i,x, C,Q):

1. sample (Π∗
i : Qi → Σ)i∈Rrec

$←− Srand(C,Q);
2. compute (Π∗

i : Qi → Σ)i∈[k]\Rrec
:= SI(i)

det (x, (Π∗
i)i∈Rrec , C,Q);

3. output (Π∗
i)i∈[k];

and for all λ ∈ N and (i′,x′,w′) (whether in R or not), S(1λ, i′,x′) outputs an
accepting view with certainty.

The definition extends in the natural way to Reed–Solomon encoded IOPs
(RS-IOPs), except that we require that S be an SSHVZK simulator.

4.4 Compiling RS-IOP to Stackable IP via Stackable IOP

In this section we show how to “compile” a stackable RS-IOP into a stackable
IOP, and a stackable IOP into a stackable IP using a key-value commitment
schemes. In the full version [28], we give a formal definition for the key-value
commitment schemes that we require. In this section we provide both compilers
(in Lemma 1 and Theorem 4 respectively).

366 A. Goel et al.

Hiding Key-Value Commitments. Key-value commitments, described by
Boneh, Bünz and Fisch [16] and Agrawal and Raghuraman [2] primarily in
blockchain-related applications are a generalization of vector commitments:
allowing the committer to efficiently commit to a (potentially) exponentially
large but sparse vector in time that is polynomial in the security parameter and
the number of entries in the sparse vector. Unlike the primary motivation for
these works, we are not concerned with updateability of the map; however, we
additionally require the commitments to hide the unopened entries. The exact
definition and constructions can be found in the full-version of our paper [28].

Compiling RS-IOP to Stackable IOP. We now show that, by slightly
tweaking the RS-IOP to IOP transformation presented in [10, Section 8.1], we
can preserve stackability. The compiler of [10, Section 8.1] converts an RS-
IOP into an IOP using a (IOP) proximity test for Reed-Solomon codes [8,13]
(also called a Low-Degree Test (LDT)). Since the concrete cost of the prox-
imity test is large, by exploiting the linearity of the code, all the oracles are
combined using a random linear combination into a single claimed codeword;
rather than repeating the proximity for every individual oracle. This incurs a
soundness-error of 1/|F|9. This works for codewords in the same code, to account
for multiple RS codes of different rate note that component-wise products of
Reed-Solomon codes is a Reed-Solomon code, i.e. for a fixed C1 ∈ RS[L, d1]:
C1 ◦ C2 ∈ RS[L, d1 + d2] ⇐⇒ C2 ∈ RS[L, d2]. This allows homogenizing all
the rates: for the verifier to query (C1 ◦ C2)(i) simply query C2(i) and compute
C1(i) · C2(i), hence we can assume that the rate of all codewords is the same.
Note that C1 can be an arbitrary codeword, in particular it can be chosen such
that computing C1(i) is very efficient. Lastly, since the proximity test is not zero-
knowledge the prover samples a random codeword which is added to the linear
combination: such that the distribution of the codeword on which the proximity
test is run is uniform. In summary, the verifier samples z ∈ F

k and the proximity
test is run on the oracle:

q = zT Π + r

for codewords Π ∈ RS[L, d]k and r ∈ RS[L, d]. Note that q(i) can be accessed
by simply querying Π and r at i, hence in [10, Protocol 8.6] there is no need for
the prover to send the oracle q explicitly10, however we need this to efficiently
stack.

Lemma 1 (From Stackable RS-IOP to Stackable IOP). There is a trans-
formation (an adaptation of [10, Protocol 8.6]) which composes a stackable RS-
IOP and any IOPP for the Reed–Solomon code (i.e., a low-degree test) to produce
a stackable IOP for the same relation. Moreover, the cost of Sdet for the resulting
IOP is the same as the cost of Sdet for the RS-IOP. The construction follows
easily from the discussion above, see full version [28] for details.

9 For fields where 1/|F| is not negligible, parallel repetition is used: requiring repetitions
of the proximity test as well.

10 Which would also require an additional proximity test between q and zT Π + r.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 367

Compiling Stackable IOP to Stackable IP. Next we show how to com-
pile stackable IOPs into stackable interactive arguments using hiding key-value
commitments. The construction is an adaptation of the natural construction of
a succinct argument from an IOP using vector commitments; the security and
efficiency guarantees of hiding key-value commitments are necessary to preserve
stackability and stacking efficiency of the underlying IOP.

Construction 3 (Stackable IOP to Stackable IP Compiler). Assume wlog. That
the (public coin) VI(i)(x) only makes queries to the oracles after the k’th round
and transform an k-round holographic IOP into a k + 1 stackable IP follows: In
round i, when P(i,x,w) outputs Πi, compute the commitment to the oracle:

(Ci, oi) ← KV.Com(pp, {(j,Πi(j))}j∈[|Li|])

And sends Ci to V. After round k, V outputs the set of queries Q = {Qi}i∈[k] to
each oracle Πi. The prover P responds by opening the key-value commitments at
the requested positions: for all i ∈ [k] defining Mi = {(j,Πi(j))}j∈Qi

, followed
by sending Mi and oi ← KV.Open(pp, oi,M) to V. The transformation above
is essentially the one by Ben-Sasson et al. [11, Section 6] (from IOPs to IPs) but
replacing Merkle trees with the related notion of a key-value commitment.

Theorem 4 (Correctness of Construction 3). Given a key-value commit-
ment scheme: a stackable holographic IOP HOL = (I,P,V) can be compiled
into an efficient stackable interactive argument (P,V). Furthermore, the running
time of the compiled Sdet is that of SI(i)

det from the IOP, plus that of computing
(C1, . . . ,Ck), which is O(

∑
i |Π∗

i | · poly(λ, log(|Πi|))) (where |Πi| is the length of
the i-th oracle in the real execution). See full version [28] for the proof.

4.5 Stackable RS-IOPs

In this section we show that two key IOP protocols from the literature, Aurora
[10] and Fractal [20] can be made stackable. These protocols are proof systems
for the R1CS relation, defined formally below.

Definition 3. Rank-one constraint satisfiability (R1CS) is an indexed NP
relation consisting of all index-instance-witness tuples ((F, A,B,C), x, w) for
A,B,C ∈ F

n×n, x ∈ F
k, w ∈ F

n−k, such that for z = (x‖w), Az ◦ Bz = Cz,
where ◦ is the element-wise product.

Before proceeding to discuss how to make these protocols stackable, we pro-
vide a brief overview of the Aurora and Fractal RS-IOPs. These descriptions
are not comprehensive, but rather aim to give context for the stackable variants
presented later. Both protocols start from the same basic template:

1. On input ((F, A,B,C), x, w), the prover sends to the verifier a (Reed–
Solomon) encoding fw of w, from which the verifier can deterministically
compute an encoding fz of z = (x‖w). The prover also computes vectors
Az,Bz,Cz and sends their corresponding encodings fA, fB , fC to the veri-
fier.

368 A. Goel et al.

2. For each M ∈ {A,B,C}, the prover and verifier engage in the “lincheck”
protocol to show that fM is an encoding of Mz. This involves one or two
rounds of interaction for Aurora and Fractal respectively, after which the
verifier will output some rational constraints.

3. Lastly the verifier outputs the constraint “fA(i) · fB(i) − fC(i) = 0 for all
i ∈ [n]”.

To achieve zero-knowledge, the encodings fw, fA, fB , fC are randomized so that
any “view” consisting of b locations in the encoding is distributed as a uniformly
random vector in F

b; hence the messages sent in Step 1 are recyclable. Because
the prover does not send any information in Step 3, it is not relevant for zero-
knowledge or stackability. As such, we need only focus on Step 2. Indeed, the
difference between Aurora and Fractal lies in this step: Aurora’s lincheck has
verification time linear in the number of nonzero entries in A,B,C, whereas
Fractal’s lincheck is exponentially faster after preprocessing. As a result, they
behave quite differently when stacked.

Aurora is Stackable. We show that a small modification to Aurora yields a
stackable RS-IOP. We first outline the lincheck protocol used in Aurora. Both
the prover and verifier take as input a matrix M , and have access to Reed–
Solomon codewords f, fM , which purportedly satisfy the relation fM |H = Mf |H
for specified H ⊆ F. For α ∈ F, denote by uα the vector (1, α, α2, . . . , α|H|−1) ∈
F

H .

1. The verifier sends a challenge point α ∈ F.
2. The prover and verifier both compute the vector uαM ∈ F

H along with its
low-degree extension ĝ.

3. The prover and verifier then engage in the zero-knowledge sumcheck protocol
to show that

〈uαM,f |H〉 − 〈uα, fM |H〉 =
∑
a∈H

ûα,M (a)f(a) − ĝ(a)fM (a) = 0 .

This protocol is complete because if fM |H = Mf |H then for all vectors u,
〈u, fM |H〉 = 〈u,Mf |H〉 = 〈uM, f |H〉. For soundness, observe that if fM |H �=
Mf |H then 〈uαM,f |H〉 − 〈uα, fM |H〉 is a nonzero low-degree polynomial in α;
soundness follows by elementary algebra and the soundness of the zero-knowledge
sumcheck protocol.

Observe that the only prover-to-verifier communication in this lincheck proto-
col is within Step 3; specifically, in the execution of zero-knowledge sumcheck. We
now recall (and slightly modify) the zero-knowledge sumcheck protocol, which
relies on the following lemma.

Lemma 2 (By Ben-Sasson et al. [10]). Let H be a coset of an additive or
multiplicative subgroup of F. Then there is a polynomial ΣH,Y (X), which can
be evaluated in time polylog(|H|), such that the following holds: let f̂ ∈ F[X]
be such that deg(f̂) < |H|. Then

∑
α∈H f̂(α) = σ if and only if there exists ĝ

with deg(ĝ) < |H| − 1 such that f̂(X) ≡ ΣH,σ(ĝ(X)).

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 369

The protocol proceeds as follows: The prover and verifier have access to a
summand codeword f of degree d, which purportedly satisfies

∑
a∈H f̂(a) = 0.

1. The prover chooses a random polynomial r̂ of degree d, computes ζ =∑
a∈H r̂(a), and sends r, ζ to the verifier.

2. The verifier sends a challenge β.
3. The prover divides q̂ := r̂ + βf̂ by vH to obtain ĝ, ĥ satisfying the identity

q̂ ≡ ΣH,ζ(ĝ) + ĥ · vH with deg(ĝ) < |H| − 1, and sends h to the verifier.
4. The verifier outputs the rational constraint “deg(ê) < |H| − 1”, where ê :=

Σ−1
H,ζ(q̂ − ĥ · vH).

The zero-knowledge simulator given by [10] operates by first choosing a random
polynomial q̂, and sending ζ =

∑
a∈H q̂(a) in the first round. ĝ, ĥ are obtained

from this q̂ in the same way as the honest prover. Queries to r are answered
using q − βf .

We are now ready to show that the above protocol is stackable, after a small
modification.

Theorem 5. The Aurora zero-knowledge RS-IOP for R1CS [10, Protocol 7.5] is
stackable (after a small modification) with Sdet running in time O(‖A‖+ ‖B‖+
‖C‖ + n log2 b log log b) (measured in field operations).

Proof. The only modification necessary is to the zero-knowledge sumcheck pro-
tocol. Specifically, in Step 3, the prover will also send g; this is purely for the
purposes of simulation and does not affect soundness.

Note that in a real execution, g, h are (marginally) uniformly random code-
words, and so can be generated by Srand (i.e., they are recyclable). Hence the
only oracle in the protocol that is not recyclable is r. The inclusion of g in the
protocol allows Sdet to compute r as ΣH,ζ(g) + h · vH − βf .

As a result, the time complexity of Sdet is dominated by the evaluation of f at
b points. This requires computing rA, rB, rC ∈ F

n for some r ∈ F
m, which takes

O(‖A‖ + ‖B‖ + ‖C‖) field operations, and evaluating the low-degree extensions
of these vectors at b points, which takes O(n log2 b log log b) operations using the
algorithm of [18].

4.6 Stactal

Next we describe “stackable Fractal”, or Stactal, a variant of the Fractal protocol
[20] which can be efficiently stacked. The verifier in Fractal runs in time quasi-
linear in the length of the input vector x and polylogarithmic in the dimensions
of A,B,C. This is achieved via a sparse holographic encoding of A,B,C using
the Reed–Solomon code.

First, we discuss why directly stacking Fractal leads to an inefficient proto-
col. Recall that in the stacked protocol, the prover and verifier run the instance-
dependent part of the simulator Sdet on each clause j ∈ [�]. Therefore, to achieve
the desired computational savings for the prover while maintaining the complex-
ity of the verifier, we want Sdet to run in polylogarithmic time. Unfortunately,

370 A. Goel et al.

this is not possible for the original Fractal protocol (in the true disjunction
setting), as we explain next.

The verifier’s running time in the Aurora protocol is dominated by the
lincheck subprotocol: specifically, the cost of evaluating, for each input matrix
M ∈ {A,B,C}, the low-degree extension ûα,M of the vector uαM . To eliminate
this cost, Fractal replaces Aurora’s lincheck protocol with a holographic variant.
In particular, [20] shows that, given an appropriate encoding of the input matri-
ces, there is a protocol that allows the verifier to check an evaluation of this
low-degree extension in time polylog(‖M‖).

Since the verifier cannot compute this evaluation itself, the prover sends
ûα,M (β) for the desired evaluation point β. In the standard setting of zero-
knowledge, since the input matrices are public, this is not a problem: the sim-
ulator can simply compute this evaluation as the honest prover would, in time
linear in ‖M‖. In the stacking setting, however, this computation would be part
of Sdet, more than negating the computation savings obtained via holography.

Worse, it is not possible to simply design a better simulator: for most choices
of α, β, ûα,M (β) depends on every nonzero entry of M . Thus Sdet must run in at
least linear time. To resolve this, we must instead significantly modify the Fractal
protocol. In more detail, we allow the prover to “pad” the input matrices with
randomness, in a way that does not affect the satisfiability of the statement, so
that ûα,M (β) becomes uniformly random. The simulator for this protocol runs
in time polylog(‖M‖) and makes a small number of queries to the encoding of
M . We prove the following theorem in the full version of the paper [28]:

Theorem 6 (Stactal). The protocol obtained from Fractal by replacing the
holographic lincheck protocol with a stackable holographic lincheck (as described
in the full version of our paper [28]) is stackable, with Sdet running in time
O(b · (|x| + polylog(‖A‖ + ‖B‖ + ‖C‖))) (measured in field operations).

5 Speed-Stacking Compressed Σ-Protocols

We now turn our attention to stacking sublinear proofs based on folding argu-
ments. “Folding arguments” refers to a class of proof systems that relies on
algebraic structure and interaction to iteratively reduce the size of (or “fold”)
the statement of interest. The two most notable instantiations of this class are
Bulletproofs [19], which give a folding argument for inner products, and Com-
pressed Σ-Protocols [3–5], which give folding arguments for linear forms. In this
section, we show how to stack Compressed Σ-Protocols and demonstrate the
computational savings that our techniques offer when applied to them. In the
full-version [28], we demonstrate how to stack Bulletproofs, which as discussed
earlier are less amenable to computational savings from our stacking approach.

Compressed Σ-protocols were proposed in a series of recent works by Attema,
Cramer, Fehr and Kohl [3–5]. In this section, we focus on the specific instanti-
ation of this approach proposed by Attema, Cramer, and Fehr [4], as it has a
clean presentation.

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 371

Notation. We slightly modify some of the notation presented by Attema,
Cramer, and Fehr in [4] for clarity of presentation, but endeavor to make it
sufficiently consistent that an interested reader can easily refer back to their
work for additional details. Let G be a cyclic group of prime order p. Let f be a
homomorphism from (additive) Z

N
q to some group GT .11 We denote the set of

such homomorphisms as LN .
Let gi = (gi,1, gi,2, . . . , gi,N) be vectors of generators in G, where the size

of the vector will either be stated explicitly or, when clear from context,
left implicit. All other lower-case letters, e.g. c, a, refer to elements in Zq,
and bold lower-case letters, e.g. xi, z refer to vector of elements in Zq. Let
x = {x1, . . . , xM} ∈ Z

N
q , and f : ZN

q → GT . We denote xL = {x1, . . . , xN/2}
and xR = {xN/2+1, . . . , xN}. We denote fL : Z

N/2
q → GT as the function

f(xL, 0, . . . , 0) and fR : Z
N/2
q → GT as the function f(0, . . . , 0,xR). Upper-

case letters refer to elements of G. For a vector gi of length N , we denote the
first N/2 elements of gi as giL and the remaining N/2 elements of gi as giR.
We denote the element-wise group operation of two vectors of group elements as
g ∗ g′ = (g1g′

1, . . . , gNg′
N), where N is an arbitrary size parameter. Finally we

denote multi-exponentation by gx =
∏

i gxi
i .

Compressed Σ-Protocols. Attema et al. [4] consider the relation
Rcompressed =

{
(g ∈ G

N , P ∈ G, y ∈ GT , f ∈ LN ;x ∈ Z
N
q) : P = gx, y = f(x)

}
,

where x is a vector of length N and f is a homomorphism from Z
N
q to GT .

Intuitively, their protocol is a “standard” (Schnorr-type) Σ-protocol, where the

prover computes r $←− Z
N
q , T = gr and t = f(r) and sends t, T to the verifier.

Upon receiving a challenge c, it computes and sends z = cx + r to the verifier.
The verifier then verifies if: gz ?= TP c and f(z) ?= cy+ t (later in this section, we
will denote the value TP c as Q). Note that, the third round message z ∈ Z

N
q that

the prover sends in this protocol contains O(N) elements, which is undesirable.
To compress the communication complexity of this last round message, this

line of work makes the observation that the message z is itself a trivial proof of
knowledge for an instance of Rcompressed. Specifically,

{
(g ∈ G

N , TP c ∈ G, cy + t ∈ GT , f ∈ LN ; z ∈ Z
N
q) : P = gz, y = f(z)

}
.

Importantly, however, sending z reveals nothing about x. As such, for reducing
the communication complexity of the base protocol, it suffices to design a proof of
knowledge for Rcompressed that need not be zero-knowledge. The various versions
of Compressed Σ-Protocols design slightly different variants of this compressive
“folding” proof of knowledge. In this work, we focus on the one presented in [4].

Folding Argument. They start by enabling the prover and the verifier to split
the statement in half and fold it in on itself, resulting in a transcript that is
11 Although GT is often used to indicate a target group in a pairing, in this context it

simply refers to the target group of the homomorphism; there are no pairings here.
Additionally, we encourage the reader to think of G simply as Zq, as this is the clear
motivation for the proof system.

372 A. Goel et al.

half the size. This is done as follows: the verifier generates a random challenge
c ∈ Zq, and the task of proving the original instance is reduced to the problem of
proving another instance of Rcompressed for a new linear form f ′ = cfL +fR with
bases g′ = gc

L ∗ gR. Note the dimension of each of these is half the dimension
of the original. All that remains now is to generate a new commitment P ′ and
find a new target value y′ for this reduced-dimension instance. The prover and
verifier compute this as follows:

(1) Before c is sent by the verifier, the prover computes A = gxL

R , a =
fR(xL), B = gxR

L , b = fL(xR) and sends (A, a,B, b) to the verifier.
(2) The verifier then samples and sends c.
(3) The prover and verifier compute P ′ = AP cBc2 and y′ = a + cy + c2b.

The new instance is now of the form:
{
(g

′ ∈ G
N/2

, AP
c
B

c2 ∈ G, y
′ ∈ GT , f

′ ∈ LN/2
;x

′ ∈ Z
N/2
q) : AP

c
B

c2
= g

′x′
, y

′
= f

′
(x

′
)

}

Note that a trivial proof of knowledge for this new instance is just x′ = xL +
cxR, which is already half the length of the initial x. The same process can
be repeated again for computing a proof of knowledge of x′, to further reduce
the communication complexity. This process is recursively applied until the final
trivial witness is of a constant size.

We note that Attema et al. have demonstrated how to use their protocol(s) to
prove generic circuit satisfiability, by arithmetizing the circuit into a compatible
format. We focus on the simpler base case where the prover only wishes to prove
a linear form, and discuss the generalization in the full version of our paper [28].
We now state the main Theorem from [4].

Theorem 7 ([4]). Let N > 2. There exists a (2μ+3)-move protocol Πcompressed

for relation Rcompressed, where μ = �log2(N)� − 2. It is a perfectly complete,
special honest-verifier zero-knowledge and unconditionally (2,3,3, . . . , 3)-special
sound.

5.1 Compressed Σ-Protocols are Stackable

We consider statements of the form: Rdis-compressed = {(g ∈ G
N , {Pi ∈ G, yi ∈

G
i
T , fi}i∈[�]; a ∈ [�],xa ∈ Z

N
q) : Pa = gxa , ya = fa(xa)}. Notice that this

statement allows for different homomorphisms and commitments for each clause
i ∈ [�]. This is a stronger notion of disjunctions than considered in [4], which
give proofs where either the homomorphism or commitment is fixed across a
disjunction of multiple clauses. Our goal in stacking will be concrete speed;
specifically, we aim to minimize the number of expensive group operations and
multi-exponentiations the prover is required to do for each clause.

Intuition. A first order intuition for speed-stacking Compressed Σ-Protocols
is as discussed in the technical overview: first stack the communication ineffi-
cient base protocol, and then apply the recursive folding “after” stacking the
protocols together. The base Σ protocol in Compressed Σ-Protocols can triv-
ially be stacked using the stacking compiler given from Goel et al. [26], reusing

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 373

the entirety of z as a recyclable message and allowing t, T to be deterministi-
cally recomputed. As such, it is natural to expect that this multi-round protocol
should contain all recyclable messages besides t, T , and indeed it does.

We note, however, that Attema et al.’s choice of compression mechanism
requires a more careful analysis of this stacking approach. Not all the messages
in the tail are recyclable. Observe that the messages in the tail are of the form
Ai, Bi, ai, bi. While Ai, Bi are clearly recyclable, ai, bi are outputs of some com-
bination of parts of the linear form f and hence depend on f . Moreover, the
computation required to verify the tail is also not reusable. Specifically, the lin-
ear form f is itself incorporated into the compression mechanism, and f is never
blinded, i.e. the computations relying on f cannot be “recycled” (to slightly
abuse our terminology). As such, directly stacking the protocol will run into
both efficiency problems and difficulty in proving zero-knowledge (i.e., in ensur-
ing that the index of the active branch remains hidden).

We propose two minor modifications to this protocol to maximize stacking:

(1) Sending Q1: In the original protocol described in [4], the prover and verifier
independently compute the value Q1 (i.e., TP c from the base protocol). The
first modification that we propose is to have the prover send Q1 during the
first folding. This modification is simply for efficiency reasons (and therefore
does not impact soundness or zero-knowledge) as Q1 can be deterministi-
cally computed by the verifier and the deterministic simulator. However,
computing Q1 directly from the transcript (and, looking ahead, the recy-
clable messages) for simulating other messages is expensive — involving
many exponentiations — and therefore we would like to avoid computing it
as part of our deterministic simulator Sdet. This modification is similar to
the one used to make Aurora efficiently stackable in the previous Section.

(2) Randomizing ai and bi: In each round i of the folding argument, the
prover sends ai = fi,R(xi,L) and bi = fi,L(xi,R). As such, as discussed
above, ai and bi are not recyclable. Note that there are cases when the ver-
ifier already knows the values of ai and bi that it should expect to receive
based on the functions fi,L, fi,R; for example, if either is the zero function.
More generally, the verifier might be able to predict the value of ai, bi given
f, ai−1, bi−1, ci−1, ai−2, bi−2, ci−2 As such, ai, bi are not generally recy-
clable. However, since f is a linear form, we observe that the possible values
of ai, bi correspond to the solutions of a linear system in the coefficients of
f and the challenges so far. As such, they are either marginally uniform, or
there is an efficient algorithm determining their unique assignment. Hence,
we propose to modify the protocol to have the prover send uniform elements
ai or bi when their “correct” value can already be determined by the verifier.
The verifier can simply ignore these elements when the “correct” value is
already determined. It is easy to see that this does not affect soundness or
zero-knowledge of Compressed Σ-protocols.

We give a complete description of the protocol, including these modifica-
tions in the full version [28]. To capture our second modification, we define
a function UniqueOrRand that is used to determine values ai and bi in each

374 A. Goel et al.

folding. In particular, for each folding (to compute ai, bi), it takes the fol-
lowing inputs: the function f , evaluation y = f(x), previously computed val-
ues and challenges ai−1, bi−1, ci−1, ai−2, bi−2, ci−2 . . . and f1,R(xiL) (when com-
puting ai) or f1,L(xiR) (when computing bi). UniqueOrRand checks if the val-
ues ai and bi are already determined based on previous computed values and
challenges — in which case it outputs a random value —- else, it outputs
f1,R(xiL) for ai and f1,L(xiR) for bi. We are now ready to describe how to
speed-stack Compressed Σ-Protocols and prove the following theorem, setting
Mcomp

rand
= (Q1, A1, B1, a1, b1, . . . , Aμ−1, Bμ−1, aμ−1, bμ−1, z) for notational conve-

nience.

Theorem 8. Compressed Σ-protocols [4], denoted as Πcompressed, is stackable.

We give a proof for Theorem 8 in the full version of the paper. Combining
Theorems 8 and 2, we get the following Corollary.

Corollary 1. Let Πspeed-compressed be output of the compiler in Fig. 2 recur-
sively applied to Πcompressed using Scomp

rand
and Scomp

det
as defined in the proof

of Theorem 8. Then Πspeed-compressed is a stackable ZK-IP for Rdis-compressed

with logarithmic communication complexity, and prover computational complex-
ity O(Time(Πcompressed) + � · Time(Scomp

det
)).

Efficiency of Speed-Stacked Compressed Σ-Protocols. Our goal in stack-
ing Compressed Σ-Protocols is to minimize the number of group operations that
the prover must perform when proving a disjunctive statement, as group opera-
tions are typically significantly more expensive than field operations. Based on
our compiler, it is easy to see that we get the most savings when the linear form
f is actually a homomorphism from one field to another field. In that case the
vast majority of the group operations are only necessary in the active clause.
Concretely, the prover’s computational cost for running the compiled protocol is
Time(Πcompressed)+�·Time(Scomp

det
)+Time(Gen)+Time(EquivCom)+Time(Equiv).

In this case, in Scomp

det
, the prover computes only 1 exponentiation and 1 group

operation (T := Q1P
−c). If we consider the commitment scheme proposed by

Goel et al. [26], both key generation and committing require � exponentiations
and group operations, while equivocation requires only field operations. Thus the
overhead (when counting group operations) introduced from running a disjunc-
tion with � clauses is only 2� exponentiation and 2� group operations. Impor-
tantly all the multi-exponentiations resulting from folding g and computing the
Ai, Bi can be completely avoided.

We note that our modifications to the protocol do introduce some overheads.
Namely, the verifier (and thus the deterministic simulator) need to decide when a
message is already uniquely determined. This computation requires attempting
to solve the system of equations for the particular value ai, bi. The verifier can
simply do this using Gauss-Jordan elimination, which will take N log2(N) field
operations.

Extension to Circuit Satisfiability. Due to space constraints, we discuss the
details of speed-stacking the circuit satisfiability in the full paper [28].

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 375

Acknowledgements. The first author was supported in part by NSF CNS-1814919,
NSF CAREER 1942789 and Johns Hopkins University Catalyst award. This work
was done in part while the first author was a student at Johns Hopkins University
and while they were visiting University of California, Berkeley. The second author is
funded by Concordium Blockchain Research Center, Aarhus University, Denmark. The
third author is supported by the National Science Foundation under Grant #2030859
to the Computing Research Association for the CIFellows Project and is supported
by DARPA under Agreement No. HR00112020021. This work was completed in part
while the fourth author was at Boston University and was supported by DARPA under
Agreement No. HR00112020023. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and
beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol.
12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64840-4 28

3. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer, Cham, August
2020. https://doi.org/10.1007/978-3-030-56877-1 18

4. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k -out-of-n partial knowl-
edge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828,
pp. 65–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 3

5. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp.
549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: 23rd ACM STOC, pp. 21–31. ACM Press, May 1991. https://
doi.org/10.1145/103418.103428

7. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’ n’ Cheese: zero-
knowledge proofs for Boolean and arithmetic circuits with nested disjunctions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
92–122. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 4

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014. https://doi.org/10.1109/SP.2014.36

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1007/978-3-030-84259-8_4
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-17653-2_4

376 A. Goel et al.

11. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

12. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014, pp. 781–796. USENIX Association, August 2014

13. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: Vidick, T. (ed.) ITCS 2020, vol. 151, pp. 5:1–5:32.
LIPIcs, January 2020. https://doi.org/10.4230/LIPIcs.ITCS.2020.5

14. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-
knowledge arguments with (almost) minimal time and space overheads. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 168–197. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 7

15. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 5

16. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

17. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

18. Borodin, A., Moenck, R.: Fast modular transforms. J. Comput. Syst. Sci. 8(3),
366–386 (1974)

19. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

20. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1 27

21. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 3

22. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

23. swisspost evoting: E-voting system 2019. https://gitlab.com/swisspost-evoting/e-
voting-system-2019 (2019)

24. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 11

25. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://doi.org/10.1007/3-540-39200-9_11

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions 377

CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

26. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking Sigmas: a frame-
work to compose Σ-protocols for disjunctions. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part II, pp. 458–487. LNCS, Springer, Heidelberg,
June 2022. https://doi.org/10.1007/978-3-031-07085-3 16

27. Goel, A., Hall-Andersen, M., Hegde, A., Jain, A.: Secure multiparty computation
with free branching. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022, Part I, pp. 397–426. LNCS, Springer, Heidelberg, June 2022. https://doi.
org/10.1007/978-3-031-06944-4 14

28. Goel, A., Hall-Andersen, M., Kaptchuk, G., Spooner, N.: Speed-stacking: fast sub-
linear zero-knowledge proofs for disjunctions. IACR Cryptol. ePrint Arch, p. 1419
(2022). https://eprint.iacr.org/2022/1419

29. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press, October 1986. https://doi.
org/10.1109/SFCS.1986.47

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press,
May 1985. https://doi.org/10.1145/22145.22178

31. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

32. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 9

33. Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 763–792. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 27

34. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 569–598. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3 19

35. Heath, D., Kolesnikov, V.: LogStack: stacked garbling with O(b log b) computation.
In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS,
vol. 12698, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77883-5 1

36. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press, November 2013.
https://doi.org/10.1145/2508859.2516662

37. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018. https://
doi.org/10.1145/3243734.3243805

38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-06944-4_14
https://doi.org/10.1007/978-3-031-06944-4_14
https://eprint.iacr.org/2022/1419
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782

378 A. Goel et al.

39. Kilian, J.: On the complexity of bounded-interaction and noninteractive zero-
knowledge proofs. In: 35th FOCS, pp. 466–477. IEEE Computer Society Press,
November 1994. https://doi.org/10.1109/SFCS.1994.365744

40. Kim, A., Liang, X., Pandey, O.: A new approach to efficient non-malleable zero-
knowledge. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO
2022–42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, 15–18 August 2022, Proceedings, Part IV. Lecture Notes in
Computer Science, vol. 13510, pp. 389–418. Springer (2022). https://doi.org/10.
1007/978-3-031-15985-5 14

41. Kolesnikov, V.: Free IF: How to omit inactive branches and implement S-universal
garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part III. LNCS, vol. 11274, pp. 34–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03332-3 2

42. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: Improvements,
implementation, and applications. Cryptology ePrint Archive, Report 2016/017
(2016). https://eprint.iacr.org/2016/017

43. Liu, H., Yu, Yu., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of Valiant’s
universal circuits: simpler, tighter and more compact. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 365–394. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84245-1 13

44. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Com-
puter Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

45. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC,
pp. 49–62. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897652

46. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

47. Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing, p. 196–203. STOC 1976,
Association for Computing Machinery, New York (1976). https://doi.org/10.1145/
800113.803649

48. Zaverucha, G.: The picnic signature algorithm. Technical report (2020). https://
raw.githubusercontent.com/microsoft/Picnic/master/spec/spec-v3.0.pdf

https://doi.org/10.1109/SFCS.1994.365744
https://doi.org/10.1007/978-3-031-15985-5_14
https://doi.org/10.1007/978-3-031-15985-5_14
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-030-03332-3_2
https://eprint.iacr.org/2016/017
https://doi.org/10.1007/978-3-030-84245-1_13
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1145/800113.803649
https://doi.org/10.1145/800113.803649
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/spec-v3.0.pdf
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/spec-v3.0.pdf

Proof-Carrying Data from Arithmetized
Random Oracles

Megan Chen1, Alessandro Chiesa2, Tom Gur3, Jack O’Connor3(B),
and Nicholas Spooner3

1 Boston University, Boston, USA
2 EPFL, Lausanne, Switzerland

3 University of Warwick, Coventry, UK
Jack.O-Connor@warwick.ac.uk

Abstract. Proof-carrying data (PCD) is a powerful cryptographic primitive
that allows mutually distrustful parties to perform distributed computation in
an efficiently verifiable manner. Known constructions of PCD are obtained by
recursively-composing SNARKs or related primitives. SNARKs with desirable
properties such as transparent setup are constructed in the random oracle model.
However, using such SNARKs to construct PCD requires heuristically instantiat-
ing the oracle and using it in a non-black-box way. [CCS22] constructed SNARKs
in the low-degree random oracle model, circumventing this issue, but instantiat-
ing their model in the real world appears difficult.

In this paper, we introduce a new model: the arithmetized random oracle
model (AROM). We provide a plausible standard-model (software-only) instanti-
ation of the AROM, and we construct PCD in the AROM, given only a standard-
model collision-resistant hash function. Furthermore, our PCD construction is
for arbitrary-depth compliance predicates. We obtain our PCD construction by
showing how to construct SNARKs in the AROM for computations that query
the oracle, given an accumulation scheme for oracle queries in the AROM. We
then construct such an accumulation scheme for the AROM.

We give an efficient “lazy sampling” algorithm (an emulator) for the ARO up
to some error. Our emulator enables us to prove the security of cryptographic
constructs in the AROM and that zkSNARKs in the ROM also satisfy zero-
knowledge in the AROM. The algorithm is non-trivial, and relies on results in
algebraic query complexity and the combinatorial nullstellensatz.

Keywords: proof-carrying data · random oracle model · arithmetization

1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that allows
mutually distrustful parties to perform distributed computation in an efficiently ver-
ifiable manner. The notion of PCD generalizes incrementally-verifiable computation
(IVC) [Val08] and has recently found exciting applications in enforcing language
semantics [CTV13], verifiable MapReduce computations [CTV15], image authen-
tication [NT16], verifiable registries [TFZ+22], blockchains [Mina,KB20,BMRS20,
CCDW20], and more.
c© International Association for Cryptologic Research 2023

C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 379–404, 2023.
https://doi.org/10.1007/978-3-031-30617-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_13

380 M. Chen et al.

All known PCD constructions (and practical IVC constructions) are obtained via
recursive proof composition, a general framework for building PCD from simpler
primitives such as SNARKs [BCCT13,BCTV14,COS20] or accumulation schemes
[BGH19,BCMS20,BDFG21,BCL+21,KST22]. While the specific constructions differ,
the high-level idea remains the same: to prove the correctness of t steps of computation
given proof of correctness for t − 1 steps, one proves that “the t-th step is correct and
there exists a valid proof for the first t − 1 steps”.

The statement that “there exists a valid proof” refers to the verifier of the under-
lying SNARK or accumulation scheme. As such, the resulting PCD scheme makes
non-black-box use of the verifier for the underlying scheme. This leads to a significant
theoretical problem when trying to prove security for constructions based on recursive
composition: almost all known constructions of SNARKs, and all known constructions
of accumulation schemes, are proven secure in the random oracle model (ROM). The
random oracle is an inherently black-box object; in particular, it is believed that there is
no “nontrivial” proof system for statements about the random oracle.

Most prior work in the area [COS20,BCMS20,BCL+21] avoids this problem using
a heuristic step: they assume that there exists some concrete hash function such that
replacing the random oracle with the hash function yields a secure SNARK or accumu-
lation scheme in the standard model (without oracles), and then apply recursive com-
position to this heuristic scheme.

Two prior works [CT10,CCS22] propose a different approach: endow the random
oracle with some additional structure. The PCD construction in [CT10] is in a model
where the random oracle additionally signs its responses using a standard-model signa-
ture scheme; the verifier can then check query-answer pairs by verifying the signature
rather than querying the oracle. Trading cryptographic structure for algebraic structure,
[CCS22] construct PCD in the low-degree random oracle model (LDROM), where par-
ties have access to a random low-degree multivariate polynomial.

Both of these oracle models can be instantiated using hardware tokens. Unfortu-
nately, we do not have any standard model (i.e., software-only) instantiation of these
oracles, even heuristically. This is in contrast to the (usual) random oracle model, where
empirical evidence suggests that “natural” schemes remain secure provided the oracle
is replaced with a suitably “random-looking” hash function [BR93]. Our goal in this
work is to design a new oracle model that simultaneously achieves both desiderata: (a)
there exists a PCD scheme in this model under standard assumptions; and (b) the oracle
can be heuristically instantiated.

1.1 Our Results

In this work we introduce and study a new oracle model, the arithmetized random ora-
cle model (AROM), which provides a random oracle and a corresponding “arithmetiza-
tion” oracle. As in the standard ROM, the random oracle is an idealized model of some
concrete hash function H . The arithmetization oracle is an idealized model of a certain
arithmetization of H , which is a low-degree polynomial PH that can be efficiently com-
puted from the circuit of H . As such, the AROM has a plausible heuristic instantiation:
replace the random oracle by H and the arithmetization oracle by PH , for a suitable
hash function H .

Proof-Carrying Data from Arithmetized Random Oracles 381

Our main result is a construction of PCD in the AROM, based on the [CCS22]
construction of PCD in the LDROM. By instantiating the AROM with a suitable hash
function, we obtain a candidate “real-world” construction of PCD. Formally, we prove
the following theorem.

Theorem 1 (informal). There exists transparent1 (zero-knowledge) PCD in the AROM
(for computations in the AROM), assuming the existence of collision-resistant hash
functions in the standard model.

Our PCD construction is provably secure (in the AROM) for all efficient compliance
predicates. This stands in contrast to all other constructions of PCD (with the exception
of [CT10], but including [CCS22]), whose security proofs are limited to constant-depth
recursion. This is because, like [CT10], our PCD construction preserves the straightline
extraction property of the underlying SNARK.2

To prove our main theorem, we develop various tools for analyzing cryptographic
constructions in the AROM. Our key result here is to show that the additional power
provided by the AROM does not help the adversary win any game defined with respect
to the random oracle alone.

Theorem 2 (informal). Any construction that is secure in the ROM is secure in the
AROM.

An immediate consequence of this theorem is that any construction that is secure
in the standard model is secure in the AROM. In contrast, we do not know whether
an analogous statement holds in the LDROM. We remark that this result is meaningful
even outside the present context: it provides evidence that security in the ROM implies
security against a specific type of non-black-box attack, namely, attacks that treat the
arithmetization of the hash function as a black box.

Comparison to Other Oracle Models. As discussed above, both the ROM and the
LDROM fall short of our goal. While the ROM has a well-established heuristic instan-
tiation, it is unlikely to support a PCD scheme. PCD exists in the LDROM, but we do
not know how to instantiate the oracle. The AROM offers, in some sense, the “best of
both worlds”: a provable construction of PCD and a plausible heuristic instantiation.
Moreover, the proposed instantiation of the AROM does not rely on any cryptography
beyond “random-oracle-like” hash functions. As such, there are no barriers to imple-
menting our scheme.

Post-quantum Security. Our scheme does not rely on any pre-quantum assumption;
it is plausibly post-quantum secure. Moreover, it is conceivable that the scheme is in
fact provably post-quantum secure in the “quantum-accessible” AROM; we leave this
intriguing question to future work.

1.2 Related Work

PCD and IVC in the ROM. There is theoretical evidence that, unlike for SNARKs,
there is no construction of PCD and IVC in the ROM (even allowing for additional

1 The only setup required is a uniform reference string.
2 Some other prior PCD constructions are also based on SNARKs with straightline extraction

(e.g., [Val08,COS20]). However, this property is lost after the heuristic step is applied.

382 M. Chen et al.

“mild” cryptographic assumptions like standard-model CRHs). First, [CL20] shows that
the PCP theorem does not hold for various cryptographically relevant oracle models,
such as the ROM and the LDROM. This suggests that succinct proofs for computations
relative to these oracles may be out of reach. Nevertheless, [CCS22] shows that this is
not the whole story by constructing SNARKs for LDROM computations, particularly
PCD, from a cryptographic assumption. Second, [HN22] shows various impossibilities
for IVC in the ROM. For example, if a particular type of commitment scheme exists,
then zero-knowledge IVC (without a CRS) does not exist in the ROM. This result holds
even if the IVC construction were to rely on “standard” cryptographic assumptions.3

Pseudorandom Oracles. [JLLW22] introduce the pseudorandom oracle model
(PROM) and apply it towards obfuscation. Similarly to the AROM, the PROM aims
to capture cryptographic schemes that make a non-black-box use of the random oracle.
We outline the PROM and explain how it differs from the AROM.

The PROM is specified relative to a (standard model) pseudorandom function fam-
ily Fk, and has two interfaces. The first accepts a key k and outputs a random handle
h (and stores (h, k)). The second accepts a handle h and an input x and outputs Fk(x),
where k is the key corresponding to h. By the security of the PRF, a party holding only
h cannot distinguish the latter interface from a random oracle. On the other hand, a
party holding the key k can use the circuit for Fk in a non-black-box way. [JLLW22]
constructs ideal obfuscation from functional encryption in the PROM.

The key difference between the AROM and the PROM is that the PROM “sepa-
rates” non-black-box and black-box access to the oracle. Specifically, non-black-box
access to the PROM is available only to parties that know k, whereas random oracle
security holds only against parties that do not know k. In the AROM, there is no such
asymmetry: all parties have the same access to the oracle. This is important in the con-
text of recursive composition (which we study) since completeness requires that both
the prover and the verifier have non-black-box access to the oracle. Still, soundness
relies on the security of the random oracle against the prover. It is an exciting open
question to understand whether, despite this apparent barrier, recursive composition is
possible in the PROM.

Augmented RandomOracles. [Zha22] defines the augmented random oracle model to
analyze the resilience of cryptographic transformations in the ROM against uninstantia-
bility results. While ideas about modeling non-black-box access to the random oracle
(and the abbreviation “AROM”) are common to both the augmented ROM and the arith-
metized ROM, the models are very different both technically and in their applications.
We briefly summarize [Zha22] and then explain how our model differs.

Let ro denote the random oracle, and Π denote some protocol. A cryptographic
transformation T usually comes with a guarantee like “if Π is a secure X, then T ro(Π)
is a secure Y”. An uninstantiability result for T typically shows that there exists some
Π such that TH(Π) is insecure for every polynomial-size circuit H . Known uninstan-
tiability results use some non-black-box technique to provide a “trapdoor” that can be
used with respect to any H but is useless for ro. The augmented ROM captures this

3 The paper claims that this result holds for constructions that use falsifiable assumptions but
does not show this explicitly. Nonetheless, one can check that the proof does work for “benign”
cryptographic assumptions.

Proof-Carrying Data from Arithmetized Random Oracles 383

paradigm by requiring T ro(Π) to be secure even if Π has access to an oracle M that
provides some functionality permitted by non-black-box access to H , but with respect
to ro. [Zha22] shows that key uninstantiability results for transformations (e.g., Fiat–
Shamir for arguments [GK03]) lead to insecure protocols in the augmented ROM.

The augmented ROM is a tool for proving a stronger form of security for random
oracle transformations. In particular, no “honest” scheme ever accesses the oracle M ;
indeed, the oracle M is chosen adversarially (and may be trivial). On the other hand,
in the arithmetized ROM, honest parties use the non-black-box access provided by the
arithmetization oracle, whose functionality is (mostly) fixed by the model itself.

2 Techniques

Recall that our goal in this work is to construct proof-carrying data (PCD). Our approach
follows the widely-used template of recursive proof composition. However, our setting
imposes several technical and conceptual challenges. We begin by outlining a vital issue
in proving security for this type of construction, which our work seeks to address.

Recursive proof composition refers to a set of techniques that enable the construc-
tion of PCD (and IVC) from SNARKs or accumulation schemes. With few notable
exceptions (e.g., [Gro16]), all constructions of SNARKs and accumulation schemes
rely on the Fiat–Shamir heuristic, which converts an interactive public-coin argument
system into a non-interactive argument via a cryptographic hash function H . For all of
these SNARK constructions, it is unknown whether this heuristic can be realized from
any concrete (i.e., falsifiable) cryptographic assumption; indeed, there is evidence that
this may not be possible [GW11]. However, we can prove these schemes secure in the
ROM, treating the hash function H as a truly random function ro to which the adversary
has black-box access.

This leads to a fundamental tension in proving security for the recursive composi-
tion of these protocols. On the one hand, to prove security for the protocol itself, we
assume that the adversary treats the hash function H as a black box. On the other hand,
when recursively composing, the honest protocol treats H in a non-black-box way:
specifically, as a concrete polynomial-size circuit. The prior work [CL20,HN22] dis-
cussed in Sect. 1.2 suggests that non-black-box use of H may be necessary to achieve
PCD (and IVC).

2.1 Starting Point: The Low-Degree Random Oracle Model

The work of [CCS22] addresses the aforementioned tension by introducing a new oracle
model called the low-degree random oracle model (LDROM). They then show how to
construct PCD via recursive composition in the LDROM (i.e., using the oracle as a black
box).

In the LDROM, all parties have oracle access to a uniformly random low-degree
multivariate polynomial ρ̂ : Fm → F. Restricting ρ̂ to {0, 1}m ⊆ F

m recovers the usual
random oracle, and [CCS22] show that relevant security properties of the random oracle
continue to hold in the LDROM; in particular, Micali’s SNARK [Mic00] is secure in the
LDROM. Unlike the random oracle, the LDROM admits a query accumulation scheme:
a verifier, with the help of an untrusted accumulation proof, can check the correctness

384 M. Chen et al.

of n queries to ρ̂ using only O(1) queries to ρ̂. [CCS22] construct such an accumulation
scheme and use it to build PCD.

Instantiating the LDROM. [CCS22] observe that the LDROM can be instantiated
using a hardware token that implements the structured PRF of [BGV11]. Of course,
schemes involving hardware tokens have significant drawbacks; finding a plausible
“software-only” instantiation would be much preferable. [CCS22] suggest a natural
strategy: given a “random-oracle-like” hash function H , convert it into an arithmetic cir-
cuit gate-by-gate. Such a circuit does define a polynomial with which we could instan-
tiate the LDROM. Unfortunately, as noted in [CCS22], for widely-used hash functions,
the degree of this polynomial will be large (at least 225). Since the complexity of the ver-
ifier in the query accumulation scheme is linear in the degree of the oracle, the resulting
PCD scheme would be prohibitively expensive.

2.2 The Arithmetized Random Oracle Model

Given the above difficulty, a natural next step is to consider techniques for reducing the
degree of the resulting arithmetic circuit. Since the degree of an arithmetic circuit grows
exponentially in its depth, a natural approach is to try to reduce the depth of the circuit
for H . This can be achieved via the well-known NP reduction from circuit satisfiability
to 3-SAT (a depth-two formula). The output of the reduction is a boolean formula ΦH

with the following property: there is an efficiently computable witness function WH

such that

ΦH(x, y, z) =

{
1 if H(x) = y and WH(x) = z

0 otherwise
.

Converting ΦH into an arithmetic formula (gate-by-gate) yields a polynomial PH of
total degree O(|H|) that agrees with ΦH on boolean inputs.

PH is not a low-degree extension of H (rather of ΦH) and so this is not a candidate
instantiation of the LDROM. As we note later, however, the low-degree structure of
PH will nonetheless allow us to build a query accumulation scheme, inspired by that of
[CCS22]. Moreover, the statement “H(x) = y” can be verified by querying PH only,
given z as a witness. It is therefore plausible that, following the template developed in
the prior work, we can obtain a secure construction of PCD that makes only black-box
use of H and PH .

Of course, given the current state of knowledge, we can only hope to prove that this
PCD scheme is secure in some idealized model. In particular, we would like to model
H as a random oracle. It is then necessary to answer the question: if H is a random
oracle, what should PH look like? A central modeling contribution of our work is to
propose an answer to this question.

A New Oracle Model: The AROM. We refer to our proposed oracle model as the
arithmetized random oracle model (AROM). Before presenting the model, we discuss
two key modeling challenges that arise. Both relate to the fact that the black-box behav-
ior of PH depends in a non-black-box way on H .

– Challenge #1: WH is circuit-dependent. For a concrete circuit H and input x,
WH(x) is a vector representing the assignment to the internal wires of H on input

Proof-Carrying Data from Arithmetized Random Oracles 385

x. This of course depends on the size and structure of the circuit for H , which is no
longer meaningful when H is replaced by a random oracle. We handle this conser-
vatively, by allowing WH to be adversarial. That is, we require that completeness,
soundness, and zero-knowledge hold regardless of the choice of WH , which we
allow to depend on x and the random oracle, and may even itself be randomized.
There is, however, an important caveat. While we allow our WH to depend on the
random oracle, we must restrict this dependency; otherwise, the adversary could use
WH to learn information that it cannot otherwise obtain (e.g., WH could encode a
collision in H). Similarly, if WH is computationally unbounded, the adversary could
use it to break standard-model cryptography. As such, we restrict WH to have an effi-
cient implementation (in particular, it can only make polynomially-many queries to
H).

– Challenge #2: PH is not the unique extension. Even after we have fixed WH

(and hence ΦH), PH has a huge number of remaining degrees of freedom. This is
because it is of individual degree larger than 1, but its behavior is specified only on
boolean inputs. This is a more challenging issue to resolve: letting PH be chosen
adversarially from the set of extensions of ΦH would make the adversary unreal-
istically powerful (see Remark 1). Instead, we model PH as a uniformly random
polynomial of the appropriate degree whose restriction to the hypercube is ΦH . We
propose that this captures the inability of the adversary to leverage the structure of
H (and hence PH) in breaking security. We leave to future work the question of
whether this modeling choice can be weakened (again see Remark 1).

We now give an informal definition of the AROM; for details see Sect. 4. In the AROM,
all parties (honest and malicious) have access to three oracles (ro,wo, v̂o):

– a random oracle ro : {0, 1}m → {0, 1}λ drawn uniformly at random;
– a witness oracle wo : {0, 1}m → {0, 1}w that is an arbitrary PPT-computable func-

tion (see below);
– an extended verification oracle (arithmetization oracle) v̂o : Fm+λ+w → F that

is a random extension of individual degree d ≥ 2 of the verification oracle
vo : {0, 1}m+λ+w → {0, 1} defined as follows:

vo(x, y, z) :=

{
1 if ro(x) = y and wo(x) = z

0 otherwise
.

We discuss each oracle in turn.

– The random oracle ro models the hash function H , as in the standard ROM.
– The witness oracle wo models the witness function WH . It is defined via a

polynomial-size oracle circuit B chosen arbitrarily before the oracle is sampled. On
a query x, wo outputs Bro(x, μx) where μx is sampled uniformly at random (and
is not resampled if x is queried again). The inclusion of μx allows our definition
to subsume, e.g., modeling WH as a random oracle. The efficiency requirement is
necessary to allow for efficient simulation of wo (it prevents wo from being used to
break standard-model cryptography).

386 M. Chen et al.

– The verification function vo models the boolean formula ΦH . Indeed, the definition
of vo is directly obtained from the definition of ΦH by replacing H with ro and WH

with wo.
– The extended verification oracle v̂o models the polynomial PH . The requirement that

d ≥ 2 arises from a technical concern: as noted in [JKRS09], access to the unique
multilinear (d = 1) extension of a function can be surprisingly powerful. (E.g., an
adversary with access to the multilinear extension of v̂o can efficiently invert ro, see
Remark 1.) Requiring d ≥ 2 avoids this issue and is sufficient for our security proofs.
In any case, we want to match the degree of v̂o to that of PH for some concrete hash
function H , and the degree of PH will be at least 2 in each variable.4

A construction that makes black-box use of H,WH , ΦH can be analyzed in the AROM
as suggested by the above discussion: replace H with ro, WH with wo, and PH with v̂o
(with matching degree bound d).

In Sect. 2.3 we describe our construction of PCD in the AROM. This construction
relies on a “lazy sampling” procedure for the AROM, a key technical contribution that
we describe in Sect. 2.4.

AROM vs. LDROM. Superficially the AROM and LDROM seem quite similar;
indeed, they both aim to capture some arithmetization of the random oracle. However,
there are notable differences between the two models, even putting aside the differing
instantiability considerations. We highlight a few such differences.

– The LDRO is a low-degree extension over a field F of a random function {0, 1}m →
F. Hence the security of the LDRO as a random oracle depends on |F|. The ARO
decouples the choice of F from the random oracle: one may choose the codomain
{0, 1}λ of ro independently from the field F over which v̂o is defined. The security
of ro (even in the presence of v̂o) depends only on λ. That said, in both the LDROM
and the AROM, the security of their respective query accumulation schemes depends
on |F|.

– The LDRO is a linear code random oracle; i.e., it is sampled at random from a linear
space over F. The ARO is also sampled uniformly from some set, but this set does
not form a linear space. This means that tools developed in [CCS22] for analyzing
linear code random oracles do not directly apply. That said, the ARO does have
some linear structure: the oracle v̂o is sampled uniformly from the (affine) space of
low-degree extensions of vo. This fact will be useful for emulating the AROM.

– The LDRO has security properties (e.g. collision resistance, unconditional
SNARKs) even when d = 1 (i.e., it is a random multilinear polynomial). The ARO
is not even one-way when d = 1.

Remark 1 (choice of extension). We set v̂o to be a random extension of vo of individual
degree d ≥ 2. We explain why setting v̂o to be an arbitrary extension of vo would grant
the adversary too much power.

First consider the case when v̂o is the unique multilinear extension of vo (d = 1).
Given oracle access to a multilinear polynomial P over a field F of characteristic differ-
ent from 2, a single query to P suffices to efficiently evaluate the sum

∑
x∈{0,1}n P (x)

4 The degree of a variable in PH is equal to the number of clauses in ΦH in which it appears.
Every wire appears in at least two clauses in ΦH : once as an output and once as an input.

Proof-Carrying Data from Arithmetized Random Oracles 387

[JKRS09]. We can use this capability and the structure of vo to invert ro: given a target
image y ∈ {0, 1}λ, perform a binary search for a preimage of y by evaluating the sum∑

x1,z v̂o((x0, x1), y, z) for different prefixes x0.
Next consider the higher-degree case: v̂o is an adversarially-chosen extension of

vo of degree d ≥ 2. Given oracle access to a polynomial P of individual degree d, a
single query to P suffices to efficiently evaluate the sum

∑
x∈Hn P (x) where H is a

multiplicative subgroup of F with |H| > d [CFS17, Lemma A.4]. Assume that F has
such a subgroup H of size d+1. We can embed {0, 1} into H via an affine shift, and so
we may abuse notation to assume {0, 1} ⊆ H . Choose v̂o to be the following extension
of vo : {0, 1}n → F: v̂o(x, y, z) = vo(x, y, z) for (x, y, z) ∈ {0, 1}n, and v̂o(w) = 0
for w ∈ Hn\{0, 1}n. Note that v̂o has individual degree |H| − 1 = d. Given this
extension we can then use binary search as in the multilinear case to invert ro.

The above gives some justification for modelling v̂o as a random low-degree exten-
sion of vo. Of course, there are many choices that lie in between adversarial and ran-
dom. For example, one could set v̂o to be drawn from an adversarially-chosen distribu-
tion with “enough” entropy. It is not clear, however, whether such a choice would be
substantially closer to “reality” than our choice.

2.3 Building PCD Secure in the AROM

Prior work [CCS22] shows that to obtain PCD in an oracle model O, it suffices to
construct: (i) a SNARK for NP relative to O; and (ii) an accumulation scheme for
O-queries relative to O. Further, the resulting PCD scheme is zero-knowledge if the
SNARK and accumulation scheme also satisfy zero-knowledge. The PCD construction
in the LDROM in [CCS22] follows by establishing these results for the LDROM. Sim-
ilarly, our construction of PCD will follow by establishing these results for the AROM.

(i) SNARKs in the AROM. [CCS22] prove that Micali’s SNARK remains
(information-theoretically) secure in the LDROM, via a rewinding argument. In the
AROM, we show a much more general theorem.

Theorem 3 (informal). Let p be a predicate that queries ro, and let A be an algorithm
querying (ro,wo, v̂o) that outputs x satisfying pro with probability ε. Then there is an
algorithm B, of similar efficiency to A, that queries ro only and outputs x satisfying pro

with probability ε − negl(λ).

Theorem 3 follows directly from our emulator for v̂o, which we discuss further in
Sect. 2.4. It is not known whether a similar result holds for the LDROM.

As an illustrative example, we can use Theorem 3 to prove that the ARO is collision-
resistant. By applying Theorem 3 to the predicate pro that, given (x, x′) ∈ {0, 1}m ×
{0, 1}m, checks that x �= x′ and ro(x) = ro(x′), we deduce that the ARO is collision-
resistant from the fact that the RO is collision-resistant.

We use Theorem 3 to prove knowledge soundness and zero knowledge of Micali’s
SNARK in the AROM.

– Knowledge soundness. We use Theorem 3 to prove that Micali’s SNARK is secure
in the AROM, via a straightline extractor. Informally, since we can cast knowledge
soundness of Micali’s SNARK as an oracle predicate p, any adversary A that breaks

388 M. Chen et al.

that security property in the AROM can be transformed via Theorem 3 into an adver-
sary B that breaks it in the ROM. We can then apply the straightline extractor for
Micali’s SNARK to B. Since B invokes A in a straightline manner, the resulting
AROM extractor is also straightline.

– Zero-knowledge. We prove that Micali’s SNARK is zero knowledge in the AROM.
Our zero knowledge simulator that programs the oracle; this is a commonality with
the zero knowledge simulators for Micali’s SNARK in both the ROM and in the
LDROM (see [CCS22]). To program the oracle, the simulator relies on a slightly
stronger version of our emulator, which emulates oracle queries conditioned on an
input list of (real) oracle query-answer pairs. Our hybrid argument invokes Theorem
3 and the Micali SNARK’s zero knowledge property in the ROM. Informally, we
move between hybrids in the ROM vs AROM using Theorem 3, setting the predicate
p to be any distinguisher between hybrids.

(ii) An accumulation scheme for ARO queries. The accumulation scheme for LDRO
queries in [CCS22] is obtained by applying the Fiat–Shamir transformation to the (inter-
active public-coin) query reduction protocol of [KR08]. We follow the same template
in the case of the ARO. The first observation is that it suffices to accumulate queries to
v̂o only, because a query to ro or wo can be verified via a query to v̂o.5

The [KR08] query reduction protocol itself works for any low-degree polynomial:
in particular, for v̂o. As in [CCS22], the central challenge is showing soundness of
the Fiat–Shamir transformation in this setting. Note that here we cannot appeal to our
general theorem above because the verification predicate queries v̂o.

The soundness of our accumulation scheme is captured by a zero-finding game
(ZFG). First explicitly described by [BCMS20], the most basic form of a ZFG chal-
lenges the adversary to output a commitment cm (under a standard-model commitment
scheme) to a low-degree polynomial f �≡ 0 such that f(ro(cm)) = 0. Intuitively this
is hard because f is fixed by cm before ro(cm) is known, and so the probability that
f(ro(cm)) = 0 cannot be much larger than the probability that f(α) = 0 for a random
α ∈ F, which is negligible for large fields. [CCS22] shows that a more general version
of the ZFG holds in the LDROM, where the ZFG polynomial may depend in a restricted
way on the LDRO itself. That is, they show that it is hard to find a commitment cm to
polynomials f, g such that f − ρ̂ ◦ g �≡ 0 but (f − ρ̂ ◦ g)(ρ̂(cm)) = 0.

The security of our construction depends on the hardness of a similar problem in
the AROM, captured by the following lemma.

Lemma 1 (informal). It is hard for any polynomial-size adversary with access to the
ARO (ro,wo, v̂o) to find a commitment cm to a pair of low-degree polynomials f, g such
that f − v̂o ◦ g �≡ 0 but (f − v̂o ◦ g)(ro(cm)) = 0.

We prove Lemma 1 by adapting the proof of the ZFG in [CCS22]. The proof relies
on a forking lemma in the LDROM, which in turn relies on the ability to efficiently
simulate the oracle in order to sample a forking transcript. For the AROM, we will rely
on the emulator described in Sect. 2.4. The proof proceeds as follows. Looking ahead,

5 Recall that ro(x) = y and wo(x) = z if and only if v̂o(x, y, z) = 1.

Proof-Carrying Data from Arithmetized Random Oracles 389

we note that the emulator maintains a polynomial P that it uses to answer queries to v̂o.
We show that the adversary cannot win the ZFG when v̂o is replaced by P . This argu-
ment uses the forking lemma with respect to the emulator, and follows [CCS22], with
one difference: this approach doesn’t require a bespoke forking lemma as in [CCS22],
and can be carried out using a general forking lemma [BN06, Lemma 1]. This general
forking lemma is designed for random oracle adversaries, however, as we have already
replaced v̂o with the emulator we can “perfectly emulate” P using the emulator. Further,
we can perfectly emulate wo using the witness circuit B. This allows us to reduce the
ZFG adversary to a random oracle adversary and thus apply the general forking lemma.
Then, since the emulator is statistically indistinguishable from v̂o, the adversary cannot
win the original ZFG.

Before we describe our emulator, we discuss an important feature of our PCD con-
struction.

Extraction and PCD Depth. Almost all constructions of PCD suffer from the “extrac-
tor blowup” problem. To obtain a PCD transcript of depth d, we apply the SNARK
extractor to itself d times. If the extractor corresponding to a size-S adversary is of size
Sc, then the final extractor size is scd

, where s is the size of the original PCD adversary.
As a result, one obtains meaningful security guarantees when d is a constant.

There is a single construction that does not suffer from this issue: the construc-
tion of [CT10]. This is because their SNARK (in their signed random oracle model)
is straightline (or “list”) extractable. Micali’s SNARK is also straightline extractable
in the ROM [Val08]. Of course, after heuristically instantiating the oracle there is no
longer any notion of “straightline”. On the other hand, we can easily show that Micali’s
SNARK is straightline extractable in the AROM. (We do not know how to show this in
the LDROM; [CCS22] instead gives a rewinding extractor for Micali’s SNARK.)

As a result, our PCD construction is secure for arbitrary recursion depth.

2.4 Emulation of the ARO

As discussed in Sect. 2.3, we aim to construct PCD in the AROM by proving that crypto-
graphic properties in the ROM, specifically knowledge soundness and zero-knowledge
of the Micali SNARK, also hold in the AROM. To this end, we design an efficient
algorithm M that answers queries in a way that is statistically indistinguishable from
answers of the ARO. We refer to such an algorithm as an emulator M for the AROM.6

Recall that the ARO consists of a tuple of oracles (ro,wo, v̂o). Our emulator M
achieves a special (stronger) type of emulation: given oracle access to some ro and wo,
M can efficiently emulate v̂o drawn from the ARO distribution conditioned on (ro,wo).
We use this type of emulation to prove Theorem 3.

Lemma 2 (informal). There exists a probabilistic algorithm M such that for every
security parameter λ ∈ N, query bound t ∈ N, and t-query adversary,∣∣∣∣ Pr

(ro,wo,v̂o)←O(λ)

[
A(ro,wo,v̂o) = 1

]
− Pr

(ro,wo,v̂o)←O(λ)

[
AM(ro,wo)

= 1
]∣∣∣∣ ≤ t

2λ
. (1)

6 Emulators are sometimes known as “lazy samplers” or “simulators”. In this paper we reserve
the word simulator to refer to zero knowledge simulators.

390 M. Chen et al.

Moreover,M is degenerate with respect to (ro,wo): it answers queries to those oracles
by forwarding them to the corresponding “real” oracle (and recording the answers).

We refer to the absolute difference in Eq. 1 as the emulation error. An emulator is
perfect if it has zero emulation error.

Prior Oracle Emulators. Recall that a random oracle is a function ro chosen uniformly
from ({0, 1}m → {0, 1}λ). It has a well-known perfect (stateful) emulator Mro that
“lazily” samples answers: when Mro receives a new query x ∈ {0, 1}m, it uniformly
samples and returns y ∈ {0, 1}λ, and then saves the query-answer pair (x, y) into its
state; when Mro receives a repeat query, it returns the saved answer.

The low-degree random oracle [CCS22] also has a perfect emulator, based on suc-
cinct constraint detection for the Reed–Muller code [BCF+17].

Challenges for the ARO. The low-degree structure of v̂o may suggest that succinct
constraint detection directly yields a construction of M(ro,wo) with perfect emulation.
However, the “sparsity” of vo implies that the set of all possible v̂o is not a linear
space, as we now explain. Recall that for x ∈ {0, 1}m, y ∈ {0, 1}λ, z ∈ {0, 1}w,
v̂o(x, y, z) = vo(x, y, z) = 1 if and only if y = ro(x) and z = wo(x), and 0 other-
wise. Hence, if v̂o1, v̂o2 are extended verification oracles, v̂o′ = v̂o1 + v̂o2 many not
be an extended verification oracle because there may exist x, y1, y2, z1, z2 such that
v̂o′(x, y1, z1) = v̂o′(x, y2, z2) = 1 and y1 �= y2. Hence, unlike for the LDRO, we
cannot directly construct M(ro,wo) from succinct constraint detection.

Our Approach. We adopt a novel approach to simulation. First, we design a query-
efficient but time-inefficient perfect emulator for a random low-degree extension f̂ of
a given arbitrary function f .7 This almost suffices for our goal because v̂o is a random
low-degree extension of the function vo defined by (ro,wo), which we can efficiently
compute at any point by querying ro and wo. Second, we additionally achieve time-
efficient emulation by leveraging the sparsity of vo, at the cost of a small statistical
emulation error.

(1) Time-inefficient emulation of a random low-degree extension. Let f : {0, 1}n →
F be a function and d ∈ N a degree bound. We seek an emulator MLD such that Mf

LD

answers queries in a way that is identically distributed to a random extension f̂ of f
with individual degree at most d.

We fix some notation. For S ⊆ F
n and w ∈ {0, 1}n, we say that w is S-good if

there exists an n-variate polynomial Qw,S of individual degree at most d such that: (i)
Qw,S(w) = 1; (i) Qw,S(x) = 0 for every x ∈ {0, 1}n\{w}; and (i) Qw,S(z) = 0 for
every z ∈ S. We say that w is S-bad if it is not S-good. Intuitively, w is S-bad if f(w)
can be deduced from f̂ |S (given the structure of a low-degree extension f̂). Note that
S-badness is monotone with respect to S, and that if w ∈ S then w is S-bad.

The query-efficient but time-inefficient emulator MLD works as follows.

Mf
LD:

7 In contrast, emulating the low-degree random oracle (as in [CCS22]) corresponds to emulating
f̂ for a random function f that the emulator samples itself. This considerably simplifies the
task, and in particular enables a time-efficient perfect emulation.

Proof-Carrying Data from Arithmetized Random Oracles 391

1. Initially sample a random low-degree extension P of the all-zero function on
{0, 1}n.

2. For each new query x, answer it as follows.
• Let S ⊆ F

m be the set of points queried prior to x.
• Let W denote the set of w ∈ {0, 1}n that are S-good and (S ∪ {x})-bad.
• Update P := P +

∑
w∈W f(w) · Qw,S .

• Return P (x) as the answer.

The emulator MLD maintains the invariant that P is a low-degree extension of the
function g : {0, 1}n → F given by g(w) = 0 for S-good w and g(w) = f(w) for S-
bad w. That is, g is consistent with f at every point the adversary “knows”, and is zero
elsewhere. It is also crucial that MLD does not change P (x) for any x ∈ S, since such
a change would be detectable by the adversary; this is achieved since Qw,S(x) = 0 for
all x ∈ S. Together these facts imply that MLD achieves perfect simulation.

The query complexity of MLD is equal to the size of the union of all sets W across
all invocations of Step 2 , which is equal to the number of S-bad points when S is
the set of all queries made to f̂ . Aaronson and Wigderson [AW09, Lemma 4.3] proved
that, provided d ≥ 2, the number of S-bad points is at most |S|, which in the context of
Lemma 2 is the query complexity of A.

(2) Time-efficient emulation from sparsity. There are three main sources of time-
inefficiency in the emulator MLD: (i) sampling the initial polynomial P ; (ii) computing
the polynomials Qw,S ; and (iii) computing the set W . We consider each of these dif-
ficulties in turn. Throughout we will make use of the random multivariate polynomial
emulation algorithm of [BCF+17], which achieves the following guarantee.

Lemma 3. There is an efficient probabilistic algorithm LDSample such that for every
degree bound d ∈ N, set S ⊆ F

m, map h : S → F, q ∈ F
m, and α ∈ F,

Pr[LDSample(1d, S, h, q) = α] = Pr[P (q) = α | P |S = h] ,

where P is a uniformly random m-variate polynomial of individual degree at most d.8

We address the first two difficulties via suitable use of algebra.

(i) Sampling P . The polynomial P is initially a random low-degree extension of the
all-zero function. We do not know how to use LDSample to sample P directly,
since that would need S = {0, 1}m, which is an exponentially-sized set. Instead,
we use a structural result about low-degree extensions of the zero function, the
combinatorial nullstellensatz [Alo99].

Lemma 4 (informal). If a polynomial P is zero on {0, 1}m, then there exist polynomi-
als (Ri)mi=1 such that

P (X) ≡
m∑

i=1

Xi(Xi − 1)Ri(X) . (2)

8 If the RHS is not well-defined, LDSample outputs ⊥.

392 M. Chen et al.

Combining Lemma 4 with a linear-algebraic argument, we show that sampling each
Ri in Eq. 2 uniformly at random yields a uniformly random low-degree extension of the
all-zero function. We can then sample each Ri via LDSample.

(ii) Computing Qw,S . [AW09] sets the polynomial Qw,S := δw · pw,S where:
– δw is the unique multilinear polynomial with δw(w) = 1 and δw(x) = 0 for all

x ∈ {0, 1}m\{w};
– pw,S is a multilinear polynomial with pw,S(w) = 1 and pw,S(z) = 0 for all

z ∈ S.
The polynomial δw is easy to compute because it has a succinct expression. In
contrast, the polynomial pw,S may not have a succinct expression, but is specified
via its evaluations on the polynomial-sized set S ∪ {w}, so queries to pw,S can be
answered via LDSample.

We do not know of an algorithm that can efficiently compute, given a set S ⊆ F
n, the

set of all S-bad points. As a result, we do not know how to obtain an efficient emulator
for a random low-degree extension of an arbitrary function f . Nevertheless we address
the third difficulty by leveraging the structure of vo.

(iii) The set W . We observe that vo is sparse: it is nonzero only at points (x, y, z) for
ro(x) = y,wo(x) = z. If the adversary has not queried ro at x, then intuitively
(since ro(x) is random) it will not be able to find any y, z such that vo(x, y, z) = 1,
even given access to v̂o. In particular, the probability that the set W contains any
(x, y, z) ∈ {0, 1}m+λ+w such that vo(x, y, z) = 1, but ro(x) was not yet queried,
should be negligible. Indeed, we show that this probability is at most |S|/2λ.
Observe that Step 2 of the time-inefficient emulator does nothing if f(w) = 0
for all w ∈ W . It follows from the above that to achieve simulation accuracy
O(|S|/2λ), it suffices to perform Step 2 only for points (x, y, z) for which the
adversary has already queried ro at x and ro(x) = y,wo(x) = z. Since we observe
the adversary’s queries to ro, this set of points is easy to determine.
To show this formally we follow an “identical-until-bad-is-set” analysis [BR06].

3 Preliminaries

3.1 Notations

We define [n] := {1, . . . , n}. We use F
≤d[X1, . . . , Xm] to denote the set of m-variate

polynomials of individual degree at most d with coefficients in F; we write deg(·)
to denote the individual degree. For d = (d1, . . . , dm), we use F

≤d [X1, . . . , Xm] to
denote the set of m-variate polynomials such that the variable Xi has individual degree
at most di for each i ∈ [m].

Functions. We use Dom(f) to denote the domain and Cod(f) to denote the codomain
of a function f . We use (X → Y) to denote the set of all functions {f : X → Y }. For
a linear map Φ, we use ker(Φ) to denote the kernel of Φ and im(Φ) to denote the image
of Φ. We say that a function is total if it is defined for all elements of its domain, and
say that it is not total otherwise.

Proof-Carrying Data from Arithmetized Random Oracles 393

Distributions. For finite set X , we write x ← X to denote that x is drawn uniformly at
random from X . We use supp(D) to denote the support of the distribution D. We write
U(X) to denote the uniform distribution over the set X .

Oracles. A random oracle is defined as a function ro sampled uniformly at random
from ({0, 1}m → {0, 1}n) for some m,n ∈ N.

Oracle Algorithms. For a function θ : X → Y , we write Aθ for an algorithm with
oracle access to θ. Further, for a tuple of functions (θ1, . . . , θν), where ν ∈ N, with
θi : Xi → Yi, we write A(θ1,...,θν) for an algorithm with oracle access to each θi for
i ∈ [ν], and AθS for an algorithm with oracle access to a subset of functions {θi| i ∈ S}
where S ⊆ [ν].

Oracle Identifiers and Oracle Transcripts. Given an oracle distribution O such that
supp(O) contains tuples of ν ∈ N oracles, we assign to each oracle in the tuple a unique
oracle identifier: oid ∈ [ν]. Then, an O-query-answer transcript tr is a list consisting
of query-answer pairs, along with the oracle identifier corresponding to the oracle to
which each query was made. That is, tr := [(oidi, xi, yi)]ti=1 such that there exists
(θ1, θ2, . . . , θν) ∈ supp(O) satisfying θoidi

(xi) = yi for all i ∈ [t]. (Note that oidi ∈
[ν] indicates that the i-th query was made to θoidi .)

When considering oracle distributions O whose support contains tuples of ora-
cles, it is often useful to view this tuple (θ1, . . . , θν) as a bundle of oracles
θ : [ν] × ⋃

(θ1,...,θν)∈supp(O)

⋃
i∈[ν] Dom(θi) → ⋃

(θ1,...,θν)∈supp(O)

⋃
i∈[ν] Cod(θi)

which takes an oracle identifier as input alongside the query point, i.e., θ ← O and
θ(oidi, x) = θoidi(x).

Query Complexity. An algorithm with access to an oracle O is t-query if its O-query-
answer transcript has length ≤ t.

Indexed Relations. An indexed relation R is a set of triples (i,x,w) where i is the
index, x is the instance, and w is the witness; the corresponding indexed languageL(R)
is the set of index-instance pairs (i,x) for which there exists a witness w such that
(i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits consists
of triples where i is the description of a boolean circuit, x is a partial assignment to
its input wires, and w is an assignment to the remaining wires that makes the circuit
output 0.

Oracle Relations. For a set of oracle distributions X , we write RX to denote the set
of indexed relations {Rθ : θ ∈ ⋃

O∈X supp(O)}. When considering sets of oracle
distributions X for which each O ∈ X is such that supp(O) contains tuples of ora-
cles (θ1, . . . , θν), for ν ∈ N, with oracle identifiers (oid1, . . . oidν), we write R(X ,oid)

to denote the set of indexed relations {Rθoid : (θ1, . . . , θν) ∈ ⋃
O∈X supp(O)}. We

define R(X ,oid) ∈ NP(X ,oid) if and only if there exists a polynomial-time oracle Turing
machine M such that, for every (θ1, . . . , θν) ∈ ⋃

O∈X supp(O), Rθoid = {(i,x,w) :
Mθoid(i,x,w) = 1}.

Security Parameters. We assume for simplicity that all public parameters have a length
of at least λ so that efficient algorithms that receive such parameters can run in time (at
least) polynomial in λ.

394 M. Chen et al.

Adversaries. An adversary (or extractor) is polynomial-size if it can be expressed as
a circuit of polynomial size. We also consider a relaxed definition: an adversary (or
extractor) running in (non-uniform) expected polynomial-time is a Turing machine pro-
vided with a polynomial-size non-uniform advice string and access to an infinite random
tape, whose expected running time for all choices of advice is polynomial.

An adversary A with expected running time t and success probability p can be
converted into a circuit of size O(t/ε) with success probability p − ε as follows: first
truncate the execution of A at running time t/ε; then choose as advice the randomness
that maximizes the success probability of the truncated A.

For ν ∈ N and a distribution O, whose support contains tuples of oracles
(θ1, . . . , θν), we refer to an adversary with access to (θ1, . . . , θν) ← O as an O-
adversary.

Stateful Algorithms. An algorithm A is stateful if it has the following syntax:

– A.Initialize(pp) → z, on input parameters pp, outputs an initial state z.
– A.Evaluate(pp, z0, x) → (z1, y), on input an old state z0 and a query x, outputs a

new state z1 and an output y.

3.2 Non-interactive Arguments in Oracle Models

Given a set of oracle distributions X , a (preprocessing) non-interactive argument rel-
ative for an indexed oracle relation RX is a tuple of algorithms ARG = (G, I,P,V)
that works as follows. Below we denote by θ an oracle (or tuple of oracles) in the set⋃

O∈X supp(O).

– G(1λ) → pp. On input a security parameter λ (in unary), the generator G samples
public parameters pp.

– Iθ(pp, i) → (ipk, ivk). On input public parameters pp and an index i for the relation
R, the indexer I deterministically computes index-specific proving and verification
keys (ipk, ivk).

– Pθ(ipk,x,w) → π. On input an index-specific proving key ipk, an instance x, and
a corresponding witness w, the prover P computes a proof π that attests to the claim
that (i,x,w) ∈ Rθ.

– Vθ(ivk,x, π) → b. On input an index-specific verification key ivk, an instance x,
and a corresponding proof π, the verifier V computes a bit indicating whether π is a
valid proof.

We require ARG to satisfy the following completeness and soundness properties.

– Completeness. For every oracle distribution O ∈ X and adversary A,

Pr

⎡
⎢⎢⎢⎢⎣

(i,x,w) ∈ Rθ

⇓
Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp ← G(1λ)

(i,x,w) ← Aθ(pp)
(ipk, ivk) ← Iθ(pp, i)

π ← Pθ(ipk,x,w)

⎤
⎥⎥⎥⎥⎦ = 1 .

The above formulation of completeness allows (i,x,w) to depend on the oracle θ
and public parameters pp.

Proof-Carrying Data from Arithmetized Random Oracles 395

– Soundness. For every oracle distribution O ∈ X and polynomial-size adversary P̃ ,

Pr

⎡
⎢⎢⎣

Vθ(ivk,x, π) = 1
∧

(i,x) �∈ L(Rθ)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp ← G(1λ)
(i,x, π) ← P̃θ(pp)

(ipk, ivk) ← Iθ(pp, i)

⎤
⎥⎥⎦ ≤ negl(λ) .

The above formulation of soundness allows (i,x) to depend on the oracle θ and public
parameters pp.

We also consider straightline knowledge soundness properties and zero knowledge
for ARG.

Straightline Knowledge Soundness. ARG has straightline knowledge soundness (with
respect to auxiliary input distribution D) if there exists a deterministic polynomial-
time extractor E such that for every oracle distribution O ∈ X and (non-uniform)
polynomial-time adversary P̃ ,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

Vθ(ivk,x, π) = 1
∧

(i,x,w) �∈ Rθ

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp ← G(1λ)
ai ← D(pp)

(i,x, π) tr←− P̃θ(pp, ai)
(ipk, ivk) ← Iθ(pp, i)
w ← E(pp, i,x, π, tr)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ) .

Zero Knowledge. ARG has statistical zero knowledge if there exists a probabilistic
polynomial-time stateful simulator S such that for every oracle distribution O ∈ X and
polynomial-size honest stateful adversary A, the following distributions are negl(λ)-
close in statistical distance:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Aθ(π)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← G(1λ)

(i,x,w) ← Aθ(pp)
(ipk, ivk) ← Iθ(pp, i)

π ← Pθ(ipk,x,w)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ASθ

(π)

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← S(1λ)

(i,x,w)
tr←− Aθ(pp)

π ← Sθ(i,x, tr)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (3)

An adversary A is honest if it outputs (i,x,w) ∈ Rθ with probability 1. Above, the
notation ASθ

indicates that the simulator S (with oracle access to θ) answers the oracle
queries of A.

Succinctness. In this work, we say that a non-interactive argument system ARG for RX

is succinct if there is a fixed polynomial p such that both the length of the proof and the
running time of the argument verifier are bounded by p(λ, |x|). In this case, we refer to
ARG as a SNARG; if ARG also has knowledge soundness, it is a SNARK.

3.3 Proof-Carrying Data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data
scheme (PCD scheme) for a class of compliance predicates F relative to a set of oracle
distributions X if the properties below hold.

396 M. Chen et al.

Definition 1. A transcript T is a directed acyclic graph where each vertex u ∈ V (T)
is labeled by local data z

(u)
loc and each edge e ∈ E(T) is labeled by a message

z(e) �= ⊥. The output of a transcript T, denoted o(T), is z(e) where e = (u, v) is
the lexicographically-first edge such that v is a sink.

Definition 2. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges
e = (u, v) ∈ E(T) and for all θ ∈ ⋃

O∈X supp(O):

– (base case) if u has no incoming edges, Φθ(z(e), z(u)loc ,⊥, . . . ,⊥) = 1;
– (recursive case) if u has incoming edges e1, . . . , em,

Φθ(z(e), z(u)loc , z(e1), . . . , z(em)) = 1.

We say that T is Φ-compliant if E(T) is non-empty and all vertices incident to an edge
are Φ-compliant.

Completeness. For every oracle distribution O ∈ X and adversary A,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎝

Φ ∈ F

∧
(

(∧m
i=1zi = ⊥) ∨ (∧m

i=1V
θ(ivk , zi, πi) = 1)

)

∧ Φθ(z, zloc, z1, . . . , zm) = 1

⎞

⎟

⎠

⇓
V

θ(ivk , z, π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← G(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1) ← Aθ(pp)

(ipk , ivk) ← I
θ(pp , Φ)

π ← P
θ(ipk , z, zloc, [zi, πi]

m
i=1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 1 .

Straightline Knowledge Soundness. PCD = (G, I,P,V) has straightline knowledge
soundness (with respect to auxiliary input distribution D) if there exists a deterministic
polynomial-time extractor E such that for every oracle distribution O ∈ X and (non-
uniform) polynomial-time adversary P̃,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ ∈ F
∧V(ivk, o, π) = 1
∧

(
T is not Φ-compliant ∨ o(T) �= o

)

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp ← G(1λ)
ai ← D(pp)

(Φ, o, π) tr←− P̃
θ(pp, ai)

(ipk, ivk) ← I
θ(pp, Φ)

T ← E(pp, Φ, o, π, tr)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ) .

Zero Knowledge. PCD has statistical zero knowledge if there exists a probabilistic
polynomial-time stateful simulator S such that for every oracle distribution O ∈ X and
polynomial-size honest (stateful) adversary A, the following distributions are negl(λ)-
close in statistical distance:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aθ(π)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)
pp ← G(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1) ← Aθ(pp)

(ipk, ivk) ← I
θ(pp, Φ)

π ← P
θ(ipk, Φ, z, zloc, [zi, πi]

m
i=1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and

⎧
⎪⎪⎨

⎪⎪⎩

AS
θ
(π)

∣
∣
∣
∣
∣
∣
∣
∣

θ ← O(λ)
pp ← S(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1)

tr←− Aθ(pp)
π ← S

θ(Φ, z, tr)

⎫
⎪⎪⎬

⎪⎪⎭

.

