
Finding Many Collisions via Reusable
Quantum Walks

Application to Lattice Sieving

Xavier Bonnetain1, André Chailloux2, André Schrottenloher3(B) ,
and Yixin Shen4

1 Université de Lorraine, CNRS, Inria, Nancy, France
2 Inria, Paris, France

3 Inria, Univ. Rennes, IRISA, Rennes, France
andre.schrottenloher@m4x.org

4 Royal Holloway, University of London, Egham, UK

Abstract. Given a random function f with domain [2n] and codomain
[2m], with m ≥ n, a collision of f is a pair of distinct inputs with the same
image. Collision finding is an ubiquitous problem in cryptanalysis, and
it has been well studied using both classical and quantum algorithms.
Indeed, the quantum query complexity of the problem is well known to
be Θ(2m/3), and matching algorithms are known for any value of m.

The situation becomes different when one is looking for multiple col-
lision pairs. Here, for 2k collisions, a query lower bound of Θ(2(2k+m)/3)
was shown by Liu and Zhandry (EUROCRYPT 2019). A matching algo-
rithm is known, but only for relatively small values of m, when many
collisions exist. In this paper, we improve the algorithms for this problem
and, in particular, extend the range of admissible parameters where the
lower bound is met.

Our new method relies on a chained quantum walk algorithm, which
might be of independent interest. It allows to extract multiple solutions of
an MNRS-style quantum walk, without having to recompute it entirely:
after finding and outputting a solution, the current state is reused as the
initial state of another walk.

As an application, we improve the quantum sieving algorithms for the
shortest vector problem (SVP), with a complexity of 20.2563d+o(d) instead
of the previous 20.2570d+o(d).

Keywords: Quantum algorithms · quantum walks · collision search ·
lattice sieving

1 Introduction

Quantum walks are a powerful algorithmic tool which has been used to pro-
vide state-of-the-art algorithms for various important problems in post-quantum

Part of this work was done while André Schrottenloher was at CWI, Amsterdam, The
Netherlands.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 221–251, 2023.
https://doi.org/10.1007/978-3-031-30589-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_8&domain=pdf
http://orcid.org/0000-0002-1329-8630
http://orcid.org/0000-0002-8657-9337
https://doi.org/10.1007/978-3-031-30589-4_8

222 X. Bonnetain et al.

cryptography, such as the shortest vector problem (SVP) via lattice sieving [9],
the subset sum problem [4], information set decoding [22], etc.

These applications are all established under a particular quantum walk frame-
work called the MNRS framework [26], and the quantum walks look for marked
nodes in a so-called Johnson graph [22] (or a product of Johnson graphs). When
walking on this particular graph, the MNRS framework is somewhat rigid. First,
it requires to setup the uniform superposition of all nodes along with their
attached data structure, then it applies multiple times reflection operators which
move this quantum state close to the uniform superposition of all marked nodes.

Due to this rigidity, previously, the best way to find k different marked nodes
was to run the whole quantum walk (including the setup) k times. In [9] the
authors noticed that a way to output multiple solutions instead of a single one
with quantum walks would improve the quantum time complexity of their algo-
rithm for solving the SVP.

A natural observation which guides us throughout this paper is that in certain
cases, after obtaining the uniform superposition of all marked nodes via the
MNRS quantum walk, it is possible to retrieve part of the solution and start
another MNRS quantum walk using the remaining part of the quantum state as
the new starting state. By doing so, we avoid repeating the setup cost for each
new quantum walk, and we now benefit from a trade-off.

In particular, using this observation, we tackle the following problem:

Problem 1 (Multiple collision search). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n
be a random function. Let k ≤ 2n − m. Find 2k collision pairs, that is, pairs of
distinct x, y such that f(x) = f(y).

The constraints on the input and output domain are such that a significant
(Θ

(
22n−m

)
) number of collisions pairs exist in the random case. This problem

has several applications both in asymmetric and symmetric cryptography. For
example, the problem of finding multiple vectors close to a target vector, which
appears in lattice sieving (as mentioned above) can be seen as a special case. The
limited-birthday problem in symmetric cryptanalysis (e.g., impossible differential
attacks and rebound distinguishers [16]) is another example.

Lower Bounds. While quantum query lower bounds for the collision problem
(with a single solution) had been known for a longer time, Liu and Zhandry
proved more recently in [25] a query lower bound in Ω

(
22k/3+m/3

)
to find 2k

solutions, which holds for all values of m ≥ n.
For relatively small values of k and m (precisely, k ≤ 3n − 2m, as we explain

in Sect. 6), the BHT collision search algorithm [8] allows to reach this bound.
Besides this algorithm, Ambainis’ algorithm [2] uses a quantum walk to find one
collision in time Õ (

2m/3
)
. However, no matching algorithm was known for other

values, neither in time nor in queries.

Contributions. Our main contribution in this paper is a chained quantum
walk algorithm to solve the multiple collision search problem. We formalize the

Finding Many Collisions via Reusable Quantum Walks 223

intuitive idea that the output state of a quantum walk can be reused, to some
extent, as the starting state of another. For any admissible values of k, n,m such
that k ≤ m

4 , our algorithm requires O
(
2

2
3k+m

3

)
queries, and also Õ

(
2

2
3k+m

3

)

quantum gates (i.e., time) and space in the qRAM model.

Theorem 4 (Sect. 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a
random function. Let k ≤ min(2n − m,m/4). There exists a quantum
algorithm making O (

22k/3+m/3
)

quantum queries to f and with a gate
count Õ (

22k/3+m/3
)
, that outputs 2k collision pairs of f .

By combining our algorithm with the BHT approach, we can now meet
the lower bound over all values of k, n,m, except a range of (k,m) contained
in

[
n
3 , n

] × [n, 1.6n], as summarized in Fig. 1. Nevertheless, our approach also
improves the known complexities in this range.

Fig. 1. Gate count exponent in the algorithm depending on the relative values of k, m
and n. Both our algorithm and the BHT approach can be extended to the whole
triangle, but we show only the one achieving the best complexity. In the purple region
(bottom left), both approaches reach the same complexity exponent 2k

3
+ m

3
.

Using our new algorithm, we improve the state-of-the-art time complexity
of quantum sieving to solve the SVP in [9] from 20.2570d+o(d) to 20.2563d+o(d)

quantum gates. We also provide time-memory trade-offs that are conjectured to
be tight [15]:

Theorem 7 (Sect. 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random
function. For all k ≤ � ≤ max(2n−m,m/2), there exists an algorithm that
computes 2k collisions using Õ (

2�
)

qubits and Õ (
2k+m/2−�/2

)
quantum

gates and quantum queries to f .

224 X. Bonnetain et al.

Organization. In Sect. 2 we provide several technical preliminaries on quantum
algorithms, especially Grover’s quantum search algorithm. Indeed, an MNRS
quantum walk actually emulates a quantum search, and these results are helpful
in analyzing the behavior of such a walk. In Sect. 3, we give important details
on the MNRS framework, and in particular, the vertex-coin encoding, which
is a subtlety often omitted from depictions of the framework in the previous
literature. In Sect. 4 we detail our algorithm assuming a suitable quantum data
structure is given, and in Sect. 5 we detail the quantum radix trees. While they
were already proposed in [21], we give new (or previously omitted) details relative
to the radix tree operations, memory allocation, and how we can efficiently and
robustly extract collisions. We give a general summary of the multiple collision
search problem in Sect. 6 and our applications in Sect. 7.

2 Preliminaries

In this section, we give some preliminaries on collision search, quantum algo-
rithms and Grover search, which are important for the analysis of quantum
walks and their data structures.

2.1 Collision Search

In this paper, we study the problem of collision search in random functions.

Problem 2. Let f : {0, 1}n → {0, 1}m (n ≤ m) be a random function. Find a
collision of f , that is, a pair (x, y), x �= y such that f(x) = f(y).

The case m < n can be solved by the same algorithms as the case m = n by
reducing f to a subset of its domain. This is why in the following, we focus only
on m ≥ n. The average number of collisions is O (

22n−m
)
. When m ≥ 2n, we can

assume that exactly one collision exists, or none. Distinguishing between these
two cases is the problem of element distinctness, which is solved by searching for
the collision. In all cases, the collision problem can be solved in:

• Θ(2m/2) classical time (and queries to f). When m = n, the problem is the
easiest, as it requires only O (

2n/2
)

time and poly(n) memory using Pollard’s
rho method. When m = 2n, the problem is harder since the best algorithm
also uses Θ(2n) memory.

• Θ(2m/3) quantum time (and quantum queries to f). A first algorithm was
given by Brassard, Høyer and Tapp to reach this for m = n [8], then the
lower bound was proven to be Ω(2m/3) [1], and afterwards, Ambainis solved
the element distinctness problem (the case m = 2n) by a quantum walk
algorithm [2] which can be adapted for any value of m.

Finding Many Collisions via Reusable Quantum Walks 225

In our case, we want to solve the problem of multiple collision search: as
there will be expectedly many collisions in the outputs of f , we want to find a
significant (exponential in n) number of them.

Problem 3. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n, k ≤ 2n−m. Find 2k distinct
collisions of f .

Here the state of the art differ classically and quantumly:

• Classically, it is well known that the problem can be solved for any m and k
in Θ(2(k+m)/2) queries (as long as 2k does not exceed the average number of
collisions of f).

• Quantumly, Liu and Zhandry [25] gave a query lower bound Ω(22k/3+m/3).
However, a matching algorithm is only known for small m. For example, this
lower bound is matched for m = n by adapting the BHT algorithm [17,25].

Note that we assume that the collision pairs are fully distinct. In the case m <
n, k ≥ m, there are not enough distinct images, and we only obtain multicollision
tuples. The lower bound of [25] does not apply here. If m < n and k ≤ m, we
restrict the inputs of the function to a set of size {0, 1}m, and this case is covered
by a variant of the BHT algorithm. Thus, like in the case of a single collision,
we will only consider n ≤ m.

On the Memory Complexity. For m = n, the best known classical algorithm
for multiple collision-finding is the parallel collision search (PCS) algorithm by
van Oorschot and Wiener [28]. It generalizes Pollard’s rho method which finds a
single collision in O (

2n/2
)

time and poly(n) memory. Dinur [12] showed that in
this regime, the time-space trade-off of the PCS algorithm is optimal. Using a
restricted model of computation, it can also be shown optimal for larger values
of m.

Quantumly, a time-space lower bound of T 3S ≥ Ω
(
23k+m

)
has been

shown [15]. However, the authors conjecture this bound can be improved to
T 2S ≥ Ω

(
22k+m

)
. All known quantum algorithms for collisions, including our

new algorithms, match this conjectured lower bound.

2.2 Quantum Algorithms

We refer to [27] for an introduction to quantum computation. We write our
quantum algorithms in the standard quantum circuit model, where algorithms
are written as a sequence of standard quantum gates. We are interested in the
minimal achievable gate count. This means that we do not consider any paral-
lelization trade-offs, even though there is some literature on the topic for SVP
algorithms [24]. By default, we use the (universal) Clifford+T gate set, although
our complexity analysis remains asymptotic, and we do not detail our algorithms
at the gate level.

226 X. Bonnetain et al.

Memory Models. Many memory-intensive quantum algorithms require some kind
of quantum random-access model (qRAM), which can be stronger than the stan-
dard quantum circuit model. One can encounter two types of qRAM:

• Classical memory with quantum random access (QRACM): a classical mem-
ory of size M can be addressed in quantum superposition in polylog(M) oper-
ations.

• Quantum memory with quantum random access (QRAQM): M qubits can be
addressed in quantum superposition in polylog(M) operations.

The QRAQM model is required by most quantum walk based algorithms for
cryptographic problems, e.g., subset-sum [3,4], information set decoding [22] and
the most recent quantum algorithm for lattice sieving [9]. It requires to augment
the set of gates available with a “qRAM” gate addressing all M memory cells
(e.g., individual bits) in superposition. In this paper, we use a definition taken
from [2]:

|y1, . . . , yM 〉 |x〉 |i〉 qRAM�−−−→ |y1, . . . , yi−1, x, yi+1, . . . yM 〉 |yi〉 |i〉 . (1)

This operation implies the ability to read in superposition by querying the cell
at index i, but also to write. This is necessary for efficient data structures such as
the ones studied in [2] or the quantum radix trees from the literature (see Sect. 5).

While the qRAM gate can be simulated with Õ (M) Clifford+T gates, in
the following, the gate count of our algorithms is given asymptotically on the
“Clifford + T + qRAM” gate set, so we assume the qRAM has unit cost, as is
required by previous works.

Collision Finding Without qRAM. To date, the best quantum algorithms for
collision finding, and the ones that reach the query lower bound, require the
qRAM model: the BHT algorithm [8] uses QRACM and Ambainis’ quantum
walk uses QRAQM [2] to define gate-efficient quantum data structures. Initially
Ambainis used a skip list. We will focus on the more recent quantum radix tree,
but the QRAQM requirement remains the same.

To some extent, it is possible to get rid of qRAM. For m = n, the complexity
rises from O (

2m/3
)

to O (
22m/5

)
gates [10]. For m = 2n, the complexity rises

to O (
23m/7

)
[20]. These algorithms can also be adapted for multiple collision

finding, where they will outperform the classical ones for some parameter ranges
(but not all).

2.3 Grover’s Algorithm

In this section, we recall Grover’s quantum search algorithm [14] and give a
few necessary results for the rest of our analysis. Indeed, as shown in [26], an
MNRS quantum walk actually emulates a quantum search, up to some error.
If we manage to put this error aside, the analysis of the walk follows from the
following lemmas.

Finding Many Collisions via Reusable Quantum Walks 227

Original Quantum Search. In the original setting of Grover’s search, we have
a function g : {0, 1}n → {0, 1} and the goal is to find x st. g(x) = 1 using
queries to g. In the quantum setting, we have access to the unitary Og : |x〉 |b〉 →
|x〉 |b ⊕ g(x)〉, which is an efficient quantum unitary if g is efficiently computable.
In particular we can compute |ψU 〉 = 1√

2n

∑
x∈{0,1}n |x〉 |g(x)〉 with a single call

to Og. Let ε = |{x:g(x)=1}|
2n . We also define the normalized states

|ψB〉 =
1

√
(1 − ε)2n

∑

x:g(x)=0

|x〉 |g(x)〉 , |ψG〉 =
1√
ε2n

∑

x:g(x)=1

|x〉 |g(x)〉

and |ψU 〉 =
√

1 − ε |ψB〉 +
√

ε |ψG〉. Let H = span({|ψB〉 , |ψG〉}). Let Rotθ be
the θ-rotation unitary in H:

Rotθ(cos(α) |φB〉 + sin(α) |ψG〉) = cos(α + θ) |ψB〉 + sin(α + θ) |ψG〉 .

For a fixed ε, let α = arcsin(
√

ε) so that

|φU 〉 =
√

1 − ε |ψB〉 +
√

ε |ψG〉 = cos(α) |ψB〉 + sin(α) |ψG〉 ,

For a state |ψ〉 ∈ H, let Ref |ψ〉 be the reflection over |ψ〉 in H:

Ref|ψ〉 |ψ〉 = |ψ〉 and Ref|ψ〉
∣
∣ψ⊥〉

= − ∣
∣ψ⊥〉

where
∣
∣ψ⊥〉

is any state in H orthogonal to |ψ〉1 We have

Ref |ψU 〉Ref |ψB〉 = Rot2α .

Assume that we have access to a checking oracle Ocheck which performs:
{

Ocheck |ψB〉 |0〉 = |ψB〉 |0〉
Ocheck |ψG〉 |0〉 = |ψG〉 |1〉

In the standard setting described above, this is just copying the last register.
Starting from an “initial state” |ψU 〉, we apply repeatedly an iterate consisting of
a reflection over |ψU 〉, and a reflection over |ψB〉. This progressively transforms
the current state into the “good state” |ψG〉. Typically Ref |ψU 〉 is constructed
from a circuit that computes |ψU 〉 and Ref |ψB〉 is implemented using the checking
oracle above: in that case, we are actually performing an amplitude amplifica-
tion [7].

Proposition 1 (Grover’s algorithm, known α). Consider the following
algorithm, with α ≤ π/4:

1. Start from |ψU 〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N times on |ψU 〉 with N = �π/2−α

2α �.
3. Apply Ocheck and measure the last qubit.
1 For a fixed |ψ〉, ∣

∣ψ⊥〉

is actually unique up to a global phase.

228 X. Bonnetain et al.

This procedure measures 1 wp. at least 1 − 4α2 and the resulting state is |ψG〉.
Proof. Let us define γ = α + 2Nα. We have

(Rot2α)
n |ψU 〉 = cos(α + 2Nα) |ψB〉 + sin(α + 2Nα) |ψG〉 = cos(γ) |ψB〉 + sin(γ) |ψG〉 .

Notice that we chose N st. γ ≤ π
2 < γ + 2α so π

2 − γ ∈ [0, 2α). After applying
the checking oracle, we obtain the state

cos(γ) |ψB〉 |0〉 + sin(γ) |ψG〉 |1〉 .

Measuring the last qubit gives outcome 1 with probability sin2(γ) and the result-
ing state in the first register is |ψG〉. In order to conclude, we compute

sin2(γ) = cos2(π/2 − γ) ≥ cos2(2α) ≥ 1 − 4α2. �
In our algorithms, we will start not from the uniform superposition |ψU 〉, but

from the bad subspace |ψB〉. We show that this makes little difference.

Proposition 2. (Starting from |ψB〉, known α). Consider the following
algorithm, with α ≤ π/4:

1. Start from |ψB〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N ′ times on |ψB〉 with N ′ = �π/2

2α �.
3. Apply the checking oracle and measure the last qubit.

This procedure measures 1 with probability at least 1−4α2 and the resulting state
is |ψG〉.
Proof. The proof is essentially the same as the previous one. Let γ′ = 2N ′α. We
have

(Rot2α)N ′ |ψB〉 = cos(2N ′α) |ψB〉+sin(2N ′α) |ψG〉 = cos(γ′) |ψB〉+sin(γ′) |ψG〉 .

Notice that we chose N ′ st. γ′ ≤ π
2 < γ′ + 2α so π

2 − γ′ ∈ [0, 2α). After applying
the checking oracle, we obtain the state

cos(γ′) |ψB〉 |0〉 + sin(γ′) |ψG〉 |1〉 .