Proof-Carrying Data from Arithmetized Random Oracles 397

An adversary A is honest if its output satisfies the implicant of the completeness
condition with probability 1 (i.e., Φ ∈ F, Φθ(z, zloc, z1, . . . , zm) = 1, and either for all
i, zi = ⊥, or for all i, Vθ(ivk, zi, πi) = 1). Above, the notation AS indicates that the
simulator S answers oracle queries of A.

Efficiency.The generatorG, proverP, indexer I and verifierV run in polynomial time. A
proof π has size poly(λ, |Φ|); in particular, it does not grow with each application of P.

3.4 Accumulation Schemes

We recall the definition of an accumulation scheme from [BCMS20], extended to any
set of oracle distributions; then, in Definition 3 below, we describe how to specialize
that notion to the case of accumulating oracle queries.

Let Φ :
⋃

O∈X supp(O(∗)) × ({0, 1}∗)3 → {0, 1} be a predicate (for clarity we
write Φθ(ppΦ, iΦ, q) for Φ(θ, ppΦ, iΦ, q)). Let H be a probabilistic algorithm with access
to θ, which outputs predicate parameters ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D)
that have access to the same oracle θ (except for G). These algorithms satisfy complete-
ness and soundness, and optionally also zero knowledge, as specified below.

Completeness. For every oracle distribution O ∈ X and (unbounded) adversary A,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∀ j ∈ [�], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓

Vθ(avk, [qi]
n
i=1, [accj]

�
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← G(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj]

�
j=1) ← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)

(acc, πV) ← Pθ(apk, [qi]
n
i=1, [accj]

�
j=1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1 .

Note that for = n = 0, the precondition on the left-hand side holds vacuously; this is
required for the completeness condition to be non-trivial.

Soundness. For every oracle distribution O ∈ X and polynomial-size adversary A,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vθ(avk, [qi]
n
i=1, [accj]

�
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓

∀ j ∈ [�], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← G(1λ)

ppΦ ← Hθ(1λ)
(

iΦ [qi]
n
i=1 [accj]

�
j=1

acc πV

)

← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 1−negl(λ) .

Zero Knowledge. There exists a polynomial-time stateful simulator S such that for
every oracle distribution O ∈ X and polynomial-size stateful “honest” adversary A (see
below), the following distributions are (statistically/computationally) indistinguishable:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Aθ
(acc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← G(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj]

�
j=1) ← Aθ(pp, ppΦ)

(apk, avk, dk) ← Iθ(pp, ppΦ, iΦ)

(acc, πV) ← Pθ(apk, [qi]
n
i=1, [accj]

�
j=1)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

398 M. Chen et al.

and
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Aθ
(acc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ← O(λ)

pp ← S(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj]

�
j=1)

tr←− Aθ(pp, ppΦ)

acc ← Sθ(ppΦ, iΦ, tr)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [qi]ni=1, [accj]�j=1) such
that Φθ(ppΦ, iΦ, qi) = 1 and Dθ(dk, accj) = 1 for every i ∈ [n] and j ∈ []. Note that
the simulator S is not required to simulate the accumulation verifier proof πV.

Accumulation Scheme for Oracle Queries. We explain how to specialize the general
notion of an accumulation scheme above to the particular case of accumulating queries
to a tuple of oracles.

Definition 3. Let X be a set of oracle distributions. An accumulation scheme for X -
queries is an accumulation scheme where: (i) the accumulation verifier V does not
access the oracle; (ii) H = ⊥ (and so ppΦ = ⊥); (iii) predicate inputs q are of the
form (x, y);9 (iv) the predicate Φ is defined such that Φθ(ppΦ, iΦ, x, y) = 1 if and only
if θ(x) = y (in particular, ppΦ and iΦ are ignored).

3.5 Commitment Schemes

Let ν ∈ N and let X be a set of oracle distributions, such that each O ∈ X is a
distribution over tuples of oracles (θ1, . . . , θν). A commitment scheme in X is a tuple
CM = (CM.Setup,CM.Commit) with the following syntax.

– CM.Setup, on input a security parameter 1λ, outputs a commitment key ck.
– CM.Commit, on input a commitment key ck, a message m ∈ {0, 1}∗, and random-

ness ω, outputs a commitment cm.

The tuple CM satisfies a binding property and, optionally, a hiding property.

– Binding. For every O ∈ X and efficient adversary A,

Pr

⎡

⎣

m0 �= m1

∧
CM.Commit(ck, m0;ω0) = CM.Commit(ck, m1;ω1)

∣

∣

∣

∣

∣

∣

(θ1, . . . , θν) ← O(λ)

ck ← CM.Setup(1λ)

((m0, ω0), (m1, ω1)) ← A(θ1,...,θν)(ck)

⎤

⎦

≤ negl(λ) .

– Hiding. For every O ∈ X and efficient stateful adversary A that outputs two mes-
sages of the same length, the following distributions are (statistically or computa-
tionally) indistinguishable:

D0(λ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(pp, cm, aux)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(θ1, . . . , θν) ← O(λ)
ck ← CM.Setup(1λ)

(m0, m1, aux) ← A(θ1,...,θν)(ck)

ω ← {0, 1}poly(λ)

cm := CM.Commit(ck, m0;ω)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

9 If X is a set of oracle distributions whose support contains tuples of oracles, then x is assumed
to start with the oracle identifier corresponding to the oracle being queried.

Proof-Carrying Data from Arithmetized Random Oracles 399

and D1(λ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(pp, cm, aux)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(θ1, . . . , θν) ← O(λ)
ck ← CM.Setup(1λ)

(m0, m1, aux) ← A(θ1,...,θν)(ck)

ω ← {0, 1}poly(λ)

cm := CM.Commit(ck, m1;ω)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Note that in this definition CM does not have access to (θ1, . . . , θν). The above general-
izes the notion of a commitment scheme, which is recovered from the above by setting
the oracles to be empty.

Moreover, we say that CM is s-succinct if for every commitment key
ck ∈ CM.Setup(1λ), message m ∈ {0, 1}∗, and randomness ω, it holds that
CM.Commit(ck,m;ω) ∈ {0, 1}s(λ).

We have the following simple claim about any binding and hiding commitment
scheme.

Claim. Let CM be a binding and hiding commitment scheme. Then for every message
m,

Pr
ω,ω′

[
CM.Commit(ck,m, ω) = CM.Commit(ck,m, ω′)

]
= negl(λ) .

A proof of the above claim appears in Claim 3.4 of [CCS22].

3.6 Constraint Detection for Low-Degree Polynomials

Definition 4. Let d = (d1, . . . , dm) ∈ N
m. The low-degree polynomial evaluation

code is defined as follows:

LD[F, m,d] :=
{

c ∈ (Fm → F) : ∃ p ∈ F
≤d [X1, . . . , Xm] s.t. ∀ x ∈ F

m, c(x) = p(x)
}

.

Further, let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, and
d : N → N

m a degree function. We define

LD[F ,m,d] := { LD[Fλ,m(λ),d(λ)] }λ∈N
.

We recall the notion of constraints for linear codes.

Definition 5. Let C ⊆ (D → F) be a linear code. A subset Q ⊆ D is constrained
if there exists a nonzero z : Q → F such that, for every c ∈ C, ∑

x∈Q z(x)c(x) = 0
(equivalently, if there exists z �= 0 ∈ C⊥ with supp(z) ⊆ Q); we refer to z as a
constraint on Q. We say that Q is unconstrained if it is not constrained. We say that
Q ⊆ D determines x ∈ D if x ∈ Q or there exists a constraint z on Q ∪ {x} such that
z(x) �= 0.

We recall the definition of a constraint detector [BCF+17], which is an algorithm
that determines whether a set of queries Q is constrained and, if so, outputs a constraint.

Definition 6. Let C ⊆ (D → F) be a linear code. An algorithm CD is a constraint
detector for C if, given as input a set Q ⊆ D, outputs: (i) a basis for the space of
constraints {z : Q → F : ∀ c ∈ C,

∑
x∈Q z(x)c(x) = 0} on Q if Q is constrained; (ii)

⊥ if Q is unconstrained; A code family {Cλ}λ∈N has efficient constraint detection if
there exists a polynomial-time algorithm CD such that, for every λ ∈ N, CD(1λ, ·) is a
constraint detector for Cλ.

400 M. Chen et al.

The following theorem is proved in [BCF+17]:

Theorem 1. The code family LD[F ,m,d] has a constraint detector CD(1λ, ·) that
runs in time poly(m(λ), d(λ), log |Fλ|), where d(λ) := maxi∈[m] d(λ)i. In particular,
it has efficient constraint detection.

3.7 Forking Lemmas

We state a general forking lemma proved in [BN06].

Lemma 1. Fix t, λ ∈ N. Let A be a probabilistic algorithm that on input x, y1, . . . , yt

returns a pair (I, σ), where I ∈ [t] and σ is referred to as a side output. Let IG be a
probabilistic algorithm that we call the input generator. The accepting probability of
A, denoted acc, is defined as follows:

acc := Pr

⎡
⎣ I ≥ 1

∣∣∣∣∣∣
x ← IG

y1, . . . , yt ← U({0, 1}λ)
(I, σ) ← A(x, y1, . . . , yt)

⎤
⎦ .

The forking algorithm ForkA associated to A is the probabilistic algorithm that takes
input x and proceeds as follows:

(i) Pick coins ρ for A at random.
(ii) Sample y1, . . . , yt ← U({0, 1}λ), and run A(x, y1, . . . , yt; ρ) to obtain (I, σ).
(iii) If I = 0 then return (0, ε, ε).
(iv) Otherwise, sample y′

I , . . . , y
′
t ← U({0, 1}λ) and run

A(x, y1, . . . , yI−1, y
′
I , . . . , y

′
t; ρ) to obtain (I ′, σ′).

(v) If (I = I ′ and yI �= y′
I) then return (1, σ, σ′).

(vi) Otherwise return (0, ε, ε).

Let

frk := Pr
[

b = 1
∣∣∣∣ x ← IG
(b, σ, σ′) ← ForkA(x)

]
.

Then

frk ≥ acc ·
(
acc
t

− 1
2λ

)
,

alternatively,

acc ≤ t

2λ
+

√
t · frk .

3.8 Identical-Until-Bad

We consider two programs, G and H , which are written in some pseudocode. We say
that G and H are identical-until-bad if they are syntactically identical except for state-
ments that follow the setting of a bad flag to true. Somewhat more formally, let G and
H be programs written in some pseudocode and let bad be a flag that occurs in both of
them. We say that G and H are identical-until-bad if their code is the same except pos-
sibly places where G has a statement “set the bad flag” followed by some statements SG

Proof-Carrying Data from Arithmetized Random Oracles 401

while H has a corresponding statement “set the bad flag” followed by some statements
SH , different from SG.

We refer the reader to [BR06] for further details and a full formal treatment of the
notion of identical-until-bad, which requires specification of the programming language
in question to fully formalise. We stress that that identical-until-bad is a purely syntactic
requirement.

We state the fundamental lemma of game-playing, which is proved in [BR06].

Lemma 2. Let G and H be identical-until-bad programs and let A be an adversary.
Then ∣∣Pr[AG = 1] − Pr[AH = 1]

∣∣ ≤ Pr[AG sets bad] .

4 Arithmetized Random Oracle Model

We define the arithmetized random oracle model. As a first step, we define the arithme-
tized random oracle distribution, which is defined over tuples (ro,wo, v̂o), and explain
how the oracles (ro,wo, v̂o) are sampled.

Definition 7. Let m ∈ N be an arity parameter, λ ∈ N be a security parameter, r ∈ N

be a randomness-size parameter, w ∈ N be a witness-size parameter, and d ∈ N be a
degree parameter. For all oracle circuits B : {0, 1}m+r → {0, 1}w, we define an arith-
metized random oracle distribution ARO[F,m, λ, d,B],10 where F is a finite field
and the support of ARO[F,m, λ, d,B] contains triples (ro,wo, v̂o) that are sampled as
follows:

1. Sample the random oracle ro uniformly at random from ({0, 1}m → {0, 1}λ).
2. For every x ∈ {0, 1}m, sample a random string μx ∈ {0, 1}r. Then define the

witness oracle wo : {0, 1}m → {0, 1}w as wo(x) := Bro(x, μx).
3. Define the verification function vo : {0, 1}m+λ+w → {0, 1} as

vo(x, y, z) :=

{
1 if ro(x) = y ∧ wo(x) = z

0 o.w.
.

4. Sample the (extended) verification oracle v̂o : Fm+λ+w → F uniformly at random
from the set{

p ∈ F
≤d[X1, . . . , Xm+λ+w] : p equals vo on {0, 1}m+λ+w

}
.

5. Output (ro,wo, v̂o).

Next, we define a family of ARO distributions, which is parameterized by a family
of finite fields F = {Fλ}λ∈N and a family of oracle circuits B = {B

(·)
λ : {0, 1}m(λ) →

{0, 1}w(λ)}λ∈N. Here, B can be interpreted as the set of all possible adversarial strate-
gies for learning information about the random oracle, and λ is the security parameter.

10 Given m ∈ N and the oracle circuit B, the randomness length r and witness size w parameters
are determined. Thus r, w do not appear in the parameterization of ARO.

402 M. Chen et al.

Definition 8. LetF = {Fλ}λ∈N be a family of fields, m : N → N be an arity function,

w : N → N be a witness-size function, B = {B
(·)
λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N

be a family of oracle circuits, and d : N → N be a degree function. We define the
arithmetized random oracle family as

ARO[F ,m, d,B] := { ARO[Fλ,m(λ), λ, d(λ), B(·)
λ] }λ∈N .

The “arithmetized random oracle” is the set of all ARO distributions for polynomial-
sized circuit families B.

Definition 9. LetF = {Fλ}λ∈N be a family of fields, m : N → N be an arity function,
w : N → N be a witness-size function, and d : N → N be a degree function. Then, we
define a set of arithmetized random oracle families as

ARO[F , m, d] := {ARO[F , m, d, B] : B is a family of poly(λ) -size oracle circuits} ,

where above B = {B
(·)
λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N.

Acknowledgments. We thank Giacomo Fenzi for pointing out some inaccuracies in an earlier
draft of this paper.

Tom Gur is supported by the UKRI Future Leaders Fellowship MR/S031545/1 and EPRSC
New Horizons Grant EP/X018180/1. Jack O’Connor is supported by the Engineering and Physi-
cal Sciences Research Council through the Mathematics of Systems Centre for Doctoral Training
at the University of Warwick (reference EP/S022244/1). Megan Chen is supported by DARPA
under Agreement No. HR00112020023.

References

[Alo99] Alon, N.: Combinatorial nullstellensatz. In: Combinatorics, Probability and Com-
puting (1999)

[AW09] Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory.
ACM Trans. Comput. Theory 1(1), 1–54 (2009)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: STOC 2013 (2013)

[BCF+17] Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.:
Zero knowledge protocols from succinct constraint detection. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 6

[BCL+21] Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data with-
out succinct arguments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12825, pp. 681–710. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84242-0 24

[BCMS20] Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumula-
tion schemes. In: TCC 2020 (2020)

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16

Proof-Carrying Data from Arithmetized Random Oracles 403

[BDFG21] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: proof-carrying data from
additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12825, pp. 649–680. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0 23

[BGH19] Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a
trusted setup. ePrint Report 2019/1021 (2019)

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 7

[BMRS20] Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency
at scale. ePrint Report 2020/352 (2020)

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006 (2006)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993 (1993)

[CCDW20] Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. Cryptology ePrint Archive, Report
2020/1522 (2020)

[CCS22] Chen, M., Chiesa, A., Spooner, N.: On succinct non-interactive arguments in rel-
ativized worlds. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022.
LNCS, vol. 13276, pp. 336–366. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07085-3 12

[CFS17] Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. ePrint Report 2017/305 (2017)

[CL20] Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds.
In: ITCS 2020 (2020)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: FRACTAL: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

[CT10] Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS 2010 (2010)

[CTV13] Chong, S., Tromer, E., Vaughan, J.A.: Enforcing language semantics using proof-
carrying data. ePrint Report 2013/513 (2013)

[CTV15] Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 371–403. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 13

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
FOCS 2003 (2003)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In: STOC 2011 (2011)

[HN22] Hall-Andersen, M., Nielsen, J.B.: On valiant’s conjecture: impossibility of incre-
mentally verifiable computation from random oracles. Cryptology ePrint Archive,
Paper 2022/542 (2022)

https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-031-07085-3_12
https://doi.org/10.1007/978-3-031-07085-3_12
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-49896-5_11

404 M. Chen et al.

[JKRS09] Juma, A., Kabanets, V., Rackoff, C., Shpilka, A.: The black-box query complexity
of polynomial summation. Comput. Complex. 18, 59–79 (2009). https://doi.org/10.
1007/s00037-009-0263-7

[JLLW22] Jain, A., Lin, H., Luo, J., Wichs, D.: The pseudorandom oracle model and ideal
obfuscation. Cryptology ePrint Archive, Paper 2022/1204 (2022)

[KB20] Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with
fairness guarantees. ePrint Report 2020/190 (2020)

[KR08] Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

[KST22] Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments from
folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol.
13510, pp. 359–388. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15985-5 13

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

[Mina] O(1) Labs: Mina Cryptocurrency. https://minaprotocol.com/
[NT16] Naveh, A., Tromer, E.: PhotoProof: cryptographic image authentication for any set

of permissible transformations. In: S&P 2016 (2016)
[TFZ+22] Tyagi, N., Fisch, B., Zitek, A., Bonneau, J., Tessaro, S.: VeRSA: verifiable reg-

istries with efficient client audits from RSA authenticated dictionaries. In: CCS 2022
(2022)

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

[Zha22] Zhandry, M.: Augmented random oracles. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. LNCS, vol. 13509, pp. 35–65. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-15982-4 2

https://doi.org/10.1007/s00037-009-0263-7
https://doi.org/10.1007/s00037-009-0263-7
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://minaprotocol.com/
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-031-15982-4_2
https://doi.org/10.1007/978-3-031-15982-4_2

Supersingular Curves You Can Trust

Andrea Basso1,2(B) , Giulio Codogni3 , Deirdre Connolly4, Luca De Feo5 ,
Tako Boris Fouotsa6 , Guido Maria Lido3 , Travis Morrison7 ,

Lorenz Panny8, Sikhar Patranabis9 , and Benjamin Wesolowski10,11,12

1 University of Birmingham, Birmingham, UK
andrea.basso@bristol.ac.uk

2 University of Bristol, Bristol, UK
3 Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata, Via

della Ricerca Scientifica, 00133 Roma, Italy
codogni@mat.uniroma2.it, guidomaria.lido@uniroma2.it

4 Zcash Foundation, Mclean, USA
5 IBM Research Europe, Zürich, Switzerland

eurocrypt23@defeo.lu
6 EPFL, Lausanne, Switzerland

tako.fouotsa@epfl.ch
7 Virginia Tech, Blacksburg, VA, USA

tmo@vt.edu
8 Academia Sinica, Taipei, Taiwan

lorenz@yx7.cc
9 IBM Research India, Bangalore, India

sikhar.patranabis@ibm.com
10 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 33400 Talence, France

benjamin.wesolowski@math.u-bordeaux.fr
11 INRIA, IMB, UMR 5251, 33400 Talence, France

12 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. Generating a supersingular elliptic curve such that nobody
knows its endomorphism ring is a notoriously hard task, despite several
isogeny-based protocols relying on such an object. A trusted setup is
often proposed as a workaround, but several aspects remain unclear.
In this work, we develop the tools necessary to practically run such a
distributed trusted-setup ceremony.

Our key contribution is the first statistically zero-knowledge proof
of isogeny knowledge that is compatible with any base field. To prove

Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This work began at the Banff International Research
Station workshop “Supersingular Isogeny Graphs in Cryptography” (21w5229).
This research was funded in part by the MIUR Excellence Department Project
MatMod@TOV awarded to the Department of Mathematics, University of Rome Tor
Vergata, the Commonwealth Cyber Initiative, the Academia Sinica Investigator Award
AS-IA-109-M01, the Agence Nationale de la Recherche under grant ANR MELODIA
(ANR-20-CE40-0013), and the France 2030 program under grant agreement No.
ANR-22-PETQ-0008 PQ-TLS.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 405–437, 2023.
https://doi.org/10.1007/978-3-031-30617-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_14&domain=pdf
http://orcid.org/0000-0002-3270-1069
http://orcid.org/0000-0002-4006-3060
http://orcid.org/0000-0002-9321-0773
http://orcid.org/0000-0003-1821-8406
http://orcid.org/0000-0001-8239-1559
http://orcid.org/0000-0002-1719-7757
http://orcid.org/0000-0002-2309-7939
http://orcid.org/0000-0003-1249-6077
https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf
https://doi.org/10.1007/978-3-031-30617-4_14

406 A. Basso et al.

statistical ZK, we introduce isogeny graphs with Borel level structure
and prove they have the Ramanujan property. Then, we analyze the
security of a distributed trusted-setup protocol based on our ZK proof in
the simplified universal composability framework. Lastly, we develop an
optimized implementation of the ZK proof, and we propose a strategy
to concretely deploy the trusted-setup protocol.

Keywords: Isogenies · Ramanujan Graphs · Zero-knowledge Proofs ·
Trusted Setup

1 Introduction

Be it foundationally or for efficiency, most of isogeny-based cryptography is built
upon supersingular elliptic curves [15,17,22,27,28,37,42]. At the heart of it, lies
the supersingular isogeny graph: a graph whose vertices represent supersingular
elliptic curves (up to isomorphism) and whose edges represent isogenies (up to
isomorphism) of some fixed small prime degree between them. A foundational
hard problem for isogeny-based cryptography is then: given two supersingular
elliptic curves, find a path in the supersingular isogeny graph connecting them.

An endomorphism is an isogeny from a curve E to itself, and their col-
lection forms the endomorphism ring End(E). In recent years, the connection
between finding isogeny paths and computing endomorphism rings of supersingu-
lar curves has become increasingly important [32,35,58,59]. It is now established
that, assuming the generalized Riemann hypothesis, there exists probabilistic
polynomial time algorithms for these two problems:

1. Given supersingular elliptic curves E0, E1 along with descriptions of their
endomorphism rings, compute an isogeny path E0 → E1;

2. Given a supersingular elliptic curve E0 along with a description of its endo-
morphism ring, and given an isogeny path E0 → E1, compute a description
of the endomorphism ring of E1.

These algorithms—and variants—have successfully been used both construc-
tively [22,27,37] and for cryptanalysis [28,32,34,35,49,51].

Without the additional information above, computing the endomorphism
ring of an arbitrary supersingular curve remains a hard problem, both for classi-
cal and quantum computers. Given the importance of this problem, it is natural
to ask whether it is possible to sample supersingular curves such that computing
their endomorphism ring is a hard problem, crucially, even for the party who
does the sampling. We shall call these objects Supersingular Elliptic Curves of
Unknown Endomorphism Ring, or Secuer1 in short.

Applications. Generating a Secuer has turned out to be a delicate task, and
no such curve has ever been generated. Yet, several isogeny-based schemes can

1 The British spelling is Secure.

Supersingular Curves You Can Trust 407

only be instantiated with a Secuer. This is the case, for example, of isogeny-
based verifiable delay functions [28] and delay encryption [12]. The so-called
CGL hash function based on supersingular curves [17] has been shown to be
broken by the knowledge of the endomorphism ring [32], and one possible fix is
to instantiate it with a Secuer. Other protocols which require a Secuer include
hash proof systems, dual mode PKE [1], oblivious transfer [44], OPRF [4], and
commitment schemes [54].

Contributions. We analyze and put into practice a protocol for distributed
generation of Secuers. Our main technical contribution is a key ingredient of
the protocol: a new proof of isogeny knowledge (two curves E0 and E1 being
public, a party wishes to prove that they know an isogeny E0 → E1 without
revealing it). Our proof is similar to the SIDH proof of knowledge [23,25], but
extends it in a way that makes it compatible with any base field, any walk length,
and has provable statistical zero-knowledge (unlike any previous proof of isogeny
knowledge). In particular, its statistical security makes it fully immune to the
recent attacks [14,46,52].

To prove statistical security, we analyze supersingular �-isogeny graphs with
level structure, a generalization of isogeny graphs that was recently considered
in [3,27]. We prove that these graphs, like classic isogeny graphs, possesses the
Ramanujan property, a fact that is of independent interest. Using the property,
we analyze the mixing behavior of random walks, which lets us give very precise
parameters to instantiate the proof of knowledge at any given security level.

To show that the resulting protocol is practical, we implement it on top
of Microsoft’s SIDH library2 and benchmark it for each of the standard SIKE
primes [41]. We must stress that SIDH-style primes are possibly the most favor-
able to our protocol, in terms of practical efficiency.

Finally, we sketch a roadmap to run the distributed generation protocol for
the SIKE primes in a real world setting with hundreds of participants.

Limitations. We must point out that our new proof of knowledge is not well
adapted to a secure distributed generation protocol in the case where one wants
to generate a Secuer defined over a prime field Fp, instead of Fp2 , such as
in [1,44]. Different proofs of knowledge [8,24] could be plugged in the distributed
protocol for the Fp case, however their practical usability is dubious.

1.1 Generating a SECUER

The cornerstone of isogeny-based cryptography is the endomorphism ring prob-
lem: if it could be solved efficiently, then all of supersingular isogeny-based cryp-
tography would be broken [32,35,58], leaving only ordinary isogeny-based cryp-
tography [21,26,55] standing.

Definition 1 (Endomorphism ring problem). Given a supersingular curve
E/Fp2 , compute its endomorphism ring End(E). That is, compute an integral

2 https://github.com/microsoft/PQCrypto-SIDH.

https://github.com/microsoft/PQCrypto-SIDH

408 A. Basso et al.

basis for a maximal order O of the quaternion algebra ramified at p and ∞, as
well as an explicit isomorphism O � End(E).

For any p, there exists a polynomially sized subset of all supersingular curves
for which the endomorphism ring can be computed in polynomial time [16,45],
but the problem is believed to be exponentially hard in general, even for quantum
computers. A related problem, commonly encountered in isogeny protocols, is
finding paths in supersingular isogeny graphs.

Definition 2 (Isogeny �-walk problem). Given two supersingular curves
E,E′/Fp2 of the same order, and a small prime �, find a walk from E to E′

in the �-isogeny graph.

Such walks are always guaranteed to exist, as soon as they have length in
O(log(p)) [17,43,47,50].

The two problems are known to be polynomial time equivalent, assuming
GRH [59]. Indeed, given End(E) and End(E′), it is easy to compute a path
E → E′. Reciprocally, given End(E) and a path E → E′, it is easy to compute
End(E′); and, by random self-reducibility, we can always assume that one of
End(E) or End(E′) is known.

Our goal is to generate a Secuer: a curve for which the endomorphism ring
problem is hard, and consequently one for which it is hard to find a path to any
other given curve.

What Does Not Work. The supersingular elliptic curves over a finite field
k of characteristic p are those such that #E(k) = 1 mod p. Any supersingular
curve is isomorphic to one defined over a field with p2 elements, thus, without
loss of generality, we are only interested in supersingular curves defined over Fp2 .
Among the p2 isomorphism classes of elliptic curves over Fp2 , only ≈ p/12 of
them correspond to supersingular curves.

The standard way to construct supersingular curves is to start from a curve
with complex multiplication over a number field, and then reduce modulo p.
Complex multiplication elliptic curves have supersingular reduction modulo 50%
of the primes, thus this technique quickly produces supersingular curves for
almost all primes. For example, the curve y2 = x3 + x, which has complex
multiplication by the ring Z[i] of Gaussian integers, is supersingular modulo p
if and only if p = 3 mod 4. Most isogeny-based protocols are instantiated using
precisely this curve as starting point. These curves are not Secuers, though,
because from the information on complex multiplication one can compute the
endomorphism ring in polynomial time [16,45].

As p grows, the curves with computable3 complex multiplication form only a
negligible fraction of all supersingular curves in characteristic p, so we may still
hope to get a Secuer if we can sample a supersingular curve at random from the

3 Deuring showed that any supersingular curve can be lifted in several ways to a
curve with complex multiplication, but for almost all curves computing such lifts
has complexity exponential in log(p).

Supersingular Curves You Can Trust 409

whole set. The natural way to do so is to start from a well known supersingular
curve, e.g. E0 : y2 = x3 + x, take a random walk E0 → E1 in the isogeny graph,
and then select the arrival curve E1. But, by virtue of the reductions mentioned
above, any E1 constructed this way cannot be called a Secuer either.

Several other techniques have been considered for generating Secuers, how-
ever all attempts have failed so far [10,48].

Distributed Generation of Secuers. An obvious solution that has been
proposed for schemes that need a Secuer is to rely on a trusted party to start
from a special curve E0 and to perform an isogeny walk to a random curve E1.
Although E1 is not a Secuer, if the trusted party keeps the walk E0 → E1

secret, no one else will be able to compute End(E1).
Of course, relying on a trusted third party is undesirable. The natural next

step is to turn this idea into a distributed protocol with t parties generating a
sequence of walks E0 → E1 → E2 → · · · → Et. First, suppose that the sequence
was generated honestly: the i-th party indeed generated a random isogeny from
the previous curve Ei−1 to a new curve Ei. Then it is sufficient for a single party
to honestly discard their isogeny, for no path to be known by anyone from E0

to Et. Then, Et is a Secuer for all practical purposes.
To make this protocol secure against active adversaries, an additional ingre-

dient is needed. As it is, the last party could cheat as follows: instead of gen-
erating an isogeny Et−1 → Et, they could reboot the chain by generating an
isogeny E0 → Et, and submitting that instead. They could then compute the
endomorphism ring of Et. If only the curves Ei along the path are revealed, it
is impossible to detect such misbehavior. To prevent this, each party needs to
prove that they know their component of the walk: an isogeny Ei−1 → Ei (as
first discussed in [12]). To this end, we develop a statistically zero-knowledge
proof of isogeny knowledge.

1.2 Proof of Isogeny Knowledge

State-of-the-Art. Protocols to prove knowledge of an isogeny have been mostly
studied for signatures. The first such protocol is the SIDH-based proof of knowl-
edge of [25]. Its security proof was found to be flawed and then fixed, either by
changing the assumptions [38] or by changing the protocol [23]. However, these
protocols are now fully broken by the recent polynomial time attacks on SIDH-
like protocols [14,46,52]. These attacks can be avoided by relying on ternary
challenges [9,23].

CSIDH-based proofs of knowledge were first introduced in [24], and then
improved in [8] for the parameter set CSIDH-512. These are limited to isogeny
walks between curves defined over a prime field Fp, and tend to be prohibitively
slow outside of the specially prepared parameter set CSIDH-512.

Finally, De Feo and Burdges propose an efficient proof of knowledge tailored
to finite fields used in delay protocols [12]. However the soundness of this pro-
tocol is only conjectural, and, being based on pairing assumptions, is broken by
quantum computers.

410 A. Basso et al.

In summary, no general purpose, quantum-safe, zero-knowledge proof of
knowledge of an isogeny walk between supersingular curves defined over Fp2

exists in previous literature.

Overview of Our Method. Our main technical contribution is a new proof
of knowledge that ticks all the boxes above: it is compatible with any base field,
any walk length, it has provable statistical zero-knowledge, and is practical—as
illustrated by our implementation. The idea is the following. Two elliptic curves
E0 and E1 being public, some party, the prover, wishes to convince the verifier
that they know an isogeny φ : E0 → E1 (of degree, say, 2m, large enough so it
is guaranteed that such an isogeny exists). First, the prover secretly generates
a random isogeny walk ψ : E0 → E2 of degree, say, 3n. Defining φ′ with kernel
ψ(ker(φ)), and ψ′ with kernel φ(ker(ψ)), one obtains the following commutative
diagram, known as “SIDH square” in the literature:

E0 E1

E2 E3

φ

ψ ψ′

φ′

(1)

Now, the prover publishes a hiding and binding commitment to E2 and E3.
The verifier may now ask the prover to reveal one of the three isogenies ψ, φ′,
or ψ′, by drawing a random chall ∈ {−1, 0, 1} (and open the commitment(s)
corresponding to the relevant endpoints). For the prover to succeed with over-
whelming probability, they must know all three answers, so they must know an
isogeny from E0 to E1: the composition ψ′ ◦ φ′ ◦ ψ : E0 → E1. This is the idea
behind the soundness of the protocol.

So far, this protocol is more or less folklore and superficially similar to [23,
§5.3]. But does it leak any information? Whereas previous protocols only
achieved computational zero-knowledge, we provide a tweak that achieves sta-
tistical zero-knowledge: there is a simulator producing transcripts that are sta-
tistically indistinguishable from a valid run of the protocol. The simulator starts
by choosing the challenge chall first, then it generates an isogeny that is statis-
tically indistinguishable from either ψ, φ′, or ψ′, according to the value of chall.
Simulating ψ (or ψ′) is straightforward: generate a random isogeny walk ψ̃ (or
ψ̃′) of degree 3n from E0 (or from E1). The isogeny ψ̃ is a perfect simulation
of ψ. Simulating φ′ seems trickier. An obvious approach is to first generate a
random E2 (for instance, by simulating ψ : E0 → E2), then generate a random
walk isogeny φ̃′ : E2 → E3 of degree 2m. While this may seem too naive, we in
fact prove that when deg(ψ) is large enough, the distribution of φ̃′ is statisti-
cally close to a honestly generated φ′. The key is a proof that the isogeny graph
enriched with so-called level structure has rapid mixing properties.

Isogeny Graphs with Level Structure. The isogeny φ′ is essentially char-
acterized by its source, E2, and its kernel ker(φ′), a (cyclic) subgroup of order

Supersingular Curves You Can Trust 411

deg(φ′). We are thus interested in random variables of the form (E,C), where E
is an elliptic curve, and C a cyclic subgroup of E, of order some integer d (not
divisible by p). We call such a pair (E,C) a level d Borel structure.

The simulator proposed above essentially generates φ̃′ as a uniformly random
level 2m Borel structure (E,C) = (E2, ker(φ̃′)). On the other hand, a honestly
generated φ′ corresponds to a pair (ψ(E0), ψ(ker φ)), and ψ is a uniformly ran-
dom isogeny walk of degree 3n. This process corresponds to a random walk
of length n in the 3-isogeny graph with level 2m structure, with starting point
(E0, ker φ). We prove the following result.

Theorem 3. Let G = G(p, d, �) the supersingular �-isogeny graph with level d
Borel structure. The adjacency matrix A of G is diagonalizable, with real eigen-
values, and has the Ramanujan property, i.e. the integer �+1 is an eigenvalue of
A of multiplicity one, while all the other eigenvalues are contained in the Hasse
interval [−2

√
�, 2

√
�].

As a consequence, we prove that random walks quickly converge to the sta-
tionary distribution, so φ̃′ and φ′ are statistically indistinguishable.

Paper outline. We start in Sect. 2 with a few technical preliminaries on elliptic
curves, isogenies, and proofs of knowledge. Section 3 is dedicated to the proof of
Theorem 3. This section can be read independently from the rest. The reader
only interested in applications, and willing to accept Theorem 3 (and its con-
sequence on non-backtracking random walks, Theorem 11, page 14), can safely
skip to the following section. This theoretical tool at hand, we then describe and
analyse the new proof of isogeny knowledge in Sect. 4. We describe the protocol
to generate a Secuer in Sect. 5, and prove its security. Finally, we report on our
implementation in Sect. 6.

2 Preliminaries

2.1 General Notations

We write x ← χ to represent that an element x is sampled at random from a
set/distribution X . The output x of a deterministic algorithm A is denoted by
x = A and the output x′ of a randomized algorithm A′ is denoted by x′ ← A′. For
a, b ∈ N such that a, b ≥ 1, we denote by [a, b] (resp. [a]) the set of integers lying
between a and b, both inclusive (the set of integers lying between 1 and a, both
inclusive). We refer to λ ∈ N as the security parameter, and denote by poly(λ),
polylog(λ) and negl(λ) any generic (unspecified) polynomial, poly-logarithmic or
negligible function in λ, respectively.4 For probability distributions X and Y, we
write X ≈ Y if the statistical distance between X and Y is negligible.

4 A function f : N → N is said to be negligible in λ if for every positive polynomial p,
f(λ) < 1/p(λ) when λ is sufficiently large.

412 A. Basso et al.

2.2 Elliptic Curves, Isogenies and “SIDH Squares”

We assume the reader has some familiarity with elliptic curves and isogenies.
Throughout the text, p shall be a prime number, Fp and Fp2 the finite fields
with p and p2 elements respectively. Unless specified otherwise, all elliptic curves
will be supersingular and defined over Fp2 . We write E[d] for the subgroup of
d-torsion points of E over the algebraic closure.

Unless specified otherwise, all isogenies shall be separable. If G is a finite
subgroup of E, we write φ : E → E/G for the unique (up to post-composition
with an isomorphism of E/G) separable isogeny with kernel G. If G is cyclic,
we say the isogeny is cyclic. We denote by φ̂ the dual isogeny to φ. Separable
isogenies and their duals can be computed and/or evaluated in time poly(#G)
using any of the algorithms in [7,56], however in some cases, e.g. when #G only
contains small factors, this cost may be lowered to as little as polylog(#G).

Given separable isogenies φ : E0 → E1 and ψ : E0 → E2 of coprime degrees,
we obtain the commutative diagram in (1) by defining φ′ : E2 → E2/ψ(ker(φ))
and ψ′ : E1 → E1/φ(ker(ψ)). Again, E3 is only defined up to isomorphism. In
categorical parlance, this is the pushout of φ and ψ, but cryptographers may
know it better through its use in the SIDH key exchange. We refer to these
commutative diagrams as SIDH squares or SIDH ladders (see Sect. 4.2 for more
details).

2.3 Proofs of Knowledge

Our main technical contribution is a Σ-protocol to prove knowledge of an isogeny
of given degree between two supersingular elliptic curves. Recall a Σ-protocol for
an NP-language L is a public-coin three-move interactive proof system consisting
of two parties: a verifier and a prover. The prover is given a witness w for an
element x ∈ L, his goal is to convince the verifier that he knows w.

Definition 4 (Σ-protocol). A Σ-protocol ΠΣ for a family of relations {R}λ

parameterized by security parameter λ consists of PPT algorithms (P1,P2,V)
where V is deterministic and we assume P1,P2 share states. The protocol proceeds
as follows:

1. The prover, on input (x,w) ∈ R, returns a commitment com ← P1(x,w)
which is sent to the verifier.

2. The verifier flips λ coins and sends the result to the prover.
3. Call chall the message received from the verifier, the prover runs resp ←

P2(chall) and returns resp to the verifier.
4. The verifier runs V (x, com, chall, resp) and outputs a bit.

A transcript (com, chall, resp) is said to be valid, or accepting, if V (x, com,
chall, resp) outputs 1. The main requirements of a Σ-protocol are:

Correctness: If the prover knows (x,w) ∈ R and behaves honestly, then the
verifier outputs 1.

Supersingular Curves You Can Trust 413

nnn-special soundness: There exists a polynomial-time extraction algorithm
that, given a statement x and n valid transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi �= challj for all 1 ≤ i < j ≤ n, outputs a witness w such that
(x,w) ∈ R with probability at least 1 − ε for soundness error ε.

A special sound Σ-protocol for R is also called a Proof of Knowledge (PoK)
for R. Our Σ-protocol will have the peculiar property that the relation used to
prove correctness turns out to be a subset of the one used to prove soundness.
This will require extra care when proving security in Sect. 5.

Special Honest Verifier Zero-Knowledge (SHVZK): There exists a
polynomial-time simulator that, given a statement x and a challenge chall, out-
puts a valid transcript (com, chall, resp) that is indistinguishable from a real
transcript.

Definition 5. A Σ-protocol (P1,P2,V) is computationally special honest verifier
zero-knowledge if there exists a probabilistic polynomial time simulator Sim such
that for all probabilistic polynomial time stateful adversaries A

Pr

⎡
⎣A(com, chall, resp) = 1

∣∣∣∣∣∣
(x,w, chall) ← A(1λ);
com ← P1(x,w);
resp = P2(chall)

⎤
⎦

≈ Pr
[
A(com, chall, resp) = 1

∣∣∣∣
(x,w, chall) ← A(1λ);
(com, resp) ← Sim(x, chall)

]
.

If the above indistinguishability holds statistically against all unbounded adver-
saries A, the protocol is said to be statistically SHVZK.

2.4 Non-Interactive Zero-Knowledge Proofs

In this paper, we consider non-interactive zero-knowledge (NIZK) proofs in the
random oracle model that satisfy correctness, computational extractability and
statistical zero-knowledge.

Definition 6. (NIZK proofs.) Let R be a relation and let the language L be
a set of statements {st ∈ {0, 1}n} such that for each statement st ∈ L, there
exists a corresponding witness wit such that (st,wit) ∈ R. A non-interactive
zero-knowledge (NIZK) proof system for R is a tuple of probabilistic polynomial-
time (PPT) algorithms NIZK = (PNIZK,VNIZK) defined as follows (we assume
that all algorithms in the description below have access to a common random
oracle; we omit specifying it explicitly for ease of exposition):

– PNIZK(st,wit): A PPT algorithm that, given a statement st ∈ {0, 1}n and a
witness wit such that (st,wit) ∈ R, outputs a proof Π.

– VNIZK(st,Π): A deterministic algorithm that, given a statement st ∈ {0, 1}n

and a proof Π, either outputs 1 (accept) or 0 (reject).

414 A. Basso et al.

The following correctness and security properties should be satisfied:

Correctness. For any (st,wit) ∈ R, letting Π = PNIZK(st,wit), we must have
VNIZK(st,Π) = 1.

Computational Extractability. There exists an efficient PPT extractor
ExtNIZK such that for any security parameter λ ∈ N and for any polynomially
bounded cheating prover P ∗ where: (i) ExtNIZK has rewinding access to P ∗, and
(ii) PNIZK, ExtNIZK and P ∗ all have access to a common random oracle, letting
(st,Π) ← P ∗(1λ) and wit = ExtNIZK(st,Π), if VNIZK(st,Π) = 1, we must have
Pr[(st,wit) ∈ R] > 1 − negl(λ).

Statistical Zero-knowledge. There exists an efficient PPT simulator SimNIZK

such that for any security parameter λ ∈ N and for any non-uniform unbounded
“cheating” verifier V ∗ = (V ∗

1 , V ∗
2) where PNIZK, V ∗

1 and V ∗
2 all have access to a

common random oracle, and such that SimNIZK is allowed programming access
to the same random oracle, we have

∣∣∣Pr [V ∗
2 (st,Π, ξ) = 1 ∧ (st ∈ L)] − Pr

[
V ∗
2 (st, Π̂, ξ) = 1 ∧ (st ∈ L)

]∣∣∣ ≤ negl(λ),

where (st,wit, ξ) ← V ∗
1 (1λ), Π ← PNIZK(st,wit), and Π̂ ← SimNIZK(st).

3 Isogeny Graphs and Expansion

Let p be a prime and d an integer not divisible by p. An elliptic curve with
level d Borel structure is a pair (E,C), where E is an elliptic curve defined
over a field of characteristic p and C is an order d cyclic subgroup of E[d]. We
say that two such pairs (E1, C1) and (E2, C2) are isomorphic if there exists an
isomorphism φ : E1 → E2 such that φ(C1) = C2. An automorphism of (E,C) is
an isomorphism (E,C) → (E,C). They form the group Aut(E,C).

Let � be a prime not dividing pd. The supersingular �-isogeny graph with
level d structure G = G(p, d, �) is defined as follows. The set of vertices of G
is a complete set V = V (p, d) = {(Ei, Ci)} of representatives of the set of iso-
morphism classes of supersingular elliptic curves with a level d Borel structure
defined over Fp2 . We note that each such class over Fp2 admits a model defined
over Fp2 : Each isomorphism class of supersingular elliptic curves has a repre-
sentative E such that #E(Fp2) = (p + 1)2 and thus the p2-Frobenius acts as a
scalar multiplication [−p], so the kernel of any �-isogeny is Gal(Fp2)-invariant.

Now, the set of edges from (E,C) to (E′, C ′) in G is the set of degree �
isogenies from E to E′ which map C to C ′, modulo the action of Aut(E′, C ′)
(by postcomposition). The number of edges is independent of the representative
of the isomorphism classes. When d = 1, we recover the usual definition of the
supersingular �-isogeny graph.

This graph is directed. The out-degree of each vertex is � + 1, however the
in-degree is not always � + 1, hence the adjacency matrix of the graph is not
always symmetric.

Supersingular Curves You Can Trust 415

3.1 Generalities on the Graph and Its Adjacency Matrix

Let V = {(Ei, Ci)} for i = 1, . . . , n be the vertex set of G =
G(p, d, �). On the complex vector space C

V , we introduce the Hermitian form
Q((Ei, Ci), (Ej , Cj)) = wiδij , where δij is the Kronecker symbol and wi :=
1
2 |Aut(Ei, Ci)|. Denote by ‖ · ‖Q the associated norm. We will compare ‖ · ‖Q

with the L1 and L2 norms on C
V . The set Ω of probability distributions on V

is the set of vectors with real positive entries and L1 norm equal to 1. Consider
also the vector E =

∑n
i=1

1
wi

(Ei, Ci), and s the probability distribution obtained
normalizing E . The following result contains a number of general facts about the
adjacency matrix of G, which will be used later on.

Theorem 7. 1. The adjacency matrix A of G is self-adjoint with respect to Q;
in particular it is diagonalizable with real eigenvalues and eigenvectors;

2. The vector E is a left-eigenvector of eigenvalue � + 1 of A;
3. The vector u with all entries equal to 1 is a right-eigenvector of A; in par-

ticular its orthogonal complement S with respect to the L2 scalar product is
preserved by right multiplication by A;

4. K := inf{ ‖v‖Q : v ∈ C
V and ‖v‖L1 = 1} =

(
(p−1)d

12

∏
q(1+ 1

q)
)−1/2

, where
the product index q runs over the prime divisors of d;

5. M := sup{ ‖π − s‖Q : π ∈ Ω} ≤ √
3.

Proof. The proof is given in the full version [5]. ��

3.2 Proof of Theorem 3

We now prove that G = G(p, d, �) has the Ramanujan property. This follows from
the first three items of Theorem 7 combined with the following result, whose
proof heavily relies on the theory of modular forms. An immediate consequence
is that G is connected and not bipartite, a different proof of which can be found
in [39, Theorem 5.3.3].

Theorem 8. Let S ⊂ C
V be the subspace of vectors

∑
i vi(Ei, Ci) such that∑

i vi = 0, as in Theorem 7. The eigenvalues of the action of A on S are all
contained in the Hasse interval [−2

√
�, 2

√
�].

To prove Theorem 8, we assume standard notations and results about quadratic
forms and modular forms, such as the ones from [31,40,53]. Given two elliptic
curves with level structure (Ei, Ci) and (Ej , Cj), we denote by Λij the lattice
of isogenies φ : Ei → Ej such that φ(Ci) ⊂ Cj . The degree defines a quadratic
form deg on Λij . This quadratic module has rank four, level dp and determinant
d2p2. We can thus define the theta series

Θij(τ) =
1

|Aut(Ej , Cj)|
∑

φ∈Λij

qdeg(φ) , with q = e2πiτ .

This function is in M2(Γ0(dp)), the space of modular forms of weight two for
the modular group Γ0(dp), by [40, Theorem 4.2] (observe that in loc. cit. the

416 A. Basso et al.

exponential is one because Q(h) is an integer; moreover, we choose P = 1) or
[53, Chapter IX, Theorem 5, page 218]. The above construction extends to an
Hermitian pairing

Θ : CV ⊗ C
V → M2(Γ0(dp)) : ((αi)i ⊗ (βj)j) �−→

∑
i,j

αiβjΘij .

We call this pairing the Brandt pairing, even though there is a little ambiguity5

in this set-up. The Brandt pairing is non-degenerate: let v =
∑

ci(Ei, Ci), then
the coefficient of q of Θ(v, v) is the Hermitian norm of the vector of coefficients
(. . . , ci, . . .). We will prove the following two key propositions.

Proposition 9. The Brandt pairing intertwines the adjacency matrix A of G
and the Hecke operator T�; in symbols T�Θ(w, v) = Θ(wA, v) for all w, v ∈ C

V .

Proposition 10. For every three elliptic curves with level structure (E1, C1),
(E2, C2) and (E3, C3), we have a cusp form

Θ((E1, C1), (E3, C3)) − Θ((E2, C2), (E3, C3)).

The combination of these two results tells that the spectrum of the action of A
restricted to S is contained into the spectrum of the action of the Hecke operator
T� on the space of cusp modular forms of weight two for Γ0(dp). The Ramanujan
Conjecture, proved by Eichler, predicts that this second spectrum is contained
in the Hasse interval, and hence proves Theorem 8.

We refer to [30, Theorem 8.2] for a proof of the Ramanujan Conjecture. In
loc. cit. this result is proven only for eigenvectors of T� which are new-forms. An
eigenvector which is an old form will come from an embedding ι : S2(Γ0(m)) →
S2(Γ0(dp)) with m that divides dp. Since � is coprime with dp, the map ι is T�-
equivariant (cf. [31, proof of Proposition 5.6.2]), so we can still deduce our result
from [30, Theorem 8.2]. It is worth recalling that [30, Theorem 8.2] is stronger
than what we need, as it applies to modular forms of every weight.

Proof of Proposition 9. We prove that both sides have the same q-expansions.
For a power series F ∈ C[[q]], denote an(F) the coefficient of qn. By definition

an(Θ((Ei, Ci), (Ej , Ci))) = |Aut(Ej , Cj)|−1 · |Homn((Ei, Ci), (Ej , Cj))| ,
where Homn((Ei, Ci), (Ej , Cj)) is the set of degree n isogenies in Λij . For f ∈
M2(Γ0(dp)), we have an(T�f) = an�(f) + �an/�(f) (see e.g. [31, Proposition
5.2.2]), where an/�(f) is set to zero in the case n/� �∈ Z. In particular,

an(T� Θ((Ei,Ci), (Ej ,Cj))) =

= |Aut(Ej , Cj)|−1
(
|Homn�((Ei, Ci), (Ej , Cj))| + �|Homn/�((Ei, Ci), (Ej , Cj)|

)

(2)
5 Rather than using the condition φ(Ci) ⊂ Cj , we could have defined Λij using φ(Ci) =

Cj . The second definition does not give a lattice but still permits to define a pairing.
This second pairing generalizes to all level structures, so it might deserve better the
name of Brandt pairing. However, the second pairing gives a more complicated proof
in the Borel case, so we have opted for the first one.

Supersingular Curves You Can Trust 417

On the other side,

an(Θ((Ei, Ci)A, (Ej , Cj))) =
∑
C

an(Θ((Ei/C, πC(Ci)), (Ej , Cj))) =

= |Aut(Ej , Cj)|−1
∑
C

|Homn((Ei/C, πC(Ci)), (Ej , Cj))|
(3)

where C varies among the cyclic non-trivial subgroups of Ei[�] of cardinality �,
and πC is the projection Ei → Ei/C. For each C let

FC : Homn((Ei/C, πC(Ci)), (Ej , Cj)) −→ Homn�((Ei, Ci), (Ej , Cj))
f �−→ f ◦ πC ,

and let F be the disjoint union of the above maps. The map F is surjective: if
α : (Ei, Ci) → (Ej , Cj) has degree n�, then ker(α)∩Ei[�] �= {0}, hence there exists
a cyclic non-trivial C ⊂ ker(α)∩Ei[�], and we can write α = f ◦πC . In particular,
let us compute the cardinality of the fiber F−1(α) for α in the codomain. Each
FC is injective, hence |F−1(α)| is equal to the number of subgroups C such
that F−1

C (α) is not empty, that is the number of subgroups C contained in
ker(α) ∩ Ei[�]. Hence

|F−1(α)| =

{
� + 1 if α = �β for some β ∈ Homn/�((Ei, Ci), (Ej , Cj)),
1 otherwise

By (3), the domain of F has size exactly |Aut(Ej , Cj)| · an(Θ(A(Ei, Ci),
(Ej , Cj))), hence the proposition follows from (2) together with the above for-
mula summed over α in the codomain. ��
Proof of Proposition 10. We have to show that, for any two pairs (E,C) and
(E′, C ′) and any cusp of X0(dp), the residue r of Θ((E,C), (E′, C ′))dτ does not
depend on (E,C) and (E′, C ′) at the cusp but only on p, d and the cusp.

By the discussion in [31, Section 3.8, page 103] each cusp can be represented
as (a

c) with c dividing dp, and r is equal to a0(Θ((E,C), (E′, C ′))|M) for M any
matrix in SL2(Z) of the form (a b

c δ).
By [53, Chapter IX, Equation (21), page 213], we have

r =
1

c2pd

∑
ν,λ∈Λ/cΛ

e

(
(a − 1) deg(λ) + deg(λ + ν) + (δ − 1) deg(ν)

c

)

where e(z) = e2πiz, and Λ is the lattice of isogenies from (E,C) to (E′, C ′) which
map C into C ′. The above formula tells us that r only depends on M and on the
quadratic form deg : Λ/cΛ → Z/cZ. Writing c = c0p

ε with c0 dividing N and
ε = 0, 1 and using the Chinese remainder theorem we can split the quadratic
form in two parts

Λ/cΛ = Λ/c0Λ × Λ/pεΛ
deg × deg

−−−−−−−−→ Z/c0Z × Z/pε
Z ∼= Z/cZ .

418 A. Basso et al.

The quadratic module (Λ/c0Λ,deg) is (non-canonically) isomorphic to a
Borel subalgebra of the algebra (End((Z/c0Z)⊕2),det). An isomorphism can be
obtained mapping it to Hom(E[c0], E′[c0]), and then choosing a symplectic basis.

If ε = 0 we are done, otherwise ε = 1. Since [Hom(E,E′) : Λ] = d is prime
to p, we have Λ/p = Hom(E,E′)/p = (Hom(E,E′) ⊗ Zp)/p, and the quadratic
Zp-module Hom(E,E′) ⊗ Zp does not depend on the pair because, by the Deur-
ing correspondence (see [57, Theorem 42.3.2.]) and by [57, Lemma 19.6.6], it is
isomorphic to λOp with the reduced norm, where Op is the maximal order in the
non-ramified quaternions over Qp, and λ is an element of norm prime to p. ��

3.3 Mixing Time of Non-backtracking Walks

We finally analyze the behavior of random walks in G = G(p, d, �), which we will
ultimately use to prove statistical indistinguishability of distribution arising from
our proof of knowledge. First, observe that Theorem 7 item 2 shows that the
probability distribution s introduced in Subsect. 3.1 is the stationary distribution
on G. This is nearly the uniform distribution: all curves are equally likely, with
the possible exception of the two curves with extra automorphisms, j = 1728
and j = 0, which are respectively twice and thrice less likely.

We are going to determine the speed at which random walks converge to
the stationary distribution. We focus on non-backtracking walks, which are the
most useful for cryptographic protocols, but, because the graph is directed, we
need some care to define them. Edges of G are equivalence classes of isogenies,
so we choose a representative for each class. For an edge α we define its dual
edge as the chosen representative β for the class Aut(E,C)α̂, so that βα = u�
for u ∈ Aut(E,C). Notice that the dual of β (as an edge) might be different
from α, but this is not relevant for us. We say that a random walk on G is
non-backtracking walk if an edge is never followed by its dual.

With this “duality”, we have that isogenies of degree a power of � and with
cyclic kernel (up to the equivalence α ∼ β iff ker α = ker β) correspond to
non-backtracking walks.

Theorem 11 (Mixing time). Let π be a probability distribution on G, and
π(k) the distribution obtained after a non-backtracking random walk of length k.
Then we have

dTV (π(k), s) ≤ 1
2
K−1M

(� + 1)(k + 1) − 2

(� + 1)
√

�k
,

where K and M are as in Theorem 7 and dTV denotes the total variation dis-
tance.

Proof. This follows from [2] for the case of undirected graphs. In the full ver-
sion [5] we adapt the proof to the graph G(p, d, �). ��

Supersingular Curves You Can Trust 419

4 Proof of Knowledge

Our goal is to provide a PoK of an isogeny walk φ : E0 → E1 between two super-
singular curves defined over Fp2 that can be seamlessly plugged in a distributed
Secuer generation protocol. For this, we need the following properties:

1. Compatible with any pair of curves (E0, E1); this rules out [36,37], which is
restricted to a special starting curve E0, and [24] and derivatives, which are
restricted to curves defined over Fp.

2. Statistically ZK, so that the security of the final Secuer does not hinge on
computational assumptions brought in by the PoK; this rules out all other
isogeny-based PoKs in the literature.

3. Post-quantum secure, possibly relying on as few additional assumptions as
possible; this rules out many generic ZK proof systems.

4. Possibly compatible with any walk length and any base field Fp2 .
5. Usable in practice for cryptographically sized finite fields.

Our new PoK inherits from the SIDH-based Σ-protocol of De Feo, Jao and
Plût [25], and from the recent developments of De Feo, Dobson, Galbraith and
Zobernig [23]. The common theme to all of them is to construct random SIDH
squares (see (1)) on top of the secret isogeny φ : E0 → E1 and to reveal some,
but not all of the edges ψ,ψ′, φ′ in response to a challenge. The reason these
protocols are not statistically ZK is that the side φ′ is strongly correlated to the
parallel side φ (often unique given E2) and can thus easily be distinguished by
an unbounded adversary.

Our first idea is to make the walk ψ long enough that the distribution of
(E2, φ

′) becomes statistically close to the uniform distribution on supersingular
curves with isogenies of degree deg(φ). To prove it, we will use the properties of
isogeny graphs with level structure analyzed in Sect. 3.

But making ψ longer is easier said than done. SIDH-based protocols are
constrained in the lengths of φ and ψ by the form of the prime p: typically,
p + 1 = 2a3b and then deg(φ) = 2a and deg(ψ) = 3b. Our second idea is to glue
several SIDH squares together to make longer walks (see Fig. 2). We call these
larger diagrams SIDH ladders.

A valuable side-effect of gluing SIDH squares together is that we can free
ourselves from the constraints on p. All we need is that isogenies of a small
prime degree � coprime to deg(φ) can be computed efficiently, then we stack
vertically sufficiently many SIDH squares to make deg(ψ) = �n as large as we
need. In practice, we will take deg(φ) = 2m, deg(ψ) = 3n, and the protocol will
be most efficient for SIDH primes, but in full generality our protocol works for
any base field and any isogeny degree.

4.1 Protocol Description and Analysis

Let E0, E1 be supersingular curves defined over a finite field Fp2 , and let
φ : E0 → E1 be a cyclic separable isogeny of smooth degree d. Let � be a

420 A. Basso et al.

small prime not dividing pd. Let C(m; r) be a statistically hiding and computa-
tionally binding commitment scheme. Our Σ-protocol is described in Fig. 1; it
depends on a parameter n, controlling the length of the �-isogeny walks, that we
will determine in Definition 15. The prover consists of two stateful algorithms
(P1,P2): the former is randomized and produces a commitment (com2, com3),
the latter receives a ternary challenge chall ∈ {−1, 0, 1} and produces a deter-
ministic response resp. The verifier is a deterministic algorithm that receives(
(com2, com3), chall, resp

)
and outputs a bit indicating whether or not the proof

is accepted.

P1(E0, E1, φ, n):
1: Sample a random cyclic isogeny

ψ : E0 → E2 of degree �n;
2: Construct the SIDH ladder

(E0, E1, E2, E3, φ
′, ψ′) on (φ, ψ);

3: Sample random strings r2, r3;
4: return

(
C(E2; r2),C(E3; r3)

)
.

P2(chall):
1: if chall == −1 then
2: return (ψ, E2, r2);
3: else if chall == 1 then
4: return (ψ′, E3, r3);
5: else if chall == 0 then
6: return (φ′, E2, r2, E3, r3).

V(E0, E1, d, n, (com2, com3), chall, resp):
1: if chall == −1 then
2: (ψ, E2, r2) = resp;
3: Check com2 = C(E2; r2);
4: Check ψ is an �n-isogeny E0 → E2;
5: else if chall == 1 then
6: (ψ′, E3, r3) = resp;
7: Check com3 = C(E3; r3);
8: Check ψ′ is an �n-isogeny E1 → E3;
9: else if chall == 0 then

10: (φ′, E2, r2, E3, r3) = resp;
11: Check com2 = C(E2; r2);
12: Check com3 = C(E3; r3);
13: Check φ′ is a cyclic d-isogeny

E2 → E3.

Fig. 1. Interactive proof of knowledge of a cyclic isogeny φ : E0 → E1 of degree d.

Proposition 12. The Σ-protocol in Fig. 1 is correct for the relation

Rd = {((E0, E1), φ) | φ : E0 → E1 is a cyclic d-isogeny}.

Assuming the commitment C is computationally binding, it is 3-special sound
for the relation

R� = {((E0, E1), χ) | χ : E0 → E1 is a cyclic �2id-isogeny for some 0 ≤ i ≤ n}.

More precisely, there is a probabilistic polynomial time algorithm that, given three
successful transcripts of the protocol with same commitments and distinct chal-
lenges, either recovers a witness χ : E0 → E1, or opens one of the commitments
C(Ei; ri) to two distinct values (breaking the binding property).

Proof. Correctness. Suppose that the prover P = (P1,P2) and the verifier V
follow the protocol. First note that, since the degree d of φ is smooth, the SIDH
ladder in P1 can be constructed as described in Sect. 4.2. Then it is clear that
the commitments open successfully, and the verifier accepts the transcript for
any challenge.

Supersingular Curves You Can Trust 421

3-Special Soundness. Given three accepting transcripts (com,−1, resp−1),
(com, 0, resp0) and (com, 1, resp1), recover (φ′, E2, r2, E3, r3) = resp0 where
φ′ : E2 → E3 is an isogeny. If the curves in resp−1 and resp1 are not equal
to E2 and E3 respectively, then we can open one of the commitments C(E2; r2)
or C(E3; r3) to two distinct outputs. Otherwise, we have resp−1 = (ψ,E2, r2)
and resp1 = (ψ′, E3, r3) where ψ : E0 → E2 and ψ′ : E1 → E3 are isogenies.
Therefore χ′ = ψ̂′ ◦ φ′ ◦ ψ is an isogeny from E0 to E1 of degree �2nd. Factoring
out the non-cyclic part of χ′, we extract a cyclic isogeny χ : E0 → E1 of degree
�2id such that χ′ = [�2(n−i)] ◦ χ for some 0 ≤ i ≤ n; however, like in the original
SIDH PoK [23,38], we cannot guarantee that i = 0. ��

We are now going to define the simulator for proving ZK. Simulating chall =
±1 is easy, however how well we can simulate the case chall = 0 depends on the
parameter n given to P1. The opening (E2, φ

′ : E2 → E3) can be equivalently
viewed as the curve with level d Borel structure (E2, ker(φ′)). Our goal is to have
this opening distributed like a “random” vertex in the graph G = G(p, d, �). To
this effect, we define two sequences D1(k) and D2(k) of probability distributions
on G, and we show that they converge as k grows.

Definition 13. Let φ : E0 → E1 be a cyclic separable isogeny of degree d. Define

D1(k) =
{
(E0/K, τ(ker(φ))

∣∣ K ← CE(�k), τ : E0 → E0/K
}
,

D2(k) =
{
(E0/K,C)

∣∣ K ← CE(�k), C ← CE0/K(d)
}
,

(4)

where CE(f) is the uniform distribution on the cyclic subgroups of order f of E,
up to Aut(E).

Lemma 14. Keep notations as above, fix a positive real number ε, and let k be
a positive integer such that

τ(p, d, �, k) = 1
4 (p − 1)1/2

(
1 +

√
d

∏
q|d

q prime

(1+ 1
q)1/2

)
·
(
k + �−1

�+1

)
· �−k/2 ≤ ε ,

then dTV (D1(k),D2(k)) ≤ ε, where dTV is the total variation distance between
the two distributions, also known as statistical distance.

Proof. We bound the statistical distance of each of D1(k) and D2(k) from the
stationary distribution of G(p, d, �), as determined in Theorem 7, then we con-
clude with the triangle inequality. For D1(k), we can directly apply Theorem 11.
The argument for D2(k) is slightly more involved and is presented in the full
version [5]. ��
Definition 15. Given p, d, � and m, define

n(p, d, �,m) = min
{
k ∈ Z | τ(p, d, �, k) ≤ 2−m

}
.

Proposition 16. Let λ be a security parameter and let n = n(p, d, �, λ). The
Σ-protocol of Fig. 1 is statistically SHVZK for the relation Rd defined in Propo-
sition 12, assuming the commitment C is statistically hiding.

422 A. Basso et al.

Proof. We simulate the honest prover for each of the three challenges as follows.

chall = −1. Sample a random isogeny ψ : E0 → E2 of degree �n, and ran-
dom strings r2, r3. Set com2 = C(E2; r2) and set com3 = C(⊥; r3). Return
(com2, com3), chall, (ψ,E2, r2).

The isogeny ψ is distributed exactly like in the real protocol, thus this tran-
script is valid. Because C is statistically hiding, an adversary cannot distinguish
com3 from a real commitment.

chall = 1. This is nearly identical to the above. The simulator samples ψ′ :
E1 → E3 of degree �n and random strings r2, r3. It sets com2 = C(⊥; r2) and
com3 = C(E3; r3), and returns (com2, com3), chall, (ψ′, E3, r3).

Because � is coprime to d, if ψ is uniformly distributed so is ψ′. Then, the
transcript is indistinguishable from a real one as before.

chall = 0. Sample a random isogeny ψ : E0 → E2 of degree �n, and then a random
isogeny ρ : E2 → E3 of degree d. Sample random strings r2, r3 and set com2 =
C(E2; r2) and com3 = C(E3; r3). Return (com2, com3), chall, (ρ,E2, r2, E3, r3).

Thanks to Lemma 14, the statistical distance between the simulated
(E2, ker(ρ)) and (E2, ψ(ker(φ))) is negligible. Because ρ is uniquely determined
from ker(ρ), and the real response φ′ by ψ(ker(φ)), an adversary has negligible
probability of distinguishing the transcript output by the simulator. ��

4.2 Executing the Protocol

The protocol we just described crucially depends on the ability to construct
a commutative square with sides of degrees d and �n. The SIDH setting has
p + 1 = d · �n so that the square can be constructed by simply pushing a single
kernel point for ψ through φ and vice versa. We refer to such a square as an SIDH
square. For more general choices of �n and d, the kernels are typically generated
by points defined over very large extension fields, requiring superpolynomial
space. We efficiently construct such “larger” squares by gluing together several
SIDH squares in what we call SIDH ladders, as depicted in Fig. 2.

For simplicity, we shall present the case d = (2a)w and �n = (3b)h, where 2a

and 3b are the side lengths of an SIDH square, and w and h are positive integers
defining the width and height of the ladders in units of SIDH squares. However,
the technique generalizes easily to any coprime d and �n, as long as isogenies of
degrees d and � can be efficiently computed.

First, notice that there always exist some choice of a and b such that points
(and hence kernel subgroups) of orders 2a and 3b can be represented efficiently.
This is clear if the prime p is a SIDH prime where 2a3b | (p+1), but for a generic
prime p, one can set a = b = 1: Points of order 2 and 3 are defined over a small
extension field and can thus be efficiently represented. Moreover, any isogeny of
degree (3b)h is the composition of h isogenies of degree 3b each, which can be
stored as a sequence of h kernel generators which are efficiently representable.

This means that the prover can generate the isogeny ψ : E0 → E2 in step 2
of P1 by generating a random kernel K1,0 on E0, computing the isogeny ψ1,0 :

Supersingular Curves You Can Trust 423

E0 → E0/K1,0 =: E1,0, generating a random kernel K2,0 on E1,0 such that
K2,0 ∩ker ψ̂1,0 = {0} to prevent backtracking, and repeating the process h times
to obtain a chain of h isogenies ψi,0 : Ei−1,0 → Ei,0. The curve E2 is the
codomain of the last isogeny ψh,0, i.e., E2 = Eh,0.

If the width w of the ladder is one, the prover can now recursively push
the kernel G of the isogeny φ = φ0,1 through the isogenies ψi,0 to obtain its
image Gi on each curve Ei,0. Each horizontal isogeny φ0,i has kernel Gi, and
the prover can compute the kernel of the right-side vertical isogeny ψ′

i,0 as the
image of the kernel of ψi,0 under the isogeny φi−1,1. Since each square composed
of (Ei,0, Ei+1,0, E

′
i,0, E

′
i+1,0) is a commutative diagram, so is the larger square

(E0, E1, E2, E3). In the general case where w > 1, the prover can use a similar
approach for the horizontal isogeny φ as used for the vertical isogeny ψ: The
isogeny φ can be written as the composition of w isogenies φ0,w◦. . .◦φ0,1 of degree
2a and their kernels can be mapped through the vertical isogenies. In other words,
the prover can glue horizontally w compatible ladders, one for each factor φ0,i of
φ. The right descending isogenies of each ladder are used as the left descending
isogenies of the next one. This allows the prover to compute w×h SIDH squares
in such a way that the curves (E0, E1, E2, E3) and the isogenies between them
form a commutative diagram. This is illustrated in Fig. 2. For the challenges
chall = ±1, the prover reveals the isogenies ψi,0 of the leftmost squares, or the
isogenies ψi,w of the rightmost squares. For the challenge chall = 0, the prover
responds with the isogenies φh,i of the bottom squares.

E0 E0,1

E2 Eh,1

φ0,1

ψ2,0

ψ1,0

ψh,0

E2,0

E1,0

Eh−1,0

ψ2,1

ψ1,1

ψh,1

E2,1

E1,1

Eh−1,1

φ2,1

φ1,1

φh−1,1

φh,1

E0,w−1 E1

Eh,w−1 E3

φ0,w

ψ2,w−1

ψ1,w−1

ψh,w−1

E2,w−1

E1,w−1

Eh−1,w−1

ψ2,w

ψ1,w

ψh,w

E2,w

E1,w

Eh−1,w

φ2,w

φ1,w

φh−1,w

φh,w

Fig. 2. An SIDH ladder.

Verification consists of evaluating (depending on the challenge) either w or h
isogenies of degree 2a or 3b, which can be done efficiently. Generating the proof
is slower, as the prover needs to fill in all the w × h SIDH squares that make
up the ladder. The proving complexity is thus quadratic in w and h, while
the verification complexity is linear in w and h. However, the complexity of
computing an SIDH square with degrees 2a or 3b is only quasilinear in a and b
using sparse strategies [25]; thus, maximizing the size of SIDH squares improves

424 A. Basso et al.

performance, which explains why SIDH primes are the most efficient scenario for
this proof. If the degree of the isogenies and the size of the underlying field are
kept constant, in the SIDH setting we have that 2a3b | (p + 1) for large values
of a and b (in the order of several hundreds), and thus w and h can be small.
For a generic prime, the prover might need to set a = b = 1 and work with
large values of w and h, incurring a quadratic cost, besides possibly having to
compute points over an extension field of degree bounded by a small constant.

Remark 17. Above, we assumed that the degree of the witness φ was d = (2a)w.
As mentioned before, this can be generalized to any witness φ of smooth degree
d = d1 . . . dw as far as the di-torsion groups are accessible (ideally, one should
have E0[di] ⊆ E0(Fp2)). In this case, one factors φ as φ = φ0,w ◦ . . . ◦ φ0,1 where
each isogeny φ0,i has degree di, and constructs compatible ladders for each φ0,i.

5 Distributed SECUER Setup and Its Security

In this section, we formally describe the distributed Secuer setup protocol
and prove its security under a security definition using the simplified universal
composability (SUC) framework due to Canetti, Cohen, and Lindell [13] in the
real/ideal world paradigm. Our security definitions consider a dishonest majority
corruption model, wherein the adversary can corrupt up to t − 1 of the t par-
ticipating parties in the distributed Secuer setup protocol. The protocol uses
a non-interactive version of the Σ-protocol described in Sect. 4. We begin by
formally describing this non-interactive zero-knowledge (NIZK) PoK protocol.

5.1 The NIZK Protocol

We transform the Σ-protocol of Sect. 4 into a NIZK using the standard Fiat-
Shamir heuristic [33] for transforming interactive PoK protocols into NIZK
proofs, albeit with the difference that soundness and zero-knowledge hold for
slightly different languages.

The NIZK Construction. Let E0, E1 be supersingular curves defined over
a finite field Fp2 , let φ : E0 → E1 be a separable isogeny of smooth degree d
and let C(m; r) be a statistically hiding and computationally binding commit-
ment scheme. Additionally, let Σ = (P1,P2,V) be the interactive PoK protocol
described in Sect. 4, let λ ∈ N be the security parameter, let � be a small prime
not dividing dp, let n = n(p, d, �, λ), and let N = poly(λ) be a fixed polynomial.
Finally, let H : {0, 1}∗ → {−1, 0, 1}N be a random oracle. The NIZK proof
system consists of a pair of algorithms NIZK = (PNIZK,VNIZK) as described in
Fig. 3. The prover algorithm PNIZK is randomized and produces a proof Π. The
verifier algorithm VNIZK is deterministic; it receives the proof Π and outputs a
bit b ∈ {0, 1} indicating whether or not the proof is accepted.

Supersingular Curves You Can Trust 425

PNIZK(E0, E1, φ, n, N):
1: For each i ∈ [N], sample (com2,i, com3,i) ← P1(E0, E1, φ, n).
2: Set (chall1, . . . , challN) = H

(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
.

3: For each i ∈ [N], set respi = P2(challi).
4: return Π =

({(com2,i, com3,i, respi)}i∈[N]

)
.

VNIZK(E0, E1, Π, N):
1: Parse Π as

({(com2,i, com3,i, respi)}i∈[N]

)
.

2: Compute (chall1, . . . , challN) = H
(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
.

3: For each i ∈ [N], compute bi = V(E0, E1, (com2,i, com3,i), challi, respi).
4: Output b = ∧i∈[N]bi.

Fig. 3. The NIZK.

Correctness, Extractability and ZK. Correctness follows immediately from
the correctness of the underlying Σ-protocol. We state and prove the following
propositions for extractability and ZK.

Proposition 18. Assuming that Σ = (P1,P2,V) satisfies 3-special soundness
with respect to the relation R� (described in Proposition 12) and that H is a
random oracle, the NIZK NIZK = (PNIZK,VNIZK) satisfies extractability (and
hence soundness) with respect to the relation R�.

Proof. We provide an informal proof overview. We begin by noting that Σ is a
public-coin protocol, and that there exists a probabilistic polynomial-time algo-
rithm that extracts a witness from 3 accepting transcripts corresponding to N
parallel executions of Σ w.r.t. the same statement. Consequently, we can invoke
the generalized forking lemma of [11] to argue the existence of a probabilis-
tic polynomial-time witness-extraction algorithm for NIZK. This completes the
proof of extractability (and hence, soundness) for NIZK. ��
Proposition 19. Assuming that Σ = (P1,P2,V) is statistically SHVZK for the
relation Rd (described in Proposition 16) and that H is a random oracle, the
NIZK NIZK = (PNIZK,VNIZK) is statistically ZK for the relation Rd.

Proof. We again provide an informal proof overview. Let SimΣ be a ZK simu-
lator that simulates an accepting transcript for the underlying Σ-protocol (as
described in the proof of ZK for Σ). We construct a ZK simulator SimNIZK that
simulates an accepting proof as follows:

1. SimNIZK simulates the random oracle H as follows: it maintains a local table
consisting of tuples of the form (x, y) ∈ {0, 1}∗ × {−1, 0, 1}N . On receiving
a query x ∈ {0, 1}∗ from the adversary A, it looks up this table to check
if an entry of the from (x, y) exists. If yes, it responds with y. Otherwise,
it responds with a uniformly sampled y ← {−1, 0, 1}N , and programs the
random oracle as H(x) := y by adding the entry (x, y) to the table.

2. For each i ∈ [N], SimNIZK internally invokes the simulator SimΣ for the under-
lying Σ-protocol to obtain the i-th accepting transcript of the form

((com2,i, com3,i), challi, respi) .

426 A. Basso et al.

3. At this point, SimNIZK aborts if the adversary A has already issued a random
oracle query on the input x =

(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
.

4. Otherwise, SimNIZK programs the random oracle as

H
(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
:= (chall1, . . . , challN),

and outputs the simulated proof as Π =
({(com2,i, com3,i, respi)}i∈[N]

)
.

We note that SimNIZK runs in polynomial time as long as SimΣ runs in poly-
nomial time. Additionally, if SimNIZK does not abort, it outputs a simulated proof
that is distributed in a statistically indistinguishable manner from the distribu-
tion of a real proof, assuming that SimΣ outputs a simulated accepting transcript
with distribution statistically indistinguishable from a real accepting transcript
for Σ. Finally, SimNIZK aborts with only negligible probability, since the adversary
A guesses ((com2,i, com3,i), challi, respi) for each i ∈ [n] with at most negligible
probability. This completes the proof of statistical ZK for NIZK. ��

5.2 Our Distributed SECUER setup protocol

We now move to the distributed Secuer setup protocol. Let P1, . . . , Pt be a set
of t participating parties and let E0 be some fixed starting curve. In a nutshell,
the idea is to have the parties act sequentially: each Pi at its own turn performs
a secret random walk Ei−1 → Ei and broadcasts Ei and a NIZK PoK of the
secret walk. We claim that, as long as one party is honest, the final curve Et is
a Secuer.

To get any security guarantee, we need to carefully set the parameters of
the random walk Ei−1 → Ei. The natural choice is to fix some small prime q,
not dividing �p, and to take a random walk long enough that the distribution
of Ei is negligibly far from the stationary distribution on the q-isogeny graph
G(p, 1, q). For example we may set q = 2 and � = 3, then Theorem 11 provides
a precise bound to set the length δ = n(p, 1, q, λ) of the q-walk as a function of
the security parameter, and ultimately the parameter n(p, qδ, �, λ) of the PoK.

Remark 20. For increased efficiency, we may choose to perform shorter q-walks
Ei−1 → Ei of length logq(p). This length approximates the diameter of the
supersingular q-isogeny graph; hence, it ensures that the secret isogeny can reach
almost any curve in the graph.

Under mild assumptions, this choice would still yield a secure protocol, but
it would also make the security proof somewhat more involved. For this reason,
we shall stick here to the more conservative choice of walking long enough to
ensure nearly stationary distribution of Ei.

We formally describe the protocol (referred to as ΓSecuer henceforth). Assume
that E0 is known to all the parties at the start. Let NIZK = (PNIZK,VNIZK) be
the non-interactive proof as described above. The protocol ΓSecuer proceeds in
t rounds while only using broadcast channels of communication, where round-i
for each i ∈ [t] is as follows:

Supersingular Curves You Can Trust 427

– Party Pi performs a q-isogeny walk starting at curve Ei−1 and ending at curve
Ei (where Ei−1 and Ei are both supersingular curves defined over Fp2), such
that party Pi knows a separable isogeny φi : Ei−1 → Ei of degree qδ, where
δ = n(p, 1, q, λ).

– Party Pi generates Πi ← PNIZK(Ei−1, Ei, φi, n,N), where n = n(p, qδ, �, λ),
and broadcasts (Ei,Πi) to all other parties.

– Each party Pj for j ∈ [t] \ {i} verifies the NIZK proof Πi by computing
bi = VNIZK(Ei−1, Ei,Πi, N). If bi = 0 (i.e., the proof is invalid), Pj aborts.

At the end of round-t, all parties output Et to be the final output curve.

Correctness. Correctness of ΓSecuer follows immediately from the correctness
guarantees of the NIZK.

5.3 Proof of Security for ΓSECUER

We now present the proof of security for ΓSecuer using the simplified universal
composability (SUC) framework [13] in the real/ideal world paradigm. We con-
sider a dishonest majority corruption model, wherein the adversary can corrupt
up to (t − 1) of the t participating parties.

The Ideal Functionality. Intuitively, the ideal functionality for distributed
Secuer setup should simply take as input the initial curve E0 and output a
Secuer Et. It is however not obvious how to model the property of being a
Secuer in the plain SUC model: a game based definition, stating that an adver-
sary who can compute End(Et) can be used to break some other assumption,
appears to be more appropriate.

Thus, we prove security in two steps. First, we prove that ΓSecuer securely
emulates a less-than-ideal functionality F∗

Secuer (described in Fig. 4) that
enforces that: (a) for each i ∈ [t], if a corrupt party Pi outputs a curve Ei,
it must know a valid isogeny φi : Ei−1 → Ei, and (b) for each i ∈ [t], if an hon-
est party Pi outputs a curve Ei, then the corresponding isogeny φi : Ei−1 → Ei

is hidden from the adversary. This step relies on the extractability and ZK prop-
erties of the NIZK protocol described above. Next, we prove that, assuming the
hardness of the endomorphism ring problem in the F∗

Secuer-hybrid model, the
output curve Et is a Secuer, i.e. that the (malicious) adversary cannot compute
End(Et).

Theorem 21. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability and
zero-knowledge, and assuming the hardness of the endomorphism ring prob-
lem (Definition 1) and GRH, the output Et of the protocol ΓSecuer is a Secuer
if at least one party Pi∗ for some i∗ ∈ [t] is honest.

428 A. Basso et al.

F∗
Secuer(E0, i ∈ [t])

– Let Hi ⊆ [i − 1] be the set of honest parties, and let Ci ⊆ [i − 1] be the set of
corrupt parties among the first (i − 1) parties P1, . . . , P(i−1).

– For each j ∈ Hi, F∗
Secuer receives as input from Pj a tuple of the form (Ej , φj).

– For each j′ ∈ Ci, F∗
Secuer receives as input from the simulator Sim a tuple of the

form (Ej′ , φj′).
– If for any j ∈ [i − 1], φj is not an isogeny from the curve Ej−1 to the curve Ej ,

F∗
Secuer outputs ⊥ and aborts.

– Otherwise, F∗
Secuer takes a random walk starting from the (i − 1)-th curve Ei−1

and ending in a curve Ei such that F∗
Secuer knows φi : Ei−1 → Ei, where φi is

a separable isogeny of degree d.
– Finally, F∗

Secuer outputs (Ei, φi) to the party Pi, and outputs Ei to the simulator
Sim and to all parties Pj for j 	= i.

Fig. 4. The Ideal functionality F∗
Secuer

Secure Emulation of F∗
Secuer. We now prove that ΓSecuer securely emulates

the less-than-ideal functionality F∗
Secuer. Our proof is in the real/ideal world

paradigm defined formally as follows.

The Real World. The following entities engage in the real protocol ΓSecuer: (i)
a set H ⊆ [t] of honest parties, (ii) a real-world adversary A controlling a set
C ⊂ [t] of corrupt parties, and (iii) the environment E that provides E0 to each
party, interacts with the real-world adversary A, receives the final output curve
Et from the honest parties, and eventually outputs a bit b ∈ {0, 1}.

The Ideal World. The following entities interact with the functionality F∗
Secuer:

(i) A set H ⊆ [t] of honest parties, where for each i ∈ H, party Pi directly
forwards its secret isogeny to F∗

Secuer, (ii) an ideal-world simulator Sim that
sends inputs to F∗

Secuer on behalf of a set C ⊂ [t] of corrupt parties, and (iii)
the environment E that provides each party with the starting curve E0, interacts
with the simulator Sim, receives the final output curve Et from the functionality,
and eventually outputs a bit b ∈ {0, 1}.

For any t-party Secuer setup protocol ΓSecuer, any adversary A, any sim-
ulator Sim, and any environment E , we define the following random variables:

– realΓSecuer,A,E : denotes the output of the environment E after interacting with
the adversary A during a real-world execution of ΓSecuer.

– idealF∗
Secuer,Sim,E : denotes the output of the environment E after interacting

with the simulator Sim in the ideal world.

Theorem 22. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability and
zero-knowledge, for any security parameter λ ∈ N and any probabilistic polyno-
mial time (PPT) adversary A, there exists a PPT simulator Sim such that, for

Supersingular Curves You Can Trust 429

any PPT environment E, we have
∣∣Pr [realΓSecuer,A,E = 1] − Pr

[
idealF∗

Secuer,Sim,E = 1
]∣∣ ≤ negl(λ).