Measuring the last qubit gives 1 wp. sin2(γ′) and the resulting state in the first
register is |φG〉. In order to conclude, we compute

sin2(γ′) = cos2(π/2 − γ′) ≥ cos2(2α) ≥ 1 − 4α2. �
After applying the check and measuring, if we don’t succeed, we obtain the

state |ψB〉 again. So we can run the quantum search again.
In Grover’s algorithm, we have a procedure to construct |ψU 〉 and we use this

procedure to initialize the algorithm and to perform the operation Ref|ψU 〉. A
quantum walk will have the same general structure as Grover’s algorithm, but
we will manipulate very large states |ψU 〉. Though |ψU 〉 is long to construct (the
setup operation), performing Ref |ψU 〉 will be less costly.

In the MNRS framework, |ψU 〉 is chosen as the unique eigenvector of eigen-
value 1 of an operator related to a random walk in a graph. To perform Ref |ψU 〉
efficiently, we use phase estimation on this operator.

Finding Many Collisions via Reusable Quantum Walks 229

3 Quantum Walks for Collision Finding

In this section, we present MNRS quantum walks, which underlie most crypto-
graphic applications of quantum walks to date, and give important details on
their actual implementation using a vertex-coin encoding.

3.1 Definition and Example

We consider a regular, undirected graph G = (V,E), which in cryptographic
applications (e.g., collision search), is usually a Johnson graph (as in this paper)
or a product of Johnson graphs (a case detailed e.g. in [22]).

Definition 1 (Johnson graph). The Johnson graph J(N,R) is a regular,
undirected graph whose vertices are the subsets of [N] containing R elements,
with an edge between two vertices v and v′ iff |v ∩ v′| = R − 1. In other words, v
is adjacent to v′ if v′ can be obtained from v by removing an element and adding
an element from [N]\v in its place.

In collision search, a vertex in the graph specifies a set of R inputs to the
function f under study, where its domain {0, 1}n is identified with [2n]. Let
M ⊆ V be a set of marked vertices, e.g., all the subsets S ⊆ {0, 1}n which
contain a collision of f : ∃x, y ∈ S, x �= y, f(x) = f(y). A classical random walk
on G finds a marked vertex using Algorithm 1.

Algorithm 1: Classical random walk on G

Setup an arbitrary vertex x ∈ V
repeat

repeat
Update: move to a random adjacent vertex

until the current vertex is uniformly random
Check if the current vertex is marked

until the current vertex is marked

The quantum walk is analogous to this process. Let ε = |M |
|V | be the proportion

of marked vertices and δ be the spectral gap of G. Starting from any vertex,
after O (

1
δ

)
updates, we sample a vertex of the graph uniformly at random. For

a Johnson graph J(N,R), δ = N
R(N−R) � 1

R . Let S be the time to Setup, U the
time to Update, C the time to Check a given vertex. Then Algorithm 1 finds
a marked vertex in time: O (

S + 1
ε

(
1
δU + C

))
. Magniez et al. [26] show how to

translate this generically in the quantum setting, provided that quantum analogs
of these operations (SETUP, UPDATE, CHECK) can be implemented.

Theorem 1 (From [26]). Assume that quantum algorithms SETUP, UPDATE
and CHECK are given. Then there exists a quantum algorithm that

230 X. Bonnetain et al.

finds a marked vertex with gate count: Õ
(
S + 1√

ε

(
1√
δ
U + C

))
instead of

O
(

1√
ε

(S + C)
)

with a naive search.

Using this framework generically, we can recover the complexity of Ambainis’
algorithm for collision search: Õ (

2m/3
)

for any codomain bit-size m. We use the
Johnson graph J(2n, 2m/3). Its spectral gap is approximately 2−m/3. A vertex is
marked if and only if it contains a collision, so the probability of being marked is
approximately 22m/3−m = 2−m/3. Using a quantum data structure for unordered
sets, we can implement SETUP in gate count Õ (

2m/3
)
, UPDATE and CHECK

in poly(n). The formula of Theorem 1 gives the complexity Õ (
2m/3

)
.

3.2 Details of the MNRS Framework

In the d-regular graph G = (V,E), for each x ∈ V , let Nx be the set of neighbors
of x, of size d. In the case G = J(N,R), we have d = R(N − R). For a vertex
x, let |x〉 be an arbitrary encoding of x as a quantum state, let D(x) be a data
structure associated to x, and let |x̂〉 = |x〉 |D(x)〉.
Remark 1. The encoding of x is commonly thought of as the set itself, and the
data structure as the images of the set by f . But whenever we look at quantum
walks from the perspective of gate count (and not query complexity), an efficient
quantum data structure is already required for x itself, i.e., an unordered set data
structure in the case of a Johnson graph, and one cannot really separate x from
D(x). This is why we will favor the notation |x̂〉.

For a vertex x, let |px〉 be the uniform superposition over its neighbors:
|px〉 = 1√

d

∑
y∈Nx

|y〉, and: |p̂x〉 = 1√
d

∑
y∈Nx

|ŷ〉. From now on, we consider a
walk on edges rather than vertices in the graph, and introduce:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ψU 〉 = 1√
|V |

∑
x∈V |x̂〉 |px〉 the superposition of vertices (and neighbors)

|ψM 〉 = 1√
|M |

∑
x∈M |x̂〉 |px〉 the superposition of marked vertices

A = span{|x̂〉 |px〉}x∈V

B = span{|p̂y〉 |y〉}y∈V

Let RefA and RefB be respectively the reflection over the space A and the
space B. The core of the MNRS framework is to use these operations to emulate
a reflection over |ψU 〉. By alternating such reflections with reflections over |ψM 〉
(using the checking procedure), the quantum walk behaves exactly as a quantum
search, and the analysis of Sect. 2.3 applies.

Proposition 3 (From [26]). Let W = RefBRefA. We have 〈ψU |W |ψU 〉 = 1.
For any other eigenvector |ψ〉 of W , we have 〈ψ|W |ψ〉 = eiθ with θ ∈ [2

√
δ, π/2].

To reflect over |ψU 〉, we perform a phase estimation of the unitary W , which
allows to separate the part with eigenvalue 1, from the part with eigenvalue eiθ

Finding Many Collisions via Reusable Quantum Walks 231

with θ ∈ [2
√

δ, π/2]. The phase estimation circuit needs to call W a total of
O

(
1√
δ

)
times to estimate θ up to sufficient precision. It has some error, which

can be made insignificant with a polynomial increase in complexity; thus in the
following, we will consider the reflection RefU to be exact.

To construct W , we need to implement RefA and RefB . We first remark that:

RefB = SWUP ◦ RefA ◦ SWUP , (2)

where SWUP |x̂〉 |y〉 = |ŷ〉 |x〉. This SWUP (Swap-Update) operation can fur-
thermore be decomposed into an update of the database (UPD) followed by a
register swap:

|x̂〉 |y〉 = |x〉 |D(x)〉 |y〉 UPD−−−→ |x〉 |D(y)〉 |y〉 Swap−−−→ |y〉 |D(y)〉 |x〉 = |ŷ〉 |x〉 , (3)

so SWUP = Swap ◦ UPD.
We would then implement RefA using an update unitary that, from a vertex

x, constructs the uniform superposition of neighbors. However this would require
us to write log2(|V |) data, and in practice, |V | is doubly exponential (the vertex
is represented by an exponential number of bits). Thankfully, in d-regular graphs,
and in particular in Johnson graphs, we can avoid this loophole by making the
encoding of edges more compact. Instead of storing a pair of vertices (x, y), which
will eventually result in having to rewrite entire vertices, we can store a single
vertex and a direction, or coin.

3.3 Vertex-Coin Encoding

The encoding is a reversible operation: OEnc |x̂〉 |y〉 = |x̂〉 |cx→y〉 , which com-
presses an edge (x, y) by replacing y by a much smaller register of size �log2(d)�.
Note that we only need the existence of such a circuit. We never use it during the
algorithms; all operations are directly performed using the compact encoding.

Let
∣
∣ψcoin

Unif

〉
= 1√

d

∑
c |c〉 be the uniform superposition of coins. In the vertex-

coin encoding, RefA corresponds to I ⊗ Ref|ψcoin
Unif 〉:

RefA = O−1
Enc ◦

(
I ⊗ Ref|ψcoin

Unif 〉
)

◦ OEnc.

Now, for the SWUP operation, we have to decompose again UPD and Swap in
the encoded space. First, we define UP′

D such that:

|x〉 |D(x)〉 |cx→y〉 UP ′
D−−−→ |x〉 |D(y)〉 |cx→y〉 .

Moreover, we define Swap′ such that:

|x〉 |cx→y〉 Swap′
−−−−→ |y〉 |cy→x〉 .

and we define SWUP′ = Swap′ ◦ UP′
D (we abuse notation here, by extending

Swap′ where we apply the identity to the middle register), so:

SWUP′ |x̂〉 |cx→y〉 = |ŷ〉 |cy→x〉 ,

232 X. Bonnetain et al.

and SWUP′ = OEnc ◦ SWUP ◦ O−1
Enc. So we define

⎧
⎪⎨

⎪⎩

Ref ′
A = I ⊗ Ref|ψcoin

Unif 〉 = OEnc ◦ RefA ◦ O−1
Enc

Ref ′
B = SWUP′ ◦ Ref ′

A ◦ SWUP′ = OEnc ◦ RefB ◦ O−1
Enc

W ′ = Ref ′
B ◦ Ref ′

A

(4)

By putting everything together, we have W ′ = OEnc ◦ W ◦ O−1
Enc. Since OEnc is

a unitary operator, W and W ′ are unitarily equivalent, i.e., they have the same
eigenvalues. Thus, Proposition 3 applies to W ′ the same as it does to W , and
gives its spectral properties. We can perform phase estimation on W ′, and com-
bine afterwards with Proposition 1. Since constructing the uniform superposition
of coins is trivial, all relies on the unitary SWUP′.

Theorem 2 (MNRS, adapted). Let |x̂〉 be an encoding of the vertex x
(incl. data structure) and assume that a vertex-coin encoding is given. Let
α = arcsin

√
ε. Starting from the state: 1√

|V |
∑

x∈V |x̂〉 ∣
∣ψcoin

Unif

〉
, apply

⌊
π/2−α

2α

⌋

iterates of: • a checking procedure which flips the phase of marked vertices; • a
phase estimation of W ′; then apply the checking again and measure. With prob-
ability at least 1 − 4α2, we measure 1 and collapse on the uniform superposition
of marked vertices.

Finally, we can adapt this analysis by starting from the bad vertices, with a
proof that is the same as Proposition 2. This will be the main building block of
our new algorithm.

Theorem 3 (MNRS, starting from bad vertices). Starting from the state:
1√

|V |−|M |
∑

x∈V \M |x̂〉 ∣
∣ψcoin

Unif

〉
(the superposition of unmarked vertices), apply

⌊
π/2
2α

⌋
iterates of: • a checking procedure which flips the phase of marked vertices;

• a phase estimation of W ′; then apply the checking again and measure. With
probability at least 1 − 4α2, we measure 1 and collapse on the uniform superpo-
sition of marked vertices. Otherwise, we collapse on the uniform superposition
of unmarked vertices.

Coins for a Johnson Graph. In a Johnson graph J(N,R), a coin c = (j, z) is a
pair where:

• j ∈ [R] is the index of the element that will be removed from the current
vertex (given an arbitrary ordering, e.g. the lexicographic ordering of bit-
strings).

• z ∈ [N − R] is the index of an element that does not belong to the current
vertex, and will be added as a replacement.

Finding Many Collisions via Reusable Quantum Walks 233

4 A Chained Quantum Walk to Find Many Collisions

In this section, we prove our main result.

Theorem 4. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function. Let
k ≤ min(2n−m,m/4). There exists a quantum algorithm making O (

22k/3+m/3
)

quantum queries to f and using Õ (
22k/3+m/3

)
Clifford+T+qRAM gates, that

outputs 2k collision pairs of f .

Our new algorithm, which is detailed in Sect. 4.1 and Sect. 4.2, solves the
case k ≤ m

4 . The case k ≤ 2n − m was already solved by adapting the BHT
algorithm, as detailed in Sect. 6.

Note that if we are only interested in the query complexity, our technique is
still necessary to improve over previous results, but the radix tree data structure
that we detail in Sect. 5 can be replaced by a simple ordered list with expensive
update operations (see [19]).

4.1 New Algorithm

We detail here our chained quantum walk algorithm. Recall that the Johnson
graph J(N,R) is the regular, undirected graph whose vertices are subsets of size
R of [N], and edges connect each pair of vertices which differ in exactly one
element. We identify [N] with {0, 1}n, the domain of f .

We assume that an efficient quantum unordered set data structure is given,
which makes vertices in the Johnson graph correspond to quantum states, while
allowing to implement efficiently the operations required for the MNRS quantum
walks. It will be detailed in Sect. 5. In the following we write |S〉 for the quantum
state corresponding to a set S.

Idea of Our Algorithm. After running a quantum walk on a Johnson graph,
we obtain a superposition of vertices which contain a collision. We remove the
collision from the vertex, and we measure the elements that form this collision:
we still obtain a superposition of sets, which might be exploited for the next
walk. The sets in this superposition have a very important property: because we
just removed the collision (more generally, we will remove all collisions that the
vertex contains), they actually do not contain one with certainty. Thus, we do
not have the uniform superposition of vertices of our next MNRS walk, but the
uniform superposition of unmarked vertices. However, we have seen that this
made little difference, and we can continue using Theorem 3. When we measure
the result of a walk step, it will succeed with at least constant probability. In
the case of failure, we collapse on the superposition of unmarked vertices again,
which means we simply have to restart the walk. The extraction of collisions
modifies the walk parameters (vertex size, graph, marked vertices) in a way that
we track throughout the algorithm, and is detailed below.

234 X. Bonnetain et al.

Technical Details. Let C be a table in classical memory of all the multi-collisions
found so far. This table contains entries of the form: u : (x1, . . . , xr) where
f(x1) = . . . = f(xr) = u forms a multicollision of f , indexed by the image. We
define the size of C, its set of preimages and its set of images:

{
Preim(C) :=

⋃
u:(x1,...,xr)∈C{x1, . . . , xr}

Im(C) :=
⋃

u:(x1,...,xr)∈C{u} (5)

Given the table C, given a size parameter R, we define the two sets of sets:
⎧
⎪⎨

⎪⎩

V C
R := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R}

MC
R := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R,

(∃x �= y ∈ S, f(x) = f(y) ∨ ∃z ∈ S, f(z) ∈ Im(C))}
(6)

The first one will be the set of vertices for the current walk, and the second
one its set of marked vertices. As we can see, the current walk excludes a set of
previously measured inputs, and a vertex is marked if it leads to a new collision,
or to a preimage of one of the previously measured images. The second case
simply extends one of the currently known multicollision tuples. The probability
for a vertex to be marked can be easily computed, and we just need to bound it
as follows:

max
(

R|Im(C)|
2m

,
R(R − 1)

2m+1

)
≤ εR,C ≤ R|Im(C)|

2m
+

R(R − 1)
2m+1

,

since any vertex containing a collision, or a preimage from the table C, is marked.
In Sect. 5, we will show that with an appropriate data structure, there exists

an extraction algorithm EXTRACT which does the following:

EXTRACT : C,R,
1

√
|MC

R |
∑

S∈MC
R

|S〉 �→ C ′, R′,
1

√
|V C′

R′ \MC′
R′ |

∑

S∈V C′
R′ \MC′

R′

|S〉 ,

where R′ = R − r for some value r, and C ′ contains exactly r new elements
(collisions adding new entries, or preimages going into previous entries). Thus,
EXTRACT transforms the output of a successful walk into the set of unmarked
vertices for the next walk.

We can now give Algorithm 2, depending on a tunable parameter �.

4.2 Complexity Analysis

Theorem 5 (Time-memory tradeoff). For all k ≤ � ≤ min(2k/3 +
m/3,m/2), Algorithm 2 computes 2k collisions using Õ (

2�
)

qubits and
Õ (

2k+m/2−�/2
)

Clifford+T+qRAM gates.

Proof. We start by noticing that although Algorithm 2 outputs a set of mul-
ticollisions rather than collisions, the number of collisions and multicollisions

Finding Many Collisions via Reusable Quantum Walks 235

Algorithm 2: Chained quantum walk algorithm for multiple collisions.
Input: quantum access to f : {0, 1}n → {0, 1}m, parameter k
Output: a table of multicollisions C such that |Im(C)| ≥ 2k

C ← ∅, R ← 2� /* Initialize an empty table */

|ψ〉 ← ∑

S∈V C
2�

|S〉 /* SETUP */

while |Im(C)| < 2k do
Run the quantum walk:

• Starting state: |ψ〉 =
∑

S∈V C
R

\MC
R

|S〉
• Graph: J({0, 1}n\Preim(C), R) (Johnson graph with vertices of size R,

excluding the preimages of C)
• Marked vertices: MC

R

• Iterates: �(π/2)/(2α)	, where α = arcsin
√

εR,C

• Spectral gap: δ � 1
R

Apply CHECK and measure the result: let flag be the output
if flag is true then

/* The state collapses on:
∑

S∈MC
R

|S〉 */

Apply EXTRACT (contains measurements)

• Update the table C
• Update the current width R
• Update the state: |ψ〉 =

∑

S∈V C
R

\MC
R

|S〉

/* Otherwise, the state collapses on:
∑

S∈V C
R

\MC
R

|S〉 for the

previous R and C. There is nothing to extract from it, C and

R remain unchanged. */

return C

that are actually obtained are closely related. Indeed, for a function from [2n]
to [2n], there is a polynomial (in n) limit to the width of multicollisions that
can appear for a non-negligible fraction of the functions. Indeed, by Theorem 4
in [13], the average number of r-collisions in such a random function is 2ne−1

r! .
Thus, there exists a universal constant c such that with probability 1 − o(2−n),
such a random function does not have any r-collision with r ≥ cn.

This means that regardless of the state of the current table C, we have:

|Im(C)| ≤ |Preim(C)| ≤ cn|Im(C)| .

In particular, by taking 2� greater than cn2k+1, we ensure that during the algo-
rithm, R > 2�−1. This means that we never run out of elements.

Secondly, we can bound εR,C ≥ R(R−1)
2m+1 . This allows to upper bound easily

the time complexity of any of the walks: if the current vertex size is R then it
runs for O (

2m/2/R
)

iterates, and each iterate contains Õ
(√

R
)

operations. The
constants in the O are the same throughout the algorithm. This means that we
can upper bound the complexity of each walk by Õ

(
2m/2/

√
R

)
≤ Õ (

2m/2−�/2
)
.