Proof. We prove this theorem by constructing a PPT simulator Sim that simu-
lates the view of the environment E in the ideal world. Details are given in the
full version [5]. ��

Analyzing Et in F∗
Secuer-hybrid Model. Based on the above secure emula-

tion guarantee, we now analyze the output Et of ΓSecuer in the F∗
Secuer-hybrid

model. Concretely, we state and prove the following theorem.

Theorem 23. Assuming the hardness of the endomorphism ring problem and
GRH, the output Et of F∗

Secuer(E0, t) is a Secuer if at least one party is honest.

To prove this theorem, we first prove the following lemma.

Lemma 24. Assuming the hardness of the endomorphism ring problem, the out-
put Ei of F∗

Secuer(E0, i) for i ∈ [t] is a Secuer whenever Pi is honest.

Proof. Suppose that there exists an adversary A corrupting a dishonest majority
of the parties that efficiently computes the endomorphism ring of Ei with non-
negligible probability. Also assume that A corrupts all of P1, . . . , Pi−1. We can
use A to construct an algorithm B that solves the endomorphism ring problem.
The algorithm B receives as input a uniformly random curve E∗/Fp2 , internally
runs the adversary A to emulate the outputs of the corrupt parties P1, . . . , Pi−1,
and finally feeds A with Ei := E∗. The view of the adversary A is properly simu-
lated by B, since Ei output by F∗

Secuer and E∗ provisioned by B are statistically
indistinguishable (here we use Theorem 11, which crucially follows from the hon-
est party taking a q-walk of length n(p, 1, q, λ)). Finally, B uses A to recover the
endomorphism ring of E∗ with non-negligible probability. This concludes the
proof of Lemma 24. ��

We now prove Theorem 23. We break the proof into two cases: (i) when Pt

is honest, and (ii) when Pt is corrupt. The proof for case (i) is immediate from
Lemma 24. Hence, we focus on case (ii). Let H ⊆ [t] be the set of honest parties,
and let i∗ = max ({i : Pi ∈ H}). By Lemma 24, Ei∗ must be a Secuer. Now,
suppose that Et is not a Secuer, i.e., there exists an adversary A corrupting
dishonest majority of the parties that efficiently computes the endomorphism
ring of Et with non-negligible probability. Since all of Pi∗+1, . . . , Pt are corrupt,
A knows a walk from Ei∗ to Et in the �-isogeny graph. However, since Et is not
a Secuer, A can use the reduction [59] (assuming GRH) to recover End(Ei∗),
thereby violating Lemma 24. This completes the proof of Theorem 23. ��

Finally, the proof of Theorem 21 follows immediately from the proofs of
Theorem 22 and Theorem 23, which completes the proof of security for our
distributed Secuer setup protocol ΓSecuer.

430 A. Basso et al.

Table 1. Parameters and corresponding secret/proof size for each of the four SIKE
finite fields.

Degree SIDH Squares Size (kB)
log(p) Reps 2-isog 3-isog Columns Rows Secret Proof

434 219 705 890 4 7 0.99 191.19
503 219 774 977 4 7 1.13 215.75
610 329 1010 1275 4 7 1.39 404.32
751 438 1280 1616 4 7 1.69 662.63

6 Implementation and Results

In this section, we report on our proof-of-concept implementation of our proof
of knowledge (Sect. 4), including a discussion of proof sizes and running times.
Moreover, we lay out concretely how one may deploy the trusted setup protocol
from Sect. 5 in the real world.

Parameter Selection. The base-field primes p in our proof-of-knowledge imple-
mentation are taken from the four SIKE parameter sets p434, p503, p610, and
p751. As discussed in Sect. 4.2, our proof of knowledge achieves its optimal effi-
ciency for SIDH-style primes. Moreover, those primes have been featured exten-
sively in the literature, and thus appear to be the obvious choice to demonstrate
our proof of knowledge. That said, we stress once more that our techniques are
generic and can be applied in any choice of characteristic.

We use the degree q = 2 for the random walks Ei → Ei−1, and � = 3 for the
random walks of the Σ-protocol of Fig. 1. Like Sect. 5, we set δ = n(p, 1, 2, λ)
for the length of the 2-walks, and n = n(p, 2δ, 3, λ) for the 3-walks. Lastly, the
Σ-protocol needs to be repeated several times to achieve a negligible soundness
error. Since one repetition has soundness error 2/3, the protocol needs to be
repeated −λ/log(2/3) times to achieve 2−λ soundness error. We target the same
security levels as the corresponding SIKE parameter sets, i.e., λ = 128 for p434
and p503, λ = 192 for p610, and λ = 256 for p751. The resulting conservative
parameters are summarized in Table 1.

Implementation. We developed an optimized implementation6 of our proof of
knowledge (Sect. 4.1) for the trusted-setup application (Sect. 5) based on version
3.5.1 of Microsoft’s SIDH library7. Our implementation inherits and benefits
from all lower-level optimizations contained in that library, and it supports a
wide range of platforms with optimized code for a variety of Intel and ARM
processors. Compiling our software produces two command-line tools prove and
verify, which use a simple ASCII-based interface to communicate the data
contributed to the trusted setup.

6 The source code is available at https://github.com/trusted-isogenies/SECUER-pok.
7 https://github.com/microsoft/PQCrypto-SIDH.

https://github.com/trusted-isogenies/SECUER-pok
https://github.com/microsoft/PQCrypto-SIDH

Supersingular Curves You Can Trust 431

The implementation closely follows the strategy outlined in Sect. 4.2. This
includes the choices d = (2a)w and �n = (3b)h; thus, both the witness and the
commitment isogenies are uniformly random cyclic isogenies of degree d and �n

respectively. To reduce latency, we additionally exploit parallelism: Recall that
the proof of knowledge is repeated many times to achieve a low soundness error;
indeed most of the computations are independent between those repetitions and
can thus easily be performed at the same time on a multi-core system. This
is confirmed by experimental results, where our implementation is observed to
parallelize almost perfectly when run on an eight-core processor.

Sampling purely random large-degree isogenies with code from SIDH comes
with two caveats: First, the sampling of “small” squares must avoid backtracking
between the individual squares being glued to ensure that the composition is
cyclic in the end; in both cases this is done by keeping track of the kernel of the
dual of the last prime-degree step of the previous square and avoiding points
lying above this “forbidden” kernel when choosing the next square. Besides that,
the specific isogeny formulas used in SIDH fail for the 2-torsion point (0, 0),
which can be resolved by changing to a different Montgomery model each time
this kernel point is encountered. For curves revealed in the proof, the choice of
Montgomery model should be randomized to avoid leakage. Similarly, the kernel
generators of the horizontal isogeny φ′ also need to be randomized, as Lemma 14
only distinguishes cyclic subgroups and revealing specific generators may leak.

Our software sacrifices some performance for simplicity, which aids auditabil-
ity and hence helps increase trust in the results of a trusted-setup ceremony. Some
unused optimizations: Two-isogenies are faster to compute than three-isogenies,
and since the SIDH ladder is taller than wider, swapping the role of two- and
three-isogenies in the trusted-setup application could somewhat improve the
resulting performance. For simplicity, our implementation also only uses full
SIDH squares, and thus all isogeny degrees are rounded up to the closest multi-
ple of an SIDH square; shortening the sides of some of the squares can save time.
We also did not apply all optimizations to reduce the proof size. This includes
applying SIDH-style compression techniques [20] to the points contained in the
proof, cutting their size approximately in half. Moreover, applying a slight bias
when sampling the challenges challi means smaller responses can appear more
often, at the expense of requiring slightly more repetitions; we investigated this
tradeoff and determined that the potential improvement is essentially void.

Results. We benchmarked the three algorithms (instance generation, proving,
and verification) that make up the zero-knowledge proof of knowledge. We run
our tests on an ARM Apple M1 Pro with eight cores, and we averaged the run-
ning times of 100 iterations for the parallel implementation and the running
times of 50 iterations of the single-core version. The resulting timings are shown
in Table 2. They demonstrate that the algorithm is highly practical and can real-
istically be used within a trusted setup protocol: Generating proofs of knowledge
for all four base fields takes less than five core-minutes on a modern CPU. Note
that these algorithms need to be run only once per contributor.

432 A. Basso et al.

Table 2. Benchmarks for instance generation, proving, and verification of our proof of
isogeny knowledge for each of the four SIKE finite fields.

Single-core Time (s) Eight-core Time (s)
log(p) Instance Prove Verify Instance Prove Verify

434 0.01 18.15 1.93 0.01 2.96 0.32
503 0.01 25.70 2.71 0.01 4.17 0.44
610 0.02 74.82 7.69 0.02 12.12 1.24
751 0.04 162.47 17.01 0.04 26.07 2.89

Real-World Deployment. We briefly discuss how we intend to deploy the
trusted setup protocol proposed in Sect. 5. The goals of such a deployment
include include a transparent setup that allows parties to trust the process,
a low bar of entry to participate in the protocol, and a secure system that can
withstand Sybil and Denial-of-Service (DoS) attacks.

Firstly, we are releasing at https://github.com/trusted-isogenies/ a set of
tools that participants can download and run to generate a valid addition to the
trusted setup, and for ceremony orchestrators to validate protocol submissions
on the server-side. To increase user trust, we also provide higher-level versions
(e.g., in SageMath) of some components. Moreover, the proof format is made
public, so that any party can—if they choose to—re-implement the algorithms
and generate a compatible proof.

Then, we propose leveraging the existing infrastructure of git and GitHub to
host our distributed protocol. Thus, each party Ei can generate a random walk
from the latest curve Ei−1 to a new curve Ei, generate a PoK of their secret
isogeny walk, and submit the new curve and the PoK to the server as a pull
request (PR). The server is a separate git repository and execution environment
maintaining the sequence of curves and the proofs, with checks that are run
automatically against submissions from parties. The repository automation ver-
ifies that the submitted PoK of the isogeny between the current curve Ei−1 at
the end of the walk (the ‘tip’ curve) and the new proposed curve Ei is valid, and
that the PR does not rewrite any previous history. If the checks pass, the PR is
rebased on top of the main branch, adding the new PoK of the latest hop, and
updating the tip curve to Ei. New parties in the protocol will generate isogeny
walks starting from the new tip curve.

If the chain of isogenies diverges, i.e. if some party submits a new curve and
PoK starting from a curve other than the tip, the new submission is rejected.
This may happen when several parties try to contribute at the same time. To
minimize the amount of wasted prover work, we parallelize verification and reject
invalid proofs as early as possible.

The configuration for the continuous integration checks is maintained in a
separate repository to prevent modification from protocol parties. Hosting the
protocol on GitHub raises the bar to Sybil attacks, as it requires all parties to
have a GitHub account with a verified email address. Using our tool requires

https://github.com/trusted-isogenies/

Supersingular Curves You Can Trust 433

generation of a GitHub personal access token to authenticate when generating
the submission, which further complicates automation/collusion.

The end result of the protocol is a public git repository whose final commit
contains a sequence of curves and valid PoKs of isogenies between them, the
last of which is the final Secuer Et, a curve with unknown endomorphism ring,
in a parsable hex encoding. Anyone can pull down this artifact and verify the
sequence of curves and proofs independently if they wish.

7 Conclusion

In this work, we analyzed a distributed Secuer generation protocol, and pro-
posed a concrete instantiation with strong security guarantees based on a novel
proof of isogeny knowledge. To demonstrate the practical feasibility of our pro-
tocol, we are going to run a distributed Secuer generation ceremony, scaling to
hundreds of participants, using the technology outlined in Sect. 6.

Our new PoK is especially well-suited for SIDH-like base fields, but can be
used reasonably well with fields Fp2 of any characteristic. Generic ZK proof
systems, such as the SumCheck protocol used in [18], would be an alternative
to our PoK. After this work was published, Cong, Lai and Levin [19] designed
an R1CS encoding of 2-isogeny walks that they fed to various generic proof
systems. Their results show that Aurora [6], in particular, can be quite com-
petitive, giving a measurable speed boost at the cost of a moderate increase in
proof size. Currently, the question of which proof system to use appears to be
context-dependent.

None of the currently known techniques are particularly well suited for prov-
ing knowledge of an isogeny walk over Fp: our PoK and generic proof systems
are much more efficient when the walks consist of isogenies of small degree such
as 2 or 3, which is not possible over Fp. SeaSign-like techniques [24,29] are at
least one order of magnitude slower than our PoK, and scale much worse. CSI-
FiSh [8] is reasonably efficient, but limited to the base field of CSIDH-512. We
think generating Secuers over Fp efficiently is an interesting open problem.

To show the security of the proof of knowledge, we developed the theory
of supersingular isogeny graphs with level structure, in particular proving that
they possess the Ramanujan property. In this work we only focused on the so-
called Borel level structure, however similar properties can be proven for more
general level structures. In a follow-up work, we will develop the general theory
of these graphs, prove bounds on their eigenvalues, and discuss consequences for
isogeny-based cryptography.

Acknowledgments. We are grateful to the reviewers and to Shai Levin for helping
catch several mistakes and misprints. We thank Jeff Burdges for valuable discussions
during the preparation of this work.

434 A. Basso et al.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part
II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_14

2. Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks
mix faster. Commun. Contemp. Math. 9(4), 585–603 (2007). https://doi.org/10.
1142/S0219199707002551

3. Arpin, S.: Adding level structure to supersingular elliptic curve isogeny graphs
(2022). https://doi.org/10.48550/ARXIV.2203.03531, arXiv:2203.03531

4. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Paper 2023/225 (2023). https://eprint.iacr.org/2023/225

5. Basso, A., et al.: Supersingular curves you can trust. Cryptology ePrint Archive,
Report 2022/1469 (2022). https://eprint.iacr.org/2022/1469

6. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2_4

7. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020). https://doi.org/10.
2140/obs.2020.4.39

8. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_9

9. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
520–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_18

10. Booher, J., et al.:: Failing to hash into supersingular isogeny graphs. Cryptology
ePrint Archive, Report 2022/518 (2022). https://eprint.iacr.org/2022/518

11. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

12. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.X. (eds.)
EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 302–326. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-030-77870-5_11

13. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M.J.B.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7_1

14. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022). https://eprint.iacr.
org/2022/975

15. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03332-3_15

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1142/S0219199707002551
https://doi.org/10.1142/S0219199707002551
https://doi.org/10.48550/ARXIV.2203.03531
http://arxiv.org/abs/2203.03531
https://eprint.iacr.org/2023/225
https://eprint.iacr.org/2022/1469
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://eprint.iacr.org/2022/518
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-662-48000-7_1
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15

Supersingular Curves You Can Trust 435

16. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS,
vol. 12106, pp. 523–548. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-45724-2_18

17. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2007). https://doi.org/10.1007/
s00145-007-9002-x

18. Chávez-Saab, J., Rodríguez-Henríquez, F., Tibouchi, M.: Verifiable isogeny walks:
Towards an isogeny-based postquantum VDF. In: AlTawy, R., Hülsing, A. (eds.)
SAC 2021. LNCS, vol. 13203, pp. 441–460. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-030-99277-4_21

19. Cong, K., Lai, Y.F., Levin, S.: Efficient isogeny proofs using generic techniques.
Cryptology ePrint Archive, Report 2023/037 (2023). https://eprint.iacr.org/2023/
037

20. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part I. LNCS, vol. 10210, pp. 679–706. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-319-56620-7_24

21. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

22. De Feo, L., et al.: Séta: Supersingular encryption from torsion attacks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 249–278.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5_9

23. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
310–339. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-
4_11

24. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol.
11478, pp. 759–789. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-17659-4_26

25. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

26. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III.
LNCS, vol. 11274, pp. 365–394. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-030-03332-3_14

27. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-64837-4_3

28. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part I. LNCS, vol. 11921, pp. 248–277. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-34578-5_10

29. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019. pp. 271–285. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-25510-7_15

https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/978-3-030-99277-4_21
https://doi.org/10.1007/978-3-030-99277-4_21
https://eprint.iacr.org/2023/037
https://eprint.iacr.org/2023/037
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-25510-7_15

436 A. Basso et al.

30. Deligne, P.: La conjecture de Weil : I. Publications Mathématiques de l’IHÉS 43,
273–307 (1974). http://www.numdam.org/item/PMIHES_1974__43__273_0/

31. Diamond, F., Shurman, J.: A First Course in Modular Forms, Graduate Texts
in Mathematics, vol. 228. Springer-Verlag, New York (2005). https://doi.org/10.
1007/978-0-387-27226-9

32. Eisenträger, K., Hallgren, S., Lauter, K.E., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 329–368.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78372-7_11

33. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

34. Fouotsa, T.B., Kutas, P., Merz, S.P., Ti, Y.B.: On the isogeny problem with torsion
point information. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part I. LNCS, vol. 13177, pp. 142–161. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-030-97121-2_6

35. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6_3

36. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASIA-
CRYPT 2017, Part I. LNCS, vol. 10624, pp. 3–33. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-70694-8_1

37. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2019).
https://doi.org/10.1007/s00145-019-09316-0

38. Ghantous, W., Pintore, F., Veroni, M.: Collisions in supersingular isogeny graphs
and the SIDH-based identification protocol. Cryptology ePrint Archive, Report
2021/1051 (2021). https://eprint.iacr.org/2021/1051

39. Goren, E.Z., Kassaei, P.L.: p-adic dynamics of Hecke operators on modular curves.
Journal de Théorie des Nombres de Bordeaux 33(2), 387–431 (2021). https://www.
jstor.org/stable/48618785

40. Hijikata, H., Pizer, A.K., Shemanske, T.R.: The basis problem for modular forms
on Γ0(N). Mem. Amer. Math. Soc. 82(418), vi+159 (1989). https://doi.org/10.
1090/memo/0418

41. Jao, D., et al.: SIKE. Tech. rep., National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions

42. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5_2

43. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkley (1996). https://www.i2m.univ-amu.fr/perso/
david.kohel/pub/thesis.pdf

44. Lai, Y.F., Galbraith, S.D., de Saint Guilhem, C.: Compact, efficient and UC-secure
isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.X. (eds.) EURO-
CRYPT 2021, Part I. LNCS, vol. 12696, pp. 213–241. Springer, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-77870-5_8

http://www.numdam.org/item/PMIHES_1974__43__273_0/
https://doi.org/10.1007/978-0-387-27226-9
https://doi.org/10.1007/978-0-387-27226-9
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/s00145-019-09316-0
https://eprint.iacr.org/2021/1051
https://www.jstor.org/stable/48618785
https://www.jstor.org/stable/48618785
https://doi.org/10.1090/memo/0418
https://doi.org/10.1090/memo/0418
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://doi.org/10.1007/978-3-030-77870-5_8

Supersingular Curves You Can Trust 437

45. Love, J., Boneh, D.: Supersingular curves with small noninteger endomorphisms.
Open Book Series 4(1), 7–22 (2020). https://doi.org/10.2140/obs.2020.4.7

46. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: To appear in EUROCRYPT 2023. LNCS, Springer,
Heidelberg (2023). https://eprint.iacr.org/2022/1026

47. Mestre, J.F.: La méthode des graphes. Exemples et applications. In: Proceedings of
the international conference on class numbers and fundamental units of algebraic
number fields (Katata, 1986). Nagoya University, Nagoya (1986). https://wstein.
org/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf

48. Mula, M., Murru, N., Pintore, F.: Random sampling of supersingular elliptic curves.
Cryptology ePrint Archive, Report 2022/528 (2022). https://eprint.iacr.org/2022/
528

49. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp.
330–353. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-
9_12

50. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society (N.S.) 23(1) (1990). https://doi.org/10.1090/S0273-0979-
1990-15918-X

51. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 432–470.
Springer, Heidelberg, Virtual Event (2021). https://doi.org/10.1007/978-3-030-
84252-9_15

52. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038 (2022). https://eprint.iacr.org/2022/1038

53. Schoeneberg, B.: Elliptic modular functions: an introduction. Die Grundlehren der
mathematischen Wissenschaften, Band 203, Springer, Heidelberg (1974). https://
doi.org/10.1007/978-3-642-65663-7

54. Sterner, B.: Commitment schemes from supersingular elliptic curve isogeny graphs.
Math. Cryptol. 1(2), 40–51 (2022). https://journals.flvc.org/mathcryptology/
article/view/130656

55. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010). https://doi.org/10.3934/amc.2010.4.215

56. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

57. Voight, J.: Quaternion algebras, Graduate Texts in Mathematics, vol. 288.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56694-4

58. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 345–371. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-07082-2_13

59. Wesolowski, B.: The supersingular isogeny path and endomorphism ring prob-
lems are equivalent. In: 62nd FOCS. pp. 1100–1111. IEEE Computer Society Press
(2022). https://doi.org/10.1109/FOCS52979.2021.00109

https://doi.org/10.2140/obs.2020.4.7
https://eprint.iacr.org/2022/1026
https://wstein.org/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf
https://wstein.org/msri06/refs/mestre-method-of-graphs/mestre-fr.pdf
https://eprint.iacr.org/2022/528
https://eprint.iacr.org/2022/528
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2022/1038
https://doi.org/10.1007/978-3-642-65663-7
https://doi.org/10.1007/978-3-642-65663-7
https://journals.flvc.org/mathcryptology/article/view/130656
https://journals.flvc.org/mathcryptology/article/view/130656
https://doi.org/10.3934/amc.2010.4.215
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1109/FOCS52979.2021.00109

On Valiant’s Conjecture

Impossibility of Incrementally Verifiable Computation
from Random Oracles

Mathias Hall-Andersen and Jesper Buus Nielsen(B)

Aarhus University, Aarhus, Denmark

jbn@cs.au.dk

Abstract. In his landmark paper at TCC 2008 Paul Valiant introduced
the notion of “incrementally verifiable computation” which enables a
prover to incrementally compute a succinct proof of correct execution of
a (potentially) long running process. The paper later won the 2019 TCC
test of time award. The construction was proven secure in the random
oracle model without any further computational assumptions. However,
the overall proof was given using a non-standard version of the random-
oracle methodology where sometimes the hash function is a random ora-
cle and sometimes it has a short description as a circuit. Valiant clearly
noted that this model is non-standard, but conjectured that the standard
random oracle methodology would not suffice. This conjecture has been
open for 14 years. We prove that if the proof system can receive a long
witness as input in an incremental manner and is also zero-knowledge
then the conjecture is true. Valiant’s original construction does not have
these properties but can easily be extended to have them in his model.
We relate our result to recent possibility and impossibility results for
SNARKs and incrementally verifiable computation.

Keywords: Idealized Models · Lower Bounds · Separations and
Impossibility Results · Proof Systems · Zero-Knowledge

1 Introduction

Incrementally Verifiable Computation. In his landmark paper Paul Valiant [21]
introduced the notion of “incrementally verifiable computation” (IVC) which
enables a prover to incrementally compute a succinct proof of correct execution
of a (potentially) long running process. At any time the prover can suspend the
computation and return a proof of correct execution leading up to the present
state. This paper inspired a lot of later constructions, including modern recursive
SNARK constructions, and won the 2019 TCC test-of-time award.

M. Hall-Andersen—Funded by the Concordium Foundation.
J.B. Nielsen—Partially funded by The Concordium Foundation; The Danish Indepen-
dent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM).

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 438–469, 2023.
https://doi.org/10.1007/978-3-031-30617-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_15&domain=pdf
http://orcid.org/0000-0002-0195-6659
http://orcid.org/0000-0002-7074-0683
https://doi.org/10.1007/978-3-031-30617-4_15

On Valiant’s Conjecture 439

The methodology applied by Valiant is incremental. The computation applies
the same step function T a number of � times. There is an initial state M0 and
Mi = T (Mi−1). There is also an initial proof π0, the empty string say. To
construct the proof πi that Mi = T i(M0) one constructs a proof of knowledge
of (Mi−1, πi−1) for which it holds that Mi = T (Mi−1) and that πi−1 verifies the
statement Mi−1 = T i−1(M0).1

The proofs are succinct in the sense that their have a size depend only poly-
logarithmically on the number of steps i. Verification time also depends only
poly-logarithmically on i. So neither the prover nor the verifier can just rerun
the computation from M0. Note that some notion of succinctness must follow
from any reasonable notion of incrementality. Otherwise each new proof could
just be recomputed from M0, which hardly qualifies as “incremental”.

The soundness of the recursive proof system is proven in the random oracle
model without any further computational assumptions. However, Valiant need
to apply a non-standard version of the random oracle model. When proving
soundness of the proof system extending a proof by one step it is assumed that
the hash function is a random oracle. However, when recursively proving that
π�−1 verifies it is assumed that the hash function has a short description as a
circuit. This gives a somewhat interesting model where the hash function at
different times has contradicting properties. The paper is very up front about
this and justifies it by the conjecture that it seems that the standard random
oracle methodology is not enough:

. . . When we try to recursively embed this system the recursion breaks
down because, even at the first level of recursion, we are no longer trying
to prove statements about classical computation but rather statements
of the form “M with oracle access to O accepts the following string...”
Thus standard applications of random oracles do not appear to help. [our
emphasis]. . . .

–Paul Valiant [21]

In [8] Chiesa and Liu show impossibility results for proofs in relativized worlds,
i.e., proofs of exactly the form “M with oracle access to O accepts the following
string...” They show that DTIME(t)O �⊆ PCP(o(t), o(t))O and NTIME(t)O �⊆
PCP(poly(t), o(t))O, which can informally be interpreted as not all statements
of the form “M with oracle access to O accepts the following string...” can have
a non-trivial proof where not all the oracle queries of M are checked by the
verifier. But if the verifier checks all oracle queries of the prover and each steps
makes just one query then the verifier is not succinct. As noted in [8] this “gives
strong evidence that Valiant’s approach was in some sense justified.” However,
it does not conclusively rule out that Valiant’s approach can be instantiated in

1 As detailed later this description is oversimplified but will suffice for our discussion.
The real recursive strategy is more involved to tame the complexity of knowledge
extraction.

440 M. Hall-Andersen and J. B. Nielsen

the standard random oracle model. It cannot be ruled out that a proof system
can be constructed where the verifier is simple enough that it does not fall prey
to the Chiesa-Liu results, as they only prove that not all statements have such
a proof.

And even if we could rule out the explicitly recursive strategy, where we
extend a proof by proving knowledge of an accepting sub-proof, then it might
still be possible to do incremental proofs in the random oracle model using
some other strategy. In particular, the end result of Valiant’s approach is to give
a proof about random oracle devoid computation, which is not ruled out by the
Chiesa-Liu results. As already noted by Valiant:

. . . It remains an interesting question whether the goals of this paper
may be attained in some other way using random oracles. . . .

–Paul Valiant [21]

In the present paper we show that Valiant was correct and that indeed the
standard random oracle model is not sufficient for incremental proofs. We rule
out not just explicitly recursive designs, but general incremental designs. As we
discuss below we do not prove impossibility for the exact setting studied by
Valiant: we need to assume two additional but natural properties of the proof
system, which Valiant’s construction can easily be extended to have.

Non-deterministic Computation. The first additional assumption we need is that
the ongoing computation can receive a long witness as input in an incremental
manner. The verifier is assumed to only have access to a short instance. In a
modern setting this could be a verifier knowing only the genesis block and a
recent block of a blockchain and the prover wants to succinctly prove that the
blockchain has some property, like the verifier having been paid a certain amount
defined by the overall activity on the blockchain. Here the genesis block plus the
recent block is the short instance and the blockchain is the long witness. It is
a natural question whether the proof can be computed incrementally, say by
consuming the blockchain block-by-block.

The original notion of IVC considers only deterministic computation: the ver-
ifier is provided with a Turing machine and the prover convinces the verifier that
the provided state is reached after executing the Turning machine for some num-
ber of steps. Motivated by “distributed computation” Chiesa and Tromer [10]
subsequently generalized IVC to the powerful notion of “Proof-Carrying Data”
(PCD) in which the correct computation of a function taking multiple inputs
can be proven given proofs of correctness for each of the inputs, e.g., the com-
putation of F (G1(w1), G2(w2)) can be proven given y1 = G1(w1), y1 = G2(w2)
and corresponding proofs-of-knowledge π1, π2 for w1, w2. For our impossibilities
we use the abstraction of “non-deterministic incrementally verifiable computa-
tion”, which is a special case of PCD with “fan-in” 1 with the same function
applied in each step, or equivalently, a generalization of IVC where each step of
the Turning machine may take a witness.

On Valiant’s Conjecture 441

Zero-Knowledge via Reprogramming the Random Oracle. Our impossibility
results also assume that the incremental proof is zero-knowledge. Succinct argu-
ments already information theoretically hides most of the witness, as the proof
is much shorter than the witness. For general PCD zero-knowledge is even a
natural requirement: different steps of the computation may be performed by
mutually distrustful parties which do not want to share their secrets.

The notion of ZK which we consider is as follows. The simulator is given a
correct state and proof for step i and must then produce a proof for step i + 1
without knowing the corresponding witness. This simulated proof should look
indistinguishable to a PPT adversary. The simulator may inspect and reprogram
the random oracle, but to make its job harder we give the adversary access to
querying the random oracle before the simulation is made. This can be seen as
giving a limited form of auxiliary information on the oracle to the adversary.
It is discussed by Goldreich in [15] why auxiliary information is important for
composability of ZK proofs. As discussed by Unruh in [20] it is also essential
for composability to give the adversary auxiliary information on the random
oracle. Otherwise the security assumption assumes the random oracle appears
magically after the adversary specified its strategy. In this case each proof would
need its own fresh random oracle even for sequential composition. For the case
of IVC this would require that a fresh random oracle appears after each proof
step, which is a very unnatural model.

We note that our impossibilities hold under any computational assumptions,
as long as the ZK simulation proceeds only by reprogramming the random oracle.
It therefore does not, e.g., rule out constructions from common reference strings
where the simulation relies on the trapdoor of the CRS.

In This Paper. In this paper the main result is to show that succinct, zero-
knowledge non-deterministic IVC from random oracles is impossible in the fol-
lowing two cases.

1. There exist collision intractable hash functions and the proof system has
knowledge soundness. Knowledge soundness and zero-knowledge may depend
on standard model computational assumptions including non-falsifiable
assumptions.

2. There exist perfectly binding rerandomizable commitments and the proof
system has soundness. Both soundness and zero-knowledge may depend on
standard-model computation assumptions including non-falsifiable assump-
tions.

Universal Knowledge Soundness. For the first result we consider a notion of
knowledge extraction with a universal extractor: we require that there exists a
poly-time extractor which works for all poly-time adversaries. The extractor is
given the code of the adversary as input, so it can still use non-blackbox extrac-
tion. However, quantifying the extractor before the adversary makes it hard
to use for instance knowledge-of-exponent assumptions or any other assump-
tion of the form “for all adversaries there exists an extractor such that . . .”.

442 M. Hall-Andersen and J. B. Nielsen

We note that the first result still stands if one makes knowledge assumptions or,
in general, any non-falsifiable assumptions. The only restriction we make is that
our definition of universal knowledge soundness makes it harder to exploit these
assumptions.

We now give an overview of our proof techniques and discuss the results
in more detail, discuss generalisations, and compare to existing (im)possibility
results for PCDs and SNARKs.

PCD via Recursion. Above we discussed recursive proofs as being simply sequen-
tial. To avoid confusion let us note that in Valiant’s original paper [21] IVC is
constructed using a tree of linear-time extractable CS proofs [19] in which the
leafs each prove a step of the execution, while the parents (a CS proof) proves
the correct execution of the verifier on the two children (CS proofs) which each
cover half of the computation time. By maintaining just log(T) such proofs the
computation can be extended in the obvious way. The tree structure is essential
to ensuring polynomial-time extraction, since the linear-time knowledge extrac-
tor need only be applied log(T) times recursively to extract the entire compu-
tational trace. In later works [3,4] from zk-SNARKS the proofs are composed
iteratively, which implies that the proof as far as we know only is sound for
computation of constant depth. Lately, in practical schemes/deployments, the
efficiency of the recursive extraction is largely ignored: instead showing that a
single level of recursion is extractable [5,6]. Common to all known constructions
is the non-blackbox use of (parts of) the verifier.

Incremental PCD. Our results apply not only to recursive proofs but to succinct
incremental proofs in general. We look at incremental proofs produced by some
� number of succinct steps. By succinct we mean that the state of the prover
passed on from one step to the next has size poly(|R|, λ, log �), where R is the
PPT relation checking that one step was computed correctly, λ is the security
parameter, and � is the number of steps. Each computation of a proof need not
be state bounded, only the state passed on to the next step. We also require
that the verifier has running time poly(|R|, λ, log �).

Technical Overview. We sketch the main ideas behind the impossibility results.
For all results the witness for an �-step proof is a long random vector �w =
(w1, . . . , w�), where wi is given (only) in step i. Each wi is security parameter
long. We first prove that no adversary (cheating prover) can produce an accepting
proof if there is some index i such that we do not give it the witness wi used in
iteration i. We sketch why this is true.

For the case of collision intractable hash functions the computation computes
a Merkle-Damg̊ard hash of �w, consuming one wi per step. If the prover could
succeed in producing an accepting proof without using wi, then we could apply
the knowledge extractor to the accepting proof and recover wi. It is easy to see
that this can be used to violate collision intractability.

For the case of perfectly binding rerandomizable commitments the instance
is a long sequence of commitments c0, c1, . . . where the claim is that the sequence

On Valiant’s Conjecture 443

was produced as a sequence of rerandomisations of the previous commitment.
Step i of the proof gets as input ci−1 and ci and the witness is the randomness
used to produce ci as a rerandomisation of ci−1. The commitment c0, of step 1,
is a commitment of 0. By perfect binding it follows that for true instances the
commitment c� of step � is also a commitment of 0. The missing witness will
now be the randomness used for a rerandomisation in some step i. If the prover
is not given this randomness it cannot distinguish a commitment ci of 0 from a
commitment of 1. Hence we can do a switch from a commitment ci−1 of 0 to a
commitment ci of 1. So if for a true instance the prover could succeed without
wi then it could also succeed for a false instance, breaking soundness.

We then finish the proofs by showing that if the verifier does not make
Θ(�) queries to the random oracle then there exists an adversary producing an
accepting proof and which does not use all witnesses, giving a contradiction.

This proof only uses that there is a zero-knowledge simulator in the random
oracle model: it can simulate a given step if allowed to reprogram the random
oracle. The indistinguishability of the real view and the simulated view may
depend on other computational assumptions. For each step m and each step
n > m we use that the simulator works by programming the oracle to argue
that the verifier of step n must make a check related to the proof of step m. To
see this note that if we simulate step m and the simulator reprograms the points
Sm then the verifier of step n must check a point x ∈ Sm. Namely, if we simulate
step m then we do not need wm. Therefore the proof must reject: we already
argued that all successful provers use all witnesses. But if the verifier of step n
does not query x ∈ Sm, then the reprogrammed random oracle will look like the
real random oracle to this particular verifier and it must therefore accept the
proof (as it accepts the proof when the oracle is reprogrammed, by definition of
zero-knowledge).

Let xm,n denote a query by verifier n related to proof m. This is a random
variable. The instances m and n range from 1 to �, so there are Θ(�2) of the
random variable xm,n. The main challenge of the proof is to prove that they
are disjoint enough that we force some verifier to make Θ(�) queries, which is
not allowed as we assume the verifier has running time in poly(|R|, λ, log �). The
main challenge in proving this is that we cannot make a world where we simulate
all proofs, as some verifier will then surely check some reprogrammed point and
reject. Also, we cannot easily define xm,n in the real world where step m is
run honestly, as there is no notion of Sm. We therefore need to capture xm,n

in the world where step m is simulated using some poly-time observable. The
observable we use is essentially “x was not queried before step m and it got
queried after step m”. We show this captures xm,n when step m is simulated.
The reason is that by our notion of zero-knowledge a reprogrammed point cannot
have been queried before it was reprogrammed. And by arguments from above,
some reprogrammed point must be queried by a verifier in the future. We then
argue that this poly-time observable xm,n must exist in the real world too, or
zero-knowledge was broken. We then argue that the definitions of the poly-time
observables are such that the θ(�2) points xm,n are disjoint enough. This is done
in Lemma 4.

444 M. Hall-Andersen and J. B. Nielsen

Generalizations. Our results apply directly to schemes which only rely on ran-
dom oracles, like that of Valiant [21] (based on CS proofs) and recursive Frac-
tal [9]. However, we emphasise that our results are not oracle separation results.
We do not give the adversary access to for instance an NP oracle which can
break all cryptography except the random oracle. As a result the impossibility
results apply even in presence of additional computational assumptions.

Specifically, the zero-knowledge may depend on computational assumptions,
as long as these are not phrased via relativized worlds extra to the random
oracle model. The results therefore stand also if there exist for instance trapdoor
permutations or indistinguishability obfuscation. Our results do not rule out
constructions where zero-knowledge is proven in for instance the generic group
model, as it is relativized. Similarly, in result 1 knowledge soundness, and in
result 2 the soundness, may depend on computational assumptions, as long as
these are not phrased via relativized worlds extra to the random oracle model.

Although we primarily focus on random oracles, the result can easily be
generalized to O(poly(λ))-local oracles, i.e., where responses to queries might be
dependent in a bounded manner: All queries can be divided into disjoint sets Pi

of size |Pi| = O(poly(λ)) and replies to queries in different sets are independent.
For a given verifier we can simply look at the one which if it queries x ∈ Pi then
it queries all x′ ∈ Pi. This still gives it running time O(poly(|R|, λ, log �)). And
we can now look at the proof system as using a 1-local oracle with larger replies.
And it is easy to see that our results still apply to such 1-local oracles. Note that
for instance oracles like “generic (bilinear) groups” are not O(poly(λ))-local, as
the group law correlates all replies.

1.1 Relation to Other Results

The impossibility of Gentry-Wichs [14] for adaptively sound zk-SNARGs applies
also to zero-knowledge, non-deterministic IVC, so one cannot hope to con-
struct non-deterministic IVC from falsifiable assumptions. However, this does
not rule out a construction of IVC in the RO model. In particular, unlike non-
deterministic IVC, there are known constructions of zk-SNARKs in the random
oracle model, e.g., classic CS proofs [19] from PCPs and the compiler of Ben-
Sasson et al. [2] applied to round-by-round sound Holographic IOPs like Frac-
tal [9] and zk-STARKs [1]. Below we compare to other results. The discussion is
summarised in Fig. 1.

We note that while Gentry and Wichs [14] proved the impossibility of
a security reduction, this paper proves impossibility a construction: Gentry-
Wichs shows that any SNARG cannot have a black-box reduction to a game-
based definition, while ours, shows that any construction of a zero-knowledge
non-deterministic IVC in the random oracle model has an efficient adversary
breaking it.

On Valiant’s Conjecture 445

Fig. 1. An overview of known constructions (✓), impossibility results (✗) and open
questions ? in the existing literature, in relation to our result (✗). If a cell has no
citation it is implied by the value in another cell in the table, for brevity we only
include one construction per cell. Note that Valiant’s original construction [21] of IVC
can easily be extended to the non-deterministic setting. CRS stands for the model with
a common reference string and no RO. RO stands for the model with a standard RO
and no CRS. Non-BB RO stands for the model with non-standard RO a la Valiant
and no CRS.

Common Reference String. A number of recent results have probed the limits of
the Gentry and Wichs separation [14] of adaptively secure SNARKs from falsifi-
able assumptions: Tauman Kalai, Paneth and Yang constructed [17] a delegation
scheme for P, deterministic IVC, from falsifiable assumptions on bilinear pair-
ings with a CRS. Choudhuri and Jain recently constructed [13] batch arguments
for NP from standard assumptions and CRS. Lastly Lipmaa and Pavlyk [18]
recently resolved an open problem in the Gentry and Wichs paper by proving
that there exists a construction of non-adaptively sound SNARGs from falsifiable
assumptions.

Random Oracle. Adaptively secure (zk)SNARKs has been widely constructed
in the random oracle model (without a CRS) [1,9,11,12,19], including a recent
tight lower bound on the number of random oracle queries [16]. We prove that
similar positive results cannot be obtained for the incremental equivalent of
zkSNARK: non-deterministic IVC in the random oracle model. We tackle the
impossibility of non-deterministic IVC in the random oracle model, since proving
the impossibility of deterministic IVC (in any model) must preclude the trivial
scheme in which the oracle is not used and the poly-log verifier simply decides
membership given a poly-log certificate computed by the prover. Impossibility
of this seems closely related to proving P �⊆ NTIME(O(logc n))—which remains
an open problem in complexity.

Non-blackbox Random Oracle. Constructions of (non-deterministic) IVC relying
on “non-blackbox” use of the random oracle exists in the literature [9,21]: in
such schemes the security proof is in the random oracle model, however, the
construction relies on the oracle having a short description. This is an inter-
esting model where the scheme does not exist in the idealised model in which
it is proven secure. Such use of the random oracle often arises implicitly [9,21]
when a SNARK in the RO model is heuristically converted to a SNARK in the
plain model, by replacing the random oracle with a concrete cryptographic hash

446 M. Hall-Andersen and J. B. Nielsen

function, and used to prove the satisfiability of the verification circuit for the
same SNARK.

Non-deterministic IVC in Relativized Worlds. Non-deterministic IVC trivially
exists in worlds with certain types of oracles, the question is how “complicate”
this oracle needs to be: motivated both by theoretic curiosity and practical desire
to heuristically instantiate the oracle in the standard model. Our results shows
that to allow zero-knowledge, incremental PCD the oracle must be non-local.

As discussed above, Chiesa and Liu [8] showed that it is impossible to con-
struct non-trivial PCPs of random oracle computation (e.g., circuits with RO
gates). This rules out most hope constructing IVC by proving the correct exe-
cution of a verifier in the random oracle model but does not exclude that other
design would allow for IVC in the RO model.

On the positive side, the original construction of Proof-Carrying Data (PCD)
[10] (a generalization of non-deterministic IVC) by Chiesa and Tromer is in a
world with a signed random oracle: a random oracle which additionally returns a
signature on the (query, response) pair, this allows verifying the validity of oracle
queries without need for oracle computation, by simply verifying the signature,
this enables a recursive construction similar to Valiant but without contradic-
tions. This oracle is non-local as all replies are signed with the same key. Recently
Chen, Chiesa and Spooner [7] demonstrated that SNARKs exists for the rela-
tivized world of low-degree polynomial oracles using an accumulation scheme [6]
for oracle query/response pairs. This scheme is non-local as replies are related
by the polynomial.

1.2 Can We Drop the ZK Assumption?

Our impossibility result applies only to the setting where a large witness is
consumed piecemeal and where the proof is zero-knowledge. Since the original
construction of Valiant, and modern uses of recursive proofs in the RO model,
easily generalises to have these properties the result seems pessimistic, but it
keeps open the possibility of getting non-deterministic IVC in the random-oracle
model which is not zero-knowledge. We prove a secondary result showing that
there does not seem to be any easy way to construct this. Namely, the proof
system would have to have an unnatural looking property that the proof system
itself makes queries it cannot “remember” later. More specifically, we can show
that non-deterministic IVC from random oracles is impossible in the following
case:

3. If there exists collision intractable hash functions and the proof system has
blackbox knowledge soundness and the proof system has a property informally
stated as follows: it can with non-negligible probability be predicted for all
queries made by the prover whether they are fresh or it made them before.

This result shows that even if we drop the assumption of zero-knowledge
one cannot get incremental proofs, but now using an assumption that the fresh-
ness of queries can be determined with non-negligible probability. Note that

On Valiant’s Conjecture 447

this assumption is non-trivial as the proof system is succinct, so it cannot just
remember all queries of all previous steps. However, it seems hard to use forgot-
ten queries in a constructive way. We discuss the assumption further in Sect. 5.

For result 3 we use a different proof approach. Here we observe that if the
final verifier, of step �, is succinct, then it makes a number of queries to its
oracle essentially independent of �. So by setting � large enough we can create a
polynomially long stretch from step p1 to step p2 such that no fresh query made
by a proof in steps [p1, p2] will be queried by the final verifier. A fresh query is
one which was not also made before the stretch. We then create an adversary
which picks the witnesses used in steps [p1, p2] independent of the witnesses used
outside the interval and independent of all queries made before steps [p1, p2].

During the stretch we let the adversary use a simulated oracle instead of the
real one for all fresh queries. It simply samples the oracle replies itself without
asking the real oracle. This will still give an accepting proof as the final verifier
does not make queries corresponding to fresh queries by the prover during the
stretch. Hence the real oracle and the simulated one will look the same to the
final verifier. Letting the adversary use a simulated oracle ˜O during the stretch
ensures that the blackbox extractor gets no information on the stretch witnesses:
the adversary makes no queries to its oracle during the stretch and is therefore
opaque to the blackbox extractor.

Hence all the information that the extractor gets on the stretch witnesses is
via queries made by the adversary to its oracle during the proofs after step p2 in
the main execution. Intuitively this information can be no larger than the state
σ2 of the prover after step p2. We could give σ2 to the extractor and let it finish
the proof itself. If the proof system is succinct then we can pick p2 −p1 > |σ2| to
ensure that σ2 information theoretically cannot encode all the stretch witnesses.
This shows that a blackbox extractor cannot compute the stretch witnesses from
blackbox access to the adversary, violating knowledge soundness.

The above argument uses that we could give the state of the prover after the
step p2 to the adversary and let it finish the proof itself. But note that between
steps p1 and p2 we used a simulated oracle ˜O. To appeal to correctness of the
proof system when we let the adversary finish the proof it must know ˜O and
must be able to determine which queries to send to ˜O if they are made again by
later steps in the proof. And we should give the adversary this ability by giving
it concise information, or we might be leaking the stretch witness to it. We can
implement ˜O as a pseudo-random oracle and just give the short seed to the
adversary. However, we cannot give it the set of all queries made between p1 and
p2 as the query points themselves might encode information about the stretch
witnesses. This is why we need to assume that there is a concise mechanism to
determine whether or not a query made by a later step in the proof is fresh,
so we know whether to reply with the real random oracle or the simulated
˜O. The mechanism need not be perfect. If it passes on a state which is some
constant fraction shorter than the stretch witness and works with non-negligible
probability we can still get a contradiction to extracting the stretch witnesses
when the mechanism works, by making the stretch long enough.

448 M. Hall-Andersen and J. B. Nielsen

2 Definitions

Formally our model of computation is repeated application of a Boolean circuit
T which encodes the “transition function”. Formally, we show impossibility of
O-IVC supporting particular sets of transition functions T , in particular we show
impossibility for schemes supporting all Boolean circuits.

Definition 1 (Transition Functions). Let T be a set of Boolean circuits, T ∈
T :

T : {0, 1}|M | × {0, 1}|w| → {0, 1}|M |

Definition 2 (Repeated Application of T). We denote by T � the function
that applies T �-times to a state M0 with witnesses w1, . . . , w�. Formally, let
T 0 = id (the identity function) and define T � for � > 0 recursively as:

T �(M0, �w = (w1, . . . , w�))

1 : M�−1 ← T �−1(M, (w1, . . . , w�−1))

2 : return T (M�−1, w�)

We define the relation/language defined by T as follows:

(x, �w) ∈ RT ⇐⇒ x = (T,M0,M�, �) ∧ M� = T �(M0, �w)

x = (T,M0,M�, �) ∈ LT ⇐⇒ ∃�w st. (x, �w) ∈ RT

Definition 3 (Non-Deterministic O-IVC). A non-deterministic O-IVC
scheme for a set of transition functions T consists of two PPT O-algorithms:

P
O(x� = (T,M0,M�, �), w�, π�)
→ π�+1. A PPT algorithm taking a description

of the state transition T , the initial state M0, the current state M�, the length
of the computation �, some additional input w� and an accepting proof π� of
x� ∈ L(T,�). Then outputs a proof π�+1 of x�+1 = (T,M0,M�+1, � + 1) ∈ LT
where M�+1 = T (M�, w�). Note that the prover is not given the witness for
x� ∈ LT .

V
O(x� = (T,M0,M�, �), π�)
→ {�,⊥}. Verifies a proof π of the statement

(T,M0,M�, �) ∈ LT ; i.e., there exists a sequence of witnesses �w such that
M� = T �(M0, �w).

We assume for notational convenience (and without loss of generality) that the
proof for the trivial statement x0 = (T,M0,M0, 0) (i.e. application of T zero
times to M0 yields M0) is π0 = ε (the empty string). Additionally we require
that PO and V

O satisfy completeness:

On Valiant’s Conjecture 449

(Perfect) Completeness: Informally states that if a proof is produced correctly,
it verifies.
Formally, for all (T, �w,M0, �):

Pr

⎡

⎢

⎢

⎢

⎣

V
O(x� = (T,M0,M�, �), π�) = ⊥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀i ∈ [�] :
Mi = T (Mi−1, wi);
xi = (T,M0,Mi, i)

πi ← P
O(xi, wi, πi−1)

⎤

⎥

⎥

⎥

⎦

= 0

We assume perfect completeness for simplicity, however all our results easily
generalize to the slightly weaker case where the scheme has a negligible prob-
ability of failure. We do not require that the prover can extend any accepting
proof, only those honestly produced.

Remark 1. An alternative definition (similar to [6]) would instead have P
O and

V
O take a description of an NP relation R rather than a description of a

poly-time computable function T . In which case P proves knowledge of a w
st. (x = (M,M ′), w) ∈ R (rather than M ′ = T (M,w)). We note that these two
definitions are trivially equivalent, but find the definition presented here simpler
notationally: in particular the knowledge extractor does not need to explicitly
extract a sequence of statements.

We employ both standard soundness and knowledge soundness definitions in
different flavors of our impossibility results.

Definition 4 ((Computationally) Sound Non-Deterministic O-IVC).
The probability of any PPT adversary producing an accepting proof of a
false statement is negligible:

∀A(·) : Pr
[

V
O(x, π) = � ∧ x /∈ L

∣

∣ (x, π) ← AO(1λ);
]

≤ negl(λ)

Many languages are trivial (i.e., every instance is in the language), in which case
knowledge soundness is required for non-deterministic IVC to be non-trivial.
We consider two standard variations: (1) knowledge soundness with a universal
non-blackbox extractor (the weaker definition), in which the extractor is given
access to the code of the adversary. (2) knowledge soundness with a blackbox
extractor (the stronger definition), in which the extractor is given only blackbox
(rewinding) access to the adversary.

Definition 5 (Universal Non-Blackbox Knowledge Soundness Non-
Deterministic O-IVC). There exists a PPT algorithm E st. for all PPT
AO when AO outputs an accepting proof, the extractor given a description of the
adversary, recovers a valid witness (w1, . . . , w�) given A(·) except with negligible
probability. Formally:

∃ E st. ∀A(·) :

Pr

[

V
O(x, π) = �

∧ T �(M0, �w) �= M�

∣

∣

∣

∣

∣

(x, π) ← AO(1λ); �w ← E
O(1λ, x,A(·));

x = (T,M0,M�, �)

]

≤ negl(λ)

450 M. Hall-Andersen and J. B. Nielsen

Definition 6 (Blackbox Knowledge Sound Non-Deterministic O-IVC).
There exists a PPT algorithm E st. for all PPT AO when AO outputs an accept-
ing proof, the extractor given black-box (rewinding) access to the adversary A(·)

recovers a valid witness (w1, . . . , w�), except with negligible probability. Formally:

∃ E st. ∀A(·) :

Pr

[

V
O(x, π) = �

∧ T �(M0, �w) �= M�

∣

∣

∣

∣

∣

(x, π) ← AO(1λ); �w ← E
O,A(·)

(1λ, x);
x = (T,M0,M�, �)

]

≤ negl(λ)

Additionally we may require that the IVC scheme is zero-knowledge, which
informally states that any step can be simulated by programming the oracle
and that simulated proofs are indistinguishable from real proofs. Note that the
statement to be simulated includes an accepting proof of correctness for M�.

Definition 7 ((Computational) Zero-Knowledge Non-Deterministic
O-IVC). There exists a PPT (in λ, |T |, �) algorithm S

(·) which for any T ∈ T ,
� = poly(λ), x = (T,M0,M�, �) ∈ LT , w, and accepting π (VO(x, π) = �), SO

outputs an accepting proof and a set of (re)programmings Q = {(Qi, Ri)}i for
the oracle fooling any PPT adversary.

∃S
O ∀A = (A1,A2)∀T ∈ T , x = (T,M0,M�, �) ∈ LT , w, π st. VO(x, π) = � :

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b = b′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M�+1 = T (M�, w)

h ← AO
1 (1λ,M�+1, x, π)

π′
0 ← P

O(x, π, w)

(Q, π′
1) ← S

O(M�+1, x, π)
b ←$ {0, 1};

b′ ← AOb
2 (1λ, h, π′

b)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1/2 ≤ negl(λ)

Where O0 = O and O1 = [Q,O], where [Q,O] is the oracle mapping q to Ri if
(q, Ri) ∈ Q and O(q) otherwise. The probability is over O, the random tape of
A(·), P and S. We allow the running time of the simulator to depend polynomially
on the running time of the adversary.

Remark 2. An easy observation is that if A1 queried O at q in h ← AO
1 (1λ, M�+1,

x, π), then we can assume that, except with negligible probability, O1(q) = O(q),
i.e., the simulator does not reprogram on q. Namely, if O1(q) �= O(q) happens
with non-negligible probability the adversary could remember all queries q and
replies made during the first step and redo them in the second step and guess b =
1 when O1(q) �= O(q) and b = 0 otherwise. This would break zero-knowledge.
We call the property that the simulator only programs points that were never
queried fresh reprogramming below.

On Valiant’s Conjecture 451

Remark 3. We want to warn that our definitions were tailored for proving nega-
tive results. They might not be strong enough for positive applications. Namely,
our soundness requires only that extension works for honestly generated proofs.
So it might be possible to maliciously generate a proof πi−1 which accepts but
extends into a non-accepting proof πi. That means that in a proof carrying
data context an honest party might end up producing and further extending an
non-accepting proof πi into a proof πi+1. At the same time by our notion of
zero-knowledge the proof πi+1 might not be zero-knowledge as zero-knowledge
only holds when starting from an accepting proof π = πi. That means an honest
party might end up producing an non-zero-knowledge proof πi+1. However, the
definitions are enough to prove our results. Starting from a weaker definition
makes impossibility proofs stronger. For practical applications stronger defini-
tions should be used.

2.1 Rerandomizable Commitments

Definition 8 (Rerandomizable Bit Commitments). A rerandomizable bit
commitment scheme consists of three algorithms:

Setup : {1}∗ × {0, 1}∗ → P a PPT algorithm which takes a unary represen-
tation of the security parameter 1λ and produces public parameters, i.e.,
pp ← Setup(1λ; r) for a random tape r ∈ {0, 1}∗.

Commit : P × {0, 1} → C a deterministic algorithm which sends a bit to the
commitment space, i.e., c = Commit(pp, b), b ∈ {0, 1}.

ReRand : P × C × ({0, 1}∗)∗ → C takes a commitment and produces a rerandom-
ization of the same commitment (without knowing the opening).

Note that we do not require the rerandomizable commitments to have suc-
cinct openings, in particular “ Open” can be constructed by simply re-executing
all the rerandomizations of the original commitment, i.e. Open(pp, b, c, r =
(r1, . . . , rm)) := c

?= ReRandm(pp,Commit(pp, b); r) = ReRand(. . .ReRand(
ReRand(pp,Commit(pp, b); r1); r2), . . . ; rm)

Game
(m)
Hiding(A, λ)

1 : pp ← Setup(1λ)

2 : ((v(0), �r(0)), (v(1), �r(1)), st) ← A(find, pp, 1λ)

3 : c(0) = ReRandm(Commit(pp, v(0));�r(0))

4 : c(1) = ReRandm(Commit(pp, v(1));�r(1))

5 : b ←$ {0, 1}; c′ ← ReRand(c(b))

6 : b′ ← A(guess, st, pp, c′, 1λ)

7 : return b
?
= b′

We require the rerandomizable commitment scheme to be perfectly binding and
computationally hiding.

452 M. Hall-Andersen and J. B. Nielsen

Definition 9 (Perfect Binding). For every pp and number of rerandomiza-
tions m, the set of (rerandomized) commitments to 0 and 1 are disjoint, i.e.

∀m ≥ 0, ∀r(0), r(1) : Pr

⎡

⎢

⎢

⎢

⎣

c0 = c1

∣

∣

∣

∣

∣

∣

∣

∣

∣

pp ← Setup(1λ)

c0 = ReRandm
(

pp,Commit(pp, 0), r(0)
)

c1 = ReRandm
(

pp,Commit(pp, 1), r(1)
)

⎤

⎥

⎥

⎥

⎦

= 0

We do not require this to hold if the two commitments are rerandomized a dif-
ferent number of times; which is weaker than the common definition.

Definition 10 (Computational Hiding). For every m ≥ 1 and PPT adver-
sary A, there exists a negligible function negl(λ) such that:

Pr
[

Game
(m)
Hiding(A, λ)

]

− 1/2 ≤ negl(λ)

We do not require the scheme to hide the number (m) of times a commitment
has been rerandomized; which is weaker than the common definition.

Remark 4 (Concrete Assumptions for Perfectly Binding Rerandomizable Com-
mitments). Perfectly binding rerandomizable commitments can be obtained from
decisional Diffie-Hellman using Elgamal encryption: which additionally hides the
number (m) of rerandomizations; a property we do not require.

2.2 Collision Intractable Hashes

Definition 11 (Collision Intractable Hash Functions). A family Hλ =
{Hk}k∈{0,1}λ of a set of PPT computable functions from {0, 1}∗ to {0, 1}λ indexed
by the security λ is collision intractable if for every PPT adversary A, there exist
a negligible function negl(λ) st.

Pr
[

H(x) = H(x′) ∧ x �= x′ | H ←$ Hλ; (x, x′) ← A(H, 1λ)
]

≤ negl(λ) .

2.3 Basic Notation

Definition 12 (Stretch). Let a length � of a proof be fixed, i.e., � is the number
of times the basic step function is run. We call (p, q) with 1 ≤ p, 0 ≤ q and
p + q ≤ � a stretch of length q with start position p.

Definition 13 (Query Sets). Consider a length � and a run of a proof of length
�, which proceeds as follows. For i = 1, . . . , � compute Mi = T (Mi−1, wi), let P(i)

↓

be the queries made to O in computing πi = P
O(T,Mi−1, πi−1, wi; ρi) and let V(i)

↓

On Valiant’s Conjecture 453

be the queries made to O in computing V
O(T,M0,Mi, πi). For 1 ≤ i ≤ k ≤ �,

let V(i,k)
∪ = ∪k

j=iV
(j)
↓ and P(i,k)

∪ = ∪k
j=iP

(j)
↓ . Define the ‘fresh’ queries made at

step i as V(i)
Δ = V(i)

↓ \V(1,i−1)
∪ and P(i)

Δ = P(i)
↓ \P(1,i−1)

∪ . Finally define the fresh

queries during stretches as V(p,q)
Δ = ∪p+q−1

i=p V(i)
Δ and P(p,q)

Δ = ∪p+q−1
i=p P(i)

Δ .

Definition 14 (Oracle Extension). For a set of queries Q1 and two oracles
O1 and O we define the oracle [Q1
→ O1,O] as follows. On input q, if q ∈ Q1

then output O1(q). Otherwise output O(q). In general, let

[Q1
→ O1, . . . ,Q�
→ O�,O] = [Q1
→ O1, [Q2
→ O2, . . . ,Q�
→ O�,O]].

3 Theorem Statements

Having the definitions in place we give the formal theorem statements. For the
statements we use the following step functions. Let TH be the step function for
repeated hashing of the witnesses, i.e., TH := H(M‖w). Let Tpp be the step
function for repeated rerandomization of a commitment using the witness as
randomness, i.e., Tpp(M,w) := ReRand(pp,M ;w). The following statements is
proven in Sect. 4.

Theorem 1 (Impossibility of Non-Trivial ZK Non-Deterministic O-
IVC). The existence of collision intractable functions or perfectly binding reran-
domizable commitments precludes the existance of (knowledge-sound) non-trivial
zero-knowledge non-deterministic O-IVC, more formally:

– Collision Intractability Precludes Knowledge-Soundness. Assuming
the existence of a family of collision intractable functions Hλ (Definition 11),
there exists a transition function TH such that any zero-knowledge (Definition
7), knowledge-sound (Definition 5) O-IVC scheme (Definition 3) for the step
function TH must have a verifier with running time linear in the number of steps
�.

– Rerandomizable Commitments Precludes (Regular) Soundness.
Assuming the existence of perfectly binding rerandomizable commitment
schemes (Definition 8), there exists transition functions Tpp such that any
zero-knowledge (Definition 7) and computationally sound (Definition 4) O-
IVC scheme (Definition 3) for Tpp must have a verifier with running time
linear in the number of steps �.

For the impossibility for black-box schemes we need to formalize the notion
that one can recognize whether queries are fresh.

Definition 15 (Structured Oracle Queries). We say that a proof system
(T ,P,V) has structured oracle queries if there exists a PPT algorithm used
for which the following holds for all PPT adversaries A. For all T ∈ T , all
lengths �, and all witnesses (w1, . . . , w�) let M0 be an initial state, π0 = ε,
πi = P

O(T,Mi−1, πi−1, wi, ρi), where ρi is the possible random tape of P, P(i)
↓

454 M. Hall-Andersen and J. B. Nielsen

be the queries made by this i’th run of P, P(1,i)
∪ = ∪i

j=1P
(j)
↓ , and let usedi =

used(T,Mi−1, πi−1, wi, ρi) be the description of a PPT predicate. Now compute
(i,q) = AO(T, �w,M0, �ρ). We say that the adversary wins if usedi(q) = � and
q �∈ P(1,i)

∪ or usedi(q) = ⊥ and q ∈ P(1,i)
∪ . We say that the proof system is

pstruc-SOQ if the probability that the adversary wins is ≤ 1 − pstruc.

Below we will assume that the proof system is 1/λγ-SOQ for some constant
γ > 0. This means we essentially just need a non-negligible probability that the
queries are structured. Note that usedi is computed from the current state of the
prover, so if the proof system is succinct then so is the state needed to compute
usedi which will be basis for our impossibility result. The following theorem is
proven in Sect. 5.

Theorem 2. If there exist collision intractable hash functions then there does
not exist succinct, non-deterministic IVC for the random oracle model (Defini-
tion 3) with blackbox knowledge soundness (Definition 6) which is 1/λO(1)-SOQ
(Definition 15) for the step function TH. By succinct we mean that the size of a
proof of an �-iteration computation is poly(λ, log �).

4 Impossibility from Zero-Knowledge

In the following section we prove two impossibility results for the case where the
O-IVC is zero-knowledge. One is for the case where the proof system is knowl-
edge sound and collision intractable functions exists. The other is for the case
where the proof system has just soundness but under the assumption of per-
fectly binding rerandomizable commitments. We start by proving some lemmas
and then put them together at the end of the section.

The following lemmas state that for certain transition functions no adversary
can produce an accepting proof without knowing the witness for every step;
without violating (knowledge) soundness of the O-IVC scheme.

Let U�
n = Un × · · ·×Un be the distribution of � iid. uniform n bit strings and

define �w(m̄) := (w1, . . . , wm−1,⊥, wm+1, . . . , w�) (i.e., a sequence where the m’th
witness is removed) for any sequence of witnesses �w. Impossibility of knowledge
soundness follows from collision intractable functions:

Lemma 1 (All Witnesses are Required for Knowledge Soundness). For
a (randomly sampled) collision intractable hash function H : {0, 1}∗ → {0, 1}λ,
consider the following step function TH(M,w) := H(M‖w). We now show that
for any knowledge-sound O-IVC scheme, PPT adversary Â, � = O(poly(λ, |TH|))
and m ∈ [�], Â produces an accepting proof π of the T �

H execution given all
witnesses except for step m, with only negligible probability. i.e., there exists a
negligible function negl(λ) st.

Pr

⎡

⎢

⎢

⎢

⎣

V
O(x, π) = �

∣

∣

∣

∣

∣

∣

∣

∣

∣

H ←$ Hλ; �w ←$ U�
2λ;

M0 = ε; for i ∈ [�] : Mi = TH(Mm−1, wm);
�w(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , w�);
π ← ÂO(x = (TH,M0,M�, �), �w(m̄),Mm)

⎤

⎥

⎥

⎥

⎦

≤ negl(λ)

On Valiant’s Conjecture 455

Proof. Since the O-IVC scheme is (non-blackbox) extractable by assumption,
there exists an extractor E. Now, for any � ≥ 1 and m ∈ [�], consider the
following adversary A for the collision game (see Definition 11):

(v1, v2) ← A(H)

// Run Â to get a proof without the pre-image of Mm

1 : �w ←$ U�
2λ

2 : M0 = ε; for i ∈ [�] : Mi = TH(Mi−1, wi);

3 : �w(m̄) := (w1, . . . , wm−1, ⊥, wm+1, . . . , w�)

4 : x = (TH, ε, M�, �); π ← ÂO(x, �w(m̄), Mm)

// Run E to get preimages for each state.

5 : �w′ ← E(x, Â(·)(x, �w(m̄), Mm))

6 : M ′
0 = ε; for i ∈ [�] : M ′

i = TH(M ′
i−1, w

′
i);

// Look for collision.

7 : for i ∈ [� − 1] :

8 : v1 := Mi‖wi+1; v2 := M ′
i‖w′

i+1

9 : if Mi+1 = Mi+1 ∧ v1 	= v2

10 : return (v1, v2)

11 : return ⊥

Let f : {0, 1}2λ → {0, 1}λ be defined as f(y)
→ H(Mm−1‖y), note that the
probability that there exists ≥ 2 preimages of f(wm) is overwhelming, since wm

is sampled uniformly at random. Hence the extractor given only Mm := f(wm)
recovers w′

m such that wm �= w′
m with probability at least 1/2 − negl(λ). This

violates collision intractability of f and in particular of H. ��

If we are willing to make the stronger assumption that perfectly binding and
computationally hiding rerandomizable commitments exist we can strengthen
the lemma to violate soundness of the O-IVC scheme:

Lemma 2 (All Witnesses are Required for Soundness). For a perfectly
binding rerandomizable commitment scheme, consider the following step function
Tpp(M,w) := ReRand(pp,M ;w)—repeated rerandomization of the commitment.
We now show that for any computationally sound O-IVC scheme, PPT adversary
Â, � = O(poly(λ, |Tpp|)) and m ∈ [�], Â produces an accepting proof π of the T �

pp

execution given all witnesses except for step m, with only negligible probability,
i.e., there exists a negligible function negl(λ) st.

456 M. Hall-Andersen and J. B. Nielsen

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V
O(x, π) = �

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pp ←$Setup(1λ); �w ←$ U�
poly;

M0 = Commit(pp, 0);
for i ∈ [�] : Mi = Tpp(Mm−1, wm);

�w(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , w�);
π ← ÂO(x = (Tpp,M0,M�, �), �w(m̄),Mm)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ negl(λ)

Proof. Let p be the probability that Â outputs an accepting proof (in the original
game), we assume for contradiction that p is non-negligible (in λ). Consider the
following PPT algorithm which we use to violate soundness of the O-IVC scheme
or break computational hiding of the commitment scheme:

AHiding(find, pp, 1
λ)

// Sample randomness / witnesses for � steps.

1 : �r ←$ U�
poly; st = �r

// Get rerandomisation of either 0 or 1.

2 : v(0) = 0; v(1) = 1

3 : �r(0) = �r(1) = (r1, . . . , rm−1)

4 : return ((v(0), �r(0)), (v(1), �r(1)), st)

AHiding(guess, st, pp, ,
′ , 1λ)

1 : �r = st

2 : �w(m̄) := (r1, . . . , rm−1, ⊥, rm+1,

. . . , r�)

3 : M0 = Commit(pp, 0); Mm =,′

4 : for i ∈ [m + 1, �] : Mi = Tpp

(Mi−1, wi)

5 : x = (Tpp, M0, M�, �)

6 : π ← ÂO(x, �w(m̄), Mm)

7 : if V
O(x, π) = 1 return 0

8 : else return 1

Observe that when b = 0 in the Game
(m−1)
Hiding game Mm = c′ is a rerandomization

of the 0 commitment and hence M� is as well, therefore x is true and AHiding

correctly returns 0 with probability p by assumption on Â. However, when b = 1,
the commitment c′ is a rerandomization of the 1 commitment and x is false, hence
V

O(x, π) = 0 except with negligible probability negl(λ), otherwise computational
soundness is violated. This implies that AHiding wins the Game

(m)
Hiding game with

advantage at least p−negl(λ)/2; which is non-negligible, a contradiction. ��

We now show that proof systems with transition functions like the ones in
Lemma 1 and Lemma 2 where all witnesses are needed will have the verifiers
make many queries to the random oracle.

In the below we use some common definitions of honest and simulated exper-
iments. For a given proof system we can define the honest experiment HonExp
as follows.

On Valiant’s Conjecture 457

Experiment HonExp:

1. Let M0 be the start state and π0 = ε. Let �w be a vector of witnesses.
2. For i = 1, . . . , � compute Mi = T (Mi−1, wi), πi = P

O(T, Mi−1, πi−1, wi),
V

O(T, M0, Mi, πi).

Let the query sets be defined as in Definition 13.

For any 1 ≤ m ≤ � we can define a simulation experiment SimExpm where
everything is defined as in the honest experiment except that we simulate in
step m and then use the reprogrammed oracle from then on.

Experiment SimExpm:

1. Let M0 be the start state and π0 = ε. Let �w be a vector of witnesses.
2. For i = 1, . . . , m − 1 compute Mi = T (Mi−1, wi), πi =

P
O(T, Mi−1, πi−1, wi), V

O(T, M0, Mi, πi).
3. Compute Mm = T (Mm−1, wm). Compute a simulated proof (Q, πm) ←

S
O(T, Mm, πm−1). Let O1 = [Q, O]. Let Sm = {q|∃y ((q, y) ∈ Q)} be the

set of query points on which Q programs. Compute V
O1(T, M0, Mm, πm).

Note that we use the reprogrammed oracle from here on.
4. For i = 1, . . . , m + 1 compute Mi = T (Mi−1, wi), πi =

P
O1(T, Mi−1, πi−1, wi), V

O1(T, M0, Mi, πi).

We can show that if all steps are run honestly except that step m is simulated
then all future verifiers must check one of the points that the simulator pro-
grammed in step m. More formally:

Lemma 3 (Must Check Programmed Points). For transition functions T
as described in Lemma 1 and Lemma 2 and for all m and � with 1 ≤ m ≤ � it
holds that Pr

[

Sm ∩ V(�)
↓ = ∅

]

= negl(λ) for a negligible function negl(λ).

Proof. Towards contradiction, suppose there exists (m, �) such that
Pr

[

Sm ∩ V(�)
↓ = ∅

]

= p where p is non-negligible in λ, then construct an adver-
sary violating Lemma 1 and Lemma 2 as follows:

Where T,M0 are instantiated as in Lemma 1 and Lemma 2. To reach contra-
diction we now argue that V

O(x, π) = � with probability p: notice that when
Sm ∩V(�)

↓ = ∅, then V
[Qm,O](x, π) = V

O(x, π) since the verifier makes no queries
in Qm (Sm). Now, simply observe that V

[Qm,O](x, π) = � follows from zero-
knowledge—otherwise πm could be distinguished from a real proof by extending
it � − m − 1 times and running the verifier. Therefore V

O(x, π) accepts with
non-negligible probability contradicting Lemma 1 and Lemma 2. ��

The above lemma intuitively implies that some query points “belonging” to
step m must be checked by many future verifiers. If this was true for all m

458 M. Hall-Andersen and J. B. Nielsen

π ← ÂO(x, �w(m̄), Mm); produces a proof without wm.

1 : x = (T, M0, M�, �); π0 = ε

2 : �w(m̄) = (w1, . . . , wm−1, ⊥, wm+1, . . . , w�)

// Start execution using first m − 1 witnesses

3 : for j ∈ [1, m − 1] :

4 : Mj ← T (Mj−1, wj)

5 : πj ← P
O(T, Mj−1, wj , πj−1)

// Simulate step m

6 : (Qm, πm) ← S
O(T, Mm, πm−1)

// Finish execution with reprogrammed oracle

7 : for j ∈ [m + 1, �] :

8 : Mj ← T (Mj−1, wj)

9 : πj ← P
[Qm,O](T, Mj−1, wj , πj−1)

10 : return π�

simultaneously and these query points were distinct then we would be done. Too
many distinct points would need to be checked often in the future, so the query
sets of the verifiers would have to get too big. It is, however, not straight forward
to generalise the above lemma to show that the query sets of the verifiers must be
large. If we simulate at many steps the set of reprogrammed points might grow so
large that we cannot argue that the final verifier will not query a reprogrammed
point and reject the proof. Note that the final verifier has access to the real
random oracle, not the reprogrammed random oracle. And if the verifier rejects,
then we do not get a contradiction to Lemma 1 or Lemma 2. We will therefore
need a slightly more subtle strategy. We show that because Lemma 3 holds in
SimExpm we can carefully compute in HonExp a set of query points uniquely
associated to step m which must be checked often in the future. In HonExp we
can then sum over all m.

Lemma 4 (Too Large Verifier Query Set). For transition functions T for
which the property in Lemma 3 holds there exists i such that the set V(i)

↓ some-
times has size at least �−1

4 in HonExp.

Proof. We describe an adversary B (the “blocking adversary”) which in each
step n computes a set Bn, the “blocking set”. For now, we assume this adversary
knows witnesses for every step, i.e., �w such that T �(M0, �w) = M�. The “blocking
sets” produced by B will satisfy:

Disjointness: The blocking sets are disjoint: ∀i, j : i �= j =⇒ Bi ∩ Bj = ∅.
Frequent Appearance: In a random run from step n until step � the expected

number of elements from Bn which occur in V(i)
↓ for i ≥ n is at least (�−n)/2.

On Valiant’s Conjecture 459

Formally:

E

[

�
∑

i=n

∣

∣

∣Bn ∩ V(i)
↓

∣

∣

∣

]

> (� − n)/2.

We first argue that if we can prove the two properties then we are done.
Assume disjointness and frequent appearance. By linearity of expectation and
Gauss’ trick we get that

E

[

�
∑

n=1

�
∑

i=n

∣

∣

∣Bn ∩ V(i)
↓

∣

∣

∣

]

>

�
∑

n=1

(� − n)/2 =
�(� − 1)

4
.

By disjointness we get that
�

∑

n=1

�
∑

i=n

∣

∣

∣Bn ∩ V(i)
↓

∣

∣

∣ =
�

∑

i=1

i
∑

n=1

∣

∣

∣Bn ∩ V(i)
↓

∣

∣

∣ =
�

∑

i=1

∣

∣

∣(∪i
n=1Bn) ∩ V(i)

↓

∣

∣

∣ ≤
�

∑

i=1

∣

∣

∣V(i)
↓

∣

∣

∣ .

Combining the last two inequalities we get that

E

[

�
∑

i=1

|V(i)
↓ |

]

>
�(� − 1)

4
.

This shows that it happens with non-zero probability that
�

∑

i=1

|V(i)
↓ | >

�(� − 1)
4

.

Therefore there must exist i such that it happens with non-zero probability that
|V(i)

↓ | > �(�−1)
4� , which proves the lemma.

The Blocking Adversary. Let p be a polynomial which we specify below. The
blocking adversary B runs as follows.

1. Let M0 be the start state, π0 = ε, and �w a witness vector
2. For m = 1, . . . , � compute Mm = T (Mm−1, wm)
3. Let B<1 = ∅ and for m = 1, . . . , � do:

(a) Query the random oracle on all points in B<m = ∪m−1
i=1 Bi

(b) Compute πm = P
O(T,Mm−1, πm−1, wm)

(c) Run V
O(T,M0,Mm, πm) and name its queries V(m)

↓

(d) For ι = 1, . . . , p let π
(ι)
m = πm and for f = m, . . . , � do:

i. Run V
O(T,M0,Mf , π

(ι)
f) and record its queries V(f,ι)

↓

ii. Add V(f,ι)
↓ \ B<m to Bm

iii. If f < � then compute π
(ι)
f+1 = P

O(T,Mf , π
(ι)
f , wf+1)

Call the experiment HonExp. Note that the blocking sets are disjoint by con-
struction. We now prove frequent appearance by appealing to zero-knowledge.

460 M. Hall-Andersen and J. B. Nielsen

Likely/Unlikely Queries. For m ≥ 1 let Bm be the adversary running as B except
that it simulates 3(b) in iteration m instead of using the witness for this step and
call it SimExpm. Let Sm be the set of queries programmed by the simulator. We
call a point q ∈ Sm likely if when Bm runs forward from step m then q appears
in V(≥m)

↓ = ∪�
i=mV(i)

↓ with probability at least (q|Sm|)−1 for a polynomial q
specified below. Let Lm ⊆ Sm be the set of likely points. Conversely we call
Um = Sm\Lm the unlikely points.

Since |Um| ≤ |Sm|, it follows by a union bound that if we do a random run,
then the probability that an unlikely point is verified is low. More precisely,

Pr
[

Um ∩ V(≥m)
↓ �= ∅

]

≤ q−1.

Collecting All Likely Queries. For all q we can set p to be a polynomial such
that if Bm does p random runs from step m on, then except with negligible
probability the likely points are included in the blocking set Bm, as described
now. Consider any likely point q. In a random run it appears with probability
at least (q|Sm|)−1. So if we do q|Sm| independent runs it appears in one of these
except with probability about 1/e as (1 − 1/n)n → 1/e with fast convergence.
So if we run for instance λq times, it appears except with probability about
e−λ. Then use that negligible probabilities are maintained by polynomial union
bounds and that the size of Sm is polynomial. This gives us that the likely point
will appear in some V(f,ι)

↓ . It will therefore be added to the blocking set when

the adversary adds V(f,ι)
↓ \B<m to Bm. Namely, the query q will not be in B<m

as the adversary queried on all points in B<m before the simulation step was
run. So by fresh reprogramming no element from Sm is in B<m, and all likely
points are in Sm by definition.

Next we argue that we can pick q large enough such that:

E

⎡

⎣

∑

n≥m

∣

∣

∣Um ∩ V(n)
↓

∣

∣

∣

⎤

⎦ ≤ 1/2.

For q > 2�|Sm| it holds that a given unlikely point appears with probability at
most 1/q, by definition, and that when it does it contributes at most � to the
sum (if it is in all verifier sets). So its contribution to the expected value is at
most �/q = 1/2|Sm|−1. Then use that Un ⊂ Sn to see that there are at most |Sn|
unlikely points and apply linearity of expectation.

Putting the Pieces Together. By Lemma 3 we have that

E

⎡

⎣

∑

n≥m

∣

∣

∣Sm ∩ V(n)
↓

∣

∣

∣

⎤

⎦ ≥ � − m − negl(λ).

Combining the above two inequalities and Lm = Sn\Um we get that:

E

⎡

⎣

∑

n≥m

∣

∣

∣Lm ∩ V(n)
↓

∣

∣

∣

⎤

⎦ ≥ � − m − negl(λ) − 1/2 ≥ � − m − 1.

On Valiant’s Conjecture 461

Using that Lm ⊂ Bm we obtain:

E

⎡

⎣

∑

n≥m

∣

∣

∣Bm ∩ V(n)
↓

∣

∣

∣

⎤

⎦ ≥ � − m − 1.

This inequality holds in SimExpm. Now run B (HonExp) instead of Bm. Then by
a reduction to zero-knowledge we easily get that:

E

⎡

⎣

∑

n≥m

∣

∣

∣Bm ∩ V(n)
↓

∣

∣

∣

⎤

⎦ ≥ � − m

2
.

Namely, the value
∑

n≥m |Bm ∩ V(n)
↓ | can be computed in poly-time in both

experiments. So, if E

[

∑

n≥m

∣

∣

∣Bm ∩ V(n)
↓

∣

∣

∣

]

≥ � − m − 1 in the real world and

E

[

∑

n≥m

∣

∣

∣Bm ∩ V(n)
↓

∣

∣

∣

]

< �−m
2 in the simulation we can easily make a distin-

guisher which computes
∑

n≥m |Bm ∩ V(n)
↓ | and uses it to guess whether we

simulated in step m or not. This completes the proof. ��

Proof. (Proof of Theorem 1). By combining Lemma 1, Lemma 3, and Lemma 4
we conclude that any proof system for TH, we can pick the number of steps � to
be a large enough polynomial such that the proof system will have some verifier
of some step i make at least �−1

4 queries to its random oracle. Therefore the
verifier must have running time at least �−1

4 �∈ poly(|TH|, λ, log �). This proves
the first part of the theorem.

The second part is proven by combining Lemma 2, Lemma 3, and Lemma 4
similarly for Tpp. ��

Remark 5 (Simulation in the presence of computational assumptions). Despite
its simplicity the impossibility result above is quite general, in particular it
applies to any non-deterministic O-IVC scheme where the simulator works by
only programming the random oracle—even in the presence of arbitrary com-
putational assumptions. In particular it applies to interactive zero-knowledge
arguments compiled in the random oracle model, like Fiat-Shamir transforma-
tions.

5 On Proving Impossibility Without Zero-Knowledge

In the previous section we proved impossibility for proof systems which are zero-
knowledge. We now explore what it would take to circumvent this result. Can
we construct non-deterministic IVC in the random-oracle model which is not
zero-knowledge. Towards this we prove impossibility of non-deterministic IVC
in the random-oracle model with the following properties:

Knowledge Soundness. The proof is knowledge sound.

462 M. Hall-Andersen and J. B. Nielsen

Blackbox. The knowledge extractor only has blackbox rewinding access to the
prover.

Structured Queries. When the prover makes a query x to the random oracle,
then with good probability it knows whether the query x was made already
or whether it is the first time the random oracle is queried on x.

Collision Intractability. There exist collision intractable hash functions.

We know that it is possible to make blackbox knowledge sound proofs in the
random oracle model, for instance Micali’s CS proofs. It is hard to imagine a
world where it is reasonable to assume a random oracle, but where a family of
collision intractable hash functions does not exist. Our result can therefore be
interpreted as saying that it is the succinctness plus structured queries that give
the impossibility.

We discuss the structure assumption briefly. First of all, this is clearly not a
reasonable assumption about any proof system. It says that the prover has to
“remember” previous queries using a small state. It is easy to make proof systems
that do not have this property. For instance, in iteration r flip a uniformly
random bit and query r if and only if the bit is 1. On the other hand, it seems hard
to exploit such forgotten queries in a constructive way. The result therefore hints
that if we want to circumvent Theorem 1 we need to come up with completely
new ways to use a random oracle. To see this, note that when querying random
oracles in a proof system one typically makes two types of queries. One can
make a query on a fresh point to get a fresh “challenge” that the prover is not
in control over a la the Fiat-Shamir transform. In this case it is crucial that the
queried point is fresh such that the challenge is unknown until the time of query.
Typically provers makes this type of query. One can also make a query to check
the validity of a previous query, for instance when recomputing a hash path in
a Merkle tree in the CS proofs. In this case one knows that the point on which
the queries are made are not fresh, at least in an honest run of the proof system.
Typically verifiers make this type of query. However, in an iterative proof system
we can imagine that also provers make such queries, possibly to check previous
provers or verifiers. We leave it as an open problem to determine whether there
are proof systems without structured queries which allow to circumvent Theorem
1.

We proceed to the proof. A simple, yet central, component in our proof is a
simple lemma which states that for polynomially long computations there will be
polynomially long “stretches” of proof steps where no fresh query made during
the proofs in the stretch is checked by the final verifier.

Lemma 5 (Non-trivial O-IVC Implies Unchecked Stretches). Let the
running time of VO(x, π) be bounded by a polynomial ψ ∈ poly[|R|, λ, log �]. Then
for all lengths q ∈ poly(|R|, λ, log �) there exist large enough � ∈ poly(|R|, λ) and
a position p ∈ [1, . . . , �] such that P(p,q)

Δ ∩V(�)
↓ = ∅ with non-negligible probability.

The position p may depend on λ.