236 X. Bonnetain et al.

By Theorem 3, the success probability of this walk is bigger than 1 − 4εR,C .
If we do not succeed, the CHECK followed by a measurement make the current
state collapse again on the superposition of unmarked vertices, and we run the
exact same walk again. Note that for this algorithm to work, we must have
εR,C < 0.5. This corresponds to the probability that the list contains a collision,
or a new preimage of Im(C), which is Õ (

22�−m
)
. Hence, we must have � ≤ m/2.

Then, as � ≤ 2k/3 + m/3, the final complexity of the algorithm is

Õ
(
2� + 2k2m/2−�/2

)
= Õ

(
2k+m/2−�/2

)
,

where 2� is the cost of the SETUP, and the second term accounts for all the
walk steps. ��

5 Quantum Radix Trees and Extractions

In this section, we detail the quantum radix tree data structure, a history-
independent unordered set data structure introduced in [21]. We show that it
allows to perform, exactly and in a polynomial number of Clifford+T+qRAM
gates, the two main operations required for our walk: SWUP′ and EXTRACT.
We describe these operations in pseudocode, while ensuring that they are
reversible and polynomial.

5.1 Logical Level

Following [21], the quantum radix tree is an implementation of a radix tree storing
an unordered set S of n-bit strings. It has one additional property: its concrete
memory layout is history-independent. Indeed, there are many ways to encode
a radix tree in memory, and as elements are inserted and removed, we cannot
have a unique bit-string T (S) representing a set S. We use instead a uniform
superposition of all memory layouts of the tree, which makes the quantum state
|T (S)〉 unique, and independent of the order in which the elements were inserted
or removed. Only the entry point (the root) has a fixed position.

We separate the encoding of S into |T (S)〉 in two levels: first, a logical level, in
which S is encoded as a unique radix tree R(S); second, a physical level, in which
R(S) is encoded into a quantum state |T (S)〉. The logical mapping S → R(S)
is standard.

Definition 2 (From [21]). Let S be a set of n-bit strings. The radix tree R(S)
is a binary tree in which each leaf is labeled with an element of S, and each edge
with a substring, so that the concatenation of all substrings on the path from the
root to the leaf yields the corresponding element. Furthermore, the labels of two
children of any non-leaf node start with different bits.

By convention, we put the “0” bit on the left, and “1” on the right. In addition
to the n-bit strings stored by the tree, we append to each node the value of an
�-bit invariant which can be computed from its children, and depends only on
the logical structure of the radix tree, not its physical structure. Typically the
invariant can count the number of elements in the tree.

Finding Many Collisions via Reusable Quantum Walks 237

Fig. 2. Tree R(S) representing the set S = {0000, 0010, 1001, 1011, 1111} (the example
is taken from [21]).

5.2 Memory Representation

We now detail the correspondence from R(S) to |T (S)〉. We suppose that a
quantum bit-string data structure is given, that handles bit-strings of length
between 0 and n and performs operations such as concatenation, computing
shared prefixes, testing if the bit-string has a given prefix, in time poly(n).

State of the Memory. We suppose that O (Mn) qubits of memory are given,
where M ≥ R will be set later on. We divide these qubits into M cells of O (n)
qubits each, which we index from 0 to M − 1. We encode cell addresses on
m = �log2 M� + 1 bits, and we also define an “empty” address ⊥. Each cell
will be either empty, or contain a node of the radix tree, encoded as a tuple
(i, al, ar, �l, �r) where:

• i is the value of the invariant
• al and ar (m-bit strings) are respectively the memory addresses of the cells

holding the left and right children, either valid indices or ⊥. A node with
al = ar = ⊥ is a leaf.

• �l and �r are the labels of the left and right edges. (ε if the node is a leaf,
where ε is the empty string).

In other words, we have added to the tree R(S) a choice of memory locations
for the nodes, which we name informally the memory layout of the tree. The
structure of R(S) itself remains independent on its memory layout.

The root of the tree is stored in cell number 0. In Fig. 3, we give an example
of a memory representation of the tree R(S) of Fig. 2. We take as invariant the
number of leaves which, at the root, gives the number of elements in the set. It
is important to note that memory cells have an “empty” default state, which
allows the radix tree to support size changes. Whether a cell is empty or not
depends on the memory layout.

A radix tree encoding a set of size R contains 2R − 1 nodes (including the
root), which means that we need (a priori) no more than M = 2R − 1 cells in
our memory. In addition to the bit-strings x, we could add any data dx to which
x serves as a unique index. (This means adding another register which is non-
empty for leaf nodes only). Finally, it is possible to account for multiplicity of
elements in the tree by adding multiplicity counters, but since this is unnecessary
for our applications, we will stick to the case of unique indices.

238 X. Bonnetain et al.

Fig. 3. Example of memory layout for the tree of Fig. 2, holding the set S =
{0000, 0010, 1001, 1011, 1111}.

Definition. Let S be a set of size R, encoded in a radix tree with 2R−1 nodes. We
can always take an arbitrary ordering of the nodes in the tree, for example the
lexicographic ordering of the paths to the root (left = 0, right = 1). This means
that, for any sequence of non-repeating cell addresses I, of length 2R−1, we can
define a mapping: S, I �→ TI(S) which specifies the writing of the tree in memory,
by choosing the addresses I = (i1 = 0, . . . , i2R−1) for the elements. For example,
the tree of Fig. 3 would correspond to the sequence (0, 1, 3, 4, 2, 5, 8, 9, 7). We can
then define the quantum radix tree encoding S as the quantum state:

|T (S)〉 =
∑

valid sequences I

|TI(S)〉 , (7)

where we take a uniform superposition over all valid memory layouts.
For two different sets S and S′, and for any pair I, I ′ (even if I ′ = I), we

have TI′(S) �= TI(S′): the encodings always differ. This means that, as expected,
we have 〈T (S)|T (S′)〉 = 0.

Memory Allocator. In order to maintain this uniform superposition over all
possible memory layouts, we need an implementation of a memory allocator. This
unitary ALLOC takes as input the current state of the memory, and returns a
uniform superposition over the indices of all currently unoccupied cells. Possible
implementations of ALLOC are detailed in Sect. 5.4.

5.3 Basic Operations

We show how to operate on the quantum radix trees in poly(n) Clifford+T
+qRAM gates. We start with the basics: lookup, insertion and deletion.

Lookup. We define a unitary LOOKUP which, given S and a new element x,
returns whether x belongs to S:

LOOKUP : |x〉 |T (S)〉 |0〉 �→ |x〉 |T (S)〉 |x ∈ S〉 . (8)

Finding Many Collisions via Reusable Quantum Walks 239

Algorithm 3: LOOKUP as a classical algorithm.
Input: element x, quantum radix tree T (S)
Output: whether x ∈ S
(i, al, ar, �l, �r) ← root
y ← ε (empty string)
while al �= ⊥ (node is not a leaf) do

if y||�l is a prefix of x then
y ← y||al

(i, al, ar, �l, �r) ← node at address al

else if y||�r is a prefix of x then
y ← y||al

(i, al, ar, �l, �r) ← node at address ar

else
Break (not a solution)

return true if y = x

We implement LOOKUP by descending in the radix tree R(S); the pseudocode
is given in Algorithm 3. Since the “while” loop contains at most n iterates,
quantumly these n iterates are performed controlled on a flag that says whether
the computation already ended. After obtaining the result, they are recomputed
to erase the intermediate registers.

Insertion. We define a unitary INSERT, which, given a new element x, inserts
x in the set S. If x already belongs to S, its behavior is unspecified.

INSERT : |x〉 |T (S)〉 �→ |x〉 |T (S ∪ {x})〉 . (9)

The implementation of INSERT is more complex, but the operation is still
reversible. The pseudocode is given in Algorithm 4. At first, we find the point of
insertion in the tree, then we call ALLOC twice to obtain new memory addresses
for two new nodes. We modify locally the layout to insert these new nodes,
including a new leaf for the new element x. Then, we update the invariant on
the path to the new leaf. Finally, we uncompute the path to the new leaf (all
the addresses of the nodes on this path). To do so, we perform a loop similar to
LOOKUP, given the knowledge of the newly inserted element x.

Deletion. The deletion can be implemented by uncomputing INSERT, since it
is a reversible operation. It performs:

INSERT† : |x〉 |T (S ∪ {x})〉 �→ |x〉 |T (S)〉 . (10)

240 X. Bonnetain et al.

Algorithm 4: INSERT as a classical algorithm.
Input: element x, quantum radix tree T (S)
Output: element x, quantum radix tree T (S ∪ {x})
Find the first node j1 : (i, al, ar, �l, �r) such that y is a prefix of x, y||�l is not a
prefix of x and y||�r is not a prefix of x either. Write all the addresses of the
nodes on the path from the root to j1

/* If at this point we have found that the element belongs to S
instead, then the rest of the computation is meaningless. */

/* By construction �l starts with 0 and �r starts with 1. One of them

shares a non-empty prefix z with the remaining part of x. Without

loss of generality, we assume that it is �l. */

Let �l = z||t and x = y||z||x′

Call ALLOC to obtain an address j2
Replace al with j2 in the node j1 : (i, al, ar, �l, �r) (move al to a temporary
register)

Call ALLOC to obtain an address j3
Write at address j3: (∗, ⊥, ⊥, ε, ε)
/* Information at this point: x, al, j2, j3, the path to j1 and the tree

*/

if t starts with 0 then
Move al and cut �l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, �r) and j2 : (∗, al, j3, t, x

′).
else

Move al and cut �l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, �r) and j2 : (∗, j3, al, t, x

′).