Proof. Let � be a free variable for now, we fix it later. Since |R| ∈ poly(λ)
it is sufficient to consider any constants a, b ∈ N and thereby any polynomial

On Valiant’s Conjecture 463

q = λb(log �)c. We want to show that there exists d such that if we let � = λd

then there exists a position p (which might be a function of λ) such that

Pr
λ

[P(p,q)
Δ ∩ V(�)

↓ = ∅] = negl(λ) ,

where Prλ denotes that the probability is taken over a random run with security
parameter set to λ.

For any q as above we can consider e = b + 1 and q′ = λe. We have that
q′ > q for large enough λ as � = poly(λ). So for large enough λ we have that
P(p,q)

Δ ⊂ P(p,q′)
Δ . It is therefore sufficient to consider any constant e ∈ N and

thereby any polynomial q′ = λe and show that there exists d such that if we let
� = λd then there exists a position p such that

Pr
λ

[P(p,q′)
Δ ∩ V(�)

↓ = ∅] = negl(λ).

Now that q′ does not depend on � we can for any φ ∈ poly(λ) set � = qφ.
Then we have φ disjoint stretches (1, q), (q + 1, q), . . . , (� − q + 1, q). This by
definition gives disjoints sets P(1,q)

Δ ,P(q+1,q)
Δ , . . . ,P(�−q+1,q)

Δ .
Since the running time of VO(x, π) is bounded by poly[|R|, λ, log �] it is also

bounded by some φ ∈ poly(λ) for large enough λ via the same arguments as
above. So for large enough λ the verifier can make at most ψ queries to the
oracle, i.e., |V(�)

↓ | ≤ ψ. So if we set φ = 2ψ, then in any given run at most half

the sets P(p,q)
Δ enumerated above will contain an element from V(�)

↓ .
For each large enough λ this allows us to pick a fixed position pλ such that

for a random run P(p,q)
Δ will contain an element from V(�)

↓ with probability at
most 1/2. For smaller λ simply let pλ = 1. Now let p(λ) = λ. Then

∃λ′∀λ > λøPr
λ

[P(p,q′)
Δ ∩ V(�)

↓ = ∅] ≥ 1
2

which is non-negligible. ��

Note that the function p(λ) can be computed in non-uniform PPT in λ by a
simple lookup table. This is enough for where we use the lemma as we consider
non-uniform adversaries for simplicity. We could, however, also get impossibility
for uniform adversaries. If we allow p to be randomized (and all subsequent
proofs can handle a randomized p), then we can simply set � as in the proof
and do λ runs of the experiment. We can then let p(λ) be any position where
P(p,q′)

Δ ∩ V(�)
↓ = ∅ happens with frequency at least 1

2 . It is easy to see that such

a position exists and will have Prλ[P(p,q′)
Δ ∩ V(�)

↓ = ∅] �= negl(λ) in a fresh run.
Before giving the full proof, we prove a warmup case (Lemma 6) to give the

intuition of the proof up front. The lemma just says that if a long witness is
hashed and then the witness extracted, then it is the original witnesses which is

464 M. Hall-Andersen and J. B. Nielsen

extracted, or collision intractability is broken. We then later show how to exploit
this to get impossibility by showing that it cannot be the case that the original
witness is extracted.

We describe a class of adversaries A(·)
H,�, �w,ρ in Fig. 2. Let A(·)

� denote the

random variable describing A(·)
H,�, �w,ρ, where H, �w and ρ are sampled at random.

And let �w(AO
�) denote the witnesses used by this adversary when run with oracle

O.

Lemma 6. There exists a PPT algorithm E such that when O is a random ora-
cle and (H,M�, π�) ← AO

� then E
A�,O = �w(AO

�) except with negligible probability.

Proof. Since AO
� internally runs an honest proof using P we have that

V
O(H,M�, π�) = � except with negligible probability. So, by knowledge sound-

ness we have that there exists a PPT extractor E such that if we let �w′ = E
A�,O

then M� = H�(M0, �w′) except with negligible probability. Let �w = �w(AO
�). We

have by construction that M� = H�(M0, �w). This implies that �w′ = �w or (�w, �w′)
is a collision for H. It is therefore enough to prove that (�w, �w′) is a collision for
H with negligible probability. This follows from a simple reduction to collision
intractability of H using the fact that E is a fixed PPT algorithm and H is chosen
at random after E is fixed. ��

The above simple case shows that if the proof system has knowledge sound-
ness we can make the extractor extract the long witness �w from blackbox inter-
action with the adversary. The only way the extractor learns information is via
the queries of the adversary to the random oracle. We now show that it is possi-
ble for A to use a fake hardcoded oracle for a long stretch of the proof and still
have the proof be accepted with good probability. This is because the verifier
does not have queries enough to test a query from all proof steps. During this
stretch the adversary will not query the real oracle O. So there is no interaction
with the extractor. Hence the extractor does not learn enough about the witness
used during the stretch to be able to extract it. We now flesh out this intuition.

Fig. 2. A(·)
H,�, �w,ρ

On Valiant’s Conjecture 465

The transition function we look at is simply collision intractable hashing.
We describe the class of transition functions T . We assume we have a family of
collision intractable hash functions H : {0, 1}λ×{0, 1}λ → {0, 1}λ. The witnesses
are given by �w ∈ ({0, 1}λ)�. The step function T is represented by a hash function
H. We always let M0 = 0λ and the step function is given by Mi = T (Mi−1, wi) =
H(Mi−1, wi). Since M0 is fixed we drop it from the notation below.

Fig. 3. AO
H,�,(p,q), �wpre, �wpost,ρ, ˜O, ˜W,b

466 M. Hall-Andersen and J. B. Nielsen

We describe a class of adversaries in Fig. 3. In the proof we will need to go
through some hybrids. For simplicity we provide a single adversary with some
parameters (two oracles and a binary switch) allowing to produce all the hybrids.
For the same purpose we define in Fig. 4 an experiment with two binary switches
a and b.

Note that the oracle Ostr = [Ppre

↓
→ O, ˜O] used during the stretch will
send all fresh queries to the simulated oracle ˜O so it will make no new queries
to the real oracle O. Note that Opost

1 is the oracle which behaves like the real
random oracle O except on queries which according to usedp+q were made while
proving for the stretch witness. The queries usedp+q(q) = �∧q �∈ Ppre

↓ are those
presumable made before the stretch ended and not before the stretch started.
For such stretch queries it uses the simulated oracle ˜O.

Fig. 4. ExtExpO
�,(p,q),a,b

We are particularly interested in the event XTSa=0,b=1. This is the event that
the random witness used during the stretch is correctly extracted when a = 0
(such that a uniformly random oracle and uniformly random witness are used)
and b = 1 (such that Opost

1 is used for the post-stretch part of the proof in step

On Valiant’s Conjecture 467

11). Below we prove two lemmas about XTSa=0,b=1, which allows us to give the
following proof for Theorem 2.

Proof (Proof of Theorem 2). Under the premises of the theorem we can prove
both Lemma 7 and Lemma 8, and these two lemmas are in contradiction. ��

We first prove:

Lemma 7. Under the premises of Theorem 2 the following holds. There exists
a polynomial stretch length q ∈ poly(|R|, λ, log �) such that it is not possible to
set the number of steps � to a polynomial and set the stretch position p such that

Pr[XTSa=0,b=1] ≥ 1/λO(1).

Proof. Note that the stretch witness is picked uniformly at random using the
oracle ˜W. This means that it has entropy q|w|. The extractor needs to learn this
many bits to extract the stretch witness. Let us be curious about from where it
could learn this many bits of information.

Note that the stretch witness is computed as �wstr = (wp, . . . , wp+q−1) =
˜W(T,Mp−1, πp−1), where (T,Mp−1, πp−1) is the entire state of the proof up to
step 5, including previous random-oracle queries and replies. This ensured that if
the adversary is rewound behind step 5 then an independent, uniformly random
stretch witness is picked. So we can ignore extractors rewinding behind step 5.

The extractor also learns no information during steps 5 and 6 as the prover
queries the stretch oracle ˜O during the stretch, not the real oracle. Hence the
adversary does not interact with the extractor at all during steps 5 and 6.

We finally argue that interacting with the adversary after step 6 cannot leak
the entire stretch witness. To see this note that the adversary only needs the
post-stretch witness and Opost

1 to run after step 6. The post-stretch witness
is independent of the stretch witness, and we can represent Opost

1 such that
it does not contain all information about the stretch witness. Namely, we could
indistinguishably for the extractor switch to a = 1 such that ˜O is pseudo-random
and specified by a short key O. Note that we can then compute Opost

1 given O,
usedp+q, Ppre

↓ , and O. The oracle O and the queries Ppre

↓ were chosen before
the stretch witness was chosen, so cannot depend on it. The key O is short so
can only contain little information on the stretch witness. Finally, we assumed
usedp+q can be computed from the state of the prover which we have assumed is
poly(λ, log �) for some fixed polynomial. So if we set q to some larger polynomial,
then the state of the prover cannot contain the stretch witness. By making q
large enough we can ensure that the stretch witness can be guessed only with
negligible probability from the state of the adversary after step 6, which proves
the lemma. ��

We then prove the following contradicting lemma:

Lemma 8. Under the premises of Theorem 2 the following holds. For all poly-
nomials q ∈ poly(|R|, λ, log �) it is possible to set � to a polynomial and set p
such that

Pr[XTSa=0,b=1] ≥ 1/λO(1).

468 M. Hall-Andersen and J. B. Nielsen

Proof. We will argue that when a = 0 and b = 1 then we can for all q set � such
that J0 = � with polynomial probability. When this happens, then knowledge
soundness gives us that the extraction �v = E

A(·),O must be correct and therefore
XTSa=0,b=1 happened. Note that when b = 1 then the adversary’s proof is con-
structed with O1 = Opost

1 but EA(·),O extracts with O. The key to the proof is to
show that with polynomial probability it holds that 1) the proof constructed by
the adversary verifies against Opost

1 and that 2) Opost

1 (q) = O(q) for all queries
made by the verifier. The first part would give J1 = � and the second part would
give J0 = J1, and we would be done.

We first prove 2). Note that Opost

0 and Opost

1 only differ in which queries
they send to the simulated oracle ˜O. The oracle Opost

0 sends exactly the queries
made for the first time in the stretch. The oracle Opost

1 tries to do the same
but relies on usedp+q correctly identifying queries made before step p+ q. Under
the assumption that NSF happens we have that Opost

0 = Opost

1 and by the
assumption that the proof system is 1/λO(1)-SOQ we can assume that NSF hap-
pens with polynomial probability. So let us proceed under the assumption that
Opost

0 = Opost

1 . Then note that Opost

0 = O unless queried on a query made by
the prover during the stretch and use Lemma 5 to set � large enough that the
verifier with polynomial probability does not make such a query. This ensure
that O1(q) = O(q) for all queries made by the verifier, as desired.

To prove 1) we then need to argue that it is also the case that the proof made
by the adversary verifies against Opost

1 . But note that when ˜O is uniformly
random, then Opost

0 is just another uniformly random oracle. And therefore
Opost

1 = Opost

0 is also a uniformly random oracle. So the proof of the adversary
is a random, honestly generated proof relative to a uniformly random oracle
Opost

1 . Therefore, by completeness, it will also verify relative to Opost

1 . ��

References

1. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

2. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

3. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data, pp. 111–120 (2013). https://doi.
org/10.1145/2488608.2488623

5. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. Cryptology ePrint Archive, Report 2020/1618 (2020). https://
eprint.iacr.org/2020/1618

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/1618

On Valiant’s Conjecture 469

6. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition
from accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2 1

7. Chen, M., Chiesa, A., Spooner, N.: On succinct non-interactive arguments in rel-
ativized worlds. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022.
LNCS, vol. 13276, pp. 336–366. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07085-3 12

8. Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds,
pp. 57:1–57:30 (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.57

9. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

10. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards, pp. 310–331 (2010)

11. Chiesa, A., Yogev, E.: Subquadratic SNARGs in the random oracle model. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 711–741.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 25

12. Chiesa, A., Yogev, E.: Tight security bounds for Micali’s SNARGs. In: Nissim,
K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 401–434. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90459-3 14

13. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 14

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions, pp. 99–108 (2011). https://doi.org/10.1145/1993636.1993651

15. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

16. Haitner, I., Nukrai, D., Yogev, E.: Lower bound on SNARGs in the random oracle
model. Cryptology ePrint Archive, Report 2022/178 (2022). https://eprint.iacr.
org/2022/178

17. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly, pp.
1115–1124 (2019). https://doi.org/10.1145/3313276.3316411

18. Lipmaa, H., Pavlyk, K.: Gentry-wichs is tight: a falsifiable non-adaptively sound
SNARG. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092,
pp. 34–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4 2

19. Micali, S.: CS proofs (extended abstracts), pp. 436–453 (1994). https://doi.org/
10.1109/SFCS.1994.365746

20. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

21. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-031-07085-3_12
https://doi.org/10.1007/978-3-031-07085-3_12
https://doi.org/10.4230/LIPIcs.ITCS.2020.57
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-84242-0_25
https://doi.org/10.1007/978-3-030-90459-3_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/BF00195207
https://eprint.iacr.org/2022/178
https://eprint.iacr.org/2022/178
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1007/978-3-030-92078-4_2
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-78524-8_1

SNARGs and PPAD Hardness
from the Decisional Diffie-Hellman

Assumption

Yael Tauman Kalai1,3, Alex Lombardi2(B), and Vinod Vaikuntanathan3

1 Microsoft Research, Cambridge, USA
2 Simons Institute and UC Berkeley, Berkeley, USA

alexlombardi@berkeley.edu
3 MIT, Cambridge, USA

Abstract. We construct succinct non-interactive arguments (SNARGs)
for bounded-depth computations assuming that the decisional Diffie-
Hellman (DDH) problem is sub-exponentially hard. This is the first
construction of such SNARGs from a Diffie-Hellman assumption. Our
SNARG is also unambiguous: for every (true) statement x, it is compu-
tationally hard to find any accepting proof for x other than the proof
produced by the prescribed prover strategy.

We obtain our result by showing how to instantiate the Fiat-Shamir
heuristic, under DDH, for a variant of the Goldwasser-Kalai-Rothblum
(GKR) interactive proof system. Our new technical contributions are (1)
giving a TC0 circuit family for finding roots of cubic polynomials over a
special family of characteristic-2 fields (Healy-Viola, STACS 2006) and
(2) constructing a variant of the GKR protocol whose invocations of
the sumcheck protocol (Lund-Fortnow-Karloff-Nisan, STOC 1990) only
involve degree 3 polynomials over said fields.

Along the way, since we can instantiate the Fiat-Shamir heuristic
for certain variants of the sumcheck protocol, we also show the exis-
tence of (sub-exponentially) hard problems in the complexity class PPAD,
assuming the sub-exponential hardness of DDH. Previous PPAD hard-
ness results required either bilinear maps or the learning with errors
assumption.

1 Introduction

Succinct non-interactive arguments (SNARGs) [Mic94] are short, easy to verify,
and computationally sound proofs that a statement x belongs to a potentially
complex language L. In principle, one could hope to construct extremely efficient
SNARGs for all NP languages; indeed, in the random oracle model, there exists a
non-interactive1 argument system for any L decidable in non-deterministic time
T (n) with proof size poly(λ, log T) and verification time poly(λ, log T) + Õ(n),
1 As is common, we consider arguments in the common reference string (CRS) model,

where the reference string is set up in advance. Throughout this paper, our reference
strings will be uniformly random without loss of generality.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 470–498, 2023.
https://doi.org/10.1007/978-3-031-30617-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_16

SNARGs and PPAD Hardness from the DDH Assumption 471

where n = |x| and λ is a security parameter [Mic94]. Unfortunately, there are
significant concerns about whether it is possible to construct such arguments
based on falsifiable and preferably standard computational assumptions [Bar01,
GK03,GW11,BBH+19].

In this work, we consider SNARGs for a restricted class of languages: those
computable by logspace-uniform circuit families of bounded depth D (and
arbitrary polynomial size S). These were first studied in the interactive set-
ting by Goldwasser, Kalai, and Rothblum [GKR08], who constructed (statis-
tically sound) interactive proofs of size D · poly log(S) and verification time
D · poly log(S) + Õ(n). (We will henceforth refer to this as the GKR protocol.)
Recently, a work of Jawale, Kalai, Khurana, and Zhang [JKKZ21] showed how to
convert this proof system into a SNARG by instantiating the Fiat-Shamir heuris-
tic [FS87,BR93] for the GKR protocol in the standard model (building upon
[CCH+19]). Their SNARG is proved secure under the sub-exponential hardness
of the learning with errors (LWE) assumption. Aside from [JKKZ21], SNARGs for
(even unbounded depth) deterministic computation are now known from bilinear
maps [KPY19,WW22,KLVW23], the polynomial hardness of LWE [CJJ22], and
a combination of the decisional Diffie-Hellman (DDH) and Quadratic Residuosity
(QR) assumptions [HJKS22,KLVW23].

SNARGs from DDH. In this work, we ask if SNARGs can be built from the DDH
assumption alone. We answer this question in the affirmative for SNARGs for
bounded-depth computations.

Theorem 1.1. Assuming the sub-exponential hardness of DDH, there exist
SNARGs for logspace-uniform depth-D, size-S computations. The SNARGs have
proof size poly(λ, logS) · D and verification time poly(λ, logS) · (D + n). The
prover runs in time poly(λ, S).

As stated, our SNARGs achieve only non-adaptive soundness: that is, sound-
ness holds for fixed inputs x to the circuit C.2 By complexity leveraging (setting
λ = n1/ε for an appropriate constant ε independent of S), we can achieve sound-
ness that is adaptive with respect to the input x, at the cost of a communication
complexity and verification time that are poly(n, logS) · D.

Moreover, our SNARGs are unambiguous [RRR16,CHK+19a], which means
that they satisfy a form of soundness even for true statements: for x ∈ L, it is
computationally hard to find an accepting proof for x other than the honestly
generated proof guaranteed to exist by completeness. Unambiguous SNARGs
were previously constructed in [KPY20,JKKZ21] but only known using either
bilinear maps or LWE.

On a slightly more technical level, we show that (unambiguous) SNARGs
for bounded depth can be built from a weaker generic primitive than was

2 We note that the circuit C itself is always fixed in the protocol description.

472 Y. T. Kalai et al.

known before: (lossy) correlation-intractable hash functions [CGH98,CCH+19,
JKKZ21] supporting the complexity class TC0. Previous work relied on a stronger
form of correlation intractability (CI) supporting functions in P (or, implicitly,
NC). Since CI for TC0 was constructed based on DDH in [JJ21], this essentially
implies Theorem 1.1. We discuss this in more detail in our technical overview
(Sect. 1.1).

Hardness in PPAD from DDH. Closely tied to unambiguous SNARGs is the
problem of showing the cryptographic hardness of the complexity class PPAD
[Pap94,CHK+19a]. PPAD is a complexity class arising from computational game
theory that famously includes finding a Nash equilibrium of bimatrix games as
a complete problem [DGP09,CDT09]. The work of Choudhuri et al. [CHK+19a]
showed that instantiating the Fiat-Shamir heuristic for (many variants of) the
sumcheck protocol [LFKN90] suffices to establish PPAD-hardness.

In this work, towards instantiating Fiat-Shamir for the GKR protocol, we
show how to instantiate Fiat-Shamir for variants of the sumcheck protocol that
can be plugged into the framework of [CHK+19a]. Thus, we obtain PPAD-
hardness from the sub-exponential DDH assumption.

Theorem 1.2. Assuming that DDH is sub-exponentially hard, the complexity
class PPAD contains problems that are sub-exponentially hard on average.

Again, we prove Theorem 1.2 by showing that lossy correlation intractable
hash functions for TC0 suffice to construct the non-interactive sumcheck proto-
col.

In the rest of this introduction, we give a brief overview of our techniques for
proving Theorem 1.1 and Theorem 1.2.

1.1 Technical Overview

We begin by discussing our contributions on applying the Fiat-Shamir heuristic
to the sumcheck protocol [LFKN90]. We first recall the sumcheck protocol.

The Sumcheck Protocol. In the sumcheck protocol, the prover and verifier
begin with a degree3-d polynomial f(x1, . . . , xn) in n variables over some finite
field F. The prover wants to convince the verifier of the value of the sum
y =

∑
a∈{0,1}n f(a), where the sum is taken over F. This is accomplished by

the following interactive protocol:

– The prover sends the univariate polynomial

g(x) =
∑

a2,...,an∈{0,1}
f(x, a2, . . . , an).

3 Here and below, by “degree” we refer to individual degree: a multivariate polynomial
has individual degree ≤ d if it has degree ≤ d in each variable.

SNARGs and PPAD Hardness from the DDH Assumption 473

– The verifier checks that g(0)+ g(1) = y. If so, it samples a uniformly random
β ← F and sends β to the prover.

– The prover and verifier recursively execute the sumcheck protocol with respect
to the polynomial fβ(x2, . . . , xn) = f(β, x2, . . . , xn) and value yβ = g(β).

– In the base case, the verifier simply evaluates f(β1, . . . , βn), which it can do
given a circuit for f .

As shown in [CCH+19,JKKZ21], this protocol satisfies what is called unam-
biguous round-by-round soundness. Concretely, what this means (for this proto-
col) is that once the polynomial g is fixed by the prover, if g is not the correct
“partial sum” polynomial, then with high probability over the choice of β, the
prover and verifier will recurse on a false statement. Note also that if the state-
ment (f, y) is false but g is the correct polynomial w.r.t. f , then the verifier will
immediately reject.

Removing Interaction via Fiat-Shamir. In this work, we want a non-interactive
variant of the sumcheck protocol, which we obtain by instantiating the Fiat-
Shamir heuristic [FS87,BR93] for the sumcheck protocol. Concretely, this means
that we will have n hash functions h1, . . . , hn sampled from a hash family H, and
the i-th verifier challenge βi is instead computed as a hash hi(f, y, g1, β1, . . . , gi)
of the transcript so far.

Following the bad challenge function paradigm of [CCH+19], we call a chal-
lenge βi bad for (f, y, g1, β1, . . . , gi) if (1) gi is not the correct polynomial
g∗

i =
∑

ai+1,...,an
f(β1, . . . , βi−1, x, a2, . . . , an) and (2) the resulting recursive

claim (fβ1,...,βi
, gi(βi)) is true. In the case of the sumcheck protocol, the set

of all bad β is precisely the set of roots of the polynomial gi(x) − g∗
i (x). Note

that there are at most d such roots, as gi(x) − g∗
i (x) is a nonzero polynomial

of degree at most d. Thus, letting F
(i)
1 , . . . , F

(i)
d denote functions where F

(i)
j

maps (f, β1, . . . , βi−1, gi) to the jth root of gi − g∗
i in F (if one exists), we know

by [CCH+19] that the resulting non-interactive protocol is sound if each hi is
correlation-intractable (CI) [CGH98,CCH+19] for F

(i)
1 , . . . , F

(i)
d .

Recall that a hash function family H is CI for a relation R (generalizing
the case of a function f) if given h ← H it is computationally hard to find
an input α such that (α, h(α)) ∈ R. There has been much recent progress on
constructing CI hash functions based on standard cryptographic assumptions
(e.g. [CCH+19,PS19,BKM20,JJ21,HLR21]). The construction relevant to us in
this work is that of [JJ21], which built a CI hash function family supporting
functions computable in the complexity class TC0 (constant-depth threshold
circuits) based on sub-exponential DDH.

Thus, in order to use the [JJ21] hash function family, we ask: what is the
computational complexity of the bad challenge functions F

(i)
j ?

Naïvely, it is not even clear that the F
(i)
j functions are in P, because

even computing the polynomial g∗
i (as a function of f, β1, . . . , βi−1) seems to

require time 2n−i. However, following [JKKZ21], if the functions h1, . . . , hi−1

are lossy [PW08], we can guess the challenges β1, . . . , βi−1 in advance and non-
uniformly hard-wire the polynomial g∗

i in our security reduction (incurring a

474 Y. T. Kalai et al.

sub-exponential security loss from guessing β1, . . . , βi−1). That is, we will actu-
ally define each hi to be the composition of a [JJ21] hash function with a lossy
trapdoor function family (LTDF). The resulting composition will still be CI
for TC0 circuits provided that inversion of a LTDF can be computed in TC0,
which we observe (see Sect. 2.2) is possible for a simple modification of standard
constructions [PW08,FGK+10].

1.1.1 The Circuit Complexity of Root-Finding

Finally, we arrive at the first of two main challenges in this work. With the
setup so far, we have reduced the problem to achieving correlation intractability
for a circuit class that has the power to find roots of univariate polynomials
over a field F (and some additional TC0 operations). If root-finding over finite
fields were known to be in TC0, we would be done! Unfortunately, standard root-
finding algorithms [Ber70,Rab80,CZ81] are not known to be implementable in
TC0. Indeed, it is clear that some care is required: if p is a large (size 2λ) prime,
finding roots of even degree 1 polynomials over Fp is at least as hard as computing
mod p inverses a �→ a−1 (mod p), which is not known to be in TC0.

Thus, it is clear that to have any hope of root-finding in TC0, one must
carefully choose the field F. In this work, we make use of a special characteristic-
2 field ensemble K = {Kn} studied by Healy and Viola, henceforth referred to
as the Healy-Viola field ensemble, over which many field operations (including
the inversion map a �→ a−1) are known to be in TC0 [HV06]. In this work, we
show:

Lemma 1.1 (informal, see Theorem 3.4). There is a TC0 circuit family that
finds all roots of cubic (degree d = 3) univariate polynomials over the Healy-
Viola field ensemble.

We emphasize that the algorithm in Lemma 1.1 only finds roots that lie in the
ground field K, not (necessarily) roots that lie in extensions4 of K. Combining
Lemma 1.1 with our discussion so far, we obtain the following result:

Theorem 1.3 (informal). Fiat-Shamir for degree-3 sumcheck protocols over
the Healy-Viola field ensemble is sound using hash functions that are Lossy CI
for TC0, and is therefore instantiable under sub-exponential DDH.

That is, by carefully instantiating the field ensemble and designing a special-
purpose root-finding algorithm, we show how to use the Jain-Jin hash function
family [JJ21] to achieve a non-interactive sumcheck for degree three polynomials.
This is a very limited form of non-interactive sumcheck, but we next show how
to leverage this limited form of sumcheck to prove Theorems 1.1 and 1.2. Finally,
at the end of this overview we sketch a proof of Lemma 1.1, which is one of our
main technical contributions.

4 In fact, our algorithm finds all roots that lie in the unique degree-2 extension of K
but not its algebraic closure.

SNARGs and PPAD Hardness from the DDH Assumption 475

1.1.2 PPAD Hardness with Degree-2 Sumchecks

First, we show that PPAD-hardness can be established making use of our non-
interactive sumcheck protocol for polynomials of degree as low as 2!

To employ the framework of [CHK+19a], all that we require is that our
sumcheck protocol can be used to prove membership in a NP-hard language. In
[CHK+19a], this is accomplished by using sumcheck over a large characteristic
field as an argument system for #SAT.

Since our non-interactive sumcheck works over a characteristic-2 field, we
instead start with ⊕SAT, the computational problem of counting the parity of
the number of satisfying assignments of a SAT formula. This problem is also NP-
hard under randomized reductions [VV85]. Given such a SAT formula φ, this
parity can then be expressed as a sumcheck problem over K:

⊕SAT(φ) =
∑

a1,...,an∈{0,1}
φ(a1, . . . , an).

Moreover, φ can be arithmetized so that it is represented by a polynomial-size
arithmetic circuit over F2 ⊂ K. In order for our non-interactive sumcheck proto-
col to be applicable, we would need the individual degree of this arithmetization
to be at most 3. Given that we are doing a “standard” arithmetization, what is
the individual degree of φ? If φ is a CNF, this is nothing more than the maximum
number of clauses that an individual variable appears in.

Conveniently, it is known that ⊕SAT on arbitrary formulas reduces to ⊕SAT
on CNFs (which are not 3-regular) where each variable occurs in at most three
clauses [Tov84]. This suffices to establish Theorem 1.2 by invoking Theorem 1.3
and [CHK+19a] with respect to a degree-3 sumcheck protocol.

Note on Adaptivity. In order to obtain Theorem 1.2, following [JKKZ21], we
need a non-interactive sumcheck protocol satisfying a form of soundness referred
to as “prefix-adaptive soundness” (an intermediate notion between non-adaptive
and adaptive soundness). Our non-interactive sumcheck protocol satisfies this
form of soundness exactly as in [JKKZ21].

Variable-Extended Formulations. While we have already proved Theorem 1.2,
we will give a slightly different second proof, since this will be a crucial step
in proving Theorem 1.1. Specifically, we will prove Theorem 1.2 by invoking
a degree 2 (rather than 3) sumcheck protocol. To do this, we start with the
sumcheck problem above with respect to (the standard poly-size arithmetization
of) φ. The individual degree of φ may be very large; nevertheless, we will show
that ⊕SAT(φ) can be expressed as a different degree 2 sumcheck.

We accomplish this using a Cook–Levin style reduction, in which we intro-
duce new variables y1, . . . , ym that are supposed to represent a wire assignment
of the NAND-circuit computing φ. Concretely, consider the polynomial f in

476 Y. T. Kalai et al.

n + m variables defined as

f(x1, . . . , xn, y1, . . . , ym)

= ym ·
∏

(i,j,k)∈Gates(φ)

(yi + yjyk)
n∏

i=1

⎛

⎝xi

∏

j∈Si

yj + (1 − xi)
∏

j∈Si

(1 − yj)

⎞

⎠ ,

where for every i ∈ [n], Si ⊂ [m] is defined to be the subset of leaf vertices in φ
that are assigned the input xi. In words, f (arithmetically) checks that (i) the
output wire ym is 1, (ii) each NAND gate is computed correctly, and (iii) the leaf
variables were all assigned with respect to a consistent x ∈ {0, 1}n. For boolean
inputs, f(x1, . . . , xn, y1, . . . , ym) is thus either zero or equal to φ(x1, . . . , xn)
(which happens for one “consistent” assignment to y). Therefore,

∑

a1,...,an∈{0,1}
φ(a1, . . . , an) =

∑

a1,...,an∈{0,1}
b1,...,bm∈{0,1}

f(a1, . . . , an, b1, . . . , bm),

so computing ⊕SAT(φ) reduces to an f -sumcheck. Finally, note that f has indi-
vidual degree 2! Indeed, it is linear in the xi, quadratic in the non-leaf yj (as
they are each used in two gates of φ), and quadratic in the leaf yj (each is used
in one gate of φ and has a linear dependence in the “input encoding” part of f).

In general, we say that the above transformation produces a “variable-
extended formulation” of a boolean formula φ (see Definition 5.1), and this is a
key step in proving Theorem 1.1.

1.1.3 SNARGs via Degree 3 Sumchecks

Armed with our new approach of constructing variable-extended formulations of
sumcheck polynomials, we proceed to sketch our proof of Theorem 1.1. We prove
Theorem 1.1 by choosing a suitable variant of the [GKR08] protocol, modifying it
to rely only on degree 3 sumchecks, and then (essentially5) applying Theorem 1.3.

At a high level, the [GKR08] protocol proves that C(x) = y for a logspace-
uniform depth D, size S circuit C by iteratively producing pairs of claims about
a multilinear extension encoding of each layer Li of the computation tableau
of the circuit (when evaluated on input x). That is, each Li = Li(x) ∈ {0, 1}S

is a string containing the value of all level i vertices in the evaluation of C(x),
and Li is interpreted as a function �i : {0, 1}log S → {0, 1}, which can then be
extended to a multilinear function �̂i : Klog S → K. The GKR protocol begins
with an evaluation claim about �̂D (the end of the computation) and ends with
a pair of evaluation claims about �̂0; since the input layer of C has only width
n (rather than, say, S/D) �̂0 can be evaluated in O(n) field operations and thus
can be checked by the verifier.
5 The variant of [GKR08] that we use actually runs pairs of sumcheck protocols in

parallel with shared verifier randomness (as is done in [Mei13,JKKZ21]), but this
detail does not substantially change the proof.

SNARGs and PPAD Hardness from the DDH Assumption 477

The key step is to understand how to reduce claims about �̂i to claims about
�̂i−1; this boils down to the “sumcheck-friendly” equation which writes �i(a) as

∑

b,c∈{0,1}log S

[

χ
(i)
add(a, b, c)

(
�i−1(b) + �i−1(c)

)
+ χ

(i)
mult(a, b, c)

(
�i−1(b)�i−1(c)

)
]

,

where χadd, χmult are the gate indicator functions that take as input three wire
labels (a, b, c) for the circuit and indicates whether an addition (respectively,
multiplication) gate is present at these three wires. This equation can then be
extended multilinearly to a similar equation relating �̂i to �̂i−1.

Given this summary of the GKR protocol, the key question for us is as follows:
what is the degree of the sumcheck polynomials? By inspection, it turns out that
this degree is one more than the degree of the arithmetizations of χadd, χmult.
Naively, their degree may be up to O(logS) (i.e., the number of leaves in the
boolean formulas for χadd, χmult), but by using variable-extended formulations
of these polynomials, we can reduce this degree to 2 (at the cost of adding
O(logS) auxiliary variables to the sumcheck). Note that it is crucial for prover
efficiency that we only add O(logS) (rather than poly logS) new variables, as
the prover’s running time is exponential in this number of variables. We show
that an appropriate extended formulation exists making use of an analysis due
to Goldreich [Gol18] of χadd, χmult.

In total, this results in a GKR protocol variant relying on degree 3 sumchecks
over K, and thus we can instantiate Fiat-Shamir for this protocol based on sub-
exponential DDH.

1.1.4 Cubic Root Finding: Proving Lemma 1.1

Finally, we sketch a proof of Lemma 1.1, which states that roots of cubic poly-
nomials over Healy-Viola fields K can be computed in TC0. We will not resort
to general-purpose root-finding algorithms [Ber70,Rab80,CZ81] (which all have
a high-depth iterative nature) but instead turn to explicit formulae for roots of
low degree polynomials. We show that these explicit formulae can be converted
into low-depth algorithms.

First, let us consider the degenerate cases of linear and quadratic polynomials.

– Root-finding for linear polynomials is equivalent to solving a linear equation
over K, which reduces to multiplication and inversion over K. These opera-
tions were shown to be in TC0 in [HV06].

– Since K has characteristic 2, root-finding for quadratic polynomials reduces
to finding roots of polynomials of the form x2 + c and x2 + x + c.6 Then:

• The polynomial x2 + c always has a double root of c|K|/2,7 which can be
computed in TC0 via low-depth exponentiation [HV06].

6 This follows from the fact that az2+bz+c = 0 ⇐⇒ (a/b·z)2+(a/b·z)+a/b2 ·c = 0.
7 This is the case since in characteristic 2 fields, −α = α for all α.

478 Y. T. Kalai et al.

• The polynomial x2 + x + c has roots given by an explicit formula as a
function of c related to its orbit {c, c2, c4, . . . , c2

n−1} under the Frobenius
map α �→ α2. The form depends on the order of two dividing log |K|
(which turns out to be 1 for the Healy–Viola fields) and is given implicitly
in our proof of Theorem 3.3.

Passing to a Quadratic Extension of K. We note that [CJJ21] also proves that
quadratic root-finding in K is in TC0 with a different approach; however, we
give a more powerful algorithm that actually finds roots of this polynomial in an
explicit quadratic extension L ⊃ K (even when no roots in K exist). This more
powerful algorithm is necessary to prove the cubic case of Lemma 1.1.

In order for this to make sense, we must be able to construct L in a way
so that operations in L are similarly efficient to operations in K. Fortunately,
we are able to do this with a careful construction, noting that one way to con-
struct a quadratic extension of K is to add to it a solution to the equation
x2 + x + ω = 0, where ω is an explicit cube root of unity in K. Since ω alone
generates a constant-size field, this greatly simplifies the problem of giving effi-
cient algorithms for operations over L. We show in Theorem 3.2 that all of the
relevant field operations on L are in TC0, which requires opening up the [HV06]
construction and extending their analysis to L.

The Cubic Case. Finally, we compute roots of cubic polynomials over K using an
algorithmic variant of the cubic formula [Lag70] over characteristic 2 fields. At a
high level, the characteristic 2 cubic formula reduces computing roots of a cubic
polynomial (given its coefficients), modulo basic operations, to the following
tasks:

1. Finding roots of a related quadratic polynomial defined over K.
2. Computing the cube root map α �→ α1/3 (modulo cube roots of unity).
3. Solving a constant-size linear system involving these cube roots.

In Sect. 3, we show that all of these procedures are computable in TC0 and thus
roots of all cubic polynomials can be computed in TC0.

One important subtlety is that the roots computed in (1) above are not nec-
essarily in K, but in the quadratic extension L; relatedly, (2) requires computing
cube roots of elements of L. One must be careful to argue that (in our setting)
the cubic formula algorithm does not have to pass into a degree 6 (or degree 3)
extension of K, which we have not explicitly constructed.

For a full explanation/proof of Lemma 1.1, we refer the reader to Sect. 3
(Theorem 3.4).

1.2 Related Work

Fiat-Shamir in the Standard Model. Over the last few years, a line of
work including [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,BKM20,JJ21,
HLR21,CJJ21,CJJ22,HJKS22] and many others has studied the instantiability

SNARGs and PPAD Hardness from the DDH Assumption 479

of the Fiat-Shamir heuristic using concrete, efficiently computable hash function
families. Starting with the work of [CCH+19], there have been instantiations
based on standard cryptographic assumptions (initially the learning with errors
assumption [CCH+19,PS19]). The work of [JJ21] constructed NIZKs for NP
under the sub-exponential DDH assumption by building a hash family that is
correlation-intractable for TC0 functions from sub-exponential DDH. Beginning
with the works of [CCH+19,JKKZ21], applying Fiat-Shamir to the [GKR08]
protocol (to construct SNARGs in the standard model) has been explicitly stud-
ied, including a construction based on sub-exponential LWE [JKKZ21]. Finally,
more recently the Fiat-Shamir approach has been used to build succinct batch
arguments for NP [CJJ21,CJJ22,HJKS22] which in turn imply SNARGs for P
[CJJ22,KVZ21].

SNARGs Without Fiat-Shamir. There have additionally been constructions of
SNARGs for P that do not rely on the Fiat-Shamir heuristic [KPY19,GZ21,
WW22,KLVW23], all of which currently rely on some form of cryptographic
bilinear maps.

Cryptographic Hardness of PPAD. Establishing hardness in PPAD based on
cryptographic assumptions has also received considerable attention, including
[BPR15,GPS16,CHK+19a,CHK+19b,EFKP20,LV20,KPY20,BCH+22]. Pre-
viously, PPAD-hardness was known under the following sets of assumptions:

– Polynomially secure functional encryption [BPR15,GPS16], which can be
built by a particular combination of three concrete assumptions [JLS21],

– Super-polynomial hardness of a falsifiable assumption on bilinear maps
[KPY20],

– The sub-exponential LWE assumption [JKKZ21], and
– A combination of (polynomially-secure) LWE and the (polynomial) hardness

of iterated squaring modulo a composite [BCH+22].

2 Preliminaries

2.1 Cryptographic Groups

Let G = {Gλ} be a group ensemble, indexed by a security parameter λ, such
that group operations (and testing equality) can be computed in time poly(λ).

Definition 2.1 (Decisional Diffie-Hellman Assumption). We say that the
decisional Diffie-Hellman (DDH) assumption with time T and advantage μ holds
for G if any T (λ)-time algorithm A(·) has advantage at most μ in distinguishing
a random “DDH-tuple” (g, gx, gy, gxy) from a tuple (g, gx, gy, gz) (for uniformly
random x, y, z).

In this paper, we work exclusively with cryptographic groups satisfying the fol-
lowing conditions:8

8 These groups will be used to instantiate the lossy trapdoor function component
of a lossy CI hash family; the CI component does not have to satisfy all of these
properties (but DDH must still be sub-exponentially hard).

480 Y. T. Kalai et al.

1. Iterated group multiplication g1, g2, . . . , gt �→ ∏t
i=1 gi can be computed by a

poly(λ, t)-size, low-depth circuit family. As in [JJ21], there are two flavors of
results: one requires TC0 circuits (which exist for, e.g., subgroups of Z

×
q),

while the other requires threshold circuits (with unbounded fanin) of depth
o(log λ) (which exist for standard elliptic curve groups [JJ21]). In the latter
case, we will use complexity leveraging: re-define the group security parameter
to be κ = poly log λ, so that DDH remains polynomially hard and iterated
multiplication can be computed in depth o(log log λ).

2. The DDH assumption holds with inverse-subexonential μ = 2−λε

for some
constant ε > 0. If iterated multiplication requires superconstant-depth thresh-
old circuits, then we require the assumption to hold for T = 2λε

(so that we
can complexity leverage as above), while if iterated multiplication has TC0

circuits, then we only require the assumption to hold for T = poly(λ).
3. Letting M denote a uniformly random n(λ)×n(λ) matrix (for n(λ) = poly(λ))

modulo N = |G|, we have that M is invertible with probability 1 − negl(λ).
This holds immediately for prime-order groups or groups with order N that
have no polynomial-size prime divisors.

As discussed in [JJ21], properties (1) and (2) are satisfied (that is, DDH is
plausible) by common examples such as (subgroups of) Z

×
q or groups of Fq-

points of elliptic curves.

2.2 Lossy Trapdoor Functions

Lossy trapdoor functions were first defined and constructed in an influential
work of Peikert and Waters [PW08]. Loosely speaking, a lossy trapdoor function
family contains two types of functions: injective ones and lossy ones, such that
one cannot distinguish between a random injective function in the family and
a random lossy function in the family. An injective function can be generated
together with a trapdoor, which allows one to efficiently invert the function,
whereas a lossy function “loses” most information about its preimage, since its
image is much smaller than its domain.

Definition 2.2 ((T, ω)-Lossy Trapdoor Family)
A quadruple (InjGen, LossyGen,Eval, Inv) of PPT algorithms is said to be a

(T, ω)-lossy trapdoor function family if there exist polynomials n = n(λ), n′ =
n′(λ), s = s(λ) and t = t(λ) for which the following syntax and properties are
satisfied:

– Syntax.
• InjGen(1λ) takes as input a security parameter 1λ and outputs a pair
(k, td), where k ∈ {0, 1}s is a key corresponding to an injective function
and td ∈ {0, 1}t is a corresponding trapdoor.

• LossyGen(1λ) takes as input a security parameter 1λ and outputs a key
k ∈ {0, 1}s corresponding to a lossy function.

• Eval(k, x) takes as input a key k ∈ {0, 1}s and an element x ∈ {0, 1}n and
outputs an element y ∈ {0, 1}n′

.

SNARGs and PPAD Hardness from the DDH Assumption 481

• Inv(k, td, y) takes as input a key k ∈ {0, 1}s, a trapdoor td ∈ {0, 1}t, and
an element y ∈ {0, 1}n′

, and outputs an element x ∈ {0, 1}n ∪ {⊥}.
– Properties. The following properties hold:

• Injective Mode. For every λ ∈ N and every k ∈ InjGen(1λ) the
function Eval(k, ·) is injective. Furthermore, for every x ∈ {0, 1}n(λ),
Pr[Inv(k, td,Eval(k, x)) = x] = 1.9

• ω-Lossiness. For every λ ∈ N and every k ∈ LossyGen(1λ) the function
Eval(k, ·) has an image of size 2n(λ)−ω(λ).

• T -Security. There exists a negligible function μ such that for every
poly(T)-size adversary A and for every λ ∈ N,

∣
∣
∣ Pr
k←G.LossyGen(1λ)

[A(k) = 1] − Pr
k←G.InjGen(1λ)

[A(k) = 1]
∣
∣
∣ = μ(T (λ))

Theorem 2.1 [PW08,FGK+10]. Assuming the sub-exponential hardness of
DDH, for every constant 0 < δ < 1 and every polynomial n(λ), there exists a
constant 0 < ε < 1 for which there exists a (T, ω)-lossy trapdoor function family
for ω(λ) = n(λ) − λδ and T = 2λε

.
Moreover, after a td-independent preprocessing step, inversion of this func-

tion family has threshold circuits of depth O(d), provided that large fan-in mul-
tiplication over the DDH group can be computed in depth d.

Proof. We slightly modify the construction due to [FGK+10] in order to obtain
TC0 inversion:

– The public key is of the form gM , where g is a generator for an order p group
where DDH is hard and M is a k × k matrix with entries in {0, 1, . . . , p −
1}. In injective mode, M is a uniformly random invertible matrix. In lossy
mode, M is a uniformly random rank 1 matrix. Injective and lossy modes are
computationally indistinguishable under the DDH assumption.

– The input x is an element of {0, 1}n. To evaluate the function, one computes
fgM (x) = gMx by evaluating the matrix-vector product “in the exponent.”

– The trapdoor in injective mode is as follows:

td =
[
aij

]
ij
= M−1,

To invert, we compute f−1
td (gz) = gM−1z, where the matrix-vector product

M−1z =

⎛

⎝
∑

j

aijzj

⎞

⎠

i

is computed by exponentiating gzj �→ gaijzj and then computing k different
k-fold products. Algorithmically, this is done as follows:

9 Following [JKKZ21], we require perfect correctness for simplicity only.

482 Y. T. Kalai et al.

• First compute gj,� = g2
�zj for all 0 ≤ j ≤ log p. This does not require td

and is thus considered a preprocessing step.
• Given {gj,�}, td =

[
aij

]
ij

, compute (for all i, in parallel)

gxi =
∏

j,�

g
aij [�]
j,� ,

where aij [�] denotes the �th bit of aij . xi can then be recovered by checking
whether the group element is idG or g. Since this online step consists
of many parallel iterated product operations, its threshold circuit depth
essentially matches that of iterated group multiplication.

– Finally, we observe that in lossy mode, fgM maps a domain of size pk to a
range of size p, thus achieving the desired amount of lossiness for p = 2λ and
k = λ1/δ.

2.3 Correlation-Intractable Hash Families

In this section, we recall the notion of a correlation-intractable (CI) hash family
originally defined in [CGH98]. We start by recalling the notion of a hash family.

Definition 2.3. A hash family H consists of two algorithms (H.Gen,H.Hash),
and parameters n = n(λ) and m = m(λ), such that:

– H.Gen is a PPT algorithm that takes as input a security parameter 1λ and
outputs a key k.

– H.Hash is a polynomial time computable (deterministic) algorithm that takes
as input a key k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an
element y ∈ {0, 1}m(λ).

In what follows when we refer to a hash family, we usually do not mention
the parameters n and m explicitly.

Definition 2.4 (T -Correlation Intractable [CGH98]). A hash family H =
(H.Gen,H.Hash) is said to be T -correlation intractable (T -CI) for a function
family F = {Fλ}λ∈N if the following two properties hold:

– For every λ ∈ N, every f ∈ Fλ, and every k ∈ H.Gen(1λ), the functions f
and H.Hash(k, ·) have the same domain and the same co-domain.

– For every poly(T)-size A = {Aλ}λ∈N there exists a negligible function μ such
that for every λ ∈ N and every f ∈ Fλ,

Pr
k←H.Gen(1λ)

x←A(k)

[H.Hash(k, x) = f(x)] = μ(T (λ)).

Theorem 2.2. [JJ21] Assuming sub-exponential hardness of DDH against
polynomial-time attackers, there exists a constant ε > 0 and a T -correlation
intractable hash family for TC0, for T = T (λ) = 2λε

.

SNARGs and PPAD Hardness from the DDH Assumption 483

2.4 Lossy CI Hash Functions

In this section we recall the notion of a lossy CI hash family, originally defined
in [JKKZ21].

Definition 2.5 ((T, T ′, ω)-Lossy CI). A hash family

H = (H.Gen,H.LossyGen,H.Hash)

is said to be (T, T ′, ω)-lossy CI for a function family F if the following holds:

– (H.Gen,H.Hash) is a T -CI hash family for F (Definition 2.4).
– The additional key generation algorithm H.LossyGen takes as input a security

parameter λ and outputs hash key k, such that the following two properties
hold:

• T ′-Key Indistinguishability. For every poly(T ′)-size adversary A,
there exists a negligible function μ such that for every λ ∈ N

∣
∣
∣
∣ Pr
k←H.LossyGen(1λ)

[A(k) = 1] − Pr
k←H.Gen(1λ)

[A(k) = 1]
∣
∣
∣
∣ = μ(T ′(λ)).

• ω-Lossiness. For every λ ∈ N and every k ∈ H.LossyGen(1λ), denoting
by n = n(λ) the length of elements in the domain of H.Hash(k, ·),

|{H.Hash(k, x)}x∈{0,1}n(λ) | ≤ 2n(λ)−ω(λ).

Theorem 2.3. There exists a (T, T ′, ω)-lossy CI hash family for F = {Fλ}λ∈N

(Definition 2.4) assuming the existence of the following primitives:

– A (T ′, ω)-lossy trapdoor function family G (Definition 2.2), such that for every
λ ∈ N, f ∈ Fλ, and k ∈ G.Gen(1λ), the domain of G.Eval(k, ·) is equal to the
domain of f .

– A T -CI hash family H (Definition 2.4) for the function family F ′, where
the family F ′ = {F ′

λ}λ∈N is defined as follows: for each λ ∈ N, f ′ ∈ F ′
λ if

and only if there exists f ∈ Fλ, and (k, td) ∈ G.Gen(1λ) such that f ′
λ(·) =

fλ(G.Inv(k, td, ·)). In fact, this holds even when G.Inv(k, td, ·) is replaced by
the online phase of an offline/online (with respect to td) algorithm for G.Inv.

2.5 SNARGs for Bounded Depth Computations

In this section we recall the main theorem from [JKKZ21], which claims that (a
variant of) the GKR protocol has a standard model Fiat-Shamir instantiation.
The GKR protocol considered in [JKKZ21], as well as the one considered in this
work, is slightly different from the original protocol proposed in [GKR08], and
we elaborate on this protocol in Sect. 5.2. In what follows, when we refer to the
GKR protocol we refer to the protocol from [JKKZ21].

The GKR protocol is a publicly verifiable interactive proof for proving the
correctness of log-space uniform bounded depth computations. Let C be a log-
space uniform circuit of depth d and size s. The GKR protocol for proving that

484 Y. T. Kalai et al.

C(x) = 1 for a given input x ∈ {0, 1}n, consists of d = d(n) sub-protocols. Each
sub-protocol is a sum-check protocol with log s variables over a finite field F of
size poly(|C|). In [GKR08] and [JKKZ21] the finite field F is taken to be an
extension of GF[2]. In this work we take a particular field of size 2λ, for which
computing roots of a degree-3 univariate polynomial can be done in TC0. See
Sect. 3 for details.

In what follows, for any field ensemble F = {Fn}n∈N and any c = cn ∈ N

we let GKRF,c denote an instantiation of the GKR protocol with the field F and
where the degree of each variable in the underlying sum-check protocols inside
the GKR protocol is bounded by c. We let F = FF,c be the function family where
each f ∈ F has a degree c univariate polynomial p : F → F hardwired into it. It
takes as input a degree c polynomial p′ specified by c + 1 elements in F, and it
outputs a root of p − p′ (which is an element in F).

Theorem 2.4. [JKKZ21] Fix any field ensemble F = {Fn}n∈N and any c = cn ∈
N. Let � denote the number of rounds in each sum-check protocol in GKRF,c. Fix
any T ′(λ) ≥ λ. Assume there exists a constant ε > 0 for which there exists a
(T, T ′, ω)-lossy CI hash family for the function family FF,c, with T (λ) = 2�·λε

and ω(λ) = n(λ)− λε. Then there exists a hash family H such that applying the
Fiat-Shamir heuristic to the GKRF,c protocol with the hash family H results with
a T ′-sound SNARG scheme.

In Sect. 5 we show that any log-space uniform computation has a GKRF,c

protocol with F being any finite field ensemble of size |F| = 2λ and with c = 3.
Moreover, in Sect. 3 we show that computing a root of a degree 3 univariate
polynomial over a specific finite field ensemble F (constructed by Healy and Viola
[HV06]) can be done in TC0. This, together with Theorem 2.4 and Theorems
2.1 and 2.2, yields our SNARG construction (Theorem 5.1).

3 Root-Finding in TC0

In this section, we recall the finite field ensemble constructed by Healy and
Viola [HV06], who show that their fields admit TC0 circuits for many basic finite
field operations (addition, pairwise multiplication, large fan-in multiplication,
and exponentiation). We construct explicit degree-2 extensions of all finite fields
in this ensemble and prove that the same basic operations in the field extensions
have TC0 circuits. Finally, we show that there are TC0 circuits finding all roots
of a given quadratic or cubic equation in the original field ensemble of [HV06].

The results of this section will be used in later subsections to instantiate
the Fiat-Shamir transform and show PPAD-hardness (Sect. 4) and delegation
for bounded-depth computations (Sect. 5).

3.1 Basic Finite Field Operations

Following [HV06], we define the field ensemble {Kn}n=2·3� as follows.

SNARGs and PPAD Hardness from the DDH Assumption 485

Definition 3.1 (Healy-Viola Fields). The Healy-Viola (HV) field Kn, which
is an extension of F2 of degree n = 2 · 3�, is defined to be the polynomial ring
F2[x]/(x2·3�

+ x3�

+ 1).

Theorem 3.1 (Healy-Viola [HV06]). The field ensemble {Kn} admits a
polynomial-size10 TC0 circuit family for the following operations:

– Addition: (α1, . . . , αt) �→ ∑t
i=1 αi over K.

– (Large fan-in) Multiplication: (α1, . . . , αt) �→ ∏t
i=1 αi over K.

– Exponentiation: (α, T) �→ αT over K. The TC0 circuit size is poly(n, log T).

In this work, we need to extend Theorem 3.1 to hold over not just K but a
degree-2 extension L/K.

Definition 3.2 (Degree-2 field extension of HV fields). The degree-2 field
extension {Ln}n=2·3� of Kn is defined to be the polynomial ring L = K[y]/(y2 +
y + ω), where ω = x3� ∈ K.

We first show that the polynomial y2+y+ω is irreducible over K (so that L is
in fact a field), which follows by the following standard algebraic argument. Since
the polynomial has degree 2, it suffices to show that all the roots of y2 + y + ω
in a fixed algebraic closure K = F2 are not in K. We do so by arguing that,
on the one hand, any root of y2 + y + ω in the algebraic closure K has degree
exactly 4 over F2,11 and on the other hand, K does not contain any degree-4 field
elements. The latter follows from the fact that deg(K) = 2 · 3� is not divisible by
4, so it does not contain a subfield of degree 4 over F2.12

It remains to argue that any root of y2 + y + ω in the algebraic closure K

has degree exactly 4 over F2. This holds by the following analysis: we know that
ω2 + ω + 1 = 0 over K (but ω ∈ F2), so F2[ω] has degree 2 over F2. Moreover,
y2+ y+ω is irreducible over F2[ω] � F4. Thus, any root of y2+ y+ω lies in F16

(realized as a degree 2 extension of F2[ω]) but not F4.
Having established that L is well-defined, we proceed to generalize

Theorem 3.1.

Theorem 3.2. The field ensemble {Ln} admits a polynomial-size TC0 circuit
family for the following operations:

– Addition: (α1, . . . , αt) �→ ∑t
i=1 αi over L.

– (Large fan-in) Multiplication: (α1, . . . , αt) �→ ∏t
i=1 αi over L.

– Exponentiation: (α, T) �→ αT over L. The TC0 circuit size is poly(n, log T).

Theorem 3.2 follows by a very similar approach as the proof of Theorem 3.1,
making use of some additional properties of L.
10 As usual, the circuit size will be polynomial in the description length of its input,

which will be at least n as a single field element is an n-bit string.
11 An element α in a field extension K of F2 is said to have degree d if d is the minimal

degree of a nonzero polynomial p over F2 such that p(α) = 0 (over K).
12

Fpd is a subfield of Fpn if and only if d | n.

486 Y. T. Kalai et al.

Proof. Note that α ∈ L is given as an explicit bivariate polynomial α0(x) +
α1(x)y for α0(x), α1(x) ∈ K. An AC0[⊕] ⊆ TC0 circuit family for addition then
follows immediately by component-wise addition. Additionally, note that since
(
α0(x) + α1(x)y

)(
β0(x) + β0(x)y

)

= α0(x)β0(x) +
(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)y2

= α0(x)β0(x) +
(
α1(x)β0(x) + α0(x)β1(x)

)
y + α1(x)β1(x)(y + ω)

=
(
α0(x)β0(x) + α1(x)β1(x)ω

)
+

(
α1(x)β0(x) + α0(x)β1(x) + α1(x)β1(x)

)
y,

an AC0[⊕] ⊆ TC0 circuit for pairwise multiplication over L follows from the
analogous circuits over K.

Next, we consider large fan-in multiplication. Suppose we are given t field
elements α(1), . . . , α(t) ∈ Ln and we want to compute

∏
α(i) ∈ Ln. To do this,

we view each α(i) as a bivariate polynomial over Z, and compute (in TC0) the
bivariate polynomial representation of

∏
α(i). [HAB02] argues that the analogous

product for univariate polynomials can be done in (uniform) TC0, but we can
see the same holds for our bivariate polynomials via the following reduction:

– Given a bivariate polynomial α(i)(x, y), define the polynomial β(i)(z) =
α(i)(z, zn·t); the coefficients of β(i) can be computed with a TC0 circuit.

– Compute the polynomial
∏

β(i) ∈ Z[z] by invoking [HAB02].
– Map the coefficients of

∏
β(i) to the coefficients of

∏
α(i)(x, y) via the cor-

respondence zk �→ xk (mod nt) · y�k/nt�; this map can also be computed in
TC0.

Finally, we must reduce this bivariate polynomial
∏

α(i)(x, y) modulo (x2·3�

+
x3�

+ 1, y2 + y + x3�

); this can be done via the following process:

– Reduce each y exponent modulo 15 (since y15 ≡ 1, as y ∈ L is in a degree 4
extension of F2),

– Reduce each (constant) power of y modulo (y2 + y + x3�

, x2·3�

+ x3�

+ 1),
– Group terms by power of y (either y0 or y1), and
– Reduce each yj coefficient modulo x2·3�

+ x3�

+ 1.

This completes the proof that large fan-in multiplication over L is in TC0.
Finally, we consider exponentiation (α, T) �→ αT ∈ L. T is given as input

in binary; by invoking a large fan-in multiplication solver, we can reduce to the
case where T = 2i is a power of 2. Now, note that in L, we have

α(x, y)2
i

= α
(
x2i

, y2i
)
= α

(
x2i

, y +
i−1∑

j=0

ω2j
)
,

where the first equality follows from the fact that our field has characteristic 2,
and the second equality uses the defining equation y2+y+ω = 0. The field ele-
ment g(ω) =

∑i−1
j=0 ω2j ∈ K can be computed in AC0[⊕] (e.g. invoking [HV06]),

SNARGs and PPAD Hardness from the DDH Assumption 487

and α(·, ·) is linear in its second argument, so we can compute α2i ∈ L by com-
puting each expression x2i·k for k ≤ n, which by [HV06] can be done in AC0[⊕],
and invoking pairwise field element multiplication and large fan-in addition cir-
cuits.

3.2 Finding Roots of K-quadratics in L

In this section, we give a TC0 circuit family for solving the following computa-
tional problem:

Definition 3.3 ((K,L) Quadratic Root Finding). Given a quadratic poly-
nomial az2 + bz + c ∈ K[z], find all zeroes of this polynomial in L.

Theorem 3.3. (K,L) quadratic root finding admits a TC0 circuit family.

Proof. We break into cases.

– If a = 0, then this amounts to computing b−1 ∈ K, which can be done because
b−1 = b2

n−2 and exponentiation is in TC0 (Theorem 3.1).
– If a = 0 and b = 0, then this amounts to inverting a and computing a square

root in K, which can be done because
√

α = α2n−1
for α ∈ K.

– If a = 0 and b = 0, then (by invoking standard field operations) this reduces
to the case where a = 1 and b = 1, as

az2 + bz + c = 0 ⇐⇒ (a/b · z)2 + (a/b · z) + a/b2 · c = 0.

Thus, for the rest of the proof, we assume that a = 1 and b = 1. Moreover, it
suffices to find a single solution z∗ in L, as the other solution will be z∗+1 (since
L has characteristic 2).

Given z2+z+c = 0, since n = 2·3� is 2 mod 4, solving the equation turns out
(via standard theory of finite fields, see e.g. [BSS99] Chapter II) to be related to
the F4-trace map

TrK/F4(α) =
n/2−1∑

i=0

α22i

as follows. First, we note that for any α ∈ K, TrK/F4(α) ∈ F2[ω], as TrK/F4(α) is
invariant under the map z �→ z2

i

for all even i. Additionally, the formula above
is computable via a TC0 (in fact, AC0[⊕]) circuit family.

Next, we give a TC0 (in fact, AC0[⊕]) circuit that on input α ∈ K, outputs
β ∈ K such that β2 + β = α + TrK/F4(α). The circuit simply computes the
expression

β =
∑

0≤i≤n/2−1
i odd

α22i

+ α22i+1
.

Observe that

β2 + β =
∑

0≤i≤n/2−1
i odd

α22i

+ α22i+2
= α +TrK/F4(α),

488 Y. T. Kalai et al.

where the last equation uses the fact that n/2 − 1 is even.
Finally, in order to solve the equation z2 + z + α = 0, given that we can

compute β above, it suffices by additivity to be able to solve the equation z2 +
z + c = 0 for c = TrK/F4(α) ∈ F2[ω]. But this can be done by lookup table: for
c = 0 a solution is 0, for c = 1 a solution is ω, for c = ω a solution is y, and for
c = 1 + ω a solution is ω + y. This completes the proof of Theorem 3.3.

3.3 Finding Roots of Cubics in K

In this section, we give a TC0 circuit family for solving the following computa-
tional problem:

Definition 3.4 ((K,K) Cubic Root Finding). Given a cubic polynomial
az3 + bz2 + cz + d ∈ K[z], find all zeroes of this polynomial that lie in K.

Theorem 3.4. (K,K)-cubic root finding admits a TC0 circuit family.

Proof. If a = 0, then by Theorem 3.3, we know that (K,L)-quadratic root finding
can be solved in TC0, and it is easy to check membership in K (on an input
α ∈ L), so this suffices to solve (K,K)-quadratic root finding as well.

Thus, we now assume that a = 1. Note that we only want to find all roots
in K, so we may assume without loss of generality that there is at least one
root in K (or else the problem is vacuous). Under this promise, it follows that
all three roots will lie in L (since the polynomial factors into linear and quadratic
terms over K). Our algorithm will find all three of these roots (and then check
membership in K).

We find these roots by invoking (a special case of) a standard characteristic
2 variant of the cubic formula (following e.g. [Lag70]). Namely, letting α0, α1, α2

denote the three roots in L, we will find α0, α1, α2 by first solving a related
quadratic equation with coefficients in K, then taking cube roots (in L), and
then solving a linear system over L.

By Vieta’s identities, we know that α̂0 := α0 + α1 + α2 = b. Letting ω =
x3� ∈ K so that ω3 = 1, we will eventually also compute the linear combinations

α̂1 = α0 + ωα1 + ω2α2,

α̂2 = α0 + ω2α1 + ωα2

The map (α0, α1, α2) �→ (α̂0, α̂1, α̂2) is always (efficiently) invertible over L, so
it suffices to compute α̂1, α̂2. This is sometimes referred to as the “Lagrange
resolvent method.”

The field elements α̂1 and α̂2 have been carefully chosen to satisfy useful
symmetries when α0, α1, α2 are permuted as formal variables:

– Under the cyclic permutation (α0, α1, α2) �→ (αi, αi+1, αi+2), we have that
α̂1 �→ ωiα̂1 and α̂2 �→ ω2iα̂2.

– Under the swap permutation αi ↔ αj , we have that α̂1 �→ ωi+jα̂2 and α̂2 �→
ω2i+2jα̂1.

SNARGs and PPAD Hardness from the DDH Assumption 489

The symmetries simplify even further if you consider α̂3
1 and α̂3

2 (since ω3 = 1):
under cyclic permutation, these expressions are invariant, while under a swap
permutation, they swap!

Thus, α̂3
1+α̂3

2 and α̂3
1α̂

3
2 are symmetric under all permutations of (α0, α1, α2).

The theory of symmetric polynomials therefore tells us that α̂3
1 + α̂3

2 and α̂3
1α̂

3
2

can be expressed in terms of the elementary symmetric polynomials in α0, α1, α2,
which in our case evaluate to none other than b, c, and d by Vieta’s identities.
Indeed, one can explicitly check that

(α̂1α̂2)3 = (b2 + c)3

and
α̂3
1 + α̂3

2 = bc + d,

and thus (α̂3
1, α̂

3
2) are solutions to the quadratic equation

z2 + (bc + d)z + (b2 + c)3 = 0.

By Theorem 3.3, we can hence compute α̂3
1, α̂

3
2 ∈ L with a TC0 circuit. Finally,

since α̂1, α̂2 ∈ L, we can find three candidate values for each of α̂1, α̂2, by
computing cube roots over L; this leads to nine possible root sets for our original
problem, which can then be individually checked to find the correct roots.

Thus, we have reduced the problem to computing cube roots over L. For
this problem, we use a special case of the Adleman-Manders-Miller algorithm
[AMM77]. Specifically, we note that |L| − 1 = 24·3� − 1 is congruent to 3�+1

modulo 3�+2. Then, invoking exponentiation13 in L, on any input α ∈ L we can
compute

β = α
|L|−1−3�+1

3�+2 ∈ L.

Note that
β3�+2

= α3�+1
,

and thus β3/α is a 3�+1th root of unity, the set of which is precisely S =
{1, x, x2, . . . , x3�+1−1}. We can then enumerate (in parallel) over this ≤ n-size
set to determine (the x-exponent of) β3/α and thus compute a cube root of α
provided that a cube root of β3/α exists (necessarily within S).

Putting everything together, we obtain the desired TC0 circuit family for
(K,K)-cubic root finding.

4 PPAD-Hardness from Subexponential DDH

In this section, we prove Theorem 1.2, that PPAD is hard under the sub-
exponential DDH assumption. We do this by instantiating the Fiat-Shamir
heuristic for the sumcheck protocol executed on polynomials of individual degree

13 The (large) exponent can also be computed in TC0 [HAB02], or can be nonuniformly
hard-wired for simplicity.

490 Y. T. Kalai et al.

2 over the Healy-Viola field ensemble. We prove that Fiat-Shamir for this proto-
col is sound under DDH by using a lossy CI hash family for TC0 (Theorem 2.3)
and appealing to TC0 algorithms for quadratic root finding (Theorem 3.3).

Definition 4.1 (⊕3SAT). A 3CNF formula φ is in the language ⊕3SAT if the
number of satisfying assignments to φ is odd.

Fact 1 ([VV85]). If NP is hard (on average) for PPT algorithms, then ⊕3SAT
is hard (on average) for PPT algorithms.

In particular, if one-way functions exist, then ⊕3SAT is hard on average.

Definition 4.2 (Sumcheck Language). An instance of the sumcheck lan-
guage consists of an arithmetic circuit f over some field F, along with a target
value y. The pair (f, y) is a YES-instance if

∑

x∈{0,1}n

f(x1, . . . , xn) = y.

In this work, we observe that if ⊕3SAT is hard on average, then there is a
hard sumcheck problem over F2 where the individual degree of f is at most two.

Lemma 4.1. If ⊕3SAT is hard-on-average, then sumcheck over F2 is hard-on-
average with respect to a distribution of (f, y) such that the individual degree of
f is at most two.

Proof. We describe a one-to-one reduction mapping ⊕3SAT formulas φ to sum-
check polynomials f , so that deciding whether φ ∈ ⊕3SAT maps to checking
whether (f, 1) is a valid sumcheck instance.

Suppose that φ is an n-variable, m-clause 3CNF:

φ(x1, . . . , xn) =
m∧

j=1

φj(xj1 , xj2 , xj3)

where each φj is an OR of three variables (xj1 , xj2 , xj3) with some negation
pattern (contained in the description of φj). Then, consider the following formula
in 3m variables:

f(z = (zj,k)j∈[m],k∈{1,2,3})

=
m∏

j=1

φj(zj,1, zj,2, zj,3)
n∏

i=1

⎛

⎝
∏

j,k:jk=i

zj,k +
∏

j,k:jk=i

(1 − zj,k)

⎞

⎠ ,

where φj can be interpreted as a multilinear polynomial in three variables over
F2. We observe that:

– f has individual degree at most 2. This is because the two products are
individually multilinear.

SNARGs and PPAD Hardness from the DDH Assumption 491

– For z ∈ {0, 1}3m, f(z) = 1 if and only if for some x ∈ {0, 1}n, φ(x) = 1 and
zj,k = xjk

for all (j, k). Otherwise, f(z) = 0.

Thus, we see that
∑

x∈{0,1}n

φ(x1, . . . , xn) =
∑

y∈{0,1}3m

f(y) (mod 2).

This completes the reduction.

To conclude that PPAD is hard-on-average, we combine Lemma 4.1 with the
unambiguous non-interactive argument system for sumcheck from [JKKZ21].
[JKKZ21] implies the following result:

Theorem 4.1 ([JKKZ21], translated). Let K be a field (ensemble) of size 2λ.
Then, there exists an updatable, unambiguous non-interactive argument system
for SumcheckK for individual degree d polynomials assuming the existence of
a hash family H that is lossy CI (Definition 2.5) for a class of functions that
enumerate over all roots of a given univariate degree d polynomial over K.

By Theorem 2.2, Theorem 2.3, and Theorem 2.1, we know that there exists
a lossy CI hash family for TC0 circuits under sub-exponential DDH. Moreover,
letting {Kλ} denote the field ensemble defined in Definition 3.1, we showed
that roots of degree 2 polynomials over K can be enumerated in TC0. Thus,
by Theorem 4.1, we conclude that the claimed argument system exists under
sub-exponential DDH.

Finally, it is known that an argument system satisfying the conditions of The-
orem 4.1 (along with the hardness of the underlying sumcheck problem) implies
the hardness of PPAD [CHK+19a], so this completes the proof of Theorem 1.2.

5 Delegation for Bounded Depth Computations
from Subexponential DDH

In this section, we apply and extend our techniques to prove our main theorem
on SNARGs for bounded-depth computation.

Theorem 5.1. Assuming the sub-exponential hardness of the DDH assumption,
there exists a SNARG for any logspace uniform depth d and size s computation,
where the size of the SNARG and the crs is bounded by d · poly(λ, log s) and the
verification time is (n + d) · poly(λ, log s), where n is the length of the input.

Our SNARG is obtained by applying the Fiat-Shamir heuristic to a variant of
the GKR protocol, considered in [KPY18,JKKZ21] (building on a simplification
of the original GKR protocol due to [Gol18]).

492 Y. T. Kalai et al.

5.1 Variable-Extended Formulations for Boolean Functions

In this section we show how to reduce the degree of any boolean formula down to
individual degree at most 2, by adding auxiliary variables. Loosely speaking, this
is done by adding a variable corresponding to each wire in the original formula,
and computing the original formula by making a series of consistency checks.

Definition 5.1. Let f(x1, . . . , xm) be a boolean function on m variables. We say
that g(x1, . . . , xm, z1, . . . , zt) is a variable-extended formulation of f if for every
x ∈ {0, 1}m, there exists a unique z(x) ∈ {0, 1}t such that g(x, z(x)) = f(x),
and g(x, z) = 0 for all z = z(x).

Lemma 5.1. Let f(x1, . . . , xm) be a NAND-boolean formula of size s. Then,
there exists a variable-extended formulation g of f such that (1) t = s, and (2)
g can be computed by a F2-arithmetic circuit of size O(s) that defines a (formal)
polynomial of individual degree at most 2.

Also, the above arithmetic circuit can be constructed in time poly(s) given
the description of f .

Proof. We use a similar strategy as in Lemma 4.1. That is, we introduce s new
variables z1, . . . , zs, one for each wire of the formula computing f . We then define

g(x, z) = zs

s∏

i=1

gi(z)
m∏

j=1

g′
j(x, z),

where for every gate (i, j, k) we have gi(z) = zi + zjzk and for every input index
j we have g′

j(x, z) = xj

∏
i∈Sj

zi + (1 − xj)
∏

i∈Sj
(1 − zi), where Sj denotes the

set of leaf indices corresponding to xj . Note that g(x, z) has individual degree
2, since (1) zs appears only twice, (2) each intermediate (non-output, non-leaf)
variable only appears twice because they have fan-in 1 and fan-out 1, and (3)
the variables {xj , zi}j∈[m],i∈Sj

have degree at most 2 (they occur at most once
in the first product, while the second product is multilinear).

5.2 A GKR Protocol with Degree 3 Sumcheck Polynomials

In this section, we construct a special variant of the GKR interactive proof sys-
tem for logspace-uniform depth-d computation. Our starting point is the GKR
protocol variant described in [KPY18,JKKZ21], which makes use of observations
from [Mei13,Gol18] to simplify the protocol. In [JKKZ21], it was shown that the
Fiat-Shamir heuristic can be instantiated for this protocol using a hash function
that is “lossy correlation-intractable” for circuits that (modulo basic field oper-
ations) compute roots of univarite polynomials of polylogarithmic degree. They
then show how to construct such a lossy correlation-intractable hash functions
from the sub-exponential LWE assumption.

By using an appropriate variable-extended formulation (Lemma 5.1), we will
modify the protocol so that every sumcheck sub-protocol uses a polynomial
of individual degree at most 3. Finally, working over the field ensemble from
Definition 3.1 and using the correlation-intractable hash family of [JJ21] (and
lossy trapdoor functions from DDH [PW08]), we will deduce Theorem 5.1.

SNARGs and PPAD Hardness from the DDH Assumption 493

The Protocol. Let C = {Cn}n denote a family of logspace-uniform circuits of
depth d and width w. We assume without loss of generality that C has fan-in
2 and consists of addition (mod 2) and multiplication (mod 2) gates. The key
objects of interest are the gate-indicator functions χ

(i)
add, χ

(i)
mult for each layer (i)

of the circuit. χ
(i)
add and χ

(i)
mult take as input three strings (a, b, c) ∈ {0, 1}log w

and output whether (a, b, c) is an addition (respectively, multiplication) gate in
C.

The protocol is typically defined with respect to particular low-degree exten-
sions χ̃

(i)
add, χ̃

(i)
mult of χadd, χmult. For our variant, we make use of the following

fact shown implicitly in [Gol18]:

Fact 2. Let C ′ be any family of logspace-uniform circuits of depth d and size s.
Then, there exists a family C of logspace-uniform circuits of depth d · poly log(s)
and size poly(s) such that:

– C computes the same function as C ′, and
– For all i, χ

(i)
add, χ

(i)
mult (for C) are computable by boolean formulas of size

O(logw) (i.e., the size is linear in the χadd, χmult input length). These for-
mulas can be constructed (by a uniform Turing machine) in time poly(log s).

[Gol18] only explicitly claims that the formulas have size poly log s, but the
construction in [Gol18] Sect. 3.4.2 actually (specializing to H = {0, 1}) implies
Fact 2.

Thus, we assume without loss of generality that C satisfies the conclusion of
Fact 2. Invoking Lemma 5.1, we conclude that χ

(i)
add, χ

(i)
mult have variable-extended

formulations ψ
(i)
add, ψ

(i)
mult : {0, 1}3 log w+O(log s) → {0, 1} that are computable by

F2-arithmetic circuits of size O(log s) that define polynomials of individual degree
at most 2. We let ψ̃

(i)
add, ψ̃

(i)
mult denote the corresponding individual degree 2 poly-

nomials.
We are finally ready to describe the protocol, which will use arithmetic over

an extension K of F2. Our instantiation will use the field ensemble from Defini-
tion 3.1.

– The prover and verifier, given the logspace-uniform Turing machine that con-
structs C, both compute arithmetic circuit descriptions of each ψ̃

(i)
add, ψ̃

(i)
mult.

– The prover, given the input x and circuit C, computes the following quantities:
• For every layer i of the circuit, compute the string Li = Li(C, x) ∈ {0, 1}w

consisting of all wire values in the evaluation C(x) in the ith layer of C.
• For each such i, define the function �i : {0, 1}log w → {0, 1} such that

�i(a) = (Li)a, where a is interpreted as an integer between 0 and w − 1.
Implicitly, this defines a multi-linear extension �̂i : K log w → K of �i.

– The prover and verifier recursively agree on a pair of claims of the form
“ �̂i(u1) = v1,” “ �̂i(u2) = v2” for u1, u2 ∈ K log w and v1, v2 ∈ K. They do so as
follows:

• The base case is i = d, the top (output) layer of C; the claims are (both)
that �̂d(0log w) = y (where allegedly C(x) = y).

494 Y. T. Kalai et al.

• Inductively, suppose that we have two claims “ �̂i(u1) = v1,” “ �̂i(u2) = v2”
about layer i. The recursion uses the fact that

�̂i(u) =
∑

a∈{0,1}log w

ÊQ(u, a)�i(a),

which can be written as
∑

a,b,c

ÊQ(u, a)
(
χ
(i)
add(a, b, c) · (�i−1(b)+ �i−1(c))+χ

(i)
mult(a, b, c)�i−1(b) · �i−1(c)

)
,

which is equal to
∑

a,b,c

z∈{0,1}t

ÊQ(u, a)
(
ψ
(i)
add(a, b, c, z) · (�i−1(b) + �i−1(c)) + ψ

(i)
mult(a, b, c, z)�i−1(b) · �i−1(c)

)
,

where ÊQ(u, a) :=
∏

j(1 + uj + aj).
• The prover and verifier then run two simultaneous sumcheck protocols

using the polynomials gu1 , gu2 , where

gu(a, b, c, z) = ÊQ(u, a)·
(
ψ̃
(i)
add(a, b, c, z) · (�̂i−1(b) + �̂i−1(c)) + ψ̃

(i)
mult(a, b, c, z)�̂i−1(b) · �̂i−1(c)

)

and the claimed outputs v1, v2. Importantly, the same verifier randomness
is used for these two sumcheck protocols.

• At the end of the interactive phase of this protocol, the verifier has a
tuple of field elements β ∈ K3 log w+O(log s) and outputs γ1, γ2 such that
(allegedly) gu1(β) = γ1 and gu2(β) = γ2. Let u′

1, u
′
2 denote the part of β

corresponding to b and c.
• Finally, the prover sends v′

1 = �̂i1(u
′
1), v

′
2 = �̂i−1(u′

2) to the verifier. Since
ÊQ, ψ̃

(i)
add, ψ̃

(i)
mult are all computable in time poly(log s), the verifier can

check that v′
1 and v′

2 are consistent with the claims output by the sum-
check protocol. This completes the recursive step, which has produced
two new claims (u′

1, v
′
1), (u

′
2, v

′
2).

– After this recursive process, the verifier has obtained two final claims
“ �̂0(u1) = v1,” “ �̂0(u2) = v2” about the multilinear extension �̂0. Since �̂0
is nothing more than the multilinear extension of the input x (thought of as a
function mapping {0, 1}log n → {0, 1}), the verifier can check these two claims
(given x) using O(n) field operations.

Crucially, ψ̃add and ψ̃mult have individual degree 2, which implies that
every polynomial gu has individual degree at most 3. This is because
ÊQ(u, a)(�̂i−1(b) + �̂i−1(c)) and ÊQ(u, a)(�̂i−1(b)�̂i−1(c)) are both multilinear
polynomials.

This completes our description of our variant of the [GKR08] protocol. By
combining Theorems 2.1, 2.2 and 2.4, the fact that this [GKR08] variant runs
(pairs of) degree 3 sumchecks, and Theorem 3.4, we conclude Theorem 5.1.

SNARGs and PPAD Hardness from the DDH Assumption 495

Acknowledgements. VV was supported in part by DARPA under Agreement No.
HR00112020023, NSF CNS-2154174, and a Thornton Family Faculty Research Innova-
tion Fellowship from MIT. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA. This research was conducted in
part while AL was at MIT, where he was supported by a Charles M. Vest fellowship
and the grants above.

References

[AMM77] Adleman, L., Manders, K., Miller, G.: On taking roots in finite fields. In:
18th Annual Symposium on Foundations of Computer Science (SFCS 1977),
pp. 175–178. IEEE Computer Society (1977)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd
FOCS, pp. 106–115. IEEE Computer Society Press, October 2001

[BBH+19] Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On
the (in)security of Kilian-based SNARGs. In: Hofheinz, D., Rosen, A. (eds.)
TCC 2019, Part II. LNCS, vol. 11892, pp. 522–551. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-36033-7_20

[BCH+22] Bitansky, N., et al.: PPAD is as hard as iterated squaring and LWE. In:
TCC 2022 (2022). https://eprint.iacr.org/2022/1272

[Ber70] Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Com-
put. 24(111), 713–735 (1970)

[BKM20] Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 738–
767. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-56877-
1_26

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of find-
ing a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS, pp. 1480–1498.
IEEE Computer Society Press, October 2015

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

[BSS99] Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography, vol. 265.
Cambridge University Press, Cambridge (1999)

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M.,
Cohen, E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June 2019

[CCR16] Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfus-
cated pseudorandom functions. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A, Part I. LNCS, vol. 9562, pp. 389–415. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9_17

[CCRR18] Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4

[CDT09] Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-
player Nash equilibria. J. ACM (JACM) 56(3), 1–57 (2009)

https://doi.org/10.1007/978-3-030-36033-7_20
https://eprint.iacr.org/2022/1272
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1007/978-3-319-78381-9_4

496 Y. T. Kalai et al.

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revis-
ited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press,
May 1998

[CHK+19a] Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Roth-
blum, G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-
Shamir. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1103–1114.
ACM Press, June 2019

[CHK+19b] Choudhuri, A.R., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A.,
Rothblum, G.N.: PPAD-hardness via iterated squaring modulo a compos-
ite. Cryptology ePrint Archive, Report 2019/667 (2019). https://eprint.iacr.
org/2019/667

[CJJ21] Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP
from standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84259-8_14

[CJJ22] Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pp.
68–79. IEEE (2022)

[CZ81] Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials
over finite fields. Math. Comput. 36, 587–592 (1981)

[DGP09] Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of
computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

[EFKP20] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable
delay functions. In: Canteaut, A., Ishai, Y. (eds.) Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, vol.
12107, pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3_5

[FGK+10] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More con-
structions of lossy and correlation-secure trapdoor functions. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–
295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7_17

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7_12

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, Octo-
ber 2003

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: inter-
active proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM
STOC, pp. 113–122. ACM Press, May 2008

[Gol18] Goldreich, O.: On doubly-efficient interactive proof systems. Found.
Trends R© Theor. Comput. Sci. 13(3), 158–246 (2018)

[GPS16] Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness
of finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53008-5_20

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press, June 2011

https://eprint.iacr.org/2019/667
https://eprint.iacr.org/2019/667
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20

SNARGs and PPAD Hardness from the DDH Assumption 497

[GZ21] González, A., Zacharakis, A.: Fully-succinct publicly verifiable delegation
from constant-size assumptions. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13042, pp. 529–557. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90459-3_18

[HAB02] Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst.
Sci. 65(4), 695–716 (2002)

[HJKS22] Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from
sub-exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 520–549. Springer, Hei-
delberg (2022). https://doi.org/10.1007/978-3-031-07085-3_18

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In: Tho-
rup, M. (ed.) 59th FOCS, pp. 850–858. IEEE Computer Society Press, Octo-
ber 2018

[HLR21] Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-Shamir via list-
recoverable codes (or: parallel repetition of GMW is not zero-knowledge).
In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 750–760 (2021)

[HV06] Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields
of characteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006.
LNCS, vol. 3884, pp. 672–683. Springer, Heidelberg (2006). https://doi.org/
10.1007/11672142_55

[JJ21] Jain, A., Jin, Z.: Non-interactive zero knowledge from sub-exponential DDH.
In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS,
vol. 12696, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-77870-5_1

[JKKZ21] Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded
depth computations and ppad hardness from sub-exponential LWE. In: Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 708–721 (2021)

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 60–73 (2021)

[KLVW23] Kalai, Y.T., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch
arguments and ram delegation. In: STOC (2023). https://eprint.iacr.org/
2022/1320

[KPY18] Kalai, Y.T., Paneth, O., Yang, L.: On publicly verifiable delegation from
standard assumptions. Cryptology ePrint Archive, Report 2018/776 (2018).
https://eprint.iacr.org/2018/776

[KPY19] Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly.
In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1115–1124. ACM
Press, June 2019

[KPY20] Kalai, Y.T., Paneth, O., Yang, L.: Delegation with updatable unambigu-
ous proofs and PPAD-hardness. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 652–673. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1_23

[KRR17] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the
security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0_8

https://doi.org/10.1007/978-3-030-90459-3_18
https://doi.org/10.1007/978-3-030-90459-3_18
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-030-77870-5_1
https://eprint.iacr.org/2022/1320
https://eprint.iacr.org/2022/1320
https://eprint.iacr.org/2018/776
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-319-63715-0_8

498 Y. T. Kalai et al.

[KVZ21] Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical sound-
ness, post-quantum security, and SNARGs. In: Nissim, K., Waters, B. (eds.)
TCC 2021, Part I. LNCS, vol. 13042, pp. 330–368. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90459-3_12

[Lag70] Lagrange, J.-L.: Reflexions sur la resolution algebrique des equations, nou-
veaux memoires de l’acade. Royale des sciences et belles-letteres, avec
l’histire pour la meme annee 1, 134–215 (1770)

[LFKN90] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for inter-
active proof systems. In: 31st FOCS, pp. 2–10. IEEE Computer Society
Press, October 1990

[LV20] Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 632–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_22

[Mei13] Meir, O.: IP = PSPACE using error-correcting codes. SIAM J. Comput.
42(1), 380–403 (2013)

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453.
IEEE Computer Society Press, November 1994

[Pap94] Papadimitriou, C.H.: On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

[PS19] Peikert, C., Shiehian, S.: Noninteractive Zero Knowledge for NP from (Plain)
Learning with Errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7_4

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:
Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press,
May 2008

[Rab80] Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2),
273–280 (1980)

[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive
proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th
ACM STOC, pp. 49–62. ACM Press, June 2016

[Tov84] Tovey, C.A.: A simplified np-complete satisfiability problem. Discrete Appl.
Math. 8(1), 85–89 (1984)

[VV85] Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions.
In: 17th ACM STOC, pp. 458–463. ACM Press, May 1985

[WW22] Waters, B., Wu, D.J.: Batch arguments for np and more from standard
bilinear group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in
Cryptology – CRYPTO 2022. CRYPTO 2022. LNCS, vol. 13508. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_15

https://doi.org/10.1007/978-3-030-90459-3_12
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-031-15979-4_15

HyperPlonk: Plonk with Linear-Time
Prover and High-Degree Custom Gates

Binyi Chen1(B), Benedikt Bünz1,2, Dan Boneh2, and Zhenfei Zhang1

1 Espresso Systems, Menlo Park, USA
binyi@espressosys.com

2 Stanford University, Stanford, USA

Abstract. Plonk is a widely used succinct non-interactive proof system
that uses univariate polynomial commitments. Plonk is quite flexible: it
supports circuits with low-degree “custom” gates as well as circuits with
lookup gates (a lookup gate ensures that its input is contained in a pre-
defined table). For large circuits, the bottleneck in generating a Plonk
proof is the need for computing a large FFT.