/* We make this choice so that the left edge is always labeled

starting with a 0 and the right edge with a 1 */

/* Since we have moved j3 and al, the remaining information is: x,
the modified tree, j2 and the path to j1 (actually the path to x
in the new tree) */

Recompute the invariants on the path to x, in reverse order (starting from the
address j2).

/* The recomputation of the invariants is reversible (but we still

know the path to x) */

Do a lookup of x to uncompute the path to x.
/* Now the only information that remains is x, T (S ∪ {x}). */

The deletion of an element that is not in S is unspecified.

Quantum Lookup. We can implement a “quantum lookup” unitary QLOOKUP
which produces a uniform superposition of elements in S having a specific prop-
erty P . The only requirement is that the invariant of nodes has to store the
number of nodes in the subtree having this property (and so, leaf nodes will
indicate if the given x satisfies P (x) or not).

QLOOKUP : |T (S)〉 |0〉 �→ |T (S)〉
∑

x∈S|P (x)

|x〉 . (11)

Finding Many Collisions via Reusable Quantum Walks 241

This unitary is implemented by descending in the tree coherently (i.e., in
superposition over the left and right paths) with a weight that depends on the
number of solutions in the left and right subtrees. First, we initialize an address
register |a〉 to the root. Then, for n times (the maximal depth of the tree), we
update the current address register as follows:

• We count the number of solutions in the left and right subtrees of the node
at address |a〉 (say, tl and tr).

• We map |a〉 to |a〉
(√

tl

tl+tr
|left child of a〉 +

√
tr

tl+tr
|right child of a〉

)
. (We

do nothing if |a〉 is a leaf).

In the end, we obtain a uniform superposition of the paths to all elements satisfy-
ing P . We can query these elements, then uncompute the paths using an inverse
LOOKUP. Likewise, we can also perform a quantum lookup of pairs satisfying
a given property, e.g., retrieve a uniform superposition of all collision pairs in S.

5.4 Quantum Memory Allocators

We now define the unitary ALLOC, which given the current state of the memory,
creates the uniform superposition of unallocated cells:

ALLOC : |current memory〉 |0〉 �→ |current memory〉
∑

i unoccupied

|i〉 . (12)

We do not need to define a different unitary for un-allocation; we only have to
recompute ALLOC to erase the addresses of cells that we are currently cleaning.
To implement ALLOC, we add to each memory cell a flag indicating if it is
allocated. We propose two approaches.

Quantum Search Allocation. Classically, we can allocate new cells by simply
choosing addresses at random and checking if they are already allocated or not.
Quantumly, we can follow this approach using a quantum search over all the
cells for unallocated ones. Obviously, for this approach to be efficient, we need
the proportion of unallocated cells to be always constant. Besides, if we keep
a counter of the number of allocated cells (which does not vary during our
quantum walk steps anyway), we can make this operation exact using Amplitude
Amplification (Theorem 4 in [7]). Indeed, this counter gives the proportion of
allocated cells, so we know exactly the probability of success of the amplified
algorithm.

We can implement this procedure with a single iteration of quantum search
as long as we have a 33% overhead on the maximal number of allocated cells
(similarly to the case of searching with a single query studied in [11]).

242 X. Bonnetain et al.

Quantum Tree Allocation. A more standard, but less time-efficient approach to
implement ALLOC is to organize the memory cells in a complete binary tree (a
heap), so that each node of the tree stores the number of unallocated cells in its
children. This tree is not a quantum radix tree, since its size never changes, and
no elements are inserted or removed. In order to obtain the uniform superposition
of free cell addresses, we mimic the approach of QLOOKUP.

5.5 Higher-Level Operations for Collision Walks

We now implement efficiently the higher-level operations required by our
algorithms: setting up the initial vertex (SETUP), performing a quantum
walk update (SWUP′), looking for collisions (CHECK) and extracting them
(EXTRACT).

Representation. We consider the case of (multi-)collision search. Here the set S is
a subset of [N] = {0, 1}n, but we also need to store the images of these elements
by the function f : {0, 1}n → {0, 1}m. Let F = {f(x)||x, x ∈ S}. A collision of
f is a pair (f(x)||x), (f(y)||y) such that f(x) = f(y), i.e., the bit-strings have
the same value on the first m bits.

Since our goal is to retrieve efficiently the collision pairs, we will store both
a radix tree T (S) to keep track of the elements, and T (F) to keep track of the
collisions. One should note that the sets F and S have the same size. When
inserting or deleting elements, we insert and delete both in T (S) and T (F).
These trees are stored in two separate chunks of memory cells.

SETUP. The unitary SETUP starts from an empty state |0〉 and initializes the
tree to a uniform superposition of subsets of a given set. As long as sampling
uniformly at random from this set is efficient, we can implement SETUP using
a sequence of insertions in a tree that starts empty.

SWUP’. We show an efficient implementation of the unitary SWUP′:

SWUP′ |T (S)〉 |T (F)〉 |cS→S′〉 = |T (S′)〉 |T (F ′)〉 |cS′→S〉 (13)

where cS→S′ is the coin register which contains information on the transition of
a set S to a set S′. As we have detailed before, the coin is encoded as a pair (j, z)
where j ∈ [R] is the index of an element in S, which has to be removed, and
z ∈ [N − R] is the index of an element in {0, 1}n\S, which has to be inserted.
We implement SWUP′ as follows:

1. First, we convert the coin register to a pair x, y where: • y is the z-th element
of {0, 1}n which is not in S and • x is the j-th element of S (according to
the lexicographic ordering of bit-strings). For the first, we need a specific
algorithm detailed in the full version of the paper [5], which accesses the tree
T (S). The second can be done easily if the invariant of each node stores the
number of leaves in its subtree. Note that both the mapping from z to y, and
from j to x, are reversible. At this point the state is |T (S)〉 |T (F)〉 |x, y〉.

Finding Many Collisions via Reusable Quantum Walks 243

2. We use INSERT† to delete x from T (S), and delete f(x)||x from T (F).
3. We use INSERT to insert y in T (S) and f(y)||y in T (F). At this point the

state is: |T (S′)〉 |T (F ′)〉 |x, y〉 where S′ = (S\{x}) ∪ {y} and F ′ is the set of
corresponding images.

4. Finally, we convert the pair x, y back to a coin register.

Remark 2 (Walking in a reduced set). In our walk, we actually reduce the set
of possible elements, due to the previously measured collisions. So the coin does
not encode an element of {0, 1}n\S, but of {0, 1}n\S\Preim(C), where C is our
current table of multicollisions. An adapted algorithm is also given in the full
version of the paper [5] for this case.

Checking. We make the CHECK operation trivial, by defining an appropriate
invariant of the tree T (F). For each node in the tree, we count the number
of multicollisions and preimages of Im(C) that the subtree rooted at this node
contains. Then, the unitary CHECK simply tests whether the invariant at the
root is zero.

During the operations of insertion and deletion in the tree, the invariant can
be updated appropriately. Besides checking if the inserted element creates a new
collision (resp., the deleted element removes one), we also need to check whether
the image belongs to the set Im(C). During the run of the algorithm, Im(C) is
classical, and can be stored in quantum-accessible classical memory.

Extracting. The most important property for our chained quantum walk is the
capacity to extract multicollisions from the radix tree, in a way that preserves
the rest of the state, and allows to reuse a superposition of marked vertices for
the current walk, as a superposition of unmarked vertices for the next one. Recall
from Sect. 4.1 that we have defined a table of multicollisions C, a set V C

R of sets
of size R in {0, 1}n\Preim(C), and a set MC

R ⊆ V C
R of marked vertices, which

contain either a new element mapping to Im(C), or a new collision. Recall also
from the proof of Theorem 5 that a random function, with probability 1−o(2−n),
does not admit an r-collision (x1, . . . , xr) with r = O (n) for some appropriate
constant. This limit on the size of multicollisions ensures that the extraction
does not reduce too much the size of the current vertex.

The operation EXTRACT does:

EXTRACT : C,R,
1

√
|MC

R |
∑

S∈MC
R

|S〉 �→ C ′, R′,
1

√
|V C′

R′ \MC′
R′ |

∑

S∈V C′
R′ \MC′

R′

|S〉 ,

i.e., it updates the current vertex state, but also reduces R to a smaller value R′,
and updates the table C into a bigger table C ′. It is implemented as Algorithm 5.
Although it is not strictly necessary, we have separated the subroutine CHECK
into: CHECKP, which finds whether the set contains a new preimage of C, and
CHECKC, which finds whether there is a new collision.

We now prove the correctness of Algorithm 5. We start with the uniform
superposition of marked vertices, i.e., sets S ⊆ {0, 1}n\Preim(C) of size R, which

244 X. Bonnetain et al.

Algorithm 5: Multicollision extraction: EXTRACT.
Input: C, R, uniform superposition over MC

R

Output: C′ R′, uniform superposition over V C′
R′ \MC′

R′
flag ← true
C′ ← C, R′ ← R
Apply CHECKP and measure the result: let flag be the output
while flag is true do

Perform a “quantum lookup” of the solution (new preimage)
Select one uniformly at random, denote it x

Copy x outside the tree; apply INSERT† to remove it; measure x
R′ ← R − 1
Insert x in C′, at the index of its image f(x)
Apply CHECKP and measure the result: let flag be the output

Apply CHECKC and measure the result: let flag be the output
while flag is true do

Perform a “quantum lookup” of the solution (new collision)
Select one uniformly at random, denote it (x1, . . . , xr)
Write r in a new register
Copy (x1, . . . , xr) outside the tree

Apply INSERT† a total of O (n) times, in a controlled way depending on
the exact value of r, to remove x1, . . . , xr

Measure r and x1, . . . , xr

R′ ← R − r
Insert a new entry (x1, . . . , xr) in C′

Apply CHECKC and measure the result: let flag be the output

contain at least a solution tuple x1, . . . , xr which is either a (multi)-collision, or
a new preimage.