We present HyperPlonk, an adaptation of Plonk to the boolean hyper-
cube, using multilinear polynomial commitments. HyperPlonk retains
the flexibility of Plonk but provides several additional benefits. First,
it avoids the need for an FFT during proof generation. Second, and
more importantly, it supports custom gates of much higher degree than
Plonk without harming the running time of the prover. Both of these
can dramatically speed up the prover’s running time. Since HyperPlonk
relies on multilinear polynomial commitments, we revisit two elegant con-
structions: one from Orion and one from Virgo. We show how to reduce
the Orion opening proof size to less than 10KB (an almost factor 1000
improvement) and show how to make the Virgo FRI-based opening proof
simpler and shorter (This is an extended abstract. The full version is
available on EPRINT[22]).

1 Introduction

Proof systems [4,31] have a long and rich history in cryptography and complexity
theory. In recent years, the efficiency of proof systems has dramatically improved
and this has enabled a multitude of new real-world applications that were not
previously possible. In this paper, we focus on succinct non-interactive arguments
of knowledge, also called SNARKs [13]. Here, succinct refers to the fact that the
proof is short and verification time is fast, as explained below. Recent years have
seen tremendous progress in improving the efficiency of the prover [17,27,32,
43,48–50,55].

Let us briefly review what a (preprocessing) SNARK is. We give a precise def-
inition in the full version. Fix a finite field F, and consider the relation R(C,x,w)
that is true whenever x ∈ F

n, w ∈ F
m, and C(x,w) = 0, where C is the descrip-

tion of an arithmetic circuit over F that takes n+m inputs. A SNARK enables a
prover P to non-interactively and succinctly convince a verifier V that P knows
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 499–530, 2023.
https://doi.org/10.1007/978-3-031-30617-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_17

500 B. Chen et al.

a witness w ∈ F
m such that R(C,x,w) holds, for some public circuit C and

x ∈ F
n.

In more detail, a SNARK is a tuple of four algorithms (Setup, I,P,V), where
Setup(1λ) is a randomized algorithm that outputs parameters gp, and I(gp, C)
is a deterministic algorithm that pre-processes the circuit C and outputs prover
parameters pp and verifier parameters vp. The prover P(pp,x,w) is a randomized
algorithm that outputs a proof π, and the verifier V(vp,x, π) is a deterministic
algorithm that outputs 0 or 1. The SNARK must be complete, knowledge sound,
and succinct. Here succinct means that if C contains s gates, and x ∈ F

n, then
the size of the proof should be Oλ(log s) and the verifier’s running time should
be Õλ(n + log s). A SNARK is often set in the random oracle model where all
four algorithms can query the oracle. If the Setup algorithm is randomized, then
we say that the SNARK requires a trusted setup; otherwise, the SNARK is said
to be transparent because Setup only has access to public randomness via the
random oracle. Optionally, we might want the SNARK to be zero-knowledge, in
which case it is called a zkSNARK.

Modern SNARKs are constructed by compiling an information-theoretic
object called an Interactive Oracle Proof (IOP) [11] to a SNARK using a suitable
cryptographic commitment scheme. There are several examples of this paradigm.
Some SNARKs use a univariate polynomial commitment scheme to compile a
Polynomial-IOP to a SNARK. Examples include Marlin [24], and Plonk [27].
Other SNARKs use a multivariate linear (multilinear) commitment scheme to
compile a multilinear-IOP to a SNARK. Examples include Hyrax [48], Libra [49],
Spartan [43], Quarks [44], and Gemini [17]. Yet other SNARKs use a vector com-
mitment scheme (such as a Merkle tree) to compile a vector-IOP to a SNARK.
The STARK system [8] is the prime example in this category, but other examples
include Aurora [10], Virgo [55], Brakedown [32], and Orion [51]. While STARKs
are post-quantum secure, require no trusted setup, and have an efficient prover,
they generate a relatively long proof (tens of kilobytes in practice). The paradigm
of compiling an IOP to a SNARK using a suitable commitment scheme lets us
build universal SNARKs where a single trusted setup can support many circuits.
In earlier SNARKs, such as [14,30,34], every circuit required a new trusted setup.

The Plonk System. Among the IOP-based SNARKs that use a Polynomial-IOP,
the Plonk system [27] has emerged as one of the most widely adopted in industry.
This is because Plonk proofs are very short (about 400 bytes in practice) and fast
to verify. Moreover, Plonk supports custom gates, as we will see in a minute. An
extension of Plonk, called PlonKup [41], further extends Plonk to incorporate
lookup gates using the Plookup IOP of [27].

One difficulty with Plonk, compared to some other schemes, is the prover’s
complexity. For a circuit C with s arithmetic gates, the Plonk prover runs in
time Oλ(s log s). The primary bottlenecks come from the fact that the prover
must commit to and later open several degree O(s) polynomials. When using
the KZG polynomial commitment scheme [36], the prover must (i) compute a
multi-exponentiation of size O(s) in a pairing-friendly group where discrete log
is hard, and (ii) compute several FFTs and inverse-FFTs of dimension O(s).

HyperPlonk 501

When using a FRI-based polynomial commitment scheme [7,37,55], the prover
computes an O(cs)-sized FFT and O(cs) hashes, where 1/c is the rate of a
certain Reed-Solomon code. The performance further degrades for circuits that
contain high-degree custom gates, as some FFTs and multi-exponentiations have
size proportional to the degree of the custom gates.

In practice, when the circuit size s is bigger than 220, the FFTs become a
significant part of the running time. This is due to the quasi-linear running time
of the FFT algorithm, while other parts of the prover scale linearly in s. The
reliance on FFT is a direct result of Plonk’s use of univariate polynomials. We
note that some proof systems eliminate the need for an FFT by moving away
from Plonk altogether [17,25,32,43,51].

Hyperplonk. In this paper, we introduce HyperPlonk, an adaptation of the Plonk
IOP and its extensions to operate over the boolean hypercube Bμ := {0, 1}μ.
We present HyperPlonk as a multilinear-IOP, which means that it can be com-
piled using a suitable multilinear commitment scheme to obtain a SNARK (or
a zkSNARK) with an efficient prover.

HyperPlonk inherits the flexibility of Plonk to support circuits with custom
gates, but presents several additional advantages. First, by moving to the boolean
hypercube we eliminate the need for an FFT during proof generation. We do
so by making use of the classic SumCheck protocol [39], and this reduces the
prover’s running time from Oλ(s log s) to Oλ(s). The efficiency of SumCheck is
the reason why many of the existing multilinear SNARKs [17,43,44,48,49] use
the boolean hypercube. Here we show that Plonk can similarly benefit from the
SumCheck protocol.

Second, and more importantly, we show that the hypercube lets us incorpo-
rate custom gates more efficiently into HyperPlonk. A custom gate is a function
G : F� → F, for some �. An arithmetic circuit C with a custom gate G, denoted
C[G], is a circuit with addition and multiplication gates along with a custom
gate G that can appear many times in the circuit. The circuit may contain mul-
tiple types of custom gates, but for now, we will restrict to one type to simplify
the presentation. These custom gates can greatly reduce the circuit size needed
to compute a function, leading to a faster prover. For example, if one needs to
implement the S-box in a block cipher, it can be more efficient to implement it
as a custom gate.

Custom gates are not free. Let G : F� → F be a custom gate that computes
a multivariate polynomial of total degree d. Let C[G] be a circuit with a total of
s gates. In the Plonk IOP, the circuit C[G] results in a prover that manipulates
univariate polynomials of degree O(s · d). Consequently, when compiling Plonk
using KZG [36], the prover needs to do a group multi-exponentiation of size
O(sd) as well as FFTs of this dimension. This restricts custom gates in Plonk
to gates of low degree.

We show that the prover’s work in HyperPlonk is much lower. Let G : F� → F

be a custom gate that can be evaluated using k arithmetic operations. In Hyper-
Plonk, the bulk of the prover’s work when processing C[G] is only O(sk log2 k)
field operations. Moreover, when using KZG multilinear commitments [40], the

502 B. Chen et al.

total number of group exponentiations is only O(s+d log s), where d is the total
degree of G. This is much lower than Plonk’s O(sd) group exponentiations. It
lets us use custom gates of much higher degree in HyperPlonk.

Making Plonk and its Plonkup extension work over the hypercube raises
interesting challenges, as discussed in Sect. 1.1. In particular, adapting the
Plookup IOP [27], used to implement table lookups, requires changing the pro-
tocol to make it work over the hypercube (see Sect. 3.6). The resulting version of
HyperPlonk that supports lookup gates is called HyperPlonk+ and is described
in the full version.

Batch Openings and Commit-and-Prove SNARKs. he prover in HyperPlonk needs
to open several multilinear polynomials at random points. We present a new sum-
check-based batch-opening protocol (Sect. 3.7) that can batch many openings into
one, significantly reducing the prover time, proof size, and verifier time. Our pro-
tocol takes O(k · 2μ) field operations for the prover for batching k of μ-variate
polynomials, compared to O(k2μ ·2μ) for the previously best protocol [47]. Under
certain conditions, we also obtain a more efficient batching scheme with complex-
ity O(2μ), which yields a very efficient commit-and-prove protocol.

Improved Multilinear Commitments. Since HyperPlonk relies on a multilinear
commitment scheme, we revisit two approaches to constructing multilinear com-
mitments and present significant improvements to both.

First, in Sect. 5 we use our commit-and-prove protocol to improve the Orion
multilinear commitment scheme [51]. Orion is highly efficient: the prover time is
strictly linear, taking only O(2μ) field operations and hashes for a multilinear
polynomial in μ variables (no group exponentiations are used). The proof size is
O(λμ2) hash and field elements, and the verifier time is proportional to the proof
size. In Sect. 5 we describe Orion+, that has the same prover complexity, but has
O(μ) proof size and O(μ) verifier time, with good constants. In particular, for
security parameter λ = 128 and μ = 25 the proof size with Orion+ is only about
7 KBs, compared with 5.5 MB with Orion, a nearly 1000x improvement. Using
Orion+ in HyperPlonk gives a strictly linear time prover.

Second, in the full version, we show how to generically transform a univariate
polynomial commitment scheme into a multilinear commitment scheme using the
tensor-product univariate Polynomial-IOP from [17]. This yields a new construc-
tion for multilinear commitments from FRI [7] by applying the transformation
to the univariate FRI-based commitment scheme from [37]. This approach leads
to a more efficient FRI-based multilinear commitment scheme compared to the
prior construction in [55], which uses recursive techniques. Using this commit-
ment scheme in HyperPlonk gives a quantum-resistant quasilinear-time prover.

Evaluation Results. When optimized and instantiated with the pairing-based
multilinear commitment scheme of [40], the proof size of Hyperplonk is μ + 5
group elements and 4μ + 29 field elements1. Using BLS12-381 as the pairing
1 The constants depend linearly on the degree of the custom gates. These numbers

are for simple degree 2 arithmetic circuits.

HyperPlonk 503

group, we obtain 4.7 KB proofs for μ = 20 and 5.5 KB proofs for μ = 25. For
comparison, Kopis [44] and Gemini [17], which also have linear-time provers,
report proofs of size 39 KB and 18 KB respectively for μ = 20. In Table 1 we
show that our prototype HyperPlonk implementation outperforms an optimized
commercial-strength Plonk system for circuits with more than 214 gates. It also
shows the effects of PLONK arithmetization compared to R1CS by comparing
the prover runtime for several important applications. Hyperplonk outperforms
Spartan [43] for these applications by a factor of over 60. We discuss the evalu-
ation further in the full version.

Table 1. The prover runtime of Hyperplonk, Spartan [43], and Jellyfish Plonk, for
popular applications. The first column (next to the column of the applications) shows
the number of R1CS constraints for each application. The third column shows the
corresponding number of constraints in HyperPlonk+. Note that the Zexe and the
Rollup applications are using the BW6-761 curve.

Application RR1CS Spartan RPLONK+ Jellyfish HyperPlonk

3-to-1 Rescue Hash 288 [1] 422ms 144 [45] 40 ms 88 ms

Zexe’s recursive circuit 222 [52] 6min 217 [52] 13.1 s 5.1 s

Rollup of 50 private tx 225 39min 220 [45] 110 s 38.2 s

1.1 Technical Overview

In this section we give a high level overview of how to make Plonk and its
extensions work over the hybercube. We begin by describing Plonk in a modular
way, breaking it down into a sequence of elementary components. In Sect. 3 we
show how to instantiate each component over the hybercube.

Some components of Plonk rely on the simple linear ordering of the elements
of a finite cyclic group induced by the powers of a generator. On the hypercube
there is no natural simple ordering, and this causes a problem in the Plookup
protocol [27] that is used to implement a lookup gate. To address this we modify
the Plookup argument in Sect. 3.6 to make it work over the hypercube. We give
an overview of our approach below.

A Review of Plonk. Let us briefly review the Plonk SNARK. Let C[G] : Fn+m →
F be a circuit with a total of s gates, where each gate has fan-in two and can
be one of addition, multiplication, or a custom gate G : F2 → F. Let x ∈ F

n

be a public input to the circuit. Plonk represents the resulting computation as
a sequence of n + s + 1 triples2:

M̂ :=
{(

Li, Ri, Oi

) ∈ F
3
}

i=0,...,n+s
. (1)

2 A more general Plonkish arithmetization [54] supports wider tuples, but triples are
sufficient here.

504 B. Chen et al.

This M̂ is a matrix with three columns and n + s + 1 rows. The first n rows
encode the n public input; the next s rows represent the left and right inputs
and the output for each gate; and the final row enforces that the final output of
the circuit is zero. We will see how in a minute.

In basic (univariate) Plonk, the prover encodes the cells of M̂ using a cyclic
subgroup Ω ⊆ F of order 3(n + s + 1). Specifically, let ω ∈ Ω be a generator.
Then the prover interpolates and commits to a polynomial M ∈ F[X] such that

M(ω3i) = Li, M(ω3i+1) = Ri, M(ω3i+2) = Oi for i = 0, . . . , n + s.

Now the prover needs to convince the verifier that the committed M encodes a
valid computation of the circuit C. This is the bulk of Plonk system.

Hyperplonk. In HyperPlonk we instead use the boolean hypercube to encode M̂ .
From now on, suppose that n+s+1 is a power of two, so that n+s+1 = 2μ. The
prover interpolates and commits to a multilinear polynomial M ∈ F[Xμ+2] =
F[X1, . . . , Xμ+2] such that

M
(
0, 0, 〈i〉) = Li, M

(
0, 1, 〈i〉) = Ri, M

(
1, 0, 〈i〉) = Oi, for i = 0, . . . , n + s. (2)

Here 〈i〉 is the μ-bit binary representation of i. Note that a multilinear poly-
nomial on μ + 2 variables is defined by a vector of 2μ+2 = 4 × 2μ coefficients.
Hence, it is always possible to find a multilinear polynomial that satisfies the
3×2μ constraints in Eq. (2). Next, the prover needs to convince the verifier that
the committed M encodes a valid computation of the circuit C. To do so, we
need to adapt Plonk to work over the hypercube.

Let us start with the pre-processing algorithm I(gp, C) that outputs prover
and verifier parameters pp and vp. The verifier parameters vp encode the cir-
cuit C[G] as a commitment to four multilinear polynomials (S1, S2, S3, σ), where
S1, S2, S3 ∈ F[Xμ] and σ ∈ F[Xμ+2]. The first three are called selector polyno-
mials and σ is called the wiring polynomial. We will see how they are defined
in a minute. There is one more auxiliary multilinear polynomial I ∈ F[Xμ]
that encodes the input x ∈ F

n. This polynomial is defined as I(〈i〉) = xi for
i = 0, . . . , n − 1, and is zero on the rest of the boolean cube Bμ. The verifier, on
its own, computes a commitment to the polynomial I to ensure that the correct
input x ∈ F

n is being used in the proof. Computing a commitment to I can be
done in time Oλ(n), which is within the verifier’s time budget.

With this setup, the Plonk prover P convinces the verifier that the committed
M satisfies two polynomial identities:

The Gate Identity: Let S1, S2, S3 : Fμ → {0, 1} be the three selector polynomials
that the pre-processing algorithm I(gp, C) committed to in vp. To prove that all
gates were evaluated correctly, the prover convinces the verifier that the following

HyperPlonk 505

identity holds for all x ∈ Bμ := {0, 1}μ:

0 = S1(x) ·
(
M(0, 0,x)︸ ︷︷ ︸

L[x]

+ M(0, 1,x)︸ ︷︷ ︸
R[x]

)
+ S2(x) · M(0, 0,x)︸ ︷︷ ︸

L[x]

· M(0, 1,x)︸ ︷︷ ︸
R[x]

+ S3(x) · G
(

M(0, 0,x)︸ ︷︷ ︸
L[x]

, M(0, 1,x)︸ ︷︷ ︸
R[x]

)
− M(1, 0,x)︸ ︷︷ ︸

O[x]

+ I(x)

(3)

where [x] =
∑μ−1

i=0 xi2i is the integer whose binary representation is x ∈ Bμ.
For each i = 0, . . . , n + s, the selector polynomials S1, S2, S3 are defined to do
the “right” thing:

– addition gate: S1(〈i〉) = 1, S2(〈i〉) = S3(〈i〉) = 0 (Oi = Li + Ri)
– multiplication gate: S1(〈i〉) = S3(〈i〉) = 0, S2(〈i〉) = 1 (Oi = Li · Ri)
– for a G gate: S1(〈i〉) = S2(〈i〉) = 0, S3(〈i〉) = 1 (Oi = G(Li, Ri))
– if i < n or i = n + s: S1(〈i〉) = S2(〈i〉) = S3(〈i〉) = 0 (Oi = I(〈i〉)).

The last bullet ensures that Oi is equal to the i-th input for i = 0, . . . , n − 1,
and that the final output of the circuit, On+s, is equal to zero.

The Wiring Identity: Every wire in the circuit C induces an equality constraint
on two cells in the matrix M̂ . In HyperPlonk, the wiring constraints are captured
by a permutation σ̂ : Bμ+2 → Bμ+2. The prover needs to convince the verifier
that

M(x) = M(σ̂(x)) for all x ∈ Bμ+2 := {0, 1}μ+2. (4)

To do so, the pre-processing algorithm I(gp, C) commits to a multilinear poly-
nomial σ : Fμ+2 → F that satisfies σ(x) = [σ̂(x)] for all x ∈ Bμ+2 (recall that
[σ̂(x)] is the integer whose binary representation is σ̂(x) ∈ Bμ+2). The prover
then convinces the verifier that the following two sets are equal (both sets are
subsets of F2):

{(
[x], M(x)

)}
x∈Bµ+2

=
{(

[σ̂(x)], M(x)
)}

x∈Bµ+2

. (5)

This equality of sets implies that Eq. (4) holds.

Proving the Gate Identity. The prover convinces the verifier that the Gate iden-
tity holds by proving that the polynomial defined by the right hand side of Eq. (3)
is zero for all x ∈ Bμ. This is done using a ZeroCheck IOP, defined in Sect. 3.2.
If the custom gate G has total degree d and there are s gates in the circuit,
then the total number of terms of the polynomial in Eq. (3) is (d + 1)(s + n + 1)
which is about (d · s). If this were a univariate polynomial, as in Plonk, then
a ZeroCheck would require a multi-exponentiation of dimension (d · s) and an
FFT of the same dimension. When the polynomial is defined over the hypercube,
the ZeroCheck is implemented using the SumCheck protocol in Sect. 3.1, which
requires no FFTs. In that section we describe two optimizations to the Sum-
Check protocol for the settings where the multivariate polynomial has a high
degree d in every variable:

506 B. Chen et al.

– First, in every round of SumCheck the prover sends a polynomial commitment
to a univariate polynomial of degree d, instead of sending the polynomial in
the clear as in regular SumCheck. This greatly reduces the proof size.

– Second, in standard SumCheck, the prover opens the univariate polynomial
commitment at three points: at 0, 1, and at a random r ∈ F. We optimize this
step by showing that opening the commitment at a single point is sufficient.
This further shortens the final proof.

The key point is that the resulting ZeroCheck requires the prover to do only
about s+ d ·μ group exponentiations, which is much smaller than d · s in Plonk.
The additional arithmetic work that the prover needs to do depends on the
number of multiplication gates in the circuit implementing the custom gate G,
not on the total degree of G, as in Plonk. As such, we can support much larger
custom gates than Plonk.

In summary, proof generation time is reduced for two reasons: (i) the elimi-
nation of the FFTs, and (ii) the better handling of high-degree custom gates.

Proving the Wiring Identity. The prover convinces the verifier that the Wiring
identity holds by proving the set equality in Eq. (5). We describe a set equality
protocol over the hypercube in Sect. 3.4. Briefly, we use a technique from Bayer
and Groth [6], that is also used in Plonk, to reduce this problem to a certain Pro-
ductCheck over the hypercube (Sect. 3.3). We then use an idea from Quarks [44]
to reduce the hypercube ProductCheck to a ZeroCheck, which then reduces to
a SumCheck. Again, no FFTs are needed.

Table Lookups. An important extension to Plonk supports circuits with table
lookup gates. The table is represented as a fixed vector t ∈ F

2µ−1. A table lookup
gate ensures that a specific cell in the matrix M̂ is contained in t. For example,
one can set t to be the field elements in {0, 1, . . . , B} for some B (padding the
vector by 0 as needed). Now, checking that a cell in M̂ is contained in t is a
simple way to implement a range check.

Let f, t : Bμ → F be two multilinear polynomials. Here the polynomial t
encodes the table t, where the table values are t(Bμ). The polynomial f encodes
the cells of M̂ that need to be checked. An important step in supporting lookup
gates in Plonk is a way for the prover to convince the verifier that f(Bμ) ⊆ t(Bμ),
when the verifier has commitments to f and t. The Plookup proof system by
Gabizon and Williamson [27] is a way for the prover to do just that. More
recently preprocessed alternatives to lookup have been developed[42,53]. These
perform better if the table is known, e.g. a range of values but are in general
orthogonal to Plookup.

The problem is that Plookup is designed to work when the polynomials are
defined over a cyclic subgroup G ⊆ F

∗ of order q with generator ω ∈ G. In
particular, Plookup requires a function next : F → F that induces an ordering of
G. This function must satisfy two properties: (i) the sequence

ω, next(ω), next
(
next(ω)

)
, . . . , next(q−1)(ω) (6)

HyperPlonk 507

should traverse all of G, and (ii) the function next should be a linear function.
This is quite easy in a cyclic group: simply define next(x) := ωx.

To adapt Plookup to the hypercube we need a linear function next : Fμ → F
μ

that traverses all of Bμ as in Eq. (6), starting with some element x0 ∈ Bμ.
However, such an F-linear function does not exist. Nevertheless, we construct
in Sect. 3.6 a quadratic function from F

μ to F
μ that traverses Bμ. The function

simulates Bμ using a binary extension and has a beautiful connection to similar
techniques used in early PCP work [12]. We then show how to linearize the
function by modifying some of the building blocks that Plookup uses. This gives
an efficient Plookup protocol over the hypercube. In the full version we use this
hypercube Plookup protocol to support lookup gates in HyperPlonk. The resulting
protocol is called HyperPlonk+.

2 Preliminaries

Notation: We use λ to denote the security parameter. For n ∈ N let [n] be the set
{1, 2, . . . , n}; for a, b ∈ N let [a, b) denote the set {a, a + 1, . . . b − 1}. A function
f(n) is poly(λ) (n) if there exists a c ∈ N such that f(n) = O(nc). If for all
c ∈ N, f(n) is o(n−c), then f(n) is in negl(λ) (n) and is said to be negligible. A
probability that is 1 − negl(λ)(n) is overwhelming. We use F to denote a field
of prime order p such that log(p) = Ω(λ).

A multiset is an extension of the concept of a set where every element has
a positive multiplicity. Two finite multisets are equal if they contain the same
elements with the same multiplicities.

A relation is a set of pairs (x,w). An indexed relation is a set of triples
(i,x;w). The index i is fixed at setup time.

In defining the syntax of the various protocols, we use the following conven-
tion concerning public values (known to both the prover and the verifier) and
secret ones (known only to the prover). In any list of arguments or returned
tuple (a, b, c; d, e), those variables listed before the semicolon are public, and
those listed after it are secret. When there is no secret information, the semi-
colon is omitted.

2.1 Proofs and Arguments of Knowledge

We refer to the full version for more detailed definitions of proofs, arguments,
and polynomial interactive oracle proofs. We briefly overview the primitives used
and constructed in this paper.

Interactive proofs and arguments of knowledge consist of a non-interactive
preprocessing phase run by an indexer and an interactive online phase between
a prover and a verifier. They satisfy the notions of completeness and knowledge
soundness, as well as optionally zero-knowledge. The protocols described in this
paper are public coin, meaning that the verifier only sends random messages.

508 B. Chen et al.

PolyIOPs. SNARKs can be constructed from information-theoretic proof sys-
tems that give the verifier oracle access to prover messages. The information-
theoretic proof is then compiled using a cryptographic tool, such as a polynomial
commitment. We now define a specific type of information-theoretic proof system
called polynomial interactive oracle proofs (PIOPs). In a PIOP, the prover sends
oracles to multi-variate polynomials as messages, and the verifier can query these
polynomials at arbitrary points. The statement and the index can also consist
of oracles to polynomials which the verifier can query. See the full version for
formal definitions of PIOPs.

2.2 Multilinear Polynomial Commitments

Multilinear polynomial commitments are commitments where the message space
is a multi-linear polynomial. It has the additional property that there exists an
efficient argument of knowledge for convincing a verifier that the committed
polynomial evaluates to a specific value at a given point.

Multi-linear polynomial commitments can be instantiated from random ora-
cles using the FRI protocol [55], bilinear groups [40], groups of unknown order
[3,19] and discrete logarithm groups[18,48]. We give a table of polynomial com-
mitments with their different properties in Table 2:

Table 2. Multi-linear polynomial commitment schemes for μ-variate linear polyno-
mials and n = 2μ. The prover time measures the complexity of committing to a
polynomial and evaluating it once. The commitment size is constant for all proto-
cols. Unless constants are mentioned, the metrics are assumed to be asymptotic. In
the 4th row, ρ denotes the rate of Reed-Solomon codes. In the 5th and 6th rows, k
denotes the number of rows of the matrix that represents the polynomial coefficients.
The 6th column measures the concrete proof size for n = 225, i.e. μ = 25 and 128-bit
security. Legend: BL= Bilinear Group, DL = Discrete Logarithm, RO = Random Ora-
cle, H = Hashes, P = pairings, G= group scalar multiplications, rec. = Recursive circuit
size, univ. = universal setup, trans.= transparent setup, Add.= Additive

Scheme Prover time: Commit+ Eval Verifier time Proof size n = 225 Setup Add

KZG-based [40] BL n G1 log(n) P log(n) G1 0.8 KB Univ Yes

Dory [38] BL nG1+
√

nP log(n) GT 6 log(n) GT 30 KB Trans Yes

Bulletproofs [18] DL n G n G 2 log(n) G 1.6 KB Trans Yes

FRI-based [22] RO n log(n)/ρF + n/ρH log2(n) λ
− log ρ

H log2(n) λ
− log ρ

H 250 KB Trans No

Orion RO nH + n
k

+ k rec λ log2 nH λ log2 n H 5.5 MB Trans No

Orion + (§5) BL
n/kG1 + nH+

(kλH + n
k
F) rec.

log(n)P 4 log n G1 7 KB Univ No

Virtual Oracles and Commitments. Given multiple polynomial oracles, we
can construct virtual oracles to the functions of these polynomials. An
oracle to g([[f1]], . . . , [[fk]]) for some function g is simply the list of ora-
cles {[[f1]], . . . , [[fk]]} as well as a description of g. In order to evaluate
g([[f1]], . . . , [[fk]]) at some point x we compute yi = fi(x)∀i ∈ [k] and output

HyperPlonk 509

g(y1, . . . yk). Equivalently given commitments to polynomials, we can construct
a virtual commitment to a function of these polynomials similarly. If g is an
additive function and the polynomial commitment is additively homomorphic,
then we can use the homomorphism to evaluate.

2.3 PIOP Compilation

PIOP compilation transforms the interactive oracle proof into an interactive
argument of knowledge (without oracles) Π. The compilation replaces the oracles
with polynomial commitments. Every query by the verifier is replaced with an
invocation of the Eval protocol at the query point z. The compiled verifier accepts
if the PIOP verifier accepts and if the output of all Eval invocations is 1. If Π
is public-coin, it can further be compiled into a non-interactive argument of
knowledge (or NARK) using the Fiat-Shamir transform.

Theorem 2.1 (PIOP Compilation [19,24]). If the polynomial commitment
scheme Γ has witness-extended emulation, and if the t-round Polynomial IOP for
R has negligible knowledge error, then Π, the output of the PIOP compilation,
is a secure (non-oracle) argument of knowledge for R. The compilation also pre-
serves zero knowledge. If Γ is hiding and Eval is honest-verifier zero-knowledge,
then Π is honest-verifier zero-knowledge. The efficiency of the resulting argu-
ment of knowledge Π depends on the efficiency of both the PIOP and Γ :

– Prover time The prover time is equal to the prover time of the PIOP plus the
oracle length times the commitment time plus the query complexity times the
prover time of Γ .

– Verifier time The verifier time is equal to the verifier time of the PIOP plus
the verifier time for Γ times the query complexity of the PIOP.

– Proof size The proof size is equal to the message complexity of the PIOP times
the commitment size plus the query complexity times the proof size of Γ . We
say the proof is succinct if the proof size is O(logc(|w|)).

Batching. The prover time, verifier time, and proof size can be significantly
reduced using batch openings of the polynomial commitments. For example, the
proof size only depends on the number of oracles plus a single batch opening.

3 A Toolbox for Multivariate Polynomials

We begin by reviewing several important PolyIOPs that will serve as building
blocks for HyperPlonk. Some are well-known, and some are new.

Notation. From here on, we let Bμ := {0, 1}μ ⊆ F
μ be the boolean hypercube.

We use F (≤d)
μ to denote the set of multivariate polynomials in F[X1, . . . , Xμ]

where the degree in each variable is at most d; moreover, we require that each
polynomial in F (≤d)

μ can be expressed as a virtual oracle to c = O(1) multilinear
polynomials. that is, with the form f(X) := g(h1(X), . . . , hc(X)) where hi ∈

510 B. Chen et al.

F (≤1)
μ (1 ≤ i ≤ c) is multilinear and g is a c-variate polynomial of total degree

at most d. Looking ahead, we restrict ourselves to this kind of polynomials so
that we can have sumchecks for the polynomials with linear-time provers.
For polynomials f, g ∈ F (≤d)

μ , we denote merge(f, g) ∈ F (≤d)
μ+1 as

merge(f, g) := h(X0, . . . ,Xμ) := (1 − X0) · f(X1, . . . ,Xμ) + X0 · g(X1, . . . ,Xμ) (7)

so that h(0,X) = f(X) and h(1,X) = g(X). In the following definitions, we
omit the public parameters gp := (F, μ, d) when the context is clear. We use
δd,μ
check to denote the soundness error of the PolyIOP for relation Rcheck with

public parameter (F, d, μ), where check ∈ {sum, zero,prod,mset,perm, lkup}.
We defer all proofs to the full version[22] (Table 3).

Table 3. The complexity of PIOPs. d and μ denote the degree and the number of
variables of the multivariate polynomials; k in MsetCheck is the length of each element
in the multisets; k in BatchEval is the number of evaluations.

Scheme P time V time Num of queries Num of rounds Proof oracle size Witness size

SumCheck O(2μd log2 d) O(μ) μ + 1 μ dμ O(2μ)

ZeroCheck O(2μd log2 d) O(μ) μ + 1 μ dμ O(2μ)

ProdCheck O(2μd log2 d) O(μ) μ + 2 μ + 1 O(2μ) O(2μ)

MsetEqChk O(2μd log2 d) O(μ) μ + 2 μ + 1 O(2μ) O(k2μ)

PermCheck O(2μd log2 d) O(μ) μ + 2 μ + 1 O(2μ) O(2μ)

Plookup O(2μd log2 d) O(μ) μ + 3 μ + 2 O(2μ) O(2μ)

BatchEval O(2μk) O(kμ) 1 μ + log k O(μ + log k) O(k2μ)

3.1 SumCheck PIOP for High Degree Polynomials

In this section, we describe a PIOP for the sumcheck relation using the classic
sumcheck protocol [39]. However, we modify the protocol and adapt it to our
setting of high-degree polynomials.

Definition 3.1 (SumCheck relation). The relation RSUM is the set of all
tuples (x;w) =

(
(v, [[f]]); f

)
where f ∈ F (≤d)

μ and
∑

b∈Bµ
f(b) = v.

Construction. The classic SumCheck protocol [39] is a PolyIOP for the relation
RSUM. When applying the protocol to a polynomial f ∈ F (≤d)

μ , the protocol
runs in μ rounds where in every round, the prover sends a univariate polynomial
of degree at most d to the verifier. The verifier then sends a random challenge
point for the univariate polynomial. At the end of the protocol, the verifier
checks the consistency between the univariate polynomials and the multi-variate
polynomial using a single query to f .
Given a tuple (x;w) = (v, [[f]]; f) for μ-variate degree d polynomial f such that∑

b∈Bµ
f(b) = v:

– For i = μ, μ − 1, . . . , 1:

HyperPlonk 511

• The prover computes ri(X) :=
∑

b∈Bi−1
f(b,X, αi+1, . . . , αμ) and sends

the oracle [[ri]] to the verifier. ri is univariate and of degree at most d.
• The verifier checks that v = ri(0) + ri(1), samples αi ← F, sends αi to

the prover, and sets v ← ri(αi).
– Finally, the verifier accepts if f(α1, . . . , αμ) = v.

Theorem 3.2. The PIOP for RSUM is perfectly complete and has knowledge
error δd,μ

sum := dμ/|F|.

We refer to [47] for the proof of the theorem.

Sending r as an Oracle. Unlike in the classic sumcheck protocol, we send an ora-
cle to ri, in each round, instead of the actual polynomial. This does not change
the soundness analysis, as the soundness is still proportional to the degree of
the univariate polynomials sent in each round. However, it reduces the commu-
nication and verifier complexity, especially if the degree of r is large, as in our
application of Hyperplonk with custom gates.

Moreover, the verifier has to evaluate ri at three points: 0, 1, and αi. As a
useful optimization, the prover can instead send an oracle for the degree d − 2
polynomial

r′
i(X) :=

ri(X) − (1 − X) · ri(0) − X · ri(1)
X · (1 − X)

,

along with ri(0). The verifier then computes ri(1) ← v − ri(0) and

ri(αi) ← r′
i(αi) · (1 − αi) · αi + (1 − αi) · ri(0) + αi · ri(1).

This requires only one query to the oracle of r′
i at αi and one field element per

round.

Computing Sumcheck for High-Degree Polynomials. Consider a multi-variate
polynomial f(X) := h(g1(X), . . . , gc(X)) such that h is degree d and can be
evaluated through an arithmetic circuit with O(d) gates. In the sumcheck pro-
tocol, the prover has to compute a univariate polynomial ri(X) in each round
using the previous verifier messages α1, . . . , αi−1. We adapt the algorithm by
[46,49] that showed how the sumcheck prover can be run in time linear in 2μ

using dynamic programming. The algorithm takes as input a description of f
as well as the sumcheck round challenges α1, . . . , αμ. It outputs the round poly-
nomials r1, . . . , rμ. The sumcheck prover runs the algorithm in parallel to the
sumcheck protocol, taking each computed ri as that rounds message:

512 B. Chen et al.

Algorithm 1. Computing r1, . . . , rμ [46,49]
1: procedure SumCheck prover(h, g1(X), . . . , gc(X))

2: For each gj build table Aj : {0, 1}µ → F of all evaluations over Bµ

3: for i ← μ . . . 1 do

4: For each b ∈ Bi−1 and each j ∈ [c], define r(j,b)(X) := (1 − X)Aj [b, 0] + XAj [b, 1].

5: Compute r(b)(X) ← h(r(1,b)(X), . . . , r(c,b)(X)) for all b ∈ Bi−1 using Algorithm2 .

6: ri(X) ← ∑
b∈Bi−1

rb (X).

7: Send ri(X) to V.

8: Receive αi from V.

9: Set Aj [b] ← r(j,b)(αi) for each b ∈ Bi−1.

10: end for

11: end procedure

In [46,49], r(b)(X) := h(r(1,b)(X), . . . , r(c,b)(X)) is computed by evaluating
h on d distinct values for X, e.g. X ∈ {0, . . . , d} and interpolating the output.
This works as h is a degree d polynomial and each rj,b is linear. Evaluating rj,b

on d points can be done in d steps. So the total time to evaluate all rj,b for
j ∈ [c] is c · d. Furthermore, the circuit has O(d) gates, and evaluating it on d
inputs, takes time O(d2). Assuming that c ≈ d the total time to compute r(b)

with this algorithm is O(d2) and the time to run Algorithm1 is O(2μd2).
We show how this can be reduced to O(2μ · d log2 d) for certain low depth

circuits, such as h :=
∏

c rc(X). The core idea is that evaluating the circuit
for h symbolically, instead of at d individual points, is faster if fast polynomial
multiplication algorithms are used.

We will present the algorithm for computing h(X) :=
∏d

j=1 rj(X), then we
will discuss how to extend this for more general h. Assume w.l.o.g. that d is a
power of 2.

Algorithm 2. Evaluating h :=
∏d

j=1 rj

Require: r1, . . . , rd are linear functions
1: procedure h(r1(X), . . . , rd(X))
2: t1,j ← rj for all j ∈ [d].
3: for i ← 1 . . . log d do
4: for j ∈ [d/2i] do
5: ti+1,j(X) ← ti,2j−1(X) · ti,2j(X) � Using fast polynomial multiplication
6: end for
7: end for
8: return h = tlog2(d),1
9: end procedure

In round i there are d/2i polynomial multiplications for polynomials of
degree 2i−1. In FFT-friendly3 fields, polynomial multiplication can be per-

3 These are fields where there exists an element that has a smooth order of at least d.

HyperPlonk 513

formed in time O(d log(d)).4 The total running time of the algorithm is therefore
∑log2(d)

i=1
d
2i 2

i−1 log(2i−1) =
∑log2(d)

i=1 O(d · i) = O(d log2(d)).
Algorithm 2 naturally extends to more complicated, low-depth circuits. Addi-

tion gates are performed directly through polynomial addition, which takes O(d)
time for degree d polynomials. As long as the circuit is low-depth and has O(d)
multiplication gates, the complexity remains O(d log2(d)). Furthermore, we can
compute rk(X) for k ≤ d using only a single FFT of length deg(r) · k for an
input polynomial r. The FFT evaluates r at deg(r) ·k points. Then we raise each
point to the power of k. This takes time O(deg(r) · k(log(deg(r)) + log(k))) and
saves a factor of log(k) over a repeated squaring implementation.

Batching. Multiple sumcheck instances, e.g. (s, [[f]]) and (s′, [[g]]) can easily be
batched together. This is done using a random-linear combination, i.e. showing
that (s+αs′, [[f]]+α[[g]]) ∈ L(RSUM) for a random verifier-generated α [23,48].
The batching step has soundness 1

F
.

3.2 ZeroCheck PIOP

In this section, we describe a PIOP showing that a multivariate polynomial
evaluates to zero everywhere on the boolean hypercube. The PIOP builds upon
the sumcheck PIOP in Sect. 3.1 and is a key building block for product-check
PIOP in Sect. 3.3. The zerocheck PIOP is also helpful in HyperPlonk for proving
the gate identity.

Definition 3.3 (ZeroCheck relation). The relation RZERO is the set of all
tuples (x;w) =

(
([[f]]); f

)
where f ∈ F (≤d)

μ and f(x) = 0 for all x ∈ Bμ.

We use an idea from [43] to reduce a ZeroCheck to a SumCheck.

Construction. Given a tuple (x;w) =
(
([[f]]); f

)
, the protocol is the following:

– V sends P a random vector r ←$
F

μ

– Let f̂(X) := f(X) · eq(X, r) where eq(x,y) :=
∏μ

i=1

(
xiyi + (1 − xi)(1 − yi)

)
.

– Run a sumcheck PolyIOP to convince the verifier that
(
(0, [[f̂]]); f̂

)
∈ RSUM.

Batching. It is possible to batch two instances
(
([[f]]); f

)
∈ RZERO and(

([[g]]); g
)

∈ RZERO by running a zerocheck on
(
([[f + αg]]); f+αg

)
for a random

α ∈ F. The soundness error of the batching protocol 1
F
.

Theorem 3.4. The PIOP for RZERO is perfectly complete and has knowledge
error δd,μ

zero := dμ/|F| + δd+1,μ
sum = O(dμ/|F|).

4 Recent breakthrough results have shown that polynomial multiplication is
O(d log(d)) over arbitrary finite fields [35] and there have been efforts toward building
practical, fast multiplication algorithms for arbitrary fields [9]. In practice, and espe-
cially for low-degree polynomials, using Karatsuba multiplication might be faster.

514 B. Chen et al.

3.3 ProductCheck PIOP

We describe a PIOP for the product check relation, that is, for a rational poly-
nomial (where both the nominator and the denominator are multivariate poly-
nomials), the product of the evaluations on the boolean hypercube is a claimed
value s. The PIOP uses the idea from the Quark system [44, §5], we adapt it
to build upon the zerocheck PIOP in Sect. 3.2. Product check PIOP is a key
building block for the multiset equality check PIOP in Sect. 3.4.

Definition 3.5 (ProductCheck relation). The relation RPROD is the set
of all tuples (x;w) =

(
(s, [[f1]], [[f2]]); f1, f2

)
where f1 ∈ F (≤d)

μ , f2 ∈ F (≤d)
μ ,

f2(b) �= 0 ∀b ∈ Bμ and
∏

x∈Bµ
f ′(x) = s, where f ′ is the rational polynomial

f ′ := f1/f2. In the case that f2 = c is a constant polynomial, we directly set
f := f1/c and write (x;w) =

(
(s, [[f]]); f

)
.

Construction. The Quark system [44, §5] constructs a proof system for the
RPROD relation. The proof system uses an instance of the RZERO PolyIOP on
μ + 1 variables. Given a tuple (x;w) =

(
(s, [[f1]], [[f2]]); f1, f2

)
, we denote by

f ′ := f1/f2. The protocol is the following:

– P sends an oracle ṽ ∈ F (≤1)
μ+1 such that for all x ∈ Bμ,

ṽ(0,x) = f ′(x) , ṽ(1,x) = ṽ(x, 0) · ṽ(x, 1) , ṽ(1) = 0.

– Define ĥ := merge(f̂ , ĝ) ∈ F (≤max(2,d+1))
μ+1 where

f̂(X) := ṽ(1,X) − ṽ(X, 0) · ṽ(X, 1) , ĝ(X) := f2(X) · ṽ(0,X) − f1(X) .

Run a ZeroCheck PolyIOP for
(
[[ĥ]]; ĥ

)
∈ RZERO, i.e., the polynomial ṽ is

computed correctly.
– V queries [[ṽ]] at point (1, . . . , 1, 0) ∈ F

μ+1, and checks that the evaluation is
s.

Theorem 3.6. Let d′ := max(2, d+1). The PIOP for RPROD is perfectly com-
plete and has knowledge error δd,μ

prod := δd′,μ+1
zero = O(d′μ/|F|).

3.4 Multiset Check PIOP

We describe a multivariate PIOP checking that two multisets are equal. The
PIOP builds upon the product-check PIOP in Sect. 3.3. The multiset check PIOP
is a key building block for the permutation PIOP in Sect. 3.5 and the lookup
PIOP in Sect. 3.6. A similar idea has been proposed in the univariate polynomial
setting by Gabizon in a blogpost [26].

Definition 3.7 (Multiset Check relation). For any k ≥ 1, the relation
Rk

MSET is the set of all tuples (x;w) =
(
([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]);

(f1, . . . , fk, g1, . . . , gk)
)

where fi, gi ∈ F (≤d)
μ (1 ≤ i ≤ k) and the fol-

lowing two multisets of tuples are equal:
{
fx :=

[
f1(x), . . . , fk(x)

]}

x∈Bµ

=
{
gx :=

[
g1(x), . . . , gk(x)

]}

x∈Bµ

.

HyperPlonk 515

Basic Construction. We start by describing a PolyIOP for R1
MSET. The protocol

can be obtained from a protocol for RPROD. Given a tuple
(
([[f]], [[g]]); (f, g)

)
,

the protocol is the following:

– V samples and sends P a challenge r ←$
F.

– Set f ′ := r + f and g′ := r + g
– If g′ �= 0∀b ∈ Bμ run a ProductCheck PolyIOP for

(
(1, [[f ′]], [[g′]]); f ′, g′) ∈

RPROD.
– Else the prover sends b such that g′(b) = 0 and the verifier accepts if g(b) = −r

(this case happens with negligible probability).

Theorem 3.8. The PIOP for R1
MSET has perfect completeness and has knowl-

edge error δd,μ
mset,1 := 2μ+1/|F| + δd,μ

prod = O
(
(2μ + dμ)/|F|

)
.

3.5 Permutation PIOP

We describe a multivariate PIOP showing that for two multivariate polynomials
f, g ∈ F (≤d)

μ , the evaluations of g on the boolean hypercube is a predefined
permutation σ of f ’s evaluations on the boolean hypercube. The permutation
PIOP is a key building block of HyperPlonk for proving the wiring identity.

Definition 3.9 (Permutation relation). The indexed relation RPERM is the
set of tuples (i;x;w) =

(
σ; ([[f]], [[g]]); (f, g)

)
, where σ : Bμ → Bμ is a permu-

tation, f, g ∈ F (≤d)
μ , and g(x) = f(σ(x)) for all x ∈ Bμ.

Construction. Gabizon et al. [29] construct a permutation argument. We adapt
their scheme into a multivariate PolyIOP. The construction uses a PolyIOP
instance for RMSET. Given a tuple

(
σ; ([[f]], [[g]]); (f, g)

)
where σ is the pre-

defined permutation, the indexer generates two oracles [[sid]], [[sσ]] such that
sid ∈ F (≤1)

μ maps each x ∈ Bμ to [x] :=
∑μ

i=1 xi · 2i−1 ∈ F, and sσ ∈ F (≤1)
μ

maps each x ∈ Bμ to [σ(x)].5 The PolyIOP is the following:

– Run a Multiset Check PolyIOP for
(
([[sid]], [[f]], [[sσ]], [[g]]);(sid, f, sσ, g)

)
∈

R2
MSET .

Theorem 3.10. The PIOP for RPERM is perfectly complete and has knowledge
error δd,μ

perm := δd,μ
mset,2 = O

(
(2μ + dμ)/|F|

)
.

3.6 Lookup PIOP

This section describes a multivariate PIOP checking the table lookup relation.
The PIOP builds upon the multiset check PIOP (Sect. 3.4) and is a key building
block for HyperPlonk+. Our construction is inspired by a univariate PIOP for
the table lookup relation called Plookup [27]. However, it is non-trivial to adapt
Plookup to the multivariate setting because their scheme requires the existence
5 Here we further require |F| ≥ 2μ so that [x] never overflow.

516 B. Chen et al.

of a subdomain of the polynomial that is a cyclic subgroup G with a generator
ω ∈ G. Translating to the multilinear case, we need to build an efficient function
g that generates the entire boolean hypercube; moreover, g has to be linear so
that the degree of the polynomial does not blow up. However, such a linear
function does not exist. Fortunately, we can construct a quadratic function from
F

μ to F
μ that traverses Bμ. We then show how to linearize it by modifying some

of the building blocks that Plookup uses. This gives an efficient Plookup protocol
over the hypercube.

Definition 3.11 (Lookup relation). The indexed relation RLOOKUP is the
set of tuples (i;x;w) =

(
t; [[f]]; (f, addr)

)
where t ∈ F

2µ−1, f ∈ F (≤d)
μ , and

addr : Bμ → [1, 2μ) is a map such that f(x) = taddr(x) for all x ∈ Bμ.

Before presenting the PIOP for RLOOKUP, we first show how to build a
quadratic function that generates the entire boolean hypercube.

A Quadratic Generator in F2µ . For every μ ∈ N, we fix a primitive polynomial
pμ ∈ F2[X] where pμ := Xμ +

∑
s∈S Xs + 1 for some set S ⊆ [μ − 1], so that

F2[X]/(pμ) ∼= F
μ
2 [X] ∼= F2µ . By definition of primitive polynomials, X ∈ F

μ
2 [X]

is a generator of F
μ
2 [X] \ {0}. This naturally defines a generator function gμ :

Bμ → Bμ as gμ(b1, . . . , bμ) = (bμ, b′
1, . . . , b

′
μ−1) , where b′

i = bi ⊕ bμ (i ≤ 1 < μ)
if i ∈ S, and b′

i = bi otherwise. Essentially, for a polynomial f ∈ F
μ
2 [X] with

coefficients b, gμ(b) is the coefficient vector of X · f(X). Hence the following
lemma is straightforward.

Lemma 3.12. Let gμ : Bμ → Bμ be the generator function defined above. For
every x ∈ Bμ \ {0μ}, it holds that {g

(i)
μ (x)}i∈[2µ−1] = Bμ \ {0μ}, where g

(i)
μ (·)

denotes i repeated application of gμ.

Directly composing a polynomial f with the generator g will blow up the
degree of the resulting polynomial; moreover, the prover needs to send the com-
posed oracle f(g(·)). Both of which affect the efficiency of the PIOP. We address
the issue by describing a trick that manipulates f in a way that simulates the
behavior of f(g(·)) on the boolean hypercube, but without blowing up the degree.

Linearizing the Generator. For a multivariate polynomial f ∈ F (≤d)
μ , we define

fΔµ
∈ F (≤d)

μ as

fΔµ(X1, . . . ,Xμ) := Xμ · f(1,X′
1, . . . ,X

′
μ−1) + (1 − Xμ) · f(0,X1, . . . ,Xμ−1)

where X′
i := 1 − Xi (i ≤ 1 < μ) if i ∈ S, and X′

i := Xi otherwise.

Lemma 3.13. For every μ ∈ N, let gμ : Bμ → Bμ be the generator function
defined in Lemma 3.12. For every d ∈ N and polynomial f ∈ F (≤d)

μ , it holds that
fΔµ

(x) = f(gμ(x)) for every x ∈ Bμ. Moreover, fΔµ
has individual degree d and

one can evaluate fΔµ
from 2 evaluations of f .

HyperPlonk 517

Proof. By definition, fΔµ
has individual degree d and an evaluation of fΔµ

can
be derived from 2 evaluations of f . Next, we argue that fΔµ

(x) = f(gμ(x)) for
every x ∈ Bμ.

First, fΔµ
(0μ) = f(gμ(0μ)) because fΔµ

(0μ) = f(0μ) and gμ(0μ) = 0μ by
definition of fΔµ

, gμ. Second, for every x ∈ Bμ \ {0μ}, by definition of gμ,

f(gμ(x1, . . . ,xμ)) = f(xμ,x′
1, . . . ,x

′
μ−1),

where x′
i = xi ⊕ xμ (i ≤ 1 < μ) for every i in the fixed set S, and x′

i = xi

otherwise. We observe that xi ⊕ xμ = 1 − xi when xμ = 1 and xi ⊕ xμ = xi

when xμ = 0, thus we can rewrite

f(xμ,x′
1, . . . ,x

′
μ−1) = xμ · f(1,x∗

1, . . . ,x
∗
μ−1) + (1 − xμ) · f(0,x1, . . . ,xμ−1)

= fΔµ
(x1, . . . ,xμ)

where x∗
i = 1−xi (i ≤ 1 < μ) for every i in the fixed set S, and x∗

i = xi otherwise.
The last equality holds by definition of fΔµ

. In summary, f(gμ(x1, . . . ,xμ)) =
fΔµ

(x1, . . . ,xμ) for every Bμ and the lemma holds.

Construction. Now we are ready to present the PIOP for RLOOKUP, which is
an adaptation of Plookup [27] in the multivariate setting. The PIOP invokes
a protocol for R2

MSET. We introduce a notation that embeds a vector to the
hypercube while still preserving the vector order with respect to the generator
function. For a vector t ∈ F

2µ−1, we denote by t ← emb(t) ∈ F (≤1)
μ the multilin-

ear polynomial such that t(0μ) = 0 and t
(
g
(i)
μ (1, 0μ−1)

)
= ti for every i ∈ [2μ−1].

By Lemma 3.12, t is well-defined and embeds the entire vector t onto Bμ \ {0μ}.
For an index t ∈ F

2µ−1, the indexer generates an oracle [[t]] where
t ← emb(t). For a tuple

(
t; [[f]]; (f, addr)

)
where f(Bμ) ⊆ t(Bμ) \ {0}, let

(a1, . . . ,a2µ−1) be the vector where ai ∈ N is the number of appearance of
ti in f(Bμ). Note that

∑2µ−1
i=1 ai = 2μ. Denote by h ∈ F

2µ+1−1 the vector

h :=
(
t1, . . . , t1︸ ︷︷ ︸

1+a1

, t2, . . . , ti−1, ti, . . . , ti︸ ︷︷ ︸
1+a i

, ti+1, . . . , t2µ−2, t2µ−1, . . . t2µ−1︸ ︷︷ ︸
1+a2µ−1

)
.

We present the protocol below:

– P sends V oracles [[h]], where h ← emb(h) ∈ F (≤1)
μ+1 .

– Define g1 := merge(f, t) ∈ F (≤d)
μ+1 and g2 := merge(f, tΔµ

) ∈ F (≤d)
μ+1 , where

merge is defined in Eq. (7). Run a multiset check PIOP (Sect. 3.4) for(
([[g1]], [[g2]], [[h]], [[hΔµ+1]]) ; (f, t, h)

)
∈ R2

MSET .
– V queries h(0μ+1) and checks that the answer equals 0.

Theorem 3.14. The PIOP for RLOOKUP is perfectly complete and has knowl-
edge error δd,μ

lkup := δd,μ+1
mset,2 = O

(
(2μ + dμ)/|F|

)
.

518 B. Chen et al.

3.7 Batch Openings

This section describes a batching protocol proving the correctness of multiple
multivariate polynomial evaluations. Essentially, the protocol reduces multiple
oracle queries to different polynomials into a single query to a multivariate ora-
cle. The batching protocol is helpful for HyperPlonk to enable efficient batch
evaluation openings. In particular, the SNARK prover only needs to compute a
single multilinear PCS evaluation proof, even if there are multiple PCS evalua-
tions.

We note that Thaler [47, §4.5.2] shows how to batch two evaluations of a
single multilinear polynomial. The algorithm can be generalized for multiple
evaluations of different multilinear polynomials. However, the prover time com-
plexity is O(k2μ · 2μ) where k is the number of evaluations, and μ is the number
of variables. In comparison, our algorithm achieves complexity O(k · 2μ) which
is kμ-factor faster. Note that O(k · 2μ) is already optimal as the prover needs to
take O(k · 2μ) time to evaluate {fi(zi)}i∈[k] before batching.

Definition 3.15 (BatchEval relation). The relation Rk
BATCH is the set of all

tuples (x;w) =
(
(zi)i∈[k], (yi)i∈[k],

(
[[fi]]

)
i∈[k]

; (fi)i∈[k]

)
where zi ∈ F

μ, yi ∈ F,

fi ∈ F (≤d)
μ and fi(zi) = yi for all i ∈ [k].

Remark 3.16. The polynomials {fi}i∈[k] are all μ-variate. This is without loss
of generality. E.g., suppose one of the evaluated polynomial f ′

j has only μ − 1
variables, we can define fj(Y,X) = Y ·f ′

j(X)+(1−Y) ·f ′
j(X) which is essentially

f ′
j but with μ variables. The same trick easily extends to f ′

j with arbitrary μ′ < μ
variables.

Construction. For ease of exposition, we consider the case where f1, . . . , fk are
multilinear. We emphasize that the same techniques can be extended for multi-
variate polynomials.

Assume w.l.o.g that k = 2� is a power of 2. We observe that Rk
BATCH is

essentially a ZeroCheck relation over the set Z := {zi}i∈[k] ⊆ F
μ, that is, for

every i ∈ [k], fi(zi) − yi = 0. Nonetheless, Z is outside the boolean hypercube,
and we cannot directly reuse the ZeroCheck PIOP.

The key idea is to interpret each zero constraint as a sumcheck via multilinear
extension, so that we can work on the boolean hypercube later. In particular,
for every i ∈ [k], we want to constrain fi(zi) − yi = 0. Since fi is multilinear, by
definition of multilinear extension, this is equivalent to constraining that

ci :=

⎛

⎝
∑

b∈Bµ

fi(b) · eq(b, zi)

⎞

⎠ − yi = 0 . (8)

Note that Eq. (8) holds for every i ∈ [k] if and only if the polynomial∑
i∈[k] eq(Z, 〈i〉) · ci is identically zero, where 〈i〉 is �-bit representation of

i − 1. By the Schwartz Zippel Lemma, it is sufficient to check that for a random

HyperPlonk 519

vector t ←$
F

�, it holds that

∑
i∈[k]

eq(t, 〈i〉) · ci =
∑
i∈[k]

eq(t, 〈i〉) ·
⎡
⎣

⎛
⎝ ∑

b∈Bµ

fi(b) · eq(b, zi)

⎞
⎠ − yi

⎤
⎦ = 0 . (9)

Next, we arithmetize equation (9) and make it an algebraic formula. For
every (i, b) ∈ [k]×Bμ, we set value gi,b := eq(t, 〈i〉) · fi(b), and define an MLE g̃
for (gi,b)i∈[k], b∈Bµ

such that g̃(〈i〉, b) = gi,b∀(i, b) ∈ [k]×Bμ; similarly, we define
an MLE ẽq for (eq(b, zi))i∈[k], b∈Bµ

where ẽq(〈i〉, b) = eq(b, zi)∀(i, b) ∈ [k] × Bμ.
Let s :=

∑
i∈[k] eq(t, 〈i〉) · yi, then Eq. (9) can be rewritten as

∑
i∈[k],b∈Bµ

g̃(〈i〉, b) · ẽq(〈i〉, b) = s .

This is equivalent to prove a sumcheck claim for the degree-2 polynomial
g∗ := g̃(Y,X) · ẽq(Y,X) over set B�+μ. Hence we obtain the following PIOP
protocol in Algorithm 3. Note that g∗ = g̃ · ẽq is only with degree 2. Thus we can
run a classic sumcheck without sending any univariate oracles.

Algorithm 3. Batch evaluation of multi-linear polynomials

1: procedure BatchEval([fi ∈ F (≤1)
μ , zi ∈ F

μ, yi ∈ F]ki=1)
2: V sends P a random vector t ←$

F
�.

3: Define sum s :=
∑

i∈[k] eq(t, 〈i〉) · yi.

4: Let g̃ be the MLE for (gi,b)i∈[k], b∈Bµ where gi,b := eq(t, 〈i〉) · fi(b) .
5: Let ẽq be the MLE for (eq(b, zi))i∈[k], b∈Bµ such that ẽq(〈i〉, b) = eq(b, zi).

6: P and V run a SumCheck PIOP for
(
s, [[g∗]]; g∗) ∈ RSUM, where g∗ := g̃ · ẽq.

7: Let (a1,a2) ∈ F
�+μ be the sumcheck challenge vector. P answers the oracle

query g̃(a1,a2).
8: V evaluates ẽq(a1,a2) herself, and checks that g̃(a1,a2) · ẽq(a1,a2) is consistent

with the last message of the sumcheck.
9: end procedure

Remark 3.17. If the SNARK is using a homomorphic commitment scheme, to
answer query g̃(a1,a2) the prover only needs to provide a single PCS open-
ing proof for a μ-variate polynomial
g′(X) := g̃(a1,X) =

∑
i∈[k] eq(〈i〉,a1) · eq(t, 〈i〉) · fi(X) on point a2. The veri-

fier can evaluate {eq(〈i〉,a1) · eq(t, 〈i〉)}i∈[k] in time O(k), and homomorphically
compute g′’s commitment from the commitments to {fi}i∈[k], and checks the
opening proof against g′’s commitment. Finally, the verifier checks that g′(a2)
matches the claimed evaluation g̃(a1,a2).

520 B. Chen et al.

Analysis. The PIOP for RBATCH is complete and knowledge-sound given the
completeness and knowledge-soundness of the sumcheck PIOP.

Next, we analyze the complexity of the protocol: The prover time is O(k ·2μ)
as it runs a sumcheck PIOP for a polynomial g∗ := g̃ · ẽq of degree 2 and
μ + log k variables, where g̃ and ẽq can both be constructed in time O(k · 2μ).
Note that this is already optimal as the prover anyway needs to take O(k · 2μ)
time to evaluate {fi(zi)}i∈[k] before batching. The verifier takes time O(μ +
log k) in the sumcheck; the sum s can be computed in time O(k); the evaluation
ẽq(a1,a2) =

∑
i∈[k] eq(a1, 〈i〉) · ẽq(〈i〉,a2) can be derived from a1 and the k

evaluations {ẽq(〈i〉,a2) = eq(a2, zi)}i∈[k] where each evaluation eq(a2, zi) takes
time O(μ). In summary, the verifier time is O(kμ).

A More Efficient Batching Scheme in a Special Setting. Sometimes
one only needs to open a single multilinear polynomial at multiple points, where
each point is in the boolean hypercube. In this setting, we provide a more efficient
algorithm with complexity O(2μ) which is k times faster than Algorithm 3. We
also note that the technique can be used to construct an efficient Commit-and-
Prove SNARK scheme from multilinear commitments.

4 HyperPlonk: Plonk on the Boolean Hypercube

Equipped with the building blocks in Sect. 3, we now describe the Polynomial
IOP for HyperPlonk. In Sect. 4.1, we introduce RPLONK — an indexed rela-
tion on the boolean hypercube that generalizes the vanilla Plonk constraint
system [29]. We present a Polynomial IOP protocol for RPLONK and analyze its
security and efficiency in Sect. 4.2.

4.1 Constraint Systems

Notation. For any m ∈ Z and i ∈ [0, 2m), we use 〈i〉m = v ∈ Bm to denote the
m-bit binary representation of i, that is, i =

∑m
j=1 vj · 2j−1.

Definition 4.1 (HyperPlonk indexed relation). Fix public parameters
gp :=

(
F, �, n, �w, �q, f

)
where F is the field, � = 2ν is the public input length,

n = 2μ is the number of constraints, �w = 2νw , �q = 2νq are the number of wit-
nesses and selectors per constraint6, and f : F�q+�w → F is an algebraic map
with degree d. The indexed relation RPLONK is the set of all tuples

(i;x;w) = ((q, σ); (p, [[w]]);w) ,

where σ : Bμ+νw
→ Bμ+νw

is a permutation, q ∈ F (≤1)
μ+νq

, p ∈ F (≤1)
μ+ν , w ∈ F (≤1)

μ+νw
,

such that

6 We can pad zeroes if the actual number is not a power of two.

HyperPlonk 521

– the wiring identity is satisfied, that is,
(
σ; ([[w]], [[w]]);w

)
∈ RPERM (Defini-

tion 3.9);
– the gate identity is satisfied, that, is,

(
([[f̃]]); f̃

)
∈ RZERO (Definition 3.3),

where the virtual polynomial f̃ ∈ F (≤d)
μ is defined as

f̃(X) := f(q(〈0〉νq ,X), . . . , q(〈�q − 1〉νq ,X), w(〈0〉νw ,X), . . . , w(〈�w − 1〉νw ,X)); (10)

– the public input is consistent with the witness, that is, the public input poly-
nomial p ∈ F (≤1)

ν is identical to w(0μ+νw−ν ,X) ∈ F (≤1)
ν .

RPLONK is general enough to capture many computational models. In the
introduction, we reviewed how RPLONK captures simple arithmetic circuits.
RPLONK can be used to capture higher degree circuits with higher arity and
more complex gates, including state machine computations.

State Machines. RPLONK can model state machine computations, as shown by
Gabizon and Williamson [28]. A state machine execution with n− 1 steps starts
with an initial state state0 ∈ F

k where k is the width of the state vector. In
each step i ∈ [0, n − 1), given input the previous state statei and an online
input inpi ∈ F, the state machine executes a transition function f and outputs
statei+1 ∈ F

w. Let T := (state0, . . . , staten−1) be the execution trace and define
inpn−1 := ⊥, we say that T is valid for input (inp0, . . . , inpn−1) if and only if (i)
staten−1[0] = 0k, and (ii) statei+1 = f(statei, inpi) for all i ∈ [0, n − 1).

We build a HyperPlonk indexed relation that captures the state machine
computation. W.l.o.g we assume that n = 2μ for some μ ∈ N.7 Let νw be
the minimal integer such that 2νw > 2k. We also assume that there is a low-
depth algebraic predicate f∗ that captures the transition function f, that is,
f∗(state′, state, inp) = 0 if and only if state′ = f(state, inp). For each i ∈ [0, n):

– the online input at the i-th step is inpi := w(〈0〉νw
, 〈i〉μ);

– the input state of step i is statein,i :=
[
w (〈1〉νw

, 〈i〉μ) , . . . , w (〈k〉νw
, 〈i〉μ)

]
;

– the output state of step i is stateout,i :=
[
w (〈k + 1〉νw

, 〈i〉μ) , . . . ,

w (〈2k〉νw
, 〈i〉μ)

]
;

– the selector for step i is qi := q
(
〈i〉μ

)
;

– the transition and output correctness are jointly captured by a high-degree
algebraic map f ′,

f ′(inpi, statein,i, stateout,i;qi) := (1−qi)·f∗(stateout,i, statein,i, inpi)+qi ·statein,i[0] .

For all i ∈ [0, n − 1), we set qi = 0 so that statei+1 = fi(statei, inpi) if and
only if

f ′(inpi, statein,i, stateout,i;qi) = f∗(stateout,i, statein,i, inpi) = 0 ;

we set qn−1 = 1 so that statein,n−1[0] = 0 if and only if

f ′(inpn−1, statein,n−1, stateout,n−1;qn−1) = statein,n−1[0] = 0 .

7 We can pad with dummy states if the number of steps is not a power of two.

522 B. Chen et al.

Note that we also need to enforce equality between the i-th input state and the
(i − 1)-th output state for all i ∈ [n − 1]. We achieve it by fixing a permutation
σ and constraining that the witness assignment is invariant after applying the
permutation.

Remark 4.2. We can halve the size of the witness and remove the permutation
check by using the polynomial shifting technique in Sect. 3.6. Specifically, we can
remove output state columns stateout,i and replace it with statein,i+1 for every
i ∈ [0, n).

4.2 The PolyIOP Protocol

In this Section, we present a multivariate PIOP for RPLONK that removes expen-
sive FFTs.

Construction. Intuitively, the PIOP for RPLONK builds on a zero-check PIOP
(Sect. 3.2) for custom algebraic gates and a permutation-check PIOP (Sect. 3.5)
for copy constraints; consistency between the public input and the online witness
is achieved via a random evaluation check between the public input polynomial
and the witness polynomial.

Let gp :=
(
F, �, n, �w, �q, f

)
be the public parameters and let d := deg(f).

For a tuple (i;x;w) =
(
(q, σ); (p, [[w]]);w

)
, we describe the protocol in Fig. 1.

Indexer. I(q, σ) calls the permutation PIOP indexer ([[sid]], [[sσ]]) ← Iperm(σ).

The oracle output is ([[q]], [[sid]], [[sσ]]), where q ∈ F (≤1)
μ+νq

, sid, sσ ∈ F (≤1)
μ+νw

.

The protocol. P(gp, i, p, w) and V(gp, p, [[q]], [[sid]], [[sσ]]) run the following pro-
tocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
μ+νw

.
2. P and V run a PIOP for the gate identity, which is a zero-check PIOP (Sect. 3.2)

for
(
[[f̃]]; f̃

) ∈ RZERO where f̃ ∈ F (≤d)
μ is as defined in Eq. 10.

3. P and V run a PIOP for the wiring identity, which is a permutation PIOP
(Sect. 3.5) for

(
σ; ([[w]], [[w]]); (w, w)

) ∈ RPERM.
4. V checks the consistency between witness and public input. It samples r ←$

F
ν ,

queries [[w]] on input (〈0〉μ+νw−ν , r), and checks p(r)
?
= w(〈0〉μ+νw−ν , r).

Fig. 1. PIOP for RPLONK.

Theorem 4.3. Let gp :=
(
F, �, n, �w, �q, f

)
be the public parameters where

�w, �q = O(1) are some constants. Let d := deg(f). The construction in Fig. 1
is a multivariate PolyIOP for relation RPLONK (Definition 4.1) with soundness
error O

(
2µ+dμ

|F|
)

and the following complexity:

– the prover time is tpgpplonk = O
(
nd log2 d

)
;

HyperPlonk 523

– the verifier time is tvgpplonk = O(μ + �);
– the query complexity is qgpplonk = 2μ + 4 + log �w, that is, 2μ + log �w uni-

variate oracle queries, 3 multilinear oracle queries, and 1 query to the virtual
polynomial f̃ .

– the round complexity and the number of proof oracles is rcgpplonk = 2μ+1+νw;
– the number of field elements sent by the prover is nfgpplonk = 2μ;
– the size of the proof oracles is plgpplonk = O

(
n
)
; the size of the witness is n�w.

Remark 4.4. Two separate sumcheck PIOPs are underlying the HyperPlonk
PIOP. We can batch the two sumchecks into one by random linear combination.
The optimized protocol has round complexity μ + 1 + log �w, and the number
of field elements sent by the prover is μ. The query complexity μ + 3 + log �w,
that is, μ + log �w univariate queries, 2 multilinear queries, and 1 queries to the
virtual polynomial f̃ .

5 Orion+: A Linear-Time Multilinear PCS with Constant
Proof Size

Recently, Xie et al. [50] introduced a highly efficient multilinear polynomial
commitment scheme called Orion. The prover time is strictly linear, that is, O(2μ)
field operations and hashes where μ is the number of variables. For μ = 27, it
takes only 115 s to commit to a polynomial and compute an evaluation proof
using a single thread on a consumer-grade desktop. The verifier time and proof
size is Oλ(μ2), which also improves the state-of-the-art [16,32]. However, the
concrete proof size is still unsatisfactory, e.g., for μ = 27, the proof size is 6 MBs.
In this section, we describe a variant of Orion PCS that enjoys similar proving
complexity but has O(μ) proof size and verifier time, with good constants. In
particular, for security parameter λ = 128 and μ = 27, the proof size is less than
10 KBs, which is 600× smaller than Orion for μ = 27.

In this section, we first review the linear-code-based PCS that Orion builds
upon. Then we show how Orion+ shrinks the proof size and verifier time. For
more details see the full version.

Linear-Time PCS from Tensor-Product Argument [16,32]. Bootle, Chiesa, and
Groth [16] propose an elegant scheme for building PCS with strictly linear-time
provers. Golovnev et al. [32] later further simplify the scheme. Let f ∈ F (≤1)

μ be
a multilinear polynomial where fb ∈ F is the coefficient of Xb := Xb1

1 · · ·Xbµ
μ for

every b ∈ Bμ. Denote by n = 2μ, k = 2ν < 2μ and m = n/k, one can view the
evaluation of f as a tensor product, that is,

f(X) = 〈w, t0 ⊗ t1〉 (11)

where w = (f〈0〉, . . . , f〈n−1〉), t0 =
(
X〈0〉,X〈1〉, . . . ,X〈k−1〉

)
and t1 =(

X〈0〉,X〈k〉, . . . ,X〈(m−1)·k〉
)
. Here 〈i〉 denotes the μ-bit binary representation

of i. Let E : Fm → F
M be a linear encoding scheme, that is, a linear function

whose image is a linear code. Golovnev et al. [32, §4.2] construct a PCS scheme
as follows:

524 B. Chen et al.

– Commitment: To commit a multilinear polynomial f with coefficients w ∈
F

n, the prover P interprets w as a k ×m matrix, namely w ∈ F
k×m, encodes

w’s rows, and obtains matrix W ∈ F
k×M such that W [i, :] = E(w[i, :]) for

every i ∈ [k]. Then P computes a Merkle tree commitment for each column
of W and builds another Merkle tree T on top of the column commitments.
The polynomial commitment Cf is the Merkle root of T .

– Evaluation proof: To prove that f(z) = y for some point z ∈ F
μ and value

y ∈ F, the prover P translates z to vectors t0 ∈ F
k and t1 ∈ F

m as above and
proves that 〈w, t0 ⊗ t1〉 = y (where w ∈ F

k×m is the message encoded and
committed in Cf). To do so, P does two things:

• Proximity check: The prover shows that the matrix W ∈ F
k×M com-

mitted by Cf is close to k codewords. Specifically, the verifier sends a
random vector r ∈ F

k, the prover replies with a vector yr := r · w ∈ F
m

which is the linear combination of w’s rows according to r. The verifier
checks that the encoding of yr, namely E(yr) ∈ F

M , is close to r ·W , the
linear combination of W ’s rows. This implies that the k rows of W are
all close to codewords [32, §4.2].

• Consistency check: The prover shows that 〈w, t0 ⊗ t1〉 = y where w ∈
F

k×m is the k error-decoded messages from W ∈ F committed in Cf .
The scheme is similar to the proximity check except that we replace the
random vector r with t0. After receiving the linearly combined vector
y0 ∈ F

m, the verifier further checks that 〈y0, t1〉 = y.

We describe the concrete PCS evaluation protocol below.
Protocol 1 (PCS evaluation [32]): The goal is to check that 〈w, t0 ⊗ t1〉 = y

(where w ∈ F
k×m is the message encoded and committed in Cf).

1. V sends a random vector r ∈ F
k.

2. P sends vector yr,y0 ∈ F
m where yr =

∑k
i=1 ri · w[i, :], and y0 =

∑k
i=1 t0,i·

w[i, :] , where w ∈ F
k×m is the message matrix being encoded and committed.

3. V sends P a random subset I ⊆ [M] with size |I| = Θ(λ).
4. P opens the entire columns {W [:, j]}j∈I using Merkle proofs, where W ∈

F
k×M is the row-wise encoded matrix. That is, P outputs the column com-

mitment hj for every column j ∈ I, and provide the Merkle proof for hj w.r.t.
to Merkle root Cf .

5. V checks that (i) the Merkle openings are correct w.r.t. Cf , and (ii) for all
j ∈ I, it holds that E(yr)j = 〈r,W [:, j]〉 and E(y0)j = 〈t0,W [:, j]〉 .

6. V checks that 〈y0, t1〉 = y.

Note that by sampling a subset I with size Θ(λ) and checking that r·W , t0·W are
consistent with the encodings E(yr), E(y0) on set I, the verifier is confident that
r·W , t0 ·W are indeed close to the encodings E(yr), E(y0) with high probability.
By setting k =

√
n, the prover takes O(n) F-ops and hashes; the verifier time and

proof size are both Oλ(
√

n). Orion describes an elegant code-switching scheme
that reduces the proof size and verifier time down to Oλ(log2(n)). However,
the concrete proof size is still large. Next, we describe a scheme that has much
smaller proof.

HyperPlonk 525

Linear-Time PCS with Small Proofs. Similar to Orion (and more generally, the
proof composition technique [15,16,32]), instead of letting the verifier check
the correctness of yr, y0 and the openings of the columns W [:, j]∀j ∈ I, the
prover can compute another (succinct) outer proof validating the correctness of
yr,y0,W [:, j]. However, we need to minimize the outer proof’s circuit complex-
ity, which is non-trivial. Orion builds an efficient SNARK circuit that removes all
of the hashing gadgets, with the tradeoff of larger proof size. We describe a vari-
ant of their scheme that minimizes the proof size without significantly increasing
the circuit complexity.

Specifically, after receiving challenge vector r ∈ F
k, P instead sends V

commitments Cr, C0 to the messages yr,y0; after receiving V’s random subset
I ⊂ [M], P computes a SNARK proof for the following statement:
Statement 1 (PCS Eval verification):

– Witness: yr,y0 ∈ F
m, {W [:, j]}j∈I .

– Circuit statements:
• Cr, C0 are the commitments to yr, y0 respectively.
• For all j ∈ I, it holds that

∗ hj = H(W [:, j]) where H is a fast hashing scheme;
∗ E(yr)j = 〈r,W [:, j]〉 and E(y0)j = 〈t0,W [:, j]〉.

• 〈y0, t1〉 = y.
– Public output: {hj}j∈I , and Cr, C0.

Besides the SNARK proof, the prover also provides the openings of {hj}j∈I with
respect to the commitments Cf . Intuitively, the new protocol is “equivalent”
to Protocol 1, because the SNARK witness {W [:, j]}j∈I and yr,y0 are identical
to those committed in Cf , Cr, C0 by the binding property of the commitments;
and the SNARK does all of the verifier checks. Unfortunately, the scheme has
the following drawbacks:

– Instantiating the commitments with Merkle trees leads to a large overhead
on the proof size. In particular, the proof contains |I| Merkle proofs, each
with length O(log n). For 128-bit security, we need to set |I| = 1568, and the
proof size is at least 1 MBs for μ = 20.

– The random subset I varies for different evaluation instances. It is non-trivial
to efficiently lookup the witness {E(yr)j , E(y0)j}j∈I in the circuit if the set
I is dynamic (i.e. we need an efficient random access gadget).

– The circuit complexity is huge. In particular, the circuit is dominated by the
commitments to yr,y0 and the hash commitments to {W [:, j]}j∈I . This leads
to 2m+k|I| hash gadgets in the circuit. Note that we can’t use algebraic hash
functions like Rescue [1] or Poseidon [33], which are circuit-friendly, but have
slow running times. For μ = 26, k = m =

√
n and 128-bit security (where

|I| = 1568), this leads to 13 million hash gadgets where each hash takes
hundreds to thousands of constraints, which is unaffordable.

We resolve the above issues via the following observations.
First, a large portion of the multilinear PCS evaluation proof is Merkle open-

ing paths. We can shrink the proof size by replacing Merkle trees with multilinear

526 B. Chen et al.

PCS that enable efficient batch openings (Sect. 3.7). Specifically, in the com-
mitting phase, after computing the hashes of W ’s columns, instead of building
another Merkle tree T of size M = O(n/k) and set the Merkle root as the com-
mitment, the prover can commit to the column hashes using a multilinear PCS
(e.g. KZG). Though the KZG committing is more expensive, the problem size has
been reduced to O(n/k), thus for sufficiently large k, the committing complexity
is still approximately O(n) F-ops. A great advantage is that the batch opening
proof for {hj}j∈I consists of only O(log n) group/field elements, with good con-
stant. Even better, when instantiating the outer proof with HyperPlonk(+), the
openings can be batched with those in the outer SNARK and thus incur almost
no extra cost in proof size.

Second, with Plookup, we can efficiently simulate random access in arrays in
the SNARK circuit. For example, to extract witness {Yr,j = E(yr)j}j∈I , we can
build an (online) table T where each element of the table is a pair (i, E(yr)i)
(1 ≤ i ≤ M). Then for every j ∈ I, we build a lookup gate checking that
(j,Yr,j) is in the table T , thus guarantee that Yr,j is identical to E(yr)j . The
circuit description is now independent of the random set I and we only need to
preprocess the circuit once in the setup phase.

Third, with the help of Commit-and-Prove-SNARKs (CP-SNARK) [2,20,21],
there is no need to check the consistency between commitments Cr, C0 and yr,y0

in the circuit. Instead, we can commit (yr,y0) to a multilinear commitment C,
and build a CP-SNARK proof showing that the vector underlying C is identical
to the witness vector (yr,y0) in the circuit. We further observe that C can be a
part of the witness polynomials, which further removes the need of an additional
CP-SNARK proof.

After applying previous optimizations, the proof size is dominated by the
|I| field elements {hj}j∈I . We can altogether remove them by applying the CP-
SNARK trick again. In particular, since {hj}j∈I are both committed in the
polynomial commitment Cf and the SNARK witness commitment, it is suffi-
cient to construct a CP-SNARK proving that they are consistent in the two
commitments with respect to set I. We refer to the full version for constructing
CP-SNARK proofs from multilinear commitments.

Since the bulk of verification work is delegated to the prover, there is no need
to set k =

√
n. Instead, we can set an appropriate k = Θ(λ/ log n) to minimize

the outer circuit size. In particular, the circuit is dominated by 2 linear encodings
(of length n/k) and |I| hashes (of length k). If we use vanilla HyperPlonk+ as the
outer SNARK scheme and use Reinforced Concrete [5] as the hashing scheme
that has a similar running time to SHA-256, for μ = 30, k = 64 and 128-bit
security (where |I| = 1568), the circuit complexity is only ≈ 226 constraints.
And we can expect the running time of the outer proof to be Oλ(n).