The first loop removes all new preimages. Each time we measure an element,
we collapse on the superposition of sets which contained it. After CHECKP
returns 0 for the first time, the state collapses on the uniform superposition of
all sets S such that:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′ = R − t,
(
∀z ∈ S, f(z) /∈ Im(C ′)

)
,

where t is the number of iterates of the loop that we had to perform. There is
a variable number of such iterates but we expect only one to occur on average,
since the typical case is for vertices to contain only one solution.

The second loop will run until there are no collisions anymore. New preimages
cannot appear since we extract entire multicollision tuples. At the first loop iter-
ate, assuming that CHECKC returns 1, we collapse on the uniform superposition
of sets:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′) ∧ ∃x, y ∈ S, x �= y, f(x) = f(y)

)
.

Finding Many Collisions via Reusable Quantum Walks 245

We select one of the solutions (x1, . . . , xr) at random, remove it, and measure
the tuple x1, . . . , xr. Let u = h(x1). After measurement, the state collapses on
all sets that do not contain x1, . . . , xr, and contain no preimage of u.

Since we update R′ and C ′ accordingly, we obtain the sets:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′)

)
.

After repeatedly calling CHECKC and measuring, we will continue extracting
collisions until CHECKC returns 0, i.e., we have collapsed on the sets which do
not contain a collision. At this point, we have a uniform superposition of:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′) ∧ ∀x, y ∈ S, f(x) �= f(y)

)
.

This is, by definition, the set of unmarked vertices (see Equation (6)).
Note that for this algorithm to work, we need to maintain invariants of

the number of solutions (new preimages and multicollisions) that any subtree
contains. These invariants only decrease during the loop iterates, and they are
updated accordingly when we remove the solutions from the tree.

6 Searching for Many Collisions, in General

As we have seen, our new algorithm is valid (and tight) for all values of n, m
and k ≤ 2n − m such that k ≤ m

4 . Two approaches can be used for higher k.

BHT. A standard approach to find multiple collisions, which works when m is
small, is to extend the BHT algorithm [8]. We select a parameter �, then make
2� queries, and look for 2k collisions on this list of queries. This is done by a
quantum search on {0, 1}n for an input colliding with the list.

There are on average 22n−m collision pairs in the function, so a random
element of {0, 1}n has a probability O (2n−m) to be in a collision pair. This
gives O (

2�−m+n
)

collision pairs for the initial list.
Thus, a search for a collision with the list has O (

2�−m+n
)

solutions in a

search space of size 2n, and it requires
√

2n

2�+m−n = 2(m−�)/2 iterates.

If this procedure is to output 2k collisions, we need � such that 2�−m+n ≥ 2k

i.e. � − m + n ≥ k. By trying to equalize the complexity of the two steps, we
obtain: � = k + m−�

2 =⇒ � = 2k
3 + m

3 which is only valid for k ≤ 3n − 2m. For
a bigger k, we can repeat this. We find 23n−2m collisions in time (and memory)
22n−m, and we do this 2k−(3n−2m) times, for a total time Õ (

2k+m−n
)
. If we

want to restrict the memory then we obtain the tradeoff of Õ (
2k+m/2−�/2

)
time

using O (
2�

)
memory.

Using Our Method. If k > m/4, then the memory limitation in Theorem 5 on
� becomes relevant. In that case, as we are restricted to � ≤ m/2, the minimal
achievable time is Õ (

2k+m/2−�/2
)

= Õ (
2k+m/4

)
.

246 X. Bonnetain et al.

Conclusion. The time and memory complexities of the problem are the following
(in log2 and without polynomial factors):

• If k ≤ 3n − 2m: 2k
3 + m

3 time and memory using BHT
• Otherwise, if k ≤ m

4 : 2k
3 + m

3 time and memory using our algorithm
• Otherwise, if m ≤ 4

3n: k + m − n time and 2n − m memory using BHT
• Otherwise, if m ≥ 4

3n: k + m
4 time and m

2 memory using our algorithm

This situation is summarized in Fig. 1, and it allows us to conclude:

Theorem 6. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function.
Let k ≤ 2n − m. There exists an algorithm finding 2k collisions in Õ (

2C(k,m,n)
)

Clifford+T+qRAM gates, and using Õ (
2C(k,m,n)

)
quantum queries to f , where:

C(k,m, n) = max
(

2k

3
+

m

3
, k + min

(
m − n,

m

4

))
. (14)

Proof. We check that: k ≤ 3n − 2m ⇐⇒ 2k
3 + m

3 ≥ k + m − n and k ≤ m
4 ⇐⇒

2k
3 + m

3 ≥ k + m
4 . ��

We conjecture that the best achievable complexity is, in fact, C(k,m, n) =
2k
3 + m

3 for any admissible values of k, m and n. It would however require a non-
trivial extension of our algorithm, capable of outputting collisions at a higher
rate than what we currently achieve.

In terms of time-memory trade-offs, we can summarize the results as:

Theorem 7 (General Time-memory tradeoff). For all k ≤ � ≤ min(2k/3+
m/3,max(2n − m,m/2)), there exists an algorithm that computes 2k collisions
using Õ (

2�
)

qubits and Õ (
2k+m/2−�/2

)
Clifford+T+qRAM gates and quantum

queries to f .

Similarly, as in [15], we conjecture that the trade-off should be achievable for
all � ≤ 2k/3 + m/3.

7 Applications

In this section, we show how our algorithm can be used as a building block for
lattice sieving and to solve the limited birthday problem. We also discuss the
problem of multicollision search.

7.1 Improvements in Quantum Sieving for Solving the Shortest
Vector Problem

In this section, we present the improvement of our reusable quantum walks to
lattice sieving algorithms. A lattice L = L(b1, . . . ,bd) := {∑d

i=1 zibi : zi ∈ Z} is
the set of all integer combinations of linearly independent vectors b1, . . . ,bd ∈
R

d. We call d the rank of the lattice and (b1, . . . ,bd) a basis of the lattice.

Finding Many Collisions via Reusable Quantum Walks 247

The most important computational problem on lattices is the Shortest Vector
Problem (SVP). Given a basis for a lattice L ⊆ R

d, SVP asks to compute a non-
zero vector in L with the smallest Euclidean norm. The main lattice reduction
algorithm used for lattice-based cryptanalysis is the famous BKZ algorithm [29].
It internally uses an algorithm for solving (near) exact SVP in lower-dimensional
lattices. Therefore, finding faster algorithms to solve exact SVP is critical to
choosing security parameters of cryptographic primitives.

Previously, the fastest quantum algorithm solved SVP under heuristic
assumptions in 20.2570d+o(d) time [9]. It applies the MNRS quantum walk tech-
nique to the state-of-the-art classical algorithm called lattice sieving, where we
combine close vectors together to obtain shorter vectors at each step. It was
noted in [9] that the algorithm could be slightly improved if we could find many
marked vertices in a quantum walk without repaying the setup each time, which
is exactly what we showed in Sect. 4. We redid the analysis of [9] with this
improvement and show the following

Proposition 4. There exists a quantum algorithm that solves SVP under
heuristic assumptions in 20.2563d+o(d)

Proving this statement requires to restate the whole framework and analysis
of [9]. We briefly present here the main calculation to achieve our result but we
refer to the full version of the paper [5] for a more comprehensive analysis. Let
Vd(α) be the ratio of the volume of a spherical cap of angle α to the volume of
the d-dimensional sphere. We have Vd(α) = poly(d) sind(α) .

Proposition 5. The algorithms of [9] has the following asymptotic running
time:

T = max{1, N c−ζ} · (N + N1−cFAS1). (15)

where N = 1
Vd(π/3) , α st. Vd(α) = N−(1−c), θ∗

α = 2arcsin(1
2 sin(α)), ζ st. N ζ =

N2cVd(θ∗
α), and FAS1 is the running time of the FAS1 subroutine.

The authors of [9] use a quantum walk in order to solve the FAS1 problem.

Proposition 6 ([9]). For a parameter c1, let β st. Vd(β) = 1
Nc1 , ρ0 st.

Nρ0 = Vd(β)
Wd(β,θ∗

α) , where Wd(β, θ∗
α) = poly(d) ·

(
1 − 2 cos2(β)

1+cos(θ∗
α)

)d/2

. In order to
solve FAS1 with parameter c1, it is enough to repeat Nρ0 times a quantum walk
on a graph where we each time need to find N ζ−ρ0 marked elements with the
following properties

S = N c1 , δ = N−c1 , ε = N2c1−ρ0Vd−1(θ∗
α), U = 1, C = 1.

Using Theorem 4, we obtain FAS1 = Nρ0 ·
(
S + Nζ−ρ0√

ε

(
1√
δ
U + C

))
. We take

the following set of parameters: c ≈ 0.3875, c1 ≈ 0.27 which gives ζ ≈ 0.1568
and ρ0 ≈ 0.1214. Notice that with these parameters, we are indeed in the range
of Theorem 4 since the number of solutions we extract is 2k = N ζ−ρ0 ≈ N0.0354

248 X. Bonnetain et al.

and the range of the function f on which we collision is 2m = 2c1 ≈ N0.27 (the
number of points in the code), so we indeed have k ≤ m

4 . The parameters of the
quantum walk become:

S ≈ N0.27, ε ≈ N−0.2, δ ≈ N−0.27, U = C = 1 .

This gives FAS1 ≈ N0.27. Plugging this into Equation (15), we get a total
running time of T = N1.2347 which is equal to T = 20.2563d+o(d) improving
slightly the previous running time of 20.2570d+o(d).

7.2 Solving the Limited Birthday Problem

The following problem is very common in symmetric cryptanalysis. It appears
for example in impossible differential attacks [6], but also in rebound distin-
guishers [16]. In the former case we use generic algorithms to solve the problem
for a black-box E, and in the latter, a valid distinguisher for E is defined as an
algorithm outputting the pairs faster than the generic one.

Problem 4 (Limited Birthday). Given access to a black-box permutation E :
{0, 1}n → {0, 1}n and possibly its inverse E−1, given two vector spaces Din

and Dout of sizes 2Δin and 2Δout respectively, find 2k pairs x, x′ such that x �=
x′, x ⊕ x′ ∈ Din, E(x) ⊕ E(x′) ∈ Dout.

For simplicity, we will focus only on the time complexity of the problem,
although some parameter choices require a large memory as well. Classically the
best known time complexity is given in [6]:

max
(

min
Δ∈{Δin,Δout}

(√
2k+n+1−Δ

)
, 2k+n+1−Δin−Δout

)
. (16)

This complexity is known to be tight for 2k = 1 [16].
In the quantum setting, we need to consider superposition access to E

and possibly E−1 to have a speedup on this problem. Previously the meth-
ods used [23] involved only individual calls to Ambainis’ algorithm (when there
are few solutions) or an adaptation of the BHT algorithm (when there are many
solutions).

The quantum algorithm, as the classical one, relies on the definition of struc-
tures of size 2Δin , which are subsets of the inputs of the form Tx = {x⊕v, v ∈ Din}
for a fixed x. For a given structure Tx, we can define a function hx : {0, 1}Δin →
{0, 1}n−Δout such that any collision of hx yields a pair solution to the lim-
ited birthday problem. The expected number of collisions of a single hx is
C := 22Δin+Δout−n, and there are three cases:

1. C < 1: we follow the approach of [23], which is to repeat 2k times a Grover
search among structures, to find one that contains a pair (this is done with
Ambainis’ algorithm). The time exponent is k + n−Δout

2 − Δin
3 .

2. 1 < C < 2k: we need to consider several structures and to extract all of their
collision pairs. Using Theorem 6 this gives a time exponent:

max
(

k +
2
3
(n − Δin − Δout), k + min

(
n − Δout − Δin,

n − Δout

4

))

Finding Many Collisions via Reusable Quantum Walks 249

3. 2k < C: we need only one structure. To recover 2k pairs, we need a time
exponent (by Theorem 6):

max
(

2k

3
+

n − Δout

3
, k + min

(
n − Δout − Δin,

n − Δout

4

))

Finally, we can swap the roles of Δin and Δout and take the minimum. Unfor-
tunately this does not lead to an equation as simple as Equation (16).

7.3 On Multicollision-Finding

A natural extension of this work would be to look for multicollisions.

Problem 5 (r-collision search). Let f : {0, 1}n → {0, 1}m be a random function.
Find an r-collision of f , that is, a tuple (x1, . . . , xr) of distinct elements such
that f(x1) = . . . = f(xr).

As with collisions, the lower bound by Liu and Zhandry [25] is known to be
tight when m ≤ n. The corresponding algorithm is an extension of the BHT
algorithm which constructs increasingly smaller lists of i-collisions, starting with
1-collisions (evaluations of the function f on arbitrary points) and ending with
a list of r-collisions.

This algorithm, given in [17,18], finds 2k r-collisions in time and memory:

Õ
(

2k 2(r−1)
2r−1 2m 2(r−1)−1

2r−1

)
.

As with 2-collisions, it is possible to extend it when m > n. Of course, there’s
a constraint: the list i must contain more tuples that are part of an i+1-collision
than the size of the list i + 1.

The size of each i-collision list is Ni = 2k 2r−2r−i

2r−1 2m 2r−i−1
2r−1 . The probability

that an i-collision extends to an i + 1-collision is of order 2n−m. Hence, for the
algorithm to work, we must have, for all i, Ni+1/Ni ≤ 2n−m. This means:

k
2r−i−1

2r − 1
− m

2r−i−1

2r − 1
≤ n − m .

This constraint is the most restrictive for the largest possible i, r −1. We obtain
the following constraint, which subsumes the others:

k
1

2r − 1
+ m

(
1 − 1

2r − 1

)
≤ n .

This gives the point up to which this algorithm meets the lower bound. We
could use our new algorithm as a subroutine in this one, to find 2-collisions, and
this would allow to relax the constraint over N2/N1. Unfortunately, this cannot
help to find multicollisions, as the other constraints are more restrictive. More
generally, these constraints show that it is not possible to increase the range of
the BHT-like r-collision algorithm solely by using an r − i-collision algorithm
with an increased range.

250 X. Bonnetain et al.

Acknowledgments. A.S. wants to thank Nicolas David and Maŕıa Naya-Plasencia
for discussions on the limited birthday problem. A.S. has been supported by ERC-
ADG-ALGSTRONGCRYPTO (project 740972). Y.S. is supported by EPSRC grant
EP/S02087X/1 and EP/W02778X/1. This work received funding from the France 2030
program managed by the French National Research Agency under grant agreement No.
ANR-22-PETQ-0007 EPiQ and ANR-22-PETQ-0008 PQ-TLS. All authors would like
to thank Schloss Dagstuhl and the organizers of the Dagstuhl Seminar 21421 “Quantum
Cryptanalysis” where this work was initiated, and the reviewers of EUROCRYPT 2023
for helpful comments.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007)

3. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

4. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3 22

5. Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many collisions
via reusable quantum walks. IACR Cryptol. ePrint Arch, p. 676 (2022)

6. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

7. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

8. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

9. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 63–91. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 3

10. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

11. Chi, D.P., Kim, J.: Quantum database search by a single query. In: Williams, C.P.
(ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49208-9 11

12. Dinur, I.: Tight time-space lower bounds for finding multiple collision pairs and
their applications. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 405–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 15

https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-92068-5_3
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/3-540-49208-9_11
https://doi.org/10.1007/978-3-030-45721-1_15
https://doi.org/10.1007/978-3-030-45721-1_15

Finding Many Collisions via Reusable Quantum Walks 251

13. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 34

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting 1996, pp. 212–219. ACM (1996)

15. Hamoudi, Y., Magniez, F.: Quantum time-space tradeoff for finding multiple col-
lision pairs. In: TQC. LIPIcs, vol. 197, pp. 1:1–1:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

16. Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y.: Improved attacks on sliscp per-
mutation and tight bound of limited birthday distinguishers. IACR Trans. Symm.
Cryptol. 2020(4), 147–172 (2020)

17. Hosoyamada, A., Sasaki, Yu., Tani, S., Xagawa, K.: Improved quantum
multicollision-finding algorithm. In: Ding, J., Steinwandt, R. (eds.) PQCrypto
2019. LNCS, vol. 11505, pp. 350–367. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25510-7 19

18. Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Quantum algorithm for the
multicollision problem. Theor. Comput. Sci. 842, 100–117 (2020)

19. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

20. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 329–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 13

21. Jeffery, S.: Frameworks for Quantum Algorithms. Ph.D. thesis, University of
Waterloo, Ontario, Canada (2014). http://hdl.handle.net/10012/8710

22. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

23. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symm. Cryptol. 2016(1), 71–94 (2016)

24. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k -list problem and their application to lattice sieving.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 19

25. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 189–218. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 7

26. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

27. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
28. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-

cations. J. Cryptol. 12(1), 1–28 (1999)
29. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algo-

rithms. Theor. Comput. Sci. 53, 201–224 (1987). https://doi.org/10.1016/0304-
3975(87)90064-8

https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/978-3-030-25510-7_19
https://doi.org/10.1007/978-3-030-25510-7_19
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-81652-0_13
https://doi.org/10.1007/978-3-030-81652-0_13
http://hdl.handle.net/10012/8710
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8

	Finding Many Collisions via Reusable Quantum Walks
	1 Introduction
	2 Preliminaries
	2.1 Collision Search
	2.2 Quantum Algorithms
	2.3 Grover's Algorithm

	3 Quantum Walks for Collision Finding
	3.1 Definition and Example
	3.2 Details of the MNRS Framework
	3.3 Vertex-Coin Encoding

	4 A Chained Quantum Walk to Find Many Collisions
	4.1 New Algorithm
	4.2 Complexity Analysis

	5 Quantum Radix Trees and Extractions
	5.1 Logical Level
	5.2 Memory Representation
	5.3 Basic Operations
	5.4 Quantum Memory Allocators
	5.5 Higher-Level Operations for Collision Walks

	6 Searching for Many Collisions, in General
	7 Applications
	7.1 Improvements in Quantum Sieving for Solving the Shortest Vector Problem
	7.2 Solving the Limited Birthday Problem
	7.3 On Multicollision-Finding

	References