HyperPlonk 527

References

1. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans.
Symm. Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-
45

2. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C.,
Takahashi, A.: ECLIPSE: enhanced compiling method for pedersen-committed
zkSNARK engines. Cryptology ePrint Archive, Report 2021/934 (2021). https://
eprint.iacr.org/2021/934

3. Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: transparent
constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022).
https://eprint.iacr.org/2022/419

4. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

5. Barbara, M., et al.: Reinforced concrete: fast hash function for zero knowledge
proofs and verifiable computation. Cryptology ePrint Archive, Report 2021/1038
(2021). https://eprint.iacr.org/2021/1038

6. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., San-
nella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl,
July 2018. https://doi.org/10.4230/LIPIcs.ICALP.2018.14

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

9. Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast fourier
transform (ECFFT) part ii: scalable and transparent proofs over all large fields
(2022)

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

11. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

12. Ben-Sasson, E., Sudan, M.: Short pcps with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

13. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012. https://doi.
org/10.1145/2090236.2090263

14. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2021/1038
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

528 B. Chen et al.

15. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

16. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 2

17. Bootle, J., Chiesa, A., Hu, Y., Orrù, M.: Gemini: elastic SNARKs for diverse
environments. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part II. LNCS, vol. 13276, pp. 427–457. Springer, Heidelberg, May/June 2022.
https://doi.org/10.1007/978-3-031-07085-3 15

18. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

19. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

20. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-
prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4 1

21. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and com-
position of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press, November 2019.
https://doi.org/10.1145/3319535.3339820

22. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report
2022/1355 (2022). https://eprint.iacr.org/2022/1355

23. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. Cryptology ePrint Archive, Report 2017/305 (2017). https://eprint.iacr.
org/2017/305

24. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

25. Drake, J.: Plonk-style SNARKs without FFTs (2019). https://notes.ethereum.org/
DLRqK9V7RIOsTZkab8HmQ?view

26. Gabizon, A.: Multiset checks in plonk and plookup. https://hackmd.io/@arielg/
ByFgSDA7D

27. Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup
tables. Cryptology ePrint Archive, Report 2020/315 (2020). https://eprint.iacr.
org/2020/315

28. Gabizon, A., Williamson, Z.J.: Proposal: the turbo-plonk program syntax for speci-
fying snark programs (2020). https://docs.zkproof.org/pages/standards/accepted-
workshop3/proposal-turbo plonk.pdf

29. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2017/305
https://doi.org/10.1007/978-3-030-45721-1_26
https://notes.ethereum.org/DLRqK9V7RIOsTZkab8HmQ?view
https://notes.ethereum.org/DLRqK9V7RIOsTZkab8HmQ?view
https://hackmd.io/@arielg/ByFgSDA7D
https://hackmd.io/@arielg/ByFgSDA7D
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2019/953

HyperPlonk 529

30. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

32. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-
time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report
2021/1043 (2021). https://eprint.iacr.org/2021/1043

33. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: Bailey, M., Greenstadt,
R. (eds.) USENIX Security 2021, pp. 519–535. USENIX Association, August 2021

34. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

35. Harvey, D., Van Der Hoeven, J.: Polynomial multiplication over finite fields in
time. J. ACM (JACM) 69(2), 1–40 (2022)

36. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

37. Kattis, A.A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list
polynomial commitments. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022, pp. 1725–1737. ACM Press, November 2022. https://doi.org/10.
1145/3548606.3560657

38. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90453-1 1

39. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM (JACM) 39(4), 859–868 (1992)

40. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

41. Pearson, L., Fitzgerald, J., Masip, H., Bellés-Muñoz, M., Muñoz-Tapia, J.L.:
PlonKup: reconciling PlonK with plookup. Cryptology ePrint Archive, Report
2022/086 (2022). https://eprint.iacr.org/2022/086

42. Posen, J., Kattis, A.A.: Caulk+: table-independent lookup arguments. Cryptology
ePrint Archive, Report 2022/957 (2022). https://eprint.iacr.org/2022/957

43. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

44. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020). https://eprint.iacr.org/2020/1275

45. System, E.: Jellyfish jellyfish cryptographic library (2022). https://github.com/
EspressoSystems/jellyfish

46. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

47. Thaler, J.: Proofs, arguments, and zero-knowledge (2020)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-642-36594-2_13
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://github.com/EspressoSystems/jellyfish
https://github.com/EspressoSystems/jellyfish
https://doi.org/10.1007/978-3-642-40084-1_5

530 B. Chen et al.

48. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press, May 2018. https://doi.org/
10.1109/SP.2018.00060

49. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

50. Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover
time. Cryptology ePrint Archive, Report 2022/1010 (2022). https://eprint.iacr.
org/2022/1010

51. Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510,
pp. 299–328. Springer, Heidelberg, August 2022. https://doi.org/10.1007/978-3-
031-15985-5 11

52. Xiong, A.L., et al.: VERI-ZEXE: decentralized private computation with universal
setup. Cryptology ePrint Archive, Report 2022/802 (2022). https://eprint.iacr.org/
2022/802

53. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.:
Caulk: lookup arguments in sublinear time. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022, pp. 3121–3134. ACM Press, November 2022.
https://doi.org/10.1145/3548606.3560646

54. Zcash: PLONKish arithmetization. https://zcash.github.io/halo2/concepts/
arithmetization.html (2022)

55. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy, pp. 859–876. IEEE Computer Society Press, May 2020. https://doi.org/
10.1109/SP40000.2020.00052

https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/1010
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3548606.3560646
https://zcash.github.io/halo2/concepts/arithmetization.html
https://zcash.github.io/halo2/concepts/arithmetization.html
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

Spartan and Bulletproofs are
Simulation-Extractable (for Free!)

Quang Dao1(B) and Paul Grubbs2

1 Carnegie Mellon University, Pittsburgh, USA
qvd@andrew.cmu.edu

2 University Of Michigan, Ann Arbor, USA
paulgrub@umich.edu

Abstract. Increasing deployment of advanced zero-knowledge proof
systems, especially zkSNARKs, has raised critical questions about their
security against real-world attacks. Two classes of attacks of concern in
practice are adaptive soundness attacks, where an attacker can prove
false statements by choosing its public input after generating a proof,
and malleability attacks, where an attacker can use a valid proof to cre-
ate another valid proof it could not have created itself. Prior work has
shown that simulation-extractability (SIM-EXT), a strong notion of secu-
rity for proof systems, rules out these attacks.

In this paper, we prove that two transparent, discrete-log-
based zkSNARKs, Spartan and Bulletproofs, are simulation-extractable
(SIM-EXT) in the random oracle model if the discrete logarithm assump-
tion holds in the underlying group. Since these assumptions are required
to prove standard security properties for Spartan and Bulletproofs, our
results show that SIM-EXT is, surprisingly, “for free” with these schemes.
Our result is the first SIM-EXT proof for Spartan and encompasses both
linear- and sublinear-verifier variants. Our result for Bulletproofs encom-
passes both the aggregate range proof and arithmetic circuit variants, and
is the first to not rely on the algebraic group model (AGM), resolving an
open question posed by Ganesh et al. (EUROCRYPT’22). As part of our
analysis, we develop a generalization of the tree-builder extraction theorem
of Attema et al. (TCC’22), which may be of independent interest.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs)
allow a computationally-bounded prover to produce a proof about a NP state-
ment without revealing anything other than its validity, and with proof size
sublinear in the size of the witness [12,32,34]. An important line of recent works
[7,9,13,15,17,20,32,35,38,44,48,57,60] has produced concretely efficient con-
structions of zkSNARKs for range proofs (e.g., Bulletproofs [16]) and general
arithmetic circuit satisfiability (e.g., Spartan [54]) that have seen widespread
deployment, especially in blockchains and cryptocurrencies [1,8,21,51,53,56,61],
along with potential deployment in other areas of interests [40].

Q. Dao—Part of the work was done while the first author was at the University of
Michigan.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 531–562, 2023.
https://doi.org/10.1007/978-3-031-30617-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_18

532 Q. Dao and P. Grubbs

As zkSNARKs are deployed in practice, it is important to understand
whether they are actually secure against the kinds of attacks they are likely
to face in real systems. Two security properties in particular give us pause: first,
adaptive soundness, where a malicious prover must be unable to prove false
statements even if it chooses the input after generating a proof; a related notion,
adaptive knowledge soundness, guarantees extraction is possible against such
an adaptive prover. The second property is non-malleability, where an accept-
ing proof cannot be modified into a different one without knowing the witness.
Neither property is implied by standard security definitions like non-adaptive
(knowledge) soundness and zero knowledge, and schemes lacking these proper-
ties have been attacked in practice. For example, the voting system Helios was
broken by an adaptive soundness attack on a zero-knowledge proof [11]; subse-
quent work found similar issues with the SwissPost voting system [41] for govern-
ment elections. Though not against zero-knowledge proofs directly, malleability
attacks are common in cryptocurrencies: for example, a malleability attack was
allegedly used1 to steal hundreds of millions of dollars from MtGox [47].

Fortunately, a security property called simulation extractability (SIM-EXT)
implies adaptive (knowledge) soundness and non-malleability for zkSNARKs.
Intuitively, SIM-EXT requires that the knowledge extractor succeeds even when
the malicious prover can request simulated proofs for arbitrary statements. If
we could prove zkSNARKs that are already used (or are likely to be used) in
practice are SIM-EXT, we could be more confident they would resist advanced
attacks that use adaptivity or malleability. Ideally, we could prove SIM-EXT in
idealized models (e.g., the random oracle model, or ROM) and using assumptions
(e.g. discrete-log), which are sufficient to prove standard security guarantees for
zkSNARKs; this would indicate SIM-EXT comes (roughly) “for free”.

A pair [29,30] of beautiful recent works by Ganesh et al. on SIM-EXT for
zkSNARKs lays a path towards this goal. In [29], the authors give a general
SIM-EXT theorem for zkSNARKs with updatable SRS, and use it to show PlonK
[28], Marlin [20], and Sonic [45] are all SIM-EXT. In [30], the authors show
SIM-EXT for Bulletproofs. Unfortunately, these works do not get us all the way
towards our goal: first, because their techniques do not extend to transparent
zkSNARKs like Spartan, which use different building blocks; second, because
their results rely on the algebraic group model (AGM) [27] and are not currently
known to hold from discrete log in the ROM.

1.1 Our Results

In this paper we prove that Spartan and Bulletproofs, two state-of-the-art trans-
parent zkSNARKs, satisfy SIM-EXT in the ROM assuming only that the dis-
crete log assumption holds. Our analyses required developing some new techni-
cal tools which may be of independent interest. Since Spartan and Bulletproofs
were originally analyzed in the ROM and rely on the discrete log assumption,

1 A later study [22] cast some doubt on these claims, but did find evidence that over
three hundred thousand Bitcoins had been involved in malleability attacks.

Spartan and Bulletproofs are Simulation-Extractable 533

our results imply these protocols are SIM-EXT “for free”—unmodified and with-
out additional assumptions or stronger idealized models. More precisely, we prove
SIM-EXT for two variants of Spartan—Spartan-NIZK, which has linear verifier
time, and Spartan-SNARK, which has sublinear verifier time—instantiated with
the default Hyrax-based polynomial commitment scheme [57]. These are the first
proofs of SIM-EXT for any Spartan variant; we believe the Spartan-SNARK result
is also the first proof of SIM-EXT for any transparent zkSNARK with sublinear
verifier time. Similarly, we prove SIM-EXT for two versions of Bulletproofs—the
aggregate range proof protocol BP-ARP used in several cryptocurrencies [36,46]
and the arithmetic circuit satisfiability proof BP-ACSPf. Our proofs for these
protocols are the first that do not rely on the algebraic group model.

Our results help to build confidence that state-of-the-art and deployed
zkSNARKs resist the kinds of attacks these protocols will face as they see wider
deployment in the future. Of more theoretical interest, they also imply the sur-
prising fact that, in the ROM, a powerful primitive like a SIM-EXT zkSNARK
can be built from a very weak assumption like discrete log.

The proofs of these four theorems are nontrivial; to prove them we built sev-
eral new technical tools that may be of independent interest for future SIM-EXT
analyses. We extended prior security notions for SIM-EXT to the transparent
NIZK setting. We also needed to develop a nontrivial generalization of the tree
extractor of Attema et al. [2].

Our analyses are also done with an emphasis on concrete security. Where
possible we try to explicitly measure adversarial runtime and success probability.
We also evaluate our bounds to estimate bit security for typical parameters for
Spartan and Bulletproofs, and compare the bit security we obtain against other
analyses where possible. Our bounds inherit the non-tightness common to most
rewinding-based knowledge soundness analyses of NIZKs, and so the provable
SIM-EXT security we get (in terms of bits) is quite low. Nevertheless, we believe
our results can be improved by future work, and hope they eventually inform
future parameter selection processes for zkSNARK standards [62].

1.2 Technical Overview

We follow the high-level approach to proving SIM-EXT developed by [24] and fur-
ther generalized in [29,30]: for a Fiat-Shamir-compiled argument ΠFS, SIM-EXT
is implied by three other properties: (1) adaptive knowledge soundness, (2) a
form of zero knowledge, and (3) a unique-response property. Since the results
in [24] are specific to Σ-protocols and those in [30] are specific to the AGM, we
take the SIM-EXT theorem of [29] as our starting point. After suitable adap-
tations to the transparent setting—we give these in Sect. 3—this theorem says
that ΠFS is SIM-EXT in the ROM if:

1. it is adaptively knowledge sound (hereafter we will omit “adaptive” if it is
clear from context),

2. it is perfect k-ZK, meaning that there exists a simulator that perfectly sim-
ulates honest proofs, but only programs the RO when generating the k-th
challenge,

534 Q. Dao and P. Grubbs

3. it is k-UR for the same round k, meaning no adversary can produce two
accepting proofs that are identical up to the k-th round, even if it can pro-
gram that round’s challenge.

Proving these three properties is challenging, and required us to develop novel
techniques which we summarize below.

Knowledge Soundness. We prove knowledge soundness for non-interactive ver-
sions of Spartan and Bulletproofs using a standard chain of reductions: namely,
we reduce to the special soundness of the underlying interactive argument. Intu-
itively, special soundness of a proof system refers to the ability of an extractor
to extract a witness from a tree of accepting transcripts with suitable struc-
ture. For multi-round protocols, special soundness is parameterized by a vector
(n1, n2, . . . , nr) describing the needed structure: each node at level one must
have n1 outgoing edges, level two nodes have n2 edges, etc. Recently, Attema et
al. [2] proved that knowledge soundness of the Fiat-Shamir-compiled argument
ΠFS follows from special soundness of Π. We take it as our starting point; unfor-
tunately, we cannot apply it directly to either Spartan or Bulletproofs. There
are two main reasons for this: first, Attema et al. only consider perfect special
soundness, but both Spartan and Bulletproofs only satisfy computational special
soundness—roughly, because an extractor could fail to extract a witness from a
tree of transcripts if a malicious prover finds a nontrivial discrete log relation.

The second reason is more subtle, and has to do with ensuring the tree has
the right structure for extraction to be possible. In Attema et al., each node of
the transcript tree is a prover message whose outgoing edges are labeled with
distinct verifier challenges. For certain rounds in both Spartan and Bulletproofs,
these verifier challenges must satisfy an extra predicate (beyond distinctness)
for extraction to be possible. The tree-builder by Attema et al. does not support
outputting such trees with extra structure.

To address these limitations, in Sect. 4 we give a generalization of Attema
et al.’s tree-builder that has the desired properties. Our generalization captures
other predicates on verifier challenges using the notion of an efficiently-decidable
partition of the space of challenges. Intuitively, we build a wrapper algorithm
that sits between the prover and the Attema et al. tree-builder, and ensures the
tree has the right structure by enforcing a partition of the challenge space.

Armed with this generalization, we prove computational special soundness for
all variants of Spartan and Bulletproofs, which in turn implies knowledge sound-
ness for their Fiat-Shamir-compiled versions. In both cases, our generalized tree-
builder is a crucial component: for example, special soundness of Bulletproofs
requires verifier challenges to be distinct modulo ±1, and Spartan requires linear
independence for batching challenges sent during the sumcheck subprotocol.

Building k-ZK Simulators. For SIM-EXT, we must prove that Spartan and Bul-
letproofs are perfect k-ZK, meaning their proofs can be simulated by a simulator
that can only program the RO in a single round. This is a departure from
the typical way to build NIZK simulators, which typically reprogram the RO

Spartan and Bulletproofs are Simulation-Extractable 535

in every round; in particular, doing this for Spartan and Bulletproofs requires
giving entirely new simulators for these constructions.

We build our k-ZK simulator for Bulletproofs using an approach similar
to [29]. Our k-ZK simulator construction for Spartan-NIZK uses a novel strat-
egy that is worth highlighting here: it delays the round at which the RO is
reprogrammed as late as possible in the protocol (in fact, our simulator only
needs to reprogram the very last verifier challenge). Another interesting aspect
of our k-ZK simulator for Spartan is that the same simulator works for both
Spartan-NIZK and Spartan-SNARK—though the two protocols have major differ-
ences, we observe that the parts of Spartan-SNARK that work differently than
Spartan-NIZK consist entirely of evaluating (extensions of) public matrices at a
public point, and so are trivially simulatable.

k-Unique Response. To finish, we need to show Spartan and Bulletproofs are
k-UR for the same k as their respective k-ZK simulators. For Spartan variants,
this is straightforward—we need only reprogram the RO during the final Σ-
subprotocol, and it is well known [24] that Σ-protocols satisfy unique response.

For BP-ARP and BP-ACSPf, proving k-UR is more challenging. Indeed, prior
work relied heavily on the AGM for analyzing unique response—for example, [30]
observe that proving their version of unique response is the only part of their
analysis that seems to actually rely on the AGM, and [29] need the AGM to
show that KZG polynomial commitments are unique response.

We prove k-UR for Bulletproofs using a new proof strategy that, intuitively,
replaces the AGM with extraction. In more detail, we extract witnesses from
both proofs output by the k-UR adversary, then argue that either the witnesses
are the same or the adversary has found a discrete log relation. To finish, we
use the (novel) result that the Bulletproofs inner-product argument has unique
proofs. Thus, if the witnesses are the same, the proofs must be the same as well.

Limitations and open questions. Our results do have some important limitations.
Notably, our emphasis on removing the AGM means that the tightness of our
Bulletproofs results is worse than the comparable result of [30]. While this is
inherent in some sense because our extractors use rewinding instead of straight-
line extraction, it means that the bit security of Bulletproofs and Spartan we
could prove with typical parameters would come out to be quite poor. We discuss
this in Sect. 7.

An interesting open problem we leave to future work is generalizing our
techniques to other transparent zkSNARKs. In particular, there is a great deal
of commonality between our proofs for Spartan and Bulletproofs which could be
abstracted out and proven more generally. As many later works [35,44,55,60]
have built on Spartan viewed as a polynomial IOP [17,20], it would be interesting
to generalize our analyses into a SIM-EXT framework for polynomial IOPs.

536 Q. Dao and P. Grubbs

1.3 Related Work

Simulation-extractability (SIM-EXT) for NIZKs was first defined in [52] (using
different terminology). Thereafter, a long line of work refined and studied
SIM-EXT [24,49], built SIM-EXT NIZKs [37], and showed that SIM-EXT is suf-
ficient for other primitives like signatures of knowledge [19]. Other concurrent
works attacked security of NIZKs in deployed systems, such as the voting system
Helios, showing the importance of adaptive soundness [11] which is implied by
SIM-EXT. Other work has looked at UC security for NIZKs [18] and given results
on SIM-EXT in the QROM [23]. These works are not relevant to our results, since
SIM-EXT does not imply UC security in the ROM; further, we study zkSNARKs
built from discrete log, which is broken by quantum attacks.

The simulation-extractability of zkSNARKs is comparatively less well-
studied. Two important prior works [29,30] which rely on the algebraic group
model [27] (AGM) are described above; [30] proves SIM-EXT of Bulletproofs,
and [29] proves SIM-EXT of Plonk [28], Marlin [20], and Sonic [45].

Other work has investigated generic transforms for achieving SIM-EXT from
any zkSNARK [5], particularly focused on SIM-EXT transforms for the Groth16
zkSNARK [3,4]. Since Groth16 [38] is built using a different approach than either
Spartan or Bulletproofs, and relies on non-falsifiable knowledge assumptions or
the AGM, our results are incomparable to theirs.

Our paper analyzes SIM-EXT for Bulletproofs [16] and Spartan [54], two
transparent zkSNARKs built from discrete-log assumptions. There is a line of
related work building similar SNARKs, such as Hyrax [57], and extensions to
recursive composition like Halo [15] and Nova [44]. We suspect our techniques
would extend to these constructions, and leave extending them to future work.

A key technical tool our results rely on is a “tree-builder” for proving knowl-
edge soundness of NIZKs built from multi-round interactive arguments. As
described above, our approach is a generalization of a beautiful recent work
by Attema et al. [2]. This work develops a tree-builder for perfect special sound
protocols which are extractable given a tree of distinct verifier challenges; we
generalize their result to support computational special soundness and to allow
different conditions on verifier challenges. Wikstrom [59] gives an alternate con-
struction and analysis of a tree-builder which could have served as a starting
point for us; however, their extractor has a worse concrete running time and
tightness than Attema et al. In a revision of [17], the authors generalize Attema
et al.’s tree builder to handle general predicates on prover messages; since we
need more general predicates on verifier challenges, their generalization is not
directly useful to us. Other recent works [33,42] analyze the knowledge sound-
ness of Bulletproofs in the AGM/GGM without using an explicit tree-builder
by, for example, going through the notion of round-by-round soundness [10].

Concurrent work. After the acceptance of this paper, Ganesh et al. [31] updated
their ePrint version to contain a proof that Bulletproofs satisfy SIM-EXT in the
ROM, removing the need for the AGM as in their conference version [30]. We
note that their technique is somewhat different from ours, and that our results

Spartan and Bulletproofs are Simulation-Extractable 537

additionally include proving that Spartan satisfies SIM-EXT. We leave a more
detailed comparison of our work with theirs to the full version.

2 Preliminaries

We use F to denote a finite field with F
∗ = F−{0}, and λ to denote the security

parameter. For k, n ∈ N, we denote [k, n] = {k, k + 1, . . . , n}, and [n] = [1, n].
We denote uniform sampling from a set S by a

$← S. We denote vectors by
boldface, e.g. g = (g1, . . . , gn), and write ga to mean ga1

1 · · · · ·gan
n . We denote the

length of a vector a by |a|, the inner product between two vectors a,b by a · b
or 〈a,b〉, the Hadamard (entry-wise) product by a ◦ b, and the tensor product
by a ⊗ b = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm).

Our relations are of the form R ⊆ {0, 1}∗×{0, 1}∗×{0, 1}∗ and are efficiently
decidable, e.g. there exists a deterministic polynomial time algorithm that given
(pp, x, w) outputs whether (pp, x, w) ∈ R. We abbreviate PPT for probabilistic
polynomial time, and EPT for expected (probabilistic) polynomial time.

We use code-based games [6] to define many of our security notions. A game
GA1,...,An

S denotes a run of parties A1, . . . ,An on a pre-specified set of procedures
given by S, returning a bit b ∈ {0, 1}. We denote Pr[GA1,...,An

S] the probability
over the random coins used by S and all adversaries that the game’s output is 1.

2.1 Assumptions

We assume the existence of a group generator generating global public parame-
ters ppG := (G,F) ← GroupGen(1λ), where G is a group of prime order, with F

as the corresponding field. These global parameters are used in the setup phase
of every protocol we consider. We also assume a generator sampling procedure
g1, . . . , gn

$← GenSamp(G, n). For space reasons, we omit definitions of the stan-
dard discrete log (DL) and DL relation assumptions, and refer to reader to [33].

2.2 Interactive Arguments

We define an interactive argument for relation R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗.

Definition 2.1. An interactive argument for a relation R is a tuple of PPT
algorithms Π = (Setup,P,V) with the following syntax:

• Setup(ppG) → pp : outputs public parameters pp given global parameters ppG,
• 〈P(w),V〉(pp, x) → {0, 1} : an interactive protocol whereby the prover P,

holding a witness w, interacts with the verifier V on common input (pp, x) to
convince V that (pp, x, w) ∈ R. At the end, V outputs a bit for accept/reject.

In the definition above, we assume the existence of a global setup algorithm
ppG ← GlobalSetup(1λ) (see Sect. 2.1), run once and for all before the setup phase
of any interactive argument. For space reasons, we refer to reader to e.g. [17] for
standard definitions of completeness, knowledge soundness, and honest-verifier
zero knowledge for interactive arguments.

538 Q. Dao and P. Grubbs

Definition 2.2 (Public-Coin). An interactive argument Π = (Setup,P,V) is
public-coin if in each round i the verifier V samples its message uniformly at
random from some challenge space Chi, and uses no other randomness.

Any public-coin interactive argument has a general (2r+2)-message, or equiv-
alently, (r + 1)-round format where the verifier sends the 0-th message, and
the prover sends the last message. In particular, the transcript is of the form
tr = (c0, a1, c1, . . . , ar, cr, ar+1), where (a1, . . . , ar+1) are the prover’s messages
and (c0, . . . , cr) are the verifier’s messages. Additionally, we have c0 = ∅ in all
protocols we consider, so that we will only consider (2r + 1)-message protocols
(where the prover sends the first and last message).

2.3 Non-Interactive Arguments in the ROM

In practice, we often use the Fiat-Shamir transform (see Sect. 2.4) to compile
public-coin interactive arguments into their non-interactive versions, in a model
where both parties have black-box access to a random oracle, i.e. a uniformly
sampled function H : {0, 1}∗ → {0, 1}λ. For public-coin (2r + 1)-message inter-
active arguments with challenge spaces Ch1, . . . ,Chr, we will actually need r
independent random oracles Hi : {0, 1}∗ → Chi with i ∈ [1, r]. For simplicity, we
will denote these by a single random oracle H, and it will be clear from context
which random oracle is being used in a given round.

Definition 2.3. A non-interactive argument (NARG) in the ROM for a relation
R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ is a tuple of algorithms Π = (Setup,P,V), with
P,V having black-box access to a random oracle H, with the following syntax:

• Setup(ppG) → pp generates the public parameters,
• PH(pp, x, w) → π generates a proof given pp and an input-witness pair (x,w),
• VH(pp, x, π) → {0, 1} checks if proof π is valid for pp and input x.

We define the following properties of NARGs:

• Completeness. For every adversary A,

Pr

⎡
⎢⎣
(pp, x, w) �∈ R ∨
VH(pp, x, π) = 1

:

pp ← Setup(ppG)

(x,w) ← AH(pp)

π ← PH(pp, x, w)

⎤
⎥⎦ = 1.

• Knowledge Soundness. Π is (adaptively) knowledge sound (KS) if there
exists an extractor E running in expected polynomial time such that for every
PPT adversary P∗, the following probability is negligible in λ:

AdvKS
ΠFS,R(E ,P∗) :=

∣∣∣Pr[KSP∗
0,ΠFS

(λ)] − Pr[KSE,P∗
1,ΠFS,R(λ)]

∣∣∣ .

The knowledge soundness games are defined in Fig. 1.

Spartan and Bulletproofs are Simulation-Extractable 539

Fig. 1. Knowledge soundness security games. Here the extractor E is given black-box
access to P∗. In particular, E implements H for P∗ and can rewind P∗ to any point.

Fig. 2. Zero-knowledge security games. Here the simulator S gets access to a RePro
oracle that on input (a, b) reprograms H(a) := b.

We define zero-knowledge in a model where the random oracle is explicitly-
programmable [58] by the simulator. Here, the simulator S can reprogram the
random oracle H, and this modified oracle is provided to the distinguisher.

Definition 2.4 (Zero-Knowledge). Π satisfies (statistical) unbounded non-
interactive zero-knowledge (NIZK) if there exists a PPT simulator S such that for
pp ← Setup(ppG) and any unbounded distinguisher D, the following probability
is negligible in λ:

AdvZK
ΠFS,R(S,D) :=

∣∣∣Pr
[
ZKD,P

0,ΠFS,R(λ)
]

− Pr
[
ZKD,S

1,ΠFS,R(λ)
]∣∣∣ .

The zero-knowledge games are defined in Fig. 2.

2.4 The Fiat-Shamir Transformation

We define the Fiat-Shamir transform [25], which removes interaction from any
public-coin interactive argument.

Definition 2.5 (Fiat-Shamir Transformation). Let Π = (Setup,P,V) be a
public-coin (2r+1)-message interactive argument of knowledge. Denote the tran-
script as tr = (a1, c1, . . . , ar, cr, ar+1). The Fiat-Shamir transformation turns Π
into a non-interactive protocol ΠFS in the ROM, where:

540 Q. Dao and P. Grubbs

• SetupFS(ppG) is the same as Setup(ppG),
• the prover PFS, on input (pp, x, w), invokes P(x,w), and instead of asking the

verifier for challenge ci in round i, queries the random oracle to get

ci = H(pp, x, a1, . . . , ai) for all i = 1, . . . , r.

PFS then outputs a non-interactive proof π = (a1, . . . , ar, ar+1).
• the verifier VFS, on input (pp, x, π), derives challenges ci’s by querying the

random oracle as PFS does, then runs V(pp, x, (a1, c1, . . . , ar, cr, ar+1)) and
outputs what V outputs.

For all protocols Π considered in this paper, it is clear that both Π and ΠFS

satisfy (perfect) completeness. Furthermore, ΠFS satisfies knowledge soundness
if Π is (computationally) special sound (see Sect. 4). For zero-knowledge, we have
a canonical simulator SFS for ΠFS based on any HVZK simulator S for Π.

Definition 2.6 (Canonical Simulator). Let Π be a public-coin interactive
argument with HVZK simulator S. Define the canonical simulator SFS for ΠFS

to be an algorithm that on input (pp, x) runs S(pp, x) to get a transcript tr =
(a1, c1, . . . , ar, cr, ar+1), then reprogram H(pp, x, a1, . . . , ai) := ci for all i ∈ [r].

Remark 2.7. It can be shown that SFS is a NIZK simulator for ΠFS if S is an
HVZK simulator and the fact that the first message a1 has sufficient min-entropy
[24,30]. Looking ahead, given any simulator S for ΠFS, to show that it is a
NIZK simulator, it suffices to show that S produces indistinguishable transcripts
tr = (a1, c1, . . . , ar+1) from honestly generated transcripts, and that the first
message a1 has sufficient min-entropy.

3 Simulation Extractability

We define the central notion of our work, simulation extractability (SIM-EXT),
which requires that extractability holds even when the malicious prover is given
access to simulated proofs. SIM-EXT implies adaptive (knowledge) soundness
and non-malleability for the proof system [30,43,50], and allows building secure
signatures of knowledge via standard transforms [19,39].

Definition 3.1 (Simulation Extractability). Let Π = (Setup,P,V) be a
public-coin zero-knowledge interactive argument for relation R with associated
NIZK ΠFS = (Setup,PFS,VFS). We say ΠFS satisfies simulation extractability
(SIM-EXT) with respect to a simulator S if there exists an efficient simulator-
extractor E such that for every PPT adversary P∗, the following probability is
negligible in λ:

AdvSIM-EXT
ΠFS,R (S, E ,P∗, λ) :=

∣∣∣Pr[SIM-EXTS,P∗
0,ΠFS

(λ)] − Pr[SIM-EXTE,S,P∗
1,ΠFS,R(λ)]

∣∣∣ .

Games SIM-EXT0 and SIM-EXT1 are defined in Fig. 3.

Spartan and Bulletproofs are Simulation-Extractable 541

Fig. 3. SIM-EXT security games. In both games, S returns a proof π upon an input x
(and may reprogram the random oracle), while QSim records all pairs (x, π) queried by
P∗. H′ denotes the modified RO after all proof simulation queries. E is given black-box
access to P∗; in particular, it implements H and S for P∗ and can rewind P∗ to any
point in its execution (with same initial randomness).

We will state an adaptation of the results in [29], which establishes a general
theorem about simulation extractability. In particular, the authors of [29] define
the notion of a k-zero-knowledge simulator that only needs to reprogram the ran-
dom oracle in round k. Similarly, they define a property of k-unique response,
which roughly states that the malicious prover’s responses are uniquely deter-
mined after round k. Together, these two properties (for the same k) along with
knowledge soundness will be enough to show simulation extractability.

Definition 3.2 (k-Zero-Knowledge). Let Π = (Setup,P,V) be a (2r + 1)-
message public-coin interactive argument with HVZK simulator S, and k ∈ [1, r].
Let ΠFS be its associated FS-transformed NIZK . We say ΠFS satisfies (perfect) k-
zero-knowledge (k-ZK) if there exists a zero-knowledge simulator SFS,k that only
needs to program the random oracle in round k, and whose output is identically
distributed to that of honestly generated proofs.

Definition 3.3 (k-Unique Response). Let Π = (Setup,P,V) be a (2r +
1)-message public-coin interactive argument, with ΠFS its associated FS-
transformed NARG and k ∈ [0, r]. We say ΠFS satisfies k-unique response (k-UR)
if for all PPT adversaries A, the following probability (defined with respect to
the game in Fig. 4) is negligible in λ:

Advk-UR
ΠFS

(A) := Pr
[
k-URA

ΠFS
(λ)

]
.

When k = 0, we say that ΠFS has (computationally) unique proofs.

We now state a key theorem that relates SIM-EXT to these properties; it is
similar to the SIM-EXT theorem given in [29], with SRS update oracles removed.
We give the proof in the full version.

Theorem 3.4. Let ΠFS be a Fiat-Shamir compiled non-interactive argument for
relation R from a (2r+1)-message public-coin interactive argument Π. Assume
ΠFS satisfies KS, has a perfect k-ZK simulator SFS,k for k ∈ [1, r], and satisfies
k-UR (for the same k). Then ΠFS satisfies SIM-EXT.

542 Q. Dao and P. Grubbs

Fig. 4. Security game for k-unique response. Here H[(pp, x, π|k) �→ c] denotes the ran-
dom oracle where the input (pp, x, π|k) is reprogrammed to output c.

Concretely, let E be a KS extractor for ΠFS. There exists a SIM-EXT
simulator-extractor ESE for ΠFS such that for every PPT prover P∗ against
ΠFS that makes at most qH random oracle queries and qSim simulation queries,
there exists another PPT prover P∗

KS against KS and PPT adversary A against
k-UR such that AdvSIM-EXT

ΠFS,R (SFS,k, ESE,P∗) ≤ AdvKS
ΠFS,R(E ,P∗

KS)+Advk-UR
ΠFS

(A)+
2/ |Chk|. Here Chk is the challenge set in round k. Furthermore, both P∗

KS and A
make at most qH random oracle queries; their runtime is roughly equal to P∗’s
runtime plus qSim invocations of SFS,k. ESE is nearly as efficient as E.

4 Tree of Transcripts and Special Soundness

In this section, we show how to establish knowledge soundness (KS) of a FS-
transformed protocol ΠFS based on the computational special soundness of the
interactive protocol Π. The key is to construct an efficient tree builder T B that,
given oracle access to a malicious prover P∗ for ΠFS, outputs a suitable tree of
accepting transcripts, upon which a valid witness can be extracted.

Definition 4.1 (Tree of Transcripts). Let Π be a (2r + 1)-message public-
coin interactive argument for a relation R, with challenge spaces Ch1, . . . ,Chr.
Given n = (n1, . . . , nr) ∈ N

r and φ = (φ1, . . . , φr) with φi : Chni
i → {0, 1} for

i ∈ [r], we say that T is a (φ,n)-tree of accepting transcripts for pp if:

1. T is a tree of depth r + 1,
2. For each i ∈ [r + 1], each vertex at depth i is labeled with a prover’s i-

th message ai, and if i ≤ r, has exactly ni outgoing edges to its children,
with each edge labeled with a verifier’s i-th challenge ci,1, . . . , ci,ni

satisfying
φi(ci,1, . . . , ci,ni

) = 1. Additionally, the root’s label is prepended with x (so
the label becomes (x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

We additionally define T to be accepting with respect to a input-transcript pair
(x, tr) if (x, tr) corresponds to the left-most path of T . We define a predicate
IsAccepting((φ,n), pp, x, (π,)T) to check whether T is a (φ,n)-tree of accepting
transcripts for pp and x, and optionally π.

Spartan and Bulletproofs are Simulation-Extractable 543

The usual definition of a tree of accepting transcripts [2,14] has φi be the
predicate that the i-th challenges ci,1, . . . , ci,ni

, coming from a vertex at depth
i, are distinct (we call this the distinctness predicate). In that case, we will also
abbreviate T as a n-tree of accepting transcripts. However, we will need to
consider more general partition predicates in our proofs of knowledge soundness
for Spartan and Bulletproofs.

Definition 4.2 (Partition Predicate). Let Ch = Ch(1) � Ch(2) · · · � Ch(C) be
a partition P of a set Ch into C blocks. We assume the partition is efficient, i.e.
given an index i ∈ [C], we can enumerate the set Ch(i) in polynomial time. For
n ∈ N, we define the corresponding partition predicate φP ,n : Chn → {0, 1} to
be φP ,n(c1, . . . , cn) = 1 if and only if c1, . . . , cn belong in distinct blocks of Ch.

Remark 4.3. Looking ahead, we will consider the following partition predicates:

• When Ch = F
∗ is partitioned into {x,−x} for all x. We abbreviate this

predicate into the number n of challenges as n±.
• When Ch = F

2 is partitioned into {c · x | c ∈ F
∗} for all x ∈ {(0, 0), (0, 1)} ∪

{(1, a) | a ∈ F} (this implies linear independence between two vectors). We
abbreviate this predicate into the number n of challenges as nli.

We now state a theorem asserting the existence of an efficient tree-builder
that can generate (φ,n)-trees of accepting transcripts, where φ consists of par-
tition predicates as defined above. In the full version, we give a proof of this
theorem along with a comparison of our tree-builder with that of Wikström [59].

Theorem 4.4 (Efficient Tree Builder). Let Π be a (2r+1)-message public-
coin interactive argument with challenge spaces Ch1, . . . ,Chr. Consider any
efficiently decidable partition Chi = �Ci

j=1Chi,j with minimum partition size
C = mini Ci, and let φ = (φ1, . . . , φr) be the corresponding partition predicate.
Consider any n = (n1, . . . , nr) ∈ N

r with N =
∏r

i=1 ni.
There exists a probabilistic algorithm T B for ΠFS with the following guaran-

tees: given oracle access to a malicious prover P∗ for ΠFS with success probability
ε(P∗) := Pr[KSP∗

0,ΠFS
], T B wins the tree-building game TreeBuildT B,P∗

ΠFS,(φ,n) (shown
in Fig. 5) with probability at least

Pr
[
TreeBuildT B,P∗

ΠFS,(φ,n)

]
≥ ε(P∗) − Q(Q − 1)/2 + (Q + 1) (

∑r
i=1 ni − r)

C
.

Furthermore, T B makes in expectation at most (Q + 1)(N − 1) + 1 rewinding
calls to P∗, where Q is an upper bound on the number of RO queries of P∗.

We now define computational special soundness, which stipulates the exis-
tence of a tree-extraction procedure T E that, given an appropriate tree of accept-
ing transcripts produced by an efficient adversary, outputs a witness with high
probability.

544 Q. Dao and P. Grubbs

Fig. 5. Games for tree-building and special soundness. Here the tree-builder T B is
given black-box access to P∗. In particular, T B implements H for P∗ and can rewind
P∗ to any point in its execution.

Definition 4.5 (Special Soundness). Let Π be a (2r+1)-message public-coin
interactive argument for a relation R with challenge spaces Ch1, . . . ,Chr. For
any n = (n1, . . . , nr) ∈ N

r and φ = (φ1, . . . , φr) with φi : Chni
i → {0, 1}, we say

Π is (φ,n)-computational special sound if there exists a PPT tree-extraction
algorithm T E such that for all EPT adversary A, the following probability is
negligible in λ:

AdvSS
Π,R,(φ,n)(T E ,A) := Pr

[
SST E,A

Π,R,(φ,n)(λ)
]
.

The special soundness game is shown in Fig. 5. We say Π is computational
special sound (SS) if it is (φ,n)-computational special sound for some φ and n.

Using Theorem 4.4 and Definition 4.5, we get the following consequence that
computational special soundness for an interactive protocol implies knowledge
soundness for its non-interactive version.

Lemma 4.6. Let Π be a (2r + 1)-message public-coin interactive argument
that is (φ,n)-computational special sound with tree extractor T E, where n =
(n1, . . . , nr) ∈ N

r and φ is a partition predicate with minimum partition size
C. Then ΠFS satisfies knowledge soundness. Concretely, there exists an EPT
extractor E such that for every PPT adversary P∗ against KS making at most
Q random oracle calls, there exists an EPT adversary A against SS such that

AdvKS
ΠFS,R(E ,P∗) ≤ Q(Q − 1)/2 + (Q + 1) (

∑r
i=1 ni − r)

C
+AdvSS

Π,(φ,n)(T E ,A).

Both E and A runs in expected time that is at most O(Q ·N) the runtime of P∗.

Proof. Our proof goes through a sequence of hybrids. Hyb0 is the game KSP∗
0,ΠFS

.
Hyb1 is the same as Hyb0, except we also run T BP∗

(pp, x, π) → T and output 0
if T is not a (φ,n)-tree of accepting transcripts with respect to (pp, x, π). Note
that Hyb1 is the same as the game TreeBuildT B,P∗

ΠFS,(φ,n). Using Theorem 4.4, we get

|Pr[Hyb0] − Pr[Hyb1]| ≤ Q(Q − 1)/2 + (Q + 1) (
∑r

i=1 ni − r)
C

.

Spartan and Bulletproofs are Simulation-Extractable 545

We define Hyb2 to be the same as Hyb1, except we also run T E(pp, x,T) → w
and output 0 if (pp, x, w) �∈ R. We define the extractor E to be as follows:
run T BP∗

(pp, x, π) → T to obtain a tree of accepting transcripts, then run
T E(pp, x,T) → w to obtain a witness. By definition of E , we can see that Hyb2
is the same as the game KSE,P∗

1,ΠFS,R.
We now claim that there exists an adversary A against SS such that

|Pr[Hyb1] − Pr[Hyb2]| ≤ AdvSS
Π,(φ,n)(T E ,A).

We define A to be as follows: given oracle access to P∗, A runs (P∗)H(pp) →
(x, π) by simulating H for P∗, then runs T BP∗

(pp, x, π) → T , and outputs
(x,T). It is then straightforward to argue that Hyb2 returns 0 while Hyb1 returns
1 precisely when A wins in SS. ��

5 Simulation Extractability of Spartan

In this section, we use our general theorems to prove SIM-EXT of Spartan [54], a
transparent zkSNARKs with security based on the discrete log assumption. [54]
presents two version of Spartan, one with a linear verifier (called Spartan-NIZK)
and one with a sublinear verifier (called Spartan-SNARK) achieved via encoding
the R1CS matrices with a sparse multilinear polynomial commitment.

5.1 Spartan Protocols

We first describe the two variants of Spartan. Note that in a slight abuse of termi-
nology, we will use Spartan-NIZK and Spartan-SNARK to refer to the interactive
versions of their respective protocols. When we wish to refer specifically to the
non-interactive versions, we will write Spartan-NIZKFS and Spartan-SNARKFS.

Definition 5.1 (R1CS). A R1CS instance is a tuple (F, A,B,C,m, n, io) where
A,B,C ∈ F

m×m each with at most n = Ω(m) non-zero entries, and m ≥ |io|+1.
A R1CS witness is a vector w ∈ F

m−|io|−1 such that if Z = (io, 1, w), then
(A · Z) ◦ (B · Z) = C · Z.

Spartan makes further assumptions on the R1CS instances, namely that m =
2μ, n = 2ν are powers of two, and |io| + 1 = |w| = m/2.

Key ideas. Both the NIZK and SNARK variants of Spartan prove satisfiability
of R1CS instances using roughly the same ideas we now outline. See Fig. 6 for
a protocol description. It uses the following sub-protocols (description in full
version):

1. The Pedersen commitment scheme ga · hω ← Commit((n,g, h),a;ω).
2. Four Σ-protocols sharing the same setup:

(a) OpenPf to prove knowledge of a commitment C = gx · hω,
(b) EqPf to prove equality of two commitments C1 = gx · hω1 , C2 = gx · hω2 ,
(c) ProdPf to prove that three commitments Cv1 , Cv2 , Cv3 satisfy v1 ·v2 = v3,

546 Q. Dao and P. Grubbs

(d) DotProdPf to prove that a multi-commitment Cx and a commitment Cy

satisfy y = 〈x,a〉 for a public vector a,
3. A (μ+1)-round public-coin interactive protocol PCMulti.Open for proving poly-

nomial evaluations of any multilinear polynomial p(X1, . . . , Xμ).
4. Additionally, in the case of Spartan-SNARK, we also need PCSparseMulti.Open

for proving evaluations of sparse multilinear polynomials Ã, B̃, C̃.

At a high level, the main idea of Spartan is to reduce the satisfiability of the
given R1CS instance to a claim that can be verified via sumcheck. To do this,
the matrices A,B,C are interpreted as functions {0, 1}μ × {0, 1}μ → F, and
similarly Z : {0, 1}μ → F, by writing the indices as their binary representations.
We then take the multilinear extension Ã, B̃, C̃, Z̃ of these functions, and define
the polynomial

˜Fio(X) =

⎛

⎝

∑

y←{0,1}µ

˜A(X, y) · ˜Z(y)

⎞

⎠ ·

⎛

⎝

∑

y←{0,1}µ

˜B(X, y) · ˜Z(y)

⎞

⎠ −

⎛

⎝

∑

y←{0,1}µ

˜C(X, y) · ˜Z(y)

⎞

⎠ .

Note that F̃io(X) vanishes on {0, 1}μ if and only if the R1CS constraint is sat-
isfied. Finally, we turn this vanishing condition into a sumcheck instance by
defining Gio,τ (X) = F̃io(X) · ẽq(X, τ) for a random τ ∈ F

μ, supplied by the
verifier. The goal is then to prove that

∑
y∈{0,1}µ Gio,τ (y) = 0. The prover and

verifier engage in sumcheck for this claim. The final step of sumcheck requires
the verifier to evaluate Gio,τ at a random point rx, but the verifier cannot do this
itself; thus, the prover and verifier engage in another run of sumcheck (more pre-
cisely, three runs batched together with verifier randomness) to reduce the task
of evaluating Gio,τ (rx) to evaluating Ã, B̃, C̃ all at (rx, ry), and Z̃ at ry. In both
Spartan-NIZK and Spartan-SNARK, the verifier gets a commitment to the eval-
uation of the witness, and is convinced the committed evaluation is correct via
PCMulti.Open. (Our analyses below assume PCMulti is instantiated with HyraxPC
[57].) In Spartan-NIZK, the verifier evaluates Ã, B̃, C̃ itself; in Spartan-SNARK,
the prover sends the verifier the evaluations and uses PCSparseMulti.Open, a sec-
ondary proof protocol, to convince the verifier of their correctness.

We can compute the number of rounds of Spartan-NIZK to be r = 7μ + 11.
For Spartan-SNARK, the transcript is the same except for the verifier sending its
commitments to Ã, B̃, C̃ to the prover, the evaluations v1, v2, v3, and the O(μ)-
round transcript of PCSparseMulti.Open. Thus, the transcript of Spartan-SNARK
has O(μ) more rounds for evaluating Ã(rx, ry), B̃(rx, ry), C̃(rx, ry).

5.2 SIM-EXT Analysis of Spartan-NIZK

Following Theorem 3.4, to prove that Spartan-NIZKFS satisfies SIM-EXT, we
will need to show that it satisfies knowledge soundness (KS) along with k-ZK
and k-UR for the same round k. By Lemma 4.6, knowledge soundness in turn
depends on computational special soundness (SS) of the interactive protocol
Spartan-NIZK. Our first set of results will be to establish SS of Spartan-NIZK
through the following steps: (1) We first analyze the information-theoretic core

Spartan and Bulletproofs are Simulation-Extractable 547

Fig. 6. Spartan-NIZK, with modifications for Spartan-SNARK in red (Color figure
online).

548 Q. Dao and P. Grubbs

Fig. 7. Sumcheck Sub-Protocol

of Spartan-NIZK, which is obtained from the protocol by sending all polynomi-
als and evaluations in the clear, and checking the equalities directly. We call
this variant Spartan-Core. (2) We then analyze how to extract from the various
commitments and subprotocols in Spartan-NIZK to recover Spartan-Core.

The soundness of Spartan-Core has been analyzed in [54].

Lemma 5.2 ([54]). Spartan-Core has soundness error 6μ+1
|F| .

Special soundness for Σ-protocols was analyzed in another previous work [57].

Lemma 5.3 ([57]). Let Π ∈ {OpenPf,EqPf,ProdPf,DotProdPf} . Then Π is
2-perfect special sound. Concretely, there exists a tree-extraction algorithm T EΠ

that can extract a valid witness for Π given any 2-tree of accepting transcripts.

We also need to analyze special soundness of PCMulti.Open. Note that while
[57] introduced this protocol, they did not provide a concrete soundness result
for it. The proof of the lemma below appears in the full version.

Lemma 5.4. PCMulti.Open is n = (
√

m, 4±, . . . , 4±︸ ︷︷ ︸
μ/2

, 2)-computational special

sound. Concretely, there exists a tree-extraction algorithm T EPCMulti
such that for

any EPT adversary A against SS of PCMulti.Open, there exists an EPT adversary
B against DL-REL, as efficient as A and T EPCMulti

combined, such that

AdvSS
Π,n(T EPCMulti

,A) ≤ AdvDL-REL
G,

√
m+2(B).

Our next step is to analyze the computational special soundness of the sum-
check subprotocol in Fig. 7. Since it is not strictly an interactive argument, we
explicitly state the guarantees of the tree extractor.

Spartan and Bulletproofs are Simulation-Extractable 549

Lemma 5.5. There exists a tree extractor T ESC such that given a (1, 2li, 2)μ-tree
of accepting transcripts, produced by an adversary A, for the sumcheck subpro-
tocol, either outputs polynomials p1(X), . . . , pμ(X) that satisfy the information-
theoretic sumcheck protocol, or we can build an adversary B, as efficient as T ESC

and A combined, against DL-REL.

Proof. We will analyze a single iteration i ∈ [μ] of the sumcheck subprotocol; all
other iterations will follow the same reasoning. We construct a tree extractor T ESC

that does the following for each iteration i ∈ [μ]: given a (1, 2li, 2)-tree of tran-
scripts,

1. Run T EDotProdPf on each (1, 1, 2)-subtree to extract (pi, ωpi
, yi, ωyi

), where

Cpi
= PC.Commit(pp, pi;ωpi

), Cyi
= Commit(pp, yi;ωyi

), 〈pi,ai〉 = yi,

and yi is supposedly equal to wi,1 · ei−1 + wi,2 · ei.
2. Given two pairs of linearly independent challenges (wi,1, wi,2), (w′

i,1, w
′
i,2),

with extracted witnesses (pi, ωpi
, yi, ωyi

), (p′
i, ω

′
pi

, y′
i, ω

′
yi
) from the previous

step, we first assert that (pi, ωpi
) = (p′

i, ω
′
pi
). If this assertion fails, then we

have an adversary B against DL-REL since Cpi
= gpi ·hωpi = gp′

i ·hω′
pi . Next,

we can solve for ei−1, ei, ωei−1 , ωei
from the linear equations

{
yi = wi,1 · ei−1 + wi,2 · ei

y′
i = w′

i,1 · ei−1 + w′
i,2 · ei

and

{
ωyi

= wi,1 · ωei−1 + wi,2 · ωei

ω′
yi

= w′
i,1 · ωei−1 + w′

i,2 · ωei

.

Recall that we also have 〈pi,ai〉 = yi and 〈pi,a′
i〉 = y′

i; taking the same
linear combination used to solve the equations above would give us pi(0) +
pi(1) = ei−1 and pi(ri) = ei. Thus, we have extracted valid polynomials for
the information-theoretic sumcheck protocol. ��

Putting together the above special soundness results for the subprotocols, we
obtain special soundness for Spartan-NIZK.

Lemma 5.6. Spartan-NIZK satisfies n-computational special soundness, where

n = (1, (1, 2li, 2)μ, 2, 2, 2, 1, (2, 2li, 2)μ, (4±, . . . , 4±︸ ︷︷ ︸
μ/2

, 2), 2).

Concretely, there exists a PPT tree extractor T ESpartan-NIZK such that for every
EPT adversary A against SS of Spartan-NIZK, there exists an EPT adversary B
against DL-REL, as efficient as A and T ESpartan-NIZK combined, such that

AdvSS
Spartan-NIZK,n(T ESpartan-NIZK,A) ≤ AdvDL-REL

G,
√

m+2(B) +
6μ + 1

|F| .

Proof. We describe the tree extractor T ESpartan-NIZK. Given a n-tree of accepting
transcripts, it runs the following sub-extractors for the corresponding sub-trees:

550 Q. Dao and P. Grubbs

1. Run T ESC for the first sumcheck subprotocol on each (1, 2li, 2)μ sub-tree to
extract polynomials pi(X) for i ∈ [μ] that satisfy the information-theoretic
sumcheck protocol.

2. Run T EProdPf , T EOpenPf , T EEqPf on each corresponding 2-subtree to extract
claims vA, vB , vC such that ex = (vA · vB − vC) · ẽq(rx, τ).

3. Run T ESC for the second sumcheck subprotocol on each (1, 2li, 2)μ sub-tree
to extract polynomials pi(X) for i ∈ [μ] that satisfy the information-theoretic
sumcheck protocol.

4. Run T EPCMulti
for the opening argument PCMulti.Open on the (4±, . . . , 4±︸ ︷︷ ︸

μ/2

, 2)

sub-tree, and on 2μ/2 =
√

m different challenges ry provided by the (2, 2li, 2)μ

sub-tree, to extract a multilinear polynomial w̃(X) along with a correct eval-
uation w̃(ry) = vw.

5. Run T EEqPf for the final equality proof to verify the equality ey = (rA · vA +
rB · vB + rC · vC) · vZ .

6. Output the R1CS witness w.

Note that the (2, 2li, 2)μ sub-tree in the second sumcheck subprotocol is necessary
for extracting both from sumcheck, as well as from PCMulti.Open . We now con-
sider the following hybrids. Hyb0 corresponds to the game SS for Spartan-NIZK
with the tree extractor constructed above. Hyb1 is the same as Hyb0, but we
additionally reject if the extracted R1CS witness is not satisfying. Conditioned
on the event that none of the sub-extractor fails (and when that happens we get
a DL-REL adversary B), Hyb1 differs from Hyb0 exactly when the soundness of
Spartan-Core is violated, which happens with probability at most 6μ+1

|F| . ��

Using Lemma 4.6 with Lemma 5.6, we conclude that Spartan-NIZKFS satisfies
knowledge soundness. Note that the minimum partition size in the n-tree of
transcripts is C = |F|−1

2 .

Theorem 5.7. Spartan-NIZKFS satisfies knowledge soundness. In particular,
there exists an extractor ESpartan-NIZKFS

such that for every PPT prover P∗ against
KS of Spartan-NIZK making at most Q random oracle queries, there exists an
EPT adversary B against DL-REL such that

AdvKS
Spartan-NIZKFS

(ESpartan-NIZKFS
, P∗)

≤ Q(Q − 1) + (Q + 1)(13μ + 10) + 2(6μ + 1)

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Here μ = logm. Both B and the extractor ESpartan-NIZKFS
runs in expected time

that is at most O(Q · m6) the running time of P∗.

Our next task is to exhibit a k-ZK simulator for Spartan-NIZKFS. The high-
level idea is to let the simulator execute all subprotocols except the last with
valid witnesses, then only invoke the simulator for the final EqPf.

Theorem 5.8. Spartan-NIZKFS satisfies (r − 1)-ZK, where r = 7μ + 11 is the
number of rounds of Spartan-NIZK.

Spartan and Bulletproofs are Simulation-Extractable 551

Proof. See Fig. 8 for a pseudocode description of our simulators. Using the sum-
check sub-simulator SSCFS

in the top of the figure, we build the full simulator
SFS,r−1 for Spartan-NIZKFS. From the construction of SFS,r−1, it is clear that the
proofs produced are accepting; this is because all the verifier’s checks are done
by checking the various proofs, which are either honestly generated, in which
case validity follows from completeness, or by invoking the simulator, in which
case validity follows from NIZK guarantee. Furthermore, SSpartan-NIZKFS,r−1 only
makes a single RO reprogramming, which when the simulator SEqPfFS is invoked.

It remains to show that the output is indistinguishable from that of real tran-
scripts. For the subprotocols, namely the Σ-protocols along with PCMulti.OpenFS,
that we generate transcripts by generating honest proofs, we argue that they
are indistinguishable. Firstly, the inputs to the arguments are the same (being
perfectly blinded commitment). Secondly, the sub-protocols themselves are zero-
knowledge, which implies witness indistinguishability. This further implies that
the honestly generated proofs made by our simulator are identically distributed
as proofs in real transcripts. In the last sub-protocol EqPfFS for which we use
the simulator, we argue indistinguishability using the guarantee of the simulator
SEqPfFS . This concludes the proof of k-ZK. ��

Lemma 5.9. Spartan-NIZKFS satisfies perfect (r − 1)-UR.

Proof. The last two rounds of Spartan-NIZKFS consists of an instance of the
Σ-protocol EqPfFS , which itself satisfies perfect 1-UR. In more detail, the last
message in EqPfFS must be the unique scalar z that satisfies hz = (C1/C2)c · α,
where C1, C2, α are group elements determined by the previous messages. Hence
Spartan-NIZKFS satisfies perfect (r − 1)-UR. ��

Combining our results above, we obtain SIM-EXT for Spartan-NIZKFS.

Theorem 5.10. Spartan-NIZKFS is simulation-extractable. Concretely, there
exists a simulator-extractor ESpartan-NIZKFS

such that for every PPT adversary P∗

against SIM-EXT, there exists an EPT adversary B against DL-REL such that

AdvSIM-EXT
Spartan-NIZKFS,RR1CS

(SSpartan-NIZKFS,k, ESpartan-NIZKFS
, P∗)

≤ Q(Q − 1) + (Q + 1)(13μ + 10) + 2(6μ + 1) + 2

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Both B and ESpartan-NIZKFS
runs in expected time at most O(Q · m6) that of P∗.

5.3 SIM-EXT of Spartan-SNARK

For Spartan-SNARK, the proof of SIM-EXT is similar to that of Spartan-NIZK.
In particular, the proofs of k-ZK and k-UR carries over, and we only need to
modify the proof of special soundness to accommodate for the more complex
sparse multilinear polynomial commitment scheme. In what follows, we let r′ =
7μ + 11 + O(μ) be the round complexity of Spartan-SNARK.

Lemma 5.11. Spartan-SNARKFS satisfies k-ZK, where k = r′ − 1.

552 Q. Dao and P. Grubbs

Fig. 8. Simulators for proof of k-ZK for Spartan.

Spartan and Bulletproofs are Simulation-Extractable 553

Proof. We minimally modify the k-ZK simulator of Spartan-NIZKFS to also out-
put opening proofs PCSparseMulti.OpenFS for M̃(rx, ry) with M ∈ {A,B,C}. Since
A,B,C are part of the public input, the simulator has full access to the matrices,
and hence can produce the proofs honestly. ��

Lemma 5.12. Spartan-SNARKFS satisfies perfect k-UR, where k = r′ − 1.

Proof. Since Spartan-SNARKFS ends with the same invocation of the equality
proof EqPfFS, we obtain the same result as Lemma 5.9. ��

The proof of knowledge soundness for Spartan-SNARKFS is similar to that of
Spartan-NIZKFS, except we further need to extract the polynomials involved in
PCSparseMulti.Open. We prove the lemma below in the full version.

Lemma 5.13. Spartan-SNARKFS satisfies knowledge soundness. Concretely,
there exists an extractor ESpartan-SNARKFS

such that for every PPT prover P∗

against KS of Spartan-SNARK making at most Q random oracle queries, there
exists an EPT adversary B against DL-REL such that

AdvKS
Spartan-SNARKFS

(ESpartan-SNARKFS
, P∗)

≤ Q(Q − 1) + (Q + 1)(25μ + 9ν + 16) + 6(m + n) + O(μ + ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

Here μ = logm, ν = log n. Both B and the extractor ESpartan-SNARKFS
runs in

expected time that is at most O(Q · m7.5 · (m + n)3) the running time of P∗.

Combining the results above, we obtain SIM-EXT for Spartan-SNARKFS.

Theorem 5.14. Spartan-SNARKFS satisfies SIM-EXT. Concretely, there exists a
simulator-extractor ESpartan-SNARKFS

such that for every PPT adversary P∗ against
SIM-EXT of Spartan-SNARKFS, there exists an EPT adversary B against DL-REL
with

AdvSIM-EXT
Spartan-SNARKFS,RR1CS

(SSpartan-SNARKFS,k, ESpartan-SNARKFS
, P∗)

≤ Q(Q − 1) + (Q + 1)(25μ + 9ν + 16) + 6(m + n) + O(μ + ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

B and ESpartan-SNARKFS
run in expected time O(Q · m7.5 · (m + n)3) that of P∗.

6 Simulation Extractability of Bulletproofs

In this section, we show that the Bulletproofs protocols in [16] satisfy SIM-EXT,
without relying on the AGM. The authors of [16] introduced two protocols,
an aggregate range proof BP-ARP and an arithmetic circuit satisfiability proof
BP-ACSPf2, with both building on an inner product argument BP-IPA.

2 To keep the naming consistent with [16], we refer to them as proofs even though
they are actually arguments.

554 Q. Dao and P. Grubbs

6.1 Aggregate Range Proof

We give a full description of the aggregate range proof BP-ARP in Fig. 9. The
value m is the number of committed values vi, and n is the bit length of the upper
bound (i.e., we prove vi ∈ [0, 2n−1] for all i ∈ [m]). Following the same approach
as in Sect. 5 for Spartan, we need to establish three properties of BP-ARPFS: (1)
knowledge soundness, (2) the existence of a k-ZK simulator, and (3) k-UR for
the same round k. We begin with the proof of knowledge soundness, which is
essentially a restatement of the original result from [16].

Lemma 6.1. BP-ARPFS satisfies (m · n,m + 2, 3, 2, 4±, . . . , 4±︸ ︷︷ ︸
log(m·n)

)-computational

special soundness, and hence knowledge soundness. Concretely, there exists an
extractor EBP-ARPFS

such that for every PPT adversary P∗ against KS making at
most Q random oracle queries, there exists an adversary A against DL-REL with

AdvKS
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ AdvDL-REL

G,2mn+3(A)

+
Q(Q − 1) + 2(Q + 1) (m(n + 1) + 3 log(m · n) + 3)

|F| − 1
.

Both A and the extractor EBP-ARPFS
run in expected time that is at most O(Q ·

m4 · n3) times the runtime of P∗.

Proof. The description of a tree extractor T EBP-ARP, which either outputs a valid
witness or a discrete log relation, can be found in [16]. This concludes the proof
of computational special soundness. Combining Theorem 4.4 with Lemma 4.6,
we conclude knowledge soundness for BP-ARPFS. The expected runtime of the
extractor EBP-ARPFS

, as well as the adversary A, is at most O(Q · (mn) · (m+2) ·
6 · (mn)2) = O(Q · m4 · n3) times the runtime of P∗, by Theorem 4.4. ��

Lemma 6.2. BP-ARPFS satisfies perfect 2-ZK.

Proof. We present the 2-ZK simulator SBP-ARPFS,x in Fig. 10, and argue that its
output is identically distributed to the output of an honest prover.

All the challenges are chosen randomly as with real proofs. Next, in both real
and simulated proofs, the proof elements A, T1, βx, μ and the underlying vectors
l, r are distributed uniformly among their respective domains. The proof ele-
ments S, T2 are then uniquely determined from the previous ones from the veri-
fication equations that they must satisfy. Finally, both the scalar t̂ and the inner
product argument πBP-IPA is generated deterministically from l, r; this implies
identical distributions for those proof elements as well. ��

Finally, we show the 2-UR property of BP-ARP. This result relies on the fact
that BP-IPAFS has computationally unique proofs, shown in the full version.

Lemma 6.3. BP-ARPFS satisfies 2-UR. In particular, for any adversary A
against 2-UR of BP-ARPFS, there exists an adversary B against DL-REL such
that

Adv2-UR
BP-ARPFS

(A) ≤ 2 · Q(Q − 1) + 6(Q + 1) logmn

|F| − 1
+ 3 · AdvDL-REL

G,2mn+3(B) .

Spartan and Bulletproofs are Simulation-Extractable 555

Fig. 9. Bulletproofs’ Aggregate Range Proof BP-ARP

556 Q. Dao and P. Grubbs

Fig. 10. BP-ARPFS k-ZK simulator

B runs in expected time at most O(Q · m2 · n2) that of A’s runtime.

Proof. We proceed through a sequence of hybrids. The high-level idea is to ana-
lyze different cases for where the two proofs π, π′ first differ after the x challenge,
and reduce each case to breaking DL-REL or the unique proof property of BP-IPA
(which in turn reduces to breaking DL-REL).

– Hyb0 is the game 2-URA
BP-ARPFS

. Recall that in this game, an adversary A
outputs an input V, a challenge x ∈ F

∗, and two proofs π, π′ that agrees
up to the x challenge, i.e. we have π = (A,S, T1, T2, t̂, βx, μ, πBP-IPAFS

) and
π′ = (A,S, T1, T2, t̂

′, β′
x, μ′, π′

BP-IPAFS
). A wins if π �= π′ and both proofs are

accepting with respect to the x challenge that it chose.
– Hyb1 is the same as Hyb0, except that we also run EBP-IPAFS

on the proofs
πBP-IPAFS

, π′
BP-IPAFS

to extract witnesses (l, r) and (l′, r′). Hyb1 returns 0 if the
extractor aborts on either proofs, or t̂ �= 〈l, r〉 or t̂′ �= 〈l′, r′〉.
We can see that Hyb1 is identical to Hyb0, except when the extractor EBP-IPAFS

fails in extracting from either proofs πBP-IPAFS
, π′

BP-IPAFS
. The probability that this

happens is precisely bounded by twice the KS advantage of BP-IPAFS.
Concretely, invoking the extractor for BP-IPAFS, there exists an adversary B

against DL-REL, running in expected time at most O(Q · m2 · n2) that of A’s
runtime, such that

|Pr[Hyb0] − Pr[Hyb1]| ≤ 2
Q(Q − 1) + 6(Q + 1) log(m · n)

|F| − 1
+ 2AdvDL-REL

G,2mn+3(B) .

It remains to show that if Hyb1 returns 1, then there exists an adversary B′

that returns a non-trivial discrete log relation. Adversary B′ is as follows:

Spartan and Bulletproofs are Simulation-Extractable 557

• If t̂ �= t̂′ or βx �= β′
x: since both proofs are accepting and are the same up to

the x challenge, we have

gt̂ · hβx = V z2 · gδ(y,z) · T x
1 · T x2

2 = gt̂′ · hβ′
x .

• If (t̂, βx) = (t̂′, β′
x) but μ �= μ′: since both proofs πBP-IPAFS

, π′
BP-IPAFS

are
accepting, we have

gl · h(y−m·n◦r) · hµ = A · Sx · g−z·1m·n
· (h′)z·ym·n

·
m∏

j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · uw·t̂

= gl′ · h(y−m·n◦r′) · hµ′
.

• If (t̂, βx, μ) = (t̂′, β′
x, μ′) but πBP-IPAFS

�= π′
BP-IPAFS

: here, we know that both
BP-IPAFS proofs are for the same statement P ′, with extracted witnesses
(l, r), (l′, r′). From the proof that BP-IPAFS is computationally unique, the
two witnesses must be different, which gives a discrete log relation.

Note that the first two cases above give discrete log relations, and if Hyb1 returns
1, then π �= π′, hence at least one of the above cases happens. Putting everything
together and unifying B,B′ we get the desired bound. ��

We finally obtain SIM-EXT from the previous results and Theorem 3.4.

Theorem 6.4. BP-ARPFS satisfies SIM-EXT. In particular, there exists a
simulator-extractor EBP-ARPFS

such that for any adversary P∗ against SIM-EXT
of BP-ARPFS, there exists an adversary B against DL-REL such that

AdvSIM-EXT
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ 4 · AdvDL-REL

G,2mn+3(B)

+
3Q(Q − 1) + 2(Q + 1) (m(n + 1) + 6 log(mn) + 3) + 2

|F| − 1
.

B runs in expected time at most O(Q · m4 · n3) the runtime of P∗.

6.2 Arithmetic Circuit Satisfiability Proof

We will describe BP-ACSPf and prove the following theorem in the full version.

Theorem 6.5. BP-ACSPfFS satisfies SIM-EXT. Concretely, there exists a
simulator-extractor EBP-ACSPfFS such that for any adversary P∗ against SIM-EXT
of BP-ACSPfFS, there exists an adversary B against DL-REL such that

AdvSIM-EXT
BP-ACSPfFS(EBP-ACSPfFS , P

∗) ≤4 · AdvDL-REL
G,2n+1(B)

+
3Q(Q − 1) + 2(Q + 1)(n + q + 9 log n + 6) + 2

|F| − 1
.

Here n is the number of multiplication gates, and q is the number of committed
inputs. B runs in expected time at most O(Q · q · n3) the runtime of P∗.

558 Q. Dao and P. Grubbs

7 Quantitative Discussion of Our SIM-EXT Bounds

In this section, we briefly show how to interpret the tightness of our SIM-EXT
bounds for Bulletproofs and Spartan, and compare them with the previous anal-
yses of [30,33] using AGM. We leave a detailed discussion to the full version.

By Theorem 3.4, we see that the SIM-EXT advantage is tightly related to
the KS advantage. Thus, we will compare the latter. For BP-ARP with m = 1
(range proof of a single value), we compare our KS bound with the AGM-based
bound of [33] in Fig. 11. Our approach loses tightness due to two factors: first,
we lose a factor of Q due to rewinding (shown to be somewhat inherent for the
similar case of Schnorr signatures [26]), and second, our DL-REL adversary is
expected time, which leads to another “square-root” loss in security [42] (namely
AdvDL-REL

G,2n+3(A) ≤
√

t(A)2/ |F| for generic attacks). Our concrete KS advantages
for Spartan is even lower, due to the bigger tree sizes of Spartan. We leave achiev-
ing tighter rewinding-based bounds to future work.

Fig. 11. Comparison of KS advantages, obtained by rewinding (ours) versus AGM [33],
for Bulletproofs’ single range proof, e.g. BP-ARP with m = 1. Here t(·) denotes the
running time. For concrete advantage, we take |F| ≈ 2256, n = 64, t(P∗) = 248, Q = 240.

References

1. Aleo. https://www.aleo.org/ (2022)
2. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round inter-

active proofs. Cryptology ePrint Archive, Report 2021/1377 (2021). https://eprint.
iacr.org/2021/1377

3. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and
randomization of groth’s zk-SNARK. Cryptology ePrint Archive, Report 2020/811
(2020), https://eprint.iacr.org/2020/811

4. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of groth’s
zk-SNARK revisited. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020.
LNCS, vol. 12579, pp. 453–461. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65411-5_22

5. Baghery, K., Sedaghat, M.: Tiramisu: black-box simulation extractable NIZKs in
the updatable CRS model. Cryptology ePrint Archive, Report 2020/474 (2020).
https://eprint.iacr.org/2020/474

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun (2006)

https://www.aleo.org/
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2020/811
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://eprint.iacr.org/2020/474

Spartan and Bulletproofs are Simulation-Extractable 559

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

8. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (May 2014)

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_4

10. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_2

11. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4_38

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. Cryptology ePrint Archive, Report
2012/095 (2012). https://eprint.iacr.org/2012/095

13. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: proof-carrying data from
additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12825, pp. 649–680. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-84242-0_23

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

15. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019). https://
eprint.iacr.org/2019/1021

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (May 2018)

17. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

18. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. Cryptology ePrint
Archive, Report 2020/1212 (2020). https://eprint.iacr.org/2020/1212

19. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175_5

20. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_26

21. Coda. https://codaprotocol.com/ (2022)
22. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:

Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-34961-4_38
https://eprint.iacr.org/2012/095
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2020/1212
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-030-45721-1_26
https://codaprotocol.com/
https://doi.org/10.1007/978-3-319-11212-1_18

560 Q. Dao and P. Grubbs

23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1_21

24. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7_5

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

26. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Crypt. 32(2), 566–599 (2019)

27. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

28. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

29. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zając, M.: What
makes fiat-shamir zksnarks (updatable SRS) simulation extractable? In: SCN
(2022)

30. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman, O.,
Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 397–
426. Springer, Heidelberg (May / Jun (2022)

31. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). Cryptology ePrint
Archive (2023)

32. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

33. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(May 1985)

35. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-
time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report
2021/1043 (2021). https://eprint.iacr.org/2021/1043

36. Grin: a minimal implementation of mimblewimble. https://github.com/
mimblewimble/grin (2022)

37. Groth, J.: Simulation-Sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

38. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-030-84252-9_3
https://eprint.iacr.org/2021/1043
https://github.com/mimblewimble/grin
https://github.com/mimblewimble/grin
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11

Spartan and Bulletproofs are Simulation-Extractable 561

39. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_20

40. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-
dleboxes. In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security 2022, pp. 4255–
4272. USENIX Association (2022)

41. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy, pp. 644–660. IEEE
Computer Society Press (May 2020)

42. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64381-2_15

43. Jain, A., Pandey, O.: Non-malleable zero knowledge: black-box constructions and
definitional relationships. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 435–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7_25

44. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. Cryptology ePrint Archive, Report 2021/370 (2021). https://
eprint.iacr.org/2021/370

45. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM Press (Nov 2019)

46. Bulletproofs+ in monero. https://www.getmonero.org/2020/12/24/
Bulletproofs+-in-Monero.html (2020)

47. Mt.Gox press release. https://web.archive.org/web/20140214041924/, https://
www.mtgox.com/press_release_20140210.html (2014)

48. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press (May 2013)

49. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

50. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 533–
542. ACM Press (May 2005)

51. Polygon. https://polygon.technology/ (2022)
52. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(Oct 1999)

53. Scroll. https://scroll.io/ (2022)
54. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.

In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

55. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020). https://eprint.iacr.org/2020/1275

56. Starkware. https://starkware.co/ (2022)

https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-319-10879-7_25
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://www.getmonero.org/2020/12/24/Bulletproofs+-in-Monero.html
https://www.getmonero.org/2020/12/24/Bulletproofs+-in-Monero.html
https://web.archive.org/web/20140214041924/
https://www.mtgox.com/press_release_20140210.html
https://www.mtgox.com/press_release_20140210.html
https://doi.org/10.1007/978-3-540-45146-4_19
https://polygon.technology/
https://scroll.io/
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://starkware.co/

562 Q. Dao and P. Grubbs

57. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press (May 2018)

58. Wee, H.: Zero knowledge in the random Oracle model, revisited. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7_25

59. Wikström, D.: Special soundness in the random oracle model. Cryptology ePrint
Archive, Report 2021/1265 (2021). https://eprint.iacr.org/2021/1265

60. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover
time. Cryptology ePrint Archive, Report 2022/1010 (2022). https://eprint.iacr.
org/2022/1010

61. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: liberating web
data using decentralized oracles for TLS. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020, pp. 1919–1938. ACM Press (Nov 2020)

62. ZKProofs Standards. https://zkproof.org/ (2022)

https://doi.org/10.1007/978-3-642-10366-7_25
https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/1010
https://zkproof.org/

Complete Characterization of Broadcast
and Pseudo-signatures from Correlations

Varun Narayanan1(B), Vinod M. Prabhakaran2(B), Neha Sangwan2(B),
and Shun Watanabe3(B)

1 Technion, Haifa, Israel
2 Tata Institute of Fundamental Research, Mumbai, India

{vinodmp,neha 010}@tifr.res.in
3 Tokyo University of Agriculture and Technology, Tokyo, Japan

shunwata@cc.tuat.ac.jp

Abstract. Unconditionally secure broadcast is feasible among parties
connected by pairwise secure links only if there is a strict two-thirds
majority of honest parties when no additional resources are available.
This limitation may be circumvented when the parties have recourse
to additional resources such as correlated randomness. Fitzi, Wolf, and
Wullschleger (CRYPTO 2004) attempted to characterize the conditions
on correlated randomness shared among three parties which would enable
them to realize broadcast. Due to a gap in their impossibility argument, it
turns out that their characterization is incorrect. Using a novel construc-
tion we show that broadcast is feasible under a considerably larger class of
correlations. In fact, we realize pseudo-signatures, which are information
theoretic counterparts of digital signatures using which unconditionally
secure broadcast may be obtained. We also obtain a matching impos-
sibility result thereby characterizing the class of correlations on which
three-party broadcast (and pseudo-signatures) can be based. Our impos-
sibility proof, which extends the well-know argument of Fischer, Lynch
and Merritt (Distr. Comp., 1986) to the case where parties observe cor-
related randomness, maybe of independent interest.

Keywords: Unconditional security · broadcast · pseudo-signatures ·
information theory

1 Introduction

Broadcast is one of the more fundamental primitives in cryptography. For
instance, to realize unconditionally secure multiparty secure computation, a strict

VN was supported by ISF Grants 1709/14 & 2774/20 and ERC Project NTSC
(742754). VP was supported by SERB through project MTR/2020/000308 and DAE
under project no. RTI4001. NS was supported by the TCS Foundation through the
TCS Research Scholar Program and by DAE under project no. RTI4001. SW is sup-
ported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI
under Grant 20H02144.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 563–593, 2023.
https://doi.org/10.1007/978-3-031-30617-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_19

564 V. Narayanan et al.

majority of honest parties suffices if broadcast is available, while, in its absence,
more than two-thirds (a supermajority) of the parties must be honest. In fact, in
a landmark paper, Lamport, Shostak, and Pease [24] showed that uncondition-
ally secure broadcast can be realized if and only if there is an honest supermajor-
ity. Furthermore, they showed that broadcast can be realized with any number of
malicious parties if digital signature is available among the parties.

Digital signatures based on public-key cryptography is necessarily only com-
putationally secure. Towards realizing unconditionally secure broadcast without
an honest supermajority, Pfitzmann and Waidner [32] introduced the concept
of pseudo-signatures. Unlike digital signatures, pseudo-signatures have a fixed
transferability – the number of transfers that can be made among the parties
before they stop being secure. Unconditionally secure broadcast protocols can be
realized without an honest supermajority if pseudo-signatures with sufficiently
large transferability is available.

In the absence of an honest supermajority, pseudo-signatures (and broad-
cast) may be realized if the parties have access to correlated random variables.
Realizing cryptographic primitives based on such a model has received consid-
erable attention. For instance, secret key generation [1,20,25,35,37], authenti-
cation [26–28,36], and oblivious transfer [2,8–10,12,23,31,33,39] have all been
studied in this model. For broadcast and pseudo-signatures, such a study was
initiated by Fitzi, Wolf, and Wullschleger [19]; see also [14–17].

Pseudo-signature and broadcast protocols using correlated random variables
available to the parties were presented in [19]. The necessary and sufficient condi-
tion for the correlations for pseudo-signature (and broadcast) to be feasible was
also claimed. However, there was a gap in the proof of necessity. In fact, it turns
out that the condition itself is not necessary and there are counterexamples. In
order to resolve this, novel ideas for both the construction and impossibility are
needed which we present here.

There has been a renewed interest in the problem of broadcast (byzantine
agreement) because of its connections to blockchains; e.g., see [5] and references
therein. In this context, establishing the theoretical foundations of broadcast
and pseudo-signatures takes on added interest.

The focus of this paper is on three-party broadcast (and, hence, also on three-
party pseudo-signatures). However, there are implications for more than three
parties. For instance, it is known that for n parties, if broadcast among every
triple of them is available, then broadcast among all n parties tolerating t < n/2
corrupted parties is feasible [18] (and hence n-party MPC with unconditional
security with the same threshold for corruption is feasible [3,34]). We leave the
problem of establishing the necessary and sufficient conditions on the correlations
to realize broadcast/pseudo-signature for more than three parties as a fascinating
open question.

1.1 Problem Formulation

We consider a network consisting of three parties, P1, P2, and P3. The par-
ties are connected by pairwise secure channels; we assume that the network is

Complete Characterization of Broadcast from Correlations 565

synchronous, i.e., each party can recognize who should communicate next based on
a common clock. As we mentioned, it is impossible to realize broadcast or pseudo-
signatures from scratch if one among the three parties may be malicious. We
assume that P1, P2, and P3 observe random variables (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n],
respectively, where [n] = {1, 2, . . . , n}, such that the triples (Xi, Yi, Zi)i∈[n], are
independent and identically distributed (i.i.d.) according to a known distribution
PXY Z .

Broadcast. In a broadcast protocol, the sender P1 has a message b ∈ {0, 1}
it wants to convey to the other parties. The parties communicate interactively
over the pairwise secure channels. In each round of communication, the com-
municating party computes the message it sends based on its observations (i.e.,
parts of the correlation it observes), its transcript so far, and its private random-
ness. At the end of the protocol, the receivers P2 and P3 output b2 ∈ {0, 1} and
b3 ∈ {0, 1}, respectively. We say that a protocol is an ε-secure implementation
of broadcast if the following two conditions are satisfied:

– Correctness: When the sender P1 is honest with input b ∈ {0, 1}, then all the
honest receivers output b with probability at least 1 − ε;

– Agreement: When both the receivers P2 and P3 are honest, they output the
same value b2 = b3 with probability at least 1 − ε.

We are interested in the necessary and sufficient condition on the distribution
PXY Z of the correlation such that an ε-secure implementation of broadcast exists
for an arbitrary ε > 0 and sufficiently many copies n of the correlation.

Pseudo-signature. In a pseudo-signature (PS) protocol with transfer path
P1 → P2 → P3, the sender P1 has an input message b ∈ {0, 1}, and the protocol
consists of two phases, the signing phase and the transfer phase. In the signing
phase, after some prescribed rounds of communication over the pairwise secure
channels, the intermediate party P2 outputs b2 ∈ {0, 1,⊥}, where the symbol ⊥
indicates that P2 rejects the message sent by P1; the protocol proceeds to the
transfer phase only when P2 does not reject in the signing phase. In the transfer
phase, after some prescribed rounds of communication over the pairwise secure
channels, the receiver P3 outputs b3 ∈ {0, 1,⊥}, where the symbol ⊥ indicates
that P3 rejects the message transferred by P2. We say that a protocol is an ε-
secure implementation of pseudo-signature with transfer path P1 → P2 → P3 if
the following four conditions are satisfied:

– Correctness: If P1 and P2 are honest, then b2 = b with probability at least
1 − ε;

– Unforgeability: If P1 and P3 are honest, then the probability of the event
b3 /∈ {b,⊥} is less than ε;

– Transferability: If P2 and P3 are honest, then the probability of the event
(b2 �= ⊥) ∧ (b3 �= b2) is less than ε;

566 V. Narayanan et al.

– Secrecy: If P1 and P2 are honest, then the view of P3 in the signing phase is
almost independent of the message b, i.e., the conditional distribution of P3’s
view in the signing phase given b = 0 and b = 1 are close to each other in
total variation distance1.

We are interested in the necessary and sufficient condition on PXY Z such that
an ε-secure pseudo-signature protocol with transfer path P1 → P2 → P3 exists
for an arbitrary ε > 0 and sufficiently large n.

Relation Between Broadcast and Pseudo-signature. Broadcast and
pseudo-signature are closely related. If a pseudo-signature protocol with either
transfer path P1 → P2 → P3 or P1 → P3 → P2 is available, we can construct a
secure implementation of broadcast with sender P1; e.g., see [16,32]2. Thanks to
this result, a construction for pseudo-signature implies a construction for broad-
cast, and an impossibility result for broadcast implies an impossibility result
for pseudo-signature. Thus, we focus on constructions of pseudo-signatures and
impossibility results for broadcast in this paper. The conditions on correlations
under which pseudo-signature with transfer path P1 → P2 → P3 is feasible and
broadcast with sender P1 is feasible turn out to be same giving us a complete
characterization.

1.2 Related Work

The problem of the broadcast was introduced in [24], where the necessary and
sufficient condition for feasibility of broadcast was established. An alternative
proof for the impossibility part was proposed in [13]. This argument has been
widely used for proving impossibility results in distributed computing; e.g., see
[6,15]. Many impossibility results on distributed computing have been derived
using variants of this argument.

The concept of the pseudo-signature was introduced in [32]; see also [4] for
an earlier attempt at introducing an information theoretic version of digital
signature. They proposed a pseudo-signature protocol for a one bit message.
More efficient constructions based on bivariate polynomials were introduced in
[21] (see also [22]).

The problem of implementing broadcast and pseudo-signature from corre-
lated random variables was studied in [19]; this problem was motivated by an
implementation of broadcast from measurement outcomes of quantum entangle-
ment [14]. The minimum requirement for realizing broadcast was studied in [15];
for instance, the global broadcast among all the parties can be constructed from
the three party broadcast as long as honest majority is satisfied [18].
1 Our construction provides a protocol with perfect secrecy, while we prove our impos-

sibility results without making use of the secrecy condition. Thus, the secrecy con-
dition does not affect the characterization.

2 On the other hand, if broadcast protocols with each party as sender is available, a
pseudo-signature protocol, also known as an information checking protocol, can be
constructed [7].

Complete Characterization of Broadcast from Correlations 567

1.3 Main Contributions and Results

The main technical contributions of this paper are three-fold:

(i) We give a construction for pseudo-signature from correlations (Theorem
5) which considerably expands the class of correlations for which it was
known to be feasible. As we show, this construction, when combined with
(ii) below, fully characterizes the class of feasible correlations which was an
open problem [38, Section 18.7].

(ii) Given a pseudo-signature protocol with transfer path P1 → P3 → P2, we
construct a pseudo-signature protocol with transfer path P1 → P2 → P3

(Theorem 6); an observation which is new to the best of our knowledge.
(iii) We prove an impossibility for broadcast (which implies tight results for

pseudo-signatures and broadcast) by generalizing the well-known technique
of Fischer, Lynch, and Merritt [13] to our case which has a setup in the
form of correlations at the parties (Theorem 7). We believe this may be of
more general interest.

Using these we precisely characterize the class of correlations on which pseudo-
signatures (Theorem 8) and broadcast (Theorem 9) can be based. As mentioned
earlier, this class is the same for broadcast from sender P1 and for pseudo-
signatures with either of the transfer paths which start with P1. We also pro-
vide characterizations of the correlations under which pseudo-signature can be
obtained when there is limited connectivity/directionality of links between the
parties (Theorems 10–12)3.

1.4 Technical Overview

Pseudo-signature from Correlations. Attempts at altering a random vari-
able X may leave a statistical trace that a party who holds a correlated random
variable Y may be able to detect – this observation forms the basis of building
a pseudo-signature protocol from correlation. The party with Y can only hope
to detect anomalies in those parts of X which non-trivially depend on Y . For
instance, if two symbols x and x′ satisfy PY |X(·|x) = PY |X(·|x′), then a party
observing Y cannot detect the swapping of x and x′. To account for this, fol-
lowing [19], let us define X � Y as the maximal part of X which non-trivially
depends on Y (in statistics, this is known as the minimal sufficient statistic for
Y given X).

Definition 1 (Minimal sufficient statistics). For a pair of random variables
X,Y with joint distribution PXY , consider the partition of the alphabet X of X
induced by the following equivalence relation:

x ∼ x′ if PY |X(y|x) = PY |X(y|x′), ∀y.

We define ψX�Y to be the function which maps the elements in X to their cell
(i.e., part) in the above partition, and we define X � Y

def= ψX�Y (X).
3 A similar question for broadcast turns out to be trivial.

568 V. Narayanan et al.

Notice that X � Y is a random variable which is a function of X alone, where
the function (ψX�Y) is defined in terms of the distribution PXY .

Fitzi, Wolf, and Wullschleger [19] constructed a pseudo-signature protocol for
transfer path P1 → P2 → P3 from n i.i.d. copies of a correlation X,Y,Z observed
at parties P1, P2, P3, respectively. The sender P1 attaches copies of X � Y as
the signature (the first n/2 copies for message bit 0 and the second n/2 for
message bit 1). As foreshadowed, P2, who holds the copies of Y , may detect
any significant anomalies in the signature (with high confidence for sufficiently
large n; see Lemma 1). They showed that their protocol is secure as long as the
simulatability condition4

X � Y ←→ Y ←→ Z (1)

does not hold. Heuristically, (1) says that P2 can forge P1’s signature X � Y
using Y in a manner undetectable by P3 relying on its observations Z.

Furthermore, it was claimed in [19] that when X � Y ←→ Y ←→ Z and
X � Z ←→ Z ←→ Y hold, then pseudo-signature with either of the transfer
paths in which P1 is the sender (i.e., P1 → P2 → P3 or P1 → P3 → P2) is
impossible to build based on (X,Y,Z). However, there is a gap in the proof of
[19, Theorem 3]5, and a pseudo-signature can be implemented even if both these
Markov chains hold. In essence, these simulatability conditions do not account
for the fact that P2 and P3 may effectively “upgrade” their observations by
communicating with the other parties even if they do not trust the other parties.
We demonstrate different possible ways in which this can be accomplished using
a few examples; these examples also serve as counterexamples to [19, Theorem
3] and build up intuition for our construction.

Example 1 (Upgrading P3’s observation by communication from P1). Let us
consider a correlation induced by Rabin’s oblivious transfer. Suppose that X is
uniformly distributed on {0, 1}, and Y = Z such that it is X with probability 1

2
and the erasure symbol e with probability 1

2 . Then, since Y = Z, this correlation
satisfies both X � Y ←→ Y ←→ Z and X � Z ←→ Z ←→ Y . However, we
can implement a pseudo-signature protocol from this correlation as follows. Let
(Xi, Yi, Zi)i∈[n] be i.i.d. observations distributed according to PXY Z .

1. To send message b ∈ {0, 1}, P1 sends b and (X̃i)i∈Tb
= (Xi)i∈Tb

to P2, where
Tb = {i : bn

2 + 1 ≤ i ≤ (b+1)n
2 }.

2. P2 rejects if Yi /∈ {Xi, e} for some i ∈ Tb. Otherwise, P2 accepts b.
3. P1 sends (X̂i)i∈[n] = (Xi)i∈[n] to P3.
4. To transfer a message b it accepted, P2 sends b̂ = b and (X̆i)i∈Tb̂

= (X̃i)i∈Tb

to P3.
4 We write “the Markov chain U ←→ V ←→ W holds,” or simply “U ←→ V ←→
W” to mean U and W are conditionally independent conditioned on V .

5 It turns out that by considering restricted connectivity, specifically, when there is
no link between P1 and P3 and the link from P2 to P3 is unidirectional, it can be
shown that pseudo-signature from (X,Y, Z) is possible (if and) only if X � Y ←→
Y ←→ Z is not a Markov chain (see Theorem 12).

Complete Characterization of Broadcast from Correlations 569

5. P3 accepts b̂ if any one of the following holds: (i) Zi /∈ {X̂i, e} for some
i ∈ [n]; and (ii) |{i ∈ Tb̂ : X̆i �= X̂i}| ≤ nδ for a parameter δ > 0. Otherwise,
P3 rejects.

Clearly, the above protocol is perfectly correct. To verify transferability (security
against P1), notice that, to be successful, a corrupt P1 must convince P3 to
reject in step 5. while ensuring that P2 accepts in step 2.. In order for this, P1’s
transmissions (X̆i)i∈Tb

and (X̂i)i∈Tb
to P2 and P3, respectively, must disagree

in more than nδ locations. However, unless the observations of P2 and P3 (i.e.,
Yi = Zi) are not e in all such locations, the attack will not succeed (since either
P2 will reject in step 2. or P3 will accept the bit P2 transfers in step 5.). Hence,
the chance of success for P1 is at most 2−δn. To see unforgeability (security
against P2), notice that a successful attack by P2 requires it to guess Xi for all
i ∈ T1−b where Yi = e such that the number of incorrect guesses is no more
than nδ. Since for each i ∈ T1−b, the probability of Yi = e is 1/2 and P2 has
even odds of guessing correctly, the probability of a successful attack is 2−Ω(n)

for δ < 1/8 (see, e.g., [29, Theorem 4.5]). �

In the above example, P3’s observation is effectively upgraded from Z to
(X,Z) using communication from P1 in step 3.. Note that (in step 5.) P3 verifies
this communication from P1; if the verification fails, P3 accepts any message
P2 transfers, and if the verification succeeds, with overwhelming probability P1

has not lied on more than a small fraction of locations. In general, P3 can only
(statistically) verify the parts of X which non-trivially depend on Z, namely
X � Z (which happens to be X in this example). Thus, following the intuition
in the example, we may build6 a pseudo-signature protocol from correlations
(X,Y,Z) whenever the following condition (which is stronger compared to (1))
does not hold:

X � Y ←→ Y ←→ (Z,X � Z). (2)

It turns out that we may further expand the class of feasible correlations by
upgrading P3’s observation via communication from both P1 and P2 (also see
[30, Example 3 in Appendix A]). Note that the communication from P2 could
be part of the transfer step (i.e., step 4. in the example), where now, in addition
to what was received from P1, party P2 may also send its observation Y to P3.
Assume that, as in the example, P1 sends its X observations and P3 has verified
the X � Z part of this (if the verification fails, P3 accepts the message transferred
by P2). Now, P3 may also verify the part Y � Z of the Y observations sent by P3.
If the verification fails, P3 rejects the message P2 transfers. Otherwise, it may now
upgrade its observation to Z1 = (Z, (X � Z), (Y � Z)). Using this P3 is now able
to verify more parts of the X observations received from P1, specifically, X � Z1,
and similarly Y � Z1 of the Y received from P2. It is clear that this procedure
can be repeated. In each step, the upgrade operation involves a verification step
where, based on what is currently known, the maximal dependent part of the

6 This needs a slightly more elaborate test from the one in the protocol in the example
which exploits the fact that Rabin OT has erasures and no “errors.”

570 V. Narayanan et al.

observation being used to perform the upgrade is verified. If the verification fails,
P3 either accepts or rejects the transferred message depending on who provided
the observation. It turns out that only a fixed number of such steps suffice
to reach the best possible upgraded observation. The number of steps needed
depends on the distribution of (X,Y,Z) and is at most |X ||Y|, the product of
the alphabet sizes of X and Y ; see Definition 3, the discussion after that, and
Definition 4. We denote by X‡ (see Definition 4) the additional information
P3 acquires about X through this repeated upgradation procedure. The above
intuition allows building a pseudo-signature protocol whenever the following
condition (which is stronger still compared to (2)) does not hold:

X � Y ←→ Y ←→ (Z,X‡). (3)

In some cases it is also useful to upgrade P2’s observation partially so that
the party is able to verify P1’s signature, but is still unable to forge the signature.
The following example illustrates the idea.

Example 2 (Partially upgrading P2’s observation using communication from P3).
Consider a function MAC that takes a message M and a key K and computes an
information theoretic message authentication code (MAC) as MACK(M). MACs
guarantee non-forgeability, i.e., a forger (who may have access to a (message,
MAC) pair) can succeed in producing a valid MAC for a fresh message with neg-
ligible probability if the key is unknown. Let MAC and MAC′ be two information
theoretic MACs such that MAC takes a message from U and a key uniformly at
random from V, and MAC′ takes a message from V and a key uniformly at random
from W. Consider the correlation (X,Y,Z) generated using the following process:

1. Sample U, V,W uniformly and independently from U ,V,W, respectively.
2. Define X = (U,MACV (U)), Y = W and Z = (V,MAC′

W (V)).

For all i ∈ [m], j ∈ {0, 1}, suppose (Xi,j , Yi,j , Zi,j) are i.i.d. according to the
distribution of (X,Y,Z) described above. When P1, P2 and P3 have (Xi,j), (Yi,j)
and (Zi,j), respectively, for i ∈ [m], j ∈ {0, 1}, the following protocol implements
pseudo-signature with transfer path P1 → P2 → P3.

Signing Phase

1. P3 choose S ⊂ [m] uniformly at random conditioned on |S| = m
2 and sends

S and (Ẑi,j)i∈S,j∈{0,1} = (Zi,j)i∈S,j∈{0,1} to P2.
2. To send message b ∈ {0, 1}, P1 sends b and (X̃i,b)i∈[m] = (Xi,b)i∈[m] to P2.
3. P2 accepts b unless for some i ∈ S, X̃i,b = (u, ū), Yi,b = w, Ẑi,b = (v, v̄) such

that ū �= MACv(u) and v̄ = MAC′
w(v).

Transfer Phase

4. To transfer a message b it accepted, P2 sends b̂ = b and (X̆i,b̂)i∈[m] =
(X̃i,b)i∈[m] to P3.

5. P3 rejects b̂ if there are more that m/4 distinct i ∈ [m] \ S such that ūi �=
MACvi

(ui), where X̆i,b̂ = (ui, ūi) and Zi,b̂ = (vi, v̄i). Otherwise, P3 accepts b̂.

Complete Characterization of Broadcast from Correlations 571

To see security against P1 (transferability), notice that a corrupt P1 must ensure
that the (X̃i,b)i∈[m] = (ui, ūi)i∈[m] it sends to P2 is such that for all i ∈ S,
ūi = MACVi,b

(ui) so that P2 accepts and for at least m/4 of the remaining
i ∈ [m]\S, ūi �= MACVi,b

(ui) so that P3 rejects. Since S is a set unknown to P1 of
size m/2 chosen uniformly at random from [m], the probability of success is neg-
ligible in m (i.e., 2−Ω(m)). Security against P2 (unforgeability) follows from the
security of MAC. To convince P3 to accept b̂ = 1−b, the corrupt P2 needs to gen-
erate m/2 purported (message, MAC) pairs corresponding to keys (Vi,1−b)i∈[m]\S

(which it does not know) such that at least m/4 of them are valid pairs. Using a
MAC with security parameter ε/m, we may ensure that only with at most ε prob-
ability will even one of the pairs be valid. Unlike the previous examples, P3 par-
ticipates in the signing phase. Hence we also need to consider security against P3

(correctness). This will follow from the security of MAC′. A corrupt P3 (suppose
it correctly guessed P1’s b), who observes Zi,b = (Vi,b,MAC′

Wi,b
(Vi,b)), i ∈ [m],

needs to generate a valid (message, MAC) pair (v′
i,b, v̄

′
i,b) corresponding to the

(unknown) key Wi,b such that v′
i,b �= Vi,b for at least one i ∈ [m] so that (with

S � i), P2 may reject b if MACVi,b
(Ui,b) �= MACv′

i,b
(Ui,b). If MAC′ has security

parameter ε/m, the probability that P3 succeeds is at most ε. Hence, the protocol
is ε-secure if m = O(log(1/ε)) and the MACs are (ε/m)-secure. �

In the above example, by providing P3’s observation (i.e., Z) to P2 on a
random subset S of the instances, we achieved two things. Firstly, this enabled
P2 to verify the signature sent by P1 with the same confidence as P3 would on
these instances. Since S is unknown to P1, if P2 does not detect an anomaly
among these, with overwhelming probability, P1 has not lied on more than a
constant fraction of all the instances. Secondly, by the independence of these
instances, P2 is still as oblivious about P3’s observation outside of S as before
the upgrade. P3 checking the signature only on [m] \ S denies P2 the possibility
of a forging attack.

Note that a corrupt P3 could try to make P2 distrust an honest P1 by giving
out incorrect values of its observation (on a potentially cherry-picked set S; in
the above example there was no advantage in cherry picking S). Hence, it is
important that P2 uses only those parts of P3’s observation it can verify to be
correct, i.e., Z � Y (in the example, this component turns out to be all of P3’s
observation). If the verification fails, P2 accepts P1’s message. In general, these
verifications may require a statistical test which may be reliable only when run
over a long vector of observations (in the example, MAC allowed this verification
to be done element-wise); the same is true for (the upgraded) P2 verifying P1’s
signature (which was again possible element-wise in the example). Thus, in our
construction, we consider two indices: i ∈ [m] which serves the same purpose as
in the above example and j ∈ [n] such that in step 2, for each i ∈ S, statistical
tests can be carried out by P2 over a vector indexed by j; such tests also takes
away any advantage P3 can hope to gain by picking S carefully. Similarly, in
step 5, for each i ∈ [m] \ S, P3 conducts statistical tests over vectors indexed
by j. With these we may obtain a pseudo-signature protocol construction in
which (the upgraded) P2 can verify signatures X � Y ′, where Y ′ := (Y,Z � Y).

572 V. Narayanan et al.

This pseudo-signature protocol is secure as long as the following is not a Markov
chain (a stronger condition than (1)):

X � Y ′ ←→ Y ←→ Z.

Notice that only the first random variable has changed in the condition. The
middle random variable continues to be Y (and not Y ′). This is because the
upgrade of P2’s observation to Y ′ is limited to a random subset S, and, as we
saw in the example, P3 verifies the signature transferred by P2 in [m] \ S where
P2 only holds Y .

Now suppose P2 has verified X � Y ′ as above and hence holds Y ′′ = (Y ′,X �

Y ′). Then, P2 may further upgrade its observation by verifying more of the Z
it received from P3. In particular, P2 may verify Z � Y ′′ and, if the verification
passes (in case of failure P2 accepts P1’s message), P2 may upgrade itself to
Y ′′′ = (Y ′′, Z � Y ′′). With this additional upgrade, P2 is equipped to verify a
heftier signature (specifically X � Y ′′′). It is clear that this procedure may be
repeated, similar to the repeated upgradation procedure we saw for P3. In each
alternate step, P2 verifies Z and X until no further upgradation is possible (this is
again attained in only a finite number of steps). We denote by X† (see Definition
5) the part of X that the repeated upgradation procedure allows P2 to verify
and learn. We emphasize that P2 learns X† only on a subset of instances which
prevents it from using this information to mount a successful forging attack.
Thus, pseudo-signature is feasible if the following Markov chain does not hold:

X† ←→ Y ←→ Z. (4)

Our construction for pseudo-signature in Sect. 3.1, which combines all the
ideas above and upgrades the observations of P3 and P2 (in a subset), gives the
following result (cf. (3)–(4)):

Theorem 1 (informal). Pseudo-signature with transfer path P1 → P2 → P3

from correlation (X,Y,Z) is feasible if the following is not a Markov chain

X† ←→ Y ←→ (Z,X‡). (5)

Characterization of Correlations. We also observe that given a pseudo-
signature protocol with transfer path P1 → P3 → P2, we may construct a
pseudo-signature protocol with transfer path P1 → P2 → P3. Our construction
in Sect. 3.2 effectively samples a correlation using the given pseudo-signature
protocol and uses this correlation to implement the protocol with the requisite
altered transfer path. This observation, when combined with Theorem 1, implies
that pseudo-signature from a correlation (X,Y,Z) is feasible if either (5) or its
analog when the roles of Y and Z are swapped does not hold. The latter Markov
chain is in fact X‡ ←→ Z ←→ (Y,X†), i.e., exchanging the roles of Y and
Z also exchanges the corresponding upgrades X† and X‡ as is evident from
the similarity of the repeated upgradation procedures at P2 and P3 (also see
Definitions 3–5). This gives the construction for our characterization theorem
for pseudo-signatures.

Complete Characterization of Broadcast from Correlations 573

Theorem 2 (informal). If parties P1, P2, P3 observe independent copies of
correlation (X,Y,Z), a pseudo-signature protocol with transfer path P1 → P2 →
P3 exists if and only if at least one of the following Markov chains does not hold:

X† ←→ Y ←→ (Z,X‡) (6)

X‡ ←→ Z ←→ (Y,X†) (7)

Impossibility. To show the impossibility part of the above theorem, we leverage
the connection between pseudo-signatures and broadcast. As mentioned earlier,
broadcast with sender P1 may be realized using a pseudo-signature protocol with
P1 as the signing party. We show that broadcast from correlation (X,Y,Z) with
sender P1 is impossible if both Markov chains (6) and (7) hold. Our impossibil-
ity proof in Sect. 4 is along the lines of the proof of impossibility of three-party
broadcast from scratch due to Fischer, Lynch, and Merritt (FLM) [13]. It may
be thought of as an extension of their argument to the case when correlations
are available to the parties. Similar to [13], we make two copies of the parties (in
fact, only copying party P1 suffices) and rewire the parties to create a fictitious
network. The parties in this network are fed observations from a carefully chosen
correlation so that we may give three different interpretations which lead to a
contradiction. Under each interpretation, two of the parties are honest and the
third dishonest party simulates the remaining parties in the rewired network.
Moreover, the choice of correlation fed to the parties in the rewired network is
such that in each interpretation the correlations of the two honest parties and the
one dishonest party are (X,Y,Z), and the dishonest party is able to sample the
correlations needed to perform the simulation. Like in [13], the interpretations
lead to a contradiction proving the impossibility. We note here that the rewired
network we use is identical to the one in the (flawed) proof of [19, Theorem 7],
however the rest of the proof including our use of a carefully chosen distribution
is different. To the best of our knowledge this is the first instance where FLM’s
argument has been extended to a problem with setup where a carefully chosen
setup is provided to the parties in the fictitious network. In [6], the FLM argu-
ment was applied to a case where parties may invoke partial broadcast (e.g., three
party broadcast); there, providing the parties in the fictitious network with (the
more obvious choice of) partial broadcast sufficed. Given the extensive use of
FLM argument in proving impossibility results in distributed computing, our
extension might be of independent interest. From the above discussion it is clear
that we also have a characterization theorem for broadcast from correlations:

Theorem 3 (informal). If parties P1, P2, P3 observe independent copies of
correlation (X,Y,Z), broadcast with sender P1 is feasible if and only if at least
one of the following Markov chains does not hold:

X† ←→ Y ←→ (Z,X‡)

X‡ ←→ Z ←→ (Y,X†)

574 V. Narayanan et al.

Pseudo-signature Under Limited Connectivity. Our construction only
used the unidirectional links P1 ⇒ P2, P1 ⇒ P3, and the bidirectional link
P2 ⇔ P3, while the impossibility applies for protocols which may use all pairwise
links in either direction. We also study pseudo-signature with transfer path P1 →
P2 → P3, which necessarily requires the P1 ⇒ P2 and P2 ⇒ P3 links, when one
or both of P1 ⇒ P3 and P3 ⇒ P2 links that our construction additionally used
are absent and provide the characterizations.

2 Preliminaries

We use the method of types from information theory [11] to prove some of the
technical lemmas; see [30, Appendix B.1] for a review. A sequence (xi)i∈[n] is said
to be typical with respect to a distribution PX when its empirical probability is
close to PX as below:

Definition 2 (γ-typical sequences). Let X be a random variable defined on
alphabet X with distribution PX . For a parameter γ > 0, a sequence (xi)i∈[n],
where xi ∈ X , i ∈ [n], is said to be (strongly) γ-typical if for all a ∈ X and for
N

(
a, (xi)i∈[n]

) def= |{i : xi = a, i ∈ [n]}|,
∣
∣
∣
∣
∣
N

(
a, (xi)i∈[n]

)

n
− PX(a)

∣
∣
∣
∣
∣
≤ γ

|X | .

The set of all γ-typical sequences is denoted by T n
γ (PX).

The nomenclature is justified by the following theorem [11, Lemma 2.12] which
states that when (Xi)i∈[n] is drawn i.i.d. according to PX , with overwhelming
probability it will fall in T n

γ (PX).

Theorem 4. Let (Xi)i∈[n] be a sequence of i.i.d. PX random variables, then for
any 0 < γ ≤ 1/2,

Pr
[
(Xi)i∈[n] /∈ T n

γ (PX)
]

= 2−Ω(n). (8)

We now formalize the intuition we gave for minimal sufficient statistics X � Y
(see the discussion around Definition 1). The following lemma states that if
(Xi, Yi)i∈[n] is i.i.d. according to PXY and a party who possesses (Xi)i∈[n], but
crucially no additional side-information about (Yi)i∈[n], attempts to tamper with
(Xi)i∈[n] such that the ψX�Y parts are significantly altered, with overwhelming
probability this attempt can be detected by a second party who possesses the
correlated observations (Yi)i∈[n]. Proofs of the lemmas in this section are avail-
able in [30, Appendix B].

Lemma 1. For any joint distribution PXY and γ > 0, there exists δ > 0 that
approaches 0 as γ approaches 0 such that, when (Xi, Yi)j∈[n] are i.i.d. according
to PXY , and (X̂j)j∈[n] ←→ (Xj)j∈[n] ←→ (Yj)j∈[n] is a Markov chain, then

Pr
[
(|{j : ψX�Y (X̂j) �= ψX�Y (Xj)}| > nδ)

∧ ((X̂n, Y n) ∈ T n
γ (PXY))

]
≤ 2−Ω(n). (9)

Complete Characterization of Broadcast from Correlations 575

The following lemma states two basic properties of minimal sufficient statistics
(Definition 1).

Lemma 2. (i) X ←→ (X � Y) ←→ Y
(ii) Suppose Y1 is a function of Y2, then X � Y1 = (X � Y2) � Y1 and hence

X � Y1 is a function of X � Y2. i.e., the partition of X corresponding to
X � Y2 is a refinement of the one corresponding to X � Y1.

The following random variables play a role in the upgrade of P3’s observation.

Definition 3 (Upgraded random variables). For a triple of random vari-
ables (X,Y,Z) with joint distribution PXY Z , we define:

Z(1) = (Z, (X � Z), (Y � Z))

Z(2) = (Z(1), (X � Z(1)), (Y � Z(1)))
...

Z(i+1) = (Z(i), (X � Z(i)), (Y � Z(i)))
...

For j > i, note that Z(i) is a function of Z(j). Hence, by Lemma 2(ii), (X � Z(i))
(resp., (Y � Z(i))) is a function of (X � Z(j)) (resp., (Y � Z(j))). In other words,
as i increases, X � Z(i) and Y � Z(i) correspond to finer and finer partitions of X
and Y, respectively. Here X and Y denote the alphabets of X and Y respectively.
Clearly, if for some i, ((X � Z(i+1)), (Y � Z(i+1))) = ((X � Z(i)), (Y � Z(i)))
a.s. (i.e., with probability 1), then, for all j ≥ i, Z(j) = Z(i) a.s. and ((X �

Z(j)), (Y � Z(j))) = ((X � Z(i)), (Y � Z(i))) a.s. Hence, the finest partitions are
attained (at least) by index i = |X ||Y| and we denote these using the following
notation.

Definition 4 (Upgraded random variables cont.).

X‡ = X � Z(|X ||Y|), Y ∗ = Y � Z(|X ||Y|).

Analogously, for the upgrade of P2’s observations, we define:

Definition 5 (Upgraded random variables cont.). For a triple of ran-
dom variables (X,Y,Z) with joint distribution PXY Z , we recursively define the
following random variables:

Y (1) = (Y, (X � Y), (Z � Y))

Y (2) = (Y (1), (X � Y (1)), (Z � Y (1)))
...

Y (i+1) = (Y (i), (X � Y (i)), (Z � Y (i)))
...

X† = X � Y (|X ||Z|), Z∗ = Z � Y (|X ||Z|).

576 V. Narayanan et al.

The following lemma follows from the definitions and Lemma 2(i):

Lemma 3. (i) X ←→ X† ←→ (Y,Z∗)
(ii) Z ←→ Z∗ ←→ (Y,X†)
(iii) X ←→ X‡ ←→ (Z, Y ∗)
(iv) Y ←→ Y ∗ ←→ (Z,X‡)

3 Constructions

In this section we present our main constructions. In Sect. 3.1 we show that
pseudo-signature with transfer path P1 → P2 → P3 is feasible if the parties
P1, P2, P3 observe correlations X,Y,Z, respectively, such that X† ←→ Y ←→
(Z,X‡) is not a Markov chain. In Sect. 3.2 we argue that, given a pseudo-
signature protocol with transfer path P1 → P3 → P2, we can obtain a pseudo-
signature protocol with transfer path P1 → P2 → P3 (albeit with a weaker
security parameter). These two constructions together give us the feasibility
direction of the characterizations of correlations which allow pseudo-signatures
(and broadcast); see Sect. 5.

3.1 A Pseudo-signature Protocol from Correlations

Theorem 5. Suppose PXY Z is a joint distribution such that the Markov chain
X† ←→ Y ←→ (Z,X‡) does not hold. Then, for any ε > 0, there is an ε-
secure pseudo-signature scheme with transfer path P1 → P2 → P3 which uses
N = O(log2(1ε)) independent copies of the correlation (X,Y,Z).

The construction we use to prove this theorem relies on a statistical test
which we describe first: Consider a joint distribution PUV W . Let U (0) = U , and
U (r) be recursively defined as (cf. Definitions 3 and 4)

U (r) = (U (r−1), V � U (r−1),W � U (r−1)), 1 ≤ r ≤ |V||W|.

For parameters γ1, . . . , γ|V||W| > 0 (to be decided; see Lemma 4), the statistical
test ΣUV W takes as input (uj , vj , wj)j∈[n] and proceeds as follows:

1. Set u
(0)
j = uj for each j ∈ [n] and set r = 1.

2. If (u(r−1)
j , vj)j∈[n] /∈ T n

γr
(PU(r−1),V), report failure w.r.t. V and terminate.

3. If (u(r−1)
j , wj)j∈[n] /∈ T n

γr
(PU(r−1),W), report failure w.r.t. W and terminate.

4. Set u
(r)
j = (u(r−1)

j , ψV �U(r−1)(vj), ψW�U(r−1)(wj)) for each j ∈ [n], and set
r = r + 1. If r ≤ |V||W|, go to step 2; else report success and terminate.

For r = 1 to |V||W|, the test attempts to recursively “upgrade” (u(r−1)
j)j∈[n] by

attaching to it (f (r)(vj), g(r)(wj))j∈[n]. Before doing so, the test must verify if
these attachments are valid. The intuition here is that the function ψV �U(r−1)

of (vj)j∈[n] (resp. ψW�U(r−1) of (wj)j∈[n]) is indeed something a statistical test

Complete Characterization of Broadcast from Correlations 577

can be used to test the validity of based on (u(r−1)
j)j∈[n] (see Definition 1).

Step 2 (resp., 3) performs this validity check by testing whether (vj)j∈[n] (resp.,
(wj)j∈[n]) is “typical” with the current u

(r−1)
j according to the joint distri-

bution PU(r−1),V (resp., PU(r−1),W). If not, the test terminates at this step
with failure w.r.t. V (resp. W). The test terminates with success if none of
the validity tests fail. When this happens, the test has verified the validity of
(ψV �U(|V||W|)(vj), ψW�U(|V||W|)(wj))j∈[n].

The following lemma formalizes the intuition. It states that while the test
will report failure with negligible property when run with inputs (Uj , Vj ,Wj)j∈[n]

generated PUV W i.i.d., it is also robust to maliciously generated inputs. Specifi-
cally, if (Wj)j∈[n] is replaced with a (Ŵj)j∈[n] generated conditionally indepen-
dent of (Uj , Vj)j∈[n] conditioned on (Wj)j∈[n], then only with negligible prob-
ability will the test (a) report failure w.r.t. V , or (b) report success when for
more than a small fraction of j’s, Ŵj and Wj map to different values under
ψW�U(|V||W|) (or ψW�U(r) for any r as r = |V||W| corresponds to the finest par-
tition). The lemma gives similar guarantees when (Vj)j∈[n] is replaced with a
(V̂j)j∈[n].

Lemma 4. Suppose (Uj , Vj ,Wj) are i.i.d. according to PUV W for all j ∈ [n].
For any δ > 0, there exist parameters γ1, . . . , γ|V||W| > 0 such that

(i) ΣUV W succeeds with probability 1 − 2−Ω(n) on input (Uj , Vj ,Wj)j∈[n].
(ii) Suppose (Ŵj)j∈[n] ←→ (Wj)j∈[n] ←→ (Uj , Vj)j∈[n] is a Markov chain. On

input (Uj , Vj , Ŵj)j∈[n],
(a) ΣUV W reports failure w.r.t. V with probability 2−Ω(n).
(b) When � = |V||W|,

Pr
[
(|{j : ψW�U(�)(Ŵj) �= ψW�U(�)(Wj)}| > nδ)

∧ (ΣUV W reports success)
]

≤ 2−Ω(n).

(iii) Suppose (V̂j)j∈[n] ←→ (Vj)j∈[n] ←→ (Uj ,Wj)j∈[n] is a Markov chain. On
input (Uj , V̂j ,Wj)j∈[n],

(a) ΣUV W reports failure w.r.t. W with probability 2−Ω(n).
(b) When � = |V||W|,

Pr
[
(|{j : ψV �U(�)(V̂j) �= ψV �U(�)(Vj)}| > nδ)

∧ (ΣUV W reports success)
]

≤ 2−Ω(n).

See [30, Appendix C.1] for a proof which makes repeated uses of Lemma 1.
We will show that the following protocol implements pseudo-signature with

transfer path P1 → P2 → P3 using the correlation (X,Y,Z).
Parties P1, P2 and P3 receive inputs (Xi,j)i∈[m],j∈[n], (Yi,j)i∈[m],j∈[n], and

(Zi,j)i∈[m],j∈[n], respectively, such that, for all i ∈ [m], j ∈ [n], (Xi,j , Yi,j , Zi,j)

578 V. Narayanan et al.

are i.i.d. according to PXY Z . The parameters m,n, and γ > 0 in the protocol
will be specified during the security analysis.

Signing Phase

1. P3 uniformly samples S ⊂ [m] conditioned on |S| = m/2 and sends S,
(Ẑi,j)i∈S,j∈[n] = (Zi,j)i∈S,j∈[n] to P2.

2. To send message b ∈ {0, 1}, P1 sends b and (X̃i,j)i∈[m],j∈Tb
= (Xi,j)i∈[m],j∈Tb

to P2, where Tb = {i : bn
2 + 1 ≤ i ≤ (b+1)n

2 }.
3. P2 accepts b unless for some i ∈ S (S of size m/2) the statistical test ΣY ZX

with input (Yi,j , Ẑi,j , X̃i,j)j∈Tb
fails w.r.t. X. In the latter case P2 rejects b.

Transfer Phase

4. To transfer a message b it accepted, P2 sends b̂ = b and
(X̆i,j , Y̆i,j)i∈[m],j∈Tb̂

= (X̃i,j , Yi,j)i∈[m],j∈Tb
to P3.

5. P1 sends (X̂i,j)i∈[m],j∈[n] = (Xi,j)i∈[m],j∈[n] to P3.
6. For each i ∈ [m] \ S, P3 runs ΣZXY with input (Zi,j , X̂i,j , Y̆i,j)j∈Tb̂

. If for
some i ∈ [m] \ S, ΣZXY fails w.r.t. X, P3 accepts b̂, else if ΣZXY fails w.r.t.
Y for some i ∈ [m] \S, P3 rejects. If ΣZXY reports success for all i ∈ [m] \S,
go to the next step.

7. Denote ψX�Y (|X||Z|) by f† and ψX�Z(|X||Y|) by f‡. P3 rejects b̂ if there are
more than m/4 distinct i ∈ [m] \ S such that

(f†(X̆i,j), Zi,j , f
‡(X̂i,j))j∈Tb̂

/∈ T n/2
γ (PX†ZX‡).

P3 accepts b̂ otherwise.

Proof (Theorem 5). Let δ, γ > 0 (to be decided) and set the parameters for the
statistical tests ΣY ZX and ΣZXY in the protocol from Lemma 4. We first argue
the correctness of the protocol. Lemma 4(i) guarantees that when all parties
behave honestly, each invocation of the tests ΣY ZX and ΣZXY in the protocol
reports success with probability 1 − 2−Ω(n). Furthermore, since γ > 0, each
typicality check made by P3 in step 7 succeeds with probability 1 − 2−Ω(n) by
Theorem 4. Thus, by a union bound, P2 and P3 together accept P1’s message
with probability 1 − m2−Ω(n).

We will separately consider the cases where P1, P2, and P3 are corrupt.

Security against P3 (Correctness). Suppose P3 sends S ⊂ [m] and (Ẑi,j)i∈S,j∈[n]

to P2 in step 1. To prove security against P3, it suffices to show that, for all
i ∈ S, when P2 runs ΣY ZX with input (Yi,j , Ẑi,j ,Xi,j)j∈Tb

in step 3, it reports
failure w.r.t. X with only a negligible probability. Notice that (S, (Ẑi,j)i∈S,j∈[n])
satisfies the Markov chain

S, (Ẑi,j)i∈S,j∈[n] ←→ (Zi,j)i∈[m],j∈[n] ←→ (Xi,j , Yi,j)i∈[m],j∈[n]. (10)

Complete Characterization of Broadcast from Correlations 579

Let us define

(Ẑi,j)i∈[m]\S,j∈Tb
= (Zi,j)i∈[m]\S,j∈Tb

. (11)

Then

Pr
[
∃i ∈ S s.t. ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j ,Xi,j)j∈Tb

]

≤ Pr
[
∃i ∈ [m] s.t. ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j ,Xi,j)j∈Tb

]

≤
m∑

i=1

Pr
[
ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j ,Xi,j)j∈Tb

]
,

where the last step is a union bound. To bound each of these probabilities,
we notice that by (10)–(11) and the fact that (Xi,j , Yi,j , Zi,j) are i.i.d. over
i ∈ [m], j ∈ [n], the following Markov chain holds for each i ∈ [m]:

(Ẑi,j)j∈[n] ←→ (Zi,j)j∈[n] ←→ (Xi,j , Yi,j)j∈[n] (12)

Hence, by Lemma 4(iii)(a), for i ∈ [m],

Pr
[
ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j ,Xi,j)j∈Tb

]
= 2−Ω(|Tb|) = 2−Ω(n).

Thus, P2 accepts P1’s message with probability 1 − m2−Ω(n).

Security against P1 (Transferability). To prove security against P1, it is sufficient
to show that, if P2 accepts, then P3 also accepts with overwhelming probabil-
ity. Fix b ∈ {0, 1}. Suppose P1 sends (b, (X̃i,j)i∈[m],j∈Tb

) to P2 in step 2 and
(X̂i,j)i∈[m],j∈[n] to P3 in step 5. Then,

(
(X̂i,j)i∈[m],j∈[n], (X̃i,j)i∈[m],j∈Tb

)
←→ (Xi,j)i∈[m],j∈[n]

←→
(
S, (Yi,j , Zi,j)i∈[m],j∈[n]

)
. (13)

Formally, we need to show that the event E = (E1 ∨ E2) ∧ (E3 ∨ (E4 ∧ E5))
occurs with negligible probability, where

1. E1 is the event “ΣY ZX succeeds on input (Yi,j , Zi,j , X̃i,j)j∈Tb
in step 3 for

each i ∈ S”.
2. E2 is the event “ΣY ZX fails w.r.t. Z on input (Yi,j , Zi,j , X̃i,j)j∈Tb

in step 3
for some i ∈ S”.

3. E3 is the event “ΣZXY fails w.r.t. Y on input (Zi,j , X̂i,j , Yi,j)j∈Tb
in step 6

for some i ∈ [m] \ S”.
4. E4 is the event “ΣZXY succeeds on input (Zi,j , X̂i,j , Yi,j)j∈Tb

in step 6 for
each i ∈ [m] \ S”.

5. E5 is the event “in step 7, (f†(X̃i,j), Zi,j , f
‡(X̂i,j))j∈Tb

/∈ T
n
2

γ (PX†ZX‡) for at
least m

4 distinct values of i ∈ [m] \ S.”

580 V. Narayanan et al.

Note that, here E1 ∨ E2 is the event in which P2 accepts the signature, and
E3 ∨ (E4 ∧ E5) is the event in which P3 rejects the signature. Since (E1 ∨ E2) ∧
(E3 ∨ (E4 ∧ E5)) ⊂ E2 ∨ E3 ∨ (E1 ∧ E4 ∧ E5),

Pr[E] = Pr[(E1 ∨ E2) ∧ (E3 ∨ (E4 ∧ E5))]
≤ Pr[E2] + Pr[E3] + Pr[E1 ∧ E4 ∧ E5]. (14)

We now bound each of these probabilities. We have

Pr[E2] =
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ] · Pr[E2|S = Ŝ].

Since S is chosen independent of (X̃i,j , Yi,j , Zi,j)i∈[m],j∈Tb
,

Pr[E2|S = Ŝ] = Pr
[
∃i ∈ Ŝ s.t. ΣY ZX fails w.r.t. Z for (Yi,j , Zi,j , X̃i,j)j∈Tb

]

≤
∑

i∈Ŝ

Pr
[
ΣY ZX fails w.r.t. Z on (Yi,j , Zi,j , X̃i,j)j∈Tb

]

= |Ŝ|2−Ω(|Tb|) = m2−Ω(n),

where the bound on the probabilities in the last step follows from Lemma 4(ii)(a)
since, by (13) and the fact that (Xi,j , Yi,j , Zi,j) are i.i.d. over i ∈ [m], j ∈ [n],
the following Markov chain holds for each i ∈ [m]:

(X̃i,j)j∈Tb
←→ (Xi,j)j∈Tb

←→ (Yi,j , Zi,j)j∈Tb
. (15)

Hence,

Pr[E2] ≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ] m2−Ω(n) = m2−Ω(n). (16)

To bound Pr[E3], using the fact that

(X̂i,j)j∈Tb
←→ (Xi,j)j∈Tb

←→ (Yi,j , Zi,j)j∈Tb
(17)

is a Markov chain for each i ∈ [m] and that (X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb
is indepen-

dent of S, following similar steps as above (invoking Lemma 4(iii)(a) along the
way) we have

Pr[E3] = Pr
[
∃i ∈ [m] \ S s.t. ΣZXY fails w.r.t. Y for (Zi,j , X̂i,j , Yi,j)j∈Tb

]

= m2−Ω(n). (18)

We now bound Pr[E1 ∧ E4 ∧ E5]. Recall that we denote f† = ψX�Y (|X||Z|)

and f‡ = ψX�Z(|X||Y|) . Let us define the events

B =
(
|{i ∈ [m] \ S : |{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| > nδ)}| ≥ m

8

)
,

C =
(
∃i ∈ [m] \ S such that |{j ∈ Tb : f‡(X̂i,j) �= f‡(Xi,j)}| > nδ

)
.

Complete Characterization of Broadcast from Correlations 581

Since E1 ∧ E4 ∧ E5 ⊂ (E1 ∧ B) ∨ (E4 ∧ C) ∨ (E5 ∧ Bc ∧ Cc),

Pr[E1 ∧ E4 ∧ E5] ≤ Pr[E1 ∧ B] + Pr[E4 ∧ C] + Pr[E5 ∧ Bc ∧ Cc]. (19)

We proceed to bound each of these probabilities.

Pr[E1 ∧ B] ≤ Pr[B ∧ D] + Pr[E1 ∧ Dc],

where D =
∧

i∈S(|{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| ≤ nδ). For i ∈ [m], if we
define Fi as the indicator random variable of the event (|{j ∈ Tb : f†(X̃i,j) �=
f†(Xi,j)}| > nδ), then

B =

(
m∑

i=1

Fi ≥ m

8

)

, D =

(
∑

i∈S

Fi = 0

)

.

Since S is a random subset of size m/2 uniformly chosen from [m] independent
of (X̃i,j ,Xi,j)i∈[m],j∈Tb

(and therefore independent of (Fi)i∈[m]),

Pr[B ∧ D] = 2−Ω(m).

Now, to bound Pr[E1 ∧ Dc], for i ∈ [m], let

E1,i =
(
(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb

)

∧ (|{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| > nδ)
)

.

Then

E1 ∧ Dc =
(
(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb

,∀i ∈ S)

∧ (∃i ∈ S s.t. |{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| > nδ)
)

⊂
∨

i∈S

E1,i.

Hence,

Pr[E1 ∧ Dc] ≤ Pr

[
∨

i∈S

E1,i

]

≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈Ŝ

Pr[E1,i|S = Ŝ],

where the last inequality is a union bound. By the independence of S and
(X̃i,j , Yi,j , Zi,j)i∈[m],j∈Tb

,

Pr[E1,i|S = Ŝ]

= Pr
[
(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb

)

∧ (|{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| > nδ)
]

= 2−Ω(n),

582 V. Narayanan et al.

where the last step follows from Lemma 4(ii)(b) since the Markov chain (15)
holds for each i ∈ [m] and f† = ψX�Y (|X||Z|) . Thus, Pr[E1 ∧ B] = 2−Ω(m) +
m2−Ω(n).

To bound the term Pr[E4 ∧ C] in (19), let us define, for i ∈ [m],

E4,i =
(
(ΣZXY succeeds for (Zi,j , X̂i,j , Yi,j)j∈Tb

)

∧ (|{j ∈ Tb : f‡(X̂i,j) �= f‡(Xi,j)}| > nδ)
)

.

Since (E4 ∧ C) ⊂
∨

i∈[m]\S E4,i,

Pr [E4 ∧ C] ≤ Pr

⎡

⎣
∨

i∈[m]\S

E4,i

⎤

⎦

≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E4,i|S = Ŝ].

We may bound Pr[E4,i|S = Ŝ] using the Markov chain (17) and the independence
of (X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb

and S following similar steps as in the bound for
Pr[E1,i|S = Ŝ] above (now invoking Lemma 4(iii)(b)) to obtain Pr[E4 ∧ C] ≤
m2−Ω(n).

To bound the term Pr[E5∧Bc ∧Cc] in (19), we will make use of the following
lemma:

Lemma 5. For any distribution PUV and δ > 0, there exists γ >
0 that approaches 0 as δ approaches 0 such that, for random variables
(Uj , Vj , Ûj , V̂j)j∈[n] with (Uj , Vj)j∈[n] i.i.d. according to PUV ,

Pr
[
(|{j : Ûj �= Uj}| ≤ nδ) ∧ (|{j : V̂j �= Vj}| ≤ nδ)

∧ ((Ûj , V̂j)j∈[n] /∈ T n
γ (PUV))

]
≤ 2−Ω(n). (20)

For i ∈ [m], define the events

E5,i =
(
((f†(X̃i,j), Zi,j , f

‡(X̂i,j))j∈Tb
/∈ T

n
2

γ (PX†ZX‡))

∧ (|{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| ≤ nδ)

∧ (|{j ∈ Tb : f‡(X̂i,j) �= f‡(Xi,j)}| ≤ nδ)
)

.

Since E5 ∧ Bc ∧ Cc ⊂
∨

i∈[m]\S E5,i,

Pr [E5 ∧ Bc ∧ Cc] ≤ Pr

⎡

⎣
∨

i∈[m]\S

E5,i

⎤

⎦

≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E5,i|S = Ŝ].

Complete Characterization of Broadcast from Correlations 583

Once again, since (X̃i,j , X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb
is independent of S,

Pr[E5,i|S = Ŝ]

≤ Pr
[
((f†(X̃i,j), Zi,j , f

‡(X̂i,j))j∈Tb
/∈ T

n
2

γ (PX†ZX‡))

∧ (|{j ∈ [n] : f‡(X̂i,j) �= f‡(Xi,j)}| ≤ nδ)

∧
(
|{j ∈ Tb : f†(X̃i,j) �= f†(Xi,j)}| ≤ nδ)

)]

= 2−Ω(n),

where the bound in the last step follows from Lemma 5 (take PUV as PX†(ZX‡),
i.e., U = X† and V = (Z,X‡)) as long as δ > 0 is sufficiently small for a
given choice of γ > 0 (we ensure that this is the case at the end of this proof).
Hence, Pr [E5 ∧ Bc ∧ Cc] = m2−Ω(n). Gathering the bounds for all terms in
(19), we have shown that Pr[E1 ∧ E4 ∧ E5] = m2−Ω(n) + 2−Ω(m). Together with
(14),(16),(18), this proves security against a corrupt P1 if we choose m = n (as
we will do at the end of the proof).

Security against P2 (Unforgeability). To prove security against P2, it is sufficient
to show that, when P1’s message is b and P2 claims in step 4 that it received
1− b from P1, party P3 rejects with overwhelming probability. Suppose P2 sends
(1 − b, (X̆i,j , Y̆i,j)i∈[m],j∈T1−b

) to P3 in step 4. Then, these random variables
satisfy the following Markov chain

(X̆i,j , Y̆i,j)i∈[m],j∈T1−b

←→
(
S, (Yi,j)i∈[m],j∈[n], (Xi,j)i∈[m],j∈Tb

, (Zi,j)i∈S,j∈[n]

)

←→
(
(Xi,j)i∈[m],j∈T1−b

, (Zi,j)i∈[m]\S,j∈[n]

)
. (21)

P3 accepts 1 − b from P2 only if event E′ = E′
1 ∨ E′

2 occurs, where

1. E′
1 is the event “ΣZXY fails w.r.t. X on input (Zi,j ,Xi,j , Y̆i,j)j∈T1−b

in step
6 for some i ∈ [m] \ S”.

2. E′
2 is the event “(f†(X̆i,j), Zi,j , f

‡(Xi,j))j∈T1−b
is a γ-typical sequence w.r.t.

PX†ZX‡ for at least m
4 instances of i ∈ [m] \ S”.

Pr[E′] = Pr[E′
1 ∨ E′

2] ≤ Pr[E′
1] + Pr[E′

2]. (22)

We will show that these events occur with negligible probability. For i ∈ [m], let

E′
1,i = (ΣZXY fails w.r.t. X for (Zi,j ,Xi,j , Y̆i,j)j∈T1−b

).

Then

Pr[E′
1] = Pr

⎡

⎣
∨

i∈[m]\S

E′
1,i

⎤

⎦

≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E′
1,i|S = Ŝ].

584 V. Narayanan et al.

And for each Ŝ ⊂ [m] of size m/2 and i ∈ [m] \ Ŝ,

Pr[E′
1,i|S = Ŝ]

= Pr
[
ΣZXY fails w.r.t. X for (Zi,j ,Xi,j , Y̆i,j)j∈T1−b

∣
∣
∣S = Ŝ

]

= 2−Ω(|Tb|) = 2−Ω(n),

where the last step follows from Lemma 4(ii)(a) since, conditioned on S = Ŝ,

(i) (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n] is distributed PXY Z i.i.d. (since S is independent
of (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n]), and

(ii) by (21) and (i) above, for i ∈ [m] \ Ŝ,

(Y̆i,j)j∈T1−b
←→ (Yi,j)j∈T1−b

←→ (Xi,j , Zi,j)j∈T1−b
(23)

is a Markov chain.

Hence,

Pr[E′
1] = m2−Ω(n). (24)

Finally, to bound Pr[E′
2], we need the following lemma:

Lemma 6. Suppose the Markov chain X† ←→ Y ←→ (Z,X‡) does not hold
for the joint distribution PXY Z . Let (Xj , Yj , Zj)j∈[n] be i.i.d. according to PXY Z .
For any (X̂j)j∈[n] satisfying the Markov chain

(X̂j)j∈[n] ←→ (Yj)j∈[n] ←→ (Zj ,Xj)j∈[n],

and all sufficiently small γ > 0,

Pr
[(

f†(X̂j), Zj , f
‡(Xj)

)

j∈[n]
∈ T n

γ (PX†ZX‡)
]

≤ 2−Ω(n), (25)

where f† = ψX�Y (|X||Z|) and f‡ = ψX�Z(|X||Y|) .

For i ∈ [m], let

E′
2,i = ((f†(X̆i,j), Zi,j , f

‡(Xi,j))j∈T1−b
∈ T n/2

γ (PX†ZX‡)).

Clearly, E′
2 ⊂

∨
i∈[m]\S E′

2,i (in fact, E′
2 requires at least m/4 instances of E′

2,i’s
to occur for i ∈ [m] \ S). Hence,

Pr[E′
2] = Pr

⎡

⎣
∨

i∈[m]\S

E′
2,i

⎤

⎦

≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E′
2,i|S = Ŝ].

Complete Characterization of Broadcast from Correlations 585

As seen in the analysis of Pr[E′
1] above, conditioned on S = Ŝ, the random vari-

ables (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n] are distributed PXY Z i.i.d. Together with (21),
this implies that, conditioned on S = Ŝ, for all i ∈ [m] \ Ŝ,

(Y̆i,j)j∈T1−b
←→ (Yi,j)j∈T1−b

←→ (Xi,j , Zi,j)j∈T1−b
(26)

is a Markov chain. Further, by the hypothesis of the theorem, PXY Z is such
that X† ←→ Y ←→ (Z,X‡) is not a Markov chain. Hence, for sufficiently
small γ > 0, by Lemma 6, Pr[E′

2,i|S = Ŝ] ≤ 2−Ω(n) for all i ∈ [m] \ Ŝ. Thus,
Pr[E′

2] = m2−Ω(n) which together with (22) and (24) gives Pr[E′] = m2−Ω(n).
The proof of security against P2 follows.

At different points in the proof we made the following assumptions about
the parameters γ > 0, δ > 0: the parameter γ > 0 should be sufficiently small
as required by Lemma 6 in the proof of security against P2, and, for a given
γ > 0, the parameter δ > 0 should be sufficiently small as required by Lemma
5 in the proof of security against P1. Clearly, we may simultaneously choose
these parameters to satisfy these assumptions. Further, we set m = n so that
the number of samples of the correlation used is N = nm = n2 and the security
parameter, as calculated above, is ε = 2−Ω(n) = 2−Ω(

√
N), i.e., N = O(log2(1ε))

as desired.

3.2 Altering the Transfer Path of a Pseudo-signature Protocol

Theorem 6. A pseudo-signature protocol with transfer path P1 → P3 → P2

implies the existence of a pseudo-signature protocol with transfer path P1 →
P2 → P3.

Proof. Let Π be an ε-secure pseudo-signature protocol for the transfer path
P1 → P3 → P2. We build an η-secure pseudo-signature protocol with transfer
path P1 → P2 → P3, where η = O

(
ε log

(
1
ε

))
. Fix a number n = Θ

(
log

(
1
ε

))
.

This protocol makes n independent invocations Πi, i ∈ [n] of the given protocol.

Setup phase (Establishing a new correlation).

1. P1 samples uniformly random bits U1, . . . , Un. For i ∈ [n], P1 signs Ui and
sends to P3 using the signing phase of Πi.

2. If P3 rejects any of these n messages at the end of the respective signature
phases, it aborts the setup phase after informing P2.

3. P2 picks S0 ⊂ [n/2], S1 ⊂ [n] \ [n/2] with |S0| = |S1| = n/4 uniformly at
random and sends S0 ∪ S1 to P3.

4. If P3 has not aborted the setup phase in step 2, for each i ∈ S0 ∪S1, P3 sends
Ũi = Ui to P2 using the transfer phase of Πi.

5. If for any i ∈ S0 ∪ S1, P2 rejects Ũi at the end of transfer phase of Πi, then
P2 flags P3 as corrupt.

Signing phase P1 → P2.

6. To send message b ∈ {0, 1}, P1 sends b and (Ûi)i∈Tb
= (Ui)i∈Tb

to P2 where
Tb = {i : bn

2 + 1 ≤ i ≤ (b+1)n
2 }.

586 V. Narayanan et al.

7. If P2 flagged P3 as corrupt in step 5, or P2 was informed by P3 in step 2 that
it is aborting the setup phase, then P2 accepts b. Else, P2 accepts if Ûi = Ũi

for each i ∈ Sb, and rejects otherwise.

Transfer phase P2 → P3.

8. To transfer an accepted b, P2 sends
(
b̂, (Ŭi)i∈Tb̂

)
=

(
b, (Ûi)i∈Tb

)
to P3.

9. P3 accepts b̂ if it aborted the setup phase in step 2. Else, if Ŭi = Ui for at
least n/6 distinct i ∈ Tb̂ \ Sb̂, P3 accepts b̂, and rejects otherwise.

Security against P1 (Transferability). We will show that if P2 accepts b in the
signing phase, then P3 rejects b in the transfer phase with a negligible probabil-
ity. Examining steps 7 and 9, this event happens only if (i) P2 flagged honest
P3 as corrupt in step 5 (in this case P2 accepts any signature that P1 sends in
the signing phase), or (ii) (Ui)i∈Tb

and (Ûi)i∈Tb
sent by P1 in steps 1 and 6,

respectively, are such that Ûi = Ui for all i ∈ Sb and Ûi �= Ui for more than
n/4−n/6 = n/12 distinct i ∈ Tb \Sb. By ε-security of Π, if P3 accepts a message
in the signing phase of Π, then P2 rejects it in the transfer phase with probabil-
ity ε. Hence, by a union bound, (i) occurs with at most nε/2 probability. Since
Sb is chosen uniformly at random independent of (Ui, Ûi)i∈Tb

(as Sb is unknown
to P1), by Chernoff’s bound, (ii) occurs with probability 2−Ω(n).

Security against P2 (Unforgeability). Suppose P1’s message is b, but in the trans-
fer phase, P2 sends (1 − b, (Ŭi)i∈T1−b

) to P3. Examining step 9, P3 accepts 1 − b

only if (i) P3 aborted the setup phase in step 2, or (ii) Ŭi = Ui for at least n/6
distinct i ∈ T1−b \ S1−b. By ε-security of Π, if P1 is honest, then P3 rejects the
message in the signing phase with probability ε. Hence, by a union bound, (i)
occurs with at most nε/2 probability. Each Ui, i ∈ T1−b\S1−b is chosen uniformly
and independently from {0, 1} (unknown to P2), hence Pr[Ŭi = Ui] = 1/2 for
i ∈ T1−b \S1−b. Hence, by Chernoff’s bound, (ii) occurs with probability 2−Ω(n).

Security against P3 (Correctness). This amounts to showing that P2 rejects the
message from P1 in the signing phase with a negligible probability. Examining
step 7, this occurs only if P2 has not flagged P3 as corrupt in step 5, P3 did not
report abort in step 2, and Ûi �= Ũi for some i ∈ Sb. Noting that Ûi = Ui for all
i ∈ [n], this occurs only if, for some i ∈ Sb, P2 accepts Ũi = 1 − Ui at the end
of the transfer phase of Πi when P1’s input is Ui. By ε-security of Π, for any
i ∈ [n], this occurs with probability ε. Hence, we may bound the probability of
this event (over any arbitrary choice of Sb) by nε/2.

For n = Θ
(
log 1

ε

)
, these error probabilities compound to O

(
ε log

(
1
ε

))
.

Hence, the above protocol is η-secure.

4 Impossibility

Theorem 7. Let (X1, Y1, Z1), (X2, Y2, Z2), . . ., (Xn, Yn, Zn) be independent
and identically distributed (i.i.d.) triples with distribution PXY Z . Suppose parties

Complete Characterization of Broadcast from Correlations 587

P1, P2, P3 have access to correlations (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], respectively,
and are connected pairwise by secure channels.

For any n, and ε < 1/3, there is no ε-secure broadcast protocol for the three
parties with sender P1 if the following Markov chain holds:7

X† ←→ Y ←→ Z ←→ X‡. (27)

We prove Theorem 7 in two steps. We first generalize the technique of Fischer,
Lynch, and Merritt [13] to our setting with correlations. As in [13], we consider
a new system with copies of the parties (in fact, only making two copies of
party P1 suffices) and the connections rewired (see Fig. 1). The key step is in
identifying a judiciously chosen correlation (QXY ZX̄ in the lemma below) to
feed the parties in the new network. Lemma 7 below gives the conditions on
this correlation QXY ZX̄ under which an impossibility can be shown. We then
establish Theorem 7 by showing that such a QXY ZX̄ exists when (27) holds.

Lemma 7. Consider the setup of Theorem 7. For any n, ε < 1/3, there is
no ε-secure broadcast protocol for the three parties with sender P1 if there is a
distribution QXY ZX̄ such that QXY = PXY , QY Z = PY Z , QZX̄ = PZX , and

(i) ∃ QZ̃|XY ZX̄ s.t. QZ̃|XY = PZ|XY and (X,Y) ←→ Z̃ ←→ (Z, X̄),
(ii) ∃ QỸ |XY ZX̄ s.t. QỸ |ZX̄ = PY |ZX and (Z, X̄) ←→ Ỹ ←→ (X,Y),
(iii) ∃ QX̃|XY ZX̄ s.t. QX̃|Y Z = PX|Y Z and (Y,Z) ←→ X̃ ←→ (X, X̄).

Fig. 1. A wiring diagram. Parties P1, P2, P3 and P ′
1 observe correlations (Xi)i∈[n],

(Yi)i∈[n], (Zi)i∈[n], and (X̄i)i∈[n], respectively, i.i.d. according to QXY ZX̄ . Party P1

with input m, and P ′
1 with input m′ �= m are identical copies of the sender. All parties

run the protocol honestly.

Proof (Lemma 7). Suppose there is a (for now, a perfectly secure) broadcast
protocol with sender P1 . Consider the wiring diagram8 in Fig. 1 where the
correlations (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], (X̄i)i∈[n] of the parties P1, P2, P3, P

′
1,

respectively, are i.i.d. according to QXY ZX̄ . Note that P1 and P ′
1 are identical

copies of the sender with the only difference being the correlated observations
they use ((Xi)i∈[n] for P1 and (X̄i)i∈[n] for P ′

1) and their messages (m for P1

and m′ �= m for P ′
1).

7 We write “T ←→ U ←→ V ←→ W” to mean PTUV W = PTPU|TPV |UPW |V .
8 The wiring diagram is similar to the one described in [19, proof of Theorem 7], but

the rest of the argument (including the identification of a correlation QXY ZX̄ to
establish an impossibility) is different.

588 V. Narayanan et al.

– P1 is connected to P2, but it is disconnected from P3. Its messages to P3 are
lost and it receives no messages from P3.

– P2 is connected to P1 and P3.
– P3 is connected to P2 and P ′

1 (instead of P1).
– P ′

1 is connected to P3 and disconnected from P2.

Note that all parties here are honest. We will give three different interpreta-
tions of the new system in the diagram as instantiations of the original system
(where the correlations are PXY Z i.i.d.). In each interpretation, two of the par-
ties are honest and the third party, who is dishonest, simulates the remaining
two nodes in the new system. This will lead us to a contradiction establishing
the impossibility of broadcast.

First interpretation: malicious P3. Since QXY = PXY , the joint distribution
of the correlated observations (Xi)i∈[n] and (Yi)i∈[n] of P1 and P2 are as in the
original system. We will argue that the joint view of P1 and P2 in the new system
is identical to that in the original system where P1 (with input m) and P2 are
honest and P3 is corrupt as follows: corrupt P3 in the original system simulates
P3 and P ′

1 of the new system, i.e., the corrupt P3 ignores messages from P1, does
not send any messages to P1, and simulates P3 and P ′

1 by sending/receiving
messages on the communication link with P2. In order to simulate P3 and P ′

1

of the new system, the corrupt P3 must be able to generate the observations of
these nodes (i.e., (Zi, X̄i)i∈[n]) in such a way that they are jointly distributed
with (Xi, Yi)i∈[n] of P1 and P2 i.i.d. according to the distribution QXY ZX̄ . For
this, the corrupt P3 may make use of the Z-observations it receives which are
jointly distributed with the observations (Xi, Yi)i∈[n] of P1 and P2 i.i.d. according
to PXY Z . Since (by the lemma’s hypothesis (i)) QXY QZ̃|XY = PXY PZ|XY =
PXY Z , we may treat the observations received by P3 as (Z̃i)i∈[n]. Then, by virtue
of the Markov chain (X,Y) ←→ Z̃ ←→ (Z, X̄) (of lemma’s hypothesis (i)),
the corrupt P3 may sample (Zi, X̄i)i∈[n] to simulate P3 and P ′

1. Specifically, the
conditional independence of (X̄, Z) and (X,Y) conditioned on Z̃ means that
the corrupt P3 may locally generate the samples of X̄ and Z (which it needs
to simulate P ′

1 and P3) using only the samples of Z̃ it observes (and without
knowing the samples of X and Y of P1 and P2 which it does not have access to).
Thus, the joint view of P1 and P2 in the new system is identical to that in the
original system where P1 (with input m) and P2 are honest and P3 is corrupt.
Therefore, P2 in the new system must output m.

Second interpretation: malicious P2. Arguing similarly using QZX̄ = PZX and
hypothesis (ii) of the lemma, we may conclude that P3 in the new system must
output m′.

Third interpretation: malicious P1. Similarly, using QY Z = PY Z and hypothe-
sis (iii), we may conclude that the joint view of P2 and P3 in the new system is
identical to that in the original system where P2 and P3 are honest and P1 is
corrupt. Hence the outputs of P2 and P3 must agree, a contradiction.

The above discussion assumed a perfectly secure broadcast. For an ε-secure
broadcast, the conclusions in each interpretation are guaranteed to hold with
probability 1 − ε. So, we arrive at contradiction if ε < 1/3.

Complete Characterization of Broadcast from Correlations 589

Theorem 7 now follows from the lemma below which is proved in [30].

Lemma 8. If PXY Z is such that the Markov chain of (27) holds, the distribu-
tion QXY ZX̄ defined below satisfies QXY = PXY , QY Z = PY Z , QZX̄ = PZX ,
and conditions (i)-(iii) in the hypothesis of Lemma 7.

QXY ZX̄(X, y, z, X̄) def= PY Z(y, z)PX|Y (X|y)PX|Z(X̄|z), ∀ X, y, z, X̄. (28)

5 Characterizations

In Theorem 5, we have shown that pseudo-signature with transfer path P1 →
P2 → P3 is feasible from correlation (X,Y,Z) if the Markov chain X† ←→
Y ←→ (Z,X‡) does not hold; by symmetry, we can show that pseudo-signature
with transfer path P1 → P3 → P2 is feasible from correlation (X,Y,Z) if the
Markov chain X‡ ←→ Z ←→ (Y,X†) does not hold. Furthermore, in Theo-
rem 6, we have shown that pseudo-signature with transfer path P1 → P2 → P3

is feasible if pseudo-signature with transfer path P1 → P3 → P2 is, and vice
versa. Thus, we can conclude that pseudo-signatures with both transfer paths
P1 → P2 → P3 and P1 → P3 → P2 are feasible if at least one of the following
Markov chains do not hold.

X† ←→ Y ←→ (Z,X‡) (29)

X‡ ←→ Z ←→ (Y,X†) (30)

On the other hand, in Theorem 7, we have shown that broadcast with sender
P1 is infeasible if the following Markov chain holds.

X† ←→ Y ←→ Z ←→ X‡. (31)

In fact, the Markov chain condition (31) and the pair of Markov chain con-
ditions (29) and (30) are equivalent: clearly (31) implies (29) and (30); to verify
the opposite implication, note that (29) implies that

PX†Y ZX‡ = PX†PY |X†PZX‡|Y = PX†PY |X†PZ|Y PX‡|ZY .

Now, (30) implies that X‡ ←→ Z ←→ Y , i.e., PX‡|ZY = PX‡|Z . Hence, (29)
and (30) together imply that PX†Y ZX‡ = PX†PY |X†PZ|Y PX‡|Z , which is (31).
Using this observation, we can provide a complete characterization of feasibility
of pseudo-signature and broadcast. Even though the conditions on the correlation
are the same for pseudo-signature and broadcast, we state them separately to
clarify the logical difference of the derivations.

Theorem 8 (Characterization of pseudo-signature). Pseudo-signature
with transfer path P1 → P2 → P3 is feasible from correlation (X,Y,Z) if and
only if the Markov chain (31) does not hold. The same statement holds for
pseudo-signature with transfer path P1 → P3 → P2.

590 V. Narayanan et al.

Proof. The “if” part follows from Theorem 5 and Theorem 6. On the other hand,
the ‘only if” part follows from the fact that pseudo-signature with either transfer
implies broadcast with sender P1 and Theorem 7.

Theorem 9 (Characterization of broadcast). Broadcast with sender P1 is
feasible from correlation (X,Y,Z) if and only if the Markov chain (31) does not
hold.

Proof. The “if” part follows from Theorem 5 (invoked for either transfer path with
signer P1) and the fact that the pseudo-signature with signer P1 implies broadcast
with sender P1. On the other hand, the “only if” part follows from Theorem 7.

6 Characterizations for Pseudo-signatures with Limited
Connectivity

Notice that the construction in Sect. 3.1 only used the unidirectional links
P1 ⇒ P2, P1 ⇒ P3, and the bidirectional link P2 ⇔ P3, while the impossibility
in Sect. 4 (via the fact that pseudo-signature with transfer path P1 → P2 → P3

implies broadcast with sender P1) applies for pseudo-signature protocols which
may use all pairwise links in either direction. In this section we consider net-
works with more limited connectivity than what the construction in Sect. 3.1
demands and give characterizations. Note that a similar question is uninterest-
ing for broadcast with sender P1 as it is easy to argue that broadcast is impossible
without all the links demanded by our construction present.

For pseudo-signature protocols with transfer path P1 → P2 → P3, since the
links P1 ⇒ P2 and P2 ⇒ P3 are needed, we consider cases where one or both of the
links P1 ⇒ P3 and P3 ⇒ P2 that our construction additionally needs are absent.

Pseudo-signatures with Connectivity P1 ⇔ P2 ⇔ P3. This network does
not have the P1 ⇒ P3 link our construction needs. This prevents P3 from being
upgraded. However, the partial upgrade of P2 may still be implemented. Straight-
forward modifications of the construction (to only use P1 ⇒ P2 and P2 ⇔ P3

links) show that a pseudo-signature protocol with transfer path P1 → P2 → P3

is feasible as long as X† ←→ Y ←→ Z does not hold. As we show in [30,
Appendix E.1], this turns out to be the characterizing condition.

Theorem 10. Pseudo-signature with transfer path P1 → P2 → P3 is feasible
from correlation (X,Y,Z) when secure links P1 ⇔ P2 and P2 ⇔ P3 are available
if and only if the following Markov chain does not hold

X† ←→ Y ←→ Z. (32)

Pseudo-signatures with No P3 ⇒ P2 Link. Here the link between P2 to
P3 is unidirectional. This prevents P2 from being upgraded, but P3 may still
be upgraded. With straightforward changes to use only P1 ⇒ P2, P1 ⇒ P3,
and P2 ⇒ P3 links, our construction gives a pseudo-signature protocol if (X �

Y) ←→ Y ←→ (Z,X‡) does not hold. This turns out to be the characterizing
condition (see [30, Appendix E.2]).

Complete Characterization of Broadcast from Correlations 591

Theorem 11. Pseudo-signature with transfer path P1 → P2 → P3 is feasible
from correlation (X,Y,Z) when secure links P1 ⇔ P2, P1 ⇔ P3, and P2 ⇒ P3

are available if and only if the following Markov chain does not hold

(X � Y) ←→ Y ←→ (Z,X‡). (33)

Pseudo-signatures with Connectivity P1 ⇔ P2 ⇒ P3. In this third case
both P1 ⇒ P3 and P3 ⇒ P2 links are absent. This prevents both P2 and P3

from being upgraded. The pseudo-signature protocol in [19] (or by altering our
construction) which uses only the P1 ⇒ P2 and P2 ⇒ P3 links is secure as long
as X � Y ←→ Y ←→ Z is not true. This is also the characterizing condition
for this case (see [30, Appendix E.3]).

Theorem 12. Pseudo-signature with transfer path P1 → P2 → P3 is feasible
from correlation (X,Y,Z) when secure links P1 ⇔ P2 and P2 ⇒ P3 are available
if and only if the following Markov chain does not hold

X � Y ←→ Y ←→ Z. (34)

References

1. Ahlswede, R., Csiszár, I.: Common randomness in information theory and
cryptography-part I: secret sharing. IEEE Trans. Inform. Theory 39(4), 1121–1132
(1993). https://doi.org/10.1109/18.243431

2. Ahlswede, R., Csiszár, I.: On oblivious transfer capacity. Inf. Theory, Comb. Search
Theory, pp. 145–166 (2013). https://doi.org/10.1007/978-3-642-36899-8 6

3. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 49

4. Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206–214. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 15

5. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret.
Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

6. Considine, J., Fitzi, M., Franklin, M., Levin, L.A., Maurer, U., Metcalf, D.: Byzan-
tine agreement given partial broadcast. J. Cryptol. 18(3), 191–217 (2005). https://
doi.org/10.1007/s00145-005-0308-x

7. Cramer, R., Damg̊ard, I., Nielsen, J.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015). https://doi.org/10.1017/
CBO9781107337756

8. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 30

9. Crépeau, C.: Efficient Cryptographic Protocols Based on Noisy Channels. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 21

10. Crépeau, C., Kilian, J.: Weakening security assumptions and oblivious transfer. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 2–7. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 1

https://doi.org/10.1109/18.243431
https://doi.org/10.1007/978-3-642-36899-8_6
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/3-540-38424-3_15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1007/3-540-48184-2_30
https://doi.org/10.1007/3-540-69053-0_21
https://doi.org/10.1007/0-387-34799-2_1

592 V. Narayanan et al.

11. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memo-
ryless Systems, 2nd edn. Cambridge University Press, Cambridge (2011). https://
doi.org/10.1017/CBO9780511921889

12. Dowsley, R., Nascimento, A.C.: On the oblivious transfer capacity of generalized
erasure channels against malicious adversaries: the case of low erasure probability.
IEEE Trans. Inform. Theory 63(10), 6819–6826 (2017). https://doi.org/10.1109/
TIT.2017.2735423

13. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26–39 (1986). https://doi.org/10.1007/
BF01843568

14. Fitzi, M., Gisin, N., Maurer, U.: Quantum solution to Byzantine agreement
problem. Phys. Rev. Lett. 87(21), 217901 (2001). https://doi.org/10.1103/
PhysRevLett.87.217901

15. Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives
for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 80–100. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 5

16. Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional Byzantine agreement
and multi-party computation secure against dishonest minorities from scratch. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 32

17. Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broadcast
and detectable multi-party computation. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 4

18. Fitzi, M., Maurer, U.M.: From partial consistency to global broadcast. In: 32nd
ACM STOC, pp. 494–503. ACM Press (May 2000). https://doi.org/10.1145/
335305.335363

19. Fitzi, M., Wolf, S., Wullschleger, J.: Pseudo-signatures, broadcast, and multi-party
computation from correlated randomness. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 562–578. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-28628-8 34

20. Gohari, A.A., Anantharam, V.: Information-theoretic key agreement of multiple
terminals: part I. IEEE Trans. Inform. Theory 56(8), 3973–3996 (2010). https://
doi.org/10.1109/TIT.2010.2050832

21. Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signa-
ture schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3 11

22. Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Efficient and unconditionally secure
digital signatures and a security analysis of a multireceiver authentication code. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 64–79. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 5

23. Khurana, D., Maji, H.K., Sahai, A.: Secure computation from elastic noisy chan-
nels. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
184–212. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 7

24. Lamport, L., Shostak, R., Pease, M.: The Byzantine general problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

https://doi.org/10.1017/CBO9780511921889
https://doi.org/10.1017/CBO9780511921889
https://doi.org/10.1109/TIT.2017.2735423
https://doi.org/10.1109/TIT.2017.2735423
https://doi.org/10.1007/BF01843568
https://doi.org/10.1007/BF01843568
https://doi.org/10.1103/PhysRevLett.87.217901
https://doi.org/10.1103/PhysRevLett.87.217901
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-39200-9_4
https://doi.org/10.1007/3-540-39200-9_4
https://doi.org/10.1145/335305.335363
https://doi.org/10.1145/335305.335363
https://doi.org/10.1007/978-3-540-28628-8_34
https://doi.org/10.1007/978-3-540-28628-8_34
https://doi.org/10.1109/TIT.2010.2050832
https://doi.org/10.1109/TIT.2010.2050832
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-45664-3_5
https://doi.org/10.1007/978-3-662-49896-5_7
https://doi.org/10.1007/978-3-662-49896-5_7
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176

Complete Characterization of Broadcast from Correlations 593

25. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Trans. Inform. Theory 39(3), 733–742 (1993). https://doi.org/10.1109/18.
256484

26. Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated public channels–
part I: definitions and a completeness result. IEEE Trans. Inform. Theory 49(4),
822–831 (2003). https://doi.org/10.1109/TIT.2003.809563

27. Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated public channels–
part II: privacy amplification. IEEE Trans. Inform. Theory 49(4), 839–851 (2003).
https://doi.org/10.1109/TIT.2003.809559

28. Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated public channels–
part II: the simulatability condition. IEEE Trans. Inform. Theory 49(4), 832–838
(2003). https://doi.org/10.1109/TIT.2003.809560

29. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005).
https://doi.org/10.1017/CBO9780511813603

30. Narayanan, V., Prabhakaran, V.M., Sangwan, N., Watanabe, S.: Complete charac-
terization of broadcast and pseudo-signatures from correlations. Cryptology ePrint
Archive, Paper 2023/233 (2023). https://eprint.iacr.org/2023/233

31. Nascimento, A.C.A., Winter, A.: On the oblivious-transfer capacity of noisy
resources. IEEE Trans. Inform. Theory 54(6), 2572–2581 (2008). https://doi.org/
10.1109/TIT.2008.921856

32. Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and Byzan-
tine agreement for t ≥ n/3. IBM Research Technical Report RZ 2882 (#90830)
(1996)

33. Prabhakaran, V., Prabhakaran, M.: Assisted common information with an applica-
tion to secure two-party sampling. IEEE Trans. Inform. Theory 60(6), 3413–3434
(2014). https://doi.org/10.1109/TIT.2014.2316011

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press
(May 1989). https://doi.org/10.1145/73007.73014

35. Renner, R., Wolf, S.: New bounds in secret-key agreement: the gap between for-
mation and secrecy extraction. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 562–577. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 35

36. Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily
weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 5

37. Tyagi, H., Watanabe, S.: Converses for secret key agreement and secure computing.
IEEE Trans. Inform. Theory 61, 4809–4827 (2015). https://doi.org/10.1109/TIT.
2015.2457926

38. Tyagi, H., Watanabe, S.: Information-Theoretic Cryptography. Cambridge Univer-
sity Press, Cambridge (2023)

39. Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-
party computation. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 467–
477. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 28

https://doi.org/10.1109/18.256484
https://doi.org/10.1109/18.256484
https://doi.org/10.1109/TIT.2003.809563
https://doi.org/10.1109/TIT.2003.809559
https://doi.org/10.1109/TIT.2003.809560
https://doi.org/10.1017/CBO9780511813603
https://eprint.iacr.org/2023/233
https://doi.org/10.1109/TIT.2008.921856
https://doi.org/10.1109/TIT.2008.921856
https://doi.org/10.1109/TIT.2014.2316011
https://doi.org/10.1145/73007.73014
https://doi.org/10.1007/3-540-39200-9_35
https://doi.org/10.1007/3-540-39200-9_35
https://doi.org/10.1007/978-3-540-45146-4_5
https://doi.org/10.1109/TIT.2015.2457926
https://doi.org/10.1109/TIT.2015.2457926
https://doi.org/10.1007/11535218_28

Privacy-Preserving Blueprints

Markulf Kohlweiss1(B), Anna Lysyanskaya2, and An Nguyen2

1 University of Edinburgh and Input Output, Edinburgh, UK
markulf.kohlweiss@ed.ac.uk

2 Brown University, Providence, USA
{anna lysyanskaya,an q nguyen}@brown.edu

Abstract. If everyone were to use anonymous credentials for all access
control needs, it would be impossible to trace wrongdoers, by design. This
would make legitimate controls, such as tracing illicit trade and terror
suspects, impossible to carry out. Here, we propose a privacy-preserving
blueprint capability that allows an auditor to publish an encoding pkA
of the function f(x, ·) for a publicly known function f and a secret input
x. For example, x may be a secret watchlist, and f(x, y) may return y if
y ∈ x. On input her data y and the auditor’s pkA, a user can compute an
escrow Z such that anyone can verify that Z was computed correctly from
the user’s credential attributes, and moreover, the auditor can recover
f(x, y) from Z. Our contributions are:

– We define secure f -blueprint systems; our definition is designed to
provide a modular extension to anonymous credential systems.

– We show that secure f -blueprint systems can be constructed for all
functions f from fully homomorphic encryption and NIZK proof sys-
tems. This result is of theoretical interest but is not efficient enough
for practical use.

– We realize an optimal blueprint system under the DDH assumption
in the random-oracle model for the watchlist function.

1 Introduction

Cryptography offers powerful answers on how to strike a balance between privacy
and accountability. The study of anonymous credentials [2,17–19,27,54,55] has
given us general practical tools that make it possible to obtain and prove posses-
sion of cryptographic credentials without revealing any additional information.
In other words, users can obtain credentials without revealing who they are, and
then prove possession of credentials in a way that is unlinkable to the session
where these credentials were obtained and to other sessions in which they were
shown. Anonymous credentials can be shown a limited number of times (com-
pact e-cash) [15], or at a limited rate total or per verifier [14,16]. Anonymous
credentials are compatible with identity escrow [3,51], where and appropriate
trusted authority can establish the identity of the user when needed.

In this paper, we extend the state-of-the-art on anonymous credentials by
adding a new desirable feature: that of a privacy-preserving blueprint capability:
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 594–625, 2023.
https://doi.org/10.1007/978-3-031-30617-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30617-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-30617-4_20

Privacy-Preserving Blueprints 595

even a malicious authority cannot learn anything about a user other than what’s
revealed by comparing the blueprinted data with the user’s data.

Consider anonymous e-cash with a secret watchlist as a motivating applica-
tion. In anonymous e-cash [15,25,26,28], we have a Bank that issues e-coins (cre-
dentials), Users who withdraw and spend them, and Vendors (or Verifiers) that
verify e-coins and accept them as payment in exchange for goods and services.
Some small number of users are suspected of financial crimes, and, unbeknownst
to them, a judge has placed them on a watchlist. We need a mechanism that
allows an auditor to trace the transactions of these watchlisted users without
violating the privacy of any other users, and also while keeping the contents of
the watchlist confidential from everyone.

A High-Level Definition of a Privacy-Preserving Blueprint. We have three types
of participants: the users, the verifiers, and the de-anonymization auditor. On
input x (for example, a watchlist), the auditor outputs a blueprint pkA that the
users and verifiers will need.

Next, the user and the verifier engage in an anonymous transaction; we don’t
actually care what else happens in this transaction; the user might be proving to
the verifier that they are authorized, or it may be an e-cash transaction. What
we do care about is that, as a by-product of this transaction, the user and the
verifier have agreed on a cryptographic commitment C such that (1) the user
is in possession of the opening of C; and (2) the transaction that just occurred
guarantees that the opening of C contains user data y that is relevant for the
auditor’s needs. For example, imagine that x is a watchlist consisting of names of
individuals of interest, and y contains a user’s name; then this user is of interest
to the auditor if y ∈ x.

To enhance this anonymous transaction with privacy-preserving blueprint
capability, the user runs the algorithm Escrow to compute a value Z that is an
escrow of the opening of the commitment C; from Z, the auditor will be able to
recover the information relevant to him, and no other information about the user.
Specifically, in the watchlist scenario, the auditor will recover y if y ∈ x, but will
learn nothing about the user if y /∈ x. More generally, in an f -blueprint scheme,
the auditor will recover f(x, y) and no additional information. The verifier’s job
is to verify the escrow Z against C using VerEscrow and only let the transaction
go through if, indeed, it verifies.

It is important that even a malicious auditor cannot create a blueprint that
corresponds to an unauthorized input x. To capture this, we also require that
there is a publicly available cryptographic commitment CA. Outside of our pro-
tocol, we expect a mechanism for arriving at an acceptable (but secret) input x
and the commitment CA to x. For example, a judge may publish a commitment
to a secret watchlist, and privately reveal the opening to the auditor; or several
authorities may be responsible for different components of a watchlist and the
auditor aggregates them together in a publicly verifiable fashion; or another dis-
tributed protocol can be agreed upon for arriving at the commitment CA such
that its opening (i.e., x) is known to the auditor. To ensure that only such an
authorized secret input x is blueprinted, a secure blueprint scheme must include

596 M. Kohlweiss et al.

an algorithm VerPK that verifies that pkA indeed corresponds to the value to
which CA is a commitment.

Our security definition mandates that the following properties hold: (1)
correctness, so that honestly created blueprints and escrows pass VerPK and
VerEscrow, respectively, and the escrow Z correctly decrypts; (2) soundness of
VerEscrow that ensures that if, for a commitment C, escrow Z is accepted, then
it correctly decrypts to f(x, y) where x is the opening of CA and y is the open-
ing of C; (3) blueprint hiding, i.e., the blueprint pkA does not reveal anything
about x other than what the adversary can learn by forming valid escrows and
submitting them for decryption; (4) privacy against a dishonest auditor that
ensures that even if the auditor is malicious, an honest user’s escrow contains no
information beyond f(x, y), where x is the opening of CA and y is the opening of
C; and finally (5) privacy with an honest auditor that ensures that an adversary
who does not control the auditor learns nothing from the escrows. We give a
precise formal definition of an f -blueprint scheme in Sect. 3.

Our Results. Our first result is a blueprint scheme specifically for watchlists;
more precisely, it is an f -blueprint scheme for

f(x, y) =

{
y if y = y1‖y2 and y2 ∈ x

⊥ otherwise

where y1 denotes O(log λ) most significant bits of y. This first scheme is secure in
the random-oracle model under the decisional Diffie-Hellman assumption. The
size of pkA is optimal at O(λn) where λ is the security parameter, which is linear
in the number of bits needed to represent a group element; and the watchlist x
consists of n elements of Zq, where q (log q = Θ(λ)) is the order of the group.
The size of the escrow Z is also O(λn).

Our second result is an f -blueprint scheme for any f from fully homomorphic
encryption (FHE) and non-interactive zero-knowledge proofs of knowledge. In
the full version of this paper [52], we also show how to obtain an f -blueprint
scheme for any f from non-interactive secure computation (NISC) [50].

Technical Roadmap. We obtain the results above via the same general method:
by first defining (Sect. 4) and then realizing (Sects. 6 and 7) a homomorphic-
enough cryptosystem (HEC) for the function f . We can think of a homomorphic-
enough cryptosystem as a protocol between Alice and Bob that works as follows:
first, Alice uses the HECenc algorithm to encode her input x into a value X,
and she also obtains a decryption key d for future use; next, Bob uses HECeval

to compute an encryption Z of z = f(x, y) from Alice’s encoding X and his
input y. Finally, Alice runs HECdec to recover z from Z. To be useful for
our application, an HEC scheme must be correct even when the inputs to the
algorithms are chosen maliciously, and it also must ensure that X hides x, and
that X and Z together hide the inputs x and y. Additionally, it must allow for
an algorithm HECdirect that computes an encryption Z of z directly from
X and z = f(x, y), such that its output is indistinguishable from the output of
HECeval, even if Alice is malicious.

Privacy-Preserving Blueprints 597

A HEC combined with an appropriate non-interactive zero-knowledge
(NIZK) proof system gives a generic construction of an f -blueprint:. The audi-
tor obtains (X, d) ← HECenc(x), and an NIZK proof πA that X was computed
correctly in a way that corresponds to the opening of CA; he sets the blueprint
as pkA = (X,πA). Verifying this blueprint amounts to verifying πA. To compute
the escrow Z, the user obtains Z ′ ← HECeval(X, y) and then a proof πZ that
Z ′ was computed correctly from X and the opening of C; then set Z = (Z ′, πZ).
Verifying the escrow amounts to verifying πZ . Finally, in order to recover f(x, y)
from the escrow Z, the auditor uses the decryption key d to run HECdec(d, Z ′).

Given this roadmap, our theoretical construction that works for any f is rel-
atively straightforward: we show that HEC can be realized from circuit-private
fully homomorphic encryption [35,46,60] which, in turn, can be realized from
regular fully homomorphic encryption [9,10,46,47]. The circuit-privacy guaran-
tee ensures that Z hides Bob’s input y from a malicious Alice. Alternatively,
as we explore in the full version of this paper [52], it can be realized for any f
from a related primitive of non-interactive secure computation (NISC) [50]. Since
here we don’t aim for efficiency, general (inefficient) simulation-extractable NIZK
PoK can be used for the proofs. This instantiation of our generic construction
is presented in Sect. 7.

Our practical construction for watchlists under the decisional Diffie-Hellman
assumption is not as straightforward: first, it requires that we construct a prac-
tical homomorphic enough cryptosystem based on DDH, and next we need effi-
cient non-interactive zero-knowledge proof systems for computing and verifying
πA and πZ . Let us give a brief overview.

Our HEC construction uses the ElGamal cryptosystem [36,65] as a building
block. Suppose as part of setup we are given a group G of order q in which the
decisional Diffie-Hellman assumption holds. Let g be a generator of G. In order
to encode her input x = (a1, . . . , an), Alice’s HECenc algorithm first generates
an ElGamal key pair (pk, sk). She then picks a random s ← Z

∗
q and computes

the coefficients c0, . . . , cn of the n-degree polynomial p(x) = s
∏

(x − ai) for
which a1, . . . , an are the n zeroes. The encoding X are ElGamal encryptions
C0, . . . , Cn of the values gc0 , · · · , gcn under the ElGamal public key pk, so the
output of HECenc is X = (C0, . . . , Cn, pk), and d = sk.

Bob’s algorithm HECeval computes Z as follows: first, it parses y = y1‖y2
(recall that y1 denotes the first O(log λ) bits of y). Then Bob obtains an ElGa-
mal encryption E of gp(y2) from the encrypted coefficients C0, . . . , Cn: since the
ElGamal cryptosystem is multiplicatively homomorphic, E = C0C

y2
1 C

y2
2

2 . . . C
yn
2

n

is the desired ciphertext (for an appropriate multiplication operation on ElGa-
mal ciphertexts). Next, let F be an encryption of gy; finally, Bob obtains the
ciphertext Z = FEr, i.e., Bob uses E to mask the encryption of gy; if E is an
encryption of 0, the mask won’t work and Z will decrypt to gy.

This is reminiscent of the private set intersection construction of Freedman,
Nissim and Pinkas [42], but with a subtle difference: the polynomial encoded
as part of X has an additional random coefficient, s. Thus, even if Bob knows
Alice’s entire input x, he still does not know p(a) for a /∈ x. This ensures that in

598 M. Kohlweiss et al.

the event that f(x, y) = ⊥, Bob cannot set r in such a way that Z will decrypt
to a value of his choice; instead, it will decrypt to a random value.

Finally, HECdec(d, Z) decrypts the ElGamal ciphertext Z to some group
element u ∈ G, and for each ai ∈ x, and for all possible values for y1, checks
whether gy1‖ai = u. If it finds such a pair, it outputs it; else, it outputs ⊥.

Plugging in this HEC scheme in our generic construction gives us an effi-
cient blueprint scheme for watchlists as long as we can also find efficient instan-
tiations of the NIZK proof systems for computing the proofs πA and πZ . As
was already well-known [23,44,58], we can represent the statement that a given
ElGamal ciphertext encrypts ga such that a given Pedersen [62] commitment
C is a commitment to a as a statement about equality of discrete logarithm
representations; moreover, we can also represent statements about polynomial
relationships between committed values (i.e., that Cp is a commitment to the
value p(a1, . . . , a�) where p is a polynomial, and commitments C1, . . . , C� are to
values a1, . . . , a�) as statements about equality of representations. Using this fact,
as well as the fact that efficient NIZK proofs of knowledge for equality of discrete
logarithm representations in the random-oracle model are known [31,43,44],
we can also efficiently instantiate the NIZK proof system in the random-oracle
model.

A subtlety in using these random-oracle-based proof systems, however, is that
generally such proof systems’ knowledge extractors require black-box access to
the adversary and involve rewinding it. In situations where the adversary expects
to also issue queries to its challenger, and a security experiment or reduction
must extract the adversary’s witness in order to answer them, using such proof
systems runs into the nested rewinding problem. One could opt to use straight-
line extractable proofs instead (in such proofs, the knowledge extractor does not
need to rewind the adversary); however, known techniques to achieve straight-
line extraction come either at a ω(log λ) multiplicative cost [13,39] or require
cumbersome setup assumptions [21].

A more efficient technique is to have a common random string (CRS) and
interpret it as an ElGamal public key. There is an efficient Σ-protocol [31] for
proving that the contents of two ElGamal ciphertexts under two different keys are
equal; it can be converted into a non-interactive zero-knowledge proof using the
Fiat-Shamir heuristic [38] in the random-oracle model. If one of these public keys
comes from the CRS, then the soundness of the proof system allows for straight-
line extraction that uses the corresponding secret key as the extraction trapdoor.
Here we give a formalization of this previously used (e.g. [20]) approach.

Specifically, we formulate a new flavor of NIZK proof of knowledge systems:
black-box extractability with partial straight-line (BB-PSL) extraction, and give
an efficient NIZK BB-PLS PoK proof system for equality of discrete-logarithm
representations. This proof system allows straight-line extraction (i.e. extraction
from the proof itself, without rewinding the adversary) of a function of the wit-
ness (for example, instead of extracting w the extractor computes gw); this gives
the security experiment enough information to proceed. Although this approach
is somewhat folklore, we believe our rigorous formulation and instantiation in
the random-oracle model (Sect. 2.2) may be of independent interest.

Privacy-Preserving Blueprints 599

How Our Scheme Builds on the Anonymous Credentials Literature. Note that,
as stated so far, neither the definitions nor the schemes concern themselves with
credentials. Instead, the user and the verifier agree on a commitment C to the
user’s relevant attribute y. Out of band, the user may have already convinced the
verifier that she has a credential from some third-party organization attesting
that y is meaningful. For example, if y is the user’s name, then the third-party
organization might be the passport bureau. Indeed, this is how anonymous cre-
dentials work in general [2,18,19,54], and therefore this modeling of the problem
allows us to add this feature to anonymous credentials in a modular way. More-
over, our ElGamal-based scheme is compatible with literature on anonymous
credentials [2,18,19,54] and compact e-cash and variants [14–16] because Ped-
ersen commitments are used everywhere.

Related Work. Group signatures and identity escrow schemes [1,5,22,29,51]
allow users to issue signatures anonymously on behalf of a group such that an
anonymity-revoking trustee can discover the identity of the signer. The difference
between this scenario and what we are doing here is that in group signatures
the signer’s identity is always recoverable by the trustee, while here it is only
recoverable if it matches the watchlist.

Group signatures with message-dependent opening [63] and bifurcated [53],
multimodal and related signatures [34,41,59] allow a tracing authority to recover
a function of the user’s private information that’s known to the user at the time of
group-signing or credential showing. In contrast, in a secure blueprinting scheme,
the user knows only one of two inputs to this function.

Another related line of work specifically for watchlists is private set inter-
section (PSI) [24,42]. Although techniques from PSI are helpful here, in general
PSI is an interactive two-party protocol, while here, the Auditor who knows the
watchlist x is offline at the time when the user is forming the escrow. Private
searching on streaming data [61] allows an untrusted proxy to process streaming
data using encrypted keywords. The resulting encrypted data does not come
with any assurance that it was correct. In contrast, in our scenario, the verifier
and the auditor can both verify that Z was computed correctly.

A series of recent papers explored accountable law enforcement access sys-
tem [40,48,49,64]. None of them, however, consider integration with anonymous
credential systems for privacy-preserving authentication. Break-glass encryption
by Scafuro [64] realizes a mechanism in which the auditor can decrypt Alice’s
ciphertexts simply be reliably revealing that he did so, i.e., that he broke the
glass. The choice of which messages are to be leaked can happen even after Alice’s
public key is generated. Scafuro achieves this in certain strong models, such as
those of hardware tokens and existence of a blockchain. In abuse-resistant law
enforcement access systems (ARLEAS) [49], a law enforcement agency with a
valid warrant can secretly place a user Alice under surveillance. They will be
able to decrypt messages that are encrypted to Alice’s public key, but not those
encrypted to other users for whom surveillance has not been authorized. More-
over, ARLEAS make it possible for an email server to enforce compliance by ver-
ifying that an encrypted message indeed allows lawful access by law enforcement;

600 M. Kohlweiss et al.

and (in a nutshell) all participants can verify the validity of all warrants even
though they are unable to tell who is under surveillance. In our view, ARLEAS
follows principles that are similar to ours: finding a way to reconcile the need to
monitor illegal activity with privacy needs of the law-abiding public. However,
since ARLEAS concerns itself with encryption, while we worry about privacy-
preserving authentication, our technical contributions are somewhat orthogonal.

2 Preliminaries

The ElGamal Cryptosystem and Its Security. Let KGen be an algorithm that, on
input a description of a group G with generator g of prime order q in which the
discrete-logarithm problem is hard for PPT (in the security parameter 1λ) adver-
saries, outputs (1) a public key pk consisting of an element y ←$G; and (2) a
secret key sk = s such that gs = y. The encryption algorithm Enc encrypts a mes-
sage m ∈ G by sampling r ←$Zq and outputting the ciphertext c = (gr,myr).
The decryption algorithm Dec decrypts c = (a, b) ∈ G

2 by computing ba−s. We
use c

r← Enc(pk,m) and Enc(pk,m; r) to make randomness explicit.
ElGamal is semantically secure under the decisional Diffie-Hellman assump-

tion [66]. In this paper, we use the equivalent notion of security against chosen
plaintext attack (IND−CPA) formulated by Boneh and Shoup [7]. In their secu-
rity game, the adversary continuously interacts with either the 0-encryption
oracle that always encrypts the first of the two messages the adversary sends it,
or with the 1-encryption oracle that always encrypts the second message. Their
security definition is more convenient for us because it allows us to avoid an
additional hybrid argument.

Let ⊕ : G2 × G
2 → G

2 be the operator for the homomorphic composition
of two ElGamal ciphertexts c1 = (a1, b1) ∈ G

2, c2 = (a2, b2) ∈ G
2 such that:

c1 ⊕ c2 := (a1 · a2, b1 · b2) where · is the group operator of G. We also write ca as
shorthand for repeated operation of c with itself a times.

Definition 1 (Statistically hiding non-interactive commitment). A pair
of algorithms (CSetup,Commit) constitute a statistically hiding non-interactive
commitment scheme for message space Mcpar and randomness space Rcpar if
they satisfy (1) statistical hiding, i.e., for any cpar output by CSetup(1λ), for
any m0,m1 ∈ Mcpar , the distributions D(cpar ,m0) and D(cpar ,m1) are statis-
tically close, where D(cpar ,m) = {r ← Rcpar : Commitcpar (m; r)}; and (2) com-
putational binding, i.e. for any PPT adversary A, there exists a negligible ν such
that Pr[cpar ← CSetup(1λ); (m0, r0,m1, r1) ← A(cpar) : Commitcpar (m0; r0) =
Commitcpar (m1; r1) ∧ m0 	= m1] = ν(λ)

We will use the Pedersen commitment scheme which employs a cyclic group
G of prime order q. Let g, h1, h2, . . . , hn be generators of G and m1,m2, . . . , mn ∈
Z

n
q , then Commith1,h2,...,hn,g(m1,m2, . . . , mn) samples r ←$Zq and computes

gr
∏n

i=1 hmi
i . This scheme is binding under the discrete logarithm assumption

in G. We write Commith1,...,hn,g(m1, . . . , mn; r) to make randomness explicit.

Privacy-Preserving Blueprints 601

2.1 Non-interactive Zero Knowledge

Let R be a polynomial-time verifiable binary relation. For a pair (x,w) ∈ R, we
refer to x as the statement and w as the witness. Let L = {x | ∃w : (x,w) ∈ R}.

A non-interactive proof system for R consists of a prover algorithm P and
verifier algorithm V both given access to a setup S. The setup can either be a
random oracle or a reference string—we show later how we abstract over the
differences in their interfaces. P takes as input a statement x and witness w,
and outputs a proof π if (x,w) ∈ R and ⊥ otherwise. V takes as input (x, π)
and either outputs 1 or 0.

Definition 2 (NIZK). Let S be the setup, and (P,V) be a pair of algorithms with
access to setup S. Φ = (S,P,V) is a simulation-sound (optionally extractable)
non-interactive zero-knowledge proof system for relation R ⊆ X ×Y if it has the
following properties:

Completeness: For all (x,w) ∈ R, Pr
[
π ← PS(x,w) : VS(x, π) = 0

]
= 0.

S is a stateful oracle that captures both the common-random-string setting and
the random-oracle setting. In the random-oracle setting, S responds to a query
m by sampling a random string h of appropriate length 	 (clear from context).
In the common-reference-string (CRS) setup, it samples a reference string on
the first invocation, and from then onward returns the same reference string to
all callers.

Zero-Knowledge: The zero-knowledge property requires that no adversary can
distinguish the real game in which the setup is generated honestly and an honest
prover computes proofs using the correct algorithm P, from the simulated game
in which the proofs are computed by a simulator that does not take witnesses as
inputs, and in which the setup is also generated by the simulator. More formally,
there exist probabilistic polynomial time (PPT) simulator algorithms (SimS,Sim)
such that, for any PPT adversary A interacting in the experiment in Fig. 1, the
advantage function ν(λ) defined below is negligible:

AdvnizkA (λ) =
∣∣∣Pr

[
NIZKA,0(1λ) = 0

]
− Pr

[
NIZKA,1(1λ) = 0

]∣∣∣ = ν(λ)

Fig. 1. NIZK game

602 M. Kohlweiss et al.

SimS shares state with Sim modeling both RO programming and CRS trapdoors.
Additionally there is an extraction trapdoor τExt that will be used below to define
simulation extractability.

Soundness: A proof system is sound if no adversary can fool a verifier into
accepting a proof of a false statement. It is simulation sound if the adversary
cannot do so even given oracle access to the simulator—of course in that case
the adversary is prohibited from outputting statement-proof pairs for which the
proof was obtained from the simulator. It is a proof of knowledge if a knowledge
extractor algorithm can compute the witness given appropriate access to the
adversarial prover’s algorithm. We explore various flavors of simulation sound-
ness in the full version of this paper [52], but here we focus on just one of them:
the flavor of a proof of knowledge that allows for (partial) straight-line extrac-
tion.

2.2 NIZK Proof of Knowledge

Simulation Extractability: A proof system is extractable (also often called a
proof of knowledge, or PoK for short) if there exists a polynomial-time extractor
algorithm that, on input a proof π for a statement x that passes verification,
outputs the witness w for x. In order to reconcile extractability with the zero-
knowledge property, it is important that the extractor algorithm Ext have some
additional information that is not available to any regular participants in the
system. This information depends on the setup S: in the CRS setting, it is a
trapdoor that corresponds to the CRS; in the random-oracle setting it comes
from the ability to observe the adversary’s queries to the random oracle. Note
that, in addition, trapdoors can be embedded by programming the random ora-
cle. Further, a proof system is simulation-extractable if the extractor algorithm
works even when the adversary has oracle access to the simulator and can thus
obtain simulated proofs.

Let Q denote the simulator’s query tape that records all the queries the
adversary A made to the simulator. QS denotes the setup query tape that records
the queries, replies, and embedded trapdoors of the simulated setup; this is
explicitly recorded by OS and ÕS. As we will discuss below, ÕS additionally
reveals to A the extraction trapdoor τExt; this captures adaptive extraction from
many proofs.

Ad attractive definition of simulation extractability is the one of straight-line
extractability [39]: the extractor obtains the witness just from QS and the pair
(x, π). A weaker definition allows for black-box extractability, where the extrac-
tor additionally obtains black-box access to A, i.e. it can reset it to a previous
state. By BB(A) we denote this mode of access to A, and by ExtBB(A)(QS,x, π)
we denote an extractor algorithm that, in addition to its inputs, also has this
access to A. See the full version of this paper for additional discussions and the
definition of the black-box simulation extractability game NISimBBExtract. We
now propose a notion that falls between straight-line and black-box simulation
extractability.

Privacy-Preserving Blueprints 603

Black-Box with Partial Straight Line (BB-PSL) Simulation
Extractability: Sometimes, it is good enough that a straight-line extractor
be able to learn something about the witness, say some function f(w), not nec-
essarily the entire witness. For such a scenario, it is convenient to have two
extractors: Ext that is a black-box extractor that extracts the entire witness
given black-box access to the adversary, and ExtSL that extracts some function
of that witness in a straight-line fashion. The reason this is good enough for
some proofs of security is that, in a reduction, f(w) may be enough information
for the reduction to know how to proceed, without the need to reset the entire
security experiment. This is similar to f -extractability [4].

Let us now formalize BB-PSL simulation extractability; let Φ = (S,P,V)
be an NIZK proof system satisfying the zero-knowledge property above; let
(SimS,Sim) be the simulator. Let f be any polynomial-time computable function.
Φ is f -BB-PSL simulation-extractable if there exists a pair of polynomial-time
extractor algorithms (Ext,ExtSL) such that for any PPT adversary A partici-
pating in the game defined in Fig. 2, the advantage function ν(λ) defined below
is negligible. As mentioned before, Q denotes the query tape. QExt denotes the
setup query tape that records the queries, replies, and embedded trapdoors of
the simulated setup; this is explicitly recorded by OS.

Advnisimbbpslextract
A (λ) = Pr

[
f -NISimBBPSLExtractA(1λ) = 1

]
= ν(λ)

for some negligible function ν.

Fig. 2. f -NISimBBPSLExtract game

More on the Simulator and Extractor. In the games NIZK, NISimSound,
and NISimBBPSLExtract the simulator initializes and updates the setup using
SimS and then responds to queries from A for simulated proofs using Sim. Note
that the two halves of the simulator, SimS and Sim, share state information,

604 M. Kohlweiss et al.

and update it when queried. This captures both the CRS and the random-oracle
settings. In the CRS setting, SimS computes the reference string S so that it can
pass the corresponding simulation trapdoor to Sim via the shared state. In the
random-oracle (RO) setting, SimS programs the random oracle (computes the
value h that the random oracle will return when queried on m) and uses the
shared state in order to memorize the information that Sim will need to use h in
the future. Similarly, in the random-oracle mode, Sim has the ability to program
the random oracle as well and memorize what it did using the state variable.

In the simulation extractability experiments, the extractor Ext takes QS as
input. In the CRS model, QS will contain the extraction trapdoor corresponding
to the CRS. In the RO model, QS also contains information that the simulator
algorithms SimS generated, such as how the RO was programmed and where the
adversary queried it. It does not, however, contain the simulation trapdoor or
give the extractor the ability to program the RO.

Our definition requires successful extraction even when all information in QS,
in particular τExt, is available to the adversary. This allows the adversary to run
Ext itself, and thus allows for extraction from multiple proofs.

Instantiating Simulation Extractable Proofs. While simulation-extract-
able proof systems exist for all NP relations [33], there are multiple ways to
realize non-interactive zero-knowledge (NIZK) proof systems more efficiently.
One of them is to start with Σ-protocols and convert them into a NIZK proof
in the random oracle model, e.g. using the techniques of [37,38,56]. As we will
elaborate below, Σ protocols are particularly suitable for proving knowledge of
group isomorphisms such as discrete logarithm representations; see, e.g. [57].
They can also efficiently prove disjunctive statements [30]. This has been used
for range proofs.

Bulletproofs [12] is a practically efficient NIZK proof system for arith-
metic circuits, specifically optimized for range-proofs. Recent work shows that
Bulletproofs are simulation extractable [45] and can be integrated with Σ-
protocols [11].

Bernhard et al. [6, Theorem 1] state that Fiat-Shamir Σ-protocols are black-
box simulation extractable with respect to expected polynomial-time adversaries.
To show partial straightline extractability we use a theorem of [37, Theorem 2]
that shows that Σ-protocols compiled using Fiat-Shamir are simulation-sound
and adapt the theorem of [32, Theorem F.1] which shows how to transform
simulation-sound into simulation-extractable NIZK, by encrypting the witness
to the sky. Our approach differs from their approach in that we only encrypt a
partial witness and can thus use groups for which computing discrete logarithms
is hard.

In Sect. 2.5 we give a construction from Σ-protocols of a proof system Ψ for
equality of discrete logarithm representation relations and prove that it is an f -
BB-PSL simulation-extractable NIZK proof system in the random-oracle model
for an appropriate f .

Privacy-Preserving Blueprints 605

Notation. When using NIZK proofs of knowledge in a protocol, it is convenient
to be able to compactly specify what exactly the prover is proving its knowledge
of. We shall use the notation:

π ← PoKΨ

{
w : R(x,w)

}
to indicate that the proof π was computed as follows: the proof system Ψ =

(S,P,V) for the relation R was used; the prover ran PS(x,w); to verify π, the
algorithm VS(x, π) needs to be run. In other words, the value w in this notation
is the witness the knowledge of which the prover is proving to the verifier, while
x is known to the verifier. A helpful feature of this notation is that it describes
what we need Ψ to be: it needs to be a NIZK PoK for the relation R.

2.3 Σ-Protocol for Proof of Equality of Discrete Logarithm
Representations

Let Reqrep be the following relation: Reqrep(x,w) accepts if x = (G, {xi, {gi,1, . . . ,
gi,m}}n

i=1) where G is the description of a group of order q, and all the xis and
gi,js are elements of G, and witness w = {wj}m

j=1 such that xi =
∏m

j=1 g
wj

i,j .

P→V. On input the (x,w) ∈ Reqrep, the Prover chooses ej ← Zq for 1 ≤ j ≤ m
and computes di =

∏m
j=1 g

ej

i,j for 1 ≤ i ≤ n. Finally, the Prover sends to the
Verifier the values com = (d1, . . . , dn).

P←V. On input x and com, the Verifier responds with a challenge chal = c for
c ← Zq.

P→V. The Prover receives chal = c and computes si = ei + cwi mod q for
1 ≤ i ≤ m, and sends res = (s1, . . . , sm) to the Verifier.

Verification. The Verifier accepts if for all 1 ≤ i ≤ n, dix
c
i =

∏m
j=1 g

sj

i,j ; rejects
otherwise.

Simulation. On input x and chal = c, the simulator chooses sj ← Zq for
1 ≤ j ≤ m, and sets di = (

∏m
j=1 g

sj

i,j)/xc
i for 1 ≤ i ≤ n. He then sets

com = (d1, . . . , dn) and res = (s1, . . . , sm).
Extraction. On input two accepting transcripts for the same com =

(d1, . . . , dn), namely chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ =
(s′

1, . . . , s
′
m), output wj = (sj − s′

j)/(c − c′) mod q for 1 ≤ j ≤ m.

2.4 From Σ-Protocols to BB Simulation Extractable NIZK PoK
via Fiat-Shamir

Let Ψeqrep = (Seqrep,Peqrep,Veqrep) be the proof system we get from the Σ-protocol
described in Sect. 2.3 via the Fiat-Shamir heuristic. Specifically, Seqrep is a ran-
dom oracle.

We use a theorem of [37, Theorem 2] that shows that Σ-protocols compiled
using Fiat-Shamir are simulation-sound; moreover, it follows from a theorem of
[6, Theorem 1] and the proof of [37, Theorem 3] that it is in fact black-box
simulation extractable.

Recall that the notation π ← PoKΨeqrep

{
w : Reqrep(x,w)

}
denotes that the

proof π is the output of Peqrep.

606 M. Kohlweiss et al.

2.5 gx-BB-PSL Simulation Extractable NIZK from Ψeqrep

Now we want a BB-PSL simulation extractable proof system for Reqrep such
that, in a straight-line fashion, a function of w can be extracted. Specifically,
recall that x = (G, {xi, {gi,1, . . . , gi,m}}n

i=1) and w = {wj}m
j=1 such that xi =∏m

j=1 g
wj

i,j .
Consider the following proof system Ψ = (S,P,V) for the relation Reqrep

and for the function f(J, ·), defined as follows. Let g be the generator of G

included in the description of G. Let J be a subset of the set of indices [m]. Let
f(J,w) = {gwj : j ∈ J}.

S is a random oracle, but we interpret its output as follows: On input the
description of a group G with generator g of order q, outputs a random element
h of G; we can think of this h as the public key of the ElGamal cryptosystem.

P works as follows: on input x = (G, {xi, {gi,1, . . . , gi,m}}n
i=1) and w =

{wj}m
j=1, it first obtains h = S(G) and then forms the ElGamal ciphertexts

of gwjk for each jk ∈ J : (ck,1, ck,2) = (grk , gwjk hrk), for 1 ≤ k ≤ |J |.
It then forms x′ and w′ that allow us to express the following relation R as

a special case of Reqrep:

R = {x′,w′ | x′ = (x, {(cjk,1, cjk,2)}) and
w′ = (w,w′′) where w′′ = (r1, . . . , r|J|) such that
for 1 ≤ k ≤ |J |, (ck,1, ck,2) = (grk , gwjk hrk)

In order to express x′ and w′ as a statement and witness for Reqrep, form
them as follows: x′ = (G, {x′

i, {g′
i,1, . . . , g

′
i,m′}}n′

i=1), where

n′ = n + 2|J |, m′ = m + |J |
For 1 ≤ i ≤ n, x′

i = xi, and for 1 ≤ j ≤ m, g′
i,j = gi,j , and for m < j ≤ m + |J |,

g′
i,j = 1.

For 1 ≤ k ≤ |J |, x′
n+2(k−1)+1 = ck,1, g′

n+2(k−1)+1,m+k = g, and for 	 	= m + k,
1 ≤ 	 ≤ m + |J |, g′

n+2(k−1)+1,� = 1.
For 1 ≤ k ≤ |J |, x′

n+2k = ck,2, g′
n+2k,jk

= g, g′
n+2k,m+k = h, and for 	 /∈

{jk,m + k}, 1 ≤ 	 ≤ m + |J |, g′
n+2(k−1)+1,� = 1.

Set w′ = (w1, . . . , wm, r1, . . . , rk). Using the algorithm PS
eqrep, compute πeqrep ←

PoKΨeqrep

{
w′ : Reqrep(x′,w′)

}
, and output π = ({(ck,1, ck,2)}, πeqrep).

V works as follows: on input the statement x, and the proof π = ({(ck,1, ck,2)},
πeqrep), first compute x′ exactly the same way as the prover’s algorithm P did.
Then output VS

eqrep(x
′, πeqrep).

Theorem 1. Let the relation Reqrep = {(x,w)} be an equality of discrete loga-
rithm representations relation. For any J ⊆ [m], let f(J,w) = {gwj : j ∈ J}.
The proof system Ψ = (S,P,V) is an f(J, ·)-BB-PSL simulation-extractable
NIZK proof system in the random-oracle model.

Proof (Sketch). We need to describe the setup simulator, the proof simulator,
the extractor trapdoor and the two extractors.

Privacy-Preserving Blueprints 607

SimS(state,m) → (state, h′, τExt): On input the description of a group G with
generator g of order q, sample τExt ← Zq and output the hash value that will
be interpreted as the element gτExt of G; we can think of this as the public key
of the ElGamal cryptosystem for secret key τExt. On other inputs simulate
the random oracle faithfully.

Sim(state,x) → (state, π): On input x, the simulator extends x with random
ElGamal ciphertexts to x′, chooses c ← Zq, sj ← Zq for 1 ≤ j ≤ m + |J |,
and sets di = (

∏m+k
j=1 g

sj

i,j)/xc
i for 1 ≤ i ≤ n + 2|J |. He then sets com =

(d1, . . . , dn+2|J|), stores H[x, com] = c in state, sets chal = c, and res =
(s1, . . . , sm) and return (chal, res).

ExtBB(A)(QS,x, π) → w: Parse π as (chal, res) and compute com as Sim. Rewind
BB(A) to the point where it queried the random oracle on (x, com) and
provide it fresh random results. Repeat until it obtains two accepting tran-
scripts for the same com = (d1, . . . , dn+2|J|) and then run the extractor of
the Σ-protocol to obtain w′. Remove the last k elements to obtain w.

ExtSL(QS,x, π) → f(J,w): Parse x as (G, {xi, {gi,1, . . . , gi,m}}n+2|J|
i=1), obtain

τExt from the entry (G, h, τExt) of QS. Interpret the last 2|J | elements xi as
ElGamal ciphertext and decrypt them to obtain f(J,w). �

3 Definition of Security of f-Blueprint Scheme

Our scheme features three parties: an auditor, a set of users, and a set of recip-
ients. It is tied to a non-interactive commitment scheme (CSetup,Commit); let
cpar be the parameters of the commitment scheme output by CSetup. The audi-
tor A has private input x and publishes a commitment CA = Commitcpar (x).
The user has private data y and publishes a commitment C = Commitcpar (y).
For example, x could be a list and y could be the user’s attributes in a credential
system. The auditor creates a key pair (pkA, skA) corresponding to its input x,
and the user can escrow its private data y under pkA to obtain an escrow Z. We
require that Z decrypts (with the help of skA) to f(x, y) for a function f that all
parties have agreed upon in advance. In the definition, we do not restrict f : it
can be any efficiently computable function. Moreover, an escrow recipient R can
verify that indeed Z was computed correctly for the given pkA and C. Similarly,
a privacy-conscious user can verify that indeed pkA was computed correctly for
the given warrants data commitment CA.

Definition 3. An f-blueprint scheme tied to a non-interactive commitment
scheme (CSetup,Commit) consists of the following probabilistic polynomial time
algorithms:

Setup(1λ, cpar) → Λ: is the algorithm that sets up the public parameters Λ. It
takes as input the security parameter 1λ and the commitment parameters
cpar output by CSetup(1λ); to reduce the number of inputs to the rest of
the algorithms, Λ includes 1λ and cpar ; we will also write Commit instead of
Commitcpar to reduce notational overhead.

608 M. Kohlweiss et al.

KeyGen(Λ, x, rA) → (pkA, skA): is the key generation algorithm for auditor A.
It takes in input 1λ, parameters Λ, and values (x, rA), and outputs the key
pair (pkA, skA). The values (x, rA) define a commitment CA. This allows to
integrate KeyGen into larger systems.1

VerPK(Λ, pkA, CA) → 1 or 0: is the algorithm that, on input the auditor’s public
key pkA and a commitment CA, verifies that the warrant public key was
computed correctly for the commitment CA.

Escrow(Λ, pkA, y, r) → Z: is the algorithm that, on input the values (y, r) outputs
an escrow Z for commitment C = Commit(y; r).

VerEscrow(Λ, pkA, C, Z) → 1 or 0: is the algorithm that, on input the auditor’s
public key pkA, a commitment C, and an escrow Z, verifies that the escrow
was computed correctly for the commitment C.

Decrypt(Λ, skA, C, Z) → f(x, y) or ⊥: is the algorithm that, on input the audi-
tor’s secret key skA, a commitment C and an escrow Z such that VerEscrow(Λ,
pkA, C, Z) = 1, decrypts the escrow. Our security properties will ensure that
it will output f(x, y) if C is a commitment to y.

Definition 4 (Secure blueprint). An f-blueprint scheme Blu = (Setup,
KeyGen, VerPK,Escrow,VerEscrow,Decrypt) tied to commitment scheme
(CSetup,Commit) constitutes a secure f-blueprint scheme if it satisfies the fol-
lowing properties:

Correctness of VerPK and VerEscrow: Values (cpar , pkA, CA, C, Z) are gen-
erated honestly if: (1) cpar is generated by CSetup(1λ); (2) Λ is generated by
Setup(1λ, cpar); (3) pkA is the output of KeyGen(Λ, x, rA); (4) CA = Commitcpar (
x; rA); (5) C = Commitcpar (y; r); (6) Z is generated by Escrow(Λ, pkA, y, r).
For honestly generated values (cpar , pkA, CA, C, Z), we require that algorithms
VerEscrow and VerPK accept with probability 1.

Correctness of Decrypt: Similarly, we require for honestly generated (cpar , pkA,
skA, C, Z) that with overwhelming probability Decrypt(Λ, skA, C, Z) = f(x, y).

Soundness: Let CA and C be commitments whose openings (x, rA) and (y, r) are
known to the adversary. Let (pkA, skA) ← KeyGen(Λ, x, rA) be honestly derived
keys. Soundness guarantees that any pkA, Z pair that passes VerEscrow(Λ, pkA,
C, Z) will decrypt to f(x, y) with overwhelming probability. More formally, for all
PPT adversaries A involved in the experiment in Fig. 3, there exists a negligible
function ν such that: AdvsoundA,Blu(λ) = Pr

[
SoundA

Blu(λ) = 1
]

= ν(λ)

Blueprint Hiding: We want to make sure that pkA just reveals that x is a
valid first argument to f (i.e. this may possibly reveal the size of x or an upper
bound on its size). Otherwise, x is hidden even from an adversary who (1) may
already know a lot of information about x a-priori; and (2) has oracle access to
Decrypt(Λ, skA, ·, ·).
1 E.g., A can prove that x does not contain journalists, but does contain all Russian

oligarchs on the OFAC’s sanctions list. https://home.treasury.gov/policy-issues/
financial-sanctions.

https://home.treasury.gov/policy-issues/financial-sanctions
https://home.treasury.gov/policy-issues/financial-sanctions

Privacy-Preserving Blueprints 609

Fig. 3. Experiments SoundA
Blu(λ)

We formalize this security property by requiring that there exist a simula-
tor Sim = (SimSetup,SimKeygen,SimDecrypt) such that a PPT adversary can-
not distinguish between the following two games: the “real” game in which
Λ is chosen honestly, the public key pkA is computed correctly for adversari-
ally chosen x, rA, and the adversary’s decryption queries (C,Z) are answered
with Decrypt(Λ, skA, C, Z); and the “ideal” game in which Λ is computed using
SimSetup, the public key pkA is computed using SimKeygen independently of x
(although with access to the commitment CA), and the adversary’s decryption
query Zi is answered by first running SimDecrypt to obtain enough information
about the user’s data yi to be able to compute f(x, yi). When we say “enough
information,” we mean that SimDecrypt obtains y∗

i = g(yi) for some function g
such that f(x, y) = f∗(x, g(y)) for an efficiently computable f∗, for all possible
inputs (x, y)2.

More formally, for all probabilistic poly-time adversaries A involved in the
game described in Fig. 4, the advantage function satisfies:

AdvbhA,Sim(λ) =
∣∣∣ Pr

[
BHrealABlu(λ) = 0

]
− Pr

[
BHidealABlu,Sim(λ) = 0

] ∣∣∣ = ν(λ)

for some negligible ν.

Privacy Against Dishonest Auditor: There exists a simulator such that the
adversary’s views in the following two games are indistinguishable:

1. Real Game: The adversary generates the public key and the data x cor-
responding to this public key, honest users follow the Escrow protocol using
adversarial inputs and openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data x corresponding to this public key. Next, for adversarially chosen
inputs and openings, the users run a simulator algorithm that depends only on
the commitment and f(x, y) but is independent of the commitment openings.

2 For example, if x is a list (x1, . . . , xn) and f(x, y) checks if y = xi for some i, g(y)
can be a one-way permutation: in order to determine whether y is on the list, it is
sufficient to compute g(xj) and compare it to y∗ = g(y).

610 M. Kohlweiss et al.

Fig. 4. Experiments BHrealABlu(λ) and BHidealABlu,Sim(λ)

More formally, there exists algorithms Sim = (SimSetup,SimEscrow) such that,
for any PPT adversary A involved in the game described in Fig. 5, the following
equation holds for some negligible function ν:

AdvpadaA,Blu,Sim(λ) =
∣∣∣ Pr

[
PADAA,0

Blu,Sim(λ) = 1
]

− Pr
[
PADAA,1

Blu,Sim(λ) = 1
] ∣∣∣ = ν(λ)

Privacy with Honest Auditor: There exists a simulator Sim such that the
adversary’s views in the following two games are indistinguishable:

1. Real Game: The honest auditor generates the public key on input x pro-
vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The honest auditor generates the public key
on input x provided by the adversary. On input adversary-generated com-
mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment C) to form their escrows.

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Fig. 6. We require that there exists a simu-
lator Sim = (SimSetup,SimEscrow) such that, for any PPT adversary A involved
in the game described in the figure, the following equation holds:

AdvpwhaBlu,Sim(λ) =
∣∣∣ Pr

[
PWHAA,0

Blu,Sim(λ) = 0
]

− Pr
[
PWHAA,1

Blu,Sim(λ) = 0
] ∣∣∣ = ν(λ)

Privacy-Preserving Blueprints 611

Fig. 5. Game PADAA,b
Blu (λ)

for some negligible function ν.

Fig. 6. Game PWHAA,b
Blu,Sim(λ)

612 M. Kohlweiss et al.

4 Homomorphic Enough Encryption

Definition 5 (Homomorphic-enough cryptosystem (HEC) for a func-
tion family). Let F = {f | f : domainf,x × domainf,y �→ rangef} be a set
of polynomial-time computable functions. We say that the set HEC of algo-
rithms (HECsetup,HECenc,HECeval,HECdec,HECdirect) constitute a
homomorphic-enough cryptosystem (HEC) for F if they satisfy the following
input-output, correctness, and security requirements:

HECsetup(1λ) → hecpar is a PPT algorithm that, on input the security param-
eter, outputs the parameters hecpar ; in case there is no HECsetup algo-
rithm, hecpar = 1λ.

HECenc(hecpar , f, x) → (X, d) is a PPT algorithm that, on input the param-
eters hecpar , a function f ∈ F , and a value x ∈ domainf,x, outputs an
encrypted representation X of the function f(x, ·), and a decryption key d.

HECeval(hecpar , f,X, y) → Z is a PPT algorithm that, on input the parame-
ters hecpar , a function f ∈ F , an encrypted representation of f(x, ·), and a
value y ∈ domainf,y, outputs a ciphertext Z, an encryption of f(x, y).

HECdec(hecpar , d, Z) → z is a polynomial-time algorithm that, on input the
parameters hecpar , the decryption key d, and a ciphertext Z, decrypts Z to
obtain a value z.

HECdirect(hecpar ,X, z) → Z is a PPT algorithm that, on input hecpar , an
encrypted representation X of some function, and a value z, outputs a cipher-
text Z.

HEC Correctness. For a given adversary A and HEC, let Adv
HEC,A(λ) be the

probability that the experiment HECcorrect in Fig. 7 accepts. HEC is correct
if Adv

HEC,A(λ) is negligible for all PPT algorithms A.

Security of x, Security of x and y from Third Parties, and Security of
DirectZ. Consider Fig. 7. For a given HEC and an adversary A, and for b ∈
{0, 1}, let pSecXA,b (λ) be the probability that A outputs 0 in experiment SecX

A
b ,

let pSecXY

A,b (λ) be the probability that A outputs 0 in experiment SecXY
A
b , and

let pDirectZ

A,b (λ) be the probability that A outputs 0 in experiment DirectZ
A
b .

HEC provides security for x if or any PPT A, |pSecXA,0 (λ) − pSecXA,1 (λ)| is neg-
ligible. HEC provides security for x and y from third parties if or any PPT A,
|pSecXY

A,0 (λ) − pSecXY

A,1 (λ)| is negligible. HEC provides security of DirectZ if or
any PPT A, |pDirectZ

A,0 (λ) − pDirectZ

A,1 (λ)| is negligible.

Remark. Why do we need HECdirect? It allows us to directly form a cipher-
text Z that will decrypt to a specific value z. If the function f is not one-way
and it is easy, given z, to sample x and y such that z = f(x, y), then we can
derive such Z by computing (X, d) = HECenc(hecpar , f, x) and then comput-
ing Z = HECeval(hecpar , f,X, y). But in general, it is helpful (for some appli-
cations) to have a separate algorithm HECdirect(hecpar ,X, z) such that, if
X = HECenc(hecpar , f, x), then Z = HECdirect(hecpar ,X, z) decrypts to z
using the decryption key that corresponds to X, i.e. z = HECdec(hecpar , d, Z).

Privacy-Preserving Blueprints 613

Fig. 7. HEC correctness and security games

5 A Generic f-Blueprint Scheme from HEC

We construct a privacy-preserving blueprint scheme using a commitment scheme,
a homomorphic-enough cryptosystem, as well as two NIZK proof systems as
building blocks. The scheme consists of the following six algorithms:

Setup takes λ and a commitment setup as input and generates hecpar and
assigns the NIZK oracles S1 and S2. Note that when instantiated using real
hash functions or reference strings both RO and CRS setups can be represented
as bit-strings in implementations. KeyGen uses the HEC scheme to compute an
encrypted representation of the function f(x, ·) and proves that it was computed
correctly. VerPK verifies that pkA was computed correctly with respect to the
auditor’s commitment CA. Escrow homomorphically evaluates f(x, ·) on y to
obtain a ciphertext and proves that it was formed correctly. VerEscrow verifies
the ciphertext with respect to the user’s commitment C, and Decrypt decrypts.

Our construction in Fig. 8 uses VerPK as a subroutine in Escrow and
VerEscrow. To be consistent with the syntax we add CA to pkA. Similarly, we use
VerEscrow in Decrypt and add pkA to skA.

Theorem 2. If HEC is a secure homomorphic-enough cryptosystem, the com-
mitment scheme is binding, and the NIZK PoKs Ψ1 and Ψ2 are zero-knowledge

614 M. Kohlweiss et al.

Fig. 8. Construction of generic f -blueprint scheme

and BB-PSL simulation extractable then our generic blueprint scheme is a secure
f-blueprint scheme.

Note that, our formal security theorem does not require the commitment
to be hiding. It only shows, using simulation, that no additional information
besides the commitment is revealed. To benefit from the hiding and privacy
properties of the blueprint scheme it is, however, crucial that the transaction
system employing it uses a hiding commitment scheme.

We prove correctness of VerEscrow and VerPK, correctness of Decrypt, sound-
ness, blueprint hiding, privacy against dishonest auditor, and privacy with honest
auditor in separate lemmas. The statement and proof of these lemmas are in the
full version [52].

Privacy-Preserving Blueprints 615

6 HEC from the ElGamal Cryptosystem

For a binary string y (or an integer which can be interpreted as a binary
string) and an integer k, let lobitsk(y) = y mod 2k; i.e., lobitsk(y) denotes the
k least significant bits of y (or, equivalently, the corresponding integer). Let
domainf,y = {0, 1}ly . Let us use bold font to indicate that x is a set of values;
let W� = {x | x ⊆ domainf,y, |x| = 	}. Let the function family F� = {fk}, where
fk : W� × domainf,y �→ domainf,y is defined as follows:

fk(x, y) =

{
y lobitsk(y) ∈ x

∅ otherwise

In other words, the function reveals y if lobitsk(y) ∈ x, and nothing otherwise.
In this section, we will use the ElGamal cryptosystem in order to construct

an HEC for f� ∈ F� for any k, 	 such that 	 and 2ly−k are polynomial in λ. Our
cryptosystem will use a group G of prime order q > 2ly .

6.1 The ElGamalHEC Construction and Its Security

The idea of our construction ElGamalHEC for a HEC for functions fk ∈ F�, is
that HECenc outputs the ElGamal ciphertexts of the coefficients of a random
polynomial P of degree 	 = |x| whose roots are elements of x. More precisely,
P = s

∏|x|
i=1(χ − xi), that is P =

∑|x|
i=0 Piχ

i. The randomness in P comes from
the choice of the leading coefficient s. HECenc outputs the ciphertexts Ci ←
Enc(gPi) that encrypt the coefficients Pi of P ; these ciphertext are part of X.

Using these ciphertexts {Ci} and the homomorphic properties of ElGamal,
HECeval computes an encryption of grP (lobitsk(y))+y for a random r. Note that
if lobitsk(y) ∈ x, this is just an encryption of gy; otherwise, it is an encryption
of a random element of G. Thus, HECdec can use the ElGamal decryption
algorithm to obtain some group element gz, and then use the fact that 	 and
2ly−k to either recover y with exhaustive search, or determine that fk(x, y) = ∅.

Figure 9 describes our construction, ElGamalHEC. Here, (KGen,Enc,Dec) are
the key generation, encryption, and decryption algorithms of ElGamal. Recall
that ⊕ is the homomorphic operator for ciphertexts.

616 M. Kohlweiss et al.

Fig. 9. Our Construction ElGamalHEC

Theorem 3. Under the decisional Diffie-Hellman assumption, ElGamalHEC
constitutes a homomorphic-enough encryption for fk any k, 	 such that 	 and
2ly−k are polynomial in λ, for any fk ∈ F�.

We prove each of the required security properties in a separate lemma in
the full version [52]. As surprisingly, one of the most challenging lemmas is
HECCorrectness due to the adversaries control over the evaluation random-
ness, we reproduce it here.

Lemma 1. Under the decisional Diffie-Hellman assumption, ElGamalHEC sat-
isfies the correctness property of HEC for fk.

Proof. Let A be a PPT adversary playing the HEC correctness game with
ElGamalHEC. Let εA(1λ) be the probability that the challenger accepts. Below,
we (1) provide modified games G0 and G1 such that the probability that the chal-
lenger in G0 accepts is also εA(1λ); (2) prove that the probability ε′

A(1λ) that
the challenger in G1 accepts is negligible; (3) give a reduction BHEC that breaks
the security of the ElGamal cryptosystem with advantage εA(1λ)−ε′

A(1λ). Since
the ElGamal cryptosystem is secure under the DDH assumption, it follows that,
under the DDH assumption, εA(1λ) is negligible.

(1) First, consider the following game G0, which is the same as the HEC cor-
rectness game with our ElGamal instantiation, except that actual poly-
nomial evaluation instead of homomorphic evaluation. G0 first obtains

Privacy-Preserving Blueprints 617

Fig. 10. Reduction for part (3) of the proof of Lemma 1

(f, x, state) ← A(1λ, hecpar); if f ∈ F, x ∈ domainf,x, then it computes
X as HECenc(hecpar , fk, x), except that it renames P into P0 and s into
s0, i.e., it computes a polynomial P0(χ) = s0

∏|x|
i=1(χ − xi), where {xi} = x.

Next, it invokes A again to receive (y, rZ) ← A(state,X); from it, it com-
putes y′ ← P0(lobitsk(y))rZ + y. If (lobits(y′) ∈ x) ∧ (lobits(y) /∈ x), accept.
That is, instead of a homomorphic evaluation of P0 using the ciphertexts
C0, . . . , C|x|, followed by decrypting the resulting ciphertext, it performs an
actual evaluation of P0. Observe that the probability that the challenger
in G0 accepts is the same as in the original correctness game due to the
correctness of homomorphic polynomial evaluation.
Second, consider the game G1 that proceeds similarly to G0: in addition to
polynomial P0 it computes a polynomial P1(χ) = s1

∏|x|
i=1(χ − xi) with its

own random value s1 that it uses within HECenc (instead of P0). Thus,
X consists of the ciphertexts that correspond to coefficients of P1. Running
HECeval followed by HECdec on input y would correspond to homo-
morphically evaluating P1(y); instead, G1 (like G0) uses P0 to compute
y′ ← P0(lobitsk(y))rZ + y and accepts if (lobits(y′) ∈ x) ∧ (lobits(y) /∈ x).

(2) Let us prove that the probability ε′
A(1λ) that the challenger in G1 accepts

is negligible. The challenger will accept only if lobits(y) /∈ x, so let us
consider this case. Then P0(lobitsk(y)) 	= 0, and, since s0 is random,

618 M. Kohlweiss et al.

y′ = P0(lobitsk(y)) 	= 0 is independent of A’s view. Thus, for any x ∈ x,
Pr[lobits(y′) = x] ≈ 2−k, thus the probability that G1 accepts is ≈ |x| 2−k.

(3) We construct the reduction BHEC to the security of the ElGamal cryptosys-
tem. Recall that, under the DDH assumption, the ElGamal cryptosystem is
CPA-secure using the formulation of Boneh and Shoup (see Sect. 2); we use
this version of (multi-instance) CPA-security in our reduction (this makes
the proof simpler as it avoids the hybrid argument). BHEC creates both
polynomials Pj ← sj

∏|x|
i=1(χ − xi), j ∈ {0, 1}. Let Pj,i be their coeffi-

cients. It obtains the encryption of the coefficients of one of these poly-
nomials via the ElGamal challenger: Ci ← Ob(gP0,i , gP1,i). This is described
in more detail in Fig. 10. Observe that, BOb(·,·)

HEC
(1λ, pkE) creates the same

view for A as Gb. Therefore, Pr
[
IND−CPABHEC,0(1λ) = 0

]
= εA(1λ) and

Pr
[
IND−CPABHEC,1(1λ) = 0

]
= ε′

A(1λ). Since ElGamal is CPA-secure under
the DDH assumption, εA(1λ) − ε′

A(1λ) ≤ Pr
[
IND−CPABHEC,0(1λ) = 0

] −
Pr

[
IND−CPABHEC,1(1λ) = 0

]
is negligible as required. �

6.2 From ElGamalHEC to an Efficient Secure Blueprint Scheme

In order to use our HEC construction in Fig. 9 to construct our Generic f -
blueprint scheme in Fig. 8, we need a BB simulation extractable proof system
for Ψ1 to prove knowledge of the witness in the following relation:

{
x = (X , hecpar , f, CA, cpar),
w = (x, d, rX , rA)

∣∣∣ (X , d) = HECenc(hecpar , f, x; rX) ∧
CA = Commitcpar (x; rA)

}

The building blocks of this relation are statements about the message and ran-
domness of ElGamal encryption and the opening of Pedersen commitments that
can be expressed as statements about discrete logarithms representations in
Reqrep. By Theorem 1, we have a BB simulation-extractible NIZK proof system
for Reqrep and in extension Ψ1.

For our specific construction, we assume that the auditor’s commitment CA

contains commitments to coefficients of the polynomial P ′ =
∏|x|

i=1(χ − xi).
To prove that we encrypted some polynomial P = sP ′ involves proving that
P = sP ′. We first prove that we have properly encrypted the coefficients of P ′.
Then, we can exponentiate these encrypted values by s, effectively multiplying
the coefficients by s.

See the full version [52] for more details.
Additionally, we require that there exists a f ′-BB-PSL simulation extractable

proof system for Ψ2 such that there exists an efficiently computable function f∗

where f∗(x, f ′(y)) = f(x, y) for all (f, x, y) ∈ F ×domainf,x ×domainf,y. Recall
that Ψ2 is used to prove the following relation:

{
x = (Ẑ, hecpar , f,X,C, cpar),
w = (y, r, rẐ)

∣∣∣ Ẑ = HECeval(hecpar , f,X, y; rẐ) ∧
C = Commitcpar (y; r)

}

Privacy-Preserving Blueprints 619

We need a range proof to prove that lobitsk(y) is used to generate Eval in Ẑ. This
can be done using Bulletproofs [12]. The rest of the building blocks for the rela-
tion involves statements about ElGamal encryption and Pedersen commitments,
we can again be expressed as eqrep relation statement.

Theorem 1 guarantees a f(J, ·)-BB-PSL simulation extractable NIZK system
for eqrep, and in extension Ψ2. Recall that f(J,w) = {gwj : j ∈ J }. Here, if we
choose J to be a singleton containing just the index corresponding to y in w,
we get a gy-BB-PSL simulation extractable NIZK system. Luckily, knowing x
and y is sufficient to compute f(x, y). Here, f∗(x, gy) can be computed similar
to HECdec in Fig. 9. We first iterate over all y′ values such that lobitsk(y′) ∈ x.
If gy′

= gy, we return y′. If no such value exists, we return ∅. Since |x| 2ly−k

is polynomial in λ, f∗ is efficiently computable. See full version [52] for more
details.

7 HEC for Any f from Fully Homomorphic Encryption

Definition 6. (Circuit-private (CP) fully homomorphic encryption
(FHE)). A tuple of algorithms (FHEKeyGen,FHEEnc,FHEDec,FHEEval) con-
stitute a secure fully homomorphic public-key encryption scheme [9,10,46,47]
if:

Input-output specification: FHEKeyGen(1λ, Λ) takes as input the security
parameter and possibly system parameters Λ and outputs a secret key FHESK
and a public key FHEPK. FHEEnc(FHEPK , b) takes as input the public
key and a bit b ∈ {0, 1} and outputs a ciphertext c. FHEDec(FHESK , c)
takes as input a ciphertext c and outputs the decrypted bit b ∈ {0, 1}.
FHEEval(FHEPK , Φ, c1, . . . , cn) takes as input a public key, a Boolean cir-
cuit Φ : {0, 1}n �→ {0, 1}, and n ciphertexts and outputs a ciphertext cΦ;
correctness (below) ensures that cΦ is an encryption of Φ(b1, . . . , bn) where
ci is an encryption of bi.

Correctness of evaluation: For any integer n (polynomial in λ) for any circuit
Φ with n inputs of size that is polynomial in λ, for all x ∈ {0, 1}n, the event
that FHEDec(FHESK , C) 	= Φ(x) where (FHESK ,FHEPK) are output by
FHEKeyGen, c1, . . . , cn are ciphertexts where ci ← FHEEnc(FHEPK , xi), and
cΦ = FHEEval(FHEPK , Φ, c1, . . . , cn), has probability 0.

Security: FHE must satisfy the standard definition of semantic security.
Compactness: What makes fully homomorphic encryption non-trivial is the

property that the ciphertext cΦ should be of a fixed length that is indepen-
dent of the size of the circuit Φ and of n. More formally, there exists a
polynomial s(λ) such that for all circuits Φ, for all (FHESK ,FHEPK) out-
put by FHEKeyGen(λ) and for all input ciphertexts c1, . . . , cn generated by
FHEEnc(FHEPK , ·), cΦ generated by FHEEval(FHEPK , Φ, c1, . . . , cn) is at
most s(λ) bits long.

An FHE scheme is, additionally, circuit-private [8,35,46,60] for a circuit
family C if for any PPT algorithm A that outputs (R,Φ0, Φ1, (x1, r1), . . . , (xn, rn)),

620 M. Kohlweiss et al.

the probability of distinguishing the homomorphic evaluation of Φ0 on {ci =
FHEEnc(FHEPK , xi; ri)}i∈[n] where FHEPK is computed as FHEKeyGen(1λ;R)
cannot be distinguished from the corresponding evaluation of Φ1 on the same
ciphertexts, as long as Φ0(x1, . . . , xn) = Φ1(x1, . . . , xn).

Bibliographic Note. Definitions of circuit-privacy in the literature come in differ-
ent flavors; we chose the formulation that makes it easiest to prove Theorem 4
below. The strongest, malicious circuit-privacy [35,60], is strictly stronger than
what we give here; therefore, constructions that achieve it automatically achieve
the definition here. Constructions of circuit-private FHE from regular FHE have
been given by Ostrovsky et al. [60] and by Döttling and Dujmović [35].

Similarly, we chose to formulate correctness as perfect correctness, rather
than allowing a negligible probability (over the randomness for the key genera-
tion, encryption, and evaluation) of a decryption error. Our construction below
also achieves HEC from schemes that are strongly correct, i.e. where the prob-
ability of a decryption error is non-zero, but with high probability, no efficient
adversary can find a public key and a set of ciphertexts and a circuit that will
cause a decryption error. Achieving strong correctness from the more standard
notion of correctness with overwhelming probability can be done with standard
techniques, see the full version [52].

Construction of HEC for Any f from CP-FHE. For a Boolean function
g : {0, 1}�x × {0, 1}�y �→ {0, 1}, an 	y-bit string y and a value z ∈ {0, 1}2, let
Φg

y,z(x) be the Boolean circuit that outputs g(x, y) if z1 = 0, and z2 otherwise.
Recall that our goal is to construct a secure f -HEC scheme with a direct

encryption algorithm; suppose that the length of the output of f is 	; for 1 ≤
j ≤ 	, let fj(x, y) be the Boolean function that outputs the jth bit of f(x, y).
Suppose we are given an FHE scheme that is circuit-private for the families of
circuits {Cj} defined as follows: Cj = {Φ

fj
y,z(x) : y ∈ {0, 1}�y , z ∈ {0, 1}2}.

HECsetup(1λ) → Λ : Generate the FHE parameters Λ, if needed.
HECenc(1λ, Λ, f, x) → (X, d) :

Generate (FHESK ,FHEPK) ← FHEKeyGen(1λ, Λ). Let |x| = n; set ci ←
FHEEnc(FHEPK , xi). Output X = (FHEPK , c1, . . . , cn), and decryption key
d = FHESK .

HECeval(hecpar , f,X, y) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =
1 to 	, compute Zj ← FHEEval(FHEPK , Φ

fj

y,00, c1, . . . , cn). Output Z =
(Z1, . . . , Z�).

HECdec(hecpar , d, Z) → z : Output (FHEDec(d, Z1), . . . ,FHEDec(d, Z�)).
HECdirect(hecpar ,X, z) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =

1 to 	, compute Zj ← FHEEval(FHEPK , Φ
fj

0�,1zj
, c1, . . . , cn). Output Z =

(Z1, . . . , Z�).

Theorem 4. If (FHEKeyGen,FHEEnc,FHEDec,FHEEval) is a fully-homo-
morphic public-key encryption scheme that is circuit-private for circuit fam-
ily {Cf

j : f ∈ F} defined above, then our construction above constitutes a
homomorphic-enough encryption for the family F .

Privacy-Preserving Blueprints 621

Proof. (Sketch) Correctness follows from the perfect correctness of FHE. Secu-
rity of x by semantic security of FHE. Security of x and y from third parties is
also by semantic security. Finally, the security of the direct encryption algorithm
follows by circuit privacy.

Combining the fact that circuit-private FHE exists if and only FHE exists,
and (as we saw earlier) the fact that HEC and simulation-extractable NIZK [33]
give us a secure blueprint scheme, we have the following result:

Corollary 1. If fully homomorphic encryption and simulation extractable NIZK
exist, then for any function f , secure f-blueprint scheme is realizable.

Acknowledgment. We thank Scott Griffy and Peihan Miao for helpful discussions,
and the anonymous referees for constructive feedback. This research was supported by
NSF awards #2154170 and #2154941, and by grants from Meta.

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

2. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013).
https://doi.org/10.1145/2508859.2516687

3. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for
the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm,
J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer,
Heidelberg (2006). https://doi.org/10.1007/11861386 4

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

7. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography. https://toc.
cryptobook.us/

8. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, January 2012. https://doi.org/10.1145/2090236.2090262

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/11861386_4
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1145/2090236.2090262

622 M. Kohlweiss et al.

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011. https://doi.org/10.1109/FOCS.2011.12

11. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

13. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 25

14. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication.
In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of 13th ACM
Conference on Computer and Communications Security, pp. 201–210. ACM (2006)

15. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

16. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11832072 10

17. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

18. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

19. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

20. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: Yu, T., Danezis, G., Gligor,
V.D. (eds.) ACM CCS 2012, pp. 525–536. ACM Press, October 2012. https://doi.
org/10.1145/2382196.2382252

21. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

22. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

23. Camenisch, J.L.: Group signature schemes and payment systems based on the
discrete logarithm problem. Ph.D. thesis, ETH Zürich (1998)

24. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III.
LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56877-1 2

https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/2382196.2382252
https://doi.org/10.1145/2382196.2382252
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2

Privacy-Preserving Blueprints 623

25. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

26. Chaum, D.: Blind signature systems. In: Chaum, D. (ed.) Advances in Cryptology,
pp. 153–156. Springer, Boston (1983). https://doi.org/10.1007/978-1-4684-4730-
9 14

27. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

28. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

29. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

30. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

31. Damg̊ard, I.: On σ-protocols (2002). https://www.daimi.au.dk/∼ivan/Sigma.ps
32. Damg̊ard, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balanc-

ing privacy and accountability in blockchain identity management. In: Paterson,
K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 552–576. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75539-3 23

33. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

34. Diaz, J., Lehmann, A.: Group signatures with user-controlled and sequential link-
ability. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 360–388.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3 14

35. Döttling, N., Dujmovic, J.: Maliciously circuit-private FHE from information-
theoretic principles. Cryptology ePrint Archive, Report 2022/495 (2022). https://
eprint.iacr.org/2022/495

36. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

37. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

38. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

39. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

40. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.J.: Practical account-
ability of secret processes. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018,
pp. 657–674. USENIX Association, August 2018

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4684-4730-9_14
https://doi.org/10.1007/978-1-4684-4730-9_14
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://www.daimi.au.dk/~ivan/Sigma.ps
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-030-75245-3_14
https://eprint.iacr.org/2022/495
https://eprint.iacr.org/2022/495
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10

624 M. Kohlweiss et al.

41. Fraser, A., Garms, L., Lehmann, A.: Selectively linkable group signatures—stronger
security and preserved verifiability. In: Conti, M., Stevens, M., Krenn, S. (eds.)
CANS 2021. LNCS, vol. 13099, pp. 200–221. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-92548-2 11

42. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

43. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

44. Fujisaki, E., Okamoto, T.: Witness hiding protocols to confirm modular polyno-
mial relations. In: The 1997 Symposium on Cryptograpy and Information Security.
The Institute of Electronics, Information and Communcation Engineers, Fukuoka,
Japan, January 1997, sCSI97-33D

45. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-Shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman, O.,
Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 397–
426. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3 14

46. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC 2009, pp. 169–178 (2009)

47. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

48. Goldwasser, S., Park, S.: Public accountability vs. secret laws: can they coexist?
Cryptology ePrint Archive, Report 2018/664 (2018). https://eprint.iacr.org/2018/
664

49. Green, M., Kaptchuk, G., Van Laer, G.: Abuse resistant law enforcement access
systems. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III.
LNCS, vol. 12698, pp. 553–583. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77883-5 19

50. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

51. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055727

52. Kohlweiss, M., Lysyanskaya, A., Nguyen, A.: Privacy-preserving blueprints. Cryp-
tology ePrint Archive, Paper 2022/1536 (2022). https://eprint.iacr.org/2022/1536

53. Libert, B., Nguyen, K., Peters, T., Yung, M.: Bifurcated signatures: folding the
accountability vs. anonymity dilemma into a single private signing scheme. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol.
12698, pp. 521–552. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77883-5 18

54. Lysyanskaya, A.: Signature schemes and applications to cryptographic protocol
design. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, September 2002

https://doi.org/10.1007/978-3-030-92548-2_11
https://doi.org/10.1007/978-3-030-92548-2_11
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2018/664
https://eprint.iacr.org/2018/664
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/BFb0055727
https://eprint.iacr.org/2022/1536
https://doi.org/10.1007/978-3-030-77883-5_18
https://doi.org/10.1007/978-3-030-77883-5_18

Privacy-Preserving Blueprints 625

55. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46513-8 14

56. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the
global random-oracle model. Cryptology ePrint Archive, Report 2022/290 (2022).
https://eprint.iacr.org/2022/290

57. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

58. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings
of 8th ACM Conference on Computer and Communications Security, pp. 116–125.
ACM Press, November 2001

59. Nguyen, K., Guo, F., Susilo, W., Yang, G.: Multimodal private signatures. In:
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 792–822. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-15979-4 27

60. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 30

61. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 14

62. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

63. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

64. Scafuro, A.: Break-glass encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part
II. LNCS, vol. 11443, pp. 34–62. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 2

65. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

66. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054019

https://doi.org/10.1007/3-540-46513-8_14
https://eprint.iacr.org/2022/290
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/978-3-031-15979-4_27
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/11535218_14
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/BFb0054019

Author Index

A
Abraham, Ittai 251
Abusalah, Hamza 282
Applebaum, Benny 190
Asharov, Gilad 251

B
Ball, Marshall 3
Basso, Andrea 405
Boneh, Dan 499
Boyle, Elette 159
Bünz, Benedikt 499

C
Chen, Binyi 499
Chen, Megan 379
Chiesa, Alessandro 379
Cini, Valerio 282
Codogni, Giulio 405
Connolly, Deirdre 405
Couteau, Geoffroy 159
Cui, Hongrui 35

D
Damgård, Ivan 129
Dao, Quang 531
De Feo, Luca 405

E
Escudero, Daniel 220

F
Fernando, Rex 98
Fouotsa, Tako Boris 405

G
Ganesh, Chaya 315
Goel, Aarushi 347

Goyal, Vipul 220
Grubbs, Paul 531
Gur, Tom 379

H
Hall-Andersen, Mathias 347, 438

I
Ishai, Yuval 68

J
Jain, Aayush 98

K
Kalai, Yael Tauman 470
Kaptchuk, Gabriel 347
Khurana, Dakshita 68
Kohlweiss, Markulf 594
Komargodski, Ilan 98
Kondi, Yashvanth 315
Konstantini, Niv 190

L
Li, Hanjun 3
Lido, Guido Maria 405
Lin, Huijia 3
Liu, Tianren 3
Lombardi, Alex 470
Lysyanskaya, Anna 594

M
Meyer, Pierre 159
Morrison, Travis 405

N
Narayanan, Varun 563
Nguyen, An 594
Nielsen, Jesper Buus 438

© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14005, pp. 627–628, 2023.
https://doi.org/10.1007/978-3-031-30617-4

https://doi.org/10.1007/978-3-031-30617-4

628 Author Index

O
O’Connor, Jack 379
Orlandi, Claudio 315

P
Pancholi, Mahak 315
Panny, Lorenz 405
Patil, Shravani 251
Patra, Arpita 251
Patranabis, Sikhar 405
Polychroniadou, Antigoni 220
Prabhakaran, Vinod M. 563

R
Ravi, Divya 129

S
Sahai, Amit 68
Sangwan, Neha 563
Siniscalchi, Luisa 129
Song, Yifan 220

Spooner, Nicholas 347, 379
Srinivasan, Akshayaram 68

T
Takahashi, Akira 315
Tschudi, Daniel 315

V
Vaikuntanathan, Vinod 470

W
Wang, Xiao 35
Watanabe, Shun 563
Weng, Chenkai 220
Wesolowski, Benjamin 405

Y
Yakoubov, Sophia 129
Yang, Kang 35
Yu, Yu 35

Z
Zhang, Zhenfei 499

	 Preface
	 Organization
	 Contents – Part II
	Multi-party Computation
	New Ways to Garble Arithmetic Circuits
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Technical Overview

	2 Definitions
	2.1 Definition of Garbling Schemes
	2.2 Definition of Garbling Gadgets

	3 Linearly Homomorphic Encryption
	3.1 Definition of Basic LHE
	3.2 A Construction of Special-Purpose LHE

	4 Key Extension for Bounded Integer Computation
	4.1 The Setup Algorithm
	4.2 Length-Doubling Key Extension

	5 Potential for Concrete Efficiency Improvement
	References

	.26em plus .1em minus .1emActively Secure Half-Gates with Minimum Overhead Under Duplex Networks
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Information-Theoretic Message Authentication Codes
	2.3 Correlated Oblivious Transfer
	2.4 Designated-Verifier Zero-Knowledge Proofs

	3 Technical Overview
	3.1 Overview of the State-of-the-Art Solution
	3.2 Our Solution for Generating Authenticated AND Triples
	3.3 Our Solution for Dual Execution Without Leakage

	4 Preprocessing with Compressed Wire Masks
	4.1 Dual-Key Authentication
	4.2 Global-Key Sampling
	4.3 Consistency Check Between Values and MAC Tags
	4.4 Circuit Dependent Compressed Preprocessing

	5 Authenticated Garbling from COT
	5.1 Distributed Garbling
	5.2 A Dual Execution Protocol Without Leakage
	5.3 Security Analysis

	References

	Black-Box Reusable NISC with Random Oracles
	1 Introduction
	1.1 Our Contribution

	2 Technical Overview
	2.1 Constructing a Reusable Outer Protocol
	2.2 A New Protocol Compiler
	2.3 Extension to the Two-Sided Setting

	3 Definitions
	3.1 Reusable NISC Protocol
	3.2 Reusable Two-Sided NISC

	4 Reusable Verifiable Client-Server Protocol
	4.1 Definition

	5 Black-Box Reusable NISC
	5.1 Construction

	6 Non-interactive Reusable Commit-and-Prove
	6.1 Definition

	7 Black-Box Reusable Two-Sided NISC
	References

	Maliciously-Secure MrNISC in the Plain Model
	1 Introduction
	1.1 Our Results
	1.2 On the Necessity of iO
	1.3 Related Work

	2 Technical Overview
	2.1 The MrNISC Protocol

	3 Preliminaries
	4 MrNISC Syntax and Security
	5 Main Building Blocks
	5.1 Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness
	5.2 One-Round Simultaneous-Message CCA-Non-malleable Commitments

	6 Malicious-Secure MrNISC
	References

	Minimizing Setup in Broadcast-Optimal Two Round MPC
	1 Introduction
	1.1 Terminology
	1.2 Prior Work
	1.3 Our Contributions
	1.4 Technical Overview
	1.5 Broadcast Complexity

	2 Secure Multiparty Computation (MPC) Definitions
	2.1 Security Model
	2.2 Notation

	3 Upper Bounds
	3.1 One-or-Nothing Secret Sharing with Intermediaries
	3.2 IA Feasibility Result: P2P-BC, IA, 3t< n
	3.3 Feasibility Results for SIA

	4 Lower Bounds
	References

	Sublinear-Communication Secure Multiparty Computation Does Not Require FHE
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Assumptions
	2.2 Function Secret Sharing and Homomorphic Secret Sharing

	3 General Template for (N+1)-Party Sublinear Secure Computation from N-Party FSS
	3.1 Requirements of the FSS Scheme
	3.2 The Secure Computation Protocol

	4 Oblivious Evaluation of LogLog-Depth FSS from PIR
	4.1 LogLog-Depth FSS
	4.2 Oblivious Evaluation of LogLog-Depth FSS from PIR

	5 LogLog-Depth FSS from Compact and Additive HSS
	5.1 An Overview of the Construction
	5.2 Defining the LogLog-Depth FSS Scheme
	5.3 Securely Realising FSDFSS in Low Communication

	6 Instantiations
	6.1 Sublinear-Communication Secure Multiparty Computation from PIR and Additive HSS
	6.2 Four-Party Additive HSS from DCR
	6.3 Sublinear-Communication Secure Multiparty Computation from New Assumptions

	References

	Actively Secure Arithmetic Computation and VOLE with Constant Computational Overhead
	1 Introduction
	1.1 ADINZ: Constant Overhead with Passive Security
	1.2 Actively Secure Arithmetic MPC with Constant Overhead?

	2 Our Contribution
	2.1 The VOLE Protocols
	2.2 The Batch-OLE Protocol
	2.3 Technical Overview of the VOLE Protocols
	2.4 Technical Overview of the Batch-OLE Protocol

	3 Preliminaries
	3.1 Linear Algebraic Notations

	4 The ADINZ Protocol
	5 RVOLE Protocol Against Actively-Corrupted Receiver
	6 Actively-Secure VOLE Under Correlated Noisy-Codewords
	6.1 The Correlated Noisy-Codeword Hardness Assumption
	6.2 The VOLE2 Protocol

	7 Actively-Secure VOLE Under Fast Pseudorandom Matrix
	7.1 Useful Observations
	7.2 The VOLE3 Protocol

	8 Batch-OLE
	References

	SuperPack: Dishonest Majority MPC with Constant Online Communication
	1 Introduction
	1.1 Our Contribution

	2 Overview of the Techniques
	2.1 Starting Point: TurboPack
	2.2 Achieving Active Security
	2.3 Instantiating the Circuit-Dependent Preprocessing
	2.4 Instantiating the Circuit-Independent Preprocessing

	3 Preliminaries
	4 Online Protocol
	4.1 Circuit-Dependent Preprocessing Functionality
	4.2 Input Gates
	4.3 Computing Addition and Multiplication Gates
	4.4 Output Gates and Verification
	4.5 Full Online Protocol

	5 Circuit-Dependent Preprocessing Phase
	6 Circuit-Independent Preprocessing Phase
	7 Implementation and Experimental Results
	References

	Detect, Pack and Batch: Perfectly-Secure MPC with Linear Communication and Constant Expected Time
	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Detectable and Verifiable Secret Sharing
	2.2 Our MPC Protocol
	2.3 Multiplication Triplets with a Dealer

	3 Preliminaries
	4 Packed Secret Sharing
	4.1 Sharing Attempt
	4.2 Reconstruction of g-polynomials in CONFLICTS
	4.3 Reconstruction of f-polynomials in CONFLICTS
	4.4 Putting Everything Together: Packed Secret Sharing

	5 Batched and Packed Secret Sharing
	5.1 Sharing
	5.2 Reconstruction

	6 Packed and Batched Verifiable Triple Sharing
	7 The MPC Protocol
	References

	An Incremental PoSW for General Weight Distributions
	1 Introduction
	1.1 Graph-Labeling PoSW Schemes
	1.2 Incremental PoSW
	1.3 Incremental PoSWs for Incremental SNACKs
	1.4 Our Contributions
	1.5 A High-Level Technical Overview

	2 Preliminaries
	2.1 Notations
	2.2 Graph Labeling

	3 The Skiplist PoSW Scheme
	3.1 Construction
	3.2 Prover Efficiency and Space-Time Tradeoffs

	4 Incremental Proofs of Sequential Work
	5 A Skiplist-Based Incremental PoSW Scheme
	5.1 Parameters
	5.2 A High-Level Overview
	5.3 Scheme Description
	5.4 Efficiency Analysis
	5.5 The Security Proof

	6 Incremental PoSW for General Distributions
	6.1 Incrementally Sampleable Distributions
	6.2 Scheme Description
	6.3 Theorem Statement and Proof Outline

	References

	(Zero-Knowledge) Proofs
	Witness-Succinct Universally-Composable SNARKs
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 UC Framework
	2.2 Succinct Non Interactive Zero-Knowledge Proof
	2.3 Succinct Polynomial Commitment Scheme

	3 Succinctness-Preserving UC NIZK Compiler
	4 Instantiating Our Compiler
	4.1 A Candidate PCS and PSE Scheme
	4.2 Candidate NIZK Schemes

	References

	Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions*-12pt
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Disjunctive Templates for Zero-Knowledge
	2.2 Stacking Sigmas for Sublinear-Sized Proofs
	2.3 Speed-Stacking Interactive Oracle Proofs
	2.4 Speed-Stacking Folding Arguments
	2.5 Notation

	3 Stacking Zero-Knowledge Interactive-Proofs
	3.1 Defining Stackable ZK-IP
	3.2 Compiler for Stacking ZK-IPs

	4 Speed-Stacking Interactive Oracle Proofs
	4.1 Holographic IOPs
	4.2 Reed–Solomon Encoded Holographic IOPs
	4.3 Defining a Stackable IOP and Stackable RS-IOP
	4.4 Compiling RS-IOP to Stackable IP via Stackable IOP
	4.5 Stackable RS-IOPs
	4.6 Stactal

	5 Speed-Stacking Compressed -Protocols
	5.1 Compressed -Protocols are Stackable

	References

	Proof-Carrying Data from Arithmetized Random Oracles
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Techniques
	2.1 Starting Point: The Low-Degree Random Oracle Model
	2.2 The Arithmetized Random Oracle Model
	2.3 Building PCD Secure in the AROM
	2.4 Emulation of the ARO

	3 Preliminaries
	3.1 Notations
	3.2 Non-interactive Arguments in Oracle Models
	3.3 Proof-Carrying Data
	3.4 Accumulation Schemes
	3.5 Commitment Schemes
	3.6 Constraint Detection for Low-Degree Polynomials
	3.7 Forking Lemmas
	3.8 Identical-Until-Bad

	4 Arithmetized Random Oracle Model
	References

	Supersingular Curves You Can Trust
	1 Introduction
	1.1 Generating a Secuer
	1.2 Proof of Isogeny Knowledge

	2 Preliminaries
	2.1 General Notations
	2.2 Elliptic Curves, Isogenies and ``SIDH Squares''
	2.3 Proofs of Knowledge
	2.4 Non-Interactive Zero-Knowledge Proofs

	3 Isogeny Graphs and Expansion
	3.1 Generalities on the Graph and Its Adjacency Matrix
	3.2 Proof of Theorem 3
	3.3 Mixing Time of Non-backtracking Walks

	4 Proof of Knowledge
	4.1 Protocol Description and Analysis
	4.2 Executing the Protocol

	5 Distributed Secuer Setup and Its Security
	5.1 The NIZK Protocol
	5.2 Our Distributed Secuer setup protocol
	5.3 Proof of Security for Secuer

	6 Implementation and Results
	7 Conclusion
	References

	On Valiant's Conjecture
	1 Introduction
	1.1 Relation to Other Results
	1.2 Can We Drop the ZK Assumption?

	2 Definitions
	2.1 Rerandomizable Commitments
	2.2 Collision Intractable Hashes
	2.3 Basic Notation

	3 Theorem Statements
	4 Impossibility from Zero-Knowledge
	5 On Proving Impossibility Without Zero-Knowledge
	References

	SNARGs and PPAD Hardness from the Decisional Diffie-Hellman Assumption
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Cryptographic Groups
	2.2 Lossy Trapdoor Functions
	2.3 Correlation-Intractable Hash Families
	2.4 Lossy CI Hash Functions
	2.5 SNARGs for Bounded Depth Computations

	3 Root-Finding in TC0
	3.1 Basic Finite Field Operations
	3.2 Finding Roots of K-quadratics in L
	3.3 Finding Roots of Cubics in K

	4 PPAD-Hardness from Subexponential DDH
	5 Delegation for Bounded Depth Computations from Subexponential DDH
	5.1 Variable-Extended Formulations for Boolean Functions
	5.2 A GKR Protocol with Degree 3 Sumcheck Polynomials

	References

	HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Proofs and Arguments of Knowledge
	2.2 Multilinear Polynomial Commitments
	2.3 PIOP Compilation

	3 A Toolbox for Multivariate Polynomials
	3.1 SumCheck PIOP for High Degree Polynomials
	3.2 ZeroCheck PIOP
	3.3 ProductCheck PIOP
	3.4 Multiset Check PIOP
	3.5 Permutation PIOP
	3.6 Lookup PIOP
	3.7 Batch Openings

	4 HyperPlonk: Plonk on the Boolean Hypercube
	4.1 Constraint Systems
	4.2 The PolyIOP Protocol

	5 Orion+: A Linear-Time Multilinear PCS with Constant Proof Size
	References

	Spartan and Bulletproofs are Simulation-Extractable (for Free!)*-12pt
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Assumptions
	2.2 Interactive Arguments
	2.3 Non-Interactive Arguments in the ROM
	2.4 The Fiat-Shamir Transformation

	3 Simulation Extractability
	4 Tree of Transcripts and Special Soundness
	5 Simulation Extractability of Spartan
	5.1 Spartan Protocols
	5.2 SIM-EXT Analysis of Spartan-NIZK
	5.3 SIM-EXT of Spartan-SNARK

	6 Simulation Extractability of Bulletproofs
	6.1 Aggregate Range Proof
	6.2 Arithmetic Circuit Satisfiability Proof

	7 Quantitative Discussion of Our SIM-EXT Bounds
	References

	Complete Characterization of Broadcast and Pseudo-signatures from Correlations*-4pt
	1 Introduction
	1.1 Problem Formulation
	1.2 Related Work
	1.3 Main Contributions and Results
	1.4 Technical Overview

	2 Preliminaries
	3 Constructions
	3.1 A Pseudo-signature Protocol from Correlations
	3.2 Altering the Transfer Path of a Pseudo-signature Protocol

	4 Impossibility
	5 Characterizations
	6 Characterizations for Pseudo-signatures with Limited Connectivity
	References

	Privacy-Preserving Blueprints
	1 Introduction
	2 Preliminaries
	2.1 Non-interactive Zero Knowledge
	2.2 NIZK Proof of Knowledge
	2.3 -Protocol for Proof of Equality of Discrete Logarithm Representations
	2.4 From -Protocols to BB Simulation Extractable NIZK PoK via Fiat-Shamir
	2.5 gx-BB-PSL Simulation Extractable NIZK from eqrep

	3 Definition of Security of f-Blueprint Scheme
	4 Homomorphic Enough Encryption
	5 A Generic f-Blueprint Scheme from HEC
	6 HEC from the ElGamal Cryptosystem
	6.1 The ElGamalHEC Construction and Its Security
	6.2 From ElGamalHEC to an Efficient Secure Blueprint Scheme

	7 HEC for Any f from Fully Homomorphic Encryption
	References

	Author Index

